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PME-NA	42	STRANDS		

Strand Description Related Keywords 

Algebra, Algebraic 
Thinking and 

Number Concepts 

This strand includes papers that focus 
on the teaching and learning of early 
algebra, algebra, and number concepts. 

- Algebra and Algebraic Thinking 
- Number Concepts and Operations 
- Rational Numbers 

Curriculum, 
Assessment and 
Related Topics 

This strand includes papers that focus 
on curriculum analysis, development, 
implementation, assessment and 
evaluation, or on technology as 
curricular or assessment tools. 

- Curriculum 
- Curriculum Analysis 
- Curriculum Enactment 
- Standards (Broadly Defined) 
- Assessment and Evaluation 
- Technology 
- STEM / STEAM 
- Equity and Diversity 
- Social Justice 
- Special education 
- Teaching tools and resources 

Equity and Justice 

This strand includes papers that focus 
on marginalization, systems of 
oppression, or other similar issues 
related to mathematics education at 
any level or in any context. 

- Equity and Diversity 
-Social Justice 
- Policy 
- Students with Special Needs 
- Gender and Sexuality 
- Inclusive education 
- Rural education 
- First nations/Indigenous cultures 
- Cross cultural studies 
- Marginalized communities 

Geometry and 
Measurement  

This strand includes papers that focus 
on the teaching and learning of 
geometry measurement and spatial 
reasoning 

- Geometry and Geometrical and 
Spatial Thinking 

- Measurement 

Instructional 
Leadership, Policy, 

and 
Institutions/Systems 

This strand includes papers that focus 
on teacher leaders, coaches, or teacher 
educators as the subjects of research. 

- Instructional Leadership 
- Teacher Educators 
- Systemic Change 

Mathematical 
Knowledge for 

Teaching 

This strand includes papers that focus 
on teachers’ subject matter knowledge 
in relation to teaching. 

- Teacher Knowledge 
- Number Concepts and Operations 
- Geometry and Geometrical and 

Spatial Thinking 
- Rational Numbers 
- Algebra and Algebraic Thinking 
- Technology 
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Mathematical 
Processes and 

Modeling 

This strand includes papers that focus 
on topics such as, but not limited to, 
problem solving, reasoning and proof, 
modeling, etc. 

- Problem Solving 
- Reasoning and Proof 
- Advanced Mathematical Thinking 
- Modeling 
- Representations and Visualization 
- Communication 

Miscellaneous topics 

 This strand includes papers on diverse 
topics, such as Neuroscience,  Ethno-
mathematics,  Interdisciplinary 
studies; and Mathematics for 
sustainability (interdisciplinary 
approaches and complex socio-
scientific issues within mathematics 
education, related to the environment 
and climate change, economic growth 
and poverty, etc.) 

- Neuroscience 
- Ethno-mathematics 
- Mathematics fos sustainability 
- Interdisciplinary studies 
- Modeling 
- Equity and Diversity 
- Social Justice 
- Socio-scientific issues 

Precalculus, 
Calculus, or Higher 

Mathematics 

This strand includes papers that focus 
on the teaching and learning of 
Precalculus, Calculus and/or Higher 
Mathematics 

- Precalculus 
- Calculus 
- University Mathematics 
- Advanced Mathematical Thinking 

Statistics and 
Probability 

This strand includes papers that focus 
on the teaching and learning of 
probability, data analysis and statistics  

- Probability 
- Data Analysis and Statistics 

Student Learning and 
Related Factors 

This strand includes papers that focus 
on students’ experiences and the 
influence of various factors (e.g., 
beliefs, diversity) on mathematical 
learning. 

- Cognition 
- Metacognition 
- Affect, Emotion, Beliefs, and 

Attitudes 
- Embodiment and gesture 
- Gender and Sexuality 
- Technology 
- Informal Education 
- Equity and Diversity 
- Social Justice 
- Students with special needs 
- Representations and Visualization 

Teacher Education - 
Pre-service 

This strand includes papers that focus 
on the development of prospective 
teachers and their knowledge. 

- Assessment and Evaluation 
- Instructional activities and practices 
- Equity and Diversity 
- Affect, Emotion, Beliefs, and 

Attitudes 
- Teacher Knowledge 
- Technology 
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Teacher Education - 
In-service / 
Professional 
Development 

This strand is for proposals that focus 
on in-service teacher learning and 
professional development. 

- Instructional Vision 
- Affect, Emotion, Beliefs, and 

Attitudes 
- Equity and Diversity 
- Assessment and Evaluation 
- Teacher Knowledge 
- Technology 
- Distance education 
-MOOC 

Teaching and 
Classroom Practice 

This strand includes papers that focus 
on analyzing the nature of classroom 
instruction and activity (e.g., 
discourse, culturally relevant 
pedagogy) 

- Classroom Discourse 
- Culturally Relevant Teaching 
- Instructional Activities and 

Practices 
- Inclusive education 
- Technology 
- Representations and Visualization 

Technology  
This strand includes papers that focus 
on the use and development of 
technology for, and in, teaching and 
learning. 

- Technology 
- Computational Thinking 
- Programming and coding 
- Communication 
- Modeling 
- STEM / STEAM 
- Teacher Knowledge 
- Teaching and assessment tools and 

resources 
- Learning Tools 
- Distance education 
- MOOC 
- Representations and Visualization 

Theory and Research 
Methods 

This strand includes papers that focus 
on the development of theory and/or 
research methods. 

- Research Methods 
- Design Experiments 
- Learning Trajectories (or 

Progressions) 
- Doctoral Education 
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PREFACE	

 
When we set out to organize the 42nd Annual Meeting of the North American Chapter of the 

International Group for the Psychology of Mathematics Education (PME-NA 42) to take place in 
Mazatlán, Mexico, on 14-18 October, 2020, we never imagined, as no one did, that 2020 would 
freeze the world due to a pandemic. We therefore had to adapt to this world situation, postponing the 
conference to the summer of next year, and adapting it as a hybrid conference, both as in-person and 
virtual – with the virtual activities beginning around the 27 May, 2021 and the in-person conference 
planned for 2-6 June, 2021. 

A history of PME/PME-NA conferences in Mexico 
Mexico has hosted several past PME-NA conferences:  
• 1990 Oaxtepec: Joint Meeting PME 14 – PME-NA 12  
• 1999 Cuernavaca: PME-NA 21  
• 2006 Mérida: PME-NA 28  
• 2008 Morelia: Joint Meeting PME 32 – PME-NA 30  

The PME-NA 42 conference was hoping to bring back, after twelve years, the conference to Mexico 
and have the honor to host our colleagues from Canada, the USA and other countries. Unfortunately, 
we will have to wait longer. But we hope to be able to welcome participants to Mazatlán in 2021, 
thirteen years after the last conference took place in Mexico. As of December, 2020, we have 527 
registered participants for, at least, the virtual part of the conference. 

Conference Theme 
In accordance with the major goals of PME-NA (see PME-NA History and Goals section above) 

that include promoting international contacts, and stimulating interdisciplinary research, for the 
PME-NA 42 conference, we proposed as theme “Entre Culturas / Across Cultures”. We consider that 
a way to promote the exchange and enrichment of mathematics education research is to look at its 
manifestations across different cultures, places and contexts. This is the focus of the PME-NA 42 
conference, where we aimed to have an encounter of cultures, as well as forms of research in 
mathematics education. That is: 

Across various cultures... 
• of languages, nationalities, communities, ethnicities,  
• of genders,  
• of indigenous people and migrants;  
• of different abilities; 
• of different generations; 
• of teachers, researchers, policy-makers and parents; 
• of school types: urban vs. rural, multigrade, etc; and  
• of classroom cultures and modalities: from traditional teaching to “new” classroom cultures: 

e.g., flipped classrooms, distance education, etc.;  
• of technologies and tools: from pencil-and-paper, to the digital and connected;  
• of math and other disciplines (multi-, inter- and trans-disciplinarity): e.g., STEAM, math and 

environmental sciences, etc.;  
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• of research: different strands of PME-NA research, including cognition, neuroscience, 
ethnography, and new types of research. 

In other words, we wanted an academic exchange that would reflect the ample diversity of ways 
of teaching and learning of mathematics, and of the tools and communities involved in 
mathematics education; as well as explore how the differences in cultures imply a need to 
consider how research results can be taken into account in varying contexts. Through all of the 
above, we hoped to honor the major goals of PME-NA.  

Conference program 
A multi-cultural program 

We received proposals from participants not only from North America, but from 20 countries 
(Australia, Brazil, Canada, Chile, China, Colombia, Ecuador, France, Germany, Italy, Mexico, 
Norway, Peru, Puerto, Rico, Spain, Sweden, Turkey, UK and USA). In fact, 82 proposals were 
submitted in Spanish and two in French. But a requirement of PME-NA is for all accepted proposals 
to have an English version for the proceedings; thus, in order to ensure the high quality of published 
papers, we hired an English language reviewer to make sure that the accepted proposals that had been 
submitted in Spanish would be up to standard in their English versions. It is thus that there are many 
bilingual versions included in these proceedings; in those cases, the title of the paper or poster is 
given in two languages, and the alternate language version (Spanish or French) is included after the 
English one.  
Research reports and poster presentations  

The papers included in these conference proceedings are categorized according to 14 strands (please 
see the PME-NA 42 Strands section above). Seeking to expand the interdisciplinary aspect of 
PME-NA, for the PME-NA 42 conference we added to the lists of keywords, topics such rural 
education; first nations/indigenous cultures; cross cultural studies; marginalized communities, and 
mathematics for sustainability.  

We received 490 proposals for research reports and poster presentations (225 for Research Reports, 
165 for Brief Research Reports and 100 for Poster Presentations). All submissions were strictly peer-
reviewed through a double-blind process (see Review Process section above). In the end, we 
accepted 80 as Research Reports, 190 as Brief Reports and 147 as Poster Presentations. Most of the 
authors with accepted proposals, though not all, registered for the conference and sent final versions 
that are included in these proceedings. 
Working groups and research colloquia   

In addition to the usual Working Groups, this year the Steering Committee added Research 
Colloquia, to focus on a research topic of substantial interest within the PME-NA community that 
has been developed during multiple previous PME-NA (or PME) working groups. Research 
Colloquia involve longer planned presentations to share what has been done in previous meetings 
within the group. 

We received 11 Working Group and 2 Research Colloquia proposals, and a Steering Committee 
subcommittee accepted 10 Working Groups and 2 Research Colloquia. 
 We were happy to see that many Working Groups and Research Colloquia themes were in accord to 
the “Across Cultures” conference theme. 
Plenary and special lectures  

In accordance to our conference theme "Entre Culturas / Across Cultures", we invited plenary and 
special speakers that would represent different cultural contexts, as well as forms of research in 
Mathematics Education. They come from different countries, not only in North America, but also 
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from Europe. They represent different areas of research and disciplines within Mathematics 
Education; and we include researchers from different generations. We hope that these lectures will 
reflect parts of the ample diversity of ways of teaching and learning of mathematics, and of the tools 
and communities involved in mathematics education. In that way, we hoped also to honor the major 
goals of PME-NA. 
Special tribute to Eugenio Filloy 

When planning the program for PME-NA 42, we had envisioned, since 2019, including a special 
live-person homage to Eugenio Filloy, co-founder in 1975 of the Mathematics Education Department 
of the Center for Advanced Studies and Research (Cinvestav) and a driving force of the Mathematics 
Education discipline at an international level from the early 1970s (see the Special Tribute section 
below). Sadly, Eugenio Filloy passed away in March, 2020; but the more reason to include this 
special tribute in his memory. 

A tribute to the PME-NA members who were affected by the COVID-19 pandemic 
As we were wrapping the edition of these proceedings, we heard on the 15th December, of the 

passing of our dear colleague, graduate of Cinvestav and member of AMIUTEM, 
César Martínez-Hernández of the Universidad de Colima, from COVID-19. César has two 
contributions included in these proceedings. May he rest in peace; he will be sorely missed. 

We don’t know how many other members of the PME-NA community have lost their lives, family 
members or friends, or been deeply affected by this pandemic in other ways, but we hope it is not too 
many; to those who have, we send our sympathies to them or to their families, friends and 
colleagues. 

Looking forward 
With the prospect of the SARS-CoV-2 vaccines, we are a bit more optimistic that maybe we will be 

able to host the in-person part of the conference, and welcome you in June in Mazatlán, Mexico. In 
any case, we look forward to welcoming you, either in person or virtually, for PME-NA 42. 

 
The co-chairs of PME-NA 42, 

 
Ana Isabel Sacristán José Carlos Cortés-Zavala 

Cinvestav AMIUTEM /  
Universidad Michoacana de San Nicolás Hidalgo 

 
December, 2020 
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PRÓLOGO	

 
Cuando nos propusimos organizar la 42a Reunión Anual del Capítulo Norteamericano del Grupo 

Internacional de Psicología de la Educación Matemática (PME-NA 42) para realizarse en Mazatlán, 
México, del 14 al 18 de octubre de 2020, nunca nos imaginamos, como nadie lo hizo, que 2020 
congelaría al mundo debido a una pandemia. Por lo tanto, tuvimos que adaptarnos a esta situación 
mundial, posponiendo la conferencia para el verano del próximo año y adaptándola como una 
conferencia híbrida, tanto presencial como virtual – con las actividades virtuales comenzando 
alrededor del 27 de mayo, 2021, y la conferencia presencial planeada del 2 al 6 de junio, 2021. 

Historia de las conferencias PME / PME-NA en México 
México ha sido sede de varias conferencias PME-NA anteriores: 
• 1990 Oaxtepec: Reunión conjunta PME 14 - PME-NA 12 
• 1999 Cuernavaca: PME-NA 21 
• 2006 Mérida: PME-NA 28 
• 2008 Morelia: Reunión Conjunta PME 32 - PME-NA 30 

La conferencia PME-NA 42 esperaba traer de regreso, después de doce años, la conferencia a 
México y tener el honor de recibir a nuestros colegas de Canadá, Estados Unidos y otros países. 
Desafortunadamente, tendremos que esperar más. Pero esperamos poder dar la bienvenida a los 
participantes a Mazatlán en 2021, trece años después de que se llevó a cabo la última conferencia en 
México. A la fecha, tenemos 527 participantes inscritos para, cuando menos, la parte virtual de la 
conferencia.  

Tema de la conferencia 
De acuerdo a los principales objetivos del PME-NA (ver la sección PME-NA History and Goals,  

arriba) que incluyen promover contactos internacionales y estimular la investigación 
interdisciplinaria, para la conferencia PME NA 42, propusimos como tema “Entre Culturas / Across 
Cultures”. Consideramos que una forma de promover el intercambio y el enriquecimiento de la 
investigación en educación matemática es observar sus manifestaciones en diferentes culturas, 
lugares y contextos. Este es el tema central de la conferencia PME-NA 42, donde pretendíamos tener 
un encuentro de culturas, así como formas de investigación en educación matemática. Es decir: 

A través de varias culturas ... 
• de idiomas, nacionalidades, comunidades, etnias, 
• de géneros, 
• de pueblos indígenas y migrantes; 
• de diferentes habilidades; 
• de diferentes generaciones; 
• de profesores, investigadores, autoridades, políticos y padres de familia; 
• de tipos de escuelas: urbanas vs. rurales, multigrado, etc; y 
• de las culturas y modalidades del aula: desde la enseñanza tradicional hasta las “nuevas” 

culturas en las aulas: por ejemplo, aulas invertidas, educación a distancia, etc. 
• de tecnologías y otras herramientas: desde el lápiz y el papel, hasta lo digital y conectado; 
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• de matemáticas y otras disciplinas (multidisciplinaridad, interdisciplinariedad y 
transdisciplinariedad): por ejemplo, STEAM (CTIAM), matemáticas y ciencias ambientales, 
etc.; 

• de investigación: diferentes líneas de investigación de PME-NA, que incluyen cognición, 
neurociencia, etnografía y nuevos tipos de investigación. 

En otras palabras, queríamos un intercambio académico que reflejara la amplia diversidad de 
formas de enseñanza y aprendizaje de las matemáticas, y de las herramientas y comunidades 
involucradas en la educación matemática; así como explorar cómo las diferencias en las culturas lo 
que requiere considerar cómo los resultados de investigación pueden ser tomados en cuenta en 
diferentes contextos. A través de todo lo anterior, esperábamos honrar los principales objetivos de 
PME-NA. 

Programa de la conferencia 
Un programa multicultural 

Recibimos propuestas, no solo de Norteamérica, sino de 20 países (Australia, Brasil, Canadá, Chile, 
China, Colombia, Ecuador, Francia, Alemania, Italia, México, Noruega, Perú, Puerto, Rico, España, 
Suecia, Turquía, Reino Unido y Estados Unidos). De hecho, 82 propuestas fueron enviadas en 
español y dos en francés. Pero un requisito del PME-NA es que todas las propuestas aceptadas 
tengan una versión en inglés para las memorias del evento; por tanto, con el fin de garantizar la alta 
calidad de los artículos publicados, contratamos a un revisor del inglés para asegurarnos de que las 
propuestas que habían sido evaluadas en español y que fueron aceptadas, cumplieran con el estándar 
en sus versiones en inglés. Así, estas memorias incluyen muchas versiones bilingües; en esos casos, 
el título del trabajo o cartel se presenta en dos idiomas, y la versión en idioma alterno (español o 
francés) se incluye después de la versión en inglés. 
Informes de investigación y presentaciones de carteles 

Los artículos incluidos en estas memorias de la conferencia, se clasifican de acuerdo a 14 áreas 
(consulte la sección PME-NA 42 Strands, más arriba). Buscando expandir el aspecto 
interdisciplinario del PME-NA, para la conferencia PME-NA 42 agregamos a las listas de palabras 
clave, temas como educación rural; primeras naciones / culturas indígenas; estudios transculturales; 
comunidades marginadas y matemáticas para la sostenibilidad. 

Recibimos 490 propuestas para reportes de investigación y presentaciones de póster (225 para 
reportes de investigación, 165 para reportes breves de investigación y 100 para presentaciones de 
póster). Todas las propuestas fueron sometidas a un proceso estricto de arbitraje por pares 
doblemente ciego (consulte la sección Review Process más arriba). Al final, se aceptaron 80 reportes 
de investigación, 190 como reportes breves de investigación y 147 como presentaciones de póster. 
Casi todos los autores con propuestas aceptadas, aunque no todos, se inscribieron para la conferencia 
y enviaron versiones finales de sus escritos que se incluyen en esta memorias. 
Grupos de trabajo y coloquios de investigación 

Además de los Grupos de Trabajo habituales, este año el Comité Ejecutivo del PME-NA agregó la 
modalidad de Coloquios de Investigación (Research Colloquia), los cuales se centran en un tema de 
investigación de interés particular para la comunidad del PME-NA, y que ha sido desarrollado en 
grupos de trabajo durante múltiples reuniones del PME-NA (o PME). Dichos coloquios de 
investigación involucran presentaciones planeadas más largas que lo que se ha hecho en reuniones 
previas de los grupos. 

Recibimos 11 propuestas para Grupos de Trabajo y 2 para Coloquios de Investigación; y un 
subcomité del Comité Directivo aceptó 10 Grupos de Trabajo y 2 Coloquios de Investigación. 
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 Nos alegró ver que muchos temas de los Grupos de Trabajo y Coloquios de Investigación 
coinciden con el tema de la conferencia: “Entre culturas”. 
Conferencias plenarias y especiales 

De acuerdo con el tema de nuestra conferencia "Entre Culturas / Across Cultures", invitamos a 
conferencistas plenarios y especiales que representen diferentes contextos culturales, así como 
formas de investigación en Educación Matemática. Vienen de diferentes países, no solo de 
Norteamérica, sino también de Europa. Representan diferentes áreas de investigación y disciplinas 
dentro de la Educación Matemática; e incluimos investigadores de diferentes generaciones. 
Esperamos que estas conferencias reflejen partes de la amplia diversidad de formas de enseñanza y 
aprendizaje de las matemáticas, y de las herramientas y comunidades involucradas en la educación 
matemática. De esa manera, también esperábamos honrar los principales objetivos de PME-NA. 
Homenaje especial a Eugenio Filloy 

En la planeación del programa del PME-NA 42, teníamos previsto, desde 2019, un homenaje 
especial, y en vida, a Eugenio Filloy, cofundador en 1975 del Departamento de Matemática 
Educativa del Centro de Estudios Avanzados e Investigaciones (Cinvestav) y una fuerza impulsora 
de la disciplina de Educación Matemática a nivel internacional desde principios de la década de 1970 
(ver la sección Homenaje Especial, más abajo). Lamentablemente, Eugenio Filloy falleció en marzo 
de 2020; pero esto es más razón para hacerle este homenaje especial, honrando sus contribuciones a 
la disciplina y su memoria. 

Un homenaje a los miembros de PME-NA afectados por la pandemia COVID-19 
Al cerrar la edición de estas memorias, el 15 de diciembre nos enteramos del fallecimiento, por 

COVID-19, de nuestro querido colega, egresado del Cinvestav y miembro de AMIUTEM, 
César Martínez Hernández de la Universidad de Colima. César tiene dos aportaciones incluidas en 
estas memorias. Descanse en paz; se le extrañará. 

No sabemos cuántos otros miembros de la comunidad PME-NA han perdido su vida, de sus 
familiares o amigos, o han sido profundamente afectados por esta pandemia de otras formas, pero 
esperamos que no sean demasiados; a quienes lo han sido, les enviamos nuestro más sentido pésame, 
o a sus familiares, amigos y colegas. 

De cara al futuro 
Con la perspectiva de las vacunas contra el SARS-CoV-2, somos un poco más optimistas de que tal 

vez podamos ser anfitriones de la parte presencial de la conferencia y darles la bienvenida en junio en 
Mazatlán, México. En cualquier caso, esperamos darles la bienvenida, ya sea en persona o 
virtualmente, al PME-NA 42. 
 

Los co-organizadores del PME-NA 42, 
 
 

Ana Isabel Sacristán Rock José Carlos Cortés Zavala 
Cinvestav AMIUTEM /  

Universidad Michoacana de San Nicolás Hidalgo 
 

Diciembre, 2020 
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The PME-NA 42nd Conference and these proceedings are dedicated to the  
memory of Eugenio Filloy-Yagüe (1942-2020) 

 
 

La 42a Reunión del PME-NA y estas actas se dedican a  
la memoria de Eugenio Filloy Yagüe (1942-2020) 
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TRIBUTE TO EUGENIO FILLOY†: A PIONEER AND DRIVING FORCE OF 
MATHEMATICS EDUCATION AS A DISCIPLINE 

HOMENAJE A EUGENIO FILLOY†: UN PIONERO IMPULSOR DE LA DISCIPLINA DE LA 
MATEMÁTICA EDUCATIVA 

By Ana Isabel Sacristán 
Cinvestav, Mexico 

asacrist@cinvestav.mx 

With contributions by 
Armando Solares (Cinvestav, Mexico, asolares@cinvestav.mx),  

Celia Hoyles (UCL Institute of Education, UK, c.hoyles@ucl.ac.uk),  
Richard Noss (UCL Institute of Education, UK, r.noss@ucl.ac.uk),  

Fernando Hitt (UQAM, Canada, hitt.fernando@uqam.ca), 
Carolyn Kieran (UQAM, Canada, kieran.carolyn@uqam.ca),  

Miguel Díaz-Chávez (Universidad Pedagógica Nacional, Mexico), 
José Carlos Cortés-Zavala (UMSNH, Mexico, jcortes@umich.mx), 

María Leticia Rodríguez-González (Cinvestav, Mexico, leticia.rodriguez@cinvestav.mx), 
Ulises Xolocotzin (Cinvestav, México, ulises.xolocotzin@cinvestav.mx), 

Teresa Rojano (Cinvestav, México, trojano@cinvestav.mx), 
Luis Puig (Universitat de València, Spain, luis.puig@uv.es) 

 

 
Eugenio Filloy (1942-2020) 

As we said in the Preface to these proceedings, when planning the PME-NA 42 conference in 2019, 
we had envisioned including a special live-person tribute to Eugenio Filloy, as the “father” of 
Mathematics Education in Mexico, with an extended influence in many countries in Ibero and Latin-
America. Eugenio was one of the strongest supporters of PME-NA 42, and many contributions by his 
students and himself are included in these proceedings. Sadly, Eugenio passed away on the 23rd  
March, 2020. We do this tribute then, in memoriam. 

Here is a brief sketch of his academic trajectory and his important contributions to the field of 
Mathematics Education: 
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• Eugenio studied Mathematics and Theoretical Physics at the National Autonomous University 
of Mexico, graduating in Mathematics in 1965. 

• He did a Master’s degree in Mathematics at Cinvestav, graduating in 1966, and was also 
visiting scholar at UCLA in that same year.  

• He received his PhD in Mathematics from the University of Chicago in 1970 
• In 1971, he joined the Mathematics Department at Cinvestav, and did some postdoctoral work 

at the University of Geneva, Switzerland in 1972. 
• From 1973 to 1977, he was president of the Mexican Mathematical Society. 
• In 1975, he co-founded the “Section of Educational Mathematics” (Sección de Matemática 

Educativa-SME), part of the Department of Educational Research at Cinvestav, with two other 
mathematicians from the Mathematics Department –Carlos Imaz and Juan José Rivaud— with 
whom he had been collaborating in designing and writing the Mathematics textbooks of the 
Mexican National Program of Free Textbooks for Primary Schools launched in the late 1960s 
by Mexico’s Ministry of Education (SEP). Ramiro Ávila-Godoy (2013) explains that:  

This experience led Dr. Filloy to become aware of the importance and complexity of 
the problematic of the learning and teaching of Mathematics and of the need to deal 
with it at all educational levels […] and seek solutions. […] 
… in the name “Educational Mathematics” was implicit the intention to deal with the 
problematic of the teaching and learning of mathematics, from mathematics itself. At 
the time, this approach was innovative and led many countries in Latin America to talk 
of Matemática Educativa 

• From the onset, i.e., from 1975, the newly founded section - SME (today the Department of 
Mathematics Education –DME, at Cinvestav), offered a Master of Science in “Educational 
Mathematics” (Matemática Educativa), “with a strong content in mathematics as well as on the 
history and foundations  of mathematics” (Trigueros, Sacristán & Guerrero, 2008, p.220); and 
from 1982, a PhD program. Eugenio himself was supervisor, active until the day of his 
passing, of close to 100 students of those programs (directing more than 60 Master’s thesis and 
over 30 PhD dissertations); many of his former students have contributions included in these 
proceedings. 

• In 1983, Eugenio founded the ambitious and far-reaching National Program for Training and 
Professional Development of Mathematics Teachers (Programa Nacional de Formación y 
Actualizacion de Profesores de Mathematicas - PNFAPM) which, in collaboration with a 
network of many Mathematics departments in over 30 universities and higher institutions 
across Mexico, offered a Master of Science in Matemática Educativa; as well as an 
undergraduate program in the teaching of mathematics.  

The PNFAPM also established academic links with international institutions, and many 
members of the SME participated in doctoral and post-doctoral studies 
abroad.  Simultaneously to the PNFAPM, national and international conferences and 
meetings  were launched so that researchers and teachers could share and discuss their 
experiences.” (Trigueros, Sacristán & Guerrero, 2008, p. 221)   

In fact, Eugenio continuously promoted collaborations with researchers worldwide. For example: 
• He actively participated in international events, such as CIAEM (chairing, in 1980, the XXXII 

CIAEM, in Oaxtepec, Mexico), PME, and ICMI, and was instrumental in having Mexico be 
part of PME-NA; Teresa Rojano explains: “It was Eugenio Filloy who, in the 1980s, proposed 
that Mexico be considered as a member of PME-NA, arguing that geographically, Mexico is 
part of North America. A year later, the [PME-NA] Steering Committee added a spot for 
Mexican member.” 
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• Trigueros, Sacristán & Guerrero (2008, p. 221) describe the international collaborations and 
academic links promoted by Eugenio for the SME-Cinvestav: 

From its inception, the SME-Cinvestav group [led by Eugenio] began studying what 
was being done  internationally, and developed academic links with foreign researchers 
and  institutions. The first links were done with Brousseau and Glaeser, and later with 
the  Instituts de Recherche sur l’Enseignement des Mathématiques (IREM) in 
Bordeaux  and in the Université Louis Pasteur in Strasbourg, France, as well as the 
École des  Hautes Études en Sciences Sociales in Paris. This established an influence 
of the French school of Didactique.[…] the SME-Cinvestav group also took into 
account theoretical  frameworks from other countries such as the USA (e.g. the work of 
Bruner and  Skinner) the Soviet Union (e.g. that of Kruteski), the UK, as well as the 
work of  Piaget. Other academic links took place with the University of London, 
UK,  Cambridge University, UK, and the University of Toronto, Canada. By the 21st 
century, many other international links had been established with the DME-Cinvestav. 
In addition to the aforementioned ones, others include those with the  Universities of 
Granada and Valencia in Spain; the Université Joseph Fourier in  Grenoble, France; 
the University of Quebec in Montreal (UQAM), Canada; the  Universities of Georgia, 
and of Massachusetts-Dartmouth in the USA; and the  Universities of Nottingham and 
of Bristol, UK.   

• In 1979, Eugenio also did postdoctoral work at the University of Strasbourg, France, and was 
invited as visiting professor to the Autonomous University of Barcelona, Spain. 

• In that way, researchers such as François Pluvinage (who coincidentally passed away on 
practically the same day as Eugenio), Kat Hart, Carolyn Kieran, Luis Puig, Celia Hoyles, Ros 
Sutherland, Richard Noss and James Kaput, among others, became regular collaborators of the 
Department of Mathematics Education of Cinvestav 

• And the result of both the Master’s (and later PhD) program at Cinvestav, as well as that of the 
PNFAPM, is several hundred of graduates trained through Cinvestav, not only from Mexico, 
but from all over Ibero and Latin America that have had an influence in their regions in the 
field of Mathematics Education; as well as the launching of many programs of professional 
development for mathematics teachers, and/or of research in Mathematics Education (or 
Matemática Educativa). 

Eugenio not only strengthened the field of Mathematics Education through his professional 
development initiatives, but also through his research and the research approaches that he promoted 
(for further details, see Trigueros, Sacristán & Guerrero, 2008; and Solares, Puig & Rojano, 2020). 
For example,  

• He promoted the analysis of the history and foundations  of mathematics, as a research method 
in the field of mathematics education. 

• He promoted the use and research of what used to be called “new technologies” (i.e., 
computers, audiovisual media, and other digital resources). 

• In response to the need of carrying out controlled experimentation, he founded a school in 
which he could do that (the Centro Escolar Hermanos Revueltas). 

• He recognized the limitations of general theoretical models and proposed the concept of Local 
Theoretical Models (see the book Educational Algebra by Filloy, Rojano & Puig, 2008).  

• He produced close to 500 scientific publications in his areas of research:  Didactics of Algebra 
and Geometry; History of Algebraic and Geometric ideas; Mathematical Systems of Signs; 
Curricular Design; Use of New Technologies;, and Local Theoretical Models. 

• Eugenio was also a member of many Scientific and/or Editorial Committees, including of the 
journals Educational Studies in Mathematics, or Recherche en Didactique des Mathématiques.  
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• He received many distinctions, including being designed Professor Emeritus of Cinvestav 

(2002); being awarded an Honoris Causa Doctorate from the University of Sonora (2011);  
being granted the medal “Mtro. Remigio Valdéz Gámez” by the Mexican National Association 
of Mathematics Teachers  (Asociación Nacional de Profesores de Matemáticas A.C.)  for his 
transcendental trajectory in the field of Mathematics Education (2013); and receiving an 
honorific recognition from the Autonomous University of Guerrero for founding Matemática 
Educativa and having academic contributions that became international benchmarks (2016). 

To all of that we add this tribute, in recognition of his profound legacy to the discipline of 
Mathematics Education. 

Next we include some anecdote, memories and stories from some of his collaborators and former 
students:  

 
“Eugenio will always be guiding us where to go forward.” Luis Puig 

Some happy memories of Prof Eugenio Filloy, by 
Celia Hoyles and Richard Noss 

As far as we can remember, Celia first met Eugenio at an early PME conference – Grenoble 1981, 
or Antwerp 1982 we cannot be sure.  Our relationship with Eugenio spanned many decades. It is full 
of so many wonderful memories, and we can only share their essence here. 

Eugenio was remarkable in his deep commitment to mathematics and mathematics education, his 
devotion to Mexico and the promotion of mathematics education in the country. One only had to 
spend ten minutes in his company to recognise his charm, his sense of humour and perhaps most of 
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all the twinkle in his eye. Not to mention his wonderful hospitality and his gourmet views on wine 
and food! 

 
Celia and Richard with Eugenio in the 80s  

In the mid-eighties, Eugenio and Celia set up the Anglo-Mexican Research Project, named “the 
Development of Mathematical Microworlds for Pupils and Teachers”. This was achieved with 
funding the British Council and Mexican Government and the work went forward in collaboration 
with Programa Nacional de Formación y Actualizacion de Profesores de Mathematicas or PNFAPM 
(Mexico´s National Program of Training and Professional Development for Mathematics Teachers) 
that Eugenio led.  By the time Richard and later Teresa Rojano and Ros Sutherland joined the team in 
1986, a steady stream of visits had been established in both directions along with research 
collaborations that lasted for many years. 

A central feature of the project was to recruit PhD students whom we met in Mexico where they 
were subject to a selection process for working on an English PhD in Mathematics Education in 
London, with field work in Mexico. 

This meant that there was, for us, an amazing ‘bonus’ to this project!  We used to visit about once a 
year going to different parts of this amazing country with Eugenio as our guide and mentor. But that 
wasn’t all: Eugenio was not one to stay in a tent and eat in a roadside café! On the contrary, our visits 
were characterised by visits to wonderful restaurants, exotic hotels, and relaxed but fascinating 
seminars where we met several researchers who we now regard as friends and collaborators, Olimpia 
Figueras as just one example and notably one of Richard’s star PhD students on this program, Ana 
Isabel Sacristan who has become a leading figure in Mathematics Education in Mexico and 
internationally.  

One incident stands out, one that is iconic in terms of Eugenio’s readiness to look at life – no matter 
how serious – with a twinkle in his eye. We were giving a talk in a seminar, somewhere in Mexico 
City. Celia was trying carefully to explain some key points of our research, and both of us were 
trying to communicate (shamefully, despite so many visits to Mexico, neither of us speaks Spanish 
well enough to give a talk)!  Eugenio was kindly translating what we believed was an important and 
serious point, when the audience burst into laughter. Eugenio looked askance at us, a hint of a smile 
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on his face. To this day we do not know what he said – or how closely – if at all – his ‘translation’ 
was to the real thing J 

We miss Eugenio but at least have some consolation in the fact that our relationship with Mexico 
continues through collaborations with Ana and with Teresa that started with his initiative.    We have 
again visited some of our favourite places to conduct workshops hosted this time by them.  So we 
end with a photo of us with Ana taken at one of these workshops in the grounds of the lovely hotel 
Hosteria Las Quintas in Cuernavaca, which was introduced to us by Eugenio as the venue for one of 
his seminars and became one of our favourite places in the whole world J. 

  
Richard and Celia with Ana Isabel Sacristan 
(left, who did her PhD in London as part of 

the collaboration set up by Eugenio Filloy) in 
the gardens of Hosteria Las Quintas 

Celia and Richard in the gardens of  
Hosteria Las Quintas, Cuernavaca, Mexico 

Memories of Eugenio, by Carolyn Kieran 
Often, over the past several decades when I was invited to Mexico to give a talk to a group of 

teachers and young researchers, and Eugenio was requested to translate my oral presentation to the 
audience from English to Spanish, a strange thing happened: I would state a paragraph or so in 
English and then it would be Eugenio's turn to translate what I had just said. Inevitably, the 
translation took longer, but not only that, it often led to bouts of joyous laughter from the audience. 
Eugenio was an expert at injecting a note of humour into my otherwise straightforward and very 
serious presentations -- something that I was most grateful for and will always appreciate about 
Eugenio: his graciousness and keen sense of humour. 

Memories of Eugenio, by Fernando Hitt 
Eugenio was one of our Mexican "maîtres penseurs". He had a very broad vision of Mexico's 

problems in education and of our possibilities of contributing to the improvement of the teaching and 
learning of mathematics. When I was doing my doctoral studies abroad, he presented to the members 
of the Educational Mathematics Section a document on the evolution of the section and its members, 
which went down in history as the "Colorines document”. In that document he made a projection of 
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the future of the section. This document was used for several years as a guide to remind us of the 
objectives of the section. 

At the beginning of the 80s Eugenio suggested that I reflect on a project related to the training of 
mathematics teachers to be presented to the office of Higher Education [of the Mexican Ministry of 
Education] shortly before a change of administration (in 1982). He proposed that we meet once a 
week at his house and that if the project wasn’t approved, we would at least have a pleasant time 
discussing and having a couple of drinks... The result was that Jesús Reyes Heroles, who was 
appointed as Minister of Education, upon hearing of the project, mentioned that this was an excellent 
project and that many more of the same style should be implemented (for Spanish, Biology, Physics, 
etc.). This is how the Programa Nacional de Formación y Actualizacion de Profesores de 
Mathematicas or PNFAPM (Mexico´s National Program of Training and Professional Development 
for Mathematics Teachers) was born; the problem was that a short time later, Reyes Heroles died. 
Still, we were able to sustain the program for over 10 years. 

Some memories of the PME conferences: 
In a PME [of the late 80s or early 90s,] Eugenio went to a lecture on the use of new technologies. 

For the first time, Eugenio saw someone using a computer and beamer at a presentation. He 
explained that the image was a bit blurry and small. He told me that several minutes later a guy 
arrived, sat in the front near where the computer and the beamer were, got up, moved, did a couple of 
things and left a sharper and larger image. Eugenio told me that that moment was much more 
interesting on the usefulness of technology than the entire lecture. 

At the PME in Asissi (Italy) in 1991, at the beginning of the conference, I saw him leave the hotel 
while I was in the cafeteria. I left about 5 minutes later and met him on the road. I told him that I 
thought he would be at the conference by now, and he replied that walking the Michael Jackson way 
took him longer ... J 

Eugenio Filloy-Yagüe, a teacher who left me a legacy, by Miguel Díaz-Chávez 
In my education, Professor Filloy was a very important person and the meetings were many; 

however I think the following are the ones I want to share. 
My first meeting with Professor Filloy was in 1986 when I began my master's degree in Matemática 

Educativa, in the then section of the same name located in a beautiful house in Mexico City. In the 
first semester he was my teacher in a compulsory course on education and I think one of the first 
readings he left us was the book "Psychogenesis and history of science" by Jean Piaget and Rolando 
García. I read the sections he indicated and at the end I told him with great anguish that I did not 
understand and he very understandingly replied: someday you will understand. This course and his 
dissertations opened up the landscape of mathematics education for me. 

A second memory that I have very much in mind was on my first trip to Europe in 1988 when I was 
surprised to find a book of his authorship in a bookstore in Madrid; this discovery showed me the 
importance of his work at an international level. 

The last meeting I had with Professor Filloy was listening to him at an event in Mexico City about 
five years ago. At that time I was starting to do research on the free math textbook and I talked to 
him about the possibility of interviewing him about it, considering that he was one of the authors of 
those books in the 70's; as expected he agreed, but with his style he said: Yes, but hurry up. That 
interview never took place. To him, Professor Filloy, my infinite gratitude. 

Some of my memories of Eugenio, by Ana Isabel Sacristán 
When, in 1986, I began my Mathematics Education master's studies at Cinvestav, Eugenio Filloy 

was my teacher in the compulsory and introductory course in Education. I remember how 
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intimidating his imposing presence was to me. For example, he was obsessive about punctuality and I 
was afraid of him for that: looking at his watch, he would tell me: "You were two minutes late"; or 
on one occasion: "You were 30 seconds late"! 

On the other hand, in those days it was surprising to me how he valued more our reasoning than 
learning contents, and I remember how enlightening the study of the book “Psychogenesis and 
history of science” by Jean Piaget and Rolando García, was. Eugenio introduced me to an educational 
philosophy that was new to me then, but that I have followed since. 

Some time after I finished my master's studies, one day in 1989, I ran into him by chance: At the 
outset he told me: “The English are here”; immediately, without my being able to utter a single word, 
or ask what he was referring to, he opened his agenda and ordered me to be there the next day to 
meet Celia Hoyles at a specific time. That was how short the meeting was, and I was not sure what it 
was about. But it was an interview for pursuing PhD studies at the University of London, England, 
with the support of the PNFAPM and the British Council. Thus it was that by a chance encounter, my 
future was sealed; and I will be eternally grateful to Eugenio, in addition to his teachings, for putting 
me on the path and supporting me on the way. 

I am pleased to have been able to inform him, shortly before he passed away, that we would do this 
tribute at PME-NA 42. I think he was pleased. 

Memories of Eugenio, by José Carlos Cortés  
In 1991, I began my Master's degree in the Section of Matemática Educativa located at a house in 

Mexico City. Nearby was another building in which Dr. Filloy worked; at that time he was the head 
of the section. The first time I saw him, I was impressed by his strong tone of voice and his 
appearance. Since, in the first semester of my master's studies, I did not yet have a scholarship, one 
day Dr. Filloy approached me and asked me if I wanted to work at his school "Los Hermanos 
Revuelta" which I accepted with great pleasure and I will never forget that great experience. In the 
school "Los Hermanos Revuelta" directed by Maru, wife of Dr. Filloy, as teachers we were allowed 
to innovate; also, as masters and doctoral students, we were also allowed to carry out educational 
experiments (of course complying with all the protocols). Thus, Dr. Filloy was a pioneer in 
Mathematics Education research but he also put into practice through his school the new teaching 
trends in the field. Much later, Dr. Filloy participated with us at several AMIUTEM conferences of 
which we have very good memories. Best wishes to you, Eugenio, wherever you are. 

Debating with Eugenio Filloy in Mexico City, by Armando Solares-Rojas (written in 2012) 
I met Eugenio Filloy in the spring of 2000. The references I had of him made me place him as the 

founder of the Department of Educational Mathematics of Cinvestav, a member of the editorial 
committees of some of the most important research journals in the area, an international researcher 
famous for his contributions in the teaching of Algebra and as a very important figure in the 
educational reforms of the country. But there was still a lot to know about him... 

The first work meeting we had was held at the offices of the Sociedad Mexicana de Matemática 
Educativa (Mexican Society of Educational Mathematics). I arrived promptly and we went to his 
meeting room. Three armchairs, a small table, several paintings, a collection of posters celebrating 
the 300th anniversary of the publication of Isaac Newton's Mathematical Principles of Natural 
Philosophy. We spoke very little, but in that short talk he invited me to a seminar on the philosophy 
of mathematics that was in progress, with Ignacio Garnica. 

Together with Manuel Cruz, who was a fellow at the UNAM Institute of Mathematics and is now 
director of the Department of Mathematics at the University of Guanajuato, I plucked up the courage 
and spent long hours reading and discussing Gottlob Frege's text. With many ideas in mind, we 
launched into a seminar session in which we tried to answer questions such as: What are numbers? 
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What do expressions involving numbers refer to? Eugenio Filloy led the seminar to discuss theories 
about the meaning of mathematical texts and showed me the possibility of working, from 
mathematics, with epistemology, history and didactics. I entered the doctoral program in Educational 
Mathematics at Cinvestav in September of that same year. 

As a formal student in the department, I continued to be part of the seminar whose sessions, intense 
and unforgettable, left me much more learning than I expected. 

For example, the Wittgenstein readings. The long hours spent at the end of my bachelor’s degree 
reading the Tractatus logico-philosophicus finally made sense! Today, language games continue to 
haunt my readings and, increasingly, they are incorporated into the texts that I write myself. 

I also learned about Charles Sanders Peirce’s semiotic theory and how Eugene used the triadic 
notion of the sign as a starting point to develop the Mathematical Systems of Signs, a theoretical 
notion that allowed him to describe the teaching and learning of algebra, thus articulating a new 
perspective on research that has given fruit to numerous studies and publications of which Dr. 
Rojano has already spoken extensively. I myself have had the fortune and honor to collaborate on 
some of them throughout the years of training and work with Eugenio and Tere: from presentations 
at the International Group for the Psychology of Mathematics Education (PME) Conferences, to the 
recent publication of the article “Problems of two unknown quantities and two levels of 
representation of the unknown” published in the Journal for Research in Mathematics Education in 
January of last year (2011). 

From philosophy I went back to history. My previous readings on the history of calculus (Newton's 
De quadratura curvarum), of physics (Optiks, also Newton's) made sense also through my contact 
with Filloy! 

Although I knew little about the history of the development of Algebra, like any mathematician in 
training, I knew the history of the short life of Galois, famous among young people for being 
bohemian, in love, anti-church, rebellious and… cool. But I knew nothing of the Indian astronomers 
and mathematicians Bhaskara and Brahmagupta, or of the Persian mathematician, astronomer and 
poet Omar Khayyám. 

And that leads me to talk about a facet of Eugenio that characterizes him and that has had a 
profound influence on me and on many other people who have been close to him: his generosity. I 
think that the history and legacy of a man, of a teacher, can be described by the books he treasures, 
but even more by the books he offers and shares. 

Entering the Filloy library is an invitation to navigate through the immense plurality of ideas that 
the history of mathematics grants us. There I came across different translations of Al-Kitāb al-
mukhtaṣar fī ḥisāb al-jabr wa-l-muqābala (Concise Book of Calculation of Restoration and 
Opposition) and I was able to compare the versions and translations of Robert de Chester with that of 
Gerard of Cremona and with that of Frederic Rosen. Also the Arithmetic of Diophantus in several of 
its versions (See Eecke, P., J. Sesiano, Rashed, Tannery); the Liber Quadratorum 'The Book of 
Square Numbers' by Leonardo of Pisa ... 

His generosity to his students goes beyond sharing his treasured library. An essential part of Filloy's 
didactic activity was supporting the student and teaching autonomy and self-sufficiency to write, 
participate in conferences, design and present research projects. I remember coming out of tutorial 
session and carrying a huge bundle made up of transcripts, videos, lessons, articles, books ... And 
hours of revisions and discussions on video-recorded interviews with laughter in front of the 
television; What did he say? What did he do? Where is it going? Sharing knowledge. Teaching. 
Learning. 

I also received his generosity when becoming a teacher. Have you taught secondary school? 
Eugenio asked me. No… not yet, I replied. It was the middle of 2001 and by September of that year I 
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was already preparing my math classes for second grade of middle school at Revueltas, the school 
with an alternative approach that Eugenio founded. How was I doing? Suffice to say that I came out 
sweating, hoarse, exhausted. Nothing to do with the classes that I had taught at the School of 
Sciences! More difficult? My friends asked me. Without a doubt! 

That experience profoundly transformed my way of seeing the mathematics classroom, it was no 
longer just a matter of finding and designing good problems and putting them to the test in an 
interview situation, but of recognizing the complexity of the teacher's work, the diversity of tensions 
in those that build the mathematical activity of the classroom. 

On the other hand, in Revueltas I saw how Eugenio, a researcher in educational mathematics, ran 
into students in the hallways who said: “high-five, Eugenio!" and they climbed on his back so that he 
would carry them "on horseback"; with administrators who were looking for him to say "teacher, the 
calculators and view-screens arrived"; and teachers who asked him for support for their classes 
"Eugenio, do we review what we are going to see in third grade next week?" Creating and sustaining 
a "living" research laboratory, as a school is, is one of the most demanding tasks I have seen, and in 
Eugenio it is also an example of the consistency between theoretical discourse and practice. 

But Eugenio's generosity is not limited to books and mathematics… discussions, projects, articles, 
accompanied by a good meal and a good wine, taste even better! 

What is the meaning and reference of the expression "good French wine"? Following Eugenio's 
teaching, we could say that his reference is located in the Montrachet vineyards, between the towns 
of Puligny and Chanssange, in the Côte-d'Or of the Burgundy region, in eastern France. Or perhaps 
in a bottle from a Château d'Yquem, produced in the Sauternes region of Bordeaux. The meaning in 
this case is even clearer, if you want to think about it like that. Sauternes is made with semillon, 
sauvignon blanc and muscadelle grapes that, affected by a fungus endemic to the region, are partially 
raisined, resulting in a higher concentration of sugar and wines with a distinctive aroma. The Château 
d'Yquem is also made in an artisanal way, processing grape by grape… by hand. 

And just as he shared how much he knows about wines with me, I have had the opportunity to be 
close to him, to his family, to Maru, his wife. Close not only to his vision as a researcher but also to 
his vision of life, of what in Mexico and Latin America we understand of being a sybarite, that is, 
who enjoys life in all its vastness. 

Today, from my own vision of closeness, I want to thank Eugenio for all that he has shared and still 
shares with me. A big hug and many congratulations, Eugenio. 

Mexico City, November 2012. 

 Memories of one of Dr. Filloy’s last students, by  
María Leticia Rodríguez-González  

Dr. Eugenio Filloy was a person with the ability to observe in order to know each and every one of 
us. He knew exactly what our strengths, weaknesses and especially feelings were. He was a man, 
with extraordinary universal knowledge, he always had a topic of conversation. He loved the 
narrative, weaving everyday life anecdotes into his stories, intermingling characters from Greek 
mythology and politics. Filloy was in love with life. 

He loved it when we asked him things, although sometimes it was his students who were the most 
hesitant to ask him. The most interesting thing is that he wouldn’t give us the answer, instead he 
would provide a large number of books to research it. But the wonderful thing is that the material that 
he would share with us was unpublished in most cases. 

However, it was sometimes very difficult to follow the logic of his speech; even though we were 
barely understanding the beginning, he was already coming to the end. Over time, I learned that all 
his ideas were mathematical and heuristic but above all scientific. 
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I dare to affirm that Eugenio Filloy was the scientist who gave legitimacy to mathematics education, 
breaking with the paradigm of finding problems in the way in which mathematics is taught and 
learned. He gave the arguments for the object of knowledge of Educational Mathematics to focus on 
mathematics itself, establishing a clear difference between Mathematics Education, Mathematics 
Didactics and Mathematics Psychology. 

Eugenio Filloy, a visionary teacher that knew that the construction of scientific knowledge requires 
interaction between researchers, teachers and students through communication. Proof of this was his 
participation and in some cases founder of Conferences, Forums, Symposia, national and 
international such as the Mexican Mathematical Society, the National Program for Teacher Training 
(Programa Nacional de Formación y Actualización de Profesores de Matemáticas), the Central 
American and Caribbean Meeting on Teacher Training and Research in Educational Mathematics 
(Reunión Centroamericana y del Caribe sobre la Formación de Profesores e Investigación en 
Matemática Educativa), PME, PME-NA, CIAEM. 

Thank you Dr. Filloy, even if you are no longer physically present, your presence will continue, 
starting with our Department of Educational Mathematics, which you founded together with Dr. 
Carlos Imaz. Your work is still present in your contribution to the research through the Local 
Theoretical Models. 

Memories of Eugenio, by Ulises Xolocotzin  
I will always be grateful that Dr Eugenio Filloy took the time to greet me and talk with me when we 

bumped into each other at our Department. In our talks, he either made me laugh, or made me think. 
He once said to me: "I entered the matter of mathematical thinking from the side of mathematics and 
I came out from the side of cognition. You are entering from the side of cognition, but who knows 
which side you will come out from!" He made me think and said goodbye to me smiling. I keep 
thinking and I hope he keeps smiling. 
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Eugenio Filloy (1942-2020) 

Como dijimos en el prólogo de estas actas, cuando planeamos el programa del PME-NA 42, 
habíamos contemplado incluir un homenaje especial y presencial en vida a Eugenio Filloy, al que 
considero “el padre” de la matemática educativa en México, con una influencia que trasciende 
fronteras a otros países de Ibero y Latinoamérica. Eugenio fue de las personas que más apoyaron la 
realización del PME-NA 42 en México, y estas actas incluyen muchas contribuciones de sus 
estudiantes y suyas. Tristemente, Eugenio falleció el 23 de marzo de este año 2020. Hacemos este 
homenaje por tanto  in memoriam. 

Aquí bosquejamos su trayectoria académica y algunas de sus principales contribuciones al campo 
de la Matemática Educativa. 
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• Eugenio obtuvo la Licenciatura en Matemáticas en la Facultad de Ciencias de la Universidad 
Nacional Autónoma de México, en 1965, habiendo también estudiado Física Teórica  

• Obtuvo el grado de  Maestro en Ciencias en Matemáticas, del Cinvestav, en 1966, y ese mismo 
año fue profesor visitante de la Universidad de California en Los Angeles.  

• Obtuvo el grado de Doctor en Ciencias en Matemáticas de la Universidad de Chicago, en 1970. 
• En 1971, ingresa como investigador adjunto del Departamento de Matemáticas del Cinvestav; 

pero también hace un trabajo posdoctoral en la Universidad de Ginebra, Suiza, en 1972. 
• De 1973 a 1977, fue presidente de la Sociedad Matemática Mexicana  
• En 1975, co-fundó la Sección de Matemática Educativa (SME), afiliada al Departamento de 

Investigaciones Educativas (DIE) del Cinvestav,  junto con otros dos matemáticos del 
Departamento de Matemáticas –Carlos Imaz y Juan José Rivaud— con quienes colaboraba en 
el diseño y escritura  de los libros de texto de Matemáticas para la escuela primaria, dentro del 
Programa Nacional de Libros de Texto Gratuitos, impulsado por la Secretaría de Educación 
Pública (SEP) a finales de los años 60s. Como explica Ramiro Ávila Godoy (2013):  

Esta experiencia del Dr. Filloy le permitió tomar plena conciencia de la importancia y 
complejidad de la problemática del aprendizaje y la enseñanza de las Matemáticas y de 
la necesidad de atenderla en todos los niveles educativos, en especial en el nivel básico; 
pero lo más trascendente no fue haberse percatado de la necesidad de atender dicho 
problema, sino el haber tomado la decisión de intervenir de manera directa en la 
búsqueda de solución al mismo. […] 
… en el nombre Matemática Educativa iba implícita la intención de enfrentar la 
problemática de la enseñanza y el aprendizaje de la matemática desde la matemática 
misma. En esa época, este enfoque resultó muy original, dando lugar a que en muchos 
países de Latinoamérica empezara a hablarse de Matemática Educativa como lo que en 
la actualidad es en la comunidad latinoamericana,  la disciplina dedicada al estudio de 
la problemática de la educación matemática. 

• Desde el inicio de la SME (hoy en día, el Departamento de Matemática Educativa –DME, del 
Cinvestav), i.e. desde 1975, se ofreció una Maestría en Ciencias con Especialidad en 
Matemática Educativa, “con un fuerte contenido tanto en matemáticas, como en la historia y 
fundamentos de las matemáticas” (Trigueros, Sacristán & Guerrero, 2008, p. 220); y a partir de 
1982, un programa de Doctorado en Ciencias. Eugenio mismo (activo hasta el día de su 
fallecimiento) dirigió las tesis de casi 100 estudiantes de esos programas (más de 60 tesis de 
maestría y más de 30 de doctorado); muchos de sus ex alumnos tienen escritos en estas actas. 

• En 1983, Eugenio fundó el ambicioso y trascendental Programa Nacional de Formación y 
Actualización de Profesores de Matemáticas (PNFAPM) que, en colaboración con una red de 
departamentos de Matemáticas de más de 30 universidades y tecnológicos regionales de 
México, ofreció una Maestría en Ciencias en Matemática Educativa; así como un programa de 
licenciatura en Enseñanza de las Matemáticas. 

El PNFAPM también estableció vínculos académicos con instituciones internacionales, 
y muchos miembros de la SME realizaron estudios de doctorado y posdoctorado en el 
extranjero. Simultáneamente al PNFAPM, se lanzaron conferencias y reuniones 
nacionales e internacionales para que investigadores y docentes pudieran compartir y 
discutir sus experiencias ”. (Trigueros, Sacristán y Guerrero, 2008, p. 221) 

De hecho, Eugenio promovió continuamente las colaboraciones con investigadores de todo el 
mundo. Por ejemplo: 

• Participó activamente en eventos internacionales, tales como los del CIAEM (presidiendo, en 
1980, el XXXII CIAEM, en Oaxtepec, México), del PME e ICMI. Eugenio fue instrumental 
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para que México formara parte del PME-NA; Teresa Rojano explica: “Fue Eugenio Filloy 
quien, en la década de 1980, propuso que se considerara a México como miembro del PME-
NA, argumentando que geográficamente México es parte de América del Norte. Un año 
después, el Comité Directivo [del PME-NA] agregó un lugar para miembro mexicano.” 

• Trigueros, Sacristán y Guerrero (2008, p. 221) describen las colaboraciones internacionales y 
vínculos académicos promovidos por Eugenio para la SME del Cinvestav: 

Desde sus inicios, el grupo de la SME-Cinvestav [liderado por Eugenio] comenzó a 
estudiar lo que se estaba haciendo a nivel internacional y desarrolló vínculos 
académicos con investigadores e instituciones extranjeras. Los primeros vínculos se 
realizaron con Brousseau y Glaeser, y más tarde con los Instituts de Recherche sur 
l'Enseignement des Mathématiques (IREM) en Burdeos y en la Université Louis 
Pasteur en Estrasburgo, Francia, así como con la École des Hautes Études en Sciences 
Sociales en París. Esto estableció una influencia de la escuela francesa de Didactique. 
[…] El grupo SME-Cinvestav también tuvo en cuenta los marcos teóricos de otros 
países como de los Estados Unidos (por ejemplo, el trabajo de Bruner y Skinner), de la 
Unión Soviética (por ejemplo, el de Kruteski), del Reino Unido, así como el trabajo de 
Piaget. Otros vínculos académicos tuvieron lugar con la Universidad de Londres, Reino 
Unido, la Universidad de Cambridge, Reino Unido y la Universidad de Toronto, 
Canadá. En el siglo XXI, se habían establecido muchos otros vínculos internacionales 
con DME-Cinvestav. Además de los mencionados, otras incluyen los de las 
Universidades de Granada y Valencia en España; la Université Joseph Fourier en 
Grenoble, Francia; la Universidad de Quebec en Montreal (UQAM), Canadá; las 
universidades de Georgia y Massachusetts-Dartmouth en los Estados Unidos; y las 
Universidades de Nottingham y de Bristol, Reino Unido. 

• En 1979, Eugenio también lleva a cabo trabajo posdoctoral en la Universidad de Estrasburgo, 
Francia, y es profesor invitado en la Universidad Autónoma de Barcelona, España. 

• De esa forma, investigadores como François Pluvinage (quien casualmente falleció 
prácticamente el mismo día que Eugenio), Kat Hart, Carolyn Kieran, Luis Puig, Celia Hoyles, 
Ros Sutherland, Richard Noss y James Kaput, entre otros, se hicieron habituales colaboradores 
del Departamento de Matemática Educativa del Cinvestav 

• Y el resultado, tanto del programa de Maestría,  y posteriormente del programa de Doctorado 
del Cinvestav, así como del PNFAPM, son varios cientos de graduados formados a través del 
Cinvestav, no solo de México, sino de toda Ibero y América Latina, los cuales han influido en 
sus regiones en el campo de la Educación Matemática; otra consecuencia es el lanzamiento de 
otros programas de capacitación para profesores de matemáticas y/o de investigación en 
Matemática Educativa. 

Eugenio no solo fortaleció el campo de la Educación Matemática a través de sus iniciativas de 
desarrollo profesional, sino también a través de su investigación y los enfoques y métodos de 
investigación que impulsó (para más detalles, ver Trigueros, Sacristán & Guerrero, 2008; y Solares, 
Puig y Rojano, 2020). Por ejemplo, 

• Impulsó el análisis de la historia y de los fundamentos de las matemáticas, como método de 
investigación en la disciplina de la matemática educativa. 

• Promovió el uso y la investigación de lo que antes se solía llamar las “nuevas tecnologías” (es 
decir, computadoras, medios audiovisuales y otros recursos digitales). 

• Ante la necesidad de realizar una experimentación controlada, fundó una escuela en la que 
podría hacerlo (el Centro Escolar Hermanos Revueltas). 

• Reconoció las limitaciones de los modelos teóricos generales y propuso el concepto de 
Modelos Teóricos Locales (ver el libro Educational Algebra de Filloy, Rojano & Puig, 2008). 
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• Produjo cerca de 500 publicaciones científicas en sus líneas de investigación: Didáctica del 
álgebra y la geometría; Historia de las ideas algebraicas y geométricas; Desarrollo curricular; 
Uso de nuevas tecnologías en la enseñanza; Sistemas Matemáticos de Signos; y Modelos 
Teóricos Locales. 

• Eugenio también fue miembro de muchos Comités Científicos y / o Editoriales, incluyendo de 
las revistas Educational Studies in Mathematics y Recherche en Didactique des 
Mathématiques. 

• Recibió muchas distinciones, incluida la de ser nombrado Profesor Emérito del Cinvestav 
(2002); recibir un Doctorado Honoris Causa de la Universidad de Sonora (2011); ser otorgado 
la medalla “Mtro. Remigio Valdéz Gámez” de la Asociación Nacional de Profesores de 
Matemáticas AC (ANPM AC) por su meritoria y trascendente trayectoria en el ámbito de la 
educación matemática en México (2013); y un reconocimiento honorífico de la Universidad 
Autónoma de Guerrero por ser fundador en México y América Latina de la Matemática 
Educativa, aportaciones académicas de referente internacional (2016). 

A eso le sumamos este homenaje, en reconocimiento a su profundo legado en el campo de la 
Matemática Educativa. 

A continuación incluimos algunos, recuerdos e historias de algunos de sus colaboradores y ex 
alumnos: 

 
“Eugenio siempre estará señalándonos hacia dónde seguir adelante.” Luis Puig 
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Recuerdos felices del Prof Eugenio Filloy, por 
Celia Hoyles and Richard Noss 

 
Celia y Richard con Eugenio en los años ochentas 

Por lo que podemos recordar, Celia conoció a Eugenio en una de las primeras conferencias de PME: 
Grenoble 1981 o Amberes 1982, no podemos estar seguros. Nuestra relación con Eugenio duró 
muchas décadas. Está lleno de tantos recuerdos maravillosos, de lo que solo podemos compartir su 
esencia aquí. 

Eugenio se destacó por su profundo compromiso con las matemáticas y la educación matemática, su 
devoción por México y el fomento de la educación matemática en el país. Uno solo tenía que pasar 
diez minutos en su compañía para reconocer su encanto, su sentido del humor y quizás sobre todo el 
brillo en sus ojos. ¡Sin mencionar su maravillosa hospitalidad y sus opiniones gourmet sobre el vino 
y la comida! 

A mediados de los años ochenta, Eugenio y Celia pusieron en marcha el Proyecto de Investigación 
Anglo-Mexicano, denominado “El Desarrollo de Micromundos Matemáticos para Alumnos y 
Docentes”. Esto se logró con la financiación del British Council y el Gobierno de México y el trabajo 
avanzó en colaboración con el Programa Nacional de Formación y Actualización de Profesores de 
Matemáticas o PNFAPM que lideró Eugenio. Cuando Richard y más tarde Teresa Rojano y Ros 
Sutherland se unieron al equipo en 1986, se había establecido un flujo constante de visitas en ambas 
direcciones junto con colaboraciones de investigación que duraron muchos años. 

Una característica central del proyecto fue reclutar estudiantes de doctorado que conocimos en 
México, quienes fueron sujetos a un proceso de selección para realizar un doctorado en Educación 
Matemática en Londres, con trabajo de campo en México. 

¡Esto significó para nosotros un gran “extra" de este proyecto! Solíamos visitar México una vez al 
año, yendo a diferentes partes de este increíble país con Eugenio como nuestro guía y mentor. Pero 
eso no fue todo: ¡Eugenio no era de los que se quedaban en una tienda de campaña y comían en un 
café al borde de la carretera! Por el contrario, nuestras visitas se caracterizaron por visitas a 
maravillosos restaurantes, hoteles exóticos y seminarios relajados pero fascinantes donde conocimos 
a varios investigadores a los que ahora consideramos amigos y colaboradores, como Olimpia 
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Figueras y en particular una de las estudiantes de doctorado estrella de Richard de este programa, 
Ana Isabel Sacristán quien se ha convertido en una figura destacada en Educación Matemática en 
México e internacionalmente. 

Se destaca un incidente, uno que es icónico en términos de la disposición de Eugenio para mirar la 
vida, sin importar cuán seria sea, con un brillo en los ojos. Dábamos una charla en un seminario, en 
algún lugar de la Ciudad de México. Celia estaba tratando de explicar cuidadosamente algunos 
puntos clave de nuestra investigación, y ambos estábamos tratando de comunicarnos 
(vergonzosamente, a pesar de tantas visitas a México, ninguno de los dos hablamos español lo 
suficientemente bien como para dar una charla). Eugenio estaba traduciendo amablemente lo que 
creíamos que era un punto importante y serio, cuando el público se echó a reír. Eugenio nos miró de 
reojo, con un atisbo de sonrisa en su rostro. Hasta el día de hoy no sabemos lo que dijo, o qué tan 
cercana, si es que lo hizo, fue su "traducción" a lo que dijimos. J 

Extrañamos mucho a Eugenio pero al menos nos da consuelo el hecho de que nuestra relación con 
México continúa a través de colaboraciones con Ana y con Teresa que comenzaron con su iniciativa. 
Hemos vuelto a visitar algunos de nuestros lugares favoritos para realizar talleres, en esta ocasión 
organizado por ellos. Así que terminamos con una foto de nosotros con Ana tomada en uno de estos 
talleres en el encantador hotel Hostería Las Quintas en Cuernavaca, que nos presentó Eugenio como 
sede de uno de sus seminarios y se convirtió en uno de nuestros lugares favoritos en todo el mundo. 
J 

 

  
Richard y Celia con Ana Isabel Sacristán 
(izq., quien hizo sus estudios doctorales en  

Londres como parte de la colaboración 
iniciada por Eugenio Filloy) en los jardines de 

la Hostería Las Quintas 

Celia y Richard en los jardines de la Hostería 
Las Quintas, Cuernavaca 

Recuerdos de Eugenio, por Carolyn Kieran 
A menudo, durante las últimas décadas, cuando me invitaban a México a dar una plática para 

profesores y jóvenes investigadores, y se le pedía a Eugenio que tradujera mi presentación al público 
del inglés al español, algo extraño sucedía: enunciaba más o menos un párrafo en inglés y luego era 
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el turno de Eugenio de traducir lo que acababa de decir. Inevitablemente, la traducción tomaba más 
tiempo, pero no solo eso, a menudo provocaba ataques de risa en el público. Eugenio era un experto 
en darle un toque de humor a mis presentaciones que sin él eran sencillas y muy serias – algo por lo 
que siempre estaré muy agradecida y siempre apreciaré de Eugenio: su gentileza y gran sentido del 
humor. 

Recuerdos de Eugenio, por Fernando Hitt 
Eugenio era uno de nuestros "maîtres penseurs" mexicano. Tenía una visión muy amplia de los 

problemas de México en educación y de nuestra posibilidades de contribuir al mejoramiento de la 
enseñanza y del aprendizaje de las matemáticas. Cuando yo realizaba estudios de doctorado en el 
extranjero, presentó a los miembros de la Sección de Matemática Educativa un documento sobre la 
evolución de la sección y sus miembros, que pasó a la historia como el "documento de los colorines". 
En ese documento hacía una proyección de la sección hacia el futuro. Ese documento se utilizó 
durante varios años como guía para recordarnos sobre los objetivos de la sección. 

Eugenio al inicio de los 80s me propuso reflexionar sobre un proyecto sobre la formación de 
profesores de matemáticas que se debería presentar a la Dirección General de Educación Superior 
Universitaria poco antes del cambio de sexenio (en 1982). Me propuso que nos reuniésemos un día 
cada semana en su casa y que si el proyecto no fuera aprobado, al menos pasaríamos un rato 
agradable discutiendo y tomando un par de copas... El resultado fue que Jesús Reyes Heroles al ser 
nombrado secretario de educación, al escuchar el proyecto por el Director General, mencionó que ese 
era un proyecto excelente y que se deberían implementar muchos más del mismo estilo (Español, 
Biología, Física, etc.). Fue así como nació el Programa Nacional de Formación y Actualización de 
Profesores de Matemáticas (PNFAPM), el problema fue que poco tiempo después murió Reyes 
Heroles. Aún así, pudimos sostener el programa por más de 10 años. 

Algunas memorias de los PME: 
En un PME de finales de los 80s o principios de los 90s, Eugenio fue a una conferencia sobre el uso 

de nuevas tecnologías. Por primera vez, Eugenio veía a alguien utilizando computadora y cañón en 
una presentación. Me explicó que se veía un poco borroso y la imagen pequeña. Me cuenta que 
varios minutos después llega un tipo, se sienta al frente cerca de donde estaba la computadora y el 
cañón, se levanta mueve realiza un par de cosas y deja una imagen nítida e imagen más amplia. 
Eugenio me dijo, ese momento fue mucho más interesante sobre la utilidad de la tecnología que toda 
la conferencia completa. 

En el PME en Asissi (Italia) en 1991, al inicio del congreso lo ví salir del hotel estando yo en la 
cafetería. Salí unos 5 minutos después y me lo encontré en el camino. Le dije que pensaba que ya 
estaría en el congreso, y me contestó que caminando a la Michael Jackson le tomaba más tiempo... J 

Eugenio Filloy Yagüe, un profesor que me dejó un legado, por Miguel Díaz Chávez 
En mi formación, el profesor Filloy fue un personaje muy importante y los encuentros fueron 

muchos; sin embargo creo que los siguientes son los que quiero compartir.  
Mi primer encuentro con el profesor Filloy fue en el año de 1986 cuando iniciaba mis estudios de 

maestría de matemática educativa, en la entonces sección del mismo nombre ubicada en el bello 
edificio de Dakota 379 en la colonia Nápoles. En ese primer semestre él fue mi profesor del curso 
básico de educación y creo que una de las primeras lecturas que nos dejó fue la del libro 
“Psicogénesis e historia de la ciencia” de Jean Piaget y Rolando García. Yo leí las secciones que nos 
indicó y al final le dije con mucha angustia que no entendía y él muy comprensivo me contestó: 
Algún día lo entenderás. Este curso y sus disertaciones me abrieron el panorama de la educación 
matemática. 
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Un segundo recuerdo que tengo muy presente fue en mi primer viaje a Europa en 1988 cuando me 
sorprendí de encontrar un libro de su autoría en una librería de Madrid, este descubrimiento me 
mostró la trascendencia de su trabajo a nivel internacional.  

El último encuentro que tuve con él profesor Filloy fue escuchándolo en un evento en la ciudad de 
México hace aproximadamente cinco años. En ese tiempo yo iniciaba una investigación sobre el libro 
de texto gratuito de matemáticas y platiqué con él sobre la posibilidad de hacerle una entrevista al 
respecto, considerando que él fue uno de los autores de esos libros en los años 70’s; como era de 
esperarse estuvo de acuerdo, pero con su estilo me dijo: Sí, pero date prisa. Nunca tuvo lugar esa 
entrevista. Para él, el profesor Filloy, mi gratitud infinita.  

Algunos recuerdos de Eugenio, por Ana Isabel Sacristán 
Cuando inicié, en 1986, mis estudios de Maestría en la Sección de Matemática Educativa del 

Cinvestav, tuve como profesor a Eugenio Filloy, en la materia que se llamaba “Básico de 
Educación”. Recuerdo lo intimidante que me resultaba su presencia tan imponente. Por ejemplo, era 
obsesivo con la puntualidad y yo le tenía miedo por eso: mirando su reloj, me decía: “Llegaste dos 
minutos tarde”; o, en una ocasión: “Llegaste 30 segundos tarde”(!)  

En contraparte, me resultó sorpresivo, en aquel entonces, cómo era más importante para él que 
razonáramos a que aprendiéramos contenidos, y recuerdo lo iluminante que fue el estudio del libro 
“Psicogénesis e historia de la ciencia” de Jean Piaget y Rolando García. Eugenio me introdujo a una 
filosofía educativa que desconocía entonces, pero que he seguido hasta ahora.  

Tiempo después de haber terminado mis estudios de maestría, en 1989, me topé con él de 
casualidad un día: De entrada me dijo: “Los ingleses están aquí”; inmediatamente, sin que yo pudiera 
decir ni una sola palabra, ni preguntar a qué se refería, abrió su agenda y me ordenó estar al día 
siguiente para entrevistarme con Celia Hoyles a una hora específica. Así de corto fue el encuentro, y 
yo no sabía bien de qué se trataba. Pero era un entrevista para realizar estudios de doctorado en la 
Universidad de Londres, Inglaterra, con apoyo del PNFAPM y del British Council. De esa manera, 
por un encuentro que se dio de casualidad, mi futuro quedó sellado; y le estaré eternamente 
agradecida a Eugenio, además de sus enseñanzas, por ponerme y apoyarme en el camino.  

Tengo la satisfacción de haberle podido informar, poco antes de que falleciera, que le haríamos este 
homenaje en el PME-NA 42. Creo que le dio gusto.  

Memorias de Eugenio, por José Carlos Cortés 
En 1991 inicié mis estudios de Maestría en la Sección de Matemática Educativa en el edificio 

ubicado en la calle Dakota en la Ciudad de México. En esa misma calle se encontraba también el 
edificio en el que trabajaba el Dr. Filloy, en ese entonces él era el jefe de la sección. La primera vez 
que lo vi me impresionó su tono fuerte de voz y su apariencia. Como en el primer semestre de mis 
estudios de Maestría no contaba aún con el apoyo de Conacyt, un día se me acercó el Dr. Filloy y me 
dijo que si quería trabajar en su escuela  “Los Hermanos Revuelta” lo cual acepté con mucho gusto y 
nunca olvidare esa experiencia tan grande. En la escuela “Los Hermanos Revuelta” dirigida por 
Maru, esposa del Dr. Filloy, se nos permitía innovar a los profesores, también se nos permitía a los 
estudiantes de Maestría y Doctorado realizar experimentación educativa (claro cumpliendo todos los 
protocolos), es decir el Dr. Filloy fue pionero en la Investigación en Matemática Educativa pero a su 
vez ponía en práctica a través de su escuela las nuevas tendencias de enseñanza en Matemática 
Educativa. Mucho tiempo después el Dr. Filloy participó con nosotros en varios congresos de 
AMIUTEM y de lo cual tenemos muy Buenos recuerdos. Enhorabuena, Eugenio, en el lugar que te 
encuentres. 
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Discutiendo con Eugenio Filloy en Dakota 428, por Armando Solares Rojas  
(escrito en 2012) 

Conocí a Eugenio Filloy en la primavera del año 2000. Las referencias que tenía de él me hacían 
ubicarlo como fundador del Departamento de Matemática Educativa del CINVESTAV, miembro de 
los comités editoriales de algunas de las revistas más importantes de investigación en el área, 
investigador internacionalmente famoso por sus contribuciones en didáctica del álgebra y como un 
personaje muy importante en las reformas educativas del país. Pero me faltaba mucho por conocer de 
él…  

La primera reunión de trabajo que tuvimos se llevó a cabo en las oficinas de la Sociedad Mexicana 
de Matemática Educativa, en el número 428 de la calle de Dakota en la colonia Nápoles. Llegué 
puntalmente y pasamos a su oficina de reuniones. Tres sillones, una pequeña mesa, varias pinturas, 
una colección de posters celebrando los 300 años de la publicación de los Principios Matemáticos de 
la Filosofía Natural, de Isaac Newton. Hablamos poco, pero en esa corta charla me hizo una 
invitación a un seminario de filosofía de las matemáticas que estaba en curso, con Ignacio Garnica. 

Junto con Manuel Cruz, quien era becario del Instituto de Matemáticas de la UNAM y es ahora 
director del Departamento de Matemáticas de la Universidad de Guanajuato, me armé de valor y 
dedicamos largas horas a la lectura y discusión del texto Sobre sentido y referencia de Gottlob Frege. 
Con muchas ideas en la cabeza nos lanzamos a las sesiones de un seminario en el que tratábamos de 
dar respuesta a preguntas como ¿qué son los números?, ¿a qué se refieren las expresiones que 
involucran números? Eugenio Filloy conducía el seminario para discutir teorías sobre el significado 
de los textos matemáticos y me mostró la posibilidad de trabajar, desde las matemáticas, con la 
epistemología, la historia y la didáctica. Ingresé al doctorado en Matemática Educativa en septiembre 
de ese mismo año. 

Ya siendo formalmente alumno en el departamento seguí siendo parte del seminario cuyas sesiones, 
intensas e inolvidables, me dejaron muchos más aprendizajes de los que esperaba. 

Por ejemplo, las lecturas de Wittgenstein. ¡Por fin cobraban sentido las largas horas dedicadas a 
finales de la licenciatura a la lectura del Tractatus logico-philosophicus! Hoy en día los juegos del 
lenguaje siguen rondando mis lecturas y, cada vez más, se incorporan en los textos que yo mismo 
escribo. 

Conocí también la teoría semiótica Charles Sanders Peirce y cómo Eugenio utilizaba la noción 
triádica del signo como punto de partida para desarrollar los Sistemas Matemáticos de Signos, noción 
teórica que le permitiera describir fenómenos de la enseñanza y el aprendizaje del álgebra articulando 
así una nueva perspectiva de investigación propia que ha rendido frutos en numerosas 
investigaciones y publicaciones de la que ya ha hablado ampliamente la Dra. Rojano. Yo mismo he 
tenido la fortuna y el honor de colaborar en algunas de ellas a lo largo de los años de formación y 
trabajo con Eugenio y Tere: desde presentaciones en las Conferencias del International Group for the 
Psychology of Mathematics Education, hasta en la reciente publicación del artículo Problemas de dos 
cantidades desconocidas y dos niveles de representación de la incógnita publicado en el Journal for 
Research in Mathematics Education en enero del año pasado. 

De la filosofía regresé a la historia. Mis lecturas previas sobre la historia del cálculo (el De 
quadratura curvarum, de Newton), de la física (la Optiks, también de Newton) tomaron sentido 
¡también a través del contacto con Filloy!  

Si bien sabía poco de la historia del desarrollo del álgebra, como todo matemático en formación, 
conocía la historia de la corta vida de Galois, famoso entre los jóvenes por bohemio, enamorado, 
anti-eclesiástico, rebelde y… genial. Pero nada sabía de los astrónomos y matemáticos indios 
Bhaskara y Brahmagupta, ni del matemático, astrónomo y poeta persa Omar Khayyám.  
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Y eso me lleva a hablar de una faceta de Eugenio que lo caracteriza y que ha tenido una influencia 
profunda en mí y en muchas otras personas que han estado cerca de él: su generosidad. Pienso que la 
historia y el legado de un hombre, de un maestro, puede describirse por los libros que atesora, pero 
aún más por los libros que ofrece y que comparte. 

Entrar a la biblioteca de Filloy es una invitación a navegar por la inmensa pluralidad de ideas que la 
historia de matemáticas nos otorga. Ahí me encontré con distintas traducciones del Al-Kitāb al-
mukhtaṣar fī ḥisāb al-jabr wa-l-muqābala (Libro conciso de calculo de restauración y oposición) y 
pude comparar las versiones y traducciones de Robert de Chester con la de Gerardo de Cremona y 
con la de Frederic Rosen. También la Aritmética de Diofanto en varias de sus versiones (Ver Eecke, 
P., J. Sesiano, Rashed, Tannery); el Liber Quadratorum 'El Libro de los Números cuadrados' de 
Leonardo de Pisa… 

Su generosidad para con sus estudiantes va más allá de compartir su preciada biblioteca. Parte 
esencial de la actividad didáctica de Filloy es el apoyo al estudiante y la enseñanza de la autonomía y 
la autosuficiencia para escribir, participar en congresos, diseñar y presentar proyectos de 
investigación. Me recuerdo saliendo de asesoría y cargando un bulto enorme conformado por 
transcripciones, videos, lecciones, artículos, libros... Y horas de revisiones y discusiones sobre 
entrevistas video-grabadas con risas frente al televisor, ¿qué dijo?, ¿qué hizo?, ¿para dónde va? 
Compartir conocimiento. Enseñar. Aprender. 

Recibí también su generosidad para formarme como maestro. ¿Has dado clases en secundaria?, me 
preguntó Eugenio. No… todavía, le contesté. Eran mediados del 2001 y para septiembre de ese año 
ya preparaba mis clases de matemáticas para segundo grado de secundaria en el Revueltas, la escuela 
con enfoque alternativo que Eugenio fundó. ¿Cómo me iba? Basta decir que salía sudando a chorros, 
afónico, exhausto. ¡Nada que ver con los cursos que me había tocado impartir en la Facultad de 
Ciencias! ¿Más difícil?, me preguntaban mis amigos. ¡Sin lugar a dudas! 

Esa experiencia transformó profundamente mi manera de ver el salón de clases de matemáticas, ya 
no se trataba sólo de encontrar y diseñar buenos problemas y ponerlos a prueba en situación de 
entrevista, sino de reconocer la complejidad del trabajo del maestro, la diversidad de tensiones en las 
que se construye la actividad matemática del salón de clases. 

Por otro lado, en Revueltas vi cómo Eugenio, investigador en matemática educativa, se topaba en 
los pasillos con alumnos que le decían “¡Chócalas, Eugenio!” y se subían a su espalda para que los 
llevara “de caballito”; con directivos que lo buscaban para decirle “maestro, llegaron las calculadoras 
y los view-screen”; y profesores que le pedían apoyo para sus clases “Eugenio, ¿revisamos lo que 
vamos a ver en tercero la siguiente semana?”. Crear y sostener un laboratorio de investigación 
“vivo”, como es una escuela, es una de las tareas más demandantes que he visto, y en Eugenio es 
también es una muestra de consistencia entre el discurso teórico y la práctica. 

Pero la generosidad de Eugenio no se limita a compartir solamente sobre libros y matemáticas… las 
discusiones, los proyectos, los artículos, acompañados con una buena comida y un buen vino ¡saben 
aún mejor! 

¿Cuáles son el sentido y la referencia de la expresión “buen vino francés”? Siguiendo las enseñanza 
de Eugenio, podríamos decir que su referencia se ubica en los viñedos de Montrachet, entre los 
pueblos de Puligny y Chanssange, en la Côte-d'Or de la región de Borgoña, en el este de Francia. O 
quizás en una botella de un Château d'Yquem, producido en la región de Sauternes, en Burdeos. El 
sentido en este caso es aún más claro, si quiere uno pensarlo así. El Sauternes se elabora con uvas 
sémillon, sauvignon blanc y muscadelle que afectadas por un hongo endémico de la región, quedan 
parcialmente pasificadas, de lo que resulta una mayor concentración de azúcar y vinos con un aroma 
distintivo. El Château d'Yquem se elabora, además, de manera artesanal, procesando uva por uva… a 
mano. 
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Y así como compartió lo mucho que sabe de vinos conmigo, he tenido oportunidad de estar en la 
cercanía de su persona, de su familia, de Maru, su esposa. Cerca no sólo de su visión de investigador 
sino también de su visión de vida, de lo que en México y América Latina entendemos por ser 
sibarita, o sea, quien disfruta de la vida en toda su vastedad.  

Hoy, desde mi propia visión sobre la cercanía, quiero agradecer a Eugenio todo lo que ha 
compartido y comparte aún conmigo. Un gran abrazo y muchas felicitaciones, Eugenio. 

Ciudad de México, noviembre de 2012. 

Memorias de una de las ultimas estudiantes del Dr. Filloy, por  
María Leticia Rodríguez-González  

El Dr. Eugenio Filloy era una persona con la habilidad de observar para conocer a cada uno de 
nosotros. Sabía exactamente cuáles eran nuestras fortalezas, debilidades y sobre todo sentimientos. 
Fue un hombre, con un extraordinario conocimiento universal, siempre tenía tema de conversación. 
Le encantaba la narrativa, anudando en sus historias relatos de la vida cotidiana, entremezclando 
personajes de la mitología griega y de la política. Filloy era un enamorado de la vida. 

Le encantaba que le preguntáramos cualquier cosa, aunque algunas veces éramos nosotros sus 
alumnos quienes dudábamos en preguntarle. Lo más interesante, es que no nos daba la respuesta, 
sino qué nos proporcionaba un gran número de libros para investigarlo. Pero lo maravilloso, es que el 
acervo que nos compartía, eran materiales inéditos en la mayoría de los casos.  

Sin embargo, a veces era muy difícil seguir la lógica de su discurso; pues aunque nosotros apenas 
estábamos entendiendo el principio, él ya estaba construyendo el final. Con el tiempo, aprendí que 
todas sus ideas tenían un sentido no sólo matemático y heurístico sino sobretodo científico. 

Me atrevo a afirmar que Eugenio Filloy, fue el científico que le dio legitimidad a la matemática 
educativa, rompiendo con el paradigma de encontrar los problemas en la forma en que se enseñan y 
se aprenden las matemáticas. Él dio los argumentos para que el objeto de conocimiento de la 
matemática educativa se centre en las matemáticas mismas, estableciendo una clara diferencia entre 
Educación Matemática, Didáctica de las Matemáticas y Psicología de las Matemáticas. 

Eugenio Filloy maestro visionario sabía que la construcción del conocimiento científico requiere de 
la interacción entre investigadores, maestros y alumnos a través de la comunicación, muestra de ello 
fue su participación y en algunos casos fundador de Congresos, Foros, Simposios, nacionales e 
internacionales como La Sociedad Matemática Mexicana, Programa Nacional de Formación de 
Profesores, Reunión Centroamericana y del Caribe sobre la formación de profesores e Investigación 
en Matemática Educativa, PME, PME-NA, CIAEM.  

Gracias Dr. Filloy, aunque ya no estés físicamente, tu presencia seguirá vigente, empezando por 
nuestro Departamento de Matemática Educativa, el cual fundaste junto con el Dr. Carlos Imaz, Tu 
obra sigue presente con Tu contribución a la investigación a través de los Modelos Teóricos Locales. 

Memorias de Eugenio, por Ulises Xolocotzin  
Siempre agradeceré que el Dr Eugenio Filloy se diera el tiempo de saludarme y platicar conmigo 

cuando nos encontrábamos en nuestro Departamento. En nuestras platicas o me hacía reír, o me hacía 
pensar. Una vez me dijo: "Yo entré al asunto del pensamiento matemático desde el lado de las 
matemáticas y salí por el lado de la cognición. Tú estas entrando por el lado de la cognición, ¡Pero 
quién sabe por qué lado salgas!". Me puso a pensar y se despidió de mí sonriendo. Yo sigo pensando 
y espero que él siga sonriendo.  



Homenaje a Eugenio Filloy†: Un pionero impulsor de la disciplina de la Matemática Educativa 

	 67	

Referencias 
Ávila Godoy, Ramiro (2013). Semblanza: “Eugenio Filloy Yagüe: Impulsor y líder del surgimiento, desarrollo y 

consolidación de la matemática educativa en México y Latinoamérica”. Universidad de Sonora. 
Filloy, E., Rojano, T. & Puig, L. (2008). Educational Algebra. A Theoretical and Empirical Approach. Springer.  
Solares, A., Puig, L. & Rojano, T. (2020).  In Memoriam: Eugenio Filloy Yagüe: un breve recuento de vida y obra. 

Educación Matemática (32) 1. https:/doi.org/10.24844/EM3201.12 
Trigueros, M, Sacristán, A. I. & Guerrero, L. (2008). Research in Mathematics Education in Mexico: achievements 

and challenges. In Figueras, O., Cortina, J.L., Alatorre, S., Rojano, T., & Sepúlveda, A. (Eds). Proceedings of 
the Joint Meeting of PME 32 and PME-NA XXX, Vol. 1 (pp. 219-231). Mexico: Cinvestav-UMSNH. 
 http://www.matedu.cinvestav.mx/~asacristan/NationalPresentationPME32.pdf 

Filloy, E., Rojano, T. & Puig, L. (2008). Educational Algebra. A Theoretical and Empirical Approach. Springer.  
 
 
 
 



Plenary	Lectures	

In: Sacristán, A.I., Cortés-Zavala, J.C. & Ruiz-Arias, P.M. (Eds.). (2020). Mathematics Education Across Cultures: 
Proceedings of the 42nd Meeting of the North American Chapter of the International Group for the Psychology of 
Mathematics Education, Mexico. Cinvestav / AMIUTEM / PME-NA. https:/doi.org/10.51272/pmena.42.2020 

68	

PLENARY	LECTURES	
 



Plenary	Lectures	

In: Sacristán, A.I., Cortés-Zavala, J.C. & Ruiz-Arias, P.M. (Eds.). (2020). Mathematics Education Across Cultures: 
Proceedings of the 42nd Meeting of the North American Chapter of the International Group for the Psychology of 
Mathematics Education, Mexico. Cinvestav / AMIUTEM / PME-NA. https:/doi.org/10.51272/pmena.42.2020 

69	

REFLECTIONS ON DIGITAL TECHNOLOGIES IN MATHEMATICS EDUCATION 
ACROSS CULTURES 

Celia Hoyles 
UCL Institute of Education, UK 

c.hoyles@ucl.ac.uk 

Carolyn Kieran 
Professor Emerita, Université 

du Québec à Montréal, Canada 
kieran.carolyn@uqam.ca 

Teresa Rojano 
Center of Research and 

Advanced Studies (Cinvestav), 
Mexico 

trojano@cinvestav.mx 

Ana Isabel Sacristán 
Center of Research and Advanced Studies 

(Cinvestav), Mexico 
asacrist@cinvestav.mx 

María Trigueros 
Instituto Tecnológico Autónomo de México 

(ITAM), México 
trigue@itam.mx 

In this plenary presentation paper, we reflect on issues related to the role, potential and extent of 
integration of digital technologies in mathematics education, and attempt to give our perspectives on 
these issues from across cultures and over time stretching over the past four decades. Three experts, 
from three different countries, give their reflections on how mathematics teaching and learning has 
changed and developed since digital technologies were introduced in schools. Their individual 
narratives are then complemented by a discussion of the differences in adaptation to the constant 
changes in technology, changes that arise from diverse socioeconomic, political and cultural visions 
of the role of digital technologies and their influence and on how the potential of these technologies 
can actually be harnessed.   

Keywords: Technology; Instructional activities and practices; Culturally relevant pedagogy; 
Computational thinking  

Introduction, by Ana Isabel Sacristán and María Trigueros  
For this plenary presentation, we invited three renowned experts on the integration of digital 

technologies in mathematics education: Celia Hoyles from the UK, Carolyn Kieran from Canada, and 
Teresa Rojano from Mexico. We asked each of them to reflect on what has happened with the roles 
and potentials of digital technologies in mathematics education since their adoption in school 
systems, in order to develop a perspective of this topic across cultures and countries.   

This paper presents their contributions complemented by our own reflections. The next sections 
present the experts’ contributions. First, Hoyles presents a reflection on how mathematics teaching 
and learning has changed and developed since digital technologies in general and programming, in 
particular, were introduced into school mathematics education, specifically in England. Then Kieran, 
through the lens of the Canadian experience, presents a discussion of how issues related to the 
emergence of new technologies and the restrictions involved in their use by teachers in their 
classrooms created conditions that privilege some approaches; she also presents an interesting 
discussion on how computational thinking relates to mathematical practice and thinking. In the next 
section, Rojano begins by discussing some results of an Anglo-Mexican project that highlighted 
some differences in the use of technologies for algebra, then describes some national projects 
developed in Mexico, and how economic and political circumstances had an impact on their 
possibilities of generalization and success.    
We finish by including our own reflections, based on their visions, on how digital technologies have 
played an important role in mathematics education and on how different cultural and economical 
conditions have a strong influence on how the potential of these technologies can actually be 
harnessed.    



Reflections	on	digital	technologies	in	mathematics	education	across	cultures	

	 70	

Reflections on the Role of Digital Technologies in Mathematics Education: insights from 
the past and ongoing research, by Celia Hoyles  

The invitation to make this contribution at PME-NA has provoked me to look back on about 30 years 
of research in the area of digital technologies and mathematics education, in general and in particular 
around programming. My passion is and has been to help learners open windows to mathematical 
knowledge by using digital technologies in innovative, future-oriented and intellectually rigorous 
ways (Hoyles, 2018).  This passion I have shared with Richard Noss with whom I have worked on 
numerous research projects over the years.  The research questions we have posed, the technologies 
designed, and the research methods employed have all reflected this desire to widen access to 
learning through digital technology and to tease out the conditions necessary for this to happen 
successfully. Mathematics is central to the school curriculum, yet all too often mathematics does not 
engage learners who do not discern the point of the mathematics they are forced to learn. This is 
important at the individual level, but at the same time, the technology-based ‘information society’ 
needs model-based reasoners who can exploit mathematical ways of thinking to make sense of their 
world.  This has become ever more apparent at the time of writing this paper when the world is 
enduring a global pandemic where  everybody is assailed by data and graphs of the numbers infected 
by Covid 19. These representations and the models that generate them need to be interpreted.  Thus 
we need to take seriously the design challenge to engage our students in school in mathematical 
thinking and application which as far as is possible is actually needed for them to achieve the goals 
that they find compelling.   
Background 

My work has been grounded in constructionism originating from the vision of Seymour Papert  
(Papert, 1980a), which asserts that one way to achieve sense-making for learners was for them to 
take the role (to some extent at least) of producers rather than consumers of digital tools, so they are 
better able to explain the effects of the tools (see for some example Confrey et al., 2009, p. 19). Our 
approach originated with a Piagetian basis but evolved to embrace  “a hybrid social 
constructivist/sociocultural approach… with a vision of human–machine interaction and design for 
mathematical activity” (Monaghan, Trouche and Borwein, 2016, p. 10). In my view, fundamental to 
constructionism are two notions: epistemological pluralism, that is accepting the validity of multiple 
ways of knowing and thinking (following Turkle and Papert, 1992) and designing for interaction in 
microworlds. 

I make a small diversion to give the reader a glimpse of the challenge Seymour Papert set us many 
years ago on this first issue of epistemological pluralism.  As a member of a plenary panel at a 
conference in Newcastle, Australia, to commemorate the work of Jon Borwein, I was tasked to 
address the new ways people think, move and feel mathematically, thanks to the opportunities 
offered by digital technologies: the abstract went on to state:  

…the emergence of new digital technologies and new theories have helped researchers 
recognise the breadth and depth of that change and simultaneously provide a framework for 
the design and implementation of computational tools for learning mathematics. The 
possibility of putting mathematical objects into motion, for example, fundamentally changes 
the nature of these objects, how they are perceived and reasoned about; moving these objects 
changes the bodily actions and gestures of both learners and teachers; making the objects 
transform, collide and overlap, changes the stories that can be told about them. Research on 
the use of digital technology has also provided an extraordinary ‘window’ on mathematical 
meaning making, to use the metaphor provided by Celia Hoyles and Richard Noss, in part 
because of the visibility of thought, motion and feeling enabled in expressive digital 
technology environments. (Drijvers et al., 2016). 



Reflections	on	digital	technologies	in	mathematics	education	across	cultures	

	 71	

The example I gave at the panel was stimulated by Papert’s keynote at 10th conference of PME in 
London way back in 1986 that I simply mention here to provoke the reader. Papert talked about what 
is generally known as the “alternate segment theorem” (p. 3) and argued how simple it was if only 
one thought of oneself in the motion and then “it is easy to see the total turn of a circular arc is the 
same as the angle at the centre of the circle”(end of second paragraph, Papert 1986, p. 3). 
And what about microworlds? In Hoyles (1993), I described the evolution of the microworld idea 
from its genesis in the artificial intelligence community, in which it was used to describe a relatively 
simple and constrained domain where computational systems could solve problems, to a more 
broadly conceived environment that served as a concrete embodiment of a knowledge domain or 
structure. The structure comprises tools that are extensible (so tools and objects can be combined to 
build new ones), but also transparent so their workings are visible, and rich in different 
representations. There is a duality here: a successful microworld is both an epistemological and an 
emotional universe, a place where powerful mathematical ideas can be explored; but explored “‘in 
safety”’, acting as an incubator both in the sense of fostering conceptual growth, and a place where it 
is safe to make mistakes and show ignorance. And, centrally these days, it is a place where ideas can 
be effortlessly shared, remixed and improved (for an earlier discussion of these twin aspects of 
engaging through building and sharing, see Noss and Hoyles, 2006). 
Programming and Mathematics 

Now let us fast-forward to 2014 where, at least in England, programming or coding is widespread 
and moreover part of a compulsory curriculum for all students from age 6 to 16 years. It is important 
to recall now that teaching of computer programming is not new, with educational programming 
languages such as Logo and BASIC widely used in both primary and secondary education settings 
during the 1980s and 90s.  However, Manches and Plowman (2015) highlighted that recent 
discussion around how to teach programming in schools often omitted the earlier research conducted 
during this time: some of which are reported in Hoyles and Noss (1992).  We need to learn from 
these earlier studies. Research on the efficacy of programming had in fact produced mixed results 
(Clements, 1999; Voogt et al., 2015). From the point of view of learning programming per se, some 
of the key challenges identified were difficulties with programming syntax, dealing with error 
messages along with the severely limited access to technology within the classroom (Resnick et al., 
2009; Lewis, 2010). Since then there have been hugely significant developments in novice 
programming languages that have overcome many of these challenges (though maybe raised others), 
and technology access has become increasingly commonplace within schools with resources readily 
available for sharing through the Web. 

When computing became mandatory in English schools in 20141, the time was ripe to revisit 
research on the impact of programming on mathematics learning taking account of the new context 
and critically learning from the past that had shown the importance of design of microworlds and 
critical need to take account of the teacher’s role. Richard Noss and I then embarked on a new 
research project, the ScratchMaths (SM) project, which set out to explore the potential of 
programming for the 9–11 primary1 age group (upper Key Stage 2 (KS2)) in light of the curriculum 
changes and the renewed enthusiasm and motivation for the teaching of programming in schools. The 
project consists of a design phase following which the intervention comprising detailed computer 
tools and curriculum materials is implemented over 2 years with the same pupils. Some factors that 
contributed to Logo and other early programming initiatives not fulfilling their potential have been 
mentioned earlier, but a key factor being identified by Noss and Hoyles (1996) as the importance of 

                                                             
1 During the late 1990s programming faded from the English curriculum and became subsumed and eventually 
replaced entirely by the subject of ICT (Information and Communications Technology), which focused more on the 
use of technology than on its creation (Brown et al., 2014).   
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fostering a sense of teacher understanding and ownership of any programming innovation. In 
addition, there have been significant technological developments since this early teaching of 
computer programming, with a number of block-based languages such as Scratch now freely 
available and widely used. These environments have helped to address some of the difficulties of 
mastering programming syntax, but there remains the challenge of ensuring that teachers first 
appreciate why they are introducing programming as part of mathematics – and then have 
opportunities to develop appropriate skills to teach programming. 

The ScratchMaths (SM) designed a 2-year intervention aiming to develop the mathematical 
knowledge of pupils (aged 9-11 years) through programming. The SM approach was to select and 
design activities around core computational ideas that would then be used as vehicles to explore 
specific mathematical concepts and promote mathematical reasoning. This approach enables parts of 
computing to be taught within or as a supplement to mathematics lessons. For a summary of the SM 
design research phases, activities and outcomes see (see Benton, Hoyles, Kalas & Noss, 2017, for a 
detailed account of the design of the study). The SM content was divided into six modules, or in 
terms for this paper, microworlds, three per year.  In the first year for 9-10 year-old students, 
computational concepts (see for example, Wing, 2006) were foregrounded with mathematical ideas 
more implicit in microworlds titled Tiling Patterns, Beetle Geometry and Collaborating Sprites. In 
the second year, the same students (now 10-11 years old) were introduced to mathematical concepts 
and mathematical reasoning explicitly through a programming approach along with a set of new 
computational concepts in microworlds titled Building with Numbers, Exploring Mathematical 
Relationships, and Coordinates and Geometry. SM was intended to comprise approximately 20 hours 
teaching time across each of these two school years.  

Given the challenge of implementing a new curriculum, the SM teachers were provided detailed 
guidance for navigation through support materials, which were themselves carefully structured and 
progressive. Prior to teaching each year of the SM intervention, teachers were offered two full days 
of professional development, spaced a few months apart. During these sessions, the teachers were 
introduced to Scratch and the SM curriculum content. The SM design was framed by constructionist 
theory whereby pupils would engage with the mathematical ideas by building programs to explore so 
the PD followed this approach (see Noss & Hoyles, 2017, 2019). It was then intended that this 
constructionist approach would be operationalized in the classroom through what we called the ‘5Es 
pedagogical framework’ with teachers given the opportunity to participate in activities that 
incorporated exemplars of the different pedagogical strategies. The five unordered constructs of the 
framework are summarised below: 

Explore: Pupils should have opportunities to explore different ways of dealing with constraints and 
ambiguity as well as investigating their own and others’ ideas and debugging different types of 
errors.  

Explain: Pupils should have opportunities to explain their own ideas as well as answer and discuss 
reflective questions from the teacher and peers.  

Envisage: Pupils should predict outcomes of their own and others’ programs with specific goals 
prior to testing out on the computer.  

Exchange: Pupils should have opportunities to share and build on others’ ideas as well as justify 
their own solutions. 

bridgE: Pupils should be helped to make links between contexts beyond the Scratch programming 
environment by explicit re-contextualization and reconstruction within the language of mathematics, 
by for example unplugged activities.  

The SM intervention was subject to cycles of iterative design research following which it was 
scaled out across England. The project was also evaluated through a randomised control trial 
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conducted by another university (Boylan et al., 20182). For the trial, 111 English primary schools 
(6300 pupils) were recruited and randomly assigned to control and treatment groups with the final 
quantitative outcome measures based on scores in first a test of computational thinking (designed by 
the evaluation team) to be applied in the first year of the evaluation, and second, scores on national 
standardised mathematics tests taken by all students at the end of primary school.  
For completeness, I summarise the findings of the external evaluation of SM, which reported:  

• a positive and significant impact on Y5 Computational Thinking skills, which was 
•  particularly evident among disadvantaged pupils that is those who had or currently have free 

school meals  
• with no difference between girls and boys 

•  no evidence of impact on the national Key Stage 2 Maths test  
Clearly what is interesting in these outcomes for researchers is to seek to explain the reasons for 

these outcomes. To be honest we are not sure and welcome research replications and adaptations that 
are underway, which throw light on these issues. I note for example the nationwide large scale study 
in Spain (INTEF, n.d.), which reported the following: “…the results show that it is possible to 
include programming activities in 5th grade in the area of mathematics, so that students not only 
learn to program and engage in computational thinking, but also improve the development of their 
mathematical competence greater than their colleagues who have worked in this same area using 
other types of activities and resources not related to programming."  

Here I simply mention what I see as important contextual influences in England that might well 
have shaped the outcomes.  First, why the significant positive effect of the SM intervention on CT 
scores as measured by the test used at the end of the first year of the trial.  We cannot be certain, but 
simply point to the fact that the SM package is a systematic, progressive research-based curriculum 
that offers detailed support to teachers. The independent evaluators also remarked that SM was 
popular among the teachers who sustained their participation.  Our surveys told us that fidelity to SM 
in terms of engagement in professional development, provision of SM curriculum time and coverage 
was very high in Year 5. 

However, there was a dramatic drop in this fidelity in Year 6, along with huge variation in 
pedagogy. This was, we conjecture, a result of the negative impact of the high-stakes testing in 
mathematics in England at the end of Year 6. There is massive pressure on teachers who therefore 
might feel unable to engage with a new curriculum. In addition, our data indicated that many SM Y6 
classes were taught by teachers with little or no experience of SM, either from teaching SM in Y5, or 
from engaging in the SM professional development (for more detail see Noss et al., in press).  This 
was a matter of fidelity but also of the considerable teacher churn in schools – the average for the 
staying in the profession is 4-5 years.  However, I would go so far to say that where professional 
learning was taken seriously by schools, as in the first year of the innovation, implementation tended 
to be successful. And, conversely without this it is very unlikely that an innovation like SM would 
operate in the classroom as planned. 
Celia Hoyles’ final remarks 

I end by calling for more intensive and systematic classroom research and evaluation to explore the 
classroom implementation of SM or other computing initiatives, not least as computing is now 
embedded in school practice, and learners and teachers are more confident and competent in 

                                                             
2 The evaluation report can be found at https://educationendowmentfoundation.org.uk/projects-and-
evaluation/projects/scratch-maths/  
 The student and teacher materials are freely available from the UCL website http://www.ucl.ac.uk/scratchmaths   
(creative commons license)  
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programming.  Such research would also need to reconsider methods of evaluation of research 
outcomes in terms of teacher and pupil learning.  

Digital Technologies in Canadian Mathematics Education, by Carolyn Kieran  
My contribution to the cross-cultural digital-technologies panel focuses on three aspects: i) how the 

digital-technology culture has evolved in the Canadian school system since the 1980s when the Logo 
movement began, ii) brief comments on the characteristics of computational thinking and how they 
relate to mathematical practice and mathematical thinking, and iii) Canadian research that illustrates 
the use of digital technologies for fostering mathematical thinking. 
Evolution of the digital-technology culture in Canadian schools since the 1980s 

When the Logo movement began in the 1980s, a corps of enthusiastic Canadian mathematics 
educators and teachers adopted MIT professor Seymour Papert’s vision of having children use 
computers as tools to think with. The Logo programming language was at the heart of this 
movement. The mathematical connections associated with the Logo movement spilled off the pages 
of Papert’s (1980a) book, Mindstorms: Children, computers, and powerful ideas. Mathematics 
education researchers across Canada, as well as in other countries, developed projects involving 
primary, secondary, and tertiary level students, which were aimed at exploring mathematical ideas in 
turtle geometry by programming with Logo.  

However, the Logo movement in the public schools was hampered by a lack of funds – in other 
words, the absence of political will on the part of government to invest massively in any such 
endeavours – that would have allowed for obtaining the appropriate hardware and software. The 
promising results that were being highlighted in research reports and in presentations at various Logo 
conferences throughout the 1980s and early 1990s would unfortunately not lead to more widespread 
implementation in Canadian schools. By the end of the 1990s, many had let go of their interest in 
Logo. Handheld calculators with graphing capability, as well as Computer Algebra System (CAS) 
calculators, proved to be easier (and more economically feasible) to integrate into mathematics 
classes than the more expensive computers necessary for Logo.  

Some time passed. Then by the end of the first decade of the new millennium, the situation with 
respect to digital technologies had begun to change in many ways. In 2006, Jeannette Wing, herself a 
computer scientist, wrote a brief paper titled Computational thinking where she argued that computer 
science was more than just programming; it also involved ways of thinking (Wing, 2006). The effect 
of this paper was probably more influential than Wing had expected or even dreamed. In contrast to 
what had not happened during the Logo movement, the idea of computational thinking began to have 
an effect on K-12 education. As in other countries, Canadian policy makers and curriculum leaders 
decided that our students needed to develop their technology skills within the school system.  

Education in Canada is not a federal matter; there is no national curriculum. Every province is 
responsible for setting its own school programs. So far, five provinces have begun to develop new 
technology programs. The pioneers in this movement have been British Columbia, New Brunswick, 
Nova Scotia, Quebec, and most recently (in 2020) Ontario. But, in the main, these new programs are 
stand-alone technology programs – primarily for grades 6-8, with an emphasis on a range of 
technological tools, processes, and applications, especially coding. In contrast, Ontario opted to 
integrate coding within its Grades 1-8 mathematics curriculum.  

With the exception of Ontario, one wonders if this new interest in computational activity will make 
its way into mathematics classes? Any optimism one could have might be tempered by the results of 
a recent survey of teachers of 5- to 14-year-olds in 23 countries around the world, carried out by Rich 
and colleagues (2019): While the teachers noted that their students loved the new coding activities, 
they also stated that they were more confident in their ability to teach students coding/computing as a 
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stand-alone subject than they were with integrating it into other subjects. This finding suggests that, 
along with current curricular changes, an equally important component that cannot be neglected is 
the need for an ongoing form of professional development to allow teachers of mathematics to keep 
up with constant changes in digital technologies and to feel confident in their ability to integrate 
these technologies into the exploration and development of students’ mathematical thinking. 
Computational thinking, mathematical practice, and mathematical thinking 

Papert (1980a) emphasized that when children use computers as tools to think with, they are also 
“talking mathematics” (p. 6) to these computers. It is upon his shoulders that the present 
computational thinking movement stands. So it seems appropriate to ask at this point how 
computational thinking has been characterized in this recent movement. Wing (2006), for example, 
states that she has drawn on ideas fundamental to computer science and asserts that “computational 
thinking is using heuristic reasoning to discover a solution” (pp. 33-34). And in a later paper, Wing 
(2014) writes: “The most important and high-level thought process in computational thinking is the 
abstraction process” (p. 1). Relevant to the questions addressed to this panel, she adds that 
computational thinking can be defined as “the thought processes involved in formulating a problem 
and expressing (with a linguistic representation) its solution in such a way that a computer – human 
or machine – can effectively carry it out” (p. 1). Interestingly, Andy diSessa (2018) – one of the two 
authors of Turtle Geometry back in 1981 – has taken issue with this point and has argued that non-
computer scientists rarely map out exactly how a problem can be solved before actually doing the 
solving. But is he right? 

In opposition to diSessa, and more in line with Wing, Al Cuoco (2018) in a paper on mathematical 
practice offers three examples. The first of these (see Fig. 1) relates to Wing’s emphasis on the 
process of abstraction and her point about formulating a problem and expressing its solution in a way 
that a computing being or machine can carry it out.  

 

This example involves what Cuoco refers to 
as “the dreaded algebra word problem,” 
where he insists that we think of the answer 
to the algebra problem as an equation rather 
than a number – in a method that involves 
abstracting from numerals. The problem is as 
follows: “Mary drives from Boston to 
Chicago, travels at an average rate of 60 
MPH on the way down and 50 MPH on the 
way back. The total driving time takes 36 
hours, how far is Boston from Chicago?” 

Figure 1. Arriving at an equation from abstracting 
the regularity in numerical guesses  

(Cuoco, 2018, p. 3) 

 

The method that Cuoco suggests builds upon students’ ability to solve similar problems in middle 
school (note: they have already learned the relationship between speed, time, and distance) and is as 
follows: Take a guess – but the aim is not intended to get closer to the answer with each succeeding 
guess; rather it is to arrive at an equation, not a number. The idea is to carry out enough guesses so as 
to see the regularity of the calculations that allow for checking the guesses – in Cuoco’s words: 
Develop “a generic ‘guess checker’ that is the desired equation”. The processes of mathematical 
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practice that are employed here, and which are ones that Cuoco declares he uses all the time in his 
own mathematical work, are: 

1. Abstract regularity from repeated calculations, and 
2. Use precise language (and algebraic symbolism) to give a generic and general 

description  – the equation – for how you check your guesses. (Cuoco, 2018, p. 4) 
The conclusion to be drawn from this example is that these two processes of mathematical practice 

fit well with the programming and thinking-like-a-programmer characteristics of computational 
thinking (Wing, 2006, 2014), and that students who are currently engaged in using digital 
technologies (e.g., laptops, robots) to code with visual (e.g., Scratch) or text-based languages are 
participating in mathematical practices. Nevertheless, other research (e.g., Bråting & Kilhamn, 2020) 
suggests that, while the representations used in programming languages may be similar to 
mathematical notations, the meanings of several concepts in the two domains differ. But that is a 
whole other story! In any case, digital technologies afford multiple varieties of mathematical activity 
that can offer experiences that involve coding but also those that do not. 
Some Canadian research on the use of digital technologies to foster mathematical thinking  

I take mathematical thinking to include the various processes that have been drawn upon by Wing 
and others to characterize aspects of computational thinking – but also more than this, for example, 
its conceptual aspects. While computational thinking is focused toward coding, mathematical 
thinking occurs within a host of activities that are not coding oriented, but which can clearly be 
engaged in within specifically-designed digital environments. However, the tricky thing about terms 
such as computational thinking and mathematical thinking is their overlap when referring to anything 
mathematical. Moreover, as Cuoco (2018, p. 2) has pointed out: “In real mathematical practice, it is 
rare that a piece of work employs only one aspect of mathematical thinking” – and, similarly, only 
one aspect of computational thinking. Despite the obvious intersection between the two terms, I find 
it helpful when discussing the use of digital technologies in mathematical activity to distinguish 
between coding-related activity and non-coding-related activity. In line with this distinction, I offer 
some examples that give a flavour of Canadian research that has focused on these two types of 
activity, both of which have successfully combined selected aspects of computational thinking and of 
mathematical thinking.  
Digital Technologies in Coding-Related Mathematical Activity 

Scratch coding on laptops. My first example is drawn from the funded, multi-study research 
project of George Gadanidis and colleagues from across Canada, titled Computational Thinking in 
Mathematics Education – a project aimed at researching the use of computational thinking (via, e.g., 
digital tangibles such as circuits, programmable robots, and coding with Scratch on laptops) in 
mathematics education, from pre-school to undergraduate mathematics, and in mathematics teacher 
education (see ctmath.ca/about). In one of the publications from this project (Gadanidis et al., 2017), 
the initial activity engaged in by the Grade 1 students of a school in Ontario was the use of the block-
based, visual programming language, Scratch (available at http://scratch.mit.edu), for exploring 
squares by drawing a set of squares rotated around a point (see Fig. 2; see also Gadanidis, 2015). One 
of the fundamental principles underpinning these study projects is connecting the digital technology 
work in classrooms to the math curriculum that teachers need to teach.  
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Figure 2: Scratch coding in Grade 1 (from 

Gadanidis et al., 2017, p. 81) 
Figure 3. Programming a robot using loops 

(from Francis & Davis, 2018, p. 82) 

Coding robots. Francis and Davis (2018) studied 9- and 10-year-olds’ understanding of number, 
and the transition from additive to multiplicative thinking, in the context of learning to build and 
program Lego Mindstorms EV3 robots. The sequence of tasks focused on students’ becoming aware 
of the architecture of robots, programming the robots to trace a triangle, square, pentagon, or 
hexagon; and building a robot that could find and douse a ‘fire’ in any of four rooms of a miniature 
model building. In one of the scenarios that Francis and Davis report on, a student learns how the 
number of sides and angles of a polygon connects to the number of repeats in a loop, which 
illustrates a developing shift from thinking additively in terms of a sequence of like actions to 
thinking multiplicatively in terms of a repetition of a single action (see Fig. 3). The authors argue that 
coding-related activity with digital technologies can co-amplify mathematics learning, as long as 
computer programming is seen as “something for” and is integrated into the existing curriculum with 
well-designed tasks, not as “something more” in a separate curriculum. 
Digital Technologies in Non-Coding-Related Mathematical Activity 

 

 

 
 

Figure 4. TouchCounts App: upper -- 10th 
tap; lower -- result of 10 single taps (Rodney, 

2019, p. 169) 

Figure 5. “Five Steps to Zero,” with a starting 
number of 151 (adapted from Williams & 

Stephens, 1992) 

TouchCounts – an iPad touchscreen App. The TouchCounts application software, developed by 
Sinclair and Jackiw (2014), served as a window for the researcher Rodney (2019) to study how a 5-
and-a-half-year-old, Auden, thought about number. Although Auden was able to say the number 
names initially, he seemed unaware that the written numeral ‘10’ would appear right after ‘9’ and 
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that ‘10’ also represented the number of taps made on the iPad screen (see Fig. 4). Auden’s 
unsuccessful initial activity with the App revealed that his memorized number chanting needed the 
further support that TouchCounts could afford in order to reach a fuller understanding of counting 
and to begin to identify the relational aspect of numbers.  

Calculators with multi-line screens. Calculators remain a staple in many mathematics classes. 
This resource, one with a multi-line screen, served as the digital tool underpinning a study that 
focused on the mathematical practice of seeking, using, and expressing structure in numbers and 
numerical operations (Kieran, 2018). The study (co-conducted with José Guzman†) involved classes 
of 12-year-old Mexican students on tasks adapted from the “Five Steps to Zero” problem (Williams 
& Stephens, 1992; see Fig. 5). Successfully tackling the designed tasks, and subject to the rules of the 
game, involved developing techniques for reformulating numbers (prime or composite) into other 
numbers in the same neighbourhood (not more than 9 away from the given number) that have 
divisors not larger than 9 so as to reach zero in five or fewer steps. Some of the most powerful 
structural explorations that occurred during the week of activity on the tasks involved the search for 
multiples of 9. For example, students became aware that “738 and 729 are two adjacent multiples of 
9 and, when they are both divided by 9, the quotients are consecutive,” and “in the 9-number interval 
from 735 to 743 inclusive, there is exactly one number divisible by 9.” In trying to explain the often-
surprising results produced by their digital tools, the students developed several mathematical 
insights that were new to them.  
Carolyn Kieran’s concluding remarks 

My concluding remarks pick up on the interest shown by students in the use of digital technologies 
– be they coding-related or not. For example, Gadanidis et al. (2017) emphasize “learning 
experiences that offer the pleasure of mathematical surprise and insight” (p. 80). Similarly, Sinclair, 
Healy, and Noss (2015) speak of the “sense of delight” offered by digital technologies, but also of the 
need for a certain degree of “intellectual travel” (p. 2). In this latter regard, an early Logo study by 
Idit Harel (1990) is exemplary. Her 4th graders took up the challenge of designing and programming 
fractional representations that they thought would be helpful for younger children. This project led to 
significant gains in their understanding of both fractions and programming. As Harel points out: “the 
children’s involvement in a rich, meaningful, and complex task, designing and programming a ‘real’ 
product for ‘real’ people, enhanced their understanding of Logo and their knowledge of how to use 
it” (p. 30). Clearly, embedding computational thinking into disciplinary contexts can be most 
productive and yields a strong lesson for policy-makers who advocate for stand-alone, coding 
programs in school.  

The Use of DT in Mathematics Education: Experiences from Anglo-Mexican Collaborative 
Research And Implementation Programs in Mexico, by Teresa Rojano 

Potential of the use of DT in the teaching and learning of algebra  
There is abundant literature on research pertaining to the use of digital technologies for teaching and 

learning algebra, in which it can be observed a distinction between two types of tools, those 
developed expressly for this mathematical domain, such as Computer Intensive Algebra, Cabri-
Géomètre, Geometer Sketchpad, SimCalc, and those that have been adapted for educational use, such 
as Computer Algebra Systems (CAS) and Spreadsheets (Sutherland & Rojano, 2014). Studies carried 
out with both types of programs have shown their strengths and limitations (Olive et al., 2010), and 
have highlighted the relevance of task or activity design in order to use them to create significant 
teaching environments (Donevska-Todorova et al, in press). A common denominator among many of 
these digital technologies, which is also one of its main potential strengths, is the connection between 
different representations, which allows for avenues to be created, where students can approach 
notions and learn novel and powerful algebraic methods, in an intuitive way (Zbeik & Heid, 2011). 
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Spreadsheets fall under the latter case, as the interconnection between the representation of numerical 
tables, the graphic representation and the use of algebra-like formulas, allows for the possibility of 
shifting between numerical and quasi-algebraic treatments, both for concepts like variable, unknown 
and function, and for word problem solving methods. Here I will specifically refer to my direct 
experience recreating intrinsic concepts and processes of algebraic thought, in this environment.  

Spreadsheets and algebraic thinking. Outcomes from the Anglo-Mexican Spreadsheets Algebra 
Project (Sutherland & Rojano, 1993) carried out during the 90s, showed that students of different 
ages and school levels can work with algebraic ideas, taking a numerical approach, and using 
formulas whose syntax is similar to that of algebra. One of the studies was undertaken with two 
groups of students 10 to 11 years of age, one group in Mexico and the other in the UK, who worked 
with spreadsheet activities focused on the notions of function and inverse function, as well as on 
equivalent algebraic expressions and the solution of algebra word problems (Rojano & Sutherland, 
1994). Figures 6 and 7 show examples of the type of worksheets used in the study. 

The results of the pre-questionnaire applied to the students from both groups, before the 
experimental work, showed that the majority of the pupils did not think spontaneously in terms of a 
general object. Initially their mode of thought was on specific cases (for instance, on a particular line 
of a variation table) and the activities with spreadsheets helped them to move from focusing on 
particular cases to considering a general relation (see the worksheet in Figure 6). What is more, the 
sequence of activities on functional relations, the sequence on solving word problems helped the 
students to accept the idea of working with unknowns, to represent relations among data and the 
unknown of a problem, and to vary the numerical value of the unknown until they found the solution 
to the problem (see the worksheet in Figure 7). The experience with such activities enabled them to 
go from intuitive strategies for solving problems (such as trial and error, for example) to strategies in 
which they systematized their trials (trial and refinement) to finally encapsulate the relations between 
unknown and data in spreadsheet general formulas (Rojano & Sutherland, 1994; Sutherland & 
Rojano, 1993). 
Function and Inverse Function 

 
Figure 6. Example of one of the worksheets provided for the teaching of function and inverse 

function.  
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Figure 7. Rectangular field problem (Rojano & Sutherland, 1993).  

In general, it is worth noting that despite the different experience in school mathematics that British 
and Mexican students could have had, given the differences in the mathematics teaching approaches 
in Mexico and the UK, there were no significant differences in the performance of the Mexican and 
British students, neither in the results of the pre-questionnaire nor during the work with the 
spreadsheets. The latter may be attributed to the connection that the students could have made 
between their own notions and intuitive strategies and the algebraic notions of function and 
unknowns, thanks to the combination of a numerical approach and the use of spreadsheet formulas, 
characteristic of the didactic design of the activities. In a second phase, the Anglo-Mexican project 
focused on working with 14 to 15 year-old students from both countries, students with a history of 
school failure in mathematics and who had already been introduced to the study of symbolic algebra. 
The results of the pre-questionnaire revealed that participating students were able to solve the 
problems using intuitive strategies and in some cases those strategies led them to the right solution. 
During the experimental work of this phase, activities with spreadsheets were used that were very 
similar to those of the study involving 10-11 year olds, in the end achieving the same effect –a 
connection between intuitive and non-formal approaches of the students, and notions and methods on 
the path toward algebraic thinking (Rojano & Sutherland, 1994). 

Although spreadsheets were not developed for educational purposes, both the study undertaken with 
pre-algebraic students (10 -11 year-olds) and the study involving algebra resistant secondary school 
pupils show that use of that program accompanied by worksheets with an appropriate didactic design 
has great potential as a digital learning environment for exploring algebraic ideas and concepts. 

The surprising work that participating students carried out in those studies did not prevent us from 
identifying the limitations of the environment that we used, which relate to what Zbiek et al. (2007) 
call 'mathematical fidelity'. In my interpretation, the distance between the syntax of Spreadsheet 
formulas and algebraic syntax may be a hallmark of weak mathematical fidelity; in the former case, 
formulas allow for representation and manipulation of generalizations, but they cannot be 
transformed with internal rules from that system of signs; while in the latter case, on the one hand, 
the analytical expressions of functions can be analyzed and transformed, under the rules of algebraic 
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syntax so as to delve into the variation phenomena that they represent and, on the other, in advanced 
mathematics courses, those analytical representations can be treated as entities of more abstract 
mathematical structures. This continuity through the different educational levels is absent in the 
Spreadsheet environment. For its part, the spreadsheet method for solving word problems is 
mathematically and didactically pertinent to some families of problems, but it is far from the 
Cartesian method of solving problems, which is a general method and consists of getting the situation 
described in the text of the problem ‘put into an equation’. In summary, finding the didactic 
connection between the versions of notions and methods used in the digital technologies and the 
'paper and pencil' versions used in school mathematics is still a significant challenge for teachers, 
trainers and curriculum designers. 

In addition to understanding its potential and limitations, one should recognized that, together with 
the first dynamic geometry programs, the adaptation of Spreadsheets in mathematics education can 
be considered as part of the background to open source software Geogebra, which indisputable 
widespread use has more recently led to a large number of reports of practical experiences and 
research that use this package and that, among many other things, highlight the didactic feature of 
being able to create connections between algebra and Euclidean, Cartesian and Analytical 
geometries. 
Research experiences: Windows of mathematics school culture  

From our first forays into collaborative research on technology and algebraic thinking in the late 
1980s, Rosamund Sutherland and I found differences between the educational systems of Mexico 
and the United Kingdom, some of which appeared specifically in the presentation of the topics of 
algebra in the curriculum, as well as in the diverse various educational material to be used in class. 
Both the differences and the commonalities permeated the design of the tasks used in the studies we 
undertook. However, observation and analysis of the ways in which each of the two groups solved 
the same task served as a window that allowed us to glimpse the distinctive features of the students' 
mathematical practices, where multiple representations of the same situation or phenomenon play a 
central role. 

Spreadsheets as a mathematical modeling tool. More recent versions of spreadsheets offer a 
suitable environment for mathematical modeling tasks using (hot-linked) graphical, symbolic and 
numeric representations of phenomena of the physical world. The activities in this environment 
correspond to a parameterized version of the behavior of the modeled phenomena, and knowledge of 
advanced mathematics is not necessary in order to explore and build the models. In the Mexican-
British project, The role of spreadsheets within the school-based mathematical practices3, research 
was carried out with two groups (one in Mexico and another in the UK) of pupils of 16-18 years of 
age, in which it was observed how the differences of school culture experienced by each of the 
groups influences both their mathematics practices and their mathematics modeling activities using 
spreadsheets (Molyneux, Rojano, et al., 1999).  

In the pilot phase, important differences were observed in the preferences of students for certain 
external representations of situations and phenomena. For example, when answering questions about 
the long-term behavior of the phenomenon, UK students showed a clear preference for graphic 
representation, while students in Mexico were inclined to use algebraic representation. However, 
even though work with Spreadsheets, in the experimental phase, did not significantly change those 
preferences, in the end the students recognized the value of having a varied repertoire of 
representations. In fact, one of the relevant results of this research was that participants developed the 

                                                             
3 The Anglo-Mexican Project was developed as a collaboration between the Institute of Education of the University 
of London and the Department of Mathematics Education of the Centre for Research and Advanced Studies 
(Cinvestav) in Mexico, funded by the Spencer Foundation of Chicago, Ill, Grant No. B-1493. 
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ability to move smoothly from one representation to another and to realize the advantages afforded 
by some of them in answering certain types of questions posed about the behavior of the modeled 
phenomena (Rojano & García Campos, 2017). 

Notwithstanding the fact that the main purpose of our research was not to study or compare school 
culture contexts, when analyzing the data collected in the two countries differences emerged that 
could not be explained, other than on account of what was emphasized or valued in the mathematics 
classroom, that is, it could be said that the differences originated in the school mathematics culture. 
Research and Practice. The use of DT in the Mexican Educational System 

In Mexico, as in many other countries, it has not been easy to bridge the results of research on the 
role of DT in the teaching of mathematics and incorporating their use in the educational system. We 
have gone through government programs ranging from the use of TV (in the 1960s) to broadcast live 
or pre-recorded classes, to the Teaching Mathematics with Technology (EMAT), Enciclomedia and 
the New Model for the Telesecondary System. The EMAT project was conceived specifically for the 
subject of mathematics in middle school, based on results from research in mathematics education. 
An international team of researchers designed a constructivist pedagogical model and student-
centered activities, with an exploratory approach that encourages bottom-up practices, rather than 
traditional top-down practices. The tools used were Spreadsheets, Cabri-Géomètre, the TI-92 
Algebraic Calculator and Logo, and a gradual implementation was planned starting in 1997, that 
would expand the use of different tools in different states of the country. Despite the fact that said 
implementation was not carried out as planned, some teachers who participated in the initial stages 
have continued to work for several years with EMAT activities, managing to integrate use of the tool 
repertoire into their own long projects (Trouche et al., 2013). 

The experience from the EMAT project was used in the design and implementation of the New 
Model for Telesecundaria (Lower secondary system of rural areas without access to regular schools), 
which main feature is the articulation of printed, video and digital interactive resources, which are 
still in use. It is worth mentioning that the results of a study carried out by the Ministry of Education 
revealed that since the New Telesecundaria Model was launched, this system, compared to that of 
regular secondary schools, showed more sustained progress in terms of improved student scores on 
the yearly national mathematics and language exams (SEP, 2016). 

Other national programs were suspended shortly after they were started, however, together with 
EMAT, Enciclomedia and the New Model for the Telesecundaria, the infrastructure and diverse 
experiences left by the programs throughout the country have been used by some teachers who have 
adapted the activities and the use of different tools to the curricular changes derived from the 
educational reforms. Whereas other teachers have limited the use of technology to displaying 
Powerpoint material, video material and YouTube, as it has been recently documented by Salinas, 
Sacristán and Trouche (2018). Thus, the use of DT to fundamentally transform mathematical 
practices at school and outside of school continues to be a great challenge in this country.  

Reflections on the integration of digital technologies for mathematics education,  
by Ana Isabel Sacristán and María Trigueros 

Taking into account the previous authors’ reflections on the way digital technology culture has 
evolved in different countries' curricular approaches, teachers’ professional development and 
students' participation and learning, we present some additional thoughts and discuss also observed 
contrasts and what happens in societies with different socioeconomic and cultural backgrounds. We 
also consider to what extent the potentialities of digital technologies have been harnessed to enhance 
mathematics learning and to engage students.  



Reflections	on	digital	technologies	in	mathematics	education	across	cultures	

	 83	

The previous authors have given us a panorama of the digital technologies that have been used in 
mathematics education. To summarize these, we refer to the USA’s NCTM Position Statement which 
states that, in addition to content-neutral technologies such as tools for communication and 
collaboration and Web-based digital media, mathematics’ content-specific technologies that can 
support students in exploring and identifying mathematical concepts and relationships, “include 
computer algebra systems; dynamic geometry environments; interactive applets; handheld 
computation, data collection, and analysis devices; and computer-based applications” (NCTM, 
2015). To that we can add other expressive technologies such as computer programming 
environments, as well as eBooks. 
On the potentials and historical evolution of digital technologies for mathematical learning  

As Hoyles discussed above, it is clear that today’s technology-based society needs to develop 
students’ abilities not only in the use of technology, but as reasoners to exploit their use. The 
question is how digital technologies can be integrated and exploited in schools for achieving that and 
enhancing mathematical learning. 

As many researchers in mathematics education, the panellists and ourselves believe (and a wide 
corpus of research has demonstrated) that digital technologies have the potential to change education, 
the teaching and learning of mathematics (e.g., by opening windows to mathematical knowledge, as 
Hoyles suggested), the curriculum, and also rethink mathematics as a field. Also, as Hoyles also 
mentions, using digital technologies in innovative ways could potentially widen access to learning.   

Both Hoyles and Kieran cite Seymour Papert’s vision of having students use computers as tools to 
think with and of  how mathematical understandings can be changed by the use of digital 
technologies. Papert’s (1980a, 1971/1980b) vision was for students using and programming 
computers for doing mathematics, rather than learning about mathematics; it is interesting that more 
recently, Chevallard (2015) also called for students to do mathematics, rather than visit them as if 
looking at a monument.   

As explained by Hoyles above, programming allows users to interact with and visualize 
mathematics in new ways; it also can be used together with other technological tools so that it is 
possible to construct relations among concepts that so far have been considered as different, avoiding 
compartmentalization of knowledge.  

In any case, an important potential of technology is for empowering students, be it through 
computer programming or through providing mediums for them to express themselves as well as 
mathematical ideas, and to build their own products (which is why Papert, 1991, called this 
constructionism) – in Hoyles’ words, where students are producers, rather than consumers, of 
technology.  And as Hoyles also emphasizes, Papert’s vision had two central ideas: epistemological 
pluralism and microworlds.  Hoyles discusses epistemological pluralism above, but we could add that 
when one has multiple means and representations to engage, interact with, and express mathematical 
ideas, those ideas become less abstract (Wilensky, 1991) and can more easily be appropriated. As 
discussed by Hoyles, computer programming, in particular, helps students to interact with 
mathematical objects in different ways, enabling students to visualize and reflect on the factors 
involved in different types of interactions.  

The other important idea is that of microworlds, which Hoyles above described as a place where 
powerful mathematical ideas can be explored ‘in safety’.  

In the advent of the digital age, the Logo programming environment provided an ideal medium and 
microworld for students to engage in this epistemological pluralism and develop mathematical 
thinking,  through computer programming and computational thinking. As touched upon by Hoyles 
and Kieran, following the publication of Papert’s 1980’s book Mindstorms, Logo had a widespread 
influence on the use of digital technologies in (mathematics) education. It was thus that Logo was 
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implemented in countries around the world during the 1980s (including Mexico); and it was a crucial 
turning point in countries such as the UK and Canada, as well as the USA.  

And yet, for a couple of decades starting in the 1990s, there was a generalized abandonment of 
Logo and Papert’s vision, which happened in most countries. Kieran mentions a lack of funds for 
Logo projects losing ground in Canada, but the general reasons for that abandonment around the 
world are much more complex, and involve a confrontation with what Sacristán (2017) calls the 
‘inertia of school cultures’.  Agalianos, Noss & Whitty (2001; see also Agalianos, Whitty & Noss, 
2006) explain this complexity by pointing to how technologies and their use in the classroom are 
socially contextualized and often appropriated in ways unanticipated by their developers – something 
that is still true today:  

To work with Logo in the way its developers had envisaged meant that teachers should make 
a fundamental shift in their relationship with pupils….This, however, was a lesson not learnt 
for many teachers who felt uncomfortable […] Logo (...) automatically constituted a 
disruption of the classroom’s traditional social organisation. [...] 
Logo’s introduction into mainstream US and UK schools in 1980 marked the beginning of a 
struggle to integrate new forms of teaching and learning into old educational 
structures. (p. 486-487, our emphasis). 

On his part, Ruthven (2008; see also Ruthven, 2014) points to the conjunction of several influential 
factors that are needed for successfully uptaking an innovation in school mathematics, and discusses 
how difficulties related to each of those factors acted against the continuation of the use of Logo in 
schools (and, we argue, in general, of more innovative visions, including Papert’s). Those factors are: 

• Disciplinary congruence with an influential contemporary trend in scholarly mathematics. 
• External currency in wider mathematical practice beyond the school. 
• Adoptive facility in terms of ease of incorporation into existing classroom practice. 
• Educational advantage through perceived benefits of use considerably outweighing costs and 

concerns.   (Ruthven, 2008) 
In terms of adoptive facility, in the 1990s other developments, such as graphing calculators, CAS, 

Excel, dynamic geometry, etc. became popular and, as Kieran points out, seemed to offer teachers a 
more direct, less costly and perhaps easier to adopt, use of technology for mathematics teaching (and 
learning?). Many producers of such technologies also pushed newer software and hardware as 
solutions for the introduction of digital technologies in classrooms, but there is a difference between 
having a technology and using it for meaningful learning: we argue that, very often, schools became 
consumers of commercial developments, due to political and administrative decisions, failing to 
integrate those technologies in ways that would improve learning.  

In any case, due to those complex reasons, in the 1990s and early 21st century the use of 
programming, and its relation to the development of mathematical thinking, was abandoned. During 
that period, in some countries, such as Mexico, there were efforts to return to something closer to 
Papert’s vision through the development of the EMAT national project presented by Rojano, above. 
That project highlighted the importance of design and showed a way to use popular software, such as 
Excel, as in the example given by Rojano, in a way that could help in making the transition from 
arithmetic to algebra smoother for students. However, the EMAT project, though successfully tested, 
succumbed to political changes (Trouche et al., 2013), as we discuss further below; although, as 
Rojano points out, some teachers have continued using the EMAT technologies and materials in their 
classrooms until today, to promote their students' learning.  

It is only in the last decade that interest and the recognition of the importance of computer 
programming, and computational thinking, has resurfaced in developed countries (but, as discussed 
below, not so much in other countries). Computational thinking, popularized by Wing (2006), and 
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‘coding’ have now become educational trends. How programming and computational thinking relate 
to mathematical thinking had already been discussed by Papert (1980a) and others in the 1980s and 
90s. But Kieran above gives a profound discussion of their relationship. She agrees that 
computational thinking and mathematical thinking overlap, and engaging in programming and 
computational thinking implies participating in some mathematical practices. She argues, however, 
that mathematical thinking is more than what is achieved through coding and computational thinking 
but that other specifically-designed digital environments can also be helpful in promoting it.  
Digital technologies in mathematics curricula across cultures   

In any case, because of the attention that coding and programming have received in the past decade, 
many developed countries around the world have integrated these into school curricula.  

In the UK, Hoyles mentions above how programming has come to the forefront since 2014; and 
Kieran describes experiences in Canada where programming has also been included in the 
curriculum. The question is how this integration affects the mathematics curriculum. Hoyles 
describes how she and her colleagues in the UK developed ScratchMaths in a research attempt to 
integrate the computer science curriculum with mathematics. It is interesting that ScratchMaths has 
been adopted in other countries outside the UK, such as Australia (Holmes et al, 2018), to use coding 
to teach mathematics.  

In Canada, Kieran describes how programming activities have been introduced early in school but 
are used together with other technological tools to foster opportunities to construct relations among 
mathematical concepts.  

However, in other countries, programming and computational thinking have not been included in 
the curriculum, nor sometimes even considered. In fact, there is thus a huge gap in the recognition of 
the possibilities that the use of digital tools offer to mathematics students and teachers and how the 
use of technology has evolved in countries and cultures around the world. The political strategies 
vary in different parts of the world to foster the inclusion of technologies in the mathematics 
classroom and rethink the curriculum.  

In the USA, according to the NCTM: “All schools and mathematics programs should provide 
students and teachers with access to instructional technology—including classroom hardware, 
handheld and lab-based devices with mathematical software and applications, and Web-based 
resources—together with adequate training to ensure its effective use” (NCTM, 2015). This 
statement indicates a public recognition of the necessity of integrating a wide range of digital tools 
for teaching mathematics at schools, as well as the importance of teacher training for an effective and 
strategic use of those resources in the classroom. However, it is striking that in that statement, there 
is no mention of programming and computational thinking, which, in other countries have been 
considered more prominently as central for the development of mathematical thinking. 

In Mexico, as discussed by Rojano, although at the turn of the century the potential of digital 
technologies in the teaching of mathematics was recognized when different public administrations, 
between 1998 to 2006, launched national projects directed at middle and elementary school children 
– EMAT, the New Telesecundaria Model, and Enciclomedia (Trigueros et al., 2006) –, this is no 
longer the case. Unfortunately, when the government changed, those projects disappeared. Since 
then, only the use of calculators and office applications have been recommended, but not included, in 
the following curricular changes. (Only some teachers, who found them useful to promote students’ 
mathematical learning continue to use the EMAT or Enciclomedia tools in their teaching). 

Thus, in many countries, and perhaps for different reasons, schools and curricula have remained 
attached to the use of software and/or calculators that are aids to the set curriculum and are 
considered useful in mathematical problem solving and in helping students understand specific 
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concepts. In other words, they are added on to existing curricula and used to do the same as before 
but with the technology add-on, instead of for innovative ways of interacting with mathematics.   

How the learning potential of digital technologies is considered varies from country to country, but 
also in different regions inside countries (as in the case of Canada, discussed by Kieran). In some 
places, digital technologies are embedded in school culture and specifically in mathematics 
classrooms, while in others, this is not the case. Julie et al. (2010) had already presented perspectives 
from different parts of the world illustrating the diversity of access and implementation of digital 
technologies. Some of these differences persist, perhaps due to diverse policies but also because of 
socioeconomic differences and factors (also, in terms of how technology is used and perceived in 
schools, gender may also be an issue). More problematic is the fact that many parts of the developing 
world still have issues of lack of access to technologies, rely on very old hardware, if any is available 
at all (see, for example, Sacristán et al., in press), and teachers have insufficient or no training in their 
use and pedagogical integration.  

Thus, economic and social problems result in a widening gap, not only between different countries, 
but also inside these countries since development, technological opportunities and even the 
possibility to have access to technology are not the same. As technology continues to quickly 
develop, the gap between students who have opportunities to use technologies for mathematical 
thinking and learning, and those who don’t, widens, and inequalities among different populations 
increase.  

This gap in opportunities along the whole schooling process, has an important impact in terms of 
equity and on students’ future. Jobs will need more and more mathematical and computing abilities 
so students who have not had the opportunity to develop them in depth will find it difficult to find 
jobs, thus the social context in different countries is increasingly divided.  
On integrating new technologies and adapting to their changes 

When integrating digital technologies for learning in schools, there is a recognition of the 
importance to provide, in Hoyles’ words above, “a framework for the design and implementation of 
computational tools for learning mathematics.” The issue of design is paramount. In summarizing 
Papert’s constructionism, Hoyles mentioned the two central ideas of epistemological pluralism and 
microworlds. The design of the learning and exploratory universes that microworlds are, need 
include epistemological pluralism and take into account different components, as described by 
Hoyles and Noss (1987): the student component, the pedagogical component, the contextual 
component and the technical component. EMAT was a project that designed a model that took into 
account all of those aspects (Sacristán and Rojano, 2009). But careful design is only as good as what 
can be taken up by the educational system. As in the case of why Logo and Papert’s vision declined 
in the 1990s, there is also the issue of the difference between an intended design and how it is 
implemented. In projects like EMAT or ScratchMaths, a very careful research-based design 
involving many researchers in mathematics education, as well as some teachers, was carried out 
aiming at maximizing the (mathematical) learning possibilities. These designs included, not only 
mathematical tasks, but also pedagogical models, associated teacher training models and possibilities 
for scaling up in order to expand to cover all, or a majority of, schools at a national level. However, 
when implemented, many of the initial intentions are lost. In the EMAT project, teacher training was 
never achieved as designed, and the scaling up was suspended due to government changes. In 
ScratchMaths there was also the problem of fidelity that Hoyles referred to above (see also Hoyles 
and Noss, 2019): how faithfully teachers (and schools) adopt, or are able to do so, the intended 
design. This necessarily leads to results that are generally less than expected. 

Also, technology designers look for ways to offer educational systems, software with more 
capability in terms of interactivity and in terms of what they believe is needed in schools. Research 
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on the use of technologies is constantly adapting to better understand how teachers and students use 
new resources in order to incorporate change in teachers’ training programs and to look at how and if 
implementation in the classroom works in terms of students’ mathematical learning.   

Results often do not meet designers' expectations and real use of technology at school do not match 
with them either. On the one hand teacher adaptation to new technologies takes time and on the other 
hand when teachers find out that some tools work well in terms of their student’ learning they are 
unwilling to try something new which may or may not work. These problems, together with the lack 
of access to tools and the fact that teacher training programs do not reach all teachers and the need to 
convince many teachers who don’t want to take risks of finishing curriculum on time or don’t see 
how technology matches with official curricula, need to be taken into account if the use of digital 
technology is considered important for the learning of mathematics. 

When analyzing the efforts in the past couple of decades of educational systems around the world to 
integrate digital technologies in schools (not necessarily for mathematics), the words of Healy 
(2006), although she was referring to the case of Brazil, are valid in the cases of many countries: the 
attempts may tend to emphasize the computer as a catalyst for pedagogical change, but “they fail to 
acknowledge the epistemological and cognitive dimensions associated with such change or the 
complexity associated with the appropriation of tools into mathematical and teaching practices” 
(Healy, 2006, p. 213).    

Moreover, technologies change fast. Keeping up with those changes is difficult for teachers, 
particularly if they have to catch up by themselves and only highly motivated teachers who have had 
good opportunities to evidence positive changes in their students are willing to do the needed efforts 
to develop teaching plans for their students to work with technology. There are also institutional 
constraints that limit teachers’ possibilities to fully use the potential of digital technologies. Sacristán 
(2017) discussed in depth some of the challenges for teachers (and schools) to meaningfully integrate 
digital technologies into teaching practices for mathematical learning. Hoyles above also mentions 
the pressure of preparing students for national examinations, but there are others, such as the time 
needed to cover specific curricular topics, or the way a topic is presented in the textbook. All these 
factors need to be taken into account when designing teachers training courses.  

Projects that involve collaboration between university researchers and teachers have proved to play 
an important role in the possible success of implementation in schools and in the promotion of 
students’ learning, as was the case of the example given by Hoyles as well as the EMAT project 
mentioned by Rojano. Collaboration offers teachers opportunities to discuss strategies to use 
technology to transform their practice and to develop technological skills to make decisions to guide 
students’ mathematical thinking. This type of approach, together with other teacher training 
initiatives, are indispensable for teachers to overcome their difficulties.  

Unfortunately, teacher training opportunities are unequally supported in different cultures. While in 
some places programs are offered continuously to teachers, in others teachers are left to develop their 
own strategies to introduce technology in their classrooms; thus teachers are in many occasions 
discouraged and leave technologies aside.  

Another phenomenon that has been observed is that in most places research projects to introduce 
technology to the classroom create lots of activity in terms of groups of researchers and teachers 
working together to creatively devise ways of using new technologies to teach mathematics. 
However, when those projects end, this activity stops. Regrettably, the lack of continuity and the gap 
between research and school policies, is true everywhere: Even in developed countries, as is the case 
with many European projects, when the funding finishes, interesting innovations abruptly end, and 
researchers move on to different proposals. This cycle repeats over and over, leaving aside the 
possibility to develop long term proposals which could make an imprint in the educational system.  
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Only a handful of creative and motivated teachers continue using the materials developed for 
research projects or previous government initiatives, adapting them to their teaching, and developing 
strategies to use those proposed technologies with their students. 

Teachers and school systems have difficulty adapting to the perpetual changes in projects, as well as 
in the technologies available. It is therefore important to develop long-term professional development 
strategies and programs so that teachers can develop knowledge to be able to cope with and adapt to 
the technological changes in a productive way.  
Concluding remarks 

Digital technologies have played an increasingly important role in changing the mathematics 
classroom. Research has come a long way in terms of how to harness the possibilities that 
technologies can offer in terms of developing students' mathematical learning, although schools 
today are very different than when digital technologies first became available for education. But we 
should not forget that in this information age where information and communication technologies 
dominate, there are also other content-specific digital technologies, such as expressive and computer 
programming environments, that are important to develop mathematical thinking and practices. In 
particular, the tools that are generally used (including, more recently, communication ones during the 
COVID pandemic), haven’t fully led to a meaningful integration of digital technologies in and for 
mathematics education. Thus, despite the exponential growth and influence of digital technologies in 
society, innovative visions (such as Papert’s) haven't fully come to fruition.  

Many projects, developed around the world, have shown that students enjoy using digital 
technologies in the mathematics classroom and there is evidence of the potential of these 
technologies to promote students’ learning. But, although we have clear evidence that they can be 
used to foster students’ mathematical competencies and learning, the expected results of their use in 
the classroom are still far from those desired. There are some important areas, such as evaluation and 
assessment (including self-assessment), and activities outside school, for which the potential of 
technologies has not been harnessed to support students’ learning. 

An important area that needs attention is the need to foster teacher training programs to overcome 
an existing tendency of teachers to improvise in the classroom, and for developing creative ways to 
use technology, including for assessment and self-assessment.  

Also, inequalities in different school systems around the world, as discussed above, can be bridged 
through the development of long term projects that foster equality in the access of technologies, rich 
teacher training programs and activities for students to promote their learning autonomy. As it is 
now, differences among educational systems are widening but also differences in terms of 
opportunities within specific systems are far from what would be expected in terms of mathematical 
learning for all. When social and economic conditions are considered at this particular moment in 
time when the COVID pandemia has strongly affected all countries, life has become dependent on 
the use of technology in many aspects; but the difference between children that have access to 
technology and those who don’t (or only have access to state-produced educational TV programs, as 
is the case in Mexico) is expected to increase the education gap.  

It is time to consider more thoroughly how to harness the technologies that are already widely 
available to students in most countries: in particular, mobiles and smartphones. These accessible 
technologies have spread quickly around the world and are used by many students, but their rich 
educational potential has not received enough attention from researchers and from policy makers. 
These technologies are powerful and it is shown that more people have access to these than to 
computers. These tools need to be taken into account to develop interesting ways for their users to 
develop mathematical thinking inside and outside the classroom, with diverse uses and applications. 
New developments need creative ways of thinking and of using the growing potential of digital 
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technologies in order to provide opportunities for all students to have access to computational and 
mathematical thinking, thus providing them with a potentially better future in the technology-based 
society. But this also implies transforming school cultures – not an easy task, as the story of Logo 
and other innovations shows.  

Nevertheless, it is necessary to focus on how to use the technology potential to help reduce access 
inequalities, by looking for creative ways to help children around the world develop their 
mathematical thinking potential, and contributing to the creation of a better world for all. At the same 
time, we should also continue to devote time and effort to consider what has been dubbed “Papert’s 
10%” (from his call in his keynote speech at the ICMI 17 Study in Vietnam 2006): how mathematics 
and mathematical practices can change due to the availability and access to digital technologies. 
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This talk provides the speaker’s perspective on how the fledgling new area of educational 
neuroscience has emerged from a disenchantment with brain-based education, through various 
multidisciplinary, interdisciplinary, and transdisciplinary initiates and collaborations involving 
educationists and neuroscientists. Specific examples and results pertaining to research in 
mathematics education will be presented. Beyond the current state-of-the-art, the speaker will 
conclude with some speculations on what might be anticipated as this area of research continues to 
unfold into the near and far futures. 

Keywords: Educational Neuroscience; Embodied Cognition; Electroencephalography; 
Electrooculography 

Good day. I’m pleased to be here to address an area of research that has occupied me for some time, 
one that has come to be known, somewhat ambiguously, as educational neuroscience. First, a few 
introductory comments. I have always been interested in the nature of consciousness, and how it is 
that we are able to experience the world in the way that we do. Oddly enough, back in the 1970’s my 
industry experience in seismic imaging utilizing the most advanced computing technologies of the 
time, including one of the first CRAY I computers, led me to the study of philosophy and 
mathematics. How so? I had come to view seismic imaging as the social development of a new sense 
of perception. I blame Teilhard de Chardin for that. 

During the 1980’s I had the great pleasure to encounter a number of books that had a great influence 
on my subsequent interests and career development, ranging from Haugeland’s edited volume Mind 
Design (1981), the epic volumes of Rumelhart, McClelland and the PDP Group on Parallel 
Distributed Processing, to Gardner’s The Mind’s New Science (1987) and Churchland’s 
Neurophilosophy (1989). These books motivated a shift in focus away from imaging the Earth’s 
interior to the knowledge engineering of intelligent software systems using neural nets and automated 
reasoning, and on to graduate studies in neurophilosophy. 

I managed to escape the siren call of the oil and gas industry in the early 1990’s and venture west 
from Calgary to Vancouver to study computing and education at Simon Fraser University, eventually 
settling into doctoral studies in mathematics education with Professor Rina Zazkis. During those days 
I was, as were many others at that time, drawn to Varela, Thompson, and Rosch’s The Embodied 
Mind (1991). Subsequently, after half a decade at the University of California, Irvine, I returned to 
SFU and obtained funding to establish an educational neuroscience laboratory, the 
ENGRAMMETRON.  

A good way to begin exploring the manner in which the area of educational neuroscience began is 
to chart its origins and development through its affiliated Special Interest Group of the American 
Educational Research Association called Brain, Neurosciences, and Education. That SIG, in its 
original incarnation in 1988, was referred to as the Psychophysiology and Education SIG. When Bill 
Clinton designated the 1990s as the “decade of the brain,” the SIG was renamed the Brain and 
Education SIG, promoting “Brain-based Education.” Despite growing popularity of brain-based 
education amongst educational practitioners, scholars and researchers became increasingly critical 
towards the point of dismissiveness, citing a number of “neuromyths” that were usually based on 
partial truths.  
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Subsequently, in reaction against the growing uncritical educational use of brain-based metaphors, 
such as right and left brain learners, and appeals to multiple intelligences and VAK (visual, auditory, 
and kinaesthetic) learning styles (Geake, 2008), the Brain and Education SIG committed to being 
more  rigorously grounded in neuroscience by including that term in 2003. The stated purpose of this 
newly-branded SIG “… to promote an understanding of neuroscience research within the educational 
community [with a] hope to achieve that goal by promoting neuroscience research having 
implications for educational practice and providing a forum for the issues and controversies 
connecting these two fields.” Keynote speakers for the SIG shifted accordingly from champions of 
brain-based education to neuroscientists themselves with interests in educational problems, such as 
Bruce McCandliss and others. 

This AERA SIG initiative wasn’t as novel as it sounded, as an earlier funding initiative back in the 
1980s between the National Science Foundation, the Sloan Foundation, and the National Institute of 
Education enabled scholars and researchers from neuroscience, cognitive science, and education to 
seek middle ground in what Rita Peterson aptly described as “the middle ground between those three 
points on a triangle.” One term being bandied about for that disciplinary nexus was “pedagogical 
neuroscience” (McCulloch, 1989). 

One of the main pioneers, perhaps the main pioneer, in bringing cognitive science, neuroscience, 
and education together and exploring that middle ground in a true disciplinary sense was the recently 
departed Kurt Fisher of Harvard Graduate School of Education. Professor Fisher founded the Mind, 
Brain, and Education program at the HGSE, and then went on to establish the International Mind, 
Brain, and Education Society, as well as serving as the founding editor of that society’s flagship 
journal Mind, Brain, and Education. 

This triangle of disciplines, and the vast areas of research and practice falling within it that they 
delineate, has come to be known as the new academic field of neuroeducation (Tokuhama-Espinosa, 
2008). Within the broad purview of neuroeducation have emerged multidisciplinary, 
interdisciplinary, and transdisciplinary initiatives. The one that interests and concerns me most is 
referred to as educational neuroscience. This area of research can be considered in a variety of ways, 
distinguished perhaps most notably as to where one places the emphasis, educational neuroscience or 
educational neuroscience. Whereas contributions to the former come predominantly from cognitive 
neuroscientists, my focus has been on the latter. 

Whereas neuroeducation is more broadly conceived, linking as much or more to educational 
practice, I see educational neuroscience as an area of educational research, and one that naturally 
draws on the neurosciences, especially cognitive neuroscience and psychophysiology. That is to say, 
I see educational neuroscience as an area of educational research that draws on, as in being informed 
by, theories, methods, and results from the neurosciences, but unlike educational neuroscience, 
arguably an applied cognitive neuroscience, is not restricted to them. This difference is important, as 
the focal point of educational neuroscience is the subjective experience of learners, not just their 
associated mechanisms. 

In multidisciplinary initiatives where neuroscientists and educators collaborate, there is typically a 
strict separation between their respective philosophical frameworks and research methodologies, 
whereas interdisciplinary initiatives typically motivate collaborators to adopt more of a mixed 
methods approach. Educational neuroscience as a bona fide transdisciplinary activity, by definition, 
must entail the forging of new philosophical frameworks and research methodologies for bridging 
education and neuroscience, and especially, mind and brain (Campbell, 2011). Bruer famously 
referred to this as a bridge too far (1997). 

Bridging mind and brain, and body more inclusively, is exactly the aim of Varela, Thompson and 
Rosch’s Embodied Mind (1991), and Varela’s initiatives in the area of neurophenomenology, to 
bridge what he referred to as the gap between the biological mind and the experiential mind via 



Educational	neuroscience:	past,	present,	and	future	prospects	

	 95	

“reciprocal constraints” (1996, p. 343). In my view, this amounts to the hypothesis that any changes 
in subjective experience must in principle manifest objectively in some manner as changes in brain, 
body, and behavior, and vice versa (Campbell, 2011, p. 10). I have taken this hypothesis as both a 
foundational assumption and a necessary condition in striving toward a transdisciplinary view of 
educational neuroscience. 

My approach to educational neuroscience in this transcendental sense has been to focus primarily 
on qualitative educational research rather than quantitative educational research, per se. That is 
because I am interested more in questions pertaining to ontology than epistemology. That is to say, I 
am more interested in the lived experience of learners of mathematics than I am, for instance, in how 
widespread their experience might be in the general population of learners. 

That is not to say, however, that I do not draw on quantitative research from cognitive neuroscience, 
because I do, and it is central to my methodology that I do. As an exemplary case in point, consider 
the so-called “aha!” moment. Jung-Beeman and his colleagues in cognitive neuroscience (2004) have 
identified what they refer to as an “insight effect” in the right anterior superior temporal cortex 
detectable as a burst of electrochemical energy from neuronal activity in the gamma range (>30Hz) 
via electroencephalography (EEG), which they cross-validated using functional Magnetic Resonance 
Imaging (fMRI). 

Knowing that such an “insight effect” had been identified enabled me to design an experiment using 
an instrument developed by Dehaene and his colleagues (2006) to explore “aha!” moments using an 
integrated methodology drawing upon audiovisual, eye-tracking, and EEG along with a palate of 
psychophysiological metrics including heartbeats and respiration. Figure 1 illustrates the setup in my 
laboratory (following excerpts from Campbell, in press).  
 

 
Figure 1: Integration of physiological and behavioral observations 

The leftmost column is for coding for the observation. The physiological data includes P1, the 
central EEG channel; P2 is the heart rate in beats per minute; P3 are heart beats from which P2 was 
derived; P4 and P7 capture horizontal eye-movements, whereas P5 and P6 capture the vertical eye-
movements (using electrooculography, EOG); P8 measures muscle movements (using 
electromyography, EMG) from the back of the neck; P9 is respiration; P10 the time code; and P11 is 
the voice channel. Video data: V1 screen captures the eye-tracking as the participant views a slide 
from Dehaene, et al’s instrument; V2 and V3 video recordings of the participant; and V4 the full 
EEG data set.  

Figure 2 below illustrates how EOG data can be used to identify gaze areas (d0 through d6) and 
movement intervals (1-10) and their associated times in the physiological data to integrate with the 
eye-tracking data (corresponding to and illustrated in Figure 5 below). 
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Figure 2: Time synchronizing physiological and behavioral data sets using EOG 

A key premise of the approach I’ve taken to educational neuroscience is that theories, results, and 
methods of the neurosciences, cognitive neuroscience and psychophysiology in particular, can serve 
to augment and validate, not replace, traditional methods of educational research. These observations 
were part of a qualitative study in mathematics education research. The behavioral data provided by 
audiovisual data, coupled with the eye-tracking clearly indicated that an “aha!” moment occurred. 
So, then, what did the educational neuroscience tell us?  

As noted above, a hallmark of the transcendental approach I’ve taken to educational neuroscience 
has been to draw upon methods, results, and findings from the neurosciences, and especially from the 
cognitive neurosciences. In this case, I drew upon results that clearly identify neural correlates of the 
“aha!” moment (Jung- Beeman, Bowden, Haberman et al, 2004; Bowden & Jung-Beeman, 2006). In 
two landmark experiments, Jung-Beeman, et al (2004) identified and located the neural correlates of 
an insight effect using EEG and fMRI. In the EEG experiment, the red line in the lower panel on the 
left side of Figure 3 below identifies an increase in gamma range power during moments of insight in 
contrast to the blue line where no insight was reported. Time zero on the horizontal scale designates 
the moment when participants reported the insight by pressing a button. The leftmost topographic 
maps of the right and left hemispheres show grand averages of EEG power distribution prior to the 
onset of the gamma burst (-1.52 to -.36ms), while the rightmost topographic maps show grand 
averages during the onset of the gamma burst, prior to the button press (-30ms to -.02ms).  

 

 
Figure 3: EEG Insight Effect, left hand side (after Jung-Beeman, et al., 2004, p. 505; Kounios & 

Beeman, 2009, p. 211). To the right, an independent analysis component of our EEG data 
corresponds to a phenomenon they identified with the EEG Insight Effect.  

Jung-Beeman et al’s fMRI experiment (upper panel on the left-hand side), cross-validated and 
located the effect in the anterior superior temporal cortex (ASTC). The question for us, given the 
behavioural evidence we had of an “aha!” moment, was whether an increase in EEG gamma power 
was evident in the vicinity of our participant’s ASTC. Independent component analysis (Delorme & 
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Makeig, 2004; Makeig, Bell, Jung, & Sejnowski, 1996) was used to isolate different sources within 
our EEG data, and found the component illustrated on the right side of Figure 3.  

 

 
Figure 4: Independent components extracted from EEG data 

Cutting to the quick here, Figure 4 (above) illustrates four independent components of EEG data 
acquired in my lab from the participant over this approximately 10 second interval are presented in 
Figure 3 below. From the top, the first component captures and isolates the participant’s lateral eye 
movement. The spikes correspond to the vertical displacements from the EOG data (P7 in Figure 1). 
Second from the top in Figure 3 is an EEG component, labeled R, illustrating on-going activity in the 
participant’s slightly left dorsolateral Prefrontal Cortex (dlPFC) associated with spatial reasoning, 
working memory (Knauff, Mulack, Kassubek, et al, 2002), and implicated in integrating verbal and 
spatial representations (Barbey, Koenigs, & Grafman, 2013). Third from the top, labeled C, is 
sourced in proximity to Broca’s and Wernicke’s areas in the left hemisphere, responsible for speech 
and comprehension respectively. Most germane here is the bottom component labeled I in which the 
burst of energy in the gamma range is evident in close vicinity to the ASTC, associated with the 
insight effect.  

 

 
 Figure 5: Detailed eye-tracking of the “aha!” moment. The behavioral eye-tracking data on the left 

side of this figure was time synchronized with the EOG data (Figure 2) 

The left-hand side of Figure 5 (above) illustrates the eye-tracking data. After having been given two 
previously unsuccessful opportunities to identify the “odd ball” in this slide the participant’s gaze 
was initially oriented toward the centre of the screen when this slide reappeared for his consideration 
for the third time (now with prompt terms revealed which had been previously masked). Hence, his 
first action was to immediately move his eyes directly toward the prompt phrase “Diagonals”. The 
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blue lines on the left-hand side of Figure 5 track his eye movements, while the blue circles indicate 
the locations where he held his gaze. The larger the circle, the longer the gaze interval. Eye 
movements and eye gazes are schematized on the right-hand side of Figure 5. The participant’s eye 
movements (with higher frequency saccadic jitter filtered out) are sequentially indicated by the 
numbers 1 through 10, whereas the area of the prompt phrase is designated as d0, and the six 
diagrams d1 through d6, in the order in which they were first viewed by the participant.  

It is clear that the participant read the word “Diagonals” silently at d0, then, as he shifted his gaze to 
d1 he took a breath (see P9 in Figure 1) and articulated the word “diagonals” (as evidenced in the 
voice recording P11 in Figure 1). As he did so, as the idea of diagonals associated with the word 
became the focal point of his intentional consciousness, his gaze returned to d0, presumably as 
confirmation (verification) at about the 2.5s mark into the onset of the presentation of the slide. He 
then continued quite systematically and relatively quickly to shift his gaze to d2, d3, and d4. When 
he came to d5, it is evident that his gaze lingered a little longer. He then continued to d6, then 
returned to d5, at which point he clicked his tongue (see P11 in Figure 1), took a breath (P9 in Figure 
10), and then exclaimed “Ahhh!” as he continued back to d4. The participant went on to describe his 
insight as follows:  

Okay, yes, I see this quite differently now [than he was seeing this slide during his 
unsuccessful attempts to identify the oddball]. This, this one, um, in particular [referring 
specifically to this slide] I see very differently. I can see, if I mentally imagine a line [while 
looking at d1 and moving his cursor diagonally from the upper left corner to the lower right 
corner, then from the left corner to the right corner] connecting the diagonal edges [sic], I 
can see that this dot [while looking and pointing to the white dot in the centre of d1] is on 
that line. This dot [looking now at d2] is also on that line, this dot [d3] is on that line, this dot 
[d6] is on that line, this dot [d5] is not, and this dot [d4] is on that line. So here [d0], when I 
see the word “diagonals”, it definitely prompted me for what to look for, and I clearly see 
that this one [d5] is the one, is the only one that the dot is not on the diagonal.  

So, when exactly was his “aha!” moment? Clearly, as illustrated in Figure 4, there was an 
attunement of sorts for our participant regarding the C and I components of his brain activity as 
recorded by EEG. Given that the C component was a neural correlate of comprehension as he read 
the term “diagonals” and that the I component was a neural correlate of insight as he connected that 
term to the criterion he had been seeking to identify the oddball figure, the R component appears to 
correlate with his assessing of the validity of that insight.  

Koestler notes: “The sudden activation of an effective link between two concepts or percepts, at 
first unrelated, is a simple case of 'insight’” (1967, p. 590). Does component I signal a spontaneous 
bisociative connection or link between, in this case, the participant’s comprehension of ‘diagonal’ 
and the synthesis of that comprehension with the perception of the dot on the diagonal (d1 in Figure 
5) coupled with his unfolding realization that ‘diagonal’ was indeed the criteria the participant had 
been seeking to identify the oddball (d5 in Figure 5)? The eye-tracking and audiovisual data, in 
tandem with results from the EEG data appears to support this interpretation.  

There is widening acceptance and growing evidence that various modalities of consciousness, and 
mind more generally, are manifest within the dynamic fluctuations of the electromagnetic field 
generated by neuronal activity (e.g., Jones, 2013, 2017). Exactly how characteristics of mind, such as 
the binding of subjective experience into a coherent and stable whole, our sense of identity and 
privacy of thought, let alone how other matters of thought and perception, memory and foresight, 
creativity and insight, are so embodied remain to be satisfactorily resolved, and remain topics of on-
going investigation.  

As for the future of educational neuroscience, it seems more likely to me, after a number of years of 
promoting educational neuroscience in the transcendental sense that I have indicated above, whereby 
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new philosophical frameworks are forged that are inclusive of lived human experience, that 
educational neuroscience will continue to prevail. That is, I see much of the past, present, and future 
of educational neuroscience unfolding as an applied cognitive neuroscience, elucidating biological 
underpinnings of mental processes.  

Cognitive neuroscience, approached from a “hard” scientific orientation, has the luxury of focusing 
on various aspects of brain behavior in terms of neural structure, mechanisms, processes, and 
functions. On the other hand, neuroscience approached from a more humanistic orientation would 
have the luxury of not having to be concerned with trying to explain, or explain away, the lived 
experience of learners solely in terms of biological mechanisms or computational processes 
underlying brain behavior (Campbell, 2010).  

I think educational researchers, at least those who think the brain actually does have something to 
do with informing our understandings of cognition and learning, would like to be informed by 
biological mechanisms and processes underlying learning, and perchance also have access to 
methods of cognitive neuroscience. As an educational researcher, however, my primary focus is not 
on the biological mechanisms and processes underlying or associated with cognition and learning. 
Rather, it is on the lived experiences of teaching and learning, along with the situational contexts and 
outcomes of those experiences.  

The above considerations perhaps still hold out some hope for the possibility of a more humanist-
oriented educational neuroscience, as a new area of educational research that is both informed by the 
results of cognitive neuroscience, and has access to the methods of cognitive neuroscience, 
specifically conscripted for the purposes of educational research into the lived experiences of 
embodied cognition and learning (ibid.).  

One may speculate, if not fully anticipate, that at some point in the future, such matters will become 
sufficiently resolved to be of great practical significance for education. Consider the following 
possibilities: Dry electrodes arrays that can be comfortably worn by students like ball caps, capable 
of transmitting high spatial and temporal resolution EEG or MEG signals from each student in a 
classroom wirelessly to a central console, analysed for specific aspects of cognitive activity, and 
made available to the teacher in real time.  

Although there are serious ethical issues associated with realising such a scenario, used in a 
responsible and sensitive manner, such a possibility could provide teachers with unprecedented 
insight into formative assessment and student learning. Moreover, such tools could provide 
invaluable information for the teacher regarding overall student engagement and effectiveness of 
their teaching in real time. Whether such a scenario will benevolently unfold as so envisioned, there 
can be little doubt that the neurosciences will continue to inform our understandings of cognitive 
phenomena such as insight and the “aha!” moment, along with many other aspects of cognition and 
learning at the nexus of mind and brain. How far into the future must we wait? Perhaps not too much 
longer.  
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Eye-tracking studies need adequate theoretical frameworks for producing insights about 
mathematics learning. The current study uses eye-tracking to investigate the effectiveness of tables 
and diagrams for supporting covariational reasoning amongst elementary students (n = 60). The 
theoretical framework emphasizes the cognitive functions of representations. Students showed more 
covariational reasoning around diagrams. The fixations showed that tables concentrated students’ 
attention on the dependent variable data, whereas diagrams distributed students’ attention evenly 
across the numeric and visual elements of the task. According to the theoretical framework, tables 
did not constrain a covariational interpretation of numerical data, whereas diagrams effectively 
constrained covariational interpretations, disrupting recursive tendencies and promoting the 
construction of a mental model of covariation.   

Keywords: Representations and Visualization, Research Methods, Cognition, Algebra and Algebraic 
Thinking 

Eye-tracking methods have much potential for studying mathematical thinking and learning. 
However, more work is necessary for developing conceptual frameworks to guide the design of eye-
tracking studies and interpret eye movement metrics (Strohmaier et al., 2020). Here we report 
research that illustrates an attempt to make conceptual connections between low-level vision 
mechanisms and abstract mathematical reasoning. The study reported below investigated how 
external visual representations (VRs) might influence the reasoning of pre-algebraic elementary 
students while solving tasks that are widely used in the functional approach to early algebra, 
presented in tabular and diagrammatic formats. Conceptual frameworks of learning with multiple 
representations allowed us to formulate and respond to research questions with theoretically-driven 
interpretations of eye movement data.  

Generalization and representation in Functional Thinking 
The Functional Thinking (FT) approach to early algebra uses the function concept to articulate ideas 

such as variable, covariation, generalisation, and symbolic notation. FT research algebra relies 
heavily on tabular tasks to investigate and support generalization processes. The study reported 
below addresses a task that require students to define missing instances of a dependent variable, e.g., 
completing missing cells in a function table.   

Learners might use at least three approaches for solving tabular tasks (Smith, 2008): (1) Recursive 
patterning involves attending to variation in sequences of values, (2) a covariational approach means 
analysing simultaneous change in two or more quantities, and (3) a correspondence approach 
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emphasizes the relation between pairs of variables. The use of covariational and correspondence 
approaches indicate a notion of function based on covariational reasoning (Thompson & Carlson, 
2017), which entails the conception of two quantities varying simultaneously with an invariant 
relationship between the values of the quantities, and every value of one quantity determines exactly 
one value of the other quantity.  

Most elementary students struggle to transit from recursive approaches to covariational reasoning 
while working with tables (Tanışlı, 2011; Wilkie, 2016). The focus on recursion might result from an 
interaction between a natural the tendency to seek univariate patterns and the visual properties of 
tables. Consequently, other visual representations, such as diagrams, could ease covariational 
reasoning by disrupting recursive tendencies. However, research about representational factors in 
functional thinking is scarce, so the question remains open: How do different visual representations 
influence students’ reasoning during functional thinking tasks? 

Approaches to learning with multiple representations  
We consider tabular tasks and diagrammatic tasks as cognitive tools that display information to 

achieve mathematical insight, and not necessarily to depict mathematical objects (Giardino, 2017). 
Therefore, we draw from the Design, Functions and Tasks (DeFT) framework to learning with 
multiple representations by (Ainsworth, 2006), which addresses the learning potential of multi-
representational systems from a design perspective, considering representational features such as 
modality and number of representations as design parameters, as well as other dimensions to analyse 
the effectiveness of multiple representations, namely tasks and functions.   

Tabular tasks and diagrammatic tasks are equal in design because both are in the visual modality 
and combine text with VRs. Tables and diagrams are also equivalent in the task dimension because 
these representations are common in the elementary classroom and, therefore, students know how to 
“read them”.  Pre-algebraic elementary students learn to relate tables or diagrams to the functional 
thinking domain while working in functional tasks. However, tasks and diagrammatic tasks are 
different in the functions dimension.  

The DeFT framework outlines three cognitive functions of multiple representations. 
Complementary functions: In multi-representational tasks, the representations should complement 
each other by differing in the information each contains and the processes that each support. 
Constraining functions: Multiple representations help learning when one representation constrains 
the interpretation of a second representation. VRs can constrain text because text is ambiguous and 
VRs are specific  (Schnotz, 2005); Constructing functions: Multiple representations support effective 
learning when learners integrate information from representations to achieve insights that could be 
difficult to achieve with only one representation. In tasks that include text and VRs, each 
representation is processed by parallel mechanisms resulting in complementary mental models that 
are mapped onto each other (Schnotz, 2005), thereby extending current knowledge and facilitating 
deeper understandings.  
Representational functions of tabular tasks 

Tables are semi-graphical representations that support learning by arranging information to exhibit 
facts or relations in a compact manner, and by directing attention to unsolved parts of a problem 
(Cox & Brna, 1995). In the tabular functional tasks reported in the literature (e.g., Tanışlı, 2011), 
graphic components such as cells, rows and columns, comply with the complementary function by 
representing mathematical relations that texts cannot represent. For example, columns represent 
variables, rows represent ordered pairs, and empty cells represent missing instances of the dependent 
variable. Tables comply with the constraining function by positioning numbers in a way that 
constrains their interpretation from a covariational reasoning perspective. The constructing function 
happens when the processing of numerical data produces a mental model of quantities, and the 
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processing of the visual layout produces a mental model of covariation. The mapping of these mental 
models prompts insights about the invariant rule governing the relationship between quantities.  
Representational functions of diagrammatic tasks 

Diagrams represent objects with pictorial components that express conceptual relations spatially, 
and can be idealized or instantiated in some context (Belenky & Schalk, 2014). Diagrams give fast 
access to meaning, facilitate the comprehension of complex information, and elicit previous 
knowledge (Tversky, 2011). Diagrams effectively show physical layouts and how things work or are 
put together, organize information, make abstract ideas concrete, and allow the use of spatial skills 
(Winn, 1991). We have made explorations with diagrammatic functional tasks of shadow-casting 
phenomena (Xolocotzin et al., 2018). In these tasks numerical data is complemented by pictorial 
components representing a pole and its shadow, making an explicit representation of covariation and 
correspondence between the quantities pole height and shadow length. The pictorial components 
constrain a relational interpretation of numerical data. For example, the pictorial representations of 
the pole and its shadow are visually connected, facilitating the interpretation of numerical data from a 
covariational reasoning perspective. Diagrammatic tasks might comply with the constructing 
function by facilitating the integration of a mental model of quantitative properties extracted from 
numerical data, e.g., variation, with the mental model of shadow-casting phenomena, which is 
relational by nature.  

Previous paper-based study 
Before the eye-tracking study, we assessed the effects of diagrammatic and tabular tasks with a 

paper-and-pencil study conducted with 1145 students in Grade 4, Grade 5 and Grade 6, recruited 
from 16 public schools located in central Mexico. Because the schools are public, they must follow 
the official mathematics curriculum, which does not include algebraic content. We studied different 
representational versions of a functional task that required students to identify missing instances of a 
dependent variable. The task presents two number sets. The first set has 6 numbers of the 
independent variable. The second set has 3 known numbers and 3 unknown numbers of the 
dependent variable. Students must figure out the rule governing the relationship between the two 
variables to identify the missing numbers. There were four options to choose from: (1) functional, (2) 
recursive, (3) First instance, which is consistent with a rule that only applies to the first pair of data, 
thereby denoting lack of generalization, and 4) random, which presents three numbers defined 
randomly. Four versions of the tasks were generated by manipulating two factors: Representation 
(table or diagram), and context (with context or without context), see Fig. 1. The diagrammatic tasks, 
either with context of without context, generated more functional responses than tabular tasks. 
However, this effect was larger in the contextualized version of the diagrammatic task. We also 
observed that Year 5 students were the most sensitive to the effects of context. We considered these 
results as evidence that diagrams ease covariational reasoning.  
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Figure 1 Examples of the tasks employed in the paper-based study.  

Overview of the current study 
The previous paper-based study suggested that diagrammatic tasks are more effective than tabular 

tasks at easing covariational reasoning. Albeit informationally equivalent, diagrams seemed to 
facilitate retrieval of functional information. In line with the DeFT framework, we hypothesized that 
diagrams are more effective than tables for complying with the functions of multiple representations, 
which opened our research question: How do diagrammatic tasks and tabular tasks comply with 
functions of multiple representations such as constraining and constructing? To answer this question, 
we analyzed students’ eye movements to gain insights about the effects of tables and diagrams on 
students’ attention.  

Method  
Participants 

A total of 60 students in Grade 4 (n = 20), Grade 5 (n = 20) and Grade 6 (n = 20) from a public 
elementary school participated in the study. All students participated on a voluntary basis, with 
informed consent from parents and school authorities. Three participants failed to reach accuracy 
levels due to unforeseen circumstances, e.g., spectacles not allowing registration of the participants’ 
eye. Therefore, their data were discarded, leaving a sample of 57 students.  
Apparatus and stimuli 

The data were collected with a portable eye-tracker Tobii Pro X2-30, with a 30 Hz sampling rate, 
0.4 precision (binocular), and 0.32 gaze precision (binocular). Both eyes were tracked. This model 
allows robust detection of individuals’ eye movements, even with unrestricted movement. The eye-
tracker was mounted below the screen of a Dell Inspiron 5000 15 inch laptop, which display was set 
at 60 Hz refresh rate and 1366 x 768 resolution. The distance between the eye-tracker and the edge of 
the table was held constant at 60 cm.  

The stimuli were a series of functional tasks presented in either tabular or diagrammatic format. The 
tasks were replicated from the “with context” of the previous study (See Fig. 1). Tabular tasks were 
grounded on a situation involving apples and their weight. The diagrammatic tasks were grounded in 
a shadow-casting situation involving the height of a pole and the length of its shadow cast. There 
were 12 tabular tasks and 12 diagrammatic tasks. In each type of task, there were four items 
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involving sums, four items involving subtractions, and four items involving multiplications. The 
same as in the previous study, each task required the identification of a relationship between two 
quantities, and selecting one of four response options: functional, recursive, first instance, or random.  
Experimental design 

The experiment employed a factorial design involving the within-subjects factor representation 
(table/diagram) and the between-subjects factor Grade (4/5/6). The factor representation was 
counterbalanced within each Grade. The tasks were presented in fixed order: sums, substractions, and 
multiplications.  
Procedure 

Students were tested individually in the school IT suite. They were instructed as follows: We would 
like you to please help us solving a task. It is important that you know that the results do not have 
any relation with your grades. Do you have any question? the results are very important for us 
because we are studying how students solve some mathematics activities. Please, pay attention and 
do your best effort.  
Results and discussion  

The behavioural results replicated the previous study, that is, students chose the functional response 
more in diagrammatic tasks [F (1, 56) = 4.038, p < .05, !! = .022]. The eye tracking data, interpreted 
under the DeFT framework, allowed us to explain this result. Eye-trackers produce a range of eye-
movement metrics. We wanted to know which areas components of tables and diagrams were more 
noticeable for students. Therefore, we used fixation time, which indicates difficulty in extracting 
information, or that the object is more engaging in some ways (Poole & Ball, 2006). We defined a 
series of analogous areas of interest (AOIs) corresponding with key components of the tasks, see Fig. 
2. One set of AOIs contained data; A1 and A2 show contained the first and second half of the 
independent variable. A3 contained the first half of the dependent variable, and A4 contained the 
unknown second part of the dependent variable. A second set of AOIs contained contained the 
response options, functional, recursive, instance, and random.  

 
Figure 2 Ares of Interest in Tabular tasks and Functional tasks with an overlay heatmap of fixation 

duration  

The analysis of the data AOIs revealed that students fixated more on AOI3 while solving tabular 
tasks, which contained the known numbers of the dependent variable, whereas in diagrammatic tasks 
students fixated evenly across the data AOIs [F (3, 162) = 20.541, p < .001, !! = .085]. As for 
responses AOIs, students fixated more on functional responses while solving diagrammatic tasks [F 
(3, 162) = 40.209, p < .001, !! = .108]. The DeFt framework allows an interpretation of these results. 
Figure 2 illustrates how students engaged more with AOI A3, which indicates the spatial layout of 
cells and columns, fails comply with its intended function of constraining a covariational 
interpretation of numerical data. Therefore, students are unable to integrate the mental model of 
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quantitative properties extracted from the data, with a mental model of covariation. Therefore, they 
did not achieve the necessary insight for inhibiting the tendency to look for recursive patterns. This 
might explain why students engaged equally with recursive and functional responses. In contrast, 
diagrams disrupted the tendency to focus on recursion, and made students to expand the breadth of 
their attention, and engaged equally with data and probably other elements of the task. This might 
indicate that they considered all sources of pictorial and numeric information, moreover, pictorial 
components seemed to constrain a covariational interpretation of data. We argue that diagrammatic 
tasks allowed the construction and integration of a mental model of quantitative properties extracted 
from numerical data, and a mental model of a relational situation, extracted from the graphic 
elements of the task. In this way, students gained covariational reasoning insight and, therefore, 
engaged more with functional responses.  

General conclusion  
Eye-tracking research in mathematics education is growing steadily (Strohmaier et al., 2020). 

However, the release the full potential of these methods for gaining insights about mathematical 
learning, it is necessary to use theoretical frameworks that allow plausible interpretations of eye-
movement data. The presented study aimed to illustrate the benefits of theory-driven interpretations 
of eye-movement data.  

In our first paper-based study, we found that diagrammatic tasks were more effective at easing 
covariational reasoning than diagrammatic tasks. However, this result could not be explained from 
paper-based data. So, we had the output but were unable to empirically explain the process leading to 
such output. We addressed this issue with eye-tracking methods because the cognitive mechanisms 
involved in learning from visual representations cannot be observed directly. Moreover, these 
mechanisms rely heavily on unconscious vision processes which operation cannot be intentionally 
controlled by individuals.   

The DeFT framework allowed us to make theoretically-informed accounts of the ways in which 
tables and diagrams are expected to support covariational reasoning. By analyzing tabular tasks and 
diagrammatic tasks under the DeFT framework, we identified that these representations were similar 
in the dimensions design and tasks, but different in the functions dimension. Therefore, we 
hypothesized that diagrams were more effective for supporting covariational reasoning in the first 
study because this representation complied more effectively with functions such as complementing 
textual information, constraining textual information, and constructing insights.  

The behavioural results replicated the paper-based results, diagrammatic tasks were more effective 
for supporting covariational reasoning. The patterns of fixation duration confirmed our hypothesis. 
Diagrammatic tasks distributed the individuals’ attention evenly across the visual display of the task, 
and directed their attention to recursive and functional responses evenly. In contrast, the tabular task 
concentrated individuals’ attention on the first part of the dependent variable, and directed their 
attention to recursive only.  

An interpretation of results from a cognitive load framework would have been problematic. 
Diagrams should have produced less functional answers because they have more information and 
require more cognitive resources than tables. The DeFT framework offered a more parsimonious 
interpretation of these results. The layout and structure of tables seemed unable to constrain a 
covariational interpretation of textual data such as task instructions and numerical data, thereby 
favoring a recursive interpretation of the data. In contrast, diagrams effectively constrained a 
covariational interpretation of data, disrupting the natural tendency to seek recursive patterns, and 
allowing the production and integration of  a mental models of data’s numerical properties with a 
mental model of covariation. 
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This lecture reports on aspects of a larger research programme focused on studying mental 
mathematics in elementary and secondary mathematics classrooms. It specifically addresses an 
unplanned aspect that became salient through the work conducted in these classrooms. In this 
research programme, mental mathematics sessions are designed on a variety of mathematical topics 
(e.g., algebra, geometry, measurement, statistics, trigonometry, fractions), where students are given 
short amounts of time to solve tasks given orally and/or on the board, without the use of paper-and-
pencil or any material aids. Whereas the central objectives centers on inquiring into the nature of the 
strategies students engage in to solve the tasks, more seem to be happening in these sessions. In 
particular, students’ solutions and strategies to the task given in the mental mathematics context led 
to numerous questions, discussions, follow-up explorations, and so forth, by students, which in turn 
enabled the emergence of significant mathematical issues. This raised interest in investigating these 
(additional and unplanned) mathematical issues. This represents the core of this lecture, which 
focuses on the nature of the mathematics (in terms of content and of practices) that frequently 
unfolds in the mental mathematics sessions conducted. Using an illustrative extract from a mental 
mathematics session on analytical geometry in a Grade-10 classroom (15-16 years old), the analysis 
outlines how not only mathematical content is being worked on through these mental mathematics 
sessions, but also how mathematical practices are being enacted by students. This raises issues about 
the nature of the environment that these mental mathematics session plunge students into, one that 
could be tentatively, and boldly, aligned with Papert’s concept of mathland. 

Keywords: Mental Mathematics, Didactique des Mathématiques, Mathematical Practices, Problem 
Solving, Curriculum Enactment, Geometry and Geometrical and Spatial Thinking 

Being a mathematician is no more definable as knowing a set of mathematical facts than 
being a poet is definable as knowing a set of linguistic facts. Some modern mathematical 
education reformers will give this statement a too easy assent with the comment: ‘Yes, they 
must understand, not merely know’. But this misses the capital point that being a 
mathematician, again like a poet, or a composer, or an engineer, means doing rather than 
knowing or understanding. (Papert, 1972, p. 249) 

Preliminary note: the nature of my research work in didactique des mathématiques 
My research work is in didactique des mathématiques. What does this mean and how does it impact 

on the nature of the work I conduct? As Douady (1984) expresses, research work in didactique des 
mathématiques investigates the processes and conditions for the production, transformation, 
communication and acquisition of mathematics, which is not to be reduced to the quest of finding 
effective teaching methods for mathematical notions. In other words, research work in didactique des 
mathématiques focuses on studying how mathematics happens and advances; which includes its 
teaching. Brousseau (1991) adds an important aspect to this, mainly that it is a “Science concerned 
with the production and communication of mathematical knowledge in how these productions and 
communications are specific to mathematics” (my translation). What comes out of this is that 
mathematics and its specificities are central to research work conducted in didactique des 
mathématiques. Hence, questions about mathematics education are addressed through mathematics, 
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that is, where the didacticien des mathématiques is concerned with mathematical experiences and 
activities in how they are representative, specific and aligned with mathematics themselves. As an 
example, the interest in problem solving for a didacticien des mathématiques is not because doing 
problem-solving helps learn this or that mathematical concept or because it could contribute to better 
students’ success in mathematics, but mainly because mathematics is defined as a problem-solving 
endeavor (e.g., Brown & Walter, 2005; Halmos, 1981; Papert, 1972, 1996; Polya, 1957). This is why 
didacticiens des mathématiques undertake studies on problem-solving or argue for its significance: 
because problem-solving is constitutive of mathematics as a discipline.  

Research work in mental mathematics 
My research programme is focused on studying mental mathematics in elementary and secondary 

mathematics classrooms. In this research work, sessions are designed and conducted on a variety of 
mathematical topics (e.g., algebra, geometry, statistics, measurement, trigonometry, fractions), where 
classroom students are given short amounts of time to solve tasks given orally and/or on the board, 
without the use of paper-and-pencil.  

Mental mathematics can be defined along the existing research literature, e.g., following 
Hazekamp’s (1986) view, as the solving of mathematical tasks through mental processes without 
paper-and-pencil or other material aids available. To this one can add that there are frequently time 
constraints to producing an answer, as well as the fact that questions are often asked orally. The 
mental mathematics sessions conducted usually follow the same structure, similar to what Douady 
(1994) suggests by carefully establishing a respectful climate that ensures thay students’ share and 
listen to solutions:  

(1) A task is offered orally or on the board; 
(2) Students listen and solve the task mentally;  
(3) When time is up, students are asked to explain their answer (adequate or not) in detail to the 
classroom, taken in note on the board (and in some cases students themselves come to the board 
to explain it); 
(4) Other students who solved differently (or thought of solving differently) are invited to offer 
their answers; once all is said and done, another task is given. 

It is often reported that the strategies used to solve mental mathematics tasks differ from those 
usually referred to in a paper-and-pencil context. Butlen and Pézard (1992), for example, report that 
the practice of mental mathematics can enable students to develop new and economical ways of 
solving arithmetic problems that traditional paper-and-pencil contexts rarely afford, because the latter 
are often focused on techniques that are too time-consuming for a mental mathematics context. These 
economical ways of solving are said to have the potential to open varied and alternative mathematical 
routes for handling the concepts under study (e.g., Alain, 1932; Murphy, 2004; Plunkett, 1979; Reys 
& Nohda, 1994; see also Proulx, 2019). Thus the central objectives of this research on mental 
mathematics is to inquire into the nature of the mathematical activities (strategies, ways of solving, 
ideas, reasoning, etc.) that students engage in to solve these tasks. 

This said, as these mental mathematics sessions were conducted in classrooms, it became quite 
apparent that much more than strategies and solutions was happening in these sessions. In effect, the 
answers given by students and the strategy shared to arrive at them becomes some kind of natural 
occasion for other students to question or comment them, if they are not convinced or do not 
understand them. This leads to numerous interactions between students and the Principal Investigator 
(PI) (and the regular classroom teacher), where students ask important questions about the 
mathematics at play, which in turn would often lead students to engage in subsequent investigations 
about these issues (through questions, discussions, follow-up explorations, etc.; see also Cobb et al., 
1994, on this). In addition, the sharing of numerous strategies leads invariably to discussions about 
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these strategies, where the various strategies and their answers are compared and discussed by the PI 
and students concerning their effectiveness, links, (dis-)advantages, possible extensions to other 
tasks, and so forth. Even if from the outset this was not the scientific objective of the research, this 
phenomenon became intriguing. And from a didactique des mathématiques orientation, some 
attention was given to how all this was contributing to the advancement of mathematics with 
students. 

Advancement of mathematics: content and practices 
The advancement of mathematics can be addressed along two dimensions. The first is relative to the 

advancement of mathematical content. Mathematics is filed with content, from number to geometry 
and algebra, to name a few, through various algorithms, formulas, procedures, methods, definitions, 
theories and theorems about them. Analyses of the advancement of content in classrooms focuses on 
the development of this content with students, that is, on their understandings and reasoning relative 
to this mathematical content. Having said this, as Papert’s above quote insists, mathematics is not 
only about its content; it is an activity that is done and takes shape in action (see also Brown & 
Walter, 2005; Hersh, 2014; Lockhart, 2009; Schoenfeld, 2020). Mathematics is about doing 
mathematics; mathematics is a practice. Another dimension thus concerns mathematical practices. 
This second dimension of the advancement of mathematics in classrooms is about the development 
of mathematical practices in students, that is, how these emerge, unfold, progress, and so forth, as 
mathematics is being explored and produced. 

In other words, mathematics is composed of content and practices, where this mathematical content 
is explored and engaged with. Intertwined with the advancement of content, the emergence and 
development of mathematical practices thus acts as a fundamental dimension to consider in relation 
to mathematics. It is also along these lines that Lampert (1990a) raises the relevance of working on a 
double agenda, that is, simultaneously on of and about mathematics: 

This meant that I needed to work on two teaching agendas simultaneously. One agenda was 
related to the goal of students’ acquiring technical skills and knowledge in the discipline, 
which could be called knowledge of mathematics, or mathematical content. The other 
agenda, of course, was working toward the goal of students’ acquiring the skills and 
disposition necessary to participate in disciplinary discourses, which could be called 
knowledge about mathematics, or mathematical practice. (p. 44) 

Both these dimensions of content and practices have been salient in the mental mathematics 
sessions conducted. This research, strongly grounded in Papert’s work (e.g. 1972, 1980, 1993, 1996; 
see also Barabé & Proulx, 2017), compelled investigations of mathematical practices. Papert is 
indeed quite adamant on the importance of the development of mathematical practices, where 
mathematics is not something given and fixed, but is alive and a source of ongoing investigations in 
order to enrich students’ experiences and culture in mathematics (see, e.g., 1993, 1996). This idea 
also relates to Bauersfeld’s (1995, 1998) notion of plunging students into a “culture of 
mathematizing”, where mathematical practices unfold and take shape through interactions and 
investigations. 

Participants in a culture of mathematizing are seen as authors and producers of mathematical 
knowledge, understandings and meanings. In the establishment and development of such a culture, 
where mathematical practices unfold and concepts and methods are explored and worked on, 
students are encouraged to generate ideas, questions and problems, to make explicit and share 
understandings and solutions, to develop explanations and argumentations to support the solutions 
and strategies put forth, to negotiate proposed meanings, to share and explore various ways of 
understanding problems, concepts, symbolism, and representations, and to assess and validate other’s 
understandings and ways of doing (see e.g. Bartolini Bussi, 1998; Bednarz, 1998; Borasi, 1992, 



Mental	mathematics	in	the	classroom:	content,	practices	and	Papert’s	Mathland	

	 112	

1996; Brown & Walter, 2005; Cobb & Yackel, 1998; Lampert, 1990a; Schoenfeld, 2020; Voigt, 
1985, 1994). From these practices, a number of elements can be outlined to characterize and analyze 
the advancement of mathematics. 

• The emergence of a community of validation. Central to a mathematics-producing practice are 
participants who are engaged in explaining, discussing, arguing, and validating mathematical 
understandings and meanings (Boaler, 1999; Borasi, 1992; Hersh, 1997; Krummheuer, 1995; 
Lakatos, 1976; Lampert, 1990a). 

• The role, relevance and development of mathematical languages, symbolisms and conventions. 
Mathematical symbolism, languages and conventions, and their development, are used to 
express mathematical understandings, explanations, arguments, etc., and play a major role in 
the emergence of mathematics and mathematical thinking (Bednarz et al., 1993; Byers & 
Erlwanger, 1984; Byers & Herscovics, 1977; Lampert, 1990b; Lockhart, 2017). 

• The role given to errors and how they are handled. Errors play and have played a fundamental 
role in the emergence of mathematical thinking and understanding. The way they have been 
handled has enable new ways of seeing and understanding mathematics, leading to unpredicted 
or as yet not thought of avenues (Borasi, 1996; Hadamard, 1945). 

• The solving and posing of problems. Doing mathematics is an activity of posing and solving 
problems of many kinds (Bkouche, Charlot & Rouche, 1992; Brown & Walter, 2005; Hersh, 
1997; Lang, 1985; Polya, 1945), where explorations of mathematical content have contributed 
to the development of additional mathematical content. 

• The authorship, ownership and responsibility in mathematics. Doing mathematics imposes an 
active engagement. People doing mathematics do not conceive of themselves as mere 
consumers or receivers of mathematics, but as producers and even authors of mathematics 
(Papert, 1996; Povey & Burton, 1999; Schoenfeld, 1994). Mathematics confers a double sense 
of responsibilities (Borasi, 1992, 1996), where people doing mathematics are responsible for 
the mathematics they produce and also responsible for producing mathematics. 

As scientific interest arose about these dimensions relative to the advancement of mathematics in 
the mental mathematics sessions conducted, the following question oriented the inquiry: In what 
ways is mathematics advancing in the mental mathematics sessions, under both its mathematical 
content and practices dimensions? As a way of showing how the advancement of mathematics 
happened in the sessions, an extract taken from one session is presented. This extract is then looked 
into in relation to how mathematics content and practices advance, as a way of offering an initial 
illustration of what it can mean to analyze the advancement of mathematics in these mental 
mathematics sessions. 

Extract from a mental mathematics session 
The extract is taken from a session led by the PI in a Grade-10 classroom of about 30 students, who 

were working on analytical geometry in relation to distances (points, midpoints, lines, etc.) and had 
been initiated to usual algebraic formulas. One of the tasks given to students was “Find the distance 
between (0,0) and (4,3) in the plane” (given orally, with points drawn on a Cartesian plane on the 
front board); they had 15 seconds to answer without recourse to paper and pencil or any other 
material. When time was up, students were invited to share and justify their solutions to the group. 
The following is a synthesis of the strategies engaged in and the discussions, questions, and 
explorations that ensued. 

The first strategy referred to applying the usual distance formula (D= (!! − !!)! +  (!! − !!)!), 
leading to 5 as a distance. A second strategy suggested drawing a triangle in the plane, with sides 3 
and 4, for then finding the hypotenuse by using Pythagoras (Figure 1a). 
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Figure 1a – Drawing the right triangle  Figure 1b – Close-up on the triangle 

Another student then suggested a third strategy, coming to the board to trace a red segment to count 
directly on it from (0,0) to (4,3) as in Figure 1b. Starting from (0,0), she counted “the number of 
points” to arrive at (4,3), counting the number of whole-number coordinate points from (0,0) to (4,3). 
While doing this at the board, she suddenly stopped and mentioned that her red segment did not go 
through the points she envisaged, which made the counting difficult. The PI then traced another 
segment going through square diagonals linking two separate points, which could enable counting 
the number of (whole-number) coordinate points from one point to the next (giving 4 as a distance, 
Figure 2). The student agreed that for this case, it would work. 

 
Figure 2 – Line drawn through square diagonals 

The PI then asked if the measure obtained with square diagonal lengths was identical to that 
obtained with the side of the square (drawing  on the board). 

One student asserted that both lengths were not identical, because the diagonal of the square 
was not of the same length as the square’s side. Another explained that both lengths were 
different, because the hypotenuse is always the longer side in a triangle. Finally, a student 
claimed that the diagonal was longer because it faces the wider angle. 

The PI then asked if that last assertion about facing the wider angle was always true, and if so why 
(drawing on the board a random right triangle ). 

One student, pointing at the triangle, stated that it was indeed the case in this drawn triangle. 
Another student explained that in a triangle the bigger the angle the longer the opposite side, 
mentioning that if the side-hypotenuse had been longer, the opposite angle would have been 
wider. And, because the sum of the (measures of the) angles in a triangle is 180o, then the 90o 
angle is always the wider one, the other 90o being shared between the remaining two angles. 

Using the drawing of the triangle, the PI simulated the variation of the right angle toward an obtuse 
one and traced the resulting side obtained, showing how it would become longer (drawing  on 
the board). He then moved it toward producing an acute angle, asking students if their “theory” about 
opposite side of the angle worked for any angle, like acute ones. 

One student asserted that it works for isosceles triangles, with equal sides facing equal 
angles, and another mentioned that it is the same for the equilateral triangle, because it is 
“everywhere the same” with same angles and same side lengths. 

The PI explained that these ideas about the diagonals being longer than the side underlined the fact 
that this initial strategy amounted to counting diagonals, that is, the number of diagonals of a unit 
square. And, that this offered a different sort of measure for the (same) distance between the two 
points: one in terms of units and one in terms of diagonals. A student added that if one knows the 
value of the diagonal (e.g. 1.2 or else), then one could find the number of unit squares for the 
diagonal-segment by multiplying by that factor.  

One student offered a fourth strategy to find the distance, suggesting using the sine law with angles 
of 45o. The PI asked the student how he knew that both angles were 45o in the triangle. As skepticism 
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grew in the classroom, the PI suggested that students inquire, in small groups or individually, if the 
triangle’s angle were 45o or not, and to be able to convince others. After 5-6 minutes of exploration, 
students were invited to share their findings.  

One student explained that on her exam checklist there is an isosceles right triangle with 45o 
angles. Thus with this triangle of side length of 4 and 3, one cannot directly assert that it is 
45o because it is not an isosceles triangle as its sides are not equal. Another student 
illustrated on the board that if one “completes” the initial triangle into a rectangle  
( , see Figure 3a), then the hypotenuses of both triangles are the rectangle’s diagonal 
which cuts it in two equal parts and thus cuts its angle in two equal 45o parts. 

As the PI highlighted that the two arguments were opposed, one student replied not agreeing with 
the last argument, drawing on the board a random rectangle with its diagonal (Figure 3b), and 
asserting that in this rectangle it was not certain that the angle was divided into two equal parts. 
Another student added that because the sides of the triangle were not identical (of 3 and 4), then the 
diagonal would not necessarily cut the 90o angle in two equal parts of 45o. 

         
Figure 3a – The “completed” rectangle  Figure 3b – The “counter” rectangle 

The PI highlighted that this last argument reused aspects of the precedent “theory” that the longer 
side faces the wider angle in the triangle. Hence, following this, a longer side needed to face a wider 
angle. Then a counter-example was offered to the group. 

The student who made reference to the checklist asserted that sometimes in their exams right 
triangles did not have 45o angles, for example, one with 32o and 58o; coming to the board to 
draw it (Figure 4). She completed her drawing to create a rectangle, explaining that the 
diagonal cuts as well this rectangle in two parts, but that the angles obtained are not of 45o. 

 
Figure 4 – The triangle counter-example with angles of 32o and 58o, and the rectangle 

The PI asserted that this offered a counter-example, with a type of right triangle frequently met that 
did not have angles of 45o. 

One student added that because all sides were different, then their associated angles would 
be different, the longer side needed to face a wider angle, which would lead to different 
angles. 

The PI then highlighted the work of one student who drew a square in his notebook to assess the 45o 
situation. Drawing a triangle of sides 3-4-5, he extended the cathetus of 3 toward one of 4 to create a 
4x4 square. Then, because in the previous unit-square the angles were of 45o, in this 4x4 they were 
45o as well (Figure 5). Comparing hypotenuses of both triangles, it illustrated that in the initial 3-4-5 
right triangle, the angle is smaller than the right triangle of side 4 and 4. All this led students to 
appear to agree that the angle was not 45o, ending the explorations (and leading the PI to offer 
another task for the students to solve). 
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Figure 5 – Comparing triangles within a square 

Analysis of the advancement of mathematics 
A didactique des mathématiques analysis of this extract in relation to the advancement of 

mathematics underlines issues of mathematical content and of mathematical practices. First, 
mathematical content is significantly present in this extract through the explorations undertaken. 
Some mathematical content is engaged with more superficially or in an isolated way, without 
requiring subsequent exploring and mostly being referred to: Pythagoras’ relation, distance formula, 
hypothenuse, angles (acute, obtuse, right), triangles (various types, and isosceles and equilateral). 
These are not explored in depth, but are mobilized during the session and play an important part in it. 
Other mathematics content takes a more important place, enabling or representing some 
mathematical advances in the session through deeper explorations than the former: the sum of the 
measures of the angles of a triangle is 180o, the possibility of having two different measures for the 
same distance, the relationship between the rectangle’s diagonal, and the bisector of its angles. 
Finally, some content appears at the heart of the explorations in the session, thought of and 
recurrently being engaged with by students: the difference between the (measure of the) square 
diagonal and (the measure of) its side, and the relation between and variation of one side of the 
triangle and its opposite angle. There would obviously be more to outline, and along much subtler 
lines, but what is significant is the magnitude of the mathematical content worked on, mobilized, and 
continually explored with the students. 

Second, students are enacting a variety mathematical practices, which participate in the 
environment where the mathematical content is taking shape. In sum, the mathematical contents 
engaged with in the session are grounded in these mathematical practices: 

• The emergence of a community of validation. The investigation of the 45o angle is an example 
of how a community of validation was established, in which students offered conjectures, 
argued and counter-argued on the ideas suggested, justified their claim, developed elements to 
prove it, engaged in reflections to establish what works and does not, and why, etc. The 
mathematical “truths” were not passively received from outside, from an external authority, but 
were debated and worked on to develop consensus. 

• The role, relevance and development of mathematical languages, symbolisms and conventions. 
Although complex to analyse from a short extract, it is possible to seize some of the 
symbolisms and representations that took shape in it. For example, the manner of drawing 
rectangles and triangles with a “cut” to argue about the value of their angles is representative of 
a strong symbolization that became established in the group, that evolved, and that was used 
throughout the session. Thus, from a triangle ( ), students were led to “complete” it to 
make a rectangle ( ), enabling them to discuss and explore what happens with the 
rectangle’s and triangle’s angles. It is this specific symbolic representation that is used in 
Figures 3b and 4 to argue and counter-argue about the rectangle’s diagonal and the division in 
half of the 90o angle. This “invented” representation to symbolize the relationship between 
rectangles and triangles regarding their angles contributed to the mathematical understandings, 
and was often reused by students in the session. 

• The role given to errors and how they are handled. Errors have played a productive role in the 
session, provoking additional questions and explorations. For example, the third strategy about 
measuring the distance between the points through the diagonal of the unit-square has 
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unleashed important questioning on the difference between the diagonal and the side of the 
square, and has led to the idea that it is possible to have different measures for the same 
distance. The suggestion that the triangle had a 45o angle also provoked the investigation about 
triangles’ angles and sides, as well as rectangles’ sides and diagonals. None of these assertions, 
even when erroneous, were criticized and all were taken seriously: they were respected as 
authentic mathematical productions and enabled deeper understandings of the mathematics at 
play. 

• The solving and posing of problems. Throughout the session, questions were asked and sub-
problems emerged, unpredicted and contingent on the ongoing explorations undertaken (e.g. 
diagonal of the unit-square; the 45o angle; the diagonal splitting the 90o angle into two equal 
parts). Students raised and engaged intensely in these questions and sub-problems. It is through 
these questions and problems that the main part, if not the entirety, of the mathematical content 
was explored and deepened. 

• The authorship, ownership and responsibility in mathematics. Students took an active part in 
the investigation through a number of mathematical assertions and proposals (through 
strategies, answers, questions, disagreement, explanations, etc.). In this sense, they took 
ownership of the ideas produced and were engaged in producing them. This double-
responsibility took place as students were not passive in the session, but contributed to it with 
their own ideas. As an example, students’ spontaneous use of the front board shows how they 
felt compelled to share their ideas and participate in the explorations to reach a consensus: they 
show ownership over this consensus and do not appear to wait for someone else to reach it for 
them, interacting with others and the PI, raising issues, arguing, questioning, responding, etc. 

Another mathematical practice also comes out of this extract, and one considered of significance in 
mathematics. It is related to what Papert (1980, 1993) calls theorizing. In the discussions about the 
difference between the measure of the diagonal and the side of the square, an important theory was 
suggested by students: the bigger side of the triangle faces its bigger angle. First, this theory was 
mainly an assertion, some sort of conjecture. But, after some questions raised by the PI (Does it work 
all the time? / What happens if the angle changes? / etc.), it was increasingly confirmed by and 
through students’ justifications. This theory was then used by others, and as much by the students 
than by the PI, to address the issues about the 45o angle: if the measure of one side of the triangle is 
not the same as another, then neither can be the opposite! Throughout the session, this theory took 
shape and strengthened, giving rise to a number of side assertions, in the form of corollaries, like the 
following:  

Corollary 1: In a triangle, the smallest angle is always opposed to the smallest side. 
Corollary 2: In a triangle, the smaller an angle is, the smaller its opposite side is. 
Corollary 3: In an isosceles triangle, both equal angles are opposed to both equal sides. 
Corollary 4: In an equilateral triangle, angles are the same, linked to sides of same length. 
Corollary 5: Since the sides are not equal, its angles are not equal either. 
Corollary 6: Since the sides are of different length, they opposed angles of different size. 

And the list could go on. Without always being stated explicitly, the arguments and explanations 
related to the initial theory, that justified it, underlined these ideas and strengthened them. This made 
the theory increasingly accepted by students and the PI, to the point of being used itself as an 
argument. It is in this sense that this theory, and its corollaries, became established during the 
session, and became “proven”. It can be seen as some kind of proof by use, which is shown to be 
truthful through its efficient functionality and recurrence (Hersh, 2014). The proof of the pudding is 
in the eating! The establishment of theories thus acts here as an additional mathematical practice 
being put forth in the session. 
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Concluding remarks 
The above analysis could be deepened and refined. However this sketch, albeit rapid, is significant: 

it illustrates how mathematics not only advanced in relation to its content, but also relative to its 
practices, and how both content and practices are intermingled in this advancement, going hand in 
hand, participating in the unfolding of the other. Content arises through mathematical practices, 
which in turn are geared toward specific contents. The need to talk about triangles and their angles as 
content gave rise to a specific symbolisation to represent it, which in turn helped to make sense of 
triangles, rectangle and their angles. The need to understand the 45o angle as content, and the 
skepticism that it caused, led the community of validation to take shape, helping in return to give 
stronger meaning to the 45o angle. The notion of the measure of the side of a square and its diagonal 
made emerge a question about their difference, becoming a sub-problem to inquire into, which led 
not only to understandings about their difference in the square, but also gave rise to the theory of the 
triangle’s angle and its relation to its opposite side. And the list could go on, for each dimension of 
mathematical practices outlined, each linked to aspects of mathematical content covered in the 
session. 

This extract is only a short glimpse into the nature of the work conducted regularly with groups like 
these in mental mathematics settings. As these mathematical practices continually unfolded, sessions 
after sessions and with different group of students, one cannot but be seized by how students plunged 
deeply into aspects at the heart of Bauersfeld’s (1995, 1998) culture of mathematizing. The 
mathematical ideas emerge, are alive and flow dynamically. The students are strongly engaged, 
compelled to contribute, enthusiastic in responding to one another and to the ideas shared, and so 
forth.  

However, above all, this was not staged nor planned. Mental mathematics sessions are usually 
designed to gather and then analyse students’ strategies about various mental mathematics tasks. But 
classrooms are what they are, and students are who they are: asking them to solve mental 
mathematics tasks made emerge lots of questioning from them, and between them, about the 
mathematics. The tasks then became springboards for inquiry or “seeds” for explorations (Borasi, 
1992, 1996; Schoenfeld, 2020), as opportunities for developing not only mathematical content but 
also mathematical practices. This is why the mental mathematics environment that students seem to 
be plunged into appeared to be worth reflecting on. 

Although Papert never profoundly developed this concept, one is compelled to wonder if this 
environment of exploration happening in the mental mathematics sessions could represent, at least a 
little, what he had in mind with his mathland. Here, for example, is one quote taken from The 
Children’s machine: 

It is thoroughly embedded in our culture that some of us have a head for figures while most 
don’t, and accordingly, most people think of themselves as not mathematically minded. But 
what do we say about children who have trouble learning French in American schools? 
Whatever the explanation of their difficult, one certainly cannot ascribe it to a lack of 
aptitude for French – we can be sure that most of these children would have learned French 
perfectly well had they been born and raised in France. […] In the same way, we have no 
better reason to suppose that these children who have trouble with math lack mathematical 
intelligence than to suppose that the others lack “French intelligence”. We are left with the 
question: What would happen if children who can’t do math grew up in a Mathland, a place 
that is to math what France is to French? […] while what happened in the regular math class 
was more like the learning math as a foreign language. […] In the math class, where 
knowledge is not used but simply piled up like the bricks forming a dead building, there is no 
room for significant experimenting. (Papert, 1993, p. 64) 
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However bold, asserting that the mental mathematics environment in which students are plunged, 
for which the Grade-10 extract is an illustration of, could be aligned with a form of mathland has a 
nice ring to it. And, this ring leads one to become attentive to the strength of the engagement and the 
richness of the explorations undertaken. It seems to orient the focus, as Papert insisted, on doing 
mathematics more than on knowing mathematics. In this sense, doing mental mathematics becomes 
more about inquiring than about knowing facts (see PME-NA research report in Proulx, 2014, 2015a; 
or others e.g. in Proulx 2013, 2015b, 2019).  

Although at first a curiosity, inquiring into the environment of the mental mathematics sessions 
seemed to help draw out both these content and practices dimensions, and their intertwinement in the 
advancement of mathematics in the sessions. And it might be where Papert’s mathland fits in well, 
that is, in an environment where mathematics grows as much in terms of content as in terms of 
practices. 
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CONSTRUCTION OF ARITHMETIC-ALGEBRAIC THINKING IN A SOCIO-CULTURAL 
INSTRUCTIONAL APPROACH 

CONSTRUCTION D’UNE PENSÉE ARITHÉMICO-ALGÉBRIQUE DANS UNE APPROCHE SOCIOCULTURELLE 
DE L’ENSEIGNEMENT 

Fernando Hitt 
Université du Québec à Montréal 

hitt.fernando@uqam.ca 

We present the results of a research project on arithmetic-algebraic thinking that was carried out 
jointly by a team in Mexico and another in Quebec1. The project deals with the concepts of variable 
and covariation between variables in the sixth grade at the elementary level and the first, second, 
and third years of secondary school – namely, children from 11 to 14 years old. We target secondary 
students (first year or K7) in this article. Our objective relates to the development of a gradual 
generalization in arithmetic-algebraic thinking in a socio-cultural approach to the learning of 
mathematics. We experimented with investigative situations using a paper-and-pencil approach and 
technology. We analyze the emergence, in this context, of a visual abstraction, the production of 
institutional and non-institutional representations, a sensitivity to contradiction, and, finally, the 
concepts of variable and of covariation between variables.  

Key words: gradual generalization, socio-cultural approach, arithmetic-algebraic thinking. 

Introduction: Steps of the Project 
The project presented herein has been ongoing since 2008, carried out jointly by a team in Mexico 

and another in Quebec. The experimentation was done at the primary and secondary levels as well as 
in a pre-service teacher education program. 

• Step 1: studies of the concept of function (Hitt, Gonzâlez & Morasse, 2008; Hitt & Gonzâlez-
Martîn, 2015; Hitt & Quiroz, 2019; Passaro, 2009) among students in Secondary 2 and 3 (aged 13-
15 years, K8 and K9 equivalents) 

• Step 2: a study of the generalization of the concepts of variable and of covariation between 
variables in relation to arithmetic-algebraic thinking among Secondary 1 students in Quebec (aged 
12-13 years, K7 equivalent) (Hitt, Saboya & Cortés, 2017, 2019a, 2019b) and among Secondary 3 
students in Mexico. 

• Step 3: studies of the concepts of variable and covariation between variables and of the 
generalization (in the transition from primary to secondary levels) related to arithmetic-algebraic 
thinking among 6th grade elementary students with learning difficulties in Mexico (11-12 years of 
age, K6 equivalent) (Hitt, Saboya & Cortés, 2017a, 2017b; Saboya, Hitt, Quiroz & Antoun, 2019). 

Páez’s (2004) doctoral thesis worked on teacher training with a teaching method based on 
collaborative learning, scientific debate, self-reflection, and the process of instutionalization 
(ACODESA) (see Hitt, 2007). 

In order to use the same method in our project, which targeted elementary and secondary students, 
we had to use, in Step 1 of the project, the results obtained among Secondary 2 and 3 students to 
create theoretical tools which would allow us to better analyze students’ spontaneous representations 
and their role in the resolution of non-routine situations. 

                                                             
1 Joint project: Carlos Cortés (UMSNH); Samantha Quiroz (UAC); Fernando Hitt; and Mireille Saboya (UQAM). 
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Step 2, which is the focus of this paper, will allow us to better understand the processes of 
abstraction2 that trigger a generalization among students (in Secondary 1 in Quebec) in the transition 
from elementary to secondary levels as well as the construction of a cognitive structure related to 
arithmetic-algebraic thinking (which we elaborate further below). 

We are currently in the process of analyzing the results of Step 3. 

Theoretical framework: Socio-Cultural Approach to Learning  
Our approach to the construction of knowledge is based on the notion of activity from Leontiev’s 

(1978) activity theory. According to Leontiev, activity, mediated by mental reflection that situates a 
subject in the objective world, follows a system of social relations. Leontiev holds that an 
individual’s activity depends on their place in society and their life circumstances (idem, p. 3). 
Further, activity is intimately related to a motive: “different activities are distinguished by their 
motives. The concept of activity is necessarily bound up with the concept of motive. There is no such 
thing as activity without a motive” (idem, p. 6). Hence, the activity of an individual in a society has a 
central role in the “subject-activity-object” relation (known as Leontiev’s triangle) which, in turn, is 
part of a system of relations within the given society. 

It stands to reason that the activity of every individual depends on his place in society, on his 
conditions of life… The activity of people working together is stimulated by its product, 
which at first directly corresponds to the needs of all participants. (p. 3-6)  

Engeström (1987, 1999) analyzes Leontiev’s triangle as a model of the relation between subject, 
object, and artefact-mediation, and concludes that Leontiev’s triangle does not capture all elements 
and relations of a system: 

I am convinced that in order to transcend the oppositions between activity and process, 
activity and action, and activity and communication, and to take full advantage of the 
concept of activity in concrete research, we need to create and test models that explicate the 
components and internal relations of an activity system… To overcome these limitations, the 
model may be expanded. (p. 29-30). 

Voloshinov’s (1929/1973) ideas about the construction of sign emphasize the importance of 
the collaborative work that enriches Leontiev and Engeström’s theoretical approach: “[t]he 
reality of the sign is wholly a matter determined by that communication. After all, the existence 
of the sign is nothing but the materialization of that communication. Such is the nature of all 
ideological signs” (p. 13) 

Building on the ideas above, we adapted Engelström’s model (see Figure 1) while adhering 
to the ACODESA teaching method (Hitt, 2007). The mathematics classroom is viewed as a 
microsociety whose various members are the teachers, the students, the institution, and the tools 
used in the co-construction of knowledge through the resolution of investigative situations 
(physical materials, school textbooks, computers, etc.). 

Collaborative work, communities of practice, and even societies, according to Engeström (1999), 
Legrand (2001), Leontiev (1978), and Wenger (1998), among others, involve a motive, rules, a 
division of labour among members, a mediation of artefacts, and interaction among the various actors 
(see Figure 1). In our case, given a mathematical task, we are interested in the co-construction of 
students’ knowledge through the evolution of their representations in the context of an ACODESA 
method of teaching. 

                                                             
2 The following is a translation of the definition of abstraction in the Larousse dictionary: an intellectual operation 
which consists in isolating by thought a characteristic of an object and considering it independently of the other 
characteristics of that object. 
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Figure 1. Engeström’s (1999) model adapted to have covariation between variables as object; the 
various phases of the ACODESA method of teaching 

Local Theoretical Framework and First Elements of Arithmetic-Algebraic Thinking   
Given that we are primarily interested in the co-construction of knowledge, we searched for 

theoretical elements specific to moments of understanding or to the epistemic actions of Pontecorvo 
& Girardet (1993): 

a) Higher-level methodological and metacognitive procedures; and 
b) explanation procedures used for the interpretation of particular elements of the task. 

To better understand the epistemic actions taking place during the resolution of a mathematical task, 
we use Rubinshtein’s (1958) notions (cited in Davidov, 1990, p. 93-4) about the distinction between 
“visual empirical thought” and “abstract theoretical thought.” In our project, just as in Rubinshtein 
and his group’s, we are interested in the gradual generalization that occurs in a collaborative process 
of learning. For Davidov (idem), generalization is a process: “[i]f we mean the process of 
generalization, then the child’s transition from a description of the properties of a particular object to 
finding and singling them out in a whole class of similar objects is usually indicated” (p. 5). 

In the previous century, research about the transition from arithmetic to algebra focused on the 
concepts of epistemological obstacle (Vergaud, 1988), cuts (Filloy & Rojano, 1989), and gaps 
(Herscovics & Linchevski, 1994). Today, a change of paradigm purports that cognitive difficulties 
can be overcome (by a majority of students) with appropriate teaching. The discussion is one of a 
continuum rather than a rupture (Hitt, Saboya, and Cortés, 2017a). In this new paradigm, three types 
of approaches have emerged: 

- “Early Algebra,” which is based on a functional thinking approach with “an early 
inclusion of algebraic symbols as a valuable tool for early algebraic thinking” (Carraher, 
Schliemann, & Brizuela, 2000; Kaput, 1995, among others); 

- “Algebraic nature of arithmetic” (Fujii 2003, among others); and 
- a “development of algebraic thought” which acts as a support from which to delve 

deeper into arithmetic (Davidov, 1990; Kilpatrick, 2011; Radford, 2011a, 2011b, among 
others). 

The Early Algebra approach prioritizes the use of institutional algebraic symbols to express 
covariation between variables and functions (tables of values and algebraic notations of the type n à 
n + 3, for example). The second approach is similar to the first, albeit with a broader focus on the use 
of algebraic symbols in classical arithmetic tasks (see below in Section 3.2). However, the third 
approach relates to the use of general mathematical notions such as intuition, abstraction, and 
generalization in a socio-cultural learning of mathematics. 
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We situate ourselves in this third, socio-cultural type of approach (Engeström 1987, 1999; Leontiev, 
1978; Voloshinov, 1929/1973) to the learning of mathematics (Radford’s Theory of Objectification, 
2011b). We propose the development of complex intuitive ideas by considering, for example, 
mathematical visualization (including “visual empirical thought” and “abstract theoretical thought,” 
Rubinshtein, 1958), generalization (Davidov, 1990; Radford, 2011a), and the promotion of 
sensitivity to contradiction (Hitt, 2004) in mathematical activity. We worked on these general notions 
in elementary and secondary schools; specifically, we worked on the notions of variation and 
covariation between variables with the aim of developing arithmetic-algebraic thinking in students. 

The notion of arithmetic-algebraic thinking is related to the development of a cognitive structure 
that we wish to promote in students, a structuring structure (a habitus) in the sense of Bourdieu 
(1980):  the conditioning associated with a particular class of living conditions produces habitus, 
systems of durable and transposable dispositions, structured structures predisposed to function as 
structuring structures (p.88-89). 

In our project, we attempt to show how to develop a structuring structure related to arithmetic-
algebraic thinking in a mathematics classroom that is viewed as a microsociety. 
Co-construction of Knowledge and a Sensitivity to Contradiction in the History of 
Mathematics 

Szabó’s (1960) studies of the history of mathematics detail elements that, during the Golden Age of 
the Greek civilization, contributed to the transformation of an empirical-visual mathematics into a 
definition-based on an axiomatic deductive science. We highlight the following elements: 

a) The socio-political progress of the Greeks that allowed for the development of the art of rhetoric, 
polemical discussion, and critical thinking; 

b) the influence of the philosophy of Parmenides of Elea and his disciple, Zeno of Elea (and, in 
particular, his paradoxes), on the Pythagoreans, who had an interest in mathematics; and 

c) a "sensitivity to contradiction" when confronted with mathematical results developed by the 
Babylonians and the Egyptians, which did not always agree (e.g. the area of the disc). 

Indeed, Szabó (idem) shows that Thales of Miletus’ results were obtained in an empirical-visual 
manner. Szabó (idem) also gives the example of Plato’s (4th century B.C.) Socratic dialog, Meno, 
which deals with the doubling of the area of a unit square. At the end of the dialog, a slave builds a 
square on the diagonal of the original unit square. It is easy, visually, to see that the surface area of 
the new square is double that of the first. 

Parmenides' philosophy on the existence of being excludes non-being and provides the first 
reflections on logic and on the law of excluded middle. Szabó believes Parmenides influenced the 
Pythagoreans and that they, in turn, influenced mathematics, creating not only critical thinking but 
also a sensitivity to contradiction in mathematics. Szabó states: 

The earliest Greek mathematicians, the Pythagoreans, borrowed the method of indirect 
demonstration from the Eleatic philosophy; consequently, the creation of deductive mathematical 
science can be attributed to the influence of the Eleatic philosophy. (p. 46) 

Unfortunately, many of the Greeks’ documents have been lost. Nevertheless, historians point to 
Euclid’s Elements, which record the content of the Pythagoreans’ books (Books VII, VIII, IX, and 
X). In Euclid’s Elements, it is common to find theorems proved by contraposition. Vitrac (2012) 
confirms that indirect demonstrations (known as reduction to absurdity) are not uncommon in 
Euclid’s Elements; they appear in a hundred or so propositions (p. 1). 

One of Szabó’s main assertions is that the transformation of mathematics into a deductive science 
(from the 5th century B.C. to the 3rd century B.C.) was accompanied by a transformation of 
mathematics into an anti-illustrative science. The visual demonstration of the duplication of the 
surface area of a unit square did not have a place in the new approach in Euclid's Elements. In Euclid, 
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the illustration did not play a role in the visual demonstration process, but rather as an aid to the 
formal demonstration. 

Historians report that the birth of algebra as a discipline was developed by the Persian al-Khwarizmi 
(790-850). Hence, while algebra did not originate with the Greeks, they did lay the groundwork for 
critical thinking, mathematical logic, indirect proof, and a sensitivity to contradiction. This type of 
thinking is, historically, an important precursor to the development of algebra. 

How can we draw inspiration from the history of mathematics in the classroom? How can these 
historical elements of different cultures be integrated into the mathematics classroom? 
Sensitivity to Contradiction in the Construction of Arithmetic-Algebraic Thinking 

Research from the 1980s offers a glimpse into students’ difficulties in solving algebraic problems. 
We consider, as an example, Fujii’s (2003) study of the success rates among elementary and high-
school students in the United States and in Japan in solving the following two problems: 

Problem 1. Mary has the following problem 
to solve: “Find value(s) for x in the 
expression: x + x + x = 12” 
She answered in the following manner. 
a.  2, 5, 5;      b.  10, 1, 1;     c.  4, 4, 4 
Which of her answer(s) is (are) correct? 
(Circle the letter(s) that are correct: a,b,c)	

Problem 2. Jon has the following problem to solve: “Find 
value(s) for x and y in the expression: x + y = 16” 
He answered in the following manner. 
a.  6, 10;          b.  9, 7;          c.  8, 8 
Which of his answer(s) is (are) correct? (Circle the 
letter(s) that are correct: a, b, c) 
State the reason for your selection.	

It is also important to note that it is rare for students to get both problems correct, which was also consistent 
with the data for both countries [USA and Japan]. Let me select the Athens (GA) 6th, 8th and 9th graders 
from the American data, simply because these students have a common educational environment. The 
percentages of correct answers for 6th, 8th, and 9th grade are 11.5%, 11.5% and 5.7% respectively. For 
Japanese students, the correct response from 5th, 6th, 7th, 8th, 10th and 11th grades are 0%, 3.7%, 9.5%, 
10.8%, 18.1% and 24.8% respectively (Fujii, 1993).	

These problems help distinguish between students with a conception of the role of a variable in an 
algebraic expression and those who had formed the concept of a variable. 

By analyzing the tasks Fujii (2003) proposes, we see they had been designed as assessment tools (to 
detect the conceptions students had formed). The design of a task meant to promote learning based 
on students’ conceptions, however, is a whole other matter. In what follows, we present two 
examples of sensitivity to contradiction. 

First example. Sensitivity to contradiction in the process of solving the following: 

a) Solve this inequality:  0.2(0.4x + 15) – 0.8x ≤ 0.12 

b) Verify that x = 10 is an element of the solution set.	

In designing this activity, we took into account Brousseau’s (1997) notion of epistemological 
obstacle in the learning of decimal numbers: an error that results when knowledge that, in other 
situations, had been valid and effective proves to be erroneous in a new situation. 
In this case, an error occurs when knowledge about multiplication of natural 

numbers is applied to multiplication of decimal numbers. We take advantage of 
this error to promote a richer mathematical structure: a sensitivity to 
contradiction. Here is an example of a student’s work: 
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Question	3.	Study	of	the	inequality:	

0.2 0.4! + 1.5 − 0.8! ≤ 0.12	
a)	For	which	values	of	!	is	the	inequality	satisfied?		
	

The	inequality	

	is	satisfied	for	

	

b)	Verify	that	the	inequality	is	satisfied	for	! = 10:	

	

We note the student made the mistakes anticipated by the researcher. The student had proposed the 
solution “st [solution] = 0,12,” but after addressing question b), the student noticed the contradiction. 
The student retraced his steps to resolve the contradiction in part a). He spotted and overcame the 
cognitive contradiction, even if, formally, the contradiction remained in item b). This shows the 
student is sensitive to contradiction. 

Second example. The Shadow Situation was one of five situations proposed in a month-and-a-half-
long experiment with students in their third year of high-school. The five (sequential) situations were 
worked on in connection with the ACODESA method and with the goal of developing the concepts 
of covariation between variables and of function (Hitt & González-Martín, 2015; Hitt & Morasse, 
2009). The following is a translation of the Shadow Situation given to students: 

Suppose	we	have	a	source	of	light	with	a	height	of	6	meters	(a	street	light).	We	consider	the	shadow	

formed	when	a	when	a	person	who	is	1.5	meters	tall	walks	down	the	street.	We	are	interested	in	the	

relationships	between	the	quantities	involved.	

	

Are some of the quantities dependent on one another? Which ones? 
Select two quantities that depend on one another and describe the phenomenon with the 
various representations you used in previous activities. 

	

Phase 1: Individual work. Two girls work on their 
own3 to understand the task. One of them represented the 
situation through a proportional drawing. Starting with 
an empirical-visual thought, she found a relationship 
between the quantities “distance travelled by the person” 
and “length of the shadow.”  

Phase 2: Teamwork (Prusak, Hershkowits, & 
Schwarts, 2013, suggest groups of two to three). The two 
girls produce a verbal description of a relationship, an 
algebraic expression, and a graphical representation of 
the situation. 

                                                             
3 Translation of text in top right corner of image: [w]hen the “walker” will be at 3m from the lamp, his shadow will 
be 1m. This means that for every 1m between the “walker [sic] and the lamp, there is 1/3 of a m of shadow. 
Rule: N * 1/3m (n [sic]: distance in m between the “walker [sic] and the lamp) 
Table of values, first row: distance; table of values, second row: shadow (length) 
Graph, x-axis: distance in M [sic] between [sic]; graph, y-axis: length of the shadow in M [sic] 
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Phase 3: Classroom debate. One group of students failed to find an 
answer due to algebraic errors. Upon seeing the two girls’ results, this 
group manages to construct an algebraic approach by using similar 
triangles. 

Phase 4: Self-reflection. The instructor collects everything the 
students produced and re-assigns them the situation as homework, this time with the instruction to re-
create the work done in class. The following is what one of the girls (mentioned above) produced as a 
reconstruction of what had been discussed in class: 

Reconstruction of work done in teams Reconstruction of the classroom debate 

4 5 
                                           6 

She reconstructed with no difficulty what she had done numerically and visually with her team-
mate. Unfortunately, when she wanted to reconstruct the boys’ algebraic process, she made a mistake 
and failed to come up with a solution. In her drawing (the one on the right), she expressed a feeling 
of unease in the face of a contradiction she couldn’t overcome. This shows she had formed a 
sensitivity to contradiction. From a cognitive standpoint, a sensitivity to contradiction is an 
awareness of contradiction accompanied by a sense of unease, and its resolution by a sense of 
happiness. 

These examples demonstrate the importance of students’ spontaneous representations. Given these 
findings on students’ spontaneous representations, Hitt and Quiroz (2019) proposed the notion of 
socially-constructed representation, one which materializes through the evolution of students' 
functional-spontaneous representation as it emerges in individual work and is then discussed in a 
team, in large groups, and in self-reflective work. According to Hitt and Quiroz (2019, p.79), 

[a] socially-constructed representation is one that emerges in individuals when given a non-
routine activity; the actions in the interaction with the situation have functional (mental, oral, 
kinesthetic, schematic) characteristics and are related to a spontaneous (external) 
representation. The representation is functional in the sense that the student needs to make 
sense of the situation, and it is spontaneous because it naturally occurs in an attempt to 
understand and solve the non-routine situation. [Translation] 

The Investigative Situation (the Task): Key Element in the Co-Construction of 
Mathematical Knowledge 

The theories of didactical situations (Brousseau, 1998), of “problem solving” (Mason, Burton, & 
Stacey, 1982; Schoenfeld, 1985), and of Realistic Mathematical Education from Freudenthal (1991) 
have prompted changes in curricula worldwide. There is a break from the classical approach – that is, 
from “definition-theorem-exercises and problems” instruction. Situational problems, problems in 
general, and contextualized problems have a fundamental role to play in the new approach. In light of 
these theories, task design is viewed as central for overcoming cognitive barriers. A new era came for 

                                                             
4 Translation: Rule: LoS [Length of Shadow] = n * 1/3  
5 In this table of values, the entries in the first row correspond to “n (dis) [distance]” and those in the second row to 
“LdO [Longueur de l’Ombre, or Length of Shadow].” 
6 Translation of items (1), (2), and (3) in the image: (1) 6 divided by 1.5 gives 4, so we can reduce. To get rid of the 
division, multiply y. (2) Homothety of the big triangle to the small one. (3) (I don’t know anymore L) 

(1) 

(2) (3) 
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the organization and role of the task in mathematics instruction, in situational problems related to 
creativity, and in mathematical modelling (Blum, Galbraith, Henn, & Niss, 2007; Hitt & González-
Martín, 2015; Hitt, Saboya, & Cortés, 2017; Hitt & Quiroz 2019; Lesh & Zawojewski, 2007; 
Margolinas, 2013). 

The activities we designed are related to the ACODESA teaching method in a socio-cultural 
approach to mathematics instruction. We call our activities “investigative situations”: 

An investigative situation consists of different tasks that follow the steps of the ACODESA 
method. The tasks attempt to promote, first and foremost, the emergence of non-institutional 
or institutional representations, empirical-visual thinking related to diversified thinking (that 
is, divergent thinking), conjecture, prediction, and validation. In second and third stages 
(teamwork and classroom debates), we try to promote abstract thinking that includes 
sensitivity to contradiction as well as an evolved version of the representations and 
characteristics formed in the first stage. In a fourth stage, students re-construct what had been 
done in class so as to solidify the knowledge they had formed. Finally, the teacher reviews 
students’ various solutions and presents the institutional position vis-à-vis the content 
considered in the situation. [Translation] 

The design of investigative situations follows an organization such as that outlined in Hitt, Saboya, 
and Cortés (2017b). 
Variation and Covariation between Variables: an Example with Polygonal Numbers 

We now present the first step of an investigative situation that involves polygonal numbers and 
which is targeted towards students in their first year of high-school. This step consisted of five 
questions to be solved with paper and pencil. The second step had students use technology to validate 
their conjectures. In total, the situation was eight pages long. The following is a translation from 
French: 

Step 1 (Individual work, followed by teamwork; paper-and-pencil approach) 
A long, long, long, long time ago (around 520 B.C.), a mathematician called Pythagoras founded a school 
on an island in ancient Greece. He and his students were fascinated by both numbers and geometry. One 
of their ideas consisted of representing numbers by geometric figures. They called these polygonal 
numbers. For example, they noticed that certain numbers could be represented by triangles. Thus, 1, 3, 6, 
and 10 are the first four triangular numbers since they can be represented by points arranged in triangles as 
follows: 

 
1) Observe	 these	 numbers	 carefully.	What	 is	 the	 fifth	 triangular	 number?	Represent	 it.	 Explain	

how	you	did	this.	

2) How do you think a triangular number is constructed? What do you observe?  
3) What is the 11th triangular number? Explain how you found its value. 
4) You must write a SHORT email to a friend describing how to calculate the triangular number 83. 

Describe what you would write. YOU DON'T HAVE TO DO ANY CALCULATIONS! 
5) And how would you calculate any triangular number? (We want a SHORT message here as well.) 

Teams’ Responses to Questions 1, 2, and 3  
In this first step, we wanted to promote empirical-visual thinking (Rubinshstein, 

1973) and generalization (Davidov, 1990; Radford, 2011). Students (in teams G1 
and G3) naturally shifted from a visual approach to an arithmetic procedure (an 
epistemic action). For example, to calculate T11, they wrote 
1+2+3+4+5+6+7+8+9+10+11. 
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Team G2 first moved from a concrete visual approach to a more general visual approach and 
then to an arithmetic procedure (an epistemic action). Hence, for T11, they wrote 
11+10+9+8+7+6+5+4+3+2+1. 

We note the abandonment of the iconic representation by one student (from team G4) who, during 
the classroom debate, switched from a detached visual approach to the 
polygonal configurations to an iterative calculation which he had not 
discussed with his teammates (what Rubinshtein would term theoretical 
abstract thinking). Team G4 used this final strategy, along with Excel, to tackle the fifth question of 
the second step of the investigative situation.   

This shift shows the importance of teamwork and of Yan’s reflection as he 
organized his thoughts (in what Vygotsky, 1932/1962, would call inner 
speech) so as to communicate them to the group (Voloshinov’s construction of 
sign). Yan needed to make himself understood by the rest of the class. 
Team Responses to Questions 4 and 5 and First Classroom Debate 

The following are the responses given by each team in the first classroom debate:  
	 Team’s	response	to	question	4	 Team’s	response	to	question	5	

G1	 We	add	 all	 the	 numbers	 from	1+2+3...	 all	 the	

way	to	the	number	of	points	on	the	side.	

We	add	all	the	numbers	from	1+2+3...	all	the	way	to	the	

number	of	points	on	the	side.	

G2	 Add	up	the	numbers	from	1	to	83.	 You	add	up	the	numbers	from	there?	

G3	 You	have	to	do	83+82+81…	all	the	way	to	1.	

	

Calculate	 the	 last	 diagonal	 column	 and	 calculate	 by	

doing	-1	to	the	number.	E.g.	15th,	15+14+13…	etc.	

		G4	 You	 have	 to	 do;	 1+2+3+4+5+6+7+8…	 +83	 and	

this	will	give	you	the	answer.	

	

You	put	 the	same	number	on	 the	other	sides	and	 then	

you	add	up	1+2+3+4+5+6…	until	you	get	to	your	number	

and	your	answer	is	the	triangular	number.	

During the classroom debate, the researcher asked what answers had been written 
in response to question 5 (see responses above), which asked for a short message 
describing how to find any triangular number. The students first suggested the sum 
“1+2+3 all the way to your number.” The researcher intervened: how can I write a 
number I don’t know? Different proposals emerged. The first was to write “?” ; 
afterwards, they proposed “x” or “y.” The teacher asked whether a heart could be 
used: “♥.” One student replied that they could use anything that wasn’t a number. 

The students transitioned from empirical-visual thinking to abstract arithmetic-algebraic thought. 
The variable was first expressed in words: “all the way to your number.” Then, it was expressed as 
“?,” then, as “x” or “y,” and, finally: “we can use anything that isn’t a number.” 

Output produced by team G4 (during teamwork and during the classroom debate)  

Teamwork and 
spontaneous 
generalization 

Surprise at finding a decimal number 
as T100 and team discussion towards 
generalization (with Excel) 

General computation of a 
triangular number 
presented to the rest of 
the class 

Generalization 
obtained through 
classroom debate 

    
We note that each abstraction came with a certain type of generalization. The processes of 

abstraction were of the following types: visual abstraction, arithmetic abstraction, emergence of the 
concept of a variable, emergence of the concept of covariation between variables. 
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45 Days Later: Phase of Self-Reflection (Reconstruction) 
During this step, Yan, the student who found an algebraic expression for triangular numbers, 

tried to remember his formula but got it wrong. He wrote: (Row*2)-1=y and (Row*y=triangular 
number. During the pentagonal number activity which we had given him as a challenge, he 
wrote that Row*(Row + (Row * 0.5 – 0.5)) = pentagonal number. He found this expression by 
using the same strategy he had used 45 days beforehand to deal with triangular numbers. This 
expression is equivalent to the institutional one: !! = ! !!!!

! . 
During this process of self-reflection, another student obtained the following in response to the 

question about triangular numbers: Odd number: (row + 1) ÷  2 * row = triangular number. This 
expression is equivalent to !! = ! !!!

!  (when restricted to odd numbers). 

Conclusions 
In this paper, we wanted to show the various elements needed for the construction of arithmetic-

algebraic thinking. Building on a few ideas from the history of mathematics, from a socio-cultural 
theory of learning, and from the ACODESA teaching method, we have shown that  for the 
construction of arithmetic-algebraic thinking, various elements of the mathematics classroom need to 
be taken into account: the role of the task (investigative situations) in the acquisition of knowledge, 
communication in the classroom, mathematical visualization, the role of non-institutional and 
institutional representations, generalization, conjecture, sensitivity to contradiction, validation, and 
proof. 

Our approach seeks to develop and enrich an association between arithmetic and algebra (a habitus) 
so as to promote the construction of a structuring structure, in the sense of Bourdieu (1980), that is 
related to arithmetic-algebraic thinking and which supports not only algebra, but also an enrichment 
of the cognitive structure of arithmetic tasks. 

Further, we observed the emergence of the concepts of variable and of covariation between 
variables through the process of co-construction of knowledge. 

The results of our studies have encouraged us to experiment new investigative situations (following 
the ACODESA method) in grade 6 classrooms. So far, we have suggested five investigative 
situations of different types and which require electronic tablets: Marcel’s Restaurant, The El Dorado 
Jewelry Shop, Windows, The Garden and the Pumpkins, and Rectangles and Disks. We are currently 
analyzing the results. 
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CONSTRUCTION D’UNE PENSÉE ARITHÉMICO-ALGÉBRIQUE DANS UNE 
APPROCHE SOCIOCULTURELLE DE L’ENSEIGNEMENT 

CONSTRUCTION OF ARITHMETIC-ALGEBRAIC THINKING IN A SOCIO-CULTURAL INSTRUCTIONAL 
APPROACH 

Fernando Hitt 
Université du Québec à Montréal 

hitt.fernando@uqam.ca 

Dans cet document, nous présentons les résultats d’un projet de recherche sur la pensée arithmético-
algébrique, qui a été réalisé conjointement par une équipe au Mexique et une autre au Québec7. Le 
projet porte sur le concept de variable et de covariation entre variables dans les classes de 6e année 
du primaire, 1re, 2e et 3e du secondaire, à savoir les enfants de 11 à 14 ans. Nous allons ici cibler les 
élèves de 1re secondaire. Notre objectif porte sur le développement d’une généralisation graduelle 
liée à la pensée arithmético-algébrique dans une approche socioculturelle de l’apprentissage des 
mathématiques. Nous avons expérimenté avec des situations d’investigation dans une approche 
papier-crayon, puis avec la technologique. Dans ce contexte, nous analysons : l’émergence d’une 
abstraction visuelle, la production de représentations institutionnelles et non institutionnelles, une 
sensibilité à la contradiction et, enfin, l’émergence de la notion de variable et de covariation entre 
variables. 

                                                             
7 Projet en collaboration : Carlos Cortés (UMSNH); Samantha Quiroz (UAC); Fernando Hitt et Mireille Saboya 
(UQAM). 
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Mots-clés : Généralisation graduelle, approche socioculturelle, pensée arithmético-algébrique. 

Introduction (étapes du projet) 
Le projet que nous vous présentons ci-dessous a été réalisé conjointement par une équipe du 

Mexique et un autre du Québec dès 2008. L’expérimentation a été faite au primaire, au secondaire et 
à la formation des maîtres. 

• 1re étape : Étude du concept de fonction (Hitt, Gonzâlez & Morasse, 2008; Hitt & Gonzâlez-Martîn, 
2015; Hitt & Quiroz, 2019; Passaro, 2009) chez les élèves de 2e et 3e secondaire (13-15 ans 
équivalentes à K8 et K9). 

• 2e étape : Étude de la généralisation liée à la notion de variable et de la covariation entre variables 
en lien avec la pensée arithmético-algébrique chez les élèves du 1re secondaire au Québec (12-13 
ans équivalente à K7) (Hitt, Saboya & Cortés, 2017, 2019a, 2019b), et 3e secondaire au Mexique. 

• 3e étape : Étude des notions de variable, de covariation entre variables et de la généralisation 
(transition primaire-secondaire) en lien avec la pensée arithmético-algébrique chez des élèves en 
difficulté d’apprentissage de la 6e année du primaire au Mexique (11-12 ans équivalente à K6) 
(Hitt, Saboya & Cortés, 2017a, 2017b; Saboya, Hitt, Quiroz et Antoun, 2019). 

Dans sa thèse de doctorat, Páez (2004) a travaillé à la formation des maîtres avec une méthode 
d’enseignement basée sur l’apprentissage collaboratif, le débat scientifique, l’autoréflexion et le 
processus d’institutionnalisation (ACODESA) (voir Hitt, 2007).  

Afin de pouvoir utiliser la même méthode dans notre projet, mais cette fois avec des élèves au 
primaire et au secondaire, nous avons dû, pendant la 1re étape du projet, construire des outils 
théoriques avec les résultats obtenus auprès d’élèves de 2e et 3e secondaire. Ces outils nous permis 
par la suite de mieux analyser les représentations spontanées des élèves et leur rôle dans la résolution 
de situations non routinières. 

La 2e étape, celle à laquelle nous allons nous attarder, va nous permettre de mieux comprendre les 
processus d’abstraction8 qui d’déclenchent une généralisation chez les élèves (1er secondaire au 
Québec) dans la transition primaire-secondaire et sur la construction d’une structure cognitive liée à 
la pensée arithmético-algébrique (nous allons préciser plus loin). 

Nous sommes présentement en train d’analyser les résultats de la 3e étape. 

Cadre théorique général (approche socioculturelle de l’apprentissage) 
Notre approche sur la construction des connaissances est basée sur la notion d’activité de Leontiev 

(1978) liée à sa théorie de l’activité. Selon Leontiev, l’activité, médiatisée par la réflexion mentale, 
qui a comme fonction d’orienter le sujet dans le monde objectif, obéit au système des relations dans 
la société. Pour Leontiev, l’activité de chaque individu dépend de sa place dans la société, de ses 
conditions de vie (idem, p. 3). Selon Leontiev, l’activité est intimement liée à un motif : « different 
activities are distinguished by their motives. The concept of activity is necessarily bound up with the 
concept of motive. There is no such thing as activity without a motive » (idem, p. 6). Ainsi, l’activité 
d’un individu dans une société, a un rôle central dans la relation « subject-activity-object » (connue 
actuellement comme le triangle de Leontiev) et celle-ci est une partie d’un système de relations dans 
cette société. 

It stands to reason that the activity of every individual depends on his place in society, on his 
conditions of life… The activity of people working together is stimulated by its product, 
which at first directly corresponds to the needs of all participants. (p. 3-6)  

                                                             
8 La définition d’abstraction du dictionnaire Larousse est : Opération intellectuelle qui consiste à 
isoler par la pensée des caractères de quelque chose et à le considérer indépendamment des autres 
caractères de l’objet. 
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Engeström (1987, 1999) analyse le triangle de Leontiev comme un modèle de la relation entre le 
sujet, l’objet et les artefacts de médiation, et conclut que le triangle de Leontiev ne montre pas les 
différents éléments du système et ses relations :  

I am convinced that in order to transcend the oppositions between activity and process, 
activity and action, and activity and communication, and to take full advantage of the 
concept of activity in concrete research, we need to create and test models that explicate the 
components and internal relations of an activity system… To overcome these limitations, the 
model may be expanded. (p. 29-30). 

Les idées de Voloshinov (1929/1973) sur la construction du signe : “The reality of the sign is 
wholly a matter determined by that communication. After all, the existence of the sign is nothing but 
the materialization of that communication. Such is the nature of all ideological signs” (p. 13), 
accentuent l’importance du travail collaboratif qui enrichit l’approche théorique de Leontiev et 
d’Engeström.  

En nous appuyant sur les idées précédentes, nous avons adapté le modèle d’Engeström (voir 
Figure 1) tout en respectant la méthode d’enseignement ACODESA (Hitt, 2007). La classe de 
mathématiques est considérée comme une microsociété dont les différents acteurs sont les maîtres, 
les élèves, l’institution et différents types d’outils à utiliser pendant la co-construction des 
connaissances à travers la résolution de situations d’investigation (matériel physique, manuels 
scolaires, ordinateurs, etc.). 

Selon Engeström (1999), Legrand (2001), Leontiev (1978), Wenger (1998), entre autres, dans un 
travail collaboratif, ou dans une communauté de pratique, ou même dans une société, il doit y avoir 
un motif, des règles, une division du travail entre les membres, la médiation des instruments, et une 
interaction entre les différents acteurs (voir Figure 1). Dans notre cas, étant donné une tâche 
mathématique, nous sommes intéressés à la co-construction des connaissances des élèves à travers 
l’évolution de leurs représentations en suivant la méthode d’enseignement ACODESA. 

	

	

Figure 1. Adaptation du modèle d’Engeström (1999) ayant comme objet la covariation entre 
variables et les différentes phases de la méthode d’enseignement ACODESA 

Cadre théorique local et premiers éléments de la pensée arithmético-algébrique 
Étant donné que nous nous intéressons particulièrement à la co-construction des connaissances, 

nous avons cherché des éléments théoriques spécifiques sur les moments de compréhension ou 
d’actions épistémiques de Pontecorvo & Girardet (1993) : 

a) [A] higher level methodological and metacognitive procedures, 
b) Explanation procedures used for the interpretation of particular elements of the task. 

Pour mieux comprendre les actions épistémiques lors la résolution d’une tâche mathématique, nous 
allons utiliser les notions de Rubinshtein (1958) (cité par Davidov, 1990, p. 93-94) sur la distinction 
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entre « visual empirical though » et « abstract theoretical though ». Dans notre projet tout comme 
Rubinshtein et son équipe, nous sommes intéressés à une généralisation graduelle dans un processus 
d’apprentissage collaboratif. Pour Davidov (idem), la généralisation c’est un processus : If we mean 
the procces of generalization, then the child’s transition from a description of the properties of a 
particular object to finding and singling them out in a whole class of similar objects is usually 
indicated. (p. 5) 

Au siècle dernier, les recherches portant sur la transition de l’arithmétique à l’algèbre étaient 
centrées sur la notion d’obstacle épistémologique (Vergaud, 1988), coupure (Filloy & Rojano, 1989) 
ou écart (Herscovics & Linchevski, 1994). Aujourd’hui, il a eu un changement de paradigme qui 
supporte l’idée que les difficultés cognitives peuvent être surmontées (par une grande majorité des 
élèves) par un enseignement approprié. On parle d’un continuum au lieu d’une rupture (Hitt, Saboya 
et Cortés, 2017a). Trois types d’approches se sont manifestés dans ce nouveau paradigme. Ce sont : 

- « Early Algebra », basée sur une approche de la pensée fonctionnelle avec « un early inclusion 
of algebraic symbols as a valuable tool for early algebraic thinking » (Carraher, Schliemann & 
Brizuela, 2000; Kaput, 1995, entre autres) ; 

- « Algebraic nature of arithmétique » (Fujii 2003, entre autres); 
- « Développement d’une pensée algébrique » qui donne un support pour approfondir 

l’arithmétique (Davidov, 1990; Kilpatrick, 2011; Radford, 2011a, 2011b, entre autres). 
L’approche Early Algebra donne une priorité à l’utilisation de symboles algébriques institutionnels 

pour exprimer la covariation entre variables et les fonctions (table de valeurs, notations algébriques 
de la forme n à n + 3 par exemple). La 2e approche est similaire à la 1re, mais avec un domaine plus 
élargi sur l’utilisation de symboles algébriques dans les tâches classiques de l’arithmétique (voir plus 
loin, section 3.2). Par contre, le 3e est liée à l’utilisation des notions mathématiques globales comme 
l’intuition, l’abstraction et la généralisation dans une apprentissage socioculturelle des 
mathématiques. 

Nous nous situons plutôt dans cette 3e approche de type socioculturel (Engeström 1987, 1999; 
Leontiev, 1978; Voloshinov, 1929/1973) de l’apprentissage des mathématiques (théorie de 
l’objectivation de Radford, 2011b). Nous proposons le développement d’idées intuitives complexes, 
en prenant en considération, par exemple, la visualisation mathématique (en incluant « visual 
empirical thought » et « abstract theoretical thought », Rubinshtein, 1958), la généralisation 
(Davidov 1990; Radford 2011a) et la promotion d’une sensibilité à la contradiction (Hitt, 2004) dans 
l’activité mathématique. Ces notions générales, nous les avons travaillées à l’école primaire et 
secondaire, spécifiquement avec les notions de variation et de covariation entre variables, avec 
l’objectif de développer chez les élèves une pensée arithmético-algébrique. 

Cette notion de pensée arithmético-algébrique est liée au développement d’une structure cognitive 
que l’on veut promouvoir chez les élèves, structure structurante (un habitus) dans le sens de 
Bourdieu (1980): 

Les conditionnements associés à une classe particulière de conditions d’existence produisent 
des habitus, systèmes de dispositions durables et transposables, structures structurées 
prédisposées à fonctionner comme structures structurantes… (p. 88-89) 

Notre projet essaie de montrer comment développer cette structure structurante dans la classe de 
mathématique vue comme une microsociété en relation à la pensée arithmético-algébrique. 
La co-construction des savoirs et la sensibilité à la contradiction dans l’histoire 

Les recherches de Szabó (1960) sur l'histoire des mathématiques fournissent les éléments qui ont 
participé à la transformation pendant la période d’or des Grecs d’une mathématique empirico-
visuelle en une science déductive basée sur des définitions et des axiomes. Nous retiendrons : 
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a) L’avancée sociopolitique des Grecs qui leur a permis de développer l'art de la rhétorique, la 
discussion polémique et la pensée critique, 

b) L’influence de la philosophie de Parménide d'Élée et de son disciple Zénon d'Élée (avec ses 
paradoxes) sur les pythagoriciens qui s'intéressaient aux mathématiques. 

c) La « sensibilité à la contradiction » face aux résultats mathématiques développés par les 
Babyloniens et les Égyptiens, et qui ne concordaient pas toujours (par exemple l’aire du disque). 

En effet, Szabó (idem) nous montre que les résultats de Thalès de Milet avaient été obtenus de 
manière empirico visuelle. Szabo (idem) nous donne aussi l'exemple du dialogue de Ménon de Platon 
(IVe siècle av. J-C.) traitant de la duplication de l'aire d'un carré unitaire. À la fin du dialogue, un 
esclave construit un carré sur la diagonale du carré unitaire original. On peut facilement constater 
visuellement que l’aire de ce nouveau carré est le double de l’aire du premier. 

La philosophie de Parménide sur l'existence de l'être exclut le non-être, et fournit les premières 
réflexions sur la logique et le principe du tiers exclu. Szabo pense que Parménide a eu une influence 
sur les pythagoriciens et qu'ils ont à leur tour influencé les mathématiques, créant non seulement une 
pensée critique, mais aussi une sensibilité à la contradiction en mathématiques. Szabó affirme: 

The earliest Greek mathematicians, the Pythagoreans, borrowed the method of indirect 
demonstration from the Eleatic philosophy; consequently, the creation of deductive 
mathematical science can be attributed to the influence of the Eleatic philosophy. (p. 46). 

Malheureusement, de nombreux documents des Grecs ont été perdus; cependant, les historiens nous 
informent que dans les Éléments d'Euclide se trouve le contenu des livres conçus par les 
pythagoriciens, qui ont été transformés par Euclide (livres VII, VIII, IX et X). Dans les Éléments 
d'Euclide, il est habituel de trouver des théorèmes prouvés par contraposition. Vitrac (2012) affirme: 
Les démonstrations indirectes (dites par réduction à l'absurde) ne sont pas rares dans les Éléments 
d'Euclide; ils apparaissent dans une centaine de Propositions (p. 1). 

L'une des principales thèses de Szabó est celle que la transformation des mathématiques en science 
déductive (du Ve siècle av. J-C., au IIIe siècle av. J-C.), s'est également transformée en science anti-
illustrative. La démonstration visuelle sur la duplication de la surface d'un carré unitaire n'avait plus 
sa place dans la nouvelle approche dans les Éléments d'Euclide. Avec Euclide, la figure a joué un 
rôle d’aide à la démonstration formelle et non aux processus visuels de démonstration. 

Les historiens nous signalent que la naissance de l’algèbre en tant que discipline a été développée 
par le perse al-Khwarizmi (790-850). Cela nous montre que bien que l'algèbre ne soit pas originaire 
des Grecs, ils ont jeté les bases de la pensée critique, de la logique mathématique, de la preuve 
indirecte et d'une sensibilité à la contradiction. Ce type de pensée est historiquement important avant 
le développement de l'algèbre. 

Comment s’inspirer de l’histoire de la mathématique dans la classe? Comment intégrer ces éléments 
historiques des différentes cultures dans la classe de mathématiques? 
Sensibilité à la contradiction dans la construction de la pensée arithmético-algébrique 

Les résultats des recherches des années 1980, nous ont donné un aperçu des difficultés des élèves 
face à la résolution de problèmes de type algébrique. Nous allons prendre comme exemple Fujii 
(2003) qui montre les pourcentages de réussite des élèves du primaire et du secondaire des États-Unis 
et du Japon par rapport à deux problèmes : 
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Problem 1. Mary has the following problem 
to solve: “Find value(s) for x in the 
expression: x + x + x = 12” 
She answered in the following manner. 
a.  2, 5, 5;      b.  10, 1, 1;     c.  4, 4, 4 
Which of her answer(s) is (are) correct? 
(Circle the letter(s) that are correct: a,b,c)	

Problem 2. Jon has the following problem to solve: “Find 
value(s) for x and y in the expression: x + y = 16” 
He answered in the following manner. 
a.  6, 10;          b.  9, 7;          c.  8, 8 
Which of his answer(s) is (are) correct? (Circle the 
letter(s) that are correct: a, b, c) 
State the reason for your selection.	

It is also important to note that it is rare for students to get both problems correct, which was 
also consistent with the data for both countries [USA and Japan]. Let me select the Athens 
(GA) 6th, 8th and 9th graders from the American data, simply because these students have a 
common educational environment. The percentages of correct answers for 6th, 8th, and 9th 
grade are 11.5%, 11.5% and 5.7% respectively. For Japanese students, the correct response 
from 5th, 6th, 7th, 8th, 10th and 11th grades are 0%, 3.7%, 9.5%, 10.8%, 18.1% and 24.8% 
respectively (Fujii, 1993).	

Ces problèmes permettent de différencier les élèves qui ont une conception du rôle de l’inconnue 
dans une expression algébrique de ceux qui ont construit le concept d’inconnue.  

En analysant les tâches proposées par Fujii (2003), nous voyons que celles-ci ont été conçues pour 
l’évaluation (détection des conceptions). Construire une tâche pour promouvoir l’apprentissage à 
partir des conceptions des élèves est tout autre chose. Voici deux exemples sur la sensibilité à la 
contradiction. 

Premier exemple. Sensibilité à la contradiction dans un processus de résolution de : 

a) Résoudre l’inégalité:  0,2 (0,4x + 15) – 0,8x ≤ 0,12 

b) Vérifier que x = 10 est un élément de l’ensemble solution.	

Dans l’élaboration de cette activité, nous avons tenu compte de la notion d’obstacle 
épistémologique de Brousseau (1997) sur l’apprentissage des nombres décimaux. L’erreur est conçue 
comme une connaissance qui a été efficace, valable dans d’autres situations, mais 
qui s’avère erronée dans une nouvelle situation. Dans ce cas, c’est la connaissance 
de la multiplication des nombres naturels qui appliquée aux nombres décimaux va 
entrainer une erreur. Nous profitons de l’erreur pour promouvoir une structure 
plus riche de la mathématique : la sensibilité à la contradiction. Voici un exemple 
d’une production d’un élève : 

	
	

On peut remarquer que l’élève a commis les erreurs anticipées par le chercheur. L’élève est arrivé à 
proposer la solution St [Solution] = 0,12, mais à la question b), l’élève a remarqué la contradiction.  
L’élève est revenu sur ses pas pour résoudre la contradiction en a). Il est sorti de la contradiction 
cognitive, contradiction qu’il a repérée, même si formellement la contradiction continue dans l’item 
b. Cela montre que l’élève est sensible à la contradiction. 

Deuxième exemple. Situation sur les ombres : Cette situation était l’une des 5 situations proposées 
lors d’une expérimentation d’une durée d’un mois et demi, avec des élèves de 3e secondaire. Les 5 
situations (enchainées) ont été travaillés en lien avec la méthode ACODESA, avec la finalité de faire 
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développer les concepts de covariation entre variables et de fonction (Hitt et González-Martín 2015, 
Hitt et Morasse 2009) : 

Supposons	 que	 nous	 avons	 une	 source	 lumineuse	 d’une	 hauteur	 de	 6	 m	 (un	 lampadaire).	 Nous	

observons	l’ombre	sur	le	sol	lorsqu’une	personne	de	1,5	m	de	hauteur	marche	dans	la	rue.	Nous	nous	

intéressons	aux	relations	entre	les	grandeurs	en	jeu.	

	

 Existe-t-il des grandeurs qui sont dépendantes les unes des autres? Lesquelles? 
Sélectionne	 deux	 grandeurs	 qui	 sont	 dépendantes	 l’une	 de	 l’autre	 et	 décris	 le	

phénomène	à	l’aide	des	différentes	représentations	que	tu	as	utilisées	dans	les	activités	

précédentes.	

	

Phase 1 : Travail individuel. Deux filles travaillent 
individuellement pour comprendre la tâche. L’une d’elles a 
représenté la situation par un dessin proportionnel. À partir 
d’une pensée empirique visuelle elle a trouvé une relation 
entre les grandeurs « distance parcourue par la personne » et 
« mesure de l’ombre ». 

Phase 2 : Travail en équipe (Prusak, Hershkowits et 
Schwarts 2013, suggèrent des équipes de deux ou trois 
personnes). Les deux filles parviennent à construire : une 
relation verbale, une expression algébrique et une 
représentation graphique de la situation. 

Phase 3 : Débat en grand groupe. Une équipe d’élèves n’est pas 
parvenue à trouver la réponse à cause d’erreurs algébriques. À la vue du 
résultat des deux filles, ils ont réussi à construire une approche 
algébrique en utilisant des triangles semblables.  

Phase 4 : Autoréflexion. Le professeur collecte alors toutes les 
productions des élèves, puis leur remet la même situation à faire en 
devoir avec pour consigne de reconstruire tout le travail réalisé en classe (4e phase). Voici la 
reconstruction de ce qui avait été débattu en classe par l’une des filles dont on a parlé. 

Reconstruction du travail en équipe Reconstruction du débat en grand groupe 

   

 
Elle a reconstruit, sans difficulté, ce qu’elle avait fait de façon numérique et visuelle avec sa 

coéquipière. Malheureusement, quand elle a voulu reconstruire le processus algébrique des garçons, 
elle a fait une erreur sans arriver à la solution. Dans son dessin, elle a exprimé (voir dessin à droite) 
un sentiment de gêne face à une contradiction de laquelle elle ne pouvait pas se sortir. Cela montre 
que cette fille a développé une sensibilité à la contradiction. D’un point de vue cognitif, la sensibilité 
à la contradiction est la prise de conscience d’une contradiction, accompagnée d’un sentiment de 
malaise, et son dépassement d’un sentiment de bonheur. 

Les exemples nous montrent l’importance des représentations spontanées des élèves. À partir de ces 
résultats sur les représentations spontanées des élèves, Hitt et Quiroz (2019) ont proposé la notion de 
représentation socialement construite, qui est liée à l’évolution de la représentation fonctionnelle-
spontanée chez les élèves quand celle-ci a émergé dans le travail individuel, puis a été discutée à 
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l’intérieur d’une équipe, en grand groupe et dans un travail d’autoréflexion. Selon Hitt et Quiroz 
(2019, p. 79) : 

Définition. Une RF-S est une représentation qui émerge chez les individus dans la pratique, 
face à une activité non routinière : les actions liées à l’interaction avec la situation ont des 
caractéristiques fonctionnelles (mentales, orales, kinesthésiques, schématiques) et sont liées à 
une représentation spontanée (externe). La représentation est fonctionnelle dans le sens où 
l’élève a besoin de donner un sens à la situation et qu’elle est spontanée, car elle s’exprime 
naturellement dans l’action quand on essaye de comprendre et de résoudre la situation non 
routinière. 

La situation d’investigation (la tâche) comme élément clé dans la co-construction du savoir 
mathématique 

La théorie des situations didactiques (Brousseau, 1998), celle du « problem solving » (Mason,	
Burton	&	Stacey,	1982;	Schoenfeld, 1985) et de la mathématique réaliste de l’école de Freudenthal 
(1991) ont provoqué un changement dans les curriculums du monde entier. L’approche classique, à 
savoir l’enseignement « définition-théorème-exercices et problèmes » a été brisée. Les situations-
problèmes, les problèmes en général et les problèmes en contexte ont pris alors une place 
fondamentale dans cette nouvelle approche. À partir de ces théories, on retiendra l’élaboration de la 
tâche comme élément central pour le dépassement d’un obstacle cognitif.  

Une nouvelle ère est apparue pour l’organisation et le rôle de la tâche dans l’enseignement des 
mathématiques, les situations problèmes liées à la créativité et à la modélisation mathématique 
(Blum, Galbraith, Henn & Niss, 2007; Hitt et González-Martín, 2015; Hitt, Saboya et Cortés, 2017; 
Hitt et Quiroz 2019; Lesh & Zawojewski, 2007; Margolinas, 2013). 

Dans notre cas, les activités que nous avons développées sont liées à la méthode d’enseignement 
ACODESA, dans une approche socioculturelle de l’apprentissage des mathématiques. Nous les 
avons appelées les « situations d’investigation ». 

Situation d’investigation. La situation est constituée de différentes tâches que suivent les 
étapes de la méthode ACODESA. Les tâches essayent de promouvoir premièrement, 
l’émergence des représentations non institutionnelles ou institutionnelles, une pensée visuelle 
empirique liée à une pensée diversifiée (pensée divergente), à la conjecture, à la 
généralisation, à la prédiction et à la validation. Dans un deuxième et troisième temps (travail 
en équipe et grand groupe), on essaye de promouvoir une pensée abstraite où la sensibilité à 
la contradiction est une partie ainsi comme une évolution des représentations et 
caractéristiques de la première étape. Un quatrième temps est envisagé pour promouvoir une 
connaissance plus stable avec une reconstruction de ce qui avait était fait en classe. 
Finalement, l’enseignant(e) fait un retour sur les différentes solutions des élèves et présente 
la position institutionnelle par rapport au contenu envisagé dans la situation. 

L’élaboration des situations d’investigation suit une organisation comme celle signalée dans Hitt, 
Saboya et Cortés (2017b). 
Variation et covariations entre variables (un exemple avec les nombres polygonaux) 

Nous allons présenter ici la 1re étape d’une situation d’investigation portant sur les nombres 
polygonaux et destinée à des élèves de la 1re année du secondaire. Cette étape était composée de 5 
questions à résoudre papier-crayon. Dans la 2e étape était envisagée l’utilisation de la technologie 
pour valider leurs conjectures. Au total la situation comptait 8 pages. 

1re étape (Travail individuel, suivi de travail en équipe, approche papier-crayon) 
Il y a très, très, très, longtemps (vers l’an 520 av. J.-C.), un mathématicien du nom de Pythagore fonda une 
école dans une île de la Grèce antique. Ses élèves et lui étaient fascinés à la fois par les nombres et par la 
géométrie. Une de leurs idées consistait à représenter les nombres par des figures géométriques. Ils 
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appelèrent ces nombres : les nombres polygonaux. Par exemple, ils s’aperçurent que certains nombres 
pouvaient être représentés par des triangles. Ainsi, 1, 3, 6 et 10 sont les quatre premiers nombres 
triangulaires parce qu’on peut les représenter par des points disposés en triangles comme ci-dessous : 

 
2) Observe	 bien	 ces	 nombres.	 Quel	 est	 le	 cinquième	 nombre	 triangulaire	?	 Représente-le.	

Explique	la	façon	dont	tu	as	procédé.	

2) D’après toi, comment construit-on un nombre triangulaire ? Qu’observes-tu ? 
3) Quel est le 11e nombre triangulaire ? Explique comment tu fais pour trouver sa valeur. 
4) Tu dois écrire un courriel COURT à un ami pour lui décrire comment procéder pour calculer le 

nombre triangulaire 83. Décris ce que tu lui écrirais. TU N’AS PAS À FAIRE LES CALCULS! 
5) Et pour calculer n’importe quel nombre triangulaire, comment ferait-on (on veut encore ici un 

message COURT). 

Production des équipes aux questions 1, 2 et 3  
Dans cette 1re étape, nous voulions développer la pensée empirique visuelle 

(Rubinshtein, 1973) et la généralisation (Davidov, 1990; Radford, 2011). De 
façon naturelle, les élèves (équipe G1 et G3) sont passés d’une approche visuelle 
à une procédure arithmétique (action épistémique). Par exemple, pour le calcul de 
T11 ils ont écrit 1+2+3+4+5+6+7+8+9+10+11. 

L’équipe G2 est passée d’une approche visuelle concrète à une approche visuelle 
plus générale, et ensuite à une procédure arithmétique (action épistémique).  Ainsi 
pour le T11 ils ont écrit 11+10+9+8+7+6+5+4+3+2+1. 

Nous pouvons noter l’abandon de la représentation iconique par un élève (équipe 
G4) qui, pendant la présentation en grand groupe, est passé d’une approche visuelle détachée des 
configurations polygonales à un calcul itératif qu’il n’avait pas discuté 
avec les membres de son équipe (pensée théorique abstraite selon 
Rubinstein). L’équipe G4 a utilisé cette dernière stratégie pour résoudre 
la 5e question de la 2e étape avec Excel.  

Ce passage montre l’importance du travail en équipe et la réflexion de l’élève 
Yan pendant qu’il organisait ses idées (dialogue intérieur selon Vygotsky 
1932/1962) pour les communiquer à tout le groupe (construction du signe de 
Voloshinov). Yan avait besoin de se faire comprendre par le reste de la classe. 
Réponses en équipe aux questions 4 et 5 et premier débat en grand groupe 

Voici les réponses (travail en équipe) donnés par les différents groupes. 
	 Réponses	à	la	question	4	par	équipe	:	 Réponses	à	la	question	5	par	équipe:	

G1	 On	 additionne	 tous	 les	 nombres	 de	 1+2+3…	

jusqu’au	nombre	de	points	sur	le	côté.	

On	 additionne	 tous	 les	 nombres	 de	 1+2+3…	 jusqu’au	

nombre	de	points	sur	le	côté.	

G2	 Additionner	des	nombres	de	1	à	83.	 Tu	additionnes	les	nombres	de	là	?	

G3	 Tu	dois	faire	83+82+81…	jusqu’à	1.	 Calcul	la	dernière	colonne	diagonale	et	calcul	en	faisant	

-1	au	nombre.	Ex.	15
ème

,	15+14+13…	etc.	

		G4	 Tu	dois	faire;	1+2+3+4+5+6+7+8…	+83	et	ça	va	

te	donner	la	réponse.	

	

Tu	mets	le	même	nombre	sur	les	autres	côtés	et	ensuite	

tu	additionnes	1+2+3+4+5+6…	jusqu’à	ce	que	tu	arrives	

à	ton	nombre	et	ta	réponse	est	le	nombre	triangulaire.	

Dans une discussion en grand groupe, la chercheure demande les messages écrits 
pour répondre à la question 5 (voir réponses plus haut) : Message court pour 
n’importe quel nombre triangulaire. Les élèves ont d’abord proposé l’addition 
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« 1+2+3 jusqu’à ton nombre ». Intervention de la chercheure : Comment écrire le nombre que je ne 
connais pas? Différentes propositions ont émergé. La première était d’écrire « ? », après ils ont 
proposé « x » ou « y ». La chercheure a demandé si un cœur pourrait être écrit : « ♥ ». Un élève a 
répondu : « On peut mettre n’importe quoi qui n’est pas un chiffre ». 

Ce qu’on peut souligner c’est que les élèves sont passé d’une pensée empirique visuelle à une 
pensée abstraite arithmético-algébrique. La variable a été exprimée premièrement en mots : « jusqu’à 
ce que tu arrives à ton nombre », après comme « ? », ensuite comme « x », ou « y », et finalement : 
« On peut mettre n’importe quoi qui n’est pas un chiffre ». 

Production de l’équipe G4 (travail en équipe et présentation en grand groupe) 

Travail en équipe et 
généralisation en 
acte 

Surprise d’obtenir un nombre 
décimal avec T100 et discussion en 
équipe vers la généralisation (Excel) 

Présentation en grand 
groupe du calcul général 
d’un nombre triangulaire 

Généralisation dans 
le débat en grande 
groupe 

    
On peut remarquer que pour chaque abstraction, il y a un certain type de généralisation. Les 

processus d’abstraction ont été du type : Abstraction visuelle, abstraction arithmétique, émergence 
de la notion de variable, émergence de la notion de covariation entre variables. 
Après 45 jours, à eu lieu la phase d’autoréflexion (reconstruction) 

Lors de cette étape, Yan, l’élève qui avait trouvé l’expression algébrique pour les nombres 
triangulaires, a essayé de se rappeler de sa formule, mais s’est trompé. Il a écrit : (Rang*2)-1=y et 
Rang*y=nombre triangulaire. Dans l’activité sur les nombres pentagonaux que nous lui avons  
ajoutée comme défi, il a écrit : Rang*(Rang + (Rang * 0,5 − 0,5)) = nombre pentagonal. Expression 
qu’il a trouvée en utilisant la même stratégie que celle utilisée 45 jours avant pour les nombres 
triangulaires. Expression équivalente à l’expression institutionnelle : !! = ! !!!!

! . 

Dans ce processus d’autoréflexion, une élève a obtenu à la question sur les nombres triangulaires : 
« Nombre impair : (rang + 1) ÷  2 * rang = nombre triangulaire. » Expression équivalente (avec 
restriction aux nombres impaires) à : !! = ! !!!

! . 

Conclusions 
Dans ce document, nous avons voulu montrer les différents éléments nécessaires pour la 

construction d’une pensée arithmético-algébrique. Basés sur quelques idées de l’histoire des 
mathématiques, d’une théorie socioculturelle de l’apprentissage et d’une méthode d’enseignement 
ACODESA, nous avons montré la nécessité de prend en compte différents éléments dans la classe de 
mathématiques pour une construction d’une pensée arithmético-algébrique; à savoir : le rôle de la 
tâche (situations d’investigation) dans l’acquisition des connaissances, la communication dans la 
classe, la visualisation mathématique, le rôle des représentations non institutionnelles et 
institutionnelles, la généralisation, la conjecture, la sensibilité à la contradiction, la validation et la 
preuve. 

Notre approche cherche à développer et enrichir une articulation entre l’arithmétique et l’algèbre 
(un habitus) avec l’intention de promouvoir la construction d’une structure structurante dans le sens 
de Bourdieu (1980) liée à la pensée arithmético-algébrique qui donne non seulement un support à 
l’algèbre, mais aussi un enrichissement de la structure cognitive de l’arithmétique. 

Nous avons aussi pu constater dans ce processus de co-construction des connaissances, l’émergence 
de la notion de variable et de la covariation entre variables. 



Construction	d’une	pensée	arithémico-algébrique	dans	une	approche	socioculturelle	de	l’enseignement	

	 141	

Les résultats de nos recherches nous ont amenés à vouloir expérimenter des nouvelles situations 
d’investigation (en suivant la méthode ACODESA) en 6e année du primaire. Nous avons proposé 5 
différents types de situations d’investigation avec l’utilisation de tablettes électroniques : Le 
restaurant de Marcel ; La bijouterie El Dorado ; Les fenêtres ; Le jardin et les citrouilles et 
Rectangles et disques.  Nous sommes en train d’analyser les résultats. 
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The Documentational Approach To Didactics (DAD) aims to study teachers’ professional 
development through their interactions with their resources for/from teaching. It has been introduced 
in the French community of didactics of mathematics in 2007, then extended at an international level. 
It has been introduced as an entry in the Encyclopedia of Mathematics Education in 2020. The DAD-
Multilingual project (2020-2021) is dedicated to gather and confront the translations of this entry 
towards 14 languages. The project main goals are: making available – for students as well as for 
researchers - a presentation of DAD in various languages; deepening the DAD concepts themselves 
in thinking their possible instantiations in different languages; questioning the translation processes; 
and questioning the notion of resource itself, resource for/from teaching. The lecture presents this 
project, and draws some lessons from its first steps. 

Keywords: Documentational approach to didactics; Cross-cultural studies; Teacher Education – In-
service / Professional Development; Teacher Knowledge; Teaching Tools and Resources. 

In this lecture, we want to present an on-going project dedicated to better understand mathematics 
teachers’ professional development through the lens of their interactions with a diversity of 
resources. In the first part, we will introduce the so-called Documentational Approach to didactics 
(DAD), which has been developed for about 10 years. In a second part, we will present the DAD-
Multilingual project, aiming to deepen this approach through its adaptation towards different social, 
curricular and linguistic contexts. In the third part, we will present the feedback of the scientific 
committee of this project, allowing to better situating the scope of the project and the ways for its 
development. In the fourth part, we will present the preliminary results, and will conclude in drawing 
some perspectives. 

DAD, towards a ‘resource’ approach to mathematics education. 
The documentational approach to didactics (DAD) has been introduced by Ghislaine Gueudet and 

Luc Trouche (Gueudet & Trouche, 2009), and has been developed further in joint work with Birgit 
Pepin (Gueudet, Pepin & Trouche, 2012). We will just introduce here the main concepts of this 
approach; more information may be found in the DAD entry (Trouche, Gueudet & Pepin, 2020) of 
the second edition of the Encyclopedia of Mathematics Education edited by Stephen Lerman.  

DAD is originally steeped in the French didactics tradition in mathematics education (Artigue et al., 
2019), where concepts such as didactical situation, institutional constraint and scheme are central. At 
the same time it also leans on socio-cultural theory, including notions such as mediation (Vygotsky, 
1978) as constitutive of each cognitive process. Moreover, the approach has also been developed due 
to the emerging digitalization of information and communication, which asks for new 
conceptualizations. This digitalization and the development of Internet had indeed strong 
consequences: ease of quick access to many resources and of communication with many people. This 
necessitated a complete metamorphosis of thinking and acting, particularly in education: new 
balances between static and dynamic resources, between using and designing resources, between 
individual and collective work (Pepin, Choppin, Ruthven, & Sinclair, 2017). Taking into account 
these phenomena, DAD proposed a change of paradigm by analyzing teachers’ work through the lens 
of “resources” for and in teaching: what they prepare for supporting their classroom practices, and 
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what is continuously renewed by/in these practices. This sensitivity to resources meets Adler’s 
(2000) proposition of “think[ing] of a resource as the verb re-source, to source again or differently” 
(p. 207). Retaining this point of view, DAD takes into consideration a wide spectrum of resources 
that have the potential to resource teacher activity (e.g. textbooks, digital resources, email exchanges 
with colleagues, or student worksheets), resources speaking to the teacher (Remillard, 2005) and 
supporting her/his engagement in teaching. 

During the interaction with a particular resource, or sets of resources, teachers develop their 
particular schemes of usage of these resources. The concept of “scheme” (Vergnaud, 1998) is central 
in DAD. It is closely linked with the concept of “class of situations”, which are, in our context, a set 
of professional situations corresponding to the same aim of the activity (for example, introducing a 
given mathematical property for a given grade). For a given class of situations, a teacher develops a 
more or less stable organization of his/her activity, that is a scheme. A scheme has four components: 

• The aim of the activity; 
• Rules of action, of retrieving information and of control; 
• Operational invariants, which are elements, often implicit, of knowledge guiding the activity; 
• Possibilities of inferences, meaning of adaptation to the variety of situations.  

Over the course of his/her activity, a teacher enriches his/her schemes, e.g., integrating new rules of 
actions, or s/he can develop new schemes. Schemes are likely to be different for different teachers, 
although they may use the same resources, depending on their dispositions and prior knowledge.  

The resources and the scheme, developed by a given teacher for facing a given class of situations, 
make up a document. The process of developing a document has been coined documentational 
genesis (Figure 1). The ‘use’ of resources is an interactive and potentially transformative process. 
This process works both ways: the affordances of the resource/s influence teachers’ practice (that is 
the instrumentation process), as the teachers’ dispositions and knowledge guide the choices and 
transformation processes between different resources (that is the instrumentalisation process). Hence, 
the DAD emphasizes the dialectic nature of the teacher-resource interactions combining 
instrumentation and instrumentalisation. These processes include the design, re-design, or ‘design-in-
use’ practices (where teachers change a document ‘in the moment’ and according to their 
instructional needs).  

 
Figure 1. A representation of a documentational genesis 

The set formed by all the resources used by the teacher is named his/her resource system. These 
resources are associated with schemes of usage, forming documents. The documents developed by a 
teacher also form a system, called the document system of the teacher. Its structure follows the 
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structure of the class of situations composing the professional activity of the teacher. When teachers 
share their documentation work, for example in a group preparing lessons collectively, they may also 
develop a shared resource system (Gueudet, Pepin & Trouche, 2012). Nevertheless, the different 
members of the group can develop different schemes for the same resource, resulting in different 
documents. 

We have then presented the main concepts grounding DAD. Since its introduction, this approach 
has been used in a variety of contexts, in Ph.D. and research projects. The Re(s)source international 
conference, held in 2018 in Lyon (https://resources-2018.sciencesconf.org/), gathering 130 people 
from 30 countries, gave a good image of the extension of the French original field. This cultural and 
linguistic diversity was understood as a potential richness for deepening the concepts at stake: 

• One of the sessions of the young researchers workshop, held during this conference, was 
dedicated to « Naming systems1 used by secondary school teachers to describe their resources 
and their documentation work », meaning the structured set of words used by teachers, in their 
own language, for describing their resource systems; 

• And, in my final conference (Trouche, 2019), among the 10 research programs that I proposed 
for developing DAD, two of them addressed linguistic issues: the first one, “Conceiving a 
DAD living multi-language glossary”, and the last one “Contrasting naming systems used by 
teachers in describing their resources and documentation work, towards a deeper analysis of 
teachers’ resource systems.” 

These reflections, among others, lead to the DAD-Multilingual project. 

The DAD-Multilingual project, deepening a theoretical approach through its adaptation to 
a diversity of contexts  

We describe here the origin of the project, the actors involved, and the translating processes. Any 
project is actually born from the convergence of a set of phenomena; and responds to a set of needs. 
It is indeed the case for the DAD-Multilingual project, being: 

• The result of my personal experience, as a French native speaker having to go back and forth 
between English and French: introducing first DAD in French (Gueudet & Trouche, 2008), 
then in English (Gueudet & Trouche 2009); writing in English the entry DAD for the 
Encyclopedia of Mathematics Education (Trouche, Gueudet, & Pepin, 2020), then translating it 
in French (Trouche, Gueudet, Pepin, & Aldon, 2020). Doing so, I had in mind the Tuareg 
proverb: “travelling is going from oneself to oneself through others”… 

• The result of my PhD supervisions experience: I realize, for example, that students from some 
countries had never the occasion to express themselves, in the frame of their studies, in their 
own language: “In spite of the numerous calls from education and language specialists, many 
countries still use the languages of wider communication instead of their native languages […] 
As a result, students are often required to learn subject material in the language of a former 

                                                             
1 The notion of “naming system” was inspired by the Lexicon project. “[This project involved] nine countries 
(Australia, Chile, China, Czech Republic, Finland, France, Germany, Japan, USA), and in each country a team of 
mathematics education researchers and experienced mathematics teachers. In this project, we consider that our 
experiences of the world and reflection on those experiences are mediated and shaped by available language, and 
that the use of English as lingua franca for international communication substantially limits what can be expressed 
and shared. The goal of the project is thus to document and compare the naming systems employed in mathematics 
teacher communities in the nine countries to describe the objects and events in their classrooms, in order to expand 
on the variety of constructs available for the purpose of theorizing about classroom practice and for identifying the 
characteristics of accomplished practice” (Artigue et al., 2019). But while the Lexicon project looked at the naming 
systems used to describe classroom activities, the young researchers workshop looked at the naming systems used to 
describe teachers' interactions with resources, before, during, and after class. 
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power; a language in which they may not be proficient “(Quigley et al., 2011). The DAD-
Multilingual project appears then as a necessity for addressing equities issues; 

• The result of interacting with researchers in various contexts (Algeria, Brazil, China, Japan, 
Lebanon, Mexico, Netherlands, Norway, or Senegal): these interactions have evidenced the 
fact that dealing with DAD in each new context (theoretical, cultural, curricular a well a 
linguistic) leads to new questions and potential enrichment. As it was said for didactics (Arcavi 
et al., 2016), DAD “goes travelling”… 

• The result of developing an approach grounded on teachers’ work with resources, involving 
naturally a diversity of supports and languages; 

• The result of working over a long period with Ghislaine Gueudet and Birgit Pepin, committed 
both in international projects, Birgit having herself a long experience of crossing linguistic 
boarders… 

These interactions evidenced also the need for enlightening the complex metaphoric structure 
developed by DAD, that could appear as a characteristic of the French community of mathematics 
education: “Despite the broad dispersion and wide-ranging accomplishments of didactique over the 
past decades, it has not had the influence outside the Francophone world that one might have 
expected […] part of the communication problem is that didactique carries some heavy baggage 
stemming largely from the language it employs and its metaphors in particular […] Didactique, in 
creating a precise vocabulary for its work, has made extensive use of the fundamental metaphoric 
structure identified by Pimm [1988, 2010], generating terms that need careful exegesis before they 
are used. Anglophones may find that English versions of those terms come laden with extra baggage 
that makes them difficult to interpret correctly.” (Jimmy Kilpatrick in Arcavi et al., 2016)2. 

Finally, the presentation of DAD in the Encyclopedia of Mathematics Education gave us (Ghislaine, 
Birgit and me) the opportunity of a conceptual reversal. Each Encyclopedia, since Diderot and 
d’Alembert’s work (1760), rests on a fundamental objective: making available all the knowledge of 
the world in a given place (a series of books) and a given language. Our project, reversing this 
objective, was to make available a small piece of knowledge in a diversity of languages, with the idea 
that this diversity will contribute to better understand the piece of knowledge at stake. Thus was born 
the DAD-Multilingual project (https://hal.inria.fr/DAD-MULTILINGUAL, aimed at adapting the 
Documentational Approach to Didactics entry into a diversity of languages. 

The translating process involved 14 languages (in addition to English), actually the languages 
represented in the Re(s)source 2018 international conference (Gitirana et al. 2018): Arabic, Chinese, 
French, German, Greek, Hebrew, Hungarian, Italian, Japanese, Norwegian, Portuguese, Spanish, 
Turkish and Ukrainian. These 14 languages offer both elements of proximity (as for the roman 
languages: French, Italian, Portuguese and Spanish) and elements of distance, for example between 
European languages and Chinese one, leading to conceptualize differences of languages and of 
thought (Jullien, 2015). 

The goals of the project, as announced on its website (https://hal.inria.fr/DAD-MULTILINGUAL), 
are the following ones: 

• Making available a presentation of DAD in various languages, allowing the students and the 
researchers interested to refer to it in their own language;  

• Deepening the DAD concepts themselves in thinking their possible instantiations in different 
languages; 

• Questioning the translating process itself; 

                                                             
2 Thanks to Tommy Dreyfus who, after his reading of a preliminary version of this paper, draws my attention on this 
Kilpatrick’s contribution. 
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• Beyond the frame of DAD, questioning the notion of ‘resource’, resource for/from teaching; 
• Designing (in a later step) a multilingual glossary of DAD. 

The project involves a set of translators, reviewers (at least one translator and one reviewer for each 
language) and a scientific committee (see § 3). It would be excessive to say that they formed a 
community at the start of the project. Actually, there is not a DAD community, no regular event or 
specific journal allowing labelling such a scientific group. Since its beginning, in 2009, DAD 
develops as an « approach », with blurred boundaries, acting as a theoretical workshop for studying 
teachers-resources interactions, complementing or questioning already well established theoretical 
frameworks. During these 10 years, DAD has attracted PhD students, and researchers, in the frame of 
projects around mathematics teaching resources: e.g., in France, ReVEA (https://www.anr-revea.fr); 
in Europe, MC2 (http://www.mc2-project.eu); internationally, the French-Chinese joint project 
MaTRiTT (http://ife.ens-lyon.fr/ife/recherche/groupes-de-travail/matritt-joriss). The translators and 
reviewers have a diversity of links to DAD: interested as prospective users, or effective users, or co-
designers (in particular, PhD students have enriched DAD with new concepts in their theses). They 
all are native speakers for the targeted language of a given translation; and they are sometimes go-
between different languages, for historical reasons (e.g., Arabic-French in Lebanon) or PhD reasons 
(e.g. Chinese students having done their PhD in a frame of a co-supervision, using French and 
Chinese for collecting data; and English for writing their thesis), or a mix of these reasons (see 
Window 1). 

Window 1 - The translator-reviewer pair in the Spanish language case 
The translator was Ulises Salinas-Hernández, and the reviewer Ana Isabel Sacristán. Both have been 
members of the Department of Mathematics Education in Cinvestav-IPN (Mexico): 

• Ulises obtained his PhD from Cinvestav; then has been doing a two-year post-doctorate at the ENS 
de Lyon with Luc Trouche, reflecting on theoretical networking, crossing DAD and the semiotic 
approach (Radford, 2008). His stays at ENS de Lyon gave him the opportunities to contrast the 
naming systems used by Mexican and Chinese teachers (Wang, Salinas & Trouche, 2019); 

• Ana Isabel did her PhD at the University of London with Richard Noss and partially with Celia 
Hoyles. She has a long history of interacting with Luc Trouche, first at the ENS de Lyon during a 
three-month scientific stay in 2012, as well as in Cinvestav during a two-month scientific stay of 
Luc Trouche in 2017; these interactions gave rise to several papers (e.g., Trouche, Drijvers, 
Gueudet & Sacristan, 2013). 

These close interactions have allowed flexible discussions on the translating process. This is a specific 
case for the translator-reviewer pair, and other cases can be found in the project, more or less close to 
DAD history. 

The method of the translating process was as follows: 
• English was the interface language (of course, this could constitute a bias for the on-going 

discussions); 
• From the beginning, it was clear that the objective was not to produce a translation that was as 

close as possible to the original text, but instead to: make DAD understandable in a specific 
cultural, curricular and linguistic context (that means bridging it, if possible, with other frames 
well known of the targeted audience); enrich DAD in questioning its concepts when translating 
it; 

• Issues that arose in the translating process were shared by each translator-reviewer pair, who 
had to fill, in English, a ‘Translating issues report’. For such a report, a model was proposed 
(see Window 2), but such a model could be adapted according to the needs of the translator-
reviewer pair. 
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Window 2 – The model (to be adapted) for the Translating issues report 
Language:       Translator:       Reviewer:  
Sources: English version and other linguistic versions? 

• In a few lines, could you describe the main issues that emerged when translating the DAD entry or 
when interacting with the reviewer? Issues linked to the context (social, cultural, or curricular); 
issues linked to the concepts at stake; issues linked to the vocabulary 

• Certain concepts raised difficulties, or discussions between the translator and the reviewer. We 
suggest that you explain these difficulties, and the choices you have made, for the notions of 
resource, document and for about three other notions, which seemed more particularly complex: 
Possible translations, and associated definitions (in English) - Final choice, and motivation - 
Scientific references using this word in the targeted language 

• Other issues that you would like to share 

Each translation was considered as an element of a collection, integrated in a French scientific Open 
Archive website (see Window 3). 

Window 3 – The presentation of the Chinese translation on the Open Archive Website 

 

This website (https://hal.inria.fr/DAD-MULTILINGUAL) gives access to the presentation of the 
project and its actors; to the set of translations; to the set of Translating issues reports; and to 
different resources aimed to support the translating processes (most of them coming from the 
scientific committee); and to the analyses produced over the project (as this current lecture!). 

What we have learnt until now from the feedback of the scientific committee 
The scientific committee was at the beginning composed of 5 persons: Jill Adler, Nicolas Balacheff, 

Rongjin Huang, Janine Remillard and Kenneth Ruthven. They were called upon due to their 
knowledge in, and interest of: the international community of mathematics education; the resource 
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approach to mathematic education; the semantic issues at stake in each translating process; or/and the 
interactions between different cultures and languages. From the beginning of the project, they were 
asked to comment on the way the project was organized (e.g., the model of ‘Translating issues 
report’, improved thanks to their comments), and to propose references that could support the 
reflections on the translating processes. Their full comments can be found on the project website 
(https://hal.inria.fr/DAD-MULTILINGUAL/page/translation-issues), where we underline what 
appear as their main contributions. 

Kenneth Ruthven draws attention to the source language, with four fundamental questions:  
• Why not retain key terms from the source language?  
• Why not 'mark' key terms in some way to indicate the specialized usage intended (e.g., 

reSource)? 
• Why not 'mark' key terms in some way to clarify the metaphor (e.g., resource-scheme-

document, abbreviated, say, to res-sch-doc)?  
• Does a concept (as ‘resource system’ see Ruthven 2019) need a sharper definition before it can 

become a key term of DAD? And would that sharper definition point to a more precise term 
(or phrase)? 

In such cases, the support of dictionaries (e.g., the Cambridge Dictionary 
https://dictionary.cambridge.org/dictionary/ and the already accepted translated terms in the 
specialized domain (e.g., such as the case of ‘scheme’ in the field of psychology) should be followed. 
Nicolas Balacheff recalls that “The issue of language is not just a question of words, as is too often 
stated, but of expression and the circulation of meaning” (Balacheff, 2018). The minimal condition 
for doing this work should be to complete the choice of translated terms with authority quotes 
attesting to their use, and allowing taking into account the “finesse” of the concepts. 

Jill Adler considers that the focus on DAD concepts as isolated words is too narrow. She suggests to 
take into account the context in which these concepts are used (see also Arcavi et al., 2016; Pepin, 
2002; Setati, 2003), and raised the issue of the link between teachers’ discourse-resources (Adler, 
2012), and the theoretical discourse analyzing them. 

Janine Remillard, building on her experience in the Math3Cs project (Remillard, 2019), evokes 
Osborn’s (2004) discussion of different types of equivalences in cross-cultural research and Clarke 
(2013)’s notions of validity when doing cross-cultural research. Like Jill Adler, she underlines the 
importance of the context, pointing to how the words themselves are “the tip of the iceberg”. For 
facing these issues, the translation team needs to develop what Andrews (2007) calls prerequisite 
intersubjectivity, leading to a shared understanding of the core concepts (see also Pepin et al., 2019). 
In this perspective, the design of a multilingual glossary of key terms seems crucial – this is actually 
one of the objectives of the DAD-Multilingual project, already evoked at the Re(s)source 2018 
conference (Trouche, 2019). 

For taking into account the link between the cultural context, teachers' words, and the 
conceptualization of their interaction with resources, the coordinators of the project invited Michèle 
Artigue, involved in the Lexicon Project (see footnote 1), to join the scientific committee, and so it 
became composed of 6 persons. Until now, this scientific committee is only composed of members of 
the mathematics education community: other scientific fields could be, of course, considered (e.g., 
linguistics, computer science, anthropology, cultural studies…); perhaps to be discussed in a later 
stage of the project? 

Some preliminary results  
 As I write the presentation of this lecture (August 20th 2020), the project is still on-going. 11 

translations (of over 14) have been completed, and the three remaining translations will be achieved 
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before the end of September. This is the first productive result of the project, corresponding to its 
first aim. 

Regarding its constructive results – what do we learn from the translating process itself – the 
Translating Issues Reports, still under progress, as well as the interactions within the project, allow 
drawing some preliminary lessons.  

First of all, each translation gave rise to very active processes, often mobilizing several sources, and 
more actors than the translator and the reviewer. For example, for the Turkish translation, the English 
and French versions were used, and the translation process was an opportunity to introduce, and to 
discuss the approach with doctoral students: 

About the translation, we checked the translation together but it seems it is not possible to 
finish it at the end of the April. Because the sentence type and the explanations are very 
different from English and French. Doctoral students also find the translation problematic 
and we are revising it according to their feedback (email from Burcu Nur Basturk, on April 
13th 2020)  

Second, each translation appeared as a complex process, involving several levels: vocabulary, 
scientific expressions, and structure of the sentences, as detailed in the Japanese report (Window 4). 

Window 4 – Extract of the Japanese Translating issues report 
Takeshi Miyakawa and Yusuke Shinno 

After reading all through the translated text of the DAD entry, we found that the text was not really the 
one we usually write by ourselves in Japanese. One may find that this is the translation, not the original 
text. This would be due to the difficulties of translation at different levels. 

First, at the level of vocabulary, there are many technical terms, which are not used in the ordinary 
language. We had to create an appropriate Japanese term for the English or French term. This difficulty is 
not only for the technical terms used in DAD, but also those used in the mathematics education, in the 
scientific papers in general, or in the ordinary language. For the technical term, we used sometimes the 
English phonetic expression, and other times the Japanese translated terms. The most difficult term we 
discussed a lot was the name of approach “Documentational approach to didactics”. Even the usual term 
“approach” was not easy for us to translate. 

The use of technical terms is also related to the context of scientific research. In the research on 
mathematics education in Japan, the scholars often try to use the terms which are comprehensible to 
others and actually use much less number of technical terms than in the didactics of mathematics in 
France. Japanese scholars therefore may be surprised with the use of technical terms in this text and 
sometimes might be uncomfortable with it. 

There were also many difficulties of translation at the level of sentence. In Japanese language, the order 
of terms in a sentence is very different from French and English: for example, the verb is given at the end 
of the sentence; the subject is not sometimes given; and so forth. Due to this, we had to often split a 
sentence into several sentences. Further, we consider that the context in which the original English text 
was written would be a factor that makes our translation alien from the Japanese ordinary text. Some 
English sentences, which seem self-explanatory would not clearly explain the claim, and Japanese readers 
may feel the lack of sentences that complement the claim, since they are in the other context. 

Third, translating DAD needed to think more globally on the theoretical background of this 
approach, and on the existing, or not, bridges towards the targeted language, requiring, sometimes, to 
go through a third language, such as Russian in the case of Ukrainian. In this perspective, the objects 
and methodologies have to be questioned (see Window 5). 
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Window 5 – Extract of the Ukrainian Translating issues report 
Maryna Rafalska and Tetyana Pidhorna 

There are no translations of the works of G. Brousseau, G. Vergnaud, and Y. Chevallard in Ukrainian. 
Thus, we faced the difficulties in translating the main notions used in their theories (e.g. “milieu”, 
“scheme”, “operational invariants”, “savoir à enseigner” and “savoir enseigné”, etc.). For the translation 
in Ukrainian of the notion of scheme we used Ukrainian articles [11, 12] that refer to the work of J. 
Piaget and the Russian translations of J. Piaget works [10]. We also used the Russian translation [12] of 
Rabardel’s instrumental approach for translating the notions of instrumentation, instrumentalisation, and 
instrumental genesis. The Russian terms were translated in Ukrainian using the dictionaries that provide 
the meaning of these words and then we found the Ukrainian analogues (also using the dictionary to 
confirm that the meanings of found words are the same). 

Translating the DAD showed us the differences in research objects and methodologies in different 
cultural contexts, e.g. French didactics of mathematics and Ukrainian method of teaching and learning 
mathematics (metodika navchannya matematiky). Thus, we noticed that in Ukrainian method of teaching 
and learning mathematics much less attention, compared to French didactics of mathematics, is given to 
the study of psychological constructs (e.g. scheme) that influence on teachers’ choices as well as to 
transposition of mathematical knowledge in different institutions. The main accent in Ukrainian method 
of teaching and learning mathematics is given to the development of advanced methodical systems 
(systems of methods, forms and tools of teaching and learning of mathematics) and evaluation of their 
effectiveness via pedagogical experiments. Metodika has more practical objectives than didactics. For 
example, it aims to bring the answer to the following questions: what to teach (content), how to teach 
(what methods, 151organizational forms to use, tools), how to evaluate the teaching/learning results, etc. 

10. Пиаже Ж. Избранные психологические труды. М., 1994.  
11. Maksymenko S.D. Genetic epistemology of J. Piaget / S.D. Maksymenko // Problems of Modern 

Psychology : Collection of research papers of Kamianets-Podilskyi Ivan Ohienko National University, 
G.S. Kostiuk Institute of Psychology at the National Academy of Pedagogical Science of Ukraine / 
scientific editing by S.D. Maksymenko, L.A. Onufriieva. – Issue 32. – KamianetsPodilskyi : Aksioma, 
2016. – Р. 7–16.  

12. Дубасенюк O.A. Підготовка майбутніх учителів до реалізації педагогічної дії. Матеріали 
Всеукраїнської науково-практичної конференції з міжнародною участю « Теорія і практика 
підготовки майбутніх учителів до педагогічної дії », 20-21 травня 2011 р., м. Житомир. – 
Житомир : Вид-во ЖДУ ім. Івана Франка, 2011. – C. 13 – 18. 

Fourth, the evidence of central concept, such as ‘resource’, was called into question: 
“Understanding resource as something re-sourcing teachers’ activity” can be transferred easily into 
French, or Italian, but is doesn’t work in other languages, such as Portuguese: 

‘Recurso’ (in Portuguese) is a word composed by the juxtaposition of the prefix «re» and the 
noun «curso», the first means repetition and the second a path already used, which is the 
meaning of the Latin recursus (NEGRI, 2007, p. 9). Therefore, recursar (verb in Portuguese) 
is unusual to give the same meaning of the verb re-source (in English). For that, we used the 
verb reabastecer ou realimentar with the idea of ‘source again’ (extract of the Portuguese 
Translation issues report, by Katiane Rocha, Cibelle Assis and Sonia Igliori) 

It appeared, then, that there is a need to give a sharper definition of the critical concepts of DAD 
(see Ruthven’s comment, § 3). 

Fifth, thinking of adaptation instead of translation leads to establish links between DAD and frames 
already existing in a given culture, offering new opportunities to rethink the terrain of DAD; e.g.: 

• The links between the instrumental and the documentational genesis through the lens of the 
mathematics laboratory for the Italian adaptation (Trouche, Gueudet, Pepin, Maschietto, & 
Panero, 2020); 
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• The potential links between the concept of instrumentalisation and the Guided Discovery 
Approach (Goztoniy, 2019), in the case of the Hungarian translation. 

Finally, at this stage of the DAD-Multilingual project, these results appear quite promising 
regarding its aims: deepening the DAD concepts themselves in thinking their possible instantiations 
in different languages; questioning the translating process itself; questioning the notion of resource 
itself, resource for/from teaching. These results concern the ‘resource’ approach to mathematics 
education, beyond the community of mathematics education, and, beyond, the scientific fields 
interest in teacher education, cross-cultural studies, and translating processes. 

Perspectives 
I would like, as a conclusion, to imagine some perspectives, to be discussed with the actors of the 

project, perspectives internal to each language, crossing the languages or at a general level.  
Each translation-adaptation could live its life in different natural ecosystems: being published in 

journals, discussed in scientific communities, being used in various research projects (for analyzing 
teachers interactions with resources, particularly their naming systems, in a variety of contexts), or 
teaching programs, and crossed with existing approaches. A given language could correspond to 
diverse cultural, national, or social contexts, e.g. the Spanish adaptation (in Mexico vs. in Spain), the 
Portuguese adaptation (in Brazil vs. in Portugal), or the Arabic one (in Lebanon vs. in Algeria or 
Morocco), English constituting a specific case (UK, USA, Australia or India). And, for a given 
language and a given country, the research context (at University level) and the teaching context (at 
schools levels) could provide different ecosystems where words and notions may follow their own 
trajectories. These appropriation processes, at a larger scale, would lead probably to updating each 
translation, and new issues to be addressed to/by the ‘original’ DAD frame. 

The existing collection of translations opens also different perspectives; for example: 
• Confronting the translating techniques, as detailed by Quigley et al. (2011) in the case of the 

English to Chinese translation: 
“borrowing (the source language word is transferred directly to the target language), literal 
translation (word-for-word translation), transposition (translating the words while paying 
attention to linguistic differences such as placement of adjectives before or after nouns), 
modulation (a technique often adopted when literal or transposition translation results in a 
utterance that, though grammatically correct, appears abnormal or awkward), and 
equivalence (a technique similar to modulation often used in idioms, proverbs, and phrases) 
[…] in order to accurately translate documents, all these techniques must be used. 
Furthermore, translation through modulation and equivalence requires great attention to 
cultural, lexical, grammatical, and syntactic aspects of the text.  

• Using the diversity of Translating issues reports for a mutual enrichment of each of them, 
leading towards an updated version of these reports and of the related translations; 

• Organizing a new stage in interactions between pairs of languages using their proximity, or 
origin, for example Spanish-Portuguese, French-Italian, German-Norwegian, Chinese-
Japanese, Greek-Ukrainian, Arabic- Hebrew…; 

• Using the translated frame for analyzing data in the corresponding language; 
• Proposing a special issue of a journal in mathematics education dedicated to the project, its 

results, issues and perspectives; 
• Organizing working groups around concepts, leading towards a common glossary. 

Finally, we could imagine a last stage of coming back to the original English presentation of the 
DAD entry, for updating and perhaps enlarging its scope in the perspective of the ‘Resource 
Approach to Mathematics Education’, as described by Gueudet, Pepin, & Trouche (2019). 
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These perspectives, of course, have to be questioned and enriched by the scientific committee, and 
discussed within the actors of the project, emerging as a community of (conceptual) enquiry 
(Jaworski, 2005). In this time of pandemic, sheltering at home, and cultivating a regular social 
distance, I would like to conclude with a personal statement: such a project, crossing the linguistic 
and cultural boarders, opens (at least for me) a breathing space, allowing to re-source, really, our 
conceptualization of teachers’ work. 
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Since PME-NA 2015, a working group has explored how argumentation, justification, and proof are 
conceptualized in the extant mathematics education literature and the consequences of these 
conceptualizations. We feature work from a forthcoming book in which scholars have critically 
examined the consequences of using particular conceptions of argumentation, justification, and proof 
as lenses for examining classroom practice from elementary through tertiary grade levels. Session 
participants will have opportunities to analyze data sets across grade bands and reflect on chapter 
authors’ analyses of those data sets. Discussants will explore implications regarding how 
definitional choices impact both research and teaching practice. During the final session, we 
consider the next phase of the working group’s focus for future PME-NA conferences. 

Keywords: Reasoning and Proof; Advanced Mathematical Thinking; Teacher Knowledge 

Theoretical Backgrounds 
Although there is a large and growing body of research in mathematics education focused on 
argumentation, justification, and proof (Cirillo et al., 2015), the definitions and conceptualizations of 
these terms differ according to the perspective of the researcher, the focus of the research, and the 
particular data being analyzed (Reid & Knipping, 2010). Consequently, these differences cause 
inconsistencies in the literature. For example, there are debates about whether argumentation and 
proof are deeply intertwined or fundamentally separate activities, and there are inconsistencies 
related to students’ success and difficulties with proof (Stylianides et al., 2017). Unpacking and 
making sense of these kinds of inconsistencies and debates has been a core focus of the 
Argumentation, Justification, and Proof working group. 

History of the Working Group 
The Conceptions and Consequences of What We Call Argumentation, Justification, and Proof 
Working Group (AJP-WG) met for the first time during the 37th Annual Meeting of the North 
American Chapter of the Psychology of Mathematics Education (PME-NA) in 2015. The group then 
met for three additional years in 2016, 2017, and 2018. The AJP-WG sessions were well-attended 
each year, and the group is active in between meetings. For example, following the 2015 and 2016 
meetings, AJP-WG members published white papers to disseminate the group’s work during the 
sessions (i.e., Cirillo et al., 2016; Staples et al., 2017). Following the 2018 meeting, AJP-WG 
members began work on an edited book. Across the authoring teams of the AJP-WG papers, the 
white papers, and the book, over 40 scholars have been involved in the group’s work, including many 
graduate students. The goal of this colloquium is to share ideas from the forthcoming book (Bieda, 
Conner, Kosko, & Staples, forthcoming), which have developed during previous PME-NA AJP-WG 
sessions. 

Areas of Discussion and Plan for the Research Colloquium 
Each day will feature presentations from two chapter authors who analyzed the same grade level 
classroom transcript from different perspectives (e.g., justification and proof). Prior to author 
presentations, participants will have opportunities to review each transcript (i.e., the data set) and 
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make their own observations. Participants will consider implications of the authors’ definitional 
choices and conclusions with respect to research, working with teachers, or both. 
Day 1: Opening Session and Focus on the Elementary Grades 
The goals for the first session will be to (1) share the origins and evolution of the AJP-WG that 
motivated this research colloquium (2) introduce the aims and structure of the edited book that 
resulted from past efforts of the AJP-WG, and (3) have a set of book authors, whose chapters focused 
on justification and proof in the elementary grades, share reflections from their analyses. To achieve 
these goals, we anticipate the following organizational structure: M. Cirillo will lead Activities 1 and 
2 [30 minutes] and K. Bieda will facilitate a review of the data set used by elementary section authors 
in the book [30 minutes]. Then, E. Thanheiser and C. Walkington will co-present major findings 
from their analyses of the elementary data set [20 minutes]. Finally, we will facilitate audience 
questions and discussion [10 minutes]. 
Day 2: Focus on the Middle Grades 
The goals for the second day will be to explore the middle grades data and author analyses and to 
preview the data set for Day 3. K. Bieda will facilitate groups in reviewing the middle grades data set 
used by the book section authors [30 minutes]. Then, C. Gomez and K. Lesseig will share major 
findings from their analyses of the middle grades data set [20 minutes]. We will then facilitate 
audience questions and discussion [10 minutes]. Last, D. Plaxco will facilitate groups in reviewing 
the data set featured in the tertiary (post-secondary) book chapters [30 minutes]. 
Day 3: Focus on the High School and Tertiary Grades and Next Steps for Working Group 
The goals for the third day will be to explore and reflect on the author analyses at the high school and 
tertiary levels, reflect on the implications of analyses across the presentations, and brainstorm about 
future working group foci as suggested by implications of the work presented across the three days. 
First, M. Cirillo will share findings from the Cirillo and Cox high school synthesis chapter which 
explores the findings of three authors who analyzed a common transcript through the lenses of 
argumentation, justification, and proof. Similarly, D. Plaxco will share major findings from analyses 
of the tertiary data set [30 minutes]. We will facilitate questions and discussion [10 minutes]. Then, 
A. Ellis will share reflections on the set of presentations featured during Day 1-3 of the colloquium 
[30 minutes]. We will then facilitate a conversation about potential topics for future PME-NA 
working groups based on implications from the analyses presented across the three days of 
colloquium sessions. 
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Our research is guided by the question: ‘How might we observe, document, display, and analyze 
data from a collective systems perspective?’ In this colloquium, we will examine our current work 
involving the development of new methodological tools that address the research question.  

Keywords: Research Methods 

Introduction 
Over the past 25 years, the research colloquium leaders have individually and in subgroups, been 
theorizing about, as well as collecting, analyzing, and reporting on data related to collective action in 
mathematics classrooms (e.g., Davis & Simmt, 2006; Martin, McGarvey & Towers, 2011; Martin & 
Towers, 2011; McGarvey & Thom, 2010; Proulx, Simmt & Towers, 2009; Thom & Glanfield, 2018). 
While our work has contributed to meaningful insights into mathematical understanding of learners 
and teachers, we realized that the methodological tools developed and used were limited due to the 
vast and intricate range of dynamic interactions (Martin, McGarvey & Towers, 2011; Simmt, 2011). 
This led us to working systemically on the mutual concern: How might we observe, document, 
display and analyze data from a collective learning systems approach? Building on our previous 
PME(NA) working group, NCTM research symposium, and PME research forum, in this colloquium 
we will present our work to date and provide opportunities for the participants to learn about, try out, 
and discuss the methodological tools we have developed. 

Theoretical Background of the Research 
We situate this research within a complex systems framework to inquire into how relationships 
between the parts of a system give rise to new and unanticipated collective behaviours of the larger 
system. We conceive mathematics classes as dynamic complex collectives; that is, mathematics 
classes emerge and evolve from the inextricable layering and entanglement of biological, social, 
societal, and environmental subsystems (Davis & Sumara, 2006; Davis & Simmt, 2003). Events 
within such systems may be unpredictable in foresight, but are potentially understandable in 
hindsight. As such, complex systems present “collective possibilities that are not represented in any 
of the individual agents” (Davis & Simmt, 2003, p. 140). In contrast to considering classroom 
interactions as strictly a series of distinct contributions by individuals, we recognize that teacher 
actions and decision making are often not based on the multitude of individual actions, but rather, on 
a teacher’s sense of the class as a whole of which the teacher is a part (Burton, 1999; Towers, Martin 
& Heater, 2013). 

Previous Engagement with Methodological Tools Work 
At the 2015 PME(NA) Conference the research colloquium leaders offered a working group on 
“Collective learning: Conceptualizing the possibilities in the mathematics classroom” (McGarvey et. 
al., 2015). Participants discussed the theoretical and methodological concerns as well as practical 
implications related to mathematics class as a collective. Following the working group, we directed 
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our attention on the metaphor of “vital signs” to guide the development of tools for observing the 
collectivity of mathematics classes. Similar to how health professionals monitor bodily systems, we 
explored how a mathematics class might also have multiple vital signs; that is, when monitored 
simultaneously, such signs afford robust insight into the systemic viability. Here, a suite of 
“classroom vital signs” were proposed to distinguish between different forms of collective classroom 
activity while pointing to key elements of dynamic engagement. At the 2017 NCTM Research 
Conference, we described the potential of vital signs as both a metaphor and tools to inquire into 
collective learning (McGarvey et. al., 2017) in a research symposium. In 2018, at the International 
PME conference, we facilitated a Research Forum on the “Vital signs of collective life in the 
classroom” where we shared our research team’s efforts to develop methodological tools for 
observing the class as a collective (McGarvey et. al., 2018). To date, we have created six new tools 
with which to observe, track, and identify new patterns within the collective activity of mathematics 
classes. In this colloquium, three tools will be explicitly examined: Tool 1) ideational networks; Tool 
2) dynamics of ideas; and Tool 3) classroom board activity. 

Proposed Layout for Research Colloquium 
Session 1: 15 min. introduction to the purpose and importance of the methodological research; 10 
min. presentation about the development of Tool 1 to date; 20 min. for participants to observe the 
tool in action and dialogue about its use; 35 min. for participants to exchange ideas and 
collaboratively work with the tool; and 10 min. for closing remarks, discussion of future 
implications, and applications for mathematics education research. 
Session 2: 20 min. overview of the Dynamical Model/Theory for the Growth of Mathematical 
Understanding (Pirie & Kieren, 1994) and presentation on the integration of it and the development 
of Tool 2 to date; 20 min. for participants to observe the tool in action and dialogue about its use; 40 
min. for participants to exchange ideas and collaboratively work with the tool; 10 for closing 
remarks, discussion of future implications, and applications for mathematics education research. 
Session 3: 10 min. presentation about the development of Tool 3 to date; 15 for participants to 
observe the tool in action and dialogue about its use; 25 min. for participants to exchange ideas and 
collaboratively work with the tool; 30 min. for participants to experiment with applying different 
combinations of the three tools and explicate the multiple perspectives they afford when observing 
them simultaneously “all at once”; 10 min. for closing remarks, discussion of future implications, and 
applications for mathematics education research. 
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In this new working group, we will bring together those interested in sharing knowledge, 
information, insights, and current work related to implementing and researching content-focused 
coaching in mathematics. There are many variations of content-focused coaching currently 
referenced in the field which has led to a lack of clarity about how this coaching model is being 
implemented and researched.  This working group is an opportunity for those engaged in the work of 
developing and/or researching coaching models to collectively explore (a) variations of content-
focused coaching, (b) challenges in implementing content-focused coaching, including ways to 
support coaches, and (c) needs and future work for content-focused coaching in mathematics. We 
intend for this working group to continue into future PME-NA conferences as we build on this initial 
collaboration to impact our individual work and the field at large. 

Keywords: Teacher Education-Inservice/Professional, Instructional Leadership, Research Methods 

Content-focused Coaching in Mathematics 
Coaching has become a widespread method of professional development for teachers (Campbell & 

Griffin, 2017). One particular form of coaching, content-focused coaching, has been shown to be a 
promising practice to impact teachers’ instructional practices and student learning (e.g., Gibbons & 
Cobb, 2016; West & Staub, 2003).  Content-focused coaching has two primary goals: (a) increasing 
the teacher’s knowledge of a specific content area, such as mathematics, and (b) building the 
teacher’s knowledge of effective instructional practices related to a specific content idea through a 
personalized, embedded program (Cobb & Jackson, 2011).  

Researchers in multiple countries have highlighted the benefits of content-focused coaching (e.g. 
Becker, Waldis, & Staub, 2019; Gibbons & Cobb, 2016; Kreis, 2012; Kreis & Staub, 2011; 
Murawski, 2019). In Switzerland, for example, researchers found content-focused coaching to be 
beneficial for both prospective and practicing teachers, emphasizing the applicability of the model to 
other contexts (Becker et al., 2019, Kreis, 2012; Kreis & Staub, 2011). Similar coaching models have 
been used in Canada (e.g. Bengo, 2016), showing positive influences on teacher practice. The 
variability of contexts in which content-focused coaching is implemented in terms of demographics, 
teaching conditions, and teaching experience, highlights the need for collective exploration of 
content-focused coaching.   

In addition, there is not a shared understanding in the field about how to define content-focused 
coaching, how to implement and support content-focused coaching programs, and how to study the 
actions of content-focused coaches and impact on teachers’ practice. As a result, there are high-levels 
of variability in the ways mathematics coaches interact with teachers (e.g. Ellington, Whitenack, & 
Edwards, 2017) and inconsistent empirical findings when researching the effectiveness of coaching 
(e.g. Campbell & Griffin, 2017). 
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As a collective team, the proposal authors have extensive experience implementing content-focused 
coaching as a part of larger professional learning programs for teachers. The team has developed and 
supported content-focused coaches in both face-to-face and online contexts. We are currently 
researching the actions of content-focused coaches in an online environment and the impact of these 
actions on teachers’ practices (see Author, 2019). 

The intent of this working group is to build on and connect the knowledge and experiences of 
participants in order to establish a more robust understanding of content-focused coaching and to 
identify opportunities for future work. Participants will have an opportunity to collectively explore 
three themes: (a) variations of content-focused coaching, (b) challenges in implementing content-
focused coaching, including ways to support coaches, and (c) needs and future work for content-
focused coaching in mathematics. 

Working Group Organization and Strategy 
Each session of the working group will draw on the experiences of the authors and the participants 

related to content-focused coaching, with a different focus for each session based on the themes 
noted above. 

The first session will invite discussion on two of the three themes: exploring variations of content-
focused coaching to generate a common understanding, and exploring challenges in implementing 
content-focused coaching, including ways to support coaches.  We will launch the session with the 
authors sharing their background and experiences to provide a foundation for discussion related to 
what constitutes content-focused coaching. We will then engage participants in small and full group 
discussions with the goal of generating a more cohesive understanding of the critical components of 
content-focused coaching. Attendees will then work in small groups to identify challenges in 
implementing content-focused coaching.  We will share and discuss current work to overcome these 
challenges with the goal of networking around effective implementation of content-focused 
coaching. 

Session Two will include brief presentations from several participants’ work related to content-
focused coaching. Participants will then engage in small group discussions on the third theme - what 
more needs to be known about content-focused coaching. Specifically, discussions will be guided by 
the following: (a) what has been/is being studied related to mathematics content-focused coaching, 
and, (b) what are areas of need for further contributions to the field.  These discussions will 
culminate with groups creating questions relating to common research challenges and possible future 
research based on gaps in the literature. These questions will provide an extended opportunity for 
discussion with an Open Space Protocol structure. The Open Space Protocol provides time and space 
for participants to generate new knowledge about a particular question with which they find relevant. 
The process draws on the talent that will be in the room and positions participants to discuss 
questions important to their work within a supportive and structured environment.   

In Session Three, we will use the Open Space Protocol to continue the conversations from the 
previous day in two more rounds of small group discussions.  Attendees will be encouraged to move 
groups, if they desire, at the end of each round. To support follow-up and ongoing collaboration of 
participants, group notes and documents will be shared and distributed via a Google Folder that will 
be set up for this working group. This shared folder will provide a shared space for future 
collaborations and writing projects within the working group members.  

The material is based upon work supported by the National Science Foundation under Grant DRL-
1620911. 
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The central aim of the EMIC Working Group is to connect, engage, and inspire colleagues in this 
growing community of discourse around theoretical, technological, and methodological 
developments for advancing the study of embodied cognition for mathematics education. This year, 
our fifth at PME-NA, we also will convene on Day 3 with the WG on Mathematical Play. Our 
community of scholars will use these sessions to continue to broaden the range of activities, 
practices, and emerging technologies that contribute to mathematics teaching and learning as well 
as to research on these phenomena.  

Keywords: Cognition; Embodiment and Gesture; Informal Education; Learning Theory 

Empirical, theoretical, and methodological developments in embodied cognition and gesture studies 
support the continuation of the regularly held Embodied Mathematical Imagination and Cognition 
(EMIC) Working Group for PME-NA. The central aim of EMIC is to attract, engage, and inspire 
colleagues in a growing community of discourse for advancing the study of embodied cognition for 
mathematics education, including mathematical reasoning, instruction, assessment, technology 
design, and learning in and outside of formal settings. 

Views of learning as embodied experiences have grown from several developments in philosophy, 
psychology, anthropology, education, and the learning sciences that frame human communication as 
multimodal interaction, and human thinking as multimodal simulation of sensory-motor activity (e.g., 
Lave, 1988; Nathan, 2014; Wilson, 2002). Four ideas exemplify the plurality of ways EMIC is 
relevant for the study of mathematical understanding: (1) Grounding abstractions in perceptuo-motor 
activity as an alternative to amodal symbol systems; (2) Cognition emerges from perceptually guided 
action; (3) Mathematics learning is always affective, never detached from body-based feelings and 
interpretations; (4) Mathematical ideas are conveyed via multimodal forms of communication, e.g., 
gestures, drawing, and objects. 

The interplay of multiple perspectives is vital for the study of embodied mathematical cognition to 
flourish. While there is significant convergence of theoretical, technological, and methodological 
developments in embodied cognition, there remain questions to be addressed through formulating 
and applying experimental design principles. We aim to: (1) synthesize the work of leading scholars 
into a theory of EMIC; (2) identify and negotiate focal ontologies and parameters that capture our 
theoretical, methodological, and technological variability; (3) curate and disseminate evidence-based 
design principles to enhance mathematics education and broaden participation in STEM fields; and 
(4) articulate a research agenda in embodied design. 
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Past Achievements, Current Organizers, and the Future of EMIC 
This is the 5th year of the EMIC WG. Several activities and website have emerged to connect 

scholars and provide resources, https://www.embodiedmathematics.com. Two NSF workshops for 
researchers and instructors grew from this: “The Future of Embodied Design for Mathematical 
Imagination and Cognition” (May 20-22, 2019); and “EMIC: Professional Development for 
Undergraduate Mathematics Instructors” (June, 2021). An edited book is planned for the “Research 
in Mathematics Education” Series and an article is under review for Frontiers in Education Research 
Topic: “Futures of STEM Education.” 

As the WG matures, we are broadening the set of organizers to represent a range of institutions, 
perspectives, and applications. This enriches the WG experience and the long-term viability of the 
community. The organizers not included in the authorship list are listed here: Candace Walkington, 
Southern Methodist University; Carmen J. Petrick Smith, University of Vermont; Hortensia Soto, 
University of Northern Colorado; Ivon Arroyo, University of Massachusetts-Amherst; and Martha 
W. Alibali, University of Wisconsin-Madison. 

EMIC 2020: Embodiment in Mathematics for Inclusion 
Embodiment is an effective way to promote inclusive mathematics education research and practices. 

This year we will explore how embodied mathematics can bridge cultural divides and raise 
awareness of inclusion for those with different physical and perceptual abilities (Abrahamson et al., 
2019). To demonstrate growth and relevance, we will also join the Mathematical Play WG on Day 3 
to integrate EMIC and Play research and practice. 

On Day 1 we will discuss the goals for PME-NA 2020 to bridge divides that arise across those with 
different physical and perceptual abilities. As is customary with EMIC, we will anchor this to 
mathematical activities (e.g., making human-scale polyhedra). For a portion of the time, participants 
will collaborate without sight, to identify how our bodies offer effective ways to engage. This will 
invite us to identify principles of inclusive pedagogy and activity design. This will be connected to 
the 4 EMIC themes: Grounding, emergence, affect, and multimodality.  

On Day 2, we will explore mathematical collaboration when participants cannot rely on a shared 
language. In order to challenge the norms of mathematical activities (e.g., Bagh Chal from Nepal), 
we will include puzzles and games that are foreign to majority cultures.  

On Day 3, EMIC will meet with the Math Play WG to consider overlapping interests and questions. 
The organizers of both WGs led a joint conference proposal that is currently under review, and Day 3 
will be our first overt synthesis of the two bodies of work. The session will include small activity 
groups with Math Play participants who want to think about their work as embodied and EMIC 
participants who want to think of their work as math play opportunities. After, we will review Days 1 
and 2, we consider how our themes overlap, ways to enhance future PMENA conferences, as well as 
the broader ways that embodiment, imaginative thinking, and play can be used to promote 
inclusivity. We will conclude by discussing continued engagement and dissemination opportunities 
available with both the EMIC and Math Play communities. 
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Figure 1: A small selection of embodied activities created by EMIC organizers and experienced by 
EMIC participants. Clockwise from top left: experiencing geometric transformations, acting out 
geometry conjectures, constructing icosahedra first as small, then at human scale, and enacting 

topological relations. 
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Students’ construction, coordination, and abstraction of units underlie success across multiple 
mathematics domains. This working group aims to facilitate collaboration between researchers and 
educators with the particular aim of extending research on units coordination and construction 
across age groups, learning differences, and mathematical contexts. 

Keywords: Cognition, Learning Theory, Number Concepts and Operations  

Theoretical Background, Purpose, and History  
Units coordination and construction refers to the number of levels and type of units children can 

construct and bring into a situation (Steffe & Olive, 2010). Children at young ages begin counting 
when first constructing pre-numerical units (relying on perceptual material and/or physical actions) 
with which to use as material for future activity (Steffe & Cobb, 1988). These units are first 
constructed through children’s external activity before becoming internalized (imagined actions) and 
then interiorized (able to anticipate relationships between levels of units). In Steffe’s 2017 plenary 
for PME-NA, he substantiated particular needs for investigating how children develop operations 
when constructing and coordinating units. The working group began at PME- NA 2018, with the aim 
of facilitating collaboration amongst researchers and educators sharing Steffe’s concerns about (a) 
the need for supporting units construction and coordination for all learners and (b) the need for 
accompanying learning trajectories (curricula) appropriate for students’ current level of units across 
grade levels.  

Working Group Goals and Strategies, Past and Present 
In the first year of the working group, goals included generation of related research topics of interest 

to PME-NA attendees, including the role of units coordination in early childhood education, special 
education, and secondary and post-secondary education (including teacher-education). Products 
included the creation of a website for organizing and collecting tasks used for assessing students’ 
units coordination links to research papers addressing particular topics relating to units coordination: 
https://unitscoordination.wordpress.com/ At the second working group meeting at the 41st PME-NA 
(2019), novice and experienced researchers described inferences of students’ units activity and 
shared perspectives of the affordances and constraints of assessing units coordination using particular 
tasks and settings. Our goals for the 2020 working group are to (1) continue to build on the 
productive discussions from the 2019 and 2018 working group meetings relating to issues of 
assessments of units coordination in different settings (within classrooms, via written instruments, 
via clinical interviews, and via individual or paired-student teaching experiments) as well as (2) to 
continue to bridge efforts to emerging research connecting units coordination across mathematical 
domains.  
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Session 1: Shared Understanding of Units Coordination and Construction 
GOAL: Participants (new and returning) will come to shared understandings of the main ideas of 

units construction and coordination as well understandings of differences in theoretical and 
conceptual perspectives. ENGAGEMENT: Prior to the working group, we will administer an entry 
survey of participants to determine interests and goals for collaboration. In the first day’s meeting, 
participants will reflect on their own actions to solve tasks used to assess and support units 
construction and coordination and discuss in small groups how tasks from the literature afford 
students’ units construction and coordination and associated mental operations. Subgroups will come 
together and discuss their understandings of relationships between student actions and task features 
when assessing and supporting students’ units construction/coordination. 
Session 2: Emerging Connections between Units Coordination and Subitizing, Units 
Coordination and Reasoning about Rates 

GOAL: Explore and bring to focus the role of emerging research investigating connections between 
units construction and coordination across age groups and mathematical contexts (e.g., STEM fields, 
cognitive science fields). ENGAGEMENT: Participants will form three groups, one focused on units 
construction and coordination with young children (and their subitizing activity), one focused on 
units coordination with adult learners (and their reasoning about rate of change), and one focused on 
units coordination of elementary students with identified with learning (i.e., working memory) 
differences. Building on the discussions from the first session, participants will explore video-
recordings of clinical interviews and teaching experiments and discuss theoretical and pragmatic 
connections between these constructs and describe their inferences and wonderings in these contexts 
by sharing their analyses in a shared google doc.  
Session 3: Reflection and Taking Action 

GOAL: Reflect on connections and embark on planning collaborations of interest to participants. 
ENGAGEMENT: During the first 30 minutes, we will discuss the results from the previous session 
as a whole group. Then, form small groups for each of these goals: (1) collaborations within 
participants’ research projects (2) creation of content for the webpage and (3) identification of target 
journals and outlets or grants and funding sources. Administer exit survey of participants’ interests 
and goals for collaboration. 
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A new Working Group is proposed. In other forums, both PME and ICMI, working groups have 
worked and focused on the analysis of problems in teaching and learning Calculus and Analysis, 
both at the pre-university and university levels, but those did not start from a clear characteriza-tion 
and explicit statement of the differences that could exist between these two areas of mathematical 
knowledge and, consequently, without full awareness of the implications that this distinction could 
have for both educational research and teaching. This is precisely the theme that is intended to be 
the focus here. It is intended that the Working Group will be working until it reaches a certain 
maturity of the ideas that it plans to discuss. 

Keywords: Precalculus, Calculus, Curriculum Analysis 

Objective of the Working Group 
Identify and characterize the conceptual, epistemological and didactic differences between Calculus 

and Mathematical Analysis, to guide both the specific problems of educational research, and the 
selection of content in pre-university or university Calculus courses for non-mathematicians. 
Strategy 

Promote the exchange of ideas and discussion among invited experts, as well as among the 
participants, around the issue raised and the stated goal. This work will be supported by the 
presentation of a base document for discussion, prepared by this new Working Group’s proposers. 
Invited researchers 
Luis Moreno Armella, Cinvestav, Mexico 
Irene Biza, U. of East Anglia, UK 
Fernando A. Hitt Espinoza, University of Quebec at Montreal, Canada 
Anatoli Kouropatov, David Yellin and Levinsky College of Education, Israel 
Patrick W. Thompson, Arizona State University, USA 
Tin Lam Toh, National Institute of Education, Singapore 
Laurent Vivier, University of Paris Diderot, France 
Coordinator of the Working Group 
Fabio Augusto Milner, Arizona State University 

Theoretical referents 
From the theoretical referents provided by the Ontosemiotic Approach to Cognition and 

Mathematical Instruction (Godino and Batanero, 1994), researchers have been making different 
efforts to characterize both Mathematical Analysis and Differential and Integral Calculus, 
distinguishing the problem situations addressed by each of them, as well as the mathematical objects 
that are used and emerge in the historical development of each of these two areas of mathematical 
knowledge. In particular, emphasis has been placed on identifying and characterizing some of the 
mathematical practice systems and primary objects (problem situations, language, procedures, 
properties, arguments and concepts) in each of these two disciplines. 
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However, it is important to systematize and organize the partial results of these efforts in three 
directions. First, it is important to try to identify and characterize the greatest number of contrasts 
between Calculus and Analysis, so that the distinction is as complete as possible. Secondly, it is 
important to analyze these contrasts from the point of view of the cognitive abilities and professional 
needs of the students (pre-university and university) who enroll in a Calculus course. The second 
direction concerns directly the curricular design of the Calculus course. Thirdly, and this seems 
fundamental to us, it is important to identify, in light of these contrasts, the new psycho-pedagogical, 
epistemological and didactic questions that educational research will have to address but has not yet 
done it for lack of such clarification. 

In a broader context, this panoramic distinction is also important in that it will allow us to clarify the 
vision with which we intend to introduce elementary ideas related to Calculus in early education, and 
particularly in secondary schools. 

Participation dynamics 
It is hoped that the participants of the Working Group (at least some of them), after analyzing the 

base document, will be able to contribute short essays related to the three aspects of the topic for 
analysis and discussion, as well as enrich the contributions of others. 
Group work organization 

The organization of the group work is planned in two stages. In the stage prior to PMENA 2020, 
researchers who have been working along the lines of the proposed theme will be contacted and 
invited to join the group, become familiar with the base document and prepare their essays or 
contributions, which will be made available to the group in the first week of October 2020. In the 
second stage, during the meeting, three 90-minute sessions will be structured to present the essays 
and discuss them. To conclude, a final presentation will be made by those in charge of the Working 
Group, who will summarize what has been achieved and outline the tasks for the future. 

In order to make the Group's work as productive as possible, the discussion and analysis sessions 
will be structured based on the three lines mentioned above as follows: 

First Session. Need for a clear and systematic distinction of didactic contrasts between Calculus 
and Mathematical Analysis. Epistemological, cognitive and didactic problems that emerge from this 
distinction. 

Second Session. Curricular impact that this distinction would have on pre-university and university 
courses in Calculus for non-mathematicians. General outline of the main characteristics of these 
courses. Early Calculus curriculum. 

Third session. Reorientation of educational research towards new psycho-pedagogical, 
epistemological and didactic problems that emerge as a result of the didactic reconceptualization of 
Calculus and Mathematical Analysis. 

Reference  
Godino, J. D. y Batanero, C. (1994) Significado institucional y personal de los objetos matemáticos. Recherches en 

Didactique des Mathématiques, 14 (3), 325-355. 
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Se propone un nuevo Grupo de Trabajo. En otros foros, tanto de PME como de ICMI, han 
funcionado grupos de trabajo centrados en el análisis de la problemática de la enseñanza y el 
aprendizaje del Cálculo y el Análisis, tanto en el nivel preuniversitario como universitario, pero sin 
partir de una caracterización clara y explícita de las diferencias que podrían existir entre estas dos 
áreas del conocimiento matemático y, en consecuencia, sin plena consciencia de las implicaciones 
que dicha distinción podría tener tanto para la investigación educativa como para la enseñanza. 
Esta es precisamente la temática que se pretende abordar. Se intentará sostener dicho Grupo de 
Trabajo hasta lograr la maduración de las ideas que en él se planea discutir. 

Palabras clave: Precálculo, Cálculo, Análisis Matemático  

Objetivo del Grupo de Trabajo 
Identificar y caracterizar las diferencias conceptuales, epistemológicas y didácticas entre el Cálculo 

y el Análisis Matemático, para guiar tanto la problemática específica de investigación educativa, 
como la selección de contenidos de un curso de Cálculo preuniversitario o universitario para no 
matemáticos. 
Estrategia 

Promover el intercambio de ideas y la discusión entre expertos invitados, así como entre los 
participantes, en torno al tema planteado y su objetivo. Se apoyará dicho trabajo mediante la 
presentación de un documento base para la discusión, elaborado por quienes proponen este nuevo 
Grupo de Trabajo. 
Investigadores invitados 
Luis Moreno Armella, Cinvestav, Mexico 
Irene Biza, U. of East Anglia, UK 
Fernando A. Hitt Espinoza, University of Quebec at Montreal, Canada 
Anatoli Kouropatov, David Yellin and Levinsky College of Education, Israel 
Patrick W. Thompson, Arizona State University, USA 
Tin Lam Toh, National Institute of Education, Singapore 
Laurent Vivier, University of Paris Diderot, France 
Coordinador del Grupo de Trabajo 
Fabio Augusto Milner, Arizona State University  

Referentes teóricos 
A partir de los referentes teóricos proporcionados por el Enfoque Ontosemiótico de la Cognición y 

la Instrucción Matemáticos EOS (Godino y Batanero, 1994), los investigadores han estado haciendo 
distintos esfuerzos para caracterizar tanto al Análisis Matemático como al Cálculo Diferencial e 
Integral, distinguiendo las situaciones problema que aborda cada uno de ellos, así como los objetos 
matemáticos que se emplean y emergen en el desarrollo histórico de cada una de estas dos áreas del 
conocimiento matemático. En particular, se ha puesto énfasis en identificar y caracterizar algunos de 
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los sistemas de prácticas matemáticas y de los objetos primarios (situaciones problema, lenguaje, 
procedimientos, propiedades, argumentaciones y conceptos) en cada una de estas dos disciplinas.  

Es importante, sin embargo, sistematizar y organizar los resultados parciales de estos esfuerzos en 
tres direcciones. En primer lugar, es importante tratar de identificar y caracterizar el may,or número 
de contrastes entre Cálculo y Análisis, a fin de que la distinción sea lo más completa posible. En 
segundo lugar, es importante analizar dichos contrastes desde el punto de vista de las posibilidades 
cognitivas y de las necesidades profesionales de los estudiantes (preuniversitarios y universitarios) 
que se inscriben en un curso de Cálculo. Esto último concierne de manera directa al diseño curricular 
del curso de Cálculo. En tercer lugar, y esto nos parece fundamental, es importante identificar, a la 
luz de dichos contrastes, las nuevas cuestiones psicopedagógicas, epistemológicas y didácticas que la 
investigación educativa deberá abordar y que no la hecho por falta de dicha clarificación. 

En un contexto más amplio, esa distinción panorámica también es importante por cuanto permitirá 
precisar la visión con la que se pretenden introducir ideas elementales relacionadas con el Cálculo en 
la enseñanza temprana, y particularmente en la escuela secundaria. 

Dinámica de participación 
Se espera que los participantes del Grupo de Trabajo (al menos algunos de ellos), luego de analizar 

el documento base, puedan aportar ensayos breves relacionados con los tres aspectos del tema motivo 
de análisis y discusión, así como enriquecer las contribuciones de los demás. 
Organización del trabajo del Grupo 

Se planea organizar el trabajo del grupo en dos etapas. En la etapa previa a la realización de 
PMENA 2020, se contactará a investigadores que han estado trabajando en la línea de la temática 
propuesta y se los invitará a integrarse al grupo, familiarizarse con el documento base y preparar sus 
ensayos o aportes, que pondrán a disposición del grupo en la primera semana de octubre de 2020. En 
la segunda etapa, durante la celebración del encuentro, se estructurarán las tres sesiones de 90 
minutos para la presentación de los ensayos y la discusión de los mismos. Para concluir se realizará 
una presentación final a cargo de los responsables del Grupo de Trabajo, quienes harán un balance de 
lo conseguido y esbozarán las tareas para el futuro encuentro. 

A fin de que el trabajo del Grupo resulte lo más productivo posible, las sesiones de discusión y 
análisis se estructurarán con base en las tres líneas arriba mencionadas como sigue: 

Primera Sesión. Necesidad de una distinción clara y sistemática de los contrastes didácticos entre 
el Cálculo y el Análisis Matemático. Los problemas epistemológicos, cognitivos y didácticos que 
emergen de dicha distinción. 

Segunda Sesión. El impacto curricular que dicha distinción tendría sobre los cursos 
preuniversitarios y universitarios de Cálculo para no matemáticos. Esbozo general de las principales 
características de dichos cursos. El currículo de Cálculo temprano. 

Tercera Sesión. La reorientación de la investigación educativa hacia los nuevos problemas 
psicopedagógicos, epistemológicos y didácticos que emergen como resultado de la 
reconceptualización didáctica del Cálculo y el Análisis Matemático. 

Referencia  
Godino, J. D. y Batanero, C. (1994) Significado institucional y personal de los objetos matemáticos. Recherches en 

Didactique des Mathématiques, 14 (3), 325-355. 
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The Gender and Sexuality in Mathematics Education Working Group convened in 2018 and 2019. 
Over the past two working group sessions, working group members have (1) shared historical and 
contemporary research related to the topics of the working group; (2) clarified language related to 
gender and sexuality; (3) developed understandings related to language and its influence on 
methods, results, and interpretations; (4) explored how gender and sexuality are experienced by 
students and teachers, and studied by researchers, in international contexts; and (5) developed 
research relationships among participants to explore relevant ideas. Based on the discussions from 
past working groups, during the 2020 Working Group, we will strengthen our understanding of these 
topics by examining underlying theories of gender and sexuality and the affordances of these theories 
on both research and practice.  

 Keywords: Gender and Sexuality; Equity and Diversity; Affect, Emotion, Beliefs, and Attitudes 

The Gender and Sexuality Working Group has met during the two previous PME-NA conferences. 
These meetings have resulted in a shared foundational knowledge of the research area and has helped 
us develop understandings related to how language choices in gender and sexuality influence 
research methods, results, and interpretations. The goal of the 2020 working group is to expand our 
communal knowledge on utilizing theories of gender and sexuality within our work in mathematics 
education. In order to reach this goal, this year’s working group is organized to provide participants 
with opportunities to develop deeper understandings of theories from gender and sexuality studies—
with a focus on conceptions of identities. 

Theoretical Background 
The previous Gender and Mathematics Working Group contributed significant understandings 

regarding girls’ and women’s experiences in mathematics (See Forgasz, Becker, Lee, & 
Steinthorsdottir, 2010). Early research in this area focused on biological sex-based disparities in 
mathematics achievement (Lubienski & Ganley, 2017). Subsequently, the field shifted to study 
gender, via the sociocultural factors that influence girls’ achievement and participation in 
mathematics (Leyva, 2017). In response to calls for clarity in the way that mathematics education 
researchers define and operationalize gender (Damarin & Erchick, 2010), theories of gender as 
performative (Butler, 1993) are now being employed in mathematics education research (i.e., 
Chronaki, 2011; Darragh, 2015; Gholson & Martin, 2019).  Conceptualizing gender as performative 
repositions gender as an aspect of identity that is interactionally (re)produced. Researchers who 
investigate identity in mathematics education have also tended to draw on a variety of 
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epistemological traditions (Darragh, 2016; Langer-Osuna & Esmonde, 2017). While identity 
categories have been problematized in feminist theories, queer theory has deconstructed the concept 
of identity. Some researchers have proposed a gender-complex education in which the existence of 
queer students is reflected in curricula (Rands, 2013; Rubel, 2016). The 2020 working group will 
focus on bridging theories of identity and gender to more fully understand their affordances and 
limitations when applied to teaching and learning mathematics. We will also discuss newer 
methodologies for research in mathematics education from feminist and queer theories (Mendick, 
2005b; Rands, 2009).  

Organization and Structure of the Working Group 
The organization and structure of the working group were created to maximize participation, while 

focusing on topics that prior participants have expressed interest in discussing further. In the working 
group sessions over the past two years, participants have implicitly explored notions of identity as 
narrative and the construction of mathematics as a masculine domain (Mendick, 2005a), and 
explicitly sought ways to collect stories avoiding a gender binary. By discussing the topics for the 
2020 working group, participants will extend their understanding of gender, sexuality, and identities. 
On Day 1, summaries of feminism and queer theory will be provided. On Day 2, specific notions of 
identity and its relation to performativity will be discussed. 
Day 1: Feminism and Queer Theory 

The working group will begin with a 20-minute presentation by Ana Dias and Weverton Pinheiro 
about the history of feminism and queer theory. Based on their research and collaborative 
conversations, they will summarize the theoretical underpinnings from these two theories as well as 
include examples of how these ideas have been used in mathematics education research. After the 
presentations, Ana and Weverton will facilitate an activity (15 minutes) to review research from 
these traditions and lead a discussion (50 minutes) about feminism and queer theory in mathematics 
education research. The major focus of these activities will be based on the Political Grammar of 
Feminist Theory. In the activities, participants will explore feminist progress, loss, and return 
(Hemmings et al., 2011), and the perspective of queer theory. Day 1 will end with a preview of the 
topics and activities for Day 2. 
Day 2: Identity and Performativity  

The themes for Day 2 are identity and performativity. The impetus for these topics is the 2019 
working group discussion in which participants began questioning whether these concepts are 
compatible. Brent Jackson will give a 20-minute discussion that extends the topic from Day 1 to 
include how the notions of identity and performativity have been used in feminism and queer theory. 
Brent will also address the implications of their use in mathematics education research. Brent will 
then facilitate an activity (15 minutes) regarding methods that employ varying constructs of identity 
and performativity in mathematics education research. To conclude the session, Brent will lead a 
discussion (50 minutes) on the topics from the two days and address how the ideas apply to working 
group members’ current research or new research ideas that have been provoked from the past 
activities. Working group leaders will then elicit comments and recommendations for how to 
structure Day 3 to help participants achieve their own goals and work toward the goals of the 
working group.  
Day 3: Working Group Plans  

Based on the interests of participants, Day 3 will be organized as whole-group discussion, small 
break-out groups, or a combination. By the end of Day 3, the group as a whole will have generated a 
plan to continue working together toward the working group goals. 
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In the proposed working group, we will build from the foundation of the past two years’ working 
groups as well as our members’ continuing collaborations with researchers outside of this group. 
Specifically, we propose three days of activity, each focused on different aspects of developing the 
body of mathematical play research. We have planned the three following foci: adapting existing 
mathematical tasks and curricula to increase opportunities for play (Day 1); the reverse, adapting 
voluntary play activity to support mathematical learning (Day 2); and developing synergistic 
dialogue with members of the EMIC research community through an intra-working-group discussion 
session (Day 3).  

Keywords: Teaching tools and resources; Affect, emotion, beliefs and attitudes, Informal education   

Understanding mathematical play at all ages is an important, yet under-investigated domain within 
mathematics education research (e.g., Holton et al., 2001; Wager & Parks, 2014). Over the past three 
years, members of this Mathematical Play working group have developed a community of colleagues 
focused on identifying and characterizing productive theoretical lenses and methodological 
approaches to investigate students’ mathematical play. Central to this work has been the emergent 
characterization of mathematical play as (1) voluntary engagement in cycles of mathematical 
hypotheses with occurrences of failure (Authors), (2) often spontaneous and self-directed toward a 
player’s emerging goals (e.g., Wager & Parks, 2014), and (3) supported or discouraged through 
physical or digital interactions (e.g., Authors; Sinclair & Guyevskey, 2018). In preparation for this 
year’s working group proposal, our co-organizers have focused on situating our work based on the 
degree to which it might be characterized as pure play as well as the degree to which it can be 
characterized as structured mathematical instruction. This focus is consistent with what Wager and 
Parks (2014) discuss as two seemingly contrasting ideologies: groups advocating an increased focus 
on teacher-directed instruction and scholarship confirming that children learn best in play-based 
environments (p. 223). Wager and Parks (2014) also point to calls to identify practices that bridge the 
two ideologies, and this proposal is a direct response. 

In order to address the existing theoretical divide between play and instruction, we will discuss and 
collaborate around theory and results from several projects that participating researchers might 
situate along the dimensions of play and instruction. These conversations will focus on how specific 
activities and instructional interventions might support shifts along those dimensions. That is, we will 
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focus on two shifts: how might an education researcher who has traditionally situated their work 
around more traditional mathematical tasks alter their existing instructional approaches to afford 
greater opportunities for play? And the complement: how might educators shift their interactions 
with students in a play setting to better support meaningful mathematical development? 

 
Figure 1: Graphic organization of two shifts we will explore – increasing the playfulness of high 

instructional tasks (Day 1) and increasing the instructional utility of high play tasks (Day 2) 

Continuing the success of the last two years of the Mathematical Play PME-NA Working Group, 
we have developed the following overarching goals for this year’s working group: (1) to engage 
participant researchers in conceptualizing the two shifts illustrated in Figure 1; (2) to share and 
discuss existing projects that are making or have made these shifts, specifically identifying 
frameworks and perspectives to support such shifts; and (3) to summarize these conversations and 
promote a synergistic dialogue with the EMIC working group. 

Day 1 will center around examples of projects that originated as instructional activities but have 
shifted or are shifting toward more playful activities for students (Authors, Authors). Working group 
leaders will briefly introduce their projects and engage working group participants in tasks from their 
existing research projects. This will focus on identifying and discussing what play frameworks might 
be productive for supporting such transitions. The group will synthesize this discussion as a starting 
point to conceptualize how educators might incorporate playful activity within their existing 
instructional programs. 

On Day 2, we will take a contrasting perspective as we explore design and facilitation practices that 
leverage mathematical play for learning. Leaders will engage group members in interactive play and 
board game activities with a focus on the mathematics that players draw on during their play. Leaders 
will then guide whole-group discussions to identify facilitation practices and pedagogical approaches 
to support meaningful learning in mathematical play. 

On Day 3 the mathematical play working group will meet with the EMIC working group (Nathan et 
al., 2017) to explore areas of overlapping interest and potential convergence. Members of both 
groups will engage in intra-working-group conversations to highlight common theoretical and 
methodological approaches and identify opportunities for synergistic dialogue (i.e., mathematical 
play as an embodied way of learning, design considerations for embodied mathematical play, etc.). 
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Narrative inquiry, self-study, and autoethnography (i.e., self-based methodologies) are becoming a 
more common choice of mathematics teacher educators (MTEs). This has opened new possibilities 
and challenges for early career MTEs as they try to disseminate their findings in mathematics 
education journals. Building from our working group at PME-NA 2018 and 2019, we respond to the 
need for creating a community where MTEs can feel supported in their study design, implementation, 
representation of findings, and publication using self-based methodologies. This year, we continue 
our focus on mentoring and scholarship on self-based methodologies. We invite English- and 
Spanish-speaking MTEs with research projects in any stage of preparation to join us in discussions 
meant to promote growth, sustainability, and continued insight into the use of self-based 
methodologies. 

Keywords: Mathematics Teacher Educators, Research Methods, Narrative Inquiry, Self-study, 
Autoethnography 

Context and Significance 
Building from Hamilton, Smith, and Worthington (2008), we have adopted the language of self-

based methodologies (Chapman et al., 2020) to refer to narrative inquiry (Clandinin & Connelly, 
2000), self-study (LaBoskey, 2004), and autoethnography (Ellis & Bochner, 2000). These research 
methodologies focus on self-understanding based on personal professional experiences and are often 
used in teacher education (e.g., Grant & Butler, 2018; Grant, 2019; Kastberg et al., 2019; Ross, 2003; 
Sack, 2008; Samaras & Freese, 2009). In mathematics education, self-based methodologies are 
growing in use in journals (e.g., Chapman, 2011; Chapman & Heater, 2010; Cox et al., 2014; Grant 
& Butler, 2018; Kastberg et al., 2018; Kastberg et al., 2019) and conferences (Brand, & Jung, 2019; 
Clark et al., 2019; Cox & D’Ambrosio, 2015; Gallivan, & Rumsey, 2019; Kinser-Traut, 2018; 
Kosko, 2019; Lischka et al., 2018; Lischka et al., 2019; McGraw & Neihaus, 2018; Richardson & 
Zhou, 2019; Towers et al., 2019; Truxaw & Rojas, 2019). Yet, using self-based methodologies is still 
less widespread in the mathematics education field. Our goal is to keep growing our international 
community of MTEs, in which they feel sustained and empowered in their use of self-based 
methodologies. 

History of the Working Group 
Over the past two years, we have been building a community with the goal to support each other 

and to expand our network of MTEs who use self-based methodologies (Suazo-Flores et al., 2018; 
Suazo-Flores et al., 2019). After receiving positive responses from conference attendees in North 
America, our goal now is to diversify our membership by providing spaces for Spanish-speaking 
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MTEs who want to learn, or are already using, self-based methodologies. We resonate with 
Whitcomb et al. (2009) call for creating spaces where MTEs feel energized. Over the last two years 
we have felt energized, which motivates us to continue providing spaces at conferences where MTEs 
who use self-based methodologies feel sustained and empowered in their professional practices 
(Jaworski & Wood, 2008). We think organizing such spaces contributes to the diversification in the 
use and acceptance of self-based methodologies (Bullock, 2012; Stinson & Walshaw, 2017).  

Plan for the Working Group 
We anticipate that many of the attendees at PME-NA 2020 will be Spanish speaking MTEs. 

Therefore, our working group will be facilitated in both Spanish and English. Given the personal 
nature of studies conducted under self-based methodologies, we will work on creating an atmosphere 
of trust and care. Day 1 will be a professional development day where the audience will learn about 
(1) communities of practice, (2) focus, (3) characteristics, (4) methods, and (5) professional growth 
in these methodologies. On Day 1 MTEs will also start drafting questions or topics they would like to 
explore. On Day 2, participants who have used self-based methodologies will be invited to share their 
work so that MTEs, who are new to such methodologies, can ask questions. We envision Day 2 also 
as an opportunity for the presenters to receive feedback on their ongoing work. On Day 3, MTEs will 
work in small groups where they can feel vulnerable and receive more personal feedback. MTEs who 
are new to these methodologies will continue planning inquiries to puzzling questions or topics of 
their interest using self-based methodologies. We will conclude our time together on Day 3 with the 
group planning for future meetings and projects, so that we keep nurturing each other in the use of 
self-based methodologies. 

Conclusion 
As MTEs increasingly use self-based methodologies, communities are needed to support their 

research practices including study design, implementation, representation of findings, and 
publications in mathematics education journals. This working group intends to be such a community, 
where over time MTEs feel supported and sustained in their use of self-based methodologies. 
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Goals: 
There are three goals for this new working group: 1) To create a community of mathematics teacher 

educators (MTEs) who are (or are interested in) collaboratively teaching mathematics for social 
justice (TMfSJ) in their university content and/or methods classes. 2) To collaboratively 
select/develop/modify TMfSJ tasks and implement those in mathematics content/methods classes.  3) 
To research the implementation of TMfSJ tasks in content and methods classes.  

Strategies to Reach Those Goals: 
The organizers have all (to some level) incorporated TMfSJ into their teaching. At a recent 

workshop, many of the organizers collaborated on designing one task to implement in both content 
and methods courses focused on understanding gentrification across the United States and also 
locally in each collaborator’s own city/area. This collaboration was highly beneficial and led us to 
envisioning this working group. Our goal is to create a community of MTEs who will collaboratively 
develop and implement TMfSJ tasks in their university courses and research the implementation for 
(in no particular order): (a) preservice teacher (PT) learning about the mathematics, (b) PT learning 
about the sociopolitical context, (c) impacts ’on PTs’ view of mathematics and/or teaching 
mathematics, and (d) the potential for TMfSJ in university methods or content courses to ignite a call 
for action. 

Background: 
Children and youth in schools today are increasingly aware of and grapple daily with the social 

injustices that pervade our world. Mathematics educators face a moral and ethical imperative to 
support students in their struggles to make sense of and fight against these injustices (Stinson, 2014). 
Incorporating social issues into the mathematics curriculum offers one way to  both deepen students’ 
mathematics knowledge and encourage the application of mathematics to understand and potentially 
change their world (Frankenstein, 2009). The Teaching Mathematics for Social Justice framework 
(TMfSJ) includes two critical interrelated ideas. First, school mathematics can be used to teach and 
learn about issues of social and economic justice. Second, mathematics can be taught through the 
study of social justice issues - the development of mathematical literacy itself being an important 
social justice issue (Gutstein, 2003; Raygoza, 2016). A growing body of research shows how TMfSJ 
lessons can support PK-12 students to learn mathematics, interrogate social justice issues, and deep 
positive mathematics identities (e.g. Chao & Marlowe, 2019; Esmonde, 2014; Gutstein, 2003; 
Turner, Gutiérrez, Simic-Muller, & Díez-Palomar, 2009). 
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Given the power of TMfSJ with PK-12 students, some MTEs seek to integrate TMfSJ tasks into 
their courses in order to give PTs, who have little or no experience with TMfSJ, opportunities to 
experience integrated learning of mathematics and social issues and to consider the relevance of 
TMfSJ to their local communities and instructional possibilities in their future classrooms. Research 
on TMfSJ in mathematics teacher education tends to focus on PT or teacher learning about the 
pedagogical conceptions and practices of TMfSJ (e.g. Bartell, 2013; Jong & Jackson, 2016). PTs, 
however, also need opportunities to develop mathematical knowledge (Ball, Thames, & Phelps, 
2008) and political knowledge (Gutiérrez, 2017) for teaching mathematics generally and to enact 
TMfSJ, specifically. Little attention has been paid to the potential for TMfSJ in mathematics content 
and methods courses impact PTs’ mathematics learning, understanding of social issues, and 
mathematics identities as well as their teaching practices. In other words, we seek to develop a 
research program that explores PTs learning not only about TMfSJ but also through TMfSJ.  

Given the complexity of social issues and the challenge of using mathematics in authentic ways, 
TMfSJ proves more effective through multiple iterations over time (Harper, 2019). Accordingly, 
TMfSJ with PTs cannot happen in a single class. Instead, we seek to explore these ideas across 
content and methods courses at multiple spaces so that we can describe the complexity of these and 
other issues with our future teachers (and hopefully with their future students). This is especially true 
for content courses which allow elementary PTs to experience such tasks from a learner’s perspective 
and to learn to read and write the world themselves. PTs can then build upon this in methods courses 
to explore the pedagogical practices for TMfSJ.  

Many PTs enter their coursework believing that mathematics is neutral or universal (Greer, 
Verschaffel, & Mukhopadhyay, 2007; Keitel & Vithal, 2008). MTEs must  address the fact that 
mathematics can never be neutral and no classroom is a neutral space (Frankenstein, 1983; Gutiérrez, 
2013; Yeh & Otis, 2019).TMfSJ offers a means of engaging PTs in building their sociopolitical 
consciousness about the political implications of mathematics and how math can be leveraged to read 
and write the world (Gutstein & Peterson, 2005) from both a content and teaching methods 
perspective. 

In some cases MTEs have met resistance from PTs when integrating social justice issues into the 
mathematics curriculum (Aguirre, 2009; Ensign, 2005; Felton-Koestler, Simic-Muller, & Menéndez, 
2012; Rodríguez & Kitchen, 2004). However, MTEs have also found that they are able to broaden 
PTs’ perspectives about mathematics and mathematics teaching (Bartell, 2013; Ensign, 2005; Felton 
& Koestler, 2015; Leonard & Moore, 2014; Mistele & Spielman, 2009)  when PTs are given 
opportunities to engage in TMfSJ tasks during teacher preparation. This aligns with Gutstein’s 
(2003) goal of supporting students in developing their sociopolitical consciousness, and possibly a 
stronger sense of agency and identity. Given the possibilities for TMfSJ to impact both PT and PK-
12 student learning and mathematics identity in similar ways, PME-NA offers an ideal community 
for spearheading this work by bringing together experts in both student and teacher learning. 

Participant Engagement 
Session 1: Successes and struggles implementing TMfSJ tasks: 1) Organizers will present (30 

minutes) on how they have used TMfSJ tasks in their classrooms. 2) Participants and organizers 
discuss the successes and struggle in implementing TMfSJ tasks. 3) Towards the end of the session, 
organizers will introduce one context to focus on for the next two sessions (e.g. gentrification) as 
well as an online media platform for continued participation with this group. 

Session 2: Entry points for TMfSJ tasks: 1) We will discuss various entry points (focus on math and 
social issue) for TMfSJ tasks. 2) We will collaboratively engage in the use of one context in our 
classes and potential tasks that could go with that context. 3) Participants will share their own 
experiences and how they may envision using such a context in their class. 
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Session 3:1) We (in small groups) will collaboratively create/adapt TMfSJ task(s) to participants’ 
localized contexts to use in their teaching. Participants will leave with a more nuanced understanding 
of TMfSJ tasks/implementation. 2) We will set up structures to follow up via online media after 
implementations. 3) The goal will be to meet at next year’s PME-NA. 
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The concepts and practices of the discipline of statistics are crucial for engaging in government and 
society in the current information age. These concepts and practices are also a part of the school 
mathematics curriculum to help prepare students to be able to think and reason statistically in their 
daily lives. The relevance to learning statistics and the importance of its concepts and practices know 
no boundaries, as statistics is part of the human endeavor to make sense of the world we live in. In 
spite of this, due to sociopolitical forces, ideas, resources, and research often do not cross political 
and social boundaries. The goal of this group is to begin to break down some of those boundaries of 
isolation to create spaces for collaboration and leveraging our shared understandings for positive 
change. A particular focus given the location of the conference is to break down political and social 
barriers sharing ideas and resources.       

Keywords: Data Analysis and Statistics, Cross-cultural Studies 

Creating opportunities for students to engage in statistical investigations to learn statistical concepts 
and become attuned to statistical practices is crucial for mathematics educators (Franklin et al., 2007, 
2015) making it relevant for PME-NA. The centrality of context to statistical inquiry makes its 
practices powerful for students to make sense of their world (Cobb & Moore, 1997; Wild & 
Pfannkuch, 1999). During the 2019 PME-NA Conference the goal of the statistics education working 
group was to create a space for those interested in researching issues around the teaching and 
learning of statistics to meet, discuss, synthesize past research, and begin to strategize ways of 
leveraging multiple perspectives and expertise to identify and address current challenges in statistics 
education. The goals of this year’s group are still in a similar vein, but we want to take advantage of 
the location of the conference in Mexico to collaborate and discuss statistics education across 
political and social boundaries to share ideas and resources.  

Education systems are very contextualized, which can lead scholars to focus on their specific 
context. One of our goals is to share challenges and insights that statistics educators have from the 
contexts that they work in to consider similarities and differences and to learn from one another. 
Such sharing is important because though North America includes Canada, Mexico, and the United 
States the political powers in those countries create obstructions physically, emotionally, 
psychologically, and discursively between their citizens and those of the other countries, which have 
isolating effects. However, people move back and forth across those made up boundaries spreading 
ideas and culture. Therefore, in education, a social science, we face some of the same challenges. 
Because of our contextual differences, we have also likely tackled challenges in different ways based 
on the resources we had available. Furthermore, based on differences in language and power 
structures we have likely faced different challenges that we may be able to help one another. Through 
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sharing our experiences, we share insights on how to tackle common challenges, reflect on what we 
are missing in our work, consider important challenges for us to tackle together, reflect on what 
needs we have, and consider what help and support we can give. We plan to develop a mechanism 
for the communities to share and support one another with ideas, resources, data, and social and 
political experiences. We also hope to share ideas about ways we can talk about real-world 
controversial issues in our classrooms that are relevant to the lives of our students safely and 
critically – a very important aspect in all mathematics classrooms, but essential in statistics 
classrooms due to the nature of exploring and analyzing relevant data. Finally, we aim to find ways 
to share ideas across languages and cultural communities and find ways to break down barriers to the 
English dominant scholarship.  

Theoretical Framing 
To frame the work of the working group we draw from Communities of Practice (CoP; Lave & 

Wenger, 1991; Wenger, 1998). All of the authors are members of various CoP’s relevant to the focus 
of the working group including those of statistics, statistics education, and mathematics education. 
We also come from different communities, particularly in the contexts we work within. We view this 
working group as a space were we come together to share challenges and lessons learned as well as 
consider our roles as boundary crossers and how we and the resources we produce might break down 
some of the boundaries of the communities we are situated and the communities we are 
interconnected by. This framing is consistent with past work of the authors in considering how CoP’s 
can be used with teacher professional development (Gómez-Blancarte & Viramontes, 2014) and 
organizing researchers (Tauber et al., 2019).  

Table 1: Plan for Active Engagement of Participants 
Session Activities 
Session 1: 
Sharing 

• Participant introductions. 
• Brief presentations of selected projects from authors’ various contexts to 

highlight challenges in statistics education research to begin discussions. 
• Participants share their context for statistics education and challenges.  
• Identify similarities and differences in contexts and challenges. 
• Discuss how we can collaborate and what we hope to gain. 

Session 2: 
Discussing 

• Group discusses insights we have collectively on the similarities in contexts 
and challenges identified during the first session. 

• Group discusses resources they have to tackle the challenges identified.  
• Group will discuss what would be helpful and sustainable mechanisms for 

sharing ideas and resources beyond the conference.  
Session 3: 
Planning 
for Action 

• Participants brainstorm ways of tackling challenges different from their own 
identified during the first session to bring new ideas to bear. 

• Participants create a plan of collaboration for after the conference, research 
ideas, analyzing data together, writing together, etc.  

After 
conference: 
Action 

• Group continues to collaborate to implement the ideas and share resources 
based on connections made during the conference.  

• Group members begin longer term research collaborations.  
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We describe how we supported middle-school students developing meanings for quadratic growth by 
bringing together three theoretical framings and designing a task sequence grounded in that 
framework. Specifically, this framework was assembled from the research on students’ quantitative 
and covariational reasoning, Realistic Mathematics Education, and the theory of designing for 
mathematical abstraction. We present data from a teaching experiment to highlight how this task 
sequence supported students as they imagined constant increases in the amounts of change in one 
quantity, a kind of change they later understood to be a defining characteristic of quadratic growth. 
We conclude with a discussion of our findings and how our integration of the three frameworks 
proved useful to design a productive task sequence.  

Keywords: Algebra and Algebraic Thinking; Middle School Education; Design Experiments 

Quadratic relationships are an important topic in middle-school through college mathematics. In this 
study, we build on prior work (e.g., Ellis & Grinstead, 2008; Ellis 2011a, 2011b; Hohensee, 2016) 
that provides accounts of middle and high school students developing productive meanings for 
quadratic relationships via their quantitative and covariational reasoning. Whereas students in these 
studies leveraged numeric quantitative reasoning, we were interested in designing a task sequence 
that supported them in both non-numeric and numeric reasoning to develop meanings for quadratic 
growth. Hence, our goal is to address the research question: How can middle-school students 
leverage non-numeric and numeric quantitative and covariational reasoning to develop meanings for 
quadratic growth?  

  In what follows, we outline our operationalization of quadratic growth grounded in students’ 
quantitative and covariational reasoning, and then describe a task sequence we developed with 
principles of Realistic Mathematics Education (RME) and designing for abstraction in mind. We 
highlight how this task sequence was productive in supporting students developing productive 
meanings for quadratic growth. We conclude by highlighting how the three theories interacted to 
inform the task design and development. 

Quantitative Reasoning, Covariational Reasoning, and Quadratic Change 
As conceptual entities, meanings for quantities can and do differ from individual to individual. 

Therefore, it is critical to attend to a student’s meanings for quantities. Accordingly, Steffe, 
Thompson, and colleagues’ stance on quantitative reasoning (Steffe, 1991; Smith III & Thompson, 
2008; Thompson 2008) underscores the thesis that as students construct quantities in order to make 
sense of their experiential world (Glasersfeld, 1995), teachers and researchers cannot assume that 
students maintain understandings of quantities that are compatible with teachers’ and researchers’ 
intentions. 

Quantitative reasoning can involve numerical and non-numerical reasoning (Johnson, 2012), but the 
essence of quantitative reasoning is non-numerical (Smith III & Thompson, 2008). Building on these 
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prior descriptions of quantitative reasoning, Carlson et al. (2002) described covariational reasoning 
as entailing a student coordinating two quantities with attention to the ways the quantities change in 
tandem. They specified mental actions that allow for a fine-grained analysis of students’ activity. The 
mental actions include coordinating direction of change (area increases as base length increases; 
MA2) and amounts of change (the change in area increases as base length increases in equal 
successive amounts; MA3). Whereas researchers (Johnson, 2012; Moore, 2016; Paoletti & Moore, 
2017) have described productive ways high school and college students can engage in reasoning 
compatible with Carlson et al.’s mental actions, few studies have explored the possibility of middle-
school students enacting these mental actions in productive ways (e.g., Ellis, 2011a). We pay 
particular attention to MA3 as critical to students developing meanings for quadratic relationships, 
and we characterize a productive meaning for quadratic change to entail a student understanding that 
as one quantity changes by equal amounts, the amounts of change of the second quantity increase (or 
decrease). Further, and consistent with meanings described by others (Ellis, 2011a, 2011b; Lobato et 
al., 2012), these amounts of change increase (or decrease) themselves by a constant amount. 
Hereafter, we refer to these constant amounts of change of the first amounts of change as a constant 
AoC of AoC.  

Ellis (2011b) provides evidence that middle-school students are capable of engaging in such 
reasoning. In her examination of middle-school students’ ways of reasoning about heights, lengths, 
and areas of a growing rectangle, she describes how the students numerically and pictorially 
represented the first and second differences to identify a constant second difference, which later 
supported them in developing meanings for quadratic change. Building on and extending this work, 
we are interested in exploring whether we can support students in first identifying constant AoC of 
AoC non-numerically prior to reasoning numerically to develop meanings for quadratic growth. 

Designing for Mathematical Abstraction with RME Principles in Mind: An Example Task 
We begin by outlining important aspects of RME and designing for mathematical abstraction that 

informed the task development. Then we introduce the Growing Triangle Task. 
RME is an instructional theory that aims to find ways to connect what students already know to 

what they do not yet know (Gravemeijer, 2008). RME’s emphasis is on opportunities for students to 
re-invent mathematics by organizing experientially real situations (Cobb et al., 2008; Gravemeijer, 
2008). Tasks are experientially real to students if they can engage in personally meaningful 
mathematical activity; they need not refer to some ‘real-world’ situation or context.  

By having students engage in an experientially real context, we intend to support their horizontal 
mathematization, a process that refers to a student’s development of meanings for a specific context. 
A student’s initial model of (Linchevski & Williams, 1999) the situation is specific to the context but 
should support her in developing informal strategies and representations that will be useful as she 
begins to generalize to other contexts. After beginning to mathematize the situation, a student can 
start the progressive process of vertical mathematization, which entails extending her informal 
mathematical representations or activity into more normative representations or activity. Thus, 
horizontal mathematization is preparation for vertical mathematization. Vertical mathematization 
may involve using conventional notations such as making a drawing, table, or graph (Cobb et al., 
2008; Gravemeijer & Doorman, 1999). As students gather more experiences with similar problems, 
their attentions may shift towards mathematical relations and strategies which helps them develop 
further mathematical relations and a resulting shift from models of a context to models for a 
mathematical idea. This shift allows the students to use the model in a different manner 
(Gravemeijer, 2008) thereby becoming a model for. We describe in the Task Design section how we 
imagine this transition occurring in the context of quadratic growth. 
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Our operationalization of quadratic change emphasizes the importance of students constructing AoC 
of AoC as a quantity unto itself and then identifying constant AoC of AoC. We leveraged 3D-
printing to design physical manipulatives we conjectured could support the students in both of these 
endeavors. As Greenstein (2018) noted, “The faithful mental representation of objects is critical, 
because conceptual thought proceeds from representational thought and representational thought 
proceeds from perception” (p. 3). Hence, leveraging principles of designing for mathematical 
abstraction (Pratt & Noss, 2010), we devised the physical manipulatives with the intention of making 
several quantities of interest, including AoC of AoC, available to students for abstraction through 
their sensorimotor engagement with those manipulatives (Piaget, 1970). We describe these 
manipulatives in the next section. 

The Growing Triangle Task  
We designed the Growing Triangle Task (https://bit.ly/2YTjwmj) with principles of RME, 

designing for abstraction, and theories of students’ quantitative and covariational reasoning in mind. 
In this task sequence, students first interact with a dynamic GeoGebra applet showing an apparently 
smoothly growing scalene triangle (Figure 1a). Our intention is to provide students an experientially 
real context so that they could develop a model of the growing triangle situation. To support the 
students in attending to the triangle’s area and base length (i.e., reasoning covariationally), we 
highlighted the base length of the triangle in pink and the area in green. The area and base length 
grow (apparently) smoothly as the longer slider increases (apparently) smoothly. With AoC in mind, 
we included a second smaller slider which allows students to increase the increment by which the 
pink length increases (e.g., to equal integer chunks versus apparently smoothly). We have the ‘trace’ 
option available so that students can visually identify the increasing AoC of area in the applet (i.e. the 
increasing size of the consecutive trapezoids shown in Figure 1b). 

 

             
                            (a)                                                       (b)                                     (c) 

  
                            (d)                                                               (e) 

Figure 1: (a/b) Several screenshots of the Growing Triangle Task shown in applet, (c/d) images of 
manipulatives and (e) new task for vertical mathematization  

We conjectured that although the visual representation provided by the applet may support students 
in identifying the increasing AoC (MA3), it was unlikely to support them in identifying the constant 
AoC of AoC. Hence, with designing for abstraction (Pratt & Noss, 2010) in mind, we 3D-printed a 
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set of manipulatives that consisted of four consecutive gray triangles (Figure 1d) to represent the 
growing triangle at four equal integer increases of the base length and five AoC blocks (one triangle 
in black, and four trapezoids, Figure 1c). Thus, these designs make these representations of increase 
in the amount added to each triangle to get to the next consecutive triangle available to students 
through their mediated engagement with them. Figure 2b demonstrates this potential for abstraction: 
by stacking the physical representations of change on top of each other, students can construct non-
numerical interpretations of the constant AoC of AoC. After doing so, we will ask them to create a 
table of values for the relationship to explore if (and if so, how) they identify the constant AoC of 
AoC in this representation.  

After developing a model of the Growing Triangle situation, the next step is to support students in 
extending this model by developing a model for constant AoC of AoC (i.e., by continuing the process 
of vertical mathematization). To do this, we presented them with several graphs, each with three 
points, and the instructions, “For each of the following, we know the differences in the amounts of 
change of volume are constant with respect to the length of a side. Complete each graph”. In the 
ensuing activity, after students determined additional points using the constant AoC of AoC, they 
will be introduced to a normative definition for quadratic growth to further support their vertical 
mathematization: “Whenever the amounts of change change constantly (i.e. we have a second 
constant difference), the relationship is quadratic.” Additionally, we consider that this activity may 
support students in developing more sophisticated meanings for other polynomial relationships. In 
such cases, these relationships and their related properties will be discussed (e.g., cubic growth has a 
constant third difference, etc.).  

Methods, Participants, and Analysis 
To examine the potential of supporting students in developing meanings for quadratic change, we 

conducted a teaching experiment (Steffe & Thompson, 2000) situated in a whole-class setting. The 
teaching experiment occurred in a middle school that hosts a diverse student population (over 75% of 
the students are of color; 75% are entitled to free or reduced-price lunch), in the northeastern United 
States. The class was selected from a convenience sample. The teacher of the school’s only 
accelerated 8th grade geometry course1 invited the research team to explore new activities with her 
students. We taught five class sessions, with each session scheduled for 76 minutes. We covered a 
variety of topics in these sessions (see Table 1), with the focus of this paper being the fifth session. 
The class had eight students who worked in three groups on large whiteboards during class time. We 
video- and audio-recorded two of the groups (one group of three and one pair), capturing their 
utterances, motions, and written work. For brevity’s sake, we focus this report on the group of Neil, 
Aaron, and Nigel (pseudonyms). 

Adopting a radical constructivist perspective (Glasersfeld, 1995), we contend that a student’s 
mathematics is inaccessible to us as researchers. Hence, to analyze the qualitative data, we performed 
conceptual analyses (Thompson, 2008) to generate and test models of each student’s mathematics so 
that these models provided viable explanations of his observable words and actions. With the goal of 
building viable models in mind, we analyzed the records from the teaching episodes using open 
(generative) and axial (convergent) approaches (Strauss & Corbin, 1998). Specifically, we watched 
all videos to identify instances that offered insights into each student’s meanings. Using these 
instances, we generated tentative models of each student’s mathematics, which we compared to 
researcher notes taken during on-going analysis. We tested these models for viability by searching 
for supporting or contradicting instances in his other activities. When evidence challenged our 

                                                             
1 Most students in the school take algebra in 8th grade. The terminology is used to be consistent with the school’s 
name for the course. 
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models, we revised hypotheses to explain each student’s meanings and returned to prior data with 
these new hypotheses in mind to modify previous hypotheses. This process resulted in viable models 
of each student’s mathematics. 

 
Table 1: Whole class teaching experiment sequence 

Session  Task Content topics for students to develop 
1 & 2 Faucet Task (see Paoletti, 2018) Coordinate Systems, graphs, and graphing 

3 Triangle Task (Part I) Non-linear change 
4 Triangle/Rectangle Task (Paoletti, 

Vishnubhotla, & Mohamed, 2019) 
Comparing non-linear and linear change, Systems 

of Relationships 
5 Triangle Task (Part II) Extending non-linear change to quadratic change 
6 Post-test  

Results 
In this section, we first highlight the students reasoning non-numerically about the quantities in the 

Growing Triangle Task. We then present the students’ activity with manipulatives, which facilitated 
their identifying constant AoC of AoC (i.e., an instance of horizontal mathematization). We then 
characterize how the students develop a model of constant AoC of AoC when they are presented with 
a new task (shown in Figure 1: (a/b) Several screenshots of the Growing Triangle Task shown in 
applet, (c/d) images of manipulatives and (e) new task for vertical mathematization e), and how that 
model of transitions into a model for quadratic growth. We conclude with examples of student work 
on the post-test to characterize the extent to which students engaged in vertical mathematization.   
The Growing Triangle Task: Horizontal Mathematization 

Introducing the Growing Triangle Task on Day 3, the teacher-researcher (TR) distributed the 
manipulatives to the class intending to support the students in differentiating between the total area of 
the triangle and the changes in area for each increase in base length. To support the students 
developing meanings for area and change in area, the TR began with the first triangle (shown in 
Figure 1c) and added the first change. He asked the class, “When I add another unit of side length, is 
the amount of area I’m gonna add, is it the same amount, more, or less?” Neil responded, “More.” 
The students were then asked to open up the applet on a laptop and begin making observations about 
the changes in the triangle. As they watched the applet play, the three students discussed how the 
changes were growing. When the TR asked, “So initially do we have a big jump, a small jump, 
medium jump?” Both Aaron and Neil simultaneously responded, “Small.” As the TR asked what 
happened for the next two jumps, Neil responded, “It gets larger… even larger.” In this activity, 
Neil’s quantitative understanding of area was elicited as he described it growing by increasing 
amounts (MA3). After this interaction, Neil plotted points accurately representing this relationship 
between area and base length (Figure a). We infer Neil was reasoning covariationally as he leveraged 
non-numeric images of total area and AoC of area in the situation to graphically represent each 
quantity and the resulting relationship.  

Whereas the focus of Day 3 was on supporting students in identifying increasing AoC, on Day 5 we 
returned to the triangle task with the intention of supporting students in imagining constant AoC of 
AoC in this context. Because the students had already identified increasing AoC of area with respect 
to side length, the TR asked the students to consider, “How do the amounts of change compare to one 
another?” The TR requested the students “play around with the manipulatives and explore.” Neil and 
Nigel began to stack the trapezoidal manipulatives on top of one another in consecutive amounts 
(shown in Figure b). The following conversation ensued: 
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(a)       (b)         (c)         (d) 

Figure 2: (a) One group’s graph; (b/c) students notice a constant second difference and use 
manipulatives to identify it; and (d) table displaying students’ work 

Neil:   [Places yellow trapezoid on bottom then places pink trapezoid on top] Ooh! Look, look, it’s a 
quadrilateral [pointing to the piece at the end of yellow trapezoid not covered by the pink 
trapezoid, seen in Figure b]. 

Aaron: Mmhmm. [Agreeing] 
Neil: Right, look, if we do it again. [Nigel places gray trapezoid on top of the pink trapezoid] Same 

size [pointing to quadrilaterals created by the difference in the yellow and pink trapezoids 
and pink and gray trapezoids to indicate these amounts are the same]. Put that one on [Nigel 
places the purple trapezoid on top of the stack] Same size [referring the quadrilateral formed 
by the difference in purple and grey trapezoids]. 

TR: So what did you notice? 
Neil: It’s like, this quadrilateral [pointing to quadrilateral shown by the differences Figure b] keeps 

going I guess, it’s added on to that [pointing to each layer of the stack of trapezoids]. 
TR: That, that piece we’re adding on to the amounts of change is always the same? [Nigel nods in 

agreement as TR speaks] 
Neil: [as TR is completing his remark] Yeah.  

In this conversation, Neil characterized the amount being added to each trapezoidal AoC 
manipulative as equal (i.e. constant AoC of AoC). We conjectured from activity (e.g., adding 
consecutive trapezoids to the stack), agreement throughout the conversation, and their later activity, 
that Nigel and Aaron also understood that the relationship between area and side length exhibited 
constant AoC of AoC. We provide evidence for this shortly. 
Beginning vertical mathematization for AoC of AoC 

After identifying non-numeric constant AoC of AoC using informal representations, the TR 
prompted the students to create a table of values as a way to normatively represent such a 
relationship (i.e., an instance of vertical mathematization). His goal was for students to consider how 
the constant AoC of AoC would impact the numeric values in the table. The TR designated the 
smallest gray triangle as having an area value of one, and with this value of one, the students 
identified the purple trapezoid as having an area of three units and the total area of the resulting 
triangle as composed of four units. Similarly, when adding the pink trapezoid to the total area, Neil 
identified the area of the pink trapezoid as “seven,” then immediately described the total area as 
“seven plus nine,” with nine being the total area of the previous triangle. We infer Neil understood 
that in order to find a new total area he must first identify the AoC of area from the previous base 
length to the new base length and add that AoC-value to the previous total area. Using this reasoning, 
the three students completed their table (shown in Figure 2d).  

To build on the students previously identifying non-numeric constant AoC of AoC, the TR asked 
the students how the values they had identified for the trapezoidal AoC manipulatives (i.e. first 
difference), and the differences in these (i.e. second difference), were represented in their table. As 
part of this process, the students identified the differences with Aaron notating with arrows and 
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values (e.g., ‘+3’, ‘+5’) the AoC from one consecutive area to the next (seen in Figure d). As Aaron 
identified several AoC-values and notated them besides the corresponding total area values in the 
table, he spontaneously described how the constant AoC of AoC was represented to his peers. 
Pointing to the ‘+3’ and ‘+5” written adjacent to the table, he said, “It’s two” and then pointed to the 
quadrilateral made by differences of the AoC pieces (Figure c). We infer Aaron was connecting their 
informal identification of the constant AoC of AoC with the manipulatives to the changes in the AoC 
represented in their table. 
Moving to a model for constant AoC of AoC 

After each group identified the constant AoC of AoC in the table, we provided them with new tasks 
(example shown in Figure 1d) representing volume and length values for some new hypothetical 
situation. Indicative of the students engaging in extending their model of the Growing Triangle Task 
to a more general model for constant AoC of AoC, on the first task Aaron drew a table with the 
coordinate values, found the first AoC in the second quantity (‘+1”, “+2”), then identified an AoC of 
AoC value of ‘+1”. Using the constant second difference, Aaron found the next first difference (‘+3’, 
shown in Figure 3a) and used this value to determine the next volume-value of eight. In the second 
task, Nigel engaged in compatible activity with a second difference value of ‘-2’ (Figure 3b). We 
infer the students leveraged a meaning for constant AoC of AoC to calculate values of new points in 
a given relationship (i.e. a shift to a model for constant AoC of AoC). After engaging in this activity, 
we concluded the class episode by introducing the definition of quadratic (as well as cubic) growth as 
described above to extend students’ understandings of a relationship that contains a constant second 
difference as quadratic. 

 

       
(a)                             (b)                                   (c)                                  (d) 

Figure 3: (a/b) Samples of students’ vertical mathematization; post-test questions with students’ 
work on (c) quadratic and (d) cubic relationships 

 
Evidence of a model for quadratic growth 

We present data from a post-test given on Day 6 as evidence of the three students extending their 
models for constant AoC of AoC to models for quadratic growth. The post-test included two tables 
(shown in Figure 3.c/d), with options linear, quadratic, cubic, or exponential. Given the first table (as 
shown with Nigel’s work in Figure 3c), Neil and Aaron found a constant second difference and 
identified the relationship as quadratic. Nigel’s work indicates he also successfully found a constant 
second difference, but then moved on to find a constant third difference of ‘+0’ and concluded that 
the relationship was cubic. One possible explanation is that Nigel may not have noticed the constant 
second difference prior to finding the constant third difference; if this were the case, and Nigel had 
noticed the constant second differences, we conjecture he likely would have chosen quadratic. This 
conjecture is based in part on his response addressing the second table in which he and the other two 
students identified a constant third difference (shown in Figure 3d) to conclude the growth was cubic. 
Hence, we infer each student has at least begun to develop models for quadratic (and cubic) growth. 
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Discussion and Implications 
To conclude, we highlight how we were able to draw from theories on students’ quantitative and 

covariational reasoning (Carlson et al., 2002; Smith III & Thompson, 2008), designing for 
mathematical abstraction (Pratt & Noss, 2010), and RME instructional theory (Gravemeijer, 2008) to 
support students building models for quadratic growth (and potentially models for other polynomial 
growth as well). These findings extend previous examinations of middle-school students developing 
meanings for quadratic change (e.g., Ellis, 2011a) by describing how they leveraged their non-
numeric quantitative and covariational reasoning to identify constant AoC of AoC before 
representing such relationships numerically. 

We intend for our description of the task design and sequence to highlight ways in which these 
theories can work together to inform the design of a task sequence that is responsive to students’ 
reasoning activity. For example, designing for mathematical abstraction supported us in developing 
manipulatives that we conjectured could support students constructing quantities, including total 
area, AoC of area, and AoC of AoC of area in ways compatible with our intentions. Further, these 
manipulatives supported students’ non-numeric and numeric quantitative and covariational reasoning 
as well as their engagement in the mental actions described by Carlson et al. (2002). Connecting 
RME to the other theories, we note how the 3D-printed manipulatives were critical as the students 
transitioned to vertical mathematization as they identified constant AoC of AoC. Similarly, we 
highlight how the students leveraged their quantitative and covariational reasoning as they moved 
from models of the Growing Triangle Task to models for constant AoC of AoC, and further to models 
for quadratic growth. 

We highlight the productive meanings for quadratic growth the three students described here 
developed as part of this study, and offer this research as both an existence proof and starting point 
for future researchers interested in exploring how to support larger populations of middle-school 
students in leveraging non-numeric and numeric quantitative and covariational reasoning to develop 
important mathematical ideas including quadratic and cubic growth. Integrating activities like these 
with activities described by Ellis (2011a), for example, may support students in developing more 
productive meanings for AoC and quadratic growth. Future researchers may be interested in 
exploring this possibility. 
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We introduce a methodology for diagramming the ways students use sequences of mental actions to 
solve mathematical tasks. We studied 12 pre-service teachers as they solved a set of fractions tasks, 
ranked by cognitive demand. We present the unit transformation graphs for one of those pre-service 
teachers, to illustrate how she experienced and met cognitive demand across the fractions tasks. 
Specifically, the graphs illustrate how sequencing mental actions places demands on working 
memory and how units coordination structures can offload some of that demand. 

Keywords: Cognition; Learning Theory; Number Concepts and Operations; Problem Solving.  

Prior mathematics education research from a Piagetian perspective has identified students’ 
construction and transformation of units as central to their development of number, extended to 
rational numbers and even algebraic reasoning as generalized arithmetic (Hackenberg, 2013; Steffe 
& Cobb, 2012; Steffe & Olive, 2010). The present study was motivated by a desire to explicitly 
identify mental actions that undergird the construction and transformation of units in the context of 
fractions. For example, students might construct 1/7 as a unit, which has a one-to-seven relationship 
with a whole unit. This relationship might be established by the mental action of partitioning a 
continuous whole into seven equal parts. Conversely, the relationship could be reversed by iterating a 
1/7 part seven times to reproduce the whole. Thus, partitioning and iterating constitute reversible and 
composable mental actions that can be used to construct a 1/7 unit and transform it back into the 
whole unit (Wilkins & Norton, 2011). 

The purpose of this paper is to introduce a methodology for modeling students’ mathematics by 
explicitly identifying the sequences of actions and unit structures they use to solve mathematical 
tasks. Unit transformation graphs (UTGs) account for the constraints of working memory in 
sequencing actions, as well as the power of unit structures in offloading demands on working 
memory. We share the case study of a pre-service teacher (PST) with relatively high working 
memory and the ability to assimilate and operate on two-levels of units. Findings (and the UTGs 
themselves) illustrate how students might use their units coordinating structures to chunk sequences 
of actions into single units, thus reducing the cognitive demands of mathematical tasks. 

Theoretical Framework 
Mathematics educators have begun to explicitly account for students’ actions in building models of 

their mathematical reasoning. Recent examples include activity-effect relations (Tzur & Simon, 
2004) and the Learning Through Activity framework (Simon Placa, Avitzur, & Kara, 2018). Similar 
to those models, UTGs explicitly identify the mental actions students use to construct and transform 
units, but have two distinguishing features. First, they account for the role of working memory in 
sequencing actions. Second, they explicitly account for the role of unit coordinating structures in 
reducing demands on working memory. 
Mental Actions for Constructing and Transforming Units 

Following Piaget (e.g., Beth & Piaget, 1966), we characterize mathematical actions (operations) as 
mental actions that are potentially reversible and composable. We are particularly concerned with 
operations students use to construct and transform units. For example, a student might construct a 
unit by isolating a collection of items, treating them as identical, and taking them as a whole—a 
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mental action called unitizing (Steffe, 1991). Students might also unitize a continuous span of 
attention, whether it be time, length, area, or volume. Once constructed, units can be transformed into 
other units: students might iterate a unit, making copies of it and integrating the copies within a new 
composite unit (a unit composed of units); or they might partition a unit into equal parts, forming 
smaller units. 

Steffe (1992) originally defined a units coordination as a distribution of the units within one 
composite units across the units of another composite unit. For example, in determining the value of 
7 times 4, a student might distribute seven 1s across the four 1s that comprise 4, making a sequence 
of four units of seven units of 1. This definition orients our thinking about how units might be 
transformed into other kinds of units, but we include additional transformations as units 
coordinations. The aforementioned operations of unitizing, partitioning, iterating, and distributing are 
all potentially reversible and composable, and all can be used to transform units into other units. In 
addition, disembedding enables a student to remove a unit, or collection of units, from a composite 
unit, without destroying the composite unit (Steffe, 1992). The student maintains the composite unit 
while considering some of its parts as units separate from that composite unit. 
Sequencing Operations in Working Memory 

Students might need to perform a long sequence of operations to solve a mathematical task. In our 
framework, the cognitive demand of the task would increase with the length of this sequence. This 
perspective aligns with Pascual-Leone’s (1970) characterization of working memory as a mental-
attentional operator (the M operator). “Working memory involves the process of holding information 
in an active state and manipulating it until a goal is reached” (Agostino, Johnson, & Pascual-Leone, 
2010, p. 62). It is a limited resource used to implement mathematical problem solving strategies (Bull 
& Lee, 2014; Swanson & Beebe-Frankenberger, 2004) and one that predicts children’s mathematical 
achievement (Blankenship et al, 2018; De Smedt et al, 2009). 

In the context of mathematical problem solving, Pascual-Leone (1970) characterized this limited 
capacity (M-capacity) as “the number of separate schemes (i.e., separate chunks of information) on 
which the subject can operate simultaneously using his mental structures” (Pascual-Leone, 1970, p. 
302). Commensurate with other measures of working memory, Pascual-Leone (1970) found that 
adults can typically hold in mind 5-7 schemes at once. In numerical contexts, such as solving 
fractions tasks, schemas might refer to the operations students use to construct and transform units. A 
student might hold in mind a sequence of seven such operations, but fractions tasks may involve 
multiple levels of units (e.g., the whole, unit fractions, measures of a unit fraction) with many 
transformations between them. A student might offload some of that demand on working memory 
through the use of figurative material, such as drawings or notations, or by assimilating some of the 
units and unit transformations into existing cognitive structures: units coordinating structures. 
Units Coordinating Structures 

In the absence of structures for assimilating multiple levels of units, each unit or unit transformation 
(e.g., partitioning a whole into n equal parts) would place separate demands on working memory. 
However, those units and the operations that transform them can be organized within units 
coordinating structures (Boyce & Norton, 2016; Hackenberg, 2007; Ulrich, 2016). The rectangle on 
the right side of Figure 1 represents a two-level structure for coordinating units—one that would 
organize the previously-described one-to-seven relationship between a whole unit and the unit 
fraction, 1/7. Note that the structure contains two units and a pair of reversible mental operations 
between them: the whole can be transformed into seven equal parts by via the operation of 
partitioning; and this mental action can be reversed by iterating one of those parts seven times, 
reproducing the whole. This unit coordinating structure acts as a single unit that can be used to 
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assimilate two units and an action (in either direction), thus reducing cognitive demand from three to 
one. 

 

  
Figure 1: Units coordinating structures 

The mathematical power of units coordinating structures is well documented (Boyce & Norton, 
2019; Hackenberg, 2007; Tillema, 2013). For example, Hackenberg and Tillema (2009) 
demonstrated that students who can assimilate three levels of units are able to reason through 
fractions multiplication problems in ways that other students cannot, including students who can 
assimilate two levels of units. This power can be explained, at least in part, by reduced demands on 
working memory. When units are assimilated into existing structures, working memory is freed to 
focus on ever more complex tasks. This structuring and offloading also explains the sense in which 
mathematics builds upon itself. 

Methods 
The data collected and analyzed for this paper is part of a larger project investigating the cognitive 

development of mathematics, behaviorally and neurologically. This paper reports on results from 
video recorded behavioral data. 
Data Collection 

Participants consisted of PSTs at a large university in the mid-Atlantic United States. All 
participants were enrolled in one of two sections of the same mathematics course—Mathematics for 
Elementary School Teachers—taught by the same instructor. PSTs comprise a special population of 
participants for the study because they practice metacognitive skills in the context of solving 
elementary school mathematics tasks. Specifically, they are encouraged to explain their reasoning 
when solving tasks. Twelve PSTs agreed to participate in the interviews.  

Interviews lasted about 75 minutes and occurred in three parts: an assessment of their available 
structures for coordinating units (e.g., two-level structures like the one shown on the right side of 
Figure 1) using interview tasks from prior studies with middle school students (Norton et al, 2015); 
an assessment of working memory using backward digit span with digits read aloud (Morra, 1994); 
and the fractions tasks. Using the units coordination and working memory assessments from the first 
two parts of the interview, a subset of ranked fractions tasks was selected for each PST. Tasks were 
ranked by cognitive demand based on the number of unit constructions and transformations that 
might be required to solve the task, without reliance on units coordinating structures. We intended for 
initial tasks to impose low cognitive demand on PSTs and for later tasks to impose high cognitive 
demand, so generally, PSTs assessed with lower M-capacity began with simpler (lower ranked) 
tasks. Table 1 presents the four tasks on which we focus in this report. 

 
Table 1: Fractions tasks (adapted from Hackenberg & Tillema, 2009) 

Task # Rank Task Description 
5 8 Imagine this [drawing a rectangle] is 5/9 of a whole candy bar. So, how could you 

make 1/9 of the whole candy bar from what you have? 
6 10 Imagine a rectangular cake that is cut into 15 equal pieces. You decide to share your 

piece of cake fairly with one other person. So, how much of the whole cake would that 
person get? 
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Data Analysis 

Data analysis reported here consists of real-time and retrospective analysis of PSTs’ responses to 
the fractions tasks. During the interview, we assessed PSTs’ abilities to solve the tasks without using 
figurative material in order to determine whether to continue to more challenging (higher ranked) 
tasks. The interview continued with higher and higher ranked tasks until we inferred that the PST 
was unable to produce correct or confident solutions. In some cases, PSTs were explicit about their 
own perceived limitations; e.g., “I have no idea” or “my brain is confused now.” 

After all interviews were completed, the team began retrospective analysis of the behavioral video 
data. The videos were analyzed, PST by PST, moving from lowest ranked to highest ranked tasks. 
For each task, the video analysis consisted of two main parts: the first consisted of classifying the 
demand of the task for the students, and the second consisted of creating a UTG for the PST’s actions 
in solving the task. A constant comparative analysis was used throughout both parts of analysis to 
promote consistency. 

Analysis of the videos was done together by the research team with at least two of the three team 
members present. Each task was assigned a classification for the cognitive demand of the task, based 
on behavioral indicators during the PST’s response to the task. Cognitive demand was coded as Low, 
High, or Over, depending on how challenging the task seemed to be for the PST in managing the 
units and unit transformations involved in solving the tasks. The Low code indicates that the PST’s 
response was quick and confident. The High code was used when the PST struggled presumably 
operating near the limits of their M-capacity, as indicated by expressed doubt, rehearsing the task’s 
solution, and requests for the task to be repeated. The Over code indicates that the task was beyond 
the students’ ability to solve without figurative material or help from the interviewer. 

Once cognitive demand codes were assigned for each task, the research team went back and 
watched the video again in order to build a UTG for each task’s solution, illustrating the sequence of 
actions (operations) the PST used to reach a solution. The graphs serve as explanatory models for the 
PSTs’ observed behavior in solving tasks by drawing on cognitive resources. Using the constant 
comparative method, we iteratively returned to prior graphs to ensure the models were consistent 
across tasks and PSTs. Adjustments were made to prior graphs as new features emerged in newer 
graphs. 

Results 
We chose to focus on PST 22 because she was one of two PSTs with the highest assessed M-

capacity (7), and of those two, was the only PST operating at the lower stage of units coordination 
(constructing two-level unit structures but not three-level unit structures). Here, we analyze her 
responses to the four tasks shown in Table 1. 
Task 5 

PST 22 exhibited Low cognitive demand in solving Task 5. As soon as the task was posed, she 
responded, “well if you have five-ninths of it, taking away four ninths would give you one-ninth 
because five minus four is one.” The UTG shown in Figure 2 illustrates the mental actions we 
inferred PST 22 used in solving the task. 

PST 22 seemed to rely on a part-whole understanding of fractions. Rather than structuring 1/9 as a 
one-to-nine size relation between the 1/9 part and the whole, PST 22 seemed to partition the whole 

8 12 Imagine you are at a party and a cake is cut into nine equal pieces. Two people show 
up to the party late and you decide to share your piece of cake with them. So, what 
fraction of the whole cake do the latecomers get together? 

10 14 Imagine cutting off 1/4 of 5/6 of a cake. So, how much is that of the whole cake? 
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into nine parts (P9) and, reversibly, take their unitized collection as the whole (U9). The PST needed 
to disembed five of those parts from the whole (D5) to establish 5/9 as five parts out of nine equal 
parts in the whole. Then, taking away four of those five parts, through a second use of disembedding 
(D1), would leave 1/9 as one out of nine equal parts in the whole. As such, PST 22 would experience 
Task 5 as having an M-demand of 3, well below her M-capacity of 7. 

 

 
Figure 2: Making a unit fractional part from a non-unit fractional part (Task 5) 

Tasks 6 
Tasks 6 involved finding a fractional value (relative to the whole) when taking a unit fraction of a 

unit fraction. With the composition of two fractions, these tasks should impose additional cognitive 
demands, relative to Task 5. These increased demands are indicated in the PSTs’ behavioral 
responses to the tasks, but behavioral indicators did not meet the threshold of High cognitive demand 
and, so, we categorized them as Low. 

PST 22’s response to Task 6 was immediate: “You get one fifteenth of the cake and split that in 
half. My first thought was one-thirtieth of the cake, because [makes splitting motion with hands in 
the air] splitting that in half, like if you were to split every piece of fifteen in half, then that would be 
like one thirtieth of the entire case.” She seemed to imagine partitioning each one of the fifteen 
original parts into two parts to produce 30 parts in the whole. This mental action aligns with the 
distributing operation (T2:15), but the production of 30 equal parts would be essential for PST 22’s 
understanding of 1/30 as one out of 30 equal parts in the whole. We take such responses as indication 
PST 22 used her units coordinating structures to assimilate fractions as parts out of wholes. As 
indicated by the UTG (Figure 3) PST 22 experienced an M-demand of 4 for this task. 

 

 
Figure 3: Finding a unit fraction of a unit fraction (Task 6) 
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Task 8 
With the introduction of a non-unit fraction, Task 8 would also introduce one more unit and one 

more action to coordinate, increasing cognitive demand by 2 over Task 6. Indeed, the UTG for PST 
22’s response to Task 8 (not shown) would be structurally identical to the one for Task 6 (Figure 3), 
except it would include an additional action of disembedding two units from 27 (D2) and the 
resulting unit of 2/27. Increased demand became evident in PST 22’s response, which we took as 
indication of High demand. 

 
PST 22:  So, it’s split up into nine equal pieces. So, then, you would split one ninth into…Two 

people come, but you still have a little bit? So, that… So, you would split that up into three. So, 
then I… Well, I guess you would do one ninth times two thirds to get how much they equal, like 
how much both their pieces would be. And then whatever that is, I guess it would be… two 
over… two eighteenths? Wait, that doesn’t seem right. [pauses for five seconds] I feel like… I 
mean, I guess… You take those nine pieces, splitting that one ninth into thirds. But to find out 
how much two of those thirds are, you’d multiply one ninth by two thirds… Or no. You’d… 
you’d multiply the one ninth by one third, and then just do that twice? I don’t know if that’d give 
you the same answer. 

Researcher:  Okay. Uh, let’s… Maybe I can help you. 
PST 22:  Okay. 
Researcher:  If you want me to be your calculator again, I’ll do it. 
PST 22:  [begins to draw on table with finger] So, you do one ninth, which divided by three, so you 

could times it by one third. So, then you’d have one over um… [pauses for five seconds.] Oh 
wait… [whispers to self] Three times nine, that’s twenty-seven. Oh no, one over twenty-seven. 
And then you multiply that by two… to get two-thirds or to get two parts of the thing… So, then I 
guess… What’s one over twenty-seven times two? Is that just two-twenty-sevenths? Okay. 

Researcher:  Nice, I like the way you reasoned through it. Yeah. 
PST 22:  Okay. I was like, because I was thinking one over twenty-seven times two over one and I 

was like I guess that’s just two, twenty-sevenths. 

This response indicates that PST 22 tried to rely on the standard algorithm for multiplying fractions 
but struggled to reconcile it with prior reasoning. She began as she had in Task 6, partitioning the 
whole, disembedding one of those parts, and then partitioning it into smaller parts. However, in 
contrast to Task 6, she then began referring to a fraction multiplication, 1/9 times 2/3. Fraction 
multiplication might have helped her keep track of the additional unit involved in this task (the 2 in 
2/3), but she was not sure that the multiplication of fractions would generate the correct result. Her 
concerns were heightened when she mistakenly multiplied 9 times 2, instead of 9 times 3, to produce 
two eighteenths: “that doesn’t seem right.” So, she reverted to operating on the 9 units, partitioning 
them into thirds, which she was then able to reconcile with 1/9 times 1/3. Thinking of the task as the 
multiplication problem, 1/9 times 2/3, then did work for her by maintaining the 2 in two-thirds: “and 
then you multiply that by 2 to get two-thirds, or to get two parts of the thing.” 

We found PST 22’s persistence in response to Task 8 impressive and indicative of her high M-
capacity. Ultimately, she reasoned with parts out of the whole (“two parts of that thing”), as she had 
before, but was able to meet the cognitive demands of the task by organizing her operations around 
the fraction multiplication algorithm. So, while the task was highly demanding for her, we see 
evidence for how algorithms, when made meaningfully related to (or reconciled with) operations, can 
offload the demands of mathematical reasoning. 
Task 10 

For Task 8, the PSTs needed to distribute the new partitioning (thirds) across the nine units making 
up the whole, and then take two of the resulting parts (1/27ths). For Task 10, she needed to distribute 
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fourths across both the five parts in five-sixths and the six parts in the whole. The increased demands 
caused PST 22 to lose track of the six parts making up the whole. Figure 5 presents the UTG for this 
response. 

PST 22:   You’re cutting off one fourth of five sixths of a cake? 
Researcher:  Yes. 
PST 22:  [uses hands to show number of pieces on the desk and begins talking to self] So, you’d 

have, so you’d have six pieces…and out of those five…you want to cut off one fourth of that. 
Um…I guess you would…I mean I guess you could split those five pieces into four and get one 
of those, but I’m trying to think like numbers-wise what that would...I. well… [pauses for seven 
seconds] I guess of those five pieces you could…Split them into…Like you could get a…Split 
them into twenty pieces because five times four is twenty and then, um, you would take one 
fourth of that… I guess it would be five pieces. Yeah, it would be five pieces of that twenty to 
find the one fourth of the five sixth. Is that, do I need to explain it more? 

Researcher:  Okay, uh let’s… 
PST 22:   Which would be, do you want me to draw it? [reaches towards paper] 
Researcher:  Well tell me the final answer and then we can draw it. 
PST 22:  Um, oh gosh it would be… [pauses for four seconds] Splitting twenty, it would be 

five…Well it would be five twentieths, which would equal one fourth, so like five of those, but 
then I don’t know how to figure that out into sixths. I think that’s my… 

Researcher:  Yeah that’s cool, I like the way you’re reasoning. Let’s draw it, and I think you will 
figure it out. 

 

 
Figure 4: Finding a unit fraction of a non-unit fraction (Task 10) 

Once again, PST 22 seemed to conceptualize the initial fraction (5/6) as a part-whole relation, 
partitioning the whole into six equal parts and disembedding five of them. This inference is 
supported by the PST’s verbalization, “so you’d have six pieces…and out of those five.” As PST 22 
tried to find one-fourth of 5/6, she operated only on the five disembedded parts and lost track of the 
sixth part making up the whole. Thus, rather than fourthing 5/6, as originally intended, she ended up 
distributing four parts into each of the five parts, producing 20 parts, and taking one-fourth of those 
20 parts instead. 

Discussion 
In line with the stated goals of PME-NA, we aimed to elucidate the psychological aspects of 

learning mathematics. Specifically, UTGs integrate the psychological construct of working memory 
with a construct from mathematics education research—units coordination—to explain how 
mathematics arises through the coordination of students’ own mental actions (Beth & Piaget, 1966). 
The case study of PST 22’s solutions to a ranked set of fractions tasks demonstrate the explanatory 
power of UTGs. 
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With an assessed working memory of 7, PST 22 would have experienced even Task 5 as highly 
demanding; her solution to the task involved four units and three transformations between them. 
However, PST 22 assimilated some of those units and transformations into two-level structures, thus 
chunking them into single two-level units so that she experienced Low cognitive demand. As a 
theoretical construct, chunking has its roots in cognitive psychology (e.g., Pascual-Leone, 1970), but 
UTGs illustrate how chunking can take a particular form in mathematics, as units coordinating 
structures (Steffe, 1992; Hackenberg, 2007). 

Offloading cognitive demand with unit structures afforded PST 22 the ability to account for 
additional units and transformations in progressively more demanding tasks. In looking at the UTGs 
across the four tasks (as illustrated in Figures 2-4), we see how PST 22 introduced additional 
transformations (such as distributing) and units to solve Tasks 6 and 8, until she reached her 
threshold, with 7 units/transformations. Having reached that threshold, she was not able to proceed in 
solving Task 10, but we might imagine ways that she might further structure units into chunks to 
increase her mathematical power. 
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This research project focuses on identifying the difficulties that children between 6 – 7 years-old 
have in learning natural numbers, when working a teaching model with a Von Neumann formal 
mathematical basis. In this study, we present the analysis of the experimentation with a first-grade 
class in the construction of zero and one numbers, contrasting the results with a case of the clinical 
interview. Our methodological theoretical framework is the Local Theoretical Model (LTM) and its 
four components: Formal, Cognitive, Communication and Teaching. With the theoretical 
contribution of each component, the categories of analysis are designed to observe and explain 
difficulties in the use of the Mathematical Sign System (MSS) involved in the construction of the first 
natural numbers, using iteration and the recursive process.  

Keywords: difficulties, learning, natural numbers. 

Research Problem 
Learning numerical notions remains a concern in research and education policies. This project has 

been developed under the perspective of Educational Mathematics, stating that the learning 
difficulties that elementary school children have are not found  in what the teacher does nor in the 
students, but in mathematics itself. Therefore, you have to know in depth the mathematical basis of 
what is taught. 

In the curriculum of Mathematics primary education in Mexico (SEP, 2011) the development of 
numbers is focused on the use of cardinality in different contexts in contrast to that of ordinality. 
From the first degree, the number zero is used as a figure in the quantity representation and as an 
empty column, but there is no conceptual treatment. The lack of a mathematical conceptualization in 
teaching natural numbers as the basis of the arithmetic structure is accompanied by teaching practices 
that continue with the tradition of mechanization, memorization and exercise of the oral and written 
number sequence, and of algorithms of addition and multiplication. 

From the formal point of view, Cantor and Peano contributed to the conceptualization of natural 
numbers. For Cantor, it is through the cardinality relations of the sets (Mosterín, 2000, pp. 105-108). 
While Peano proposes an axiomatic that involves a formal conceptualization of numbers (Op. Cit. pp. 
54-55). However, this goes against how children cognitively process the first actions to order the 
world. It is considered essential to begin the learning of natural numbers with the construction of the 
number zero as it is a contribution to mathematical conceptualization and a contribution that goes 
beyond the numbering system, independent of the debates on its origin. 

Therefore, the orientation of this work is to look at learning and observe learning difficulties from a 
formal mathematical proposal. According to Filloy, Puig & Rojano (2008), the analysis provided by 
the formal component indicates that difficulties must be sought in the most primitive mathematical 
actions. For the learning of natural numbers, we found these actions in the iteration. Hamilton & 
Landin (1961) introduce us to the construction of natural numbers based on the works of the logician 
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mathematician Von Neumann, who uses the theory of sets and summarize the axiomatic of Peano in 
the principle of finite induction and iteration; each number is constructed from a finite number of 
iterations; order is implicit by the same construction.  

The research questions are 1) What elements of the formal model in the terms referred to by 
Hamilton & Landin (1961) should we consider designing a Teaching Model that translates into 
specific activities for children aged 6 to 7? 2) What difficulties emerge when children work from the 
construction of the number zero and one, based on that teaching model? 

To answer these questions, we propose as a general objective to identify students’ learning 
difficulties in the construction of the numbers zero and one, in the framework of a teaching model 
based on Von Neumann.  

The particular objectives are 1) Design and implement a teaching model by translating the Formal 
Model into sequences of specific activities, for the construction of the first natural numbers. 2) 
Identify and explain the difficulties that children 6 to 7-year old’s have, when working with a Von 
Neumann’s-based Teaching Model. 
Theoretical Framework  

The LTM (Filloy, et. al. 2008) is a theoretical and methodological framework for the experimental 
observation on research in Educational Mathematics. LTM relies on Peirce's semiotic approach 
(1987) to make sense of MSS, a theory for the interpretation of experimental observations. MSS 
focuses its attention on the production of intertexts through the reading/transformation of 
mathematical texts in relation to other texts. This allows users to produce meaning and mathematical 
meaning to communication processes that occur in classrooms, when activity sequences are 
implemented for a particular purpose. The sense of the local focuses the analysis on a specific 
phenomenon through the four components: formal, cognitive, communication and teaching.    
The design of this LTM has been structured according to the four components   

Formal. Von Neumann Model (Hamilton & Landin, 1961) proposes a logic of construction that 
requires MSS involved in natural numbers, starting with zero: "Zero is the empty set; i. e., 0 = Ø", it 
continues with the number one as the set containing element zero: "1 = 0 = {∅}". From this 
moment on, enter the successor definition: 

The set ! ∪ {!} is the successor of the set !. If ! is a set and if there is a set ! such that ! is 
the successor of !, then ! is a successor. For each set !, the successor of ! is !'. Thus, 
1 = 0′, 2 = 1', 3=2’, etc. (Op. Cit. p. 77).  

Each ordinal is the set of all the ordinals that precede it. Each of these sets is ∈ −ordered by the 
same construction, where for all ! and for all ! at least one of the following conditions is met: 
! ∈ !, ! = !, !" ! ∈ !. Natural numbers are defined as “! is a ∈ −!"#$"$# every nonempty subset 
of ! has a leading element, if ! ∈ ! then ! ⊂ !, if ! is not empty then n is a successor if ! ∈ ! and ! 
is not empty then ! is a successor” (Op. Cit. 1961, p. 81). To count a set A is a one-to-one 
correspondence !: 1, ! → ! between [1, !] y !, where ! ∈ !.” Cardinality is: If ! is the result of a 
count of !, then A has n elements, or the number of elements in A is n, or the cardinality of A is 
n. We also denote the cardinality of ! by # ! .  (Op. Cit. pp. 99-101). 

The sum is given, naturally when obtaining the successor, by iteration and starting from !, is ! +
 1. When n is a set, then the sum is the union of disjoint sets: ! ∪ ! and if ! and ! are their cardinals 
respectively, then ! + !. 

Cognitive. Based on the contributions of the theory of activity (Talizina, 2001) we expect to identify 
difficulties that obstruct (OB) students’ competence in the use of MSS involved in the construction of 
natural numbers due to the ways in which children aged 6 to 7, have learned to use natural numbers 
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in everyday life. These obstructions can hinder the transition from action to cognitive operation to 
foster the conceptual numerical development of zero, one and the notion of a successor. 

Communication based on semiotics (Peirce, 1987), we analyzed induction, deduction and abduction 
arguments as processes of signification (ASP). The categories are built with significant relations to 
interpret what children do and say in the production of meaning and processes of the significance of 
the actions they perform in numerical activities. This is the Sense Endowment (SD). The logic of 
using MSS is related to iteration and recursion processes in the construction of natural numbers. 

Teaching. It is understood as a collection of concrete texts that the students can understand, so that 
they gradually convert concrete texts into abstract texts, with a conventional mathematical meaning. 
Researchers designed a Teaching Model to translate Von Neumann's formal model into specific 
activities with the use of manipulative material. 

Methodology Design and implementation of the Teaching Model. The design of the activities 
was carried out according to the mathematical definitions of the Von Neumann sequence according 
to Hamilton & Landin (1961, pp. 74 – 112), we have called them principles (Pi): 

P1: Beginning the construction with zero. The name of the empty set is zero.  
P2: Building the number one as a successor to zero number. Using the recursive process 0 = ∅; 1 =
∅ ; 2 = ∅, ∅ ; 3 = {∅, ∅ , {∅,{∅}}}; and so on. Keys are replaced with bags, as shown in Figure 

1. 

 
Figure 1: Recursive number processing, using sachets 

P3: One successor has been called the following. 
P4: Definition of Set n, as natural number. 
P5: Counting and cardinality.  
P6: Addition. 
The use of a semi-straight has been included to represent the order of the numbers, from the interval 

definition "If !, ! ∈ !, !, ! = {! | ! ∈ ! !"# ! ≤ ! !"# ! ≤ !}. [!, !] is the interval of ! to b." 
(Op. Cit. 1961, p. 97).  

We selected two sequences of activities of the teaching model to present them in this work briefly 
described as follows:  

Guess I am (P1). -The empty set as the number zero. 
• Teacher asks the students to look at an empty clear plastic bag and say what it contains 

(possible answers: nothing and empty). 
• Teacher asks the students how to name this empty bag. The intention is to relate the notion of 

numbers to the bags to refer to bag/number. 
• Students are asked by what number the empty bag can be named with.  
• When students name the word zero, they are asked to identify the label of the number zero and 

paste it on the outside of the bag. 
• Teacher asks students if they already know this number and what they think it is useful for.  
• Teacher asks where students can paste it on the semi-straight (drawn on the board). 
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Can we build the next one? (P2, P3). - Construction of the successor. 
• Once the empty set is related and named as number zero, the teacher asks: Can we build the 

next one? (The next is number one, it's the bag/number that contains item zero). 
• Teacher takes another empty bag and asks students how they can build the next one. Teacher 

asks who the empty bag is, so that they name it as zero, they are asked to stick the zero label 
outside this empty bag/number and put it in the new bag named as number one; then stick the 
label for item one outside the bag. 

• They are asked where to paste it in the semi-straight (it is expected to be after zero, building 
the sense of linear order). 

• With this logic of construction, the successors are built, reflecting on each construction, who is 
before, who is after, who is in all numbers, who has no ancestor, who contains each 
bag/number. 

This teaching model was used in the first phase when working with a first-grade class from a public 
school in Mexico City. Based on quantitative (written exercises) and quantitative (performance in 
each session) the students were classified into three strata High, Medium and Low. We selected one 
student from each stratum to participate in the clinical interview. The second phase was carried out in 
the next school year, with the application of the clinical interview.  

The results of the analysis of model experimentation were published in (Rodríguez, et. al 2018) and 
(Rodríguez, et. al. 2019a, 2019b). Due to the space available in this report, we expose only a 
fragment of a group session and a snippet of Daniel's interview (low stratum). 

Observation of the empirical experience with analysis categories. In the analysis of the 
experimentation of the Model, we identified recurring difficulties in the children's performances. 
These difficulties are grouped into three axes 1) The use of pragmatic/intuitive and spontaneous 
knowledge, that is, difficulties in identifying zero as a number; identify the successor and ancestor of 
any number. 2) Semantic use of numbers in rendering and counting actions, that is, difficulties in 
recognizing the number zero as an empty set, recognizing that zero is the only number belonging to 
any successor, identifying zero as the point of origin in the straight, and recognizing that every 
successor contains all his previous ones. 3) Syntactic use in operations, that is, difficulty using the 
form ! ∙ 10 + !. 

To understand and explain the difficulties and based on the theoretical framework, there are three 
categories of analysis designed, Cognitive Trends that constitute obstructions for learning (OB); 
Induction, Deduction and Abduction Arguments as Significance Processes (ASP) and, Significant 
Relations Indicators for Sense Endowment (SD).  

Finally, to contrast whether the difficulties continue, or new ones appear, the clinical interview took 
place and it was interpreted based on the same categories of analysis.  

The following is assigned as follows: Teacher (M), Children All (Ns), Nicole (Ne), N1, N2... refers to 
any child except those whose initial letter is the name of a specific child, Interviewer (E) and Daniel 
(D). 

Fragment of dialogue of the activity sequence, "Guess I am": 
M: What's with the bag? [Teacher shows the empty bag]. 
N1: Nothing [The teacher inserts some objects into the bag and then empties it in front of them]. 
M: How does the bag look? 
N2: Empty. 
M: How do we know that my bag is empty? 
A: Because it has nothing in it. 
F: If you don't put something in it, you have nothing. 
E: If it is empty it is not heavy. 
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Ne: If you put something in it, then it’s full. 
E: Or by numbers. 
M: What did you say? 
Ns: By numbers. 
M: And, what  number do you think should be here? 
Ns: One, two, three... [Labels shown from numbers 0 to 9]. 
N3: A zero. 
M: Who's that number? 
Ns: Nothing. 
Ns: Zero. 
M: Who wants to go to the front to look for number zero and stick it onto the bag? 
K: Here it is [Karen chooses the label with number zero]. 
M: Where do I put it? [The teacher displays the bag/number zero, to place it on the semi-straight 

painted on the board]. 
F: At the end [Points to the left end of the straight but use the word end]. 
M: At the end?  
F: Ah! At the beginning! [He corrects his answer]. 

Fragment of dialogue of the activity sequence, "Can we build the next one?" 
M: Can we build the next one?  
Ns: The one. 
M: How are we going to build the next one? 
Ne: Take another bag and put one on it. 
M: What do we have here? [showing the empty bag]. 
Ns: Empty. 
M: Empty, but I need... 
Ns: The one. 
M: How are we going to do it because this bag is empty? 
Ns: Put the one on it! [The teacher inserts the bag of the zero that was previously built and asks them]. 
M: How many bags are inside? (...) 
Ns: One. (...) 
M: What number was formed here? 
Ns: One. 
M: Why is it one Emiliano? 
E: Because the one comes first. 
M: Nicole… 
Ne: Because the one goes after the zero. 
M: Where do I put it? 
Ns: In  first place. 
M: Who's in the first one? [points to zero that is placed on the straight]. 
Ns: A zero number. 
E: You pass it for the second [he refers to the right of the zero, on the straight]. 

Analysis of these fragments. “Guess I am”. - In this fragment we observe the difficulties of 
identifying zero as an empty set and as the origin point on the straight. The zero as an empty set is 
observed in the action of inserting objects into the bag/number and removing them, children were 
able to relate the void to words: "nothing, empty, full, put in, take out, heavy" (A, F, E, Ne). This can 
be interpreted as SD-related actions, which allow an approach to the notion of zero as empty. (A) 
makes inductive reasoning (ASP) by using the word "nothing" to justify the vacuum, giving meaning 
(SD) to the absence of elements, which gave a pattern for his peers to follow the meaning of the 
notion of emptiness. When (F) verbally states, "Because if you don't put something in, you have 
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nothing," he's making a deduction (ASP), allowing (E) to relate the weight to the vacuum, and (Ne) 
reasons inductively (ASP). Later, faced with the question of being able to name the empty bag, the 
answer to (E) allows us to observe that this is abductive reasoning (ASP), when proposing the use of 
numbers. However, for the rest of the group, it is a difficulty, which can be understood to be caused 
by a cognitive (OB) from their experiences with numbers, they have learned to repeat the number 
sequence starting with the one (Ns). While (N3) manages to follow the idea of (E) and chooses the 
number zero, which can be understood as abductive reasoning (ASP). 

The (F)’s difficulty in identifying zero as the origin point in the semi-straight, could be, because this 
student was sitting in front of the right end of the semi-straight. This cognitive (OB), of perception, 
made it difficult for him to establish a reversibility relation, to focus his attention on the semi-straight 
as an object and not only on visual perception. When the teacher questions it, he allows (F) to correct 
his answer. 

Can we build the next one? In this fragment, we see difficulties to recognize that zero is the only 
number belonging to any successor and in recognizing that every successor contains his former. 
Children identify that the successor to zero is one, so we can say that they are making sense of the 
expression "the next one". However, the difficulty remains when children do not give meaning to the 
construction, they consider they need only the label of number one (N2) "Take another bag and put 
the one on it", (Ns) "Put one on it!" This difficulty is constant in the first lines of the activity, because 
children do not make sense of the recursive process. They do not recognize that the bag/number one 
must contain at least one item. It is understood that this difficulty is due to a cognitive obstruction 
(OB) from how they have learned that numbers are only the oral and written repetitions of the 
counter sequence from one. The action of (M) by inserting the empty bag labeled with the number 
zero and asking them about the number that was formed, allowed some children to observe that it is 
number one, when it contains element zero (Ns): "One, one". But, for most children, they continue to 
associate it with label one: (E) "Because one is first," thus, observing that this difficulty is an (OB) 
with the use of reversibility relations to identify that the one's ancestor is zero; just as the zero's 
successor is the one. With the deductive argument (ASP) of (Ne): "One goes after zero", leads to (E) 
correcting his answer, using an inductive argument (ASP) when the teacher asks where to place it: 
"You move it to the second one". 

Clinical interview. The objective was to compare whether the difficulties that occurred during the 
experimentation of the model continue or new ones appear. 

Fragment of the dialogue in the sequence of activities: "Guess I am": 
E: What do you have in the bag? 
D: Nothing. 
E: Nothing and how's the bag? 
D: Empty. 
E: How do you know it's empty? 
D: Because it has nothing in it. 
E: How can you say it has nothing? 
D: It would be a little bit heavy. 
E: How can we represent this bag that has nothing, that is empty? [Daniel keeps thinking for a few 

seconds, unanswered. So, the interviewer shows him the material he has on the table: a semi-
straight, transparent rubber bags of different sizes, number labels in flexible plastic]. Can I use 
any of these? 

D: This [Daniel points to the zero-number label heap]. 
E: What is this? 
D: Zero. [Daniel sticks the number zero label on the front of the bag]. 
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E: Now that we know that this bag is empty and that it is the number zero, where do we place it on 
the line? 

D: Here [Daniel points to the left end of the straight]. 

Fragment of the dialogue in the sequence of activities: Can we build the next one? 

E: What's next? 
D: The one. 
E: What do I need to make the number one? 
D: A number inside. 
E: Who's going to be that element inside? 
D: The one? 
E: Who was before the one? 
D: Ah, zero! 
E: Zero, so what do you have to do? 
D: Grab a... [Daniel takes another empty bag, sticks the number zero label and inserts it into the new 

bag/number one]. 
E: What name am I going to give you?  
D: The one. [Daniel points and takes a number one label and sticks it on the new bag/number one]. 
E: All right! Where are you going to put it in the straight? 
D: Here [Daniel places it to the right of the bag/number zero]. 

Analysis of the fragments of the clinical interview. Guess I am. In this excerpt, we can observed 
that (D) relates the empty set to the number zero, by expressing, "it would be a little bit heavy", a 
deductive argument (ASP) that evoked the experience of the group session in the last school year, 
which, can be understood as a sense endowment (SD) to relate the notion of vacuum to the zero 
number, but it is not conventional yet. But D doubts when the teacher asks him how to name the 
bag/empty number, so (E) points out and asks, "Can I use any of these?", giving the guideline for (D) 
to choose any of the number labels. When he places it on the left end of the semi-fully, he is making 
sense (SD) of zero as the starting point of the construction and overcoming that difficulty. 

Can we build the next one? - It is observed that there is an endowment of meaning (SD) when 
recognizing that the next number of the number zero is number one. The answer "A number that is 
inside" to the interviewer's question: "What do I need to make it number one?" can be understood as 
a deductive argument (ASP) to make sense (SD) to the notion of a successor. However, when the 
interviewer asks "Who is that element inside?", evidence of D's insecurity, he answers with another 
question "The one?", which can be interpreted as a difficulty to produce a sense of use of the 
recursive process to recognize that every successor contains all of the above. The question of E "Who 
was before", allows D to evoke the construction process, remembering that the number zero is the 
one that should be inside the bag/number one: immediately takes a smaller bag and labels it with the 
number zero, inserts it into the new bag/number one. With these actions, we understand that D makes 
sense of the use of MSS through recursion. He places the bag/number one in the semi-straight of the 
bag/number zero, consolidating the sense of order by the same construction. 
Final discussion.  

We close this space by emphasizing that the general objective is to identify learning difficulties 
when taught with von Neumann's formal mathematical model for the construction of natural numbers 
and the logics of using the MSS involved in that task. 

During the experimentation, it was possible to check that the influence of the ways in which they 
have acquired numerical notions makes it difficult to understand and use recursion, but they do not 
constitute an obstacle. In the clinical interview, the recurring difficulties reappear, which are 
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overcome in less time, making efficient use and making sense of MSS through iteration and 
recursion (elementary actions for the conceptualization of natural numbers). 

For the results obtained, it seems valuable to recover the formal mathematical tradition in teaching 
from the first grades of elementary education, allowing children to participate in the construction of 
natural numbers, which gives them the possibility to consolidate generalization, as the basis for solid 
arithmetic thinking. 

Finally, we consider that the conceptual work of numbers with children aged 6 to 7 is not trivial, 
memoristic or operational; but it can make it easier to develop the concept before symbolism. What 
this work seeks is to cultivate abstract thinking, which allows children to access higher levels of 
mathematical knowledge. 
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Este Proyecto de investigación se ha centrado en identificar dificultades que tienen los niños (6 – 7 
años) en el aprendizaje de los números naturales, cuando se trabaja un modelo de enseñanza con 
una base matemática formal de Von Neumann. En esta comunicación, se presentará el análisis de la 
experimentación con un grupo de primer grado, en la construcción de los números cero y uno; 
contrastando los resultados con un caso de la entrevista clínica. Nuestro marco teórico 
metodológico son los Modelos Teórico Locales (MTL) y sus cuatro componentes: Formal, Cognitivo, 
Comunicación y Enseñanza. Con el aporte teórico de cada componente se diseñon las categorías de 
análisis para observar y explicar dificultades de uso del Sistema Matemático de Signos (SMS) 
involucrado en la construcción de los primeros números naturales, usando la iteración y el proceso 
recursivo.  
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Problema de investigación 
El aprendizaje de las nociones numéricas, sigue siendo una preocupación en la investigación y en 

las políticas educativas. Este proyecto se ha desarrollado bajo la perspectiva de la Matemática 
Educativa, planteando que las dificultades de aprendizaje que tienen los niños de la escuela 
elemental, no está en lo que hace la maestra/o, ni en los alumnos; sino en la matemática misma, por 
lo que hay que conocer con profundidad la base matemática de lo que se enseña. 

En la currícula de Matemáticas educación primaria en México (SEP, 2011) el desarrollo de los 
números está centrado en el uso de cardinalidad en diferentes contextos; en contraste con el de 
ordinalidad. Desde el primer grado, el número cero se usa como cifra en la representación de 
cantidades y como columna vacía, pero no hay un tratamiento conceptual. La carencia de 
conceptualización matemática en la enseñanza, de los números naturales como base de la estructura 
aritmética, se acompaña de prácticas docentes que continúan con la tradición de la mecanización, 
memorización y ejercitación de la secuencia numérica oral y escrita, y de algoritmos de adición y 
multiplicación. 

Desde el punto de vista formal Cantor y Peano contribuyeron a la conceptualización de los números 
naturales. Para Cantor es a través de las relaciones de cardinalidad de los conjuntos (Mosterín, 2000, 
pp. 105-108). Mientras que Peano propone una axiomatica que involucra una conceptualización 
formal de los números (Op. Cit. pp. 54-55); pero va en contra de las maneras en que los niños 
procesan cognitivamente las primeras acciones para ordenar el mundo. Se considera fundamental 
iniciar el aprendizaje de los números naturales con la construcción del número cero, por ser una 
aportación que va más allá del sistema de numeración, independiente de los debates sobre su origen. 

Por lo anterior, la orientación de este trabajo es mirar al aprendizaje y observar dificultades de 
aprender cuando los niños trabajan con una propuesta formal matemática. De acuerdo con Filloy, 
Puig & Rojano (2008), el análisis que nos brinda la componente formal nos indica que las 
dificultades deben buscarse en las más primitivas acciones matemáticas. Para el aprendizaje de los 
números naturales estas acciones las encontramos en la iteración. Hamilton & Landin (1961) nos 
introducen a la construcción de los números naturales con base en los trabajos del lógico – 
matemático Von Neumann, quien usa la teoría de conjuntos y encapsula la axiomatica de Peano en el 
principio de inducción finita y en la iteración; cada número es construído a partir de un número finito 
de iteraciones; el orden está implicito por la misma construcción; lo que  permite observar las 
acciones matemáticas más simples al usar la iteración.  

Las preguntas de investigación son: 
¿Qué elementos del modelo formal en los términos señalados por Hamilton & Landin se deben 

considerar para diseñar un Modelo de Enseñanza que se traduzca en actividades concretas, dirigidas a 
niños de 6 a 7 años de edad? 

¿Qué dificultades se pueden observar cuando los niños trabajan a partir de la construcción de del 
número cero y el uno, con base en ese modelo de enseñanza? 

Para dar respuesta a estas preguntas, se propone como objetivo general: 
Identificar dificultades de aprender la construcción del número cero y el uno,  cuando se les propone 

un modelo de enseñanza basado en Von Neumann.  
Objetivos particulares: 
Diseñar e implementar un modelo de Enseñanza traduciendo el Modelo Formal a secuencias de 

actividades concretas, para la construcción de los primeros números naturales. 
Identificar y explicar las dificultades, que tienen los niños de 6 a 7 años de edad, al trabajar con un 

modelo de Enseñanza con base en Von Neumann. 
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Marco Teórico 
Los MTL (Filloy, et. al. 2008) son un marco teórico y metodológico para la observación 

experimental en la investigación en Matemática Educativa. Se apoyan en el enfoque semiótico de 
Peirce (1987) para dar sentido a los SMS, una teoría para la interpretación de observaciones 
experimentales. Los SMS centran la atención en la producción de intertextos a través de la 
lectura/transformación de textos matemáticos en relación con otros textos. Esto permite a los 
usuarios la producción de sentido y significado matemático a los procesos de comunicación que se 
producen en las aulas, cuando se implementan secuencias de actividades con un fin determinado. El 
sentido de lo local, focaliza su análisis en un fenómeno específico a través de los cuatro 
componentes: formal, cognitivo, de comunicación y de enseñanza. 
El diseño de este MTL se ha estructurado de acuerdo con los cuatro componentes:  

Formal: Modelo de Von Neumann (Hamilton & Landin, 1961) propone una lógica de construcción 
que precisa SMS involucrados en la construcción de los números naturales, comenzando por el cero: 
“El cero es el conjunto vacío; 0 = ∅.”, el número uno es el conjunto que contiene al elemento cero: 
“1 = 0 = {∅}”. A partir de este momento introduce la definición de sucesor: 

El conjunto ! ∪  !   es el sucesor del conjunto ! . Si ! es un conjunto y si hay un conjunto 
! tal que ! es el sucesor de !, entonces ! es un sucesor. Para cada conjunto !, el sucesor de 
! es !′. Por lo tanto, 1 = 0’, 2 = 1’, 3 = 2’, etc. (Op. Cit. p. 77).  

Cada ordinal es el conjunto de todos los ordinales que le preceden. Cada uno de esos conjuntos es 
∈ −!"#$%&#! por la misma construcción, donde para todo ! y para todo ! se cumple al menos una 
de las siguientes condiciones:  ! ∈  !, ó   ! = !   ó  ! ∈  !.  Se define a los números naturales 
como: “n es ∈ −!"#$%&#!; cada subconjunto no vacío de ! pose un elemento principal; si ! ∈ !, 
entonces ! ⊂ !; si ! no está vacío entonces ! es un sucesor; si ! ∈ !, y ! no está vacío entonces ! es 
un sucesor.” (Op. Cit. 1961, p. 81). Contar un conjunto A es una correspondencia uno-uno 
!: 1, ! → ! entre 1, !  y !, donde ! ∈ !.” La cardinalidad es Si n es el resultado de un conteo de 
A, entonces A tiene n elementos, o el número de elementos en A es n, o la cardinalidad de A es n. 
Esto también lo denotamos como la cardinalidad de A por #(A). (Op. Cit. pp. 99-101). 

 La suma se da, de manera natural al obtener el sucesor, por iteración y partiendo de !, es ! +  1. 
Cuando n es un conjunto, entonces la suma es la unión de conjuntos disjuntos: ! ∪ ! y si ! y ! son 
sus cardinales  respectivamente, entonces ! + !. 

Cognitivo: Con base en los aportes de la teoría de la actividad (Talizina, 2001) se pretende 
identificar dificultades que obstruyen (OB) su competencia con el uso de los SMS involucrados en la 
construcción de los números naturales debido a las maneras en que los niños de 6 a 7 años, han 
aprendido a usar los números naturales en la cotidianeidad. Estos obstructores pueden dificultar el 
tránsito de la acción a la operación cognitiva para promover el desarrollo numérico conceptual del 
cero, el uno y la noción de sucesor.  

Comunicación: Con base en la semiótica (Peirce, 1987), se analizan los argumentos de inducción, 
deducción y abducción como procesos de significación (APS). Con las relaciones significantes se 
construyen las categorías para interpretar lo que hacen y dicen los niños en la producción de sentido 
y procesos de significación de las acciones que realizan en las actividades numéricas, esto es la 
Dotación de Sentido (DS). La lógica de uso de los SMS está relacionada con los procesos de 
iteración y recursión en la construcción de los números naturales. 

Enseñanza: Entendida como colección de textos concretos que entiendan los aprendices, con la 
finalidad de que gradualmente conviertan los textos concretos en abstractos, con un significado 
matemático convencional. Se ha diseñado un Modelo de Enseñanza traduciendo el modelo formal de 
Von Neumann a actividades concretas, con el uso de material manipulativo. 
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Metodología Diseño y ejecución del Modelo de Enseñanza. El diseño de las actividades se realizó 
siguiendo las definiciones matemáticas de la secuencia de Von Neumann de acuerdo con Hamilton & 
Landin (1961, pp. 74 – 112), las hemos llamado principios (Pi):  

P1: Inicio de la contrucción con el cero. El nombre del conjunto vacío es el cero.   
P2: Contrucción del número uno como sucesor del número cero. Uso del proceso recursivo 0 = Ø; 1 

= {Ø}; 2 = {Ø, {Ø}}; 3 = {Ø, {Ø}, {Ø, {Ø}}}; y así sucesivamente. Las llaves se sustituyen con 
bolsas, como se muestra en la figura 1. 

 
Figura 1: Proceso recursivo de los números, usando bolsitas  

P3: Un sucesor lo hemos llamado el siguiente. 
P4: Definición del Conjunto n, como número natural. 
P5: Conteo y cardinalidad.  
P6: Adición. 
Se ha introducido el uso de una semirrecta para representar el orden de los números, a partir de la 

definición de intervalo “Si !, ! ∈ !, !, ! = ! ! ∈ ! ! ! ≤ ! ! ! ≤ ! . !, !  es el intervalo de a 
hacia b.” (Op. Cit. 1961, p. 97). 

Para esta comunicación se han seleccionado dos secuencias de actividades del Modelo de 
Enseñanza, las cuales describiremos brevemente: 

 Adivina quien soy (P1). El conjunto vacío como el número cero: 
• Se les pide que observen una bolsa de plástico transparente vacía y digan que contiene, 

(posibles respuestas: nada y vacía). 
• Se les pregunta cómo se puede nombrar esta bolsa vacía. La intención es relacionar la noción 

de números con las bolsas, para referirnos a bolsa/número. 
• Se les pregunta con qué número se puede nombrar a la bolsa vacía.  
• Al nombrar la palabra cero, se les pide identificar la etiqueta del número cero y la peguen en la 

parte externa de la bolsa. 
• Se les pregunta si ya conocían ese número y para qué creen que sirva. 
• Se les pregunta en qué parte de la semirrecta (dibujada en el pizarrón) pueden pegarla. 

¿Podemos construir el siguiente? (P2, P3).- Construción del sucesor: 
• Una vez relacionado y nombrado al conjunto vacío como número cero, se les pregunta: 

¿Podemos construir el siguiente? (El siguiente es el número uno, es la bolsa/número que 
contiene al elemento cero). 

• Se toma otra bolsa vacía y se les pregunta cómo se puede construir el siguiente. Se les pregunta 
quién es esa bolsa vacía, con la finalidad de que la nombren como cero, se les pide que peguen 
la etiqueta cero afuera de esta bolsa/número vacía, la introduzcan en la nueva bolsa nombrada 
como uno. Se les pide que peguen la etiqueta del uno por fuera de la bolsa. 

• Se les pregunta dónde pegarla en la semirrecta (se espera que sea después del cero, 
construyendo el sentido de orden lineal). 
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• Con esta lógica de construcción, se van construyendo los sucesores, reflexionando en cada 
construcción, quién está antes de, quién está después de, quién está en todos los números, 
quién no tiene antecesor, a quién o quiénes contiene cada bolsa/número. 

Este modelo de enseñanza se trabajó en la primera fase con un grupo de primer grado de una 
escuela pública en la CDMX. Con base en el análisis cuantitativo (ejercicios escritos) y cuantitativo 
(desempeño en cada sesión) los alumnos fueron clasificados en tres estratos (Alto, medio y bajo); se 
seleccionó un alumno representante de cada estrato para participar en la entrevista clínica. La 
segunda fase se realizó en el siguiente ciclo escolar, con la aplicación de la entrevista clínica. 

Los resultados del análisis de la experimentación del Modelo, se publicaron en (autores 2018) y 
(autores 2019ª, 2019b). Por la falta de espacio en este reporte, sólo se presentará un fragmento de una 
sesión grupal y un fragmento de la entrevista de Daniel (estrato bajo). 

Observación de la experiencia empírica con las categorías de análisis. En el análisis de la 
experimentación del Modelo, se identificaron dificultades recurrentes en las actuaciones de los 
niños. Las dificultades se agruparon en tres ejes: Uso de conocimientos pragmáticos/intuitivos y 
expontáneos: dificultades para identificar al cero como número; identificar al sucesor y antecesor de 
cualquier número. Uso semántico de los números en acciones de representación y conteo: 
dificultades para reconocer el número cero como conjunto vacío; reconocer que el cero es el único 
número que pertenece a cualquier sucesor, identificar al cero como punto origen en la semirrecta, 
reconocer que todo sucesor contiene a todos sus anteriores. Uso sintáctico en las operaciones: 
dificultades para usar la forma ! ∙ 10 + !. 

Para entender y explicar las dificultades y con base en el marco teórico, se diseñaron tres categorías 
de análisis: Tendencias Cognitivas que constituyen obstructores para el aprendizaje (OB); 
Argumentos de inducción, deducción y abducción como Procesos de Significación (APS) e; 
Indicadores de las Relaciones Significantes para la Dotación de Sentido (DS). 

Por último, con el fin de confrontar a si las dificultades continúan, o aparecen otras nuevas, la 
entrevista clínica se aplicó e interpretó sobre la base de las mismas categorías de análisis. 

Se usa la siguiente simbología: Maestra (M), Niños todos (Ns), Nicole (Ne), N1, N2,… cuando es un 
niño cualquiera y la letra inicial del nombre cuando es un niño en particular, Entrevistadora (E) y 
Daniel (D). 

Fragmento del diálogo de la secuencia de actividades:“Adivina quien soy”: 
M:  ¿Qué tiene la bolsa? [muestra la bolsa vacía]. 
N1: Nada [la maestra introduce algunos objetos a la bolsa y luego la vacía frente a ellos]. 
M:   ¿Cómo quedó la bolsa? 
N2: Vacía. 
M:  ¿Cómo podemos saber que mi bolsa está vacía? 
A:  Porque no tiene nada. 
F:  Por si no metes algo, no tienes nada. 
E:  Si está vacío no está pesado. 
Ne:  Si le metes algo, ya está lleno. 
E:  O por números. 
M:  ¿Cómo dijiste? 
Ns:  Por números. 
M:  ¿Y cuál creen que sea el número que debe estar aquí? 
Ns:  El uno, el dos, el tres, … [Se les muestran etiquetas de los números 0 al 9] 
N3:  Un cero. 
M:   ¿Quién es ese número? 
Ns:  Nada. 
Ns:  Cero. 
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M:   ¿Quién pasa a buscar al número cero y pegarlo a la bolsa? 
K:   Aquí está [Karen, elige la etiqueta del número cero]. 
M:  ¿En dónde lo coloco? [La maestra muestra la bolsa/número cero, para colocarla en la 

semirrecta pintada en el pizarrón]. 
F:   Hasta el final [señala el extremo izquierdo de la semirrecta, pero usa la palabra final]. 
M:   ¿Hasta el final?  
F:   ¡Ah! ¡En el primero! [Corrige su respuesta]. 

Fragmento del diálogo de la secuencia de actividades: “¿Podemos construir el siguiente?” 
M:   ¿Podemos construir el siguiente?  
Ns:  El uno. 
M:   ¿Cómo le haremos para construir el siguiente? 
Ne:  Tomar otra bolsa y ponerle el uno. 
M:   ¿Qué tenemos aquí? [Mostrando la bolsa vacía]. 
Ns:  Vacía. 
M:   Vacía, pero necesito… 
Ns:  El uno. 
M:   ¿Cómo le haremos, porque esta bolsa está vacía? 
Ns:  ¡Póngale el uno! [La maestra introduce la bolsa del cero que se construyó previamente y les 

pregunta:] 
M:   ¿Cuántas bolsas hay adentro?  
Ns:  Una.  
M:   ¿Qué número se formó aquí? 
Ns:  Un uno. 
M:   ¿Por qué es uno Emiliano? 
E:   Porque el uno es primero. 
M:   Nicole... 
Ne:  Porque el uno va después que el cero. 
M:   ¿Dónde lo coloco? 
Ns:  En el primero. 
M:   ¿Quién está en el primero? [señala al cero que está colocado en la semirrecta]. 
Ns:  Un número cero. 
E:    Lo pasas para el segundo [se refiere a la derecha del cero, en la semirrecta].  

Análisis de estos fragmentos: “Adivina quién soy”. En este fragmento se observan las dificultades 
para identificar el cero como conjunto vacío y como punto origen en la semirrecta.  

El cero como conjunto vacío se observa con la acción de introducir objetos a la bolsa/número y 
luego sacarlos; pudieron relacionar el vacío con palabras: “nada, vacío, lleno, meter, sacar, pesado” 
(A, F, E, Ne). Esto se puede interpretar como acciones relacionadas con la (DS), los cuales permiten 
un acercamiento a la noción de cero como vacío. (A) hace un razonamiento inductivo (APS) al usar 
la palabra “nada” para justificar el vacío, dotando de sentido (DS) a la ausencia de elementos, lo que 
dio pauta para que sus compañeros pudieran seguir el sentido de la noción de vacío. Cuando (F) 
expresa verbalmente: “Porque si no metes algo, no tienes nada”, está haciendo una deducción (APS) , 
lo que permite que (E) lo pueda relacionar el peso con el vacío, y (Ne), razona inductivamente (APS). 
Más adelante, ante la pregunta de poder nombrar a la bolsa vacía, la respuesta de (E) permite 
observar que se trata de un razonamiento abductivo (APS), al proponer el uso de los números. Sin 
embargo, para el resto del grupo, constituye una dificultad, que se puede entender es provocada por 
un (OB) cognitivo proveniente de sus experiencias con los números, han aprendido a repetir la 
secuencia numérica comenzando con el uno (Ns). Mientras que (N3) logra seguir la idea de (E) y 
elige al número cero, lo que se puede entender como un razonamiento abductivo (APS).  
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La dificultad de (F) para identificar al cero como punto origen en la semirrecta, puede ser a que este 
alumno se encontraba sentado frente al extremo derecho de la semirrecta. Este (OB) cognitivo, de 
percepción, le dificultó establecer una relación de reversibilidad, para centrar su atención la 
semirrecta como objeto y no sólo en la percepción visual. Cuando la maestra lo cuestiona, permite 
que (F) corrija su respuesta. 

¿Podemos construir el siguiente?.- En este fragmento se observan dificultades para reconocer que 
el cero es el único número que pertenece a cualquier sucesor; y que todo sucesor contiene a sus 
anteriores. Los niños identifican que el sucesor del cero es el uno, con lo que se puede decir que están 
dotando de sentido a la expresión “el siguiente”. Sin embargo, la dificultad se observa en que no le 
dan sentido a la construcción, consideran que sólo se necesita la etiqueta del número uno: (Ne) 
“Tomar otra bolsa y ponerle el uno”, (Ns) “¡Póngale el uno!” Esta dificultad es constante en las 
primeras líneas de la actividad, no le dan sentido al proceso recursivo. No reconocen que la 
bolsa/número uno, debe contener al menos un elemento. Se entiende que esta dificultad se debe a un 
obstructor cognitivo (OB) proveniente de las maneras en que han aprendido que los números es sólo 
la repetición oral y escrita de la secuencia contadora a partir del uno. La acción de (M) al introducir 
la bolsa vacía etiquetada con el número cero y preguntarles por el número que se formó, permitió que 
algunos niños observaran que es el número uno, cuando contiene al elemento cero (NS): “Un uno”. 
Pero, para la mayoría de los niños lo siguen asociando con el primer elemento de la secuencia 
numérica: (E) “Porque el uno es primero”, con lo que se observa que esta dificultad es un (OB) con 
el uso de las relaciones de reversibilidad para identificar que el antecesor del uno es el cero; así como 
el sucesor del cero es el uno. Con el argumento deductivo (APS) de (Ne): “El uno va después del 
cero”, conlleva a que (E) corrija su respuesta, usando un argumento inductivo (APS) cuando la 
maestra pregunta en dónde colocarlo: “Lo pasas para el segundo”. 

Entrevista clínica.  Tuvo como objetivo comparar si las dificultades que se presentaron durante la 
experimentación del modelo continuan o aparecen nuevas. 

Fragmento del diálogo en la secuencia de actividades: “Adivina quién soy” 
E: ¿Qué tiene la bolsa? 
D:  Nada. 
E:  Nada y ¿Cómo está la bolsa? 
D:  Vacía. 
E:  ¿Cómo sabes que está vacía? 
D:  Porque no tiene nada. 
E:  ¿Cómo puedes decir que no tiene nada? 
D:  Estuviera un poco pesado. 
E:  ¿Cómo podemos representar esta bolsa que no tiene nada, que está vacía? [Daniel se queda 

pensando algunos segundos, sin contestar. Por lo que la entrevistadora le muestra el material que 
tiene sobre la mesa: una semirrecta, bolsas hule transparente de diferentes tamaños, etiquetas de 
números] ¿Alguno de estos puedo usar? 

D:  Este [Daniel señala el montón de las etiquetas del número cero]. 
E:  ¿Cuál es este? 
D:  El cero. [Daniel pega la etiqueta del número cero en la parte frontal de la bolsa]. 
E:  Ahora que sabemos que esta bolsa está vacía y que es el número cero ¿En dónde la   colocamos 

en la recta? 
D:  Aquí [Daniel señala el extremo izquierdo de la semirrecta]. 

Fragmento del diálogo en la secuencia de actividades: ¿Podemos construir el siguiente? 

E:  ¿Cuál va a ser el siguiente? 
D:  El uno. 
E:  ¿Qué necesito para que sea el número uno? 
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D:  Un número que esté adentro. 
E: ¿Quién va a ser ese elemento que esté adentro? 
D:  ¿El uno? 
E:  ¿Quién era el que estaba antes? 
D:  ¡Ah, el cero! 
E:  El cero, entonces ¿qué tienes que hacer? 
D: Agarrar una... [Daniel toma otra bolsa vacía, le pega la etiqueta del número cero y la introduce en 

la nueva bolsa/número uno]. 
E:  ¿Qué nombre le voy a poner?  
D:  El uno. [Daniel señala y toma una etiqueta del número uno y la pega en la nueva bolsa/número 

uno]. 
E: ¡Muy bien! ¿dónde lo vas a colocar en la recta? 
D:  Aquí [Daniel lo coloca a la derecha de la bolsa/número cero]. 

Análisis de los fragmentos de la entrevista clínica. Adivina quién soy. - En este fragmento, se 
puede observar que (D) relaciona al conjunto vacío con el número cero, al expresar: “Estuviera un 
poco pesado”, argumento deductivo (APS) que evocó la experiencia de la sesión grupal en el ciclo 
escolar próximo pasado. Lo que se puede entender como dotación de sentido (DS) para relacionar la 
noción de vacío con el número cero, pero aún no es convencional. Pero D duda cuando se le pregunta 
cómo nombrar a la bolsa/número vacía, se observa que duda, por lo que (E) le señala y pregunta: 
“¿Alguno de estos lo puedo usar?”, dando la pauta para que (D) elija alguna de las etiquetas de los 
números. Al colocarlo en el extremo izquierdo de la semirrecta, está dotando de sentido (DS) al cero 
como punto origen de la construcción y superando esa dificultad.  

¿Podemos construir el siguiente? - Se observa que hay dotación de sentido (DS) al reconocer que el 
número siguiente del número cero es el número uno. La respuesta de Daniel “Un número que esté 
adentro” a la pregunta de la Entrevistadora: “¿Qué necesito para que sea el número uno?”, se puede 
entender como un argumento deductivo (APS) para dotar de sentido (DS) la noción de sucesor. Sin 
embargo, cuando la entrevistadora pregunta “¿Quién va a ser ese elemento que esté adentro?”, se 
evidencia la inseguridad de D, al contestar con otra pregunta “¿El uno?”, lo que se puede interpretar 
como dificultad para de producción de sentido de uso del proceso recursivo para reconocer que todo 
sucesor contiene a todos los anteriores. La pregunta de E “¿Quién estaba antes”, permite que D 
evoque el proceso de construcción, recordando que el número cero es el que debe estar adentro de la 
bolsa/número uno, pues de inmediato toma una bolsa más pequeña y le pega la etiqueta del número 
cero y la introduce en la nueva bolsa/número uno. Estas acciones que realiza D nos permiten 
entender que le da sentido al uso de los SMS a través de la recursividad. A continuación, coloca la 
bolsa/número uno en la semirrecta a la derecha de la bolsa/número cero, consolidando el sentido de 
orden por la misma construcción.  
Discusión final 

Cerramos este espacio haciendo hincapié en que el objetivo general es identificar las dificultades de 
aprendizaje cuando se les enseña con el modelo formal matemático de von Neumann para la 
construcción de los números naturales y la lógica de uso de los SMS involucrados en dicha tarea.  

Durante la experimentación se pudo cotejar que la influencia de las maneras en que han adquirido 
las nociones numéricas, dificulta la comprensión y uso pragmático de la recursividad, pero no 
constituyen un obstáculo. En la entrevista clínica vuelven a aparecer las dificultades recurrentes, 
mismas que son superadas en menor tiempo, haciendo un uso eficiente y dotando de sentido los SMS 
a través de la iteración y recursividad (acciones elementales para la conceptualización de los números 
naturales).  

Por los resultados obtenidos parece ser valioso recuperar la tradición formal matemática en la 
enseñanza, desde los primeros grados de educación elemental y permitiría la participación de los 
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niños en la construcción de los números naturales, lo que les brinda una posibilidad para consolidar 
la generalización, como base para un pensamiento aritmético sólido. 

Finalmente, consideramos que el trabajo conceptual de los números con niños de 6 a 7 años de 
edad, no es una construcción trivial, memorística y operativa; pero puede facilitar el desarrollo del 
concepto antes del simbolismo. Lo que busca este trabajo es cultivar un pensamiento abstracto, que le 
permita a los niños acceder a niveles superiores de conocimiento matemático.  
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Researchers have identified students’ difficulties reasoning about inverse functions. Through our 
review of this literature, three meanings stand out: a formal, ‘undoing’, and quantitative meaning. 
Using these meanings as a guide, we analyzed student work collected from a lesson on the topic of 
inverse functions taught by an experienced high school mathematics teacher, using a novel task. In 
analyzing the data, we noticed tensions between students’ understanding of the context and of inverse 
function as treated in curricula. In this paper, we illustrate these tensions and describe potential 
implications for students’ productive construction of the meanings of inverse function. 

Keywords: Cognition, Algebra, High School Education, Representation and Visualization 

Previous literature has identified that students in high school and beyond struggle with constructing 
productive inverse function meanings. We identify three different ways researchers discuss students’ 
meanings for inverse relations: formal, “undoing”, and quantitative. In this study, we characterize 
student work from a contextualized, problem-based lesson (Herbst, 2003) that our research team co-
designed with an experienced high school mathematics teacher to support students in developing 
productive inverse function meanings in relation to the meanings characterized in the literature. In 
particular, we designed the lesson to support students in conceiving of and representing a quantitative 
relationship. The teacher who taught the lesson stated as part of their goal that students would 
understand that a function and its inverse function represent the same relationship and that the rule 
used to determine the function could be “undone” to determine the rule for the inverse function. 
Addressing the question “How do students reason when introduced to inverse function?”, we use 
examples of student work and dialogue during their discussion to characterize the extent to which 
students exhibited these meanings of inverse function. We also highlight how the teacher’s attempt to 
meet institutional obligations (Chazan, Herbst, & Clark, 2016) by introducing switching techniques 
(described shortly) during the lesson likely prompted students to move away from their initial 
reasoning.  

Prior Literature on Students’ Meanings for Inverse Relationships and Framework 
We synthesize three meanings for inverse functions that are emphasized in the research literature 

examining the learning and teaching of inverse function: a formal meaning, an ‘undoing’ meaning, 
and a quantitative meaning. We use these meanings to categorize both the students’ work from the 
classroom and the teachers’ discussion of inverse.  
Formal Meaning 

Many researchers characterizing students’ and teachers’ meanings of inverse functions have 
emphasized aspects of the formal definition of inverse function: f (f -1(x)) = x and f -1( f (x)) = x. This 
definition uses the notions of function composition (Brown & Reynolds, 2007; Even 1992; 
Vidakovic, 1996) and injectivity (Marmur & Zazkis, 2018; Wasserman, 2017). For example, 
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Vidakovic (1996) provided a preliminary genetic decomposition of inverse function which closely 
resembled the formal definition. However, none of the students in her study developed inverse 
function meanings compatible with her genetic decomposition. Futhermore, none of the 26 pre-
service teachers in Marmur and Zazkis’ (2018) study noted the lack of injectivity of the function 
when asked to respond to a hypothetical student claiming the function y = x2 – 4x + 5 had two inverse 
functions. The difficulties identified by Vidakovic (1996) and Marmur and Zazkis (2018) provide 
motivation for a continued need to explore ways to support students and teachers in developing 
meanings for inverse function. 

Specifically, these aforementioned researchers and others (e.g., Paoletti et al., 2018) found that 
students’ and teachers’ meanings for inverse function are often constrained to engaging in specific 
actions in certain representations (e.g., switching-and-solving analytically, reflecting over a line 
graphically that may or may not result in equivalent inverse functions across these representations). 
For instance, Paoletti et al. (2018) noted a majority of the pre-service teachers in their study 
maintained disconnected meanings for inverse function that were constrained by such ‘switching’ 
techniques. Collectively, these disconnected meanings motivate a need to explore ways to support 
students and teachers in developing more coherent meanings for inverse function. 
Undoing Meaning 

Other researchers (Fowler, 2014; Martinez-Planell & Cruz Delgado, 2016; Oehrtman, Carlson, & 
Thompson, 2008; Teuscher, Palsky, & Palfreyman, 2018) have suggested having students develop 
meanings for an inverse function as “undoing” the original function process, often in lieu of focusing 
on formal mathematical properties of inverse function. Researchers who have adopted this stance 
have found that instruction emphasizing inverse functions as ‘undoing’ supports more students in 
addressing tasks relevant to decontextualized and contextualized inverse functions as compared to 
students who experienced instruction focused on formal definitions and switching techniques (e.g., 
analytically switching the x and y labels, reflecting over the line y = x). For example, across a sample 
of 3,858 college pre-calculus students, Teuscher, Palsky and Palfreyman (2018) reported that, in 
course sections with instruction emphasizing an undoing meaning, students accurately solved 48% of 
inverse function tasks compared to 32% of students whose instruction focused on switching 
techniques. We note that although emphasizing an ‘undoing’ meaning can be more productive when 
compared to emphasizing formal definitions or switching-techniques, over half of students in the 
former sections were still unsuccessful in addressing inverse function prompts.  
Quantitative Meaning 

Recently, Paoletti et al. (2018) and Paoletti (2020) have leveraged Thompson’s (2011) theory of 
quantitative reasoning to characterize a quantitative meaning for inverse relations (and functions). A 
quantitative meaning for inverse relations entails a student understanding that a relation and its 
inverse relation represent an invariant relationship between quantities’ values, regardless of how the 
relationship is represented. Thus, rather than foregrounding injectivity (cf. Marmur & Zazkis, 2018), 
a quantitative meaning entails the existence of an inverse relation regardless of whether the original 
or inverse represents a function. Students can determine if either relation is a function by examining 
if the univalence property (i.e., if for each value of one quantity there is exactly one value of the 
second quantity) holds for each relation.  

Rather than focusing on a function and its inverse as processes that can be undone, a student with a 
quantitative meaning for inverse relations understands that a relation and its inverse are (or can be) 
represented by the same rule or graph (Paoletti, 2020). Paoletti (2020) provided an empirical example 
of one pre-service teacher reorganizing her unproductive inverse function meanings grounded in 
switching techniques, into a more productive, quantitative, meaning. By the end of the study the 
student, Arya, understood that a single graph or analytic rule represented a function and its inverse 
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function and that switching techniques were used to maintain conventions commonly used in school 
mathematics (e.g., the independent quantity is represented by variable x on the horizontal axis). She 
particularly noted how confusing switching techniques were in contextualized situations as it was 
necessary to switch the quantitative referents of the variables when engaging in switching techniques 
(i.e., if in F(C) = (9/5)C + 32, F  represents the temperature in Fahrenheit and C the temperature in 
Celsius, then in F-1(C) = (5/9)(C – 32), F represents the temperature in Celsius and C the temperature 
in Fahrenheit). In this paper, we present indications of other students naturally maintaining the 
quantitative referents of variables. 

Methods 
Our team worked closely with an experienced high school mathematics teacher to design a 

contextual problem-based lesson with the goal of introducing students to the concept of inverse 
function. The first step in the lesson design was for the teacher to create a problem that would 
provoke a need for this new idea, but that students could make progress on by drawing on knowledge 
and skills that they had developed previously. Next, the teacher created a detailed lesson plan that 
included anticipations of student work and potential scaffolds and responses to them. The teacher 
then implemented the lesson in which students would work with their peers in small groups and then 
with whole-class discussions. The teacher ended the lesson with a statement of the newly introduced 
idea. The final version of the problem that the teacher designed is presented in Figure 1. 
 
Several	of	us	that	teach	at	[name	of	your	school]	are	on	a	slow-pitch	recreation	softball	team	together.	

Your	City	Parks	and	Rec	charges	a	“sponsor	fee”	of	$350	to	enter	the	league.	This	pays	for	umpire	fees,	

softballs,	grounds	people,	etc.	In	addition,	individual	players	each	have	to	pay	a	player	fee	of	$17.	Thus,	

the	total	amount	of	money	we	need	to	pay	the	office	depends	on	how	many	people	we	have	on	our	
team.		

1) Make	a	table	of	Total	Fee	vs.	Number	of	Team	Members	for	at	least	6	points.	We	need	at	least	

eight	people	to	play. 
2) Write,	in	words,	the	calculation	procedure	you	kept	doing	to	get	the	total	amount	of	money	

given	the	number	of	players. 
3) Is	this	situation	linear?	How	do	you	know? 
4) What	is	the	y-intercept?	What	does	it	represent	in	this	situation? 
5) Write	a	rule	for	this	situation. 
6) Graph	this	function	on	a	piece	of	graph	paper. 

When	I	worked	for	the	recreation	department	in	My	Town,	near	the	end	of	the	season	I	needed	to	be	

able	to	see	which	teams	in	each	division	still	had	a	chance	to	win	the	league.	This	way,	I	could	order	

enough	“Champions”	t-shirts	for	the	team	with	the	most	players	who	had	a	chance	to	win.	What	I	had	

was	the	inventory	list	that	had	the	receipts	for	the	amount	of	money	each	team	turned	in,	and	from	

that,	I	had	to	figure	out	the	number	of	players	they	had.		

 
Assuming	this	same	scenario	for	Your	City	Parks	and	Rec,	the	function	for	the	league	supervisor	is	

backwards:	for	him	or	her,	the	number	of	players	on	the	team	depends	on	the	total	fee.	
7) Make	a	table	for	the	league	supervisor	that	computes	the	number	of	players	for	teams	that	have	

paid	$571,	$622,	$639,	$673	and	$724. 
8) Explain	in	words	the	calculation	procedure	you	did	to	compute	the	number	of	players	from	the	

total	fee	amount.	

9) Write	a	rule	that	computes	the	number	of	players	as	a	function	of	the	total	team	fee.	

10) Make	a	second	graph	on	your	graph	paper	that	shows	the	relationship	from	this	perspective	

(with	the	total	paid	as	the	independent	variable	and	the	number	of	players	the	dependent).	
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11) Compare	the	function	from	the	front	with	that	of	the	recreation	supervisor	from	this	side.		

What	do	you	notice	about	how	the	tables,	graphs,	and	rules	are	different? 
Figure 1: The Softball Fees Problem  

Relative to the meanings for inverse function, although the context included an injective 
relationship between quantities and could have led to a discussion involving composition, this 
introductory lesson to inverse function did not explicitly address composition. Rather, the lesson 
revolved around ideas of inverse function more closely related to the undoing and quantitative 
meanings of inverse function. In the discussion of the lesson, the teacher explicitly referred to the 
inverse equation as representing an “undoing” of the original function process. Moreover, in his 
lesson plan, the teacher described, as a mathematical goal, that “we can focus at this initial stage on 
simply what the relationship looks like if you want to change your perspective and have students 
recognize that the function and its inverse are related, but not the same” (which is consistent with an 
undoing meaning) and goes on to say “that the factual information [this many players equates to this 
much money] stays consistent regardless of what perspective you have” (which is consistent with a 
quantitative meaning) The teacher attended to constructing different representations for the function 
and its inverse and emphasized the importance of understanding that the two functions represent the 
same “factual information” for all representations. Thus, in this paper, we report on student work that 
stemmed from instruction that emphasized both an “undoing” notion of inverse function (particularly 
when representing the relationship between the quantities as rules) and maintaining the quantitative 
relationship that a function and its inverse represent. 

The teacher worked at a large Midwestern public high school. He taught the lesson during three 
class periods to three different classes of students. The data collected from each implementation of 
the lesson included video recordings positioned strategically across the room to capture students’ 
work in groups. Additionally, researchers took fieldnotes and created copies of written work from 60 
students. 

Our analysis focused primarily on the student work. Initially, we analyzed it using Balacheff and 
Gaudin’s (2010) conception framework. Through this analysis, we noticed variation in the 
representations used—tables, rules, and graphs—by students as well as in how they operated on them 
in the process of finding the inverse function. We also noticed that there was an association between 
the representations/operations used and the students’ control structure. Reflecting on these findings, 
literature emphasizing students’ inconsistencies in representations of inverse relationships (Paoletti et 
al., 2018), and our own observations of students’ attempts to update their work to fit the conventional 
ways of representing inverse relationships in each of the representations (i.e., tables with the 
independent variable on the left, rules in which the independent variable is represented as x, and 
Cartesian graphs whose horizontal axis represents the independent variable x), we shifted our 
attention to those pieces of student work that may present this tension. We then open-coded (Strauss 
& Corbin, 1994) the student work based on individual student’s ways of representing inverse 
functions (e.g., column location of values, naming of quantities in expressions, orientations of 
graphs). We also analyzed the classroom video associated with the implementations of the lesson to 
learn what ideas about inverse functions the teacher emphasized and to confirm the use of the 
aforementioned conventional notation with the students. From there, attending to the idea that 
conventional student work would not be present in work prior to the class discussion, we identified 
key pieces of student work in which the student seemed to change the way they represented the 
inverse function. As we explain in the next section, these pieces of work provided insights into 
students’ initial reasoning about representing inverse functions and the alterations they made to fit 
with the ways in which the teacher was asking the students to represent inverse functions. We 
connected the chosen pieces of student work to ways in which they did so to the aforementioned 
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inverse function meanings. Collectively, this analysis allowed us to answer the question of how 
students reason when first introduced to inverse function and to identify some of the tensions that 
present in their different ways of representing their reasoning. 

Results 
We present samples of student work that provide evidence of reasoning emphasizing either an 

“undoing” or quantitative meaning for inverse function. Although each individual created tables, 
rules, and graphs, we only present specific responses relevant to specific representations of each 
student’s work. Specifically, we describe, by type of representation, each piece of original student 
work and, if relevant, the updates that the students made to this work.  
Reasoning with Tables 

Addressing Question 7 (Figure 2), IS initially constructed a table for the supervisor that labeled the 
quantities “# of players” and “$” on the left and right, respectively. IS wrote the given fee values in 
the right-hand column, circling them. This table followed the same format as IS’s first table from 
Question 1 (not pictured) in which IS had the number of players on the left side of the table and total 
fee amount on the right. To the right of that table in Figure 2 is an updated table in which the student 
constructed a table with switched columns (values and their associated quantitative referent). This 
example illustrates a student who considered their initial table as representing both a relationship and 
its inverse; using a single table to represent a function and its inverse aligns with the quantitative 
meaning for inverse function. Although students often chose different values or column labels in 
their tables, using the same table to address Question 1 and 7 was common. As a second example, 
MH preserved x and y labeling as well as the location of the quantities represented on the left and 
right in their table.  

Figure 3 is another example of a student using the same table to address Questions 1 and 7. 
Moreover, KK’s description of her original process for constructing her table across Questions 2 and 
8 is consistent with an “undoing” meaning. Such activity may be indicative of the student 
understanding ways to connect her quantitative and undoing meanings for inverse function. She may 
understand that, while the function and its inverse represent the same relationship, in order to 
determine values of one quantity given a value of the second quantity, she must reverse the process 
by which she found values of the second quantity to determine the value of the first quantity. KK’s 
table and descriptions also provide insight into the significant components of the table they were 
considering when updating their crossed-out table. Specifically, they drew several double-sided 
arrows on their (initial) crossed out table and, beside their redrawn table, they drew another blank 
table with the labels “ind” (independent) and “dep” (dependent). Comments from other students who 
drew new tables such as KK included a student writing “flipped around” above the new table and TK 
writing “should have put # of players right (y) on table.” We conjecture such activity was spurned by 
the instructor who emphasized representing the independent variable on the left side of the table and 
the dependent variable on the right. 

Lastly, consider the work in Figure 4 from DS. DS viewed a table as apt to represent both a 
relationship and its inverse. When asked to explain the calculation procedure for the supervisor, DS 
wrote, “You take the table from befor[e] and find the p[r]ice then writ[e] down what x is.” 

 

 
Figure 2: (left) IS’s Two Tables for the League Supervisor and (right) MH’s Table 
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Figure 3: KK’s Initial and Inverse Tables and “Undoing” Description 

 
Figure 4: DS’s Description of the Inverse Calculation Procedure 

Reasoning with Rules 
Figure 3 above provides an example of a student who provided a mathematical description of a 

process that undoes the original one. Perhaps due to current curricular treatments of inverse function, 
which emphasize the importance of representing the input quantity by the variable x on the horizontal 
axis, students engaging in writing a new rule to represent this undoing process may switch variables 
such that the independent quantity represents x and the dependent quantity represents y (or f -1(x)).  
This point was raised by the teacher during the discussion. However, in students’ initial work, there 
was variation among students’ use of x, y, and their quantitative referents in their construction of a 
rule that computes the numbers of players as a function of the total team fee. 

First—and indicative of maintaining a quantitative meaning for inverse functions—some students 
did not write a new rule for the inverse relationship and simply used their existing rule. For example, 
MH, who also did not construct a table with a different format for the inverse (Figure 2, right), used 
their rule “y = 17x+350” to substitute the given team fee values and solve for x (Figure 5). Thus, 
throughout their work on the task, x represents the “number of team members” and y represents the 
“total fee” consistently. 

 

 
Figure 5: MH Substitution Strategy for Supervisor 
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Other students used their first rule and wrote a new rule in terms of the symbol representing the 
total team fee. For example, TK (Figure 6, left), who, like MH, did not construct a new table, had the 
rule “(y − 350) ÷ 17 = x”. Here, y represented “Total fee” as labeled in the table. However, as seen in 
both MH’s work and HV work, the x and y labels were not used consistently throughout individual 
students’ work. For example, TK’s initial rule, seen in Question 7 (i.e.,  
(y – 350)/17 = x), maintains the quantitative referent of the variables in their table (i.e., “Total fee y”). 
However, when addressing Question 9, TK appears to have erased and then switched their original x 
and y labels in the rule used to create the table values. We conjecture this change may have been 
spurned by the classroom conversation based on TK’s note that they “Should have put # of players 
right (y) on a table.” Another student, HV, wrote the equation “(x − 350) ÷ 17  = y” but the labels on 
the table beside seem to indicate that x represented the number of players and y the total fee (Figure 
6, right).  

 

 
Figure 6: TK (left) and HV’s (right) inconsistent use of x and y 

Across the student work, we observed responses that were indicative of each of the meanings for 
inverse function described in the literature. Several students, like MH, exhibited a quantitative 
meaning for inverse function as they understood a single rule could be used to represent both a 
function and its inverse. Consistent with an undoing meaning for inverse function, other students, 
like TK, wrote a new rule that represented the opposite of the initial process that maintained the 
quantitative referents of the variables. Finally, several students created rules that inconsistently 
maintained the relationships between variables and quantitative referents, which may be indicative of 
their attempting to make sense of the classroom instruction that emphasized the importance of 
switching-and-solving.  
Reasoning with Graphs 

As a closing illustration, although most students constructed two perceptually different graphs with 
different axes labeled on the horizontal axis, nine students drew graphs (or at least labeled axes) to 
indicate that both requested graphs would have the same axes labels in the same locations. MX, for 
example, had “People” labeled on the horizontal axis for her first graph and seemed to intend for the 
number of people on the team to be represented on the horizontal axis for her graph for the 
supervisor, too (Figure 7). Like the students who only constructed one table (e.g., IS), these students 
seemed to indicate that a single graph orientation could represent both a relationship and its inverse. 
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Figure 7: MX’s Two Graphs with Same Axes Labels 

Discussion 
We use the aforementioned pieces of student work to highlight various ways in which students 

exhibited each of the three meanings for inverse relations present in the literature. The teacher 
designed the lesson purposefully to be contextualized and problem-based, and we argue reasoning 
with the context supported the students in understanding a relation and its inverse as representing the 
same quantitative relationships. The design of the task also supported an undoing meaning for 
inverse function. In particular, KK’s work provides some evidence that these two meanings – 
quantitative and undoing meanings – can interplay with one another in possibly productive ways. We 
note that none of the student work contained the common struggles described in literature on 
students’ inverse meanings (e.g., reflecting over a y = x line on a graph, writing the multiplicative 
inverse of the function as the function’s inverse, composing functions). We hypothesize this is 
because of the scaffolding of this introductory task and that the contextualization of the relationship 
they considered supported them in being able to reference the context to make sense of their results. 

Despite the students providing several quantitative representations of their reasoning, the teacher 
likely felt an institutional obligation (Chazan, Herbst, & Clark, 2016) to carry out a classroom 
discussion in which students’ reasoning, while perhaps quantitatively appropriate, needed to be 
amended to fit the conventional notations for inverse function. Although the teacher maintained 
consistent meanings for inverse function throughout this discussion, we note that students were faced 
with the tension of motivating changes in notation in their quantitatively appropriate work. We 
conjecture without having explicit conversations that allow students to reconcile the need for 
adjustments in their work (i.e. discussions regarding conventions), students may experience 
conflations (and perhaps a motivation to rely on memorizing techniques) when addressing inverse 
function tasks as is seen in the literature (e.g., Paoletti et al., 2018; Vidakovic, 1996). Future 
researchers may be interested in exploring how such conversations may be fruitful for teachers to 
have with students. 
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In this study, based on the analysis of a teaching experiment with middle school students, we propose 
a framework for describing meanings of a point represented on a plane in terms of multiplicative 
objects in the context of graphing. We classify those meanings as representing (i) non-multiplicative 
objects, (ii) quantitative multiplicative objects (Type-1 and Type 2), and (iii) spatial multiplicative 
objects. We then discuss implications of these meanings with respect to students’ graphing activities. 

Keywords: Cognition, Representations and Visualization, Modelling 

Quantitative and covariational reasoning play a critical role in students’ understanding of various 
ideas in mathematics (e.g., Carlson, Jacobs, Coe, Larsen, & Hsu, 2002; Ellis, 2011; Johnson, 2015). 
There are numerous aspects and important constructs (e.g., quantitative structure, frames of 
reference, and quantification) that individuals could develop in order to engage in productive, 
powerful quantitative and covariational reasoning (Joshua, Musgrave, Hatfield, & Thompson, 2015; 
Moore, Liang, Tasova, Stevens, 2019; Thompson, 2011). One of these constructs is a multiplicative 
object. Thompson, Hatfield, Yoon, Joshua, and Byerley (2017) suggested that students “must 
construct a multiplicative object of quantities’ attributes in order to reason about their values 
covarying smoothly and continuously” (p. 128). Constructing a multiplicative object is also 
important in the context of graphing as it imparts a productive meaning to a point on a graph (Frank, 
2017; Saldanha & Thompson, 1998; Thompson & Carlson, 2017). However, much is left to 
understand about the extent and nature of students’ meanings of a point as representing a 
multiplicative object in the context of graphing. Therefore, in this study and against the backdrop of 
empirical data, we provide a framework to classify students’ meanings of a point on a plane in terms 
of representing a multiplicative object. 

What is a Multiplicative Object? 
A multiplicative object can be considered a conceptual object that is formed by uniting in the mind 

two or more quantities’ magnitudes or values simultaneously (Saldanha & Thompson, 1998; 
Thompson, 2011; Thompson & Carlson, 2017). The mental operation of someone who constructs a 
multiplicative object is similar to the operation of someone who conceives a quarter coin as being, 
simultaneously, a circle and silver in color. In this operation, circle and silver, as two attributes of the 
object, have been considered, simultaneously, as one property of a quarter coin. For a dynamic 
example, imagine heating the quarter coin up to the melting point of silver. As a multiplicative 
object, coupling the two attributes, someone could track the variation of the coin’s color with the 
immediate and persistent awareness that, at every moment, the temperature of the coin also varies. 

In the context of co-variation, Thompson (2011) represented the multiplicative object formed by 
uniting two quantities’ variations by using the following representation: !! , !! = (! !! , ! !! ), 
where !! = ! !!   represents a variation in the values of x, where !! represents variation in t through 
conceptual time over the interval !, ! + ! . He explained that in order for students to reason 
covariationally, they must unite !! and !! by constructing !! , !! , which simultaneously represents 
the two. Note that the corresponding representation of this conceptual object in graphical context 
would be a point in a coordinate plane. We next discuss the role of conceiving a point as a 
multiplicative object in developing meanings for graphs. 



Framework for representing a multiplicative object in the context of graphing 

	 237	

Multiplicative Objects in the Context of Graphing 
Despite the notion that graphing is critical for understanding various ideas in STEM fields 

(Rodriguez, Bain, & Towns, 2019; Kaput, 2008; Leinhardt, Zaslavsky, & Stein, 1990), students face 
a number of challenges (e.g., graphs as pictorial objects) in interpreting and making sense of graphs 
(Clement, 1989; Leinhardt et al., 1990; Moore & Thompson, 2015). Thompson and Carlson (2017) 
conjectured that part of these students’ difficulties were grounded in being unable to conceive points 
on a graph as multiplicative objects, and several researchers have provided evidence to this claim 
(e.g., Frank, 2016, 2017; Stalvey & Vidakovic, 2015; Stevens & Moore, 2017; Thompson et al., 
2017). Given this evidence, conceiving points as multiplicative objects might be an integral part of 
constructing productive meanings for graphs, and thus a student’s construction of points should not 
be taken for granted. 

We note that students’ meanings of points on a plane can be considered as a representation of 
multiplicative object if students conceive a point by engaging in multiplicative operation—the 
operation of uniting and holding in mind two attributes of an object (i.e., quantities) 
simultaneously—as defined by Inhelder and Piaget (1964). Inhelder and Piaget first introduced the 
role of a multiplicative operation to characterize children’s thinking when classifying 2-atrribute 
objects (e.g., objects grouped according to shape and color, as described above). They reported two 
different ways of children’s thinking, both of which lead to normative responses when identifying a 
missing element in a matrix arrangement (see Figure 1). One is based on twofold symmetries that 
involve relying on perceptual configuration of the matrix arrangement and treating it as an 
incomplete pattern. For example, squares are symmetric over the horizontal axis of the diagram, so 
the blank space should include a circle. Similarly, red objects are symmetric over the vertical axis, so 
the blank space should include a blue circle. The other way of thinking is based on a multiplicative 
operation on a logical structure with reasoning about objects and coordinating two classes. For 
example, classifying the given three objects simultaneously in terms of shape and color, then 
identifying two elements of squares already belong to the classification of red or blue, noting the 
given element of circle belongs to red, and then joining circle and blue to construct the missing 
element. 

 

  
Figure 1. A matrix diagram designed based on the narratives of Inhelder & Piaget (1964). 

 
We rely on these two types (e.g., perceptual features vs. reasoning about attributes) to classify 

students’ meanings of points as representing non-multiplicative objects or representing multiplicative 
objects. In addition, we note that Inhelder and Piaget (1964) illustrated that an arrangement does not 
have to be in a matrix form for a child to think of objects in terms of two attributes. Inhelder and 
Piaget reported students could coordinate multiplicative classes without needing objects in a matrix 
form, and in our work, we illustrate that students could conceive points as representations of 
multiplicative objects without needing points represented in a Cartesian coordinate system (see 
spatial multiplicative object of the following framework). In other words, we considered that 
representing a multiplicative object is not restricted to plotting a point on a coordinate plane in the 
normative sense; it is about conceiving a point as a simultaneous representation of the two attributes 
of the same object.  
Role of Multiplicative Objects in Emergent Shape Thinking 

Moore and Thompson (2015) introduced the notion of emergent shape thinking to describe a person 
who envisions a graph “simultaneously as what is made (a trace) and how it is made (covariation)” 
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(p. 785). Constructing a graph from this perspective involves (1) representing two quantities’ 
magnitudes and/or values varying on each axis of a coordinate system, (2) creating a point as a 
representation of a multiplicative object uniting those two quantities’ magnitudes or values as a 
single object, and (3) generating a graph by conceiving the process of a multiplicative object leaving 
a trace when moving within the plane in ways invariant with the two covarying quantities. As we 
elaborate on different types of representing multiplicative objects, our framework informs the process 
in which a student could develop emergent shape thinking, which researchers (e.g., Frank, 2017; 
Moore, Stevens, Paoletti, Hobson, & Liang, 2019) have shown it is a productive way of thinking 
about graphs. 

Method 
Our work here stems from a semester-long teaching experiment (Steffe & Thompson, 2000) that 

occurred at a public middle school in the southeast United States. We recruited four seventh-grade 
students (age 12). Our goal was to investigate students’ thinking involved in conceiving and 
representing various quantitative relationships. In this paper, we focus on two of the four students, 
Zane and Ella, since their meanings for points were consistent within their representational system 
and clearly described by them throughout the teaching experiment. We believe it is important to 
document these ways of thinking in order to add nuances to our models of students’ conception of 
points in a graphing activity in terms of multiplicative objects.   

The first author was the teacher-researcher (TR). We recorded all sessions using two video cameras 
to capture students’ work and their gestures and a screen recorder to capture their activities on the 
tablet device. We transcribed the video and digitized students’ written work for on-going and 
retrospective conceptual analyses (Thompson, 2008). Our analysis relied on generative and axial 
methods (Corbin & Strauss, 2008), and it was intended to develop working models of students’ 
thinking based on their observable and audible behaviors. 
Tasks 

Before conducting the teaching experiment, the TR developed an initial sequence of tasks by 
considering particular design principles focused on graphing covarying quantities (e.g., Frank, 2017; 
Moore & Thompson, 2015; Stevens, Paoletti, Moore, Liang & Hardison, 2017; Thompson & 
Carlson, 2017). The TR revised and implemented those tasks based on on-going inferences and 
analysis of Zane and Ella’s thinking. Each task was designed with a dynamic geometry software and 
displayed on a tablet device. 

 

  
 (a)      (b)          (c) 

Figure 2. (a) The map of Downtown Athens, (b) Coordinate system with a point, and (c) A diagram 
of the pool 

 
The Crow Task. The situation includes a map of Downtown Athens with a movable crow and fixed 

seven locations: UGA Arch (hereafter Arch), Double-Barreled Cannon (hereafter Cannon), First 
American Bank, Georgia Theater, Wells Cargo Bank, Statue of Athena, and Starbucks (see the map 
in Figure 2a). We also presented a Cartesian coordinate system whose horizontal axis is labeled as 
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distance from Cannon and vertical axis is labeled as distance from Arch (Figure 2b). Students can 
control the crow freely by dragging it and see how the corresponding point in the coordinate plane 
changes (go to https://bit.ly/PMENA42 for the digital version of the tasks). 

The Swimming Pool Task. This task was adapted from Swan (1985). We presented students a 
dynamic diagram of a pool (Figure 2c), where they could fill or drain the pool by dragging a point on 
a given slider. We designed the task to support students in reasoning with the inter-dependence 
relationship between two continuously co-varying quantities: amount of water (AoW) and depth of 
water (DoW) in the pool.  

Framework for Representing a Multiplicative Object 
In this framework, we describe students’ meanings for a point in terms of multiplicative objects. We 

classify those meanings as representing (i) non-multiplicative objects, (ii) quantitative multiplicative 
objects (Type-1 and Type 2), and (iii) spatial multiplicative objects.  
Representing a Non-Multiplicative Object 

In this section, we illustrate a characterization of students’ meanings for points on a coordinate 
system as contra-indication of representing a multiplicative object. Building off of limited number of 
studies (i.e., David, Roh, & Sellers, 2018; Frank, 2016, 2017; Thompson & Carlson, 2017; 
Thompson et al., 2017), this characterization emerged as we identified students correctly plotting 
points in the plane by carrying out a certain procedure (e.g., over and up), but the meaning of these 
points included solely an ordered pair of numbers and/or a location in the plane that did not 
symbolize or unite two quantities’ magnitudes and measures.  

Note that there are different students’ meanings that could be classified as a non-multiplicative 
object. Aforementioned researchers have exemplified some of those meanings. For example, 
Thompson et al. (2017) argued that calculus students viewed the point (2, f(2)) in a coordinate plane 
as a value of the function, instead of the relationship between the value of the function (i.e., f(2)) and 
the value (i.e., 2) for which the function was evaluated. Similarly, David et al. (2018) reported that 
some students treated the output of the function as the location of the coordinate point in the plane, 
rather than on the vertical axis (i.e., location-thinking). Those students—and consistent with those in 
Thompson et al.’s study—did not think of 2 as a measure of a magnitude located on the horizontal 
axis and they did not think of f(2) as a measure of a magnitude located on the vertical axis in a 
canonical Cartesian plane. 

 
Figure 3. Ella’s first draft. 

 
For an empirical example from our data set that falls under this category, we present Ella’s graphing 

activity in Swimming Pool Task. We asked Ella to sketch a draft of a graph that represents the 
relationship between AoW and DoW as the pool fills up. She began by inserting two tick marks on 
each axis as an indication of AoW and DoW. As seen in Figure 3, she noted, as we fill the pool up, 
both tick marks go up along the axis at the same time and wanted to place the tick mark for AoW 
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further along the vertical axis than the tick mark for DoW since she thought “amount of water is 
more than depth.”  

Then, Ella drew a small circle in the plane to show “where those two things [tracing her finger 
horizontally from the tick mark on the vertical axis to the circle in the plane, then vertically down 
from the circle in the plane to the tick mark on the horizontal axis] meet here.” Then, she shaded the 
rectangular area in the plane, what she called “a box” (see Figure 3), to show “a bunch of water.” 
When asked to explain what the small circle meant for her in terms of the pool situation, Ella said, “I 
don’t know what it means” and further she explained “that is just like the dot between [tracing her 
finger horizontally from the tick mark on the vertical axis to the circle in the plane] here [tracing her 
finger vertically down from the circle in the plane to the tick mark on the horizontal axis] so I can 
just make this box [pointing to the shaded area in the plane].” We infer that Ella was able to plot a 
point in the plane respective of the tick marks that she placed on each axis. However, Ella conceived 
the point as a landmark to draw “the box,” which was a contraindication of representing a 
multiplicative object. Although Ella reasoned about the attributes when placing the two tick marks on 
the axes and used those tick marks in order to generate the point (i.e., the circle in Figure 3), Ella’s 
meanings of the point didn’t include uniting the attributes of an object (i.e., AoW and DoW) in the 
plane; instead Ella conceived the point in terms of a mark as a part of a procedure to set the corner 
for the box.   
Representing a Quantitative Multiplicative Object (QMO) 

In this category, we describe meanings of students who construct and/or interpret a single point in 
the plane in relation to two quantities whose magnitudes or values represented on each axis. We 
illustrate this category by using Zane’s graphing activity in the Swimming Pool Task.  

We asked Zane to sketch a graph that shows the relationship between AoW and DoW as the pool 
fills up. Zane started with drawing tick marks on each axis. Zane referred to the quantity’s magnitude 
by drawing a line segment from the origin to the tick mark on the axis to articulate his meanings of 
tick marks. Moreover, Zane simulated the quantities’ variation by tracing his fingers along the axis as 
we played the animation to fill the empty pool (Figure 4b). After inserting tick marks, Zane plotted 
points for each related tick marks correspondingly (see his color-coded points and tick marks in 
Figure 4a), then he connected those points with line segments in the plane. Figure 4a shows Zane’s 
earlier graph whereas Figure 4c shows his final graph. 

 
 (a)      (b)        (c)      

Figure 4. (a) Zane’s draft, (b) Zane moving his fingers on axes, and (d) Zane’s final graph 
 
To gain more insights into how he conceived his plotted points, we asked Zane to show the point on 

his graph representing when the pool is full. Zane first pointed to the far right and top purple tick 
marks on each axis (see Figure 4a, see also Figure 4b), and he then pointed to the corresponding 
purple point in the plane (see Figure 4a). Taken together with his description of a dot—“the dot 
represents both amount of water and depth of water”—his actions suggest that he could associate two 
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tick marks (i.e., indication of quantities’ magnitudes for Zane) on each axis to the corresponding 
point in the plane, which is an indication of representing a QMO.  

So far, we demonstrated Zane’s meanings of a single point in the plane. We, now, classify the 
instances of representing QMO in two ways in relation to conceiving a graph (e.g., a line drawn in 
the plane) when students represent a relationship as two quantities vary: (1) as a path or direction of 
movement of a dot in the plane, and (2) as a trace of the point consisting of infinitely many points, 
each of which showing the relationship of two varying quantities. We illustrate those types below. 

Type-1 QMO. Type 1 includes students who envision points as a circular dot that represents two 
quantities’ magnitudes or values simultaneously and envision that points on a graph (e.g., a line) do 
not exist until they are physically and visually plotted. Therefore, those students conceive the graph 
as representing a direction of movement of a dot on a coordinate plane. We illustrate by continuing to 
discuss Zane’s graphing activity identified above.  

We asked Zane whether his graph (see Figure 4c) showed every single moment of how the two 
quantities varied in the situation, Zane claimed no because one would need to stop the animation and 
plot an additional point in order to show the desired moment and state of the quantities. We infer 
that, for Zane, his line did not have points until they are visually plotted. He needed to physically plot 
additional points to represent moments in between two available points, even if there is a line 
connecting them. When questioned what the line segments that he drew in between dots meant to 
him, Zane responded that the line shows “where the dots go.” By go, he meant a dot moving from 
one plotted point to the next plotted point, but not in a way that preserved an invariant relationship 
between those two points.  

Therefore, despite his success in being able to conceive of a point as a multiplicative object, Zane 
assimilated his graphing activity as one dot moving along a line path instead of one dot generating 
infinitely many points by leaving a trace. We claim that his meaning for points and lines played a 
critical role in Zane’s construction and constrained him from conceiving a graph as an emergent, in-
progress trace (i.e., the third component of emergent shape thinking). 

Type-2 QMO. Type 2 describes students who could envision a point as an abstract object that 
represents two quantities’ magnitudes or values simultaneously, and envision a graph (e.g., a line) as 
composed of infinitely points, each of which represent two quantities’ values or magnitudes, which is 
an indication of emergent shape thinking. We did not have data in our current study to show an 
empirical example of a student reasoning emergently (see Moore & Thompson, 2015, for an 
illustration). 
Representing a Spatial Multiplicative Object (SMO) 

This category emerged as we coded instances where the students assimilated a “point” in the plane 
as an object/location by focusing on the object’s quantitative properties and engaging in quantitative 
reasoning (e.g., gross comparison of two quantities’ magnitudes). Students who represented a SMO 
determined the object’s location by coordinating and representing two (measurable) attributes of the 
object (e.g., the crow’s distance from Arch and Cannon) in the plane, as opposed to representing 
those attributes on the axes of the plane. That is, they represented the two attributes considering the 
object’s (i.e., the point in the plane) distance from each axis or from a certain location in each axis of 
the coordinate plane.  

For an illustration, we present a moment from Zane’s activity in a version of the Crow Task. In the 
previous version, Zane assimilated the given black point in the plane (see Figure 2b) as the crow. In 
this version, we hided the given point and asked Zane to plot a point that represents the crow’s DfA 
and DfC when the crow is in a place on the map as seen in Figure 5a. Zane began drawing a 
horizontal line segment starting from the vertical axis to a certain place in the plane and drew a 
vertical line segment from that place to the horizontal axis (see Figure 5b). Making connection to the 
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blue and red bars appearing on the map (Figure 5a), he referred to the horizontal line segment in the 
plane saying “the crow’s distance form Arch is shorter” and referring to the vertical line segment in 
the plane, he said “the crow’s distance from Cannon is longer.” Then, he plotted the black dot (seen 
in Figure 5b) where these line segments intersected. 

 

  
        (a)        (b)         (c)            (d) 

Figure 5. (a) and (b) Zane’s activity, (c) and (d) Ella’s activity 
 

We infer that to locate the black dot (i.e., the crow for him) in the plane, Zane represented the 
crow’s distance from Arch as the distance from the vertical axis and the crow’s distance from 
Cannon as distance from the horizontal axis. Note that this activity is consistent with Zane’s earlier 
activity where he assimilated the axis of the coordinate system as Arch and Cannon. Although the 
position of the point he plotted is not normative in terms of a canonical quantitative coordinate 
system (Lee, Hardison, & Paoletti, 2018), this activity was valid for Zane as he was assimilating the 
black dot in the plane as the crow, and imagining Arch in place of the vertical axis and Cannon in 
place of the horizontal axis itself. 

Note that our emphasis in this framework is not on students’ use of coordinate systems (cf. Lee, 
Hardison, & Paoletti, 2018; Paoletti, Lee, & Hardison, 2018); instead we categorize students’ 
meanings of points in terms of multiplicative objects represented in a space that may or may not be 
classified as any type of coordinate system that we, as researchers, know. For example, Zane’s 
graphing activity (Figure 5b) may suggest he seemed to be engaging in plotting a point as a 
multiplicative object in a spatial coordinate system (according to Paoletti et al., 2018), where Zane 
established a frame of reference considering the horizontal axis and the vertical axis as a reference 
point to represent the crow’s distance from Cannon and Arch, respectively. However, conceiving a 
point as SMO should not directly imply representing the relationship on a spatial coordinate system. 
Considering Ella’s activity in Downtown Athens Task (see Figure 5c and 5d), we infer that Ella 
essentially formed, from our perspective, a two-center bipolar coordinate system based on gross 
comparisons between the two quantities’ magnitudes. That is, she conceived Arch and Cannon as a 
location on the vertical and horizontal axis, respectively, implied by the labels (see orange dots on 
each axis in Figure 5d). Then, she made sense of the rest of the space by coordinating the radial 
distances between “places” in the plane and “Arch” and “Cannon” on each axis. For example, Ella 
labeled a point as FAB in the plane (see Figure 5d) indicating First American Bank. To justify why 
FAB, referring to the orange and blue line segments that she drew in the plane (Figure 5d), she said 
“the orange is shorter, and the blue is longer.” Referring to the line segments on the map (see Figure 
5c), she added, “over here, like the same thing” showing FAB is closer to Cannon and farther from 
Arch in the map as well as in the plane. 

Discussion 
In this study, we illustrated different ways students’ graphing activity involved multiplicative 

objects when graphing quantitative relationships. We believe outlining such a framework is 
important as researchers can be more attentive to those meanings students hold for their 
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representational activity. In this section, we discuss the different implications of these ways of 
representing multiplicative objects on students’ graphing meanings. 
QMO VS. SMO 

We perceive that the goal for students who conceive a point as a SMO is locating the object in the 
space, which is why the primary attention is the plane rather than the axes. To locate the object on the 
space, students represent the quantities’ magnitudes in the space by committing to a reference, such 
as the axis itself or a location on the axis, and where those magnitudes meet determines the location 
of the object (e.g., the crow, bike, or First American Bank). The meaning of this point on the space is 
different than students’ meanings who conceive a point as QMO as they represent quantities’ 
magnitudes on the axis and form the point by taking two orthogonal magnitudes along the axis and 
creating projections. In turn, the space is inconsequential beyond creating the point by joining the 
projections when engaging in representing QMO. For that reason, students who produce a graph by 
tracing a SMO will perform different actions (e.g., moving different directions on the space) than 
others who produce a graph by tracing a QMO. Interestingly, those two graphs produced by tracing a 
SMO and a QMO will be exactly the symmetry of each other over the line of ! = ! in case of Zane’s 
activity. Despite the fact that students construct non-normative graphs when tracing a SMO, their 
form of reasoning is productive in terms of completing the goal of the activity as they perceive it. 
Their activity should be considered as a different way of graphing relationships because it still 
requires students engage in quantitative coordination in a non-normative way. Calling this type as 
“spatial” should not imply dismissing the role of quantitative coordination in students’ reasoning. 
Type 1 and Type 2 

To produce a graph via reasoning emergently, students trace a point and anticipate a graph 
including infinitely many points, each of which is a representation of a multiplicative object; a point 
as a multiplicative object is sustained throughout conceiving the emergence of the trace. Given the 
importance of reasoning emergently in developing productive meanings for graphs, by distinguishing 
two types of representing a QMO (i.e., Type 1 and Type 1), we note that conceiving a point as a 
multiplicative object is necessary, but not sufficient in envisioning “graphs as composed of points, 
each of which record the simultaneous state of two quantities that covary continuously” (Saldanha & 
Thompson, 1998, p. 298). As we illustrated above, students whom we classify engaging in 
representing Type 1 QMO can conceive a point in terms of multiplicative object, but they do not 
imagine a trace being produced as representative of that multiplicative object. Given there are 
numerous students (i.e., about 89% of secondary students [N=1798], as reported in Kerslake, 1981) 
not conceiving of infinitely many points on a line and believing there is no point on a line until they 
are plotted (Mansfield, 1985), it becomes important for us to be able to determine which type of 
multiplicative object the students forming and representing. In doing so, we can inform our 
instruction to foster and support students in developing productive meanings for graphs. 
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Mathematics education scholars have generally classified students’ conception of the equal sign as 
either operational or relational. Adding to these conceptions, Jones (2008) introduced the idea of 
substitutional conception. Building off these scholars, I introduce a form of understanding the equal 
sign that includes a transformative equivalence component and extends the conceptions of the equal 
sign to conceptions of equations. 

Keywords: Algebra and Algebraic Thinking, Cognition.  

Introduction 
Students’ algebra achievement acts as a gatekeeper that affects their future academic success and 

employment (Rech & Harrington 2000; Ladson-Billings, 1998). As a result, students’ understanding 
of algebra continues to attract attention from mathematics educators (Kieran, 1992; National Council 
of Teachers of Mathematics[NCTM] 2000; Wagner & Kieran, 1989). Researches have established 
that students’ conception of the equal sign is fundamental to their learning of algebra (Knuth et al., 
2006; McNeil & Alibali, 2005; Falkner et al., 1999). Consequently, aiding students in building a 
productive understanding of the equal sign may not only support students learning of algebraic 
concepts but also foster social equity. Building on such belief, this paper proposes one cognitive 
model for giving meaning to the equal sign.  

The paper begins with a detailed summary of two important papers in which the authors separately 
addressed elementary school students’ understanding of the equal sign and middle school students’ 
understanding of the equal sign (Behr et al., 1980; Knuth et al., 2006). Both studies, although focused 
on students of different school ages, suggested a differentiation between an “operational” and a 
“relational” (or “equivalent”) understanding of the equal sign, and such differentiation has been 
echoed by other researchers (Carpenter et al., 1999; Baroody & Ginsburg, 1983; McNeil et al., 2006; 
McNeil, 2008; McNeil et al.,2011). In general, an operational conception involves interpreting the 
equal sign as an announcement of the result of an arithmetic calculation, and the relational 
conception interprets the equal sign as indicating a mathematical equivalence (Knuth et al., 2006). 
After summarizing these perspectives, I introduce Jones’s (2008) notion of the substitutive 
conception of the equal sign, which further divides the “relational understanding” into “substitutive 
relational” and “sameness relational.” Following this cursory literature review, I explain the 
theoretical rationale for this paper and introduce a conceptual analysis—named the transformative 
model—along with a brief empirical result.  The model extends the question from understanding 
students’ conception of the equal sign to understanding their conception of equation, and it 
contributes a “transformative equivalence” component to previous discussions.  

Background 
The equal sign was not introduced until 1557 by Recorde, and it was universally applied around 

1700. In the field of mathematics, it is not the only symbol that represents an equivalent relationship, 
and indeed it is a special symbol that only represents a certain category of mathematical equivalence 
(Molina et al., 2009). Therefore, one can reasonably assume that students' understanding of the equal 



A conceptual analysis of the equal sign and equation –the transformative component 

	 247	

sign might be as varied in both meaning and sophistication as its development across the history of 
mathematics. 

One of the earliest works in studying students’ understanding of equal sign can be found in Behr 
and his colleague’s (1980) research, in which the authors studied elementary students’ conception of 
the equal sign. One major finding is that students (around 6-7-year-old) hold a fixed belief that the 
equal sign has to appear after the operation symbol. For example, some students in their study read 
the expression “8=5+3” as “five plus three equals eight.” Furthermore, students generally rejected a 
sentence in the form "⎕ = 2 + 4 " but instead changed it to "⎕ + 2 = 4" or "2 + 4 =⎕". One 
interpretation of them was that students had an inclination in using an “action” sentence rather than a 
non-action sentence. In such a case, the authors argued that students conceived the equal sign as a 
“do something signal,” and one could only have an equal sign when there was an operation appears 
on the left (p.16). In other words, students did not conceive the equal sign as suggesting two 
equivalent expressions but an operation symbol. In the study, some students even changed expression 
“4=6+1” to “4=6+10” and saying 4 and 6 made 10. The authors further postulated that some students 
were merely treating equal symbols as symbols to connect numbers.  

The aforementioned study provides evidence that many primary school students do not have a 
flexible way of using the equal sign and frequently see it as an operation signal, and McNeil and 
Alibali (2005) revealed similar patterns among high school and college students. Following this 
result, Knuth and his colleagues (2006) conducted a quantitative study on middle school students’ 
conceptions of the equal sign. Based on their findings, they argued that middle school students lack 
“relational understanding” (or equivalence understanding) of the equal sign, and this influenced 
students’ success in solving algebra problems.  

Knuth et al. (2006) used two problems in their study. In the first problem, students were required to 
give an explicit description of the meaning of the equal sign. In the second problem, students were 
required to solve algebra problems such as “4m+10=70”. The authors found that students who 
explained the equal sign with a relational description (i.e., equal sign means the same as) were more 
likely to solve the algebra problem correctly than students who explained the equal sign with a non-
relational description (i.e., equal sign is a sign connecting the answer to the problem). The authors 
also illustrated that the students who gave relational descriptions were more likely to use algebraic 
methods in solving the later problem; the authors defined algebra methods as methods that involved 
algebraic manipulation (i.e., performing the same transformation on each side of the equation), and 
non-algebra methods are guessing and trying or direct arithmetic (i.e., 70-10=60, 60÷4=15). The 
authors further showed that both correlations hold when controlling for students’ general mathematic 
abilities, that relatively few students hold a relational view, and that the percentage of students who 
hold such view did not increase significantly when students moved from grade 6 to grade 8. The 
authors suggested such a lack of progress might be related to the lack of explicit focus on the 
meaning of the equal sign in the curriculum.  

The findings from these studies are consistent. In listed studies, we observe students may either 
understand equal sign as a “do something signal,” which aligns with an operational meaning, or as “a 
sign of equivalent relation,” which supports students to use algebraic method in solving it. In both 
studies, we also observe students with the operational conception have difficulties in doing algebra 
flexibility. Based on these studies, one can further conjecture that a student, if holds an operational 
conception, will likely avoid using algebraic methods since an algebraic method requires operations 
on each expression, but he/she may not want the right-side expression to involve an operation.  

Adding to these researches, Jones and his colleague (Jones, 2008; Jones et al., 2012) studied the 
substitutive conception of the equal sign. They define the substitutive conception as realizing both 
sides of the equation can be used to substitute each other when needed. These studies are resonated 
with the study of “relational thinking” developed by Carpenter et al. (2005). In short, the key idea 
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that concerns those researchers is that given “16+37=53”, students should be able to evaluate 
“16+39” without doing a direct calculation but utilizing the possible connections between these two 
expressions. More importantly, Jones and his colleague (2012) argued there is a cognitive difference 
between “seeing two entities as equivalent” and “being able to interchange equivalent expressions 
when beneficial,” and scholars frequently over-emphasized the sameness component and risks 
neglecting the substitute component. Jones (2008) found that while making substitutions, students 
were oblivious to the correctness of the equation. For example, when a student needed to replace 77, 
some picked 77=11+33. Jones et al. (2012) also observed cases where students realized that both 
sides of the equation are the same but did not substitute them in problem-solving. Though only a few 
numbers of researchers have studied this substitutive conception, studies in relational thinking have 
shown similar findings that it is challenging for students to relate both sides of the equal sign in 
solving problems (Molina & Ambrose, 2006, 2008). Therefore, the difference between recognizing 
the equivalence and being able to utilize such equivalence as a means for substitution should be 
marked.  

Theoretical Rationale 
Kaput (2000) proposed a movement to “algebrafying” the K-12 curriculum where he encouraged 

students to engage in algebraic reasoning. Carpenter and Levi (2000) answered with a proposal in re-
conceptualization some mathematical topics taught in the primary grade. Following both proposals, I 
provide a re-conceptualization of the equal sign and equations such that students can reason with 
them more flexibly. The previous studies on students’ conception of the equal sign offer a solid 
grounding for this re-conceptualization, but they share two potential limitations.  

One limitation of previous research is their lack of clarity in classifying students’ conception, or as 
Mirin (2019) argued, the differentiation between “operational” and “equivalent” is sometimes 
unclear. For instance, a primary school student who accepts the notion of 3=4-1 is considered as 
presenting a relational conception in Behr et al.’s study, but he/she can still have difficulties in 
solving equations with algebraic strategies when he/she moves into middle school. More importantly, 
there are inconsistencies between students’ conception of the equal sign and their problem-solving 
strategies. For instance, in Knuth at al.’s (2006) study, 33 students in grade-eight used the algebra 
method in solving the problem, but only 31 students showed relational understandings. More 
surprisingly, 43 grade-seven students provided a relational definition to the equal sign, but only one 
student used the algebra method in problem-solving. These results suggest students’ conception of 
the equal sign is not fully predictive of their performance in solving algebra problems. Especially in 
high school and above, it is likely that few students will not realize that equal sign represents an 
equivalence or do not believe in the legitimacy of 3=3, but their algebraic skills regarding equations 
can still be lacking. Therefore, to effectively extend the study of the equal sign to all k-16 education, 
especially for the high school and college students, it might be beneficial to reframe students’ 
conception of the equal sign as students’ conception of equation. In short, students’ conceptions of 
equation are dependent on their conception of the equal sign, but student’s conception of the equal 
sign is not fully predictive to their use of equation. Such expansion will bring issues, which we will 
address later.  

The second limitation is that most studies on students’ conception of the equal sign were conducted 
under the context of single equation solving but lacks research on modeling students’ thinking within 
a system of equations. For instance, given the equation !! + 2! = 1 and ask students to evaluate 
! + 1. Besides using the standard procedure of solving for x and plugging, a student can also solve 
the question by re-writing the original equation as !! + 2! + 1 = 2 and taking square roots on both 
sides. The standard solve-and-plug method requires an equivalent understanding of the equal sign, 
but the later method further requires students to perform a transformation on both sides of the 
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equation. Building off Jones’s argument, I believe there is also a cognitive difference between 
“realizing the sameness or the substitutive nature of both sides of the equation” and “being able to 
transform both sides of equations flexibly in problem-solving.” One could argue that those algebra 
skills are beyond the scope of understanding the equal sign. I contend that they are not beyond such a 
scope because there is an inherent kinship between students’ making meaning for an equation and 
making meaning for the equal sign, a point we will revisit later. 

The Transformative Model 
In response to these potential limitations, I describe a first-order conceptual model (named the 

transformative model) on students’ understanding of the equation as follows: In the first level, 
students conceive an equation as a call to execute an operation or calculation with an answer. In the 
second level A, students see the equation as representing the sameness of two expressions; in the 
second level B, students conceive equation as two parts that stay equivalent under some algebraic 
operation; In the second level C, students see equation as two parts that are interchangeable and used 
as means for substitution. In the third level, students see equation as a piece of information that only 
display a specific equivalent relationship explicitly but also includes a lot of implicit but inferable 
equivalent relationships that can be used in problem-solving. The third level is what I named the 
transformative equivalence conception (or transformative conception).  

This model is of first-order as it is developed through analyzing my own thinking. It has two salient 
characteristics: Firstly, it incorporates the aforementioned research on students’ conceptualization of 
the equal sign but extends such notion to the study of equation. Such extension is not a dramatic 
deviation from previous research on the equal sign, as many of them collected their data through 
observing students’ solving equations (Alibali et al., 2007; Knuth et al., 2008). The other 
characteristic, which is also the central focus of this model, is the inclusion of the transformation 
component: conceiving equation as a piece of information that only display a specific equivalent 
relationship explicitly but also includes implicit but inferable equivalent relationships that can be 
used in problem-solving. I now use the following example to illustrate the above meanings: 

Given !! − 3! + 1 = 0, find the value of 3!! − 8!! + ! − 1 + !
!!. 

Notice to solve this problem, besides the common method of solving for x and then plugging the 
value, students will be benefitted from substituting “!! − 3! + 1" by 0. Students may also want to 
further conjecture the equations "!! − 3!! + ! = 0"  and "! − 3 + !

! = 0"  from “!! − 3! + 1 = 0", 
and use these two new relationships to substitute !! and !!! in problem-solving. Here, I argue being 
able to recognize "!! − 3! − 1" as substitutivity equivalent to 0, and being able to conjecture a new 
equation and then recognize " 1x " !" !"#!$%$"$%&' !"#$%&'!() !" "3 − !" are cognitively different. I 
also postulate the second equivalence is more difficult to recognize since producing equation such as  
"! − 3 + !

! = 0" requires students to multiplicatively compare both expressions with respect to x, 
which is represented by dividing by x. Though dividing a variable to both sides is a common 
mathematical practice, it is often done to reduce the order or perform cancellation. However, since 
here dividing x will not accomplish either goal, students are less likely to use such a strategy as I 
illustrate in a subsequent section.  

The model is also constructed with a partial hierarchical order, but it is not a linear progression 
where students gradually find new properties of equation. Instead, this model is an “emancipation 
process,” where students gradually become less and less constrained to lower-level understandings. 
For instance, for students who solve “! + 7 = 12” with algebraic method in Knuth et al. (2006) 
study, when they subtracted 7 on both sides, they have performed a transformation, but their use of 



A conceptual analysis of the equal sign and equation –the transformative component 

	 250	

transformation can still be unnecessarily restricted and they might still be unable to perform other 
types of transformation in different questions. Therefore, though the model is hierarchical, the 
hierarchy is determined by the extent of how restricted students are using equations in problem-
solving. Similarly, as Jones et al. (2012) suggested, students' development of different conceptions of 
equal sign does not follow a strict order, and one might develop substitutive conception before 
mastering an equivalent conception. Therefore, I put several conceptions as parallel, and the ordering 
in my model is certainly tentative rather than deterministic. 

Methodology and Method 
In considering my methodology, I follow radical constructivism and believe our knowledge is 

constrained by our experience in the sense that we do not have direct access to external realities or 
absolute truth (even assuming they exist). Consequently, each student constructs their own 
conceptualizations of mathematical ideas through their unique experiences. We do not have direct 
access to their understandings, but we can build hypothetical models of students’ knowledge 
(Glaserfeld, 1995). Thompson (2013) reminded us of the importance of attending to students’ 
meaning in mathematical activities and ensuring students understand mathematical objects 
productively. Conceptual analysis, as elaborated by Silverman and Thompson (2008), is then an 
approach in which researchers will model productive meanings of a concept such that those 
meanings are well connected with other mathematical ideas or students’ life experiences. Educators, 
ideally, can then use those models to analyze students thinking and guide students to more productive 
understandings.  

Following these beliefs, I conducted several semi-structurted clinical interviews with pre-service 
teachers and tried to identify possible ways that students are using or can use in conceptualizing the 
equal sign and equations. Research has reported the similarities between pre-service teacher and high 
school students in terms of their mathematics performance in non-college math topics (Moore & 
Carlson, 2012; Carlson, Oehrtman, & Engelke, 2010). In short, though the participants here represent 
a convenience sample, the results are applicable to a broader population. Here I will focus on my 
interview with Meki, who was a second-year undergraduate student registered in our math education 
pre-service teacher program. She has completed several college-level math courses but not high-level 
analysis courses. In the interview, I asked Meki to go through six algebra problems and explained her 
thinking, and most problems are algebraic questions that have multiple approaches but will be solved 
most efficiently by transforming the given equation and then using the substitution method. The 
interviews try to examine how i) interviewees' conceptualization of the equation is 
consistent/inconsistent with my conceptual model, especially regarding the transformative 
component; ii) what are the affordances and constraints of my conceptual model in modeling 
students’ conceptualization of equation, especially regarding the transformative component. 

Empirical Result 
In this section, I report Meki’s answer on two problems with detail. The first problem asks the 

student to evaluate !! +
!
! when presented with the claims that !" = 1; ! + ! = 1. Meki solved the 

problem by realizing !! +
!
! =

!!!
!" . However, when I asked about her thinking, she said that she did so 

as she felt there was no way to directly substitute the equations (pointing to equations !" = 1; ! +
! = 1 ) into the unknown expression, and she explained that there was no “!"” or “! + !” appeared 
in the equation. I then intervened directly and told her that there was a way of doing direct 
substitution; she, after some thought, realized the other solution which was substituting 1 by “!"” 
and change the expression !! +

!
!  !" !"! +

!"
!  which equals ! + ! = 1. When I asked her why she 
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didn’t think of such substitution in the first place, she replied, “yeah, normally you don’t put more 
variables into solve, cause you try to solve and get rid of the variable and find the numbers.” 

Meki displayed a substitutive conception of equation since she was comfortable in evaluating !!!!"  
by substitution, and also she mentioned that she started the problem by looking for some substitution. 
However, from the quote, I argue that her substitutive conception might be restricted in the sense that 
she normally does not substitute numbers by symbols. Therefore, I hypothesize that she lacks a 
transformative conception, and her use of equations is not flexible. Though this result does not 
directly substantiate the difference between the transformative conception and other conceptions, it at 
least suggests that a student with substitutive conception can still experience unnecessary restrictions 
in the potential ways of using the substitution method.  

I then gave Meki the following problem, which was similar to the one I introduced earlier, and the 
difference is we had !!! in previous problem but !

!!!! here (which are equivalent) 

Given !! − 3! + 1 = 0, find the value of 3!! − 8!! + ! − 1 + !
!!!!. 

In dealing with the expression 3!! − 8!! + !, Meki started by extracting a common factor “a,” and 
rewrote the expression into the form !(!! − 3! + 1 + 2!! − 5!), which she then simplify as 
!(!! − 5!). She then failed to make too much progress beyond. She mentioned she could do this 
trick again twice (referring to the trick of finding"!! − 3! + 1" in the expression and the substitute it 
by 0), but she tried some mental calculation and gave it up. In dealing with the term !

!!!! , she 

rewrote it as !
!!!!!!!!!!. She explained that since the expression “!! + 1" has two terms that were 

the same as the given equation’s, she wanted to introduce some new terms to make it zero. It is 
important to mark here that she said she did not foresee the result would be !!!, but she was trying to 
get rid of the two terms and had less term in the denominator. 

Here I argue that Meki was using the substitutive conception, and she was working very hard to 
substitute the expression a2-3a+1 by 0 in the exact form to the unknown expression, and she did not 
realize that one can also generate other ways of substituting (e.g. !! = 3!! − !) in solving the 
question. Though the problem can be solved by repetitively using direct substitution, the mental 
effort that is required in such a process was huge, and students are likely to give up. A student with a 
transformative conception may, however, have a very different approach to doing this problem. One 
approach that I observed from my cohorts was creating a “tool column” where he made a column of 
all equivalent forms such as !! = 3!! − !, and used these forms when he felt he needed it. Notice in 
such an approach, the student was still substituting one side of the equation with the other side, but 
such substitution requires a prior transformation of the original equation, and Meki seemed to be 
reluctant to perform it. 

After I told Meki the answer and gave explicit hints on these potential equivalent equations, the 
students solved the problem without too many struggles. When reflecting on her thinking, she 
mentioned that she never did anything like that, and she said: “I was thinking a lot of it like taking 
things like this (circling the original equation) as it was instead of moving terms around.” Her 
explained insistence in substituting the whole equation in its original form again suggested her use of 
substitution is restrictive, and a transformative conception of the equation is cognitively different 
from a substitutive conception. 

When doing other problems, Meki presented similar thinking patterns where she is comfortable in 
making substitutions, but her use of the substitution method is unnecessarily restrictive. There were 
also some interesting findings that I noticed when I asked my cohort to experiment with some of the 
problems: For example, one of my cohorts realized !! = 3!! − ! and simplified most terms, but he 
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struggled about !!!. When I asked if he could conclude anything about ! 
! from the given equation, he 

believed he could not. Certainly, by being able to simplify the higher-order terms, he displayed 
transformative conception, but his transformative conception does not fully support all forms of 
transformation (e.g., he did not notice here ! 

! = 3 − !).  

Behr et al. (1980) summarized students’ operational conception as “an extreme rigidity about 
written sentences, an insistence that statements be written in a particular form, and a tendency to 
perform actions (e.g., add) rather than to reflect, make judgments, and infer meaning.” (p.16), and he 
named the flexible part as relational conception. Similarly, students can hold a relational conception 
but present the same rigidity in using algebraic methods in solving problems, which implies a lack of 
Jones’s substitution conception. Furthermore, the student can also hold a substitution conception but 
present the same rigidity in using substitution, which implies a lack of the transformative conception. 
The case of Meki serves as a proof of such an argument where students show substitution conception 
but with unnecessary rigidity in the ways of substituting. 

Conclusion and Compromise 
Students’ conception of the equal sign is important, but a differentiation between an “operational” 

and a “relational” is too broad to explain the wide spectrum of students’ performance on operating 
with the equation. Consistent with Jone’s finding that students can observe the equivalence between 
two sides of the equation while not substituting each side when helpful, I found some students can 
substitute each side but only perform substitutions in limited ways. In general, this study points out 
the variety of operations that exist in operating with equations, and students suffer from unnecessary 
restrictions in performing them as their conceptualization of how an equation could be operated in 
problem-solving is incomprehensive.  

Here are two important questions to revisit: why include a transformative component of the 
equation into the study of the equal sign? How such an extension to the conception of equation may 
bring issues?  For the first question, it is an observation that most studies of the equal sign are 
generalized through studying students’ meaning of how an equation can be written/operated in 
problem-solving. Indeed, it is hard to imagine how one student can develop a conception of the equal 
sign without experiencing different ways of writing/manipulating equations. Besides, such a 
conception is tightly related to Jones’ substitution conception, as both concern the potential ways of 
utilizing equations in problem-solving, and both believe there is a nonnegligible and important 
cognitive difference between understanding the equivalence and utilizing such equivalence in 
problem-solving.  For the second question, since the conceptualization of equation goes beyond pure 
algebraic context (e.g., one may argue a complete conceptualization of equation has to contain the 
idea of function, as function is a special “equation” or a collection of an infinite number of 
“equations”), the provided conceptual analysis is incomplete. The model is created independently 
from concerning the students’ conception of variables, the cognitive gap between arithmetic and 
algebra, and the rich real-life or mathematical contexts that an equation can be embedded. I concede 
all these factors are important points that a fully comprehensive study of equation should include. 
Certainly, this model is not claiming a complete analysis of students’ conception of equation. 
Nevertheless, the primary aim of building such a model, which is to support emphasizing and 
studying the transformative property of equation in teaching and learning, should remain intact.  

To contextualize this study into the broader field of education theory, I argue it echoes the general 
belief in fostering students’ critical thinking and creativity as it relates to their mathematical learning. 
Adopting Ennis's (1996) definition of critical thinking with its emphasis on reflectiveness and 
making a choice from what to believe and what to do, the transformative conception may support 
creative reasoning and critical thinking since it invites students to think and consider all possible 



A conceptual analysis of the equal sign and equation –the transformative component 

	 253	

ways of writing an equivalent relation. Cobb(1998) raised an argument that viewing Mathematica 
learning as an “acculturation,” and through providing more flexibility in problem thinking, the 
transformative conception may help students to conquer certain fixed norms in solving equations and 
experience the creative culture from the mathematics society (such as avoiding thinking substitution 
as only using numbers to replace symbols). Under such a perspective, mathematics equations and 
expressions become Lego blocks that students can play with and make creations accordingly, but if 
and only if there are multiple ways of playing, students have motivations to consider different 
possible mathematical operations, and what information can different equivalent expression produce. 
In such a way, students are potentially engaging with mathematics critically, creatively, and 
authentically.  
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We present some of the preliminary results of a project about how the concept of eigenspace can be 
learned as special invariant subspace. The study is based on the theoretical and methodological 
elements of the APOS framework. Specifically, we present the part of the preliminary genetic 
decomposition, obtained from the theoretical analysis, corresponding to the concept of invariant 
subspace; as well as the criteria for classifying and contrasting the mental structures proposed in the 
genetic decomposition with those manifested during and after the instructional stage by eight 
students of Mathematics who participated in the study. 

Keywords: Advanced Mathematical Thinking, Algebra and Algebraic Thinking, Technology, Design 
Experiments 

The application of the concept of eigenspace and the link it has with various key concepts of Linear 
Algebra have guided various investigations regarding its learning. Wawro, Watson, and Zandieh 
(2019) point out that students find it difficult to argue when linear combinations of eigenvectors are 
eigenvectors, showing confusion to distinguish between a base for a given eigenspace and elements 
of such subspace; They conclude that: " A focus on eigenspaces as subspaces has the potential to 
mitigate these challenges and help students see connections across the linear algebra course" (p. 
1122). Therefore, a study was carried out with the purpose of analyzing the cognitive structures that 
a student might need for the learning of eigenspaces as invariant subspaces, so that the cognitive 
demand of this task can be clarified. Some preliminary results about the difficulties in developing 
such mental constructs are presented below. 

APOS theoretical framework 
The APOS framework was chosen since it is a cognitive theory that allows a structural analysis on 

the learning of mathematical concepts and poses specific relationships between the cognitive analysis 
of mathematical learning and the design of teaching materials and experiments (Oktac, Trigueros & 
Romo, 2019). The model defines these stages as mental structures and classifies them as Action, 
Process, Object and Schema (hence the acronym APOS), which arise from the application of specific 
mental mechanisms: internalization, encapsulation, coordination, reversal, de-encapsulation and 
thematization (Arnon et al., 2014). 

With an Action structure, an individual performs transformations to previously constructed Objects 
and its main characteristic is that each step of the transformation must be carried out explicitly, in a 
given order, by the individual and needs to be guided by external instructions. The Process structure 
comes from the internalization of an Action in a Process or by the coordination of different 
Processes into a new one. In the first case, the same operation is performed as the Action that is 
internalized, but in the individual's mind, achieving control over the transformation; in the second, 
the interaction of different processes leads to the development of a new one that in a certain way 
includes both. When it is possible to apply transformations onto the Process and such transformations 
can be constructed, the Process has been encapsulated in an Object. The Scheme structure has a 
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different nature from the previous three, as it develops as a network of Action, Process and Object 
structures, as well as relationships between them; for example, a differential calculus scheme can be 
described as network centered on the concept of function (Arnon et al., 2014). The specific focus of 
this work leads us to study the first types of constructions and not include the development of 
Schemes. 

The hypothetical model that explains the set Actions, Processes and Objects, as well as the mental 
mechanisms that a person could need for the construction of a specific mathematical concept is called 
genetic decomposition. 

Methodology 
Research in the APOS framework is commonly carried out following its research cycle, which 

consists of three components: theoretical analysis, design and implementation of instruction, and 
data collection and analysis (Arnon et al., 2014, p. 94). From the theoretical analysis a preliminary 
genetic decomposition is obtained, the teaching design generates sequences that seek to facilitate the 
mental structures and mechanisms proposed in the genetic decomposition; and from the collection 
and analysis of data, the preliminary genetic decomposition and the teaching design are obtained. 
Preliminary results of each methodological phase are presented below. 
Theoretical analysis 

Based on a review of various Linear Algebra books (Axler, 2015; Frieldberg, Insel & Spence, 1982) 
and research related to learning the concept of eigenspace (Sierpinska et al., 1999; Soto & García, 
2002; Thomas & Stewart, 2011; Gol Tabaghi & Sinclair, 2013; Wawro et al., 2019), it was 
concluded that the need to compare a vector subspace with its image implied thinking that the image 
of an eigenspace satisfies that its image is the same subspace or the zero subspace. Likewise, that for 
the development of a conception of eigenspace as invariant, it was relevant that conceptions of both 
concepts were constructed first and that relations between eigenspaces and invariant subspaces were 
later determined. 

It was determined that for the learning of invariant-eigenspace, students were required to have 
previous conceptions of generated subspace, linear transformation, and eigenvalues and 
eigenvectors. 

In the preliminary genetic decomposition, the construction of eigenspace starts from invariant 
subspaces, followed by invariant one-dimensional and then larger subspaces (2 and 3 dimensions), 
eigenspaces, and then relationships between these structures are analyzed. The proposed concepts for 
invariant subspace are described below. 

The Action A1 consists of manipulating the spanning vector Object, a single vector that spans a 
one-dimensional subspace, by applying a linear transformation (defined from ℝ! →  ℝ!), identifying 
cases in which the image of the subspace is itself or the zero subspace. When Action A1 is repeated 
for different subspaces and different linear transformations, the reflecting on the results allows the 
internalization into Process P1. This process allows the observing, assuming or arguing that the 
subspace generated by some vector is invariant without having to manipulate specific cases of 
subspaces or linear transformations. 

Process P1 is coordinated with the spanned subspace Process to obtain Process P3, with this 
Process it is expected that students can identify that the images of the generators of an invariant 
subspace are not necessarily scalar multiples of themselves; to argue that the invariant subspaces are 
those subspaces that satisfy that the generators of the image subspace can be expressed as a linear 
combination of the spanning vectors of the subspace and recognize that the image of the generator set 
of the subspace does not generate the invariant subspace if the null subspace is different from the 
zero subspace. 
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Design and implementation of instruction 
The ACE Teaching Cycles proposed from APOE were taken as a reference. These cycles are made 

up of three stages that give the cycle its name: Activities to initiate the development of mental 
structures; Class discussions to promote mental mechanisms; and Exercises to reinforce the mental 
constructions developed by the students (Arnon et al., 2014, p.58). 

The design consists of four ACE type sequences. In sequence 1, students are familiarized with the 
graphic representations of the concepts and with the use of GeoGebra applets, additionally, previous 
conceptions about the concepts of generated subspace and linear transformations are evaluated. In 
sequence 2, the development of Action A1 and Process P1 is promoted; this paper refers to the 
second sequence. For the activity phase, an applet was designed available at: bit.ly/g-act1. The 
activity begins with the graphic exploration of the image of a one-dimensional subspace, line l, which 
can be modified by changing the spanning vector of the subspace. Each of the buttons !!,!!,!!,!! 
and !!, is associated with a different linear transformation and they are distributed by teams, while 
the group discussion is focused on the similarities and differences between the five cases. 

 

 
Figure 1 Sequence 2 GeoGebra applet 

 
The implementation of the sequences here reported was carried out with eight students of the 

Bachelor of Mathematics enrolled in a second Linear Algebra course, the data and analysis shown 
below correspond to sequence 2, whose implementation was carried out in 3 sessions of 50 minutes. 
Data collection and analysis 

The student worksheets collected in the implementation stage complemented with notes and 
recordings of the class discussions constitute the data analyzed. A non-comparative case study was 
carried out, which sought to contrast the proposed structures from the theoretical analysis with those 
expressed by the students in their written productions. The following table shows a couple of student 
responses to a problem in the exercise section designed to assess Action A1 conception. 
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Table 1 Differences in the development of conception Action A1. 
Let !! ℝ  be the vector space of grade 2 or lower polynomials with real coefficients, and !:!! ℝ →
!! ℝ  a linear transformation such that ! ! = !′. Determine if a) !! ℝ  and b) !"#${!!}, invariant 

subspaces under T 
Student E1 set ! ! = ! + !" + !!! and 

calculated the image of vector p, realizing that 
! ! ! ∈ !!(ℝ) and concluding that the 

subspaces was invariant. In b), following a similar 
procedure, compared !!! with !"#${!!} and 
concluded that the subspace was not invariant 

because ! !!! = 2!" ∉ !"#${!!} . 

Student E3 set ! ! = !! + !!! + !!!!, 
calculated its image and concluded that: “it is T-

invariant because T(p) is a polynomial with grade 
equal or lower than 2, for each ! ∈ !!(ℝ)”. 
However, for b) he took an arbitrary !!!, 

calculating that ! !!! = !2! ∈ !! ℝ , finally 
concluding that, since for every ! ∈ !"#${!!}, 
!(!) was a polynomial of grade 2 or lower. 

Action Pre-action 
 

Student E1 can apply the definition for the specific subspace, determining whether or not it is met; 
this implies that she can determine for specific cases that the subspace is invariant if its image is the 
same subspace or the zero subspace. E1 resorts to a previous conception of set containment that 
involves thinking that given two sets A and B, ! ⊆ ! if and only if for any ! ∈ ! it is satisfied that 
! ∈ !, which is considered part of Action !! . In the case of E3, the initial procedure performed by 
the student is correct, however, the student does not recognize that in order to conclude that the 
subspace is or is not invariant, he must determine if !(!!!) ∈ !"#$ !! . In his answer, he also does 
not write explicitly which is the subspace that is invariant under the transformation; the absence of 
this part of the action classifies it as an action in progress or pre-action. 

Similarly, the responses for the other conceptions of the genetic decomposition are analyzed for its 
evaluation. 

Discussion and preliminary conclusions 
In general terms, the evaluation of sequence 2 allowed evaluating both the proposed mental 

structures from the theoretical analysis, as well as the design and implementation of teaching 
corresponding to Action !! and process !!. The continuation of the analysis will allow evaluating the 
rest of the genetic decomposition and the teaching design. 

The classification of the responses in terms of the concepts shown allowed us to identify the 
correctly developed mental structures and those that were emerging, as in the pre-action cases, in 
some cases showing they were not compatible with the preliminary genetic decomposition. 

Regarding the Activities problems, the student responses were mostly classified as compatible with 
the described mental structure linked to them, although in several cases the structures are manifested 
in a developmental stage (Arnon et al., 2014, p. 139), this was primarily observed in responses in 
which the work was based on graphical representations, the students seemed to understand and be 
able to work the situation according to the required mental structure, however they found it difficult 
to give a sufficiently clear argument that would validate what they said; students showed better 
arguments when situation were stated in algebraic representations. This difficulty was associated 
with the fact that the students who participated in the study were unfamiliar with the graphic 
representations. 
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Se presentan algunos de los resultados preliminares de un proyecto en el que se analiza cómo se 
puede aprender el concepto de espacio propio como subespacio invariante especial. El estudio se 
sustenta en los elementos teóricos y metodológicos del marco APOE. Específicamente, se muestra la 
parte de la descomposición genética preliminar correspondiente al concepto de subespacio 
invariante, así como los criterios utilizados para el análisis de datos que permitieron clasificar y 
contrastar las estructuras mentales propuestas en la descomposición genética con las manifestadas 
durante y después de la etapa de instrucción por ocho estudiantes de la licenciatura en Matemáticas 
que participaron en el estudio. 

Palabras clave: Pensamiento Matemático Avanzado, Álgebra y Pensamiento Algebraico, Tecnología, 
Experimentos de Diseño 

Los campos de aplicaciones del concepto de espacio propio y el vínculo que tiene con diversos 
elementos del Álgebra Lineal han guiado diversas investigaciones sobre su aprendizaje. Wawro, 
Watson y Zandieh (2019) señalan que a los estudiantes se les dificulta argumentar cuándo 
combinaciones lineales de vectores propios son vectores propios, mostrando confusión para 
distinguir entre una base del espacio propio con los elementos del subespacio; concluyen que: “un 
enfoque en los espacios propios como subespacios tiene el potencial de mitigar estos desafíos y 
ayudar a los estudiantes a ver las conexiones a través del curso de álgebra lineal” (p. 1122). Por lo 
anterior, se realizó un estudio con el propósito analizar las estructuras cognitivas que un estudiante 
podría necesitar en el aprendizaje de espacios propios como subespacios invariantes, de manera que 
se pueda aclarar la demanda cognitiva de esta tarea. Se presentan a continuación algunos resultados 
preliminares acerca de las dificultares para desarrollar tales construcciones mentales. 

Marco teórico APOE 
Se eligió el marco APOE ya que es una teoría cognitiva que permite un análisis estructural sobre el 

aprendizaje de los conceptos matemáticos y plantea relaciones específicas entre el análisis cognitivo 
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del aprendizaje matemático y el diseño de materiales y experimentos de enseñanza (Oktac, Trigueros 
& Romo, 2019). El modelo define estas etapas como estructuras mentales y las clasifica como 
Acción, Proceso, Objeto y Esquema (de aquí las siglas APOE), que surgen de la aplicación de 
mecanismos mentales específicos: interiorización, encapsulación, coordinación, reversión, 
desencapsulación y tematización (Arnon et al., 2014). 

La estructura Acción el individuo realiza transformaciones sobre Objetos previamente construidos y 
se caracteriza porque cada paso de la transformación debe realizarse explícitamente por el individuo 
y necesita ser guiado por instrucciones externas. La estructura Proceso es desarrollada a partir de la 
interiorización de una Acción en un Proceso o por la coordinación de distintos Procesos. En el 
primer caso, se realiza la misma operación que la Acción que se está interiorizando, pero en la mente 
del individuo, logrando la toma de control sobre la transformación; en el segundo la interacción de 
Procesos distintos conlleva al desarrollo de uno nuevo que de cierta manera incluye a ambos. Cuando 
es posible aplicar transformaciones sobre el Proceso y se pueden construir tales transformaciones, el 
Proceso ha sido encapsulado en un Objeto. La estructura de Esquema tiene una naturaleza distinta a 
las tres anteriores, al desarrollarse como una red de estructuras Acción, Proceso y Objeto, así como 
relaciones entre éstas; por ejemplo, se puede describir un esquema de Cálculo diferencial como 
centrado en el concepto de función (Arnon et al., 2014). El enfoque puntual del presente trabajo nos 
lleva a estudiar los primeros tipos de construcciones y no incluir el desarrollo de esquemas. 

El modelo hipotético que explica el conjunto Acciones, Procesos y Objetos, así como los 
mecanismos mentales que una persona podría necesitar para la construcción de un concepto 
matemático específico es llamado descomposición genética.  

Metodología 
Las investigaciones en el marco APOE se realizan comúnmente siguiendo su ciclo de investigación, 

el cual consta de tres componentes: análisis teórico, diseño e implementación de enseñanza y 
recolección y análisis de datos (Arnon et al., 2014, p. 94). Del análisis teórico se obtiene una 
descomposición genética preliminar, el diseño de enseñanza genera secuencias que buscan favorecer 
las estructuras y mecanismos mentales propuestos en la descomposición; y de la recolección y 
análisis de datos se obtiene la valoración de la descomposición genética preliminar y el diseño de 
enseñanza. Se presenta a continuación resultados preliminares de cada etapa metodológica. 
Análisis teórico  

A partir de la revisión de diversos libros de Álgebra lineal (Axler, 2015; Frieldberg, Insel & 
Spence,1982) e investigaciones relacionadas con el aprendizaje del concepto de espacio propio 
(Sierpinska et al., 1999; Soto & García, 2002; Thomas & Stewart,2011; Gol Tabaghi & Sinclair, 
2013; Wawro et al., 2019) se concluyó que la necesidad de comparar el subespacio con su imagen 
implicaba pensar en que la imagen del espacio propio satisface que su imagen es el mismo 
subespacio o el subespacio cero. Así mismo, que para el desarrollo de una concepción de espacio 
propio como invariante era relevante que se construyeran primero concepciones de ambos conceptos 
y que después se determinaran relaciones entre espacios propios e invariantes.  

Se determinó que para el aprendizaje del concepto de espacio propio invariante se requería que los 
estudiantes tuvieran concepciones previas de subespacio generado, transformación lineal y valores y 
vectores propios.  

En la descomposición genética preliminar se proponen concepciones para el aprendizaje de espacio 
propio partiendo de subespacios invariantes. Se construyen concepciones sobre subespacios 
invariantes unidimensionales y de dimensión mayor, espacios propios y luego se analizan relaciones 
entre estas estructuras. A continuación, se describen las concepciones propuestas para subespacio 
invariante.  
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 La concepción Acción !!  consiste en manipular el Objeto de vector generador, mediante la 
aplicación de una transformación lineal (definida de ℝ! en ℝ!), identificando casos en los que la 
imagen del subespacio es él mismo o el subespacio cero. Cuando la Acción !! se repite para 
diferentes subespacios generados y diferentes transformaciones lineales, reflexionando sobre los 
resultados, se puede interiorizar en un Proceso !! que permite observar, suponer o argumentar que el 
subespacio generado por algún vector es invariante sin tener que manipular casos específicos de 
subespacios o transformaciones lineales.  

El Proceso !! se coordina con el Proceso de subespacio generado para obtener el Proceso !!, con 
este Proceso se espera que los estudiantes puedan identificar que en general las imágenes de los 
generadores del subespacio invariante no son necesariamente múltiplos escalares de sí mismos; 
argumentar que los subespacios invariantes son aquellos subespacios que satisfacen que los 
generadores del subespacio imagen se pueden expresar como combinación lineal del conjunto 
generador del subespacio y reconocer que la imagen del conjunto generador del subespacio no genera 
al subespacio invariante si el subespacio nulo es diferente del subespacio cero. 
Diseño e implementación de enseñanza 

Se tomaron como referencia los Ciclos de enseñanza ACE propuestos desde APOE. Estos ciclos se 
componen de tres etapas que dan nombre al ciclo: Actividades para iniciar el desarrollo de las 
estructuras mentales; Discusiones de Clase para promover los mecanismos mentales; y Ejercicios 
para reforzar las construcciones mentales desarrolladas por los estudiantes (Arnon et al., 2014, p.58). 

El diseño consiste en cuatro secuencias de tipo ACE. En la secuencia 1 se familiariza a los 
estudiantes con las representaciones gráficas de los conceptos y con el uso de applets en GeoGebra y 
se valoran concepciones previas sobre los conceptos de subespacio generado y transformaciones 
lineales. En la secuencia 2, se promueve el desarrollo de la Acción !!, Proceso !! y Proceso !!; el 
documento se refiere a esta segunda secuencia. Para la actividad se diseñó un applet disponible en: 
bit.ly/g-act1. La actividad inicia con la exploración gráfica de la imagen de un subespacio 
unidimensional, la recta !, que puede modificarse al cambiar el vector generador del subespacio. 
Cada uno de los botones !!, !!, !!, !! y !!, está asociado a una transformación lineal distinta y se 
distribuyen por equipos para luego discutir grupalmente las semejanzas y diferencias entre los cinco 
casos. 

 

 
Figura 1 Applet de la Secuencia 2 

 
La implementación de las secuencias que aquí se reporta se realizó con ocho estudiantes de la 

Licenciatura en Matemáticas inscritos a un curso de Álgebra Lineal II, los datos y el análisis que se 
muestra a continuación corresponden a la secuencia 2, cuya implementación se llevó a cabo en 3 
sesiones de 50 minutos.  
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Recolección y análisis de datos  
Se analizan las hojas de trabajo de las estudiantes, recolectadas en la etapa de implementación, 

complementando con notas y grabaciones de las discusiones de clase. Se realizó un estudio de caso 
no comparativo, con lo cual se buscó contrastar las estructuras propuestas a partir del análisis teórico 
con las manifestadas por los estudiantes en sus producciones escritas. 

En la siguiente tabla se muestran un par de respuestas de estudiantes ante un problema de la sección 
de ejercicios diseñado para evaluar la concepción Acción A1. 

 
Tabla 1 Diferencias en el desarrollo de la concepción Acción A1. 

Sea !! ℝ  el espacio vectorial de los polinomios de grado menor o igual a dos, con coeficientes reales y 
!:!! ℝ → !! ℝ  una transformación lineal tal que ! ! = !′ . Determine si a) !! ℝ  y b) !"#${!!} , son 
subespacios invariantes bajo ! 

La estudiante E1, tomó ! ! = ! + !" + !!! y 
calculó la imagen del vector, llegando a que ! ! ! ∈
!!(ℝ) concluyendo que el subespacio era invariante. En 
b) realizó un procedimiento similar, comparando !!! 
con !"#${!!}  y concluyó que el subespacio no era 
invariante porque ! !!! = 2!" ∉ !"#${!!} . 

La Estudiante E3, en el caso a) tomó ! ! = !! +
!!! + !!!! , cálculo su imagen y concluyó: “Es ! -
invariante ya que !(!) es un polinomio de grado menor 
a dos ∀ ! ∈ !!(ℝ) ”. Sin embargo, para el caso b) 
consideró un elemento arbitrario del subespacio !!!, 
llegando a que ! !!! = !2! ∈ !! ℝ  finalmente 
concluyó que se trata de un T-invariante, debido a que 
para todo !  ∈ !"#${!!} , !(!)  era “un polinomio de 
grado menor a 2”. 

Ejemplo de Acción Ejemplo de Pre-acción 
 
La estudiante E1 puede aplicar la definición para el subespacio específico, determinando si éste 

satisface o no la definición; esto implica que puede determinar para casos específicos que el 
subespacio es invariante si su imagen es el mismo subespacio o el subespacio cero. Se observa que 
E1 recurre a una concepción previa de contención que involucra pensar que dados dos conjuntos ! y 
B, ! ⊆ ! si y solo si para cualquier ! ∈ ! se satisface que ! ∈ !, lo cuál se considera parte de la 
Acción !!. En el caso de E3, el procedimiento inicial realizado por la estudiante es correcto, sin 
embargo, la estudiante no reconoce que para poder concluir que el subespacio es o no invariante debe 
determinar si ! !!!  ∈  !"#${!!} , en su respuesta tampoco escribe explícitamente cual es el 
subespacio que es invariante bajo la transformación; la ausencia de esta parte de la acción lo clasifica 
como acción en desarrollo o pre-acción. 

De manera similar se analizan las respuestas para las demás concepciones de la descomposición 
genética para su evaluación. 

Discusión y conclusiones preliminares 
En términos generales la valoración de la secuencia 2 permitió evaluar tanto las estructuras 

mentales propuestas a partir del análisis teórico, como el diseño e implementación de enseñanza 
correspondiente a la Acción A1 y proceso P1. La continuación del análisis permitirá evaluar el resto 
de la descomposición genética y el diseño de enseñanza. 

 La clasificación de las respuestas en términos de las concepciones mostradas permitió identificar 
las estructuras mentales correctamente desarrolladas y las que estaban emergiendo, como en los 
casos de pre-acciones, en algunos casos de forma no compatible con la descomposición genética 
preliminar.  

En relación con los reactivos de las secuencias, las respuestas mayormente se clasificaron como 
compatibles con la estructura mental descrita, aunque en varios casos las estructuras se manifiestan 
en etapa de desarrollo (Arnon et al., 2014, p. 139), esto se observó primordialmente en respuestas en 
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las que se trabajaba con las representaciones gráficas, los estudiantes parecían entender y poder 
trabajar la situación de acuerdo con la estructura mental requerida, sin embargo les costaba dar una 
argumentación suficientemente clara que validará lo que decían; los estudiantes mostraron mejores 
argumentaciones cuando el trabajo que se solicitaba involucraba representaciones algebraicas. Esta 
situación se asoció a que los estudiantes que participaron en el estudio se encontraban poco 
familiarizados con las representaciones gráficas. 
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The purpose of this study is to investigate the range of strategies fifth graders used to solve a word 
problem involving fraction multiplication. We report a detailed qualitative analysis of elementary 
students’ written work (N = 1472). The results demonstrate that students collectively use a wide 
range of strategies for fraction multiplication. Implications for teaching and learning are discussed. 

Keywords: Number Concepts and Operations; Rational Numbers; Assessment and Evaluation 

Perspectives 
Kieren (1976) stated five subconstructs to define fractions: part-whole, ratio, quotient, operator, and 

measure (see also, Behr et al., 1992). A comprehensive understanding of the rational numbers 
demands students to be familiar with interpretations of various subconstructs as well as understand 
their interaction (Ball, 1993; Behr et al., 1983; Lamon, 2007, 2012; Ni, 2001). Teaching the 
algorithm for multiplying fractions seems easy (Johanning, 2019; Reys et al., 2007) but the 
conceptual underpinnings are complex (Tirosh, 2000; Tsankova & Pjanic, 2009). Usually, additive 
operations require dealing with one fractional unit, while multiplicative operations involve 
interaction between multiple units. A problem like ‘Ben has 1/3 of a cup of sugar. He sprinkles 1/2 of 
the sugar onto brownies. How much sugar does Ben sprinkle?’ requires – (i) coordination in the units 
involving ‘1/3 cup a sugar’ with ‘1/2 of the 1/3 cup’ and (ii) choice of a specific arithmetic 
operation.  

This study explores students’ conceptions on fraction multiplication for a contextual problem. The 
results might guide elementary teachers to design strategic problems to capture the implicit 
conceptions of their students’ reasoning. This paper describes the patterns in students’ responses to 
capture the reasons for selecting a specific option by examining their written work. The main 
question guiding our research is What is the range and distribution of strategies that students use to 
approach and solve a fraction multiplication problem?  

Context 
We designed a task to address the Grade 5 standard (CCSS.MATH.CONTENT.5.NF.B.4) focusing 

on students understanding of multiplication related to multiplying a fraction by a fraction (Figure 
1). The question included two fractions with different meanings: the fraction 5/8 representing a 
certain length and functioning as a measure of the distance between Levi’s home and his school and 
the fraction 2/3, functioning as a ratio between the distance he has walked and the school-home 
distance. The distractors for this question were purposefully designed to assess the participants 
choice of operation: (a) 1/24 is the result of subtracting; (b) 10/24 can be obtained by multiplying and 
is the correct response; (c) 16/24 can be obtained after finding equivalent fractions with a common 
denominator; and (d) 31/24 can be obtained by adding.  
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7. Levi lives !! mile from school. After he walked !! of the way to school, he met Marta. How far, in 
miles, had Levi walked when he met Marta? 

 
A. !!" miles B. !"!" miles C. !"!" miles D. !"!" miles 

Figure 1: The Problem 

Data and Methods  
The data is drawn from a larger study from a representative sample of fifth-grade students (N = 

1427) in a Midwestern State. Participation was voluntary, and students were given 15 minutes to 
work on eight multiple-choice questions. For this paper, we have focused on one question involving 
fraction multiplication (Figure 1). The written work of the students was examined using qualitative 
software, MAXQDA version 18.1.1 (VERBI Software, 2016). 
Qualitative Analysis of Students’ Written Work  

Research suggests that students’ written work provides valuable evidence of their mathematical 
strategies, reasoning, and confusions (Brizuela, 2005; Kamii et al., 2001). We used thematic analysis 
(Braun & Clarke, 2006) to code students’ written work. To ensure consistency, two coders coded one 
class (n = 57) during a training session to identify similarities in students’ work and developed a list 
of themes. Certain pragmatic agreements were made, for example, the code of ‘no written work’ was 
used both for blank entries and if the student scratched out or erased their written work. As another 
example, the code ‘unclear explanation’ was used if something were written but a clear idea could 
not be deciphered. The coders used the initial codebook to code three classes individually and agreed 
on 100% of the cases after discussion. The final codebook had five themes each with several sub-
themes (Table 1). Each code was defined in a code book along with prototypical examples to create 
consistent use.  

Results  
The unit of analysis for this part of the study is a student’s response to one specific item on fraction 

multiplication. To address the research question, we first present the distribution of themes and then 
summarize the information captured from these themes. 

 
Table 1: List of Themes with Distribution of The Students  

 N=1472 % 
Code 10 Students who selected option 10/24 (correct response)  435 29.55 
• 10A: Used multiplication as operator (‘*’ or ‘.’ or ‘of’) 157 10.67 

• 10A(a): Reduced the fraction to 5/12 36 2.45 
• 10A(b): Used multiplication as second operator choice 7 0.48 

• 10B: Used drawings  2 0.14 
• 10C: Used “wrong” or “no” arithmetic operator  13 0.88 
• 10D: Incorrectly written work  2 0.14 
• 10E: No written work  145 9.85 
• 10F: Unclear explanation  41 2.79 

• 10F(a): Showed understanding of making the same denominators  14 0.95 
• 10F(b): Subtract fractions and select the one with same multiples  6 0.41 
• 10F(c): Added fractions as 7/11 or 7/24  11 0.75 

• Guess  1 0.07 
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Code 1 Students who selected option 1/24  414 28.13 
• 1A: Made the denominators same and subtracted both  125 8.49 

• 1A(a): Subtracted fractions but did not write ‘-’ in their work  36 2.45 
• 1A*: Made the denominators same, flipped the numbers and subtracted  119 8.08 
• 1B: Unclear explanation  54 3.67 

• 1B(a): Subtracted fractions and have written 3/5 as answer 6 0.41 
• 1B(b): Used other/multiple operations 6 0.41 

• 1C: No written work  68 4.62 
Code 16 Students who selected option 16/24 247 16.78 
• 16A: Made denominators same; selected the one with large numerator  60 4.08 
• 16A(a): Compared fractions but used ‘-’ in their written work 10 0.68 
• 16B: Unclear explanation  36 2.45 

• 16B(a): Used multiple/other operators  11 0.75 
• 16B(b): Transformed either 5/8 to 15/24 or 2/3 to 16/24 17 1.15 

• 16C: No written work  113 7.68 
Code 31 Students who selected option 31/24 158 10.73 
• 31A: Made the denominators same and added both 97 6.59 

• 31A(a): Added fractions but did not write ‘+’ OR wrote ‘-’  22 1.49 
• 31B: Unclear explanation 9 0.61 

• 31B(a): Added numbers as 7/11  2 0.14 
• 31C: No written work  28 1.90 
Code O Other Responses  218 14.81 
• O(A): Students have written ‘what’ or ‘IDK’ or ‘guessed’ or ‘?’  2 0.14 
• O(B): No response with unclear or clear written work 23 1.56 
• O(C): No response and NO written work  193 13.11 

N: Number of Students; %: Percentage of Students 

 
The students’ written work revealed their comprehension and conception of a fraction 

multiplication word problem. Around 435 students (29.55%) chose the correct option 10/24, but 62 
(4.21%) of them had unclear explanations. Some students did not use the multiplicative operator as 
their first choice and employed a ‘guess and check’ strategy solving the task, e.g., making the 
denominator values the same, adding the fractions, etc. as their first attempt (Code 10A(b), n = 7, 
0.48%). Code 10C depicts the students (n = 13) who have either not used any or used ‘-’ as an 
arithmetic operator between 5/8 and 2/3. The reason of their selecting their operation is unknown to 
us but suggests avenues to be explored in the future using interviews.  

Some students (Code 10F(b), n = 6, 0.41%) wrongly subtracted the fractions 5/8 and 2/3 as 3/5, and 
selected 10/24 (Figure 2(a)). A potential reason for this selection can be that the students might have 
realized that 3 and 5 are respective factors of 24 and 10. There is speculation in this inference but the 
best judgment we can make from their work. However, this code supported the idea of revisiting 
previously learned concepts because even if the subtracting fractions is a fourth-grade standard 
(CCSS.MATH.CONTENT.4.NF.B.3.A), misconceptions were visible in their present work. Similar 
reasoning has also been captured in Code 1B(a) (n = 6, 0.41%). 

Some students demonstrated an advanced level of understanding by treating fractions as an 
operator. They considered 2/3 as 2*(1/3), multiplied 5/8 with 1/3 to get 5/24, and then doubled the 
output (Figure 2(b); Code 10A, n = 157, 10.67%). This shows a sophisticated level of reasoning as 
students changed the fraction into a unit fraction and then doubled it. 
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Many students chose the option 1/24 (Code1; n = 414, 28.13%) suggesting that they relied on a 
part-whole understanding of fractions. Students subtracted 5/8 and 2/3 after making the same 
denominator; this only makes sense if they were treating both as a distance. Code1A* (n = 119, 
8.08%), an extension to Code1A (related to subtracting both fractions, n = 161, 10.94%), reflected a 
unique attribute of understanding where students made the denominators the same for both fractions 
and switched their order (Figure 2(c)). This code indicated students may have applied the rule of 
always subtracting the smaller number from the larger number. Similar reasoning was captured by 
Code 31 (n = 158, 10.73%) where students interpreted this to be an addition problem.  

 

 
Figure 2: Examples of the Students’ Work for Specific Codes 

 
A few codes call for teachers’ attention, for instance, Code 16B(b) (n = 17, 1.15%) depicts students 

using only one fraction to deduce the answer. One of the students mentioned, “I think it is 16/24 
because 1/3 = 8/24 and he is 2/3, so you add and get 16/24”. We also found that there were students 
who performed the correct calculation and obtained 5/12 but did not select any option, captured in 
the Code O(B). Such students might have forgotten to mark an answer choice or potentially did not 
recognize equivalence between 5/12 and 10/24. 

Discussion  
The qualitative analysis of the students’ written work helped in recognizing and identifying the 

strategies involved in answer choices. We find it plausible that students selected incorrect options 
because to answer correctly requires one to understand the different meanings of fractions and how to 
interpret the product (Wyberg et al., 2012). Instead, students often rely on their understanding of 
whole numbers (Tsankova & Pjanic, 2009; Wu, 2001). However, whole number strategies are not 
appropriate for finding the product of two fractions. The analysis shows that many students added or 
subtracted directly which implies they treated both fractions in the question (5/8 of a mile and 2/3 of 
the distance) as a measure. The students in this sample may lack understanding of a fraction as a 
ratio.  

Previous researchers mentioned that instruction in the elementary classrooms is dominated by the 
part-whole interpretation of fractions (Ni & Zhou, 2005; Olanoff et al., 2014). Such instruction does 
not provide the conceptual understanding necessary to solve a problem involving fractions with a 
ratio meaning. We speculate that reinforcing the conceptual meaning behind all fraction sub-
constructs might improve students’ facility with fraction operations.  
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The goal of this study is to describe students’ understandings of the transformations of functions in 
different representations based on an analysis of pilot interviews with two ninth and two twelfth 
grade students from the same urban public high school in Massachusetts, which serves a diverse 
community. Interview responses indicated that the students were unable to identify explicitly the type 
of transformation that described the relationship between two functions. Analyses of the interviews 
revealed that a student’s flexibility in the use of representations of and approaches towards functions 
is an indicator of their understanding of functions and, therefore, that the ninth grade students 
interviewed have a less sophisticated understanding of functions than do the twelfth grade students 
interviewed.  

Keywords: Algebra and Algebraic Thinking 

Purpose of Study 
Functions, as proposed by Schwartz and Yerushalmy (1992; Doorman & Drijvers, 2011; Schwartz, 

1999; Zandieh et al., 2017), can be viewed as one of the fundamental objects of mathematics, and 
appears at all levels of the mathematics curriculum ranging from patterns in elementary school to real 
analysis in college mathematics. Landmark studies about the concept of function include, but are not 
limited to: (1) theoretical models on the development of the function concept; (2) teaching 
experiments that apply general theories to the specific concept of function; (3) students’ and 
teachers’ conceptions of functions; and (4) the use of technology in functions-based mathematics 
classes (e.g., Dubinsky & Harel, 1992b). The current study falls under the third category above, 
which includes more recent studies such as Ayalon and Wilkie (2019), Dubinsky & Wilson (2013), 
and Ronda (2015). It aims to contribute to this line of research by specifically analyzing and 
describing students’ understandings of the transformations of functions in different representations. 
Thus far, researchers have identified that students experience difficulties with transformations of 
functions when asked to (a) visualize the transformations because of processing challenges with 
horizontal and vertical translations (Eisenberg & Dreyfus, 1994); (b) identify, graph and use 
transformations to solve problems because they have not interiorized the concept of function (Lage & 
Gaisman, 2006); and (c) translate functions because of cognitive and pedagogical obstacles (Zazkis 
et al., 2003). This study will describe some of the difficulties students encounter with transformations 
of functions, in particular, when asked to state the relationship, based on a transformation, between 
two given functions. 

Theoretical Framework 
Representations of Functions 

There are various ways to represent a function. This study considers the algebraic, graphical, and 
tabular representations, which frequently occur in a high school math curriculum. The term algebraic 
representation refers to expressions or equations containing numbers and variables connected by 
mathematical operations. The term graphical representation refers to the Cartesian coordinate system, 
and the term tabular representation refers to a table of values displaying an input and an output. 
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Conceptions of Functions 
The most predominant distinction used for describing one’s concept of a function is process versus 

object. A process conception of a mathematical concept is “a form of understanding of a concept that 
involves imagining a transformation of mental or physical objects that the subject perceives as 
relatively internal and totally under her or his control” (Dubinsky & Harel, 1992b, p. 20). An object 
conception of a mathematical concept is “a form of understanding of a concept that sees it as 
something to which actions and processes may be applied” (Dubinsky & Harel, 1992b, p. 19). One 
method for identifying one’s conception of function is to consider one’s approach towards functions, 
as is done in this study. One can have a pointwise or a global approach towards a function (Bell & 
Janvier, 1981; Janvier, 1978). For instance, if given the algebraic representation of a function and 
asked to create the graph, then a pointwise approach is to plot discrete points, and a global approach 
is to sketch the graph (Even, 1998). 
Conceptions and Representations of Functions 

A students’ understanding of the concept of function can vary depending on the representation 
(Dubinsky & Harel, 1992a; Moschkovich et al., 1993). This is likely because the tabular 
representation is composed of discrete data points and requires a pointwise (process) approach, and 
the algebraic and graphical representations can be manipulated discretely (pointwise/process) or in 
their entirety (global/object). Further, to be able to translate between representations is associated 
with being able to transition between approaches (Even, 1998), and it is important to be able to move 
flexibly between representations and understandings (Moschkovich et al., 1993).  

Methods 
Participants 

The participants included two high-performing ninth graders (Student 9-1 and 9-2) and two high-
performing twelfth graders (Student 12-1 and 12-2), from the same public high school in an urban 
center in Massachusetts, which serves a diverse community. The ninth graders were learning basic 
algebra principles such as order of operations, as well as statistical concepts such as box plots; the 
twelfth graders were learning about polynomial functions and their characteristics. The students were 
selected by their mathematics teachers to participate in this pilot study based on their excellent grades 
and high skill level in their current mathematics class. 
Individual Interviews 

The individual interviews piloted seven questions pertaining to the definition of a function, and the 
transformations and comparisons of functions in different representations; however, this paper will 
focus only on the responses to the three interview questions regarding the transformations of 
functions (Questions 2, 3, and 4 – see Figure 1). In these questions, the participants were asked to 
state the relationship between the two given functions. The interviews were videotaped and lasted 
between 15 and 60 minutes, depending on the participant.  
Analysis 

The participants’ responses to Questions 2, 3, and 4 were analyzed based on Figure 2, which was 
adapted from Moschkovich et al.’s (1993) study, and includes Even’s (1998) approaches to functions 
– pointwise or global. If a participant’s response was considered accurate, then it was coded with a 1, 
and if it was not, then it was coded with a 0. Also, the “most anticipated” response cells appear in 
boldface for each participant. The “most anticipated” responses were chosen based on two criteria: 
(1) it was in the representation in which the question was posed, and (2) it used an approach aligned 
with the representation. More specifically, for the second criterion, the graphical representation tends 
to evoke the object conception of function (Schwartz & Yerushalmy, 1992), while the tabular 
representation relies on discrete data points and, therefore, is more closely related to the process 
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conception of function. Thus, each participant could have a “most anticipated” response, as well as 
accurate, non-anticipated responses. 

 

 

 

 

Note: Functions can be expressed 
in other representations, and 
relationship is a translation. 

Note: Functions cannot be 
expressed in other 

representations, and relationship 
is a translation. 

Note: Functions can be expressed 
in other representations, and the 

relationship is a dilation. 

Figure 1: Interview Questions 
 

 Representation 
Approach Tabular (T) Graphical (G) Algebraic (A) 
Pointwise    

Global    
Figure 2: Framework for Examining Representations and Approaches to Functions 

Results 
Response Samples 

Question 2. Student 9-2 was unsure as to what the question was asking and kept referring to the 
graphs as being representative of information usually seen in a table or as an equation. The student 
then pointed out that the two lines are parallel, and deduced the slope of each function from their 
respective graphs, which was found to be the same. The student continued to examine the two 
functions and pointed out that they both have different x- and y-intercepts, and finally concluded, 
“They’re both the same, I guess. They’re both the same lines…just in different positions … One’s 
higher, and one’s lower. They’re placed…they’re the same…the same two lines…just placed 
different on the axis.” 

Question 3. Student 12-1 started by examining the graphs and stating that if the functions were 
expressed in tabular form, then the x-values would be the same for each function, but the output 
values would be different by a power or a multiple. The student showed great difficulty in explaining 
the relationship but was able to say, “The difference between the y-axis on either graph is going to be 
the number that you are going to be ... adding or multiplying to [g(x)].” 

Question 4. Student 12-2 displayed high confidence in responding to the question and stated that 
“There’s…you can find the difference between the two if you have this, and you say, …g(x)…, …x 
and y table is, um…in order to get that, all you have to do is multiply by two. Then, you 
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would…then you could easily find g(x). And, you could plot it out. And, you could discover the, 
um…the slope…and the y-intercept. And, you could find out the equation.” 
Response Summary 

The analysis of the participants’ responses to Questions 2, 3, and 4 is summarized in Table 1.   
 

Table 1: Results of Questions 2, 3, and 4 
 
 
 

 

Discussion 
Interview responses indicated one significant observation in terms of students’ understandings of 

transformations: the students were unable to identify explicitly the type of transformation that 
described the relationship between any of the pairs of functions but were able to use other descriptive 
words for the same. More specifically, none of the students used the terms translation, dilation, or 
transformation in response to any of the questions. Instead, they used words such as “higher” or 
“lower” on the graph to describe a translation, and “multiplied” to describe a dilation, which 
indicates a lack of mathematical vocabulary. Also, Student 12-1 was unable to specifically determine 
if the functions in Question 3 represented a translation or a dilation, which indicates a lack of 
understanding of transformations. These observations regarding difficulties with transformations 
need to be substantiated with more research. 

Analysis of the interviews highlighted two significant findings in terms of students’ understandings 
of functions in different representations: (1) students were able to be flexible between 
representations for functions, moving from one to another even though the question they were 
answering was presented in a single type of representation; and (2) students were able to be flexible 
between approaches towards and conceptions of functions, providing evidence that they could 
approach single questions and functions embedded in them in both a pointwise (process) and global 
(object) way. Given our assumption that moving across representations of functions and adopting 
both pointwise and global approaches towards functions provides evidence for students’ flexibility 
and therefore greater sophistication in their understandings about functions ((Even 1998; 
Moschkovich et al. 1993), these findings lead us to the preliminary conclusion that the ninth grade 
students interviewed have a less sophisticated understanding of the concept of function than do the 
twelfth grade students interviewed because neither ninth grade student exhibited any flexibility 
between representations and only one exhibited flexibility between approaches. This preliminary 
conclusion needs to be substantiated with further research. 

Participant Approach 

Question 2 Question 3 Question 4 
Representation 

T G A T G A T G A 
Student 9-1 Pointwise 0 1 0 0 1 0 1 0 0 

 Global 0 1 0 0 1 0 0 0 1 
Student 9-2 Pointwise 0 0 0 0 0 0 1 0 0 

 Global 0 1 1 0 1 0 0 0 0 
Student 12-1 Pointwise 0 0 1 0 1 0 1 0 0 

 Global 0 0 1 0 1 0 0 0 0 
Student 12-2 Pointwise 0 0 1 0 0 0 1 1 1 

 Global 0 0 1 0 1 0 0 0 1 
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This study addresses the teaching of mathematics in a multigrade school through the design of a 
didactic sequence for the learning of place value. Based on the theory of didactical situations and 
didactic engineering, we designed a sequence of six didactic situations on place value that was 
implemented on a group of second grade elementary students (ages 8-9). The sequence encourages 
students to perform numerical decomposition, decimal grouping, and number ordering with different 
numeric ranges, to construct meanings about place value in a game-oriented way.  

Keywords: teaching activities and practices, elementary education, rural education. 

Background 
In a multigrade elementary school, students from different grades are grouped in a classroom to be 

taught by the same teacher. These schools are in geographically inaccessible and sparsely populated 
communities, where the number of students is small and, therefore, it is not feasible to have a full-
organization school. Teachers in these schools also perform management and administrative tasks 
(INEE, 2019). 

Various studies reveal the difficulties faced by teachers and students in multigrade schools in the 
learning and teaching process; for example, the reduced time for teaching as teachers must perform 
management, administrative or janitorial functions.  It is common for traditional teaching methods to 
predominate in these schools due to the lack of a suited curricular proposal for this modality 
(Reséndiz, Block and Carrillo, 2017). 

Nonetheless, it has also been noted that the multigrade modality has favorable characteristics for 
learning, such as the possibility for students to learn from their peers as well as a greater flexibility to 
assign tasks to students based on their level of performance. However, for these features to become 
really favorable for learning, teachers must possess teaching and organizational strategies (Block, 
Ramirez and Reséndiz, 2015). 

According to Santos (2011), the teaching events that occur within multigrade classrooms point to 
diversity; that is, the diversification of teaching activities, with criteria of concurrency and 
complementarity, abandoning unique, synchronized, and standardized didactic practices. At the same 
time, it is possible to observe the circulation of knowledge, which means going beyond the 
formalities of school grades for knowledge to flow. 

This study focuses on the teaching of mathematics in primary education in multigrade classrooms, 
specifically on the learning of place value in the Decimal Numbering System (DNS). DNS is an 
instrument of measure of other mathematical learnings, so understanding the DNS is decisive in the 
subsequent school trajectory of students (Terigi and Wolman, 2007). 

Understanding the DNS promotes the development of numerical sense, skill and reflection in 
arithmetic operations, mental calculation and estimates (Angulo, 2017; Galicia and Uzuriaga, 2015). 
The concept of place value is indispensable for the construction of the DNS. Place value is the value 
that a digit takes according to the position it occupies within the number (units, tens, hundreds). 
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For the understanding of the DNS se should favor the understanding of all figures  in  a quantity to 
assign a name to the figures according to the order of location, that is, the value that each figure 
acquires within a number to represent the quantity described  (Gallego and Uzuriaga, 2015). 

In order for students to understand place value within a quantity, we proposed that a teaching 
sequence be designed to encourage students to discover the rules underlying the DNS. The question 
guiding this research is: How to promote the learning of place value in second cycle students (third or 
fourth grade) of a multigrade elementary school?  Therefore, our goal is to design and implement a 
teaching sequence that favors this learning. 

Theoretical Framework 
The design of the didactic sequence is based on elements of the theory of didactic situations 

(Brousseau, 2007) and didactic engineering (Artigue,1995). 
The design of didactic situations and the manipulation of teaching variables such as numerical 

range, allows us to approach a medium through which students interact with place value in all its 
complexity. According to Terigi and Vulture (2013) in the usual teaching of the DNS, the numbers 
are taught one by one, starting with the digits and respecting the order of the series. Ranges are 
established to sequence the teaching of numbers according to the years of schooling of the students: 
from 1 to 100 in first grade, up to 1000 in second, and so on. Since the beginning and along with the 
presentation of number 10, the notions of units and tens are incorporated. Therefore, one hypothesis 
that is incorporated into the design of didactic situations is that students can identify regularities and 
discover the recursion of the grouping, if an interaction with the SND through wide numerical ranges 
is allowed. Didactic situations, therefore, favor decimal grouping, numeric decompositions, number 
ordering and comparison, in different numeric ranges. 

Some didactic sequences are designed and taught in a game-oriented environment, that is, games 
involving numbers. Fuenlabrada, Block, Balbuena and Carvajal (1992) state that "a good game 
allows you to play with little knowledge but, to start winning systematically, it requires the building 
of strategies  

that imply the need of greater knowledge" (p.5). Therefore, didactic situations in a game-oriented 
context allow students to approach the situation with the knowledge they possess on place value and 
for meaning to be built through the construction of strategies.  

Methodology 
For the design of the didactic situations that make up the sequence, we used the phases of the 

didactic engineering (Artigue, 1995). 
Situation 1 Cashier 1 (Fuenlabrada, Block, Balbuena and Carvajal, 1992) consists of a set of dice 

and chips where students, organized into teams, take turns to throw the dice and ask a student playing 
the role as a Cashier for different color chips according to the number they obtain. Blue chips 
represent units, red ones represent tens, and yellow ones represent hundreds. Students must group the 
chips by tens and they trade their chips so as to obtain the yellow chip. The student who first gets the 
yellow chip wins.  

In scenario 2, Cashier 2, students play with a board with blue, red and yellow chips. They add up 5 
numbers that the Cashier shows them and record the sums on the board marking with the blue chip 
the position of the units, the tens with the red ones and the hundreds with the yellow ones. Whoever 
gets the sum of the five numbers correct wins.  

Situation 3, Math Bingo, (Perez, 2016), is a game in which students have a card with several 5-digit 
numbers and they must place the value of one digit in one of those numbers. A number from 0 to 9 is 
drawn out of a tombola and, at the same time, place value: units, tens, hundreds, thousands, or tens of 
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thousands is picked out of a deck of cards. The student will recognize the place and place a mark in 
one of the numbers to indicate the position.  

Situation 4, Broken Calculator 1, (Galvez, Navarro, Riveros, Zanocco, 1994) is about students 
playing with a calculator, typing only the keys 1, 0, +, to create a number. In this situation students 
play with a number range from units to hundreds (1-999), so that the student can play without 
complications. 

In situation 5 called  Decomposed Calculator 2, a numerical range of hundreds to tens of thousands 
(100-99000) is worked  to observe the procedures of students when facing the numbering system 
without restrictions.   

Finally, in situation 6 Clothes Line, students compare numbers, previously selected, so that they can 
choose between the largest or smallest. Whoever has the highest or lowest number wins, depending 
on which one they chose at the beginning of the game. Students will then place the numbers on a 
rope sorted as they are directed, from highest to lowest or vice versa. 

A multigrade rural primary school was chosen in the state of Guanajuato, Mexico, for the 
implement of the sequence. The school has four teachers who attend all students. The classroom is 
made up of third grade (8-year-old) and fourth grade (9-year-old) students 

The community in which the school is located has a population of 311. The locals work in the fields 
or manufacturing factories.  

A first approach to the group was made and an initial didactic situation of another topic was applied 
in order to identify the characteristics of the students and their level of participation with the 
researcher. The implementation of the teaching sequence is currently being carried out, recording 
each situation in audio and video for its subsequent analysis. 

Discussion and results 
The teaching sequence is intended to engage students in various contexts in which they can build 

meanings of about place value. As the research is in the implementation stage, here we identify some 
procedures of students that show how the sequence functions.  

The use of teaching materials such as chips, calculators, bingo boards and dice, allows students to 
experience new ways of approaching mathematical activities. The situation that is created, in terms 
of the theory of didactic situations, stimulates the senses of the students and allows them to interact 
with their peers, building and validation their solution strategies.  

The knowledge, procedures and skills developed by students is not determined by their age, which 
is associated with their school level. The curriculum indicates that the contents and learning in fourth 
grade (9-year-olds) are different because the level of complexity is higher, for example, the number 
ranges are wider than in third grade (8-year-olds). Nonetheless, the interaction between different 
grade students in the same classroom does not impede the construction of knowledge (Santos, 2011). 
On the contrary, students interact in a natural way and their arguments are validated collectively. 
Knowledge is generated in a didactic situation, designed from the curricular contents of the two 
levels. 

The results of this study are located in the field of didactics of mathematics in multigrade schools 
and aim to contribute to improve teaching in this educational context.  
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Este estudio aborda la problemática de la enseñanza de las matemáticas en la escuela multigrado a 
través del diseño de una secuencia didáctica para el aprendizaje del valor posicional. Con base en la 
teoría de situaciones didácticas y la ingeniería didáctica, se diseñó una secuencia de seis situaciones 
didácticas sobre el valor posicional, que se implementó con un grupo de alumnos de segundo ciclo 
de primaria (8-9 años). La secuencia promueve que los alumnos realicen actividades de 
descomposición numérica, agrupación decimal y orden de los números, con disntintos rangos 
numéricos, para construir significados sobre el valor posicional, en un contexo lúdico numérico.  

Palabras clave: actividades y prácticas de enseñanza, educación primaria, educación rural. 

Antecedentes 
En la escuela primaria multigrado se agrupan dos o más grados escolares, en un mismo grupo, para 

ser atendidos por un mismo docente. Estas escuelas están presentes en comunidades geográficamente 
poco accesibles y con escasa población, en las que el número de alumnos es reducido y no viable 
contar con una escuela de organización completa. Los docentes de estas escuelas también realizan 
tareas directivas y administrativas que la gestión escolar implica (INEE, 2019). 

Diversas investigaciones revelan las dificultades en los procesos de enseñanza y aprendizaje en 
estas escuelas, por ejemplo, la reducción de tiempos de enseñanza, pues los docentes realizan 
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funciones directivas, administrativas o de aseo escolar. Es común que predominen los métodos 
tradicionales de enseñanza debido a la falta de una propuesta curricular para esta modalidad 
(Reséndiz, Block y Carrillo, 2017).  

También se ha señalado que la modalidad multigrado tiene características favorables para el 
aprendizaje, como la posibilidad de que los alumnos aprendad unos de otros, o la mayor flexibilidad 
para asignar tareas a cada uno en función de su nivel de desempeño. Para que estas características se 
vuelvan realmente favorables para el aprendizaje, es necesario disponer de estrategias didácticas y de 
organización que lo hagan posible (Block, Ramírez y Reséndiz, 2015). 

De acuerdo con Santos (2011), los acontecimientos didácticos que ocurren al interior de las aulas 
multigrado apuntan a la diversidad, esto es, la diversificación de actividades de enseñanza, con 
criterios de simultaneidad y complementariedad, abandonando las prácticas únicas, sincronizadas y 
uniformizadas en sus mecanismos. Al mismo tiempo, es posible observar la circulación de los 
saberes, lo que supone abrir las formalidades de los grados escolares para que los saberes fluyan. 

La problemática de este estudio se centra en la enseñanza de las matemáticas en la educación 
primaria en aulas multigrado, específicamente en el tema de valor posicional del Sistema de 
Numeración Decimal (SND). El SND constituye el instrumento de mediación para otros aprendizajes 
matemáticos, por lo que el aprendizaje de este objeto matemático es decisivo en la trayectoria escolar 
posterior de los alumnos (Terigi y Wolman, 2007). 

La comprensión del SND favorece el desarrollo del sentido numérico, la habilidad y reflexión en 
operaciones aritméticas, cálculo mental y estimaciones (Angulo, 2017; Gallego y Uzuriaga, 2015) y 
el concepto de valor posicional es indispensable para la construcción del SND. El valor posicional es 
el valor que toma un dígito de acuerdo con la posición que ocupa dentro del número (unidades, 
decenas, centena). 

Para la comprensión del SND se debe favorecer la comprensión de todas las cifras en una cantidad 
para asignar un nombre a las cifras de acuerdo al orden de ubicación, es decir, el valor que adquiere 
cada cifra dentro de un número para representar la cantidad descrita (Gallego y Uzuriaga, 2015). 

Para que los alumnos comprendan el valor posicional de las cifras dentro de una cantidad, se 
propone el diseño de una secuencia didáctica que favorezca que los alumnos descubran las reglas 
subyacentes al SND. Por lo tanto la pregunta de esta investigación es ¿cómo favorecer el aprendizaje 
del valor posicional en alumnos de segunco ciclo (tercero y cuarto grado) de una escuela primaria 
multigrado? De modo que nuestro objetivo es el diseño e implementación de una secuencia didáctica 
que favorezca este aprendizaje. 

Marco Teórico 
El diseño de la secuencia didáctica se fundamenta en elementos de la teoría de las situaciones 

didácticas (Brousseau, 2007) y en la ingeniería didáctica (Artigue,1995). 
El diseño de las situaciones didácticas y la manipulación de las variables didácticas como el rango 

numérico, permite aproximarnos a un medio en el que los alumnos interactúen con el valor 
posicional en toda su complejidad. De acuerdo con Terigi y Buitron (2013) en la enseñanza usual del 
SND, se enseñan los números uno por uno, comenzando por los dígitos y respetando el orden de la 
serie. Se establecen cortes para secuenciar la enseñanza de los números según los años de  
escolaridad de los alumnos: de 1 a 100 en primer grado, hasta 1000 en segundo, y así sucesivamente. 
Desde el inicio y junto con la presentación del número 10, se incorporan las nociones de unidades y 
decenas. Por lo tanto, una hipótesis que se incorpora al diseño de las situaciones didácticas es que los 
alumnos pueden identificar regularidades y descubrir la recursividad del agrupamiento, si se permite 
una interacción con el SND, a través de rangos numéricos amplios. El medio de las situaciones 
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didácticas favorece agrupaciones decimales, descomposiciones numéricas, establecimiento de orden 
y comparación de números, en diferentes rangos numéricos.  

Algunas situaciones didácticas están contextualizadas en un entorno lúdico-numérico, es decir, 
juegos que involucran números. Fuenlabrada, Block, Balbuena y Carvajal (1992) afirman que “un 
buen juego permite que se pueda jugar con pocos conocimientos, pero, para empezar a ganar de 
manera sistemática, exige que se construyan estrategias que implican mayores conocimientos” (p.5). 
Por tanto, el medio de las situaciones didácticas, en el contexto lúdico-numérico, permite que los 
alumnos se aproximen a la situación con los conocimientos que tienen sobre el valor posicional y a 
través de la construcción de estrategias ganadoras, puedan construir significados. 

Metodología 
Para el diseño de las situaciones didácticas que conforman la secuencia, se utilizan las fases de la 

ingeniería didáctica (Artigue, 1995).  
La situación 1 demoninada Cajero 1 (Fuenlabrada, Block, Balbuena y Carvajal, 1992) consiste en 

un juego de dados y fichas en donde los alumnos, organizados en equipos, tiran los dados por turnos 
y de acuerdo al número que obtienen, piden fichas de colores a quien tiene el rol de cajero. Fichas 
azules representan unidades, fichas rojas representan decenas y fichas amarillas representa centenas. 
Los alumnos agruparán de diez en diez, realizarán equivalencias entre las fichas para cambiar fichas 
azules por fichas rojas y fichas rojas por amarillas. Gana el alumno que obtenga primero la ficha 
amarilla.  

En la situación 2 denominada Cajero 2, los alumnos juegan con un tablero, con fichas de color azul, 
rojo y amarillo. Suman 5 números que les muestre quien tenga el rol de cajero y registrarán las sumas 
en el tablero, marcando con la ficha azul la posición de las unidades, con la roja las decenas y con la 
amarilla las centenas. Gana quien obtenga el resultado correcto de la suma de los cinco números 
mostrados. 

La situación 3 denominada Bingo matemático (Pérez, 2016), es un juego en el que los alumnos 
tienen una tarjeta con varios números de 5 cifras y tienen que ubicar el valor de un dígito en uno de 
esos número. De una tómbola de números se toma uno del 0 al 9 y, al mismo tiempo, de un mazo de 
tarjetas se toma el nombre de una posición: unidades, decenas, centenas, unidades de millar, decenas 
de millar. El alumno reconocerá y pondrá una marca en la posición indicada, en alguno de los 
números de su trajeta. 

La situación 4 denominada Calculadora descompuesta 1 (Gálvez, Navarro, Riveros, Zanocco, 
1994) consiste en jugar con una calculadora, tecleando sólo las teclas 1, 0, +, = para formar cualquier 
número. En esta situación se juega con un rango numérico que abarca de unidades a centenas (1-
999), para que el alumno pueda acceder a la dinámica de juego sin complicaciones. 

En la situación 5 denominada Calculadora descompuesta 2, se trabaja con un rango numérico de 
centenas a decenas de millar (100-99000) para observar los procedimientos de los alumnos al 
enfrentarse al sistema de numeración sin restricciones. 

Finalmente, la situación 6 denominada tendedero matemático consiste en un juego en el que los 
alumnos comparan números, seleccionados previamente, con la intención de que puedan elegir el 
mayor o menor según sea el caso. Gana quien tenga el número mayor o menor, según se elija al 
inicio de la jugada. Luego, los alumnos colocarán los números en un listón o cuerda, ordenados 
según se les indique, de mayor a menor o viceversa.  

Se eligió una una escuela primaria rural multigrado en el estado de Guanajuato, México, para la 
implemetación de la secuencia. La escuela cuenta con cuatro docentes que atienden todos los 
alumnos. El segundo ciclo, agrupa a los grados de tercero (8 años) y cuarto (9 años).  
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La comunidad en la que se ubica la escuela tiene 311 habitantes, que en su mayoría se dedican a 
labores del campo y al trabajo como obreros en fábricas manufactureras. 

Se realizó un primer acercamiento al grupo y se aplicó una situación didáctica inicial de otro tema, 
para conocer las características de los alumnos y su nivel de participación con la investigadora. 
Actualmente se está realizando la implementación de la secuencia didáctica, registrando en audio y 
video cada situación didáctica, para su posterior análisis.  

Discusión y resultados 
 La secuencia didáctica pretende favorecer el acercamiento de los alumnos con diversos contextos 

en los que puedan construir significados del valor posicional. Como la investigación se encuentra en 
fase de implementación, se identifican hasta el momento, algunos procedimientos de los alumnos que 
muestran el funcionamiento de la secuencia didáctica. 

Por otra parte, el uso del material didáctico como las fichas, calculadora, tableros de bingo y dados, 
permite que los alumnos experimenten nuevas formas de acercarse a la actividad matemática. El 
medio que se construye, en términos de la teoría de situaciones didácticas, estimula los sentidos de 
los alumnos y les permite interactuar con sus compañeros, construir y validar sus estrategias de 
solución. 

Los conocimientos, procedimientos y habilidades que desarrollan los alumnos no están 
determinados por sus edades, asociadas al grado escolar. El currículo indica que son diferentes los 
contenidos y el aprendizaje en cuarto grado (9 años), pues es mayor el nivel de complejidad, por 
ejemplo, los rangos numéricos más amplios que en tercer grado (8 años). Sin embargo, la interacción 
entre grados en el mismo grupo no fragmenta o imposibilita la circulación de saberes (Santos, 2011). 
Por el contrario, los alumnos interactúan de manera natural y sus argumentaciones se validan en 
colectivo. Se genera una circulación de saberes en una situación didáctica, diseñada desde los 
contenidos curriculares de los dos grados que se atienden en el mismo grupo. 

Los resultados de este estudio se ubican en la línea de investigación de didáctica de las matemáticas 
en multigrado y pretenden contribuir a las propuestas para mejorar la enseñanza en esta modalidad 
educativa.  
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In this research, we used the Local Theoretical Models as a theoretical and methodological frame 
and Pierce's theoretical perspective on semiotics. At the end of the study carried out with secondary 
school students, authors identified strata of intertextuality derived from the processes of semiosis, 
based on acts of reading/transformation of texts or reading/translation/transformation of the textual 
spaces proposed in the teaching model through solving verbal problems using 
grade two equations with an unknown, adopting the Mixed Method (geometric and algebraic), and 
the Cartesian Methods that include algebraic procedures with paper and pencil and a symbolic 
calculator with a Computation Algebraic System. 

Keywords: Intertextuality, semiosis processes, sense production, verbal problems. 

There are various difficulties that secondary school students face during the process of learning 
algebra; for instance, they fail to identify the structures underlying algebraic expression, surface 
structure, and systemic structure as in Kieran (1989). Also, in Filloy & Córdoba (2013), Córdoba 
(2016), authors assert that it is usual when working with algebraic expression, that occur several 
types of syntax errors, either arithmetic or algebraic, or when solving equations of grade one (EG1) 
and of grade two (EG2), in such a way that students cannot be considered competent users of a 
Mathematical Sign System (MSS) yet. They are in the process of reading the mathematical text 
correctly and distinguishing the allowed transformations from those that are not. 

Some researchers (Gallardo, 2002; Kieran, 2006; Solares, 2007; Rojano, 2010; Martínez, 2012; 
Filloy & Córdoba, 2013; Bonilla, 2014; Córdoba, 2016) consider that in the transition from 
arithmetic to algebra it is essential that secondary school teachers recognize as fundamental that 
students learn the properties and relationships of the arithmetic MSS (MSS1) and that the incomplete 
knowledge of these implies operational difficulties with MSS of algebra (MSS2). 

Purpose of the study 
The purpose of the qualitative experimental study carried out by Córdoba (2016) was to observe and 

analyze the semiosis processes of the students (study subjects), as a result of reading/transforming 
mathematical texts, for the production of meaning in the process of algebraic solving of verbal 
problems (VP) by EG2 with an unknown.  
Theoretical  framework  

The theoretical and methodological framework proposed by Filloy (1999), for experimental 
observation in Educational Mathematics, called Local Theoretical Models (LTMs), allows us to 
account for the processes that are developed when certain specific mathematical contents are taught 
within the National Educational System to some students, which must be relevant to the phenomena 
under study; LTMs contemplate four interrelated components and their corresponding models: 1) 
Teaching Model, 2) Model of Cognitive Processes, 3) Model of Formal Competence, and 4) Model 
of Communication. Filloy (1999) defines a Teaching Model (TM), as a sequence of texts produced 
by both the teacher and the student, and these texts are the result of the work of both in problem 
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teaching situations - which are taken as spaces textual. "In algebra, textual spaces are made up of 
Mathematical Sign Systems whose codes and traditions come from the meanings attributed to them 
for their social use". (Filloy, Rojano & Puig, 2011).  

From Pierce's theoretical perspective on semiotics, what is a sign? For Peirce the fundamental thing 
in the sign is its function, when describing the semiotic process, rather than signs, it refers to sign 
functions. That sign, vital, constant, and meaningful process is the semiosis. Elizondo (2012). We 
find it relevant to differentiate text and textual space (TS), which corresponds to the distinction 
between meaning and sense. It is also relevant to understand the use that teachers and students assign 
to mathematical text. Filloy affirms that the notion of text is introduced to be used in the analysis of 
any practice of meaning production. (Filloy, Rojano, & Puig, 2008; Kieran & Filloy, 1989). A text is 
the result of the reading/transformation made on an TS, whose purpose is to produce sense and only 
extract meaning in that space (Filloy, Rojano, & Puig, 2008). Textual space is a system that imposes 
a semantic restriction on the person who reads it; the text is a new articulation of that space, 
individual and unrepeatable, made by a person as a result of an act of reading. Thus, an TM as a 
component of an LTM (Filloy, 1999) is a succession of texts that are taken as an TS to be 
read/transformed into another ET as the learner gives meaning in his readings (Rojano, 2010). 

The MC process involves putting a problem into equations or a process of translating the given VP 
statement in natural language into algebraic language. On one hand, to accomplish an analytical 
reading that prepares the text of the problem by producing another text that in a certain way is in 
course to be translated into algebraic language. On the other hand, to work at the level of expression 
in the algebraic language that transforms the translated text (equation) into a text that can be solved, 
that is, the equation in its canonical form. (Puig, 2012). 
Research Method 

For this research, we designed and developed an LMT composed of the four models referred to. In 
the TM, we recovered elements for the didactic use of syntax errors in the development of algebraic 
thinking. From the study of Córdoba (2005); we observed with a clinical interview with teaching 
(ECT) situation, the performances of nine third graders of Secondary Education in the State of 
Mexico; but as a matter of space we will only refer to the case of Fer, when solving VP through EG2 
using pencil and paper procedures and CAS as a symbolic manipulator. It was also used their 
modeling through the use of a didactic material called Algebraic Puzzle proposed by Larrubia (2005), 
which allowed analyzing the interaction of the learners with the MSS1, the MSS2 and the TM. 
Results 

In his doctoral thesis, Córdoba (2016) identified three types of intertextuality strata derived from the 
semiosis processes; it also described three levels of competence of MSS2 use (low, intermediate and 
high) of each; the above, from the ECT with students, in which the author asked them to solve VP 
using EG2 with an unknown, which are part of the TM. Below are the general characteristics of the 
intertextuality strata.  

The first  intertextuality stratum:  Reading/writing of texts in a network of textual relationships, 
refers to the acts of reading/writing of algebraic text that a specific reader does base on a network of 
textual relationships derived from his/her prior mathematics and linguistics experiences. In particular, 
in this study, emerge three levels of MSS2 use competence of learners when asked them to solve 
EG2 with one unknown. 

The second intertextuality stratum: Reading/transformation of superficial structure of algebraic 
texts, refers to the way the learners solve the given EG2 (complete and incomplete) from the 
recognition of shallow structure. Learner performed algebraic transformations between algebraic 
texts at the level of algebraic expression; this also require the learner to identify the shallow structure 
of the equation and its transformation from the factored form to the canonical form or vice versa. 
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The third intertextuality stratum: Reading/translating/transformation of text, refers to the algebraic 
resolutions of a VP through EG2 with one unknown; in this regards, it is common to use MC, defined 
as the process to pose a problem as an equation, which implies the process of translation and the 
algebraic transformations describe in second intertextuality stratum. 

A brief description and analysis of a clinical interview episode with teaching, conducted by the 
Researcher (R) with Fer (F), is included to exemplify the third intertextuality stratum 
"Reading/translation/transformation of texts" in the resolution of a VP. 

R: The square of the number plus the triple of the same number gives us fifty-four. What is that 
number and how do you state the equation?  

F: Well, the first number is equis, and plus three times the same number, then it would be three equis! 
[writes with a certain separation x and 3x on the board, stays watching and mentions...] but as it 
says, the square of a number, we raise to the square equis, plus three equis equal to fifty-four [he 
writes !! + 3! − 54 = 0], the equation is square equis plus three equis equal to fifty-four, but if 
the fifty-four we pass it on the other side and match it with zero, then we would have... [he writes 
!! + 3! − 54 = 0 and continued the solving process by factoring the second-degree trinomial 
written on the first equation member until the two equis (!! = −9, !! = 6)]. 

R: Well, you obtained two values, one positive and one negative and the question of the problem is: 
What is the number? However, the VP refers: the square of a number plus the triple of the same 
number gives us fifty-four. What value do you consider adequate? [Fer stays thinking] 

F: I will try first by substituting the value of six in the equation (!)! + 3! = 54, [he writes 
6 ! + 3 6 = 54, 36 + 18 = 54 and obtains 54 ≡ 54, then he doses the same with value −9, 

and concludes by saying that he value sought is six]. 

In this episode you can see significant progress towards algebraic syntax, his personal intertexts 
allow him to make an efficient reading of the proposed problem statement. He verbally evokes how 
he carries out his reasoning, which allow him to pose a EG2 with one unknown that represents the 
translation. The student’s semiosis process shows his competence in the use of MSS2 at a high level; 
he also formulates the correct answer of the problem because he proved the equality of the equation 
by substituting the values of the unknown. The above fives sense to the algebraic procedures carried 
out. 
Conclusions 

 The teaching model used in this study allowed to enhance the semiosis processes, the 
intertextuality and the production of meaning in the study subjects from the manipulation of 
Algebraic Puzzle pieces, that were useful for concrete modeling of the equations written in its 
canonical form !"! ± !" ± ! = 0, where !, !, ! ∈ ! , and thus provide meaning and senses to 
equivalent equations syntactically obtained from this solving process with pencil and paper, that the 
competent user of the MSS2 wrote in its factored form ! ± ! ! ± ! = 0, or by CAS. 

The results presented are not conclusive. It is necessary to carry out studies that deepen the 
reading/transformation processes and the consequent production of meanings by the students, 
through the design of a teaching model that allow them to evolve towards the construction of the 
algebraic syntax around the MC of EG2 resolution, based on their intertexts during the semiosis 
processes that students use as competent users of the MSS2 to solve those VP posed. 
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En esta investigación se utilizó como marco teórico y metodológico los Modelos Teóricos Locales y 
la perspectiva teórica sobre semiótica de Pierce. Al final del estudio realizado con estudiantes de 
secundaria se identificaron estratos de intertextualidad derivados de los procesos de semiosis, con 
base en actos de lectura/transformación de textos o de lectura/traducción/transformación de los 
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espacios textuales propuestos en el Modelo de Enseñanza para la resolución de Problemas Verbales 
mediante Ecuaciones de Grado dos con una incógnita, empleando el Método Mixto (geométrico y 
algebraico) y el Método Cartesiano  que incluye procedimientos algebraicos con lápiz y papel, y  
una calculadora simbólica con un Sistema Algebraico Computacional.  

Palabras clave: Intertextualidad, procesos de semiosis, producción de sentido, problemas verbales. 

Son diversas las dificultades que enfrentan los estudiantes de secundaria en su proceso de apredizaje 
del álgebra, por ejemplo, no identifican las estructuras subyacentes a las expresiones algebraicas: 
estructura superficial y estructura sistémica en términos de Kieran (1989), por otra parte en Filloy & 
Córdoba (2013), Córdoba (2016), se afirma que es común que se generen diversos tipos de errores de 
sintaxis al manipular expresiones matemáticas, ya sean aritméticas o algebraicas, o bien, en la 
resolución de ecuaciones de grado uno (EG1) y ecuaciones de grado dos (EG2), de tal forma que, aún 
no se les puede considerar usuarios competentes del Sistema Matemático de Signos del Álgebra 
(SMS2), están en proceso de leer los textos matemáticos de manera correcta y distinguir las 
transformaciones permitidas de las que no lo son. 

Algunos investigadores (Gallardo, 2002; Kieran, 2006; Solares, 2007; Rojano, 2010; Martínez, 
2012; Filloy & Córdoba, 2013; Bonilla, 2014; Córdoba, 2016) consideran que en la transición de la 
aritmética al álgebra es necesario que los profesores de secundaria contemplen como fundamental 
que sus estudiantes aprendan las propiedades y relaciones del SMS de la aritmética (SMS1), y que el 
insuficiente conocimiento de éstas se traduce en dificultades de operatividad con el SMS2 y con ello, 
la lectura/transformación de textos algebraicos  

Propósito del estudio  
El propósito del estudio experimental de corte cualitativo realizado por Córdoba (2016), fue 

observar y analizar procesos de semiosis de los estudiantes (sujetos de estudio), como resultado de la 
lectura/transformación de textos matemáticos, para la producción de sentido en el proceso de la 
resolución algebraica de problemas verbales (PV) mediante EG2 con una incognita 
Marco Teórico 

El marco teórico y metodológico propuesto por Filloy (1999), para la observación experimental en 
Matemática Educativa, denominado Modelos Teóricos Locales (MTL’s), permite dar cuenta de los 
procesos que se desarrollan cuando se enseñan dentro del Sistema Educativo Nacional determinados 
contenidos matemáticos concretos a unos estudiantes dados, los cuales deben ser pertinentes para los 
fenómenos que son objeto de estudio; los MTL’s contemplan cuatro componentes interrelacionados y 
sus correspondiente modelos:1) Modelo de Enseñanza 2) Modelo de los Procesos Cognitivos, 3) 
Modelo de Competencia Formal y 4) Modelo de Comunicación. Filloy (1999), define un Modelo de 
Enseñanza (ME), como una secuencia de textos producidos tanto por el profesor como por el alumno, 
y esos textos son el resultado del trabajo de ambos en situaciones de enseñanza problema —que se 
toman como espacios textuales—.“En álgebra, los espacios textuales están constituidos por Sistemas 
Matemáticos de Signos cuyos códigos y tradiciones provienen de los significados atribuidos a ellos 
por su uso social”. (Filloy, Rojano & Puig, 2011). 

Desde la perspectiva teórica de Pierce en relación con la semiótica ¿qué es un signo? Para Peirce lo 
fundamental en el signo es su función, al describir el proceso semiósico, más que a signos, se refiere 
a funciones sígnicas. Ese proceso sígnico, vital, constante y significante es la semiosis. Elizondo 
(2012). Es pertinente hacer una distinción entre texto y espacio textual (ET), la cual se corresponde 
con la distinción entre significado y sentido, es importante comprender el uso que dan los profesores 
y los estudiantes a los textos matemáticos. Filloy afirma  “… la noción de texto se introduce para ser 
utilizada en el análisis de cualquier práctica de producción de sentido.” (Filloy, Rojano, & Puig, 
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2008; Kieran & Filloy, 1989). Un texto es el resultado de la lectura/transformación hecha sobre un 
ET, cuyo propósito es producir sentido y solamente extraer el significado inherente a dicho espacio. 
(Filloy, Rojano, & Puig, 2008). El espacio textual es un sistema que impone una restricción 
semántica a la persona que lo lee; el texto es una nueva articulación de ese espacio, individual e 
irrepetible, hecha por una persona como resultado de un acto de lectura. Así, un ME como 
componente de un MTL (Filloy, 1999), es una sucesión de textos que son tomados como un ET para 
ser leído/transformado en otro ET conforme el aprendiz da sentido en sus lecturas (Rojano, 2010). 

El proceso del MC implica poner un problema en ecuaciones, o bien, un proceso de traducción del 
enunciado del PV dado en lenguaje natural al lenguaje del álgebra, implica: por un lado, la lectura 
analítica, que prepara el texto del problema elaborando otro texto que en cierta manera está 
preparado para ser traducido al lenguaje del álgebra, y por otro, un trabajo en el nivel de la expresión 
en el lenguaje del álgebra que transforma el texto traducido (la ecuación) a otro texto que se sabe 
resolver; es decir, la ecuación en forma canónica (Puig, 2012). 
Método de investigación  

En esta investigación se diseñó y desarrollo un MTL integrado por los cuatro modelos referidos, en 
el ME se retomaron elementos para el uso didáctico de los errores de sintaxis en el desarrollo del 
pensamiento algebraico, a partir del estudio de Córdoba (2005); se observaron en situación de 
entrevista clínica con enseñanza (ECE), las actuaciones de nueve estudiantes de tercer grado de 
Educación Secundaria en el Estado de México; pero por cuestión de espacio solo nos referiremos al 
caso de Fer, al resolver PV mediante EG2 utilizando procedimientos con lápiz y papel y CAS como 
manipulador simbólico, además se recurrió a la modelación de éstas, mediante el uso de un material 
didáctico denominado Puzzle Algebraico propuesto por Larrubia (2005), esto permitió analizar la 
interacción de los aprendices con el SMS1, el SMS2 y el ME. 
Resultados 

En la tesis doctoral de Córdoba (2016), se identificaron tres tipos de estratos de intertextualidad 
derivados de los procesos de semiosis, también se describen tres niveles de competencia de uso del 
SMS2 (bajo, intermedio y alto) de cada tipo, lo anterior, a partir de las ECE con estudiantes, en las 
que se les propuso resolver PV mediante EG2con una incógnita, los cuales forman parte del ME, a 
continuación se exponen características generales de los estratos de intertextualidad: 

El primer estrato de intertextualidad: Lectura/escritura de textos en una red de relaciones textuales, 
se refiere a los actos de lectura/escritura de textos algebraicos que hace un lector concreto con base 
en una red de relaciones textuales derivadas de sus experiencias matemática y lingüística previas; se 
observaron tres niveles de competencia de uso del SMS2 de los aprendices cuando se le pide resolver 
EG2 con una incognita. 

El segundo estrato de intertextualidad: Lectura/transformación de la estructura superficial de textos 
algebraicos, se refiere a la manera en que los aprendices resuelven las EG2 (completas e 
incompletas) dadas, a partir del reconocimiento de su estructura superficial. Las transformaciones 
algebraicas se realizan entre un textos algebraicos en el nivel de la expresión algebraica, esto requiere 
también que el aprendiz identifique la estructura superficial de la ecuación y su transformación de la 
forma factorizada a la forma canónica o viceversa. 

El tercer estrato de intertextualidad: Lectura/traducción/transformación de textos, se refiere a la 
resolución algebraica de PV mediante EG2 con una incógnita, al respecto es común recurrir al uso 
del MC, definido como el proceso de poner un problema en ecuaciones, que implica el proceso de 
traducción y las transformaciones algebraicas definidas en el segundo estrato de intertextualidad.  

Se incluye una breve descripción y análisis de un episodio de entrevista clínica con enseñanza, 
realizada por el Investigador (I) con Fer (F), para ejemplificar el tercer estrato de intertextualidad 
"Lectura/traducción/transformación de textos" en la resolución de un PV. 
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I: El cuadrado de un número más el triple del mismo número nos da cincuenta y cuatro. ¿Cuál es ese 
número? y ¿cómo plantearías la ecuación? 

F: ¡Pues, el primer número es equis, y más el triple del mismo número, entonces sería tres equis! 
[escribe con cierta separación ! y 3! en el pizarrón, se queda observando y menciona…] pero 
como dice, el cuadrado de un número, elevamos al cuadrado equis, más tres equis igual a 
cincuenta y cuatro [escribe ! ! + 3! = 54], la ecuación es equis cuadrada más tres equis igual 
con cincuenta y cuatro, pero si el cincuenta y cuatro lo pasamos del otro lado y lo igualamos con 
cero, entonces nos quedaría…[Escribe !! + 3! − 54 = 0 y continuó con el proceso de 
resolución factorizando el trinomio de segundo grado escrito en el primer miembro de ecuación 
hasta encontrar los dos valores de equis ( !! = −9, !! = 6)]. 

I: Bueno obtuviste dos valores, uno positivo y otro negativo y la pregunta del problema dice: ¿cuál es 
el número? Sin embargo, el PV refiere: el cuadrado de un número más el triple del mismo número 
nos da cincuenta y cuatro. ¿Qué valor consideras adecuado? [Fer se queda pensando]  

F: Probaré primero sustituyendo el valor de seis en la ecuación ! ! + 3! = 54 [escribe 6 ! +
3 6 = 54, 36 + 18 = 54, obteniendo 54 ≡ 54, después hace lo propio con el valor de −9, 
concluye diciendo que el valor buscado es seis]. 

En este episodio se puede observar un progreso significativo hacia la sintaxis algebraica, sus 
intertextos personales le permitieron realizar una lectura eficiente del enunciado del problema 
propuesto, evoca de manera verbal cómo realiza su razonamiento, esto le permite plantear la EG2 
con una incógnita que representa la traducción correspondiente; los procesos de semiosis del 
estudiante dan cuenta de su competencia de uso del SMS2 en un nivel alto, así mismo, enuncia la 
respuesta correcta del problema, con base en haber realizado la comprobación de la igualdad de la 
ecuación sustituyendo los valores obtenidos de la incógnita, lo anterior, dota de sentido a los 
procedimientos algebraicos efectuados. 
Conclusiones 

En particular el ME utilizado en este estudio, permitió potenciar los procesos de semiosis, la 
intertextualidad y la producción de sentido en los sujetos de estudio, a partir de la manipulación de 
las piezas del Puzzle Algebraico, siendo útil para modelar de manera concreta las ecuaciones escritas 
en su forma canónica: !"! ± !" ± ! = 0 donde !, !, ! ∈ ! y con ello, dar significado y sentido a las 
ecuaciones equivalentes obtenidas en dicho proceso de resolución de manera sintáctica con lápiz y 
papel, y que son escritas por el usuario competente del SMS2 en su forma factorizada: ! ± ! ! ±
! = 0, o bien, por el propio CAS. 

Los resultados expuestos no son concluyentes, se requiere realizar estudios que profundicen más en 
los procesos de lectura/transformación y la consecuente producción de sentido por parte de los 
estudiantes, diseñando un ET que les permita evolucionar hacia la construcción de la sintaxis 
algebraica alrededor del MC de resolución de EG2, teniendo como base el uso de sus intertextos 
personales durante los procesos de semiosis a los cuales recurren para resolver como usuarios 
competentes del SMS2,  los problemas verbales que se les propongan. 
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In this report, we discuss five forms of reasoning about multiple quantities that sixth-grade students 
exhibited as they examined mathematical relationships within the context of science. Specifically, 
students exhibited forms of sequential, transitive, dependent, and independent multivariational 
reasoning as well as relational reasoning. We use data from whole-class design experiments with 
students to illustrate examples of each of these forms of reasoning. 
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Variation, Covariation, and Multivariation 
Reasoning about variation and covariation has been studied extensively in mathematics education as 

a way of supporting students’ mathematics learning (e.g., Confrey & Smith, 1995; Carlson et al., 
2002). More recently, we found that the use of variation and covariational reasoning also supported 
students’ learning of science phenomena, such as the learning of gravity and the greenhouse effect 
(e.g. Author, 2019; Author, 2020). Science phenomena involve a complex interaction of variables 
and this provided a constructive space for students to reason about covariation in more complex 
ways. In these studies, we found that by manipulating the quantities involved in those phenomena 
using interactive simulations and studying what quantities are changing and how they are changing, 
sixth grade students exhibited some sophisticated forms of covariational reasoning. Specifically, 
students coordinated the direction of change of one quantity with the change in another quantity and 
also identified the bi-direction of change of some of those quantities. Students even discussed inverse 
relationships, such that as one quantity increases, the other quantity decreases, and predicted the 
change of one quantity if another is varied multiplicatively. While analyzing our data, we found that 
students also reasoned about more than two quantities changing simultaneously. Prior research on 
multivariational reasoning only focused on undergraduate mathematics education (Kuster & Jones, 
2019). Therefore, this provided an opportunity to examine students’ emerging forms of 
multivariational reasoning in earlier grades. This effort could eventually respond to Thompson and 
Carlson’s (2017) call for more contributions on defining the covariation construct. Specifically, we 
aimed to explore: How do sixth-grade students reason about multiple quantities as they explore 
complex quantitative relationships in scientific phenomena? 

Theoretical Framework 
We use a quantitative reasoning lens (Thompson, 1994) to discuss students’ forms of reasoning 

about multiple quantities in the context of science. We use the term quantity as one’s conceived 
attribute of an object or phenomenon that is measurable, whether they have carried out that 
measurement or not (Thompson, 1993; 1994). In this manner, numeric or not, reasoning 
quantitatively involves analyzing a situation into “a network of quantities and quantitative 
relationships” (Thompson, 1993, p.1). Accordingly, Kuster and Jones (2019) defined multivariation 
as a situation with more than two quantities that change in relation to each other. They used this 
definition to discuss three forms of multivariational reasoning that students exhibited as they 
explored differential equations: dependent, nested, and independent multivariation. Specifically, they 
defined dependent multivariation as involving at least three quantities that are interdependent with 
each other, in which a variation in one quantity simultaneously influences the change in other 
interdependent quantities. They gave the example of reasoning that since P is a function of time, P’ is 
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also a function of time. They defined nested multivariation as involving a network of quantities, 
where the first quantity is embedded in the second quantity and the change in the second quantity 
influences the change in the third quantity. For instance, when the differential equation P’ = 2P+2t 
was presented, a student used nested multivariation to explain that a change in t influenced the 
change in 2t, then variation in 2t changed P’. Finally, they defined independent multivariation as 
involving at least two quantities that are independent to each other and affect the change in another 
quantity. They gave the example of reasoning that the solution function P(t) is dependent on t, but the 
rate of change, P’, is not influenced by t. Although two independent quantities (t and P’) are 
presented, we would argue that the example does not clearly show independent multivariation 
because the student does not clearly state that P’ influences the function P(t). However, we consider 
the types that Kuster and Jones presented to be foundational for initiating the discussion around the 
different forms of multivariational reasoning in the earlier grades.  

Forms of Multivariational Reasoning 
In this paper, we report on the data from whole-class design experiments (DEs) (Cobb et al., 2003) 

conducted in three different sixth-grade classrooms, each examining a specific scientific 
phenomenon: the sea level rise, the water cycle, and the rock cycle. We designed a simulation to 
dynamically model and study each scientific phenomenon. For example, in the rock cycle simulation 
students could manipulate a rock’s depth and study the changes in its temperature and pressure. We 
accompanied the simulation exploration with questions that prompted them to reason about those 
quantitative relationships, such as “How would you describe the relationship between the 
quantities?” and “How does the change in one quantity affect other quantities?” In the following 
paragraphs, we discuss five forms of multivariational reasoning that students exhibited (Figure 1) by 
providing examples of students’ episodes from all three DEs. 

 

 
Figure 1: Forms of reasoning about multiple quantities. 

 
Sequential Multivariational Reasoning 

In students’ articulations, we observed a form of multivariational reasoning that was not discussed 
in the Kuster and Jones’ (2019) study. We refer to sequential multivariational reasoning (Figure 1a) 
as illustrating sequential changes in quantities, where a change in the first quantity (a) influences a 
change of the second quantity (b), and a change in the second quantity (b) affects a change in the 
third quantity (c). While exploring a simulation about sea level rise, students discussed the 
relationship between the global temperature rise, the height of future sea level, and the total land 
area. For instance, Myra explained that “The higher the global temperature, the higher the height of 
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the future sea level, and the less the total land area.” We interpret her reasoning to illustrate a 
sequential image of change: that the change in global temperature rise (quantity a) impacts the height 
of future sea level (quantity b), and that the change in height of sea level (quantity b) affects the 
change in total land area (quantity c).  
Transitive Multivariational Reasoning  

Our students also exhibited what we would define transitive multivariational reasoning (Figure 1b), 
a form of reasoning that supports that a change in the first quantity (a) leads to a change in the 
second quantity (b), and a change in the second quantity (b) in turn changes a third quantity (c), then 
a change in the first quantity (a) changes the third quantity (c). The difference between transitive 
reasoning and sequential reasoning is that the transitive reasoning involves the coordination of 
change in the first quantity (a) influencing a change in the third quantity (c), which is not illustrated 
in sequential reasoning. To illustrate this form of reasoning, we provide an example from the water 
cycle. The water cycle simulation presented a virtual ecosystem, in which students could manipulate 
the temperatures of air, mountain, land, and lake, and relative humidity and observe the change in the 
amount of water molecules in every phase of the water cycle. When asked to describe the 
relationship between evaporation and runoff, Ray stated, “If the rate of evaporation is higher, there 
could be higher rate of precipitation. If there’s a higher rate of precipitation, there could be more 
runoff. So, the higher rate of evaporation, there can be more runoff.” We consider Ray’s coordination 
of the change in three quantities to illustrate transitive multivariational reasoning. In particular, Ray 
first explained how the change in evaporation (quantity a) influences precipitation (quantity b), and 
how the change in precipitation (quantity b) influences runoff (quantity c). Then he used those two 
relationships to reason about how a change in evaporation (quantity a) causes a change in runoff 
(quantity c).  
Dependent Multivariational Reasoning 

Our students also illustrated reasoning that we would characterize as a subset of Kuster and Jones’ 
(2019) definition of dependent multivariational reasoning. In contrast to Kuster and Jones’ definition 
in which all three quantities involved are interdependent, the students in our study coordinated a 
change in an independent quantity a which simultaneously affected changes in two dependent 
quantities b and c, while quantities b and c were not related to each other (Figure 1c). For example, 
when Michael was prompted to describe what he noticed as he explored the rock cycle simulation he 
stated, “I would say that, the deeper, the deeper you get, the higher the temperature is, and the higher 
the pressure is.” We consider Michael’s reasoning about the relationship of depth with the 
temperature and pressure to be dependent multivariational reasoning. Michael’s language “the 
deeper” and “the higher” also shows an understanding of simultaneous change between the two 
dependent quantities (temperature and pressure) as influenced by one independent quantity (depth).  
Independent Multivariational Reasoning 

Our students exhibited independent multivariational reasoning, (Figure 1d), similar to Kuster and 
Jones’ (2019) definition of coordinating a change in two independent quantities (quantities a and b) 
influencing the same dependent quantity (quantity c). For example, when Chloe and Justin were 
asked to use the water cycle simulation to release snow by manipulating only the air temperature and 
the land temperature, they reasoned that “We need both of them to be cold.” Chloe explained that “if 
you just move for air temperature, it only snows a little bit, but if you put it with a land temperature, 
it starts to accumulate in the ground and it produces more.” Chloe illustrated an example of 
independent multivariational reasoning as she coordinated the change of land temperature and air 
temperature as unrelated independent quantities with the change in snow as the dependent quantity. 
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Relational Reasoning 
In addition to the above four types of multivariational reasoning, we also noticed instances where 

students related their explorations with quantities that were not part of the specific study. We refer to 
relational reasoning (Figure 1e) as the form of reasoning that connects the relationship of two 
quantities with a third quantity that students bring in from their prior experiences (what we refer to as 
an alien quantity). Relational reasoning can be expressed together with other forms, such as 
sequential multivariational reasoning. For instance, while exploring the water cycle simulation, we 
asked students to explain the model. Lorna connected the relationship between the amount of 
precipitation, runoff, and infiltration with the quantity of water that would go into the aquifers, which 
was not identified in the simulation or module. Lorna reasoned that “the more rain there is, there’s 
more runoff. And the more runoff, the more water is going to go into the aquifers.” Lorna first 
reasoned about the change in the quantity of rain with change the quantity of runoff. Then she 
coordinated the change in runoff with the amount of infiltrated water in the aquifer, an alien quantity 
to the simulation.  

Conclusions 
In 2017, Thompson and Carlson argued that while there are a wealth of studies employing variation 

and covariation as a framework for their investigations, these “do not contribute directly to defining 
the construct” (p. 427). Investigating how students may reason about more than two quantities makes 
a contribution to this call. The Kuster and Jones’ (2019) study initiated a discussion about how we 
can define students’ forms of multivariational reasoning. Our study built on their work to examine 
how students as young as sixth grade could reason about multiple quantities. By exploring the 
sequential and simultaneous variation of quantities involved in the water cycle, rock cycle, and sea 
level rise phenomena, students exhibited five different forms of reasoning about multiple quantities, 
namely sequential, transitive, dependent, and independent multivariational reasoning as well as 
relational reasoning.  

The retrospective analysis showed that it was the students’ interaction with the simulations and the 
probing questioning that provided a constructive space for them to study the variation in multiple 
quantities and reason multivariationally. Our initial goal in the study was to engineer opportunities 
for students to reason covariationally, therefore our tasks and questioning were restricted to only a 
few prompts to connect multiple quantities. In the next iteration of our design, we plan to engineer 
more opportunities of this type of reasoning. Through this process, we can examine the progression 
from covariational to multivariational reasoning and the tasks, tools, and questioning that assist 
students in exhibiting each specific form of reasoning about multiple quantities. 
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Research is mixed on whether understanding decimal magnitude supports operations with decimals 
or whether operations can be learned before and while students develop understanding of decimal 
magnitude. In the present study, we used a large scale, longitudinal design to investigate students’ 
knowledge of decimal comparison and operation before and after decimal comparison alone was 
introduced in the curriculum. Student performance on a decimal comparison task did not increase, 
but there was an increase in performance on decimal subtraction and decimal multiplication tasks, 
topics which were not part of the mandated curriculum during the relevant period of instruction. 
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Perspectives 
Researchers examined various conceptual hurdles involved in meaningful interpretation and use of 

the notational system involving decimals (Resnick et al., 1989). Hiebert (1992) proposed three types 
of knowledge which are important to comprehend the decimal system: knowledge of the notation, 
knowledge of the symbol rules and knowledge of quantities and actions on quantities. The 
knowledge of notation comprises of “how the symbols are positioned on paper” (ibid, p. 290) rather 
than understanding of what ‘.’ means or what quantities it represents. For instance, a student can 
compare two decimals correctly, but can have incorrect reasoning to explain their answers (see 
Resnick et al., 1989 for details on erroneous rules while comparing decimal numbers). The 
knowledge of the symbol rules prescribes on “how to manipulate the written symbols to produce 
correct answers” (Hiebert, 1992, p. 290). For instance, while adding and subtracting two or more 
decimals, the numbers need to be lined up systematically (Lai & Murray, 2015). This knowledge is 
analogous to Skemp’s (1976) idea of instrumental understanding where an individual can manipulate 
mathematical syntactic symbols using appropriate rules, procedures, algorithms, etc. to produce the 
correct answer, even when without understanding the underlying reasons. Knowledge of quantities 
and actions includes the understanding of decimal numbers are representing quantities, i.e., measures 
of objects “…by units, tenths of units, hundredths of units, and so on” and comprehending the 
reasons that explain “what happens when the quantities are moved, partitioned, combined, or acted 
upon in other ways” (Hiebert, 1992, p. 291). Lai and Murray (2015) related the knowledge of 
quantities and actions on quantities with developing a comprehensive understanding of the decimal 
topics.  
Decimal Comparison  

Students build on whole number ideas when they engage with decimals, and this both helps and 
hinders learning. Lee and colleagues (2016) argued that due to the representational nature of decimal 
numbers, which is virtually indistinguishable from that of whole numbers, the students find decimal 
magnitude comparison tasks easier as compared to the fraction magnitude (see also, DeWolf et al., 
2014; Iuculano & Butterworth, 2011). Researchers claim that students often perform well on the 
decimals comparison tasks by following syntactical rules (Lachance & Confrey, 2002), rather than 
developing a conceptual understanding of it. However, the common practice of teaching decimals as 
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an extension of the whole numbers might convey an inadequate understanding of place-value system 
(Fuson, 1990; Martinie, 2014).  
Sequence of Decimal Instruction 

In the United States, decimal instruction begins in the fourth grade with comparisons of fractions 
written in decimal form with denominators of 10 and 100. A decimal is regarded as the one-
dimensional magnitude of a fraction (a/b = c) expressed in the form of the standard base-10 metric 
system (Lee et al., 2016). This continues in fifth grade with decimal operations to the hundredths 
place (National Governors Association Center for Best Practices, 2010). Decimal instruction then 
continues through middle school (Rittle-Johnson et al., 2001). 

Although curricula frequently sequence decimal comparison instruction before operations, there is 
little research available to support this sequence. The magnitude-before-computation sequence is 
supported for fractions and standards and curricula appear to follow it for decimals based on the idea 
that fractions and decimals are closely conceptually related, even though there has been very little 
research on this instructional order. Arguments for teaching decimal magnitude before tackling 
operations between decimals numbers are formed by research that shows that children who are less 
comfortable with fraction magnitudes are also not as good as their counterparts at computations 
involving fractions (Lortie-Forgues et al., 2015). Other researchers note that students can understand 
decimal magnitude without being able to understand the results of computations involving decimals, 
which implies that understanding decimal magnitude is a prerequisite for decimal operations (Siegler 
& Lortie-Forgues, 2015). 
Decimal Comparison and Operations with Decimals 

Even though decimal magnitudes are taught first and operations second, the concepts appear to be 
intertwined in the minds of students. Decimals are familiar to students before they reach fourth grade 
to some degree because they follow some of the whole number rules, even though students often 
misapply those rules for comparing and computing with decimals (Ren & Gunderson, 2019; Rittle-
Johnson et al., 2001; Vamvakoussi & Vosniadou, 2004). As students make sense of decimals in 
school, they begin to apply what they understand to computation even if they have not been explicitly 
taught to do so. Hiebert et al. (1991) showed that children could learn about decimal concepts and 
structure and still show growth on decimal computation with symbols without detailed instruction on 
procedures. Other research has found that intermingling work on decimal place value with decimal 
addition and subtraction results in strong student performance, which is opposite of the assumptions 
surrounding magnitude-first instruction (Rittle�Johnson & Koedinger, 2009). Given the mixed 
findings from past research that has mostly relied on small-scale qualitative data, in the present study, 
we used a large scale, longitudinal design to investigate students’ knowledge of decimal comparison 
and operation before and after it was introduced in the curriculum. In particular, we sought to answer 
two research questions. (1) How does knowledge of decimal comparison and operations with decimal 
change during the year in which decimals are formally introduced in the curriculum? (2) Are the 
patterns that characterize students’ responses at each time point more indicative of magnitude-
before-operation or intermingled learning in the decimal domain? 

Methods 
The data is drawn from a larger study that included a representative sample of Grade 4 elementary 

teachers in Indiana. These teachers administered 8-item tests to their Grade 4 students (N = 1467) in 
the Fall of 2017 and Spring of 2018, and the data we report comes from three items on that test. The 
participation in this survey was voluntary for the students and they were given 15 minutes to work on 
the test. McNemar’s test was used to compare the pre-test and post-test results of the same students 
in grade four at two different points in the school year, so we had matched pairs of subjects with a 
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dichotomous trait of correct or incorrect for each question. We used alluvial diagrams to search for 
patterns in pretest and posttest responses. 

 
Figure 1. Pretest weighted flow of participants between response categories. 

Results 
An exact McNemar’s test was used to compare the two conditions (correct and incorrect) on the 

pre- and post-test over fourth-grade fraction and decimal knowledge. The change in the number of 
students who correctly answered the comparison question from the pretest to the posttest was small, 
44.31% to 45.07%. The analysis showed that there was not a statistically significant positive change 
between the pre- and post-test for ordering decimals from smallest to largest (p = 0.689). Of the 
1,467 students who took the pre- and post-tests, 642 answered the ordering question correctly on the 
pre-test and 653 answered correctly on the post-test. 

In contrast, there was a larger change in the number of students answering the decimal subtraction 
question correctly on the posttest from 10.67% to 28.57%, and this change was a statistically 
significant (p = 0.000). For decimal addition, 155 students answered correctly on the pre-test and 414 
answered correctly on the post-test. For the decimal multiplication question, the increase was more 
modest, from 10.35% answering correctly on the pretest to 17.53% answering correctly on the 
posttest. Similar to the decimal subtraction problem, this increase statistically significant (p = 0.000). 
In the decimal multiplication question, 150 students answered correctly on the pre-test and 254 
answered correctly on the post-test. The students’ performance differences between the decimal 
magnitude question and the operation questions shows that as a group the students improved in their 
ability to operate on decimals without substantially increasing their understanding of decimal 
comparison. 
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Figure 2. Posttest weighted flow of participants between response categories. 

 
We examined the relationship between responses on these three items and compared these patterns 

of responses between the pretest and posttest. The alluvial diagrams below show weighted flows 
among the three decimal questions on the pre- and posttests from the first decimal question about 
comparing decimals, through the subtraction question, and then to the multiplication question. These 
diagrams illustrate how responses to decimal items early in the test were related to responses later in 
the test at each time point. In particular, although the number of students who answered the 
comparison question did not significantly increase at posttest, a much larger portion of those students 
went on to answer the two operation questions at posttest than at pretest (see large ribbon at the 
bottom of Figure 2).  

Discussion and Implications 
We expected that fourth grade students would show more growth on decimal comparisons than 

decimal operations in fourth grade because decimal comparison is a fourth-grade standard and 
decimal operations are a fifth-grade standard. Students were presumably receiving more instruction 
on magnitude comparisons than on decimal operations. What we saw instead was that growth in 
decimal comparisons was not statistically significant yet growth in decimal operations (subtraction 
and multiplication) were statistically significant. Furthermore, by comparing the patterns between 
items at each time point we noticed that a majority of the students who answered the multiplication 
question at posttest also answered the comparison and subtraction problems, suggesting most of the 
change from pre to post was driven by a cohort of students who solidified their understanding of 
operations during the year in which comparison was taught. These findings confirm at scale what 
other researchers have found in small, qualitative studies; namely, that the conceptual development 
of both comparisons of magnitude and operations happen concurrently rather than sequentially. 
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Based on the results from a research project currently in progress, we outline the hypothesis that 
exhaustive mathematical study of the behavior of a single variable quantity (E1VQ) constitutes, by 
itself, a whole cognitive structure (in the Piagetian sense) underlying the development of variational 
thinking, and that it can and should be fully addressed in secondary education, during and in 
parallel with the study of representation of numbers and quantities on the number line (a variable 
quantity ‒ a number axis). This would allow the student to develop a series of conceptual 
(qualitative) images and quantitative mathematical tools that allow identifying, describing and 
naming the basic types of variational behavior of a variable quantity. 

Keywords: Algebra and algebraic thinking, variable quantities, variational thinking. 

Introduction 
The ideas addressed in this work are the collateral product of a research project that aims to 

contribute arguments of a historical, epistemological and cognitive nature in efforts to 
reconceptualize the teaching of Calculus for non-mathematicians (Jiménez et al., 2020). These ideas 
point, on the one hand, to the need to promote early development of a variational way of thinking in 
secondary and high school students, and on the other, to rethink the vision under which the 
variational approach is embodied in the curriculum of these educational levels. These ideas are 
presented here as working hypotheses that require a great subsequent effort in educational research, 
either to corroborate, reject and modify them, or to develop a greater knowledge. 

Variational Thinking Conception 
The research literature has long documented the difficulties that many students experience in 

understanding and constructing Cartesian graphs and developing a variational way of thinking 
(Radford; 2009a, 2009b). In our opinion, one of the epistemological roots of such difficulties consists 
in the very interpretation of what variational thinking is. It is a term whose meaning has not yet been 
established in a clear and concise way, not to say precise and rigorous, as is typical of scientific 
work. Different research groups, affiliated with different theoretical approaches, assume their 
particular interpretation of the meaning of this notion (Vasco, 2010).  

In this work, the term variational thinking refers to the type of mathematical thinking required to 
understand variation and change in progress (Thompson, Ashbrook, & Milner, 2016), and it 
develops and evolves as the study of such phenomenology occurs. This way of thinking is both 
qualitative (it implies the construction of dynamic images of variation and the reasoning about them, 
as well as the development of a language that reflects this dynamism) and quantitative (it has to do 
with numerical calculations, techniques and algebraic expressions).  

By its nature, the way of thinking that a mathematical study of change in progress requires is a 
complex entity that we can conceive of as consisting of two components that Thompson and Carlson 
(2017) have respectively called variational reasoning and covariational reasoning. These are 
complementary aspects of the same type of mathematical thinking, which have to do with the 
mathematical conceptualization of variable quantities. 
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Variational Reasoning 
Variational reasoning consists of two critical moments. The first is to understand that variable 

quantities actually vary, that is, their numerical values change. Consequently, it is a dynamic way of 
thinking. Thus, this first moment, characterized by the fact of perceiving or conceiving, in a given 
situation of change, the intervention of one, two, three, four, etc., variable quantities (one of which 
may be time), and to inquire how they change in order to form dynamic mental images of their ways 
of changing, to create mathematical tools to represent and quantify such changes, to develop an 
appropriate language for describing those changes, and much more, is what constitutes the essence of 
variational reasoning. 

There is an important aspect in conceptualizing a variable quantity that has an intuitive connotation. 
It is the fact that the numerical value a variable quantity takes at each moment is unique: it is not 
possible for a variable quantity to take two or more different numerical values at the same moment. 
This essential characteristic of the behavior of variable quantities is known as the uniqueness 
principle. 

The second crucial moment in variational reasoning is in some sense an aesthetic appreciation: 
when a variable quantity changes, it does so smoothly. This “smoothness” is a quality of the 
processes of change in progress called continuity. Time runs smoothly from one instant to the next in 
an interval; an athlete running moves smoothly from one point to another in the path, and the height 
of the liquid changes smoothly as a container fills (or empties). The whole process is continuous, 
since it is continuous at every moment. Usually the process of change-in-progress is continuous, in 
the sense that it changes smoothly from one state to the next.  

The principle of continuity is not exclusive to the movement of objects or filling/emptying of 
containers, but applies to all natural processes. As a process develops, it does not omit any state in its 
becoming. If the process is in one state at a certain time, and in another state at a different time, then 
it assumes all states between these two. 

In summary, variational reasoning has to do with the mathematical conceptualization of continuous 
variation of a single variable quantity, this variation having a temporal background. 
Covariational Reasoning 

The second important stage in variational thinking is to make explicit the fact that in the analyzed 
situation there are at least two variable quantities present, whose numerical values change 
simultaneously, and are also related in some way. In this case, the ability to coordinate the joint 
change of these numerical values is crucial for the next level of analysis. Carlson et al. (2002) call 
this more complex way of thinking as covariational reasoning, and characterize it as the set of all 
“cognitive activities involved in the coordination of two variable quantities while considering how 
they change in relation to each other”. In other words, covariational reasoning about quantities 
implies the consideration and/or construction of dependency relationships between numerical values 
of at least two variable quantities that change simultaneously and jointly. 

The Early Development Of Covariational Reasoning: Level-Zero 
It follows from the previous descriptions that covariational reasoning is cognitively and 

mathematically much more complex than variational reasoning and that, in order to develop in 
students the ability to reason covariationally, it is not only desirable but above all it is also necessary 
to previously develop their more elemental ability to reason variationally, that is, to reason 
mathematically about a single variable quantity. Despite this, educational research seems to assume 
as an unquestionable fact that variational reasoning is simple, unproblematic, natural and 
spontaneous, and that we should not be concerned with its development. In the overwhelming 
majority of research work on the subject, the student is involved from the very first moment with 
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mathematical tasks typical of the level of covariational reasoning. The results of our own research 
point in another direction, suggesting that mastering mathematical work with variable quantities on 
the number line seems to be a fundamental prerequisite for subsequent work with two number lines 
in the Cartesian plane. In other words, variational reasoning is related to mathematical work with a 
single variable quantity on the number line, while elementary covariational reasoning is related to 
mathematical work with two variable quantities on the Cartesian plane. 

Although we know that variable quantities never appear separately in the phenomena of the world 
in which we live in, isolating and studying them in this way seems to us a justified didactic decision, 
for several reasons. First, it is a relatively simpler cognitive task, since it does not require the explicit 
coordination of two variable quantities.  

The second argument for first addressing the analysis of a single variable quantity, isolated from the 
others, is based on the historical development of scientific methodology itself. A methodological 
strategy to understand complexity is to consider simpler cases of it. The number line is a simpler 
object than the Cartesian plane. 

Our third and main argument is that the basic mathematical ideas required for the coordination of 
two variable quantities can and should be developed in depth in this simplified, foregoing, 
hypothetical case (the study of a variable quantity in isolation from the others). Unfortunately, there 
is no place here to show that this is possible and that it does indeed contain great mathematical 
richness. In another work (Jiménez et al., work in progress) we argue that, in particular, it is possible 
to form and develop the mathematical images, tools and terminology necessary to describe and 
conceptualize the seven basic variational behaviors (uniform growth, accelerated growth, decelerated 
growth, uniform decrease, accelerated decrease, decelerated decrease, and zero growth or decrease), 
with a level of complexity similar to that of the case of covariation. Likewise, it is possible to 
approach some of the advanced ideas of Calculus, such as a first approach to derivatives of higher 
order and the Fundamental Theorem of Calculus. An outline of such approach is presented in 
Jiménez et al. (2020). 

A cardinal statement of this work is the thesis that exhaustive mathematical study of the behavior of 
a single variable quantity (E1VQ) constitutes, by itself, a whole cognitive structure (in the Piagetian 
sense, 1968) on which the further development of covariational reasoning relies. A deep 
understanding of the behavior of a single variable quantity, its description in mathematical terms and 
its dynamic graphic representation on the number line are relevant and structural for the formation 
and development of variational thinking, both from a mathematical and a cognitive point of view. In 
particular, they are fundamental for understanding, interpreting, endowing with meaning and 
constructing graphs in the Cartesian plane. This is the initial step in the development of variational 
thought. Given that the process of development of covariational reasoning, according to the 
terminology proposed by Carlson et al. (2002), has been described in terms of five levels (called L1, 
L2, L3, L4 and L5), we have decided to name level-zero (L0) the corresponding stage of emergence 
and development of variational reasoning described above. 

Related to this, it is sensible to assume that the development in students of a dynamic image of the 
variable, as well as of a dynamic meaning for it, is possible only relying on a specific mathematical 
work on the number line, provided that such mathematical work involves the representation of 
variable quantities and not only of numbers (Jiménez et al., 2020). However, as Thompson and 
Carlson (2017) rightly pointed out: 

... there is relatively little research on students’ meanings and understandings of number 
lines. Psychological research in this regard portrays number lines as nebulous objects on 
which researchers presume that people do informal arithmetic (...), the main interest being by 
what method people use it to determine sums, products, and so forth. Mathematics education 
research seems to see the target idea of a number line as being relatively unproblematic and 
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focuses on using it as an instructional aid, helping students understand how to locate 
numbers on it, or using it as a tool in reasoning (...). In both cases, number lines seem to be 
taken by researchers as lines full of numbers. (Thompson and Carlson, 2017) 

The study of the number line is certainly included in the school curriculum, but unfortunately not 
from the variational point of view. Students learn how to represent numbers by points on the number 
line, and to associate points with numbers (the coordinates), to identify line segments (intervals), etc. 
This mathematical work is essentially static in nature. But they never learn how to represent variable 
quantities on the number line, much less how to developn it in dynamic graphic images associated 
with the different basic variational behaviors, or how to develop and use mathematical tools that 
allow them to deepen the analysis of the behavior of variable quantities. The number line itself is not 
a constructed object; it is presented to students as a prefabricated object. 

This does not imply that the mathematical work on the number line stipulated by the current 
curriculum is unnecessary and must be eliminated. On the contrary, it is adequate and necessary, 
although clearly insufficient to favor the formation and development of variational reasoning in 
students. For the latter, it will be necessary to incorporate another type of mathematical work on the 
number line, of a dynamic nature, related to graphic representation of variable quantities. This 
implies engaging in a deeper reflection on the construction of the number line itself. 
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This paper reports the manner in which primary school students from a Mexican public school, 
having just learned to validate the truth-value of numerical equalities (e.g., 8+2+16=10+12+4) 
based on two algebraic strategies, that is, transforming both sides of the equality to a third common 
form, and rewriting one side of the equality in the same form as the other side – both strategies being 
based on decomposing, composing, and recomposing the numbers – tended to favor the first strategy 
as their primary approach for validating numerical equalities. This tendency suggests that, although 
the students have developed an algebraic thinking based on structure sense in arithmetic, the second 
strategy would appear to be less consolidated than the first. 

Keywords: Algebra and algebraic thinking; Structure sense in arithmetic; Decomposing, composing, 
and recomposing numerical expressions and equalities. 

Background 
Algebraic thinking in primary-grade students has been studied from different perspectives, although 

an emphasis on generalization has prevailed. Recently, it has been proposed that, in addition to 
generalizing, seeking and expressing structure is an important part of this kind of mathematical 
thinking (Kieran, 2018). Regarding the structural, some studies have focused on observing 
regularities in numerical equalities (e.g., Pang & Kim, 2018; Schifter, 2018). However, according to 
Mason, Stephens, and Watson (2009), structural thinking involves more than observing regularities. 
In this sense, Martínez-Hernández and Kieran (2018, 2019, in press), in their studies on structure 
sense in arithmetic, have reported on the strategies that primary school students use to validate 
numerical equalities. They found that these students tended at first to use computational strategies to 
validate numerical equalities of the form a+b=c+d (Martínez-Hernández & Kieran, 2018); however, 
they were also able to use ad hoc strategies on the same kind of equalities, based on decomposing the 
given numbers (Martínez-Hernández & Kieran, 2019). According to Martínez-Hernández and Kieran 
(in press), the students were able to transition from an arithmetical thinking expressed by 
computational strategies to an algebraic thinking expressed by the decomposition, composition, and 
recomposition of the given numbers, using two strategies: (i) transforming both sides of a numerical 
equality to a third common form; and (ii) rewriting one side of a given equality in the form of the 
other side. Based on the emergence of these two strategies, the following question is posed: Which of 
these two strategies do the students tend to use in order to validate numerical equalities for which 
they previously used computational or ad hoc strategies? 

Theoretical Framework 
Early algebra has been characterized from different perspectives (e.g., Carraher & Schliemann, 

2007; Kieran, 2018), but all of them recognize the algebraic character of arithmetic. According to 
Kieran (2004), algebraic thinking in the early grades involves the development of ways of thinking 
within activities for which the letter-symbolic could be used as a tool, or alternatively within 
activities that could be engaged in without using the letter-symbolic at all, for example, noticing 
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structure. Recently, Kieran (2018) has emphasized and suggested that more attention be paid to the 
structural. 
Structure in Numbers and Numerical Operations 

According to Kieran (2018), the learning of high school algebra has included a focus on the 
structural aspect (e.g., Hoch & Dreyfus, 2004, Linchevski & Livneh, 1999) much more so than has 
been the case for early algebra. Kieran suggests that structure sense in arithmetic entails more than 
attending to the basic field properties. Structure sense in arithmetic involves looking through 
mathematical objects and decomposing and recomposing them in several structural ways. Based on 
Freudenthal (1983, 1991, cited in Kieran, 2018), Kieran proposes that the structure in numbers and in 
numerical operations is explained by the fact that the number system constitutes an order structure, in 
which, for each pair of numbers, a third number, for instance, its sum, can be assigned, thereby 
constituting an addition structure. Similarly, the multiplicative structure can be defined. Accordingly, 
expressing structure sense in arithmetic implies being aware of the different structural forms that 
numbers and numerical operations can take, for example, observing that the number 989 can be 
rewritten equivalently as 9x109+8 and as 9x110-1, also as 9x102+8x101+9x100, among others. 

In this way, Kieran (2018) suggests promoting in students, from the early grades, various 
experiences with equivalence of numerical expressions through the structuring processes of 
decomposing, composing, and recomposing. And, in line with Freudenthal who describes different 
means of structuring according to a variety of structures and properties, numbers and numerical 
operations can be decomposed and recomposed to show equivalence without calculation and 
involving properties related to, for example, the addition structure and the properties of equality. 
Thus, validating the truth-value of numerical equalities such as 67+86=68+85 by decomposing, 
composing, and recomposing the involved numbers implies re-expressing them in different forms, 
such as 67+86=60+7+1+85 and 68+85=60+7+1+85, and so it is true that 67+86=68+85. 

Method 
Participants 

In the study, three students (S1, S2 and S3) from a Mexican public school participated, ages 
between 11 and 12 years. When data were collected, the students had just finished primary school. 
The three participants are the same students that were reported in Martínez-Hernández and Kieran 
(2018, 2019, in press). 
Task Design and Data Collection 

The study involved the design of four tasks. The focus in this paper is the fourth task, which asked 
students to indicate the truth-value of three numerical equalities (10+7=5+12, 530+200=300+430, 
and 8+2+16=10+12+4), without calculating the total of each side. The structure of the task for each 
of the equalities is the following: 

• A true numerical equality is presented 
• Students are asked to show, without calculating the total of both sides, that the equality is true. 
• Students are asked for an explanation of their procedure. 

The data were collected through a group interview, conducted by the first author of this paper. 
During the interview, each student was given the printed task sheet, which they first worked on 
individually for each given equality, followed by a group discussion of their answers. During the full 
interview, students had the opportunity to use the blackboard to explain their approaches. 
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Results and Discussion 
When students had finished answering with respect to the veracity of the three equalities 

(10+7=5+12, 530+200=300+430, and 8+2+16=10+12+4) and after developing the two strategies 
based on decomposing, composing, and recomposing the given numbers [i.e., (i) looking for a third 
common form, observed when they validated 530+200=300+430 and 8+2+16=10+12+4; and (ii) 
transforming one side of the equality into the same form of the other side, which was observed when 
they validated 8+2+16=10+12+4 (see Martínez-Hernández & Kieran, in press)], they were asked to 
validate the equalities 10+7=5+12 and 530+200=300+430 once again. The reason for this was that 
the students had not used the above strategies to validate the initial equality 10+7=5+12 – they had 
first relied upon a computational strategy, which was followed by an ad hoc decomposition that had 
not involved an attempt to have the same numbers on both sides (see Martínez-Hernández & Kieran, 
2019). 
Episode 1 

To investigate which of the two strategies based on structure sense would be used by the students, 
the Interviewer (I) asked them to show the veracity of the first given equality. See this episode in the 
following excerpt.  

I:   Let me go back to the first two equalities [Writes on the board 10+7=5+12]. How can it be re-
expressed?  

S1 and S3: Me, me, [Both want to go to the blackboard]. 
I:  S1, go ahead, please. How could you tell this is true, without adding? 
S1: [Writes on the board 5+5+5+2=5+5+5+2, see Fig. 1, left]. This [pointing to the 5+5 at the left 

side of the equality] I would take from the 10. This [pointing to 5+2 on the left side] from the 7. 
This [pointing to the 5 on the right side from the equality] from 5, and this [pointing to 5+5+2] 
from the 12. 

 

        
Figure 1: S1’s decomposing strategy (left) and S3’s (right) 

 
As observed in Fig. 1 (left), S1 decomposes both sides of the equality into a third common form 

(5+5+5+2), and explains where each number comes from. In the same way, S3 proposes another 
decomposition (Fig.1, right) based on the same idea – also explaining where each number comes 
from in the rewritten equality. 
Episode 2 

In reaction to the students’ behavior described in Episode 1, the interviewer asks them directly 
about the possibility of transforming the left side into the right side (or vice versa). The following 
excerpt presents the unfolding of the episode.   

I: Finally, I am going to redo [Writes 530+200=300+430 on the board]. Can it be rewritten? You have 
already done this, but tell me how to do it in another way. This [Referring to the expression 
530+200], for example, can it be rewritten in this way [pointing to the expression 300+430]? Or 
this [pointing to 300+430] in this way [pointing to 530+200]? How would you do it? 

S3: Oh, yes, yes! 
I:  Go ahead S3 
S1: Transforming 
I: Tell us S1. Transforming how? 
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S1: By doing just as S2 and S3 just did [Referring to the strategy to validate 8+2+16=10+12+4; see 
Martínez-Hernández & Kieran, in press)] 

S3: [Goes to the blackboard] I subtract 200 from this one [pointing to 530] to make it into 300, and 
add the 200 to this one [pointing to 200] to make it 430. Hold on, no! 230 [Finally writes the 
equality 300+430=300+430, see Fig. 2, left]. 

I: This [pointing to the left side 300+430 written by S3], where did it come from? 
S3: From 530, I subtract 230 and add it to 200, so I get 430. 

 

       
Figure 2: Rewritten equality by S3 (left); interpretation of his strategy (right) 

As observed in the excerpt and in Fig. 2 (left), S3’s strategy can be interpreted as follows: The left 
side is decomposed into 300+230+200 and then recomposed as 300+430; note that he does not have 
to transform the right side (see Fig. 2, right). The strategy in Episode 2 is based on a simultaneous 
relation that is discerned between both right and left sides of the given equality, which is not the case 
for the strategy in Episode 1. In other words, this strategy does not involve an arbitrary decomposing 
and recomposing of the left side; rather it is guided by the form of the right side. 

Conclusions 
According to the results, on the one hand, students tend to look for a third common form, by 

decomposing both sides of an equality (Episode 1) in order to validate the truth-value of numerical 
equalities. Hence, this strategy replaces the initial computational strategy that was spontaneously 
used by them at first (see Martínez-Hernández & Kieran, 2018). On the other hand, the Episode 2 
strategy emerged from explicit interviewer intervention. As indicated by Martínez-Hernández & 
Kieran (in press), this second strategy would seem to be cognitively more demanding than the first 
one. In any case, both strategies go beyond that of simply observing regularities in equalities (e.g., 
Pang & Kim, 2018; Schifter, 2018) and therefore offer new findings with respect to the development 
of structure sense in numerical activity. As seen in the example of S3’s work (Fig. 2), his way of 
decomposing, composing, and recomposing the numbers to transform one side of the equality into 
the form of the other side illustrates not only relational thinking based on structure sense but also the 
structural approach proposed by Kieran (2018) that involves looking through mathematical objects 
and expressing them in different structural forms. As a final comment, we envisage expanding the 
research so as to study the ways in which students understand the similarities and differences of their 
strategies. 
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Este reporte da cuenta sobre cómo alumnos de primaria de una escuela pública Mexicana, una vez 
que son capaces de validar la veracidad de igualdades numéricas (e.g., 8+2+16=10+12+4) a partir 
de dos estrategias: transformar ambos lados de la igualdad en una tercera forma común, o 
reescribir un lado de la igualdad en la forma del otro lado–ambas relacionadas con la 
descomposición, composición y recomposición de los números– tienden a utilizar la primera de éstas 
como su opción inicial de validación de igualdades numéricas. Tal comportamiento de los alumnos 
indica que si bien muestran un razonamiento de tipo algebraico basado en un sentido de estructura 
en aritmética, su segunda estrategia no está suficientemente consolidada. 

Palabras clave: Álgebra y pensamiento algebraico; Sentido de estructura en aritmética; 
Descomposición, composición y recomposición de expresiones e igualdades numéricas. 

Antecedentes 
El pensamiento algebraico en edades tempranas ha sido estudiado desde diferentes perspectivas, 

aunque ha imperado un énfasis en la generalización. Recientemente, ha sido propuesto que, además 
de lo general, el sentido de estructura es también parte importante de este tipo de pensamiento 
matemático (Kieran, 2018). Sobre lo estructural, algunos estudios se han enfocado en la observación 
de regularidades en igualdades numéricas (e.g., Pang & Kim, 2018; Schifter, 2018). Sin embargo, de 
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acuerdo con Mason, Stephens y Watson (2009), un pensamiento estructural es mucho más que tal 
característica. En este sentido, Martínez-Hernández y Kieran (2018, 2019, en prensa), sobre el 
sentido de estructura en aritmética, han reportado estrategias de validación de igualdades numéricas 
que muestran alumnos de primaria. Los alumnos suelen utilizar estrategias de cómputo para validar 
igualdades numéricas de la forma a+b=c+d (Martínez-Hernández & Kieran, 2018) y son también 
capaces de utilizar estrategias ad hoc para validar el mismo tipo de igualdades, basados en la 
descomposición de números (ver Martínez-Hernández & Kieran, 2019). En Martínez-Hernández y 
Kieran (en prensa) se muestran cómo los estudiantes transitan de un pensamiento aritmético 
manifestado en estrategias de cómputo hacia un pensamiento de tipo algebraico basado en un sentido 
de estructura; manifestado en la descomposición, composición y recomposición de los números, a 
través de dos estrategias: (i), transformar ambos lados de una igualdad numérica en una tercera forma 
común, y (ii) reescribir un lado de la igualdad en la forma del otro lado. A partir de estas, surge la 
siguiente pregunta: ¿Cuál de las dos estrategias aplican para volver a validar igualdades en las que 
previamente utilizaron estrategias de cómputo o bien aplicaron una estrategia ad hoc? 

Marco Teórico 
El algebra temprana ha sido caracterizado desde distintas perspectivas (e.g., Carraher & 

Schliemann, 2007; Kieran, 2018), en todas se reconoce el carácter algebraico de la aritmética. Sobre 
el pensamiento algebraico en edades tempranas, Kieran (2004) menciona que éste trata sobre el 
desarrollo de formas de pensamiento en actividades en las cuales el aspecto simbólico-literal puede 
usarse como herramienta, o alternativamente, en actividades que no requieren lo simbólico-literal, 
por ejemplo, observar la estructura. Recientemente, Kieran (2018) ha enfatizado y sugerido una 
mayor atención al aspecto estructural. 
La Estructura en los Números y en las Operaciones Numéricas 

De acuerdo con Kieran (2018) en el aprendizaje del álgebra, la importancia del aspecto estructural 
ha sido tomado en cuenta con amplitud (e.g., Hoch & Dreyfus, 2004; Linchevski & Livneh, 1999, 
Mason, Stephens & Watson, 2009), no así en el caso del álgebra temprana. En este sentido, Kieran 
propone que el sentido de estructura desde la aritmética implica mucho más que la estructura 
numérica basada en las propiedades de campo. El sentido de estructura en aritmética involucra 
observar a través de los objetos matemáticos, descomponerlos y recomponerlos en diferentes formas 
estructurales. Con base en planteamientos de Freudenthal (1983, 1991, citado en Kieran, 2018), 
Kieran propone que la estructura en los números y las operaciones se explica en el hecho de que el 
sistema de los enteros constituye una estructura de orden, en la cual, a cada par de enteros, un tercer 
número, por ejemplo su suma, les puede ser asignado, constituyendo así una estructura aditiva. De 
manera similar se define una estructura multiplicativa. Así, manifestar un sentido de estructura en 
aritmética implica ser consciente de diferentes formas estructurales que los números y las 
operaciones numéricas pueden tomar, por ejemplo, observar que el número 989 se puede reescribir 
como 9x109+8, 9x110-1, o bien como 9x102+8x101+9x100, entre otras. 

De esta manera, Kieran (2018) sugiere promover en los alumnos, desde los primeros grados 
escolares, la experiencia de la equivalencia de expresiones numéricas a través de la descomposición, 
recomposición y sustitución. En línea con Freudenthal, quien describe diferentes formas de 
estructurar, acorde a la variedad de estructuras y propiedades, los números y las operaciones 
numéricas pueden ser descompuestas y recompuestas para mostrar la equivalencia sin realizar 
cálculos y considerando propiedades relacionadas, por ejemplo, la estructura aditiva y las 
propiedades de la igualdad. De esta manera, para validar la veracidad de igualdades como 
67+86=68+85 mediante la descomposición, composición y recomposición de los números 
involucrados implica re-expresarla en diferentes formas, por ejemplo: 67+86=67+1+85 y 
68+85=60+7+1+85, por lo que 67+86=68+85 es verdadera. 
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Método 
Participantes 

Participaron en el estudio tres alumnos (S1, S2 y S3) de sexto grado de primaria de una escuela 
pública de México, de entre 11 y 12 años de edad; quienes al momento de la toma de datos estaban 
culminando su educación primaria. Los tres alumnos son los mismos participantes reportados en 
Martínez-Hernández y Kieran (2018, 2019, en prensa). 
Diseño de la Tarea y acopio de datos 

El estudio incluyó el diseño de cuatro Tareas. La aquí analizada corresponde cuarta, esta versa sobre 
mostrar la veracidad de tres igualdades sin calcular el total de cada lado (10+7=5+12, 
530+200=300+430 y 8+2+16=10+12+4). La estructura de la Tarea para cada igualdad es: 

• Una igualdad numérica es presentada 
• Se solicita a los alumnos mostrar, sin calcular el total en ambos lados de la igualdad, que la 

igualdad es verdadera 
• Se les solicita una explicación de su procedimiento 

La recopilación de datos se llevó a cabo mediante una entrevista grupal, conducida por el primer 
autor (E, en adelante) de este reporte. Cada alumno contó con la tarea impresa, en la cual, los 
alumnos trabajaron primero de manera individual para cada igualdad dada, seguido por una discusión 
grupal de sus respuestas. En todo momento los alumnos tuvieron la oportunidad de pasar a un 
pizarrón para explicar sus procedimientos. 

Resultados y Discusión 
Al terminar los alumnos de responder sobre la veracidad de las tres igualdades (10+7=5+12, 

530+200=300+430 y 8+2+16=10+12+4) y después de que desarrollaron dos estrategias basadas en la 
descomposición, composición y recomposición de los números de las igualdades dadas [i.e., (i) sobre 
la búsqueda de una tercera forma común, observada cuando validan 530+200=300+430 y 
8+2+16=10+12+4, (ii) transformación de un lado de la igualdad en la misma forma del otro lado, 
observada cuando validan 8+2+16=10+12+4 (ver Martínez-Hernández & Kieran, en prensa)] les fue 
solicitado validar de nuevo las igualdades 10+7=5+12 y 530+200=300+430. Ello se debe a que no 
utilizaron tales estrategias para validar la igualdad inicial 10+7=5+12 – en esta, emplearon primero 
una estrategia de cómputo, y después, una estrategia de descomposición ad hoc, en la cual no buscan 
los mismos números en ambos lados  (ver Martínez-Hernández & Kieran, 2019) 
Episodio 1 

Para indagar cuál de las dos estrategias, basadas en un sentido de estructura, podrían emplear los 
alumnos, el entrevistador (E) les solicita mostrar de nuevo la veracidad de la primera igualdad 
propuesta en la tarea, tal como se muestra en la siguiente transcripción. 

E:   Déjenme regresar a las primeras dos igualdades [Escribe en el pizarrón la igualdad 10+7=5+12]. 
¿Cómo se puede re-expresar? 

S1 y S3: Yo, yo, [A la vez manifiestan su interés por pasar al pizarrón]. 
E:  S1, pasa por favor. ¿Cómo le harías para decir que sí es verdadera, sin hacer la suma?  
S1: [Escribe en el pizarrón 5+5+5+2=5+5+5+2, ver Fig. 1, izquierda]. Éste [señala el 5+5 del lado 

izquierdo] lo agarraría del 10. Éste [señala el 5+2 del lado izquierdo] del 7. Éste [señala el 5 del 
lado derecho de la igualdad] del 5, y éste [señala 5+5+2] del 12. 
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Figura 1: Estrategia de descomposición por S1 (izquierda) y S3 (derecha) 

 
Como se observa en la Fig. 1 (izquierda), S1 descompone ambos lados de la igualdad en una tercera 

forma común (5+5+5+2), y explica de dónde surgen cada uno de los números de ésta. De la misma 
forma, S3 propone otra descomposición (Fig. 1, derecha), bajo la misma idea explica dónde surgen 
los números de la igualdad reescrita. 
Episodio 2 

Dado el comportamiento de los alumnos descrito en el episodio 1, el entrevistador les cuestiona 
directamente por la posibilidad de transformar el lado izquierdo en el derecho (o viceversa), esto se 
observa en la siguiente transcripción. 

E: Finalmente, voy a escribirla [Escribe en el pizarrón la igualdad 530+200=300+430]. ¿Esa se puede 
reescribir? Ya lo hicieron ustedes, pero díganme otra forma más. ¿Esto [Refiriéndose a la 
expresión 530+200], por ejemplo, se puede reescribir de esta manera [señala la expresión 
300+43] o esto [señala 300+430] de esta manera [señala 530+200]? ¿Cómo lo harían? 

S3: ¡Ah, ya, ya! [Expresión coloquial de afirmación] 
E:  Pasa S3 
S1: Transformando 
E: Dinos S1, ¿transformando, cómo? 
S1: Sería lo mismo que hizo S2 y S3, hace rato [Refiriéndose a la estrategia para validar la igualdad 

8+2+16=10+12+4, ver Martínez-Hernández & Kieran, en prensa)] 
S3: [Pasa al pizarrón] Le quito 200 a éste [señala el 530] para hacerlo 300 y se lo paso a este [señala 

el 200] para hacerlo para hacerlo 430. ¡Ah no! 230 [Finalmente escribe la igualdad 
300+430=300+430, ver Figura 2 izquierda] 

E: ¿Esto [señala es lado izquierdo 300+430 escrito por S3] de dónde salió? 
S3: Del 530 le quito 230 y se los doy al 200, para que me resulte 430. 

 

         
Figura 2: Igualdad reescrita por S3 (izquierda) interpretación de su estrategia (derecha) 

Como se puede observar en la transcripción y en la Fig. 2 (izquierda), la estrategia desarrollada por 
S3 se puede interpretar de la siguiente manera: el lado izquierdo 530+200 lo descompone como 
300+230+200 y después lo recompone como 300+430, mientras que el lado derecho no lo transforma 
(ver Fig. 2, derecha). La estrategia del Episodio 2, a diferencia de la del episodio 1, está sustentada en 
una relación simultánea entre los lados izquierdo y derecho de la igualdad dada. Es decir, no se trata 
de una descomposición y recomposición arbitraria del lado izquierdo, sino que está guiada por la 
forma del lado derecho. 

Conclusiones 
De acuerdo con los resultados, por un lado, los alumnos tienden a buscar una tercera forma común 

mediante la descomposición de ambos lados de una igualdad (Episodio 1) para validar el tipo de 
igualdades numéricas propuestas. Así, tal estrategia desplaza a la estrategia de cómputo inicialmente 
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utilizada por ellos de forma espontánea (ver Martínez-Hernández & Kieran, 2018). Por otro, la 
estrategia del Episodio 2 emerge, de nuevo, a partir de la intervención explícita del entrevistador. 
Como se indica en Martínez-Hernández y Kieran (en prensa) esta segunda estrategia parece ser 
cognitivamente más demandante que la primera. En cualquier caso, ambas estrategias van más allá 
de observar regularidades en igualdades (e.g., Pang & Kim, 2018; Schifter, 2018), lo cual es 
muestran de nuevos resultados sobre el sentido de estructura en aritmética. Así, el trabajo de S3 (Fig. 
2), la forma en que descompone, compone y recompone los números, para transformar un lado de la 
igualdad en la misma forma del otro, es un ejemplo de un pensamiento relacional basado en un 
sentido de estructura y de la aproximación estructural propuesta por Kieran (2018) respecto a 
observar a través de los objetos matemáticos y expresarlos en diferentes formas estructurales. Por 
ultimo, planteamos la necesidad de investigar sobre la forma en que los alumnos entienden las 
similitudes y diferencias de sus estrategias. 
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INTUITION IN LINEAR TRANSFORMATION: SOME DIFFICULTIES 

LA INTUICIÓN EN LA TRANSFORMACIÓN LINEAL: ALGUNAS DIFICULTADES 

Osiel Ramírez-Sandoval 
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An individual interview was conducted with five students who successfully completed a mathematics 
degree in Mexico. An instrument was applied that contained situations of both linear and non-linear 
transformations in the graphic and algebraic environment. The results were analyzed under the 
theoretical framework of Fischbein (1987) on intuition and intuitive models. It was obtained that the 
interviewed students have a universe of linear transformations that are known in the school context 
as a prototype. Students exclude the existence of a linear transformation in the geometric 
environment, when they fail to build said transformation under the composition of the range of 
prototype models. 

Keywords: Advanced Mathematical Thinking, Algebra and Algebraic Thinking, Cognition, 
Representations and Visualization 

Objective 
The purpose of the research was to identify the intuitive models that some Bachelor of Mathematics 

students retain regarding Linear Transformations in R2 (in the sense of Fischbein, 1987); It also 
sought to demonstrate the conceptions that students have regarding this concept. It was hypothesized 
that the universe that some students have regarding Linear Transformations in R2 is reduced to rigid 
movements of the plane. 

Theoretical framework 
In the present work we are going to consider the term intuition as an instinctual knowledge, not as a 

method, not as a source of knowledge, but as a type of cognition. To make this approach clearer, 
Fischbein mentions the following examples: 

One intuitively admits that the shortest path between two points is the straight line, that each 
number has a successor, that the whole is greater than each of its parts, that a body must fall 
if it is not supported. (Fischbein, 1987) 

These statements are accepted almost immediately, without the need to perform any formal test, that 
is; We can say that self-evidence is part of a characteristic of intuitive knowledge, but it is 
remarkable that there is a whole universe of statements or propositions that are not accepted so 
immediately, for example: if the product of the slopes of two lines is equal to one, then; these are 
perpendicular, or that !! = 1, ! ≠ 0 or the mathematical expression ! !!!

!   generates the sum of the 
first n natural numbers. 

Intuition is not the primary source of truth, certainty and knowledge but this seems to be so, 
because this is exactly its role: to create the appearance of certainty, to attribute to various 
interpretations and representations a character of intrinsic certainty and unquestionable 
(Fischbein, 1987). 

Students develop their intuition, because they resort to representations of mathematical objects. 
"Mental objects (concepts, operations and statements) must achieve a kind of intrinsic consistency 
and direct evidence, similar to the real one, external to material objects and events, if the reasoning 
process is a genuinely productive activity" (Fischbein, 1987) . In this way, mental representations are 



Intuition in Linear Transformation: some difficulties 
 

	 315	

not the product of memorization; but to the repeated experiences that the subject has had in the 
concept construction process: obstacles, conflicts, etc. 

General characteristics of intuitive cognitions 
Fischbein (1987) considers that at every level of mathematical reasoning, one must consider mainly 

three basic aspects. 
1. The formal aspect: Which is essentially given by the structure logical-deductive mathematics, 

such as axioms, definitions, theorems and proofs. 
2. The algorithmic aspect: Which refers to the procedures, the development of a approach until 

reaching the solution. 
3. The intuitive aspect: That refers to the degree of acceptance of the concepts, mathematical 

propositions or statements, as something evident or true. 
The research is particularly interested in the implicit models that students can develop in relation to 

the concept of linear transformation and the consequences of these models in learning the same 
concept. 

Methodological elements 
Five students (Saulo, Miguel, Max, David and Hugo) who graduated from the Bachelor of 

Mathematics at the Higher School of Physics and Mathematics of the National Polytechnic Institute 
in Mexico were interviewed. The interview was conducted individually on different dates over the 
course of a week. At the time of the interviews, each of the students belonged to a master's program 
in different institutions and specialties, with a common core in mathematics. It should be noted that 
the students were chosen for their good training and good performance in mathematics, since in this 
research we intend to identify those intuitive models that persist, and that are not necessarily strictly 
related to cognitive difficulties, etc. 

The bibliography to which they referred when they were questioned about the textbook brought in 
during their training corresponds to the book on Linear Algebra published by the authors Hoffman & 
Kunze (1987), however they have consulted other authors such as Grossman (2012), Lang (1974) 
and Lay (2007). 

The method 
Once the instrument to be used was established, an a priori analysis was carried out, which 

hypothetically posed the possible arguments and situations to be presented during the interview. 
Once this analysis was carried out, we proceeded to the interview stage. The interviewer had the task 
of bringing, posing and explaining the situations that arose during the development of the interview, 
and one of his main tasks consisted of confronting the environments where the student had opposing 
or other people's arguments, which suggested a deeper analysis. Finally, the a priori analysis is 
contrasted with the a posteriori analysis, to obtain the following results. 

Results 
In one of the initial activities of the instrument, it requested the following: 

a) Provide an example of a linear transformation. 
b) Argue why the transformation you proposed is linear. 

Both the student Saulo and the student Max provide examples very similar to those approached in a 
Linear Algebra course (see Figure 1 and Figure 2), since they are characteristic of those presented in 
textbooks. 
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Figure 1. Saulo's production, following the example of TL. 

 

 
Figure 2. Max production, to the example of TL. 

 
Fischbein (1987) considers this type of intuitive cognitions to be algorithmic in appearance; which 

refers to the procedures, the development of an approach until reaching the solution. The strategy 
used by the students (Saulo and Max) corresponds to first setting the definition of Linear 
Transformation and then applying it to their proposed examples until their demonstration is 
completed, with great skill in algebraic treatment. Attached to a priori analysis, this type of results 
are those expected by teachers, since they correspond to some exercises in textbooks or the first 
examples that are addressed to illustrate the concept of Linear Transformation. (Grossman, 2012, 
p.500). 

Miguel provides the example of the Linear Identity Transformation (see Figure 3.), and applying his 
definition verifies the linearity of the transformation. It does not specify vector spaces, nor does it 
specify the membership of scalars to a field, as in the definition of Linear Transformation that you 
provided; highlights the notation used by the student presenting the definition with a “f ” referring to 
the function, thus also taking x & y as vectors, as a real analysis notation. 

 

 
Figure 3. Miguel's production, following the example of TL. 

 
In the a priori analysis, this possible response by the student was warned, when conceptualizing 

Linear Transformations as functions in the context of their calculus courses. 
For his part, the student David, argues that: 

David: There are several examples, we can start, to define the simplest transformation, which 
is the constant, in general the simplest functions are the constants, the ones that map all the 
space in a number here (indicating the counter-domain) but in this case , to be linear, it 
cannot be any constant. Given the structure we gave for the linear transformation, it can 
easily be verified that if the linear transformation is constant, then: 

 
Figure 4. David's production, following the example of TL. 
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David demonstrates his mathematical maturity by fluently providing the example of the Zero Linear 
Transformation. Very similar to the one shown in the textbook that he carried in his studies; "The 
zero transformation, defined by 0! = 0, is a linear transformation from V to V" (Hoftman & Kunze, 
1971, p.67). 

It is evident that in his mathematical reasoning, David shows the formal aspect, in the sense of 
Fischbein (1987), which is essentially given by the logical-deductive structure of mathematics, such 
as axioms, definitions, theorems and demonstrations, this situation is reflected throughout the entire 
interview. David is very much akin to the implicit (or tacit) model: 

A fundamental characteristic of a mental model is its structural entity. A model, like a theory, is not 
a simple isolated rule, rather a global, unitary, meaningful interpretation of a phenomenon or a 
concept. . . . of an implicit model is its concrete, practical nature, even if the model is an abstract 
construction. (Fischbein, 1987) 

Of the students interviewed; the one that Fischbein (1987) classifies as an intuitive model was also 
observed when the following activity was requested. 

a) Provide an example of a nonlinear transformation 
b) Argue why the transformation you proposed is not linear. 

The student Hugo does not provide any algebraic expression, as the rest of the interviewed students 
do; He takes Galileo's transformations, to illustrate the non-linearity of transformation 

Hugo: . . . well, here I'm going to use something like this. . . Galileo transformations, for 
example, are linear transformations, when. . . in fact they are valid for: when a reference 
system moves with respect to the other and in each of the two it is realized. . . for example 
the position of a particle or of a body in general, then this. . . and the Galileo transformations 
are linear transformations, but that only applies when the speed with which a system S 
'moves with respect to another system S is constant (write ), right now I don't remember what 
they are. . . how are the Galileo transformations established, but. . . if to this system S ', 
which moves with respect to the system S, we make this speed be different, not constant, that 
is, it has a acceleration, the resulting transformation is going to be a non-linear 
transformation, it is going to carry a term due to the acceleration, it is going to carry a square 
there. For that reason, it would be non-linear and that would also be the argument. . . 
Besides, if we check the calculations for this a bit, we would surely obtain a non-linear 
expression. . . and therefore it would not fulfill the two properties that a linear transformation 
must satisfy. 

 

 
Figure 5. Hugo production, to the example of Nonlinear Transformation. 

 
An intuitive model is not necessarily a direct reflection of a certain reality, very often it is 
based on an abstract interpretation of that reality. The graph of a function is an intuitive 
model of that function and the function, for its part, is the abstract model of a true 
phenomenon […] Intuitive models that use conventional, graphical means are generally 
called diagrams. (Fischbein, 1987) 
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Conclusions 
We observed that all the students showed a complete management of the concept of linear 

transformation, reaffirming their good training and performance in the area of mathematics, proof of 
this was that they all provided definitions of the concept of linear transformation presented in 
textbooks or that were acquired in their linear algebra courses, they also showed examples and 
counterexamples of linear transformations; It should be noted that all of these were different. 

We verify that the students immediately identify a prototype linear transformation (expansions, 
contractions, rotations, reflections and the combination of them) in both environments. However, in 
the geometric part where the figures show a fixed vector, the students cannot identify the linear 
transformation, differing from the corresponding situation in the algebraic stage, which led to a 
confrontation of their arguments. 
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Se realizó una entrevista individual a cinco estudiantes que cubrieron satisfactoriamente una 
licenciatura en matemáticas en México. En ella; se aplicó un instrumento que contenía situaciones 
de transformaciones tanto lineales, como no lineales en el ambiente gráfico y algebraico.  Los 
resultados se analizaron bajo el marco teórico de Fischbein (1987) sobre la intuición y los modelos 
intuitivos. Se obtuvo que los estudiantes entrevistados, disponen de un universo de transformaciones 
lineales que son conocidas en el contexto escolar como prototipo. Los estudiantes excluyen la 
existencia de una transformación lineal en el ambiente geométrico, cuando no logran construir 
dicha transformación bajo la composición de la gama de modelos prototipos. 

Objetivo 
La investigación tuvo como propósito el identificar los modelos intuitivos que conservan algunos 

estudiantes Licenciatura en Matemáticas en cuanto a las Transformaciones Lineales en !! (en el 
sentido de Fischbein, 1987); asimismo se busco evidenciar las concepciones que poseen los 
estudiantes respecto a éste concepto. Se tuvo como hipótesis, que el universo que poseen algunos 
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estudiantes respecto a las Transformaciones Lineales en !! se reduce a movimientos rígidos del 
plano. 

Marco Teórico  
En el presente trabajo el término intuición vamos a considerarlo como un conocimiento instintivo, 

no como un método, no como una fuente de conocimientos, sino como un tipo de cognición. Para 
hacer más claro este acercamiento, Fischbein menciona los siguientes ejemplos: 

Uno admite intuitivamente que el camino más corto entre dos puntos es la línea recta, que 
cada número tiene un sucesor, que el todo es más grande que cada una de sus partes, que un 
cuerpo debe caerse si no esta sostenido. (Fischbein, 1987) 

Estas afirmaciones son aceptadas de forma casi inmediata, sin tener la necesidad de realizar alguna 
prueba formal, es decir; podemos decir que la autoevidencia forma parte de una característica del 
conocimiento intuitivo, pero es notable que existe todo un universo de afirmaciones o proposiciones 
que no son aceptadas de forma tan inmediata, por ejemplo: si el producto de las pendientes de dos 
rectas es igual a uno, entonces; estas son perpendiculares, ó que !! = 1, ! ≠ 0 ó la expresión 
matemática ! !!!

!  genera la suma de los ! primeros números naturales. 

Una habilidad que desarrollan los estudiantes en una disciplina como las matemáticas corresponde a 
la intuición, la cual adquieren debido a la interacción ineludible al: conocer, comprender, construir 
y/o emplear objetos que no se puede acceder de manera directa, por su naturaleza abstracta. Una 
formación en matemáticas, no se reduce a un sistema deductivo de conocimientos, “la actividad 
creativa en matemáticas es un proceso constructivo en el cual los procedimientos inductivos, las 
analogías y las conjeturas plausibles, juegan un papel fundamental” (Gómez-Chacón, 2000, p.30). La 
intuición, es un término que no tiene un sentido universal en la comunidad de la matemática 
educativa; para ello recurrimos a la descripción propuesta por nuestro marco teórico. 

La intuición no es la fuente primaria de la verdad, certeza y conocimiento pero esto parece 
ser así, porque este es exactamente su papel: crear la apariencia de certeza, atribuir a diversas 
interpretaciones y representaciones un carácter de certeza intrínseca e incuestionable 
(Fischbein, 1987). 

Los estudiantes desarrollan su intuición, porque recurren a representaciones de los objetos 
matemáticos. “Los objetos mentales (conceptos, operaciones y declaraciones) deben conseguir una 
especie de consistencia intrínseca y evidencia directa, similar a la real, externa a objetos materiales y 
eventos, si el proceso de razonamiento es una actividad genuinamente productiva” (Fischbein, 1987). 
De esta manera, las representaciones mentales no son el producto de la memorización; sino a las 
reiteradas experiencias que ha tenido el sujeto en el proceso de construcción del conceptos: 
obstáculos, conflictos, etc. 

Características generales de cogniciones intuitivas 
Fischbein (1987) considera que en todo nivel de razonamiento matemático, se deben de considerar 

principalmente tres aspectos básicos. 
1. El aspecto formal: Que viene a estar dado esencialmente por la estructura lógico-deductiva 

de la matemática, como son los axiomas, las definiciones, teoremas y demostraciones. 
2. El aspecto algorítmico: Que se refiere a los procedimientos, al desarrollo de un 

planteamiento hasta llegar a la solución. 
3. El aspecto intuitivo: Que se refiere al grado de aceptación de los conceptos, proposiciones o 

afirmaciones matemáticas, como algo evidente o cierto. 
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La investigación se interesa particularmente los modelos implícitos que los estudiantes pueden 
desarrollar en relación con el concepto transformación lineal y las consecuencias de estos modelos en 
el aprendizaje del mismo concepto. 

Elementos metodológicos 
Se entrevistó a cinco estudiantes (Saulo, Miguel, Max, David y Hugo) egresados de la Licenciatura 

en Matemáticas en la Escuela Superior de Física y Matemáticas del Instituto Politécnico Nacional en 
México. La entrevista se realizó de manera individual en diferentes fechas en el transcurso de una 
semana. Al periodo de las entrevistas, cada uno de los estudiantes pertenecía a un programa de 
maestría en diferentes instituciones y especialidades, con un tronco común en matemáticas. Cabe 
aclarar que los estudiantes fueron elegidos por su buena formación y buen desempeño en 
matemáticas, ya que en esta investigación pretendemos identificar aquellos modelos intuitivos que 
persisten, y que no necesariamente guardan estricta relación con dificultades cognitivas, etc.,  

La bibliografía a la que hicieron referencia cuando se les cuestionó sobre el libro de texto llevado en 
el transcurso de su formación, corresponde al libro de Álgebra Lineal publicada por los autores 
Hoffman & Kunze (1987), sin embargo han consultado a otros autores como Grossman (2012), Lang 
(1974) y Lay (2007). 

El Método 
Una vez establecido el instrumento a emplear, se realizó un análisis a priori, donde se planteaba de 

manera hipotética, los posibles argumentos y situaciones a presentarse durante la entrevista. Una vez 
realizado este análisis, se procedió a la etapa de entrevistas. El entrevistador tuvo la labor de llevar, 
plantear y explicar las situaciones que se presentaban durante el desarrollo de la entrevista, y uno de 
sus principales tareas consistió en confrontar los ambientes donde el estudiante tenía argumentos 
opuestos o ajenos, que sugerían un análisis más profundo. Finalmente se contrastan, el análisis a 
priori con el análisis a posteriori, para obtener los siguientes resultados. 

Resultados 
En una de las actividades iniciales del instrumento solicitaba lo siguiente: 

a) Proporciona un ejemplo de una transformación lineal. 
b) Argumenta por qué es lineal la transformación que propusiste. 

Tanto el estudiante Saulo, como el estudiante Max proporcionan ejemplos muy similares a los 
abordados en un curso de Álgebra Lineal (ver Figura 1 y Figura 2), dado que son característicos a los 
presentados en los libros de texto. 

 
Figura 1. Producción de Saulo, al ejemplo de TL. 

 

 
Figura 2. Producción de Max, al ejemplo de TL. 

 
A este tipo de cogniciones intuitivas, Fischbein (1987) las considera como de aspecto algorítmico; 

las cuales se refiere a los procedimientos, al desarrollo de un planteamiento hasta llegar a la solución. 
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La estrategia que emplean los estudiantes (Saulo y Max), corresponde a situar en un primer momento 
a la definición de Transformación Lineal y posteriormente aplicar a sus ejemplos propuestos hasta 
cumplir su demostración, con gran habilidad en el tratamiento algebraico. Apegados al análisis a 
priori, este tipo de resultados son los esperados por los profesores, dado que corresponden a algunos 
ejercicios en los libros de textos o los primeros ejemplos que se abordan para ilustrar el concepto de 
Transformación Lineal. (Grossman, 2012, p.500). 

Miguel roporciona el ejemplo de la Transformación Lineal Identidad (ver Figura 3.), y aplicando su 
definición verifica la linealidad de la transformación. No especifica los espacios vectoriales, como 
tampoco la pertenencia de los escalares a un campo, al igual que en la definición de Transformación 
Lineal que proporcionó; resalta la notación que maneja el estudiante presentando la definición con 
una “ƒ ”aludiendo a la función, así también tomando a ! & ! como vectores, como una notación de 
análisis real. 

 

 
Figura 3. Producción de Miguel, al ejemplo de TL. 

 
En el análisis a priori se advirtió de esta posible respuesta por parte del estudiante, al conceptualizar 

a las Transformaciones Lineales como funciones en el contexto de sus cursos de cálculo. 
Por su parte el estudiante David, argumenta que: 

David: hay varios ejemplos, podemos empezar, para definir la transformación más sencilla, 
que sea la constante, en general las funciones más sencillas son las constantes las que 
mapean todo el espacio en un número de acá (indicando el contradominio) pero en este caso, 
para que sea lineal, no puede ser cualquier constante. Dada la estructura que dimos para la 
transformación lineal, se puede verificar fácilmente, que si la transformación lineal es 
constante, entonces: 

 
Figura 4. Producción de David, al ejemplo de TL. 

 
David evidencía su madurez matemática al proporcionar con soltura el ejemplo de la 

Transformación Lineal Cero. Muy semejante al que se muestra en el libro de texto que llevó en sus 
estudios; “la transformación cero 0, definida por 0! = 0, es una transformación lineal de ! en !” 
(Hoftman & Kunze, 1971, p.67). 

Es evidente que en su razonamiento matemático, David evidencia el aspecto formal, en el sentido de 
Fischbein (1987), el cual viene a estar dado esencialmente por la estructura lógico-deductiva de la 
matemática, como son los axiomas, las definiciones, teoremas y demostraciones, esta situación se ve 
reflejada a lo largo de toda la entrevista. David está muy afín al modelo implícito (o tácito): 

Una característica fundamental de un modelo mental es su entidad estructural. Un modelo, 
como una teoría, no es una regla aislada simple, más bien una interpretación global, unitaria, 
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significativa de un fenómeno o un concepto. . . . de un modelo implícito es su naturaleza 
concreta, práctica, aun si el modelo es una construcción abstracta. (Fischbein,1987) 

De los estudiantes entrevistados; también se observó aquel que Fischbein (1987) clasifica, como 
modelo intuitivo, cuando se solicitó la siguiente actividad. 

a) Proporciona un ejemplo de una transformación no lineal 
b) Argumenta por qué no es lineal la transformación que propusiste. 

El estudiante Hugo, no proporciona expresión algebraica alguna, como lo hace el resto de los 
estudiantes entrevistados; él toma a las transformaciones de Galileo, para ilustrar la no linealidad de 
transformación. 

Hugo: . . . bueno, aquí voy a usar algo que este . . . las transformaciones de Galileo, por 
ejemplo son transformaciones lineales, cuando . . . de hecho valen para: cuando un sistema 
de referencia se mueve respecto del otro y en cada uno de los dos se realiza . . . por ejemplo 
la posición de una partícula o de un cuerpo en general, entonces este . . . y las 
transformaciones de Galileo son transformaciones lineales, pero eso sólo vale cuando la 
velocidad con la que se mueve un sistema S' respecto de otro sistema S, es constante ( 
escribe v = cte ), ahorita de momento no recuerdo cuáles son las . . . cómo están establecidas 
las transformaciones de Galileo, pero . . . si a este sistema S', que se mueve con respecto al 
sistema S, hacemos que esta velocidad sea diferente, no sea constante, es decir, tenga una 
aceleración, la transformación resultante va a ser una transformación no lineal, va a llevar un 
término debido a la aceleración, va a llevar un cuadrado ahí. Por esa razón, sería no lineal y 
además ese sería el argumento . . . a parte que si nos metemos a comprobar un poco los 
cálculos de esto, seguramente obtendríamos una expresión no lineal . . . y por lo tanto no 
cumpliría con las dos propiedades que debe satisfacer una transformación lineal. 

 

 
Figura 5. Producción de Hugo, al ejemplo de Transformación No Lineal. 

 
Un modelo intuitivo no es necesariamente una reflexión directa de una cierta realidad, muy a 
menudo está basado en una interpretación abstracta de aquella realidad. El gráfico de una 
función es un modelo intuitivo de aquella función y la función, por su parte, es el modelo 
abstracto de un verdadero fenómeno[…] Los modelos intuitivos que usan medios 
convencionales, gráficos son generalmente llamados diagramas. (Fischbein, 1987) 

Conclusiones 
Observamos que todos los estudiantes mostraron un manejo íntegro del concepto de transformación 

lineal, reafirmando su buena formación y desempeño en el área de las matemáticas, prueba de ello 
fue que todos proporcionaron definiciones del concepto de transformación lineal que presentan los 
libros de texto o que fueron adquiridas en sus cursos de álgebra lineal, así también mostraron 
ejemplos y contraejemplos de transformaciones lineales; cabe señalar que todos estos fueron 
diferentes. 

Comprobamos que los estudiantes identifican inmediatamente una transformación lineal prototipo 
(expansiones, contracciones, rotaciones, reflexiones y la combinación de ellas) en ambos ambientes. 
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Sin embargo, en la parte geométrica donde las figuras muestran un vector fijo los estudiantes no 
logran identificar la transformación lineal, difiriendo de la situación correspondiente de la etapa 
algebraica, lo cual desembocó en una confrontación de sus argumentos. 
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Transforming the teaching practice involves the adoption of new methods that must engage teachers 
in reflecting on their practice (CSE, 2004; Day, 1999). The roles of the researcher are multiplying. 
His quest to understand the teaching/learning activity is mirrored by a concern to examine the 
teaching profession from more than just a normative standpoint, thereby contributing to the 
reflection on actions and participating in the decisions that will guide their interventions (Bednarz, 
2009). Influenced by historical and cultural theories (Radford, 2011; Engestrom, 1999) and more 
specifically by the concept of contradiction, our communication illustrates our way of “grasping” 
the awareness process and the coming into being of generality layers linked to the development of 
algebraic thinking occurring in the various classrooms of the teachers we are supporting and acting 
as trainers with them.  

Keywords: Algebra and algebraic thinking, Teacher knowledge, Mathematical knowledge for 
teaching, Teaching activities and practices. 

Background of the action research 
Training mechanisms targeting the prescriptive training of teaching approaches are not obtaining 

the expected benefits (Bednarz & Proulx, 2010; Tardif, Lessard & Gauthier, 1998). Rather, the 
transformation of the teaching practice involves the appropriation and integration of new methods 
that must engage teaching professionals in reflecting on their practice (CSE, 2014; Day, 1999). The 
role of the researcher is thus changing. His quest to understand the teaching activity is mirrored by a 
concern to examine the teaching profession from more than just a normative standpoint, thereby 
contributing to the reflection on actions and participating in the decisions that will guide the 
interventions of the professionals (Bednarz, 2009).   

From 2013 to 2017, we conducted an action research involving more than twenty high school 
teachers and academic advisors. The main objective: reflect together and improve the teaching 
practices aiming at the development of algebraic thinking among junior high school students 
(students aged 12 to 15). This research is the continuation of other studies (Kaput, 1998; Squalli, 
Mary & Marchand, 2011) suggesting to rethink classroom interventions fostering algebraic learning 
even before introducing literal language. To do this, different approaches (e.g. generalization to 
identify formulas and introduction to analytical reasoning through problem solving) promoting the 
introduction of algebra were considered and tested over the four years.   
Reflecting on the development of algebraic thinking 

Throughout this co-development work between the participants and the research team, the 
expression of a mathematical activity that we reformulated in terms of acting was the first step in 
inviting the participants to reconceptualize algebraic thinking as sensitive thinking as defined by 
Radford (2011). It is thereby considered a social process in the coming into being of historical and 
cultural methods and is mediated through gestures, the body, signs and artefacts provided to the 
student. These semiotic means are constituent parts of the thinking process. More specifically, the 
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three conditions linked to the development of algebraic thinking that we address like Radford (2014) 
were discussed regularly in such a way as to recognize their expression among students and to 
influence teaching to foster their emergence. These conditions are: 1) Reason about the 
indeterminacy, or the ability to exploit problems involving not-known numbers such as unknows, 
variables or parameters; 2) Denotation, which refers back to the use of signs (alphanumeric or non-
conventional signs, gestures, natural language or a mix of those) to name, symbolize what is 
considered to be not-known; 3) Reason analytically, or treating indeterminate number(s) as though 
they were known and operate on them. The background of this project constantly brought us back to 
this desire to foster, among students, both the use of the letter without it being imposed by teachers 
and the development of algebraic expressions whose meaning could be made clear to their peers.   

Following the presentation of the various roles that we, as researchers, played as part of the action 
research, this communication illustrates how the study and coming into being, among teachers, of 
certain contradictions inherent to the teaching of algebraic generalization help to enrich discussions 
with teachers on the way in which to introduce algebraic generalization. 
Diversification of the roles of the researchers according to their objectives  

Just like teachers and academic advisors, research assistants and researchers are here conceptualized 
as subjectivities expressing themselves in a common project whose goal is to develop algebraic 
thinking. The objectives of the researchers influence the intentionality of their activity and are:  

• Support our participants and collectively reflect on the development of algebraic thinking 
among students 

• Document algebra teaching/learning through the study of certain moments experienced in our 
participants’ classrooms 

• Document the support activity  
These objectives thereby influence the different roles played as researchers. This text fosters the 

distinction of these roles although they were more often than not expressed in an overlapping way. 
Table 1:  Roles and tasks of the researchers 

Roles Tasks 

Trainer · Develop training activities 
· Host the training sessions 
· Share examples experienced in class by one of us while we were high 
school teachers 
· Plan and prepare the training days (methods, tools, etc.) 
· Anticipate / identify the learning obstacles and intervene if necessary 
· Manage the group in such a way as to facilitate professional learning 
· Evaluate the progress or achievement of the training objectives 
· Identify the needs and priorities 

Classroom session 
investigator  

· Observe and study the algebra teaching/learning activities as they take 
place in the classrooms 
· Produce and communicate research results that shed light on certain 
aspects of the activities studied 

Educational resource 
investigator  

· Study the educational kits provided to teachers and academic advisors 
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Investigator on the co-
development activity between 
the participants and research 
team  

· Observe and study the co-development activity between the participants, 
professional and research assistants as they evolve mainly on the 
discussion and training days and targeting the development of algebraic 
thinking among junior high school students 
· Produce and communicate research results that shed light on certain 
aspects of the activity studied 

Support worker  · Develop and maintain collaboration relationships with the teachers, 
academic advisors, professional and research assistants 
· Offer (or make sure to offer when the research professional is involved) 
educational support to the teachers and academic advisors between the 
training days 
· Help find solutions to the problems perceived 

Adaptation from Lessard (2008) and Gagnon (2010) 

The activity theory as a tool for the researcher investigating the co-development activity 
between the participants and research team 

As such, to report on the method we used to support and study the teaching/learning activity 
targeting the introduction of algebra in our teachers’ classrooms and its transformation under the 
influence of the project, it seems useful to recall that the principles of the perspective used inevitably 
steer the production of data, its interpretation and more specifically, our way of conceptualizing the 
actions of the researcher in her different functions. The assumptions of the social, historical and 
cultural theories feed this text: the ways in which people do things, think and are are considered 
social practices that are mutually constitutive part of the culture in which they live and that must 
account for past similar activity forms (historical and genetic perspective). Phenomena must be 
studied holistically rather than isolating certain elements that would not account for the links they 
have between themselves (Langemeyer & Roth, 2006). As such, the activity is considered to be the 
smallest analysis unit allowing for researchers to give meaning to the participant coming into being 
process through the actions taken by the participants. To better grasp the activity concept, one must 
understand its dialectic (ideal, material) nature. According to Leontiev, a subject’s (teacher, academic 
advisor or researcher) activity is always geared toward an object/a motive. The goal of this activity is 
reflected in the actions. In the special case of learning, Roth and Radford note that: 

“[…] students cannot know the object/motive of the learning activity: the object/motive itself 
has to be the outcome of the learning activities so that others – e.g. teachers – have to take on 
the regulative function that in other productive human activities exists in the known 
object/motive” (Roth & Radford, 2011, p.16).  

As written by Radford (2015), student activity is the materialization of cultural archetypes seen in 
“actions, words, perceptions, gestures, symbols, reasoning (p.338)”. Our role as trainers also calls us 
to insert methods linked to the historical and cultural development of algebraic thinking in the 
support activity of our participants and make the aspects of teaching/learning to consider when 
looking at it from an educational perspective come into being. As such, if for Roth and Radford 
(2011) the challenge of the learning activity for students is precisely that they recognize the 
object/motive through their own actions, we will see that the same goes for researchers who commit 
to contributing to the training of teachers and academic advisors. 

Roth and Radford (2011) invite us to consider thought from an anthropological (its origins) and 
ontogenical (the conditions of its existence) perspective. On the one hand, thought is conceptualized 
as praxis cogitans. Thought is not static; it is activity and movement. Considered a potential, it 
reveals itself, is reflected in a singular and becomes/is a purpose/activity of consciousness. Radford 
(2011) then speaks of thought/activity as an awareness-building processes he called 
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objectification. On the other hand, this awareness-building process depends on one’s social existence. 
Researchers add that these individual and collective awareness-building processes are mutually 
constitutive.  
The concept of contradiction 

Historical and cultural theories invite us to conceptualize activity as movement. Object/motive 
motivates an individual’s activity; the object of the activity is materialized/reflected in his actions. 
This flow is considered to be the effect of the activity itself. Taking the work of linguists as an 
example, Roth (2012) illustrates the meaning to give to any activity. Our language changes in its 
uses. As written by Bakhtin (1981), a language dies as soon as it is no longer used. Every time a 
word is used, its meaning reifies itself, changes, much like the language itself is transformed by the 
use of a word. Thus, words, signs, in a dialectical approach, are not a single unique entity (Roth, 
2014). In their uses, they carry and exhibit an internal contradiction that becomes apparent in the 
various ways in which people use signs. According to Roth and Radford (2011), these internal 
contradictions refer back to conflictual aspects that coexist dialectically in a phenomenon. Other 
work uses the concept of contradiction, but it is instead conceptualized differently. This is the case 
for the work of Engeström (2001) and Potari et al. (2018). The latter studies and distinguishes the 
activity of different communities (e.g. Department, teachers) considered as distinct systems. They 
then identify the contradictions in the contrary practices, the different choices between teachers or 
between a teacher and an external source (a researcher, manual or program). It is then said that the 
study of contradictions stemming from two systems can create learning opportunities and thereby 
transform the actions and goals of an activity. The transformation activity must then be looked at 
from a collective standpoint, all the while taking into account the different mediating factors (subject, 
tool, rules, community, division of work…) that influence this same activity.  
Some elements of methodology 

As part of this action research, the collaborative sessions with the teachers and academic advisors 
were all filmed. During these sessions, the project participants familiarized themselves with certain 
tasks, had analyzed videos of teachers facilitating these tasks and had attended the presentation of 
some theoretical content by the researchers, namely Radford’s (2003) typology of generalization, 
which we will not refer to here. Also, the experiments conducted in the teachers’ classrooms were 
also filmed. Transcriptions of these recordings were made. As part of this communication, we will 
discuss the experiments that followed the training session during which Marcel’s restaurant situation 
was presented to the teachers (see Figure 1). 

Marcel, a restaurant owner, has single tables in his restaurant. He places these tables one beside the other 
to be able to seat his clients when they arrive. He has tables of different sizes: large, small, medium… 

Marcel would very much like not having to count the 
clients coming in every time to decide at which table to 

seat them. Can you help him find a way to quickly 
calculate the number of clients that can be seated at a 

table, regardless of the size of the table? Our owner lives 
far so he will be waiting for you to write to him about 

this. 
Write him a message with words that would indicate a 

way to quickly find out how many people he can seat at a 
table, for any table. 

Messages are long to read for Marcel so rewrite your 
message but this time as a text message so that he can 

read it quickly. 
 

Figure 1. Marcel’s restaurant situation 
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Before being able to discuss the potential and inherent intentions of the situation, the teachers had to 
solve it. So, for the first question, different word messages are possible. There are lots of good 
messages such as: 1) There are 2 people per table facing each other and one person at each end of the 
table; 2) 3 people can be seated at the end tables and 2 people facing each other for each table 
between these two tables; 3) We place one person per table and another person on one end of the 
table and we do this twice (we notice a symmetry), incorrect messages are also possible. These 
messages are formulated in context; here the motives presented are an essential support to the 
problem-solving process. In the second question, the purpose is to bring students to move on to 
symbolization, which helps to illustrate a size (here the number of tables) concisely and briefly.  

 
Reflection on the contradictions recognized in the teachers’ experiments 

Through this situation, the goals of the researchers are to give meaning to symbolism through the 
emergence of symbolization that will be specific and spontaneous to each student. By not imposing 
the use of a sign (letter or other) in particular, we can expect a variety of symbolizations to represent 
the same variable. Other than this work on symbolization, the purpose is also to motivate the use of 
various algebraic expressions that will be equivalent and that will bring some flexibility in the way in 
which to perceive the pattern. This method opens the door to a work on equivalent expressions.  

After the training session, numerous teachers experimented with this situation in their classroom to 
set out what they had observed in their students during the next meeting. Upon their return, the 
trainers observed diversity in the teachers’ ways of doing things (see Table 1).  

 
Table 2. The teachers’ different ways of doing things for Marcel’s restaurant 

Stéphane Annie Alexandre 
Stéphane considers this 
situation to be the first he 
uses to introduce algebra in 
his classroom. He referred 
back to it several times over 
the next few weeks. 
Especially, when he 
discussed the recognition of 
proportionality situations 
(words, value table and 
graph). 
During the first period, in 
teams of two, his students 
must find two different 
formulas expressed with 
algebraic symbols.  The 
teacher validates the formulas 
obtained and invites a few 
teams to come explain them 
in front of the class by 
coordinating their 
explanations of the table 
visual. During the next class, 
the teacher focuses on the 
representation of the formulas 
taken from two representation 

Annie mentions having dealt 
with the chapter on 
“geometric and numerical 
patterns” before. The students 
thus learned to extract 
formulas by studying the 
additive recurrence in the 
progression of different 
patterns. 
The teacher introduced the 
situation proposed with the 
intention of having the 
different messages she wishes 
to obtain in words or as a 
symbolic form extracted. 
During the problem solving, 
she also invites her students 
to build a value table to 
extract a formula. She is 
disappointed by the lack of 
variety of formulas. 

This situation is the first that 
the teacher uses to introduce 
algebra according to him; 
however, he says that he 
started working on the 
translation of comparison 
relations only during games 
at the end of some periods. 
For this situation, the teacher 
promotes the emergence of 
different messages that are 
based on a study of the 
pattern. When returning to 
whole class, the focus is put 
on validating each message 
expressed in words by relying 
on the visual of the situation. 
He is therefore concerned 
with coordinating the visual 
with words.  
Following the first period, use 
of symbolism is decreased. 
Alexandre focuses on the 
potential of the formulas 
expressed in words to predict 
the maximum number of 
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registers: value table and 
graph. The teacher’s purpose 
is to express the links existing 
between these three registers: 
table, graphic and symbolic. 

people that can be seated 
according to the number of 
tables. 

 
It can be noted that although the teachers all orchestrated Marcel’s restaurant situation, the 

generalization activity or, more specifically, the coming into being process experienced by the 
students differs in each of the classrooms depending on what the teachers value in terms of the 
development of algebraic thinking. As trainers, we gave ourselves the role of documenting the 
teaching/learning activity lived in each of the participating teachers’ classrooms. Here we can 
document the various facets of the same object (see Table 1). That said, the role of trainer is much 
more than that; it is about facilitating a group discussion on the different intentions driving the 
teachers when the experiment was set up and on the activities lived. While acknowledging the 
potential of these different methods, it is about going back to the initial intentions targeted (motive of 
the activity) by the trainers and set out during the previous meeting. It is also about making the 
teachers see the various facets (meaning of the letter, emergence of algebraic expressions whose 
meaning differs depending on the students’ objectification process, generalization levels 
recognized…) of algebraic thinking that develops in each classroom. 

In Alexandre’s class, the trainers recognize the importance to giving meaning to algebraic 
expressions. They strive to make the teachers see all the work completed by the teacher to help 
his/her students coordinate the verbalization of the generalization messages extracted from the visual 
provided. They then make this contradiction (idealized/materialized in the classroom activity) be 
seen, which can be better explained by associating the generalization levels of Radford (2003). The 
whole class discussion in Alexandre’s classroom is thus mainly in terms of contextual generalization. 
The latter still includes references to the specificities of the context objects and their characteristics in 
terms of the spatial and temporal situation. The generalization messages remain contextual in that 
their designation mode still depends on spatial properties. As specified by Radford (2003), the 
“arguments” or “variables” are no longer numbers, but generic objects that are designated by generic 
terms such as “the figure” or “the next figure”. Other contradictions are felt by the trainers during the 
presentation of the approaches of Stéphane and Annie but they are somewhat different. Indeed, 
adding a value table in the situation (Annie’s approach) limits the expressions extracted by the 
students, which the teacher observed. There are two levels of tension. On the one hand, it is no longer 
about working on the different possible symbolizations and a variety of expressions that mean 
something to the students; here, looking for a rule seems to be a priority. On the other hand, the 
generalization work undertaken by the students seems to be glossed over by the application of a 
procedure (for each table added, there are two more people so we write “times two” in the formula). 
This contradiction was a driving change for the teacher who became aware of it herself when she 
compared the activity in her classroom with that of her peers.  

As for Stéphane’s approach, the trainers did not intervene in the same way given that the intentions 
targeted are met. The focus is put on the work involving the representation registers; it is then about 
making aware the teachers that converting an expression in another register and coordinating the 
various significations is a daunting task for the students who are beginning to learn about algebraic 
generalization. It is not about telling the teachers that what they are doing is wrong or that there is a 
contradiction, in the sense of Engestrom (2001), according to “our trainer system”, but rather about 
helping them look at the different facets that mesh together when it comes to reflecting on the work 
of algebraic generalization. 
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Conclusion 
The study of the teaching/learning activities in the different classrooms of the teachers we are 

supporting illustrates the teachers’ different methods that, although stemming from the same 
situation, have different motives. In our investigator role, we study the materialization of the 
expression of algebraic thinking in each class as contradictions between what the teachers aim and 
the materialized activity. In our role as trainers, it is by relying on these different ways of doing that, 
we make apparent different facets of algebraic thinking but which nevertheless shape it differently. 

Studying certain contradictions that we are looking to make visible in our role as trainers allows the 
teachers to learn how to recognize the emergence of the different facets that influence the expression 
of algebraic thinking. 
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La transformation de la pratique enseignante implique un travail d’appropriation de nouvelles 
manières de faire qui doit engager les enseignants dans un travail réflexif sur leur pratique (CSE, 
2004; Day, 1999). Les rôles du chercheur se multiplient. Sa recherche de compréhension de 
l’activité d’enseignement/apprentissage se voit doublée d’un souci de dépasser le regard normatif 
sur ce que font les enseignants pour ainsi contribuer à la réflexion sur les actions et prendre part aux 
décisions qui guideront leurs interventions (Bednarz, 2009). Sous l’influence de théories historico-
culturelles (Radford, 2011; Engestrom, 1999) et plus particulièrement du concept de contradiction, 
notre communication illustre notre manière de «saisir» le processus de prise de conscience et de 
mise en apparence de couches de généralité associées au développement de la pensée algébrique qui 
a cours dans les différentes classes des enseignants que nous accompagnons et d’agir en tant que 
formatrices auprès d’eux.  

Mots-clés: Algebra and algebraic thinking, Teacher Knowledge, Mathematical Knowledge for 
Teaching, Instructional activities and practices. 

Mise en contexte de la recherche-action 
Les dispositifs de formation qui visent une formation prescriptive d’approches de l’enseignement ne 

connaissent pas les bénéfices escomptés (Bednarz & Proulx, 2010; Tardif, Lessard & Gauthier, 
1998). La transformation de la pratique enseignante implique plutôt un travail d’appropriation et 
d’intégration de nouvelles manières de faire qui doivent engager les professionnels de 
l’enseignement dans un travail réflexif sur leur pratique (CSE, 2014; Day, 1999). Le rôle du 
chercheur est alors en mutation. Sa recherche de compréhension de l’activité enseignante se voit 
doublée d’un souci de dépasser le regard normatif sur ce que font les enseignants pour ainsi 
contribuer à la réflexion sur les actions et prendre part aux décisions qui guideront les interventions 
des professionnels (Bednarz, 2009). 

De 2013 à 2017, nous avons mené une recherche-action impliquant plus d’une vingtaine 
d’enseignants et des conseillers pédagogiques du secondaire. L’objectif premier : réfléchir ensemble 
et améliorer les pratiques d’enseignement visant le développement de la pensée algébrique chez les 
élèves du premier cycle du secondaire (élèves de 12 à 15 ans). Cette recherche est le prolongement 
d’autres études (Kaput, 1998; Squalli, Mary & Marchand, 2011) suggérant de repenser les 
interventions en classe qui favorisent l’apprentissage de l’algèbre avant même l’introduction au 
langage littéral. Pour ce faire, différentes approches (p.ex. généralisation en vue de dégager des 
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formules et introduction au raisonnement analytique par la résolution de problèmes) favorisant 
l’introduction de l’algèbre ont été abordées et expérimentées au courant des quatre années. 
Réfléchir le développement de la pensée algébrique 

Au fil de ce travail de coélaboration entre les participants et l’équipe de recherche, l’expression 
d’une activité mathématique que nous avons reformulée en termes d’agir fut le prélude invitant les 
participants à reconceptualiser la pensée algébrique en tant que pensée sensible telle qu’elle est 
définie par Radford (2011). Elle est ainsi considérée en tant que processus social de mise en 
apparence de manières de faire historico-culturelles et est médiatisé par les gestes, le corps, les signes 
et les artefacts que l’on met à la disponibilité de l’élève. Ces moyens sémiotiques sont des parties 
constitutives de la pensée. Plus spécifiquement, les trois conditions associées au développement de la 
pensée algébrique que nous reprenons de Radford (2014) furent régulièrement discutées de manière à 
reconnaitre leur expression chez les élèves et à teinter l’enseignement de manière à favoriser leur 
émergence. Ces conditions sont : 1) Raisonner sur l’indéterminé, soit cette capacité à exploiter des 
problèmes qui implique des nombres qui ne sont pas connus; 2) Dénoter qui renvoie à l’usage de 
signes (signes alphanumériques ou non conventionnels, gestes, langage naturel ou mélange de ce qui 
précède) pour nommer, symboliser ce qui est considéré comme étant inconnu ; 3) Raisonner 
analytiquement, soit traiter les quantités indéterminées comme si elles étaient connues et opérer sur 
celles-ci.  La trame de fond de ce projet nous renvoyait constamment à ce désir de favoriser chez les 
élèves, d’une part, le recours à la lettre sans qu’elle ne soit imposée d’emblée par les enseignants et, 
d’autre part, à l’élaboration d’expressions algébriques dont la signification saurait être explicitée à 
leurs pairs. 

Suite à la présentation de la variété des rôles que les chercheures que nous sommes avons joués 
dans le cadre de la recherche-action, la présente communication illustre comment l’étude et la mise 
en apparence auprès des enseignants de certaines contradictions inhérentes à l’apprentissage de la 
généralisation algébrique contribuent à enrichir les discussions avec les enseignants sur des manières 
d’introduire la généralisation algébrique. 
Diversification des rôles des chercheures selon leurs objectifs  

Au même titre que les enseignants et les conseillers pédagogiques, les assistants de recherche et les 
chercheures sont ici conceptualisés en tant que subjectivités qui s’expriment dans un projet commun 
dont l’objet est le développement de la pensée algébrique. Les objectifs des chercheures colorent 
l’intentionnalité de leur activité et sont :  

• Accompagner nos participants et réfléchir collectivement au développement de la pensée 
algébrique chez les élèves 

• Documenter l’activité d’enseignement/apprentissage de l’algèbre par l’étude de certains 
moments vécus dans les classes de nos participants 

• Documenter l’activité d’accompagnement  
Ces objectifs teintent ainsi les différents rôles assumés en tant que chercheures dont ce texte 

favorise leur distinction bien qu’ils s’exprimaient plus souvent qu’autrement en superposition. 
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Tableau 1:  Rôles et tâches des chercheures 
Rôles Tâches 

Formateur · Concevoir des activités de formation 
· Animer les formations 
· Partager des exemples vécus en classe par l’une de nous alors que nous 
étions enseignante au secondaire 
· Planifier et préparer les journées de formations (méthodes, outils, etc.) 
· Anticiper / identifier les obstacles à l’apprentissage et intervenir si 
nécessaire 
· Assurer une gestion de groupe facilitant un apprentissage professionnel 
· Évaluer la progression ou l’atteinte des objectifs de formation 
· Identifier les besoins et les priorités 

Investigateur des séances de 
classe  

· Observer et étudier les activités d’enseignement/apprentissage de l’algèbre 
telles qu’elles se déroulent dans les classes 
· Produire et communiquer des résultats de recherche qui éclairent certaines 
composantes des activités étudiées 

Investigateur des ressources 
didactiques  

· Étudier les ensembles didactiques mis à la disposition des enseignants et 
des conseillers pédagogiques 

Investigateur de l’activité de 
coélaboration entre 
participants et équipe 
recherche  

· Observer et étudier l’activité de coélaboration entre les participants, la 
professionnelle et les assistantes de recherche telle qu’elle évolue 
principalement dans les journées d’échange et de formation et visant le 
développement de la pensée algébrique chez les élèves du 1er cycle. 
· Produire et communiquer des résultats de recherche qui éclairent certaines 
composantes de l’activité étudiée. 

Accompagnateur  ·  Développer et maintenir des relations de collaboration avec les 
enseignants, les conseillers pédagogiques, la professionnelle et les 
assistantes de recherche 
· Offrir (ou s’assurer d’offrir lorsque la professionnelle de recherche est 
mise à contribution) un soutien pédagogique aux enseignants et conseillers 
pédagogiques entre les journées de formation 
· Contribuer à la recherche de solutions aux problèmes perçus 

 Adaptation de Lessard (2008) et Gagnon (2010) 

La théorie de l’activité un outil pour le chercheur investigateur de l’activité de 
coélaboration entre participants et équipe de recherche 

Ainsi, pour rendre compte de notre manière d’accompagner et d’étudier l’activité 
d’enseignement/apprentissage visant l’introduction de l’algèbre dans les classes de nos enseignants et 
sa transformation sous l’influence du projet, il s’avère utile de rappeler que les principes de la 
perspective retenue orientent inéluctablement la production de données, leur interprétation et plus 
spécifiquement notre manière de conceptualiser l’agir du chercheur dans ses différentes fonctions. 
Les postulats des théories socio historico-culturelles alimentent ce texte: les manières de faire, de 
penser, d’être des individus sont considérées comme des pratiques sociales qui sont consubstantielles 
de la culture dans laquelle ils vivent et qui doivent rendre compte de formes d’activités semblables 
passées (perspective historico-génétique). Les phénomènes doivent être étudiés de façon holistique 
plutôt que d’en isoler certains éléments qui ne rendraient plus compte des liens qu’ils entretiennent 
entre eux (Langemeyer & Roth, 2006). L’activité est ainsi considérée comme la plus petite unité 
d’analyse permettant aux chercheurs de donner du sens au processus de mise en apparence des 
participants à travers leurs actions posées. Pour mieux saisir le concept d’activité, il est nécessaire de 
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comprendre sa nature dialectique (idéale, matérielle). Au sens de Leontiev, l’activité d’un sujet 
(enseignant, conseiller pédagogique ou chercheur) est toujours dirigée vers un objet/motif. L’objet de 
cette activité se matérialise dans les actions. Dans le cas particulier de l’apprentissage, Roth et 
Radford notent que : 

«[…] les élèves ne peuvent pas connaître l’objet/motif de l’activité d’apprentissage : cet 
objet doit être le résultat de l’activité d’apprentissage dans laquelle les autres – p.ex. les 
enseignants – assurent une fonction de régulation permettant l’expression d’autres activités 
humaines dans l’objet de l’activité d’apprentissage [traduction libre]» (Roth & Radford, 
2011, p.16).  

Comme l’a écrit Radford (2015), l’activité des élèves est la matérialisation d’archétypes culturels 
qui se donnent à voir dans « l’agir, le parlé, le perçu, le gesticulé, le symbolisé, le raisonné (p.338) ». 
Notre rôle de formatrices convoque aussi une responsabilité d’insérer dans l’activité 
d’accompagnement de nos participants des manières de faire associées au développement historico-
culturel de la pensée algébrique et de rendre apparentes des facettes de l’enseignement/apprentissage 
à considérer lorsqu’on porte un regard didactique sur celle-ci. Ainsi, si pour Roth et Radford (2011) 
le défi de l’activité d’apprentissage pour les élèves est précisément qu’ils reconnaissent l’objet/motif 
à travers leurs propres actions, on verra qu’il en va de même pour les chercheurs qui se donnent le 
mandat de contribuer à la formation d’enseignants et de conseillers pédagogiques. 

Roth et Radford (2011) nous invitent à considérer la pensée sous ses dimensions anthrolopologique 
(ses origines) et ontogénique (ses conditions d’existence). D’une part, la pensée est conceptualisée 
comme praxis cogitans. La pensée n’est pas fixe, elle est activité, elle est mouvement. Considérée 
comme potentialité, elle se dévoile, se matérialise dans un singulier et devient/est objet/activité de 
conscience. Radford (2011) parle alors de pensée/activité en termes de processus de prise de 
conscience qu’il a appelé objectivation. D’autre part, ce processus de prise de conscience n’est 
possible qu’à condition d’exister socialement. Les chercheurs ajoutent que ces processus de prise de 
conscience individuel et collectif sont mutuellement constitutifs.  
Le concept de contradiction 

Les théories historico-culturelles nous invitent à conceptualiser l’activité en tant que mouvement. 
Le motif motive l’activité d’un individu, l’objet de l’activité se matérialise dans ses actions. Ce flux 
est considéré comme l’effet de l’activité elle-même. Prenant l’exemple des travaux de linguistes, 
Roth (2012) illustre le sens à donner à toute activité. Notre langue change dans ses usages. Comme 
l’écrit Bakhtin (1981) un langage meurt dès qu’il n’est plus utilisé. À chaque fois qu’un mot est 
utilisé, son sens se réifie, change tout comme la langue est elle-même transformée par l’usage d’un 
mot. Ainsi, les mots, les signes, sous une approche dialectique, ne sont pas une seule et unique entité 
(Roth, 2014). Ils portent et arborent, dans leurs usages, une contradiction interne qui se manifeste 
elle-même dans les différentes manières dont usent les individus des signes. Ces contradictions 
internes renvoient, selon Roth et Radford (2011) à des aspects conflictuels qui coexistent 
dialectiquement dans un phénomène. D’autres travaux recourent au concept de contradiction, mais il 
est plutôt conceptualisé différemment. C’est le cas des travaux d’Engeström (2001) et de Potari et al. 
(2018). Ces derniers étudient et distinguent l’activité de différentes communautés (p.ex. Ministère, 
enseignants) considérées comme des systèmes distincts. Ils identifient alors des contradictions dans 
les pratiques contraires, les choix différents entre enseignants ou entre un enseignant et une source 
externe (un chercheur, un manuel ou un programme). On avance alors que l’étude de contradictions 
émergeant entre deux systèmes peut créer des opportunités d’apprentissage et ainsi transformer les 
actions et buts d’une activité. Il s’agit alors de s’intéresser à l’activité de transformation d’un point de 
vue collectif tout en tenant compte de différents éléments médiateurs (sujet, outil, règles, 
communauté, division du travail…) qui influencent cette même activité.  
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Quelques éléments de méthodologie 
Dans le cadre de la présente recherche-action, les séances de collaboration avec les enseignants et 

conseillers pédagogiques ont toutes été filmées. Dans le cadre de ces séances, les participants au 
projet s’étaient familiarisés avec certaines tâches, avaient analysé des vidéos d’enseignants qui 
animaient ces tâches et avaient assisté à la présentation de quelques contenus théoriques exposés par 
les chercheuses, notamment la typologie de la généralisation de Radford (2003) que nous 
n’exposerons pas ici. De même, les expérimentations qui ont eu lieu dans les classes des enseignants 
furent aussi filmées. Des transcriptions de ces enregistrements ont été effectuées.  Dans le cadre de 
cette communication, nous discuterons des expérimentations qui ont succédé la séance de formation 
où la situation Le Restaurant de Marcel a été présentée aux enseignants (voir figure 1). 

Marcel, le propriétaire du restaurant, dispose de tables simples dans son restaurant qu’il place l’une à 
côté de l’autre pour pouvoir placer ses clients lorsqu’ils arrivent. Il dispose ainsi de différentes tables de 

toutes sortes de grandeurs : des grandes, des petites, des moyennes… 
Marcel aimerait bien ne pas avoir à compter à chaque fois 
les clients qui arrivent pour décider autour de quelle table 
il les place. Pourrais-tu l’aider à trouver une manière de 

calculer vite le nombre de clients qu’on peut asseoir 
autour d’une table, et ce, quelle que soit la grandeur de la 
table? Notre propriétaire habite loin alors il attend que tu 

lui écrives à ce sujet. 
Écris-lui un message en mots qui lui indiquerait une 

manière de faire pour trouver vite combien de personnes 
il peut asseoir autour d’une table, et ce, pour n’importe 

quelle table. 
Les messages sont longs à lire pour Marcel, réécris tes 
messages cette fois-ci sous forme de texto pour qu’il 

puisse les lire rapidement. 
Figure 1. La situation du restaurant de Marcel 

 
Avant de pouvoir discuter du potentiel et des intentions inhérentes à la situation, les enseignants ont 

eu à la résoudre. Ainsi, pour la première question, différents messages en mots sont possibles. On 
peut penser à de bons messages comme : 1) Il y a 2 personnes par table face à face et une personne à 
chaque extrémité de la table; 2) On peut asseoir 3 personnes sur les tables des extrémités et deux 
personnes face à face pour chacune des tables qui se situe entre ces deux tables; 3) On place une 
personne par table et une autre personne à une des extrémités de la table et on fait ceci deux fois (on 
voit une symétrie), des messages erronés sont également possibles. La formulation de ces messages 
se fait en contexte, les motifs présentés sont ici un support essentiel à la résolution. Dans la deuxième 
question, l’intention est d’amener les élèves à passer à la symbolisation, celle-ci permettant d’illustrer 
de façon concise et succincte une grandeur, ici le nombre de tables.  
Réflexion sur des contradictions reconnues dans les expérimentations des enseignants 

À travers cette situation, les intentions des chercheures sont de donner du sens au symbolisme en 
misant sur l’émergence d’une symbolisation qui sera propre et spontanée à chaque élève. En 
n’imposant pas l’usage d’un signe (lettre ou autre) en particulier, on peut s’attendre à une variété de 
symbolisations pour représenter la même grandeur. Outre ce travail autour de la symbolisation, 
l’intention est également de motiver le recours à différentes expressions algébriques qui seront 
équivalentes apportant une flexibilité dans la façon de voir des motifs. Cette façon de faire ouvre la 
porte sur un travail sur les expressions équivalentes.  

Après la séance de formation, plusieurs enseignants sont allés expérimenter cette situation en classe 
en vue d’expliciter ce qu’ils avaient observé chez leurs élèves lors de la prochaine rencontre. Lors du 
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retour, les formatrices ont observé une diversité dans les manières de faire des enseignants (voir 
tableau 1).  

 
Tableau 2. Différentes manières de faire d’enseignants pour le Restaurant de Marcel 

Stéphane Annie Alexandre 
Cette situation est considérée 
par Stéphane comme étant la 
première qu’il utilise en 
classe pour introduire 
l’algèbre.  Il reviendra sur 
celle-ci à plusieurs reprises 
durant quelques semaines. Il 
la réinvestit lorsque vient le 
temps d’aborder la 
reconnaissance de situations 
de proportionnalité (mots, 
table de valeurs et graphique). 
Lors de la première période, 
en équipes de deux, ses 
élèves doivent trouver deux 
formules différentes qui sont 
exprimées à l’aide de 
symboles algébriques.  
L’enseignant valide les 
formules obtenues et invite 
quelques équipes à venir les 
expliquer à l’avant en 
coordonnant leur explication 
du visuel des tables. Au cours 
suivant, l’enseignant axe sur 
la représentation des formules 
dégagées dans deux registres 
de représentation : table de 
valeurs et graphique. 
L’intention de l’enseignant 
est d’exprimer les liens 
existants entre ces trois 
registres : table, graphique et 
symbolique. 

Annie mentionne avoir traité 
le chapitre «des suites» 
auparavant. Les élèves ont 
donc appris à dégager des 
formules en étudiant la 
récurrence additive dans la 
progression de différents 
motifs. 
L’enseignante introduit la 
situation proposée en ayant 
comme intention de faire 
dégager différents messages 
qu’elle souhaite obtenir en 
mots ou sur forme 
symbolique. 
Lors de la résolution, elle 
invite aussi ses élèves à 
construire une table de 
valeurs pour dégager une 
formule. Avec déception, elle 
partage ne pas avoir eu une 
diversité de formules. 

Cette situation est la première 
qu’utilise l’enseignant pour 
introduire l’algèbre selon lui. 
Il dit avoir toutefois avoir 
amorcé un travail sur la 
traduction de relations de 
comparaison uniquement 
dans des jeux de fin de 
période. 
Pour la présente situation, 
l’enseignant favorise 
l’émergence de différents 
messages qui s’appuient sur 
une étude du motif. Lors du 
retour en grand groupe, 
l’attention est portée sur la 
validation de chacun des 
messages exprimés en mots 
en s’appuyant sur le visuel 
des motifs. Il a ainsi le souci 
de coordonner le visuel avec 
les mots.  
Suite à la première période, le 
recours au symbolisme est 
minoré. Alexandre met 
l’accent sur le potentiel des 
formules exprimées en mots 
pour prédire le nombre 
maximal de personnes qui 
peuvent s’asseoir selon le 
nombre de tables. 

 
On peut remarquer que bien que les enseignants aient tous orchestré la situation du Restaurant de 

Marcel, l’activité de généralisation ou plus spécifiquement le processus de mise en apparence vécu 
par les élèves diffère dans chacune des classes selon ce que les enseignants valorisent au sujet du 
développement de la pensée algébrique. Comme formatrices, nous nous sommes données comme 
rôle de documenter l’activité d’enseignement/apprentissage vécue dans chacune des classes des 
enseignants participants. On peut ici documenter les différentes facettes d’un même objet (voir 
tableau 1). Mais le rôle de formateur va plus loin, il s’agit d’animer une discussion de groupe sur les 
différentes intentions qui ont animées les enseignants lors de la mise sur pied de l’expérimentation et 
sur les activités vécues. Tout en reconnaissant le potentiel de ces différentes manières de faire, il 
s’agit de revenir aux intentions ciblées au départ (motif de l’activité) par les formatrices et explicitées 
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lors de la rencontre précédente. Il s’agit aussi de faire voir aux enseignants les différentes facettes 
(sens de la lettre, émergence d’expressions algébriques dont le sens diffère selon le processus 
d’objectivation des élèves, niveaux de généralisation reconnus…) d’une pensée algébrique qui se 
développe dans chacune des classes. 

Ainsi dans la classe d’Alexandre, les formatrices reconnaissent l’importance accordée à donner du 
sens aux expressions algébriques. Elles s’attardent à faire voir aux enseignants tout le travail réalisé 
par l’enseignant pour aider ses élèves à coordonner la verbalisation des messages de généralisation 
dégagés au visuel fourni. Elles font alors voir cette contradiction (idéale/matérialisée dans l’activité 
de la classe) qui peut mieux s’expliquer dans l’association des niveaux de généralisation de Radford 
(2003). Le retour en grand groupe animé dans la classe d’Alexandre reste donc principalement au 
niveau de généralisation contextuelle. Celle-ci comporte encore des références aux particularités des 
objets du contexte et de leurs caractéristiques en référence à la situation spatio-temporelle. Les 
messages de généralisation restent contextuels au sens où leur mode de désignation dépend encore 
des propriétés spatiales. Comme le spécifie Radford (2003), les «arguments» ou «variables» ne sont 
plus des nombres, mais des objets génériques qui sont désignés par des termes génériques tels que «la 
figure», «la prochaine figure». D’autres contradictions sont ressenties par les formatrices lors de la 
présentation des approches de Stéphane et d’Annie mais elles ne sont pas du même ordre, de la 
même nature. En effet, l’ajout d’une table de valeurs dans la situation (approche d’Annie) limite les 
expressions dégagées par les élèves, ce qu’a pu observer l’enseignante. Des tensions sont de deux 
ordres, d’une part, il ne s’agit plus ici de travailler sur les différentes symbolisations possibles et sur 
une diversité d’expressions qui sont porteuses de sens pour les élèves, la recherche d’une règle 
semble prendre le pas. D’autre part, le travail de généralisation engagé par les élèves semble 
escamoté par l’application d’une procédure (à chaque table qui s’ajoute, il y a deux personnes de plus 
donc on inscrit «fois deux» dans la formule). Cette contradiction a été moteur de changement chez 
l’enseignante qui en a elle-même pris conscience en comparant l’activité de sa classe avec celle de 
ses pairs.  

Dans le cas de l’approche de Stéphane, les interventions des formatrices ne sont pas du même ordre 
puisque les intentions visées sont rencontrées, mais l’accent est mis sur le travail autour des registres 
de représentation. Il s’agit alors de faire voir aux enseignants que l’exercice de convertir une 
expression dans une autre registre et d’y coordonner les différentes significations est une tâche 
exigeante pour les élèves qui amorcent leurs apprentissages au sujet de la généralisation algébrique. 
Il ne s’agit pas de dire aux enseignants que ce qu’ils font est incorrect ou qu’il y a contradiction, au 
sens d’Engestrom (2001), selon «notre système formatrice», mais plutôt de les aider à percevoir les 
différentes facettes qui s’enchevêtrent lorsqu’il s’agit de réfléchir au travail de généralisation 
algébrique. 
Conclusion 

L’étude des activités d’enseignement/apprentissage qui ont cours dans les différentes classes des 
enseignants que nous accompagnons illustre différentes manières de faire d’enseignants qui, bien que 
partant d’une même situation, ont des motifs différents. Dans notre rôle de chercheures 
investigatrices des séances de classe, nous étudions la matérialisation de l’expression de la pensée 
algébrique dans chaque classe soit cette expression de contradictions entre ce que les enseignants 
visent et ce qui se matérialise. Dans notre rôle de formatrice, c’est en nous appuyant sur ces 
différentes manières de faire que l’on rend apparentes différentes facettes qui colorent toutes 
l’expression d’une pensée algébrique mais qui la façonnent toutefois de façon différente. 
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This research paper is part of a doctoral study under development. In this research report, we 
analyze the cognitive and operative processes that first graders in secondary school perform in 
assignments involving division of fractions. The study includes some contributions from researchers 
who have adopted the problem solving about division of fractions tasks through the quotative model, 
as well as the use of different levels for coordination of units proposed by Hackenberg (2007). Tasks 
here presented include problems solving through canonical and pictorial algorithms, and form part 
of a questionnaire that was thoroughly analyzed, by contrasting the arithmetic-symbolic notations 
and the expressions of the language. 

Keywords: Division of fractions, canonical and pictorial algorithm.  

Introduction 
In the semantic analysis carried out in this research report focused on measuring how much a part 

fits in the given hole, that Fischbein, Deri, Sainati, Sciolis (1985) called a quotative model of division 
and recognized the pictorial algorithm by Kieren (1985), we intend to make sense of dividing 
fractional numbers using a didactic support that makes feasible its comprehension and achieves good 
results in the applied tasks; otherwise, if only the canonical algorithm is applied the operation of 
division of fractions will be mechanic. This situation is illustrated below with an example. 

Operations that students carry out can not be restricted to operational-algorithm use of fractional 
number; on the contrary, we intend that they help to achieve a semantic interpretation through a 
pictorial algorithm proposed in each task. We consider that the use of the pictorial algorithm is 
substantial in the present research work because through it we can observe the steps students follow 
when facing diverse problematic situations posed and there is no doubt about first graders’ 
competency in Telesecondary schools (an educational modality in Mexico that is taught to the most 
remote places through television images) to solve tasks in which division of fraction is involved 
within the quotative model. 

Research question and objectives 
Mexican students’ assessments in secondary school are applied through an official test called Early 

Warning System (Sistema de Alerta Temprana-Sisat, 2018). For now, results are not quite positive 
for first graders in Telesecondary modality, which take us to investigate which are the performance 
and strategies students use to face problematic situations that involve the quotative division of 
fractions? 
General aim: 

Identify through the pictorial algorithm, the different strategies used by that first graders in 
Telesecondary to give sense to the quotative division of fractions to understand why it is divided, by 
recognizing how much a fraction fits in another fraction. 
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Theoretical framework 
Rational numbers have been a fairly broad research topic around the world, just to mention some of 

the most outstanding authors such as Kieren (1983), who define several subconstructs to understand 
the meaning of fractional numbers. Streefland (1991) highlights realistic models where operational 
and conceptual operation of rational numbers is necessary. Vergnaud (1988) came up with theorems 
in action, which will help us to analyze the students’ conceptual difficulties when solving the 
proposed tasks. Fischbein et al. (1985) defines the quotative division that is essential in the present 
research work. Tirosh (2000) emphasizes the semantic and operative elements that required to solve a 
division of fraction task, but much students lack them. Valdemoros (2004) points out how semantic 
contents are vital to achieve the transition from natural language to an arithmetic language, all which 
is necessary to define with considerable accuracy regarding quotative division of fractions. 

Students’ limitations regarding the division of fractions have been documented over the last 
decades, as well as those limitations that the in-service teachers also show, as Izsák (2012) reports, 
who express how most of in-service teachers can solve tasks involving division of fractions through a 
canonical algorithm, but they have serious difficulties to solve such tasks when this type of number 
appears in problematic situations in the division of fractions. This situation also occurs in secondary 
students. Izsák (2012) shows a task from Armstrong & Bezuk (1995), in which teachers accepted that 
the required situation to solve it was a multiplication of fractions, but when asked to explain their 
thought or draw diagrams to unify the algorithmic-canonical result to that of pictorial one (by using 
geometric representations) and understand what kind of unit were using in each case, teachers 
showed many difficulties to recognize their cognitive conflicts, this situation that also arises in 
secondary students and it is one of the fundamental reasons that lead us to investigate about such 
problematic. 

To construct a quotative model for dividing fractional numbers, the different levels of unit 
coordinations proposed by Hackenber (2007) are taken into account; although, the focus of the paper 
is the construction of improper fractions, its original contributions of how students carry out the 
coordination of different levels of units for the construction of proper fractions is fundamental to this 
research work. 

The correct identification of appropriate reference units (Schwartz, 1988) for each fraction is 
fundamental for solving tasks that involve the division of fractions; and the coordination of unit 
structures in the three levels mentioned in the previous paragraph, are essential for understanding the 
mathematical knowledge, all of this through drawing geometric models, diagrams and other pictorial 
elements that students use to appropriate the arithmetic of rational numbers. 

Method 
Participants 

There were 28 first graders belonging to a scholar group which we applied a questionnaire in a 
Telesecondary school located on the boundary of the state capital of Puebla. The school was selected 
because the teacher of the group showed great interest in the didactic treatment about knowledge of 
fractional numbers. 
Socio-Cultural Situation 

The school has 198 students divided into six groups (2 groups for each grade). The school has the 
Service and Support Unit for Regular Education, what is in charge to assist students with low school 
achievement; it also has institutional support resources such as the Internet, food service, 
psychological attention, library, civic and sports activities. 
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Methodological instruments 
 We designed a questionnaire for the first graders in Telesecundaria. It consisted of eight tasks that 

involved mathematical problems about the division of fractions. For each task, we provided two 
ways of solving it, canonical and pictorial algorithms (tasks should be solved in both ways). The 
following is one of the tasks: How many parts of ½ meter of a wooden board can I obtain in 2 
wooden boards if each board measures 2 meters? Toño achieved the first result through the canonical 
algorithm. He operated 2 ÷ ½ = 4 parts in each wooden board. The second solution came through the 
pictorial algorithm; Pepe represented his operation with two rectangular figures divided into four 
parts each and said ½ meter of wood fits 4 times in each wooden board. Students solved another task 
equal to the previous explained, but the fraction unit was 1/3.  

 
Analysis of collected data 

In this research paper, we consider those answers that used both models of solving because from 
these models we can build appropriated meanings for the operations the students carried out, in 
particular the quotative meanings. Andrea’s answer was right. In her first answer, she operated 2/1 ÷ 
1/3 = 6/1 = 6. In her second answer, she drew two rectangular figures divided into 3 parts each one, 
so her answer to the task was: 6 parts. 

As we can observe in Andrea’s answer, she formed a structure of two levels of unit coordination, 
where a two-unit range is divided into three equal parts. This answer allowed us to determine that 
Andrea understood the quotative meaning of the division of fractions by using two levels of unit 
coordination. 

Results 
The students could solve tasks in the questionnaire by using those strategies they considered 

appropriate; however, when the solution involves the use of the pictorial algorithm this allows us to 
determine in which moment and circumstances students constructed the different levels of unit 
coordination, which in turn allows us to know if the reasoning used is correct or there are some 
deficiencies in their development. 

The students in first grade gave only one answer through the canonical algorithm. They had 
difficulties to explain each of their answers, though they were correct, their interpretation of results 
was unreliable and their oral explanations were inconsistent. So, the didactic interview with feedback 
(Valdemoros, 2004, Valdemoros, Ramirez and Lamadrid, 2015) and the group interview (Werscht, 
1993), which will be carried out soon, will be of great help in clarifying the students’ 
conceptualizations that participate in this research.  

 

Conclusions 
The first graders’ performance in the Telesecondary modality can be observed in the tasks included 

in the questionnaire; unfortunately, results are a little favorable because most of the students tried to 
solve tasks by changing the fractional numbers to decimal numbers. Others seemed not to have 
previous knowledge regarding the pictorial algorithm, which at the end was inconvenient and in 
some cases caused serious conflicts of interpretation of the proposed tasks. To solve these 
inconveniences, we propose to carry out a series of didactic interviews with feedback (also described 
as a didactic interview) applied to some of the students in first grade as well as to apply a group 
interview in the following phase of the research. Currently, the theoretical-methodological and 
empirical design of the collective interview is in process. 
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El presente trabajo de investigación forma parte de un estudio doctoral en desarrollo; en este 
reporte de investigación  analizamos los procesos cognitivos y operatorios que presentan los 
alumnos de primero de secundaria para realizar tareas en las que se involucra la división de 
fracciones. En el estudio se incluyen aportaciones de investigadores que adoptan la resolución de 
tareas de división de fracciones por medio del modelo cuotativo, así como la utilización de los 
distintos niveles de coordinación de unidades propuestos por Hackenberg (2007). Las tareas que se 
presentan en este estudio incluyen la resolución de problemas por medio de los algoritmos canónico 
y pictórico. Dichas tareas fueron integradas en un cuestionario, el cual se analizó de forma 
exhaustiva, por medio del contraste entre las notaciones aritmético-simbólicas y las expresiones de 
la lengua que acompañaron a las primeras. 
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Palabras clave: División de fracciones, algoritmos canónico y pictórico. 

Introducción 
El análisis semántico realizado en el presente documento de investigación se centra en la medición 

del cuánto cabe una parte en el todo dado, denominado por Fischbein, Deri, Sainati, Sciolis (1985) 
como modelo cuotativo, a través del algoritmo pictórico (Kieren, 1985), con el cual pretendemos 
otorgar sentido a la división de números fraccionarios, dando un tratamiento didáctico que facilite su 
comprensión y la obtención de buenos resultados en las tareas a resolver; ya que si sólo se aplica el 
algoritmo canónico estaremos haciendo mecánica la operación de división de fracciones, más 
adelante se ilustra con un ejemplo esta situación. 

Las operaciones realizadas por los alumnos no pueden quedar restringidas al uso operacional-
algorítmico de los números fraccionarios, sino por el contrario, se pretende que puedan facilitar una 
interpretación semántica por medio del algoritmo pictórico propuesto en cada una de las tareas a 
realizar. Consideramos que el manejo del algoritmo pictórico es substancial en el presente trabajo de 
investigación, ya que a través de él podemos observar los pasos que sigue cada estudiante ante las 
diversas situaciones problemáticas planteadas, y no dudamos de la capacidad de los alumnos de 
primero de telesecundaria (modalidad educativa en México que se imparte hasta los lugares más 
alejados, a través de imágenes televisivas) para resolver las tareas en las que se involucra la división 
de fracciones, a través del modelo cuotativo.   

Pregunta de investigación y objetivos 
La evaluación que se elabora en México para los alumnos de secundaria se realiza a través de la 

prueba oficial denominada Sistema de Alerta Temprana (Sisat, 2018), los resultados obtenidos hasta 
ahora son poco favorables en los alumnos de primero de telesecundaria, lo que nos permite 
preguntar, ¿cuál es el desempeño y las estrategias que utilizan los alumnos de primero de 
telesecundaria frente a situaciones problemáticas en las que se involucra la división cuotativa de 
fracciones?  
Objetivo general: 

Identificar, por medio del algoritmo pictórico, las distintas estrategias que utilizan los alumnos de 
primero de telesecundaria para otorgar sentido a la división cuotativa de fracciones para comprender 
por qué se divide, a través de reconocer cuánto cabe una fracción en otra fracción. 

Marco teórico 
Los números racionales han tenido un tratamiento de investigación bastante amplio alrededor del 

mundo, con autores muy reconocidos de distintos países, sólo por mencionar algunos de los más 
destacados como Kieren (1983), define a lo que llama subconstructos para entender las 
significaciones de los números fraccionarios. Streefland (1991) destaca los modelos realistas en los 
que es necesario el manejo operativo y conceptual de los números racionales. Vergnaud (1988) 
propone los teoremas en acción, los cuales nos servirán para analizar las dificultades conceptuales de 
los alumnos al resolver las tareas propuestas. Fischbein et al. (1985) define la división cuotativa que 
es central en este trabajo de investigación. Tirosh (2000) hace énfasis en los elementos conceptuales 
y operatorios que necesitan los estudiantes para resolver una tarea de división de fracciones, pero que 
en muchas ocasiones carecen de ellos. Valdemoros (2004) señala cómo los contenidos semánticos 
son de vital importancia para realizar la transición del lenguaje natural al lenguaje aritmético, lo cual 
en nuestro estudio es necesario definir con la mayor claridad respecto a la división cuotativa de 
fracciones.  



La asignación de sentido a la división cuotativa de fracciones 
 

	 344	

Las limitaciones de los alumnos de secundaria con respecto a la división de fracciones se han 
documentado durante las últimas décadas, así como las limitaciones que tienen también los futuros 
profesores como lo reporta Izsák (2012), quien identifica cómo la mayoría de los maestros en 
servicio pueden resolver tareas en las que se involucra la división de fracciones a través del algoritmo 
canónico y, sin embargo, tienen serias dificultades para resolver dichas tareas cuando este tipo de 
números se presentan en situaciones problemáticas de división de fracciones, esta misma situación se 
presenta en alumnos de secundaria. Izsák (2012) propone una tarea extraída de Armstrong y Bezuk 
(1995), en la cual los maestros reconocieron que la situación requerida para resolverla era una 
multiplicación de fracciones, pero cuando se les solicitó que explicaran sus pensamientos o dibujaran 
diagramas para unificar la solución algorítmica-canónica con la pictórica (mediante el uso de 
representaciones geométricas) y comprender qué tipo de unidad se estaba utilizando en cada caso de 
la situación problemática, presentaron muchas dificultades para reconocer sus conflictos cognitivos, 
circunstancia que se presenta también en los alumnos de secundaria y es uno de los motivos 
fundamentales que nos llevaron a indagar sobre esta difícil problemática.  

El modelo cuotativo de división de números fraccionarios se realiza aquí tomando en consideración 
los distintos niveles de coordinación de unidades propuestos por Hackenberg (2007), aunque el foco 
de atención del artículo es la construcción de fracciones impropias, es central en este trabajo de 
investigación su aportación original de cómo los estudiantes realizan la coordinación de los distintos 
niveles de unidades para la construcción de fracciones propias. 

La correcta identificación de unidades de referencia (Schwartz, 1988) apropiadas para cada fracción 
es fundamental para la resolución de las tareas que implican división de fracciones, y la coordinación 
de estructuras de unidades en los tres niveles mencionados en el párrafo anterior,  son esenciales para 
la comprensión del conocimiento matemático, todo esto a través de modelos geométricos dibujados, 
esquemas, y demás elementos pictóricos que utilizan los alumnos para apropiarse de la aritmética de 
los números racionales. 

Método 
Participantes 

Se aplicó un cuestionario a 28 alumnos de primero de telesecundaria ubicada en la periferia de la 
capital del Estado de Puebla, la escuela fue seleccionada porque la maestra titular del grupo muestra 
gran interés por la apropiación de conocimientos de los números fraccionarios. 

 
Entorno socio-cultural 

La escuela seleccionada tiene un total de 198 alumnos repartidos en seis grupos (2 grupos de cada 
grado), cuenta con una Unidad de Servicio y Apoyo a la Educación Regular, la cual se encarga de 
atender a los alumnos que presentan bajo aprovechamiento escolar. La institución dispone además de 
recursos de apoyo institucional como: servicio de internet, comedor, asistencia psicológica, 
biblioteca escolar y de grupo, actividades cívicas y deportivas. 

 
Instrumentos metodológicos 

 Se aplicó un cuestionario a los alumnos de primero de telesecundaria, con ocho tareas en las que se 
involucraban situaciones problemáticas de división de fracciones; en cada una de las tareas se 
proporcionaron dos formas de solución, los algoritmos canónico y pictórico (ambas debían ser 
resueltas). La tarea propuesta fue la siguiente: ¿cuántas partes de 1/2 de metro de tabla de madera, 
puedo obtener en 2 de tablas de madera, si cada tabla mide 2 metros? La primera solución se presentó 
por medio del algoritmo canónico, Toño realizó la operación de 2÷1/2=4 partes en cada una de las 
tablas. La segunda solución se expuso a través del algoritmo pictórico, Pepe representó su operación 
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con dos figuras rectangulares divididas en 4 partes cada una y dijo 1/2 metro de madera cabe 4 veces 
en cada una de las tablas. La tarea a realizar por los alumnos fue la misma que se expuso al principio 
del párrafo, solo se modificó la fracción unitaria a 1/3.   
Análisis de datos recopilados 

La postura del presente trabajo de investigación es tomar en cuenta aquellas respuestas que 
utilizaron los dos modelos de solución propuestos en el ejemplo, ya que a partir de estos modelos 
podemos construir significados apropiados para las operaciones realizadas por los alumnos, en 
especial los significados cuotativos. La respuesta de la alumna Andrea fue correcta, ya que su 
primera respuesta fue realizar la operación de 2/1 ÷ 1/3 = 6/1 = 6. La segunda respuesta de Andrea 
fue dibujar dos figuras rectangulares divididas en 3 partes cada una, por lo que su respuesta a la tarea 
fue: 6 partes.  

Como se observa en la respuesta de Andrea, forma una estructura de dos niveles de coordinación de 
unidades, en la que un intervalo de dos unidades se divide en tres partes iguales; esta respuesta nos 
permite determinar que Andrea entendió el significado cuotativo de la división de fracciones, 
utilizando dos niveles de coordinación de unidades. 

Resultados 
Los alumnos pueden resolver las tareas propuestas en el cuestionario aplicado utilizando las 

estrategias que consideren más apropiadas, sin embargo, cuando la solución implica la utilización del 
algoritmo pictórico nos permite clarificar en qué momento y circunstancias se apropian de los 
diferentes niveles de coordinación de unidades, lo que a su vez nos permite conocer si el 
razonamiento utilizado es correcto o si tienen algunas deficiencias en su apropiación. 

Los alumnos que solamente dan una respuesta a través del algoritmo canónico, tienen serias 
dificultades para explicar cada una de sus respuestas, ya que aunque tengan una solución correcta, su 
interpretación del resultado es poco confiable y su explicación verbal tiene muchas inconsistencias, 
por lo que la entrevista didáctica y con retroalimentación (Valdemoros, 2004, Valdemoros, Ramirez 
y Lamadrid, 2015) y la entrevista colectiva (Werscht, 1993), a realizar próximamente, serán de gran 
ayuda en el esclarecimiento de las conceptualizaciones de los alumnos seleccionados. 

Conclusiones 
El desempeño de los alumnos de primero de telesecundaria se ve reflejado en las tareas propuestas 

en el cuestionario aplicado, desafortunadamente los resultados son poco favorables, debido a que la 
mayoría de los alumnos intentó resolver las tareas cambiando los números fraccionarios a números 
decimales y otros, al parecer, no tenían conocimientos preliminares concernientes al algoritmo 
pictórico, lo que a la postre resultó inconveniente y en algunos casos causó graves conflictos de 
interpretación de las tareas propuestas. Para resolver este tipo de inconvenientes, se propone una 
serie de entrevistas didácticas y con retroalimentación (también descrita como entrevista didáctica)  
para llevar a cabo en la siguiente fase de la investigación con algunos alumnos seleccionados, así 
como la aplicación de una entrevista colectiva. El diseño teórico-metodológico y empírico de la 
entrevista colectiva se está elaborando actualmente. 
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We report progress from a longitudinal study focused on identifying expressions of mathematical 
generalization articulated by students at early ages through the design of 17 tasks that are organized 
into structured blocks, comprising numerical sequences and everyday situations. We present the 
results obtained with respect to solving numerical sequences.  

Keywords: Algebraic thinking, Primary education.  

Purpose of the Research 
We present preliminary results of a study focused on the analysis of expressions of mathematical 

generalization that arise in early ages, particularly among students ranging between 10 and 12 years 
of age when solving generalization mathematical tasks. It is expected that expressions of 
generalization shown by students in a natural and incipient way will be refined as they develop their 
capacity for generalization, which could contribute to development of algebraic thinking at later 
levels. 

Reference Framework 
Generalization is a topic of interest to various researchers and is analyzed from different 

perspectives (e.g. Radford, 2000, 2002; Rivera, 2006, 2018; Schliemann, Carraher y Brizuela, 2012). 
The approach in this study is based on the contributions of John Mason regarding the ability 
possessed by students to generalize, and how that ability can be developed through mathematical 
tasks that lead them to articulate generality. 

Expressing the regularities that are observed in a generalization task is a reference to algebraic 
work, albeit incipient, that arises in students. Mason, Graham, Pimm and Gowar (1999) are of the 
opinion that expressing generality is a very important process, because it contributes to the 
acquisition of algebraic language. This process can be considered a continuous spiral of actions 
(Mason, 1996), which is summarized as the manipulation (first action) of particular examples to 
obtain meaning (second action) of what is happening in them, in order to articulate generalities (third 
action), and express them in some useful mathematical form.  

Manipulation (of physical, mental or symbolic objects) provides the basis for detecting patterns, 
relationships, generalities, etc. Discovering what is happening allows one getting a sense of some 
characteristic or property of the objects that are being manipulated, which allows one to articulate 
and manifest the expression of generality. When this occurs, such an expression becomes a new 
entity that can be manipulated and used to find other properties, allowing it to continue ascending the 
spiral and starting a new cycle of actions. But when resolution is difficult, and the conjectures are 
wrong, the sensible thing is to return to the corresponding cycle of actions and manipulate more 
examples in order to be able to ascend.  

Likewise, Mason et al. (1999) consider three stages in the generalization process: seeing, saying and 
recording. “Seeing” refers to the mental identification of a schema, structure or relationship. Seeing 
generalities means that students can identify key factors and combine them to produce a rule that 
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works; this can happen after a certain time, working with a number of particular examples until the 
identification of something common is achieved. “Saying”, either to oneself or to someone in 
particular, is to articulate in words what has been recognized. Before saying the observed 
generalities, there is an expression of what occurs in particular cases. “Recording” a pattern or 
relationship leads to symbolization and written communication, which is not easy to do. The register 
can involve a variety of formats: drawings, word drawings, mostly words and some symbols, or 
mostly symbols with some words (Mason et al., 1999). 

Method 
The study is qualitative and descriptive in nature (Cohen, Manion y Morrison, 2007). It is 

longitudinal and done in cohort as the same students are followed through two school cycles, 
beginning in grade five of primary school. The study plan for both cycles corresponds to 2011. 
Identifying regularities in numerical sequences in order to find nearby missing terms or to continue 
the sequence (Secretaría de Educación Pública, 2011) is one of the expected learning outcomes for 
grade five, but generalization is not promoted. Textbooks for grades four through six include one or 
two activities involving these types of number sequences. Participants were deemed to have no 
experience with generalization tasks at the time of the study.  
Design of Mathematical Tasks 

17 tasks were designed for the two school cycles, which were organized in four blocks with a 
structured order involving a gradual transition from number sequences to everyday situations. Blocks 
I and II correspond to numerical sequences, Blocks III and IV to everyday situations. The analysis of 
responses corresponding to Blocks I and II is reported here.  

 Block I (numerical sequences 1-8). The mathematical structure underlying these sequences 
corresponds to the functions !(!) = ! , !(!) = 2! , !(!) = 2! − 1 , !(!) = !! , !(!) = 3! , 
!(!) = ! + 3, !(!) = 4!, !(!) = ! + 4. Each sequence is presented through a dotted figure and the 
corresponding figure number. Inductive reasoning (manipulation of particular cases) is fostered with 
the intention of having students identify the correspondence relationship between the number of 
points and the figure number (get a sense of) to articulate the correspondence rule (generalization). 
When students, using the first elements of the numerical sequence, can find nearby elements, it can 
be said in terms of Mason (1999), that they perceive generality. By requesting considerably distant 
elements, the articulation of the generalization rule is promoted. As students manipulate particular 
cases, they are expected to “see” the corresponding structure or relationship, identifying what 
remains and what varies so as to articulate the generalization rule that characterizes each task. In each 
subsection, a figurative, numerical or explanatory record is requested. Figure 3 is an example of the 
numerical sequence in Block I, they all have a similar format, the variant lies in the function 
involved. 

Block II (numerical sequences 9-10). The mathematical structure of these sequences corresponds 
to the functions !(!) = 2!, !(!) = ! + 2. Each sequence is presented in a table that includes 
numerical terms along with the number that corresponds to the term, omitting the figurative (Figure 
1). An inductive reasoning is also fostered, and the registry stage is highlighted during the resolution 
of the task. The tasks in both blocks are aimed at analyzing the articulation of the (written) ideas that 
lead to the generalization rule, but in this Block II, the request for a rule is made explicit. Subsection 
e) encourages students to suggest a number (it could be near or far); according to Mason (1999) these 
assignments tend to stimulate in students the scope of the generality they are expressing. 
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Figure 1: Task 9. Block II 

 
Participants, Application and Analysis of Responses 

The participants were 25 students from a public school located in Tekit, Yucatán, Mexico. A 
printout of each task was provided, students worked individually and there was no intervention by 
the researcher. The analysis is carried out individually to identify the expressions of generalization by 
student and by block, given that the tasks in each block have common characteristics. Figure 2 
provides the scheme designed for the analysis of Block I responses under the Mason (1996) spiral of 
actions.  

 

 
Figure 2: Maison (1996) spiral of actions in the tasks of Block I 

 
Figure 3 provides an example of the analysis of the responses of Student 10 (S10) in Task 2 of 

Block I. Table 1 shows the summary of the analysis of actions that were recognized in this task by 25 
students. We can see that S10 correctly constructs figures 5, 6 and 7 (part a), demonstrating the 
adequate manipulation of the particular cases, both figuratively and numerically (part b). The 
manipulation of increasingly distant examples (parts c and d) can be interpreted as getting a sense of 
generality, which leads to articulation and concise expression of the rule of correspondence between 
the number of points and the number in the figure (part e). The rule is recorded in natural language, 
using words (without drawings or symbols). In an analogous way, the responses of the tasks in Block 
II are analyzed with the corresponding scheme. 
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Figure 3: Analysis S10 responses in Task 2 of Block I 

 
Table 1: Summary of actions in Task 2 of Block I 

S a) b) c) d) e)  S a) b) c) d) e)  S a) b) c) d) e) 
S1 M M M GS A  S9 M M M GS A  S18 M M M GS A 
S2 M      S10 M M M GS A  S19 M M    
S3 M M M GS A  S11 M M M GS A  S20 M M    
S4       S12 M M M GS A  S21 M M M GS A 
S5 M M M GS A  S13 M M M GS A  S22 M M M GS A 
S6 M M M GS A  S14 M M M GS A  S23 M M M GS A 
S7 M M M GS A  S15 M M M M NA  S24 M M    
S8 M M M GS A  S16 M M M GS A  S25 M M    

       S17 M M M GS A        
Note: S=Student; M=Manipulating; GS= Getting a sense of; A= Articulating; NA=No answer; Blank 
space=Student fail any of the M-GS-A actions. 

Results and Preliminary Conclusions 
Students provide evidence of their ability to generalize by identifying, in numerical sequence tasks, 

those details that remain unchanged and those that change. Also, they can identify regularities and 
patterns, read and interpret tabular registers and above all articulate expressions of generalization. 
These expressions were communicated through numerical answers, words or words with some 
arithmetic symbols, which resulted in 5 categories: 1) expressions that state only the regularity of the 
pattern, that is, the variation between the terms; 2) numeric expressions that arise from using 
previous results, being correct only for the functions of the form ! ! = !"; 3) generalized number, 
that is, the generalization is expressed only for the requested number; 4) expressions that incipiently 
state what happens with the relationship between the two variables involved and 5) expressions 
denoting generalization considering any term (such as the one reported in Figure 3). In the next phase 
of the study, we will analyze the stage "saying" using the expressions of generalization done by 
interviewing the 25 students when they solve everyday context tasks. Finally, in our opinion the work 
provides references on the development of algebraic thinking and language that can contribute to the 
teaching of basic education. 
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Se reportan avances de una investigación longitudinal cuyo interés se centra en identificar las 
expresiones de generalización matemática que articulan los estudiantes en edades tempranas a 
través del diseño de 17 tareas organizadas en bloques estructurados que comprenden secuencias 
numéricas y situaciones cotidianas. Se presentan los resultados obtenidos en la resolución de las 
secuencias numéricas.  

Palabras clave: pensamiento algebraico, educación primaria.  

Propósito de la Investigación 
Se presentan resultados preliminares de un estudio cuyo propósito es analizar las expresiones de 

generalización matemática que se manifiestan en edades tempranas, particularmente en estudiantes 
de 10 a 12 años cuando resuelven tareas matemáticas de generalización. Se considera que las 
expresiones de generalización que manifiestan los estudiantes de manera natural e incipiente se irán 
refinando conforme vayan desarrollando su capacidad de generalización, lo que podría contribuir al 
desarrollo de un pensamiento algebraico en niveles posteriores. 
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Marco de Referencia 
La generalización es de interés para diversos investigadores y es analizada desde diferentes 

perspectivas (p.ej. Radford, 2000, 2002; Rivera, 2006, 2018; Schliemann, Carraher y Brizuela, 2012). 
En esta investigación el enfoque se apoya en las contribuciones de John Mason respecto a la 
capacidad de generalizar que poseen los estudiantes, y cómo ésta puede ser desarrollada mediante 
tareas matemáticas que los conduzcan a articular la generalidad.  

Expresar las regularidades que se observan en una tarea de generalización es referencia del trabajo 
algebraico, aún incipiente, que surge en los estudiantes. Mason, Graham, Pimm y Gowar (1999) 
consideran que expresar la generalidad es un proceso importante porque contribuye a la adquisición 
del lenguaje algebraico. Este proceso puede considerarse como una espiral continua de acciones 
(Mason, 1996), la cual se resume en la manipulación (primera acción) de ejemplos particulares para 
obtener sentido (segunda acción) de lo que está ocurriendo en ellos, con el fin de articular 
generalidades (tercera acción) y expresarlas en alguna forma matemática útil.  

La manipulación (de objetos físicos, mentales o simbólicos) proporciona las bases para detectar 
patrones, relaciones, generalidades, etc. Descubrir lo que está sucediendo permite obtener sentido de 
alguna característica o propiedad de los objetos que se están manipulando, lo que da lugar a articular 
y manifestar la expresión de generalidad. Cuando esto ocurre, tal expresión se convierte en una nueva 
entidad que puede ser manipulada y usarse para encontrar otras propiedades, lo que permite continuar 
ascendiendo en la espiral empezando un nuevo ciclo de acciones. Pero cuando la resolución resulta 
difícil, y las conjeturas son erróneas, es sensato regresar al ciclo de acciones correspondiente y 
manipular más ejemplos para poder ascender.  

Asimismo, Mason et al. (1999) consideran tres etapas en el proceso de generalización: ver, decir y 
registrar. “Ver” se refiere a la identificación mental de un esquema, estructura o relación. Ver 
generalidades implica que los estudiantes puedan identificar factores clave y combinarlos para 
producir una regla que funcione; esto puede ocurrir después de cierto tiempo, trabajando con un 
número de ejemplos particulares hasta que se logra la identificación de algo común.  El “decir”, ya 
sea a uno mismo o a alguien en particular, es articular en palabras aquello que se ha reconocido. 
Antes de decir las generalidades observadas se suele decir qué ocurre en casos particulares. 
“Registrar” un patrón o relación conduce a la simbolización y la comunicación escrita, lo cual no es 
fácil de realizar. El registro puede involucrar una variedad de formatos: dibujos, dibujos con 
palabras, la mayor parte palabras y algunos símbolos o la mayor parte de símbolos con algunas 
palabras (Mason et al., 1999). 

Método 
El estudio es de naturaleza cualitativa y de corte descriptivo; es longitudinal y de cohorte (Cohen, 

Manion y Morrison, 2007) en virtud de que se realiza un seguimiento a los mismos estudiantes 
durante dos ciclos escolares, empezando en quinto grado de primaria. El plan de estudios de ambos 
ciclos corresponde al año 2011, entre los aprendizajes esperados en quinto grado se encuentra la 
identificación de regularidades en sucesiones numéricas para encontrar términos faltantes cercanos o 
continuar la sucesión (Secretaría de Educación Pública, 2011) pero no se promueve la generalización. 
Los libros de texto de cuarto a sexto grado incluyen una o dos actividades para trabajar con ese tipo 
de secuencias numéricas. Se considera que los participantes no contaban con experiencia sobre tareas 
de generalización al momento del estudio.  
Diseño de las tareas matemáticas 

Se diseñaron 17 tareas para los dos ciclos escolares, organizadas en cuatro bloques con un orden 
estructurado que conlleva ir gradualmente de secuencias numéricas a situaciones cotidianas. Los 
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Bloques I y II corresponden a secuencias numéricas, los Bloques III y IV a situaciones cotidianas. Se 
reporta el análisis de respuestas correspondientes a los Bloques I y II.  

Bloque I (secuencias numéricas 1-8). La estructura matemática que subyace a estas secuencias 
corresponde a las funciones !(!) = ! , !(!) = 2! , !(!) = 2! − 1 , !(!) = !! , !(!) = 3! , 
!(!) = ! + 3 , !(!) = 4! , !(!) = ! + 4 . Cada secuencia se presenta mediante una figura con 
puntos y el número de la figura correspondiente. Se promueve un razonamiento inductivo 
(manipulación de casos particulares) con la intención de que los estudiantes identifiquen la relación 
de correspondencia entre el número de puntos y el número de figura (obtener sentido de) para 
articular la regla de correspondencia (generalización). Cuando los estudiantes, apoyándose en los 
primeros elementos de la secuencia numérica puedan encontrar elementos cercanos se puede decir en 
términos de Mason (1999) que ellos perciben generalidad. Al solicitar elementos considerablemente 
distantes se promueve la articulación de la regla de generalización. Se espera que a medida que 
manipulen los casos particulares “vean” la estructura o relación correspondiente, identificando 
aquello que permanece y lo que varía para articular la regla de generalización que caracteriza a cada 
tarea. En cada inciso se solicita hacer un registro de tipo figurativo, numérico o explicativo. La 
Figura 3 es un ejemplo de secuencia numérica del Bloque I, todas poseen un formato similar, la 
variante radica en la función involucrada. 

Bloque II (secuencias numéricas 9-10). La estructura matemática de estas secuencias corresponde 
a las funciones !(!) = 2!, !(!) = ! + 2. Cada secuencia es presentada mediante una tabla que 
incluye términos numéricos y el número que le corresponde al término, omitiendo lo figurativo 
(Figura 1). Nuevamente se promueve un razonamiento inductivo y se destaca la etapa registrar 
durante la resolución de la tarea. En las tareas de ambos bloques se pretende analizar la articulación 
de las ideas (escritas) que llevan a la regla de generalización, pero en este Bloque II, se hace explícita 
la solicitud de una regla. El inciso e) promueve que los estudiantes propongan un número (éste puede 
ser cercano o lejano), Mason (1999) expresa que estas encomiendas tienden a estimular en ellos el 
alcance de la generalidad que están expresando. 

 

 
Figura 1: Tarea 9. Bloque II 

 
Participantes, aplicación y análisis de las respuestas 

Participaron 25 estudiantes pertenecientes a una escuela pública ubicada en Tekit, Yucatán, México. 
Cada tarea fue entregada impresa, los estudiantes trabajaron de manera individual y no hubo 
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intervención por parte del investigador. El análisis se realiza individual para identificar las 
manifestaciones de generalización en cada estudiante y por bloque, en virtud de que las tareas de 
cada bloque presentan características comunes. En la Figura 2 se presenta el esquema diseñado para 
el análisis de las respuestas del Bloque I bajo la espiral de acciones de Mason (1996).  

 

 
Figura 2: Espiral de acciones de Maison (1996) en las tareas del Bloque I  

 
La Figura 3 presenta un ejemplo del análisis de las respuestas del Estudiante 10 (E10) en la Tarea 2 

del Bloque I. La Tabla 1 muestra el resumen del análisis de acciones que se reconocieron en los 25 
estudiantes en dicha tarea. Se puede identificar que E10 construye correctamente las figuras 5, 6 y 7 
(inciso a) evidenciando la manipulación adecuada de los casos particulares tanto figurativa como 
numéricamente (inciso b). A medida que manipula ejemplos cada vez más distantes (incisos c y d) se 
puede interpretar que va obteniendo sentido de la generalidad, lo que le conlleva articular y expresar 
de manera concisa la regla de correspondencia entre el número de puntos y el número de la figura 
(inciso e). El registro de la regla lo realiza en lenguaje natural, mediante palabras (sin dibujos, ni 
símbolos). De manera análoga se analizan las respuestas de las tareas del Bloque II con el esquema 
correspondiente. 

 
Figura 3: Análisis de las respuestas del Estudiante 10 en la Tarea 2 del Bloque I 

 
Tabla 1: Resumen de acciones en la Tarea 2 del Bloque I  

S a) b) c) d) e)  S a) b) c) d) e)  S a) b) c) d) e) 
S1 M M M GS A  S9 M M M GS A  S18 M M M GS A 
S2 M      S10 M M M GS A  S19 M M    
S3 M M M GS A  S11 M M M GS A  S20 M M    
S4       S12 M M M GS A  S21 M M M GS A 
S5 M M M GS A  S13 M M M GS A  S22 M M M GS A 
S6 M M M GS A  S14 M M M GS A  S23 M M M GS A 
S7 M M M GS A  S15 M M M M NA  S24 M M    
S8 M M M GS A  S16 M M M GS A  S25 M M    

       S17 M M M GS A        
Nota: E=Estudiante; M=Acción Manipular; OS=Acción Obtención de Sentido; A=Acción Articular; NC=No 
contestó; Espacio en blanco=El estudiante no logra alguna de las acciones M-OS-A. 
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Resultados y Conclusiones Preliminares 
Los estudiantes proporcionan evidencia de su capacidad para generalizar al identificar en las tareas 

con secuencias numéricas aquellos detalles que permanecen invariantes y los que cambian. También, 
pueden identificar regularidades y patrones, leer e interpretar registros tabulares y sobre todo 
articular expresiones de generalización. Dichas expresiones fueron comunicadas mediante respuestas 
numéricas, con palabras, o palabras con algunos símbolos aritméticos, encontrándose 5 categorías: 1) 
expresiones que enuncian solo la regularidad del patrón, es decir, la variación entre los términos; 2) 
expresiones numéricas que surgen de usar resultados anteriores, siendo correctas solo para las 
funciones de la forma !(!) = !"; 3) número generalizado, es decir, se expresa la generalización sólo 
para el número solicitado; 4) expresiones que enuncian de manera incipiente lo que ocurre con la 
relación entre las dos variables involucradas y 5) expresiones que denotan generalización 
considerando un término cualquiera (como la que se reporta en la Figura 3). En la siguiente fase de la 
investigación se analizarán las expresiones de generalización obtenidas en la etapa “decir” al 
entrevistar a los 25 estudiantes durante la resolución de las tareas de situaciones cotidianas. 
Finalmente, se considera que el trabajo proporciona referentes acerca del desarrollo del pensamiento 
y lenguaje algebraico que pueden contribuir en la enseñanza de la educación básica. 
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Even famous mathematicians, such as Pascal and Diophantus, rejected the possibility of negative 
integer solutions to algebraic equations (Bishop et al., 2011, 2014; Dehaene, 1997; Gallardo, 2002). 
Historical struggles make sense when we look at the limitations of physical models and instructional 
models for integers (Martínez, 2006; Peled & Carraher, 2008; Schwarz et al., 1993–1994; Wessman-
Enzinger, 2019). Consider modelling 2 – -5 with discrete chips. Although this is possible with two-
colored chips or tiles (Flores, 2008) and using concepts of zero pairs (e.g., Dickman & Bofferding, 
2017), it is not necessarily intuitive and has constraints (Murray, 2018; Vig et al., 2014). These 
challenges in the physical embodiment of negatives integers extend to thinking and learning about 
multiplicative situations (e.g., -4 × -5). It is important to understand the ways that children use and 
extend their previous whole-number to negative integers in order to best support their thinking in our 
classrooms.   

Theoretical Framing: Division with Integers 
Cognitively guided instruction illustrates problem types and strategies for thinking about division 

(Carpenter et al., 2015). We can describe partitive division as having a total amount, dividing that 
amount by a certain number of groups, and determining the amount per group (total ÷ number of 
groups = amount per group). We can describe measurement division as having a total amount, 
dividing that total by the amount per group, and determining the number of groups (total ÷ amount 
per group = number of groups). These two-problem types, partitive and measurement division, are 
well-accepted in the field (e.g., Jansen & Hohensee, 2016; Nueman, 1999). Children’s direct 
modeling strategies, as they solve division problems, often align with these problem types (e.g., 
Carpenter et al., 2015; Mulligan & Mitchelmore, 1997). Despite constraints with the physical 
embodiment of the negative integers (Martínez, 2006), direct modeling can be productive for 
students to extend their whole number reasoning to multiplication with negatives (Carpenter & 
Wessman-Enzinger, 2018). 

When children engage in solving addition and subtraction problems with negative integers, they 
construct a variety of productive strategies, including drawing on analogies (Bishop et al., 2014, 
2016, 2018; Bofferding & Wessman-Enzinger, 2018; Wessman-Enzinger, 2019; Whitacre et al., 
2017). For example, they productively compare -2 + -3 to 2 + 3 with analogical reasoning (Bishop et 
al., 2016, 2018; Bofferding, 2010, 2011; Whitacre et al., 2017). Yet, sometimes these analogies break 
down for multiplication (Carpenter & Wessman-Enzinger, 2018)—a student incorrectly determined 
−4×−2 is -8 with a logical analogy to 4 × 2 =  8.  

The work reported in this research brief extends the discussion on children’s thinking about 
negative integers by highlighting the ways two Grade 5 children reasoned with analogies and direct 
modeling with integer division.  
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Methods 
Alice and Kim, from a rural Midwest school in the United States, participated in a 12-week teaching 

experiment (Steffe & Thompson, 2000) centered on integer addition and subtraction. The children in 
this study became accustomed to exploring mathematical ideas, struggling, and sharing their invented 
thinking. The session described here departed from the study on addition and subtraction and is an 
exploratory session on division. I wondered how children would construct integer division. In this 
session, two of the fifth-graders, Alice and Kim, worked together on three different division open 
number sentences with negative integers for fifty minutes. The three division problems they 
discussed in this session included: -24 ÷ ¨ = -2, ¨ ÷ -3 = -10, and -21 ÷ ¨ = 7. Teaching 
experiment methodology draws on using conceptual analysis, which requires examining the thinking 
of individuals iteratively (Thompson, 2008).  

Results and Discussion 
Alice and Kim used analogical thinking and direct modeling strategies that drew mostly on partitive 

thinking as they solved division problems with negative integers. Their ways of thinking, as well as 
affordances and constraints, are addressed in this section.  
Analogical Thinking with Integer Division 

Alice and Kim solved 24 ÷ ¨ = -2 first in the session. Both Alice and Kim’s inaugural approach of 
this open number sentence included constructing analogies to 24 ÷ 12 = 2 and reasoning that -24 ÷ -
12 = -2. Alice shared, “I think it’s -12 because twenty-four divide by twelve is two. And, these two 
are negative (pointing at -24 and -2), so I thought that this would have to be negative.” And, Kim 
shared, “Yeah. There’s both negatives (shrugs). I just compared it to something easier. I just did 24 
divide by twelve.”  

For ¨ ÷ -3 = -10, Alice and Kim made analogies again. They compared ¨ ÷ -3 = -10 to 30 ÷ 3 = 
10. Kim reasoned, “You can multiply these two (points at -10 and -3 on the paper), but in a negative 
way, in the negative side. So, three times ten is thirty, so just add the negative symbol onto it.” Alice 
and Kim both reasoned that -30 is the solution to ¨ ÷ -3 = -10 to because 30 ÷ 3 = 10.  

There are similarities in analogical reasoning across these integer division number sentences; Alice 
and Kim compare both to fully positive integer number sentences. Children often draw on analogies 
productively for both addition and subtraction with negative integers. In fact, problem types like -2 + 
-5 and -6 – -3 are readily solved by children who see negative integers for the first time by comparing 
-2 + -5 to 2 + 5 and -6 – -3 to 6 – 3 (e.g., Bofferding, 2011; Whitacre et al., 2017). Note the structural 
similarities between these analogies: addition and subtraction with negatives are compared to fully 
positive numbers sentences, but result in correct solutions. Therefore, it is not surprising that Alice 
and Kim applied an analogy that worked well for integer addition and subtraction to these open 
number sentences with division, -24 ÷ ¨ = -2 and ¨ ÷ -3 = -10. However, this structurally similar 
analogy (comparing 24 ÷ 12 = 2 to -24 ÷ ¨ = -2) does not result in the correct solution.  

Although the analogies described above did not support correct solutions, Alice solved -21 ÷ ¨ = 7 
correctly using an analogy. Alice thought the open number sentence -21 ÷ ¨ = 7 was challenging 
division open number sentence type; Alice wrote “nope” and the solution -3 (-21 ÷ -3 = 7) and Kim 
wrote “wung it!” and the solution 3. Kim reasoned that the solution to -21 ÷ ¨ = 7 is 3. She made an 
analogy similar to what she did previously, comparing -21 ÷ 3 to 21 ÷ 3. Kim noticed something 
different in the structure, as she wrote “wung it” and shared uncertainty.    

Alice suggested the correct solution of -3 when solving -21 ÷ ¨ = 7.  Alice was unsure of her 
solution and verbalized her struggle. She, for example, wrote “nope” on her paper conjecturing, “it’s 
wrong.” She shared the challenge with the structure of this integer division problem: “I mean it 
doesn’t make sense that a negative divided by a negative would equal a positive.” Alice compared -
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21 ÷ ¨ = 7 to -21 ÷ 3 = -7 and 21 ÷ 3 = 7, conjecturing -21 ÷ -3 = 7. Although unsure about -3 a 
solution, she maintained a strong confidence the answer is not 3, stating how numbers like -21 and 21 
are different.  

One challenge analogical reasoning that analogies that work well for integer addition and 
subtraction (comparing -2 + -3 to 2 + 3), to not readily extend to integer division (comparing -24 ÷ -
12 = -2 to 24 ÷ 12 = 2). An affordance of analogical reasoning is that Alice was able to comparing -
21 ÷ ¨ = 7 to 21 ÷ 3 = 7 and know that solution could be negative.  

Direct Modeling: Partitive and Measurement Thinking with Integer Division. Alice used a 
direct modelling strategy for -24 ÷ ¨ = -2 when prompted to explain her analogical reasoning above. 
Both Kim and Alice used direct modeling strategies for justifying their analogies as they solved ¨ ÷
 -3 = -10. For the last open number sentence in the session, -21 ÷ ¨ = 7, both Kim and Alice used 
analogical reasoning only.  

Alice drew out tallies and groups, a component of direct modeling, because she wanted to justify 
the analogy she made when first solving -24 ÷ ¨ = -2. The transcript below illustrates the Alice’s 
discussion about her tallies and group in Figure 1: 

I did two rows (pointing at tallies). They both had… they are negatives. And, there’s two 
(draws two circles around groups of tallies). … Because if it was positive twelve, then this 
would be (points at the -2) … I don’t know. … I did twenty-four (shows drawing with 24 
tallies) and what I did is twelve and twelve and it makes two (points at two groups of 12 
tallies in the drawing).  

 

 
Figure 1: Alice’s use of direct modeling when solving -24 ÷ ¨  = -2 

 
Alice created a total of 24 tallies, stating “they are negatives.” As she made these 24 tallies, she 

placed them in two groups—she drew on a partitive division reasoning. Each of her groups has 12 
tallies (see Figure 1), which represents -12. Alice actually illustrated -24 ÷ -12 = +2 with her direct 
modeling, and even refers to “two groups” (+2) instead of -2. She used partitive division because she 
doles out the tallies into two groups using how many tallies are in each group (12 tallies, or -12) as 
the unknown. For Alice, the number of groups was known, using +2 instead of -2, from the open 
number sentence. She stated that the amount in each group was unknown in -24 ÷ ¨ = -2, putting 
tallies in two groups and counting the tallies after.  

One challenge that Alice faced is that her drawing is well-suited for -24 ÷ -12 = +2, instead of -24 
÷ 12 = -2.  A second challenge that Alice encountered is making sense of what -2 groups with 
partitive division entails; indeed, -2 groups used in this way has physical has constraints. The 
physical constraints could potentially be why Alice states +2 groups instead of -2 groups. Suppose 
Alice used partitive reasoning and direct modeling in a way that resulted in the correct solution for -
24 ÷ ¨ = -2. How could Alice physically take the existing 24 tallies that represent -24 and put the 
+12 tallies into -2 groups? Having -2 groups seems a bit ridiculous. However, in this case Alice could 
have used a direct modeling strategy with measurement division and it could have worked. For 
example, if Alice, instead, took her -24 tallies and looked for an unknown number of groups (12) that 
have -2 each in them, this could have worked. Using Alice’s strategy with tallies, she could have 
started making groups of negative two or two tallies. If she did this, there would be 12 groups.  
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Both Alice and Kim drew on direct modeling strategies when justifying their analogies as they 
solved ¨ ÷ -3 = -10 (see Figure 2a and 2b, respectively). Both of their drawings produced for this 
open number sentenced used a direct modelling strategy similar to what Alice created (see Figure 1). 

 

(a) (b)  
Figure 2: Alice and Kim’s use of direct modeling when solving ¨  ÷ -3 = -10 

 
The following excerpt of transcript highlights how Kim discussed her drawing in Figure 2b: 

Um, I did three groups. I did three groups. The negatives is, is the negatives symbol which it 
tells us that the answer is going to be a negative. These numbers are negatives. I did three 
groups of ten tally marks in each. Like how you do tally marks regularly, like three, four, and 
equal five. I did that. I screwed up, but it doesn’t matter though. …These circles represent 
three groups. … Negative thirty is all of these combined together (motions around drawing). 
… Um, once you add all these up it equals negative thirty. And, you divide by negative 
three. …If you add all these up, it equals thirty, you can just divide it by three because of the 
three groups….The negative ten is in each of these (points at the tallies in the groups). I 
screwed up there’s six in each of these, but there’s supposed to be five.  

Alice and Kim both used partitive reasoning for division, where they interpreted dividing by -3 as 
indication that there are +3 groups (not -3). They put ten tallies in each group, which represents -10 
(albeit Kim has groups of 6 tallies instead of 5, but she counts them as five and recognizes the extra 
tallies). Both Alice and Kim determine that the solution is -30 to ¨ ÷ -3 = -10 by counting the total 
amount of “negative” tallies they have.   

Kim interpreted the “÷ -3” in ¨ ÷ -3 = -10 as the number of groups positive three groups (+3), 
which is a challenge whether you use partitive division or measurement division. Number sentences 
like -24 ÷ ¨ = -2, can be supported by the students’ partitive reasoning if they twelve groups of -2. 
But, is partitive or measurement division intuitive with ¨ ÷ -3 = -10? The open number sentence ¨ 
÷ -3 = -10 differs from -24 ÷ ¨ = -2 in the sense that the positive number (i.e., ¨ or 30) is the 
dividend. Analogical reasoning may be more productive for ¨ ÷ -3 = -10. 

Concluding Remarks 
This qualitative description of thinking about integer division highlights affordances and constraints 

of both analogies and direct modeling with integer division. Analogies for whole number addition 
and subtraction do not extend readily, but can be used productively. Although direct modeling had 
limitations with partitive division for -24 ÷ ¨ = -2, Alice’s direct modeling highlighted the potential 
of measurement thinking with this particular open number sentence. Yet, both partitive and 
measurement definitions of division have limitations for number sentences like ¨ ÷ -3 = -10—
highlighting potential for analogical reasoning.  
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During the course of a three-month teaching experiment, two middle school students with learning 
disabilities were found to form operations foundational to algebraic reasoning as they constructed 
mathematical equivalence schemes. In particular, the students’ schemes were considered to be 
algebraic because they contained the cognitive roots of the distributive property, quantitative unit 
conservation, and solving linear equations of the form ax=bc with whole number solutions (where a, 
b, and c are whole number constants). The algebraic character of the students’ operating was based 
on the extent to which the students operated on the structure of their additive and/or multiplicative 
schemes as they solved tasks that required them to create equivalence between two multiplicative 
compilations.  

Keywords: Algebra and Algebraic Thinking, Number Concepts and Operations, Special Education 

Introduction 
The purpose of this paper is to demonstrate how the equivalence schemes of students with learning 

disabilities can be considered algebraic. Additionally, I suggest the algebraic character of such 
schemes is rooted in how students create and coordinate composite units. This study is grounded in 
the work of early algebra researchers who have focused on the algebraic character of student’s ways 
of operating prior to a formal algebra course (cf. Blanton & Kaput, 2005; Carraher, Schliemann, 
Brizuela, & Earnest, 2006; Hackenberg & Lee, 2015). Research in the area of early algebra has 
become crucial for schools as the number of students who encounter algebra in middle school has 
increased substantially in the last twenty years.  

At the same time, opportunities to be included in grade-level general education have grown for 
middle school students with learning disabilities due to education policy (Every Student Succeeds, 
2015; Individuals with Disabilities Education Act, 2004) (Hord et al, 2019). But access is not 
enough. Hord et al. (2019) explains that for students with learning disabilities to be successful in 
middle school and as they progress to formal algebra in high school, they will need to make sense of 
complex algebraic concepts (Bouck, 2017; National Council of Teacher of Mathematics (NCTM), 
2000). This report addresses how the whole number operations of students with learning disabilities 
can form the foundation for reasoning algebraically and learning complex algebraic concepts. 
Specifically, I focus on how the cognitive roots for the distributive property, quantitative 
conservation, and solving linear equations of the form ax=bc (where a,b, and c are whole number 
constants) can be found in relational equivalence schemes. 

Relational Equivalence Schemes and Algebraic Reasoning 
The schemes and reasoning I investigated were not formal algebraic schemes, but rather, the 

multiplicative and equivalence schemes of students that form the underpinnings for formal algebraic 
concepts. From an ontogenetic perspective, this means schemes are described as algebraic if they can 
later be reorganized into algebraic schemes (Hackenberg, 2006; Steffe, 2001). In this section, I first 
describe schemes of mathematical equivalence (Woodward, 2016). I then discuss formal algebraic 
ideas related to the equivalence schemes: the distributive property, quantitative unit conservation, 
and solving linear equations.  
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Mathematical Equivalence Schemes 
Students have the opportunity to construct equivalence schemes when they are asked to produce 

equality between related multiplicative compilations. For example, a student may be told that person 
A has 3 baskets of apples with 4 apples in each basket, while person B has 8 baskets of apples with 4 
apples in each basket. They are then asked to make it so that each person has the same amount of 
apples. In this case the two multiplicative compilations differ by the number of composite units (CU) 
(3CU of 4 singletons and 7CU of 4 singletons), but they also could differ by the size of the CUs 
(3CU of 4 singletons and 3CU of 5 singletons). There are many solution methods to such a task, 
including some that indicate a student is engaged in unidirectional thinking as they focus on 
transforming only one quantity. Others, though, suggest a student is considering relationships 
between quantities across the compilations as well as notions of balance between them. 

I have identified two schemes that students construct while solving tasks like those mentioned in the 
previous paragraph, a Relational Equivalence (RE) scheme and a Quantitative Relational (QRE) 
scheme (Woodward, 2016). RE and QRE both incorporate additive balancing operations that support 
creating equivalence between the two multiplicative compilations. When operating with an RE 
scheme, a student first multiplicatively produces the totals of 1s from each compilation (3x4=12; 
7x4=28 in the example above). They then find the difference in 1s between the totals (28-12=16) and 
create equivalence by operating on the totals with some or all of the 1s in the difference. For 
example, they may halve the difference between the two compilations and then re-distribute the 1s 
(16/2=8; 12+8=28-8).  

When a student constructs a QRE, they can operate in the same way, but they can also do more. 
Instead of operating on 1s, they may choose to focus on the CUs. They can lift their operations on 1s 
to operations on CUs that require anticipation of multiplicative structures. A student operating with a 
QRE may first produce a difference in CUs between the two compilations (7CU-3CU=4CU). They 
then can create equivalence via additive operations on the CU. For example, they may re-distribute 
the CUs in the difference (4CU/2=2CU, 3+2=7-2) or transform the CU in one of the original 
compilations to create equivalence (3CU+4CU=7CU).  

In this paper I argue that these two schemes are of particular importance because they can provide 
valuable insight into how students can engage with the distributive property, quantitative unit 
conservation, and solving linear equation prior to a formal introduction. Moreover, they may be able 
to provide a path to generate these ideas from students’ whole number operating.  
Distributive Operations 

Researchers have described how students exhibit operations needed for the formal distributive 
property in algebra, a(b+c)=ab+ac where a, b, and c are real numbers, in whole number (e.g., 
McClintock et al., 2011; Tzur et al.; 2009) and fractional situations (e.g., Hackenberg & Lee, 2015; 
Hackenberg & Tillema, 2009). In the case of whole numbers, McClintock et al. (2011) demonstrated 
a student’s use of a distributive operation as the student found the difference between two 
multiplicative compilations. For example, when presented with two multiplicative compilations such 
as 19 boxes of candy with 6 pieces of candy in each box and 15 boxes of candy with 6 pieces of 
candy in each box, a student could anticipate the multiplicative structure of each compilation and 
identify 4 boxes of candy as the difference. Implicitly included in their mental operations is the 
underlying quantity of 6 pieces of candy in each box. It is distributed over each set of composite 
units. The student could mentally anticipate the units-coordination in each of the three sets of 
composite units without enacting them. For such a student, 19 groups of 6 minus 15 groups of six is 
the same as 4 groups of 6. 

Distributive operations have also been described in fractional reasoning. Hackenberg & Tillema 
(2009) provided evidence of a student’s distributive operation as they multiplied two fractions. The 
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student produced a fractional amount of each unit and then added them together to produce a 
fractional amount of the sum of the units. For example, when asked to find 1/5 of 4/7 of a mile, a 
student may first partition 4/7 into 4 units of 1/7 and then partition each 1/7 mile into 5 units. In 
doing so, they distribute the 1/5 across the 4 units of 1/7 miles. They can then solve the problem by 
adding 4 copies of 1/5 of 1/7 [1/5(4/7) = 1/5 (1/7+1/7+1/7+1/7)]. Whether the situation is 
multiplicative or fractional, the key is that the student anticipates the result of distributing one unit 
across another. Such an anticipatory scheme is considered to be algebraic because it can be 
reorganized into the formal algebraic idea of the distributive property (Hackenberg & Tillema, 2009). 
Quantitative Unit Conservation 

Olive and Cağlayan (2008) described Quantitative unit conservation as a “coordination of 
coordinated quantities” (p.271). Quantitative unit conservation emphasizes how quantities found in 
numerical or algebraic tasks often not only need to be coordinated locally within an equation, but 
also need to be coordinated across the whole equation. Writing and solving systems of equations, for 
example, requires schemes constituted by complex relationships that also focus on relating the 
underlying quantities in the task. 

Suppose a student is asked to deposit $1,000 between two bank accounts from banks A and B, 
where Bank A provides an interest rate of 4% and bank B has a rate of 6%. If a goal is set to earn 5% 
interest, two equations could be written and then solved via methods for systems of equations. A 
possible equation relating the interest earned from each account to the total interest could be 
.04x+.06y=.05x1,000 (x is the amount invested at bank A and y is the amount invested at bank B). 
However, it is not uncommon for a student to leave off the $1,000 and only write .04x+.06y=.05. The 
cause of this can be linked to quantitative unit conservation. A student may focus on equating the 
percentages instead of considering the global coordination of the quantities and the need to equate 
quantities of money. 
Solving Linear Equations 

Hackenberg describes how the equation ax=b, where a and b are real numbers and x is an unknown, 
can be thought of as a statement of division (2006). Similarly, the equation ax=bc, where a, b, and c 
are real numbers, can also be thought of a statement of division (once b and c are coordinated 
multiplicatively). This is not the only way, though, to conceptualize the equation ax=bc. For the 
purposes of my study, the equation ax=bc, where a, b, and c are whole numbers, can be thought of as 
a statement of equivalence. Many researchers have espoused the need for children to view the equal 
sign as a relational qualifier (e.g., Baroody & Ginsburg, 1983; Kieran, 1981; Knuth, Stephens, 
McNeil, & Alibali, 2006) when solving linear equations in formal algebra. When a QRE scheme is 
formed, a scheme of balance is constructed that can be reorganized into a relational understanding of 
the equal sign.  

Furthermore, in the special case where a, b, and c are whole numbers and x is also a whole number, 
students who do not have fractional reasoning available can still enlist their multiplicative schemes to 
find a solution if they view the equal sign as a relational qualifier. For example, when solving the 
equation 4x7=__x14, a student who sees the equal sign as a unidirectional symbol may write 28 or 
392 in the blank provided because they multiply the 4 and 7 or all three of the numbers. A student 
with a relational scheme of equivalence, in contrast, can reason the left side is equal to 28, which is 
equal to 2 times 14. Moreover, a student with a QRE scheme can reason 4 times 7 is like having 4 
groups with 7 in each group, and doubling the group size from 7 in each group to 14 in each group 
means the number of groups must be halved from 4 groups to 2 groups if equivalence is to be 
maintained. Whether the unknown is symbolized as a blank space or a letter, a QRE scheme provides 
a foundation to create meaning for the operations needed to solve the equation. 
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Conceptual Framework 
Examination of students’ operations and schemes in my study was grounded in the reflection on 

activity-effect relationship (Ref*AER) framework (Simon et al., 2004; Tzur & Simon, 2004). 
Ref*AER is a refinement of constructivist scheme theory (Piaget, 1985; von Glasersfeld, 1995) that 
provides a lens for interpreting how a student forms a new conception through two types of 
reflections on their mental activity (Simon, Tzur, Heinz, & Kinzel, 2004). The definitions of schemes 
and operations are those described by von Glasersfeld (1995). Schemes are comprised of mental 
actions, or operations, and consist of three parts. The first part requires an experiential situation; with 
the caveat that the experiential situation is nothing more than the student’s perception of what is 
offered. As they perceive the situation, the student sets a goal as to what activity to engage in. The 
second and third parts of a scheme are, respectively, the specific mental activity that is called up by 
the experience (and attached goal) and the student’s expected result. 

In addition to equivalence schemes, constructs integral to this study were children’s multiplicative 
reasoning and number schemes. The Explicitly Nested Number Sequence (ENS) (Steffe & Cobb, 
1988) and the Generalized Number Sequence (GNS) (Steffe, 1994) provide a distinction for the 
students’ operations on CUs. In each, the student can make sense of the nested relationship between 
compilations with like units. For example, 7 CUs of 4 (7 baskets of 4 apples) and 6 CUs of 4 (6 
baskets of 4 apples) are embedded within 13 CUs of 4 (13 baskets of 4 apples). Additionally, a 
student with GNS can anticipate a multiplicative structure made up of abstract, iterable units (four 1s 
distributed over each of the 7 CU) prior to operating with it (Steffe, 1994). 

Methodology 
Over two and a half months, a pair of 8th graders, Joe and Javier, participated as a pair in 14 

teaching episodes taught by the author as part of a teaching experiment. The videotaped teaching 
sessions occurred twice per week and lasted 30 to 45 minutes. A witness-researcher was present for 
each of the sessions. Data analysis was conducted during the planning and evaluations of teaching 
sessions and also retrospectively. During the ongoing analysis, critical events were identified, 
discussed, and used to build second-order models (Steffe & Thompson, 2000) of the students’ ways 
of operating. These models informed decisions as to which tasks and prompts to select for 
subsequent episodes. The tasks and prompts had a two-fold purpose: to facilitate the construction of 
new conceptions or to test the anticipatory nature of current conceptions. In the retrospective 
analysis, video segments and students’ written work were used to make inferences about the ways of 
operating of the students and the algebraic character of their operating.  

Joe was selected for the study for two reasons. First, he was attending twice-weekly pull-out 
sessions for math with a special education teacher. This was because he was identified by school 
personnel to be a student with a learning disability in reading who needed additional support with 
areas of math such as solving word problems. The school psychologist identified the Wechsler 
Intelligence Scale for Children (WISC) and the Wechsler Individual Achievement Test Second 
Edition (WIAT-II; Wechsler, 2005) as the two main assessments used by the school to identify 
students with learning disabilities. The second reason Joe was selected was that a base-line 
assessment revealed he was operating with at least an Explicitly Nested Number Sequence (ENS) 
(Steffe & Cobb, 1988). 

Javier was also purposefully selected for two reasons. The first was his identification by school 
personnel to be a student with a mild cognitive disability. He received mathematics instruction in a 
self-contained classroom with a special education teacher. Secondly, Javier was considered to be 
operating with a Tacitly Nested Number Sequence (TNS) (Steffe & Cobb, 1988). Javier did not 
operate at the same level as Joe, but he was paired with Joe and part of the study because he was able 
to multiplicatively coordinate quantities fluently in multiplicative and divisional contexts.  
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Data Excerpts 
In this section I describe how both Joe and Javier enlisted their equivalence schemes to solve a 

particular task. Javier operated on the structure of his additive schemes as he enlisted an RE scheme 
(Woodward, 2016). Joe went further and operated on the structure of his multiplicative schemes as he 
created equivalence using his QRE scheme. During their 10th session on May 15th, Joe and Javier 
were given the task of creating equality between the following two multiplicative compilations: 
Javier buys 19 bags of candy with 6 pieces of candy in each bag. Joe buys 15 bags of candy with 6 
pieces of candy in each bag. An additional constraint of no written work allowed until after they had 
a solution was imposed by the researcher in an attempt to provoke Javier and Joe to move past 
initially coordinating the two quantities in each compilation to produce a total of 1s.  

To solve the task, Joe thought for only a couple of seconds and then wrote: 
 

 
Figure 1: Joe Operates on Composite Units to Create Equivalence. 

 
Unifix cubes were provided to the students in the form of 19 groups comprised of 6 cubes and 15 

groups also comprised of 6 cubes. It was common for the students to be asked to demonstrate their 
solution with cubes after solving the task. At this point I asked Joe about his solution in Figure 1. 
Joe’s response was, “Yeah, I was thinking about bags.” Joe then proceeded to demonstrate his 
solution by moving 2 groups of 6 from the 19 groups to the 15 groups so that each compilation 
became 17 groups of 6. From Joe’s explanation, I inferred he operated on the composite units 
between the compilations. Joe anticipated the multiplicative structures that would be formed if he 
coordinated the two quantities in each compilation. Such anticipation took the form of a re-
presentation to himself of a quantity of composite units with identical sizes from each compilation. 
Joe was operating with iterable composite units (Steffe, 1994), and so the structures of these two 
compilations were essentially the same except that there were more composite units in the larger 
compilation. This understanding enabled Joe to reflect on their relative sizes and to conceptualize the 
smaller compilation as nested in the larger compilation (15 boxes of 6 nested within 19 boxes of 6). 
For Joe, the difference in composite units was a way to describe the difference between the two 
compilations.  

Next Joe enlisted his additive schemes as he found the difference in composite units between the 
two compilations (19-15=4 boxes). His operating to find the difference was predicated on his 
anticipation that the difference in composite units also described the difference between the total 1s. 
This anticipation was available to him because the “4 boxes” signified 4 composite units with 6 
single units in each that could be coordinated to produce a total of 1s if he chose to enact the 
coordination. To create equality, Joe increased the smaller compilation (15 boxes with 6 candies per 
box) by half the difference (4 boxes with 6 candies per box) and decreased the larger total (19 boxes 
with 6 candies per box) by half the difference. Joe had previously enlisted similar operating, but it 
was on 1s and not composite units. He re-distributed half the composite units in the difference (2 
boxes) to the larger compilation (19 boxes) and the other half (2 boxes) to the smaller compilation 
(15 boxes).  

At the end of the task, the students were also asked to write an equation representing their solution. 
Joe’s equation (see Figure 2 below) again provided evidence that the single units (6 cubes per box) 
were still available to him even though he had operated solely on composite units throughout the 
process. 
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Figure 2: Joe Represents His Solution with an Equation. 

 
It was a requirement for the equations to contain the original quantities from the task. This meant 

the 6 pieces of candy in each bag needed to be present. When Joe wrote 19 times 6 and 15 times 6, he 
recognized they represented a quantity of 1s. For the equation to make sense, the two bags from the 
difference that were re-distributed also then had to be a quantity of 1s. Joe accomplished this by 
converting the 2 bags of 6 into 12 pieces of candy. Doing so enabled the equation to make sense 
globally with each representing a quantity of 1s that were equivalent.  

Javier also created equality between the two compilations, but he relied on his prowess with 
multiplying two numbers rather than operations on the multiplicative structures. He first mentally 
produced the totals (19 boxes of candy with 6 pieces of candy per box=114 pieces and 15 boxes of 
candy with 6 pieces of candy per box=90 pieces). Next, he added 10 to 90 and subtracted 10 from 
114. He produced two new totals of 100 and 104. Javier purposely added a quantity of 1s to the 
smaller total (90+10) and subtracted a quantity of 1s from the larger total (104-10). I inferred he 
performed this operation because he anticipated that enacting his additive schemes would bring the 
two totals closer together by increasing the smaller total and decreasing the larger total. Moreover, 
when his transformations did not immediately produce equality, Javier continued operating on the 
smaller quantity to increase it and bring it into balance with the larger quantity. He finished by 
adding 4 more to 100 so that both totals were now equal to 104. In other sessions, Javier 
demonstrated that he could continue with more successive operations on both quantities if necessary.  

Javier operated on two levels of units, the composite units and the units they contained. Moreover, 
the composite units were not abstract in nature. This meant he could not anticipate the results of 
coordinating the units or the multiplicative structures they would produce. Thus, he had no 
opportunity to operate on or with the multiplicative structures. Even when given compilations with 
large numbers and constrained to mental calculations, Javier computed the totals first and then 
operated on 1s. 

Discussion 
In this section I describe how I considered Joe’s schemes to be algebraic, while Javier’s schemes 

were algebraic to a lesser degree.  
Distributive Operations 

Joe operated on CUs as he subtracted 19 boxes of candy minus 15 boxes of candy to yield 4 boxes 
of candy. Joe mentally anticipated the units-coordination in each of the three sets of CUs involved in 
the computation as the unit rate of 6 pieces of candy in each box was distributed over each set of 
CUs. Hence, Joe’s mental operations implicitly included the underlying quantity of 6 pieces of candy 
in each box. He reasoned that 19 groups of 6 minus 15 groups of 6 is the same as 4 groups of 6. I 
would symbolize this distributive reasoning as 19x6-15x6=(19-15)x6=4x6. Additionally, to produce 
equality he added two boxes to the smaller compilation and subtracted two boxes from the larger 
compilation. His reasoning was that 19 groups of 6 minus 2 groups of 6 is the same as 15 groups of 6 
plus 2 groups of 6. This reasoning can be symbolized as 19x6-2x6=(19-2)x6=15x6+2x6=(15+2)x6. 
Again, this representation illustrates the distributive property as 6 is distributed across the quantities. 

Joe operated on and with the multiplicative structures of the two compilations provided. His 
reasoning took on an algebraic character as he enlisted his additive schemes to operate on the 
anticipated multiplicative structure as he found the difference in composite units between the two 
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compilations (19-15=4 boxes). To create equality, Joe also inserted the multiplicative structure of the 
compilations and the difference into the structure of his equality scheme. The multiplicative structure 
was readily available to him prior to operating because of his GNS. Joe’s reasoning was algebraic 
because he operated on the structure of his equality scheme with the multiplicative structures of the 
difference (as quantities of composite units) and the existing compilations. 
Quantitative Unit Conservation 

Joe also exhibited quantitative unit conservation. He demonstrated such reasoning with his equation 
(see figure 1) and when he described his solution to the ask. After Joe grabbed two groups of cubes 
from the larger compilation and moved them to the smaller one, he stated, “I take these 2, and then I 
give them to me. And then they’d be equal. But I just can’t say 2. I have to label. So I just put 12.” 
Joe’s explanation indicated that he coordinated quantities within the equation and across the whole 
equation when generating relationships between the quantities. The key coordinating quantities 
within an equation and across the whole equation was anticipating the multiplicative structure and 
operating on the composite units. Joe operated on the composite units (19-2 and 15+2) within the 
equation. At the same time, he considered the relationship of the multiplicatively coordinated 
quantities that also contained the unit rate (6 cubes per tower) across the equation. As he 
demonstrated his solution with the concrete objects (Unifix cubes), the 1s that comprised the 
composite units were present and available when he needed to include them in his equation. Joe’s 
explanation of his use of the word “two” indicated that he was aware of the need to coordinate the 
quantities across the equation. Joe reasoned that 19·6-2 was not equal to 15·6+2 because the 
underlying total of 1s was not equal. As he equated the composite units, he also recognized the totals 
in 1s needed to be equal. His reasoning was algebraic as it formed the cognitive root of quantitative 
unit conservation.  
Solving Linear Equations 

The relational equivalence schemes constructed by both Joe and Javier can serve as a basis for 
developing a relational understanding of the equal sign. In the discussion above, I illustrated how 
they both enlisted relational equivalence schemes as they operated on either 1s or composite units 
simultaneously. This can be contrasted with a student who only operates on one quantity at a time 
and creates equality by transforming one quantity into the other, a unidirectional scheme of 
equivalence. 

When Javier initially operated on both quantities simultaneously, he purposely added a quantity of 
1s to the smaller total (90+10) and subtracted a quantity of 1s from the larger total (104-10). This 
operation was performed because he anticipated that enacting his additive schemes would bring the 
two totals closer together by increasing the smaller total and decreasing the larger total. Moreover, 
when his transformations did not immediately produce equality, Javier continued operating on the 
smaller quantity to increase it and bring it into balance with the larger quantity. Javier also 
demonstrated that he was able to do successive operations on both quantities if necessary.  

Javier’s reasoning was algebraic because he operated with the structure of his additive scheme on 
the structure of his equality scheme as he operated on both quantities simultaneously. Moreover, he 
anticipated that the results of his operations could be used for further operating. As Javier created 
equality via successively smaller transformations, he anticipated a relationship between these 
transformations and a single, larger transformation. He provided evidence for this anticipation by 
describing adding 14 to 90 rather than adding 10 and 4. Adding 14 was a single transformation that 
was a sum of the two smaller transformations of adding 10 and adding 4. 

Furthermore, I suggest their RE and QRE schemes form the cognitive roots for symbolizing and 
solving linear equations of the form ab=xc (where a, b, and c are constants and x is an unknown). 
Javier could use his relational scheme in conjunction with his operations on tacit composite units to 
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solve ax=bc. He could multiplicatively produce the total from ab, next guess a value for x, then 
multiplicatively produce the total from xc to check to see if matches the total from ab. If the totals do 
not match, he could repeat the process. Without operating with the multiplicative structure of ab and 
xc, this would be the primary method available to Javier.  

I also suggest Joe could operate with the multiplicative structure of ab and xc to solve the equation. 
He could anticipate the multiplicative coordination of the quantities a and b. He could then reflect on 
the relationship of this coordination to the multiplicative coordination of quantities x and c, even 
though x was yet to be determined. He could then solve for x via reasoning about multiplicative 
relationships between the multiplicative structures of the compilations ab and xc. For example, if c 
was twice as large as b, Joe could reason that x must be half as large as a. The key differences 
between his reasoning and Javier’s would be his operations with abstract composite units and his 
anticipation of the multiplicative structure.  

Conclusion 
This research demonstrates how the algebraic reasoning of middle school students with learning 

disabilities is afforded and constrained by their whole number operations. It also provides examples 
of how students with learning disabilities can operate on and with the structure of their schemes 
while engaging in complex algebraic reasoning. Finally, this research also supports Hackenberg’s 
reorganization hypothesis (2016) for algebraic reasoning within the context of whole number 
operations. 
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“H IS NOT A NUMBER!” EXAMINING HOW NUMBER INFLUENCES VARIABLE 
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Students’ conceptions of variable do not always support normative interpretations of equations, and 
research links limited conceptions of variable to operations on composite units (i.e., units of units). 
This study examines how one ninth grade Algebra 1 student, Alex’s, concept of number is related to 
his conceptions of variables when writing and interpreting linear equations and expressions. Alex 
had constructed an advanced tacitly nested number sequence (aTNS). An aTNS is the third stage out 
of five in the number sequence hierarchy, and indicates that he operates on composite units but does 
not reason multiplicatively. Analysis links the cognitive structures that define Alex’s aTNS to his 
applied conceptions of variable, and finds that non-normative conceptions of variable manifest due 
to limitations operating on composite units. Being constrained to additive reasoning limited Alex’s 
use of variables in multiplicative situations. 

Keywords: Algebra and Algebraic Thinking; Number Concepts and Operations 

Understanding how symbols are used in mathematics is critical to students’ success, but algebra 
curriculum tends to focus more on manipulating symbols than it does on the meaning of symbols 
(Sherman, Walkington, & Howell, 2016). Letters are particularly difficult for students (Bush & Karp, 
2013) because they can represent one number (e.g., e); one unknown quantity (as when solving for 
x); a “pattern generalizer” (e.g., representing odd numbers as 2! + 1; Usiskin, 1988, p. 9); or a 
varying quantity (e.g., ! = ! ∙ !; Baroody, 1998). Students must discern these four uses of letters in 
algebra in order to make sense of algebraic expressions and equations. 

With these four meanings in mind, it is unsurprising that variable misconceptions have been well 
documented. Knuth, Alibali, McNeil, Weinberg, and Stephens (2005) categorized the ways in which 
students in grades six through eight conceived of variables. The categories included conceiving of 
variables as representing multiple values, a specific value, or an object. In this study, the percentage 
of students who responded that n represents multiple values in an expression like 3n increased from 
less than 50% in sixth grade to more than 75% in eighth grade.  

MacGregor and Stacey (1997) similarly documented higher instances of variable misconceptions in 
later years of schooling (years 8-10) compared to earlier (year 7). Stacey and MacGregor’s (1997) 
research also generated categories for students’ misconceptions, including: abbreviated word, 
alphabetical value, numerical value, use of different letters, letter ignored, labels, variable equals one, 
and general referent. They found that interference from new learning  and poor instruction may 
account for increased variable misconceptions in older students. 

Hackenberg, Jones, Eker, and Creager (2017) have studied the mental structures that support 
students’ conception of variable. They found that operating on composite units (i.e., units of units) 
supports students’ conception of variable as an unknown because a quantitative unknown consists of 
a composite unit containing an unknown number of units of one. This directly ties students’ 
conceptions of variable to their operations on composite units. Zwanch (2019, 2020) also found that 
operations on composite units and multiplicative reasoning are related to students’ interpretations of 
linear equations. The present study examines how an Algebra 1 student’s conceptions of variable are 
related to his concept of number.  
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Theoretical Framework 
Students’ units construction and coordination (Ulrich, 2015, 2016) specifies that the levels of 

complexity with which they interpret and operate on number is related to their ability to create 
different levels of units. These levels of units inform students’ number sequences (Steffe & Olive, 
2010; Ulrich, 2016b), which are the “recognition template of a numerical counting scheme. … 
[C]hildren use their number sequences to provide meaning for number words” (Steffe & Olive, 2010, 
p. 27). 
Tacitly Nested Number Sequence (TNS) 

The TNS is the second of five in the number sequence hierarchy (Steffe & Olive, 2010). TNS 
students construct composite units in mental activity. To construct composite units in activity means 
that TNS students interpret a number word, such as “seven,” as seven individual units, or counting 
acts (Ulrich, 2015). Thus, “seven” is thought of as the seven numbers from one through seven, or 
from 34 through 40, for instance. TNS students can engage in mental activity to construct a 
composite unit of seven, but can neither operate nor reflect on the composite unit.  
Advanced Tacitly Nested Number Sequence (aTNS) 

In the number sequences, an aTNS is the third stage out of five, and it is characterized by 
assimilatory composite units (Ulrich, 2016b). An assimilatory composite unit allows students to 
interpret a number word, such as “seven,” as a single unit containing seven individual units of one 
(i.e., seven is one unit of seven units), and supports operations on composite units (Ulrich, 2016a). 
This means that aTNS students can construct a third level of units in mental activity (e.g., 21 as a unit 
containing three units of seven). Following activity, the third level of units decays leaving aTNS 
students to reflect on 21 as a composite unit containing 21 units of 1. An assimilatory composite unit 
advantages aTNS students’ numerical reasoning over TNS students, but aTNS students remain 
limited to additive reasoning. 
Explicitly Nested Number Sequence (ENS) 

An ENS is the fourth stage in the number sequence framework (Ulrich, 2016b; c.f. Steffe & Olive, 
2010). Like aTNS students, ENS students also assimilate with composite units and can construct 
three levels of units in mental activity. However, ENS students have also constructed multiplicative 
reasoning that supports them in thinking of seven, for instance, as a unit that is seven times the size 
of a unit of one. 

This research study examines an aTNS student’s conception of variable. Specifically, this research 
asks: (1) What concepts of variable does the student apply when writing and interpreting linear 
equations and expressions? and (2) In what ways does operating on composite units but not reasoning 
multiplicatively support or limit his concept of variable? 

Methods 
This study was conducted in a middle and high school in the rural southeastern United States. 326 

students across grades six through nine were given a survey. The purpose of the survey was to 
attribute a number sequence to each student (Ulrich & Wilkins, 2017). Based on the number 
sequences attributed by survey analysis, 18 students participated in semi-structured clinical 
interviews. Each student was interviewed on two days, for approximately 45 minutes each day. The 
first portion of the interviews confirmed the students’ number sequence. Questions were taken from 
the methods of Ulrich and Wilkins (2017). The next portion of the interviews characterized student’s 
algebraic reasoning. Tasks will be described in the results.  

The participant reported here was a ninth grade, Algebra 1 Part 2 student named Alex (a 
pseudonym). Algebra 1 Parts 1 and 2 was a two-semester course that covered the content of high 
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school algebra. Alex was a tenacious problem solver and was quick to explain his thinking. Alex was 
identified as an aTNS student by the survey. 

Results & Analysis 
Alex reasoned about a variable as an object on four of the 11 algebra tasks. One such task asked 

him to write an equation to represent the following situation: “This week the soccer team scored 
three fewer points than they did last week.” In this situation, he was told that last week’s and this 
week’s scores were unknown. Alex wrote !" − 3, and this explanation followed:  

Alex: Last week minus three. … Last week minus three equals fewer? I don’t know. Fewer points? … 
[If] last week they scored 10 and this week they scored less than three, that would be, like, seven. 

Interviewer: … Can we put a variable on that side of the equation? 
Alex: Yeah. 7p for points. (Writes !" − 3 = 7!) 
I: So does that work, then, if they scored, let’s say five points last week? 
Alex: … Five minus three equals two. Ok, think. It’d be two points this week. (Writes !" − 3 = 2! 

on the next line.) 

Alex was able to conceive of LW, which stood for last week’s score, as an unknown quantity in the 
context of the expression !" − 3. Consistent with Hackenberg et al.’s (2017) conclusion that an 
unknown comprises a composite unit, Alex’s aTNS supported his conception of LW as a composite 
unit containing an unknown number of units of one. His aTNS also supported additive operations on 
LW, evidenced by the expression !" − 3. 

Alex could not, however, think of !" − 3 as an entity equal to a second unknown. He said that it 
equaled fewer points. To conceive of !" − 3 in relation to this week’s score, Alex needed to 
construct a three-level unit structure. This was supported by Alex’s additive operations on 
composites, however, following the mental operations, the third level of units decayed leaving Alex 
to reflect only on !" − 3 as representing “fewer points.” Then, Alex initiated a numerical example 
in which !" = 10. Substituting specific numbers for unknowns decreased the complexity of the unit 
structure, allowing Alex to think about !" − 3 as 10 − 3, which he could equate to seven. When 
asked to incorporate a second variable, however, he said, “7p for points.” This is evidence of his 
conception of p as a label on 7, rather than an unknown.  

Finally, the interviewer attempted to perturb Alex’s thinking by asking if the equation !" − 3 =
7! would work if the team scored five points last week. Alex was not perturbed, however, and wrote 
a second equation rather than recognizing the limitation of the equation he had written. This is 
evidence that conceiving of the additive relationship between two unknowns is beyond the limits of 
Alex’s algebraic reasoning. His aTNS supported conceiving of one variable as an unknown, and 
supported additive operations on the unknown; it did not support his normative inclusion of a second 
unknown into the equation because an aTNS does not support reflection on a third level of units. 

At another point during the interview, Alex was asked to represent the weight of a !!" share of a 
candy bar, given that the candy bar weighed h ounces (adapted from Hackenberg & Lee, 2015). Alex 
determined two numerical examples (24:1 and 48:2), but he could not think about h as the unknown 
weight of the candy bar. 

Interviewer: [Can you] represent the weight of just your piece if the whole thing weighs h? 
Alex: h is not a number! 
Interviewer: (Surprised) You said, “h is not a number?”  
Alex: Yeah! That’s not a number!  
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Later, Alex redirected the discussion back to h. When asked if he understood the task, he said, “Yes 
and no. The ‘no’ is how you got a number from a letter. … I don’t think you can say that. You can’t 
say that a candy bar equals h ounces, cause it’s not a number.” 

The candy bar task is different because it required Alex to conceive of the multiplicative 
relationship between two unknowns. In a multiplicative context he could not conceive of h as an 
unknown because he could not construct and reflect on the three-level unit structure representing the 
relationship between the whole candy bar and his piece. This is a limitation of his aTNS that 
manifested differently on the multiplicative task than on the additive tasks. Rather than Alex 
conceiving of the variable as an object, he insisted that the variable not be present at all, and that the 
relationship can only be represented numerically. Reasoning about numerical examples instead of 
unknowns reduced the complexity of the unit structure, thereby allowing Alex to construct and 
reflect on 24 units of 1, rather than h as 24 units of an unknown number of ones. 

Discussion 
Alex is a ninth grade aTNS student in the second semester of an algebra class. Regardless, he could 

not write one-step equations to represent additive or multiplicative relationships. The first research 
question asked what concepts of variable Alex demonstrated. When writing additive expressions, 
Alex reasoned about a variable as an unknown, but when asked to reason about the relationship 
between the expression !" − 3 and this week’s score, Alex reverted to numerical examples and 
interpreted variables as objects. 

The inability to establish the relationship between two variables when writing an equation is a 
persistent difficulty for high school algebra students (Bush & Karp, 2013), and the results of the 
second research question provide a theoretical lens to understand the complexity that contributes to 
this difficulty for aTNS students. aTNS students assimilate with composite units and can perform 
additive mental operations on composite units. Such operations supported Alex’s expression writing. 
However, the results of the mental operations decay following activity. This manifested behaviorally 
in Alex’s inability to reflect on the relationship between the expression and the second unknown. To 
compensate for this limitation, Alex reverted to numerical examples, and interpreted the variables in 
his equations as labels on numbers. 

On the candy bar task, Alex did not introduce a variable at all. Hackenberg and Lee (2015) found 
that students who assimilate with composite units and reason multiplicatively may represent the 
unknown weight of the smaller piece of the candy bar as !!". Alex was not able to write !!", and 
concluded that “h is not a number!” This illustrates the manner by which aTNS students, who 
assimilate with composite units and are constrained to additive reasoning, may be more limited in 
comparison to their peers who assimilate with composite units and reason multiplicatively (i.e., ENS 
students). 

On the tasks presented here, Alex reasoned with non-normative concepts of variables or did not 
include variables. These results bring to light the importance of studying not only students’ 
operations on composite units as prerequisite cognitive structures to their algebraic reasoning, but 
also their construction of additive versus multiplicative reasoning. Furthermore, Alex’s solutions 
demonstrate that he is capable of reasoning algebraically to some extent. Thus, research should 
continue to examine the ways in which algebra instruction can productively support aTNS students’ 
concept of variable and their additive and multiplicative operations on variables. 
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Mathematics teachers use many resources to prepare and teach their classes.  Official syllabi or 
academic texts might be a part of them, but as said by Kajander & Lovric (2009) “most teachers still 
use the textbooks as their primary resource” (p. 173). In this regard, analysing textbooks is important 
not only for identifying the author’s meaning  on the different mathematical objects but also, to be 
aware of the possible conflicts that may araise while using them. This study identifies the promoted 
epistemic and teaching paths, and possible semiotic conflicts, of a lesson on linear equations in the 
textbook Matemáticas 1 by Block, D., García, S., & Balbuena (2018).  

The Ontosemiotic Approach (OSA) (Godino, Batanero, & Font, 2007) proposes types of primary 
mathematical objects: language, situations, concepts, propositions, procedures, and arguments. In this 
regard, the epistemic path is defined as the distribution of these six components along the didactic 
episode. From this perspective, the teaching path describes the actions that the teacher (or, in this 
case, the textbook) is doing: motivating, assigning, regulating, or evaluating.  Also, a semiotic 
conflict is “any disparity or difference of interpretation between the meaning ascribed to an 
expression by two subjects” (p. 133).  

This study analyzes lessons where linear equations are studied, which correspond to sequences 5 
and 12. Each sequence is divided into 4 and 3 lessons, respectivly, and, at the end of each sequence, 
there is a section titled “math lab”, where review activities are proposed.  

In every unit of analysis, we determine the primary objects that are studied and the order in which 
they appear, giving as a result the epistemic path promoted by the textbook. Also, we identify 
possible semiotic conflicts and the teaching path promoted in the study of linear equations. 

In this poster we will share findings adressing the following objectives:  
a) Identify the primary objects studied in each unit of analysis. 
b) Describe the epistemic path promoted by the textbook.  
c) Identify possible semiotic conflicts in each unit of analysis.  
d) Describe the teaching path promoted by the textbook.  

All of them, in the context of the study of linear equations in the aforementioned textbook.  
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The teaching proposal resulting from the study is based on Sadovsky´s (2005) modeling 
perspective. According to this, mathematical modeling refers to a process that integrates knowledge 
of a diverse nature and encompasses mathematical tasks, which is divided into several parts: 
recognizing a problematic, choosing a theory to deal with it and producing new knowledge about it; 
perspective in which the role of context in modeling problems is highlighted. Likewise, the use of 
digital technology (GeoGebra) was incorporated into the proposal from the standpoint that it allows 
observing and establishing, in a simpler way, relationships between the various elements of a 
problem, compared to working only with pencil and paper. 

The research question was as follows: What role does the context of problems, the use of 
technology and teacher interventions play in promoting students' mathematical modeling work? To 
answer this, a didactic sequence was designed on problems using algebraic language in mathematical 
modeling supported by digital technology, which is based on Segal and Giuliani´s (2008) proposal. A 
previous analysis was made, then a pilot survey was implemented, based on this, the problems were 
adjusted. 

The sequence was implemented to a group of 22 senior students in area I (physical-mathematics) of 
the National Preparatory School No. 8 in Mexico City. The sequence consisted of three problems, 
distributed in three sessions of 50 minutes (distributed in two days). Video recordings were used to 
record group work, teacher interventions and their interactions with students; also, a pair of students 
was recorded each day. Students were given sheets with the problems and white sheets so they can 
reflect their work. In general, the activities were designed to be work in pairs and with support of 
technology: two applets designed in GeoGebra for problems 2 and 3. 

In general, the roles played by the context, the use of technology and the teacher's interventions to 
promote the mathematical work of the students were appreciated. The context favored the 
evocation/establishment of relationships between the elements of the problems and the appropriation 
of the context of the problems. The use of technology allowed them to analyze the problems (observe 
relevant characteristics for the resolution) and obtain approximations of the answers. The teacher's 
interventions helped students evoke certain knowledge related to the problems, which allowed them 
to solve them. In this way, it was observed how these elements (context, use of technology and 
interventions) were intertwined and favored the mathematical work of the students. 
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La propuesta de enseñanza, producto del estudio realizado, está sustentada en la perspectiva de 
modelación de Sadovsky (2005). De acuerdo con ésta la modelación/modelización matemática se 
refiere a un proceso que integra conocimientos de diversa naturaleza y que abarca el quehacer 
matemático, el cual se encuentra dividido en varias partes: reconocer una problemática, elegir una 
teoría para tratarla y producir conocimiento nuevo sobre dicha problemática; perspectiva en la que se 
resalta el papel del contexto en los problemas de modelación. Asimismo, se incorporó en la propuesta 
el uso de tecnología digital (GeoGebra) bajo la postura de que ésta permite observar y establecer, de 
manera más sencilla, relaciones entre los diversos elementos de un problema, a comparación de 
trabajar únicamente con lápiz y papel. 

La pregunta de investigación fue la siguiente: ¿qué papel juegan el contexto de los problemas, el 
uso de la tecnología y las intervenciones del docente para promover el trabajo de modelización 
matemática de los estudiantes? Para contestarla se diseñó una secuencia didáctica de problemas sobre 
el uso del lenguaje algebraico en la modelización matemática apoyada en tecnología digital, la cual 
se basó en la propuesta de Segal y Giuliani (2008). Asimismo, se realizaron un análisis previo y, 
luego, un levantamiento piloto, a partir de los cuales se ajustaron los problemas. 

La secuencia se implementó en un grupo de 22 estudiantes de sexto año de área I (físico-
matemáticas) de la Escuela Nacional Preparatoria No 8 en la Ciudad de México. Constó de tres 
problemas distribuidos en tres sesiones de 50 minutos (distribuidas a su vez en dos días). Se usó 
video para registrar el trabajo grupal, las intervenciones del docente y sus interacciones con los 
estudiantes; asimismo se grabó a una pareja de estudiantes cada día. Se dieron hojas con los 
problemas y hojas blancas para que los estudiantes reflejaran su trabajo de manera escrita. Las 
actividades fueron diseñadas para trabajarse en parejas y con apoyo de tecnología: dos applets 
diseñados en GeoGebra para los problemas 2 y 3. 

 En general, se apreciaron los papeles que jugaron el contexto, el uso de la tecnología y las 
intervenciones del docente para promover el trabajo matemático de los estudiantes. El contexto 
favoreció la evocación/establecimiento de relaciones entre los elementos de los problemas y la 
apropiación del contexto de los problemas. El uso de la tecnología les permitió analizar los 
problemas (observar características relevantes para la resolución) y obtener aproximaciones de las 
respuestas. Las intervenciones del docente ayudaron a los estudiantes en la evocación de ciertos 
conocimientos relativos a los problemas, los cuales les permitieron resolverlos. De esta forma se 
observó cómo dichos elementos (contexto, uso de tecnología e intervenciones) se compenetraron y 
favorecieron el trabajo matemático de los estudiantes. 

Referencias 
Sadovsky, P. (2005). Enseñar Matemática hoy. Miradas, sentidos y desafíos. Buenos Aires, Argentina: Editorial 

Libros del Zorzal. 
Segal, S., & Giuliani, D. (2008). Modelización Matemática en el aula. Posibilidades y necesidades. Buenos Aires, 

Argentina: Editorial Libros del Zorzal.  



Algebra,	Algebraic	Thinking	and	Number	Concepts	

In: Sacristán, A.I., Cortés-Zavala, J.C. & Ruiz-Arias, P.M. (Eds.). (2020). Mathematics Education Across Cultures: 
Proceedings of the 42nd Meeting of the North American Chapter of the International Group for the Psychology of 
Mathematics Education, Mexico. Cinvestav / AMIUTEM / PME-NA. https:/doi.org/10.51272/pmena.42.2020 

380	

PARAMETERS AND SYSTEM OF LINEAR EQUATIONS 

PARÁMETROS EN SISTEMAS DE ECUACIONES LINEALES 

Luis Enrique Hernández  
Centre for Research and Advanced Studies 

luisenri.hernadez@cinvestav.mx	

Claudia Acuña-Soto  
Centre for Research and Advanced Studies 

claudiamargarita_as@hotmail.com 

Keywords: Algebra and Algebraic, Thinking High School Education, System of linear equations  

After a long process of learning  algebraic procedures, solving systems of linear equations (SLE) is 
often confused with obtaining a numerical solution, which hinders the idea of solutions of a 
parametric nature. Therefore,  it is important to address the idea of solution in a SLE. 

Proper interpretation of infinite solutions creates problems. Even  when the solution exists and is 
unique, it may not be valid. In these cases, the use of parameters allow us to obtain valid solutions, 
depending on the conditions of the problem (Liern, 2018). However, this possibility is not attended to 
in classrooms, even though it is relatively simple to come about this situation;or example, an SLE 
with two equations and three unknowns. 

This ongoing research suggests that once we have the resources to solve a square SLE (2x2 or 3x3) 
we can use a SLE that requires the use of parameters to calculate the solutions. In addition, we can 
compare the effect that these have on the original SLE and the graphs of the solution set. 

Considering parameters as emerging variables associated with the constrains of associated 
problems, allows high school students to explore situations where, even though they have the 
solution, theycan modify it depending on the constrains, which helps students realize  that parameters 
are a certain type of variable that modifies other variables and are manageable.  

To carry out this research, we will take the point of view of the Theory of Objectivation (Radford, 
2020) using  computer software as a symbolic tool to solve SLE with two equations and three 
unknowns. This would promote the idea of a parameter as a variable, that in particular, makes others 
vary;  allowing its interpretation both graphically and algebraically in its respective domain of 
solution to take the most appropriate decision making of the problems posed. 
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Tras un largo proceso de aprendizaje de los procedimientos algebraicos, resolver sistemas de 
ecuaciones lineales (SEL) se confunde con frecuencia con la obtención de una solución numérica, lo 
que obstaculiza la idea de soluciones generales de naturaleza paramétrica, por lo que es de 
importancia en abordar la idea de solución en un SEL. 

La interpretación adecuada de las soluciones infinitas genera problemas, pero incluso cuando la 
solución existe y es única, ésta puede no ser válida. En estos casos el recurso del uso de parámetros 
permite obtener soluciones válidas dependiendo de las condiciones del problema, Liern (2018). Sin 
embargo, esta posibilidad no es atendida en los salones de clase, pese a que es relativamente simple 
encontrar esta situación, por ejemplo, cuando tenemos un SEL con dos ecuaciones y tres incógnitas.  

Esta investigación en curso plantea que una vez que se sabe cómo resolver un SEL cuadrado (2x2 o 
3x3) de manera tradicional, podemos usar un SEL no cuadrados que requieren del uso de parámetros 
para calcular las soluciones y resolverlos, además de la ventaja de analizar el efecto que tienen éstos 
en el SEL original, así como el análisis de las gráficas del conjunto solución. 

El considerar los parámetros como variables emergentes asociadas a las restricciones de los 
problemas asociados, permitiría a los estudiantes de preparatoria explorar situaciones en las que, si 
bien se tiene la solución, ésta puede modificarse dependiendo de las restricciones y lo utilizado; esto 
contribuye a que el estudiante se dé cuenta de la idea de que los parámetros son cierto tipo de 
variables que modifican otras variables y que podemos manejar. 

Para llevar a cabo esta investigación tomaremos el punto de vista de la Teoría de la Objetivación 
(Radford, 2020) usando un software de computadora como herramienta simbólica que ponga en 
juego los saberes necesarios para resolver SEL de dos ecuaciones y tres incógnitas. Esto motivaría el 
uso de parámetros, lo que propicia el encuentro con la idea de parámetro como una variable que, en 
particular,  hace variar a otras; también permite su interpretación, tanto gráfica como 
algebraicamente, en un espacio solución para la toma de decisiones más adecuadas de los problemas 
planteados.  
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Algebra’s role as gatekeeper is well documented in helping students build a solid foundation early is 
important (Stephens, 2005). For this research study, we explored: What misconceptions do 
elementary students display when generalizing patterns using variables to justify a hypothesis? 

We used communities of practice (Wenger, 1998) as an overarching theoretical framework. We 
sought to engage the students in a community that would be similar to how mathematicians practice 
mathematics. We used this theory as a way to engage the students in joint enterprise and mutual 
engagement as a way to hold the participants accountable for their goals of generalizing a conjecture 
through the use of variables. 

Two students, one in Grade 4 and one in Grade 5, participated in three semi-structured, task-based 
interviews (Goldin, 2000). Each interview lasted approximately sixty minutes. During the interviews, 
students worked on the unsolved mathematical task called The Graceful Tree Conjecture. They 
examined graceful labelings of four different classes of tree graphs including: Stars, Paths, 
Caterpillars, and Comets. We encouraged the students to develop a justification or generalize a 
pattern for each of the classes to document that all graphs in the given class could be labeled 
gracefully. All of the students’ work was collected and the interviews were video recorded. All the 
interviews were transcribed and analyzed. For analysis, we documented each instance where students 
attempted to use a variable to create a generalized pattern or discussed the use or meaning of a 
variable. 

When attempting to create a generalization the students displayed several misconceptions about 
variables. First, when discussing where the biggest number for would be, they were able to label it as 
BN. Later, one student said that if it was the biggest number it would have to be infinity rather than 
the largest number in the set. Second, when attempting to label one less than the biggest number they 
wanted to label it as SB for second biggest. We pushed them to further their thinking and were 
hoping for a label of b-1. One student said they could label it as A or negative A because that is one 
less than B. The other student said it would be E because it is like half of the biggest and if you cut 
the humps off B it would become E, so E is half of B. Third, when discussing if the smallest number 
was one (which we always used one as the smallest number in our set), one student said the smallest 
number is not one, but should be -9999…. These misconceptions need to be addressed for students to 
later be successful in algebra courses.  
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Usiskin (1999) described four conceptions of algebra: Algebra as Generalized Arithmetic, Algebra 
as a Study of Procedures for Solving Certain Kinds of Problems, Algebra as the Study of 
Relationships among Quantities, and Algebra as the Study of Structures. The Algebra as the Study of 
Relationships among Quantities conception relates to the NCTM (2000) Algebra Standard 
expectation that students “understand patterns, relations, and functions” (p. 37). Algebraic thinking 
“includes being able to think about functions and how they work, and to think about the impact that a 
system’s structure has on calculations” (Driscoll, 1999, p. 1). Analyzing students’ algebraic thinking 
with patterning tasks in two variables allows researchers to understand how students think about 
functions, how they work, and how the representation provided in the question impacts student 
thinking about the structure of the problem. In this study, one elementary student solved patterning 
problems in two variables with different representations during a task-based interview (Goldin, 
2000). 

Preliminary findings suggest that this student used different reasoning strategies when given pattern 
problems in two different representations. On a task consisting of a visual pattern of figures growing 
in an arithmetic sequence, the student visualized how the growth occurred in each successive figure. 
The student used the rate of growth to compute the size of the figure at future iterations. In the 
context of this task, the evidence suggests that the student was thinking covariationally (Confrey & 
Smith, 1994) about the relationship between the increase in figure size and increase in figure number. 

When presented with a task showing a linear relationship between values in an input-output table of 
numbers, the student was asked to determine the output value when the input value was 38. Upon 
receiving this question, the student intensely looked at the problem before stating: 

Oh, I see it now. Okay, so I see if you multiply this by – each number [points at all the 
numbers in the left input column] by two and add 1, that’s the number on this side [points at 
all the numbers in the right output column]. So take 15 for example. 15 times 2 is 30, plus 1 
is 31 and that is in the out. [15 and 31 correspond to each other in the table. 15 being in the 
input column and 31 being in the output column]. 

The student used this mapping between the numbers in the input column and the output column to 
determine 38 corresponds to 77. In this context, the student used a correspondence approach 
(Confrey & Smith, 1994) to determine the output when the input was 38. 

In conclusion, both tasks contained the same structure as linear functions. However, the student 
thought differently about how the functions “worked” when given a visual pattern of growth as 
opposed to when given an input-output table. This student showed the capacity to reason through 
covariation and correspondence while the context of the problem may have influenced the approach. 
The poster presentation will provide evidence and vignettes from the task-based interview. 
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Fischbein (1987) describes intuition as a type of cognition that allows attributing intrinsic certainty 
to knowledge in order to develop a reasoning endeavor. An intuitive knowledge is not necessarily 
grounded on a logical reasoning. It was desired to observe if third grade students have intuitive 
notions about proportion even if they hadn’t received formal instruction on this subject, and if these 
ideas prevailed on sixth grade students that had already received this lesson. To address this purpose, 
we suggested the following research question: which strategies are used by third and sixth grade 
students to solve ratio comparation problems?    

Grounded theory, that was used to elaborate the current research, is a qualitative methodology that 
proposes to build theory from data. One of the analytic tools proposed by this theory is constant 
comparisons which consist in coding, grouping and categorizing data (Corbin & Strauss, 2014). The 
work was developed with 33 third grade and 25 sixth grade students that went to the same elementary 
school. Four ratio comparison problems like the next one composed the instrument: Pedro blows up 
16 balloons in 8 minutes, Juan blows up 20 balloons in 40 minutes, which child blows up more 
balloons in less time?  

 
Table 1: Approaches and Strategies Used by Students 

Approach Description Strategies %3rd %6th 
1. Meaningless 
 

Use of sums and products 
with no sense  

Algorithmic 1 19 

2. Absolute Comparison of only one of 
two variables (e.g. balloons 

with balloons) 

Univocal comparison 79 6 

3. Comparative Comparison of all the 
variables by different 

methods without achieving 
the correct result  

Equivalences chart 
Incipient notion of 

proportionality 

0 
16 

8 
0 

4. Proportional   Students get correct results 
by conventional methods 

Constant of proportionality 
Equivalent ratio 
Unitary value 

0 
4 
0 

17 
28 
22 

 
In order to classify the results, it was considered that each element of the proportional relation was a 

variable: in this case balloons and minutes were two different variables. The students strategies were 
categorized into four different mutual exclusive bottom-up approaches. The first approach was 
considered the furthest from proportional reasoning (see Table 1).  

Some questions arise from this research. Why was there a major proportion of sixth grade students 
that answered using algorithms if third grade students already presented intuitive responses with 
incipient notions of proportionality? How can teaching canalize and make the students intuitions 
contribute to achieve proportional reasoning? 
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Fischbein (1987) describe la intuición como un tipo de cognición que permite atribuir certeza 
intrínseca a un conocimiento, y a partir de éste, desarrollar un trabajo de razonamiento. Un 
conomiento intuitivo no necesariamente se fundamenta en un razonamiento lógico. Se pretendía 
observar si los estudiantes de tercero tenían nociones intuitivas acerca de la proporcionalidad incluso 
sin haber recibido instrucción formal en esta materia, y si estas ideas prevalecían en los estudiantes 
de sexto quienes ya habían recibido esta instrucción. Con este objetivo se propone la siguiente 
pregunta de investigación: ¿qué estrategias utilizan los estudiantes de tercer y sexto grado de 
primaria para resolver problemas de comparación de razones?   

La teoría fundamentada, que se utilizó para elaborar la presente investigación, es una metodología 
cualitativa que propone construir teoría a partir de los datos. Una de las herramientas analíticas 
propuestas por esta teoría es la comparación constante que consiste en codificar, agrupar y 
categorizar datos (Corbin & Strauss, 2014). El trabajo se desarrolló con 33 estudiantes de tercero y 
25 estudiantes de sexto que pertenecían a la misma escuela primaria. Cuatro problemas de 
comparación de razones como el siguiente conformaron el instrumento: Pedro infla 16 globos en 8 
minutos, Juan infla 20 globos en 40 minutos, ¿cuál niño infla más globos en menos tiempo? Para 
clasificar los resultados se consideró a cada uno de los elementos de la relación de prorcionalidad 
como una variable: en este caso los globos y los minutos fueron dos distintas variables. Las 
estrategias de los alumnos se categorizaron en cuatro enfoques distintos mutuamente excluyentes de 
manera ascendente. El primer enfoque se consideró el más lejano al pensamiento proporcional (ver 
Tabla 1).    

 
Tabla 1: Enfoques y Estrategias Usadas por los Estudiantes 

Enfoque Descripción Estrategias %3ro %6to 
1. Sin sentido Uso de sumas y productos sin sentido. Algorítmico 1 19 
2. Absoluto Comparación de una variable (e.g. 

globos con globos) 
Comparación unívoca 79 6 

3. Comparativo Comparación de todas las variables 
usando diferentes métodos sin lograr el 

resultado correcto 

Tabla de equivalencias 
Noción incipiente de la 

proporcionalidad 

0 
16 

8 
0 

4. Proporcional   Los estudiantes obtienen el resultado 
correcto por métodos conveniconales 

Constante de proporcionalidad 
Razón equivalente 

Valor unitario 

0 
4 
0 

17 
28 
22 
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A partir de la investigación surgieron algunas preguntas. ¿Por qué hubo una proporción mayor de 
estudiantes de sexto que respondió usando algoritmos si los estudiantes de tercero ya presentaban 
respuestas intuitivas con nociones incipientes de proporcionalidad? ¿Cómo la enseñanza puede 
canalizar y hacer que las intuiciones de los alumnos contribuyan a lograr un razonamiento 
proporcional?  
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Steffe and Cobb (1988) defined four stages of elementary students’ understanding of number, which 
are based on the levels of units that students construct and coordinate (Ulrich, 2015, 2016a). First is 
the initial number sequence, marked by counting on; next is the tacitly nested number sequence 
(TNS), marked by double counting and constructing composite units (i.e., units of unit) in activity; 
third is the explicitly nested number sequence, which is defined by multiplicative reasoning; and 
finally, the generalized number sequence. In her work with sixth-grade students, however, Ulrich 
(2016b) defined an additional stage, the advanced tacitly nested number sequence (aTNS). The name 
is literal in its meaning: aTNS students can apply the operations of their TNS in advanced ways. 
Research has since identified substantial numbers of aTNS students in the middle grades (Ulrich & 
Wilkins, 2017; Zwanch & Wilkins, in review). This study builds on Ulrich’s (2016b) definition of an 
aTNS by characterizing the ways in which aTNS students’ numerical and algebraic reasoning typify 
an advanced TNS. 

The data for this study were collected from students in grades six through nine at a small school 
district in the southeastern United States. 18 students (2 TNS, 8 aTNS, 6 ENS, 2 GNS) participated in 
two, 45-minute, semi-structured clinical interviews. Each student’s number sequence attribution was 
confirmed, and the students’ algebraic reasoning was characterized. 

One characteristic use of number that distinguished aTNS students was their use of skip counting to 
solve multiplicative problems. TNS students construct composite units in activity (Ulrich, 2015), thus 
when asked to solve the bar task (Figure 1), they tended to partition the larger bar into four pieces 
and add 8 four times. Constructing composites in activity supported double counting, but not 
multiplicative reasoning. aTNS students operate on composite units (Ulrich, 2016b) making it 
possible for them to think about repeating composite units of eight. Accordingly, aTNS students 
tended to partition the larger bar into four pieces, then skip count by 8 four times. Most aTNS 
students stated that they had multiplied eight times four, but their behavior was inconsistent with 
multiplication. This shows a retrospective awareness of the multiplicative relation, but even after 
solving several similar tasks, aTNS students did not generalize the multiplicative nature of one bar 
task to the others. Algebraically, similar behaviors manifested in students’ solutions to solving 
systems of equations. aTNS students used guess and check methods wherein the checking was 
heavily dependent on students’ skip counting. Thus, aTNS students’ operations on composite units 
supported their solutions to algebraic tasks in a manner that confirms their categorization of having 
constructed an advanced TNS. This also demonstrates how aTNS students’ numerical and algebraic 
reasoning is distinct from their peers, making it necessary to consider how we support their learning 
in the middle grades. 

 
Figure 1. Bar Task from Ulrich and Wilkins (2017) 
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How can we design mathematical lessons that spark student interest? To answer this, we analyzed 
teacher-designed and enacted lessons that students described as interesting for how the content 
unfolded. When compared to those the same students describe as uninteresting, multiple 
distinguishing characteristics are evident, such as the presence of misdirection, mathematical 
questions that remain unanswered for extended time, and a greater number of questions that are 
unanswered at each point of the lesson. Low-interest lessons did not contain many special narrative 
features and mostly had questions that were answered immediately. Our findings offer guidance for 
the design of lessons that can shift student mathematical dispositions. 

Keywords: mathematics curriculum, narrative, aesthetic, mathematical story 

What if mathematics lessons could be designed and enacted so they were as stimulating as Harry 
Potter, where students eagerly await the next installment? Literature is purposefully designed to 
capture and hold readers’ attention; why not mathematical sequences? The ability to craft 
mathematical sequences that catch student attention and nurture a desire to continue to learn math 
would arguably have a positive impact on math education. That is, when a student becomes curious, 
they are more likely to engage with the content and increase attention, thereby increasing the 
potential for learning and deepening understanding (Csikszentmihalyi, 1990; Dewey, 1913; Guthrie, 
Hoa, Wigfield, Tonks, & Perencevich, 2005; Wong, 2007).  

Despite major investment to improve mathematics curriculum, the content in most classrooms often 
sends the meta-message, study this content because you need it to study related content later that you 
also will likely have little interest in or realize is even coming (Chazan, 2000). Rather than provoking 
student imagination and curiosity in mathematics through sequencing curricular material, textbook 
authors rely on worldly contexts (conveying, you should be interested in this because someday you 
might own a business and need to maximize profit). Sinclair (2001) argues that this practice of 
relying on sources outside of mathematics to make mathematics interesting “endorses the belief that 
mathematics itself is an aesthetically sterile domain, or at least one whose potentialities are only 
realized through engagement with external domains of interest” (2001, p. 25). Drawing on Dewey’s 
(1934) notion of aesthetic as a felt response to an experience rather than an attribute of an object, 
Sinclair asks, “Could we reverse the direction of the aesthetic flow, so that it originates in the 
mathematics?” (2001, p. 25).  

Unfortunately, little is known about how decontextualized secondary school mathematics can be 
designed to be interesting and engaging. In this paper, we explore the characteristics of 
decontextualized secondary mathematics lessons that spur students’ curiosity, captivate students with 
complex mathematical content, and compel students to engage and persevere, which we refer to as 
“mathematically captivating learning experiences” (MCLEs). The purpose of this paper is to address: 
What characteristics, if any, distinguish high school mathematics lessons that students identify as 
interesting from those they describe as not interesting? 
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Theoretical Framework 
In order to identify differences in how the mathematical ideas emerge and change as the lesson 

unfolds, this study interprets mathematical sequences that connect a beginning with an ending as a 
mathematical story (Dietiker, 2013, 2015b). Built from Bal’s (2009) narratological framework, this 
interpretation foregrounds how mathematical characters are acted upon through mathematical action 
in mathematical settings. For example, mathematical characters are the mathematical objects brought 
into existence (objectified) through reference in the story, such as a function. Mathematical action 
describes the work of an actor (such as a student or teacher) in changing the mathematical ideas or 
objects of study, such as composing two functions to create a new function. Mathematical characters 
and actions are brought into being in a constructed “space” such as a white board or a coordinate 
plane, referred to as the mathematical setting. 

For this study, a particularly important quality of a mathematical story is its mathematical plot; that 
is, the way it captivates and holds the interest of its audience. When a mathematical story hints of a 
future revelation, it may spur the formulation and pursuit of questions (“Why did the composition 
just end up with x?”), similar to how a reader of a literary story might wonder how the story will 
progress and continue reading. Thus, the mathematical plot describes the dynamically changing 
tension between what is already known and desired to be known by the participants as the story 
progresses (Dietiker, 2015b). It enables the description of how a mathematical sequence can generate 
suspense (by setting up anticipation for a result) and surprise (by revealing a different result than the 
one anticipated). Questions may span the entire story or may represent brief puzzles or mysteries. 
The progress made on each question, from when it is asked, to how students’ understanding of it 
changes, to how it is abandoned or answered, constitutes a story arc. Since a mathematical story may 
involve answering multiple questions at any point along a sequence, multiple story arcs may arise 
over the course of the lesson and overlap at different intervals. The changing number of questions 
under pursuit by students throughout the lesson can be referred to as its density of inquiry. 

Methods 
This study identifies the distinguishing characteristics of interesting lessons that were designed and 

taught in the first of three design research cycles (Cobb, Stephan, McClain, & Gravemeijer, 2001; 
Edelson, 2002). The larger research project is an exploration of whether and how designing high 
school lessons as mathematical stories impact the aesthetic experiences of students. Six high school 
teachers, each with at least 4 years of experience, from three high schools with different curriculum 
and diverse demographic settings in the Northeastern region of the USA were recruited to participate 
in this study. The teachers worked in pairs, along with researchers, to design MCLEs for one or more 
of their classes. The participating courses, selected by teachers, spanned entry-level (e.g., Integrated 
Math 1) to advanced-level (e.g., calculus) and included both honors and non-honors. To support the 
design of MCLEs, the teachers attended a two-week professional development during the summer of 
2018 where they learned about the mathematical story framework (Dietiker, 2015a, 2015b, 2016; 
Ryan & Dietiker, 2018) and participated in analyzing the mathematical plot of one lesson enactment.  

An analysis of the complete set of MCLEs from the 2018-2019 school year, when compared with 
non-MCLEs from the same teacher and classes, revealed that the MCLEs did impact student interest 
measures positively (Dietiker et al., 2019). Yet, if these positive student reports are connected with 
non-mathematical factors (i.e., mood of the teacher, point in the semester), then the mathematical 
stories of the interesting lessons should not be significantly distinguishable from those of less 
interesting lessons. Thus, we designed the present study to learn whether the unfolding content of 
those lessons that students describe as interesting have characteristics are qualitatively different from 
those that students indicate are not interesting. 
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All 32 lessons generated in the 2018-2019 school year were observed by multiple researchers using 
the same protocol so that students would not be able to infer whether some lessons were special or 
not. The lessons were filmed using three video-cameras placed strategically to capture the teacher, 
students’ facial expressions in the whole class, and the progress of a focus group of students. In 
addition to a central microphone, audio recorders were placed around the classroom to capture 
student discourse and the teacher wore a lapel mic. Immediately following each observed lesson, all 
participating students took a Lesson Experience Survey (LES) on their digital devices. In this survey, 
students were asked to rate their overall interest in the lesson on a scale of 1 to 4 and select three 
terms to describe their view of the lesson from 16 given descriptors, including negative, neutral, and 
positive options. More information about the design and testing of the LES can be found in Riling et 
al. (2019). 

To recognize characteristics that distinguish high-interest lessons from low-interest lessons, the 
research team composed two groups of lessons by identifying each teacher’s highest-interest and 
lowest-interest lessons based on students’ LES responses. Pairing a low- and a high-interest lesson 
per class allowed both sets to include reports from the same students, rather than two groups of 
students who might have differing dispositions to mathematics to begin with. Only lessons with 
surveys from at least 10 students were included (this eliminated one lesson). We selected the lesson 
with the highest average interest measure for each teacher, using students’ selection of positive 
descriptor to break ties. After selecting a teacher’s high-interest lesson, the lesson for that class with 
the lowest average student interest level (with negative descriptors used to break ties) was selected 
for the low-interest group. Although the lessons were selected based on the interest level and student-
selected descriptors from the LES, all lessons in the resulting "high interest group" were MCLEs and 
all lessons in the "low-interest group" were non-MCLEs.  

To analyze the lessons in the high- and low-interest groups for their mathematical story 
characteristics, we first coded each for its mathematical plot. Then, we compared the mathematical 
plots of the two groups and identified characteristics that distinguished them. The plots relied on 
detailed transcripts for each lesson that included the discourse of a focal group, allowing us to note 
the progress those students made on the mathematical questions raised during groupwork and to 
include any questions the students asked while collaborating.  

The transcripts were analyzed on three separate coding passes. On each pass, the research team 
coded separately in groups and then met to resolve differences. On the first pass, the team identified 
acts by tracking what mathematical characters, actions, and settings were in focus throughout the 
transcript and noting when these changed. On the second pass, the research team identified all 
mathematical questions that were raised, considered, and addressed throughout the lesson by a 
teacher, student, or some type of curriculum materials. Whereas some questions were recognized 
explicitly through verbal or written statements (e.g., “Find the root”), others were raised implicitly by 
images or situations experienced by students. Questions that were not mathematical (e.g., “Can I 
present my solution?”) were not included.  

On the final coding pass, the research team coded how what was known about each question 
changed across the acts of the lesson. For each question, the researchers used codes adapted from 
Barthes (1974) narrative theory to code contributions by teachers and students. These codes included 
foreshadowing of a question (“proposal,” marked with a 0 in the plot diagrams), when a question 
was raised (“question,” 1 when raised by a teacher and 2 when raised by a student), any explicit 
messages that the question would be answered (“promise,” 3), any progress made on answering the 
question (“progress,” 4 if made by a teacher, 5 if made by a student), and when, if ever, it was 
answered and thus closed (“disclosure,” marked with “D”). In addition to these codes, we also coded 
for interruptions to progress when the topic shifted so far from the question that it is no longer 
reasonable to assume the question may be addressed (“suspension,” marked with 9), or when there is 
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a threat to progress toward an answer (“jamming,” marked with 8). Finally, we coded any evidence 
of misdirection, in which lesson participants are misled in a consequential way. There are two types 
of misdirection: a snare (marked with 7) is an explicit error or lie, while an equivocation (marked 
with 6) is an encouragement to make a faulty assumption. To separately track who or what was 
responsible for a contribution, we also identified for each code whether the contribution came from 
the teacher, student, or environment (e.g., a worksheet).  

These coding passes result in a comprehensive mapping of how participants within each lesson are 
moved to raise and answer questions, representing the mathematical plot of the lesson. For each 
question, the acts during which it is open (i.e., it is unanswered and it is reasonable to think that there 
is still a possibility of further progress on the question), along with all the codes for that question, 
form a story arc. The set of all story arcs describe how all of the mathematical content emerges and 
changes throughout the acts of the story. 

Next, we qualitatively compared the mathematical plots and identified characteristics that appeared 
to distinguish the high- and low-interest lessons. We then compared quantitative dimensions of their 
mathematical plots such as number of acts, number of questions opened throughout the lesson, and 
story arc length. We compared the average number of coded questions per act, the average number of 
questions open and in progress per act ("mean density per act"), the proportion of story covered by 
these open questions (“mean arc length as proportion of story”), and the percentage of questions open 
for more than one act ("proportion of extended story arcs per total arcs"). A paired samples t-test was 
conducted to compare the mean differences between the two means of these measures for the two 
groups of lessons for α < 0.05. A box plot diagram was made to compare the high- and low-interest 
lessons for measures. 

Findings 
In this section, we illustrate the differences between high-interest and low-interest lessons by 

describing a pair of high- and low-interest mathematical stories taught to one group of students by 
the same teacher. These mathematical stories are presented in present tense in the sequence in which 
events unfolded to highlight how what was known changed through the lesson. Next, we introduce 
contrasting characteristics of the stories’ mathematical plots. Finally, we describe general patterns of 
high- and low-interest lessons, identifying characteristics of lessons that students find interesting.  

This pair of lessons was selected because each contains many characteristics common to the other 
high- or low-interest lessons. These lessons were taught in an Algebra 2 Honors course with 
sophomores and juniors by Ms. Elm (pseudonym). The class had 28 students, 25 of whom 
participated in the study. 
Low-Interest Mathematical Story 

The class begins (Acts 1 through 3) with students working in partners on a “Do Now,” which asks 
students to make sense of a newly defined operation (!&! = 3! − !), including determining whether 
it is commutative and what its domain is. After Ms. Elm collects their work and verifies one of the 
answers, she reviews general principles of commutativity and domain. 

In Act 4, Ms. Elm distributes a handout with questions about a range of topics, including domain, 
range, and percentages. The questions are multiple choice practice tasks for standardized tests. The 
focal group spends the rest of Act 4 working on a question about domain. In Acts 5 and 6, the group 
discusses a question about the range of a different function. In Act 7, they briefly complete more 
tasks about algebraic equations and operations. 

In Acts 8 through 11, the focal group shifts to work on questions about percents. Each question is 
about a different aspect of percents and based in a different context: the reduced price of clothing 
item, what percentage one number is of another, and how much a company’s profit increased. 
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Students engage with each other on each problem, although there is little evidence that they are 
challenged. The teacher concludes class by stating “we’re gonna stop there for today.” 
High-Interest Mathematical Story 

In Act 1, Ms. Elm explains that the lesson objective is to develop a strategy to identify the roots of 
polynomial functions. After displaying ! ! = !! − 5!! − ! + 5 on the board and assigns each pair 
of students a value between –9 and 9, she challenges students to figure out whether they are “guilty 
as a root.” First, she asks students to predict whether their value is a root and brainstorm ways to 
verify their guess. The focal group, which has the value 7, predicts that they cannot be a root because 
“if you do factoring by grouping, you wouldn't get 7 at all.” In Act 2, Ms. Elm reviews synthetic 
division. In Acts 3 and 4, each group checks whether they are a root using synthetic division. The 
group whose value is 5 thinks they might be a root, which is confirmed. The focal group celebrates 
with a little dance. Next, the class finds the remaining roots (i.e. 1 and -1) by factoring the 
polynomial. 

Students next test whether their group’s value is a root of ! ! = 2!! + !! − 16! − 15. In Act 5, a 
student says that 8 is likely a root, explaining, “this is gonna sound kinda weird, but because of the 
two and the sixteen.” This is the first time a student connects the polynomials’ coefficients and roots. 
When it turns out that 8 is not a root, another group shares that 3 is a root. In Act 6, a student 
suggests that since 3 is a root, then -5 might be, because the y-intercept is -15. Ms. Elm responds by 
saying, “that's weird right, ‘cause I actually really kind of agree here. That we need to do something 
to get ourselves to fifteen.” She asks groups to use synthetic division to find the remaining roots. As 
students begin to do so, in Act 7, a student spontaneously claims that 2.5, not 5, is another root 
“because the leading coefficient, you need to divide that. It's two x minus five.” Ms. Elm asks him to 
“hold that thought” and he reacts with contained excitement. In Act 8, the whole class finds the 
remaining quadratic once the cubic is divided by x – 3. Then, once the constant term is determined to 
be positive, students recognize that one of the remaining roots is not 2.5, but rather –2.5.  

In Act 9, Ms. Elm elicits enthusiasm when she proposes a challenge: The class has four chances to 
identify the roots of ! ! = 6!! + 35!! − 49!! + ! + 7. The first two choices, 6 and 7, are found 
to not be roots. A group proposes -7 as a root, and a student confirms it using synthetic division. In 
Acts 10 and 11, the class fully factors the polynomial and finds the remaining roots: 1, -⅓, and ½. In 
the last act, there is a growing sense during a class discussion that there is a multiplicative 
relationship between the coefficients and the roots. For homework, Ms. Elm asks students to reflect 
on how to identify polynomial roots. 
The Comparison of the Mathematical Plots  

These mathematical plots have several distinguishing characteristics, as can be observed in the 
mathematical plots of the high-interest lesson (Figure 1a) and low-interest lesson (Figure 1b). There 
were considerably more questions opened throughout Ms. Elm’s high-interest lesson (75) as 
compared with her low-interest lesson (44). Interestingly, the percentage of the story arcs that 
remained open for more than one act was similar in both the high-interest lesson (27 out of 75, or 
36%) and the low-interest lesson (15 out of 44, or 34%). However, the average arc length of the high-
interest lesson is 2.6 acts long, which constitutes 22% of the lesson and is one act longer than the 
average length questions remained unanswered in the low-interest lesson (1.6 acts, or 13% of the 
lesson). 
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(a) (b) 
Figure 1: The Mathematical Plots for Ms. Elm’s (a) High-interest Lesson and (b) Low-interest 

Lesson. Each row represents a story arc. See methods section for code references. 

In addition, most story arcs in the high-interest lesson contain acts in which no change in what is 
known about the question occurs. In almost a quarter of the story arcs (18 of 75), there is at least one 
act with no codes at all, providing the opportunity for students to build curiosity. This also provides a 
sense that not all questions that are raised will be answered immediately. In contrast, in the low-
interest lesson, only three questions (#3, 5, and 6) have an act during which the question is open and 
yet no codes appear. For all other questions (41 of 44, or 93%), every act in which the question is 
open contains some change. 

Stark differences are also evident in the density of these lessons (see Figure 3). Since the two 
lessons have a different number of acts, density is graphed across the percentage of the lesson that 
has passed. In the high-interest lesson, the density generally increases and then remains high, 
providing a lasting sense of mystery. Act 1 has 10 open questions, and by Act 7, almost twice as 
many questions are open (19). The number of open questions remains relatively high through the end 
of the lesson, as students continue to pursue their ideas about how to identify the roots of a given 
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polynomial function. There is variation in the density of both lessons, as the tension alternately 
increases and decreases. Yet in the high-interest lesson, this variation does not return to the initial 
lower level, whereas the density in the low-interest lesson remains low with temporary dips. Overall, 
the density in the high-interest lesson was an average of 14.25 questions per act. In comparison, the 
low-interest lesson had a maximum density of 10 questions and an average density of 5.7 questions 
per act.  

 

 
Figure 2: The Density of Ms. Elm’s High-interest (red) and Low-interest (blue) Lessons.  

 
Lastly, we found differences in the occurrence of special mathematical plot codes that represent 

interruptions and misdirection. The mathematical plot of the high-interest lesson has more instances 
of jamming in comparison with the low-interest lesson (11 vs. 2, respectively). Additionally, the 
high-interest lesson has a proposal, offering a sense of mystery, and five instances of promise, 
offering anticipation for an answer to come, whereas low-interest lesson has neither. In addition, the 
high-interest lesson has twice as many equivocations than low-interest lesson (10 vs. 5), while the 
latter has twice more (12 vs. 6) snares. Interestingly, the high-interest lesson had more misdirection 
from the teacher, both in terms of equivocations and snares, than the low interest lesson (3 vs. 1 and 
1 vs. 0, respectively).  
Characteristics that Distinguish High-interest and Low-interest Lessons 

Across all 12 lessons, we identified multiple characteristics that distinguished high- and low-interest 
lessons significantly. Figure 4 shows the comparative measures for high- and low-interest lessons 
after the measures were standardized (i.e., mean = 0, vertical axis indicates the number of standard 
deviations from the mean). The questions in high-interest lessons remained unanswered for 
significantly more acts, as shown by a higher proportion of story arcs that lasted for more than one 
act (what we refer to as “extended questions”) (t(5) = 3.16, p < 0.05), a longer mean arc length (t(5)= 
2.85, p < 0.05), and the average arc length spanning a longer portion of the lesson (“mean arc length 
as % of story”; t(5)= 4.21, p < 0.01). In addition, the average number of open questions per act 
("mean density per act") for the high-interest lessons is significantly greater than that of the low-
interest lessons (t(5)= 3.93, p < 0.05). Similarly, the average number of changes to what is known 
(i.e., codes) per question in high-interest lessons is significantly greater than that of the low-interest 
lessons (“mean total codes per question”; t(5)= 2.96, p < 0.05). We found that high- and low-interest 
lessons have a similar percentage of acts with codes and disclosed formulated questions. 
Additionally, although higher interest lessons have more formulated questions and acts than low 
interest lessons, this difference is not distinguishable. 

 



What makes a mathematics lesson interesting to students? 
 

	 398	

 
Figure 3: Comparison of Mathematical Plot Measures. 

 
When comparing the frequency of the special mathematical plot codes by teachers (jamming, snare, 

equivocations, and promise), the high-interest lessons had a greater average frequency than the low-
interest lessons. However, these differences were not statistically significant. 

Discussion 
We started this paper wondering how we can design mathematics lessons that compel students to 

become curious or excited. The characteristics described in this paper begin to answer this question. 
For example, the higher percentage of questions that are open for larger proportions of a lesson 
provide students extended opportunities to mathematically wonder, build understanding, and thus 
enjoy underlying mathematical concepts. In contrast, when questions of low-interest lessons are 
answered almost immediately, we are concerned that students may not have enough time to think 
deeply about mathematical concepts or relationships. Being confused, without the benefit of curiosity 
or anticipation, may hinder joy. 

Knowledge of the characteristics of high-interest lessons can support educators and curriculum 
developers who wish to design mathematically captivating lessons that can positively impact 
students’ experiences. For example, teachers might decide to mindfully include equivocations, which 
were not present in any of the low-interest lessons in our data, in order to enable surprise during their 
lessons. Or curriculum designers may decide to encourage teachers to delay giving answers to 
students, in order to permit students to wonder and anticipate for longer periods of time. Further 
research will hopefully uncover additional features that can be used to design reliably engaging 
mathematical learning experiences. 
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In this report I have created an exploratory framework to identify opportunities to engage in literacy 
practices within mathematics curriculum materials. This framework describes “unstructured literacy 
opportunities” and “structured literacy opportunities” for each of the language modalities of 
reading, writing, speaking, and listening. Different structures within each modality are also detailed 
along with connections between the modalities. The framework is then applied to Illustrative 
Mathematics (IM) curriculum materials to reveal patterns of how different types of literacy 
opportunities are addressed and connected.  

Keywords: Curriculum Analysis, Communication, Classroom Discourse, Instructional activities and 
practices 

Written and spoken language serve important functions for communicating, receiving, and retaining 
information. Language also manifests in complex ways. Aguirre and Bunch (2012) describe how 
students must navigate a myriad of language demands in mathematics classrooms, differentiating 
such demands into modalities of reading, writing, speaking, and listening (along with a 
“representing” demand critical to mathematics in particular). The authors also describe how these 
demands are connected to one another: writing and speaking are productive activities while reading 
and listening are receptive. Additionally, reading and writing are “linked” to “written mathematical 
conventions,” while listening and speaking encompass “oral language” (Aguirre & Bunch, 2012, p. 
185). This multifaceted description of language aligns well with Moschkovich’s (2015) definition of 
academic literacy, which positions the learner as an active participant in mathematical discourse. 
Moschkovich explains this phrasing by stating her desire to “shift from a focus on language as words 
to a broader sense of literacy as participation in practices and discourses” (p. 45).  

When literacy is seen in the Vygotskian sense as “the understanding and communication of 
meaning” (Moll, 1992, p. 8), its relevance to mathematics education becomes even more apparent. 
After all, achieving learning with understanding is considered the “Holy Grail” of mathematics 
education (Hiebert & Carpenter, 1992, p. 65). If literacy within written and oral language is a core 
conduit through which mathematical ideas are communicated, then knowing how best to engage 
students in literacy practices is of upmost importance.  

This report extends Aguirre and Bunch’s and Moschkovich’s exploration of language and literacy in 
mathematics by focusing on a curricular rather than instructional lens. The research questions 
considered are: (1) In what ways do mathematics curriculum materials present opportunities to 
address literacy demands of reading, writing, speaking, or listening? (2) In what ways do such 
curriculum materials connect opportunities for reading, writing, speaking, or listening? 

Theoretical Framework 
A contribution of this report is a framework which describes structured versus unstructured 

opportunities for reading, writing, speaking, and listening in mathematics. Wiggins (2001) notes how 
interdisciplinary curricular materials often position one discipline as subservient to the other, which 
results in an “approach [that] has little to do with teaching the concepts of [either discipline]” (p. 42). 
Genuine integration should instead promote shared concepts and processes present across the 
relevant disciplines, thus leading to better understanding of both disciplines (Wiggins, 2001). 
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Shanahan and Shanahan (2008) discuss in particular how generalized literacy skills are insufficient 
within contents such as mathematics as students advance into secondary grades. Instead, teaching in 
these grades should emphasize disciplinary literacy skills unique to the specialized nature of the 
individual content (Shanahan & Shanahan, 2008). Curricular tasks which address literacy skills in 
generalized or subservient ways are considered unstructured literacy opportunities in this 
framework, while tasks which address mathematics-specific literacy skills (i.e. disciplinary literacy) 
are considered structured literacy opportunities. This framework expands beyond Shanahan and 
Shanahan’s reading focus to consider Aguirre and Bunch’s (2012) language demands of reading, 
writing, speaking, and listening. The disciplinary focus of each type of structured literacy opportunity 
is also described for each modality, as the mathematical purpose of curricular activities may vary. 
Such modality-specific descriptions of these opportunities follow.  

Unstructured reading opportunities include any written mathematical text which students may read, 
while structured reading opportunities are tasks which specifically address elements of reading 
comprehension. This includes referencing surface comprehension of syntax and text features for 
students (Hoffer, 2012) or metacognitive modeling of deeper comprehension (Hoffer, 2012; Kenney, 
2005). With such structures in mind, the role of vocabulary within these texts is also of interest. 
Certain words (called academic vocabulary) have more utility across domains while also being 
critical to comprehending mathematical text (Hoffer, 2012; Bay-Williams & Livers, 2009), so their 
inclusion in written tasks could better afford such opportunities. Thus, it is worth considering 
whether academic text is part of a structured reading opportunity or whether it is absent (which this 
framework describes as simple text). 

Structured writing opportunities are found in tasks which require written explanations or 
justification, as well as tasks which promote refinement of mathematical ideas through written 
language (Hoffer, 2012; Kenney, 2005). Although many mathematical tasks use words/phrases that 
imply writing (e.g. “explain”, “show how you know,” etc.), this alone is unstructured. Since explicit 
guidance around when and how to write is critical to building writing skill in mathematics 
(Thompson, 2008), evidence of such opportunities is a prerequisite for structured writing. 
Additionally, such mathematical writing can serve different purposes. Writing can act as a summative 
assessment which provides better insight into student understanding (Miller, 1991), but it can also be 
used formatively throughout the problem-solving process to better develop students’ metacognitive 
skills than oral communication alone (Pugalee, 2001). 

Unstructured listening is a ubiquitous expectation of many mathematics classrooms (Aguirre & 
Bunch, 2012). Hintz and Tyson (2015) refer to “complex listening” as a structure to support this 
demand, where mathematics sense-making is encouraged in part by “Directing students towards what 
to listen for and whom to listen to” (p. 315, emphasis in original). While listening opportunities can 
serve to help students internalize information for themselves (e.g. understanding what the teacher is 
saying), they also can be used to help facilitate responses to others’ ideas within discourse (Aguirre 
& Bunch, 2012). 

Structure can be given to speaking opportunities by directing students toward cooperative speaking 
(Thompson, 2008) or exploratory talk (Mercer, Wegerif, & Dawes, 1999), where students are 
explicitly supported in understanding how to share time and space with their peers and collaborate 
respectfully. While such structures drive speaking in dialogically oriented math classrooms, 
classrooms which adhere to direct instruction emphasize students sharing their work individually in 
order to receive immediate, corrective feedback from the teacher (Munter, Stein, & Smith, 2015). 
This shows how speaking opportunities might be structured in collaborative or individualized ways 
depending on the preferred orientation to mathematical instruction. 

Aguirre and Bunch (2012) detail how language modalities of reading, writing, speaking, and 
listening also connect with one another. The authors note that speaking and writing share productive 
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connections (ideas are produced) while reading and listening share receptive connections (ideas are 
received). Reading and writing are also both expressions of written language while speaking and 
listening are forms of oral language (Aguirre and Bunch, 2012). Thus, when multiple literacy 
connections appear in the same task, they can share connections related to student action (productive 
and receptive) or format (written and oral language). 

Altogether these distinctions between unstructured and structured literacy opportunities, the varying 
types of structured opportunities, and the types of connections across language demands form the 
foundation of this report’s framework. These are summarized in Figure 1. 

 
Unstructured Literacy Opportunities (ULOs) 

• Unstructured Reading Opportunities (UR) 
• Unstructured Writing Opportunities (UW) 

• Unstructured Listening Opportunities (UL) 
• Unstructured Speaking Opportunities (US) 

Structured Literacy Opportunities (SLOs) 
• Structured Reading Opportunities (SR) 

o Academic Text (SR-A) 
o Simple Text (SR-S) 

• Structured Writing Opportunities (SW) 
o Formative Writing (SW-F) 
o Summative Writing (SW-S) 

• Structured Speaking Opportunities (SS) 
o Cooperative Focus (SS-C) 
o Individualized Focus (SS-I) 

• Structured Listening Opportunities (SL) 
o Listening to Respond (SL-R) 
o Listening to Internalize (SL-I) 

Literacy Connections 
• Written Language Connections (WLC) – reading and writing practices are both present in the task. 
• Oral Language Connections (OLC) – speaking and listening practices are both present in the task. 
• Receptive Connections (RC) – reading and listening practices are both present in the task. 
• Productive Connections (PC) – writing and speaking practices are both present in the task. 

Figure 1: Opportunities to Engage in Literacy Practices 

Modes of Inquiry 
A curricular analysis has been conducted to test the exploratory framework of this report. The 

Illustrative Mathematics (IM) curriculum has been chosen for this analysis because it is well-suited 
for the focus of this investigation. The IM curricular overview explicitly cites Aguirre and Bunch’s 
2012 chapter and claims that “embedded within the curriculum are instructional supports and 
practices to help teachers address the specialized academic language demands in math when planning 
and delivering lessons, including the demands of reading, writing, speaking, listening, conversing, 
and representing in math” (Illustrative Mathematics, 2019b, para. 1). This suggests that the “intended 
curriculum” (Herbel-Eisenmann, 2007, p. 344) of IM should at the very least align with Aguirre and 
Bunch’s model and could also reveal how these ideas play out in the transition towards the written 
curriculum. 

Specifically, this investigation will analyze the first 6 lessons of Unit 2: Introducing Proportional 
Relationship from the 7th grade IM curriculum materials. These lessons are chosen because they 
emphasize multiple representations of proportional relationships, and representation is seen as a 
conduit which supports enactment of literacy demands and drives holistic connections across literacy 
opportunities (Aguirre & Bunch, 2012). Since this unit is students’ first introduction to the 
terminology of “proportional relationship” there are also opportunities for addressing academic 
vocabulary in the selected lessons. 

Taken together, these different aspects of the unit afford ample opportunity for a preliminary 
analysis of literacy opportunities. The IM lessons are broken into distinct activities, so a level of 
analysis smaller than the lessons themselves is appropriate: different literacy demands can be 
addressed in the same lesson without necessarily being connected to one another if they arise in 
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discrete activities. Because IM activities generally break down into a “Launch” stage where a task is 
introduced and worked on and a “Synthesis” stage where student work or results are discussed, this 
study uses such task stages as the unit of analysis. 

This approach created 40 task stages which were analyzed across the 6 lessons. A codebook was 
created which differentiated each type of opportunity and connection as summarized in the 
theoretical framework of this report. Reliability was established by enlisting a colleague to apply this 
codebook to the data set and checking for alignment with the author’s results. Any initial 
disagreements in the data were discussed and resolved by the author and colleague. Each task stage 
was examined with the framework to determine whether any structured or unstructured literacy 
opportunities were described. When structured literacy opportunities (SLOs) were identified, they 
were also coded according to their appropriate sub-code (see Figure 1). The SLO results were then 
examined at the task level to determine if any tasks involved multiple SLOs. These tasks were coded 
as literacy connections as represented in Figure 1, because they provide students with opportunities 
to experience multiple related language modalities. 

Results 
The results of this analysis are presented in four main sections. The first two sections speak to the 

first research question regarding the ways that the Illustrative Mathematics (IM) curriculum materials 
address literacy opportunities of reading, writing, speaking, and listening. Results concerning 
structured literacy opportunities (SLOs) are examined in the first section, and these show that the 
curriculum materials employ multiple SLOs in every examined lesson but that productive 
opportunities for writing and speaking are more commonly found than receptive opportunities for 
reading and listening. The second section explores the unstructured literacy opportunities in these 
materials, and findings show that unstructured speaking and listening opportunities often appear 
together. The third section addresses the other research question regarding literacy connections and 
shows that the curriculum materials emphasize productive over receptive connections. The final 
section considers how the literacy practices were presented throughout the materials, noting how the 
way that such practices are phrased might promote an idea that SLOs should be reserved only for 
certain student populations. 
Structured Literacy Opportunities 

One overarching result of this analysis is that these curriculum materials employ structured literacy 
opportunities (SLOs) throughout their lessons, although with more focus on writing and speaking. 
Not only does every examined lesson include SLOs, but there is not a single lesson which does not 
employ at least 2 different SLOs. Additionally, all eight sub-codes for types of literacy opportunities 
were found, suggesting that these materials intentionally provide a range of opportunities to engage 
in literacy practices. As shown in Figure 2, 53 SLOs were coded across the tasks in these lessons. 
However, the different types of SLOs did not appear with equal frequency. 

 

 
Figure 2: The frequency of each type of structured literacy opportunity with sub-codes 
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Structured opportunities for reading appear 7 times, writing 15 times, speaking 18 times, and 

listening 13 times. Despite every task being presented in the written language, reading 
comprehension is the least frequent structure seen in these tasks. Interestingly, listening SLOs (the 
other receptive modality besides reading) is the next least frequently referenced practice in these 
lessons. Given that most tasks in the IM curriculum materials consist of a “Launch” section with 
problems to complete (often with writing elements) and a “Synthesis” section grounded in 
discussion, it is not surprising to see high numbers of writing and speaking SLOs. What is surprising 
is that the receptive complements to these modalities are less frequently addressed. This becomes 
especially noted when looking at listening: Although there are 13 occurrences of such opportunities, 
11 of these are Listening to Respond and 7 of those are paired with speaking SLOs. Figure 3 shows 
one such example from activity 5.2: The four sentence stems are structured speaking opportunities 
(cooperative focus) since they all orient students towards how to share time and space with their 
peers and collaborate respectfully (Thompson, 2008; Mercer, Wegerif, & Dawes, 1999), while “Why 
did you…?” and “I agree/disagree because…” are also structured listening opportunities (listening to 
respond) since they elevate complex listening skills (Hintz & Tyson, 2015) by directing students how 
to respond to specific arguments made by their partner. Given that these 7 paired routines blur the 
line between speaking and listening (since they emphasize discourse), this limits an explicit focus on 
listening. Such findings suggest that additional structures could be provided for reading and listening. 

 

 
Figure 3: A paired speaking and listening opportunity (Illustrative Mathematics, 2019a) 

 
Unstructured Literacy Opportunities 

This analysis also shows that unstructured literacy opportunities (ULOs) exist within in the IM 
curriculum materials. Such ULOs appear throughout the analyzed lessons, with unstructured 
speaking and listening opportunities often being paired together. As seen in Figure, there are 40 
unstructured literacy opportunities coded throughout these lessons, including 4 opportunities for 
reading, 2 for writing, 19 for speaking, and 15 for listening . These 40 ULOs number fewer than the 
53 structured practices but still represent significant numbers. 

 
Figure 4: Frequency of unstructured literacy opportunities  

 
24 of these instances arise from 12 pairs of listening and speaking ULOs. These unstructured pairs 

result from students being asked to compare or discuss with their peers (typically one partner) but 
without any oral language support structures (see Figure 5). Given that structured speaking and 
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listening opportunities are present throughout the IM curriculum, it is interesting that they are not 
consistently used when students are asked to engage in discourse. A more thorough analysis of the 
data could shed light on when structured speaking and listening opportunities are used versus when 
students are simply given unstructured speaking and listening opportunities. 

 
 

 
From task 4.4 

 

 
From task 5.4 

Figure 5: Unstructured speaking and listening opportunities (Illustrative Mathematics, 2019a) 
 

Literacy Connections 
The second research question for this report relates to the connections between literacy 

opportunities. Out of the 20 tasks explored, 14 of them had at least one connection (70% of all tasks) 
while 6 tasks showed two connections. Overall, 20 literacy connections were found. However, one 
finding of this analysis (shown in Figure 6) is that the types of literacy connections in the IM 
curriculum are not equally distributed. Productive connections and oral language connections both 
occur in 8 tasks, while written language connections only appear in 3 tasks and receptive connections 
do not appear at all. Additionally, 5 of the tasks include both productive and oral language 
connections, with each of these tasks having students write a response and then use that for 
discussion (see Figure 7 for such an example from activity 5.3). While this overall inconsistency is of 
note, the complete absence of receptive connections is especially a surprise. None of the analyzed 
tasks gave students structured opportunities to both read and listen. The limited number of written 
language connections (between reading and writing) further indicates that reading overall is an 
underutilized dimension of literacy in these materials. 

 
Figure 6: The number of each literacy connection that occurred in the selected IM lessons 
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Figure 7: Productive and oral language connections within a task (Illustrative Mathematics, 2019a) 

 
Framing of Literacy Practices in the IM Curriculum 

Finally, an interesting trend that arose from the analysis is the way in which the IM curricular 
materials address literacy demands across different student populations. Illustrative Mathematics 
(2019) claims to integrate support for English Language Learners (ELLs) into their curriculum 
through what they call “Mathematical Language Routines” or MLRs (para. 22). As shown in Figure 
7, this ELL priority is clearly established by bounding every MLR in a green border and titling it 
“Support for English Language Learners.” Additionally, some structured literacy opportunities are 
included in bounded boxes titled “Support for Students with Disabilities,” as shown in Figure 3. The 
MLRs ultimately account for 27 of the 53 structured literacy opportunities coded in this analysis, 
representing just over half of all such findings. The “Support for Students with Disabilities” 
directions account for another 4 opportunities. This means that such “bounded” curricular 
components account for a sizeable share of the total literacy opportunities found. All other 
opportunities, such as that shown in Figure 8, are embedded (unbounded) within the task launch or 
synthesis teacher guidance. This reveals two underlying conclusions: First, the MLRs that IL states 
are a core part of their curricular materials do appear in the analyzed tasks. Second, these routines are 
presented with a caveat – they are for ELLs and students with disabilities. While it is certainly true 
that language structures support ELL students (Aguirre and Bunch, 2012) and organizational 
structures aid low-performing students (Kenney, 2005, p. 45), the benefits of literacy opportunities 
are not limited to such groups. IM themselves admit as much when they state that “these instructional 
supports and practices (MLRs) can and should be used to support all students learning mathematics” 
(Illustrative Mathematics, 2019, para. 1). Despite this, the bounded nature of such supports and their 
frequent placement after all other teacher guidance within the curriculum materials could indicate 
exclusivity. Exploring how practitioners interpret structured literacy practices when they are built 
into the overall teacher-facing task instructions versus when they are separated is a consideration for 
future study. 
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Figure 8: An embedded structured speaking opportunity from task 4.3 (Illustrative Mathematics, 

2019a) 

Discussion 
This report provides numerous avenues for discussion for educators, curriculum designers, and 

researchers. First, this framework’s descriptive language and distinction of different types of 
structured literacy opportunities can act as a roadmap for addressing such structures in mathematics 
curriculum materials. These definitions can also serve as a tool for strengthening otherwise 
unstructured literacy opportunities within curriculum materials or recognizing opportunities for 
connecting different modalities of literacy more consistently. 

This framework can also better illuminate how curriculum materials are or are not considering 
multiple ways in which language relates to the learning of mathematics. Because each structured 
literacy opportunity has two distinct sub-codes, these allow for more nuanced discussion about the 
curriculum. For instance, the focus on speaking in the IM curriculum materials was usually 
cooperative rather than individual, and the focus on listening was largely to respond to peers’ 
thinking rather than to internalize ideas for oneself. While this fits within the dialogic orientation to 
teaching, it limits opportunities aligned with the direct instruction model. Such an imbalance between 
the two sub-codes of speaking and two sub-codes of listening (but not an absence of any sub-code) 
gives rise to worthwhile questions about curriculum design and enactment: Are only the dialogically 
aligned opportunities desired? Should some curricular balance exist between cooperative versus 
individualized speaking, or listening to respond versus listening to internalize? This is an avenue for 
future research to consider. 

Together, this framework and its application to IM curriculum materials provides insights into the 
role of language and literacy within mathematics. Applied only to a small sampling of materials, the 
framework illustrates the ways in which literacy opportunities are being structured and connected 
within tasks and demonstrates just how many literacy opportunities remain unstructured in these 
materials. Such results give clarity to the complex manifestations of literacy in the curriculum while 
also pointing towards further considerations which could advance our understanding of this critical 
aspect of learning mathematics. 
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We describe results of a long-term design experiment focused on promoting mathematics learning 
among multilingual ninth graders classified as English Learners. The intervention at a linguistically 
diverse public high school in the US focused on a unit introducing concepts related to linear rates of 
change. We analyze results from a curriculum-aligned pre- and post-unit assessment used to 
document student learning across each design cycle. The main result is that students in both the Pre-
Intervention and Redesigned classrooms made gains on the pre- and post-unit assessments. 
However, student gains on the assessments were higher in the Redesigned classrooms than in the 
Pre-Intervention classrooms. Additionally, on the assessment in the Redesigned classes, students 
classified as English Learners made larger gains than their non-EL peers, and the majority of the 
gains occurred on conceptually-focused items. 

Keywords: Algebra and Algebraic Thinking, Design Experiments, Curriculum, Equity and Diversity  

Objective 
Research on the mathematics education of emerging multilingual learners1 has shown that such 

students often experience procedurally-focused instruction (Callahan, 2005), are provided low 
cognitive demand tasks (de Araujo, 2017), and may have limited opportunities to engage in 
disciplinary and discourse practices (Zahner, 2015; Moschkovich & Zahner 2018). Recently, 
mathematics educators have engaged in design research to study how to transform the learning 
environment in linguistically diverse classrooms with the goal of promoting more robust forms of 
student learning (e.g., Chval et al., 2014; Prediger & Zindel, 2017). These design efforts have yielded 
promising results and frameworks for integrating mathematics and language learning. In this report, 
we describe results from a four-year design research effort that took place in a linguistically diverse 
ninth grade mathematics classes in an urban secondary school in the US. We analyze trends observed 
in the student responses to a curriculum-aligned assessment used to evaluate the efficacy of the 
design effort.  

Our overarching research question is: To what extent did the design effort meet its goal of 
promoting student learning? In particular, we address the three specific questions 

1. What was the effect of the redesign effort as measured by student response patterns on 
curriculum-aligned assessments?  

2. How did the assessment results differ for students classified as ELs and those not classified 
as ELs (non-ELs)? 

                                                             
1 In our research context, multilingual students who are learning the language of instruction are classified as 
“English Learners” (ELs). We use ELs when describing students as they are classified by the school. However, 
when referring to this group of students more generally, we will use “multilingual students” to highlight the assets of 
students learning the language of instruction.  
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3. On what kinds of problems, conceptual or procedural, in the assessments of the Redesigned 
lessons did the students make the largest gains? 

Framework 
This design research (Cobb et al., 2003) project utilized the Academic Literacy in Mathematics 

(ALM) framework (Moschkovich, 2015, Moschkovich & Zahner, 2018), a sociocultural framework 
for analyzing and designing mathematics learning environments for emerging multilingual students. 
The ALM framework highlights that developing academic literacy entails developing mathematical 
proficiencies (in particular, procedural fluency and conceptual understanding), engaging in 
disciplinary practices, and participating in mathematical discourse. In our design efforts, we focused 
on developing students’ conceptual understanding of the slope of a linear function as representing a 
rate of change (Lobato & Thanheiser, 2002). Based on prior research, we know that many students 
develop procedure-bound understandings of linear rates of change. For example, students can 
calculate a rate of change given a well-ordered table, but then they may struggle to interpret the rate 
in a given problem context (Lobato & Siebert, 2002). Therefore, one of our goals was to develop 
students’ conceptual understanding of a linear rate of change as a multiplicative relationship between 
quantities. 

Building on insights from prior design efforts in linguistically diverse mathematics classrooms 
(Chval et al., 2014; Prediger & Zindel, 2017) and the ALM framework, our redesign efforts were 
based on three guiding principles: (a) aligning a conceptual focus and problem contexts across the 
unit to minimize linguistic complexity, (b) integrating mathematical language goals linked to the 
conceptual focus, and (c) incorporating language supports in daily lesson activities to allow all 
members of a linguistically diverse classroom to engage in classroom discussions. In support of this 
design research effort we collected a wide array of data and we are conducting both quantitative and 
qualitative analyses of these data. In this report, we report on quantitative evidence of student 
learning measured in pre-unit and post-unit assessments. These assessments were designed by the 
participating teachers and researchers to align with the content of the unit, and to target both 
conceptual and procedural knowledge. In this sense, the assessment provides data related to the first 
component of the ALM framework (Moschkovich, 2015). 

Data and Methods 
Design Cycles 

The classroom-based design research entailed three main phases and two design cycles, shown in 
Figure 1. In Phase I, Pre-Intervention, the researchers observed ninth grade mathematics classes at 
City High across a unit on linear rates of change. Students in the observed classes completed a pre-
unit assessment at the start of the unit and a post-unit assessment at the conclusion of the unit. 
Additionally, during Phase I, the researchers conducted clinical interviews with selected students 
from the observed classes. Due to space restrictions, the interviews are not discussed further here.  

At the conclusion of Phase I, the teachers and researchers analyzed the Phase I data with the goal of 
redesigning the unit on linear rates of change. The Redesigned lessons were then pilot tested in Phase 
II during Teaching Experiment (TE; Prediger, Gravemeijer, & Confrey, 2015). The teaching 
experiment lessons were taught in an after school setting, which allowed the researchers and teachers 
to make adjustments in the lesson designs from week to week. The TE lessons were designed using 
the project design principles outlined above. The teaching of the lessons in the TE was the conclusion 
of the first iteration of the design cycle and the start of the second iteration.  

Finally, in Phase III, the team of teachers and researchers analyzed the data from the Phase II TE 
lessons and redesigned the unit lessons from Phase II for use during the regular school day. The 
participating teachers implemented the Redesigned lessons during their typical school day in Phase 
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III. During this second iteration of the design cycle, the classroom lessons were observed and the 
students in the Phase III classes completed a pre-unit and post-unit assessment (paralleling the Pre-
Intervention observations from Phase I). In the results reported here, we focus on the assessments 
that were administered at the start and conclusion of the classroom observations in the Pre-
Intervention (Phase I) and Redesigned (Phase III) units.  

 

 
Figure 1: Overall project design and phases of design cycles. 

 
Setting and Participants 

Data collection took place in ninth grade mathematics classes at City High, a large, urban high 
school enrolling a linguistically diverse group of students. City High is located near the US-Mexico 
border, and it serves a relatively large number of recent immigrant and transborder students. 
Throughout the study, approximately 30% of City High students were classified as ELs, and an 
additional 50% of the students were formerly classified as ELs. Over 75% of the students were 
identified as Latinx in school demographic data, and most students classified as ELs spoke Spanish 
as their primary language. Additionally, the majority of City High students were from households 
with low socioeconomic status.  

Six teachers participated in the design effort across the four-year project. In this analysis, we focus 
on the assessment results for the students of Mr. S because he was the only teacher who participated 
in all phases of the design effort. Mr. S had six years of experience at the start of the study, holds a 
teaching credential in mathematics, is bilingual in Spanish and English, and has taken some courses 
on teaching English learners in the content areas as part of his mathematics teaching certification 
program. He participated in the study to further develop his expertise teaching mathematics to 
multilingual students.  

We included all students in Mr. S’s focal classes who took the pre-unit and post-unit assessments 
during the Pre-Intervention (n=18) and Redesigned (n=28) phases of the research. We note that the 
assessments were designed to align with the respective units. Therefore, we were not able to use the 
same items on the assessments for the Pre-Intervention and Redesigned lessons. To account for these 
differences in the assessment design, we converted the total scores on each assessment to the 
proportion of correct answers.  
Assessment 

The pre- and post-assessments were designed by the researchers in collaboration with the teachers. 
In both the Pre-Intervention and Redesigned units, the assessments included a mixture of 
procedurally-focused items that did not require explanation, as well as conceptually-focused items 
characterized by prompts for explanation. Aligning with the design guidelines for the ALM 
framework (Moschkovich & Zahner, 2018), the focus of the intervention was developing students’ 
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conceptual understanding of rate of change. The conceptual items reflected this focus and assessment 
goal. Figure 2 shows an example of a procedural item (top) and conceptual item (bottom) from the 
Phase III assessment. In the Results section, we compare patterns of student responses to the 
conceptually-focused and procedurally-focused items from Phase III.  

 

 
 

 
Figure 2: A procedural item (top) and a conceptual item (bottom) from the Redesigned assessments.  

 
The assessments were scored using a rubric by the research team. In general, students were awarded 

points for correct responses as well as valid explanations (on the conceptual items). For the analysis 
of assessment gains, we used comparisons of means and paired effect sizes (Cohen, 2013) to identify 
the direction and magnitude of change from the pre-assessment to the post-assessment in each phase. 
For the comparison of student performance on the conceptually-focused versus procedurally-focused 
items, we also compared means and measured paired effect sizes. We used paired effect sizes 
because we had both pre-assessment and post-assessment data by student. The details of these 
analyses are in the Results. 



Designing mathematics learning environments for multilingual students: Results of a redesign effort in introductory 
Algebra 

 

	 413	

Results 
We note a caveat at the outset of this section: we had relatively small sample sizes. These small 

sample sizes are a result of engaging in intensive work with a small group of teachers across multiple 
years. Our sample sizes were reduced by teacher turnover across study years and student 
absences/mobility within each design cycle. These realities, while not ideal for statistical research, 
are byproducts of working in our local school setting. In light of the small samples, we used Hedges’ 
correction whenever presenting claims about growth as measured by effect sizes.  
Research Question 1: What was the effect of the redesign effort as measured by student 
responses on the pre- and post-assessments?  

To answer RQ1, we compared results of the pre- and post-assessment gains in Pre-Intervention and 
the Redesigned units. Table 1 shows the pre- and post-assessment mean scores along with the paired 
effect size to measure the magnitude of the gain. 

 
Table 1: Pre- and post-assessment means for the Pre-Intervention and Redesigned units. 

 
Pre-assessment Post-assessment Gain 

Paired effect size 
(Magnitude)1 

Pre-Intervention 
(n=18) 

0.42 (0.17) 0.57 (0.18) +0.15 0.80 (L) 

Redesign 
(n=28) 

0.24 (0.16) 0.44 (0.19) +0.20 1.12 (L) 

Note: 1S: |d|<0.20,     M: 0.20 < |d| < 0.50,     L: |d| > 0.50 (Cohen, 2013) 
 

In summary, there was significant growth in both the Pre-Intervention and Redesigned units as 
measured by the pre- and post-assessments. The effect size comparing the magnitude of the pre-post 
gain was larger in the Redesigned unit. While the direction of the difference in effect sizes was 
favorable for our design effort, given the small sample size, we were not able to use a statistical test 
such as an ANOVA to compare the difference in effect sizes.  
Research Question 2: How did the assessment results differ for students classified as ELs 
and those not classified as ELs (non-ELs)? 

Table 2 shows the pre- and post-assessment mean scores broken out by Pre-Intervention and 
Redesigned Lessons and student EL classification. As with Table 1, we included a paired effect size 
to illustrate the magnitude of the differences (Cohen, 2013). The data in Table 2 indicate that while 
there was significant growth from the pre- to post-assessment scores in the Pre-Intervention unit, the 
effect size was larger for non-ELs (0.81) than for Els (0.58). That is, during the Pre-Intervention unit, 
the students who were not classified as ELs benefitted more from the business as usual teaching. 
During the Redesigned unit, however, the pattern in effect size was reversed. That is the effect size 
was larger for ELs (1.44) than for non-ELs (0.94). In terms of the mean gain scores, ELs in both the 
Pre-Intervention and the Redesigned lessons had larger gains than their non-EL classified peers. One 
interpretation of this result is that the intervention led to larger gains for ELs than non-ELs. However, 
this result is moderated by the fact that ELs in the Redesigned unit pre-assessment started relatively 
low compared to the non-ELs. 
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Table 2: Pre- and post-assessment mean scores by EL classification for the Pre-Intervention and 
Redesigned units. 

  Pre- 
assessment 

Post- 
assessment Gain 

Paired effect size 
(Magnitude) 

Pre-Intervention 
Non-EL (n=14) 0.45 (0.16) 0.59 (0.18) +0.14 0.81 (L) 

EL (n=4) 0.33 (0.21) 0.49 (0.21) +0.16 0.58 (L) 
Redesign 

Non-EL (n=20) 0.27 (0.17) 0.45 (0.20) +0.18 0.94 (L) 

EL (n=8) 0.17 (0.11) 0.43 (0.19) +0.26 1.44 (L) 
 

RQ3: On what kinds of problems, conceptual or procedural, in the assessments of the 
Redesigned unit did the students make the largest gains? 

Our final research question examines patterns in student responses to the pre- and post-assessments 
from the Redesigned unit. The assessment for the Redesigned unit included five conceptually-
focused and three procedurally-focused items. Conceptually-focused items included a prompt for 
explanation while the procedurally-focused items were multiple-choice questions with no prompt for 
further explanation. To conduct the analysis of student results based on item type, we calculated a 
subscore for each type of item (e.g., a subscore for the three procedural items, and a subscore for the 
five conceptual items). Table 3 summarizes the results by type of question (Conceptual versus 
Procedural).  

 
Table 3: Pre- and post-assessment mean scores by type of item for the Redesigned unit. 

Type of Item Pre mean (SD) Post mean (SD) Growth Paired Effect Size 
(Magnitude) 

Procedural 0.47 (0.22) 0.44 (0.26) -0.03 0.12 (S) 

Conceptual 0.20 (0.16) 0.44 (0.21) 0.25 1.27 (L) 

 
Table 3 shows there was little change in the mean for the procedural items from the pre-assessment 

to the post-assessment. However, there were significant gains in the conceptual items. This result 
aligns with the focus of the redesign efforts on fostering student development of conceptual 
understanding related to linear rates of change.  

Discussion & Conclusion 
In this report we have described quantitative findings based on pre- and post- unit assessments that 

were used as part of a design research effort. The goal of the design research effort was to create a 
classroom learning environment in a linguistically diverse secondary mathematics classroom where 
students learn to reason about linear rates of change. The main findings presented in this report are:  

1. Students in the Redesigned unit showed larger gains as measured by paired effect size with 
Hedges correction,  
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2. ELs in the Redesigned unit had larger gains when compared to their non-EL counterparts. 
The gains by Els in the Redesigned unit were also relatively larger than their gains in the Pre-
Intervention lessons, and  

3. In the assessment of the Redesigned unit, the students had more growth on the conceptually-
aligned items than on the procedural items. 

While we have shown that the paired effect size was larger in re-designed unit, we are not able, at 
this point, to make a causal claim about learning linked to our design efforts. However, we can 
hypothesize that some of the growth observed in our analyses can be traced back to the design 
principles and the instructional activities that were developed across the two design cycles. For 
example, in the Pre-Intervention lessons, we observed that most students had limited opportunities to 
solve conceptually demanding tasks during their regular mathematics classes. Therefore, in the 
Redesigned unit, we intentionally included conceptually demanding tasks, along with targeted 
linguistic supports for students classified as ELs, to allow all students in the Redesigned classroom 
an opportunity to solve more conceptually-focused problems. For example, during one of the 
Redesigned lessons students were challenged to make up a story related to a graph showing distance 
and time. Then they were tasked with solving non-routine problems about rates of change in other 
graphs. These instructional tasks, which consistently included prompts for students to explain their 
reasoning and justify responses, were similar to the conceptually-focused item in Figure 2. 

One question that remains for our design efforts is why the students in the Redesigned unit did not 
show gains on the procedural items. When we ran the analysis for RQ3, we expected to see growth 
on both the conceptual and the procedural items. However, looking at the results in Table 3, there 
was little change on the procedural tasks from the pre-assessment to the post-assessment. One 
possible explanation for this lack of gain is that the learning opportunities within the Redesigned unit 
did not include many tasks focused on developing students’ procedural fluency. Reflecting on the 
data in Table 3 prompts us to consider whether the learning tasks in the Redesigned lessons 
overemphasized a conceptual focus and did not include enough opportunities for students to develop 
procedural fluency.  

Despite the limitations induced by the small sample size of this study, the results presented here 
highlight potential avenues for further development and research. This is of particular interest since 
there are relatively few studies, like the one presented here, that have engaged in design research 
focused on meeting the needs of linguistically diverse students. One potential follow-up study might 
be to use the materials developed in this project in a study with a larger number of teachers and 
students. Such a study, particularly one using a more controlled design, could test of the robustness 
of the results presented here.  

Another avenue for follow-up on this research, which we are undertaking presently, is qualitative 
analyses of the design effort. In these analyses we are examining the forms of student reasoning that 
were developed during the Redesigned lessons and tracing those forms of reasoning back to the 
classroom learning environment. For example, we are examining the quality of student explanations 
on the conceptually-focused items, and then connecting the student reasoning observed on the 
assessments to the classroom observations (paralleling the analysis of Zahner, 2015). This analysis 
will allow us to understand how a linguistically diverse group of ninth grade students developed 
particular forms of reasoning about linear rates of change.  
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Curricular coherence has been emphasized by leaders in mathematics education as it enhances 
deeper understanding by enabling students to see connections between mathematical ideas. Although 
there are different forms of curricular coherence, the coherence of lesson has received considerably 
less attention. Little is known about what constitutes coherent lessons or how to measure the degree 
of coherence. Using the data from a larger study in which lessons are intentionally designed for 
coherence, we propose a tool for examining lesson coherence and describe characteristics of the 
lessons with different levels of coherence. 

Keywords: Curriculum, Curriculum Enactment, Instructional Activities and Practices 

What explains poor U.S.A. performance in mathematics according to international comparison 
studies? According to Stigler and Hiebert (1999), who compared enacted lessons from seven 
countries including the U.S.A., one of the factors that distinguishes mathematics lessons in the 
U.S.A. from high-performing countries is their degree of coherence. They explain: 

Imagine the lesson as a story. Well-formed stories consist of a sequence of events that fit 
together to reach the final conclusion. Ill-formed stories are scattered sets of events that don’t 
seem to connect. As readers know, well-formed stories are easier to comprehend than ill-
formed stories. And well-formed stories are like coherent lessons. They offer the students 
greater opportunities to make sense of what is going on. (p. 61) 

Much of the prior research has focused more on curricular coherence, which refers to how 
mathematics topics are connected across grade levels (Schmidt, Wang, & McKnight, 2005). 
Coherence within a lesson (what we refer to as lesson coherence) has received considerably less 
attention. Our goal is to learn what constitutes a coherent lesson and to what extent one lesson’s 
coherence differs from that of another. Using lesson data from a larger study in which lessons were 
intentionally designed for coherence, the present study aims to answer the following questions: When 
enacted lessons are analyzed for how mathematical ideas build within each lesson and how its parts 
are interconnected, to what extent are the lessons distinguishable? What are the characteristics of 
lessons in each type of lesson coherence? 

Theoretical Framework 
As Stigler and Hiebert (1999) suggest, mathematics curricula (i.e., lessons, units, entire courses, and 

so on) can be thought of as mathematical stories (Dietiker, 2015). Mathematical stories foreground 
how the mathematical content unfolds across a lesson, connecting a beginning with an ending. The 
sequential parts of a mathematical story form its acts during which students’ understanding of 
mathematical characters (e.g., numbers or geometric objects), mathematical actions (e.g., 
procedures), and/or mathematical settings (e.g., representations) changes. 

A story’s coherence is the extent to which parts of stories fit with one another and come together as 
a whole (Richman, Dietiker, & Riling, 2019). Incoherent mathematical stories make it harder for 
students to see connections between lesson parts (i.e., acts) and prevent students from fully 
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comprehending a mathematics lesson. However, it does not necessarily follow that more coherent 
lessons are always better; students may feel boredom during a predictable lesson.  

Methods 
In order to learn about types of lesson coherence, we analyzed recordings of secondary mathematics 

lessons expected to represent a range of coherence. The lessons were taught by six teachers from 
three high schools in Northeastern USA. About half of the lessons were teachers’ typical lessons and 
the rest were designed as mathematical stories, a process that we predicted would increase coherence. 
Data includes video- and audio-recordings of full lessons. At the end of each lesson, consenting 
students completed a survey describing their experience. In order to achieve maximal variation in 
coherence, we identified each teacher’s lessons with the most positive and negative student aesthetic 
reactions. We also included a lesson for which the teacher had participated in analyzing a previous 
enactment as a story, which we thought might result in a unique form of coherence.  

Members of the research team coded independently and met for consensus throughout the coding 
process. The team first identified acts by noting changes in mathematical characters, actions, or 
settings (e.g., when students shift to a new task). Within each act, the team identified questions that 
arose. For each question, researchers marked changes in what was revealed publicly, such as when a 
teacher asks clarifying a question when or students shift to a new task.  

In order to examine the connectivity of each lesson, we created a coherence map using graph 
theory. Nodes represent acts and edges reflect that two acts contain progress on the same question(s). 
Lessons were then grouped based on the connectedness of their graphs. For each level, at least two 
research team members examined the transcripts of the lessons to demonstrate the characteristics of 
each level. 

Findings 
We identified three levels of coherence within our data set: incoherence, partial coherence, and 

strong coherence. Here, we present coherence maps of lessons selected to represent each coherence 
level and articulate features and characteristics of each level. 
Level 1: Incoherence 

Two lessons analyzed contain discontinuities between topics and a lack of overarching themes 
across tasks. One of the lessons (see Figure 1) begins with a warm-up in which students describe 
properties of an operation (i.e., a&b = 3a – b). Yet, these features are not relevant to the next task, 
about the range of a function of x. After that, the lesson has another disconnect when the focus in Act 
7 shifts to an unrelated topic (percent) without explanation. Although all tasks in Acts 7-12 are about 
percentages, they jump from calculating percentages of numbers to calculating prices as percent 
discounts, and so on. No work that students do to complete one task supports them to complete the 
rest. It is unlikely students will connect these tasks beyond recognizing that each is about 
percentages. Because these tasks are so independent, there exists no obvious sequence that would 
support students in building an understanding of percentages.  

 

 
Figure 1: A Visual Model of an Incoherent Lesson 
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Level 2: Partial Coherence 
Two of the analyzed lessons show some extent of coherence within substantial portions of the 

lessons. The coherence maps of such lessons contain sections with some internal connections, but no 
connections across sections. One of these lessons (see Figure 2) beings with students observing four 
graphs of systems of linear inequalities (Acts 1-6). During this activity, students work on questions 
like, why are the different parts shaded? After that, however, this question is not pursued by the 
teacher or students as the students work on a worksheet with other types of inequalities (e.g., one 
variable inequality) in Acts 8-14. In Act 15, the teacher briefly review the answers to the worksheet 
problems and ends the lesson. The lessons in this level include more connections between acts than 
the incoherent lessons do. However, these connections rely heavily on a couple of acts (e.g., Acts 6 
and 15), which build some extent of coherence but not a strong amount. 

 

 
Figure 2: A Visual Model of a Partially Coherent Lesson 

 
Level 3: Strong Coherence 

Some lessons in our data set were strongly coherent. That is, a student would likely understand why 
they were engaged in a given activity and know how parts of the lesson connected to one another. 
Three sub-types of strong coherence—retroactive coherence, coherence with brief diversions, and 
strong coherence—are described below. 

Retroactive coherence. In some highly coherent lessons, there are portions of the lesson that 
appear disconnected, but are later shown to be connected. These lessons are similar to partially 
coherent lessons in which teachers review answers at the end of the lesson, but retroactive coherence 
is richer because students have opportunities to make conceptual connections across ideas from the 
lesson. Consider a lesson with this type of coherence about repeated roots of polynomials (see Figure 
3). 

 

 
Figure 3: A Visual Model of a Retroactively Coherent Lesson 

 
In Acts 1 through 10, students are shown a graph of a polynomial with a repeated root and work 

collaboratively to find its equation. In Act 11, the teacher explains that they will no longer be making 
progress on questions regarding the graph and distributes a new worksheet with equations to graph. 
In the final acts, the teacher enables students to see connections between the two seemingly distinct 
portions of the lesson by turning their attention to broad concepts that apply to both. Several early 
questions that did not refer to specific equations or graphs, but do broadly apply to them, become 
relevant again in Act 14. Retroactive coherence is possible because the teacher does not disclose 
many questions from the first part of the lesson before beginning the second part, so students may 
still wonder about them later on. 

Coherence with brief diversions. Sometimes, most acts were connected to each other, with a few 
brief diversions consisting of acts that were somewhat, or not at all, connected. We found four such 
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lessons. Two have brief diversions that appear as tails at the beginning of a lesson, typically due to 
teachers reviewing prior work. The others have tails later in a lesson, when teachers introduced 
alternate solution strategies that are not addressed as the lesson continues. An example of this second 
type is a lesson about exponential equations (Figure 4). In Act 15, the teacher introduces a new, 
efficient way of solving for x in the equation 1.04x = 2. The teacher asks students to think of way to 
find x that would be more efficient than the predominant solution strategy (i.e., guessing and 
checking) used in the lesson. He then solves the problem using the new method (i.e., taking the 
logarithm of both sides and using the power property to solve for x). 

 

 
Figure 4: A Visual Model of Coherence Lesson with Brief Diversions 

 
Strong coherence. Several lessons designed as mathematical stories displayed an incredibly high 

level of connection across acts with no diversions or temporary coherence gaps. The coherence map 
of one lesson with strong coherence is represented in Figure 5. In this lesson, students built 
understanding of the Rational Root Theorem by investigating potential roots. The lesson’s high 
degree of coherence is evident in the multiple complete subgraphs (e.g., Acts 5-7). The strong 
coherence is due to both a set of questions from Act 1 and new questions introduced in subsequent 
acts that remain open for most of the lesson. The teacher permits the students to gradually explore 
and refine their ideas as they consider new challenges, prompting them to explore their initial 
questions during each subsequent task. The progressively complex nature of each new task (e.g., 
checking provided roots versus selecting their own potential roots) likely makes it so that students do 
not grow bored of their investigation. 

 

 
Figure 5: A Visual Model of Strong Coherence 

Discussion 
We do not claim that these three types of coherence are discrete. There might be additional 

intermediate levels, or even a continuous coherence spectrum. The presented levels are only samples 
of this possible spectrum; our goal is to present a way to describe the coherence of a mathematics 
lesson. Lesson coherence is not only a quality indicator of a mathematics curriculum but also a useful 
dimension for making a lesson more captivating in terms of student engagement. Increasing 
coherence requires purposeful design and management of mathematical inquiry. Through coherence 
mapping, lesson coherence that is often implicit can be visualized so that teachers will be able to see 
how they can make stronger connections between parts of a lesson. 
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We analyzed a total of 1129 tasks in grade 6–8 textbooks to examine the type of coordinate system 
presented and the associated graphing activity required in each task. We share our findings and 
discuss educational implications of such findings.  
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Middle school is a critical time for students to develop robust understandings of coordinate systems 
and graphs. In the Common Core State Standards for Mathematics (CCSSM; NGA Center & 
CCSSO, 2010), for example, students are first introduced to the Cartesian plane and learn to plot or 
interpret points in the first quadrant in 5th grade; thereafter, students are expected to use the Cartesian 
plane for exploring and representing other mathematical ideas including geometrical shapes, 
proportional relationships, number systems (6-7th grade), and graphs of linear relationships (8th 
grade). In this report, we share results from an analysis on the types of coordinate systems presented 
and associated graphing activity required in grade 6–8 textbooks and discuss educational 
implications of such findings. 

Conceptual Framework 
By coordinate system, we mean a representational space in which an individual systematically 

coordinates quantities (Thompson, 2011) to organize some phenomenon. We have previously 
distinguished between two types of coordinate systems depending on the goal they serve: spatial and 
quantitative coordinate systems (Lee, Hardison, & Paoletti, 2018; 2020). A spatial coordinate system 
is used to quantitatively organize a space in which a phenomenon is situated (Figure 1). Constructing 
a spatial coordinate system involves an individual organizing a space by (mentally) overlaying a 
coordinate system onto some physical or imagined space being represented where objects within that 
space are tagged with coordinates. For example, in Figure 1b a coordinate system is overlaid onto a 
region of a city from a bird’s eye view where the x- and y-axes coincide with roads in the city.  

On the other hand, a quantitative coordinate system is used to coordinate sets of quantities by 
constructing a geometrical representation of the product of measure spaces (Figure 2). Constructing a 
quantitative coordinate system involves an individual extracting quantities from the space in which a 
phenomenon occurs and projecting them onto a new space, different from the space in which the 
quantities were originally conceived. For example, in Figure 2b the coordinate system is showing the 
relationship between time (in minutes) and the number of boxes a machine packages over time where 
both quantities were taken from a space separate from the presented coordinate system. 

Relatedly, graphs represented in each of these coordinate systems are fundamentally different (Lee, 
Hardison, & Paoletti, 2018; 2020). Graphs created on spatial coordinate systems can be viewed as 
projections or traces of physical objects or phenomena onto an analogous space containing the 
original objects or phenomena. Whereas, in a quantitative coordinate system, graphs are not 
projections of physical objects or phenomena from the same space containing the original objects or 
phenomena. Due to this distinction, different ways of reasoning could be productive when creating 
and interpreting spatial and quantitative coordinate systems and their associated graphs (c.f., Lee, 
Hardison, Paoletti, 2020).  
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Figure 1. Examples of tasks using a spatial coordinate system. 

 

 
Figure 2. Examples of tasks using a quantitative coordinate system. 

 
Using this framework, our goal in this study was to investigate the different types of coordinate 

systems presented in grade 6–8 textbooks. Specifically, we examined (a) what type of coordinate 
systems textbooks present, (b) what type of graphing activities problem solvers are prompted to 
engage in, and (c) how frequently these coordinate systems and graphing activities appear in 
textbooks. We emphasize that the textbook analysis involved our interpretations of the textbook 
author’s intended use of coordinate systems, which do not necessarily coincide with how students 
might perceive of the coordinate system. 

Methods 
We extracted and coded a total of 1129 tasks from three major textbook series (Mathematics in 

Context, enVision Math 2.0 Common Core, and Texas Math TEKS; see references) for grades 6–8 to 
date. The three series were selected to represent a variety of curricula. The first step in our analysis 
involved selecting and extracting tasks. The criterion for inclusion was that the task presented a pre-
constructed two-dimensional coordinate system, either left blank or containing a graph. Relatedly, we 
also included tasks referring to previous tasks containing a pre-constructed coordinate system. We 
excluded tasks that had coordinate system-like grids but did not explicitly involve problem solvers to 
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attend to the coordination of quantities (e.g., a grid superimposed onto a shape to find its area, box-
and-whisker plots, and bar graphs with categorical data). Our unit of analysis, what we call a task, is 
a sequence of explanations or questions surrounding a single context or a single coordinate system. 
This means that explanations/questions about a single context with several coordinate systems (e.g., 
comparing several graphs) and explanations/questions with multiple contexts around a single 
coordinate system (e.g., graph several things on the same coordinate system) all counted as a single 
task.  

After extracting tasks, we coded each task along two dimensions. The first dimension is the type of 
coordinate system. A task received the code spatial if the coordinate system is spatial; quantitative if 
the coordinate system is quantitative; both if the task involves both types of coordinate systems in a 
single task (e.g., comparison tasks with both types); and neither if it was difficult to discern as spatial 
or quantitative due to lack of context (e.g., x-y graph without specification of what x and y represent). 
When necessary, we referred back to previous or subsequent tasks in the textbook to determine the 
context of the task. 

The second dimension was the type of graphing activity required in the task. A task received a 
create code if it requires problem solvers to create a graph by plotting a point or collection of points 
(e.g., tasks in Figures 1a and 2a). A task received an interpret code if it requires problem solvers to 
make sense of a pre-constructed graph, such as describing the relationship between two variables or 
constructing an algebraic equation that describes the graph (e.g., tasks in Figures 1b and 2b). Our 
distinction between create and interpret is similar to Leinhardt et al.’s (1991) distinction between 
construction and interpretation; however, different from Leinhardt et al., we consider building 
algebraic functions for a graph as interpretation and not construction. A task received a both code if it 
required the problem solver to both create and interpret a graph; a neither code if there were no 
requirement for the problem solver to create or interpret a graph.  

We reiterate that codes were attributed to each task based on our interpretations of the authors’ 
intention of the task. Once all tasks were coded, we compared our codes and when there was a 
disagreement, we discussed them to come to a consensus. Finally, we recorded the mathematical 
topic covered in each task using the topic names used in the textbook. 

Findings and Discussion 
The results are summarized in Table 1. Because our purpose was not to compare textbooks, we 

report only on the total frequencies for each code across all textbooks within each grade. As shown in 
Table 1, the coordinate systems were predominantly quantitative and most tasks required problems 
solvers to interpret a graph. There were consistently and predominantly more tasks that required 
students to interpret a graph rather than create a graph across all three grades. However, the trend in 
coordinate system type changed across grade levels. In grade 6, both types appeared close in 
frequency. Many grade 6 textbooks introduced the Cartesian plane, asked students to plot points or 
enact operations on coordinates (i.e., coordinate geometry) and then used the Cartesian plane to 
represent graphs of functions. As such, coordinate systems were often first introduced spatially and 
students were expected to transition from a spatial to quantitative coordinate system 
unproblematically. In grade 7, there was a stark difference in the number of quantitative coordinate 
systems (n=128) in comparison to those that were spatial (n=8). Relatedly, in grade 7 textbooks we 
coded, statistical graphs (e.g., bar graphs, histograms) and linear relationships were the main focus of 
content. Finally, in grade 8, there was a more balanced use of quantitative and spatial coordinate 
systems, with more quantitative (58%) than spatial (42%). In grade 8, textbooks covered linear 
relationships (functions, systems of equations) and statistical graphs in which quantitative coordinate 
systems prevailed; however, they also covered topics such as transformations of shapes and the 
distance between points, in which spatial coordinate systems were used.   
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Table 1. Number of Tasks by Problem Type, Coordinate System Type, and grade level.  

Grade Problem Type Coordinate System Type Total Quantitative Spatial Both Neither 

6 

Create 10 0 0 7 17 
Interpret 42 51 0 15 108 

Both 18 12 0 3 33 
Neither 0 0 0 1 1 

Grade Total 70 63 0 26 159 

7 

Create 9 0 0 15 24 
Interpret 83 3 0 19 105 

Both 35 5 0 4 44 
Neither 1 0 0 5 6 

Grade Total 128 8 0 43 179 

8 

Create 27 22 0 34 83 
Interpret 225 151 0 124 501 

Both 84 71 0 44 199 
Neither 0 0 0 8 8 

Grade Total 336 244 0 210 791 
Grand Total 534 315 0 279 1129 

 
Note there were no tasks that involved both types of coordinate systems but a total of 279 tasks 

coded neither for coordinate system type. Previously, Paoletti et al. (2016) analyzed graphs in STEM 
textbooks and practitioner journals at the undergraduate level and found that the majority of graphs 
either mathematized a spatial situation or represented two (contextual) quantities. On the other hand, 
they found that most graphs in commonly used precalculus and calculus mathematics textbooks 
represented two decontextualized quantities, finding a discrepancy between graphs students 
experience in their math classes and those used in other STEM fields. Looking across our interpret 
graph tasks, 22.13% of those tasks used decontextualized coordinate systems, thus received a neither 
coordinate system type code. Although not as dramatic as Paoletti et al.’s findings, the mathematics 
textbooks we analyzed also presented decontextualized graphs for students to interpret, which 
increased over time (15, 19, 124 tasks in grades 6, 7, 8, respectively).  

Based on our findings, we propose the following changes in curricula (and relatedly, in teaching) on 
coordinate systems and associated graphs to support students’ mathematical development as well as 
potential future STEM courses and careers: (a) tasks drawing from contexts that afford opportunities 
to develop a balanced understanding of both coordinate system types; (b) a more balanced graphing 
activity associated with coordinate systems, and hence more opportunities for students to create 
graphs; and (c) better support in curricula materials assisting students’ transitions from spatial to 
quantitative coordinate systems. 

In this study, we specifically focused on tasks that presented pre-constructed coordinate systems. 
Future research directions include identifying the different types of activities required for coordinate 
systems (e.g., create or interpret a coordinate system) in conjunction with the extant three dimensions 
(coordinate system type, graphing activity type, and mathematical topic).  
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The Chilean Curricular Bases of primary education (students from 6 to 12 years old), establish in the 
Patterns-and-algebra axis that algebraic thinking will be developed through a  problem-solving 
approach. However, international research  shows that working with the algebraic objects involved 
in these types of problems is not the only way of enhancing the development of such thinking;  there 
is another type of arithmetic-nature-problem which also enhances it at proto-algebraic level. This 
paper aims to identify and characterize this type of problems, associated with the Numbers-and-
operations axis in the official Chilean textbooks. For this, the model of Algebrization Levels is 
considered as a theoretical reference, which is a theoretical-methodological tool proposed by the 
Onto-Semiotic Approach of mathematical knowledge and instruction. 

Background 
There are approximately three decades in which educational authorities and researchers in the field 

of Mathematics Education have shown a great interest in introducing algebraic ideas to the primary 
education curriculum. The introduction of these ideas aims to develop algebraic reasoning in students 
from 6 to 12 years old. This approach is currently known as Early Algebra. There are studies at a 
global level (Cai, 2004; Fong, 2004; Lew, 2004; Watanabe, 2008) developed under this approach, 
which have identified the characteristics with which these ideas have been introduced into the 
curriculum. 

In the Mexican context, Aké and Godino (2018) state that, although the tasks proposed in the first-
grade textbook are not aimed at promoting algebraic thinking in children, since numerical register is 
prioritized, some implicit algebraic objects are identified in some mathematical tasks and, from the 
authors’ perspective, those tasks guide towards proto-algebraic ways of thinking. In the case of 
Colombia, Castro, Martínez-Escolar, and Pino-Fan (2017) report the promotion of algebraic 
reasoning through mathematical tasks from first to sixth grade of primary education which, for 
example, at the first grade include expressing numerical sentences in an equivalent way (42 – 9 = 43 
− ⎕), and solving numeral sentences (⎕ + 4 = 4). Those tasks require, for instance, solving 
inequalities and then graphing the solution, verifying numerical conjectures, etc. Finally, in the 
American context, four standards of algebraic context are established: understanding of patterns, 
relations and functions; representation and analysis of mathematical situations and structures using 
algebraic symbols; use of mathematical models to represent and understand quantitative relations; 
and the analysis of change in various contexts (National Council of Teachers of Mathematics, 2000). 

These studies, and others, have shown that currently there is no consensus in the field on the 
characteristics of algebraic reasoning and, even more, on what is meant by this concept. Thus, in 
Blanton and Kaput (2011), they refer to it as an activity of generalization of mathematical ideas. In 
addition, the work with undetermined quantities, the use of variables, algebraic symbolization, 
relations between quantities, unknowns, equations, patterns, and the study of change, are considered 
as other notions related to the development of algebraic reasoning. In addition, other studies relate 
the development of this type of reasoning based on the work with some notions of arithmetic. These 
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results somehow support and justify the existence of the Early Algebra approach, which emerged as a 
counterweight to the curricular separation created between arithmetic and algebra. Molina (2009) 
points out that some authors suggest that this separation accentuates and prolongs the difficulties of  
students.  This is why the work with activities that enable the transition and integration of algebra 
and arithmetic is proposed, with a different approach to the computational one (which predominates 
in the first  grade) and that benefits the development of algebraic and arithmetic modes of thinking. 

In the Chilean context, the few studies developed to characterize algebraic reasoning, focus on how 
algebraic ideas are introduced to the primary education curriculum. Mejías (2019) published a study 
on the presence of algebra in Chilean textbooks from first to sixth grade of primary education, and its 
incorporation into the national curriculum, focusing the attention on the Patterns-and-algebra axis. 
This axis, together with Numbers-and-operations, Geometry, Measurement, and Data-and-probability 
axes, are part of the curricular organization proposed in the Curricular Bases (Ministry of Education 
of Chile [MINEDUC], 2018) from first to sixth grade of primary education (students aged 6 to 12 
years old). Particularly, with the study of concepts such as pattern, in this axis it is expected that the 
bases for the development of more abstract mathematical thinking at higher levels, especially 
algebraic reasoning, will be established (MINEDUC, 2018). However, in the Numbers-and-
operations axis it is expected that some concepts that promote this type of reasoning can be 
identified. As a consequence of the above, in this work it is proposed to characterize a typology of 
problems, related to the Numbers-and-operations axis in the Chilean context, which promote 
algebraic reasoning. 

Theoretical And Methodological Aspects 
This work is based on the theoretical notions developed by the Onto-Semiotic Approach to 

mathematical knowledge and instruction (Godino, Batanero, & Font, 2007, 2019), specifically on the 
Algebrization Levels model (Godino, Aké, Gonzato, & Wilhelmi, 2014). This model is considered as 
a theoretical-methodological tool, which allows characterizing algebraic reasoning in terms of the 
representations used, the generalization processes, involved, as well as the analytical calculation that 
is put into play during the (personal or institutional) mathematical practice related to a type of 
algebraic task. It should be noted that this model has been implemented in other studies, and it has 
been evident that it is a good predictor of (intended or assigned) algebrization levels for mathematical 
tasks in textbooks collections (e.g., Aké & Godino, 2018; Castro, Martínez-Escobar, & Pino-Fan, 
2017). 

The levels related to Primary Education are listed below, which are of particular interest to this 
work. 

• Level 0 (absence of algebraic reasoning): mathematical objects are expressed through natural, 
numerical, iconic, or gestural language; if symbols that refer to an unknown value intervene, 
the result of such value is obtained by operating on particular objects. 

• Level 1 (incipient level of algebrization): properties, numerical equivalences, and relations 
from particular tasks are identified; languages are natural, numerical, iconic, or gestural. 

• Level 2 (intermediate level of algebrization): mainly, undetermined quantities or variables 
expressed in symbolic or symbolic-literal language intervene, in order to refer to recognized 
intensives, although linked to information from the spatial-temporal context. 

• Level 3 (consolidated level of algebrization): intensive objects, represented in a symbolic-
literal way, are generated and operated on; transformations of algebraic (symbolic) expressions 
are performed. 

It is pertinent to clarify that these levels are not established by the problem itself, but by the practice 
(or practices) developed to solve the problem. A mathematical practice is defined as “any action or 
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manifestation (linguistic or otherwise) carried out by somebody to solve mathematical problems, to 
communicate the solution to other people, so as to validate and generalize that solution to other 
contexts and problems” (Godino & Batanero, 1994, p. 334). 

This work has a qualitative nature (León & Montero, 2003). The research technique is content 
analysis (Gil-Flores, 1994), specifically focused on mathematical practices (proposed in official 
textbooks). The analysis is carried out following these phases: 1) preliminary study and selection of 
problems related to the Numbers-and-operations axis, 2) resolution of the selected problems and 
detailed analysis of mathematical practices, and finally 3) the categories of problems are generated. 
Namely, mathematics textbooks distributed by the Chilean Ministry of Education for primary 
education levels are analyzed. In this work, we particularly report the results obtained from the first 
and second grade mathematics textbooks. 

Preliminary Results 
The analysis evidenced that a series of institutional mathematical practices proposed in the context 

of the Numbers-and-operations axis, would enable the development of algebraic reasoning. 
Arithmetic is seen by several researchers as a key access to algebra (Warren, 2003). For example, 
Carpenter, Frankie and Levy (2003) state that, when studying algebra, students do not understand 
that the procedures they use to solve equations and simplify expressions are based on the properties 
of numbers. Meanwhile, Molina (2009) argues that “being able to count requires working 
algebraically since it is necessary to have a structured and organized way of counting” (p. 137, 
personal translation from Spanish). Therefore, it is considered that, despite the gap between 
arithmetic and algebra in the context of Chilean Primary Education, the problem situations included 
in the textbooks and their respective practices, would serve as promoters of algebraic reasoning at 
incipient levels (specifically, levels 0 and 1). 

19 types of problems have been identified in the first-grade textbook (16 related to the Numbers-
and-operations axis; 3 related to the Patterns-and-algebra axis), and in the second-grade textbook, 21 
types of problems were characterized (18 related to the Numbers-and-operations axis; 3 related to the 
Patterns-and-algebra axis). The problems belonging to the Patterns-and-algebra axis are not 
considered in this study, because the current curricular document already established that these kinds 
of problems develop algebraic thinking (MINEDUC, 2018). In the case of the Numbers-and-
operations axis, the entire typology of problems has been quantified, however, attention is only 
focused on those which promote algebraic reasoning through their mathematical practices. Among 
the typology of problems, related to the first and second grade of primary, the following can be 
found: 

• Apply the algorithm of composing and decomposing numerical quantities to solve problems. 
• Compare quantities (greater than, less than or equals to, it is more than, it is less than, <, >, =). 
• Identify the condition to know when an element belongs to a set. 
• Identify and represent the cardinality of a set by means of a number. 
• Operate numerical quantities (addition or subtraction). 

The practices promoted by the typologies of previous problems are related to a level 0 of 
algebrization (absence of algebraic reasoning), that is, mathematical objects are mainly represented 
in the numerical, iconic or mother language. Numerical quantities (extensive objects) are 
decomposed as the sum of two (or more) numerical quantities. In addition, tabular representations are 
used to organize the information, mainly when using algorithms for addition and subtraction. The 
concept-definitions are: addition, subtraction, compose, decompose, abacus, place value, additive 
decomposition, etc. The procedures are related to the use of algorithms, and they are also supported 



Types of problems linked to the development of algebraic reasoning in chilean primary education 
 

	 432	

by the use of materials such as the abacus. Propositions and arguments are primarily related to how 
numbers can be decomposed or composed in accordance with the place value of their digits. 

On the other hand, level 1 (incipient level of algebrization) has only been identified in the practices 
promoted in the second-grade textbook, in which the typology of problems related to them is as 
follows: 

• Identify the additive properties of natural numbers (commutative, associative) (5 problems), 
• Identify the properties of multiplication of natural numbers (existence of multiplicative neutral, 

zero property of multiplication) (10 problems). 
Among the algebraic objects identified the following can be found: notion of an unknown value, 

structure properties, notion of a numerical equivalence. Practices at this level allow us to identify that 
extensive objects (examples) intervene that explicitly promote generalization (a rule) through mother 
language. Properties and relations are identified from the structural tasks. 

Projections 
Analogously to the analysis developed for the first and second grade textbooks, it is intended to 

characterize typologies of problems related with the development of algebraic reasoning for the 
remaining texts, from third to sixth grade of primary education, but not only for the Numbers-and-
operations axis, but in Patters-and-algebra axis too. It is considered that a characterization of this 
nature will allow identifying the didactic-mathematical knowledge that primary teachers should have 
in order to develop instructional processes in accordance with curricular approaches. 
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En las Bases Curriculares de primaria (6 a 12 años) de Chile, se establece que con el estudio de 
problemas del eje de Patrones y álgebra se desarrollará el pensamiento algebraico. Sin embargo, 
investigaciones internacionales han demostrado que no sólo el trabajo con los objetos algebraicos 
involucrados en ese tipo de problemas potencia el desarrollo de dicho pensamiento, sino que existe 
otra tipología de problemas, de índole aritmética, que también lo promueve en niveles conocidos 
como proto-algebraicos. En este trabajo se pretende identificar y caracterizar esa tipología de 
problemas, asociados al eje de Números y operaciones, en los textos escolares oficiales de Chile. 
Para ello, se considera como referente teórico el modelo de Niveles de Algebrización, herramienta 
teórico-metodológica propuesta en el Enfoque Onto-Semiótico del conocimiento y la instrucción 
matemáticos. 

Palabras clave: álgebra y pensamiento algebraico, análisis del currículo, educación primaria 

Antecedentes 
Aproximadamente son tres décadas en las que autoridades educativas e investigadores del campo de 

la Educación Matemática han mostrado un gran interés por introducir ideas algebraicas al currículo 
de educación básica. La introducción de estas ideas al currículo tiene por objetivo el desarrollo del 
razonamiento algebraico en estudiantes entre los 6 y 12 años. A este enfoque se le conoce 
actualmente como Early Algebra. Existen investigaciones a nivel mundial (Cai, 2004; Fong, 2004; 
Lew, 2004; Watanabe, 2008), elaboradas dentro de este enfoque, que han dado cuenta de cuáles son 
las características con las que dichas ideas han sido introducidas al currículo. 

En el contexto mexicano, Aké y Godino (2018) declaran que, si bien las tareas propuestas en el 
texto de estudio de primer año de primaria no están dirigidas a promover un pensamiento algebraico 
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en los niños, puesto que se prioriza el registro numérico, sí se identifican algunos objetos algebraicos 
implícitos en algunas tareas matemáticas y que, desde la perspectiva de los autores, orienta hacia 
formas de pensamiento proto-algebraico. En el caso de Colombia, Castro, Martínez-Escobar y Pino-
Fan (2017), reportan la promoción del razonamiento algebraico a través de tareas matemáticas desde 
primero a sexto grado de educación primaria, las que, en el primer grado, por ejemplo, contemplan 
expresar sentencias numéricas de manera equivalente (42 – 9 = 43 − ⎕), resolver sentencias 
numéricas (⎕ + 4 = 4), que requieren, por ejemplo, resolver inecuaciones y luego graficar la 
solución, verificación de conjeturas numéricas, etc. Finalmente, en el contexto estadounidense, se 
establecen cuatro estándares de contenido algebraico: comprender patrones, relaciones y funciones; 
representar y analizar situaciones matemáticas y estructuras usando símbolos algebraicos; usar 
modelos matemáticos para representar y comprender relaciones cuantitativas y analizar el cambio en 
diversos contextos (National Council of Teachers of Mathematics, 2000). 

Estas investigaciones, y otras más, han demostrado que actualmente no existe un consenso en el 
campo sobre las características del razonamiento algebraico y, más aún, qué se entiende por este 
concepto. Así, en Blanton y Kaput (2011), se refieren a éste como una actividad de generalización de 
ideas matemáticas. Además, se considera al trabajo con cantidades indeterminadas, el uso de 
variables, la simbolización algebraica, las relaciones entre cantidades, las incógnitas, las ecuaciones, 
los patrones, el estudio del cambio, como otras nociones asociadas al desarrollo del razonamiento 
algebraico. Otros estudios, además, relacionan el desarrollo de este tipo de razonamiento a partir del 
trabajo con algunas nociones de la aritmética. Estos resultados de alguna manera abonan y justifican 
la existencia del enfoque Early Algebra, el cual surgió como contrapeso a la separación curricular 
creada entre la aritmética y el álgebra. Molina (2009), señala que algunos autores sugieren que esta 
separación acentúa y prolonga las dificultades de los alumnos y es por ello que se propone trabajar 
actividades que posibiliten la transición e integración de ambas, con un enfoque diferente al 
computacional (el cual predomina en los primeros cursos escolares) y que beneficie el desarrollo de 
modos de pensamiento algebraico y aritmético. 

En el contexto chileno, los pocos trabajos desarrollados para caracterizar el razonamiento algebraico 
se centran en cómo son introducidas las ideas algebraicas al currículo de educación básica. Mejías 
(2019), elabora un estudio de la presencia del álgebra en los libros de texto chilenos de primero a 
sexto año de enseñanza básica y su incorporación en el currículo nacional, centrando su atención en 
el eje Patrones y álgebra. Este eje, en conjunto con Números y operaciones, Geometría, Medición y 
Datos y probabilidades, forman parte de la organización curricular propuesta en las Bases 
Curriculares (Ministerio de Educación de Chile [MINEDUC], 2018) de primero a sexto básico (niños 
de 6 a 12 años). En este eje, en particular se espera que, con el estudio de conceptos como el de 
patrón, se establezcan las bases para el desarrollo de un pensamiento matemático más abstracto en 
niveles superiores, en especial el razonamiento algebraico (MINEDUC, 2018). No obstante, se 
considera que, en el eje Números y operaciones, además, se pueden identificar algunos conceptos que 
fomenten este tipo de razonamiento. Como consecuencia de lo anterior, en este trabajo se propone 
caracterizar una tipología de problemas, asociados al eje Números y operaciones en el contexto 
chileno, que fomenten el razonamiento algebraico. 

Consideraciones Teóricas Y Metodológicas 
Este trabajo se sustenta en nociones teóricas desarrolladas en el Enfoque Onto-Semiótico del 

conocimiento y la instrucción matemáticos (Godino, Batanero y Font, 2007, 2019), específicamente 
en el modelo de Niveles de Algebrización (Godino, Aké, Gonzato y Wilhelmi, 2014). Este modelo es 
considerado como herramienta teórico-metodológica, la cual permite caracterizar el razonamiento 
algebraico en términos de las representaciones utilizadas, los procesos de generalización implicados, 
así como el cálculo analítico que se pone en juego durante la práctica matemática (personal o 
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institucional) asociada a un tipo de tareas algebraicas. Cabe señalar que este modelo ha sido 
implementado en otros estudios, y se ha evidenciado que es un buen predictor de los niveles de 
algebrización (pretendidos o asignados) para las tareas matemáticas en colecciones de libros de texto 
(e.g., Aké y Godino, 2018; Castro, Martínez-Escobar y Pino-Fan, 2017). 

A continuación, se enuncian los niveles asociados a la Educación básica, y que son de particular 
interés para este trabajo. 

• Nivel 0 (ausencia de razonamiento algebraico): los objetos matemáticos son expresados 
mediante lenguaje natural, numérico, icónico, o gestual; de intervenir símbolos que refieren a 
un valor desconocido, el resultado de dicho valor se obtiene operando sobre objetos 
particulares. 

• Nivel 1 (nivel incipiente de algebrización): se identifican propiedades, equivalencias 
numéricas, y relaciones a partir de tareas estructurales; los lenguajes son de tipo natural, 
numérico, icónico, o gestual. 

• Nivel 2 (nivel intermedio de algebrización): intervienen, principalmente, cantidades 
indeterminadas o variables expresadas con lenguaje simbólico, o simbólico-literal, para referir 
a los intensivos reconocidos, aunque ligados a la información del contexto espacial-temporal. 

• Nivel 3 (nivel consolidado de algebrización): se generan objetos intensivos, representados de 
manera simbólico-literal, y se opera con ellos; se realizan transformaciones de las expresiones 
algebraicas (simbólicas). 

Es pertinente aclarar que el nivel no se establece al problema per se, sino a la práctica (o a las 
prácticas) desarrollada para dar solución al problema. Se define como práctica matemática a “toda 
actuación o manifestación (lingüística o no) realizada por alguien para resolver problemas 
matemáticos, comunicar a otros la solución, validar la solución y generalizarla a otros contextos y 
problemas” (Godino y Batanero, 1994, p. 334). 

El trabajo es de carácter cualitativo (León y Montero, 2003). La técnica de investigación es el 
análisis de contenido (Gil Flores, 1994), específicamente de las prácticas matemáticas institucionales 
(propuestas en textos oficiales). El análisis de desarrolla en las siguientes fases: 1) estudio preliminar 
y selección de los problemas asociados al eje Números y operaciones, 2) resolución de los problemas 
seleccionados y análisis pormenorizado de las prácticas matemáticas, y finalmente 3) se generan las 
categorías de problemas. A saber, se analizan textos de matemática, distribuidos por el Ministerio de 
Educación de Chile para los niveles de educación básica. En este trabajo, en particular, se reportan 
los resultados obtenidos del libro de matemática de primero y segundo básico. 

Resultados Preliminares 
El análisis desarrollado ha evidenciado que una serie de prácticas matemáticas institucionales 

propuestas en el contexto del eje Números y operaciones, posibilitarían el desarrollo del 
razonamiento algebraico. Diversos investigadores consideran a la aritmética como acceso clave al 
álgebra (Warren, 2003). Carpenter, Frankie y Levi (2003), por ejemplo, manifiestan que, al estudiar 
álgebra, los estudiantes no entienden que los procedimientos que usan para resolver ecuaciones y 
simplificar expresiones están basados en las propiedades de los números. Por su parte, Molina 
(2009), argumenta que “ser capaz de contar requiere trabajar algebraicamente ya que es necesario 
tener una forma, estructurada y organizada de contar” (p. 137). Por lo tanto, se considera que, a pesar 
de que existe una brecha entre la aritmética y el álgebra en el contexto educativo básico de Chile, los 
problemas y sus respectivas prácticas, fungirían como promotores del razonamiento algebraico en 
niveles incipientes (0 y 1 específicamente). 

Se han identificado 19 tipos de problemas en el libro de texto de primero básico (16 asociados al eje 
de Números y operaciones, 3 a Patrones y álgebra), mientras que en el libro de texto de segundo 
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grado se han caracterizado 21 tipos de problemas (18 en Números y operaciones, 3 en Patrones y 
álgebra). En este estudio no se consideran los problemas pertenecientes al eje Patrones y álgebra, ello 
debido a que el documento curricular vigente ya establece que éstos desarrollen el pensamiento 
algebraico (MINEDUC, 2018). Para el caso del eje Números y operaciones, se ha cuantificado toda 
la tipología de problemas, no obstante, sólo se enfoca la atención en aquellos que fomentan, a través 
de sus prácticas matemáticas, el razonamiento algebraico. Entre la tipología de problemas, asociada a 
ambos grados, se encuentran: 

• Aplicar el algoritmo de componer y descomponer cantidades numéricas para resolver 
problemas. 

• Comparar cantidades (mayor que, menor que o igual que, es más que, es menos que, <, >, =). 
• Identificar la condición para saber cuándo un elemento pertenece a un conjunto. 
• Identificar y representar mediante un número la cardinalidad de un conjunto. 
• Operar cantidades numéricas (suma o resta). 

Las prácticas promovidas por las tipologías de problemas anteriores se asocian al nivel 0 de 
algebrización (ausencia de razonamiento algebraico), es decir, los objetos matemáticos se 
representan, principalmente, en lengua materna, lenguaje numérico o icónico. Las cantidades 
numéricas (objetos extensivos) se descomponen como la suma de dos (o más) cantidades numéricas. 
Además, se hace uso de representaciones de tipo tabular para organizar la información, 
principalmente cuando se usan algoritmos para la suma y resta. Los conceptos-definiciones son: 
suma, resta, componer, descomponer, ábaco, valor posicional, descomposición aditiva, etc. Los 
procedimientos se asocian al uso de algoritmos, y, además, se apoyan en el uso de materiales como el 
ábaco. Las proposiciones y argumentos se asocian principalmente, en cómo los números se pueden 
descomponer o componer según el valor posicional de sus dígitos. 

Por otra parte, el nivel 1 (nivel incipiente de algebrización) sólo se ha identificado en las prácticas 
promovidas en el libro de texto de segundo grado, en el cual la tipología de problemas asociada es la 
siguiente: 

• Identificar las propiedades aditivas de los números naturales (conmutativa, asociativa) (5 
problemas), 

• Identificar las propiedades de la multiplicación de los números naturales (existencia del neutro 
multiplicativo, propiedad cero de la multiplicación) (10 problemas). 

Entre los objetos algebraicos identificados se encuentra: noción de valor desconocido, propiedades 
de estructura, noción de equivalencia numérica. Las prácticas en este nivel permiten identificar que 
intervienen objetos extensivos (ejemplos) que promueven la generalización (una regla) de manera 
explícita mediante lengua materna. Se identifican propiedades y relaciones a partir de las tareas 
estructurales. 

Proyecciones 
Análogamente al análisis desarrollado para los libros de texto de primero y segundo básico, se 

pretende caracterizar tipologías de problemas asociados al desarrollo del razonamiento algebraico 
para los textos restantes, de tercero a sexto básico, pero no sólo en el eje de Números y operaciones, 
sino que además en el de Patrones y álgebra. Se considera que una caracterización de esta naturaleza 
permitirá identificar los conocimientos didáctico-matemáticos que los profesores de educación básica 
deberían poseer para desarrollar procesos instruccionales acordes a los planteamientos curriculares. 
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In this study, we report on how slope is reviewed in a convenience sample of 28 common calculus 
textbooks published in English. While most calculus textbooks studied included reviews of slope, 
findings suggest that the reviews are written for students who already have a fairly solid 
understanding of slope. Slope as a ratio, whether approached visually or nonvisually, serves as a 
foundational notion for derivative and was the most common conceptualization used in the textbook 
reviews studied. However, the lack of alternative conceptualizations and connections between 
various conceptualizations of slope may hinder students deeply understanding other calculus topics. 
Future study should look at each of these in depth to determine how slope is needed and leveraged 
when particular calculus concepts are introduced. 

Keywords: Calculus, Post-Secondary Education, University Mathematics, Curriculum Analysis 

Dietiker (2013) argues that mathematics textbooks can be interpreted as narratives that present 
mathematical ideas in a purposeful, influential order. Mathematics textbooks create a link between 
natural language and symbolic mathematical language (Fang & Schleppegrell, 2010), where both 
languages work using nonvisual elements, such as equations, and visual elements, such as graphs 
(O’Halloran, 2015). Textbooks play an important role in the way professors shape and sequence their 
instruction (Davis, 2009) and in how students choose strategies to consider and solve problems 
(Massey & Riley, 2013). Love and Pimm (1996) have suggested that textbooks are primarily geared 
toward students. So, textbooks often impact how students learn, aiding students as they form ideas on 
how to solve problems (Massey & Riley, 2013). Previous calculus textbook research has focused on 
a) how students consider and solve textbook problems (Lithner, 2003; Lithner, 2004), b) how 
instructors use textbooks in their teaching (Mesa & Griffiths, 2012), c) how textbooks present and 
structure examples (Mesa, 2010), d) what is required of students in examples (Özgeldi & Aydın, in 
press), and e) how representations are coordinated in particular reform textbooks (Chang, Cromley & 
Tran, 2016).  

Slope is a secondary mathematics topic that becomes foundational in post-secondary (i.e., 
university) mathematics. It plays a key role when contrasting the covariational behavior of linear and 
nonlinear functions in algebra (Carlson, Jacobs, Coe, Larsen & Hsu, 2002; Teuscher & Reys, 2010) 
and in the development of derivative in calculus (Zandieh & Knapp, 2006). Research on slope in 
post-secondary mathematics has increased in recent years even extending into how slope plays a role 
in multivariable calculus (e.g., McGee & Moore-Russo, 2015). However, examining slope and how it 
is presented in single variable calculus (henceforth, simply referred to as “calculus”) textbooks, has 
not received attention. Ideally, students should follow and use relations between conceptualizations 
of slope at will, demonstrating a flexible, integrated understanding of this notion. However, little is 
known about how, or even if, calculus textbooks review slope. This study considers both calculus for 
science, technology, engineering, and math (STEM) majors (deemed “STEM textbooks”) and 
applied calculus textbooks often used in classes for business majors as well as life and social science 
majors (deemed “non-STEM textbooks) to see which conceptualizations of slope are included and if 
the textbooks are capitalizing on visual approaches in addition to linguistic resources (Moore-Russo 
& Shanahan, 2014). More specifically, we seek to answer the following three research questions: 

1. Is slope reviewed in calculus textbooks? If so, where are slope reviews located?  
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2. Which conceptualizations of slope are used in textbook reviews? Are visual or nonvisual 
approaches to slope taken in textbook reviews? 

3. What common links, if any, exist between the conceptualizations of slope reviewed in calculus 
textbooks? 

Literature Review 
Importance of Calculus 

While a calculus course is required of STEM majors (Bressoud, 2015), applied calculus, without 
any trigonometry, is often required of business majors as well as social and life sciences majors. 
Failing, or only marginally passing calculus, is one of the main reasons post-secondary students 
change their majors (Hensel, Sigler & Lowery, 2008; Kaabouch, Worley, Neubert & Khavanin, 
2012; Bressoud, 2015). Many STEM degree programs require a grade of C or higher in calculus to 
count for credit, with calculus being prerequisite to other courses required in the major, and it is often 
recommended that students pass calculus at a high level before moving on to further courses (Koch 
& Herrin, 2006). Engineering students who fail calculus lack the foundation needed for required 
courses in their majors (Koch & Herrin, 2006; Veenstray, Dey & Herrin, 2008). Student struggles in 
STEM calculus are not limited to engineering students; studies have shown that calculus attrition 
rates (i.e., receiving a grade of D or F or withdrawing) for students in physical science or math may 
be as high as 40% to 50% (Pilgrim, 2010; Fayowski & MacMillan, 2008).  
Slope as a Foundational Topic for Calculus 

Some mathematics courses follow a vertical path in which certain concepts rely on previous 
concepts (Treisman, 1992). Many key concepts in calculus build on topics introduced in algebra and 
precalculus (Habre & Abboud, 2006). In order to develop a robust understanding of foundational 
ideas in calculus, such as instantaneous rates of change and derivatives, students must first 
understand average rates of change and the difference between linear and nonlinear functions. Yet, 
individuals often a) have isolated notions of slope (Dolores Flores, Rivera López & García García, 
2019); b) have trouble interpreting different representations of slope (Glen, 2017; Tanışlı & Bike 
Kalkan, 2018); c) are only able apply slope in particular problem contexts (Byerley & Thompson, 
2017); and d) have a limited understanding of linear functions in general, even when able to 
transition between different representations of linear functions (Adu-Gyamfi & Bossé, 2014). 

As students enter post-secondary institutions, the ways they think of slope may be quite limited and 
different from the ways their professors think of and communicate slope (Nagle, Moore-Russo, 
Viglietti, & Martin, 2013). Two reasons for this may be related to the limited understanding of slope 
held by some high school teachers (Coe, 2007; Moore-Russo, Conner & Rugg, 2011; Nagle & 
Moore-Russo, 2014a; Stump, 1999) and the differences in the way state standards and textbooks 
address slope (Nagle & Moore-Russo, 2014b; Stanton & Moore-Russo, 2012). No matter why, a lack 
of prerequisite knowledge often leads to difficulty in understanding later topics, which corresponds 
with poor performance (Pyzdrowski et al., 2013).  
Slope Understanding 

Previous studies have considered how slope is characterized in the U.S. and Mexican curriculum 
(Stanton & Moore-Russo, 2012; Dolores Flores, Rivera López & Moore-Russo, 2020) and 
conceptualized by a variety of individuals (Moore-Russo, Conner & Rugg, 2011; Nagle, Martínez-
Planell & Moore-Russo, 2019; Stump 1999, 2001b). The meaning that an individual makes related to 
slope, or any other mathematical notion, often depends on what the task at hand evokes (Tall & 
Vinner, 1981), the representations used to communicate ideas (De Bock, Van Dooren & Verschaffel, 
2015) and the individual’s prior knowledge or experiences (Vinner, 1992). In short, slope can be 
conceptualized in many ways, but previous research suggests that both students and teachers often 
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fail to make connections between the various conceptualizations of slope (Coe, 2007; Hattikudur et 
al., 2011; Hoban, in press; Lobato & Siebert, 2002; Planinic, Milin-Sipus, Kati, Susac & Ivanjek, 
2012; Styers, Nagle, & Moore-Russo, in press).  

Stump’s (1997, 2001a) research findings suggest that teachers rely primarily on ratios as the 
dominant representations of slope. Even though secondary teachers express concern for students’ 
understanding of slope, they often reduce slope to procedural computations and neglect to regard the 
importance of developing a conceptual understanding of slope (Stump, 1999). Slope is often reduced 
to mnemonics that hinder students’ understanding of slope as a rate of change (Walter & Gerson, 
2007). As a result students enter calculus with isolated notions of slope and are not able to connect 
slope as a ratio to other ways of conceptualizing slope, such as a measure of steepness (Nagle & 
Moore-Russo, 2013a; Stump, 2001b). Students are not always able to work with slope in a 
conceptual way in application tasks (Lingefjärd & Farahani, 2017) nor are they always able to 
interpret slope in non-standard settings, such as when nonhomogenous coordinate systems are used 
(Zaslavsky, Sela & Leron, 2002). 

Teuscher and Reys (2010) found that while the majority of calculus students could determine over 
what interval a variable changed by a certain rate, which involved slope, only half of the students 
were able to determine the interval with the greatest rate of change. They suggested that part of the 
reason for the difficulty was the vocabulary used in textbooks. Concepts such as steepness, slope, and 
rate of change are described in different ways among different textbooks, leading to 
misunderstandings of the questions for some students (Teuscher & Reys, 2010), those who lacked a 
deep, connected understanding of slope. 

Theoretical Framing: Reader-Oriented Theory 
Weinberg and Wiesner (2011) wrote that most academic research on textbooks has framed them as 

static collections of ideas, simply describing students’ reading of the texts as extracting information. 
They sought to characterize the ways in which students interpret textbooks using reader-oriented 
theory. Reader-oriented theory centers on the idea that meaning of a text is constructed by the reader, 
not by the text itself. Three ideas about the readers of textbooks emerge from reader-oriented theory: 
the intended reader, the implied reader, and the empirical reader. The intended reader is “the idea of 
the reader that forms in the author’s mind” (Wolff, 1971, p.166, as cited in Weinberg & Wiesner, 
2011). The empirical reader is the person who actually reads the textbook. The implied reader is a 
concept used to describe the understandings an empirical reader must possess in order to make sense 
of a mathematics textbook (Weinberg, 2010). Authors should ensure the intended reader and implied 
reader coincide. This study will use these notions of different readers as a lens to interpret findings. 

Methods 
The data set consisted of a convenience sample 28 introductory calculus textbooks published in 

English between 2011 and 2019 that the research team recognized as including the calculus 
textbooks most commonly used in the United States. These 28 were used since they were available to 
the lead researcher as sample copies on an electronic book platform through her academic institution. 
Of the 28, 14 were non-STEM calculus textbooks and 14 were STEM calculus textbooks. In each 
textbook, the researchers first reviewed the index for any occurrence of the word “slope” to find all 
instances where slope was reviewed without any calculus content (e.g., limits, derivatives, etc.). All 
such review instances were included in the study.  
Coding 

For the current study, Nagle & Moore-Russo’s (2013b) slope coding scheme was revised slightly. 
Five categories were used for the conceptualization of slope. Each of the five categories was divided 
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further in two subcategories to see if the textbook relied on a visual or nonvisual approach. Table 1 
displays descriptions for all of the conceptualization category-approach pairs. 

 
Table 1: Slope Conceptualization and Approach Coding 

Conceptualization Approach Description 
Slope as a Ratio 

(RA) 
Visual rise/run or vertical change divided by the horizontal change 

Nonvisual (y2 - y1)/(x2 - x1) or change in y over change in x 
Slope as a 
Behavior 
Indicator 
of a line 

(BI) 

Visual line increases, decreases, is horizontal, is vertical (looks like /, \, -, |) for positive, 
negative, zero, undefined slope respectively 

Nonvisual line increases, decreases, is constant, or is not a function in other words (i.e., y2 > 
y1 for x2 > x1) for positive slope, (i.e., y2 < y1 for x2 > x1) for negative slope, (i.e., 
y2 = y1 for x2 > x1) for zero slope, or (i.e., x2 = x1 for   y2 > y1) for undefined slope 
respectively 

Slope as denoting 
Steepness 

of line’s angle of 
inclination with 

respect to 
horizontal 

(ST) 

Visual relates to how inclined, tilted, slanted, or pitched a line is seen as being; greater 
value of |slope|, line is more steep (i.e., closer to vertical); closer to zero value of 
|slope|, line is less steep (closer to horizontal); since horizontal lines have no tilt, 
they have zero slope 

Nonvisual relates to how extreme a line is calculated as being; the greater the value of 
|slope|, the more steep the line over an interval (e.g., the closer to infinity the 
value of |y2 - y1| is); the closer to zero the value of |slope|, the less steep the line 
over an interval (e.g., the closer to zero the value of |y2 - y1| is); horizontal lines 
have |y2 - y1|= 0 for all y values; so, slope is zero  

Slope as a 
Constant 

Parameter 
(CP) 

Visual emphasis on the uniform “straightness” of the line’s entire graph; no matter 
which segment of the line is considered, the straight slope remains the same 
between any two points due to similar triangles 

Nonvisual emphasis that a single constant holds a property for the line’s equation/table (not 
dependent on input); for any interval of a line, slope calculations remain the 
same between any two points 

Slope as 
Determining 

Relationships 
between lines 

(DR) 

Visual two unique lines have the same slope if and only if they never intersect in two-
dimensions (i.e., are parallel); two unique lines have different slopes if and only 
if they intersect at a common point; two unique, nonvertical lines have negative 
reciprocal slopes if and only if their intersection is at a right angle  

Nonvisual two unique lines have the same slope if and only if a system of these two lines 
has no solution; two unique lines have different slopes if and only if the system 
of these two lines has one solution; two unique, nonvertical lines have negative 
reciprocal slopes if and only the product of their slopes is -1  

 
A textbook was used as a unit of analysis and coded as an entity, meaning that if a textbook had 

more than one instance of one of the 10 categories (i.e., visual and nonvisual approaches to a Ratio, 
Behavior Indicator, Steepness, Constant Parameter, and Determining Relationships 
conceptualization), it was only marked once. To explain coding, consider this example involving two 
different approaches to the same conceptualization category. For example, consider the numerical 
computation of slope between two points (coded RAn, for Ratio-nonvisual) being accompanied by a 
graph with labeling of Δy for the vertical displacement and Δx for the horizontal displacement (coded 
RAv, for Ratio-visual). This graph of a line with ∆! and ∆! labeled and accompanied by ! = ∆!

∆! 
would be coded as the link RAv-RAn. The implied reader, in this case, is meant to have an 
understanding of the slope computation and how it correlates with the visual markings indicated on 
the graph. Similar coding was used if two different conceptualization approaches were linked.  
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Findings and Discussion 
Research Question 1: Slope Reviews in Calculus Textbooks 

Since the concept of slope is an important building block for students taking calculus (Noble, 
Nemirovsky, Wright & Tierney, 2001), it was not surprising that all but one of the STEM textbooks 
in this study contained at least some review of slope. Most (22 of the 28) textbooks had the slope 
review at the beginning of the textbook only, while 3 had some slope review at the beginning and at 
the end of the textbook. This suggests that most calculus textbook authors feel that a review of slope 
should be available to students (or covered through instruction) prior to the introduction of 
derivatives and other calculus concepts. Calculus textbook authors appear to envision intended 
readers as students who need to have a solid base of prerequisite knowledge that includes an 
understanding of slope.  
Research Question 2: Slope Conceptualizations in Calculus Textbooks 

We now consider which conceptualizations of and approaches to slope were used in the sample of 
textbooks used in this study focusing on the implied reader to consider how concepts emphasized in 
different textbooks’ slope reviews involve different understandings readers must possess in order to 
make sense of the calculus concepts presented in the textbooks. Table 2 displays the findings from 
the textbooks. All five of the conceptualizations of slope were used in at least one of the textbooks.  

Almost all (25 of 28) textbooks used the Ratio conceptualization of slope. Postsecondary instructors 
and calculus students have been found to respond to open-ended questions about slope with 
responses that included a visual or nonvisual approach to Ratio (Nagle et al., 2013), as have high 
school teachers (Stump, 1999). So, this finding suggests that the slope reviews in the textbooks might 
be trying to connect with how students often think of slope. Understanding slope as a Ratio is 
important in calculus, especially in the understanding of derivative, when the limit of a difference 
quotient ties together the concepts of slope, limit, and derivative. So, it is not surprising that Ratio is 
the most prevalent conceptualization in calculus textbooks. 

For calculus, students need a solid understanding of the idea of ratio (not just in the sense of slope, 
but in general) that goes beyond chanting “rise over run” or plugging and chugging into a formula. 
This is important since research (e.g., Carlson, Madison, & West, 2015) has shown that students 
often do not consider slope as representing the ratio of two covarying quantities in complex 
problems, such as those found in calculus. Textbook authors who do not consider this may lead to a 
disconnection between the intended and implied readers. In calculus, readers need to understand that 
the visually-oriented, rise-to-run graphical comparisons of a linear segment and the corresponding 
algebraic formulas that represent the slopes of secant lines connecting two points on a curve 
approach the value of the slope of a tangent line to the point on a curve in order to understand how a 
derivative is defined. However, in their reviews of slope, most textbook authors did not mention that 
slope is a foundational topic for understanding calculus concepts, and focused solely on finding slope 
as a numerical value (nonvisual) or as a property associated with the image of a line (visual).  

 
Table 2: Slope Conceptualizations and Approaches in Textbooks  

Conceptualization  Approach 
Textbook Type 

Total 
non-STEM STEM 

Ratio  
(RA) 

Visual Only 0 0 0 
Nonvisual Only 0 0 0 

Both 14 11 25 

Behavior Indicator 
(BI) 

Visual Only 3 7 10 
Nonvisual Only 1 0 1 
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Both 10 4 14 

Determining Property 
(DP) 

Visual Only 1 0 1 
Nonvisual Only 1 2 3 

Both 9 7 16 

Constant Parameter 
(CP) 

Visual Only 2 2 4 
Nonvisual Only 1 1 2 

Both 6 7 13 

Steepness 
(ST) 

Visual Only 2 3 5 

Nonvisual Only 0 0 0 
Both 6 2 8 

 
Behavior Indicator tied as the most used conceptualization of slope in the reviews, present in 25 

textbooks (as was the Ratio conceptualization). However, all Ratio coded textbooks used both visual 
and nonvisual approaches, while Behavior Indicator textbooks did not. STEM textbooks more often 
used visual approaches only. Slope is often associated by students visually as the way a line is 
displayed on a graph (Moore et al., 2013). In Nagle and colleagues’ 2013 study, this was a 
conceptualization commonly reported by post-secondary calculus students but not by their 
instructors. In the cases of textbooks emphasizing Behavior Indicator, the implied reader should be 
able to build an understanding the ideas of “increasing” and “decreasing” as well as related 
conventions of graphing to slope. In order to understand the idea of derivative and related topics 
(e.g., role that a slope of zero has in identifying potential relative extrema in the first derivative test), 
students will need to know more than just how the slope of a tangent line behaves visually; they will 
need to be able to work with intervals of functions using formulas.  

Determining Property was the conceptualization used third most by textbook authors. In the 
textbooks where this conceptualization was noted, implied readers should be able to build on an 
understanding of concepts such as parallel, perpendicular, reciprocal, and so on. In the case of 
textbooks using this conceptualization, readers are typically asked to interpret two or more lines that 
are being compared (either graphically or using formulas). This should help prepare readers for tasks 
involving identification of the equation of a normal line, which is perpendicular to the line tangent to 
a curve at a point. Students also need to know that parallel lines have the same slope in order to 
understand the Mean Value Theorem and Rolle’s Theorem.  

The second least used slope conceptualization was Constant Parameter. Textbooks which include 
this conceptualization require their students to understand what the word “constant” means in a 
mathematics context for linear functions where slope acts as a parameter that results in a constant 
numerical change seen in tables or in the graphical straightness noted in a visual display of a line. 
Implied readers need to leverage an understanding of the straightness of a line for approximations 
over sufficiently small intervals when using linearization.  

Steepness was the least used conceptualization of slope used in the calculus textbooks. Students 
should be able to construct ideas of “steepness” in a physical sense that relates the higher the absolute 
value of the slope of a line is, the steeper that line is. This understanding is often needed for related 
rates problems involving angles of inclination and right triangles, such as tasks involving where the 
vertical rate of ascension for a rising balloon is given.    
Research Question 3: Links between Slope Conceptualizations  

To answer the third research question, we now consider common links between the slope 
conceptualizations in the textbooks. In order to be coded as a link, the textbook had to indicate that 
two conceptualization-approach pairs related to the same idea. Table 3 displays the type of links 
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present in the textbooks, and the total number of textbooks per link type. The RAn-RAv link was most 
frequent (22), which supports that the implied reader must to be able to relate the visual and 
nonvisual approaches of the Ratio conceptualization in order to understand slope. This was 
frequently shown as the graph of a line with the rise and run indicated, accompanied by the 
corresponding numerical calculation. Table 3 displays most frequent links, those that occurred in at 
least 10 textbooks.  

 
Table 3: Links between Conceptualization-Approach Pairs in Textbooks  

Link 
Textbook Type 

Total 
non-STEM STEM 

RAn-RAv  12 10 22 

CPn-RAn  9 6 15 

DPn-DPv  7 7 14 

CPv-RAn  7 6 13 

BIn-BIv  8 4 12 

CPn-CPv  6 6 12 

CPn-RAv  6 6 12 

CPn-RAv  5 6 11 
 

Links containing either the Ratio or Constant Parameter conceptualization (with either a visual and 
nonvisual approach) were the most frequent. Given the prevalence of the Ratio conceptualization in 
textbooks, it is not surprising that its nonvisual and visual approaches would be linked most often.  

Research (e.g., Nagle & Moore-Russo, 2013b) has referred to slope as a constant ratio, whereas 
Constant Parameter and Ratio were defined separately in this study. As such, the links containing 
either the Ratio or Constant Parameter being the most common is not surprising. In other words, 
understanding that slope is a constant rate of change between two covarying quantities, an 
equivalence class of ratios appears to be considered by authors as pivotal when first learning the 
concept of derivative. This suggests that the implied readers typically will need to make the link that 
slope can be considered as both a Ratio and a Constant Parameter.  

The Behavior Indicator conceptualization occurred just as often as the Ratio conceptualization in 25 
of the 28 textbooks. However it was not linked to other conceptualizations of slope very frequently. 
It does not seem that textbook authors deemed this way of thinking about slope to need to be 
connected to other ways of thinking of slope. This lack of connection could lead readers to 
concentrate on procedures without a connected, conceptual understanding of why first derivative 
tests are used to determine functional behavior in calculus. 

Conclusions, Instructional Implications, Further Study 
Slope is not heavily reviewed in calculus textbooks. Given the importance of understanding slope 

for calculus and how textbooks review slope, textbook writers seem to be assuming that the intended 
readers of these texts have a healthy understanding of slope upon entering calculus. Some 
conceptualizations of slope are sparsely represented in textbooks, and many textbooks do not provide 
a well-rounded, connected review of slope. Instructors must be aware that they may need to provide 
additional review over what is offered in textbooks to ensure that students are making connections 
between different conceptualizations of slope so that students have the robust understanding of slope 
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that is needed as a foundation for the topics they encounter throughout calculus. Instructors should 
read the slope reviews, encourage students to do the same, and then be aware of other 
conceptualizations of and approaches to slope that they may need to provide to their students that are 
not present in textbooks. 

The emphasis on slope as a Ratio and linking this idea to slope as a Constant Parameter should 
prepare students for the limit definition of a derivative; however, the lack of connections between the 
various conceptualizations of slope may result in students’ failure to deeply understand other calculus 
topics that require alternative notions of slope. The role of slope in introducing derivatives is 
documented, but it is important that instructors also consider how textbooks leverage slope to 
introduce other calculus topics, such as how students come to think about average rates of change, 
why a derivative of zero may yield relative extrema, how parallel lines play a role in the Mean Value 
Theorem, how the “straightness” of a line is leveraged in linearization, etc. Future study should look 
at each of these in depth to determine how slope is needed and leveraged when particular calculus 
concepts are introduced. 

One limitation of this study is that it only considered the stand-alone reviews of slope. It is possible 
that textbook authors are using a just-in-time review approach and connecting different 
conceptualizations of slope while introducing the calculus concepts themselves. Future research 
should consider this possibility. 
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Teachers routinely make adaptations to their mathematics curriculum materials as they plan and 
enact lessons. In this paper, I explore how encouraging two elementary teachers to examine their 
mathematics curriculum materials through the lens of computational thinking practices – 
abstraction, debugging, and decomposition – supported them in adapting tasks from their curriculum 
materials in ways that raised the cognitive demand.  
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Background and Purpose of the Study 
Mathematics curriculum materials (CMs) can serve as supports for teachers in creating high-quality 

mathematics instruction (Stein & Kaufman, 2010; McGee, Wang, & Polly, 2013). One way CMs can 
act as a support is by providing tasks with high cognitive demand (Stein, Smith, Henningsen, & 
Silver, 2000) or starting points for such tasks. For the potential of this support to be realized in 
practice, teachers must learn ways of interacting with CMs that allow them to thoughtfully choose 
among tasks and adapt them in ways that support students’ engagement with productive mathematics 
(Brown, 2009). Existing research has revealed teachers differ in the specific strategies they use to 
approach CMs (Remillard, 2012; Sherin & Drake, 2009), and not all such strategies result in 
instruction that maintains high cognitive demand for students (e.g., Amador, 2016). On the other 
hand, a number of studies have supported the notion that teachers can create instruction that 
maintains high cognitive demand when they engage with CMs through lenses related to big 
mathematical ideas (Stein & Kaufman, 2010), student thinking and knowledge (Choppin, 2011; 
Grant et al., 2009), and the connections between these two elements (Drake et al., 2015). In this 
paper, I present a post-hoc analysis of how two teachers adapted tasks when reviewing a lesson in 
their CMs through the lens of three computational thinking (CT) practices: decomposition, 
debugging, and abstraction. In particular, I focus on how these three CT practices supported teachers 
in transforming low cognitive demand tasks presented in their curriculum materials into tasks of 
higher cognitive demand by helping to focus teachers’ attention on the big mathematical ideas of the 
lessons and students’ potential strategies.  

Conceptual Framework 
This study utilized the mathematical task framework, which has two parts. First, Smith and Stein 

(1998) developed four cognitive demand categories for mathematics tasks. Two categories —Doing 
Mathematics and Procedures with Connections—are high cognitive demand because they engage 
students in thinking about mathematical concepts and relationships. The others—Procedures without 
Connections and Memorization—are low cognitive demand because they focus on use of procedures 
and correct answers. Second, Smith, Grover, and Henningsen (1996) argued any task passes through 
three phases when used in instruction: (1) the task as it appears in instructional resources, (2) the task 
as set up by a teacher, and (3) the task as implemented by students. In this study, I categorized the 
tasks in participants’ CMs and the tasks they planned according to the cognitive demand categories. I 
focused on the transition from the first task phase to the second: the changes teachers made to CM 
tasks to the way they planned to set up the tasks. 
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Methods 
Study Context and Participants 

The purpose of the CT4EDU project is to support elementary teachers to incorporate CT into their 
mathematics and science teaching. CT is a broad set of thinking practices used by computer scientists 
(Yadav, Stephenson, & Hong, 2017). The CT4EDU project is focused on big ideas in CT, including 
abstracting important information from situations, decomposition of complex problems into simpler 
parts, and debugging, or finding and fixing errors. In a professional development workshop, 
participating teachers worked in groups to plan a math lesson, starting from CMs, that incorporated at 
least one of the CT practices ideas mentioned above. Two teachers from the project were chosen for 
inclusion in this study. Alice and Cindy (both pseudonyms) were using Math Expressions (Fuson, 
2012), the CMs mandated by their district. Alice was a fourth-grade teacher with 15 years of 
experience. Cindy was a fifth-grade teacher with five years of experience.  
Data and Analysis 

I examined the Math Expressions lessons referenced by Alice and Cindy, as well as the tasks that 
were the focus of their conversations. I classified these tasks according to level of cognitive demand. 
Next, I used transcripts of Alice and Cindy’s planning conversations to create descriptions of the 
tasks these teachers planned to pose to students. I classified these tasks according to cognitive 
demand. To understand how CT played a role in how teachers adapted the tasks, I read the transcripts 
of the planning conversations to identify decisions related to changes to the tasks. Next, I examined 
the explanations the teachers articulated for these decisions. I considered an explicit mention of a CT 
practice or reference to a CT handout as potential evidence of influence of CT on the teachers’ 
reasoning. I coded the decision as influenced by CT when the teacher (1) related a decision to a CT 
practice’s description, (2) described how a proposed change would provide opportunities for students 
engage in a CT practice, or (3) connected a decision to a CT practice as she reflected on the lesson-
planning process.  

Results 
Alice 

Alice was working from a Math Expressions lesson on estimation and mental math. Table 1 shows 
the initial tasks posed in the CMs and the task Alice set up in the classroom. Both tasks on the left 
can be classified as Procedures without Connections. Students are asked to produce an estimate and 
an exact total in the first task, but not to explain their reasoning. Students are asked to provide a 
solution method and a yes-or-no answer for the second task. The task on the right, by contrast, can be 
classified as Procedures with Connections. To engage with this task, students must think about the 
impact of estimating via rounding to the nearest hundred on the real-world context of the problem 
rather than merely do the rounding for themselves. Thus, the planned version of the task has a higher 
level of cognitive demand than the tasks as posed in the CMs. 

Three of Alice’s decisions were influenced by CT. First, Alice chose a task from the CMs to use as 
the main task in her lesson. She primarily attended to the two tasks at the left in Table 1, and decided 
to start with the latter because she wanted to give students an opportunity to decompose a problem. 
She felt the two-part format of the first task did the decomposition for students: “I feel like now, 
looking at this, this wouldn’t be good because they’re giving it to them. They’re telling them how to 
break it down.” Second, Alice changed the statement of the problem to prompt a discussion about 
different possible estimates and how those estimates differ from the exact total. Third and relatedly, 
Alice changed the numbers in the task. According to Alice, students always rounded to the highest 
place value—two-digit numbers to the nearest 10, three-digit numbers to the nearest 100, and so on. 
She expected students to use this rounding technique as they made estimates, and felt that changing 



Computational thinking practices as a frame for teacher engagement with mathematics curriculum materials 
 

	 450	

the numbers to be in the hundreds would lead to estimates farther away from the exact total: “These 
numbers aren’t gonna have them overestimate. So maybe change them so that the numbers are 
higher?” Estimates further away from the total, reasoned Alice, could lead to a discussion of 
debugging. 

 
 Table 1: Alice’s Starting Tasks and Task as Set Up in the Classroom 

Starting Tasks from Math Expressions Task as Set Up by Alice 
The best selling fruits at Joy’s Fruit Shack are peaches 
and bananas. During one month Joy sold 397 peaches 
and 412 bananas.  
   a) About how many peaches and bananas did she 
sell in all? 
   b) Exactly how many did she sell? 
 
Tomas has $100. He wants to buy a $38 camera, a $49 
CD player, and 2 CDs that are on sale 2 for $8. How 
can Tomas figure out if he has enough money for all 
four items? Does he have enough? 

My friend gave me $930 to purchase items for 
a trip. The exact costs are $651 for his plane 
ticket, $112 for clothes, and $156 for meal gift 
cards. I rounded the amounts and added them 
to get an estimate of $1000. I told my friend he 
did not give me enough money, but he said I 
was wrong. I rounded the costs to the nearest 
hundred and added: 700 + 100 + 200 = $1000. 
Can you help me figure out what I did wrong? 
Did he give me enough? Did I round 
incorrectly? 

 
Cindy 

Cindy was working from a lesson on fractions greater than 1. Table 2 shows the tasks from the CMs 
and the task Cindy set up. The CM tasks can be classified as Procedures without Connections. 
Students can complete them by following the procedures given in the examples. The task on the right 
can be classified as Procedures with Connections. Students must think about the whole and provide 
two other representations of a fraction greater than 1, given one representation. Thus the cognitive 
demand of this task is higher than the tasks given in the CMs. 

 
 Table 2: Cindy’s Starting Tasks and Task as Set Up in the Classroom 

Starting Tasks from Math Expressions Task as Set Up by Cindy 
Change each mixed number to a fraction. 
Example:  
2½ = 2 + ½ = 1 + 1 + ½ = 2/2 + 2/2 + ½ = 5/2 
3 2/5 = ____        2 3/8 = ____  (etc.) 
 
Change each fraction to a mixed number. 
Example:  
13/4 = 4/4 + 4/4 + 4/4 + ¼ = 1 + 1 + 1 + ¼ = 3¼  
10/7 = ____          12/5 = ____ (etc.) 

Fill in the missing parts. In the unit fraction 
column, draw a ring around the whole. 
Picture    Sum of Unit Fractions   Fraction 
                  ¼ + ¼ + ¼ + ¼ + ¼                       

 
 
 

                                                              12/5 
(additional rows were given) 

 
Cindy made four decisions influenced by her attention to CT. First, Cindy decided to teach the Math 

Expressions lesson over two days to allow her to spend more time on representing fractions greater 
than 1. Cindy credited this decision to thinking about decomposition:  

The CT is helpful to me as the teacher, in a sense that I’m now looking through a finer lens 
at the lesson itself and thinking, gosh, the workbook does go in this order, this fast. But 
really breaking it down and trying to think like the students are, and really think about what 
challenges they have. And how I can decompose the lesson itself into smaller pieces. 

Second, Cindy decided to launch the lesson by showing students one representation at a time 
(picture, or sum of unit fractions) and discussing how students could change one representation into 
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the other. Third, Cindy incorporated pictures and sums of unit fractions into the student page so 
students’ independent work would more closely mirror the class discussion. Fourth, she limited the 
examples to numbers less than 3, so drawing models and writing sums of unit fractions remained a 
viable strategy. Cindy related these three decisions to supporting students in realizing that symbolic 
representations of fractions are an abstraction: 

Yeah, that abstraction is heavy. Even having them consciously aware of what that abstraction 
feels like and looks like here. To talk and have that discussion when you go from the visual 
to the sum of unit fractions or to the mixed number and really highlighting that idea. 

Discussion 
Alice’s attention to CT supported her in thinking deeply about how students would approach tasks. 

Thinking about decomposition led her to consider the impact of the CMs breaking problems into 
subparts for students—which is one way of lowering the cognitive demand of a task by changing a 
challenge into a nonproblem (Stein et al., 2000). Thinking about debugging led Alice to consider 
how she expected her students to approach rounding and the impact that approach may have in a real-
world context. This suggests that thinking about CT practices supported Alice in making curriculum 
adaptations based on student thinking, which other studies have suggested leads to productive use of 
CMs (Choppin, 2011; Grant et al., 2009).  

Cindy’s attention to CT supported her in thinking about big mathematical ideas in her lesson. As 
she considered symbolic fractions as an abstraction, she began to consider the multiple ideas 
encapsulated in those representations (e.g., 7/5 is an abstraction intended to show that wholes are 
divided into 5 equal parts, we are considering 7 of parts, and so on). Cindy realized she did not think 
students would be able to “see” all this information in a symbolic fraction without more experience 
with other representations. This led her to decompose the lesson. Ergo, examining her CMs through 
the lens of CT helped Cindy unpack big mathematical ideas—another strategy research suggests 
leads to productive CM use (Stein & Kaufman, 2010). 

This data does not allow me to empirically examine why the lens of CT practices led teachers to 
consider and adapt their CMs in this manner, but considering the conference theme suggests one 
possibility. While the CT practices highlighted here resemble disciplinary practices in mathematics, 
the import of these ideas from another disciplinary culture, computer science, may have aided 
teachers in engaging with them in ways that supported new kinds of pedagogical thinking. 
Decomposition, for example, is discussed in the Common Core State Standards (CCSSI, 2010), but 
only in reference to decomposing mathematical objects such as numbers or geometric shapes. 
Computer scientists tend to discuss decomposition of problems (Yadav et al., 2017). This broader 
nature of the object being decomposed seemed to support Alice in thinking about decomposing the 
steps of a problem (rather than a number) and to support Cindy in thinking about decomposing the 
multiple mathematical ideas in her lesson. As computer science education emerges as a unique 
research area, math education researchers may benefit from cross-disciplinary conversations that 
offer new perspectives on existing ideas. 
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The current study develops theories about why the system of mathematics education in the United 
States is struggling to meet many of its beyond-the-classroom aims by exploring to what extent and 
how aims permeate curriculum planning and enactment systems and the role that aims play in the 
decision making of teachers in these systems. It examines the written, planned, and enacted 
curriculum of three high school algebra lessons. It finds that aims influence the decision making of 
all three teachers, but permeate the lessons differently in ways that are potentially explained by 
teacher aims, the topic taught, the types of evident aims, the number of years the teacher has been 
teaching, and how long they have been using their textbook. 

Keywords: Curriculum, Curriculum Analysis, Curriculum Enactment 

Secondary mathematics students often lament “Why do I have to learn this stuff?” There is good 
reason to take this question seriously. There are a number of broader goals that school mathematics is 
intended to support and the system of mathematics education in the United States is struggling to 
meet many of these aims. For example, US schools have had limited success developing students’ 
ability to use quantitative information to make day-to-day decisions (Kastberg et al., 2016), 
participate in the labor market (Carnevale & Desrochers, 2003; Deloitte, 2015) and succeed in 
college STEM majors (Ganter & Barker, 2004).  

I refer to the rationales for teaching and learning school mathematics, such as developing students’ 
abilities to use mathematics to make day-to-day decisions or preparing students for the labor market, 
as aims for school mathematics. These are the beyond-the-classroom benefits that are attributed to 
the teaching and learning of mathematics in K-12 schools. The system’s failure to achieve many of 
these aims raises an important question: Are aims considered in the curricular work of mathematics 
education decision makers and if so, how?  

The current exploratory study adds to what is known about curricular decision-making systems by 
examining the curricular stages and changes that occur in three different high school algebra lessons 
as the teachers transform them from written textbook lessons to plans to an enacted lesson perceived 
by students. This examination is guided by the following research questions: 1) To what extent and 
how do aims for school mathematics permeate these curriculum planning and enactment systems? 2) 
What role do aims for school mathematics play in the decision making of these teachers in these 
lessons?  

Theoretical Framework 
I describe any desired ends of school mathematics as curricular intentions. I refer to classroom-

based curricular intentions that are oriented toward improving students’ mathematical proficiency 
(National Research Council, 2001) as mathematical goals and beyond-the-classroom benefits that 
mathematical proficiency provides as aims for school mathematics. 

In order to understand the role that aims play in curricular decision making, different aims need to 
be identified and categorized because it is likely that the role of aims will differ depending on the 
type of aim invoked. I have compiled and categorized a list of aims mentioned in a variety of policy 
and research literatures and categorized them based on common characteristics (e.g., Geiger et al., 
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2015; González & Herbst, 2006; Gutiérrez, 2017; NCTM, 2000; Sinclair, 2001; Steen, 2001; Usiskin, 
1980; Williams, 2012) (see Figure 1). 

 

 
Figure 1: A Conceptual Framework for Aims for School Mathematics 

Curricular decision making takes place within curriculum policy, design, and enactment systems. 
These systems include three stages: 1) the curriculum formulated before instruction (intended) which 
includes system-level expectations for student learning, textbooks, and teacher plans; 2) the 
curriculum that emerges as students and teachers interact (enacted), and 3) the curriculum learned by 
students (student learning) (Remillard & Heck, 2014). 

In planning and enacting curriculum, teachers vary widely in the extent to which they modify 
written materials (Remillard, 2005; Sherin & Drake, 2009). This variation can be described as a 
continuum in which some offload their design decisions to text, some adapt the text, and other 
improvise (Brown, 2009). Teachers’ skill in making these decisions in order to achieve their 
intentions can be described as their pedagogical design capacity (Brown, 2009). One important 
element of this capacity is a teacher’s developing knowledge of how their curriculum materials 
function in their particular context, their curriculum context knowledge (Choppin, 2009). 

A key issue in investigating the role of aims in curriculum decision making is the extent to which 
aims permeate the system. At one extreme is the low permeation model whereby a particular set of 
mathematical goals, both process and content (e.g., NCTM, 2000; NGACBP/CCSSO, 2010), are 
established as supportive of the range of aims set for the system and teachers focus on mathematical 
goals without explicitly considering aims. At the other extreme is the high permeation model adopted 
by teachers who place aims at the center of their day-to-day decision making.  

In investigating aims permeation, it is important to determine the types of curricular activities (what 
I will call curricular structures) in which aims are evident. This study investigates three kinds of 
structures, tasks, discussions, and connectors. I define tasks as anything students do that involves 
more than conversation. I define discussions as the verbal substance of the lesson. Connectors are 
verbal or written exposition that come before a task or discussion to frame it, after a task or 
discussion to summarize it, or between lesson elements as a transition. Tasks can be further 
categorized by their contextuality as not contextual (mathematical), containing all of the complexity 
of a real-life problem (authentic contextual) somewhat simplified but still might reasonably occur 
outside of the classroom (practical contextual), or contextual but unrealistic (prototypical) (Csikos & 
Verschaffel, 2011; Palm, 2009; 2018).  
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Methods 
The current study examines the curricular systems of three high school algebra teachers in 

economically and racially diverse high schools. Tobin1 is in her seventh year of teaching, Megan in 
her fourth, and Rose in her third. Tobin and Megan are in their second full year using their text while 
Rose is in her first full year using hers (although she previously used elements of it). 

For each lesson, data was collected from teacher interviews, classroom observations, student 
interviews, and textbooks. General interviews were conducted with teachers to learn their perspective 
on aims for school mathematics, the outside forces that impact their decisions, and how they use the 
written curriculum provided to them. Teachers were also interviewed before observed lessons, and 
teachers and up to four students per classroom were interviewed after each lesson. All interviews 
were audio recorded and transcribed. Lessons were observed and audio recorded. Additionally, Tobin 
and Megan’s first days of school were observed and audio recorded and Rose described her first day 
of school in an interview. Introductory textbook materials were collected along with observed 
textbook lessons, relevant teacher-created materials, and pictures were taken of the classroom 
environment during the lesson. 

Textbook overviews and general interviews for each teacher were analyzed for evident aims. A 
thematic analysis (Braun & Clarke, 2006) was conducted, using the previously described conceptual 
framework as initial codes, to create a coherent description of the textbook or teacher’s perspective 
on aims for school mathematics. The lesson-based data was first analyzed to determine the structure 
of the lesson. Then the written, planned, and enacted stages were coded for stated intentions of the 
lesson, any other evident aims and contextual intentions, and any other mathematical goals that were 
connected to aims or the stated intentions of the lesson. Furthermore, any curricular decision 
described by the teacher was coded for any intentions cited by the teacher as justification for that 
decision.  

Findings 
The practical aim of effective financial decision making is evident in all curricular stages of Tobin’s 

lesson as well as in her decision making. The stated intention of Tobin’s textbook lesson is to use 
what students know about linear and exponential functions to help them understand the difference 
between simple and compound interest. In the lesson itself, there is considerable attention paid to 
developing a continuous model for calculating compounding interest. In her planning and enactment, 
Tobin makes significant adaptations that she describes as focusing the lesson on the value of interest 
in general and the power of compounding. This shift focuses the lesson more explicitly on financial 
decision making and less on the underlying mathematics.  

In the textbook lesson, the aim of financial decision making is evident in an opening discussion, an 
opening written passage, and four practical contextual tasks. There is also a practical contextual task 
and a lesson summary in which the aim is not evident. Tobin’s adaptations in her planning all relate 
to the aim. They include changing the framing and summaries of tasks, adding an authentic 
contextual task, a prototypical contextual task, and some teacher exposition, modifying tasks, and 
eliminating tasks. In enactment, Tobin makes further aims-related changes. She adds task framings 
and summaries, more teacher exposition, two personal asides, and gets four unplanned student-
initiated conversations. The two students interviewed from Tobin’s class cite financial decision 
making as evident in the lesson.  

Aims are evident in all curricular stages of Rose’s lesson as well as in her decision making but less 
so than in Tobin’s lesson. Furthermore, Rose’s perspective on aims differs from her text book so her 
adaptations change the nature of evident aims. The stated intention of Rose’s textbook lesson is 
                                                             
1 All names are psudonyms. 
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solving real world problems using systems of linear equations. In the written lesson, this practical 
aim is evident in two suggested class discussions and four practical contextual tasks, three of which 
are in a business context. Rose, however, is more focused on her students’ general problem solving 
skills and in having them collaborate so they will enjoy the lesson and thus be more likely to consider 
STEM careers. As a result, her adaptations from planning to enactment end up eliminating the 
practical tasks. She uses prototypical tasks and modifies them to incorporate more problem solving 
and collaboration. Interestingly, despite these adaptations, two of the four students interviewed after 
this lesson identified the practical use of systems of equations as an aim for the lesson.  

Unlike Tobin and Rose’s lessons, aims are not evident in Megan’s lesson, yet the aim of 
communication drives some of Megan’s decisions and multiple aims are perceived by students. The 
stated intention of Megan’s written lesson is for students to be able to add and subtract rational 
expressions. Megan’s aim-related adaptation is to ask all of the groups to present their solutions to 
the first task in the lesson, a change that she explicitly ties to the aim in interviews, but not in the 
class. Despite this lack of evident aims in the written and enacted lesson, two the four students 
interviewed identify the aim of communication as evident in the lesson and one of four identifies 
collaboration and problem-solving. This is consistent with passages in the textbook introduction and 
teacher exposition on the first days of school that link mathematical goals such as communication, 
collaboration and problem-solving to broader aims. 

Conclusions and Discussion 
Thus, there are a variety of curricular structures in which aims can be evident, including a range of 

tasks, discussions, and connecting activities. Most notably, Rose and Tobin’s textbook lessons and 
planning demonstrate how authentic contextual tasks can make practical aims evident in a lesson. 
Tobin’s enactment suggests that aims-related personal asides and summaries may make aims evident 
in ways that register with students as they seem to inspire both student-initiated conversation and 
student-perceived aims. In contrast, Rose’s enactment suggests that a lack of these structures may 
lessen the impact of evident aims. It also demonstrates the power of the teacher to eliminate aims to 
which she is not attending. Megan’s lesson shows that intending to support mental discipline aims is 
not the same as making them evident in the lesson. However, it also suggests that explicit connection 
of mathematical practices to mental discipline aims in overview materials and general teacher 
exposition may have an impact on student perception of aims in later lessons even if the aims are not 
explicitly evident in the lessons themselves. 

The differences in evident aims between these three lessons may be due, in part, to the topics. It is 
unsurprising that lessons on exponential functions and systems of equations would be more clearly 
connected to practical aims than one on simplifying rational functions. However, the finding that 
Tobin more effectively adapts her lessons suggests that more experience with her curriculum may 
have helped her develop more curriculum context knowledge (Choppin, 2009) and more years in the 
classroom may have allowed her to develop more pedagogical design capacity (Brown, 2009). 
Megan’s use of overviews to link goals to aims may suggest another element of curriculum context 
knowledge and pedagogical design capacity.  

Overall, this analysis suggests that aims can, indeed, permeate curricular processes, and provides 
some initial ideas for how this permeation may be indicative of teacher skill in using curriculum and 
how it might influence the achievement of aims. It lays the groundwork for future research to explore 
whether and how this kind of curricular work can, in fact, support the achievement of aims for school 
mathematics. 
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Introduction 
This poster presentation focuses on the comparison of syllabi for secondary mathematics methods 

courses across cultures. The authors uncover similarities and differences between these documents 
and their relevance. According to Wikle and Fagin (2014): “Within most college or university 
courses the syllabus serves as the principal tool for course planning” But is this true across cultures? 
Similarly to Kaki (2000), the authors believe culture does play a role influencing syllabus production.  

Research Question and Design 
The research questions guiding this comparison study are: a) how are secondary mathematics 

methods courses similar and/or different across cultures? b) How are the objectives of those courses 
similar and/or different according to their syllabi? And c) How are the evaluation methods similar 
and/or different according to their syllabi?  

To conduct the comparison, the authors collected secondary mathematics methods syllabi from five 
institutions: two United States (US) colleges of education, one public teacher preparation program in 
Uruguay, one college of Engineering in Colombia, and one college of education in Korea. The 
syllabi were review first structurally, to see what sections they included, and then the content of those 
sections, specially objectives and evaluation methods, similarly to what Parkes, Fix and Harris 
(2003) and DuBois, Burkemper (2002) did.  

Summary of Findings 
Structurally, the US syllabus contained the greatest number of sections, and were in general the 

longest documents. They had the most coincidence with Korean syllabi, even though these were the 
shortest along the Uruguayan one. This one also was the one with the least number of sections, 
notoriously not including any information about how the students would be evaluated for the course, 
which was also the case for Colombia. Korea and US included outlines of the content by week. 
Standards and accreditors information was only included in the US syllabi.  

When looking at the objectives all of the syllabus mentioned planning of instruction, and classroom 
assessment. All of them but the Colombian one also mentioned societal issues like diversity and 
equity through mathematics education. And the two south American syllabi also mentioned the 
importance of considering mathematics methods as a scientific discipline.  

Last, looking at the course evaluation methods, the authors of this poster found that only the US 
cases have sections explaining assignments. There were some coincidence on the topics for 
evaluation: readings, planning, and assessment. Korea had a very broad explanation of how students 
would be evaluated, mentioning lecture, discussion/presentations, xperiment/practicum, and field 
study.  
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This research project examined the perceived tensions of prospective teachers’ (PTs) between their 
university coursework centered on student-led mathematics instruction and their internship 
placements’ scripted mathematics program for students with disabilities in special education settings. 
The scripted program was a mandated district initiative featuring a mathematics curriculum with set 
pacing, required daily lesson materials, and a teacher script. A yearlong case study followed five PTs 
enrolled in a dual major Elementary Education and Special Education program. All participants were 
completing student teaching internship requirements in K-5 special education classrooms: four 
traditional resource classrooms (children with disabilities received instruction in a pull-out setting), 
one autism spectrum disorder classroom. Participants were also completing their performance-based 
teaching assessment called the edTPA, which focused on the instructional needs of one student with 
a disability in the area of mathematics.  

The edTPA is a performance-based assessment intended to determine if beginning teachers are 
prepared to enter the classroom. This performance-based assessment was developed by Stanford 
University and the Stanford Center for Assessment, Learning, and Equity (SCALE). The Special 
Education edTPA is evaluated across 15 scored rubrics in areas of planning, instructing, and 
assessing. Currently, 920 Teacher Preparation Programs in the United States complete the edTPA 
(SCALE, 2019). The edTPA faces critique (Behizadeh & Neely, 2018; Gitomer et al., 2019), 
however, specific to this case study, it required that the PTs justify how their instruction integrated 
the personal, cultural, and community assets of their students. This focus on students’ assets was 
emphasized in PT coursework that urged them to follow their students’ mathematical contributions 
rather than follow a lockstep curriculum (Carpenter et al., 2014). 

The study’s qualitative PT data sources included: (a) focus groups pre, during, and post completion 
of the edTPA, (b) interviews, (c) written responses to the edTPA prompts, (d) written reflections 
about the process, and (e) open-ended survey responses from the teacher preparation program’s 
feedback survey about the edTPA. Grounded in theory and literature around teacher preparation 
assessments (Darling-Hammond, 2020), qualitative data was analyzed to note emergent codes which 
resulted in persistent themes of PTs’ perceptions of math teaching and perceptions of teaching self, 
contextualized in the tension of their setting and the edTPA. edTPA scores were included as 
quantitative data sources whose analysis produced descriptive statistics of the overall case and 
revealed edTPA subsets of challenge or above-average performance that provided insight into why 
certain tensions may have been magnified. Findings indicated that the PTs expressed tension between 
following the scripted program versus following their learner was exacerbated by the edTPA. 
Although the edTPA could have been used as a PT’s catalyst for rejecting the scripted program, the 
PTs instead settled with a disjointed compromise among their perceived demands of the edTPA, their 
Clinical Educators, the scripted program, and their own expressed beliefs about teaching and 
learning. 
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Instead of interventions that focus on direct instruction, number strings provide opportunities for 
students to engage in mathematical discourse, both in describing their strategies and connecting with 
the mathematical strategy of others. Research on number strings has found that students participating 
in number string routines can adopt new strategies (O’Loughlin, 2007) and make connections 
between conceptual understanding and procedures. Studies on number strings have not previously 
focused on students with disabilities or students who are significantly underperforming in 
mathematics, investigating this problem can provide information that could lead to solutions that 
improve computational fluency in multiplication and division. In particular, interventions for students 
with disabilities (Lambert, 2018; Lambert & Tan, 2020) within the Multi-Tiered System of Support 
(MTSS) in mathematics.  

To explore student computational fluency, we designed a standard aligned number string 
intervention for students (N= 35) with disabilities ages 8 through 11 significantly underperforming in 
multiplication and division (Lambert, Mendoza, & Nguyen, 2020). A number string is a short (15–
20-minute) daily instructional routine in which a teacher presents a carefully designed sequence of 
problems one at a time for children to solve mentally and modeling student thinking with a 
representation (Lambert, Imm, & Williams, 2017). Research question: What are the effects of a Tier 
2 number strings intervention in multiplication and division for students needing additional support 
in these areas?  

Findings 
In order to assess whether student computational fluency improved after eight number string 

interventions and three iterations of the Multiplication and Division CCSS CBM Math Assessment. . 
Using a dependent samples t-test, students improved their scores after the 8 session intervention, 
t(32) = 2.30, p=0.028. (We used a dependent sample t-test since repeated measures were taken from 
the same sample). After the pre-intervention test scores (first iteration of the assessment) of ~29.10%, 
the post-test scores (3rd iteration of the assessment) increased to ~36.93%. This is a 26.9% 
multiplicative increase for all students. 
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Providing students with written feedback on their homework yields many benefits on their learning 
(Black, Harrison, Lee, Marshall & William, 2003; Fyfe, 2016; Landers & Reinholz, 2015). These 
benefits include providing students with information on their current levels of understanding, and in 
providing possible next steps for student improvement. However, in many cases, teachers take the 
position of “presenter of knowledge” (Black et al., 2003, p. 89), providing students with feedback 
that they assume the students need, and which may or may not match the actual students’ needs. 
Students, on the other hand, rarely read and implement change on their work based on the written 
feedback (Black et. al., 2003), making the feedback lose its effectiveness. To improve the 
effectiveness of written feedback, researchers suggest that teachers seek different ways of using 
written feedback in mathematics classrooms (Frey & Fisher, 2011). We conjectured that using 
cogenerative dialogues (cogens) (Emdin, 2016; Tobin, 2006) to invite students into deciding on the 
nature of written feedback they would be receiving, and ways of using it efficiently, may support 
more student-centered forms of feedback. 

We carried out a practitioner-inquiry study (Samaras & Freese, 2009) in a first year undergraduate 
Probability and Statistics class taught by Wambua. The class consisted of ten students at a private 
university in the Northeastern region of the United States. We hypothesized that we could improve 
the effectiveness of written feedback in classroom tasks by leveraging student autonomy to shape the 
nature of the feedback they received and in deciding how they use the feedback to produce new 
work. For six weeks, we held 15-minutes long cogens (structured teacher-student dialogues aimed at 
co-constructing classroom practices) after each class with all participants. For data analysis, we used 
constant comparison method (Savin-Baden, & Major, 2013). We coded all cogen-transcripts, 
students’ worksheets and teacher’s feedback to look for evidence of improvement in the teacher’s 
feedback based on students’ comments. 

Working closely with students through weekly cogens focused on improving written feedback as a 
formative assessment technique generated improvements in three areas: (a) helping the teacher 
transition from giving general feedback to give specific feedback, (b) providing students 
opportunities to state how immediate feedback supported their learning and (c) in transforming the 
classroom culture. By listening to and learning from the students, the teacher improved her written 
feedback from using general statements like “Good job” and “explain more” to providing more 
elaborate feedback that articulated what was right or wrong in the students’ work, and gave 
suggestions on how to correct the mistakes. The students highlighted that the cogens provided 
opportunities for prompt and focused feedback that helped them curtail practicing the same mistake 
in future. Finally, the cogens boosted students’ motivation in their mathematical abilities and served 
as an evidence that their perspectives and experiences are valuable in co-constructing classroom 
practices. In future, we hope to explore how cogens could leverage feedback provision in larger class 
sizes and in education levels beyond undergraduate.  
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Mathematics educators sometimes have trouble enacting equity-based pedagogy. Part of this is due 
to the lack of authentic opportunities to engage in analyzing difficult scenarios involving power, 
identity, and access. Additionally, mathematics educators sometimes have trouble finding, sharing, 
and collaborating on activities and materials that interrogate these spaces. In this research report, 
we present how a collective of equity-oriented mathematics educators created, enacted, and studied 
the use of scenarios presenting difficult situations to pre- and in-service mathematics teachers. More 
importantly, this report shows how we, as a field of mathematics educators, can enact large-scale 
collaboration that disrupts the capitalistic norms of knowledge ownership and neoliberal approaches 
to teacher preparation. The CARDS tool was not created by an individual, but by an amorphous 
group aligned and committed to equity. 

Keywords: Social Justice, Teacher Education – Preservice, Teacher Education – Inservice / 
Professional Development, Teaching Tools and Resources 

The 2020 PME-NA conference theme, Across Cultures, promotes the exchange of ideas and 
collaborations across cultures in addition to thinking beyond traditional forms of educational 
research. This research report introduces a curricular tool, whose design, implementation and 
subsequent research of, directly aligns with this Across Cultures theme. The Critically Analyzing and 
Responding to Difficult Situations (CARDS) tool promotes dialogue across the many cultures and 
stakeholders involved in dismantling inequities embedded within mathematics education. The 
CARDS, intended to support each of us in rehearsing and preparing for difficult conversations 
associated with equity issues, aligns with the perspectives of the PME-NA Equity Statement (2019). 
Additionally, this research report is not just about presenting the CARDS tool, but about sharing and 
analyzing the process in which the CARDS were refined over several years by a collective of critical 
mathematics educators across institutions, generations, and geographies.  

The MathEdCollective is a loosely organized and open membership group organized in the Fall of 
2017 in response to attacks on mathematics educator Dr. Rochelle Gutiérrez by white supremist 
media (Gutiérrez 2017b, 2018). The CARDS were designed to help pre-service teachers, in-service 
teachers, and teacher educators develop and promote critical perspectives of mathematics as 
sociopolitical (Gutiérrez, 2010/2013). The CARDS ask users to image or enact difficult scenarios and 
practice potential responses, largely based upon Gutiérrez’s (2015) “In My Shoes” activities and 
Crockett’s (2008) case studies for mathematics educators to contemplate the intersection of culture 
and mathematics teaching. 

Enterprise 
The MathEdCollective 

When mathematics education scholar Dr. Rochelle Gutiérrez (2017b, 2018) was attacked for her 
scholarship, white supremacist attacks on equity and justice work in mathematics education in the 
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U.S. rose to a previously unseen level of vitriol. Professional and personal attacks crossed every 
imaginable boundary, causing colleagues to maintain open lines of communication via email and 
weekly video calls to organize, provide solidarity, and support to Gutiérrez and other scholars who 
might be the next to come under attack. As a result, the MathEdCollective was formed to organize 
and exhibit solidarity with U.S. mathematics educators and organizations under attack. Quickly, the 
MathEdCollective defined its collective principles based on used various sources of inspiration, 
including U.S. Civil Rights Era activism, works by Paulo Freire and bell hooks, and the hacker-
activist group Anonymous (The MathEdCollective, 2019). As the group grew in number and 
increased its activities, a series of implicit organizing principles began to evolve. 

The MathEdCollective (2019) practices (1) shared ownership of ideas, which creates a community 
that can shield individuals from further harm by “anonymizing” their ideas through the 
MathEdCollective’s voice, (2) heterarchical and open membership, which means that it is without 
hierarchy, “leaders”, “representatives”, defined membership, or email list, (3) collective action, 
meaning no decisions or action by the MathEdCollective reflect individuals but reflect the consensus 
of the moment with whoever happens to be participating at the time, and (4) taking the high road, 
transforming negative hate and energy into something positive and productive. 
The CARDS Emerge  

The previously mentioned attacks on mathematics educators and researchers underscore an 
ideological war present within our field, making necessary the need for preparing teachers to engage 
in these difficult and critical conversations. During one call with several mathematics educators and 
graduate students, the MathEdCollective discussed the importance of the reactive work of the 
collective which provided support and trauma aftercare to those attacked. But we also recognized that 
being reactive was not enough, we needed to move toward a more proactive, educative approach. 
One member of the collective suggested using a set of playing cards that could be used to help a 
person rehearse for difficult situations. Essentially, the idea involved supporting a broad range of 
stakeholders in mathematics education through helping them be ready to respond to difficult 
conversations by practicing in advance using real-life scenarios and simulations of politically 
dangerous interactions that might emerge within the work of teaching (Crockett, 2008; Kazemi et al., 
2016). 

Teaching rehearsals are a simulation of conversations, interactions, situations, and/or relationships 
that might emerge during the work of teaching (Kazemi et al., 2016). By engaging in and practicing 
these rehearsals, teachers can improve “routine and improvisational decisions in practice” (p. 18). 
Therefore, the CARDS describe scenarios rooted in the social, historical, and institutional contexts 
related to the work of mathematics teaching. These scenarios, similar to and inspired by “In My 
Shoes” activities (Gutiérrez, 2015), provide opportunities to rehearse such conversations as a means 
for developing preservice teachers’ sociopolitical toolbox. Like the “In My Shoes” activities, the 
CARDS aim to develop “nuanced perspectives on situations” and to consider multiple options or a 
“repertoire of moves that can be used and the kind of language that would accompany those moves in 
challenging situations” (pp. 22–23) for mathematics educators of all levels of experience.  

The CARDS reflect not only a commitment to collective enterprise and shared intellectual 
ownership, but also to emergent design research (Tom, 1996). All persons who were involved with 
the ideation, refinement, and conversation around the CARDS are recognized as equal participants in 
the design, feedback, piloting, and intellectual development of this work. The mathematics teacher 
educators, the teachers we worked with, the various members of professional organizations who 
attended conference sessions or engaged in conversations related to the CARDS, and the 
MathEdCollective are collectively always “gathering” and “generating” data and knowledge in the 
form of anecdotes, videos, and feedback. This collective participatory design research method (Bang 
& Vossoughi, 2016) means that all participants helped guide the research questions, the research 
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design, and even the interpretation of the data. Additionally, the development of the CARDS reflects 
the anti-hierarchical organizing principles of the MathEdCollective that disrupts colonial ways of 
defining people, land, and ideas as things to be owned, taken, and sold (MathEdCollective, 2019; 
Patel, 2016). 
Development of the CARDS 

The development of the CARDS started with solicitation and creation of scenarios based upon 
conversation within the MathEdCollective calls. This led to the idea of engaging in mathematics 
teacher education that was proactive in helping mathematics teachers be prepared for difficult 
conversations in their careers. We briefly describe the three cycles of development of the CARDS 
here. 

This first cycle of the CARDS development consisted of soliciting and creating scenarios and 
possible responses to the scenarios, sharing those scenarios and responses with the 
MathEdCollective, and then creating a public, online space in which various individuals could add 
comments or questions about the scenarios and responses. The scenarios and responses were 
formatted to be able to be printed as physical cards that are approximately four inches by four inches 
each. The CARDS and pilot data based on small enactments within our mathematics methods courses 
were shared at the Association of Mathematics Teacher Educators (AMTE) conference in 2019. 
After that presentation, several members of the MathEdCollective immediately used these cards in 
their own teaching and reported back about issues they encountered through emails to the CARDS 
development team or directly on the CARDS google document itself. 

Once a set of pilot cards had been developed, using the process and resulting in the materials as 
described above, we set forth on a second cycle to implement and, this time more intentionally, study 
the sorts of learning that the CARDS seemed to support. We decided to each use the cards in ways 
that made sense in our particular mathematics teacher education contexts: some of us work with pre-
service teachers, some with in-service teachers; some of us with work with elementary teachers, 
some with middle or high school mathematics teachers. Some of us were most interested in using the 
CARDS as an in-class activity, others assigned them as outside-of-class work to be completed 
individually; some incorporated them with reflective writing, others used them as prompts for 
discussion, and others had teachers interact with the cards over innovative, virtual spaces for 
communication. Some of us were additionally interested in having a graduate student or a “more 
junior” mathematics teacher educator lead others in the use of the cards, so that we could study how 
the cards were taken-up and implemented by a mathematics teacher educator who was NOT involved 
in their development.  

The second cycle involved refining and printing out eight physical cards for distribution to the 
MathEdCollective for use in their practice. The authors used these cards in their own mathematics 
methods courses in various ways. The authors then came together to engage in constant comparative 
analysis (Dye et al., 2000) through reading transcripts, listening to audio interviews, and watching 
video responses that the pre-service teachers generated when encountering the scenarios to create a 
list of themes. We then engaged in conversation to collapse these themes to those that seemed most 
important, and then re-analyzed specific points of data with this collapsed list of themes in mind. 

A third cycle followed, involving the creation and solicitation of eight additional scenarios and then 
sharing them in three more situations: the 2020 AMTE conference, an elementary mathematics 
methods course with 25 pre-service teachers, and a professional development course with 20 
practicing elementary teachers and assistant teachers in a public elementary school.  

Through these cycles of analysis, multiple questions arose, such as: How are people using these 
cards? How do people respond to the cards? How are the enactments mitigating the historical 
violence that might be triggered through some of these scenarios? What are potentially dangerous 
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assumptions that we and the MathEdCollective have made in the creation and implementation of 
these scenarios? While we collected a large amount of data that can be analyzed in multiple ways, we 
focus this paper on unpacking the critical conversations that the authorship team engaged in after 
these three cycles. We feel this analysis best serves the goal of the PMENA conference, engaging in 
our own difficult conversations about and across cultures.  

These various solicitation and collaborative cycles informed the design and content of the cards in 
several ways. We regard everyone who has been engaged with the CARDS as co-authors/designers. 
These individuals provided feedback on current scenarios and responses and made suggestions for 
new scenarios, things to consider, example responses, and resources. In addition, the co-
authors/designers offered suggestions for a user guide. These suggestions were often a result of their 
own local contexts and connected to their own experiences, allowing the CARDS to involve 
scenarios that moved across cultures. These interactions and reflections provided valuable data on 
how the CARDS were taken up, both in their purpose and structure. Co-authors/designers also 
provided key reminders of how critical tools such as the CARDS could potentially cause harm, 
discomfort, or trauma for people using the cards. The feedback also included ways to think carefully 
about various audiences, how to scaffold the CARDS, and the necessary pre-work in building a 
community of trust. 
Design of the CARDS  

The CARDS are the result of an on-going collaborative effort involving a broad community of 
mathematics teacher educators, teachers, coaches, pre-service students, etc. Many voices contributed 
to the content and design considerations of the evolving tool. The CARDS (see Figure 1) were 
designed to be a tool intended to both 1) serve as a catalyst to open up dialogue between us about a 
variety of situations related to equity in mathematics teaching/education; and 2) support the 
development of our preparedness to engage in difficult conversations with others. 

The front of each CARD includes a short scenario related to a topic in mathematics education. The 
scenarios are deliberately short, often with a variety of details omitted. This is purposeful. The 
vagueness of some of the scenarios provide an opportunity for further conversations and things to 
consider. Below the scenario, a list of “Things to Consider” are included. These are meant to be used 
to help the user think about external issues that might impact one’s response to the scenario. 

The back of the CARD includes a range of possible responses as well as a list of resources that may 
support the topic or issue raised in the scenario. The possible responses are NOT intended to be used 
as actual statements to be used as response to but rather to further open up conversations among us as 
we engage with the CARD. The range of possible responses also aims to further promote dialogue 
about the topic and how the response contributes to a productive conversation or not. For example, 
some provided responses could be taken up as inviting others into a conversation versus some that 
intentionally shut people out. 
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Figure 1: Front and Back of Scenario 3 CARD 

Findings: Impact of the CARDS 
We present three of the main impacts that we found as a result of our initial implementations with 

the cards. We refer to these as impacts in the sense that these are three ways in which the cards seem 
to provoke moments of learning for us mathematics teacher educators: about the cards themselves as 
curricular materials, about our preservice teachers’ experiences in teacher preparation programs; and 
about our own orientations toward our work as mathematics teacher educators working with teachers. 
Below we briefly present three initial findings about these impacts, sharing illustrative examples 
from the interview transcriptions; the video responses, and written assignments. As a reminder of our 
data analysis process: we reviewed selections the data together (we watched videos, listened to 
interviews, read transcripts and submitted assignments) and engaged in consensus-building 
discussion about what themes seemed to emerge in multiple instances (i.e., in more than one 
preservice teachers’ response) and what themes seemed most compelling to us and most immediately 
informative to our work as mathematics teacher educators. 
The Importance of Place and Space 

As preservice teachers reacted to the scenarios on the cards, they considered both the individual 
scenarios and the possible responses. In doing this, we noticed that the specificity of place (i.e., the 
grocery store or a family dinner) was a significant detail in how several participants responded to 
scenarios, particularly as they thought about the ideas of the “appropriateness” of having “sensitive” 
conversations in those places. Several preservice teachers said they would want to talk about things 
in a different place or at a different time. For example, as she was interacting with the cards, Marta 
was also influenced by the setting of the scenario. She mentioned that if she were at the grocery 
store, the scene of Scenario 1, she would probably be “in a rush” and “not be in the right mindset to 
have that kind of serious conversation.” Other preservice teachers told us that they would want 
additional information about the topic before they would feel comfortable responding if they were in 
similar situations. We reflected on the ways that the preservice teachers’ responses may have been 
affected. That is, we see the consideration of place as very understandable and relatable, but realize 
that the content on the cards may have influenced responses of this nature. As retreating is a frame of 
whiteness, in how white-identified peoples hold the privilege to be able to retreat from difficult 
situations (Picower, 2009), we realize the need to have preservice teachers, and ourselves, explore 
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the different possibilities for responding to issues of power, identity, and access given the different 
settings, times, and people involved in our interactions. 
Considerations of Our Teachers 

Students of color or from marginalized identities bear some emotional weight related to personal 
experiences with the content of the cards. In Kat’s interview, she expressed how a recent experience 
in her university courses influenced whether or not she was comfortable with certain responses to the 
Columbus Day scenario (Scenario 2). For example, she recalled the racial tension in her class after 
speaking up about an issue. She said: I was in a class, and me being the only, well, one out of two 
black students that were in the class. I spoke up and said something about, something relating to 
social studies and Columbus Day and things like that, where I felt like people in the class weren't 
taking seriously… And I received a lot of backlash...it was hard for weeks...now things are getting a 
lot better. But it was just hard because you can feel the racial tension and just the divide. The weight 
of that experience influenced which possible responses to the scenarios she saw as acceptable and 
which felt like “an attack to somebody”.  

As Abdulah worked with the cards, he specifically connected with Scenario 5, where the scenario is 
related to a teacher who is unable and unwilling to learn the correct pronunciation of his students’ 
names. Abdulah shared personal experience of how his name was very often mispronounced. In 
sharing his experience, Abdulah discusses the need for teachers to learn the correct pronunciations of 
students’ names from the start, but he also mentioned that his name is never pronounced correctly 
due to differences in language. Although Abdulah said that he took no offense when people 
mispronounced his name, another preservice teacher reacted differently this saying, “My name has 
always been mispronounced which makes me feel uneasy.” The situations on the cards brought out 
the emotional weight these preservice teachers have experienced throughout their schooling in a 
range of different experiences, and we want to acknowledge concerns we have heard from MTEs 
about using these cards framed as worry for upsetting or triggering their students of color. 
Moving from Deficit to Asset Perspectives of our Teachers 

The data were a reminder that all of our students have backgrounds, knowledge, and experiences 
that they can draw on in meaningful ways during activities with the cards. As the preservice teachers 
worked with the cards, they referenced what they knew based on their experiences in schools. For 
example, Norah mentioned experience from her field placement school where students were making 
predictions based on the cover of a book. On the cover, a group of children were standing around 
another child holding a cap. As the students in the field placement classroom made predictions, one 
of the students predicted that the two Black children on the cover were brother and sister because 
they had the same skin tone. Norah used this as an opportunity to begin a conversation in the 
classroom. Several other preservice teachers related the scenarios on the cards to concepts they had 
discussed and explored in other coursework, such as their social studies methods course, educational 
policy courses, literacy course, among others. They weren’t required to make connections to what 
they knew or had learned in their teacher preparation courses but many of them did. 

Discussion and Next Steps 
Working Groups and professional conference sessions extended our methodology, in which 

participants learned about, received, and were challenged to use an early iteration of the CARDS. 
These opportunities to work across cultures (mathematics educators, teachers, parents, other 
stakeholders) served as an impetus for multiple MTEs to implement the cards in their own 
institutions. The feedback received has helped make improvements related to content, context, form, 
and delivery. Content and context details have been added along with the addition of new scenarios. 
Variations of the cards are being developed to be used with different audiences (teacher candidates, 
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teachers, administrators, etc.) The form of the cards is being modified to become more user-friendly 
and incorporate additional resources and technology. Different delivery options (online, game 
formats, etc.) are also being explored and will be included in a user guide.  We did not “construct” 
the cards and then evaluate them, rather they were a result of emergent design research (Tom, 1996). 
In other words, and an ongoing effort of collectively collaborating to create/design tools that come 
out from the larger community.  

As a next step, we reiterate our invitation and our plea that our colleagues (and by that we mean 
anyone who plays a role in mathematics teacher education) continue to join in the shared creation 
and improvement of the cards. We will continue to share the cards, user guide, and other relevant 
materials freely- not only to download, but to add to and to suggest revisions. These materials are 
licensed under creative commons copyright law, so as long as users are doing so with attribution and 
for educational, non-commercial purposes, they are free to do so. This is what we mean by collective 
ownership.  

In fact, we consider the collective ownership of the cards to be one of, if not the, most significant 
findings of this project thus far. Our field is dominated by scholars who work in higher education 
institutions, which are organized by a capitalist framing of knowledge creation and ownership. We 
recognize that we ourselves are a part of this problematic structure which inhibits true collaboration 
or idea sharing, in which individual knowledge creation and selfish ways of thinking are rewarded 
and incentivized. We seek to enact a decolonizing stance to educational research (Patel, 2015) to 
think about ways to create true collaboration in our field and to enact research designs that honor all 
voices. In this project, we have offered a glimpse of what this might look like, through the ideation, 
creation, enactment, and study of a tool for mathematics teacher education that has been completely 
collaborative from start to finish. Even now, we do not present the CARDS project as a finished 
project, but as an evolving tool that will grow through collective action. 

Turning our attention to use of the cards: there are many concepts and frameworks regarding 
equitable mathematics teaching practices from which mathematics teachers can base their work with 
these CARDS. Paradigms and frameworks such as Guitierrez’s Four dimensions of equity, Tuner, 
Drake, McDuffie, Aguirre, Bartell, and Foote’s (2012) learning trajectory for building on children’s 
multiple mathematical knowledge bases (Project TEACH MATH), and the antiracist tool for 
mathematics teacher educators (A3IMS Project) all offer foundations from which MTEs might 
regard the cards as resources. We do not intend to homogenize differences between these approaches, 
thereby trivializing the significance of theoretical framework and the intellectual work involved in 
articulating the affordances of any one perspective. We ourselves have been intrigued by Love’s 
description of abolitionist teaching (2019), and the statements in our data expressed by Abdullah and 
Kat echo Love’s call that students of color--in our case: our preservice and inservice teachers of 
color--need to know that they matter. They need to be repeatedly and resolutely assured that their 
communities, their families, their neighborhoods, their stories, their bodies, their hopes and their 
dreams matter. The Cards provide one mechanism to support our practice of inviting, eliciting, and 
honoring these multiple dimensions of our students’ and teachers’ lives into our interactions with 
them.  

For our colleagues in mathematics teacher education who share our interest in developing deep, 
theoretical understanding alongside a skillful, practical usage of the cards, we invite researchers to 
develop and apply their various conceptual and analytic frameworks. As we have analyzed the data 
together, we have begun to wonder in what ways interactions with the cards reveal whiteness within 
our teachers, ourselves, and our systems and institutions, our practices and policies. Battey and 
Leyva’s (2016) framework for understanding whiteness in mathematics education offers one tool for 
this.  



Critically analyzing and supporting difficult situations (cards): a tool to support equity commitments 

	 474	

Interestingly, and perhaps counterintuitively: as a result of the efforts described here, we are 
learning more and more about what might be the most appropriate intentions for using these cards. 
When we began developing these resources, we admittedly did not have a clear objective. We were 
guided by curiosity, a sense that these would be useful, and a lot of encouragement and expressions 
of interest from colleagues. In some ways, these cards were developed antithetically to the “design” 
approach so ubiquitous in education research wherein problems of practice are identified and then 
answers are proposed, studied, and refined. Our process was more akin to an “undesign” approach 
(Leander & Boldt, 2018), wherein we were motivated by a “What can we do with these?” wondering 
about a curricular resource that we found ourselves compelled by. The “What can we do with this?” 
curricular approach has been adopted by mathematics teachers in productive and interesting ways for 
posing rich mathematical tasks and we are intrigued by what this stance could bring to mathematics 
teacher education.  

Fundamentally, we do not view equity, diversity, and inclusion as “problems of practice” that need 
to be “solved:” rather we view them as the existential commitment most relevant and animating to 
our work as mathematics teacher educators--individually and collectively. We will never be finished, 
we will never get to cease remaining vigilant in our commitment to remaining watchful and attentive 
to harm that arises in mathematics teaching and learning as a result of abuses of power. Contributing 
toward more equitable mathematics classrooms is a practice: we will need to hold ourselves 
accountable and reaffirm our commitments again and again. These cards-and this approach to 
collaboratively developing and owning them--are one way to do this. They do not “hold” or 
“convey” the right answers because there are no such things, but a commitment to return to them 
again and again, always adding to our collective understanding, is a stance worth taking.  
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Researchers and reformers across multiple areas of scholarship have challenged the idea of 
mathematics as fixed, politically neutral, and value-free. Ethnomathematics has brought attention to 
the mathematical practices of particular cultural groups that differ from Western ways of 
mathematical understanding. These practices raise the following question for mathematics 
education, especially within Indigenous communities: whose knowledge should be taught and from 
whose perspective? One response to this question is to teach both dominant and non-dominant 
perspectives on mathematics, which can be considered an “etic-emic” approach to mathematics 
education. Drawing on the literature on decolonizing studies in education, I offer a theorization of 
this etic-emic approach in terms of re-mythologizing mathematics, pursuing recognition and 
reconciliation, and refusing colonization. 

Keywords: Ethnomathematics 

The sociopolitical turn in mathematics education calls for an examination of the ways mathematics 
is framed, conceptualized, and presented in the curriculum (Gutiérrez, 2013a). For instance, 
ethnomathematics researchers have brought attention to the mathematical practices of particular 
cultural groups that differ from Western ways of understanding mathematics (D’Ambrosio, 1985; 
Barton, 1996). These mathematical practices, even when they are not explicitly labeled as 
ethnomathematical, can serve as important resources for mathematics educators seeking to draw 
connections between dominant and non-dominant forms of knowledge and challenge the notion that 
there is only one way to learn, understand, and do mathematics. 

Ethnomathematics seeks to promote expanded views of what counts as mathematical activity. This 
raises the question for mathematics education, especially within Indigenous communities, of how to 
balance the perspectives created by and enacted through dominant and non-dominant mathematical 
practices. One response is for teachers to teach both dominant and non-dominant perspectives on 
mathematics, a practice that I will refer to as an etic-emic approach to mathematics education. In this 
paper, I seek to theorize this etic-emic approach and, in doing so, to highlight how historicized and 
ongoing effects of colonization make it difficult, if not impossible, to reconcile dominant and non-
dominant ways of knowing. I begin with existing conceptions of and approaches to 
ethnomathematics in order to provide background on the various ways in which researchers have 
brought attention to and grappled with multiple systems of mathematical knowledge, particularly as 
the existence of these multiple systems implicate approaches to mathematics education. I proceed by 
reviewing the work of scholars who have proposed an etic-emic approach to mathematics education. 
Drawing on the literature on decolonizing studies in education, I conclude by theorizing this etic-
emic approach in terms of re-mythologizing mathematics, pursuing recognition and reconciliation by 
Indigenous communities, and refusing colonization. 

Ethnomathematics 
Ethnomathematics began as an endeavor to identify and elaborate on the practices of cultural 

groups, particularly from the point of view of one immersed in scholarly mathematics (D’Ambrosio, 
1985). Over the past four decades, ethnomathematics has branched out in several directions. Barton 
(1996) identifies a few of these directions, including an interest in the ways mathematics is culturally 
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based, the nature of mathematical thought and activities across cultures, the evolution of mathematics 
from a socio-anthropological perspective, the politics of mathematics, the use of culturally specific 
contexts in schools, and the relationship between mathematics education and society. He proposes 
the following definition for ethnomathematics: 

“a research program of the way in which cultural groups understand, articulate and use the 
concepts and practices which we describe as mathematical, whether or not the cultural group 
has a concept of mathematics” (Barton, 1996, p. 214). 

The term mathematics refers to the work of school and scholarly mathematics (e.g. algebra) and the 
term mathematical refers to concepts and practices identified as somehow related to mathematics 
(e.g. kinship systems that can be interpreted in terms of algebraic structures) (Barton, 1996). Barton 
(1996) points out that this definition of ethnomathematics is not absolute or definitive. The meanings 
of the terms are culturally situated and depend on the person or group using them. Ethnomathematics 
is a culturally specific practice performed by one cultural group seeking to make sense of another, 
often by reference to a specific conceptualization of mathematics (Barton, 1996). 

Barton’s approach to define and frame ethnomathematics is joined by other perspectives. 
D’Ambrosio (2006) argues that ethnomathematics concerns the history and philosophy of 
mathematics with pedagogical implications, the goal of which is to develop a broader vision of 
knowledge by making cross-cultural comparisons of the ethnomathematics of different groups. Borba 
(1990), Gerdes (2005), and Powell and Frankenstein (1994) emphasize the importance of 
ethnomathematics for education, pointing out the ways mathematical practices of cultural groups can 
be brought into the classroom. Pais (2013) suggests a path for ethnomathematics that critiques its 
own directions and purposes, particularly those that would render ethnomathematics a mere 
pedagogical tool for importing cultural contexts into schools.  

Pais (2011, 2013) and Vithal and Skovsmose (1997) raise concerns regarding ethnomathematics. 
When a mathematical lens is applied to a cultural practice, there is a risk this lens becomes a “gaze” 
that suggests a group’s cultural activity is valuable only because one can see mathematics in it (Pais, 
2013, p. 3). This gaze also highlights the unidirectional nature of ethnomathematics, the alternative 
being that ethnomathematics can and should be directed back toward dominant mathematics through 
a critical examination of how mathematics has taken its current form and how it powerfully formats 
reality in ways that are often unjust (Pais, 2013). 

In the context of mathematics education, a mathematics gaze focuses on bringing local knowledge 
into mathematics classrooms in the name of promoting diversity and highlighting that mathematics 
appears everywhere in the world (Pais, 2013). Although this is often accompanied by good intentions 
and the promises of multicultural education, there is a risk that an essentialist view of culture will be 
promoted that positions communities and peoples as foreign Others and ignores the tensions inherent 
in cultural approaches to education in multicultural contexts (Pais, 2011, 2013; Vithal & Skovsmose, 
1997). For instance, in South Africa the meaning of ethno in ethnomathematics was used by 
policymakers to separate individuals into supposed cultural groups organized by race, wherein white 
students were provided a higher quality mathematics education (Vithal & Skovsmose, 1997). 
Ethnomathematics thus became associated with the racism of apartheid. Vithal and Skovsmose 
(1997) point out that in using ethnomathematics to structure the learning experiences of students in 
South Africa, there was a failure to specify the relationship between culture and power and a failure 
to recognize the formatting power of dominant mathematics and to teach toward cultural competence 
and self-empowerment. 

Etic and Emic Perspectives 
Albanese, Adamuz-Povedano, and Bracho-López (2017) propose two distinct approaches to 

incorporating ethnomathematics into mathematics education. Under the first approach, the 
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mathematics of cultural groups are studied, understood, and taught from the point of view of 
dominant mathematics. The researcher, teacher educator, or teacher identifies and chooses cultural 
material to translate into the formal language of mathematics, even if this formal language does not 
exist within the studied community (Albanese et al., 2017). For example, Ascher and Ascher (1986) 
analyzed kin relationships found among the Aranda of Australia using diagrams and group 
theoretical terms. Borrowing terminology from anthropology (Rosa & Orey, 2012, 2013), Albanese 
et al. (2017) call this an etic perspective. In short, the etic approach is “the recognition of 
mathematics in cultural practices“ (Albanese et al., 2017, p. 324). The goal of the etic approach is to 
build bridges between dominant mathematics and the mathematical practices of other cultures and to 
establish communication between them (Albanese et al., 2017). It suggests that dominant 
mathematics is a universal system that can be found everywhere, including within the cultural 
practices of communities that would not necessarily characterize these practices as mathematical 
(Pais, 2013). The pedagogical implication is that teachers ought to bring cultural contexts into the 
classroom under the assumption that students have experiences with or interests in out-of-school 
mathematical practices and that relating school mathematics to students’ life experiences will lead to 
better learning (Pais, 2013).  

The second approach is emic, which takes into account the categories and schemes of thinking of 
the community or cultural group of interest (Albanese et al., 2017). This leads to “the discovery of 
different ways of thinking“ (Albanese et al., 2017, p. 324). For instance, bricklayers in some rural 
areas of Mozambique build houses with rectangular floors but do not have tools for designing right 
angles (Albanese et al., 2017). They use sticks and ropes of equal measure to find the vertices of a 
rectangle. This practice may be identified as deploying the property of rectangles that diagonals are 
equal and bisect each other (i.e. an etic perspective) or may be identified as a practice-embedded, 
operational definition for these bricklayers (i.e. an emic perspective). Barton (1999) explains that this 
approach to ethnomathematics rejects the idea of a universal mathematical or logical system to which 
both scholarly and cultural mathematics are a mere approximation. Mathematics in its most general 
form is instead a system for dealing with quantitative, relational, and spatial aspects of human 
experience, which Barton (1999) calls a “QRS system” (p. 56). Certain cultural groups have their 
own QRS systems. Dominant mathematics is one QRS system, and the purpose of ethnomathematics 
is to explore how different QRS systems relate to one another. Rather than being used to locate 
cultural contexts to import into classrooms, the emic approach suggests that ethnomathematics 
should be incorporated into a larger project of critiquing schooling and the curriculum (Knijnik, 
2012; Pais, 2011, 2013). 

Albanese et al. (2017) argue that both etic and emic approaches should be considered in every 
ethnomathematics project, including the use of ethnomathematics for teaching and learning 
mathematics. For instance, artisan-architects on an Indonesian island use a stick and pencil to find the 
midpoint of a segment based on a sequence of moves that yield a better approximation with each 
iteration (Albanese et al., 2017). An emic perspective would acknowledge the situatedness of this 
practice while an etic perspective would view the practice in mathematical terms, observing the ways 
the practice resembles error reducing algorithms (Albanese et al., 2017). Problems arise when both 
perspectives are not brought into dialogue. Merely contextualizing mathematical tasks without 
reflecting on the nuances between dominant and non-dominant forms of mathematics misses out on 
the opportunity to think about different ways of knowing (Albanese et al., 2017). Focusing 
exclusively on cultural ways of knowing misses out on the opportunity to seek correspondences 
between dominant mathematics and the cultural practices of other communities (Albanese et al., 
2017). 
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Theorizing an Etic-Emic Approach to Mathematics Education 
The previous discussion highlights the diversity in how one might approach the study, 

understanding, framing, and teaching of mathematics, particularly in light of the findings of 
ethnomathematics researchers that multiple mathematical systems exist. This motivates a framework 
for making sense of how an understanding of multiple mathematics might impact ones approach to 
mathematics education. For Albanese et al. (2017), a reasonable response is to seek dialogue between 
etic and emic perspectives on mathematics knowledge. In doing so, they acknowledge the significant 
formatting power of dominant mathematics and its role in modern society while still embracing 
different ways of knowing mathematics. However, if we are to take this suggestion seriously, there is 
a need to theorize what exactly such an etic-emic approach would entail. The next section proposes 
three dimensions to this theorization: re-mythologizing mathematics, pursuing recognition and 
reconciliation for Indigenous communities, and refusing colonization. Through these dimensions, a 
theorization would propose to do three things—deepen our understandings of ethnomathematics and 
its role in mathematics education, emphasize the relevance of decolonizing studies to mathematics 
education research, and speak to broader conversations about balancing dominant and non-dominant 
perspectives on knowledge within school curricula and teachers’ instructional practices. 
Re-Mythologizing Mathematics 

Scholars in fields as diverse as anthropology, sociology, and education have shown the many ways 
in which mathematics is neither universal nor politically neutral (Appelbaum, 1995; Borba, 1990; 
D’Ambrosio, 2006; Eglash, 1997; Ernest, 1998; Gerdes, 1998; Gutiérrez, 2013a; Hersh, 1999; Iseke-
Barnes, 2000; Knijnik, 2012; Skovsmose, 2011). Modern conceptions of mathematics have been 
shown to be rooted in mathematics’ alleged purity and close connections to technology and the 
natural sciences (Skovsmose, 2011). The theorems and objects of mathematics have been shown to 
be cultural products created through human activity (Ernest, 1998; Hersh, 1999). Bishop (1990) 
challenges the idea that dominant mathematics is value-free, pointing out that such mathematics is 
grounded in four values: rationalism, objectism, power and control, and progress and change. Related 
to this conception of mathematics is a Western-based hierarchy of rationality that privileges abstract 
thought as the highest form of intellect (Gutiérrez, 2013b). Drawing on Foucault and Wittgenstein, 
Knijnik (2012) argues that dominant mathematics “expels ‘out of its margins’” different kinds of 
mathematics by constraining the circulation of divergent mathematical discourses (p. 97). In each 
case, a critique is made that not only seeks to challenge mathematics education but also seeks to 
challenge the status of mathematics itself. 

An etic-emic approach to mathematics education can be seen as part of this larger project to re-right 
views of mathematics that perpetuate myths about its universality and political neutrality. Wagner 
and Herbel-Eisenmann (2009) call on scholars to “re-mythologize” mathematics by 
reconceptualizing it with human stories that are not traditionally part of dominant mathematics 
discourses. The purpose is not to discredit dominant mathematics nor is it to “de-mythologize” 
dominant mathematics in an attempt to render it powerless. It must be acknowledged that the “myth 
of mathematics” continues to powerfully position students, teachers, and practitioners (Wagner & 
Herbel-Eisenmann, 2009) and that dominant conceptions of mathematics inevitably impose 
themselves on interactions among doers of mathematics. Ethnomathematics has and can continue to 
be used as a counter-narrative and engine for re-storying a plural understanding of mathematics. By 
balancing etic and emic perspectives on mathematics knowledge, reformers can continue to 
dismantle notions that Western mathematics is the only legitimate mathematical system. The ability 
to shift from one mathematical system to another promotes the view that Western mathematics is 
simply one of a multitude of culturally based mathematical systems, where each system is grounded 
in human activity and a particular set of values. In teacher education contexts, this approach can be 
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used to support mathematics teachers in undergoing the epistemological shifts that Knijnik (2012) 
and Pais (2011, 2013) say are necessary for widespread mathematics education reform. 
Pursuing Recognition and Reconciliation 

An etic-emic approach to mathematics education can also be seen in relation to broader politics of 
recognition and reconciliation for Indigenous peoples. The dominant status of Western mathematics 
means that throughout history, alternative conceptions of mathematics among Indigenous peoples 
have been, and continue to be, marginalized or subject to erasure. Bishop (1990), for instance, shows 
how through dominant conceptions of mathematics, Western explorers sought to replace Indigenous 
mathematics through regimes of trade, administration, and education, which mediated a process of 
cultural invasion by dominant methods of measurement and numerical procedures and by a value 
system grounded in rationalism. Takeuchi (2018) finds that hierarchies created by dominant 
conceptions of mathematics led Filipina mothers to undervalue their mathematics knowledge—
particularly with respect to calculating international currency conversions—and involvement in 
school education for their children. As Takeuchi (2018) explains, “[P]arents’ funds of 
knowledge...can be masked through school practices if only certain ways of knowing are treated as 
legitimate and valued” (p. 139).  

This process of erasure of Indigenous ways of knowing is not a mere accident of history but rather 
one of historicized and ongoing colonization (Bernales & Powell, 2018; Iseke-Barnes, 2000; 
Stathopoulou & Appelbaum, 2016). Bernales & Powell (2018) point to the Programme for 
International Student Assessment (PISA) and the tendency to “unreflectively copy the developed 
countries curricula, reinforcing power structures in the societies” (p. 566) as well as the 
“hominization of curricula that OECD’s PISA causes on national curricula” (p. 566). An etic-emic 
approach can be seen as serving the project of reversing erasure and pursuing recognition and dignity 
in the face of dispossession of land and knowledge (Stathopoulou & Appelbaum, 2016). In schools, 
this would mean modifying curricula and pedagogical practices so that instruction begins with 
students’ out-of-school knowledge and worldview of local culture while still giving students access 
to dominant mathematical discourses. Doing so provides recognition and dignity to students whose 
contemporary and heritage practices are delegitimated and displaced by Western mathematical values 
and practices (Stathopoulou & Appelbaum, 2016), and it can promote social justice through the 
fundamental values of ethnomathematics, which include respect, solidarity, and cooperation with 
other cultural groups (D’Ambrosio, 2007). Developing fluency around both dominant and non-
dominant mathematical forms confronts what Battiste (1998) calls the educational model of 
“cognitive imperialism” (p. 17), which comprises of “Eurocentric strategies that maintain their 
knowledge is universal, that it derives from standards of good that are universally appropriate, that 
the idea and ideals are so familiar they need not be questioned, and that all questions can be posed 
and resolved within it” (Stathopoulou & Appelbaum, 2016, p. 38). This approach not only gives 
students access to mathematical practices necessary for social mobility but it also aids toward a 
process of “reconciling [the] dignity of each person” in light of “legacies of centuries of privilege and 
power, cultural authority and school-based deligitimation practices” (Stathopoulou & Appelbaum, 
2016, pp. 39-40). 

This approach of balancing “insider” and “outsider” views of mathematics must be seen as part of a 
larger movement in education to provide marginalized and minoritized youth with both dominant and 
non-dominant knowledge. Ladson-Billings (1995), for instance, puts forth a framework of culturally 
relevant pedagogy (CRP), which calls for academic excellence, cultural competence, and 
sociopolitical consciousness for students. CRP entails the development of “literacy, numeracy, and 
technological, social, and political skills in order to be active participants in a democracy” (p. 160). 
Paris and Alim (2006) extend CRP by proposing culturally sustaining pedagogy as a way to 
emphasize the preservation of students’ heritage and contemporary practices and to foreground the 
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way students often enact their cultural identities in novel ways. Stathopoulou & Appelbaum (2016) 
call for a similarly expansive view of culture within ethnomathematics, which have historically been 
based on static colonialist categories of culture. In contrast to these static colonialist categories, an 
etic-emic approach emphasizes a fluidity not just in how mathematics can be viewed but also how 
people and knowledge can be granted dignity and recognition. 
Refusing Colonization 

In contrast to the politics of recognition, an etic-emic approach can be theorized in terms of a politic 
of refusal (Coulthard, 2014; Grande, 2018; McGranahan, 2016; Mignolo, 2011; Simpson, 2007; 
Tuck, 2009; Tuck & Yang, 2014). Grande (2018) describes this politic of refusal in terms of 
Indigenous sovereignty, noting that refusal is not about attaining recognition but rather about 
reconstructing culture and tradition in a way that “positively asserts Indigenous sovereignty and 
peoplehood” (p. 59). Drawing on scholars such as Glen Coulthard, Audra Simpson, Walter D. 
Mignolo, and Anibal Quijano, Grande (2018) theorizes refusal as “a stance or space for Indigenous 
subjects to limit access to what is knowable and to being known” (p. 59) and a form of “epistemic 
disobedience” (p. 59) that severs the link between Indigenous and Western understandings of 
knowledge. Two important points must be made about refusal. First, refusal is an alternative to 
recognition, which seeks reconciliation with the state—an idea that several critical Indigenous 
scholars criticize “as a technology of the state by which it maintains its power (as sole arbiter of 
recognition) and thus settler colonial relations” (Grande, 2018, pp. 49-50). Second, refusal is 
connected to settler colonialism, which refers to colonialism premised on the removal of Indigenous 
peoples from land followed by the creation of labor and knowledge systems and infrastructures to 
make the land productive for settlers (Bonds & Inwood, 2016; Grande, 2018). In this light, refusal is 
premised on the idea that decolonization “is a political project that begins and ends with land and its 
return”, and thus “the very nature of settler colonialism precludes reconciliation” (Grande, 2018, p. 
53). 

A politics of refusal troubles the possibility of taking an etic-emic approach to mathematics 
education. By seeking to recognize and reconcile both insider and outsider perspectives of 
Indigenous mathematical practices, one continues to legitimate the Western “gaze” as the arbiter of 
recognition. That is, attempts to reconcile dominant and non-dominant perspectives on mathematics 
reproduce configurations of colonial power that have and continue to deprive Indigenous people of 
knowledge. Raising the issue of psycho-affective attachment to colonialist forms of recognition, 
Grande (2018) discusses the “unequal exchange of institutionalized and interpersonal patterns of 
recognition between the colonial society and the marginalized” (p. 54). By seeking recognition and 
reconciliation, one may not be able to avoid the feelings of attachment to dominant knowledge forms 
felt among the colonized, as such feelings often stem from “inducements” (Wolfe, 2013), which 
manifest as the material and psychological rewards often associated with success in dominant 
mathematics. 

This is not to say that Indigenous communities should not be taught dominant forms of mathematics 
knowledge, which can be instrumental for social and economic mobility. Rather, a politics of refusal 
highlights the competing impulses that can arise when one attempts to take an etic-emic approach to 
mathematics education—on one hand, a yearning to reconcile dominant and non-dominant ways of 
knowing but, on the other hand, a refusal of Western mathematics premised on Indigenous 
sovereignty and the delegitimization of the settler colonial state. For instance, Stanton (1994) 
describes a “both ways” mathematics curriculum for aboriginal teacher education, pointing out the 
extent to which dominant conceptions of mathematics were entrenched within the beliefs and 
attitudes of participants. He further describes the tensions created when teachers expressed the need 
for Aboriginal children to become prepared for key positions within their community through the 
mastery of dominant mathematical techniques. Stanton (1994) is ultimately optimistic about cross-
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cultural attempts to bridge dominant and non-dominant forms of mathematics, though his concerns 
highlight the difficulty that historicized and ongoing effects of colonization create with respect to 
reconciling etic and emic perspectives on mathematics. 

Concluding Remarks 
There has been a significant increase in attention toward concerns for equity and social justice 

within mathematics education, and yet ethnomathematics and decolonizing studies in mathematics 
education remain niche areas of research. This is despite the fact that dominant mathematical activity 
is a form of ethnomathematics. I discuss the project of balancing etic and emic perspectives on 
mathematics not only because it represents a key tension within ethnomathematics and decolonizing 
studies in mathematics education but also because it highlights how these research areas can speak to 
larger conversations about the role of dominant and non-dominant ways of knowing in curriculum 
and instruction. In this paper, I have raised the question of whose knowledge should be taught and 
from whose perspective. Although a reasonable response to this question might be to say, 
“everyone’s knowledge and everybody’s perspective”, I have sought to nuance and problematize 
such an attempt at an etic-emic approach to education. The historicized context of math-making 
cannot be separated from the mathematical practices we seek to teach in classrooms. We cannot 
avoid the fact that much of the mathematics knowledge we seek to teach youth is laden with histories 
of settler colonialism, racial violence, and white supremacy. How, then, do we move forward? This 
paper’s theorization does not offer a definitive resolution. At best, I offer this theorization to 
highlight the relevance of ethnomathematics and decolonizing studies for mathematics education 
research and to urge researchers to continue to critique dominant and oppressive forms of knowledge 
as part of a larger project of individual and collective empowerment. 
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Mathematics experienced by students can be derived from the contextually situated “real world” 
experiences of the educator, which is typically White and middle class and not a reflection of the 
demographics of many classrooms in the United States. Activities where students find connections to 
their lives and interests have shown promise in enhancing student performance and experiences in 
mathematics classrooms. In this study, mathematics funds of knowledge are assessed in a novel 
survey instrument, reinforcing the salience of relating math experiences to students’ lives and 
acknowledging skills and knowledge originating from experiences outside of the math classroom. 

Keywords: Culturally Relevant Pedagogy, Equity and Diversity, High School Education 

Many believe that there is no culture in mathematics. This would mean that arithmetic is the same 
no matter who a person is or where a person is physically in the world. However, the “real” in “real 
world” problems being solved is different for each student. Developers pull from their personal world 
but may not consider the perspective of their audiences. As such, many math word problems tend to 
be written from a white, middle class perspective (e.g., see Gerofsky, 2009; Frankenstein, 2009). 

Expectations and decision-making of teachers are grounded in their cultural systems that may not 
align with those of their students. As teacher cultural expression is displayed and enacted through 
classroom practices, the lack of acknowledgement of those expressions and how they affect students 
can be problematic. The knowledge and awareness of how one’s beliefs, experiences, values, and 
expectations are linked to their cultural identity is a major tenet of culturally responsive teaching 
(Griner & Stewart, 2013).  

The racial gap between teachers and students in the United States continues to widen as the rate of 
diversity in teachers is declining more slowly than the rate of enrollment of students of color (NCES, 
2017). According to NCES, White teachers make up 80% of teachers while over half of US students 
are Black, Latinx, Asian, Pacific Islander, Native American/Alaska Native or other races/ethnicities. 
This disparity in teacher-student ethnic demographics, structural barriers in advanced mathematics 
courses (U.S. Department of Education, 2018), lower expectations for African-American students 
(Gershenson & Papageorge, 2016), and racist policies for students being recommended for gifted 
courses (Ford, 1998), perpetuates the idea that there is no place for Students of Color in these 
classrooms. 

Because of the opportunity gap that exists for students of color, math performance and preparation 
for college pathways in STEM for these students have become a matter of high interest and 
importance to teachers, schools and leaders in education policy and reform (Contreras, 2011; Gullatt, 
2003; Noble, 2013; Marzocchi, 2016; Balfanz, 2006; Kotok, 2017). In this paper, we describe a 
research study conducted with high school students who were predominantly Latinx and African-
American and were poised to become first-generation college students. Using a survey instrument we 
developed, we assessed students’ everyday funds of knowledge for learning mathematics. The 
purpose of developing this assessment was to drive further instruction and enrichment in 
mathematics for these students. Here we report on the properties of the survey instrument, in the 
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hopes that it could be used by teachers and researchers to assess their students’ funds of knowledge 
and enact culturally responsive teaching. 

Theoretical Framework 
Culturally Responsive Teaching 

According to Ladson-Billings (1995), Culturally Responsive Teaching (CRT) includes (a) students 
having the opportunity for collective success, (b) students developing or maintaining cultural 
competence, and (c) students developing a critical consciousness through which they challenge the 
status quo of the current social order. These things are not typically found in everyday lesson plans 
and many teachers require assistance to include these characteristics of CRT into their pedagogy. 
CRT involves teachers maintaining a high level of “cultural competence” in their pedagogy (Lindsey, 
2009). These teachers are able to gather from the cultural experiences brought into their classroom 
via their students in their learning environment. CRT not only requires acknowledgement of student 
culture, but also the use of student culture as a learning tool in the classroom. The culture of the 
classroom transcends ethnic backgrounds, but also includes sexual orientation, disabilities, religion 
and language (Rogers, 2016), among other identifications and groups. Culture also includes the 
community inside and outside of school. 
Funds of Knowledge 

Funds of Knowledge (FoK) are the everyday knowledge bases from which students experience and 
learn within their homes and communities (Gonzalez, et al., 2005).  Posited from the works of Velez-
Ibanez and Greenberg (1992), the concept of FoK conveyed the notion of the existence of skills, 
talents, aptitudes, and inter-cultural exchange within Mexican-American homes. Moll et all. (1990b) 
focused on FoK originating solely from the household, but updated this opinion later (2005) crediting 
that FoK must incorporate information accumulated outside of the household in varied settings and 
activities. Moje et al. (2004) found that students’ FoK derived from a combination of the home, peers 
and other networks. Andrews and Yee (2006) concurred that FoK stems from students’ lived lives 
including their personal interests and influences. These personal interests serve as a source of 
knowledge not only useful for the wellbeing of the household, but of the student as well. Barton and 
Tan (2009) actually describe FoK as deriving from students’ interests and talents.  

Although it has been shown that Latinx households demonstrate strength in the complexities 
associated with sharing recourses and social networks within their community (Velez-Ibanez, 1988), 
educators have historically not used these FoK as a resource inside the classroom. Taking educators 
out of the classroom and into the homes and communities of their students has been highlighted in 
the works of Gonzalez, Moll, and Amanti (2005).  In this study, teachers became researchers seeking 
and discovering the household knowledge of students developing rich relationships which set the 
stage for transactions of knowledge between teacher and student targeting student interest.  FoK were 
found to focus on activities and tactical knowledge deriving out of culture (i.e., social, economic, 
political) essential to household functioning and progression.  The involvement of student 
background into daily lessons and teacher pedagogy requires teachers to take an authentic inventory 
of their students and those students’ cultural experiences to truly direct their pedagogy with a 
culturally responsive lens. 

FoK emphasizes the salience of both academic and personal background knowledge of students. A 
culturally responsive educator focuses and utilizes this accumulated lived experience and knowledge 
to build upon it, increasing student learning. The FoK used to navigate social contexts are affirmed in 
culturally responsive lessons when properly addressed and utilized. As educators facilitate culturally 
responsive opportunities for students to broaden their FoK including their world views shaped by 
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cultural, historical and political events, students’ sociopolitical and critical consciousness are 
influenced to critique the inequities in their own educational and societal establishments. 
Funds of Knowledge for Mathematics 

Funds of Knowledge in mathematics and connections between home and community involvement 
has been the subject of considerable research (Civil, 2007; Gonzalez, Andrade, Civil & Moll, 2001; 
Civil & Andrade, 2002; Nasir, 2002; Nasir, et al., 2008). The work of Civil (2007) on mathematical 
FoK focused on everyday life activities and how they connect to mathematics. Civil’s work 
highlighted success in using FoK in the development of mathematics learning objectives through an 
educator’s authentic desire to learn about their students’ community, and to understand and leverage 
the community’s resources and the knowledge originating from students’ households. As opposed to 
making cultural generalizations about the community, teachers took invested interest in learning 
about their students’ home and community lived experiences. Certain dilemmas are addressed in 
Civil’s work, such as the tension between authentic problem-solving opportunities that relate to home 
and community experiences and dealing with socio-mathematical norms in the classroom where 
students are conditioned that mathematics “work” involves worksheets inside the classroom.  

Work on FoK in mathematics has also been connected to research on personalizing instruction. 
Personalizing students’ mathematics learning by drawing upon their FoK can affect student interest 
and performance in mathematics, as demonstrated in Walkington and Bernacki (2015). In their 
article, Walkington and Bernacki had students pose mathematical problems based upon their out-of-
school interests in areas like sports or video games, harnessing their FoK to develop more 
meaningful connections to mathematical concepts. Walkington and Hayata (2017) also describe a 
series of teaching experiments where students posed, solved, and shared algebra problems related to 
their out-of-school interests.  

Algebraic story problems can be presented to students as a method of contextualizing life 
experience to confront inequalities. In Turner, et. al., (2016), using students’ FoK, an educator gave 
students opportunities to discuss mathematical situations where injustices they have experienced in 
their lives that could be represented as inequalities. Prompting students within the context of 
injustices with inequalities, students gained deeper understanding of constructing these types of 
equations and contrasting them against others.  

While there is a large body of work that support the use of FoK within an educational context, there 
are also critiques of this practice. Zipin (2009) notes the absence of what he calls “dark” or negative 
pedagogies including abuse of others and substances, mental health issues and alcoholism. Here, the 
idea is presented that educators wish to only focus on “light” or positive FoK as opposed to the 
whole lived experience of students, light and dark, which may seem troubling for educators to 
consider in the classroom (Zipin, 2009). Although dark FoK may challenge traditional approaches by 
educators, it provides a rich and authentic source of knowledge from which students could draw. In 
addition, knowledge as metaphorical capital has been criticized for being incomparable to financial 
capital and has been framed as an inappropriate connection to the negative economic and political 
dominance of capitalism (Hinton, 2015). Oughton (2010) also points out the theory of funds of 
knowledge literature has morphed from deriving from household knowledge into various sources of 
knowledge which may be influenced by what the researcher has determined to be FOK. However, the 
power of individual, parental and educator agency as potential propelling forces behind the 
acquisition of knowledge and increases of performance in students is highlighted in by Rodriguez 
(2013). 
Research Purpose 

Very few prior studies have focused on quantifying FoK. In one such study (Rios-Aguilar, 2010), 
212 K-12 Latinx students took the Latino/Hispanic Household Survey where connections to FOK 
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were made to both academic and non-academic outcomes focused in reading and literacy. Rios-
Aguilar (2010) found that activities and experiences in Latinx households contributed to both 
academic and non-academic outcomes for these students.  

Here, our purpose was to expand this work and consider specifically what knowledge bases students 
might have that are relevant to learning mathematics. Our first research questions is: (1) How are 
different areas of FOK in mathematics related to each other? Our remaining research questions are: 
How do measures of students’ FOK for mathematics (both overall and in individual areas) predict: 
(2) Student interest in mathematics? (3) Math grades? (4) AP math course-taking? (5) Dual Credit 
math course-taking? (6) Desire to pursue a career in STEM? 

Method 
Participants 

This study included students participating in an educational program outside of school hours. These 
students are from various high schools in a large, urban, US Southwestern school district. Students’ 
ages ranged from 14 to 17 years old. All students are low socioeconomic status and most are Black 
and Latinx. Similar to other US urban school districts, the one the students from this study come 
from serves over 150,000 students where 87% of the community is economically disadvantaged and 
44% are limited in English proficiency. Students in the district were 69.6% Latinx, 22.5% African-
American, 5.4% White, 1.4% Asian-American, 0.3% Native American, and 0.7% two or more races. 

There were 72 students participating in the study with 49 (68%) female students and 23 (32%) male 
students. Students’ self-reported grades in their prior math class were 24 (33%) with As, 41 (57%) 
with Bs, 6 (8%) with Cs, and 1 (1%) Ds. Seniors made up 14% (10) of total students while 44% (32) 
were Juniors, 24% (17) were Sophomores and 18% (13) were Freshman.  Students’ current high 
school math class included 10 (14%) in Algebra 1, 22 (30%) in Algebra 2, 3 (4%) in AP Calculus, 4 
(6%) in College Algebra, 4 (6%) in AP Statistics, 12 (17%) in Geometry, 1 (1%) in Math Models, 13 
(18%) in Precalculus, 1 (1%) in Trigonometry and 2 (3%) students that did not answer. Sixty-five 
percent of students indicated interest in pursuing STEM major in college and 68% of students were 
interested in STEM careers.  

Students completed the survey on their phones. There were no incentives for the students to 
complete the survey. All included participants gave assent along with having parental consent.  
Measures 

This study used the researcher-created Mathematics Funds of Knowledge Survey (MFoKS) to 
assess students’ level of FOK. The MFoKS is used to quantify students’ level of Funds of 
Knowledge in 9 “bins” including: Money, Travel, Sports/Fitness, Social Media, Video Games, 
Cooking, Health, Art, and Directions. The survey is a 70 item mixed-model of qualitative (9) and 
quantitative questions (61). Each bin had 3-11 items. The survey includes a 5-point Likert scale 
including 1 for “almost never,” 2 for “at least once a year,” 3 for “at least once a month,” 4 for “at 
least once a week,” and 5 for “almost daily.” The survey calculates FoK as a frequency of usage in 
each of the bin which will generate a score for each bin. Some examples of items from the MFoKS 
include: “How often do you check how many retweets or shares a post [on social media] has gotten?” 
and “How often do you pay attention to how many plays, spins or streams a song has?” and “How 
often do you consider different shipping rates when shopping online?” 

The overarching survey that students in the educational program took also included questions about 
students’ interest in mathematics using a scale from Renninger and Schofield (2014) with 24 Likert 
questions ranging from 1 to 5. Students had an average score of 2.89 in math interest. 
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Data Analysis  
To answer the first research question, a correlation matrix was generated to determine which 

categories were highly correlated or not correlated. The remaining research questions were answered 
using regression models. The lm() command was used in RStudio. The outcomes were average math 
interest (rated on a 1-5 scale), grade in their last math course (4=A, 3=B, 2=C, 1=D), AP Track (i.e., 
a 0/1 variable denoting whether the student was in AP math classes), Dual Credit (i.e., a 0/1 variable 
denoting whether the student was in Dual Credit classes) and STEM Major interest (i.e., a 0/1 
variable denoting whether the student was interested in majoring in STEM). Math interest and last 
math grade were fit as linear outcomes. The glm() command was used for AP Track, Dual Credit, 
and STEM Major Interest, as these were 0/1 variables - we used the binomial family and logistic 
regression. Predictors in the models were average 1 – 5 Likert scale ratings of the 9 areas in funds of 
knowledge. Control variables (not shown in table for brevity) were what math course the student was 
currently enrolled in and their gender. The Dual Credit model also included an additional control for 
what year in high school the student was currently enrolled, as dual credit opportunities are usually 
for older students. 

Results  
Students rated their FOK for mathematics highest for cooking, with an average rating of 3.56. The 

lowest FOK rating across student was for Money with an average rating of 2.46.  
With respect to our first research question, when examining how students’ ratings of the 9 different 

areas of FOK were related (Table 1), none of the correlations were over 0.6, which suggests that all 9 
of the areas of funds of knowledge surveyed may be distinct from one another. It was also found that 
there were higher correlations between money and travel, health and art, and cooking with travel, 
sports, health, and art. FOK areas found to have low correlations with each other were money and art, 
and video games with  travel, sports, social media, health, cooking and distance, with the lowest 
correlation found between video games and travel.   

For the second research question, we found that in the regression models (Table 2) math interest 
was significantly positively predicted by certain areas of FOK. The FOK areas showing significance 
include money (p = .004), travel, (p < .0001), cooking (p = .019), distance, (p = .034), and, overall 
mathematics FOK (i.e., a composite average from the 9 areas; p = .005). For the third research 
question, it was found in the regression models that travel showed significance in positively 
predicting math grade (p = .04). The fourth research question addressed predicting the AP Track of 
students, and it was found that travel (e.g., recognizing the use of numbers and distances while using 
various modes of transportation) showed significance as a negative predictor (p = .023). For the fifth 
research question, it was found in the regression models that social media showed significance in 
negatively predicting Dual Credit enrollment (p = 0.035). The sixth research question addressed 
STEM Career interest which was significantly and positively predicted by travel (p = .008), social 
media (p = .046), and overall mathematics funds of knowledge (p = .034). 

 
Table 1: Means, standard deviations, and correlation matrix 

FOK Variable M SD 1 2 3 4 5 6 7 8 9 
1. Money 2.46 .726 --         
2. Travel 2.55 1.080 .45 --        
3. Sports 3.16 1.216 .28 .35 --       

4. Social Media 2.92 1.212 .39 .26 .40 --      
5. Video Games 2.86 1.557 .30 .00 .02 .15 --     

6. Health 3.1 1.219 .23 .29 .43 .37 .18 --    
7. Art 3.08 1.215 .11 .22 .38 .39 .33 .50 --   
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8. Cooking 3.56 1.260 .28 .54 .58 .46 .04 .56 .47 --  
9. Distance 3.38 1.367 .35 .39 .38 .39 .14 .42 .32 .34 -- 

 
Table 2: Regression Results 

 Math Interest Last Math 
Grade AP Track Dual Credit STEM Career 

Overall Math FOK .37(.13)** .05(.10) -.25(.36) -.10(-.37) .81(.39)* 
Money .40(.14)** .02(.11) -.61(.40) -.10(.40) .67(.43) 
Travel .49(.08)*** .16(.07)* -.64(.24)* -.37(.30) 1.03(.39)** 
Sports .15(.09) .01(.07) -.21(.24) -.20(.24) .40(.24) 

Social Media .08(.09) -.09(.07) -.04(.23) -.59(.28)* .51(.25)* 
Video Games .07(.07)** .01(.05) -.16(.19) .17(.19) .23(.19) 

Health .14(.90) -.02(.07) -.04(.23) -.19(.25) .16(.24) 
Art .15(.09) .07(.07) .12(.24) .12(.25) .35(.24) 

Cooking .19(.08)* .10(.06) -.20(.24) -.17(.23) .19(.22) 
Distances .21(.08)* .07(.06) -.11(.22) .28(.24) .31(.21) 

Discussion and Conclusion 
In the present study, we developed a quantitative measure of students’ FOK for learning 

mathematics, and discussed the results of administering this measure to a sample of high school 
students. Our measure covered 9 facets of everyday funds of knowledge, which correlational results 
suggest were distinct areas – with some facets of FOK being more highly related to each other than 
others. Our next step will be to conduct a factor analysis and calculate internal consistency values for 
the survey instrument. We also found that students’ FOK for mathematics were predictors of 
mathematics outcomes that we would care about for students – particularly interest in learning 
mathematics and their interest in careers in STEM related fields. This suggests potential directions 
for future work – leveraging students FOK in the classroom could enhance students’ interest in 
learning mathematics, as could asking students to increasingly apply a mathematical lens to their 
everyday activity. Cultivating students’ mathematics FOK could also influence career interest in 
STEM fields, an area underrepresented by Latinx and African-Americans (Funk & Parker, 2018). A 
well-designed survey instrument could help teachers assess their students’ FOK to be used in 
targeting instruction; this paper represents the first step towards creating such an instrument. 

The purpose of the MFoKS is to collect and quantify students’ levels of FoK focused in 
mathematics for daily living. When teachers and administrators have access to student math FOK, 
they are able to utilize student interests in personalized lesson plans and identify strengths of their 
students for participation and opportunities. Students’ FoK data counters the narrative about deficits 
students have with experience with mathematics and numbers outside of the classroom. Lastly, the 
MFoKS can provide administrators and community leaders with the blueprints for establishing 
programs to build math FoK in the community. 
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This study employed hierarchical linear modeling to investigate the student- and school-level factors 
associated with the secondary mathematics achievement of English language learners (ELLs) and 
non-ELL students among a nationally representative sample of ninth graders in the United States.  
While certain characteristics, such as socioeconomic status, attitudes and interest in mathematics, 
and school engagement and belonging were predictive of access to and achievement in mathematics 
for both student groups, the direction and relative magnitude of the predictors differed.  School-level 
variables, such as whether the school was public or private and administrator perceptions of school 
climate, were only predictive of mathematics grade point average (GPA) for non-ELLs.  Implications 
of the findings are discussed. 
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English language learners (ELLs) are among one of the fastest growing groups of students in the 
United States.  This group of students vary considerably in terms of English language proficiency, 
educational experiences, and many other factors (National Center for Education Statistics, 2004; 
Ryan, 2013). Adapting to these shifting demographics has proven challenging for educators, who 
must contend with difficulties in the fair identification of ELLs (Carlson & Knowles, 2016), 
simultaneous attention to language and content (Janzen, 2008), and development of appropriate 
assessments (Abedi et al., 2005; Bailey & Carroll, 2015).   

These issues become increasingly urgent in the face of evidence that ELLs continue to face 
limitations in access to multiple educational outcomes. ELLs are less likely to graduate high school 
(National Center for Education Statistics, 2004) and some researchers have found that ELLs 
encountered more restricted access to college preparatory courses and postsecondary planning 
(Callahan & Shifrer, 2016; Kanno & Cromley, 2013, 2015). The lack of access to resources may lead 
ELL students to conclude that academic success is not be for them (Kanno & Kangas, 2014; Menken 
& Kleyn, 2010). Such beliefs are not reflective of the possibilities of public education, and as 
educators it remains our duty to address these discrepancies in opportunities to learn. 

Note that the term “English language learner” or “ELL student” is used throughout the text to align 
with the phrasing used by the federal data analyzed in the study, and the language that continues to 
be used across many policy documents. The author more strongly recommends use of the term 
“emergent bilingual” to refer to linguistically diverse students, as it demonstrates a greater respect for 
the student, their existing knowledge of a home language, and their emergent language skills in other 
languages. 

Purpose of the Study 
Much past research has focused on general educational outcomes of ELL students, with more 

attention paid recently to ELL students’ progress through secondary mathematics course-taking (e.g. 
Thompson, 2017). Special attention to ELL students progression through secondary mathematics is 
key for several reasons. Mathematics courses are required for graduation, and almost always serve as 
gatekeepers for postsecondary access (Adelman, 2006).  While there remains a significant language 
factor involved in the study of mathematics (Schleppegrell, 2007), these courses retain an important 



Predicting the mathematics pathways of english language learners: a multilevel analysis 

	 494	

place in the majority of students’ access to postsecondary access, secondary graduation, and future 
access to a wide range of STEM fields. 

Given the disadvantages facing ELL students, as well as the importance of mathematics for future 
academic success and attainment, it is critical to understand how the mathematical progress of ELLs 
in high school differs from that of their English-proficient peers, and whether factors predictive of 
success differ between the two. The primary research question was the following: What student- and 
school-level factors are significantly related to the secondary mathematics attainment of ELL and 
non-ELL students, and to what extent do key factors differ between the two groups? 

Theoretical Framework 
The present study was framed using Bronfenbrenner’s ecological model of human development 

(Bronfenbrenner, 1976, 1977). Bronfenbrenner proposed that human development evolved through 
increasingly complex interactions between the organism and its ecological environment. The 
environment was conceptualized as multiple nested levels of influence, where levels ranged from the 
environment surrounding the individual (microsystem), up to relationships with others inside and 
outside the environment (mesosystem, exosystem), and expanded to include how society impacts the 
individual (macrosystem) and how influences change over time (chronosystem). In education, this 
model posits that students’ learning is closely connected to the learning environment (classroom,) 
and shaped by interactions with actors in the environment, such as students, teachers, and 
administrators (Bronfenbrenner, 1976).  

The microsystem was of primary interest to the present research, defined as “the complex of 
relations between the developing person and environment in an immediate setting containing that 
person” (Bronfenbrenner, 1977, p. 514). This level reflects the initial point of interaction between the 
individual and the environment. Variables at this level include perceptions of the environment and 
roles adopted within that environment, as well as relationships between student, teachers, and peers. 
Bronfenbrenner’s model was used to select variables likely to affect mathematics outcomes in 
secondary school. Students’ development in the mathematics classroom may be impacted by factors 
at multiple levels, ranging from psychological or cognitive factors to social or cultural. The present 
research drew on the ecological model to select variables that may impact students’ mathematics 
attainment primarily in the microsystem. 

Method 
This study used two-level hierarchical linear modeling (HLM) to analyze restricted-use from the 

High School Longitudinal Study of 2009 (HSLS: 09). The HSLS: 09 consisted of data from a 
nationally representative group of approximately 24,000 students from over 900 schools. The study 
collected data beginning in 2009, with follow-ups in 2011, 2012, 2013, and remains ongoing. 
Analyses in this study were restricted to students with data regarding their status as an ELL student 
prior to 9th grade, and weighted using NCES-provided weights to account for non-response bias in 
the sample from 2009 through 2013. This restriction resulted in an analytic weighted sample of 
3,220,965 students, with 124,042 ELLs prior to 9th grade nested within 91 schools and 2,930,349 
non-ELLs nested within 920 schools.  
Variables 

A total of 13 student-level variables and 9 school-level variables were selected for study.  Student-
level variables included factors such as socioeconomic status (SES), race/ethnicity, affective 
characteristics, and school engagement and belonging. School-level variables included factors such 
as whether the school was public or private, school climate, and percentage of ELL students enrolled. 
The outcomes of interest were the number of mathematics credits earned and mathematics grade 
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point average (GPA). These two measures were chosen as a proxy for the number of mathematics 
courses completed, as well as an average success in those courses. 
Data Analysis 

Analysis began with the unconditional model containing only one outcome variable and no 
independent variables. The unconditional model allows for examination of whether the school 
grouping variable has a significant impact on student-level scores. Next, full models were developed 
that introduced both student- and school-level variables to the unconditional model. First, to examine 
the absolute effects of the independent variables, each student- and school-level variable was tested 
individually. Statistically significant variables (p < 0.01) were then introduced together to examine 
relative effects. To achieve parsimony, variables that were no longer statistically significant were 
removed one by one, beginning with the variable with the largest p value and proceeding until all 
remaining variables were statistically significant. The resulting models reduced the overall 
complexity of the final model, and allowed us to focus only on those variables that had both absolute 
and relative effects on the outcomes of interest. The same procedures were carried out separately for 
both ELL and non-ELL students. 

Results 
Descriptive Statistics 

Examination of the descriptive statistics in Table 1 indicated that students who had been previously 
classified as ELL demonstrated lower number of mathematics credits earned and lower mathematics 
GPA. There was a significant difference in scores for both mathematics credits earned and 
mathematics GPA (p<0.001). Previously ELL students also had significantly lower SES and 
standardized mathematics assessment scores. 

 
Table 1: Descriptive Statistics for the HSLS Student Sample 

 ELL Previously Never ELL 
 M SD M SD 
Mathematics credits earned 3.50 1.26 3.64 1.16 
Mathematics GPA 2.12 0.92 2.38 0.94 
Socioeconomic status -0.58 0.73 0.03 0.79 
9th grade standardized score -0.23 1.33 0.06 1.08 
Gender     
   Male 0.48 -- 0.51 -- 
   Female 0.52 -- 0.49 -- 
Race/Ethnicity a     
   Asian 0.06 -- 0.03 -- 
   Black/African-American 0.03 -- 0.13 -- 
   Hispanic 0.82 -- 0.17 -- 
   White 0.09 -- 0.58 -- 
School-Level Variables     
   Public 0.97 -- 0.92 -- 
   Catholic or Other Private 0.03 -- 0.80 -- 
   City 0.46 -- 0.30 -- 
   Suburb 0.33 -- 0.34 -- 
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   Town 0.06 -- 0.12 -- 
   Rural 0.15 -- 0.24 -- 

a Native Hawaiian/Pacific Islander, American Indian/Alaska Native, and More than one race 
categories are excluded due to low proportions relative to the entire sample size (<0.01) 

 
Unconditional Models 

Table 2 presents the unconditional models for both mathematics credits and mathematics GPA 
models for ELL and non-ELL students. Calculation of the ICC of each model proceeded by dividing 
the between-school variance by the total variance. The ICC ranged between 28% and 55%, 
suggesting that a significant proportion of variance of the outcome measure was at the school-level. 
This implied a multilevel nature of the data and justified further use of HLM. 

 
Table 2: Comparison of Unconditional Models 

 ELLs Non-ELLs ELLs Non-ELLs 
 Credits Credits GPA GPA 
 Estimate SE Estimate SE Estimate SE Estimate SE 
Fixed Effects         
   Intercept 3.485** 0.102 3.667** 0.023 2.147** 0.067 2.420** 0.016 
Random Effects       
   Intercept 
   variance 0.950** 0.142 0.477** 0.022 0.403** 0.060 0.249** 0.012 

   Level-1 
   variance 0.778** 0.003 0.937** 0.001 0.421** 0.002 0.654** 0.001 

ICC 0.550 0.337 0.489 0.276 
Deviance 321,455.480 7,909,070.128 245,291.578 6,847,178.614 
# Parameters 3 3 3 3 
* p < 0.01, ** p < 0.001 

 
Predictors for ELL Students 

Table 3 presents the final models for ELL students.  At the student-level, 10 out of the 12 variables 
were significant.  SES, mathematics utility, and school engagement were all strong predictors of 
increases in credits earned.  Mathematics assessment score and school belonging were also positively 
related, although smaller in magnitude.  Alternatively, both self-efficacy and interest in 2009 
mathematics course were negatively related to credits earned. 

Regarding mathematics GPA, 10 out of the 12 student-level variables were significant.  
Mathematics assessment score, SES, mathematics identity, self-efficacy, and school engagement 
were all positively related, while interest and school belonging were negatively related. 

Of the 7 school-level variables examined, none were statistically significant predictors of either 
credits earned or GPA for ELL students. 

 
Table 3: Final Model Predicting Outcomes of Interest for ELL Students 

 Credits GPA 
 Estimate SE Estimate SE 

Fixed Effects     
   Intercept 3.043** 0.097 2.169** 0.059 
Student Level     
   Gender (0 = Male) -- -- 0.058** 0.009 



Predicting the mathematics pathways of english language learners: a multilevel analysis 

	 497	

   Hispanic (0 = Yes) 0.545** 0.012 -- -- 
   Black (0 = Yes) 1.088** 0.022 0.132** 0.013 
   Asian (0 = Yes) 0.912** 0.016 0.584** 0.009 
   Socioeconomic status 0.214** 0.005 0.152** 0.003 
   Mathematics assessment score 0.080** 0.004 0.219** 0.003 
   Mathematics identity -- -- 0.149** 0.003 
   Mathematics self-efficacy -0.050** 0.004 0.162** 0.003 
   Mathematics utility 0.161** 0.004 -- -- 
   Interest in 2009 math course -0.047** 0.004 -0.051** 0.003 
   School engagement 0.184** 0.003 0.168** 0.002 
   School belonging 0.043** 0.004 -0.108** 0.003 
Random Effects  
   Intercept variance 0.824** 0.125 0.307** 0.047 
   Level-1 variance 0.589** 0.003 0.242** 0.001 
   Intraclass correlation 0.583  0.559  
   Deviance 230,281.809 143,170.007 
* p < 0.01, ** p < 0.001 

 
Predictors for Non-ELL Students 

Table 4 presents the final models for non-ELL students. At the student-level, 10 out of the 12 
variables were statistically significant. Specifically, increases in SES, assessment score, identity, self-
efficacy, belonging, engagement, and interest were all significantly and positively related to 
mathematics credits earned. 

Regarding mathematics GPA, 11 out of the 12 student-level variables were significant. Increases in 
SES, assessment score, identity, self-efficacy, engagement, interest, and belonging were positively 
related to GPA, while mathematical utility was negatively related. 

Of the 7 school-level variables examined, none were significant predictors of credits earned for non-
ELL students. However, 2 of the 7 school-level variables were significant for non-ELL students, with 
private schools and positive school climates related to increases in GPA.  

 
Table 4: Final Model Predicting Outcomes of Interest for Non-ELL Students 

 Credits GPA 
 Estimate SE Estimate SE 

Fixed Effects     
   Intercept 3.598** 0.023 2.232** 0.018 
Student Level     
   Gender (0 = Male) 0.079** 0.001 0.278** 0.001 
   Hispanic (0 = Yes) -0.071** 0.002 -0.095** 0.002 
   Black (0 = Yes) 0.130** 0.001 -0.117** 0.002 
   Socioeconomic status 0.162** 0.001 0.155** 0.001 
   Mathematics assessment score 0.138** 0.001 0.371** 0.001 
   Mathematics identity 0.043** 0.001 0.105** 0.001 
   Mathematics self-efficacy 0.058** 0.001 0.108** 0.001 
   Mathematics utility -- -- -0.054** 0.001 
   Interest in 2009 math course 0.016** 0.001 0.021** 0.001 
   School engagement 0.089** 0.001 0.107** 0.001 
   School belonging 0.052** 0.001 0.032** 0.001 
School Level     
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   School type (0 = Public) -- -- 0.120* 0.041 
   School climate -- -- 0.057** 0.016 
Random Effects  
   Intercept variance 0.483** 0.023 0.135** 0.007 
   Level-1 variance 0.813** 0.001 0.381** 0.000 
   Intraclass correlation 0.373 0.381 
   Deviance 6,239,817.966 3,414,698.368 
* p < 0.01, ** p < 0.001 

Discussion and Significance of the Study 
The present study explored the associations between mathematics credits earned in high school, 

mathematics GPA, and student- and school-level factors for ELL and non-ELL students.  While 
many variables were predictive of both outcomes for ELL and non-ELL students, effects differed 
between the two groups.  Such differences highlight the need for educators to approach students who 
are or have been classified as ELL in ways that specifically target these differences, acknowledging 
that assistance which may be beneficial to non-ELL students may not be as effective or necessary for 
ELLs.  Key differences are discussed below. 

Perhaps one of the most concerning findings is that of the statistically significant negative 
relationship between interest in 9th grade mathematics and both access and achievement in 
mathematics outcomes for ELL students.  “Interest” in this survey was operationalized as a 
composite of students’ responses to six survey questions, all of which addressed the extent to which 
the student enjoyed mathematics and spoke of it as a preferred subject. In both final models, interest 
was related to decreases in the outcome measure, indicating that ELLs who began with higher levels 
of interest were more likely to experience worse access and achievement.  Such findings indicate the 
need for investigation into the experiences of ELL students who exhibit mathematics interest early 
on, but perhaps then struggle to pursue that interest.  Early interest in mathematics is vital in 
encouraging future growth, and efforts must be made to turn ELLs’ interest in 9th grade mathematics 
into a positive predictor of future success.   

While many of the relationships between attitudes, school perceptions, and the outcomes were 
significant, the effects of variables such mathematics identity, efficacy, and engagement were 
inconsistent between the two groups.  For example, belonging was positively related to GPA for non-
ELLs, but negatively related for ELLs.  Mathematics identity was a significant positive predictor for 
non-ELLs’ credits earned, but insignificant for ELLs.  One potential reason for these contradictory 
findings is that while mathematics identity and sense of belonging in the classroom are representative 
of the role the student adopts in their learning environment, this role may not necessarily be 
recognized by others in that environment (e.g. teachers, administrators, counselors). ELL students 
may find themselves fighting inaccurate academic placements or reduced opportunities to learn, 
despite their own beliefs and self-perceptions. These findings indicate also that the relationships 
between student attitudes and feelings of belonging and engagement differ for ELLs compared to 
their English proficient peers, and these details are difficult to identify. As educators, it remains 
critical to attend to all students’ feelings of belonging and engagement, self-efficacy, and views of 
mathematics.  However, it is necessary to keep in mind that such efforts may not have the same 
effects on all students, and students who were previously classified as ELLs may require more 
positive focus on mathematics utility, self-efficacy, and feelings of school belonging. 

Finally, the final models for both ELL and non-ELL students included few school-level variables, 
with many significant predictors entered at the student-level and much variance unaccounted for at 
the school-level.  Such findings indicate that there are other unaccounted for school-level variables 
which contribute to the school-level variance, likely related to aspects of institutional climate or 
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environmental issues beyond the control of the student.  Further investigations should include other 
more school-level variables to account for these differences.  

The mathematics pathways of ELLs and non-ELLs differed significantly.  Students previously 
classified as ELL were significantly more likely to earn fewer mathematics credits and a lower 
mathematics GPA.  Some factors, such as SES and mathematics assessment score, exhibited similar 
positive relationships with the outcomes for both groups.  In these cases, educators may continue to 
address both student groups in similar ways.  For other factors, such as a student’s interest in their 9th 
grade mathematics course, school belonging and engagement, and other attitudes, it is necessary to 
proceed with caution.  A student’s linguistic background and prior classification may have long-
lasting effects on their mathematics success, and it is critical to acknowledge the ways their school 
experiences differ.  Careful attention should be paid to fostering and maintaining early interest in 
mathematics, as well as developing mathematics self-efficacy and utility for ELL students.  While 
school-level factors did not appear as often as student-level factors, the two are often intertwined, and 
educators should seek to positively impact ELL students’ experiences throughout their school 
experience. 
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This paper briefly examines theories of affect and some of its possibilities and limits for mathematics 
education research. First, psychological, socio-cultural, embodied, and new materialist perspectives 
are considered. The paper juxtaposes emerging and older theories of affect in mathematics education 
with alternative approaches in the humanities and social sciences. Then, the paper briefly 
historicizes some of the changing and enduring economies for affect in mathematics education across 
three historicized “moments” of U.S. mathematics education reform circa the 1830s, 1890s, and 
1930s. This section aims to consider some of the ways ‘bodies’ have become differently legible for 
theorizing affect in problematic ways with potential implications for future research. 
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What is affect and why might its theorizations matter for mathematics education research? To start, 
affect, however conceptualized, is widely considered to be important to learning school mathematics. 
Most commonly, affect has been defined as a complex psychologized construct located in individual 
minds, distinct from cognition, and bundled with some amalgam of emotions, attitudes, moods, 
feelings, beliefs, and/or values (de Freitas & Sinclair, 2019; Hannula, 2012; McLeod, 1994). 
Somewhat less frequently, affect in mathematics education has also been theorized to include 
physiological effects, such as changes in neuronal firing patterns, pulse rates, skin sensations, and 
other changes – sometimes at levels considered outside the range of conscious awareness (de Freitas 
& Sinclair, 2019; cf. Dowker, Sarkar, & Looi, 2016). More recently, socio-cultural and -historical 
perspectives have begun to (re)consider affect as something that may also exceed analysis at the level 
of the individual, such as by theorizing its emergence through practices, activity, and/or norms 
(Hannula, 2012; Roth, 2012).  

The latter focus on practices, norms, and activity have also intersected with a recent proliferation of 
“body studies” (de Freitas & Sincliar, 2019; Roth, 2012). Here, perspectives tend to eschew long-
standing dualisms familiar to mathematics education research (e.g., cognition/emotion, mind/body, 
abstract/concrete). For example, a “mathematical concept” conceptualized with a Deleuzean-
Spinozan perspective, may be approached as a kind of ‘body’ that affects (and is affected by) 
classroom atmospheres, teacher-student conversations, and corporeal body movements (de Freitas & 
Sinclair, 2014). This notion of affect need not privilege human agency or center the human as ‘in 
control’ of the ‘bodies’ that are made through shifting material-discursive practices and/or “affective 
networks” (de Freitas, Ferrara, & Ferrari, 2019; see also, Barad, 2007). 

At the same time, despite considerable social and political shifts occurring through the COVID-19 
pandemic, a ‘mathematical concept’ may at once circulate as a ‘new’ amalgam of messy and 
dynamic ‘bodies’ that, without alternative possibilities for thinking-doing, tend nonetheless to 
stabilize what (school) mathematics may be, become, and/or do. Put another way, while ‘bodies’ may 
produce complex and emergent amalgams of affectivity, much not only necessarily escapes capture 
by the research apparatus - (school) mathematics is also stabilized by grids of capture that treat affect 
as a knowable ‘object’ or ‘objects’ that take school mathematics as a more or less neutral site for 
producing affect based on various pedagogies (see also, Popkewitz, 2008). Indeed, mathematics 
education research has little theory to engage research questions that attend to such (always partial 
and incomplete) complexity, messiness, and multiplicity. Yet, theories of affect in the humanities and 



Why theorizing affect matters for mathematics education research 

	 501	

social sciences have for several decades offered possible entry points that do not seek to foreclose 
(school) mathematics or the ‘bodies’ with potential for affectivity as stable or necessary objects of 
inquiry (see also, Sinclair & de Freitas, 2019). 

Of course, opening to new possibilities may also invite old dangers. For example, and as discussed 
briefly below, the emergence of efforts to theorize the mind as something interdependent with the 
corporeal body and, at times, as intimately linked with emotionality and materiality have historical 
antecedents that were also problematic. For example, Herbartian efforts to mathematize and study 
‘correct’ sensation as the basis of truth claims were carried forward through social control projects 
and scientific racisms in the late nineteenth century in ways that continue to haunt contemporary 
education (see, e.g., Crary, 1988).  

This theoretical paper, then, aims to provide a brief introduction to theories of affect in mathematics 
education research and consider both possibilities and limits for mathematics education research. In 
the first section, the paper provides a brief overview of research on how affect has been 
conceptualized in mathematics education research. In the second section, examples of three well-
circulated perspectives on affect theory from the humanities and social sciences that are largely 
absent in mathematics education are considered. Finally, the focus shifts to three sketches of 
“moments” in U.S. discourses taken from a larger study investigating how objects of inquiry (or, 
‘bodies’) in psychologized and socio-cultural approaches to research have shifted with respect to 
changing economies for affect in U.S. mathematics education. Because an in-depth discussion is not 
possible in this space, the “moments” selected are not intended as comprehensive ‘histories.’ Rather, 
they are intended as entry points for further discussion about how affect has become differently 
available with shifting notions of ‘bodies’ and their presumed relations. Finally, the approach to the 
three “moments” also seeks to draw attention to how emphasis on ‘affect’ may inadvertently stabilize 
the ‘bodies’ it purports to investigate in ways that obscure their historical traces in making the 
present appear thinkable and actionable (see Popkewitz, 2008; Yolcu & Popkewitz, 2019). 

Theorizing Affect  
Affect in Mathematics Education Research. There has been wide agreement across many fields in 

the social and mind sciences that affect is messy at best. As noted above, affect has been 
operationalized and defined in mathematics education research as something primarily bio-
psychological, and, with less frequency, as something socio-culturally and historically contingent. As 
a psychological construct, affect has typically been considered something available to self-report in 
the form of emotions, beliefs, attitudes, values, and moods; where each category is presumed to differ 
primarily with respect to duration and/or intensity, and, at times, with respect to relation with (but 
distinct from) cognition and sometimes behavior (Hannula, 2012, 2019; McLeod, 1994). For 
example, a belief may seem more durable over time when compared with an emotion, mood, or 
feeling and have different ‘effects’ on cognition (McLeod, 1994). In studies prior to those considered 
explicitly as part of what became considered domain-specific studies of “affect” in the late 1980s, 
attention to ‘affect’ tended to center on constructs of anxiety and attitudes (see, e.g., McLeod, 1989; 
Zan, Brown, Evans, & Hannula, 2006). More recently, psychologizing approaches have also begun to 
include notions of identity and motivation among the collection of psychologized constructs 
(Hannula, 2012). 

Socio-cultural perspectives on identity formation have also circulated widely in ‘equity’-oriented 
literature. However, such scholarship rarely attend explicitly to theories of affect. This is particularly 
of note given the prominent role given to theories of affect once had on formulating theories of 
identity formation (e.g., that school mathematics appears to affect identity formation differently 
across racialized, gendered, and abilized categoriess) (see, e.g., d’ Ambrosio, 1987; Fennema, 1979). 
More recently, theories of affect in ‘equity’-oriented scholarship may be implicit in concerns with 
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identity formation in multiple ways. For example, calls for improving “engagement” with school 
mathematics often require assumptions that something beside ‘cognition’ matters for learning, such 
as with what appears to constitute a “racialized narrative”, grids of “positionality”, an activity, or an 
artifact (e.g., Nasir & Shah, 2011). 

In more recent socio-cultural approaches dealing explicitly with theories of affect, some scholars 
have claimed that intellect and thought are fundamentally inseparable from emotion (and/or affect) in 
ways that are culturally and historically specific (e.g., Radford, 2015; Roth & Walshaw, 2019). 
Additionally, Hannula (2012) has argued that affect understood through “situatedness” or 
“enactivism” may be understood as a social as well as mental process. Related scholarship has 
argued that recruiting the corporeal body and/or social groups to make generalizations based on 
movements and/or practices as adaptation to situations and environments also work to erode long-
standing emotion/thought and mind/body binaries (Hannula, 2012). However, the majority of 
scholarship from socio-cultural and -historical perspectives has not engaged in substantive 
historicizing or moved much away from emphasizing that ‘emotions’ and ‘bodies’ are cultural and 
historical productions (see, for examples, Radford, 2015; Roth, 2012; cf. Yolcu & Popkewitz, 2019). 

Biological and/or physiological theories of “affect” are often located somewhere between the 
confluence of second-order cybernetics and new materialisms, neuroscience, and physiology. At one 
pole, for example, transcranial electrical stimulation (tES) has been offered as a potential hope for 
treating “mathematics anxiety” (Dowker et al., 2016), reducing affect to something solely in the 
brain. At another pole, theories of embodiment that avoid brain-based reducationisms abound. 
Examples include perspectives linking gestures to semiotic constructions (e.g., Abrahamson, 2009), 
embodiment as generative of metaphorical worlds-forming (Lakoff & Nuñez, 2000), or relational 
embodiment as immanent to what it means to be and become a mathematical ‘body’ (de Freitas & 
Sinclair, 2014). While the former two perspectives on embodiment have been discussed at length 
(see, e.g., Hannula, 2012; de Freitas & Sinclair, 2013; Radford, 2009), inclusive materialisms are 
more recent arrivals to the literature. In brief, and often drawing from feminist and post-structural 
perspectives, inclusive materialisms assume relationality as an ontological commitment, where 
matter and mathematical concepts, diagrams, or other objects, much like corporeal bodies and 
feelings, are not bracketed out as something independent of language or thought. Matter, like 
subjectivity, from this perspective, is thus necessarily ongoing, immanent, unfinished, agential, and 
perspectival (de Freitas & Sinclair, 2013). In other words, ‘bodies’ are made mathematical by a 
“dance of agency” that does not start or finish as a property of or in people or things (p. 454). Rather, 
“agency” is understood as emerging through the complex and ephemeral ways human-nonhuman 
assemblages become differently intelligible for thought and action, such as through tools, symbols, 
pedagogies, curricular texts, corporeal body gestures, and research.  

In some ways, new materialisms also invite comparisons with second-order cybernetics and 
enactivisms that themselves recall lines of research drawing from American cybernetics-inspired 
radical and social constructivisms (de Freitas et al., 2019; Hannula, 2012; see also, Eisenhart, 1988; 
von Glasersfeld, 1995). For instance, relational and systems-oriented ways of knowing do not 
presume or center an observer that is independent from complex social and material fluxes that are 
always partial and emergent. However, inclusive materialisms differ in important ways. For one, 
material (or the ‘environment’) is not a neutral space devoid of its own agency. Rather, matter is both 
produced through discourse and produces discourse. Put another way, ‘maps’ of minds, groups, 
flows, and/or practices are only possible because the various objects bracketed through apparatuses 
of observation also ‘map back’ in ways that ‘cut’ and make ‘bodies’ differently legible, invisible, 
and/or ‘able’ (Barad, 2007; Yolcu & Popkewitz, 2019). For instance, ‘mapping’ the purported 
cognition of a child also participates in making the child’s cognition as something available for new 
strategies of intervention through pedagogy, policy, and research (see also, Popkewitz, 2008). In the 
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next subsection, additional alternative approaches to theorizing affect in the social sciences and 
humanities are considered as potential supplements to existing scholarship in mathematics education. 

Affect Theory. In one reading of affect theory, Sara Ahmed (2010) defines affect in part with the 
term “affective economy” as “what sticks, or what sustains or preserves the connection between 
ideas, values, and objects” (p. 29). Here, affect is not understood as an emotion or feeling per se 
(though whatever may be understood as an emotion or feeling are not excluded from participating in 
affective economies). Rather, affect is considered to be circulated as a kind of economy in the sense 
that objects become affective and “sticky” through their circulations. In other words, affective 
economies circulate in ways that may recruit notions of the cultural, psychological, and the political, 
but they also exceed capture as something primarily psychological and cultural that can be located as 
something ‘in’ individuals or ‘in’ social groups. Rather, affective economies gesture to how different 
notions of interiority and exteriority are produced through material-discursive practices. For one 
example, by thinking of “growth mindset” as something that may produce neuronal growth (and thus 
rebiologized notions of “intelligence”) in the brain (Boaler, 2015), the brain (and neuronal growth) 
also becomes exteriorized and mappable as a site appearing to justify new forms of intervention (e.g., 
those that may promote “mindset” changes) and create new notions of interiors that can be divided 
and sorted in ways that perpetuate exclusionary practices (e.g., those that ‘have’ growth mindset and 
those that do not). Yet, whether or not “growth mindset” is considered in this way or otherwise, the 
notion of “mindset” has also become “sticky” and circulated in ‘other’ economies of affect concerned 
with enhancing and optimizing bodies and selves assigned various degrees of risk. A possible 
critique of perspectives of affect for Ahmed include the potential ‘re-centering’ of affect as 
something involving emotions, feelings, and/or something of the psyche, however deconstructed. 

From another perspective, affect theory is concerned with how bodies are ‘affected’ and ‘affect’ 
each other prior to and/or between ‘capture’ and labeling as emotions, feelings, etc. (Massumi, 1995; 
de Freitas et al., 2019). Here, affect is not emotion, feeling, attitude, belief, etc. – it is potentiality. 
This analytic shift involves theorizing both the messiness and the incompleteness of the assemblage 
of ‘bodies’ that appear to make emotions and feelings possible for capture and ‘self’ through 
processes that exceed human control and/or agency. By ‘decentering’ the human, some analyses have 
emphasized studying physiological and neuronal changes that seem to anticipate and exceed 
conscious ‘capture’ in the messiness of the everyday (Massumi, 1995). If, for example, mathematics 
anxiety (or joy) is approached not as a state or dynamic construct but as something necessarily 
partial, emergent, and messy, what assemblages of ‘bodies’ (e.g., tools, symbols, spaces, 
temperatures, political ‘moods’ and ‘atmospheres’, texts, etc.) may be virtually affective before it it 
put into feelings labeled as ‘anxiety’? Or, how do not-quite-yet sensations and changes in ‘bodies’ 
become differently available for capture in research apparatuses when viewed as potential 
pathologies (e.g., as anxiety) through cultural theses about which “mathematical bodies” are 
desirable (and having ‘health’) and which are not (and thus needing ‘intervention’)? Despite the 
promise of new lines of inquiry that take seriously health discourses in relation to school 
mathematics in such ways, it is also of note that critics have argued that this approach may invite new 
and problematic universalisms and reductionisms, especially when affect appears to be something 
relocated in neurons and/or physiological responses in ways that recall various forms of humanism 
(see, e.g., Rutherford, 2016).  

Additional perspectives in affect theory have built on the work of Sedgwick and Frank (1995) and 
suggested that even more familiar constructs such as ‘emotions’ like shame can be quickly 
denaturalized by attending to its complex, contingent, and multifaceted messiness that exceeds 
capture as a clear construct. For instance, shame as an amalgam of “interest-excitement” and 
“surprise-startle” and “contempt-disgust” at the same time invite a kind of messiness and 
incompleteness less familiar to more orthodox psychological renderings that have since been 
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circulated as entry points into rich description in gender and sexuality studies. Turning to 
mathematics education, the always already excess of categories may provide entry points into studies 
that question either/or paradigms that often assign affect constructs along continua of duration, 
intensity, and absence/presence. Further, they may invite new renderings that open discussions about 
identity that exceed efforts to generalize and reduce identity to debates between essence and/or 
environment. Such perspectives may also open new lines of inquiry into ‘old’ problems, in part by 
noting how questions of knowledge-power in mathematics education-related spaces are not simply 
matters that can be hashed out on an ‘empowerment-oppression’ continuum. Critiques may question 
the extent to which complicating existing constructs move away from centering the ‘self’ and 
experience as the primary focus of theories of change.  

Finally, affect theory also may have something to say about how research is presented, as the 
approach to writing also matters in much contemporary affect theory (Massumi, 2015; Seigworth & 
Gregg, 2010). It is not enough, for example, to address racializations/racisms in mathematics 
education through counter-narratives, histories, quantitative studies, or meta-analyses without also 
attending to the (political) aesthetics of presentation and the circulations of affective ‘bodies’ that are 
differently “sticky”, such as via terms like equity, urban, or diverse. Additionally, if the human is not 
centered as the primary agent or subject-object of analysis, how might affect theory at once 
contribute to analyses of a broad field of possible considerations involved in the makings of what 
produces possibilities for feeling, action, and/or thought while not collapsing the potential for 
‘strategic essentialisms’ that may offer new points of resisting oppression? This may not be an 
either/or – perhaps by explicitly attending to the messiness of how geographies of social categories 
(e.g., race, gender, class, ability) become configured through the messy and ongoing emergence of 
new ‘body’ assemblages that exceed the possibilities of capture, research may open to generative 
spaces that do not require school mathematics as a kind of “slow emergency” that doubles as a 
‘necessary’ condition for mattering in the world (Anderson, Groves, Rickard, & Kearns, 2020; 
Sinclair & de Freitas, 2019).   

In short, affect theory, at least via some perspectives, may offer one set of possibilities for attending 
to the messiness and spillage of the ‘everyday’ that may trouble (while not necessarily jettisoning) 
assumed categories, boundaries, representations, states, rules, modes of capture, etc.; if research is 
less concerned with making definitive statements or claims about what ‘happened’ and more 
concerned with how different ‘bodies’ come to matter in ways such that their incompleteness and 
messiness are no longer pathologized but offer springboards into the necessarily unknowable (de 
Freitas & Sinclair, 2019). In this sense, rather than seeking to define “affect” as ‘this’ and not ‘that’, 
many approaches seek to explore affect as something necessarily processual, messy, as multiplicity, 
‘not yet’ and thick (Seigworth & Gregg, 2010).  

In the next and final section, I pivot to attend to some of the limits of affect theory as a strategy for 
research that do not attend meaningfully to how ‘bodies’ are themselves historically and culturally 
contingent. To do so, I shift to provide a brief sketch of the additional need to historicize how some 
of the objects of inquiry of mathematics education research and affect theory (minds, bodies, 
emotions, and their presumed relations) have become differently circulated and made intelligible 
through different ‘economies’ for producing affect (see also, Baker, 2013). Brief engagements from 3 
“moments” of considerable ontological and epistemological change in ways of thinking about 
‘bodies’ and school mathematics reform discourses were selected that continue to resonate with some 
of the social, cultural, and political themes that continue to move with mathematics education 
(research). 
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3 “Moments” 
Circa 1830s. Schooling and society in the post-revolutionary United States saw many changes that 

directly affected how school mathematics was to be learned and taught. In addition to the emergence 
of publicly-funded school systems, educational journals, and a proliferation of organizations and 
institutions, the first quarter of the nineteenth century also saw a marked increase in circulation of 
mathematics textbooks and materials intended specifically for children (P. Cohen, 1999; Monroe, 
1917). On the one hand, such changes were not surprising, given the perceived stability of the 
Republic and the increasing efforts to link mathematics education (mainly as arithmetic and 
cyphering) with managing commercial and industrial affairs and promoting mental cultivation for the 
presumed rigors of democratic (and ‘white male’) citizehnship (P. Cohen, 1999).  

Within this milieu, the concept of “mental discipline” – a term widely circulated as marking aspects 
of nineteenth century theories of mathematics – emerged as a central hope for what school 
mathematics could provide beyond applications to practical affairs (e.g., Stanic, 1986). Briefly, 
mental discipline has typically been described as a doctrine suggesting the mind was like a muscle 
composed of separate but interdependent faculties, where ‘exercise’ of any of the faculties (such as 
via arithmetic) offered routes to strengthening the mind and, by extention, the intellect (e.g., Clason, 
1970; Stanic, 1986). However, such a perspective may obscure the nuances and traces of how mental 
discipline and faculty psychology were also circulated in their historical present through a wide array 
of new theories of minds and bodies. For example, faculty psychology accompanied new theories 
such as phrenology that began to consider capacities for mathematics as something at once ‘in’ the 
brain, correlated with head shape and character, and, at times, differently modifiable through physical 
exercise (Tomlinson, 2005). 1 

Further, mental discipline was also understood in part through new medical discourses. For 
example, from the perspective of the influential U.S. physician Benjamin Rush, bodies could now be 
conceptualized as systems of “oscillatory matter”, where mental “laws” were equated with physical 
“laws” (Altschuler, 2012). Further, for Rush, mind was understood as influenced by diverse and 
distributed social and material systems, including blood circulation, political affiliation, occupation, 
commercial trade, and perceived racialized/racist effects of institutional slavery on health and 
physiognomy (Herschthal, 2017). And, with phrenology, the faculties of mind that appeared to be 
exercised through school mathematics also circulated with new theories of associations between 
physiognomy and intellectual capacity. The corporeal body and the emotions/passions were 
considered interdependent with ‘healthy’ mental cultivation and theories linking heredity to 
dispositions toward mind-body-spirit im/balance and the future of the Republic (Ziols, 2019).  

Finally, new theories of childhood also emerged that located children as ontologically distinct from 
immature adults. As such, children were considered particularly vulnerable to too early or too intense 
exposure to mathematics (though they were also felt to be especially sensitive to Lockean sense 
impressions and capacity for cultivation) (Ziols, 2019). Within this milieu, it is perhaps not surprising 
that school mathematics became a subject that was increasingly to be designed specifically for 
children in ways that included new hopes and fears about the potential effects of school mathematics 
in new economies for affect. For example, Samuel Goodrich (1818) was among the first arithmetic 
textbook authors who argued that arithmetic should be “attractive” to children and “divest[ed]” of 
“all that is not necessarily difficult or disagreeable” (p. iii). Goodrich’s hopes also included making 
arithmetic more “inviting”, satisfying, and pleasurable. Although Goodrich’s textbook is among the 
more explicit in this way, subsequent textbooks across a range of “systems” for teachers also began 

                                                             
1 Tomlinson (2005) has argued that phrenology discourses a la George Combe and Horace Mann were woven into 
the inception of U.S. public schooling as a “moral technology” linking the “exercise” of minds-bodies with racist, 
sexist, and abilist efforts to eliminate the “abnormal” as routes to ‘improving’ humanity. 
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to include appeals to securing interest and preventing injury. For example, in addition to advocating 
arithmetic as a site for “mental discipline”, Colburn felt that using fingers and objects had made 
arithmetic learning more appealing for younger children in “both sexes and among all classes” 
(Colburn, 1830, as quoted in Monroe, 1912, p. 465). At the same time, with an arithmetic textbook 
intended for children as would-be missionaries, school mathematics was less about learning to 
‘reason’ per se and more about converting ‘heathens’ through “Christian benevolence” and by 
“training a rising generation to esteem the privilege, and the practice of doing good” (Weeks, 1822, 
p. iv).  

In short, school arithmetic had now become available through changing notions of children, mental 
cultivation, schooling, and their presumed relations with new theories of minds, bodies, and groups 
(e.g., by sex, race, age, nation, language, profession, brain size, blood circulation, physiognomy, 
ability, class) (Ziols, 2019). In this economy for ‘affect’, the arrival of mental discipline was not 
simply about ‘beliefs’ or ‘ideas’ that mathematics could cultivate the mind and/or affect the emotions 
– it also required complex changes and new amalgams that included colonizing logics, racialized and 
newly ‘bodied’ notions of mathematics learning, and theories of reasoning that recruited the 
corporeal body in different ways (Ziols, 2019). It is perhaps no surprise, then, that school 
mathematics also began to emerge as a school subject that could potentially injure children by 
‘unbalancing’ mind-body-spirit amalgams in ways that reinforced exclusionary discourses (Ziols, 
2019; see also, Jenkins, 2010). 

Circa 1890s. By the 1890s, what might have seemed “difficult or disagreeable” in Goodrich’s 
historical present shifted to new ways of thinking. Some texts lamented old fears of arithmetic study 
in new ways. For example, an article in The Journal of Education claimed a “juggernaut Arithmetic” 
was “grinding” children into “physical and nervous wrecks” and making “a sound body, steady 
nerves, and a clear brain impossible” (Arent, 1896, p. 77). (Such “grinding” pain was also described 
as the mental equivalent of a man being hung by his thumbs as punishment for committing a crime). 
Those at risk for becoming “wrecks” retained earlier nineteenth century fears that pathologized the 
‘precocious’ child as those considered to be “ambitious for high scholarship” (Arent, p. 77; Ziols, 
2019). However, the risks of too much study were now put in the language of experimental 
physiology and the “new” psychology (Popkewitz, 2008; Stanic, 1986). In short, new amalgams of 
‘danger’ accompanied a (partial) erosion of mental discipline logics, as mathematics education 
became increasingly visible as a topic of concern in a growing number of “attacks” on U.S. school 
mathematics (Stanic, 1986). Importantly, responses to such “attacks” also recruited new assemblages 
of ‘bodies’ for reform-oriented justifications for the ‘why’ of school mathematics. 

For instance, the “new” psychology sought to map the child’s mind as a scientific object for study 
and planning the future through the mind and social sciences in response to fears of (im)migrant 
populations moving to the cities (Popkewitz, 2008; Ziols, 2019). Also, as learning school 
mathematics became largely domain specific and less tethered from its value for ‘mental discipline,’ 
it paradoxically became increasingly relied upon as a standard for mental testing, partly linking 
scientific racism and eugenics through new bio-psychologized notions of intelligence, character, and 
individual difference (Danziger, 1997; see for an example, Thorndike, 1922). 

Importantly, though, mapping the child’s mind was not simply a project related to studying the 
child’s mind as a psychologized object. It also appeared to require the study of children in situ, a 
perspective informed in part by the study of ‘othered’ cultures such as through ethnology, folklore 
studies, and history (see, e.g., Dewey, 1884, 1886). In brief, by providing a sense of teleological 
progress as the inevitable directionality necessary for a desired moral order, a technoscientific future 
could be secured through application of scientific ‘expertise’ to pedagogy (Popkewitz, 2008; Yolcu 
& Popkewtiz, 2019). Progress had also become entangled with Spencerian notions of human agency 
and cultural ‘development’, secured in part through efforts to predict and control behavior by 
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studying the duration and intensity of various senses (Crary, 1988). In short, as the mind-body-spirit 
became set in linear notions of technoscientific progress, it also became increasingly available (along 
with disciplinary mathematics) as a social and cultural construct that both required and exceeded 
notions of human agency to secure ‘advancement’ along rank-ordered developmental continua on a 
‘great chain of being’ (Baker, 2013; Crary, 1988).  

Within this milieu, James McClellan and John Dewey (1895) in the Psychology of Number argued 
that scientific principles would provide a plan for the “natural” alignment of children’s mathematical 
activity with “civilization.” Culturally-mediated activity would foster discernment and reason in 
ways that would move ‘inward’ to the corporeal body and ‘outward’ to secure the mind (and 
civilization) from ethical and psychological “destruction” (McClellan & Dewey, 1895, see pp. 4-5). 
The avoidance of ‘destruction’ also entailed efforts to tie activity to the production of quantity 
through accurate measurement, discernment, and relation as strategies to predict, control, and direct 
the future. For example, McClellan and Dewey argued: “The child and the savage have very 
imperfect ideas of number, because they are taken up with the things of the present moment. There is 
no imperative demand for the economical adjustment of means to end; living only in and for the 
present, they have no plans and no distant end requiring such an adjustment” (p. 38). By moving 
‘out’ of the present moment, the ‘child’ and the ‘savage’ required developing an “idea of quantity” 
through “arrang[ing]… acts in a certain order, to prescribe for himself a certain course of conduct so 
as to accomplish something remote” (p. 38). In one section, the racializing/racist psychologizing of 
number was also one that could be summarized by “embodying the idea that number is to be traced 
to measurement, and measurement back to adjustment of activity” (p. 52). 

Also, with this ‘new’ onto-epistemological framing, the psychologizing of number accompanied 
new claims that all humans and some animals had mathematical ‘capacities.’ Cultural ‘activity’ then, 
was, what explained purported differences in the power and rigor of ‘culturally’-specific 
mathematical practices and distinctions made between humans and animals (Ziols, 2019; see for 
different examples, Dewey & McClellan, 1895; McGee, 1898). Further, ‘access’ into ‘civilization’ 
was explained not only by converting and/or assimilating the activities of the child-as-savage into 
‘civilization’ but also as a political project that located ‘access’ based on theories of cultural tool use. 
For example, ethnologists, working in part to establish anthropology as the pinnacle of the sciences, 
argued that cultural tools (e.g., the hand, objects, and written signs) provided the levers that would 
‘liberate’ the ‘primitive’ mind from its ‘mystical’ past (see, e.g., Conant, 1896, McGee, 1898). From 
one perspective, by directing one’s goals toward an imagined future through targeting cultural group 
“leaders” (as the ‘strong’), educators-as-scientists could offer the most direct routes for ‘racial’ uplift 
and desired social change (Haller, 1971; Ziols, 2019). Such notions not only exacerbated racist and 
ethno-centric discourses centered around ‘Western’ concepts of mathematics – they linked static 
notions of the environment and climate with the ‘extranatural’ (or socio-cultural), unconscious, 
kinetic, and linguistic as sites for securing imperial notions of Spencerian ‘progress’ in social groups 
defined as on separate developmental trajectories (see, e.g., Haller, 1971).  

Finally, although the modern psychologized notion of the personality (and the person) as a set of 
discrete constructs was not yet thinkable (Danziger, 2012), character-building and habit-forming 
discourses also permeated journals and books related to mathematics education. For an example 
distinct from The Psychology of Number, an article in the Journal of Education suggested that 
“reasoning about things” in early school mathematics was subsidiary to learning to “use the signs and 
symbols” of arithmetic and “by every ingenious contrivance” to “cultivate habits, habits, HABITS, of 
accuracy, rapidity, and neatness, both in mental and manual activity, and of speech as well” 
(emphasis original, Allyn, 1892, p. 281). However, it was not ‘enough’ to simply cultivate 
‘mathematical’ practices believed to align the mental and the manual through activity and speech. A 
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teacher was also to cultivate “above all… truthfulness and honest sincerity” in ways that avoided 
“making dunces who hate math” (p. 281).  

However partial the above account, the intention here has been to note that although the mind may 
have been conceptualized as distinct from the body, mind-body amalgams were not eschewed with 
the arrival of new theories about how ‘mental’ processes were produced through social and cultural 
practices, the corporeal body, the senses, language, and notions of character and conduct. Similarly, 
though reworkings of a mind/body split were certainly present in such discourses, new notions of 
materialisms and efforts to mathematize sensation also undergirded them (Crary, 1988). In the next 
subsection, a third shift in economies for affect are considered, where new notions of character and 
individual difference were increasingly scientized through hopes and fears about securing 
democracy, promoting the ‘adjustment’ of the modern personality, and impressing the ‘cultural 
value’ of mathematics. 

Circa 1930s. Around the 1930s, the institution of mandatory secondary schooling in the United 
States accompanied efforts to address new fears, particularly those involving the inclusion of the 
“other 50%” now required to attend secondary school (see Lagemann, 2000). One primary site for 
addressing ‘new’ hopes and fears of a mathematics education under “attack” was via the insertion of 
mental hygiene and cultural value-creation into policy documents and pedagogies (Ziols, 2019). On 
the one hand, reform discourses sought to reconceptualize the “un-emotional subject par excellence” 
of mathematics education as one intimately requiring both emotion and intellect as essential and 
interdependent for meangingful learning (Progressive Education Association [PEA], 1940). By 
“understanding the student”, mathematics educators would avoid the potential dangers of 
psychological, social, and physiological ‘maladjustment’ (PEA, 1940). Or, from the joint Yearbook 
published by the Mathematics Association of America and the National Council of Teachers of 
Mathematics (1940), educators were to focus on the “problem of the dull normal” who differed in 
“degree” from the “gifted” (p. 133). And, though the "[t]he data” appeared to show the “fact that the 
slow group grows in the same proportion as the fast group though on lower levels of development” 
(MAA & NCTM, 1940, p. 134), the ‘problem’ was considered in part to be one of “implanting the 
cultural value of mathematics” such that students would “comprehend certain essential elements of 
the civilization they are to share” (NCTM & MAA, 1940, p. 48). 

To achieve a sense of cultural value, the ‘why’ of mathematics education also appeared to need 
justification. On the one hand, justification was now expressed in new (eugenic) theories of health 
that included not only concerns with ‘intelligence’ but also with attention to emotion and conduct, 
attitudes, and “traits” (MAA & NCTM, 1940; PEA, 1940; Zachry & Lighty, 1940). On another hand, 
approaches such as those in the Mathematics Teacher included efforts to link the “mathematic of a 
culture” to that culture’s purported “soul” or “spirit” (Schaff, 1930). Such a perspective was not 
unique. Schaff drew in large part from Oswald Spengler’s (1965) widely circulated book, Decline of 
the West, that argued every culture was defined by its “mathematic”, where developments in 
mathematics marked a ‘culture’ as either ascendant or in decline. Schaff, however, argued for a more 
optimistic interpretation: Mathematics as a human and cultural product suggested that humans were 
the “the law givers of the universe” and that it was “possible… that the greatest of our material 
creations is the material universe itself” (Sullivan, as quoted in Schaff, pp. 502-503).  

Additionally, creating a shared sense of a cultural value for regulating emotion and conduct 
involved another object of inquiry: the “modern” personality (Danziger, 1997). As an amalgam of 
“traits”, the “modern” personality emerged through efforts to measure a person’s character – a 
perspective drawing heavily from Galtonian-inspired eugenics (see Danziger, 2012). In related U.S. 
mathematics education journal articles and policy documents, some authors explicitly argued for 
“reform” as a “concern with the effect of arithmetic on personality” that required “a major 
reorganization of subject matter and methods” (Buswell, 1941, p. 10). Further, in the same chapter, 
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such “reorganization” involved engineering “an organized body of number experiences from which 
both mathematical insight and social significance may be derived” (p. 10), where a “number 
experience” was what might offer “positive contributions to the development of desirable personality 
traits” (p. 10).  

Lastly, shifts in the 1930s could also be summarized in part by the PEA’s (1940) companion report 
to Mathematics in General Education titled Emotion and Conduct in the Adolescent (Zachry & 
Lighty, 1940), where what constituted the “un-emotional subject” of school mathematics was now 
juxtaposed with perspectives on how emotion and conduct were to be reconceptualized by bucking 
the purported status quo. Namely, it was argued that the “Puritan tradition” believed “responsible 
[for]… the tendency in all Anglo-Saxon cultures paradoxically both to discount emotion and to 
counsel its mastery” was to be challenged (Zachry & Lighty, 1940, p. 5). “Emotion thus broadly 
conceived” was to be “fused with thinking - for the most part harmoniously - in the healthy, 
competent individual” (Zachry & Lighty, 1940, p. 5).  

In short, school mathematics had become in part a translation device for addressing fears of 
“maladjustment” in adolescents and children through reforms centered on “understanding the 
student” to regulate emotion and conduct, establish and secure social cohesion, cultural unity, and 
“democratic order,” and strengthen and/or muting un/desirable personality and character “traits” 
during times of perceived crisis in school and society (see also, Yolcu & Popkewitz, 2019). 

Concluding Remarks 
This paper has had two aims. First, it has made an argument that mathematics education research 

may broaden its scope by engaging with theories of affect that eschew analysis of the individual or 
group. Second, it has argued that affect theory is also limited with respect to what it may take as 
assumptions of ahistorical continuity across different material-discursive assemblages and space-
times. While neither argument is entirely new to mathematics education research (see, e.g., de Freitas 
& Sinclair, 2019; Popkewitz, 2008), little research has addressed how and why mathematics 
education research continues to locate desirable ‘affect’ as something messy and seeming to be a 
problem of largely ahistorical approaches to methodology despite rather dramatic onto-
epistemological shifts in how affect (and mathematics education) has become intelligible. Engaging 
with affect as historically and culturally contingent assemblages of ‘bodies’ requiring further scrutiny 
and historicizing may thus provide important new entry points for future research. 
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I examined how gender identity shapes engagement experiences in undergraduate mathematics 
classrooms through a mixed methods study. Data collected from 12 classroom observations, 
stimulated recall interviews, and student-reported data on engagement were used to answer the 
question, “How does gender identity shape students’ engagement experiences in undergraduate 
mathematics classroom?” The findings indicate that students’ in-the-moment engagement is 
characterized by classroom environments that foster collective mathematical discussions and group 
work.  

Keywords: Equity and Diversity, Gender and Sexuality, Inclusive education  

Introductions 
Student engagement is a strong predictor of achievement and behavior in school irrespective of 

students’ socioeconomic situation (Klem & Connell, 2004), making it a powerful factor in education. 
Additionally, in the social sciences, women earned a majority of bachelor’s degrees (55%) and 
master’s degrees (57%) from 1993 to 2015 (NSF, NCSES 2019). On the other hand, of all STEM 
degrees awarded in 2016, women earned about half of bachelor’s degrees, 44% of master’s degrees, 
and 41% of doctorate degrees, about the same as in 2006 (NSF, NCSES 2019). Based on these data, 
it is possible that gender identity plays a role in the field(s) one chooses to pursue. At the classroom 
level, gender identity and participation in mathematics are related in that students’ gender identity 
can influence their decision to continue studying mathematics (Boaler, 2002a; Boaler & Greeno, 
2000). To better understand how students learn mathematics, there is potential in better studying 
connections between students’ engagement and gender identity in mathematics learning 
environments. 
Student Engagement in Mathematics Education 

Engagement manifests itself in activity, including observable behavior and mental activity involving 
attention, effort, cognition, and emotion (Middleton et al., 2017). Engagement is thus a complex 
meta-construct consisting of cognitive, affective, and behavioral dimensions (Fredricks et al., 2004). 
For students to learn mathematics, they must be engaged. For instance, Bodovski & Farkas, (2007) 
found that student engagement is a significant contributor to students’ mathematical growth in early 
elementary school. At the middle and high school level, researchers found that higher cognitive, 
behavioral, and emotional engagement predicted students’ academic achievement (Wang et al., 
2016). However, the literature lacks studies of student engagement in mathematics classrooms at the 
undergraduate level (cf. Williams, 2017).  
Gender Identity 

In the early 1900s, researchers used sex hormones to explain masculinity and femininity (Bell, 
1916; Lillie, 1939), replacing religious justifications with scientific ones for restricting women’s 
roles (Risman et al., 2017). In the latter part of the century, social scientists began to push back 
against using scientific justification to explain gender and viewed masculinity and femininity through 
the lens of roles that were assigned to men and women by society. In the 21st century, sociologists 
including gender research expert Risman (2017), argue that gender identity is a socially constructed 
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component of one’s identity built as a result of internal and societal interactions. For the purpose of 
this study, gender identity is comprised of personal identity made up of psychological characteristics 
and a social identity encompassing salient group classifications which differs across cultures and can 
change. 
Gender Identity and Student Engagement  

At the college level, most studies regarding student engagement and gender identity strive to either 
explain the growing disparity between degrees awarded to men and women or differences in 
undergraduate enrollment at baccalaureate-granting institutions between women and men. Thus, at 
the college level, most studies on student engagement and gender focus solely on how many males 
and females either graduate or drop out from degree programs. However, such conceptualization of 
student engagement is different from student engagement as defined in this study nor are the labels 
“male” and “female” sufficiently capturing what is meant by gender identity (Risman, 2017). 
Engagement goes beyond enrolling or graduating from a degree program. Additionally, of the 
literature reviewed, most work on gender differences in student engagement tend to generalize across 
content areas that is not math focused. This study is unique in its focus on student engagement (as 
defined by Fredricks et al., 2004) and gender identity(as a social structure) in the mathematics 
classroom at the college level. 

Theory 
Flow theory offers an effective lens for interpreting student engagement in that both flow and 

engagement describe states of total involvement in a task and involve internal motivation (Steel & 
Fullagar, 2009). From flow theory, student engagement is made up of interest, enjoyment (emotional 
& behavioral), and concentration (cognitive) (Shernoff, et al., 2003). Thus, the extent of students’ 
engagement is based on these factors. 

To understand gender identity as a social structure (Risman, 2017), this study adopts the stance that 
gender identity is a person’s own sense of self by virtue of being part of a society.  Gender is socially 
constructed in that societies have a set of gender categories that usually serve as a basis for the 
formation of gender identity. This perspective emanates from Tajfel and Turner’s social identity 
theory (1986), which assumes individuals define their own identities as a result of societal norms. 
Gender as a social structure has psychological and social characteristics. 

Methods 
I addressed the research questions: (a) What characterizes student’s engagement in an 

undergraduate introduction to proof course? (b) What are the different ways in which gender identity 
shape students’ engagement experiences in this setting? To address these questions, I observed an 
introduction to proof class for five consecutive weeks. The participants in this study are students 
enrolled in the course. Fifteen undergraduate students: three of those who identify as women and 
twelve of those who identify as men volunteered for the study. The sessions I observed focused on 
the teaching of combinatorics.  All students are assigned pseudonyms.  

Sessions were video recorded. A demographic survey was administered to students, which asked 
questions such as “Please describe your gender identity?”, “Do you believe that how you identify 
(gender) affects your experiences during classroom interactions? If so, please explain?”. In-the-
moment student engagement was captured through the experience sampling method (ESM) (e.g., 
Shernoff, et al., 2003). ESM data took student-reports of interest, enjoyment, concentrate (i.e. 
engagement), perceived skill and challenge.  
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Lastly, ESM responses and video data were used to develop protocols for stimulated recall 
interviews. Using thematic coding, data from this study were analyzed to understand the nature of 
student engagement and how gender identity shapes student engagement experiences.  

Results and Discussions  
I present themes associated with students’ engagement that emerged from the stimulated recall 

interviews as students described both their personal high/low engagement moments. Finally, I focus 
on how gender identity influences these students’ engagement.  
Student Engagement  

A theme associated with students’ engagement from the stimulated recall interviews was the social 
norms of the classroom. The instructor presented the content with a very nontraditional approach. For 
instance, almost every single day, students presented their mathematical ideas on the board. 
Furthermore, students’ ideas were valued in the classroom and were encouraged to initiate 
mathematical discussions. Students asserted that the nature of the classroom influenced their 
engagement. For instance, Bridget, who identifies as a woman, asserted that “seeing how they 
(students) thought to solve mathematical problems in different ways influenced my concentration 
positively.” Being able to see the multiple ways to solve mathematical problems influenced her 
engagement. Nat, who identifies as a man, explained that “the fact that I was given an opportunity to 
describe the mathematics to my peers increased my interest.”  On the other hand, Ian, who identifies 
as a man, explained that since the nature of the class was not lecture based, his engagement was on 
the low side. As Bridget, explains seeing multiple ways of doing math influenced her concentration, 
her cognitive engagement is increasing. Nat’s interest about verbalizing his mathematical reasoning 
positively influenced his emotional engagement. However, Ian’s emotional engagement is on the low 
side as he does not enjoy the mathematical content being covered. Although Ian’s emotional 
engagement was low, two of his peers explained how this student-centered environment fosters their 
emotional and cognitive engagement. 

Group work was instrumental, in that all participants who volunteered for the stimulated recall 
interviews asserted that working with peers influenced their engagement positively. Bridget asserted 
that “I don’t know, just working with my peers increased my interest and concentration.” Nat 
explained that working with his classmates served as a competition for him to be cognitively 
engaged. During the stimulated recall interview, he explained,  

 with the partners I have its kind of a motivation thing kind of use this as a competition type 
deal like to try match my partners’ skills. if I was working individually, I don’t think my 
concentration would be high for this mathematics class.  

 Ian  explained that being a “privileged” male, he speaks less in group work when working with 
those women to enable them to express their ideas. He explained that working with his classmates 
positively influenced his cognitive and emotional engagement. He also explains that, “when working 
with classmates even though no one is an expert, they can still point that why did he (emphasis 
added) did that in this proof, so I think working with my classmates helps to concentrate.” 

Thus, from this study, there is a positive association between group work and their engagement. It is 
interesting to note how Ian did not wish to be the only speaker during a mixed gender group 
interaction to allow those he perceives as women to talk. Furthermore, it is more fascinating how he 
used a “male pronoun” for a hypothetical student, when describing his experiences working with 
classmates. This points out some connections between one’s gender identity and engagement 
experiences.  
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The Role of Gender Identity in Student engagement   
ESM data show that overall those identifying as women reported higher levels of engagement than 

those identifying as men. Aaron, who identifies as a man, reported being less engaged than his peers; 
whereas, Janet, who identifies as a cis woman, reported being most engaged. Aaron did not volunteer 
for the stimulated recall interview hence much cannot be inferred on the low engagement reported by 
him. Observations suggest his behavioral engagement aligned with his self-reported levels of 
engagement from the ESM survey. During the analysis of the initial demographic survey, Janet 
explained,   

I have a distinct memory of trying to take Calc 1 in summer and being the only woman in the 
room, and it being my first class not taught by a woman and feeling anxious about it. I don’t 
think it was a very fair feeling, but I did feel it. 

She did not volunteer for the stimulated recall interview, which might be explained by prior 
experience in her calculus 1 summer class and that possibly because I identify as a black man. 

 Five participants asserted that their gender identity influenced engagement. Ian, who identifies as a 
man, explains,  

 If I am in a group interaction made up of different genders, the same actions done by a man 
and a woman will be definitely be viewed differently so I definitely think gender has an 
impact on how students engage with mathematics. 

Edwin, who identifies as a man, explained how he thinks gender influences engagement in the 
mathematics classroom by indicating that being male has not “negatively affected” him as a learner 
of mathematics. Some students identifying as men said they did not think one’s gender identity 
influenced experiences in mathematics courses; however, they would also say something to suggest 
otherwise. Although Nat  explicitly acknowledged that gender did not influence one’s engagement, 
his explanation indicated that gender actually influenced how he approaches group work, “when 
working with women I allowed them to express their mathematical ideas to get them involved in the 
discussion.” Thus, we do see that those perceived to be women are on the disadvantage. For instance, 
Mike thinks men contribute more in the mathematics classroom. On the other hand, Bridget asserted 
one’s gender did not influence their engagement while studying mathematics. In conclusion, some 
students indicated that their gender did influence how they engaged in the mathematics classroom. 

Conclusion 
This study investigated the nature of students’ engagement in mathematics and how their gender 

identity shapes engagement experiences in the mathematics classroom at the college level. Some 
students indicated that their gender identity did influence how they engaged in the mathematics 
classroom, with those who identified as women more likely to be negatively affected. However, this 
perception was not borne out by the observation and ESM data. In the observation and ESM data, 
those who identified as women reported higher levels of engagement than those who identified as 
men. There is room for further exploration and research on gender as a social structure rather than 
biological, and much remains to be learned about the different ways in which gender identity shapes 
student engagement in mathematics. 

End Notes 
Students’ gender identities were reported exactly as identified in the demographic survey. 
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In this text, we invite others into a different paradigm of thought and action than what has been 
historically represented at PME-NA. We surface anti-hierarchical theory of action as a macro-theory 
implicitly present across substantial discourse in equity in mathematics education, then explore some 
of the affordances and challenges to be considered in adopting anarchism as a theory of action for 
research and practice. Findings relate to (1) the (de)colonizing tension between focus/specificity and 
the reification of compartmentalization, (2) the concomitant tension of constructed (in)visibility, and 
(3) the pursuit of solidarity in the disruption of a violent status-quo. Implications for ongoing 
research and pedagogic praxis are shared. 

Keywords: Equity and Justice, Systemic Change 

The 42nd annual conference of the North American Chapter of Psychology in Mathematics 
Education invites us to “promote the exchange and enrichment of mathematics education research” 
by looking to its manifestation across “different cultures, places, and contexts” (PME-NA, 2020). 
The goal of this article is to outline and trace the value an anti-hierarchical (anarchist) theory might 
hold as a macro-theory undergirding and providing definition (and direction) to equity-oriented 
research. We aim, in short, to invite others into a different paradigm of thought and action than what 
has been historically represented at PME-NA. Our goal for each section of this text is not to be 
exhaustive, but to be illustrative of a different way of being and living. (Restivo, 1998) 

What is Anarchism? 
For the purposes of this paper, we place emphasis on anarchism as an articulation of ethics, as a 

mode of human organization with social self-determination, rooted in the experiencing of daily life 
(Suissa, 2010). Anarchism aims to maximize both individual autonomy and collectivist freedom, 
leading to the reduction of fixed hierarchies that systematically privilege some people over others. 
Individual autonomy is, perhaps, self-explanatory as a principle; it is a self-determination, the 
freedom of choice in one’s own acts, with no form of external compulsion. Collectivist freedom is 
one in which the individual finds their freedom through voluntary association with other members of 
society, not isolation from them. Bakunin (1971) argued that man is only truly free when among 
equally free men; “the freedom of each is therefore realizable in the equality of all” (p. 76). 
Concisely, to embrace any form of anarchism is to express profound skepticism toward skewed, 
coercive, and exploitative power relations, and to reject all forms of oppression, including those of 
class, race, gender identity, religion, etc. (Lawler, 2019).  

In short, anarchism is the absence of hierarchy. It imagines a relationship among people that 
minimizes if not eliminates coercive structures and interactions, taking seriously the possibility of an 
equal and free society, organized on core values of cooperation, mutual aid, and freedom from 
hierarchy. 
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How is Anarchism Currently Alive and Well in Mathematics Education and How Might 
Anarchism Resolve or Inform Tensions in Mathematics Education and Equity? 

The proliferation and diversity of ways anarchism manifests in equity discourse may, at first, seem 
surprising, given the small number of publications that explicitly draw connections between 
anarchism and mathematics education (e.g. Lawler, 2019; Restivo, 1998, 2011; Wolfmeyer, 2012, 
2017a, 2017b). However, the undergirding tenets of anarchism (e.g. cooperation, mutual aid, and 
freedom from hierarchy) exist as a common thread within mathematics education equity discourse, 
conceptually stitching a wide array of professional and political efforts. Here we foreground this 
thread, offering a silhouette or sketch of anarchism as a potentially valuable macro-theory in 
mathematics education equity research and practice. 

Relations between people – absence of hierarchy. Education as a social activity is a widely held 
stance; many scholars argue that the field now understands the perspective that mathematical activity 
and learning is fundamentally social (Lerman, 2000). But the social is necessarily political, and thus 
the social contexts of mathematical knowledge construction, identity development, and of our work 
as researchers is best understood through examination of power differentials or hierarchies of this 
sociopolitical context (Gutiérrez, 2010/2013). Freire (1970/2000) provided useful models to 
reimagine the hierarchical relationship between the teacher and student so as to disrupt the 
perpetuation of oppression. These models defined a heterarchical relationship between teachers and 
students. 

Through dialogue, the teacher-of-the-students and the students-of-the-teacher cease to exist and a 
new term emerges: teacher-student with students-teachers. The teacher is no longer merely the one-
who-teaches, but one who is himself taught in dialogue with the students, who in turn while being 
taught also teach. They become jointly responsible for a process in which all grow. In this process, 
arguments based on "authority" are no longer valid (Freire, 1970/2000, p. 80) 

Steffe and Thompson (2000) identified the problematic nature of the researcher-student relationship 
in any effort to make a claim about what the other knows. Steffe’s Radical Constructivism took 
seriously the notion that knowledge is constructed, and thus ways of knowing are unique to each 
knower, viable in their experiential reality. It follows that the researcher must acknowledge their role 
as observer and work to create second-order models of the child’s knowing—fully realizing this 
second-order model is merely one’s own knowing, not a claim of truth about the child. Gutiérrez 
(2017) similarly disrupts hierarchies of knowing by demonstrating how indigenous ontologies see 
mathematics as a quality of all living beings. We have methodologies in mathematics education that 
have potential to disrupt the violence of uninterrogated hierarchies of knowing in our relationships 
with others (Lawler, 2012).  

Disruption of (M)athematics. In the course of engaging in research or praxis in the area of 
mathematics education, one inevitably encounters a certain narrative of worship around the 
discipline, a mythology Lakoff and Núñez (2000) refer to as the Romance of Mathematics. In broad 
terms, the Romance of Mathematics is a mythology that perceives mathematics as objective, 
acultural, and beyond the vagaries of the human. The Romance of Mathematics constructs and 
propagates “...the mystique of the Mathematician with a capital M as someone who is more than 
mere mortal—more intelligent, more rational, more probing, deeper, visionary” (p. 340). 

This mythology presents an immediate barrier to equity work. “If mathematics is objective, it makes 
no sense to be concerned with learners’ cultures and lived experiences. If mathematical achievement 
can be accurately and fairly measured with standardized tests of routinized items, it makes no sense 
to develop more “subjective” assessments of mathematical understanding. And if mathematics is 
inherently too difficult for many to master, it makes no sense to try to teach all students rigorous 
aspects of the discipline” (Ellis & Berry III, 2005, p. 13). In response to this barrier, substantial 
research has sought, either directly or indirectly, to reveal the illusory nature of the myth (e.g. 
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Bowers, 2018, pp. 290–291). Some (e.g. Burton, 1999; Sinclair, 2009; Wells, 1990) have observed 
the powerful and subjective role aesthetic plays throughout the discipline, some (e.g. D’Ambrosio, 
1985; Lipka et al., 2012; Meaney et al., 2013; Thomas, 1996) have observed the ways mathematical 
meaning-making have varied from culture to culture, and some (Burton, 1999; Joseph, 1987; 
Lakatos, 1976) have observed the ways (culturally localized) human interdiscursivity acts as the 
force by which mathematics is constructed, to name but a few directions researchers have taken in 
this vein. 

Thus, we see again in this context that equity work is anarchic at its foundation—it opposes the 
socially constructed hierarchy of discipline. In foregrounding this anarchic thread, we see a means of 
tying these superficially disparate efforts together. Several of the above cited works (e.g. Lakatos, 
1976; Wells, 1990) would not even typically be identified as works of equity, but in their valuing of 
the human and cooperative aspects of mathematics they nonetheless find a place in the greater social 
project of social justice. Through the paradigm of anarchism, we highlight a broad array of work that 
stands in opposition to the hierarchy of discipline. 

Disruption of white supremacy. Public education within and beyond North America, in both 
theory and practice, is grounded in whiteness, (re)producing hegemonic social norms such as cultural 
deficit perspectives, colorblind racism, race neutrality, and meritocracy (Nicholson, 1998; Ladson-
Billings, 2000; Sleeter, 2001). The problems here are not so superficial as simply having teacher 
education programs or rosters of practicing teachers that are predominantly white (though in some 
places this is a keenly felt tension); rather, the crux of the problem lies in the ways whiteness is 
normalized across these spaces. Subscribing to whiteness inherently supports institutionalized white 
supremacy because it tacitly (or overtly) reifies a system that has historically disadvantaged 
minoritized groups (Matias et al., 2016).  

Equity work in mathematics education has tackled this ever-looming problem from a number of 
directions. Some work has focused on how positioning and identity manifest in the context of small-
group interactions (Bishop, 2012; Langer-Osuna, 2011; Wager, 2014), while other work has focused 
on broader macro-narratives and bias (LópezLeiva & Khisty, 2014; Martin, 2011; Shah, 2017; 
Tiedemann, 2002). Some work has tackled the topic of power and domination (Battey & Leyva, 
2016; Martin, 2009; Setati, 2008), while other work has interrogated cultural practices and pedagogy 
in mathematics education (Dominguez, 2011; Gutstein, 2012; Leonard, 2008; Lipka et al., 2005). 
Some work has considered the insular nature of mathematical language (Halliday, 1978; Herbel-
Eisenmann, 2002; Pimm, 1987; Schleppegrell, 2007), while other work has broken tackled white 
supremacy from an intersectional lens (Bullock, 2017; Civil, 2002; Esmonde et al., 2009; Gholson & 
Martin, 2014). All this is to say that disrupting white supremacy has been one of the core social 
projects of equity in mathematics education, and though it has been tackled from many perspectives, 
they share at their foundation an anarchic valuing of the human’s right to self determination and 
opposition to hierarchy. 

The above equity projects share, at their core, opposition to racial hierarchy. In foregrounding the 
anarchic thread connecting these and other seemingly disparate spaces, we see opportunity. For, 
though we speak here of race in particular, it is difficult nigh impossible to extricate racial power 
structures from those power structures that are expressed in terms of gender, sexuality, ability, or 
socioeconomic status. As Roibeard (2015) said of feminism, “Feminism and anarchism are kissing 
cousins; feminism aims to abolish patriarchy, yet patriarchy does not stand alone and its abolition is 
intertwined with the abolition of all oppression. We cannot pick and choose which power structures 
we like and which ones we don’t like; they are all connected, for patriarchy to truly be dismantled 
they all must be.” In foregrounding the anarchic thread undergirding equity work, we see the 
potential to push back against compartmentalization and the interrelated hierarchies imposed thereon. 
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In foregrounding the anarchic thread, we see the opportunity to make visible the multiply 
marginalized (e.g. Crenshaw, 1991; Gholson, 2016), and to proceed in solidarity. 

What Dangers and Limitations Must We Consider? 
It is important at this juncture that we acknowledge and draw attention to potential dangers and 

limitations in operationalizing anarchism as a macro-theory. The vision of anarchism expressed 
throughout this text is a broad one, and there are many interpretations of anarchism which entail 
different assumptions and values, each having very real consequences in their adoption and use. An 
exhaustive overview of all of the potential risks of particular instantiations of anarchism would lead 
us far astray from our central goal of introducing and inviting others into a new paradigm of thought 
that has not seen explicit representation at PME-NA, so here we must satisfy ourselves with 
something smaller but more intentional—a scalpel rather than a sledgehammer. We draw particular 
attention to two substantial and complex areas of risk: Recolonization (e.g. Patel, 2016) and 
constructed (in)visibility (e.g. Crenshaw, 1991; Gholson, 2016). We do not select these risks for 
further conversation because they are more important than other risks, but simply because their risk 
is substantial and because they serve the purpose of suggesting the ways these dangers are deeply and 
complexly interwoven with the very affordances we spoke about above. Indeed, these two risks are 
complexly interwoven with each other and will consequently be treated in concert below. After all, 
one of the tools of colonization is compartmentalization (Patel, 2016), and it is precisely 
compartmentalization that gives rise to constructed invisibility, that trick of (social) cognition 
wherein the multiply minoritized are only “seen” in terms of one minoritized identity at a time. 

We begin with the perennial tug-of-war between the inertias of colonization and white supremacy 
and conscious efforts of decolonization and antiracism. The ways humans continuously come into 
being, the ways we carry and perform ourselves, are living and breathing mixtures of affordances 
shaped and informed by the echoes of long-standing yet not sealed histories (Baldwin, 1963; Gordon, 
1997). Phrased differently, subjectivities are inextricably entangled with material conditions, and 
social becomings enact and exact material consequences (Barad, 2007). Given these deep trajectories 
and the role of educational research in perpetuating settler-slave-Indigenous relationships, 
educational researchers are answerable to working to dismantle those structures (Patel, 2016). 

Like all things, the common image of anarchism summoned by the public imagination is a 
Eurocentric and white image, commonly conjuring white (cis-male, heterosexual, …) European 
visages such as Max Stirner, Peter Kropotkin, or Henry David Thoreau. Restricting oneself to these 
visions of anarchism recolonizes, and (re)constructs many voices and bodies as invisible, 
hypocritically reifying hierarchy while nominally standing in opposition to it. A decolonizing and 
antiracist vision of anarchism must think outside these frameworks that mask white Western 
parochialism as universal and eternal verity (Grovogui, 2006). A decolonizing and antiracist vision of 
anarchism must expand beyond perspectives that recognize and respond to only one hierarchy—the 
hierarchy of class and capital. Thus, whatsoever vision of anarchism we might choose in any given 
moment or context should be grounded in visions constructed and expressed by diverse groups of 
thinkers and activists (Alston, 2003; Grovogui, 2006; Roibeaird, 2015). 
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Common mathematics education practices such as valuing speed and accuracy over creativity and 
reflection often cause mathematical trauma. Once established, this trauma haunts students, their 
teachers, and even a researcher in future mathematical experiences, calling for recognition and for a 
justice that can only be found through transformative engagement. This study integrates sociological 
theory, poststructural methods, and empirical data from an ethnographic study of veteran 
mathematics teachers to explore how teachers enact ethical relations by bearing witness to students’ 
mathematical ghosts and, in doing so, make possible a more just future. 

Keywords: social justice; marginalized communities; affect, emotion, beliefs, and attitudes 

Common mathematics education practices such as tracking, valuing speed over reflection, and 
assigning repetitive procedural homework constitute a “slow violence” (Gutiérrez, 2018, p. 3) that 
(re)marginalizes students who have historically been marginalized in mathematics education due to 
racism and other forms of oppression, in part by denying students’ agency (Lange & Meaney, 2011). 
Students who have been repeatedly subject to such mathematical violence carry trauma resulting 
from their prior experiences and also from the “ongoing, accruing impact and consequences of social 
malignancies such as racism” (Dutro & Bien, 2014, p. 23). In mathematics classrooms, then, “the 
past haunts the present” (Gordon, 2008, p. viii). If this is the case, how can mathematics teachers 
engage in ethical response? In other words, how ought they attend to the lasting impact of traumas 
perpetuated on students by hegemonic forms of mathematics teaching and learning within an already 
oppressive society? 

Conceptual Framework: Haunting 
In this paper, I view haunting as an apparition of students’ mathematical trauma. Many scholars 

have probed the presence of ghosts in public schooling (e.g., Ewing, 2018; Lawrence-Lightfoot, 
2003); here, I follow Gordon’s (2008) framing of ghosts as “one way in which abusive systems of 
power make themselves known and their impacts felt in daily life, especially when they are 
supposedly over and done with” (p. xvi). In Gordon’s conceptualization, ghosts call out for justice: 
for the damage that has been done by abusive systems of power to be addressed, not because it can 
be undone, but in order to “en[d] this history and se[t] in place a different future” (p. 66). In 
mathematics, then, ghosts might call out for transformative ways of teaching and learning that are no 
longer traumatizing, violent, or marginalizing.  

Methods: Greeting the Ghost 
The data for this study were collected ethnographically in a high school serving almost exclusively 

Latinx students eligible for free-and-reduced-price lunch. I followed two veteran mathematics 
teachers, Franck and Clark (all names are pseudonyms), in their Algebra 1 classes for one week each 
month across a full school year, taking extensive descriptive fieldnotes and writing in-process memos 
(Emerson et al., 2011). Since subjectivity is inevitable in qualitative research, I positioned myself as 
a partner for brainstorming and reflecting rather than minimizing my role, and was welcomed “as an 
outsider and as an insider” (email from Clark, 2/2019). 
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As I observed, I was struck by the frequency and force with which Franck and Clark named a 
teacher who had taught many of their students the previous year: Mr. Montoya. Mr. Montoya’s ghost 
first appeared to me in October, when, in an interview about building relationships with students, 
Franck repeatedly cursed Mr. Montoya for “the damage that he did to these kids.” According to 
students, Mr. Montoya’s pedagogy included requiring them to memorize conventions of 
mathematical notation regardless of whether they made sense, randomly calling on students, and 
shaming them for not having immediate correct answers; in an interview, a student explained to me 
that “he kept on trying to make us better each time but in a way that would make us feel like we 
weren’t good.” Mr. Montoya may have intended tough love but nevertheless created a mathematical 
culture of exclusion (Louie, 2017) through hegemonic practices that are especially routine in 
classrooms with marginalized youth (Gutiérrez, 2018).  

Mr. Montoya’s ghost provoked strong affects throughout the school year, illustrating the “living 
effects, seething and lingering, of what seems over and done with” (Gordon, 2008, p. 195). Despite 
no longer being in his class, students brought him up unsolicited when I asked them about their 
current mathematics classes, saying he was “rude,” “really bad,” and “he would pick on me.” He 
haunted teachers’ interviews and collaborative meetings: Franck called his methods “public abuse,” 
Clark mentioned “kids that hate him,” and another teacher, Abigail, said that hearing them talk about 
him made her both “want to cry” and “fight.” As a researcher, I felt constantly alert to his name or 
the mere possibility that someone might be referring to him. As an instantiation of both the 
individualized and structural trauma carried in mathematics classrooms, Mr. Montoya’s ghost offers 
an analytic opportunity to examine 1) how students, teachers, and researchers are haunted by 
histories of oppressive mathematics education, and 2) how we can reckon with ghosts as “pregnant 
with unfulfilled possibility” for change (Gordon, 2008, p. 183).  

To greet the ghost of Mr. Montoya, I engaged in Jackson and Mazzei’s (2012) “thinking with 
theory,” reading theoretical perspectives and empirical data through analytic questions derived from 
and tied to both. The entangled nature of this method presses against forms of research that seek to 
classify and determine truths after data collection is “complete,” instead honoring the ambiguous and 
emergent nature of any possible “truth.” To do so, I attended to the “flow and arrest of thoughts” 
(Gordon, 2008, p. 65, italics original) in students’ and teachers’ talk to identify Mr. Montoya’s 
presence, looking for “how a person translates his or her experience of historical trauma across time 
and space” (Zembylas, 2006, p. 315). I sought moments of wonder and surprise (MacLure, 2013) 
experienced by those haunted—students, teachers, and myself as researcher—rather than moments of 
clarity. I used these moments to examine what is known and what counts as reality, thus allowing 
ghosts to speak. 

Preliminary Findings: Bearing Witness to Mathematical Ghosts 
How does one listen when ghosts speak? Gordon (2008) suggests that by haunting, ghosts are 

“leading us somewhere… [calling for] something to be done” (p. 205), and that exorcising ghosts 
requires attending to their insistence on a future that is more just than the past (Yoon, 2019). Those 
who see hegemonic practices of teaching and learning mathematics as violent, then, are called by 
mathematical ghosts to do something. Zembylas’ (2006) draws on Kelly Oliver and others to 
articulate “witnessing as an affective practice [and] an ethical and political project” (p. 316); I use 
this theorization to describe the somethings that Franck and Clark do. First, I present how Franck and 
Clark bear witness to mathematical ghosts by “see[ing] Others with loving eyes that invite loving 
response” (Oliver, 2001, p. 19). Then, I illustrate how they “wor[k] through rather than merely 
repeating the blind spots of domination” (Oliver, 2001, p. 218), being vigilant against the injustices 
that cause mathematical ghosts to appear (Zembylas, 2006). 
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Seeing Others with Loving Eyes. In the “state-sanctioned violence” (Yoon, 2019, p. 421) of public 
schooling, students who do not meet participation expectations are typically viewed as off task, 
disengaged, or noncompliant; as a researcher who has observed in hundreds of mathematics 
classrooms, I have seen many teachers react to students this way, and many students accustomed to 
this treatment. Both I and students, haunted by these assumptions, were consequently arrested when 
these assumptions were subverted. For the sake of space, I offer two brief examples from my data. 
First, when a student was unprepared to answer a question that Franck had given students ample time 
to answer independently and also discuss in their groups, Franck responded: “Oh you didn’t have 
enough time. My bad.” Similarly, when Clark noticed that several students had left blank his request 
for comments on a homework assignment, he said to the class, “I don’t think you were being lazy. 
Maybe you just forgot and that’s fine… it would be great if you left me two comments today but you 
don’t have to.”  Mathematics classrooms are haunted by the assumption that students who do not 
participate how teachers expect them to are deficient. Franck and Clark challenged this so-called 
reality by offering generous interpretations that saw students with loving eyes instead of recycling 
damaging assumptions about them. In doing so, they opened up opportunities for future connection 
and reciprocity (Dutro & Bien, 2014).  

Working Through Rather Than Repeating Domination. Franck and Clark, respectively, wanted 
students to have “an enjoyable five hours [each week]” and to “be at ease in my class.” As a result, 
they grappled with whether particular pedagogical practices would contribute to or undermine this 
desire, even and especially those taken for granted as commonsense (Kumashiro, 2014) in other 
mathematics classrooms. Although they discussed many practices, here I share how they considered 
their participation expectations for students in light of mathematical ghosts summoned both in the 
guise of Mr. Montoya and by contemporary equity discourse.  

Calling randomly on students to answer questions has long been commonsense practice in 
mathematics classrooms. Like many of their predecessors across decades and classrooms, several of 
the students I interviewed were haunted by memories of Mr. Montoya requiring that they stand at the 
whiteboard, in front of waiting classmates, until they could produce a correct answer. Clark bore 
witness to these mathematical ghosts, accounting for students’ experiences and affects—what he 
called their “anxiety”—by offering ways for students to demonstrate their interest and ideas without 
repeating this exercise of teacher power: 

If you don’t want to share [with the whole class], you can raise your hand and share with me 
as I’m walking around… you don’t have to share in front of the class to get points… I don’t 
want you to share for points; I want you to share for love. (classroom observation, 8/2018) 

Ethics, however, demands engagement with the uncertainties and complexities in teaching. Upon 
hearing that one of their students associated being “randomly pick[ed] on” with “the way [my 
teacher] trusts me” in an interview that I conducted, Franck and Clark negotiated their surprise 
around how students interpret their actions (collaborative meeting, 2/2019): 

Clark: This is interesting: ‘because he really trusts you.’ That’s interesting. I would hesitate to pick 
students because I think they would feel—that’s an interesting correlation, right? 

[Clark asks if I’ve seen comments like this before; I say I found it interesting too.] 
Franck: When you are doing the task, you are not particularly looking to solicit an answer, you’re 

soliciting their thinking. ‘Whatever you say is correct, even if it’s wrong. It’s okay, just tell me 
what you’re thinking. You can’t think wrong, even if the answer is wrong.’ If we didn’t do those 
things and if the problem has one answer and the kid says the wrong answer then they’ll feel bad 
for being wrong…  

Clark: I don’t call on them randomly. 
Franck: But you don’t particularly call them for the ANSwer 
Clark: No, I avoid that. 
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Franck: ‘Cause there's no point. 
Clark: I would rather not you contribute to the result. Maybe, the process, or something, contribute to 

the process. Is just as important as contributing the result. So you trust them to contribute is 
maybe the way it could be seen. You're basically saying, like, the kids feel like you trust them to 
contribute something to the class. That feels like agency to me. 

Asking students to publicly share answers is a common ritual in mathematics classes (Mehan, 1979) 
and a traumatizing one in classrooms like Mr. Montoya’s, but structured groupwork can also provide 
equitable access to mathematical learning opportunities (Cohen & Lotan, 1997). Even so, Franck 
wondered if insisting that students perform in specific ways repeats domination: 

I’m not sure if I’m sold on the fact that we need to make all the students in our class talk to 
each other… I’ll listen to the kids but I know like [student name] or certain kids in my class 
they don’t want to talk out loud and I don’t want to force them to. The philosophical 
questions I’m trying to reconcile are: what people are doing in their classrooms that’s 
deemed as equity and access [e.g. making students talk], to me it just seems annoying and 
you’re forcing it upon the kids… I’m still reconciling a lot of things. (interview, 2/2019) 

Mathematical ghosts summoned by pedagogical practices taken for granted in both hegemonic and 
equity-oriented mathematics classrooms make students feel (uncomfortable, trusted, coerced) when 
teachers require them to speak in front of their classmates. Franck and Clark heed the affective 
hauntings of these ghosts and the power dynamics that they signal by contending with what forms of 
student participation they value and why, thereby starting to build towards a less traumatic, more 
transformative version of mathematics education. 

Discussion: Stretching Toward the Horizon 
Mr. Montoya is a named ghost who haunted Franck’s and Clark’s Algebra 1 classrooms during the 

school year I observed. He is also a stand-in for unnamed mathematical ghosts across contexts 
whereby students and teachers are haunted by histories of racialized oppression in public schooling, 
histories of hegemonic mathematics education, and their own personal histories of traumatizing 
mathematics experiences. I have begun to illustrate how Franck and Clark bear witness to 
mathematical ghosts by seeing their students with loving eyes and by working through rather than 
repeating domination. What happens when teachers bear witness to mathematical ghosts, rather than 
perpetuating the “abusive systems of power” that give rise to ghosts in the first place? I suggest that 
Franck and Clark are adopting an ethical stance in seeking to remedy past injustices by negotiating 
an alternative vision of mathematics education. The presence of mathematical ghosts attunes them to 
the violence done to students by hegemonic forms of mathematics education, and by transgressing—
by attending to ghosts that might otherwise be ignored—they make possible a future that is different 
from the past. 
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As rural parents can face barriers that are different from those encountered by suburban and urban 
parents, this study sought to assess the level of rural parents’ satisfaction with their level of 
involvement in their children’s mathematics education in a rural location in the Midwestern United 
States. Semi-structured interviews were conducted with seven parents from one rural school district.  
Parents’ satisfaction with their level of involvement in their children’s mathematics education 
correlated highly with their children’s success in school mathematics.  Another result found that 
often at least one of the rural parents in each household commuted a great distance each day from 
where their children attended school, but that the commuting parent was the parent most likely to 
help children with mathematics homework.  Implications of this finding are discussed. 

Keywords: Rural Education, Marginalized Communities, Communication 

Purpose 
Parental involvement has been shown to positively influence children’s education (Sheldon & 

Epstein, 2005; Liu, Wu, & Zumbo, 2006).  Rural parents can face barriers to involvement in their 
children’s mathematics education that other parents do not. Therefore, the purpose of this study was 
to research the involvement of rural parents in their children’s mathematics education.  In particular, 
this study sought answers to the following research questions:  

1. How satisfied are rural parents with their involvement in their children’s mathematics 
education? 

2. What level of involvement do they desire to have in it? 
3. If they want more involvement, what hinders their involvement?  On the other hand, if they 

want less involvement, in what ways would they like to be less involved? 

Perspectives 
This study was grounded in the previous work of Lareau, Civil, and Remillard and Jackson.  First, 

Lareau (2000) discussed the idea of social capital. Essentially, some parents are able to interact more 
fluidly with mathematics teachers and the entire school setting than other parents are based on their 
previous experiences, perceptions of school mathematics and its purpose, and other related cultural 
values and norms. Indeed, some parents place themselves in perceived positions of authority over 
math teachers while others would never think of questioning a math teacher. 

Next, Civil worked to help parents view themselves as funds of mathematical knowledge (Civil, 
Bratton, & Quintos, 2005; Civil & Bernier, 2006). Many parents have the knowledge to assist their 
children with school mathematics but simply are not confident in doing so.  Regardless of their 
current mathematical knowledge, Civil et al. helped their participants see that they could both learn 
mathematics and facilitate mathematical learning at the same time. 

Finally, Remillard and Jackson considered parents’ involvement in their children’s learning and 
schooling, both in terms of what the school could and could not see (2006). They considered a 
parent-centric view of parental involvement that consisted of three things: involvement in the 
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children’s learning, involvement in the children’s schooling, and involvement in the children’s 
school. While all three are important, only the last of the three is directly observable by the school. 

Methods 
Context 

Rural places and people are not homogeneous. There is variety among rural people both in different 
localities and within the same locality. This study focused on rural people who live within a 45-
minute drive of an urban center in the Midwestern United States. Originally, families were sought for 
this study that both a) lived outside the city limits of the town or towns in which the children attended 
school and b) lived at least five miles from all schools attended by the children at the time of the 
study. Selecting parents to interview in this manner would have eliminated both those who live in 
towns and near schools.  It was hoped that what remained would constitute a population from which 
a characteristically rural sample may be have been drawn. 
Participants 

Parents were recruited with the assistance of principals and mathematics supervisors. The principals 
and mathematics supervisors were sent a letter detailing the project and asking for help to identify 
potential participants. 

Two principals recommended thirteen people who agreed to give their contact information to me. 
After being contacted, seven parents eventually participated in the interview process. After the 
interviews began, it became clear that the principals recommended some people who did not satisfy 
the original participant criteria of living outside of town and at least five miles away from the 
schools. Upon analysis, the comments of the parents who lived closer to the schools than originally 
desired were quite similar to those of the parents who did satisfy the original criteria.  Therefore, the 
inclusion criteria were relaxed. 

One severe limitation of this study, though, is that many of the people recommended by the 
principals were employed somehow either with the school district in which their children lived or 
another school district in the area (see the table below). When studying parental involvement in 
children’s mathematics education, this clearly produces an unwanted bias in the participant sample; 
however, on one hand, because of this it could be argued that we should expect to see the best 
parental involvement results possible with this sample. In a more unbiased sample, we would expect 
to see less involvement and more frustration among parents than in this sample of school-affiliated 
parents. Therefore, the results below may well indicate a best-case scenario for rural parental 
involvement, while the reality is likely worse. On the other hand, it could be argued that a more 
representative sample of rural parents may well be nothing like this sample of mostly school-
affiliated parents. Problems like this are typical of parental involvement studies.  For example, Civil 
and Bernier’s (2006) study of 15 mothers contained several who were teacher’s aids, some who were 
members of the local parent teacher organization, and some who were already regularly volunteering 
in the schools. Similarly, nearly half of Jackson and Remillard’s (2005) sample of mothers were 
highly involved in their children’s schools before the study. While this study’s sample is somewhat 
flawed and non-representative, the results below could still inform our ideas of rural parental 
involvement in mathematics education.  Below is a table profiling the participants. 

 
Table 1: Participants 

Name Children’s Age, 
Grade, Gender 

Education Occupation Spouse Education Spouse 
Occupation 

Amanda 23 
21, F 

15, 9th, F 
12, 7th, M 

Bachelor’s degree Nurse   
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Brad 15, 10th, F 
12, 7th, M 
9, 4th, M 
8, 2nd, M 

3, F 

Bachelor’s degree Youth minister in 
town of children’s 

school 

Bachelor’s degree  Stay at home 
mother 

Chad 15, 10th, F 
12, 7th, F 
8, 3rd, M 

Master’s degree Middle school 
teacher 31 miles 

away 

Associates degree Childcare 
professional at 

children’s school 
Denise 12, 7th, F One year of 

college 
Lunch lady at 

school in child’s 
district 

High school 
diploma 

Retail manager 25 
miles away 

Elizabeth 19, M 
17, 11th, M 
14, 9th, M 

Master’s degree Elementary 
resource room 

teacher in 
children’s district 

Bachelor’s degree Administrator 17 
miles away 

Fallyn 17, 11th, F 
13, 8th, M 

High school 
graduate 

Secretary in 
children’s school 

Two years of 
college 

Construction 
foreman 24 miles 

away 
Gabby 19, F 

17, 11th, F 
14, 8th, F 

Master’s degree Kindergarten 
teacher 8 miles 

away 

Bachelor’s degree Computer 
specialist 58 miles 

away 

Data Collection and Analysis 
Semi-structured interviews were conducted with the seven parents. With permission, the interviews 

were audio recorded and transcribed. Direct and indirect questions were asked to assess the 
participants’ thoughts with respect to the research questions. Responses were probed to make sure 
respondents were being understood as fully and correctly as possible. The researcher also attempted 
to ask follow up questions that enhanced the narratives being given by the interviewees. As the 
interviews were semi-structured, a few standard questions were asked, but the flow of the interview 
and the information gathered were largely left to the interviewees.   

In conducting these interviews, I was thinking of parental involvement in the terms of Lareau, Civil, 
and Remillard and Jackson. From Lareau (2000), I considered whether parents were as involved as 
they would like to be and maintaining communication about mathematics education with the schools 
in a way with which they felt comfortable. From Civil, I wanted to assess whether parents viewed 
themselves as funds of knowledge (Civil & Bernier, 2006). Furthermore, from an ethnomathematics 
perspective, I wanted to know how well they felt their knowledge and use of mathematics aligned 
with their experiences of helping their children with schoolwork. Finally, from Remillard and 
Jackson (2006), I wanted to ask about the parents’ involvement in their children’s learning and 
schooling, both in terms of what the school could and could not see. 

After the interviews were collected and transcribed, an open coding process began. The interviews 
were listened to in their entirety as notes were affixed to the transcripts summarizing what points 
were being made. Then, the transcripts and notes were inspected for common themes.  When a theme 
was found, all instances of that theme were highlighted in all transcripts. 

Results 
The first two research questions were: How satisfied are rural parents with their involvement in 

their children’s mathematics education, and what level of involvement do they desire to have in it?  
During data analysis, it became apparent that these two research questions could not be answered 
separately. When asked the first question, five of the seven parents interviewed said that they were 
satisfied with their level of involvement. For many of them, though, it appeared that they were 
satisfied with their level of involvement because between them and their spouses they were doing 
what needed to be done for their children to succeed. So, the apparent answer to the second research 
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question seemed to be that they desired whatever level of involvement was necessary for the success 
of the children at school mathematics. 

One parent who stated at the beginning of the interview that she was “absolutely not” as involved as 
she would like to be was Gabby. She said she wished she could be more directly involved, but was 
happy that her husband and a hired tutor were helping her daughters get what they needed: 

Gabby: My husband does a little more, but if we really get in trouble, we hire a tutor. 
Interviewer: How has the experience been so far with hiring the tutor?  Was that pretty easy to do, to 

find somebody? 
Gabby: It was wonderful.  Because I’m a teacher, it was pretty easy.  I think it’s probably more 

difficult for other people.  I think it was wonderful if you can afford to do it.  Especially being a 
teacher, I’m kind of done with that when I get home, and I don’t really want to deal with it any 
more. So, it’s really nice.  I happily would pay somebody to do that for me. 

The other parent who wanted more direct involvement was Elizabeth, a kindergarten teacher in the 
district where her children attend school. She said all of her children have struggled with math and 
that she probably should have been more involved. She cited concerns of both her perceived lack of 
mathematical ability beyond the elementary level and the time commitment it would take to be on 
top of communicating with mathematics teachers in a meaningful way as keeping her from being 
more involved. 

Even among the five parents who said they were satisfied with their level of involvement in their 
children’s mathematics education when directly asked, sometimes the interviews indicated that they 
would be happy to be less involved if they thought their children could succeed in class with less 
involvement on their part. Denise was one such parent: 

Interviewer: When you say you’re really involved in your daughter’s math education and working 
with her on the advanced math stuff, what does that mean?  What does that take the form of? 

Denise: It means I have an A in math right now.  <laughs> Just kidding.  It means that, basically, 
she’ll come home with her math book and a sheet of questions, and she’ll say, “I don’t know how 
to do any of these.  <laughs> And I’ll have to read over the book and the first few pages of the 
chapter, and do the examples, and then teach her the math…I feel like I’m in class every time she 
has homework, and I have to relearn seventh grade algebra piece by piece, and then teach it to 
her, and then do the problems together. 

So, in this case, Denise expressed before the above excerpt that she was as involved as she wanted 
to be, but it might be more accurate to say that she was as involved as she thought she needed to be 
for her daughter to succeed. At several points in her interview, she expressed frustration that her 
daughter seemingly always came home not knowing how to do the problems on the homework, 
which often made her question what went on during her daughter’s math class. Denise’s willingness 
to be involved in the process of doing the homework at this high of a level could also have 
contributed negatively to her daughter’s education by allowing her daughter to pay less attention in 
class. Still, she was doing what she thought she needed to do in order for her daughter to be 
successful. 

This brings us to the third research question regarding what causes unwanted parental involvement 
and what hinders desired parental involvement from happening. While Denise’s comments best 
illustrate the only type of desire for less involvement found during the interviews, several common 
themes emerged from the majority of the interviewees’ comments about what hindered their 
involvement. First, most of the parents that were interviewed said either they or their spouse had 
already reached a point where they did not feel confident helping with or doing the mathematics that 
their children were doing in school, or that they anticipated reaching that point in the future.  
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Whether the parents had already felt like they could no longer help their children with mathematics 

homework depended chiefly on the age of their oldest child. Those parents with at least one child in 
or beyond high school spoke of it as something that had happened already, as Amanda, Fallyn, and 
Gabby did. Those parents whose oldest child was only in middle school anticipated it, though. 
Denise, whose only daughter is in seventh grade, said:  

There seemed to be two potential causes for this split. First, the parent most likely to be interacting 
with the school either worked in the school or at least in the town where the school was located. The 
other parent generally did not work in the same town where the school was located, and often worked 
in another town some considerable distance away. This sort of long distance commuting is common 
in rural areas; however, given these commuting distances, it makes sense why the one parent would 
be communicating with the school more regularly than the other because of proximity. Elizabeth, 
who works in the local school but whose husband works nearly twenty miles away, was one example 
of this phenomenon: 

Second, however, where this parent split existed, it fell directly on gender lines. The mothers were 
more likely to be working at the school or in the town of the school, and the fathers tended to work in 
another town. Also, among the parents interviewed, the two men were helping their children with 
mathematics homework. One of them noted that his wife wasn’t comfortable doing so, or would 
often ask him questions afterward on the occasion that she did assist her children with math. The 
majority of the five women interviewed said that their husband was the primary mathematics 
homework helper in the home, particularly once the children were beyond elementary school. Chad, 
who is a certified mathematics teacher in another district over thirty miles away, but whose wife 
works in the local schools, was in this situation: 

Conclusions 
This study also attempted to determine what hinders and what facilitates rural parental involvement 

in mathematics education. One main finding was that while the geographically closer mothers were 
often the parents engaging in the most communication with the children’s teachers, the fathers who 
were more confident in their mathematics ability but worked farther away were most often the 
parents assisting the children with their mathematics homework.  Clearly this disconnect is not ideal. 
Having teacher communication with the parent most likely to help the children with the mathematics 
would be more helpful. 

It would appear that there are two potential ways to close this disconnect. First, as Civil et al. (2002) 
and Jackson and Remillard (2005) have done, the mothers can be engaged in a way that results in 
them feeling more confident with their mathematics ability. In turn, they might be more likely to help 
their children with their mathematics homework. Recall Gabby, who helped her children with 
homework in other areas, but said she “must” stay away from helping her children in mathematics 
because of her lack of confidence at doing mathematics. 

Second, perhaps more could be done to facilitate more communication between the fathers and the 
schools. Granted, the fathers tended to work farther away. This largely caused the lower level of 
communication with the schools and lower attendance at parent conferences. One tool that could 
potentially help this situation is the Internet. While work locations may well interfere with a rural 
father’s ability to attend parent-teacher conferences held during the school day or shortly thereafter, 
the Internet is available at any time. Perhaps mathematics curricula authors and mathematics teachers 
could work together with rural fathers to find ways to engage with each other meaningfully using the 
Internet. This could be as simple as sending out a daily email as some of the interviewed parents said 
some teachers did. It could also be more broad-based in scope, with curricula authors developing 
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modules for teachers to display on their websites for parents not familiar with the type of 
mathematics being taught or the way it is being taught. Also, while it is closing, the digital divide is 
still a matter to contend with for many rural families. While this is still the case, perhaps more low 
bandwidth Internet solutions should be studied. 
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This ethnographic study of one predominantly Latinx-serving high school in California theorizes 
around the functioning of re/humanizing pedagogies layered through the school and the mathematics 
department as they challenged flattened social, academic, and mathematical identities. Findings 
revealed that math department practiced built from school-wide commitments, offering students de-
flattened identities. However, challenges remained specifically related to the availability of advanced 
mathematics courses.  
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communities 

Colonial projects flatten the histories and lived experiences of minoritized communities, presenting 
homogenized narratives that label, compare, and sort people into groups for the sake of resource 
extraction and economic gain (Mignolo, 2003; Said, 2012). Schools are critical sites for the 
reproduction of these flattened social categories, (Eckert, 1989; Willis, 1977). Mathematics education 
participates in this project by providing fodder for categories of intelligence through the political 
legitimacy of mathematics (Apple, 1993) and the proliferation of tracking available in K-12 
mathematics education that consistently relegates minoritized students to lower tracks where they are 
denied quality learning opportunities (Oakes, 1990).  

The persistent reproduction of inequitable mathematical learning experiences and outcomes for 
minoritized students is well documented (Martin 2013; Tate, 1994). Yet, calls for change most often 
center mathematics pedagogy and programming as sites for intervention without attention to school-
wide culture and organization beyond mathematics itself (NCTM, 2018).  

This paper presents findings from a school-based ethnography that examined the production and 
negotiation of identities of mathematical competence across one predominantly Latinx-serving high 
school in California. The study uses re/humanizing pedagogies as a lens for asking how identities of 
mathematical competence were produced and negotiated. The dual focus on both whole school and 
math department commitments and practices revealed both resonance and tensions. Findings 
demonstrate that school and math department commitments challenged the flattening of social, 
academic, and mathematical identities to varying degrees of success.  

Humanizing Pedagogies and Rehumanizing Mathematics 
I use humanizing pedagogies (Bartolome, 1994) as an umbrella term inclusive of those pedagogies 

that challenge the colonial flattening of minoritized students. Under this umbrella, and specific to this 
study I focus on pedagogies that center care and relationship (Noddings, 1988; Valenzuela, 2005), 
and those that embrace responsibility for providing opportunities for academic excellence and 
supports, especially attending to the most vulnerable or traditionally excluded (Ladson-Billings, 
1995; Duncan-Andrade, 2005). Care and responsibility were central commitments of Sierra High 
School (SHS), the site of the study. Relations of care and deep responsibility for students were 
understood by SHS staff as challenges to the exclusion and neglect common to experiences of 
schooling for minoritized students. 
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Specific to mathematics education, Gutiérrez (2018) poses eight dimensions of rehumanizing 
practice. SHS math department commitments closely resonated with two: participation/positioning 
and the broadening of mathematics. Rehumanizing mathematics practices position students as valued 
participants in mathematics itself, not simply as consumers. A broadening of mathematics includes 
understanding mathematics as a living practice that entails communication, reflection, visual 
approaches, and collaboration. 

The dual frameworks of re/humanizing pedagogies and practices provided a lens through which to 
conceptualize the relationship between the school and math department in disrupting flattened social, 
academic, and mathematical identities to varied degrees of success.  

Methods 
Ethnography is an anthropological method for tracing cultural production and involving participant 

observation in the community of study over an extended period of time (Geertz, 1973). Ethnography 
was chosen for this study to enable mapping production and negotiation of intersecting social and 
mathematical identities at multiple layers. 

Sierra High School, the site of the study was a predominantly Latinx-serving public high school in a 
small urban district in California. The school faced a history of racialized stigma as the only 
predominantly low-income and predominantly Latinx school in a highly segregated district. In the 
years immediately preceding and including the study, the school community was conscientiously 
working to provide a counter-narrative to this entrenched negative reputation.  

Over two school years, the author acted as a participant observer across multiple school contexts 
including academic and non-academic spaces, with a focus on mathematics teaching and learning. 
All math teachers were observed and interviewed. Formal and informal interviews were conducted 
with students and either audio-recorded or captured in fieldnotes. Detailed fieldnotes were produced 
daily. Artifacts were collected including lesson plans, student work, school brochures, and math 
course enrollment data by student.  

Analysis entailed bi-weekly review of field notes and artifacts and the production of an analytic 
memo (Emerson, Fretz & Shah, 2011). Analytic memos captured new and recurring themes and 
critical incidents that illuminated or contradicted details of a developing theme (Creswell & Poth, 
2016). The themes of care, responsibility, and de-flattening were identified and elaborated through 
this process. 

Findings 
I use two metaphors from SHS – the Energy Bus and the sheep – to illustrate the SHS staff’s 

commitments to care and responsibility. These school-level commitments permeated the mathematics 
department as well. A commitment to responsibility was expressed through the providing students an 
abundance of opportunities for both academic excellence and academic support. These opportunities 
also provided opportunities for relationships of care between teachers and students. Together, forms 
of responsibility and care functioned to challenge the flattening of social and academic identity 
categories, including but not limited to those of mathematical competence. However, challenges 
remained. Specifically, the availability of categories related to advanced math courses reproduced 
flattened math identities and racialized the distribution of these positions. 
Sierra High School Commitments: The Energy Bus and the Sheep 

When I initially approached the SHS math department about research I was enthusiastically 
welcomed to the “Energy Bus.” The Energy Bus was a metaphor used by the staff to describe the 
dramatic commitment of energy to students that SHS staff undertook together. This metaphor 
permeated staff communication. The Google Drive that hosted teacher resources was named “The 
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Energy Bus.” At the opening staff meeting of school year 2018-2019, new staff were introduced and 
enthusiastically commanded to “Hop on the Bus!” (Fieldnote 8.10.18).  

At the same opening staff meeting the Principal shared a video from her summer trip to Ireland, 
where she visited a sheep farm. Staff knew that she was raised on a sheep farm, and the use of sheep 
as a metaphor was familiar. The video showed a tractor and a sheepdog working together to 
maneuver a herd of sheep across a road into pasture. The sheepdog was seen gently pursuing one 
sheep who had strayed from the group. After sharing the clip, Principal James asked, “Did anyone 
think of any likenesses?”  Staff called out, “kindness,” “patience,” “encouragement” comparing the 
role of the sheepdog’s to theirs as teachers. One staff member commented, “You gotta get them all, 
we’re not going to leave any one on the side of the road.” The principal concluded, “Love always 
goes way farther with our kids. They need clear boundaries and some sternness, but there has to be 
love in there.” (Fieldnote, 8.10.18). 

The Energy Bus and the sheep metaphors were lived in tandem at SHS, through the provision of a 
multitude of opportunities for academic and extra-curricular excellence as well as academic and 
social supports. Centrally organizing the joint commitment to academic rigor and academic support 
was the combination of two programs: Advancement Via Individual Determination (AVID) and the 
International Baccalaureate (IB) program. These two programs traditionally have distinct target 
audiences. An AVID teacher described AVID as supporting “students who could go to college but 
just didn't have the things they needed to get there” (Interview, 1.11.19). In contrast, IB coursework 
and the IB Diploma program provide an elite international certificate of advanced standing. 

Students, while enthusiastic about the plethora of high quality academic and extra-curricular 
opportunities offered, consistently cited their teachers as the best thing about SHS. Students 
described teachers using words such as “supportive,” “friendly,” “nice,” and “helpful.” One student 
explained, “All the teachers I’ve had - they were always there when I needed help, so I think teachers 
are pretty amazing here” (Interview, 10.24.18, 11th grader). Another student said the best thing about 
SHS was “the connections I feel with my teachers. The more you build connections with them the 
more confident you feel to ask a question or share during class” (Fieldnote, 9.11.18, 12th grader). 
The SHS Math Department: We Keep it Rollin’ 

SHS math teachers in particular were recognized by students and staff as providing multiple layers 
of support and care, making themselves available during lunch and after school, and providing 
opportunities for re-takes of assessments and submission of late assignments. As one guidance 
counselor said, “Our teachers are here, especially in the math department, all the time. They're here 
all the time working with kids that come to see them” (Interview, 10.12.18). Classroom observations 
captured interactions across all ten math teachers that reflected rapport with students – examples of 
evidence included the use of humor and making connections to students’ lives within and beyond 
instructional contexts. 

In accordance with NCTM’s articulation of the tenets of high quality mathematics instruction 
(NCTM, 2014), the SHS math department was committed to student-centered and discourse-oriented 
approaches to teaching and learning mathematics. These approaches centered student participation 
and positioned students as authors of mathematical ideas, with students relying on each other for 
evaluation and revision of those ideas through peer conversation. These practices were in line with 
Gutiérrez’s (2018) “participation/positioning” dimension of rehumanizing mathematics. 
Observations of all teachers evidenced that students worked in collaborative groups and engaged in 
rich mathematical tasks. The department used a set of curricular materials reflecting discourse and 
sense-making approaches to mathematics. The department collaborated to revise and extend the 
materials to support and challenge their own students where they saw the need, providing expanded 
notions of the discipline of mathematics, Gutiérrez’s sixth principle.  
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De-Flattening: Successes and Challenges 
The wide range opportunities available and the commitments of adults to building connections with 

students provided students multiple access points to into the school community and relatedly multiple 
opportunities for complex identities. For example, in a space with a majority Latinx student-body this 
meant that understandings of what it meant to be Latinx were taken for granted as multiple and 
complex - drum major, IB student, lead actor in the school play, football player, valedictorian, or 
community service club president.  

The particular combination of opportunities and supports combined with the caring teacher 
relationships also served to broaden notions of academic excellence. For example, students at times 
were jointly enrolled in IB courses and in AVID. AVID, a symbol of extra support for reaching 
college, was widely respected at the SHS suggesting a de-flattening of notions of excellence in which 
making use of a wide range of academic supports was not equated with being a low-achiever or being 
unsuccessful. 

In the context of mathematics, students also articulated complex ideas about mathematical 
competence where students consistently referenced participation, perseverance, and being able to 
explain to others as indicators of mathematical competence. While many students also shared notions 
of mathematical competence that included accuracy and speed, in line with the dominant narratives 
of success in math (Franks, 1990), the de-flattening of mathematical competence itself provided 
expanded opportunities for students to identify as people with mathematical competence. 

One significant challenge to the de-flattening of identities through re/humanizing pedagogies at 
SHS was the fact that the multitude of programs made available a multitude of categories related to 
these courses and programs. While the aspirational vision of the school was one where every student 
benefited from both IB-level rigor and AVID-informed supports, the particular prestige of IB courses 
was recognized by students as a marker of comparative intelligence and status. In the math 
department specifically, Latinx students were underrepresented in IB courses and in their advanced 
prerequisites. 

Discussion and Implications 
School-wide commitments to care and an outpouring of energy through academic and extra-

curricular programming was reflected in the mathematics department through student-teacher 
relationships and was extended through pedagogical commitments to student-centered, sense-making 
pedagogies that offered expanded views of mathematics and therefore more expansive and inclusive 
opportunities for students to identify people with mathematical competence. 

Careful attention to the school context revealed the ways in which school level commitments   
shaped the aspects of rehumanizing mathematics practices taken up in the math department. Findings 
suggest that the rehumanizing math practices that math teachers develop will draw from whole-
school commitments. At the same time, there may be tensions between the school-level 
conceptualization of humanizing pedagogies and enactment in the mathematics context. For example, 
mathematics education is one of the disciplines most susceptible to notions of comparative 
categories, including both advancement and remediation, such that the multitude of high quality 
opportunities at SHS, while largely celebrated by students and families, played into the reproduction 
of widely available of narrow, comparative, and racialized categories of math student. 
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This case-study sought to describe instruction that supported students’ mathematical learning (ML) 
and social-emotional learning (SEL). Transcripts from audio-recorded lesson observations and 
teacher interviews, field notes, and written teacher reflections were collected to answer two research 
questions: (1) In what ways does a high school mathematics teacher support ML and SEL during 
instruction? (2) How does the teacher characterize her attempts to provide social-emotional and 
mathematical supports during instruction? Preliminary findings suggest that strategies for revising 
ideas and handling errors support students ML and SEL. 
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High School Education 

Traditionally, research in mathematics education has focused much of its attention on achievement. 
However, a growing body of research suggests that maintaining a focus on achievement ignores other 
key factors in understanding students’ learning of mathematics, especially in discussion- and 
collaboration-oriented classrooms of the reform era (Bargagliotti, Gottfried, & Guarino, 2017; Battey 
& Levya, 2016; Horn, 2008). More specifically, researchers have highlighted the importance of 
understanding the social and relational aspects of particular learning contexts (Battey, 2013; Battey 
& Levya, 2013; 2016; Hackenberg, 2005; 2010; Moschkovich, 2002). 

Across a variety of contexts, researchers have noted the importance of teacher-student relationships 
(Allexsaht-Snider & Hart, 2001; Averill, Anderson, Easton, Smith, & Hynds, 2009; Delpit, 2012; 
Hackenberg, 2005). These relationships are especially important – and complex – when students and 
teachers from different cultural backgrounds come together to pursue the learning of mathematics 
(Battey, 2013; Delpit, 2012; Hackenberg, 2010). Therefore, the primary goal of this study is to 
describe mathematics instruction that fosters students’ development of positive relationships with 
individuals and mathematics within the classroom. 

Theoretical Framework 
Seeking to understand the social and relational elements of instruction is a complex undertaking 

(Battey, 2013; Hackenberg, 2010; Horn, 2008). A previous study (Gartland, 2019) identified 
instructional moves made by a third-grade mathematics teacher that supported students’ 
mathematical learning (ML) and their social-emotional learning (SEL). Additionally, Bargagliotti, 
et.al. (2017) linked instructional choices made in kindergarten mathematics to students’ learning and 
social-emotional development. However, I have yet to locate literature on supports for ML and SEL 
at the high school level. This study addresses that gap.  
Supporting Mathematical Learning 

Positive social interactions and relationships within the classroom are a necessary element of 
instruction. Thus, Battey’s (2013) framework for relational interactions to help define what I 
consider to be instruction that supports ML. A relational interaction is “a communicative action or 
episode of moment-to-moment interaction between teachers and students, occurring through verbal 
and nonverbal behavior that conveys meaning and can mediate student learning” (Battey & Levya, 
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2013, p. 981). A relational interaction can be categorized as: addressing behavior, framing 
mathematics ability, acknowledging student contributions, attending to culture and language, or 
setting the emotional tone (Battey, 2013). These categories take into consideration a teacher’s 
Mathematical Knowledge for Teaching (Loewenberg Ball, Thames, & Phelps, 2008) and other 
instructional practices for focusing students on mathematical ideas (Battey, 2013). Thus, I consider 
instruction that supports ML to be the observable relational interactions and instructional decisions 
associated with meeting a particular mathematics learning goal. 
Supporting Social-Emotional Learning 

Instruction that supports students’ SEL has been most systematically researched in the K-6 context 
(Weissberg & O’Brien, 2004). However, with increasing numbers of districts adopting SEL 
initiatives, the Collaborative for Academic, Social, and Emotional Learning (CASEL) has taken a 
leading role in working with schools to research and promote SEL best practices (Blad, 2015) at all 
levels of schooling. Across SEL curricula and policy documents, several key features emerged. 
Instruction that supports SEL in students can be defined as what a teacher does to promote self-
awareness and self-management of feelings, positive identity development, and decision-making 
skills among students (CASEL, 2019; Elias & Moceri, 2012). 
Blending Mathematical and Social-Emotional Supports 

More research shows the benefits of SEL-focused interventions than on intentional blending of 
academic and social-emotional supports (CASEL, 2019; Weissberg & O’Brien, 2004). Even fewer 
studies directly link ML and SEL. In one such study, Bargagliotti, et.al. (2017) highlighted 
relationships between kindergarten mathematics instruction and academic and social-emotional 
outcomes. Although they noted several positive associations between mathematics instruction and 
both academic and social-emotional outcomes, they warned “readers against generalizing these 
findings to grade levels beyond kindergarten” (p. 27). In response to their concern, this study aims to 
explore similar phenomena at other grade levels. 

Since little research exists that explicitly describes instruction that supports both ML and SEL, other 
literature informs potential areas of overlap. Real-time reports of academic-SEL integration in school 
districts (CASEL, 2018) as well as research on learning from errors in mathematics (Steuer, 
Rosentritt-Brunn, & Dresel, 2013; Zander, Kruetzman, & Wolter, 2014) point to instruction on the 
handling of errors as a means for improving discussion and collaboration. Futhermore, instructional 
strategies such as rough-draft talk (Jansen, Cooper, Vascarello, & Wandless, 2017) can provide 
students with opportunities to discuss not only errors but also incomplete mathematical thoughts in 
ways that enhance the learning experience. These findings highlight a space for potentially observing 
instruction that supports both ML and SEL. 

Guided by these ideas, this study explored two research questions: (1) In what ways does a high-
school mathematics teacher support ML and SEL during instruction? (2) How does the teacher 
characterize her attempts to provide social-emotional and mathematical supports during instruction? 

Methods 
Participant 

This paper presents the preliminary findings from a case-study (Hatch, 2002) of one high-school 
mathematics teacher, Ms. Yang. She has 5 years of experience teaching at a large suburban high 
school, and she has taught versions of Geometry, Algebra, Pre-Calculus, and Calculus. Ms. Yang 
actively participates in professional development and continuing education focused on improving 
students’ discussion of mathematics.  



Supporting the whole student: blending the mathematical and the social emotional 
 

	 543	

Data Collection 
A variety of data was collected over the course of a high-school semester. Four audio-recorded 

observations of an 80-minute, semester-long, college-preparatory, integrated mathematics course 
were conducted. In addition to the audio-recordings, each observation also generated field notes, a 
transcript, and a written teacher reflection. Finally, following the final observation, Ms. Yang 
participated in a half-hour semi-structured interview (Strauss & Corbin, 1994). 
Data Analysis 

Data analysis is currently ongoing. Thus, data has been, and will continue to be, coded using 
multiple approaches. First, a priori codes informed by the literature were applied to the data. More 
specifically, data was coded for observed relational interactions (Battey, 2013), which constitute ML 
supports, and observed SEL supports (CASEL, 2019). Next, an open coding process was used to 
reveal any unanticipated themes or patterns (Hatch, 2002). Codes have been compared and grouped 
using a constant comparison approach (Strauss & Corbin, 1994). Observation data has been more 
thoroughly analyzed than the interview data at this point. 

Preliminary Findings 
The following sections present two emerging themes. First, rough-draft talk frequently stood out as 

an instructional practice that supported ML and SEL in Ms. Yang’s class. Second, while reflecting on 
and discussing her own teaching, Ms. Yang consistently linked student feelings of comfort and 
confidence with high quality mathematics. 
“I’m Not Looking for a Final Answer.” 

To the left of Ms. Yang’s Smart Board was a section of decorated space dedicated to “Rough Draft 
Talk,” in which paper cut-outs of hands giving a “rock-on” gesture contain examples of what 
constitutes rough-draft talk. On another wall, the “Rights of Learners” (Kalinec-Craig, 2017) were 
listed: students in this classroom always have the right to be confused, to make a mistake, to say what 
makes sense to them, to share unfinished thinking and not be judged, and to revise their thinking. 
These displays and the consistency with which she referred to aspects of rough-draft talk as 
conceptualized by Jansen, et. al. (2017) and the rights of the learner showed that they were an 
integral part of her teaching practice. Most importantly, instructional practices involving rough-draft 
talk emerged as the ones most frequently supporting both ML and SEL. 

While coding the data for relational interactions and SEL supports, references to and the use of 
rough-draft talk appeared often. To investigate relationships between the three constructs further, 
excerpts that illustrated the principles for supporting rough-draft talk (Jansen, et.al., 2017) were 
selected. Then, any codes for ML supports (i.e. relational interactions) and SEL supports associated 
with the excerpts were noted. This process allowed connections to be drawn between key features of 
each construct. Table 1 summarizes the relationships between the principles for supporting rough-
draft talk and observed instruction that was coded as a relational interaction and a support for SEL. 
Also included in the table is an excerpt illustrating each principle. 

 
Table 1: Rough-Draft Talk as a Support for Mathematical and Social-Emotional Learning 

Principles for Supporting Rough-
Draft Talk Corresponding ML Categories Corresponding SEL 

Supports 

1) Foster a culture supportive of 
intellectual risk taking 

Framing mathematics ability; 
setting the emotional tone 

Promoting decision-making 
skills 
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Example: “Can I see your graph? Would you be willing to share it on any of these boards? No pressure, 
no pressure…Oh! Snaps! Snaps! Hey, and that’s your right, right? Share unfinished thinking. No one’s 

judging you. Thank you for even starting this off.” 

2) Promote the belief that learning 
mathematics involves revising 

understanding over time 

Acknowledging student 
contributions; addressing 

behavior 

Promoting self-awareness 
and self-management of 

feelings; promoting 
positive identity 

development 
Example: “Do you know all the words for the different transformations? Can you rattle them all off? 

…How about this, if you don’t know them just say left/right, up/down, big/small. Okay? Mirror. 
Whatever it is. Then we’ll refine those words together.” 

3) Raise students’ statuses by 
expanding on what counts as a 

valuable contribution 

Acknowledging student 
contributions; framing 

mathematics ability 

Promoting positive identity 
development 

Example: “Thank you! For being honest about that! How many of us felt that way? Like, ‘the three 
minutes lapsed and I don’t have any idea what is happening.’ Hey! Look around the room. Everybody's 

in the same boat as you. You're good. Alright, so help each other out.” 

 
“Be Brave. Be Kind” 

A second finding is that when discussing her own instruction Ms. Yang tends to focus on decisions 
related to student discussions of mathematics. In describing those decisions, she almost invariably 
links the decisions to perceived student comfort and confidence. For example, Ms. Yang explained 
that “the students shared how it’s not so much what their teachers say that makes them feel devalued, 
but it’s what [their teachers] don’t say when they present an answer that makes them feel like there 
was something inherently wrong with their response.” In working to avoid those types of 
interactions, Ms. Yang expects herself and her students to live by the class motto: “Be brave. Be 
kind.” She believes that deeper and higher quality mathematics discussion, and therefore learning, 
will take place only after students feel comfortable and confident in the classroom. This finding will 
likely be expanded as the analysis of the interview data is completed. 

Discussion and Conclusion 
Individually, these findings identify a particular instructional strategy that supports both ML and 

SEL and highlight the ways in which a high-school teacher characterizes her own attempts to provide 
such supports. Taken together, these findings suggest that teachers who attend to student comfort and 
confidence within the classroom are likely to be implementing instructional strategies that support 
both ML and SEL. This is significant because such limited research exists beyond the K-6 grade 
bands related to the integration of ML and SEL. More specifically, it provides a viable starting point 
for future research. 

Limitations associated with the single-participant case-study design prevent generalization and 
establishment of any links between the support of ML and SEL and student learning outcomes. 
Additionally, this study excludes the student perspective. Thus, immediate future research will focus 
on collecting and analyzing student data to continue gaining a deeper understanding of instruction of 
this type. 
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A considerable corpus of research exists about people’s views of gender and mathematics. As this 
research is nearly always reported by binary participant groups (e.g., women/men), there is a gap in 
the research about the views of people with non-binary genders. We conducted a study in Canada 
and Australia about the general public’s views of gender and mathematics. Here, we report on the 
findings specific to the non-binary participants in the study (n = 7). Participants generally were quite 
gender-egalitarian in their responses, demonstrated sound understanding of gender as a social 
construct, and avoided the use of “sex” language and binary language. We conclude by discussing 
considerations for conducting research with non-binary participants. 

Keywords: LGBTQ; Gender and Sexuality; Affect, Emotion, Beliefs, and Attitudes 

A great deal of research has been conducted about people’s views of gender and mathematics, the 
vast majority of which has been undertaken with students, teachers, and parents (e.g., Denner, 
Laursen, Dickson, & Hartl, 2018; Moè, 2018; Nürnberger, Nerb, Schmitz, Keller, & Sütterlin, 2016). 
Although parents and teachers certainly play a substantial role in students’ developing conceptions of 
gender and mathematics, it is also important to understand the broader context in which these 
conceptions form. Therefore, investigating the general public’s views of mathematics provides 
crucial information about other views to which students are exposed. 

There is a paucity of research about the general public’s views of mathematics, and even less 
regarding the general public’s views of gender and mathematics. One notable study about the latter 
topic was conducted by Forgasz and Leder in Australia, working with international collaborators in 
Canada, South Korea, Spain, and the United Kingdom (e.g., Hall, 2018; Forgasz, Leder, & Gómez-
Chacón, 2012; Forgasz, Leder, & Tan, 2014). Participants were asked about their views of gender 
and mathematics, as well as related topics (e.g., science). All of the gender-related questions used in 
this study were worded in a binary manner (e.g., “Who are better at mathematics, girls or boys?”), 
and participants’ genders were assumed, based on appearance, by interviewers. 

Although the findings of this study are informative, we were concerned about the binary wording of 
the questions, as well as the gender attributions (Ryle, 2019) made by the interviewers. Therefore, we 
adapted Forgasz and Leder’s instrument so that the questions were written in a non-binary manner, 
and participants were explicitly asked to identify their genders. We trialled this instrument in Canada 
and Australia with approximately 400 members of the general public. 

Here, we report on findings specific to a participant group that is vastly under-represented in 
research: non-binary people. In studies regarding people’s views of gender and mathematics of which 
we are aware, findings are presented by binary participant groups (e.g., girls/boys). Such groupings 
are indicative of binary conceptions of gender and therefore marginalize an entire gendered 
participant group and overlook their views and experiences.  

Theoretical Perspectives 
Working from a feminist and social constructivist stance, we view gender as a performative social 

construct that occurs on a spectrum, rather than in a binary (Butler, 1999; Ho & Mussap, 2019). 
Specifically, we conceive of gender as the “behavioral, social, and psychological characteristics” 
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(Pryzgoda & Chrisler, 2000, p. 554) of women, men, and non-binary individuals. The broader 
category of non-binary genders comprises several variants, such as pangender and genderqueer. 
Here, for simplicity and to reflect our participants’ terminology, we use the term “non-binary” to 
refer to participants with genders outside the woman/man binary.  

Since gender is a social construction, what is considered appropriate for each gender is subject to 
the specificities of time, place, and culture. Mathematics is a field that was historically and continues 
to be conceptualized as masculine in Western culture (Ernest, 1998; Leyva, 2017). Hence, exploring 
views of gender and mathematics remains a worthy research goal. 

Research Design 
The study was conducted in two large, comparable cities: one in Canada and one in Australia. 

People in four ‘matched’ public places (e.g., shopping mall in each city) were approached and asked 
to orally complete a brief questionnaire about their views of gender and mathematics. In the 
following sections, we describe the data collection instrument, participants, and analysis methods. 
Data Collection Instrument 

Our data collection involved the replication of some questions from the questionnaire used in the 
aforementioned study led by Forgasz and Leder, but we altered the gender-related questions to make 
them non-binary. For instance, instead of asking “Is it more important for girls or boys to study 
mathematics?”, we asked “For which gender is it most important to study mathematics?” The 
purpose of changing the wording was twofold: 1) We did not want to provide binary gender options 
and 2) We wanted to make the wording sufficiently open-ended so that participants would use their 
own wording in their responses. As such, we were able to analyze the linguistic choices that the 
participants made in their responses, as we will later discuss. 

The questionnaire had three sections. In the first section, participants provided demographic 
information (e.g., gender, age). Participants’ genders were not assumed based on appearance; rather, 
participants were asked, “What is your gender?” In the second section, participants were asked five 
questions about their views of gender and mathematics (e.g., ability, importance) and prompted to 
explain their responses. In the third section, participants were asked three questions about their views 
of gender and related constructs (e.g., sex) and again prompted to explain their responses. Finally, 
participants were given the chance to provide any additional comments about gender and 
mathematics. Here, we report on findings from the second section of the questionnaire. 
Participants 

In total, 405 adult participants took part in the study: 195 from Australia and 210 from Canada. Due 
to the participants’ inconsistent use of gender terminology (e.g., woman, man, genderqueer) and sex 
terminology (e.g., female, male), responses to the gender demographic question were combined into 
the following categories: women/females/etc., men/males/etc., and non-binary. Examples of ‘etc.’ 
responses were “girl” for the first category and “bloke” for the second category. Information about 
the participants is shown in Table 1, with percentages applying to columns. 

Table 1: Australian and Canadian Participants, by Gender Group 
Gender Group Australian Participants Canadian Participants 
Women/Females/etc. 88 (45.1%) 109 (51.9%) 
Men/Males/etc. 105 (53.8%) 96 (45.7%) 
Non-Binary 2 (1.0%) 5 (2.4%) 
 

There was a higher proportion of non-binary participants in Canada than in Australia. In total, seven 
(1.7%) of the participants across the sample were non-binary. This percentage is slightly higher than 
estimates (less than 1%) from larger questionnaires conducted with the general public in Australia 
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and Canada (Australian Bureau of Statistics, 2018; Waite & Denier, 2019). Additional details about 
the non-binary participants are shown in Table 2. 

Table 2: Demographic Information about Non-Binary Participants 
Participant Gender Response Age 

Category 
Language(s) Spoken at 
Home 

Highest Level of 
Education 
Completed 

AusNB1 “genderqueer… non-binary” 18–39 English High school 
AusNB2 “non-binary” 18–39 English College* 
CanNB1 “non-binary” 40–59 French College 
CanNB2 “other or third” 18–39 English High school 
CanNB3 “non-binary” 18–39 English High school 
CanNB4 “non-binary” 18–39 English Undergraduate 
CanNB5 “non-binary” 18–39 English/French Undergraduate 
*Note: In Australia and Canada, college is a post-secondary institution that typically offers career-focused programs. 

Data Analysis 
The participants’ responses to the open-ended questions were analyzed using emergent coding 

(Creswell, 2014). That is, all responses to a question (from the entire dataset) were read multiple 
times to get a sense of the data. Then, codes were created and applied to the responses. Participants’ 
responses were also allocated a “sex/gender language” code (SGL code; e.g., sex, gender, mixed) and 
a “binary/non-binary language” code (BNBL code; e.g., binary, non-binary, no indication). For 
instance, if a participant responded, “It’s equally important for boys and girls to study math,” the 
response would be coded with a “gender” SGL code and a “binary” BNBL code. In contrast, a 
response of “Males, females, and people of mixed genders can do math equally well” would be given 
a “sex” SGL code and a “non-binary” BNBL code. Due to the small number of non-binary 
participants, only descriptive statistics (e.g., counts) could be calculated. 

Findings 
In the following sections, we provide details about the non-binary participants’ views on gender and 

mathematics, based on their responses to five open-ended questions on these topics. Unless otherwise 
mentioned, no SGL or BNBL was used in the vast majority of responses. 
Relationship Between Mathematics Ability and Gender 

Participants were asked whether they believed that mathematics ability was related to gender, and, 
encouragingly, most (n = 5) did not. Participants cited that individual variability precluded this kind 
of relationship, as characterized by a comment that any observed ability difference “is due to 
socialization and it’s not actually due to their innate abilities” (CanNB5). Of the participants with 
other viewpoints, one argued that there was “a very strong emphasis in males, especially to perform 
in mathematics” (CanNB2) and the other explained that “girls are better at maths because they…are 
raised to have more patience, are not expected to just be good at things automatically” (AusNB1). 
Interestingly, these participants also justified their positions using arguments about social practices, 
rather than inherent differences. 
Change Over Time in this Relationship 

Next, participants were asked if they believed that there had been a change over time in the 
relationship between mathematics ability and gender. Most (n = 5) expressed a belief that there had 
been a change over time, but that this change related to outcomes rather than actual ability. 
Participants noted that there has been increased opportunity in recent times for people with 
marginalized genders to access mathematics. AusNB1 explained that “education and employment in 
maths and sciences hasn’t been accessible to women and people of other genders historically until 
very recently.” The remaining participants indicated that they did not think there had been a change 
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over time but did not elaborate on their reasoning. In terms of the use of SGL, the bimodal responses 
(n = 3 for each category) were gender language or no indication of SGL. 
Perceptions of Parents’ Views of this Relationship  

Participants were asked if they believed that parents thought that mathematics ability was related to 
gender. The responses to this question were bimodal (n = 3 for each category): that it depended on 
the parents or that parents favoured boys. For example, CanNB1 suggested that parents’ views 
depended on their cultural backgrounds, whereas AusNB1 argued that “obviously parents have 
gendered expectations of the vocations that their children will choose and I think they probably are 
more likely to expect boys to become engineers.” While responding, some participants referenced 
their own parents’ views, while other participants answered generally. 
Perceptions of Teachers’ Views of this Relationship  

Participants were also asked if they believed that teachers thought that mathematics ability was 
related to gender. There was little consistency in the responses: three participants said that such 
views depended on the teacher, one thought that teachers favoured boys, one thought that teachers 
viewed all children equally, and two provided unclear responses. Some participants responded 
generally, while others extrapolated from their own experiences. For example, AusNB2 reported, “I 
just feel like they would always put the people that were males ahead of the class or think that they 
would do better” and shared a story of a teacher thinking that they cheated on a test because they 
earned 100%, while no boys did (AusNB2 identified as a girl at this point). 
Gender and the Importance of Studying Mathematics 

In the final question, participants were asked, “For which gender is it most important to study 
mathematics?” The modal response (n = 5) was that it was important for people of all genders to 
study mathematics. For instance, CanNB2 stated, “I believe all of them are equally important. I don’t 
think that professions should be limited by gender.” The other two participants 1) provided an 
unclear response and 2) stated that it was more important for women to study mathematics. While 
responding, four participants used non-binary language while one used binary language.  

Concluding Remarks 
In this report, we described the findings pertaining to the non-binary participants in our study of the 

general public’s views of gender and mathematics. Generally, these participants held gender-
egalitarian views and mixed perceptions of others’ views (i.e., teachers, parents). With regards to 
language use, use of any SGL or BNBL by the participants was limited. However, when used, sex 
language was rare, and only one instance of binary language occurred. Although we cannot know for 
certain, it is reasonable to assume that as a result of their personal experiences exploring gender, 
these participants are more knowledgeable and understanding that gender is social construct. Indeed, 
non-binary people tend to use gender-related language that is more sophisticated than that used in 
general society, and they are more likely to use gender language and non-binary language than are 
people with binary genders (Hall & Jao, 2018a, 2018b; Matsuno & Budge, 2017). 

Pervasive binary perspectives and structures of gender in society continue to marginalize non-binary 
people. We, in the mathematics education community, are not immune to such marginalizing 
practices. In the vast majority of mathematics education studies that include gender (either as a focus 
or simply as one of many demographic “variables”), researchers strictly involve binary gender 
groups. We hope that our study may serve as an example of a way to frame research, and collect and 
analyze data in a more inclusive way. In so doing, we hope to encourage other researchers to reflect 
on their own practices. It is only with our ongoing collective efforts that all members of our society 
will be included and represented in research. 
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This article presents initial findings of how the ideas of achievement and the achievement gap are 
presenting throughout U.S. federal education legislation. Through the lens of Critical Race Theory 
and governmentality, I highlight the ways in which achievement is used in legislation as well as how 
that connects to discussions of race and equity in mathematics education. The discussion links to 
research on how current trends in language use perpetuate policy as performance as well as anti-
Black sentiments within U.S. mathematics education. In conclusion, I join the calls for altering 
conceptions of what achievement means beyond the performance on assessments. 

Keywords: equity & diversity; marginalized communities; policy matters; social justice 

Mathematics education holds a unique position within the curriculum of K-12 education in the 
United States (U.S.) given that the National Assessment of Educational Progress (NAEP) has 
legislated periodic testing since 1969. This assessment requirement, together with legislated concern 
about the existence of achievement gaps in education, focuses attention on the disaggregated data of 
student test scores broken up by race. More specifically, the continued existence of a test score gap 
between Black and white students raises questions about how racism plays a role in legislation and 
what the focus of that legislation should be if not the gap between test scores. 

The continued inability for Black students to obtain a proficient status on mathematics assessments 
(U.S. Department of Education, 2019) is manifested in mathematics classrooms through the master-
narrative that racialized students, and Black students in particular, are unable to achieve in 
mathematics (Martin, 2009; Nasir, Atukpawu, O’Conner, Davis, Wischnia, & Tsang; 2009). This 
narrative exists within ideologies such as the myth that “mathematics is a white male subject” 
(Gutiérrez, 2008; Stinson, 2013) that lead to students having racialized experiences, where “the 
socially constructed meaning for race comes to be a deciding factor in who gets to do mathematics 
and who does not” (Martin, 2006, p. 223). 

As a way to illuminate the entrenchment of racism within mathematics education teaching and 
practice, I focus on how the messages of the master-narrative and racialized experiences exist within 
legislation in the U.S. To that end, this paper aims to explore the beginnings of the achievement gap 
conversation through an historical exploration of U.S. federal education legislation in an attempt to 
question if a focus on the achievement gap actually maintains ideas of racial neutrality within policy, 
when really there should be a more pointed focus on race as it impacts education (Bonilla-Silva, 
2014; Martin, 2003). In the end, this research shows that the continued removal of references to race, 
racism, and racialization as they relate to achievement is a continuation of an unequal and highly 
stratified education system based on race. 

Theoretical Framework 
There are two theories that I rely on to provide grounding for my research; they are Critical Race 

Theory (CRT) and governmentality. The importance of CRT stems from the ultimate goal to 
eliminate racial oppression while simultaneously working to rid society of all forms of subordination 
(Gutiérrez, 2013; Ladson-Billings & Tate, 1995; Solórzano, 1997, 1998; Tate, 1997; Yosso, Parker, 
Solórzano, & Lynn, 2004). CRT research in mathematics education uses the five elements of CRT to 
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acknowledge how practices such as tracking and intelligence testing actively work against students of 
color (Berry, 2008).  The second part of my theoretical framework is governmentality, which works 
with CRT to engage with policy documents and to uncover how the discourses of race have, in 
Foucault’s (1991) terminology, disciplined our way of thinking about particular topics.  In essence 
CRT and governmentality together seek to find, acknowledge, and name the ways in which power 
functions within the actions of mathematics classes in relation to education legislation. 

Methodology 
The methodology that I rely on to guide my analysis is historical ontology which allows for both a 

historical and philosophical analysis simultaneously. Essentially, historical ontology uses history, 
temporally, in an effort to understand how particular vocabulary can be used to limit how an idea is 
understood in the present (Hacking, 2002). Thus, looking at how a specific word is used in a 
particular time and place, and following its trajectory through time, it is possible to see how present 
ideas around that same word are constrained by the ways in which the word was used in the past. In 
this way, historical ontology works together with both CRT and governmentality to address issues of 
power through the use of vocabulary within legislation. 

Results 
In order to historically analyze vocabulary around achievement and the achievement gap, I used the 

historical record of U.S. federal education legislation starting with the Elementary and Secondary 
Education Act of 1965 (ESEA) including all of the subsequent reauthorizations of that Act. This 
includes the well-known reauthorizations such as No Child Left Behind (NCLB), as well as the 
Reagan era reauthorization which occurred within the Omnibus Budget Reconciliation Act of 1981. 
The method used to conduct this research is Critical Discourse Analysis (CDA) which provides a 
way to both search for and analyze underlying ideologies present within educational discourse 
(Fairclough, 2010). CDA allows for policy analysis to look beyond explicit rhetoric that exists within 
the policy documents to determine if present legislation is maintaining previous trends (Atkins & 
Wallace, 2012).  
Achievement in the Legislation 

As a way of exploring how achievement appears within the legislation, I searched through all of the 
reauthorizations for the words achievement and achievement gap. Table 3 presents the breakdown of 
those searches, together with a representation of how many sections address both the achievement 
gap and contain racial terminology to see if and where these ideas appear together. 

 
Table 1: Individual Uses and Section References to Achievement and the Achievement Gap 
 1965 1966 1968 1970 1972 1974  1976 1978 1981 1983 1988 1994 2002 2015 Total 

Achievement 
(all uses) 3 1 1 5 9 10  1 33 1 0 65 110 535 215 989 

Achievement 
gap, phrase 0 0 0 0 0 0  0 0 0 0 0 4 6 2 12 

Achievement 
gap, sections 
incl. racial 

terminology 

0 0 0 0 0 0 
 

0 0 0 0 0 2+1 4+1 0 6+2 

 Note. Full sections that include racial terminology relating to one theme are counted as “1” and sections that include racial 
terminology relating to more than one theme are counted as “+1” to indicate any partial sections referring to a particular theme. 

 
The word achievement on its own becomes more common in recent legislation, although it is 

present throughout most of the reauthorizations. A notable shift seems to have occurred with the 
1978 reauthorization, likely due to the introduction of the NAEP examination to the legislation. 
Clearly with language referencing student test scores and discussing the level of achievement of 
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students, the introduction of a new federal testing regime would account for the increased use of the 
word achievement in the 1978 reauthorization. The other interesting shift to note is the almost 
quintupling of the use of the word achievement from 1994 to 2002. Arguably, this increase could be 
largely due to the stated purpose of NCLB as desiring to pay closer attention to the achievement gap. 
However, this does not explain why there is such a drastic decrease immediately following NCLB 
where the legislation maintains a similar stated purpose. 

Despite a proliferation of research after NCLB extremely concerned about testing requirements and 
achievement gaps, the phrase achievement gap originates legislatively in 1994.  

Thus, according to historical ontology, the idea of the achievement gap presented in IASA feeds 
into the understanding of the achievement gap presented in NCLB. In addition, it is interesting to 
note how the use of achievement gap follows a pattern similar to the term achievement, in that the 
peak usage is in the 2002 reauthorization, followed by a drastic decrease in 2015. 

The third and final line of Table 3 represents a thematic analysis of sections within the legislation 
that contain racial terminology pulled from my dissertation (Hawks, 2019). This data was created by 
first searching for racial terminology, then thematically analyzing each section. For this data the 
theme of achievement gap was used for all sections of the legislation that indicated that a funded 
program was meant to focus on either eliminating the achievement gap or increasing minority student 
achievement. One of my assumptions when I created this category was that testing requirements and 
achievement gap sections would have a significant correlation with racial terminology given 
concerns about racial testing disparities in research (Meier & Wood; 2004; Rothestein, 2004). 
However, as Table 3 shows, there are very few connections between the use of racial terminology 
and references to achievement within the legislation. In fact, comparing the 6+2 sections that use 
both racial and achievement gap terminology with the instances of the phrase achievement gap shows 
a lot of overlap between the two measures. This trend is especially true for NCLB where the only 
mentions of the achievement gap that are not also linked with racial terminology are two sections 
which set aside funding to present recognition and awards to schools that have made substantial gains 
in closing the achievement gap between student test scores. The overlap lends credence to Hilliard’s 
(2003) conclusion that references to the achievement gap are implicitly referencing the racial 
achievement gap. 

Discussion 
One of the most intriguing elements of the achievement gap rhetoric is the simultaneous focus, and 

yet complete ignorance, of how race plays a factor in gauging achievement. For example, in a section 
of NCLB a definition of the achievement gap is proffered which identifies that one of the gaps of 
interest is the one between racial and nonracial students (P.L. 107-110, sec. 1503(d)(3)). This specific 
use of the term nonracial in relation to a definition of the achievement gap actually seems to suggest 
a self-correction within the legislation, simultaneously acknowledging how race plays a factor in the 
creation of the achievement gap while also indicating that there are those who do not fit within a 
“race” per se. The self-corrective nature of this turn of phrase and use of the term nonracial could be 
a further indicator of the anti-Black nature of U.S. education as theorized by Danny Martin (2019).  

The biggest problem with race falling to the background of the overall legislation is that when we 
begin to talk about the achievement gap and how that impacts racialized students, we are unable to 
engage with how racism, and racialization play roles in how those scores have come into being. 
Essentially, highlighting the racial achievement gap puts a spot light on disaggregated student test 
scores which then reifies the master-narrative around which students are able, or capable, of 
achieving well in mathematics. Thus as mathematics educators responsible for student performance 
in the subject most often tested and highlighted in achievement gap rhetoric, by avoiding race in our 
research and teaching we inadvertently, or intentionally, are complicit in maintaining the structures 
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that uphold racist ideologies. In a similar vein, Schick (2011) argues that moving from specific 
language around ensuring that racialized students do well to language around all students doing well, 
shifts the focus of policy away from the importance of considering how racialization impacts 
racialized students. 

In the end, mathematics education and the achievement gap are inextricably linked through both 
rhetoric and practice and what this analysis shows is that attempts to understand discrepancies in 
educational attainment and achievement is completely without a race analysis of any kind. This is 
partially because the ways in which race and achievement are used together, or linked, in the 
legislation are so limited as to be almost meaningless. For example, the main stream mathematics 
education literature that strives to discuss student test scores, merely uses race as a category to assist 
in the disaggregation of data as a comparative measure (Harwell et al., 2007; Post et al., 2008; Price, 
2010; Stiefle, Schwartz, & Chellman, 2007; Wei, 2012). This practice is also used in the presentation 
of scores for The Nation’s Report Card, which is also the basis for claims of the existence of an 
achievement gap between Black and White student test scores in mathematics. At a very basic level, 
these practices ignore, or attempt to simplify, the extremely complex nature of the idea of “race” to a 
categorical comparison between groups of students. What occurs because of this ignorance or 
inability to engage with the realities of racism and racialization in K-12 schooling, is that the master-
narrative is reified into existence and pseudo-scientific claims of hierarchies of intelligence are able 
to flourish unacknowledged in the background. Therefore, the danger of mathematics education 
policies and federal education legislation systematically removing references to race as they relate to 
achievement is the continuation of an unequal K-12 education system that is highly stratified based 
on race.  

Conclusion 
This conclusion suggests that if future legislation maintains the goal of eliminating the achievement 

gap(s) then it must be reframed to not only focus on the children of low-income families, but also the 
children of racialized families. Thus, if the goal of federal education legislation is actually to reduce 
or eliminate the achievement gap(s) there needs to be a stronger and more purposeful focus on issues 
that are impacting racialized students. Including the ways in which the legislation and policies have a 
tendency to refer to achievement as an individual characteristic rather than acknowledging the system 
of policies and assessments that define how achievement is to be understood. This includes, but is not 
limited to, acknowledging the historical ways in which racialized people have been systematically 
devalued, how that process continues in K-12 schooling today through tracking and testing 
requirements, and the importance of noting how the process of racialization treats students differently 
on both an individual and systemic level.  Without these, and other measures to actively engage with 
how race impacts schooling, the systems that maintain the existence of the achievement gap(s) will 
continue unfettered. In conclusion, as Spencer (2009) suggests, a way forward is for legislation to 
redefine what it means to achieve, by renegotiating the focus from achievement to success, which 
includes the role of resistance as a response to the limitations of schooling. 
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Abstract: This research report explores the ways in which the Community Mathematics Project 
(CMP) supports underserved populations to learn mathematics in a large urban area. This project 
seeks for parents to have tools to teach their children mathematics at home. As part of a longitudinal 
study, in this report we explore the experiences of a student-parent when learning and re-learning 
mathematics with the supports of a researcher and a teacher-parent. Findings suggest that sense-
making strategies supported the student-parent to make connections with prior knowledge to figure 
out new mathematical concepts. Further, the student-parent leveraged from this mathematical 
knowledge to use it in her daily life and to support her son learn mathematics at home. 

Keywords: equity and diversity, social justice, culturally relevant pedagogy. 

Objectives of the Study  
Family and parent engagement in mathematics is a crucial practice that facilitates and enhances 

deep mathematical learning (Turner et al., 2012), yet many parents feel disconnected from schools 
and from their child’s education in mathematics (Civil & Berneir, 2006; Mistretta, 2013). Thus, it is 
essential that teachers learn to leverage children’s funds of knowledge (Moll et al., 1992) in 
mathematics instruction (Turner et al., 2016) to engage families and communities, but it is also 
imperative that parents feel connected to their child’s learning. Indeed, parent participation in the 
early years of math education of children can increase academic development and math achievement 
(Cho, 2017).  

When parents and families become a part of the goal-setting and deep learning, children benefit. 
This research report will describe preliminary findings from the Community Mathematics Project 
(CMP)1, a collaborative endeavor that aims to address mathematics opportunity and achievement 
gaps that exist, especially as they relate to Hispanic and low-income students in the urban center of 
San Antonio, Texas. The project supports prospective elementary school teachers to attend to both in 
school (pedagogy that is centered on the use of student funds of knowledge) and out of school (to 
connect parents and communities to school/mathematics) opportunities through partnerships between 
a community college, a four-year institution of higher education, and community centers based in 
low-income neighborhoods, with a goal of sustainability through the identification of parent experts. 
This study focuses on a one-on-one tutoring program between a parent educator and a parent tutee. 

The CMP is multi-faceted and includes various mechanisms for facilitating partnership between 
these entities. The community college and four-year institution work to align curricula to improve 
prospective teacher pedagogical content knowledge and theoretical foundations.  Moreover, 
prospective teachers are provided with bridging opportunities as they matriculate to the four-year 
institution’s teacher preparation program. In this program, students who have been identified work 
with faculty in a community center to provide mathematics tutoring to parents in low-income 
communities. This allows the prospective teacher to gain knowledge about community members and 
parents while engaging them in culturally relevant mathematics activities. Further, parents are 
                                                             
1 Project funded by the Department of Education (Title V) 
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empowered to connect everyday practices to the school mathematics that they will be learning, and 
can engage more readily with their student who is learning similar concepts.  After one semester of 
this program in a community center, we envision identifying a “parent scholar” who can assist in 
sustaining the program once our prospective teachers move on.  In subsequent semesters, then, we 
will work with additional community centers. This one-on-one tutoring aspect of the project will be 
the focus of this presentation, which will present data related to the following guiding question: What 
are the experiences of a parent tutee who participated in the CMP tutoring center? 

Theoretical Framework 
To answer the aforementioned research questions of CMP, there are two main theoretical 

frameworks that undergird our work. The first framework draws from the immense research that 
foregrounds the mathematical knowledge and expertise of parents and families. The research in the 
literature review is situated in frameworks that resist the deficit notion that parents, families, and 
young children do not engage in practices that connect to mathematical ideas and skills. Rooted 
within seminal work of Moll et al. (1992) and the research of Funds of Knowledge perspective, when 
mathematics teachers value the experiences and practices of parents and families, they can make 
more connections to authentic ways that children use mathematics at home and in their communities.  

The second framework continues to dispel the myth that young children only learn mathematics in 
traditional classroom or pre-school settings—parents and families can play a role in how and in what 
contexts young children develop their mathematical knowledge and experiences (Berkowitz et al., 
2015; Cho, 2017). That is, through collaborations with researchers and mathematics teachers, parents 
and families can have more opportunities to learn mathematics, which may be shared with their 
children at home. The work of Marta Civil (Civil, 2007; Civil, Bratton, & Quintos, 2005) and 
colleagues (Rodriguez, 2013; Téllez, Moschkovich, & Civil, 2011; Willey, 2008) offer examples of 
how parents and families can engage in learning new mathematics based on their existing 
experiences. When parents and families have more opportunities to strengthen their own 
mathematical knowledge by making more connections to new ideas and skills, they can also have 
more opportunities to engage in similar discussions with their young children; thereby further 
pushing back on the notion of learning only occurring in the classroom.  As a result, a broader 
outcome of this project is to support more families, parents, and young children to build upon their 
existing knowledge while seeking new connections to more knowledge. The following sections will 
briefly discuss the existing literature and seminal scholars who have explored the notion of families 
of young children in the field of mathematics education. Given these frameworks, it is important to 
continue to study the integral role that parents and families play on how young children learn 
mathematics (Berkowitz et al., 2015; Civil, Díez-Palomar, Menéndez, & Acosta-Iriqui, 2008; 
Jackson & Remillard, 2005; Sheldon & Epstein, 2008) and their background knowledge that can be 
used as foundation for learning more mathematics. 

Methods 
Context. In an eight-week course, the researchers and a parent-tutor used aligned curricula to 

provide mathematics tutoring to parents and care givers seeking for them to have the tools to teach 
mathematics to their children at home. On this phase of this longitudinal study, the researchers 
worked with a Latino community in which parents spoke Spanish as first language (L1), they had 
limited knowledge of English, and in most cases parents held a high school diploma or less. The 
researchers provided supports in the form of co-teaching and content knowledge to a mother-tutor—
Isabel [all names are pseudonyms]—who taught mathematics to parents in her community. Isabel’s 
role was to promote sustainability of the program. From the twenty parents who started the program, 
we chose one of them—Ofelia—as a case study. We sought to understand teaching moves that could 
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support Ofelia make sense of mathematics, and understand additional supports that Ofelia can benefit 
from to learn and to teach mathematics to her child.  

Participants. Ofelia participated in an eight-week course in which the parent worked in a triad with 
the researcher and the parent expert Isabel. One of the researchers observed Ofelia at the community 
center as she received tutoring classes from Isabel. We sought to observe a parent whose educational 
background and characteristics represents the average parent of the Latino community.  

At the time of the study, Ofelia was 44 years-old. She arrived to the USA 12 years ago by crossing 
the border. Ofelia has been married for 20 years and has 2 children—the oldest was 19 (attended a 
local community college), and the youngest was 10 (5th grade). Ofelia went to school in Mexico and 
studied until 9th grade. Ofelia’s main job was cleaning house, however, at the time of the study, she 
was unemployed. Ofelia shared that she enrolled in the “Latino Math” program to support her 
youngest child to learn mathematics at home. Ofelia expressed that her youngest struggled with 
mathematics, and prior participating in the program, Ofelia did not have the mathematical knowledge 
to support him increase his mathematical achievement (Cho, 2015). Ofelia expressed that the 
differences between the way she learned mathematics in Mexico, and the way mathematics is taught 
in the USA presented challenges to support her child at home.  

Data collection. Data collection took place throughout eight weeks, which was the duration of the 
course. For one hour each week, one of the researchers went to the community center and supported 
Ofelia in developing understanding of mathematical concepts along with the parent-instructor—
Isabel. In class, the researcher used sense-making moves to support Ofelia relearn mathematical 
concepts, and also understand and figure out new ones.  

Data sources include: 420 minutes of transcripts from classroom observations, 99 minutes of 
transcript from two interviews to Ofelia and Isabel, detailed field notes from 7 classroom 
observations, and artifacts such as pictures from Ofelia’s work in her mathematics book.  

Analysis. Data collection and analysis were iterative processes (Yin, 2014). Coding took place in 
four cycles. Before coding we adopted an interpretivist approach (Miles & Huberman, 1994) to 
capture the essence of the participant’s sense-making process. Specifically, we coded the different 
ways in which the participant made sense of mathematics. We also coded on how the participant 
figured out content by building on prior knowledge. Because we acknowledged the participant’s 
educational background, we coded for her studying strategies to support her in developing new ones. 

Initial coding started by re-reading the data, but this time we looked for provisional themes and 
highlighted relevant quotes. Next, we used a descriptive coding process (Saldaña, 2013) which 
enabled us to analyze participant’s sense-making and figuring out over time. A provisional list of 
codes emerged and we organized these codes into a “meta-matrix” (Miles & Huberman, 1994, p. 
178). In other words, we assembled the descriptive data on a spreadsheet in chronological order. We 
used short phrases to find basic topics across the different data sources, and labeled each data source 
with codes. For instance, we focused on how different sense-making moves systematically supported 
Ofelia to learn the mathematics content and to figure out content without receiving explanations but 
from building on prior knowledge. Examples of these codes are: patterns, association, logical 
reasoning, look backwards, negotiate, think out loud, talk at every stage of problem solving, think of 
alternative ways to perform a task, and so on. To organize and refine the codes and themes we used 
“code mapping” (Saldaña, 2013, p. 194). In other words, we went through three iterations of analysis 
to reorganize the full set of codes into a list of 17 categories, to later condense those into 3 central 
themes: sense-making, figuring out, and studying strategies. These themes are unpacked in the 
following section.  
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Results 
Working with Ofelia one-on-one for eight weeks enabled us to explore in-depth the supports that 

she needed to make sense of mathematics. Analysis of the data suggests that sense-making moves 
supported Ofelia in developing understanding of mathematical concepts to systematically figure out 
new ones. At the same time, learning about mathematics provided Ofelia with tools to support her 
10-year-old son learn math at home, and to be confident to use math in her daily life.  

Sense-making and figuring out. One of the challenges to support the development of sense-
making was to bridge the disconnect between the way Ofelia was taught in Mexico and the way that 
mathematics is taught in the USA— “apprenticeship of observation” (Lortie, 1975, p. 61). In 
multiple opportunities Ofelia expressed the need to memorize mathematical procedures and time 
tables, and to be given answers away as opposed to making sense and finding answers for the 
mathematical problems. During our first sessions, Ofelia explicitly asked to be explained procedures 
and to be a passive listener. Ofelia would often give up when working on tasks and asked to be given 
answers. To move away from top-down learning, the researchers relied on sense-making moves such 
as building on prior knowledge and using logical reasoning. For example, Ofelia was working on 
factorization and the number she had was 75. Ofelia’s first attempt was to factorize by 2, “¿Se le 
hace? 75 entre… Y es 5, entre 2 (giggle), 35. [Is this? 75 divided by… And it is 5, divided by, 35.]” 
In the previous lesson, I explained that numbers that end in 5 or 0 are multiple of 5. The researcher 
encouraged Ofelia to make connections with the prior lesson and to reflect on how to solve the 
problem. Ofelia revisited the previous lesson and reflected, “Ay, a ver (erase). ¿Entonces voy a 
dividir entre qué? Entre 5, a ver (thinking out loud and working). 5x5=25. ¿Entonces divide entre 5? 
Y luego me da 15. Y 3x5, pienso. [Oh, let’s see. Then, I divide it between what? Between 5, let’s see. 
5x5=25. Then, divide it by 5? And I get 15. And 3x5, I think.]” As part of teaching Ofelia studying 
strategies, the researcher encouraged her to check her answers. She shared, “A ver, entonces pongo 
5x3=15. A ver. Es 75. Let’s see, then I write 5x3=15. Let’s see. It is 75.]” In this example, we share 
one way in which we supported sense making by building on prior knowledge and reasoning, and 
avoided giving answers away and memorization.  

Another sense-making move used was thinking out-loud. Thinking out-loud supported Ofelia to 
self-correct, negotiate, reflect, build from prior knowledge, and to think of multiple ways to perform 
a task. For instance, Ofelia worked on another factorization problem, 

Ofelia: 7x5=35 estoy repitiendo las tablas (giggle). 7x5=35; 7x6=42. Ah entonces es 42. Entonces me 
dijo según yo, aquí pongo el 42, lo resto. Serían 2 y aquí sería cero. Entonces bajo el 7, verdad? O 
ya voy mal? Ahora, 7x3=21; 7x4=28; sería 3. 7x3=21. Hago una restita, y luego son 6 y aquí son 
cero. Y el último lo bajo. ¡Yo ya no sabía que hacer con este híjole! (giggle). Okay, serían hay ya 
yai. 7x9=63. 9x7=63. ¿Será? Ya ya recordé (giggle).  

[7x5=35 I am repeating timetables. 7x5=35; 7x6=42. Then, it is 42. Then according to me, here I 
write the 42, I subtract it. It would be 2 and here it would be zero. Then, I bring down the 7, 
right? Or am I wrong? Now, 7x3=21; 7x4=28; it is 3. 7x3=21. I subtract, and then here is 6 and 
here 0. And the last one I bring down. I didn’t know what to do! Okay, it will be… hay ya 
yai.7x9=63. 9x7=63. Would that be? I I remembered.] 

In this example, Ofelia said timetables out loud as she looked to the answers. Then, she walked us 
through the procedure and because she was talking, she self-corrected, and she revisited previous 
exercises to solve this problem. 

Changes in terms of sense-making were more evident by the fourth learning session. By then, Ofelia 
asked not to be told the answers to the problems and she started looking for alternative ways to solve 
them—figure out.  

 



Community mathematics project: Tutoring low-income parents to make sense of mathematics 
 

	 561	

Mathematics in Ofelia’s daily life. The learning sessions supported Ofelia not only to make sense 
of mathematics and to figure out. The learning sessions also supported Ofelia in developing 
confidence about using math in her daily life, and bonding with her son more as they studied 
mathematics together. By the end of the program, Ofelia shared how she started using mathematics 
outside the learning sessions,   

 
Another important aspect of learning mathematics was that Ofelia could develop a better 

relationship with her son. Ofelia expressed, that learning mathematics allowed her to teach her son 
content related to his grade level and spend more time together,  

Discussion and Conclusions 
 
Secondly because Ofelia comes with an immense amount of mathematical experiences that she can 

draw from (as is what we posit is true for all parents, families, and young children who do 
mathematics) we bore witness to Ofelia actively leveraging her existing knowledge with her new 
knowledge and sense-making practices to advocate for herself during a purchase at a garage sale. 
Ofelia shows how when parents and families engage in mathematical sense-making while accessing 
connections to new mathematical knowledge, they also identify moments in which they can access 
and use this knowledge and practices in their daily lives. Moreover, Ofelia inspires us to help more 
parents and families to seek a wide number of opportunities for them to use their mathematical 
knowledge and sense-making practices to enact a sense of agency for fairness for themselves, their 
families, and communities (McGee & Spencer, 2015). The practice of engaging in sense-making 
while advocating for fairness and social justice is a line of research that can help the field to know 
more about the role of parents and families in the broader field of mathematics education (e.g., 
Mistretta, 2013; Rodriguez, 2013). 
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Gender differences in fourth and fifth grade students’ strategy use for a fraction story problem were 
investigated using multinomial logistic regression on a sample of 193 written student strategies. 
Gender was not a significant predictor of type of strategy used, in contrast to earlier studies finding 
that boys tended to use more abstract strategies whereas girls tended to use more concrete strategies 
or the standard algorithm. 

Keywords: Gender and Sexuality; Elementary School Education; Number, Concepts, and Operations 

Gender differences in mathematics have long been a topic of study in mathematics education 
(Fennema, 1974; Leyva, 2017). One particular focus of interest has been gender differences in 
strategy use, inspired in part by research in which Fennema, Carpenter, Jacobs, Franke, and Levi 
(Fennema, et al., 1998a, 1998b) found gender differences in students’ strategies for story problems. 
In a longitudinal study with 38 girls and 44 boys in grades 1-3, they found no gender difference in 
the ability to solve addition and subtraction story problems and multidigit computations, yet 
significant difference in type of strategy used to solve these problems. Girls tended to use concrete 
solution strategies. Boys tended to use abstract solution strategies that “reflected conceptual 
understanding” (p. 11). The researchers argued these results indicated differences in the degree to 
which girls and boys had developed mathematics understanding. 

Fennema et al. (1998a) invited interpretations of the results from four scholars: mathematics 
educator Judith Sowder; social psychologists Janet Hyde and Sara Jaffee; and feminist philosopher 
Nel Noddings. Sowder (1998) suggested these gender differences could reflect differences in 
preferences for explaining one’s strategy (e.g., girls prefer to give explanations that are clear for 
others) and worried that students who use more abstract strategies are more likely to make sense in 
mathematics and have a better chance at succeeding mathematically. Hyde and Jaffee (1998) 
cautioned against interpreting female deficits based on findings. They suggested teachers could hold 
gender stereotypes (e.g., girls are compliant, boys are independent) and that those stereotypes were 
activated in teachers’ interactions with students.  Noddings (1998) suggested girls could be less 
interested in mathematics and noted that society does not show the same concern when boys 
demonstrate less interest than girls in other activities (such as early childhood education or nursing), 
which led to a critique of the social structure: “Do we approve of a social structure that values 
competence in mathematics over competence in child care?” (p. 18). 

Other education researchers have also studied gender differences in strategy use (Carr & Davis, 
2001; Carr, Jessup, & Fuller, 1997; Carr, Steiner, Kyser, & Biddlecomb, 2008) and framed their 
findings in a variety of ways. For example, Carr and Davis (2001) examined 84 students’ use of 
strategy under both free and constrained choice. Under free choice, girls chose manipulative 
strategies while boys chose retrieval strategies, consistent with findings by Fennema and colleagues. 
Under constrained choice, they found that boys were able to use manipulative strategies, but girls 
were “not as capable” as boys in using retrieval. In their study, manipulative strategies were 
considered more concrete and retrieval strategies more abstract. In a cross national study, Shen, 
Vasilyeva, and Laski (2016) found gender differences in strategy use that mediated accuracy for 
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students in the United States and Russia but not Taiwan, suggesting that differences could be 
attributed to instructional contexts, rather than inherent to girls and boys. 

If gender differences in strategy use exist, they might reflect important differences in students’ 
conceptual understanding (Fennema et al., 1996; Sowder, 1998), the enactment of gender stereotypes 
by teachers (Hyde & Jafeee, 1998), or simply differences in students’ interests (Noddings, 1998). 
Whatever the source, attending to differences in strategy use is important, as they could reflect 
differences in opportunities to develop conceptual understanding. Further, because potential 
disparities in strategy use are not visible in standardized tests that do not differentiate between types 
of strategies used, investigating strategy use on a large scale requires analyses that account for the 
types of strategies girls and boys use to solve problems.  

Building on the early study on gender differences in mathematics (Fennema et al., 1998a), this study 
investigates gender and strategy use in fraction story problems. Our study is different in important 
ways. (1) Our analysis is over 20 years after the publication of the study by Fennema and colleagues, 
and thus provides a glimpse of current gender dynamics in mathematics teaching and learning. (2) 
Our study is comprised of fourth and fifth grade students solving a fraction story problem, compared 
to the first, second, and third grade students and a focus on whole-number addition and subtraction in 
the original study. Like Fennema and colleagues (1998a) and the invited interpretations (Hyde & 
Jafeee, 1998; Noddings, 1998; Sowder, 1998), we are careful to consider the importance of strategy 
use and avoid framing these differences as reflective of inherent differences in ability. We 
investigated these differences for 193 fourth and fifth grade students by asking the following: Are 
there significant gender differences in strategy use for fourth and fifth grade students solving fraction 
story problems?  

Methods 
Sampling and Participants 

Data for this analysis came from a larger professional development design study, focused on 
documenting and supporting the development of teachers’ responsiveness to students’ fraction 
thinking during instruction (Jacobs, et al., 2019). As part of this larger study, students from 50 
different classrooms were administered a paper and pencil assessment at the beginning and end of the 
school year, to measure fraction problem solving and conceptual understanding. Items were open 
response. A rubric for scoring and coding student responses was developed, and for each item, all 
responses were triple coded until 85% (or higher) agreement was reached among coders, at which 
point, responses were single coded. 
Data Sources and Analysis 

For the current study, we focus on one item on the assessment administered at the end of the school 
year to 562 students, in grades 4 and 5. Of these, 244 student responses were coded as having a valid 
strategy, which means the student started with the given quantities and operated on those quantities 
in some justifiable way to reach an answer, and they could include small mistakes. The item 
consisted of the following story problem: Allie has 1 6/8 sticks of butter. She needs a total of 5 1/8 
sticks of butter to make cookies. How much more butter does Allie need so she can make cookies? 

Each of the responses was coded individually for type of strategy used. For this analysis, we 
focused on valid strategies (n = 193), including concrete strategies (n = 19), invented algorithms (n = 
90), and the standard algorithm (n = 84). Strategies labeled as “other” (n = 24) or “none” (n = 27) 
were not included because they were not interpretable with respect to the research question. The final 
sample included 101 girls and 92 boys. These strategy codes and their frequencies in the sample are 
described and illustrated in Figure 1. Type of strategy served as our dependent variable. 
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Type of Strategy Example 

Concrete 
Strategies 

 
Girls  

(n = 10) 
Boys  

(n = 9) 

Direct modeling: strategies that 
represented all sticks and fractional 
sticks of butter individually. Usually 
these were notated with drawings. 
 
Counting up/down by unit fraction: 
Strategies that represented each 
individual group of 1/8 in the count in 
some way. 

 
 

 
Counting strategy 
 

Invented 
Algorithms 

 
Girls  

(n = 45) 
Boys 

 (n = 45) 

Computation strategies that 
decompose the mixed numbers and/or 
fractions in some way and/or 
increment or decrement in “hops” 
(larger than a unit fraction) in some 
way.  

 
Standard 

Algorithm 
 

Girls  
(n = 46) 

Boys  
(n = 38) 

Standard algorithms for subtraction in 
which a child uses knowledge of the 
standard algorithm procedure to 
determine the missing addend. 
 

 
Figure 1: Types of Valid Strategies and Examples Used in the Analysis 

 
Because the dependent variable is categorical, we used multinomial logistic analysis. Concrete 

strategies and the standard algorithm were separately predicted against the reference category of 
invented algorithms. We chose invented algorithms as the reference category because if gender 
differences reflecting conceptual understanding were significant, we would expect to see an over 
representation of girls in either concrete strategies or the standard algorithm. Using invented 
algorithms as the reference category allowed comparison of both concrete strategies and the standard 
algorithm to invented algorithms.  

We used three models to analyze students’ strategy choice and gender. The first model was used to 
detect if gender significantly predicted strategy use across grade levels. The second model was used 
to detect if gender predicted strategy use in fourth or fifth grade. In the third, we added the 
interaction of grade and gender to the second model. 

Results 
Results from the statistical models are listed in Table 1. Odds ratios (and standard errors) of the 

three models show that gender was not a significant predictor of concrete strategy use or standard 
algorithm use. In the first model, there was some significance in the intercept, meaning students were 
less likely to use concrete strategies than invented algorithms (p < 0.001), but these differences were 
not based on gender. In the second model, the significance in the intercept remained, and there was 
some significance in grade level (p < .05), meaning fifth grade students were less likely to use 
concrete strategies compared to invented algorithms. Again, these differences were not based on 
gender. We included the interaction of gender and grade in the third model and did not detect 
significance in the interaction. 
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Table 1: Results of Statistical Models 
 Odds ratio (and standard errors) 
Variable 1 2 3 

Concrete strategy compared to invented algorithm 
Intercept 0.20 (0.37)*** 0.33 (0.40)** 0.36 (0.41)* 
Female (compared to M) 1.11 (0.51) 0.99 (0.51) 0.81 (0.58) 
Fifth (compared to fourth)  0.22 (0.67)* 0.12 (1.10) 
Gender X Grade   3.14 (1.39) 

Standard algorithm compared to invented algorithm 
Intercept 0.84 (0.22) 0.64 (0.28) 0.64 (0.34) 
Female (compared to M) 1.21 (0.30) 1.27 (0.31) 1.28 (0.45) 
Fifth (compared to fourth)  1.63 (0.31) 1.64 (0.45) 
Gender X Grade   1.00 (0.62) 
 R2= .00 

χ2 = 0.40, p > .05 
R2= .03 
χ2 = 12.43, p < .05 

R2= .04 
χ2 = 13.18, p < .05 

N = 709; *p < 0.05; **p < 0.01; ***p < 0.001 

Discussion and Conclusion 
The implications of these findings are in the statistical insignificance of the dependent variable. We 

tested three models related to the research question: Are there significant gender differences in 
number strategy use for fourth and fifth grade students solving a fraction story problem? Because 
gender was not significant in any of the models tested, gender-based differences in strategy use were 
not indicated, a finding that is in opposition to previous findings.  However, we focused only on a 
single item and two grade levels, which limits the scope of our findings. Further, our study was not 
longitudinal and cannot speculate on trends in development of strategy use and conceptual 
understanding. Research across multiple assessment items and grades is needed for a more complete 
examination of students’ gender and strategy use in the domain of fractions. Finally, we noted that 
only 193 of the 562 students used a valid strategy, roughly a third of all students, which suggests that 
this was a difficult problem for the sample. Research on an item in which a greater proportion of 
students used a valid strategy is necessary to examine if and for what items the finding holds. 
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Gender-based inequities can arise within inquiry-oriented (IO) classes, affecting women’s 
participation and achievement. Given that social norms can enable/constrain students’ participation, 
it is pertinent for researchers to study social norms that are conducive to women’s learning and how 
they can be fostered. In this paper, we explore social norms present in two IO abstract algebra 
classes with positive learning outcomes for women students. We found social norms related to 
working on tasks, giving contributions, and responding to others’ contributions. We provide 
examples of these normative behaviors, discuss the instructors’ roles in fostering these norms, and 
examine how these norms could promote gender-based equity in IO instruction. 

Keywords: Gender, Inclusive Education, Classroom Discourse, Post-Secondary Education 

Prior research has shown that active learning approaches to instruction lead to improved student 
achievement (e.g., Freeman et al., 2014). However, Eddy and Hogan (2014) argued that any 
instructional intervention will affect different student groups in varying ways. Johnson et al. (in 
press) found men and women had differential learning outcomes in an inquiry-oriented (IO) setting; 
men experienced greater achievement gains than women in IO abstract algebra classes. This gap was 
not present in the non-IO classes that served as the comparison group for Johnson et al.’s study. In 
this study, we selected two divergent cases from the Johnson et al. data base. In these two classes, 
women students had positive learning outcomes. We analyzed the social norms in each class, 
identified the instructors’ roles in fostering these norms, and hypothesized ways in which these social 
norms may be conducive to women’s learning. 

Background 
Given the interactive nature of Inquiry-Oriented Instruction (IOI), it is pertinent to consider how IOI 

settings align with aspects of equity. Gutiérrez (2002) outlined four dimensions of equity as access, 
achievement, identity, and power. These dimensions align with Cook et al.’s (2016) characteristics of 
inquiry-based classes, for access is given to students through inquiry pedagogies that encourage 
participation and peer involvement (Tang et al., 2017). Participation gives the opportunity to build 
knowledge, which can foster achievement and confidence in mathematics. Peer involvement may 
lead to a shift in a student’s mathematical identity (Boaler & Greeno, 2000; Hassi & Laursen, 2015). 
There is also a shift of power from teachers to students in inquiry pedagogies. However, inequities 
may emerge with peer involvement. Group work may support privileged groups over marginalized 
groups by placing value on input given by students who are more likely to participate (Esmonde et 
al., 2009; Esmonde & Langer-Osuna, 2013). Smith et al. (2019) found evidence of instructors’ 
gender bias, with men disproportionately contributing to class discussions and women 
disproportionately being asked to contribute in less sophisticated ways. Since women have been 
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marginalized in mathematics classes, we investigate the social norms present in mathematics classes 
that may be conducive to women’s learning. 

Social norms describe the general rules and expectations for the teacher and students’ roles within 
any classroom. They “characterize regularities in communal or collective classroom activity and are 
considered to be jointly established by the teacher and student as members of the classroom 
community” (Cobb & Yackel, 1996, p. 178). Norms are a person’s “beliefs about [his/her] own role, 
others’ roles, and the general nature” of classroom activity (Cobb & Yackel, 1996, p. 177). Social 
norms within a classroom can support or constrain students’ participation, which can potentially 
impact equity in students’ participation and achievement. We posit that certain social norms may 
provide students with access and opportunities for mathematical identity development. We believe 
this warrants research on the social norms present in IOI classes and the role of instructors in 
fostering these norms. We address the following questions: What social norms were present in two 
IO abstract algebra classes that had positive achievement outcomes for women students? What is the 
instructor’s role in fostering these social norms? 

Methods 
We analyzed social norms present in two IO abstract algebra classes, taught by Dr. Carter and Dr. 

Ryan. Dr. Carter is a White man who taught at a large doctoral-granting institution in the Midwest 
US. Dr. Ryan is a White man who taught at a midsize masters-granting institution in the Northern 
US. Both instructors participated in a semester-long professional development focused on 
implementing IOI. Their women students had positive learning outcomes; their average scores on the 
Group Theory Content Assessment (Melhuish, 2015) were higher than the comparison sample of 
women. The same instructional unit involving the reinvention of definitions of isomorphism from the 
Inquiry Oriented Abstract Algebra curriculum (Larsen et al., 2016) was recorded for both instructors 
during weeks 4–6 in a 15-week semester.  

We analyzed two 50-minute subsequent class periods for each instructor. We identified episodes of 
behavior that conveyed students’ roles during class. We focused on how participants reacted to those 
behaviors. We wrote descriptions of these episodes, as well as memos (Maxwell, 2013) reflecting on 
how the behaviors in each episode seemed normative. We inferred a certain behavior was normative 
if it was common, classroom participants did not challenge one enacting that behavior, and/or class 
participants challenged a class participant when they did not comply with that behavior. These 
criteria were based on Clark et al.’s (2008) conditions for documenting the development of norms. 
We open coded these episodes (Miles et al., 2013), naming the norms present in these episodes. We 
also analyzed how the instructors fostered these class social norms. 

Results 
Norms for Students Working on Tasks 

Working on new tasks individually. Dr. Carter explicitly stated his expectation for students to 
work on tasks individually, saying phrases such as, “I want you to do this on your own” and “Paper. 
Pencil. Human. Solo.” Students behaved this way for the rest of the class. Each time they started a 
new task later in the class period, they worked on it individually before they talked to other members 
of their groups, without being prompted to do so. The commonality of this behavior was evidence of 
this being a social norm in Dr. Carter’s class. He fostered this social norm by setting expectations for 
students’ behavior. 

Discussing tasks with group members. After students in both classes worked on tasks individually 
for a few minutes, the students commonly started discussing the tasks with other group members, 
often without prompting. After some students began discussing the task, Dr. Ryan reinforced this 
behavior by telling the class to “convene in our groups and discuss what you’ve done so far and any 
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progress you’ve made.” The entire class began to discuss their ideas within their groups. This 
behavior seemed normative, for once students had ideas from their work, they began talking. Dr. 
Ryan fostered this social norm by reinforcing his expectations for students’ behavior, particularly 
when students did not yet comply with the expected behavior. 
Norms for Students Providing Contributions  

Sharing contributions. Dr. Carter and Dr. Ryan fostered this norm of students sharing 
contributions by explicitly leveraging students’ contributions to inform the lesson. For instance, Dr. 
Carter’s student, Jessica, shared a conjecture regarding necessary conditions for the correspondence 
between the elements in 𝐷! and elements in the group represented by the mystery Cayley table. Dr. 
Carter assigned a follow-up task to Jessica’s conjecture, asking why a specific correspondence, 
which met the conditions Jessica specified, would not work for showing the mystery group was 𝐷!. 
Dr. Carter said, “So Jessica, I am challenging your conjecture. I’m gonna put it up here [on the 
board] as well. It has merits! It has good merit.” Dr. Carter reinforced his expectation that students 
should share their conjectures by giving the opportunity to share contributions, writing Jessica’s 
conjecture on the board, assigning a follow-up task that leveraged her conjecture, and saying that her 
conjecture had “good merits.”  

Explaining their reasoning. Another social norm present in these classes involved students 
explaining their reasoning. Dr. Ryan demonstrated his expectation for this behavior by calling on a 
student, Matt, and telling him to “explain your reasoning, tell us about the mappings you found, how 
you found them.” The instructor reinforced the social norm of explaining reasoning by stating his 
expectations for the student’s response. Matt then complied with this social norm and was not 
challenged because he did not violate the norm. If students violated this social norm by giving 
contributions without explaining their reasoning, the instructors challenged them for doing so by 
asking questions. For instance, as Dr. Carter’s class discussed a student’s definition of isomorphic 
groups, which said “𝑎, 𝑏 ∈  𝐺.  𝑐,𝑑 ∈ 𝐻.  𝑎 ∙ 𝑏 = 𝑐 ∗ 𝑑,” Becky claimed, “I’m a smidge bothered by 
the equal sign...so I think that we need to define some kind of function that maps one to the other.” 
Dr. Carter responded, “Wait, hold on, why are you a smidge bothered? I don’t understand. What’s 
wrong with the equal sign?” Dr. Carter fostered this norm of explaining reasoning by challenging 
students when they did not comply with it.  

Explaining difficulties they experienced. Students were expected to share the difficulties they 
experienced with mathematical tasks. For example, a student, Mallory, volunteered to share what Dr. 
Carter called a “productive failure.” Mallory shared her initial failed attempts for a homework 
problem. She explained how she got stuck on the problem, took a break from it, and later tried a new 
strategy. Dr. Carter asked, “your productivity in the failure is?” Mallory replied, “Well I learned 
about that strategy…I feel a little bit more resilient now ‘cause I just learned to like try stuff… not be 
afraid to try new different things.” Mallory’s experience in sharing her productive failure could have 
been an instance in which she developed her identity as a mathematician. This showed her 
confidence in her problem-solving ability, despite her previous failed attempts. By having Mallory 
present her productive failure, Dr. Carter reinforced the idea that it is okay to fail because something 
productive might come from it, which fostered the norm. 
Norms for Students Responding to Others’ Contributions 

We identified social norms of responding to other students’ contributions, giving productive 
feedback, and being non-judgmental. Dr. Carter explicitly stated his expectation for this behavior at 
the beginning of class, saying “remember that we are in a non-judgmental phase in our lives right 
now, so keep your comments very productive.” To demonstrate these social norms, consider the 
following episode of Dr. Carter’s class where each small group presented their definition of 
isomorphic groups on whiteboards, displayed at the front of the class.  



Social norms conducive to women’s learning in inquiry-oriented abstract algebra 
 

	 571	

Dr. Carter:     “𝑎, 𝑏 ∈ 𝐺,𝜙(𝑎 ∙ 𝑏) = 𝜙(𝑎 ∗ 𝑏).” What is going on here?  
Madison:       We would have to split up the phi. (This means 𝜙(𝑎 ∙ 𝑏) = 𝜙(𝑎) ∗ 𝜙(𝑏)) 
Dr. Carter:     This is another operation, right? [pointing to ∗].…so G is defined as G and dot, 

right?….But I think there is something going on here as well. Right? There’s this phi. Not sure 
what it is yet, but there’s this kind of correspondence as well.  

Dr. Carter then directed the students’ attention to another definition on the whiteboard. 
Dr. Carter:      What’s going on over here? “G is isomorphic to H if and only if there exists a 

homomorphism.”  
John:               I think that it is relevant to mention the homomorphisms. I think to add to that, you 

have to say that there exists a homomorphism G to H and there also exists a homomorphism H to 
G. 

Responding to other’s contributions. In this episode, both students, Madison and John, responded 
to other students’ definitions of isomorphic groups. This behavior was common throughout the class 
discussions. Dr. Carter gave students an opportunity to respond to a group’s contributed definition by 
asking “what’s going on over here?” This reinforced the social norm. 

Providing productive feedback to contributions. Both students then responded by giving 
productive feedback to make the contributed definitions more precise. Dr. Carter fostered this norm 
by providing productive feedback, thereby modeling the behavior in his own response. 

Being non-judgmental of contributions. These students responded in a non-judgmental way, by 
not commenting on the imprecision or the incompleteness of the contributed definitions; rather, they 
validated and elaborated on the other students’ contributions. Dr. Carter fostered this norm of being 
non-judgmental of contributions by modeling that behavior in his responses.  

Discussion 
We explored the social norms present in two IOI classes that had positive learning outcomes for 

women. We hypothesize these norms may be conducive to women’s learning and promote the equity 
dimensions of access and identity (Gutiérrez, 2002). Working on a task individually gives access to 
the opportunity of engaging in meaningful mathematics tasks. Discussing tasks with group members, 
sharing contributions, explaining reasoning, and responding to others’ contributions gives women 
opportunities to develop their mathematical identity as they present and evaluate each other’s ideas 
(Hassi & Laursen, 2015). Having students explain the difficulties they experienced and normalizing 
productive failure can promote women’s confidence. Norms of being non-judgmental and giving 
productive feedback to peers’ contributions can promote a positive learning environment where 
students can contribute without fear of judgment. Although researchers have documented 
deficiencies in women’s mathematical confidence (e.g., Lubienski & Ganley, 2017), these social 
norms can foster women’s confidence and give opportunities for access and identity development, 
which can lead to achievement and power (Gutiérrez, 2002). 

We aimed to explicate the instructor’s role in fostering positive social norms. Instructors in our 
study fostered social norms by establishing expectations for students’ behavior, modeling the 
expected behavior, challenging students when they do not comply with those expectations, and 
reinforcing those behaviors by showing they are valued. Our study contributes to research on social 
norms by further explicating the instructor’s role in fostering norms. Instructors can use these 
strategies to foster positive social norms in their own classes. 
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Existing stereotypical beliefs regarding mathematical ability as being innate and being associated 
with men more have severe consequences for female students’ perceptions of their mathematical 
ability, their course-taking decisions, and eventually, their decision to enter and stay in STEM fields. 
Yet how such beliefs compare among educators at different educational stages needs more attention. 
In this study, we analyzed the beliefs held by K-8 teachers and mathematicians who had or were 
pursuing a doctoral degree in mathematics regarding whether mathematical ability is innate. We 
found significant differences between mathematics teachers and mathematicians in their beliefs 
about mathematical ability and in the underlying structure of their responses. 

Keywords: teacher beliefs, mathematics ability beliefs, gender-specific ability beliefs 

Gender disparities persist in the representation of women in mathematically intense STEM fields 
(National Center for Education Statistics, 2013; National Science Foundation [NSF], 2015). Some 
research has explored the extent to which these gender differences can be explained by widely held 
stereotypical beliefs and biases that are communicated to girls at an early age in social environments, 
harming their self-perceptions and academic performance (e.g., Rosenthal & Jacobson, 1968; Steele 
& Aronson, 1995; also see Ceci, Williams, & Barnett, 2009 and Wang & Degol, 2017, for reviews). 
Exposure to gender-specific beliefs and implicit biases is hypothesized to reinforce stereotypes that 
affect women’s feelings of competency (or self-concept) in a specific domain (Correll, 2001; 
Greenwald et al., 2002), potentially dissuading them from pursuing careers in that domain. Thus, it is 
important to explore potential implicit and explicit messages students receive throughout their 
academic lives, especially from their teachers during elementary and secondary education as well as 
their instructors in postsecondary education, given that teachers’ and instructors’ opinions can have a 
substantial impact on their self-concept. As such, the objective of this study was to measure and 
compare teachers’ and mathematicians’ beliefs about mathematical ability.  

To date, little research has compared stereotypical beliefs held by instructors at different stages of 
education. Prior studies have found that K-12 teachers’ conceptions play a role in shaping their 
actions (for foundational studies, see Cooney, 1985; Ernest 1989; Thompson, 1984; 1992), that 
elementary and middle-school teachers sometimes believe that mathematical ability is fixed and 
innate (Copur-Gencturk, Thacker, & Quinn, in press; Chrysostomou & Philippou, 2010), they 
associate innate mathematical talent with boys more often than girls (Authors, 2019; Fennema, 
Peterson, Carpenter, & Lubinski, 1990; Tiedemann, 2000, 2002), and they stereotype mathematics as 
a male domain (see Li, 1999, for a review)—stereotypes that are also associated with those held by 
their students (Keller, 2001). As students transition from secondary to postsecondary education, 
young women aspiring to pursue STEM careers continue to be exposed to messages conveying that 
mathematical ability is innate (e.g., Leslie, Cimpian, Meyer, & Freeland, 2015; Meyer, Cimpian, & 
Leslie, 2015). Women also receive overtly gender-biased messages from their professors about their 
mathematical ability (Robnet, 2016) that may lead to gender differences in STEM self-concept 
(Boysen, 2009; Sax, 1994), suggesting that stereotypical messages might be passed on from 
professors and internalized by students through personal interaction. However, based on the existing 
evidence, it is difficult to assess how professors’ beliefs compare with those of elementary and 
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middle-school teachers given that few studies have directly measured professors’ beliefs about 
mathematics, and those that do use scales that differ from the ones used at the elementary and 
middle-school levels. 
Current Study 

In the present study, we used the same set of questions with two different populations—K-8 
mathematics teachers and mathematicians at universities—to investigate what beliefs these two 
groups held about mathematical ability and how their beliefs compared with one another. To our 
knowledge, no studies have compared whether the beliefs held by teachers at these different grade 
levels are different. We aimed to answer the following two research questions:  

1. What are mathematics teachers’ and mathematicians’ beliefs regarding the role of raw ability, 
hard work, and gender in students’ mathematical success?  

2. How similar are the constructs underlying the responses of K-8 teachers and mathematicians 
to these questions about mathematical ability?  

We leveraged the existing data gathered by Leslie and colleagues (2015) and then adapted the items 
used in their study to capture K-8 teachers’ beliefs on the same issues. We argue that knowing the 
kinds of messages students receive across their academic lives has important implications for 
recognizing female students’ perceptions of their ability and their available career trajectories.  

Methods 
We used existing data from the study by Leslie and colleagues (2015) along with a new data set we 

created from the survey responses of K-8 teachers. Leslie and colleagues distributed an online survey 
to experts across 30 disciplines from nine universities in the USA. Of this wider sample, 1,427 
mathematicians were contacted, and 133 of them provided usable data (9.3%). Mathematicians were 
graduate students (45%), postdoctoral researchers (12%), and faculty members (43%) who were 
mostly female (83%. With regards to K-8 teachers, we collaborated with the Consortium for Policy 
Research in Education (CPRE) to send out our survey items to elementary and middle school 
teachers in a large school district in the USA. We restricted our analytical sample to those teachers 
who reported teaching mathematics and who answered all the survey items, which resulted in 412 
teachers. Teachers were mostly female (89%), and taught grades K-2 (45%), grades 3-5 (38%) and 
grades 6-8 (17%).To make the comparison meaningful between the two groups, we revised the 
wording of the items used by Leslie and colleagues (2015) to make them relevant to elementary and 
middle school contexts (see Table 1 for original and updated items).  
Analytical Approach 

To answer the first research question, we examined descriptive statistics for each group separately 
and then ran independent t-tests for each item to investigate whether the differences in mean scores 
for these two groups were statistically significant. To answer our second research question, we 
explored and tested several factor model structures separately for each group to identify which 
structure fit the data better.  

Results 
We began by summarizing teachers’ and mathematicians’ responses to the survey items.  As shown 

in Table 1, the survey responses indicated significant differences between mathematics teachers and 
mathematicians in their agreement with the statements that (a) being a top student in mathematics 
requires innate ability that cannot be taught, (b) innate ability is needed to be successful in 
mathematics, (c) that anyone can become a top student or scholar in mathematics with the right 
amount of effort and dedication, and (d) that males are more better at/more suited for mathematics 
than girls. Significance was Bonferroni corrected (α = .05/5). 
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Table 1: Descriptive Statistics for the Item Responses of Mathematics Teachers and 

Mathematicians 
 

Mathematicians 
Mathematics 

teachers 
 

Individual items Mean 
(SD) Min Max 

Mean 
(SD) Min Max 

 
t 

 
p 

V1. Being a top student (scholar) of mathematics 
requires a special aptitude that just can’t be taught  

4.84 
(1.78) 

1 7 2.41 
(1.40) 

1 7 16.3 <.0001 

V2. If you want to succeed in mathematics, hard 
work alone just won’t cut it; you need to have an 
innate gift or talent 

4.52 
(1.74) 

1 7 2.14 
(1.18) 

1 7 17.9 <.0001 

V3. With the right amount of effort and dedication, 
anyone can become a top student (scholar) in 
mathematics 

3.15 
(1.88) 

1 7 5.56 
(1.50) 

1 7 15.1 <.0001 

V4. When it comes to mathematics, the most 
important factors for success are motivation and 
sustained effort; raw ability is secondary 

4.44 
(1.82) 

1 7 4.81 
(1.61) 

1 7 2.22 .033 

V5. Even though it’s not politically correct to say it, 
boys are often better at mathematics than girls (men 
are often more suited than women to do high-level 
work in mathematics). 

2.23 
(1.69) 

1 7 1.84 
(1.22) 

1 7 2.92 .004 

Note. N = 133 for mathematicians, and N = 413 for mathematics teachers. To account for multiple tests, significance 
was Bonferroni corrected at α = .05/5. Item text that appears in parentheses indicates the version given to 
mathematicians. 
 

To answer our second research question regarding the factors underlying these two groups’ 
responses, we explored the same two-factor model for these five items in both mathematician group 
and mathematics teacher group, given that beliefs about innate mathematical ability and gender 
ability seemed to be two theoretically different constructs. Thus, we expected that in the two-factor 
model, the first four items (V1–V4) would load onto the first factor because they were designed to 
capture mathematics as a discipline that requires raw aptitude, and we expected the fifth item (V5) to 
load onto the second factor because it was designed to measure beliefs about gender-specific 
mathematical ability. An exploratory factor analysis (EFA) for the mathematicians’ data supported 
the two-factor model structure. Conducting the EFA with two factors and a promax rotation (i.e., the 
factors were allowed to correlate), the factor loadings of the five items (V1–V5) on the first factor 
were 0.726, 0.765, 0.709, 0.746, and 0.014, and the factor loadings of the five items on the second 
factor were 0.032, 0.081, −0.031, −0.084, and 0.994. On the basis of the results of the EFA, we 
performed a confirmatory factor analysis (CFA) with the data from mathematicians, in which V1–V4 
loaded onto the first factor and V5 loaded onto the second factor. The two-factor model fit was good 
for the mathematicians’ data (CFI = .996; RMSEA = .033; SRMR = 0.032). The factor loadings on 
V2–V4 were 1.050, 1.000, and 0.987 (Bentler, 1990; Hu & Bentler, 1999).  

We attempted to fit the same two-factor model to the mathematics teachers’ data, but the model fit 
was poor (CFI = .692; RMSEA = .213; SRMR = 0.109). Because the same structure was not valid in 
both groups, the configural invariance test failed. This result implies that the mathematics teachers’ 
data had a different structure. We then conducted an EFA of the mathematics teachers’ data to 
explore the structure of the data. Only the first two eigenvalues were larger than 1 (i.e., 1.99 and 
1.28), and a relatively large drop occurred after the first two factors. Therefore, with an EFA of two 
factors and a promax rotation, the factor loadings of the five items (V1–V5) on the first factor were 
0.743, 0.652, 0.008, 0.043, and 0.493, and the factor loadings of the five items on the second factor 
were 0.021, 0.006, 0.995, 0.468, and −0.071. According to the results of the EFA, V1, V2, and V5 
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should load onto the first factor, and V3 and V4 should load onto the second factor. To confirm this 
structure, a CFA was conducted, and the model fit was good (CFI = .994; RMSEA = .034; SRMR = 
0.021). The factor loadings of V2 and V5 onto the first factor were 0.710 and 0.525, and the factor 
loading of V4 onto the second factor was 0.650 (for model identification, the factor loadings of V1 
and V3 were constrained to 1). Thus, the two items emphasizing the raw talent needed for success in 
mathematics and the item associating boys with higher mathematical ability formed one construct, 
whereas the two items emphasizing the role of hard work and dedication in mathematical success 
formed another scale for mathematics teachers.  

Discussion and Conclusions  
These results show that mathematics teachers and mathematicians seemed to hold different sets of 

beliefs regarding mathematics requiring innate ability, the role of hard work in success in 
mathematics, and female students’ mathematical ability. Furthermore, the underlying structure for 
these two groups was not identical. The mathematicians seemed to think that mathematics required 
ability and hard work and that dedication would not lead to success; however, they also did not 
consider this ability as belonging only to men. In contrast, teachers seemed to differentiate effort and 
dedication as constructs separate from innate ability. Unlike mathematicians, K-8 teachers did not 
agree that mathematics was a subject requiring innate ability. Rather, they seem to think that hard 
work and dedication could lead to success in mathematics.  

As mentioned, students’ academic self-concept is shaped by the messages they receive from their 
social environment. Thus, our study suggests that students may be receiving mixed messages from 
their environments, which could contribute to changes in their self-concept at different stages of their 
education (e.g., Robnett, 2016; Sax, 2008; Wigfield et al., 1997). The elementary and middle school 
teachers seemed more likely to agree that mathematical ability is a malleable construct and that effort 
and hard work could lead to success in mathematics, whereas the mathematicians seemed to believe 
ability played a key role in success in mathematics. This finding, showing that elementary teachers’ 
and mathematicians’ beliefs were different, might explain why gender differences in self-concept 
shift and expand after elementary school and into postsecondary education, although causal evidence 
of this link is still needed. Additionally, such potentially drastically different messages between these 
two groups might severely affect students’ self-concept in college, which could explain their shifting 
majors (e.g., Seymour & Hewitt, 1997). However, more research is needed on the impact of these 
different and contrasting messages on students’ self-concept at different stages of their education. 
Our study suggests that close attention needs to be paid to the messages teachers and college 
instructors send so that female students avoid entering or have difficulty staying in STEM-related 
fields because of stereotypical beliefs their educators may have held.   
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Research has shown that mathematics education is a white institutional space. Utilizing two 
frameworks, I interrogate an online mathematics curriculum for tenets of neutrality, impartiality, and 
color blindness. While several themes emerged from this analysis, for the sake of this paper, I 
highlight three themes: mathematics is portrayed as neutral, real-world scenarios are readily 
manipulated with data, and lack of cultural sensitivity. There is a value in dismantling mathematics 
education as a white institutional space because it broadens the opportunities for students to engage 
with mathematics in more authentic ways. I encourage other scholars to join in interrogating 
whiteness in mathematics education. 

Keywords: Curriculum Analysis, Equity and Diversity, Teaching Tools and Resources  

Purpose of the Study 
In recent years, scholars have started to problematize how we research, teach, and learn 

mathematics to dismantle systems, pedagogies, and practices that privilege whiteness while 
oppressing minoritized students. Using Martin's (2013) framework of mathematics as a white 
institutional space, I analyze six lessons from the Mathalicious1 curriculum to examine the extent to 
which the curriculum perpetuates white institutional spaces. Martin (2013) argues that mathematics 
education and its products (e.g., curricular materials) operate as a white institutional space that 
produce racial/ethnic educational inequities. White institutional spaces are characterized by 

(1) The numerical domination by whites and the exclusion of people of color from positions 
of power in institutional contexts, (2) the development of a White frame that organizes the 
logic of the institution or discipline (3) the historical construction of curricular models based 
upon the thinking of white elites, and (4) the assertion of knowledge production as neutral 
and impartial, unconnected to power relations," (Martin, 2013, p. 323). 

As such, mathematical curricula are not neutral and often have connections to politics and inequities 
(Lesser and Blake, 2006). 

While mathematics is often conceptualized as universal, culture-free, and based on a system of 
meritocracy, anthropologists have shown that mathematics is a product of the social, cultural, and 
economic needs, values, and norms of societies and cultures (Powell and Frankenstein, 1997). 
Simply put, mathematics is not neutral or objective (Battey, 2013; Gutierrez, 2013; Bishop, 1994). 
The research questions elucidated in this paper are the following:1) Does Mathalicious, treat 
mathematical knowledge as neutral and impartial, if so, how do we identify neutrality and 
impartiality? And 2) do mathematics tasks or lessons, such as Mathalicious, discuss societal 
phenomena unconnected from power relations, if so, how do we identify this discontinuity? 

Theoretical Frameworks 
For this study, I integrate two complementary theoretical frameworks: Martin's (2013) work on 

mathematics education as a white institutional space and Battey and Leyva's (2016), framework for 
understanding whiteness in mathematics education. Divided into three dimensions, Battey and 
Leyva's (2016) framework serves as a lens that functions to, "(a) systematically document how 
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whiteness subjugates historically marginalized students of color and their agency in resisting this 
oppression, and (b) make visible the ways in which whiteness impacts White students to reproduce 
racial privilege," (Battey & Levya, 2016, p. 49). The dimensions of whiteness (institutional, labor, 
and identity) are divided into corresponding elements. The elements encompassed in institutional 
whiteness are ideological discourses, history, organizational logic, and physical space. The labor 
dimension includes cognition, emotion, and behavior. The final dimension, identity, encompasses 
academic (de)legitimization, co-construction of meaning, and agency and resistance. 

Methodology 
I choose to investigate Mathalicious because the mathematics lessons integrate Common Core State 

Standards (CCSS) and Standards for Mathematical Practices (SMP) as its foundation and use real-
world contexts to help students build conceptual understanding in mathematics. Several prominent 
researchers frame mathematics education as an example of white institutional spaces due to the 
historical construction of curricular models based upon the thinking of white elites. CCSS serves as a 
racial project in that it "presents itself as a colorblind and universal effort with equity and social 
justice ends" (Martin, 2013, p. 326). Moreover, CCSS serves as a product of white institutional 
spaces, because the curriculum encourages assimilation, and is organized by a white frame of logic 
that is also inherent in the discipline (Martin, 2013). 

Statistical literacy is an essential skill. Individuals need to be able to interpret, produce, and be 
critical consumers of data-based arguments. Thus, as statistical literacy, "is rooted in practices for 
participating in, critiquing, and (re)shaping structures and discourses in society that are crucial for 
critical citizenship in society," (Weiland, 2016, p. 988), educational stakeholders must critically 
investigate how we teach statistics. For the purposes of this paper, I examined six lessons in 
Mathalicious that dealt with statistics. Three of the lessons were from the One Variable Statistics 
unit, and the remaining three lessons were from the Bivariate Statistics unit. The One Variable 
Statistics lessons were "Good Cop, Bad Cop," "Police Academy," and "Distributive Properties." The 
Bivariate Statistics lessons were "Joy to The World," "Pic Me," and "Win At Any Cost." 

As part of my analysis, I mapped the lessons from Mathalicious onto Battey and Leyva's (2016) 
framework. There are three dimensions in the conceptual framework: institutional, labor, and 
identity. 

Results 
While several themes emerged from this analysis, for the sake of this paper, I am highlighting those 

that specifically addressed the research questions presented above: mathematics is portrayed as 
neutral, real-world scenarios are readily manipulated with data, and lack of cultural sensitivity. 

Results from the analysis indicate that, in some cases, mathematics was conceptualized and depicted 
as unconnected to power relations.  For example, in the "Distributive Property" lesson, students 
examine income inequities in the United States. Educators utilizing the lessons are advised to stick to 
math and not be swayed by the nuances or real-world consequences connected to the data: "They are 
evaluating which subgroup made the most improvement in their income distribution, rather than 
trying to determine if the distributions are more equitable. As long as students flesh out their 
argument and support it with evidence from the data, there is no right or wrong answer" (p. 6). While 
students can address the problem in several ways, there is no discussion of how the income 
disparities have real consequences for communities. If students approach the problem in one 
direction, they will learn that white women had the most significant change in income distribution. If 
students examine percentage change, then they will conclude that Hispanic women are making the 
most progress. Students leave with the message that progress can be quantified with numbers. A 
second instance can be found r in "Good Cop, Bad Cop," where teachers are cautioned against 
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allowing the conversation to deviate from the math (analyzing and interpreting graphical displays). 
The lesson notes state "While the discussion provides important context for the problem, it could also 
make it difficult to redirect the conversation back to the math," (p. 5). The message is clear: the data 
can be separated from the contexts in which they are collected. 

In conjunction with the theme that mathematics is neutral, the Mathalicious lessons under analysis 
present conflicting messages about the ease with which real world data can be manipulated and 
modeled. In each of the lessons, the real-world data presented by Mathalicious is devoid of the 
mathematical complexities that exist in the real world. In the lesson, "Joy to the World," students 
learn that the data are not as perfect as the linear regressions suggest. Students are cautioned against 
making definitive conclusions about what increases happiness. Moreover, students learn that while 
mathematical models can be applied to data, the resulting models do not always tell the complete 
picture.  However, in "Good Cop, Bad Cop" and "Police Academy," students are encouraged to use 
data to draw conclusions about policies. The data is presented as an easy model and complete enough 
to make, "decisions about the appropriateness and effectiveness of a policy meant to change that 
data," (Good Cop, Bad Cop Exemplar Response, p. 1).  Thus, while it is important for students to 
understand that data and subsequent analyses may have limitations, there is a difference in messaging 
between these three lessons.  

These lessons in Mathalicious demonstrate that real-world relevance does not equate to cultural 
relevance or sensitivity. Some fail to consider issues of race, gender, or how communities are 
impacted by structural or institutional racism. In "Good Cop, Bad Cop," the curriculum guide 
suggests that some instances of excessive force by police are understandable given that officers, "deal 
with people in public as well as prisoners in jail, and some officers do this often." Implicit in this 
message is that some people and communities need excessive policing. The message normalizes or 
justifies some instances of excessive force. Additionally, there is a disproportionate number of 
People of Color in jails. By justifying the use of excessive force in prisons, the curriculum also 
perpetuates that violence against Black and Brown bodies is sometimes necessary. In "Distributive 
Property," students make comparisons between different subgroups of the population. The 
comparisons are between white men and women and their "non-white" counterparts. Hispanic and 
Black men and women are collapsed into two categories (men and women) that imply their lack of 
whiteness.  

Discussion 
Of the six lessons examined for this project, five had indicators of or were related to whiteness. The 

lesson, "Win at Any Cost," did not have any direct connections to whiteness, although it could be 
argued that the lesson topic is tangential to whiteness. "Win at Any Cost," requires students to use 
data to make judgments about whether professional sports organizations (Major League Baseball, 
National Basketball Association, National Football League, and National Hockey League) are 
spending their money well when they secure talent. For the lessons that had connections to 
whiteness, the indicator that was observed the most amongst the lessons was, "Mathematics as 
neutral." This is directly related to the fourth tenet of Martin's framework, "the assertion that 
knowledge production as neutral and impartial, unconnected to power relations" (p. 323). The second 
most frequently occurring indicator was "Distribution of classroom and mathematical authority." I 
contend that this indicator is related to Martin's (2013) second and third tenet: The development of a 
white frame that organizes the logic of the institution or discipline and the historical construction of 
curricular models based upon the thinking of white elites. Mathematics curriculums position students 
differently in relation to mathematics, their peers, their teachers, other people, and their own 
experiences (Herbel-Eisenmann & Wagner, 2007). The Mathalicious curriculum is positioned as the 
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mathematical authority. Additionally, the curricular model encompassed in Mathalicious is like other 
contemporary mathematics lessons and tasks. 

It is troubling that a majority of the lessons had instances of whiteness for many reasons. This 
analysis reveals the pervasive nature of whiteness in contemporary mathematics curriculum materials 
and the potential for its use in the continued marginalization and exclusion of the experiences of 
children of Color. Second, there were many messages of mathematics being neutral. Mathematics as 
neutral and relationship with deficit discourses students in terms of their racial, gender, and cultural 
identities are two indicators of whiteness in mathematics education (Battey & Leyva, 2016). While 
Mathalicious does not broadcast the number of teachers or districts that utilize their curriculums, it 
has been featured in The Washington Post, Education Weekly, and at several mathematics education 
conferences, including National Council of Teachers of Mathematics and National Council of 
Supervisors of Mathematics. With such a broad publicity base and open access to their lesson, it is 
likely that Mathalicious has a broad reach. 

To begin to dismantle systems of oppression in mathematics education, we must publicly 
interrogate the policies and practices that perpetuate inequities.  This project is essential because, "An 
ideology of whiteness would then serve to position white people, white ideas, and white behaviors as 
more valued institutionally and in classrooms, which may not always be visible in terms of 
curriculum designers and policy developers," (Battey and Leyva, 2016, p. 55). This project provided 
an example of whiteness in mathematics lessons. More research is needed to examine how 
mathematics curriculum perpetuates and reinforces whiteness. To facilitate more research on 
mathematics lessons or tasks as a product of or connected to whiteness, analytic frameworks are 
needed. 
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Often even teachers who are committed to and plan to teach critical mathematics struggle to do so. 
To understand this struggle I studied discussions between seven preservice secondary mathematics 
teachers and myself. From these discussions I identified a key theme of responsibility for teaching 
CM. I argue that our understanding of responsibility was shaped by dominant discourses in ways 
that were incompatible with the goals of CM. 
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Since its introduction, critical mathematics1  (Frankenstein, 1990; Gutstein, 2006) has gained 
interest. However, teachers often struggle to effectively teach CM (Bartell, 2013; Brantlinger, 2004; 
Rubel, 2017). Preparing teachers for social justice is a challenge of teacher education (Galman, Pica-
Smith, & Rosenberger, 2010; Sleeter, 2001), especially mathematics education (de Freitas, 2008; 
Gutiérrez, 2009; Gutstein, 2006). This may stem from the difficulty of developing a critical 
understanding of “teacher” and “student.” Dominant discourses cast teachers as authoritative and 
students as passive.  

Resistance to social justice in education, especially from White teacher candidates, has been linked 
to Whiteness (Aveling, 2002; Sleeter, 2001). This resistance is manifest even as teacher candidates 
disrupt Whiteness (Applebaum, 2010; Aveling, 2006; Hytten & Warren, 2003; McIntyre, 1997). 
Here I am concerned with how teachers who support CM struggle to understand a teacher role that is 
socially just. To this end, I present selections from discussions with a class of pre-service 
mathematics teachers. While dominant views bounded our discussions, there were moments when we 
began working towards discourses that reflected responsibility to students.  

Theoretical Framework 
The theorizing of CM has drawn on critical pedagogy (Frankenstein, 1990; Gustein, 2006). This 

perspective emphasizes the use of mathematics for social critique. Expanding this view, Gutiérrez 
(2012) describes four dimensions of equity in mathematics education: access, achievement, identity, 
and power. Access views the resources that students have available, including technology and quality 
instruction. Achievement is measured with grades and test scores. Both access and achievement 
generally leave the content unchanged. Identity means providing opportunities for students to draw 
on their linguistic and cultural resources, meeting their own standards, and understanding themselves 
and their world mathematically. Power addresses voice in the classroom (authority), mathematics for 
social critique, nature of mathematics, mathematical ways of knowing, and humanizing mathematics.  
Discourse, Whiteness, & Responsibility 

In focusing on discourse I draw from Gee (2005) and Fairclough (2001). Discourse includes how 
we speak and the things that accompany speech. While discourses do not create the physical being of 
a mathematics teacher, they define the categories of mathematics teacher, mathematics student, and 
mathematics. Discourses enable and constrain, particularly dominant discourses (Fairclough, 2001). 

                                                             
1 I use CM broadly to include much of what is referred to as social justice and/or equity in mathematics.  
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The pressure felt to conform to discourses maintains power structures. In the United States 
dominant discourses are discourses of Whiteness. Whiteness Theory uncovers how discourses 
maintain and promote White power structures. Whiteness Theory operates on the assumption that the 
lives of all people in the U.S., in particular, are racially structured (Frankenberg, 1993; Frye, 1992). 
Dominant discourses of responsibility (and Whiteness) center around individual responsibility. For 
students, these discourses are used to justify the inequities in schools by suggesting that students or 
their families are responsible for their own failures (Gutiérrez, 2015). A key aspect of the dominant 
discourses of mathematics and Whiteness is the need to portray school mathematics as neutral. Thus 
mathematical achievement is constructed as individual skill and effort. Individual responsibility helps 
support the view of mathematics as neutral by justifying blaming students. 

Methods 
In this study I focus on the discourses seven pre-service secondary mathematics teachers and I used 

during their final course. The participants included four White males (Pseudonyms: Jeff, Karl, Gavin, 
and myself), two White females (Stella and Lisa), one Latina (Esperanza), and one Japanese-
American female (Jane). All of our classes were recorded and transcribed. I then selected those 
transcripts when we discussed mathematics and social justice. In my analysis I used Critical 
Discourse Analysis (CDA) as defined by Fairclough (2001). I combine this approach to CDA with 
Walshaw’s (2013) recognition that teachers as well as students are caught in dominant discourses, 
and Thompson’s (2003) explanation of how White anti-racist educators can reinscribe Whiteness. As 
I analyzed our discussions on the roles of teachers, students, and their relationships I found us 
repeatedly circling around ideas of responsibility and blame.  

Results and Discussion 
Taking Responsibility 

For progressive educators one logical response to dominant discourses would be to accept 
responsibility. However, accepting responsibility may become a means of taking power in the 
classroom and reinscribing Whiteness. These problems with taking responsibility were illustrated in 
Lisa’s narrative. She carefully links her struggles to her choices, rather than to her students. 

Lisa: ok so . . . I had no idea what my students were learning at all ((Lisa explains some of what led 
up to this project)) and then I started having problems so I realized I didn’t know what they knew 
and then I started to plan lessons anyway and this like divide grew in my class and you should see 
the scores for their final it’s like half As half failing they're like there's like nobody in the middle 
it’s like crazy so I think like people were getting it and I didn't really pay attention to them 
because I knew that people were struggling and we kept like repeating stuff and people got bored 
and then I realized that that was happening so I switched my focus and started paying attention to 
them but by that point people had given up on trigonometry in general and the kids that were sort 
of lost like still were and it just became like this huge thing. 

Notice throughout how frequently “I” is used as the subject of the sentence. This positions Lisa as 
agent and powerful, even though most of these statements refer to her mistakes. The power of her 
decisions can create major problems. When students are brought up they are passive (“divide grew in 
my class”, “people were getting it”, or “people got bored”). There is little student agency shown, 
which positions them as powerless and blameless. Students are left out of their education and 
teachers are problematically positioned as solely responsible the class. Lisa has taken all authority 
and left none for students. While Lisa does not appear to do so, this could be consistent with a “lone-
hero” (White) teacher who tries to “save” her students through social justice (Thompson, 2008). Not 
blaming students and taking responsibility feel like necessary steps towards social justice. It could 
meet Gutiérrez’s (2009) call to mathematics teachers to “be in charge” in their classroom. However, 
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Gutiérrez links this teacher-in-charge with the tension to “not be in charge” to balance classroom 
power. Lisa does not avoid responsibility, instead she takes all of the responsibility onto herself. This 
is one of the few instances where the discourse of responsibility was used to place responsibility on 
the teacher. However, this combination does not leave room for active student roles. The problem 
with this combination of discourses is that recognition of structural and historical factors is 
disallowed while students are denied participation. 
Hinting at an Alternative: Responsibility to Students 

Margonis (2015) suggests that teachers can opt out of dominant discourses of responsibility through 
responsiveness. Through responsiveness, instead of blaming students (as dominant discourses would 
have us do), we are open to the messages students send, and we have an ethical responsibility to be 
responsive to those messages. Responsiveness requires that we view our students as worth hearing 
and meaningfully responding to. There were times when, in our discussions, we proposed a different 
kind of responsibility.  

Considering negative effects of CM. Towards the end of the semester we again had a class 
devoted to what it means to teach CM. This is one of the first times in this discussion that a student 
perspective is taken up and students are positioned as intelligent and capable. This change in 
perspective shifts how we position students and teachers.  

Lisa: I feel like we need to talk about some potentially negative consequences that could happen. 
Teacher: Ok. Good. 
Lisa: Because all I want to say when you ask that question is well they'll probably think that we 

understand them better and that we're on their side and all these positive things but there has to be 
a negative side 

Teacher: Is there risk in doing that 
Lisa: Yeah and maybe they're if they don't trust they're right to so definitely negative feelings to be 

had ((we discuss laws regarding undocumented students and in-state tuition)) 
Jane: . . . so it was kind of like depressing I feel like when they said like well hey you have to pay 

way more to go to school in this state because you're undocumented but then I feel like it’s kind 
of like all those all the other students who are like legal or whatever their tax dollars are going 
towards the state  and that's the reason they get in-state tuition or whatever I don't know I feel like 
that that thought would be absolutely depressing . . . 

Lisa: Oh yeah 
Jane: like $60,000 more when you already don't have very much money and like with that one 

especially I couldn't see any solution or any benefit of telling it . . . 

Lisa flips the perspective to say “if they [students] don’t trust they’re right”. This positions students 
as intelligent and selective in whom they choose to trust. This also suggests that teachers may not 
always be worthy of their trust. These are both important in how we position teachers and students 
and momentarily disrupt the dominant discourse of teacher authority. Within the context of the 
discussion these are students of color and White teachers. Positioning students as intelligent and 
careful navigators of a racist school system is necessary to work with students. In response to Lisa’s 
comments Jane brings up an example from our readings. Jane characterizes this lesson as 
“depressing”. She implies that teachers may be unaware of what students think and feel. As a 
daughter of immigrants Jane may feel a particular connection to this example. She does not specify a 
subject position for undocumented students. However, she references the argument about “legal” 
students whose “tax dollars” earn them “in-state tuition”. She implies that teachers need to judge 
what information to share with students. This manifestation of authority is an authority to judge what 
is needed by others, a key aspect of Whiteness (Frye, 1992), based on the implied lack of (racial) bias 
that Whites possess. Despite Jane’s return to dominant discourses other students address the cost of 
college for undocumented students.  
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Karl: Yeah or yeah it was really discouraging um I guess in a way it could be in a way motivating to 
think about or at least at least they realize how much it would cost and it would be tough but that 
there are probably things they could do I guess. 

Jane: Mhmmm 
Esperanza: A way to follow up would be like as a teacher investigate scholarships . . . 
Karl: Right 
Jane: But I feel like that's another problem is that they don't usually offer that many scholarships to 

undocumented students. 

Karl suggests that knowing could be “motivating”. This suggests that students have resilience. He 
then adds that “they realize”, positioning students as capable. Esperanza then points out that teachers 
could “follow up”. Following up assumes that the teacher has taught the lesson. For her teaching the 
lesson is an assumed part of being a teacher. This framing of responsibility comes as we position 
students as capable. This suggests a balanced responsibility where teachers share and support and 
where students are capable of understanding and utilizing information. Esperanza suggests that “a 
teacher investigate scholarships” and so positions teachers as responsible to their students to do this 
work; work that may typically be framed as outside the role of a teacher. This is also part of teacher 
authority, however, in this case instead of judging, the teacher uses authority to provide information 
and resources. Positioning teachers as responsible-to is facilitated by positioning students as capable. 
Jane then points out the relative lack of scholarships for undocumented students. Her she 
characterizes lack of scholarships as a “problem”, critiquing the system and repositioning 
undocumented students as innocent. 

Conclusion 
Dominant discourses are used to portray teachers as solely responsible for what happens in their 

classroom. As a result in our discussions of CM we often used these discourses to position individual 
teachers as not responsible to teach for social justice. However, taking responsibility for CM is also 
problematic. Instead I propose responsibility to students. This kind of responsibility requires that 
students be positioned as intelligent and capable and an understanding of shared authority. 
Positioning students and teachers in these ways can disrupt dominant discourses. 
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Studies on culture, equity, and social justice issues in mathematics teacher preparation have called 
for preparing teachers to build on students’ mathematical and cultural backgrounds. Yet few studies 
have examined the preparation of preservice teachers of color (PSTCs), especially those attending 
Historically Black Colleges and Universities (HBCUs) or Hispanic Serving Institutions (HSIs). We 
present preliminary findings from a cross-site research project documenting PSTCs’ perspectives on 
culture in mathematics education. We analyzed PSTCs’ engagement in a culture unit during their 
mathematics methods course and their expressed views on cultures other than their own. Our 
findings reveal that these PSTCs often defined culture based on nationality and would repeat 
dominant deficit discourses about minoritized students. We provide insights for the importance of 
culture discussions in mathematics. 

Keywords: Equity and Culture, Teacher Education - Preservice, Elementary  

Introduction 
Mathematics education research has acknowledged the role of culture in teaching and learning, and 

specifically how mathematics classrooms create a context that legitimizes or invalidates various 
forms of knowledge (Nasir et al., 2008). Mathematics teacher educators (MTEs) have the opportunity 
to expose preservice teachers (PSTs) to the different ways students reason about and learn 
mathematics and teach them how to build on students’ mathematical and cultural backgrounds. 
MTEs have incorporated into their courses culture activities such as classroom observations and 
lesson planning (Koestler, 2012), field placements and student interviews in diverse settings 
(Fernandes, 2012), storytelling to challenge PSTs’color blindness (Ullucci & Battey, 2011), and 
family and community exploration projects (Bartell et al., 2019; Zavala & Stoehr, 2019). These 
activities are designed to help PSTs become “culturally conscious” (Gay, 2010) by recognizing their 
own cultural socialization and understanding how this affects their attitudes and behaviors toward 
other ethnic group cultures in mathematics education. 

Although previous literature on MTEs has explored opportunities in which PSTs engage in deeper 
discussions and reflections on the role of culture in their teaching and learning, most studies have 
reported on the experiences of White PSTs only. Few studies have examined the ways in which PSTs 
from culturally diverse backgrounds engage in and respond to similar activities. As Montecinos 
(2004) cautions, assumptions based on the experiences of White monolingual teachers do not 
translate to the experiences of all PSTs. There remains a need to understand how PSTs of Color 
(PSTCs) navigate their teacher education programs. MTEs would also benefit from learning about 
PSTCs’ views on teaching mathematics and culture, enabling them to prepare all future teachers to 
teach equitably. Our work sought to answer the following research question: What are PSTCs’ 
perceptions of other cultures in the teaching and learning of mathematics?  
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Conceptual Framework 
A discussion of the role of racism in mathematics education and its implications for teacher 

education programs is beyond the scope of this paper (Martin, 2009, 2019; Rousseau Anderson, 
2019). However, highlighting the “structural phenomenon” of racism in education (Rousseau 
Anderson, 2019) affords us the opportunity to examine how messages about certain groups of 
students and their mathematical identities continue to permeate mathematics classrooms. Recent 
research on the mathematics learning experiences of minoritized students has found that students 
have had racialized experiences in which “socially and personally constructed meanings of race 
emerge as salient in interactional experiences related to mathematics” (Martin, 2019, p. 461). Thus, 
PSTCs are likely to have experienced mathematics classrooms as White institutional spaces in which 
non-white cultural knowledge may be positioned as inferior or lacking. This recognition highlights 
the need for all PSTs to learn to question and understand issues of power, race, culture, and identity 
in mathematics classrooms (Gutiérrez, 2015; Rubel, 2017).  

In discussing how to prepare PSTs to enter culturally diverse communities, Bartell and Aguirre 
(2019) warn MTEs about the deficit perspectives some PSTs hold about children and their 
communities and their potential resistance to engaging with families and communities that are 
different from their own. Thus, preparing PSTCs must include recognizing and creatively responding 
to discourse that positions minoritized students as incapable and developing the PSTC’s role as an 
advocate (Gutiérrez, 2015). This is especially important because when PSTCs become teachers, they 
may “carry problematic beliefs into the classroom and replicate the cultural alienation students of 
color experience in schools” (Kohli, 2014, p. 371). Unless PSTCs have been required to reflect on 
their own racialized schooling experiences and engage in conversations and activities focused on 
creating rehumanizing mathematics classrooms that counter deficit views of minoritized students, 
they may unintentionally perpetuate structural inequities in their mathematics classrooms (Chao et 
al., 2019; Zavala, 2017). 

Methods and Data Sources 
CAM Up! (Cultural Awareness in Mathematics Unit Project) is a cross-site research study that seeks 

to illuminate PSTs’ interests, perspectives, and dispositions toward teaching mathematics to 
culturally diverse student populations. Three institutions serve as research sites: one Historically 
Black College and University (HBCU), one Hispanic-serving institution (HSI), and one 
Predominantly White institution (PWI). We purposefully selected these sites to include PSTs who are 
culturally diverse across racial, ethnic, language, socioeconomic, and geographical backgrounds. 

We used a modified version of a cultural awareness unit (White et al., 2016) to explore the PSTCs’ 
perspectives. The unit included three components: (1) an article critique paper; (2) audiotaped class 
discussions in which PSTCs share their article critiques, describe their own culture, examine 
stereotypes in mathematics education, and discuss culturally relevant math teaching strategies; and 
(3) a post-discussion reflection paper. Project data include recorded class observations, unit artifacts, 
and researchers’ field notes. 

 In this paper, we present preliminary findings for 10 female PSTCs (HBCU=3, HSI=4, PWI=3) to 
convey key themes on culture that emerged across the three sites. These PSTCs were randomly 
selected from a larger group of 52 PSTCs. Four of the PSTCs self-identified as African 
American/Black, one as Asian, and five as Hispanic/Latina. 

The findings presented here focus solely on our analysis of the article critique assignment. This 
assignment required PSTs to find, read, and write a critique of an article that focused on teaching 
mathematics to students from a cultural group other than their own. We intentionally did not define 
culture prior to the assignment so as not to influence their perspectives on culture.  



Exploring culture in mathematics education from the perspectives of preservice teachers of color 

	 589	

 For the first cycle of coding/data analysis, all authors read the PSTCs’ article critiques, met, and 
created a list of holistic codes, keeping the research question in mind (Saldaña, 2016). These holistic 
codes captured the overall ways PSTCs positioned themselves in relation to the culture discussed in 
their selected article. For the second cycle, each author re-coded holistic categories individually using 
values coding to arrive at more precise categories that captured the values, attitudes, and beliefs 
represented in the data. This cycle uncovered how PSTCs perceived the culture of others with regard 
to teaching and learning math. Analyzing the critiques and unit artifacts allowed us to triangulate the 
data, yielding two emergent themes that identified the common mathematics discourses we discuss in 
our findings. 

Findings  
A preliminary analysis of the article critiques revealed that PSTCs have complex views of culture, 

as evidenced by which cultures they selected and why they made that choice. Several insights 
emerged into how PSTCs view the intersection of culture and mathematics teaching and learning. In 
this section, we describe the PSTCs’ views on culture and their acceptance or rejection of dominant 
cultural views about minoritized students in mathematics education.  
Views of Culture 

Understanding and unpacking the participants’ descriptions of culture shed light on how they view 
their own culture in the context of teaching and learning mathematics. The PSTCs described culture 
in three ways: culture as nationality, culture as language acquisition, and culture as socioeconomic 
status (SES). Six PSTCs ascribed to culture as nationality, comparing the way mathematics was 
taught in their “American culture” to the way it was taught in the cultures of other countries. In their 
article critiques, the PSTCs identified cultural nuances that emerged in the descriptions of the 
mathematical teaching strategies. For example, one PSTC noted, “One way the Chinese culture is 
different from my American culture is based on differences in language structure.” 

Three PSTCs noted that language plays an important role in learning mathematics. PSTCs who 
ascribed to culture as language acquisition contrasted their use of “standard academic English” with 
the language of non-native English speakers. Moreover, some PSTCs discussed the role that 
language played in their own identity. For example, one PSTC stated, “The primary culture described 
in the article is that of English language learners (ELL) . . . growing up, I could not define myself as 
an ELL.” 

Several PSTCs also viewed culture as SES, suggesting in their critiques that students’ 
socioeconomic status represented an aspect of culture that influenced their mathematics learning. 
One PSTC wrote, “I grew up in a middle- to upper-middle-class area, therefore I don’t share the low-
income aspect of the students’ culture either.” None of the10 PSTCs saw culture as the shared norms 
among a group of people. 
Views of Mathematics and Culture 

The PSTCs expressed interest in learning about various cultures because they recognized both the 
changing demographics in schools and the achievement gaps that persist. Although they wanted to 
learn about other cultures, however, the PSTCs were often unaware of asset-based teaching 
strategies. Many PSTCs expressed agreement with or repeated dominant deficit mathematics 
discourses about minoritized students in the article critiques. These discourses included: language is 
a barrier, caring parents are involved in their child’s education, and Asian teaching methods are 
better in math. 

Some PSTCs viewed speaking a primary language other than standard English as a barrier to 
learning mathematics in the U.S. One PSTC wrote, “Although I am Asian and grew up in a bilingual 
household, I was never classified as an ELL nor did I need any type of additional academic 
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instruction due to language barriers.” Another PSTC wrote, “English Language Learners (ELL) and 
African American English (AAE) speakers are groups who suffer greatly from culturally skewed 
word problems . . . [M]y family always spoke Standard English. Therefore, I never faced the barrier 
of making sense of the Standard Academic English that is used in schools.” These PSTCs viewed 
language as a barrier to rather than a resource for mathematics teaching and learning. In describing 
strategies for teaching mathematics to English language learners, the PSTCs recommended removing 
the complex language from word problems instead of incorporating words from the students’ 
cultures. 

Some PSTCs accepted the deficit discourse that certain cultures value parental involvement and that 
without it, learning mathematics is more difficult. Moreover, these PSTCs suggested that parents 
who care will be actively engaged in their child’s education. One PSTC identified parent support as a 
family value, noting, “Asians are more likely to listen to their parents in regard to educational and 
vocational decisions, due to an innate need to not disappoint or bring shame to the family. Family is 
at the center of their culture, something that was once essential to the African-American community 
and their survival but is sadly no longer valuable.”  

While the critiques of eight PSTCs reflected dominant narratives, two resisted stereotypes such as, 
“All Asians are good at math.” These participants perceived culture as learned and adaptable. One 
PSTC expressed a desire to examine the Asian model minority stereotype more closely, stating,  

This theory jeopardizes the students who actually need help in academics . . . I particularly 
like that the author says students can respond using their ‘own mathematical power.’ I truly 
believe that everyone can achieve mathematics, but we just have our own ‘super power’ that 
we cannot project. 

Discussion 
This study’s preliminary findings uncovered three views of culture expressed by PSTCs—culture as 

nationality, language acquisition, and socioeconomic status—that reflect the dominant narratives of 
culture in the contemporary U.S. We also uncovered two themes related to how PSTCs perceived 
math and culture: agreement with deficit narratives/stereotypes about how mathematics is taught and 
learned, and rejection of these narratives/stereotypes.  

These findings suggest several implications for methods courses and the faculty who teach them. As 
MTEs, we are aware of the racialized mathematical experiences of PSTCs (Martin et al., 2019), and 
we believe it is incumbent upon us to guide PSTCs to reflect on the cultural footprint they bring to 
the mathematics classroom. Moreover, we must push back against narratives that assume PSTCs will 
automatically make cultural connections with students of color in their classrooms. We concur with 
Gist (2017) that teacher educators need to “value teacher candidates’ cultural and linguistic diversity 
and understand how to draw on and develop their multicultural capital” (p. 930). Only then will we 
develop PSTCs’ cultural consciousness, enabling them to dismantle deficit narratives in mathematics 
teaching by honoring and incorporating their students’ assets and strengths. 
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This paper reports on a study designed to showcase Latinx bilingual children’s linguistic and 
cultural resources for learning mathematics in an after-school mathematics club. Specifically, we 
examine the design of the activity system (Engström, 1999) and social interactions therein through a 
translanguaging perspective in which students leverage their language and culture to engage in 
mathematical learning. Our primary objective is to highlight some to the triumphs and struggles of 
bilingual children as they expand communicative practices and mathematical resources via 
interactions with bilingual facilitators and electronic communication with a math wizard, El Maga. 
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This paper presents a translanguaging perspective in which students use their agency to develop and 
affirm their Latinx bilingual mathematical identities in the context of an afterschool math club. 
Although research has disproven deficit-oriented beliefs that using native language during 
mathematics learning is unnecessary or harmful (e.g., Khisty & Chval, 2002; Moschkovich, 2007), 
there is still much to understand about the intricate processes by which Latinx bilingual students use 
their language and culture to engage in mathematical learning (Razfar, 2013). Therefore, our aim is 
to highlight how Latinx bilinguals leveraged their communicative practices and mathematical 
resources while communicating electronically with a math wizard.  Specifically, we highlight critical 
features of a mathematics teaching and learning environment that supports Latinx bilinguals’ 
translanguaging and what translanguaging affords learners. We use the term “bilingual” or 
“bilinguals” to center the reality that these students are multilingual, even if only emerging 
multilinguals. Additionally, we use the term “leverage” to reflect students’ agency to capitalize on 
their communicative and linguistic repertoires (see Martinez, Morales, & Aldana, 2017, for a review 
of how this term is used by scholars). 

Latinx Students and Mathematics 
Latinx students are one of the fastest growing school age populations in the U.S. (NCES, 2016). 

Yet, Moll (2001) posits that classroom practices have continued to create a distance between Latinx 
students’ language, cultural knowledge, and what they know academically. These systems persist in 
marginalizing, and thus not privileging linguistic, social, and cultural capital to help create 
dehumanizing school practices (Langer-Osuna, Moschkovich, Norén, Powell & Vazquez, 2016). 
Moreover, guiding texts like Principles to Actions: Ensuring Mathematical Success for All (NCTM, 
2014) asserts that all students must have access and opportunity to study mathematics. As such, math 
classrooms have been encouraged to move from isolated seatwork to more social and verbal 
activities that require students and teachers to engage in more substantive mathematical discussions 
and collective practice (Bass & Ball, 2015). However, there is a concern that mathematics reforms 
may be in danger of ignoring the needs of Latinx students unless their needs are re-examined in light 
of the new demands of the mathematics classroom with its increased emphasis on communication 
and collaboration (Moschkovich, 2000). While this is a generalized perspective of classrooms with 
Latinx students, it nevertheless raises questions about marginalization and undervaluing Latinx 
students’ learning resources in mathematics. 
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Garcia, Ibarra Johnson, and Seltzer (2017) reminds us that all good education must begin with 
recognizing students’ strengths that come from their own community’s linguistic and cultural 
repertoire. Much of the research with Latinx students has focused on bilingual language learners. The 
research is often framed from a deficit perspective focusing on the relationship between students’ 
proficiency in their first language and learning mathematics (e.g., Mestre & Gerace, 1986) or the 
obstacles faced by Latinx bilinguals learning mathematics across languages (English and Spanish) 
(e.g., Khisty, 1995). Deficit perspectives emerge when bilinguals’ linguistic resources are ignored or 
forbidden in the classroom while only privileging the dominant school language (Langer-Osuna et al. 
2016). These are de-humanizing practices with the sole purpose of controlling and dominating 
students’ cultural identity and excluding it from the classroom and school (Gutierrez, 2017). Garcia 
(2017) argues that this view of language and academic discourse in schools acts as a barrier to 
knowledge (in our case, mathematical knowledge), only privileging those students whose linguistic 
repertoire mirrors the dominant school language. 

Other studies have also shown that Latinx students use a wide variety of cultural resources to 
construct, negotiate, and communicate (spoken or written) about mathematics (Chval & Khisty, 
2009; Varley Gutiérrez, Willey & Khisty, 2011). These resources include cultural knowledge 
(Gutiérrez, 2002), linguistic resources (e.g. mathematics register, mathematical discourse) (Celedon-
Pattichis, 2003; Moschkovich, 2000), everyday experiences, life histories, and community funds of 
knowledge (Moll, 2001). Moreover, Razfar, Khisty and Chval (2011) advocates for a social-cultural 
model for language development in mathematics classrooms. They juxtapose social-cultural theory 
(SCT) against second language acquisition (SLA) models. In the SLA model, learners are perceived 
as passive recipients of mathematical knowledge proceeding in a linear developmental path and 
language is seen as an external tool. In contrast, SCT positions bilingual students as active agents in 
their language use, capable of working collaboratively, interacting, and communicating while 
grappling with challenging mathematical tasks. Given this disparity, a counter-narrative to common 
deficit perspectives, will allow us to illuminate the ways in which Latinx bilinguals encouragingly 
use their linguistic and other funds of knowledge while engaging their individual and collective 
agency to assert their identities as mathematics learners. Gutiérrez (2017) discusses such a 
rehumanizing perspective as one that positions the student as central to the meaning-making process 
while engaging in the practice of doing mathematics. This perspective refutes the imposing of 
standardized or normalized practices onto students, such as the routine expectation of students 
reproducing the teachers’ idea of productive mathematical activity. Instead, a rehumanizing 
perspective fosters respect and dignity through privileging the viewpoint and experiences of the 
student, and the ways in which they develop personal understandings through their own disciplinary 
perspective on mathematics. 

Translanguaging 
We draw on translanguaging to reconceptualize bilingualism as a liberating and empowering 

communicative practice and resource capable of transforming learning the goes beyond students’ 
transition to the dominate school language (MacSwan, 2017).  Translanguaging is more than just a 
simple shift between two languages (i.e., English and Spanish). It is a complex and interrelated 
communicative practice that make up bilinguals’ linguistic repertoire (Cenoz, 2017). Garcia (2017) 
posits, “…speakers use their languaging, bodies, multimodal resources, tools and artifacts in 
dynamically entangled, interconnected and coordinated ways to make meaning” (p. 258).  
Translanguaging classrooms are powerful spaces that take full advantage of and leverage students’ 
linguistic repertoire to engage with complex content and texts, strengthen students’ linguistic 
repertoire in academic contexts, draw on students’ bilingualism for the purpose of expanding their 
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ways of knowing, and support students’ bilingual identities that counter English only ideologies 
(Garcia, Johnson, & Seltzer, 2017). 

Given the paucity of studies that use a translanguaging framework to understand language practices 
of multilingual persons in mathematics classrooms, we argue that translanguaging re-conceptualizes 
the mathematics learning and language practices of Latinx bilinguals.  Mazzanti and Allexsaht-
Snider (2018) report on a study in a kindergarten classroom with a large Latinx population.  They 
find that their use of English and Spanish occurred simultaneously as a way to make mathematical 
meanings.  These meanings were not limited to just linguistic accomplishments, but also used 
symbolic representation of numbers and visual models of the number problems to leverage these 
students’ communicative resources.  Other studies have focused on spontaneous translanguaging of 
12th grade Latinx bilinguals in an upper level math classroom. Morales (2004) used a 
translanguaging and perseverance framework to compare the collaborative efforts of two groups of 
students solving a challenging mathematical task.  Results show that when students are given the 
freedom to explore mathematics via their dynamic bilingualism they are able to spontaneously and 
dialogically leverage communicative resources to help them persevere and overcome in-the-moment 
obstacles.  Morales & DiNapoli (2019) further ague that these students’ translanguaging practices 
reposition students as competent problem solvers and agents of their own learning while leveraging 
bilingual identities as learners of mathematics reflecting a rehumanizing perspective for all students 
in the group.   

Maldonado, Krause, and Adams (2018) also believe that emergent bilinguals could participate in 
mathematics teaching and learning in ways that are rehumanizing to all participants in the classroom.  
They explore ways in which a 2nd grade dual language mathematics classroom built a 
translanguaging stance where teachers made choices to build on children’s thinking while engaged in 
mathematics instruction that develops knowledge, dispositions, and builds on students’ cultural, 
linguistic, and community funds of knowledge.  They argue that mathematics teachers must nurture a 
translanguaging stance by (1) Respecting others ideas. (2) Committing to caring for others and 
bringing the community together. (3) Collectively working together for the good of the individual 
and group.  And (4) engaging in a mathematical practice together. 

Research Design, Context, and Methods 
Our research was conducted in a large, urban school district in a very large Midwestern city in the 

United States where 85.6% of the students are classified as coming from low-income families, and 
13.7% are categorized as “English learners”.  Our research site was James Dual Language School.  
James was made up of approximately 425 students from Pre-Kindergarten through the 6th grade.  
The school population consisted demographically of 99.4% Latino/a.  Additionally, 98.3% of the 
students were eligible for the government’s free or reduced lunch program, and 68% of the students 
were categorized as English language learners (ELLs) (School District Data, 2007). 

The research reported here is based on data gathered in an after-school project called “Los Rayos de 
CEMELA” adapted after the work of The Fifth Dimension (Cole, 2006) and La Clase Mágica 
(Vásquez, 2003).  The after-school project was designed to give Latinos/as experiences doing non-
remedial mathematical activities including problem solving and playing mathematics games that 
were intended to enhance students’ knowledge of probability and algebraic concepts.  Students were 
encouraged to be self-directed, to work collaboratively, to verbalize their thinking, and to ask 
questions.  One of the goals of the after-school project was to promote mathematical bi-literacy.  All 
participants were encouraged to speak Spanish.  Playfulness between the adults and children was a 
critical part of the interactions in the after-school project. In addition, students communicated 
electronically with a mathematics wizard, El Maga, who engaged students in bilingual conversations 
about their mathematical experiences.   
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Findings 
Despite our original efforts to privilege Spanish in the after-school, social forces prevented 

participants from fully realizing the potential and capital of Spanish. We highlight these challenges 
and discuss adjustments made to the after-school club to more authentically draw on children’s, and 
families’, funds of knowledge, including their linguistic resources.  

The children’s gravitation towards English – but also El Maga’s persistence using Spanish and 
commitment to supporting language growth – was also documented in children’s correspondence 
with El Maga (an undergraduate student facilitator).  

As we mentioned earlier, we were particularly interested in creating a space that privileged 
communication in Spanish, so we purposely wanted to include the parents during the second session. 
We considered that including the parents would naturally encourage the students to speak in Spanish. 
We asked the students to explain the rules of the game and to demonstrate how to play the game to 
the parents. When Rodrigo played the Counters Game during the second session, he worked with a 
group that was more Spanish dominant. He played with two other students, Margarita and Rafael, his 
mother Olga, two more mothers, and an undergraduate facilitator, Carlo.  All three mothers were 
Spanish language dominant, and their command of English was limited.   When Rodrigo played the 
Counters Game again, he was more confident and even took on the role as sort of a referee making 
sure everyone including the parents played by the rules.  

The after-school club got a critical boost from the parent-participants. Parents served multiple roles, 
one of those being a bridge where Spanish moved from its familiar place in family and community 
spaces into the academic space where children frequently preferred to speak English. Parents, 
through their presence and eagerness to participate alongside children, established new norms where 
mathematical conversations were in Spanish. Furthermore, parents embraced their role as 
collaborators in the design of the community mathematics projects. Their insights contributed to 
mathematical activity where problem solving was done within and through rich community and 
cultural contexts, rather than trying to bring cultural contexts into pre-fabricated mathematical 
activities. The evidence suggests that this collaboration allowed children and parents to draw on 
meaningful – although subjugated and grossly under-acknowledged and under-utilized – forms of 
funds of knowledge. 

Conclusions and Implications 
It turned out that parents, because of their language backgrounds, are natural examples of 

translanguaging. Mathematics learning environments are well-served by the involvement of 
multilingual parents and community members because they re-shape the linguistic lanscape in a way 
that elevates language use and development, and likely meta-linguistic awareness, too. Palmer et al. 
(2014) argues further that much of the work involving bilingual students is framed around an 
ideology and policies of language separation that encourage teachers to create separate instructional 
spaces (physical and other) for bilingual students to communicate in either the dominant or minority 
language. These ideologies and school policies also contribute to separating parents and other 
community members from the teaching and learning context and, moreover, do not take into 
consideration the power of communicating across multiple languages to adequately support the 
learning of mathematics among bilingual Latinxs. We are only in the beginning phases of 
understanding the intersection of language ideologies, mathematics learning environments and 
language practices. This data implies that further research should examine the role of various 
multilingual actors and the context of the mathematical activity in order to determine the myriad 
ways they support Latinx learners to thrive mathematically where traditional classroom practices and 
schooling structures have largely failed. 
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MIM aims to promote education responsive to diversity through participatory research by 
developing and evaluating strengthening pedagogies. These are research based pedagogies building 
upon individuals’ strengths and assets identified by examining past positive experiences; 
encouragement of hope and optimism and development of emotional satisfaction with the present 
(Seligman, 2002) hence moves away from cultural-deficit orientations and instead promotes 
achievement for all students. 

Linguistic and cultural challenges are not new. Indigenous communities have experienced them for 
decades as a result of colonisation, as have children from non-dominant communities in other 
contexts. Tensions in education are intensified by language and cultural differences in times of large 
migration (Cenoz & Gorter, 2010). Classrooms with a high number of students from different 
migration waves, historically homogeneous communities with newcomers in their schools for the 
first time, and Indigenous schools with endangered languages are contexts that have been described 
in research, society and media as problematic due to race, gender, culture and religion, hence 
impacting all students. 

The main objective is to develop new scientific knowledge about how mathematics education may 
contribute to equity and social justice - and vice versa. At the heart of the research are students' and 
teachers' storylines. Through juxtaposing Indigenous and migration contexts, we will further 
understand students’ experiences and hence pedagogical possibilities, within Norway, Canada and 
the USA. We apply positioning theory (e.g., Harré & van Langenhove, 1999) to understand students’ 
and teachers’ experiences as it provides the required tools to understand how the people in an 
interaction may have different understandings both of the interaction and of the opportunities 
available to them within it. The storylines used by migrated and Indigenous students to interpret their 
mathematics classroom interactions and the role of mathematics in their life trajectories will be 
juxtaposed with the storylines used by the others in their classrooms and community. We have 
recently begun extending the field’s understanding of the availability of storylines and identities in 
mathematics classrooms (Andersson & Wagner, 2019; Wagner, Andersson & Herbel-Eisenmann, 
2019). 

MIM is to be situated historically and culturally draw on and further examine research-based work 
that has shown to have a positive impact on groups who have been marginalized by policies and 
practices in educational contexts; and will be done, reflexively, in partnership with the peoples and 
communities who the work is supposed to benefit.  MIM has all of these characteristics and will 
contribute to mathematics education work empirically, theoretically, methodologically, and 
practically. 
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Prospective mathematics teachers (PMTs) may have early and frequent opportunities to observe and 
teach in mathematics classrooms. What is often lacking, however, are their opportunities to examine 
and discuss inequities that exist in the classroom. This paper explores 30 PMTs’ (19 from a 
university (U) and 11 from a community college (CC)) conceptions of equity, utilizing two of 
Gutiérrez’s (2012) four dimensions of equity, namely access and power. Specifically, we investigated 
and compared their proposed responses to two hypothetical vignettes (Max, 2017) from mathematics 
department conversations regarding calculator usage and mathematical discourse. 

Vignette 1-Ms. Lopez: I encourage some, but not all, of my students to use calculators in class.  If I 
don’t let these students use calculators, they can’t contribute to the problem solving we’re doing. 
Mr. Parker: I too have students who benefit from the use of calculators, but I think fairness is 
really important.  Depending on the lesson, I either let all of my students use calculators of none 
of my students.  This way no one ever feels cheated. 

Vignette 2 -Ms. Booth: Because I know more mathematics than my students and they look to me as 
the expert, I do most of the talking.  It’s important for students to hear the correct uses of 
mathematical language so I model that as much as possible. Ms. Sutherby: Students will learn 
mathematics by using the language themselves, even if imperfectly, so I let them talk as much as 
possible.  

Preliminary analysis revealed that the majority of the PMTs explicitly agreed with one teacher’s 
approach (U = 84% and CC = 64% for access and U = 63% and CC = 45% for power). PMTs 
considered equality, creating more interactive learning environments, and classroom resources with 
respect to calculator usage. Most of the PMTs viewed fairness as equality and expressed a desire to 
create an interactive learning environment (U = 79% and CC = 55% ) while less than 10% of the 
PMTs from each group favored only encouraging some students to use calculators.  More PMTs 
from the community college (36%) preferred a balance of both approaches than those from the 
university (11%). The equality responses included: “I agree with Mr. Parker and think if I do allow 
students to use their calculators it should be everyone, so no one feels left out or as Mr. Parker said 
cheated out of the test” (CC). Modeling correct language and allowing the students to talk during 
class were both important factors in PMTs’ views on mathematical discourse.  In the discourse 
vignette, 63% and 45%, respectively of the PMTs supported having students do most of the talking, 
none of the PMTs encouraged the teacher-majority approach, and 37% and 55% of the PMTs 
preferred a balance of the two approaches.  The student majority approach responses included: 
“Classroom conversation should be about creating new knowledge. … I want my students to feel 
comfortable about sharing their thinking, therefore, I want them to do most of the talking…” (U). 
Additionally, the elementary PMTs from CC were less likely to relinquish power regarding whose 
voice dominates in the mathematics classroom, however, all PMTs were aware of and thinking about 
some equitable issues. 
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The inequitable experiences and outcomes for Black learners of mathematics is well documented in 
urban areas (Martin, 2012). There is less work on the construction of race in education in rural areas, 
specifically Appalachia. Because race intersects with multiple economic and social structures, it is 
necessary to attend to context when studying race in mathematics education (Ladson-Billings, 2005; 
Patel, 2016). This poster makes the case for a study of learning mathematics while Black in 
Appalachia and provides initial findings of research on Black students and White teachers of 
mathematics in West Virginia. 

Critical race theory in education is based in the idea that racism is endemic to American society and 
its educational system. Also, American society was formed in and still continues to function based on 
property rights (Ladson-Billings & Tate, 1995). In Appalachia, property and economics is the focus 
of discourse in the region. Because this work in economics is centered on White rurality, racial issues 
are made invisible (Anglin, 2002). Race is also ignored in rural education as schools are sites of 
normative White cultures that lead to structural racism (Groenke & Nespor, 2010). 

The theory also operates under the assumption that Whiteness is a form of property. However, this 
functions differently in Appalachia as White people in the region have been essentialized as “white 
trash” (Smith, 2004). This leads to a presumed “White innocence” in Appalachians and substitutes 
class issues for race issues making them invisible (Scott, 2009). As the vast majority of teachers in 
West Virginia are White, this has ramifications for the education of Black students in Appalachia. 
Particularly with labor strife rampant in Appalachian education, Black students are a “neglected 
minority within a neglected minority” (Cabell, 1985, p. 3). Critical whiteness studies are centered in 
the hyper-segregation in schools and explore the race consciousness of White teachers (Jupp, Berry, 
& Lensmire, 2016) Using critical Whiteness studies can provide a nuanced look at White teachers of 
Black students.  

Critical race theory and Critical Whiteness studies provide insight into the way mathematics 
education functions in racialized ways. Mathematics is often viewed as a neutral, universal field free 
from politics (Gutierrez, 2013) and can serve as a “gatekeeper” to upper levels of mathematics and 
higher education (Moses & Cobb, 2002). STEM education is also a form of property and capital in 
American society (Bullock, 2017). Mathematics education is a White institutional space (Battey & 
Leyva, 2016), so it is essential to use these frameworks to study students and teachers in Appalachian 
mathematics classrooms.  

This poster provides a framework for the study of Black learners and White teachers of mathematics 
in Appalachia. It also provides preliminary findings in a study of Black students’ experiences 
learning mathematics and White teachers’ perspectives on teaching students of color in the region. 
There is ample documentation of how race functions in urban mathematics classrooms. This work is 
designed to illuminate racist interactions and structures that oppress Black people in mathematics 
education in Appalachia which can lead to the disruption and dismantling of racism in rural 
education. 
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In this poster presentation the authors share the results of surveying preservice teachers (PST’s) in 
The United States (US) and Uruguay, with different problem types following Simic-Muller et al. 
(2015) framework and work. US PST’s consistently showed an inclination to family background or 
community practice problems, and a rejection of issues of injustice problems. Uruguay PST’s data is 
not as clear as US data, but there are some points of contact with the US results.  

Keywords: Problem Solving; Social Justice; Teacher Education – Preservice.  

Mathematics has long been seen as a separate tool from everyday lives of children, disconnected 
from social issues. Teachers need to re-discover that connection and exploit it towards the academic 
and non-academic success of children in and out of school. Most important, teachers need to realize 
and accept that as Mathematics is a “weapon in the struggle” (Gutstein, 2012), teachers themselves 
are political actors (Gutierrez, 2013). One effective way to help children see the connection, and help 
teachers explore this “new” identity, is to teach Mathematics through problem solving. Given that 
Mathematics it is not a “culture free” content that can be taught in a space “politics free”, then 
teachers must acknowledge the political power of Mathematics and their own political power, 
specially as they teach minoritized students. The authors investigate how pre-service teachers 
respond to different problem types, that even though are all “real life situations”, are more or less 
committed to show Mathematics as a political tool to understand and change the world.  
The questions the authors aim to answer are: 

Do elementary pre-service teachers consider using problems for which the context requires an 
analysis of issues of injustice that may be difficult, but that are part of children’s lives? 

What are the explanations pre-service teachers provide to ground their decisions in regard to what 
contexts are or are not acceptable for teaching mathematics in elementary school? 

The authors surveyed 21 US, and 33 Uruguay elementary preservice teachers (PST) taking their 
first mathematics methods course. The US PST’s belong to the same section on a teacher preparation 
program located in the South of the United States, and the Uruguayan PST’s belong to the same 
preparation program in a urban area.  

Preservice teachers have strong opinions of what is and is not appropriate for elementary school 
children when learning mathematics. This is usually based on their understanding of the students. 
However, with background so different from their students and families, it is not clear how this is 
helping. They assumed that children would be scared if they “introduce” mathematical contexts like 
family separation at the border (in the US) or feminicide (in Uruguay). They also assume apple 
picking and soccer would be familiar and liked by the students. Yet we know children are already 
scared about those difficult topics. It is imperative that the PST’s understand the issues that relate and 
are important to their students so they can draw on those to teach mathematics. The authors consider 
this a pilot study, and would like to repeat this experiment with a larger audience to be able to 
perform statistical analysis of the data. The results also suggests that they should conduct interviews 
with some of the participating PST’s about their choices and explanations. In addition to that, the 
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authors also would like to consistently use cognitively guided instruction (CGI) as a way to control 
mathematical complexity of problems.  
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Drawing from critical approaches to disability such as neurodiversity and Disability Justice this 
paper focuses on developing understanding of teacher knowledge necessary for successful 
engagement of students with disabilities in meaningful mathematics. Students with disabilities have 
long been conceptualized through deficit frames within both special and mathematics education and 
denied opportunities to engage in sense-making (Lambert 2018). Utilizing data from a previous study 
(Lambert, Sugita, Yeh, Hunt, & Brophy, 2020), this paper is a call to reframe teacher knowledge in 
mathematics to understand the importance of access knowledge for teaching mathematics, 
knowledge about how math class and math learning feels to students with different bodyminds (Price 
2011).  

Disability Justice (Berne 2017) is an emerging political movement in the disability community that 
includes attention to intersectionality and embodiment. Access is understood not as not only being 
able to enter a space, but relational engagement within that space (Mingus 2017). The concept of 
access-knowledge comes from the work of Aimi Hamraie (2018) who analyzed how disabled maker 
culture and the founders of Universal Design redefined access-knowledge towards creative problem 
solving based on close understanding of user experience, as well as understanding the complexity 
and diversity within disability.  

I define Access-Knowledge for Teaching Mathematics (AKTM) as knowledge about how math 
class and math learning feels to students with different bodyminds, including an approach to solving 
access issues for students that locates difficulties in classroom spaces, practices and school systems 
rather than within individual students. Solving access issues necessarily involves collaboration 
between the student and the teacher. Access is not just being able to enter a classroom, or be given 
alternative to particular forms of presentation, but also access to relationships, interaction and a 
feeling of safely that are at the core of student’s experiences in school. This paper expands current 
scholarship in mathematics education teacher education by theorizing new forms of teacher 
knowledge necessary to include students with disabilities in meaningful mathematics. 
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Mathematics teacher educators (MTEs) have a responsibility to prepare and support mathematics 
teachers to build safe cultural spaces for students to learn mathematics. This requires making teachers 
aware of “national, state, district, and school contexts for educating students and be[ing] ready to 
engage in conversations to address inequitable learning experiences” (Association of Mathematics 
Teacher Educators, 2017, p. 23). One method of providing this preparation is to engage teachers in 
conversations and experiences that enable them to recognize and address inequitable learning 
experiences.  

We used the casebook Cases for Mathematics Teacher Educators: Facilitating Conversations about 
Inequities in Mathematics Classrooms (White et al., 2016) in our three respective contexts to foster 
math educators’ ability to identify and address inequities and to develop MTEs’ ability to engage in 
conversations as inequities arise or are recognized. Guided by a situative framework (Putnam & 
Borko, 2000) and an inquiry stance (Cochran-Smith, 2003), we sought to answer the question: How 
do mathematics teachers across the teacher development continuum respond to equity-related cases 
and engage in conversations about inequities in mathematics education? 

This cross-site research study was situated within teacher education and professional development 
settings. Participants included PreK-12 mathematics teacher leaders; graduate students preparing to 
become university-based MTEs; and preservice mathematics teachers. After the participants read the 
cases, we used common prompts to explore how they grappled with, embraced, and/or resisted 
equity-based dilemmas. The participants’ written responses, recordings of the discussions, and 
facilitator notes were collected and analyzed (Saldaña, 2016). Preliminary data analysis revealed that 
all groups were eager to engage in conversations around the cases, which enhanced their ability to 
notice and analyze inequitable situations.  

A case titled “Who Counts as a Mathematician?” led to rich conversations across all three groups. 
Several participants challenged traditional assumptions regarding who can be considered doers of 
mathematics, allowing us to address inequitable learning contexts that may result from stereotyping 
and tracking. The teacher leaders often had experiences similar to those of the case authors and were 
ready to disrupt inequities. However, some graduate students and preservice teachers found it 
difficult to unpack the complexities and nuances of the dilemmas. This finding suggests the 
developmental nature of educators’ ability to see themselves in the cases, feel empowered to disrupt 
inequities, and be ready to facilitate conversations with other educators. 

As MTEs, we must continue to grow and develop our ability to facilitate conversations about 
inequities in mathematics classrooms. This study allowed us to learn collaboratively across settings 
and adjust our practice. Our findings highlight the need to explore how educators develop an 
understanding of various scenarios in order to create equitable mathematics classrooms.  
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One of the significant challenges facing higher education is narrowing the educational attainment 
gap between students who are academically prepared and those who are not. Although the intention 
of developmental education is to help support underprepared students in achieving academic success, 
there have been disagreements among researchers on the effectiveness of achieving this goal (Goudas 
& Boylan, 2012). On one hand, developmental mathematics has the capability of providing the 
impetus that can propel students to their overall academic success. On the other hand, the long road 
the students have to go through in completing mathematics requirements causes many to give up 
before they can finish the sequence of courses (Rosin, 2012).  

This study examines how developmental students’ general and mathematical experiences help to 
shape mathematical identities they develop and how these identities in turn hinder or enhance their 
successful participation in mathematics. Also examined are the factors that influence students’ 
mathematics identities after taking a developmental mathematics course. To this end, the following 
research questions guided this study of first year students taking a developmental mathematics course 
at a mid-sized, urban public university:  
 

1. How do developmental mathematics students describe their mathematics identities? 
2. What factors coalesce to influence students’ mathematical identities after taking a 

developmental mathematics course? 
Data was collected using pre-post surveys and semi-structured interviews. The analysis reported 

here is based on the data from the survey instrument. The statements in the survey were grouped into 
five aspects of mathematics identity; self-concept, self-efficacy, motivation, and anxiety, and value 
of mathematics. Qualitative data from the open-ended items of the instrument was systematically 
analyzed using grounded theory to uncover patterns and trends in participants’ responses while 
descriptive statistics was calculated for the quantifiable portions of the surveys. Items were compared 
both within surveys and across surveys to identify correlations and trends, as well as to support 
qualitative themes. 

Analysis revealed that differences of the overall mean scores of all five aspects of mathematics 
identity between females and males were not statistically significant. Further, students scored the 
lowest on self-concept while the highest score was on their perception of the value or importance of 
math in their lives. As Klinger (2004) pointed out there are many students who do not particularly 
enjoy mathematics and report a disliking for the subject (negative affect), even though they still 
respect the utility and importance of math in their future lives and careers. Also, the study revealed 
that students’ self-efficacy and self-concept increased significantly over time. 
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I draw on the findings from one study to show how Njo (pseudonym), a Gambian youth in the study 
shifted towards Epistemic Freedom during the course of our semester long co-exploration. I argue 
that when multiple knowledges are valued in mathematics spaces, students are able to see themselves 
as capable mathematics learners. Ndlovu-Gatsheni (2018) speaks about epistemicide as the killing of 
indigenous peoples knowledges, that occurred during colonialism and is still in place now. Thus, he 
introduced Epistemic Freedom as “democratising ‘knowledge’ from its current rendition in the 
singular into its plural known as ‘knowledges’.” In mathematics education, epistemic freedom pushes 
us to make room for multiple knowledges as this shifts towards what Ndlovu-Gatsheni termed 
“cognitive justice.” 

Using African epistemologies – Sankofa, Ubuntu, and the Fela Anikulapo-Kuti Music (FAM) – I 
sought to co-explore with five Sub-Saharan African youth, if and how they use mathematics in 
understanding, challenging, and disrupting social issues related to the African context. Ubuntu (Tutu, 
1999) is a Southern African philosophy emphasizing that I am because we are. Sankofa (Dei, 2012) 
is from the Twi people in Ghana that asserts that we must look into our past before reflecting on the 
future. Lastly, I coined the FAM methodology from Fela’s song Teacher Don’t Teach Me Nonsense 
(Anikulapo-Kuti, 1986) which has three main facets including co-learning, disruption, and joy.  

The research question guiding this inquiry is “what knowledges do African youth draw upon in their 
investigation of social issues and how might these knowledges advance our understanding of critical 
mathematics education?” In the spring of 2019, I partnered with five sub-Saharan African youth in an 
out-of-school context. Together, we met for approximately two hours once a week using a story-
telling approach. I collected audio and video data from all sessions along with WhatsApp group 
messages. I ensured that we collectively designed the space with the overarching goal of making 
sense of social issues on the African continent. I was intentional in not centering mathematics but 
instead was interested in seeing if mathematical ideas emerged in thinking through social issues. I 
analyzed the data thematically while ensuring that I was guided by the stories told (Wilson, 2008). 

In the poster, I will use seven narratives that reveal Njo’s journey towards epistemic freedom as she 
began to claim authority in her mathematics education. These narratives reveal her identity 
formation, disruption of colonial discourses, awareness and valuing of multiple ways of knowing, 
and lastly, multiple ways of knowing in mathematics. Njo’s journey showed how through looking at 
cultural artifacts and reflecting on her own experiences, she was able to value indigenous 
[mathematics] knowledge. Moreover, she asserted that if young children are given the opportunity to 
see the multiplicity of knowledges within their communities, perhaps they will enter formal 
mathematics spaces with more confidence and belief in their abilities. 
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Mathematics is often portrayed as an apolitical, culture- and color-blind universal language 
(Gutiérrez, 2013; Marin, 2009; Shah, 2017). However, Recent work in mathematics education has 
called for a need in exploring the intersectionality between mathematics, learning, and student 
identities (Gutiérrez, 2002, 2013; Shah, 2017; Zavala, 2014). This is of particular interest for 
multilingual students since they are a growing and diverse population (de Araujo et al., 2018) at the 
intersection of race, language, culture, and immigration.  

In this poster, we draw from Critical Race Theory and Latinx Critical Theory (Delgado Bernal, 
2002; Solórzano & Delgado Bernal, 2001) as the basis for examining patterns of resistance by Latinx 
multilingual students in linguistically diverse high school mathematics classrooms. Resistance is a 
form of agency that can be used to explore how multilingual students negotiate and struggle with 
structures, and use those interactions to create meanings (Solórzano & Delgado Bernal, 2001). We 
were particularly guided by the following research question: How do students engage in resistance 
that are motivated by a critique of oppression and an interest in social justice? 

Similar studies have analyzed Latinx experiences in mathematics high school classrooms in more 
diverse settings (e.g., Zavala, 2014). However, this study includes four ninth graders from one 
classroom at a more racially segregated setting, City High. City High is located on the US-Mexico 
borderlands and has a relatively large population of recent immigrant and transnational students. The 
four students included in this study represent a variety of Latinx experiences, from students who 
recently arrived to City High from Mexico to students who have lived around City High their entire 
life.  

Counterstories (Solórzano & Yosso, 2002) of semi-structured interviews about mathematics and 
identity and classroom observations are shown to illustrate how students engage in resistance. 
Particularly, we found that students acted in both individual and collective forms of resistance that 
are at the intersection of Solórzano and Delgado Bernal’s (2001) transformational and conformist 
resistance. Transformational resistance includes students who are motivated by social justice and 
explicitly critique oppression. Conformist resistance includes students who are motivated by a need 
for social justice but do not hold an explicit critique of oppression. Resilient resistance lays at the 
intersection of transformational and conformist resistance and includes students whose actions 
challenge oppression, but they may not explicitly challenge the nature of the oppressive structures 
(Yosso, 2000). For example, students may say things like “ya me conforme” and note that race and 
language do not have a direct impact on their educational experiences. Yet, they may also 
collectively organize (e.g., assigned group roles to each other, embrace translanguaging, and engaged 
in collaborative group work) as a way to negotiate, struggle, and make meaning within school 
structures. 

 More importantly, the four students in this study did not have direct instruction about critiquing 
oppression or fostering a motivation social justice, as is with critical pedagogy (e.g., teaching math 
for social justice). Yet, students showed steps toward a path of transformational resistance, providing 
evidence for critical consciousness that students bring into the classroom. 
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Despite the mathematics-for-all mantra, few mathematics education (math ed) scholars have studied 
learning disabled (LD) students’ mathematical learning (Xin et al., 2015). This extremely low 
number of math ed studies specifically on LD students is puzzling (considering that LD students 
comprise at least 5% of student populations) and unfortunate (because special education scholars—
steeped in behaviorist/medical-deficiency paradigms—have dominated the research landscape and 
largely promulgated a dehumanizing, explicit-only instructional approach for LD students’ 
mathematics learning that directly contradicts current reform-oriented approaches embraced by the 
math ed community). This special education explicit-only message is so pervasive that even 
mainstream reform-oriented math ed publications—like the National Council of Teachers of 
Mathematics’ position statement on intervention (NCTM, 2011)—default to this explicit-instruction-
is-best-for-LD-students belief. It is time for the field of math ed to “capture the high ground” by 
exerting more influence on the research narrative about what instructional methods are appropriate 
for LD students.  

It is in this context that this mixed-methods research study investigates with fine-grained analysis 
the embarrassingly immature condition of math ed LD research. I examine the various tiers of math 
ed research publications (as defined by various authors, e.g. Toerner & Arzearello, 2012; Williams & 
Leatham, 2017) to describe the quantity and quality of LD math ed research by math ed scholars. For 
example, over the last 20 years, the two top-tier math ed journals, Educational Studies in 
Mathematics and the Journal for Research in Mathematics Education have only published six and 
five studies—respectively—on LD students’ mathematics learning. Even the proceedings of the 
North American Chapter of the International Group for the Psychology of Mathematics Education 
(PME-NA) demonstrates a paltry 1.7% ratio of LD to all studies, far below the 5% minimum 
threshold expected based on the number of LD students in mathematics classes. I also apply Glaser’s 
(1965) constant comparative method to develop a theoretical matrix cataloging the various types of 
math ed publications that include LD issues (e.g., ones that include special education statistics 
without separating out LD students from those with physical handicaps). I conclude with concrete 
recommendations for mathematics educators to capturing the high ground of LD math ed research. 
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Historically, women are underrepresented in science, technology, engineering, and mathematics 
(STEM) fields (Hill, Corbett, & Rose, 2010). To inspire girls to participate in STEM disciplines, 
many researchers have found that a variety of interventions, such as female role models, hands-on 
activities, and single-sex learning environments, can increase girls’ interest and shape their identities 
in STEM areas (e.g., Chen et al., 2011; Holmes et al., 2012; Tyler-Wood et al., 2012).  National 
efforts to engage girls in STEM disciplines have had mixed reviews. Between 1993 and 2015, the 
number of women in computer and mathematical sciences occupations increased by 173%. However, 
these fields have attracted relatively more men, whose participation increased by 239%. Thus, the 
overall proportion of women has declined from 31% to 26% (National Science Board [NSB], 2018). 
The NSB (2018) also reported that five years after receiving their highest degrees across all science 
and engineering areas, only 18% of females remained in these fields compared with 33% of males. 

Corbett and Hill (2015) pointed out that although many studies have concentrated on factors 
contributing to the entry of women into STEM fields, far fewer have examined the question of why 
women leave these fields, often after years of preparation, and what factors could support them to 
remain in the fields. Through exploring the lived experiences of the women who participated in the 
first Girls Excelling Math and Science (GEMS) Club–an ongoing afterschool STEM program begun 
26 years ago–this study will investigate the group of women’s experiences with STEM. The study is 
guided by the research question: How have the original GEMS Club members’ experiences in GEMS 
influenced their education, career selection, and lives, both personally and professionally? 
Specifically, a) How have their experiences in GEMS impacted their identity, including mathematics, 
STEM, and gender identities?  And b) How have their experiences in GEMS influenced their 
sustained interest, engagement, and participation with STEM?  

Given the purposes of this study, narrative inquiry is the methodology and form of analysis in the 
study (Clandinin & Connelly, 2000). Data is collected through a questionnaire and interviews.  The 
questionnaire collects demographic information and experiences in the GEMS club from all women 
who have participated in the first GEMS Club. Respondents who have detailed memories of their 
GEMS experiences are interviewed in a sequence of three semi-structured interviews with each 
participant, as suggested by Seidman (2013). 

Data analysis consists of both analysis of the narrative and narrative analysis (Polkinghorne, 1995) 
identify common themes that emerge across stories from different participants. The narrative analysis 
focuses on the social environment that shaped the stories, particularly from a feminist standpoint 
(Brooks, 2007; Harding, 1991). Using thick, rich descriptions within the three-dimensional inquiry 
space (Clandinin & Connelly, 2000), the study represents each participant’s life story by laying out 
the events, configuring them into episodes, and constructing contextual explanations by drawing 
from common themes across each participant’s story. 

The findings are used to create more effective informal STEM learning environments for girls, 
thereby empowering women in STEM. 
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This paper reports an ongoing effort to address the problem of instructional capacity for high school 
geometry from a systems improvement perspective. In an effort to understand the system that 
contains the high school geometry instructional capacity problem, we identified key stakeholders and 
conducted preliminary interviews to learn about the problem from their perspective. We use these 
interview data to describe the system in more detail and to identify six major factors contributing to 
the high school geometry instructional capacity problem. 
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This paper describes emerging efforts to develop a networked improvement community to address 
the problem of instructional capacity for high school mathematics. The capacity problem as we see it 
is the following: While scholars’ understanding of the knowledge teachers need for teaching has 
progressed to a point that this knowledge base could be used to inform teacher development efforts 
(Ball, Lubienski, & Mewborn, 2001), the volume of aspirants to secondary mathematics teacher 
education has been decreasing to a point that sustaining and improving university programs for initial 
mathematics teacher preparation can be challenging (Sutcher, Darling-Hammond, & Carver-Thomas, 
2016). Traditional efforts at instructional improvement have started from the design of policies or 
practices (including curriculum implementation) that are believed to have the potential to solve 
problems, followed by evaluation efforts that seek to achieve main effects. Following such an 
approach might require action at the college level, seeking both for investments in the recruitment of 
teachers and implementation of curricular approaches for teacher preparation focused on the 
knowledge teachers need. Such efforts have been underway (e.g., U-Teach, 
https://uteach.utexas.edu/uteach-institute-seed-grant; see also Newton et al., 2010) and may help 
produce some improvement. At the same time, Bryk et al. (2015) have described such approaches as 
problematic on account of their top-down logic of improvement, relying on developers’ own 
understanding of the problem and conception of the solution, which usually put a premium on 
implementation fidelity. 

Bryk et al. (2015) propose a different approach to improvement that seeks to involve all actors 
within the system being improved in the process of problem formulation, system mapping, and 
improvement design aimed at reducing variability in outcomes. This seems particularly useful in a 
context where improvement design and implementation is likely to cross boundaries across systems 
(e.g., K-12, higher education) with different existing practices and norms, where the logic that might 
support improvement in one system (e.g., curriculum implementation at the K-12 level) may or may 
not be useful in the other (viz., higher education).  

                                                             
1 This work has been done with the support of NSF grant DUE- 1725837 to P. Herbst and A. Milewski. All opinions 
are those of the authors and do not necessarily represent the views of the Foundation. 
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Our paper documents an initial effort to undertake systemic improvement in secondary mathematics 
teaching knowledge by developing an understanding of the problem of instructional capacity for 
secondary geometry. While the former seems like a huge problem in general, addressing it 
systemically seems crucial. By this we mean understanding connections across the systems that 
participate in the problem, specifically university teacher preparation, K-12 teaching, and the policy 
level (see Figure 1). Thus, our first approximation looks at a smaller version of the problem of 
instructional capacity while still addressing it systemically. The choice of geometry is strategic as a 
way to simplify the more general problem of instructional capacity at the secondary level because 
geometry is largely contained in a single secondary course and is taken by almost all high school 
students. Likewise, most teacher preparation programs require their candidates to take a Geometry 
for Teachers (GeT) course. Furthermore, some progress has been made measuring mathematical 
knowledge for teaching geometry (Herbst & Kosko, 2014; Ko, 2019). Hence, reducing the 
investigation of the problem of developing instructional capacity in secondary mathematics to 
secondary geometry may allow us to maintain attention to systemic issues while not being 
overwhelmed by the sheer scale of the systems being investigated. In this paper, we outline the 
development of an understanding of the system that produces the current high school geometry 
(HSG) instructional capacity problem with the goal of further developing an inter-institutional 
community of university instructors of Geometry for Teachers courses. 

Theoretical Framework: Systems Improvement Approach 
Bryk et al. (2015) developed the concept of networked improvement communities by adapting an 

improvement science framework to the context of education research. In the early stages of the 
formation of a networked improvement community, Bryk et al. (2015) recommend developing a 
complete understanding of the “the system that produces the current outcomes” (p. 57), followed by 
systematic experiments in which members of the community implement small changes that have the 
potential to produce measurable differences in the target outcome. This requires that stakeholders 
identify a specific problem to be addressed and seek understanding about the larger system by asking 
“why” questions. Bryk et al. (2015) suggest using some diagrammatic tools to visualize who the 
stakeholders are and elicit their knowledge about the system to develop an accurate picture. Both a 
systems diagram (Figure 1), and what Bryk et al. (2015) call a fishbone diagram (Figure 2) for 
problem formulation are used. 

 

 
Figure 1. Schematic of the system that contains the HSG instructional capacity problem. 

 
We developed the schematic in Figure 1 to determine who the potential stakeholders are in the 

problem of HSG instructional capacity. Material connections between stakeholders are indicated by 
overlapping rectangles. For example, the geometry courses for teachers overlap mathematics 
departments and teacher education programs because, while those courses are usually offered by 
mathematics departments, their existence relies on being required by teacher preparation programs. 
Students and teachers flow through the complex system: For example, high school students take 
geometry courses in high school; their mathematics experiences in school, for better or worse, 
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prepare them for studying mathematics in college; those who decide to become mathematics teachers 
take college courses like Geometry for Teachers; if and when they get certified to teach, they are 
hired in K-12 districts where they might be teaching high school geometry. Likewise, some 
university students eventually become mathematicians who might be employed in mathematics 
departments and assigned to teach GeT courses. Mathematics teacher educators might also be 
observed in the system, inasmuch as they include former teachers and ordinarily participate in policy 
work such as standards development.  

The systems diagram (Figure 1) is therefore useful as a way of identifying potential stakeholders in 
the problem of HSG instructional capacity. The diagram helps identify the institutional roles of 
people whose perspectives inform the problem. These include HSG teachers, secondary school or 
district leaders, HSG students, university Geometry for Teachers instructors, university mathematics 
department chairs, GeT students, faculty and administrators in secondary teacher education 
programs, recent university graduates, state or national policymakers, teacher assessment developers, 
and anyone making decisions about teaching certification and evaluation requirements at the state 
level. We surmise that improving the problem of instructional capacity for teaching high school 
geometry may require gathering representatives of all these institutions. 

A fishbone diagram (Figure 2) provides a visual representation of the problem of focus for the 
networked improvement community (the head of the fish). Typically, these diagrams have five to six 
major bones, each representing a key factor that contributes to the problem, with more contributors 
(sub-bones) to each of those factors underneath. As our view of the HSG instructional capacity 
problem becomes more complex, the fishbone diagram serves as a tool to help us look for 
connections across stakeholders and determine potential levers for improvement. 

One crucial component of a networked improvement community is a “hub” that serves to organize 
the information and activities of the network, including defining the system and eliciting the 
formulation of the problem. Our research team fills this role by gathering information from 
stakeholders in the system, collecting data, and disseminating the results back into the network. 
Members of our team have experience conducting research and teaching in secondary and higher 
education settings which supports our efforts to fulfill the role of network hub as well as collect and 
analyze the data reported in this paper. 

Methods 
We conducted semi-structured interviews with four sets of stakeholders from across the system in 

study; GeT instructors (n = 42), secondary school leaders (n = 7; 2 HS principals, 2 HS mathematics 
department chairs, 3 state/district instructional leaders), university mathematics department chairs (n 
= 3), and early-career mathematics teachers (n = 3). Recruitment and selection of participants varied 
by stakeholder group. The GeT instructors were already part of our project as members of an inter-
institutional network made up of instructors of GeT courses located in mathematics departments at 
universities with teacher education programs. The secondary school leaders and early career teachers 
were recruited through a mass email to school leaders in a midwestern state that included an 
eligibility form to facilitate the screening process. We selected participants to ensure variability in 
administrative role, school and district size, and years of experience. The university mathematics 
department chairs were recruited through individual email requests from universities in a midwestern 
state that have a GeT course.  

The interviews were conducted over video conference and recordings were transcribed for analysis. 
The interview protocol differed by stakeholder, but analysis of all interviews focused on connections 
between the data and our systems and fishbone diagrams. After the interviews had been conducted 
and analyzed, we reported our findings back to the network of GeT instructors through interactive 
online seminars. 
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Results  
Each stakeholder group contributed to our understanding of the “hidden complexities” (Bryk et al., 

2015, p. 14) within the complex system that contains the HSG instructional capacity problem. Within 
each stakeholder group, individual participants were able to offer insight into the particular ways in 
which those complexities manifested within their context. Participants vary in the number of years 
they have held a particular position within the system, and many of them also drew on experiences 
they had moving through the system (e.g., secondary school leaders that are former mathematics 
teachers who took a GeT course and were once students in HSG). In this section, we identify 6 main 
factors that contribute to the problem of HSG instructional capacity as indicated from interviews 
across stakeholder groups.  
De-emphasizing the HSG Course 

A contributing factor to the HSG instructional capacity problem is that the course has been de-
emphasized by several stakeholder groups. Participants mentioned three underlying causes; (1) much 
of the HSG content is not needed to succeed in AP Calculus and AP Statistics, (2) HSG content is not 
rigorously assessed on the SAT, and (3) there is a lack of clarity on where and how HSG content 
should appear within the high school mathematics sequence (e.g., integrated into first- and second-
year courses, as a fourth-year standalone course, etc.).  

One district/state instructional leader shared that “the districts in [my] county right now are 
struggling with offering geometry, which is unfortunate, but they don’t see an emphasis on the SAT” 
(CE). In addition, she identified an “importance of all students having success in Algebra 1 before 
they get to higher-level courses,” which affords the Algebra 1 course more importance (and therefore 
more resources) within the high school mathematics sequence. This provides some evidence that the 
choice to de-emphasize HSG comes from pressure (or lack of pressure) at the school or district level. 
Policies at the state level may also be contributing to the deemphasizing of HSG within the system. 
“Messaging at the [state department of education] is that we don’t have a course called geometry. 
Students have to demonstrate proficiency in the K-12 standards,” some of which address geometry 
content (IF; district/state instructional leader).  

There are a number of potential impacts on the HSG instructional capacity problem when schools, 
districts, and state education departments don’t emphasize the HSG course. For example, while 
professional development specific to Algebra standards is frequently offered to inservice teachers, it 
is much less common to find Geometry-specific professional development.  
HSG is not a Desirable Course to Teach 

Teacher preparation programs set out to provide candidates with the knowledge, skills, and beliefs 
necessary to be successful secondary mathematics teachers, but multiple stakeholders identified 
disparities between the preparation candidates receive and the preparation they ultimately need. By 
far, the most common shortcoming in the preparation of HSG teachers is the overwhelming number 
who arrive on the job market with a lack of desire to teach geometry. Secondary school leaders at 
each level of administration told us, in one way or another, that “teachers don’t like teaching 
[geometry]” (CK, Principal). One participant went so far as to say that teachers “were fearful of it” 
(IF, district/state instructional leader). Although there was one district that has had a steady stream of 
secondary mathematics teachers that view the course favorably, that was an exception to the trend. 

While some stakeholders described the general phenomenon of teachers’ lack of desire, some went 
further to identify underlying reasons for the undesirable nature of the HSG course; (1) compared to 
upper-level courses, HSG is not an ideal teaching assignment, (2) teachers are not comfortable with 
the HSG content, and (3) teachers hold an opinion that it is more difficult to plan for HSG than other 
mathematics courses. A district/state instructional leader shared that upper-level courses are more 
desirable for a number of reasons: 
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There seem to be lots of people to volunteer at the upper-level courses to teach and not as 
many that want to teach Algebra and Geometry...I’ve been told those kids are easier to teach 
[in the upper-level courses], they come better prepared...The upper-level courses tend to have 
more stable classes, less kids that transfer in and transfer out...There seems to be a status 
thing, too, with teaching the upper-level classes where it’s not seen as prestigious to teach 
Algebra or Geometry or an intervention class as it is to teach the upper-level classes. (ZM) 

While some teachers express a desire to teach upper-level courses rather than HSG, others 
communicate discomfort with the content covered in HSG. A high school mathematics department 
chair described geometric proof as the most prominent stumbling block for teachers; “[A]s much as 
we can see what the process should be..., it’s more difficult to teach that when it’s pretty far from the 
other standards of math that are ‘here’s the process. That’s it’” (RU). When one principal 
summarized experiences telling new hires that they would be assigned the HSG course, she said 
“[T]hey just cringe. They constantly tell me ‘this is not my strong point.’ And they try to blame it on 
the kids and say, ‘the kids hate it’” (CI, Principal). One early career mathematics teacher even 
identified it as “kind of a beast to plan for—a lot of diagrams and whatnot and different notations—
as far as making materials, it kind of seems overwhelming” (JL). Although none of these 
explanations for the lack of desire to teach HSG connect directly to university teacher preparation 
programs, we suggest that the structure of the system connecting universities to high schools, through 
the preparation and hiring of secondary mathematics teachers, may present levers for improvement. 
Structure of University Teacher Preparation Coursework and Clinical Experiences 

There are a number of factors that contribute to the HSG instructional capacity problem that are 
related to the structure of coursework and clinical experiences within university teacher preparation 
programs. Namely, there is wide variation in student teaching experiences, comparatively fewer 
opportunities to engage with geometry content, and a mismatch between the knowledge teachers gain 
and the knowledge they need on the job. Due to the wide variety of school contexts, teaching 
assignments, curriculum materials, and instructional styles, the student teaching experience often 
looks “wildly different, building to building, classroom to classroom, district to district” (ZM, 
state/district instructional leader), even for prospective teachers that come from the same program. 
On top of that variation in experiences, one principal reflected that “most student teachers do an 
Algebra [course],” and that if their mentor teacher has some sections of Geometry, “they don’t really 
have them [take over] the geometry course until the end” (CI). If prospective teachers don’t gain 
experience teaching Geometry in their clinical placements, they would need to rely on their 
university coursework for opportunities to think deeply about geometry content. If the GeT course is 
not required for certification, they may only have their own HSG experience to rely on. One HS 
mathematics department chair shared that “the most common response [to being assigned the HSG 
course] is ‘I haven’t done geometry since high school. I’m going to need to refresh on this’” (RI). 

Even when prospective teachers do take a GeT course during their university coursework, the 
content is not always aligned to what prospective teachers feel they need when they begin teaching. 
Thinking back to his own university coursework, one principal shared that “there wasn't a whole lot 
of focus [in the GeT course I took] on what students would actually be learning in high school. It was 
more of exploring the higher levels of math. So I felt like there was a gap overall in my 
undergraduate experience of learning about subject matters that I would be teaching” (CK). One 
university mathematics department chair voiced support for that version of the GeT course, saying 
that prospective teachers “should know the subject matter a bit deeper than what their students do or 
what the textbooks cover” (RA). To him, that means that while HSG geometric proofs tend to be 
structured in two columns and contain a limited number of statements, “in a college course, they 
need to go one level deeper” (RA). 
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In addition to a focus on content that is beyond the high school curriculum, some GeT courses are 
taught in a style that runs counter to the instructional practices secondary mathematics teachers may 
be expected to enact when they are hired. An early-career mathematics teacher described the 
instructional style of his GeT course that was focused on spherical and hyperbolic geometry: “In the 
class itself, we never worked together. It was very lecture based. You sat there for an hour fifteen, 
got lectured to and left” (JL). This suggests that GeT courses at some universities are designed to 
support students’ content knowledge but do not attend to their pedagogical content knowledge. 
However, the secondary school leaders described the ideal qualifications for a HSG teacher in terms 
that blended content and pedagogical knowledge, indicating that they were not so cleanly distinct in 
practice. For example, a district/state instructional leader said that “we need someone who kind of 
has a vision of the content and what they feel is the best way to teach it” (ZM). Another described 
ideal applicants who are “comfortable enough with their own knowledge to be able to listen to or 
hear their students when their students are proposing or conjecturing and that they're flexible enough 
not to shut them off right away and say, no, that'll never work” (CE). The possibility that the GeT 
course does not prepare students to become the teachers that these leaders identify poses an issue that 
GeT instructors may have the power to influence. However, GeT instructors have a variety of 
backgrounds and visions for what the course should be. 
Variability in Geometry Preparation Within Teacher Education Programs 

Despite some common experiences across participants, there tends to be significant variability 
among GeT courses, across instructors and institutions. We have heard from many GeT instructors 
that the course is unique within the mathematics department offerings because of the diverse student 
population that enrolls. Many courses report a mix of prospective secondary mathematics teachers, 
mathematics majors, and students from other departments that are taking the course as an elective. 
The mix of students creates a tension for instructors who are not sure how to balance the rigor 
required for a mathematics degree with the practical needs of prospective teachers (see Milewski et 
al., 2019). One GeT instructor went so far as to say that prospective teachers “take the same hard 
math classes all the other math majors take… [but] they typically don’t like those courses. And some 
of them don’t see the value of it for being a teacher” (RU). Depending on the particular context of 
each institution, the instructor assigned to the GeT course may have a doctorate in mathematics or in 
mathematics education. One GeT instructor expressed that the course is “mathematically 
sophisticated enough that mathematicians should be teaching it” (MV), while at some institutions the 
mathematics department chair defers to the recommendation of a mathematics educator to determine 
who teaches the course. Moreover, there is not a set criteria for determining the particular instructor. 
According to the university mathematics department chairs, GeT instructors have been chosen 
depending on instructor preference (AR) or who taught it most recently (MA). Depending on which 
instructor is chosen, the course content can vary drastically in terms of the extent to which HSG 
topics are covered and pedagogical content knowledge gained. Lastly, the GeT course is not highly 
valued at some institutions “because this course is really not a crucial part of the mission of the math 
department” (DZ, GeT Instructor). As a result, fewer resources are devoted to the creation of a course 
syllabus and materials, and stewardship of the course is left to individual instructors. All of these 
factors contribute to the varied geometry preparation of prospective teachers which, in turn, adds to 
the HSG instructional capacity problem. 
Lack of Communication Across Institutional Stakeholders 

Each set of stakeholders holds responsibility for some aspects of the preparation and support of 
HSG teachers, but there is no single stakeholder that controls the entire system. In addition, the 
system does not contain structures to support communication and collaboration across groups of 
stakeholders. A university mathematics department chair reported that there was not direct 
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communication between the mathematics and education departments. At his institution, an informal 
communication system emerged, but it was not systematic. 

Well, indirectly we get input because [an instructor] also teaches a course in the education 
department. And so she sort of brings us sometimes, ‘no, okay—they are doing this, we 
might need to modify this course or something. But I don't actively ask them to. (MA) 

At a different institution, a GeT instructor mentioned that “the education department and the math 
department don’t collaborate together, as they’re in separate departments—we send our students [to 
the school of education] to do a credential, but we are separate departments in that sense” (KC). 
Although that instructor seems to trust that their education department counterparts are providing the 
appropriate instruction in service of their shared goals, a high school principal shared that she was 
“not very confident with the universities” (CI) in terms of how they supported prospective teachers in 
gaining content knowledge.  

If stakeholders did not have opinions about what could or should be occurring within other parts of 
the system, it would be reasonable to expect minimal communication across stakeholders. However, 
our interviews with secondary school leaders indicate that they have clear ideas about how their 
potential hires should be prepared. Looking across the levels of school or district leadership, we 
heard the desire for prospective teachers to have “some kind of experience with computer [based] 
instructional materials” (ZM; e.g., GeoGebra), to have experiences struggling with mathematics 
content (ZM), to take a curriculum course “where math teachers truly know the [state standards] or 
the common core [standards]” (CI) and how the standards build across grade levels (CK, IF), to learn 
strategies for teaching problem solving skills (RU), and to have support determining how geometry is 
used outside the classroom (CY). Without structures in place to incentivize communication across 
stakeholders, it is likely that efforts to better prepare HSG teachers will fall short of serving the local 
community’s needs. 
HSG Staffing Decisions Made for Subject-Generic Reasons 

When hearing from the secondary school leaders, it became clear that these leaders often make 
staffing decisions based on generic factors rather than subject-specific considerations. For example, 
one district/state instructional leader shared that the choice of who teaches Geometry “doesn’t seem 
to be about the mathematics at all. It seems to be more about the behavior management of those 
classes and who’s got the right attitude, the growth mindset” (ZM). In addition, staffing decisions at 
secondary schools tend to be made by taking into consideration the preferences and requests of 
current mathematics teachers so that when a position opens up “there will be kind of a reshuffling in 
terms of who is teaching what” (CK, HS principal). Furthermore, several secondary school leaders 
explained that they fill open positions by posting secondary mathematics positions rather than HSG 
positions. This may be a result of the current teacher credentialing system: “I think as long as they 
have secondary mathematics credentials, then they’re supposedly able to teach Geometry. So it 
would just be expected” (CE, district/state instructional leader). These hiring practices may be 
contributing to the HSG instructional capacity problem as declining instructional quality impacts 
high school students who then travel through the system before returning to secondary schools as 
mathematics teachers.  

Discussion 
By considering the interview data presented here in the context of the systems diagram (Figure 1), 

we develop a more nuanced view of the system that contains the HSG instructional capacity problem. 
Schools and districts post openings for secondary mathematics teaching teachers, but tend to place 
the new hires in Algebra 1 and Geometry courses because the current teachers within the department 
request to teach other courses. This means that Algebra 1 and Geometry courses tend to be taught by 
new hires, many of whom are just out of teacher preparation programs. Upon being hired, those new 
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teachers will receive comparatively less geometry-specific professional development and support as a 
result of school, district, and state educators de-emphasizing the HSG course. In their university 
teacher preparation programs, these teachers were not guaranteed to have had opportunities to 
develop geometric pedagogical content knowledge through their coursework or clinical experiences. 
These connections across major bones in Figure 2 indicate that there is a need for a network that 
spans stakeholder groups to inform improvement efforts. 

As we move forward with this work, we plan to use what we have learned from these interviews to 
create surveys that can be administered to a national sample within each stakeholder group. A larger 
sample is a critical way to address limitations to analysis that arise from making claims based on 
idiosyncratic experiences. We will consider how the preliminary interview data from one stakeholder 
group can inform efforts to craft survey questions for the other stakeholder groups. For example, 
secondary school leaders indicated that they sometimes look to see if applicants earned a passing 
grade in their GeT course, so we might like to ask how often GeT Instructors assign a non-passing 
grade in those courses. We are also interested in learning more about how preservice teachers’ 
experiences in the GeT course might relate to their desire to teach HSG when they apply for jobs. In 
our role as the hub of this networked improvement community, we have a unique opportunity to 
disseminate the knowledge and perspectives of parts of the community across stakeholder groups in 
an effort to improve the instructional capacity of the high school geometry course. 

 
Figure 2. Fishbone diagram representing lack of HSG instructional capacity. 
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Spatial reasoning skills are necessary to perform activities at school, at work and in everyday life, in 
general. Different studies indicate the importance of its development at an early age, since it allows 
the reading of a three-dimensional world and its interpretation in two-dimensional representations. 
Our research focuses on the design of activities, using the Theory of Variation, to enhance spatial 
reasoning skills in seven to eight year-old students. In this document, we present characteristics of 
the design of an activity based on the use of pentominoes (two-dimensional puzzles). The results 
show that spatial reasoning skills develop when the following actions are favored: comparing, 
overlapping, rotating, moving, visualizing, and imagining movements, positions and locations of the 
pentomino pieces. 

Keywords: Elementary School Education, Spatial Thinking, Representations and Visualization 

Introduction and background 
Spatial reasoning skills are necessary in human thinking and acting. The importance of developing 

these skills is reflected both in everyday life and in the school environment. In everyday life, authors 
such as Gonzato, Fernández & Díaz Godino (2011) recognize, for example, that the development of 
spatial reasoning is necessary to locate, move and read maps where bi-and three-dimensional objects 
may be present. Research  also indicates that these skills are necessary for learning advanced 
mathematics (Mamolo, Ruttenberg-Rozen & Whiteley, 2015; Hallowell et al., 2015) and for the 
development in other areas such as technology, engineering, architecture ( Arıcı & Aslan-Tutak, 
2015; Van den Heuvel-Panhuizen, Iliade & Robitzsch, 2015), geography, computer graphics and 
visual arts (Clements & Sarama, 2011; Vázquez & Noriega Biggio, 2010). In terms of the 
relationship between spatial thinking and STEM (Science, Technology, Engineering, and 
Mathematics) performance, Uttal and Cohen (2012) suggested that spatial skills strongly predict 
student selection for studying the STEM subjects. 

Although the importance of developing spatial reasoning skills in school is recognized, a review of 
the literature in mathematics education (Ortiz, 2018; Ortiz, Sacristán & Sandoval, 2019), shows a 
lack of studies for enhancing students’ competences, abilities, thinking, or spatial reasoning. Ortiz 
(2018) analyzed articles in 12 mathematics education journals in English and Spanish, published 
between 2010 and 2016. She observed that only 4.7% of the articles focus on aspects of learning and 
teaching geometry (in contrast to those focused on arithmetic, algebra and calculus). Of this 
percentage, only 13% address aspects of spatial reasoning: some describe the importance of its 
development, others focus on identifying difficulties and some more present activity proposals. 

Research focused on analyzing the consequences of a poor development of spatial reasoning, have 
identified difficulties in the visualization of 2D and 3D representations (Arıcı & Aslan-Tutak, 2015); 
in the turning movement of 2D and 3D objects (Pittalis & Christou, 2010); in understanding the 
meaning of area and volume formulas (Mamolo, Ruttenberg-Rozen & Whiteley, 2015); in the 
construction of 2D and 3D figures (Pittalis & Christou, 2010); in relating 2D and 3D representations 
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(Dindyal, 2015); and in reading maps (Gonzato, Fernández & Díaz, 2011). These difficulties have 
been found to affect other disciplines and work areas that involve interpreting representations to 
solve tasks (Francis & Whiteley, 2015). 

In relation to the design of activity proposals, the research recognizes objectives categorized by 
educational level: in preschool and elementary school, students are expected to recognize two-
dimensional representations (drawings) of real objects (Hallowell, Okamoto, Romo & La Joy, 2015; 
Van den Heuvel-Panhuizen, Iliade & Robitzsch, 2015); in secondary school, students are expected to 
manipulate 3D objects, either with dynamic geometry or tangible materials (Arıcı & Aslan-Tutak, 
2015; Gómez, Albaladejo & López, 2016), and be able to draw conjectures of events related to a 
specific context. 

There are also few longitudinal studies focused on describing what type of materials, activities, or 
teaching/learning proposals promote the development of spatial reasoning skills. As Davis, Okamoto 
and Whiteley (2015) point out, further research is required in this regard. 

In this sense, the study on which this document is based, investigated how to provide, through the 
design of activities involving 2D and 3D representations, learning opportunities for 7 to 8 year-old 
students to develop their spatial reasoning skills. To answer this, we designed six activities based on 
the Theory of Variation (Marton & Pang, 2006), which were implemented in a public school located 
in a marginalized area of Mexico City. 

This document presents the design of the first activity that involves isometric movements in the 
plane, using puzzles with pentomino pieces. Next, we describe some elements of the Theory of 
Variation on which we based the activity design; we then provide a brief analysis of how this design 
can promote the development of students' spatial reasoning. 

Theoretical perspective: Variation as a tool for the design of the activities 
In the Theory of Variation (Marton & Pang, 2006; Ling-Lo, 2012) learning happens when a 

difference is experienced between two things or between two parts of the same thing (Marton & 
Pang, 2006), that is, when the learner manages to discern characteristics and critical aspects of some 
learning object (Orgill, 2012; Runesson, 2005). An object of learning is “a specific insight, skill, or 
capability that the students are expected to develop” (Marton & Pang, 2006, p.194). 

Ling-Lo (2012) distinguishes the critical aspects of a learning object from its critical characteristics: 
“a critical aspect refers to a dimension of variation, whereas critical feature is a value of that 
dimension of variation” (p. 65). This can be better understood through an example: if the learning 
object is the cube, some critical aspects to discern can be the dimensions of the shape or number of 
its faces; and it has, as critical characteristics (the values of the dimensions), the fact that each face is 
a square (congruent between themselves) and the fact that it has exactly six faces. 

Methodology 
In our study, we carried out a teaching experiment framed in the research design paradigm (Cobb & 

Gravemeijer, 2008). A teaching experiment involves a cyclic process of design, implementation, and 
analysis of a sequence of activities (Steffe & Thompson, 2000) to improve and refine it. Derived 
from the literature review and the Theory of Variation, the following aspects were considered for the 
design of the sequence: the use of different manipulatives (pentominoes, blocks, SOMA Cube, Lego 
pieces) and digital technologies (Lego Designer); construction activities with dimension variation 
(starting with 2D, continuing with 2D-3D dimension changes); and variation in the characteristics of 
the representations in the printed materials (number of divisions in the different pentominoes, and 
colors or grayscale for the representations of 3D objects). The first activity is described in detail in 
the following section. 
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Our study had two cycles: in the first one, we designed a sequence of six activities to be carried out 
in 13 sessions; we analyzed the results of its first implementation  for improving the design in the 
second cycle, in which we had the same number of activities but implemented in 15 sessions. 

In both implementations, 7-8-year-old students participated. In the first cycle, we had eight 
participating students and in the second, 26 (a complete group of third grade). For the data collection, 
we used two video cameras to record what happened during each class, complemented by field notes. 
These records were used to plan subsequent sessions, as well as to perform a retrospective analysis of 
the experiment. In the second implementation, the first author of this paper acted as teacher-
researcher, and together with the students, they agreed on the organization of the activities: student 
autonomy, materials to use (manipulatives and worksheets  –with brief and clear guidelines on the 
activity) and ways of working (individual, in pairs, teams or as a whole group). When managing her 
class, the teacher-researcher carried out different actions: she did a recap of the aim of the previous 
session, mentioned the objective of the current session, asked questions and clarified doubts to the 
teams, specified the mathematical vocabulary used to describe spatial actions, and coordinated the 
closing plenary discussion with the entire group. 

In order to analyze the development of spatial reasoning as a result of the implementation of the 
sequence of activities, we used a diagnostic pre and post test, as well as observations of the cognitive 
and movement actions of the students during the activities. 

Description of some of the activities 
In our design, and according to the Theory of Variation, each activity has a specific learning object 

and is made up of two or three tasks. An assignment can be carried out in one or two class sessions. 
Variants and invariants of this learning object are required for each task. Critical aspects and 
characteristics describe those elements of spatial reasoning that students are expected to develop. 
Next, we present the design of the first activity –which focuses on recognizing, visualizing and 
performing isometric movements in the plane using two-dimensional representations (puzzles)–; we 
describe the elements of the Theory of Variation involved in it and then analyze some results of the 
activity implementation. 
An activity focused on isometric movements of two-dimensional representations 

The learning object of this activity is rotation and translation (isometric movements) in the plane 
and in space, when using pentominoes (12 pieces; see Figure 1.a). 

a.   b.  

Figure 1: a. The pentomino pieces. b. Rectangle made up of pentomino pieces. 

Students have to solve different puzzles (the variants) formed with the same pentomino pieces (the 
invariants); this requires promoting the ability to discern that, even though the shape and perimeter 
change, the area is conserved. In this activity there are four critical aspects: comparison and 
visualization, localization, turns, and organization of the pieces. The critical characteristics related to 
each critical aspect are presented in Table 1. 
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Table 1: Description of the critical characteristics 
Critical aspects Critical characteristics 

Comparison and 
visualization 

• Recognizing the shape of each piece. 
• Comparing the shapes of the pieces in order to assemble them. 
• Recognizing, in the 2D representation, the pieces that make up each puzzle 

(whether they are explicit or implicit). (Ideas of congruence through 
immediate perception and superposition). 

• Imagining what the union of the pieces represents in the given configuration. 
(The whole). 

Localization • Locating, in the 2D representation, the location of each piece. 
• Describing the relative position of each piece using terms of proximity (near, 

far) and direction (up, down, right, left).  
Turns • Rotating and flipping pieces to complete a given setup. 
Organization of the 
pieces 

• Organizing the pieces to achieve the requested configuration. 
• Dividing the puzzle into sections. 
• Assemble the pieces that make up a section.  

This activity has two tasks (T1 and T2). In T1, each student has 12 pieces of pentomino to assemble them 
on a rectangular frame of 3 × 20 units, in such a way that it covers it completely, without overlapping 
pieces (see Figure 1.a). In this task, students need to recognize the shape of each piece of the pentomino 
and compare them. 

In order to promote the use of language, in the assembly of the puzzles, students are encouraged to 
interact and support each other with ideas or suggestions, with the restriction of only giving verbal 
indications or gestures. And at the end of the T1 task, a group discussion is carried out, with the 
following guiding questions: ¿Do all the puzzles have the same number of pieces? ¿Are the pieces 
themselves, different or the same? ¿Why are they different or the same? ¿How could we differentiate 
them? 

 
Figure 2: Representations of the puzzles to assemble, as given to the students in T2. 

In task T2, each student must assemble an assigned puzzle in the shape of an animal (see Figure 2), 
for which clues are given regarding the shape of the pieces that compose it: some puzzles (Figure 
2.a) show some subdivisions congruent to the pentomino pieces; while in others, only four divisions 
are shown, none of which is congruent to any part (Figure 2.b). Students put together the puzzles 
with the most divisions and then the puzzles with the least divisions. In this sense, different levels of 
cognitive difficulty are considered (from more guided to less guided). 
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Results of Activity 1 
In the implementation of T1, the students worked for two hours and all managed to recognize the 

shape of the pentominoes and identified how they fit into the rectangular frame, without any leftover 
or missing space.  

For T2, two sessions were required, each lasting two hours. In the first of these sessions, students 
put together the puzzles with more divisions; students who had difficulties, were given a sheet with a 
printed replica of the assembled puzzle, showing the pieces in real size (in a 1:1 scale) (see Figure 
3.a). The intention was for all students to recognize the shape of each pentomino piece, its location 
and position in the puzzle. In the second session, students put together puzzles with fewer divisions. 
Those who finished first helped their teammate (see Figure 3.b); to do this, they used the assembled 
puzzle (scale 1:1), and gave instructions to their partner regarding the orientation and position of 
each piece. 

  
Figure 3: Examples of student work during task T2. 

From overlapping pieces to visualizing spaces 
During T1 and T2 we identified three strategies for assembling the puzzles: overlapping, trial-and-

error, visualization-and-imagination. When they used the replica to assemble the puzzle, the most 
common way was to overlap the pentomino pieces unto the congruent spaces on the replica (see the 
part indicated in Figure 3.a)  to later transfer (carry out a translation) of the pieces unto the puzzle. 

When assembling the puzzles with more divisions, initially students used trial-and-error to place 
the pieces (see Figure 4.a); later, they visualized if any of the pieces had the shape of a section in a 
space of the puzzle that still needed to be completed (see Figures 4.b and 4.c). 

 
Figure 4: Location of the pentominoes by trial and error. 

For putting together the puzzles with fewer divisions, the students generated a strategy: to first 
locate the pentominoes at the edges of the puzzle, since it was easier to recognize the congruence of 
the shape of the edges with the shape of some of the pentomino pieces (see Figure 5); thus, they 
postponed placing the pieces of the center of the puzzle. 
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Figure 5: Assembling puzzles with fewer divisions in T2. 

In putting together these puzzles, not only was it necessary to match the shape of the pentomino 
pieces with those of the puzzle, but also to compare the missing shapes of the puzzle with the 
remaining pentomino pieces. For example, Figure 6 shows that the student placed a pentomino in a 
space (marked section in Figure 6.a,), because its shape partially coincides with that of that space in 
the puzzle; however, since he did not find another piece that would complete the space, as can be 
seen in Figures 6.b and 6.c, the student discarded the piece that he had initially placed. 

 
Figure 6: Matching puzzle pieces in T2. 

Identifying the locations of the pentomino pieces and the different ways in which they fit into the 
puzzles, allowed a refinement of strategies. At first it was a trial-and-error activity; and it was 
through the comparison between the remaining spaces of the puzzle and the shape of the pieces. that 
students could imagine-and-visualize the congruence between the divisions of the puzzle and the 
assembly of pentomino pieces. 
Critical aspects of isometric movements: from translation and rotation, to turn 

In T1 and T2, students were able to locate, immediately or not, a pentomino piece in the puzzle 
depending on whether the orientation of the piece and the congruent space were the same or 
different. When it was the same, the students moved (translated) the piece without difficulty (see 
Figure 7). 

 
Figure 7: Translation movement. 

In the case where the orientation of the piece and the missing space were different, students rotated 
the pieces, with no apparent difficulty, through a movement carried out on the plane (see Figure 8). 
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Figure 8: Rotation movement in the plane. 

A challenge for the children was the action of turning. If the location of a piece in the puzzle 
required a rotation movement in space, and if a student did not immediately recognize how to locate 
it, he would first rotate it in the plane and then visualize whether, with a turn of the piece in the 3D 
space, it would fit into the puzzle (see Figure 9). 

 
Figure 9. Rotation movement in space. 

All of the students, through rotation and translation movements, achieved the required assembled 
puzzles. Experimenting in putting together these puzzles allowed them to identify subconfigurations 
(one figure contained in another) and visualize the congruence of a composite shape (a union) formed 
by joining several pentomino pieces (the parts). It should be noted that the movement actions, when 
locating a piece, are not linear. In the examples presented in this section, we illustrate how students, 
in order to place a piece in the puzzle, perform a combination  of the following actions: they 
manipulate the piece to translate it, visualize its orientation, rotate and/or turn it, in order to finally 
locate it in the empty space in the puzzle. 

The implementation of this activity reflects a development of the spatial reasoning of the students, 
since, thanks to an activity design that included a variation of the puzzles, a variation of the positions 
and orientations of the pentomino pieces, and an invariance in the number and shape of the pieces, 
they went from locating the pieces by trial and error, to visualizing the location of the pieces in the 
puzzles. The two tasks led the students to rotate and translate the pieces of the pentomino, find a 
correspondence of each of the pieces according to the shape that they identified in the drawing, 
compare the remaining  spaces with the unused pieces, and visualize and imagine the composition. 
Furthermore, they recognized that there are several puzzle shapes that can be put together using the 
same number of pentomino pieces. 
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Discussion and final remarks 
In the design of the activity reported here, three elements were considered in order to develop 

spatial reasoning in the students: i) The use of the same pentomino pieces, in different puzzles; ii) a 
gradual change in the level of difficulty of the puzzles (from more to fewer divisions); and iii) the 
difficulties, reported in the literature, when putting together puzzles (e.g., turning in the 3D space). 

Through the first element, students were given the opportunity to recognize that, even when the 
puzzles were different, they could always be assembled using the same number of pieces; they noted 
also that the location, orientation and direction of the pentomino pieces varied. The variation of 
puzzles and invariance of the pentomino pieces could assist these students in creating meanings for 
the concept of area, which according to Mamolo, Ruttenberg-Rozen and Whiteley (2015), is a 
common difficulty for students. 

The gradual increased complexity of the activities promoted the development of visualization 
processes through the composition of pieces. When students assembled puzzles with more divisions, 
they could see the congruence of remaining puzzle spaces with the pentomino pieces. But when they 
had to put together puzzles with fewer divisions, they had to discern which of the pieces, when put 
together, would complete a section of the puzzle divisions. In this process, we found that children 
developed construction strategies, such as: starting the assembly by identifying and locating the 
pieces at the edges that is, going from the outside in); and assembling the puzzle in sections 
according to the divisions. 

Both in the design and in the development of the activities, possible difficulties were anticipated 
that a 7-8-year-old student could face, as reported in the literature (Arıcı & Aslan-Tutak, 2015; 
Gonzato, Fernández & Díaz, 2011). If students did not identify the pentomino pieces that would go in 
a certain section, a replica was provided to help them in solving the puzzle. This helped the children 
to establish congruences between pentomino pieces and perform isometric transformations such as 
rotation and translation with the pieces. 

The previous results show the potential of activities using 2D representations to support the 
development of spatial reasoning skills in 7-8-year-old children. The use of tangible material, in 
accordance with what is mentioned by Gutiérrez (1991), allowed students to experiment and 
recognize the movement and shapes of the pentomino pieces and two-dimensional puzzles. In 
addition, identifying the position and orientation of the pentominoes in the puzzles required students 
to compare, overlap, rotate, translate, visualize, and imagine the shapes of the pieces in the various 
puzzles. 

Gonzato, Díaz-Godino and Neto (2011) have found that, if these experiences are provided in the 
first years of schooling, children acquire greater abilities to build constructions and mentally 
manipulate figures in the plane and in the 3D space. Therefore, we consider that these types of 
experiences that promote cognitive actions (visualizing, imagining) and movement (comparing, 
overlapping, rotating, translating), allow students to make sense and understand a world presented 
through two-dimensional representations in different areas of knowledge and in daily life. 
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Las habilidades de razonamiento espacial son necesarias para desempeñar actividades en la 
escuela, en el trabajo y en la vida cotidiana en general. Diferentes estudios señalan la importancia 
de su desarrollo en edades tempranas, pues permite la lectura de un mundo tridimensional y su 
interpretación en representaciones bidimensionales. Realizamos un estudio enfocado al diseño de 
actividades, usando la Teoría de la Variación, para potenciar habilidades de razonamiento espacial 
en estudiantes entre siete y ocho años. En este documento presentamos características del diseño de 
una actividad basada en el uso de pentominós (rompecabezas bidimensionales). Los resultados 
muestran desarrollo en habilidades de razonamiento espacial cuando se favorecen acciones como 
comparar, superponer, rotar, trasladar, visualizar e imaginar movimientos, posiciones y ubicaciones 
de las piezas del rompecabezas. 

Palabras clave: Educación primaria, pensamiento espacial, representaciones y visualización. 

Introducción y antecedentes 
Las habilidades de razonamiento espacial son necesarias en el actuar y el pensar del ser humano. La 

importancia del desarrollo de dichas habilidades se refleja tanto en lo cotidiano como en el ámbito 
escolar. En la vida cotidiana, autores como Gonzato, Fernández y Díaz Godino (2011) reconocen, 
por ejemplo, que el desarrollo de razonamiento espacial es necesario para ubicarse, desplazarse y leer 
mapas donde objetos bi- y tridimensionales pueden estar presentes. En relación con lo escolar, 
investigaciones señalan que estas habilidades son necesarias para el aprendizaje de matemáticas 
avanzadas (Mamolo, Ruttenberg-Rozen y Whiteley, 2015; Hallowell et al., 2015) y el 
desenvolvimiento en otras áreas como tecnología, ingeniería, arquitectura (Arıcı, y Aslan-Tutak, 
2015; Van den Heuvel-Panhuizen, Iliade y Robitzsch, 2015), geografía, computación gráfica y artes 
visuales (Clements y Sarama, 2011; Vázquez y Noriega Biggio, 2010). En términos de la relación 
entre el pensamiento espacial y el rendimiento en STEM (por sus siglas en inglés, correspondientes a 
Ciencia, Tecnología, Ingeniería y Matemáticas), Uttal y Cohen (2012) exploraron y sugirieron que 
las habilidades espaciales predicen fuertemente la selección de estudiantes para estudiar las áreas 
STEM. 

Si bien se reconoce la importancia de desarrollar habilidades de razonamiento espacial en la 
escuela, una revisión de la literatura en educación matemática (Ortiz, 2018; Ortiz, Sacristán, 
Sandoval, 2019) refleja una falta de estudios para potenciar competencias, habilidades, pensamiento 
o razonamiento espacial. Ortiz (2018) analizó artículos en 12 revistas en inglés y español de 
educación matemática, publicados entre 2010 y 2016. Observó que solo el 4.7% de los artículos se 
enfoca en aspectos del aprendizaje y enseñanza de la geometría (en contraste con los enfocados a 
aritmética, álgebra y cálculo). De este porcentaje, solo el 13% aborda aspectos de razonamiento 
espacial: unos describen la importancia de su desarrollo, otros se centran en identificar dificultades y 
algunos más presentan propuestas de actividades.  

Las investigaciones centradas en analizar las consecuencias del poco desarrollo del razonamiento 
espacial han identificado dificultades en la visualización de representaciones 2D y 3D (Arıcı y Aslan-
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Tutak, 2015); en el movimiento (giros) de objetos 2D y 3D (Pittalis y Christou, 2010); en la 
comprensión del significado de fórmulas de área y volumen (Mamolo, Ruttenberg-Rozen y Whiteley, 
2015); en la construcción de figuras en 2D y 3D (Pittalis y Christou, 2010); en la conexión entre 
representaciones 2D y 3D (Dindyal, 2015); y en lectura de mapas (Gonzato, Fernández y Díaz, 
2011). Se ha encontrado que estas dificultades inciden en otras disciplinas y áreas de trabajo que 
implican interpretar representaciones para resolver tareas (Francis y Whiteley, 2015).  

En relación con el diseño de propuestas de actividades, en la investigación se reconocen objetivos 
por nivel educativo: en preescolar y primaria se pretende que los estudiantes reconozcan 
representaciones bidimensionales (dibujos) de objetos reales (Hallowell, Okamoto, Romo y La Joy, 
2015; Van den Heuvel-Panhuizen, Iliade y Robitzsch, 2015); en secundaria se pretende que 
manipulen objetos tridimensionales, ya sea con geometría dinámica o material tangible (Arıcı y 
Aslan-Tutak, 2015; Gómez, Albaladejo y López, 2016), y, de esa manera, logren conjeturar sucesos 
relacionados con algún contexto determinado.  

También son pocos los estudios longitudinales enfocados en describir qué tipo de materiales 
actividades o propuestas de enseñanza/aprendizaje propician el desarrollo de habilidades de 
razonamiento espacial. Como lo precisan Davis, Okamoto y Whiteley (2015) se requiere mayor 
investigación al respecto. En este sentido, el estudio en el que se basa este documento investigó 
¿cómo proporcionar, a través del diseño de actividades que involucran representaciones bi- y 
tridimensionales, oportunidades de aprendizaje a estudiantes de siete a ocho años de edad para el 
desarrollo de habilidades de razonamiento espacial? Para responder a este cuestionamiento, se 
diseñaron seis actividades con base en la Teoría de la Variación (Marton y Pang, 2006), que se 
implementaron en una escuela pública ubicada en una zona marginada de la Ciudad de México.   

En este documento se presenta el diseño de la primera actividad que involucra movimientos 
isométricos en el plano, mediante el uso de rompecabezas con piezas pentominó. A continuación se 
describen elementos de la Teoría de la Variación en los que se basa el diseño de la actividad; 
posteriormente, se realiza un breve análisis de cómo este diseño promueve el desarrollo del 
razonamiento espacial de los estudiantes.  

Perspectiva teórica: La variación como herramienta para el diseño de actividades 
En la Teoría de la Variación (Marton y Pang, 2006; Ling-Lo, 2012) el aprendizaje sucede cuando se 

experimenta una diferencia entre dos cosas o entre varias partes de una misma cosa (Marton y Pang, 
2006), es decir, cuando el aprendiz logra discernir características y aspectos críticos de algún objeto 
de aprendizaje (Orgill, 2012; Runesson, 2005). Un objeto de aprendizaje, en esta teoría, es “una idea 
introspectiva (insight), una habilidad o una capacidad específicas que se espera que los estudiantes 
desarrollen” (Marton y Pang, 2006, p.194).   

Ling-Lo (2012) distingue los aspectos críticos de un objeto de aprendizaje, de sus características 
críticas: “un aspecto crítico se refiere a una dimensión de la variación, mientras que una característica 
crítica es un valor de esa dimensión” (p. 65). Esto se puede entender mejor mediante un ejemplo: si 
el objeto de aprendizaje es el cubo, algunos aspectos críticos a discernir pueden ser las dimensiones 
de forma o número de sus caras; y tiene como características críticas (los valores de las dimensiones) 
que cada cara es un cuadrado (congruentes entre sí) y que tiene exactamente seis caras.  

Metodología 
En nuestro estudio se llevó a cabo un experimento de enseñanza enmarcado en el paradigma de 

investigación de diseño (Cobb y Gravemeijer, 2008). Un experimento de enseñanza implica un 
proceso cíclico de diseño, implementación y análisis de una secuencia de actividades (Steffe y 
Thompson, 2000) para mejorarla y refinarla. Derivado de la revisión de la literatura y de la Teoría de 
la Variación, para el diseño de la secuencia se consideraron los siguientes aspectos: uso de diferentes 
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manipulables (pentominós, bloques, Cubo SOMA, piezas de Lego) y tecnologías digitales (Lego 
Designer); actividades de construcción con variación en la dimensión (comenzando con 2D, 
continuando con cambios de dimensión 2D-3D); y variación en las características de las 
representaciones en los impresos (cantidad de divisiones en los diferentes pentominós, y colores o 
escala de grises para las representaciones de objetos 3D). En el siguiente apartado se describe con 
detalle la primer actividad. 

Nuestro estudio tuvo dos ciclos: en el primero se diseñó una secuencia de seis actividades llevadas a 
cabo en 13 sesiones; se analizaron los resultados de su primera implementación y los resultados 
sirvieron para mejorar el diseño en el segundo ciclo, terminando con el mismo número de actividades 
pero implementadas en 15 sesiones. En ambas implementaciones participaron estudiantes entre los 
siete y ocho años. En el primer ciclo participaron 8 estudiantes y en el segundo, 26 (un grupo 
completo de tercer grado). Para la toma de datos se utilizaron dos cámaras de video y se registraron 
en notas de campo lo sucedido durante cada clase. Estos registros se usaron para planear las sesiones 
posteriores, así como para realizar un análisis retrospectivo del experimento. En la segunda 
implementación, la primera autora de este escrito fungió como profesora-investigadora y junto con 
los estudiantes acordaron la organización de las actividades: autonomía de los alumnos, material a 
utilizar (manipulables y hojas de trabajo –con indicaciones breves y claras sobre la actividad) y 
formas de trabajo (individual, en parejas, equipos o grupo completo). En la gestión de la clase, la 
profesora-investigadora realizó diferentes acciones: recapituló el objetivo de la sesión anterior, 
mencionó el objetivo de la sesión, hizo preguntas y aclaró dudas en los equipos, precisó el uso de 
vocabulario matemático para describir acciones espaciales y coordinó la discusión plenaria de cierre 
con todo el grupo.  

Para analizar el desarrollo del razonamiento espacial a raíz de implementar la secuencia de 
actividades, se usó una prueba diagnóstica aplicada como pre y post test, así como observaciones de 
las acciones cognitivas y de movimiento de los estudiantes durante las actividades.  

Descripción de algunas actividades  
En nuestro diseño, cada actividad tiene un objeto de aprendizaje determinado y está conformada por 

dos o tres tareas. Una tarea puede realizarse en una o dos sesiones de clase. Para cada tarea se 
precisan variantes e invariantes de dicho objeto de aprendizaje. Los aspectos y características 
críticas describen aquellos elementos del razonamiento espacial que se espera desarrollen los 
estudiantes. A continuación se presenta el diseño de la primera actividad –la cual se centra en 
reconocer, visualizar y realizar movimientos isométricos en el plano usando representaciones 
(rompecabezas) bidimensionales—, se describen los elementos de la Teoría de la Variación 
involucrados en ella y se analizan algunos resultados de su implementación. 
Una actividad centrada en movimientos isométricos de representaciones bidimensionales 

El objeto de aprendizaje de esta actividad está enfocado en movimientos isométricos en el plano 
(rotación y traslación) y en el espacio, al usar pentominós (12 piezas; ver Figura 1a).  

a.   b.  
Figura 1: a. Las piezas pentominó. b. Rectángulo formado por piezas pentominó. 

 
Los alumnos resuelven diferentes rompecabezas (las variantes) armados con las mismas piezas de 

pentominó (las invariantes); esto supone promover el discernimiento de que, aunque cambia la forma 
y el perímetro, hay conservación del área. En esta actividad son cuatro los aspectos críticos:  
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comparación y visualización, localización, giros y organización de las piezas. Las características 
críticas relacionadas a cada aspecto crítico se presentan en la Tabla 1. 

Tabla 1. Descripción de las características críticas  
Aspectos críticos Características críticas 

Comparación y 
visualización  

• Reconocer la forma de cada pieza. 
• Comparar las formas de las piezas para ensamblarlas. 
• Reconocer, en la representación 2D, las piezas que componen cada 

rompecabezas (estén explícitas o implícitas). (Ideas de congruencia por 
percepción inmediata y superposición). 

• Imaginar lo que representa la unión de las piezas en la configuración dada. (El 
todo). 

Localización  • Ubicar, en la representación 2D, el lugar de cada pieza. 
• Describir la posición relativa de cada pieza usando términos de proximidad 

(cerca, lejos) y de dirección (arriba, abajo, derecha, izquierda).  
Giros  • Rotar y voltear piezas para completar una configuración determinada.  
Organización de 
piezas 

• Organizar las piezas para lograr el ensamble solicitado.  
• Dividir el rompecabezas en secciones. 
• Ensamblar las piezas que conforman una sección.    

 
Esta actividad tiene dos tareas (T1 y T2). En T1 cada estudiante tiene 12 piezas de pentominó para 

ensamblarlas sobre un marco rectangular de 3 unidades × 20 unidades de tal manera que lo cubra 
completamente, sin sobreponer piezas (ver Figura 1a). En esta tarea los estudiantes necesitan 
reconocer la forma de cada pieza del pentominó y compararlas. 

Para favorecer el uso del lenguaje, se promueve la interacción entre los estudiantes para apoyarse en 
el armado de los rompecabezas con ideas o sugerencias, con la restricción de sólo dar de indicaciones 
verbales o gestos. Y en el cierre de la tarea T1 se hace una socialización para responder las siguientes 
preguntas guía: ¿Todos los rompecabezas tienen el mismo número de piezas? ¿Las piezas entre sí, 
son diferentes o iguales? ¿Por qué son diferentes o iguales? ¿Cómo las podríamos diferenciar? 

 
Figura 2: Representaciones, dadas a los alumnos en T2, de los rompecabezas a construir. 

En la tarea T2, cada estudiante debe armar un rompecabezas asignado con la forma de un animal 
(ver Figura 2), para el cual se dan pistas respecto a la forma de las piezas que lo componen: unos 
rompecabezas (Figura 2.a) muestran algunas subdivisiones congruentes a las piezas pentominós; 
mientras que en otros, solo se muestran cuatro divisiones, ninguna de las cuales es congruente a 



Diseño de actividades para el desarrollo de razonamiento espacial en edades tempranas a través de manipulativos 

	 641	

alguna pieza (Figura 2.b). Los estudiantes arman primero los rompecabezas con más divisiones y 
después aquellos con menos divisiones. En este sentido se consideran diferentes niveles de dificultad 
cognitiva (de más guiado a menos guiado). 

Resultados de la Actividad 1 
En la realización de T1 los estudiantes trabajaron durante una sesión de dos horas y todos lograron 

reconocer la forma de los pentominós e identificaron cómo se encajaban en el marco rectangular, sin 
que sobrara o faltara algún espacio.  

Para T2 se requirieron dos sesiones, cada una de dos horas. En la primera de estas sesiones, los 
alumnos armaron los rompecabezas con más divisiones; a quienes se les dificultaba, se les 
proporcionaba una hoja con una réplica del rompecabezas ya armado, mostrando las piezas en 
tamaño real (escala 1:1) (ver Figura 3.a). La intención era lograr que todos reconocieran la forma de 
cada pieza pentominó, su ubicación y posición en el rompecabezas. En la segunda sesión, los 
estudiantes armaron rompecabezas con menos divisiones. Quienes terminaron primero ayudaron a su 
compañero (ver Figura 3.b); para ello, usaron el rompecabezas armado (escala 1:1), y dieron 
indicaciones a su compañero respecto a la orientación y posición de cada pieza.  

 

  
Figura 3: Ejemplos del trabajo de los estudiantes durante la tarea T2.  

De la superposición de piezas a la visualización de espacios 
Durante T1 y T2 identificamos tres estrategias para el armado de los rompecabezas, superposición, 

ensayo-y-error, visualización-e-imaginación. Cuando usaron la réplica para el armado del 
rompecabezas, lo más usual fue hacer uso de la superposición de las piezas de pentominó en los 
espacios congruentes sobre la réplica (ver parte señalada en la Figura 3.a) para, después, trasladar 
dichas piezas al rompecabezas. 

Al armar los rompecabezas con más divisiones, colocaron las piezas de pentominó, por ensayo-y-
error inicialmente (ver Figura 4.a); y luego, fueron visualizando si alguna de sus piezas tenía la 
forma de alguna sección en un espacio del rompecabezas que faltaba por armar (ver Figuras 4.b y 
4.c). 

 
Figura 4: Ubicación de los pentominós por ensayo y error.  

Para el armado de rompecabezas con menos divisiones los estudiantes generaron una estrategia: 
ubicar primero los pentominós de los bordes del rompecabezas, pues era más fácil reconocer la 
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congruencia de la forma del borde con algunas formas de las piezas pentominó (ver Figura 5); así 
posponían la colocación de las piezas del centro del rompecabezas. 

 
Figura 5: Armado de rompecabezas con menos divisiones en T2. 

En el armado de estos rompecabezas no solo era necesario hacer corresponder la forma de las piezas 
pentominó con las del rompecabezas, sino comparar las formas faltantes del rompecabezas, con las 
piezas restantes de pentominó. Por ejemplo, en la Figura 6, se puede observar que el estudiante ubicó 
en un espacio (sección señalada en la Figura 6.a,) una pieza pentominó, porque su forma coincide 
parcialmente con la de ese espacio del rompecabezas; sin embargo, como no encontró otra pieza que 
completara el espacio, en las Figuras 6.b y 6.c se aprecia que el estudiante descarta la pieza colocada 
inicialmente. 

 
Figura 6: Haciendo corresponder las piezas en el rompecabezas en T2.  

La identificación de la ubicación de las piezas pentominó y las diferentes maneras como éstas 
encajaban en los rompecabezas permitió el refinamiento de estrategias. Al principio fue una actividad 
de ensayo-y-error; y fue a través de la comparación entre los espacios sin armar del rompecabezas y 
la forma de las piezas, que los estudiantes fueron imaginando-y-visualizando la congruencia entre las 
divisiones del rompecabezas y la unión de piezas pentominó.     
Aspectos críticos de movimientos isométricos: de la traslación y la rotación, al giro  

En T1 y T2 los estudiantes ubicaban en el rompecabezas una pieza pentominó inmediatamente o no 
dependiendo de si la orientación de la pieza y del espacio congruente era igual o diferente. Cuando 
era igual, los estudiantes trasladaban la pieza sin dificultad (Figura 7). 

 
Figura 7: Movimiento de traslación.  
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En el caso de que la orientación de la pieza y el espacio faltante fueran diferentes, rotaban, sin 
dificultad aparente, las piezas con un movimiento realizado sobre el plano (ver Figura 8). 

 
Figura 8: Movimiento de rotación en el plano. 

Un reto para los niños fue la acción de girar. Si la ubicación de la pieza en el rompecabezas requería 
realizar un movimiento de rotación en el espacio, y si algún estudiante no reconocía de inmediato 
cómo ubicarla, primero la rotaba en el plano y luego visualizaba si con un giro de la pieza en el 
espacio le permitía encajarla en rompecabezas (ver Figura 9).  

 
Figura 9. Movimiento de rotación en el espacio. 

Todos los estudiantes, a partir de movimientos de rotación y traslación, lograron los ensambles 
solicitados. Experimentar con el armado de estos rompecabezas, les permitió identificar 
subconfiguraciones (una figura contenida en otra) y visualizar la congruencia de una forma 
compuesta (un ensamble) obtenida al unir piezas de pentominó (sus partes). Cabe señalar que las 
acciones de movimiento, al ubicar alguna pieza, no son lineales. En los ejemplos presentados en este 
apartado ilustramos cómo los estudiantes, para colocar en el rompecabezas alguna pieza, realizan una 
combinación de las siguientes acciones: la manipulan para trasladarla, visualizan la orientación de 
la pieza, la rotan y/o giran para finalmente ubicarla en el espacio vacío del rompecabezas. 

La implementación de esta actividad refleja un desarrollo del razonamiento espacial de los 
estudiantes, pues, al incluir en el diseño de las actividades: la variación de rompecabezas, variación 
de posiciones y orientaciones de las piezas pentominó, e invariancia en el número y forma de las 
piezas, pasaron de ubicar las piezas por ensayo y error, a visualizar la ubicación de las piezas en los 
rompecabezas. Las dos tareas llevaron a los estudiantes a que rotaran y trasladaran las piezas del 
pentominó, correspondieran una a una las piezas dadas con la forma que identificaban en el dibujo 
compararan los espacios faltantes con las piezas sin usar y visualizaran e imaginaran su 
composición. Además, reconocieron que hay varias formas de rompecabezas que se pueden armar 
con la misma cantidad de piezas pentominó. 
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Discusión y reflexiones finales  
En el diseño de la actividad reportada aquí, se consideraron tres elementos a fin de desarrollar 

razonamiento espacial en los estudiantes: i) El uso de las mismas piezas de pentominó en diferentes 
rompecabezas; ii) un cambio progresivo en el nivel de dificultad para armar el rompecabezas (de más 
a menos divisiones); y iii) las dificultades reportadas en la literatura para armar los rompecabezas 
(e.g., girar en el espacio 3D).  

Con el primer elemento se proporcionó a los estudiantes la oportunidad de reconocer que, aun 
cuando los rompecabezas fueran distintos, siempre podían ser armados con el mismo número de 
piezas; además, notaron que la ubicación, orientación y sentido de las piezas pentominó también 
variaban. La variación de rompecabezas y la invarianza de las piezas pentominó podrían ayudarle a 
estos alumnos en la compresión del significado de área, que según Mamolo, Ruttenberg-Rozen y 
Whiteley (2015), es una dificultad común en los estudiantes.  

El cambio gradual en la complejidad de las actividades promovió el desarrollo de procesos de 
visualización a través de la composición de piezas. Al armar rompecabezas con más divisiones, los 
estudiantes podían ver la congruencia de espacios faltantes del rompecabezas con las piezas de 
pentominó. Pero cuando armaban rompecabezas con menos divisiones, ellos debían discernir cuáles 
de las piezas, al unirlas, completaban una sección de las divisiones del rompecabezas. En este 
proceso, encontramos que los niños generaron estrategias de construcción tales como: iniciar el 
armado identificando y ubicando las piezas de los bordes (es decir, yendo de afuera hacia adentro) y 
armar el rompecabezas por secciones según las divisiones.  

Tanto en el diseño como en el desarrollo de las actividades se previeron posibles dificultades a las 
que un estudiante de 7-8 años podía enfrentarse, según lo reportado en la literatura (Arıcı y Aslan-
Tutak, 2015; Gonzato, Fernández y Díaz, 2011). Si el estudiante no identificaba las piezas de 
pentominó que debían ir en determinada sección, se le proporcionaba una réplica que le ayudara en la 
resolución del rompecabezas. Esto ayudó a los niños en el establecimiento de congruencias entre 
piezas pentominós y la realización de transformaciones isométricas como rotación y traslación de 
las piezas.  

Los resultados anteriores muestran el potencial de actividades con representaciones bidimensionales 
para apoyar el desarrollo de habilidades de razonamiento espacial en niños con edades entre 7-8 
años. El uso de material tangible, en concordancia con lo mencionado por Gutiérrez (1991), permitió 
a los estudiantes experimentar y reconocer el movimiento y las formas de las piezas de pentominó y 
los rompecabezas bidimensionales. Además, la identificación de la posición y orientación de los 
pentominós en los rompecabezas requirió que los estudiantes compararan, superpusieran, rotaran, 
trasladaran, visualizaran e imaginaran las formas de las piezas con los distintos rompecabezas.  

Gonzato, Díaz-Godino y Neto (2011) han encontrado que, de darse estas experiencias desde los 
primeros años de escolaridad, los niños adquieren mayores capacidades para hacer construcciones y 
manipular mentalmente figuras en el plano y en el espacio. Por lo que, consideramos que este tipo de 
experiencias que promueven acciones cognitivas (visualizar, imaginar) y de movimiento (comparar, 
superponer, rotar, trasladar), permiten a los estudiantes la lectura y comprensión de un mundo 
presentado a través de representaciones bidimensionales en distintas áreas de conocimiento y en el 
cotidiano. 
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The document presents a set of categories for the analysis of the conceptualization of the congruence 
of polygons - a central theme in school mathematics - and details the application of the analytical 
tools used, derived from Grounded Theory, in this construction. This set of categories is called 
‘Interpretive Model of the Conceptualization of Polygon Congruence’ (MICP). This model emerged 
from the interpretive analysis of empirical data recollected during the investigation. The MICP 
categories can be used by teachers or researchers to cover different didactic objectives (e.g., 
interpret the resolution of tasks with congruence content; prepare student profiles or identify their 
difficulties. See Peña, 2019) and it is relevant because it does not seem to exist in the literature a 
similar model that covers the previously stated objectives. 

Key words: Geometry, research methodologies. 

Problem formulation and research question 
The criteria of congruence and the notion of congruence are important and fundamental subjects for 

geometry, both for the geometry taught from the basic levels of education and for geometry as a 
branch of mathematics. In different versions of Euclidean geometry - proposed by Euclid, Legendre 
or Hilbert and which present a deductive organization with different degrees of formalization - the 
notion of congruence and the criteria of congruence emerge from the beginning of axiomatization. In 
the case of Euclid's Elements, according to the Heath (1908) version, the notion of congruence is 
introduced in Common Notion 4 (Heath, 1908) and the ‘criteria of congruence of triangles’ are found 
in propositions I.4; I.8 and I.26 (Heath, 1908). In the case of Legendre geometry (Legendre, 1984), 
congruence is discussed at the beginning of axiomatization and the congruence criteria for triangles 
are shown in propositions VI, VII, and XI. Something similar occurs in the formalization of the 
geometry proposed by Hilbert (1996) where the congruence criteria are also included at the 
beginning of the work. This allows us to suppose that in disciplinary geometry, particularly in the 
different versions of euclidean geometry, it is required from the beginning of axiomatization to make 
use of the notion of congruence and the criteria of congruence of triangles. 

Just as the notion of congruence and the criteria of congruence are necessary for disciplinary 
geometry, they are also essential in school mathematics education. To verify this statement, 
curriculum for Mexico and Colombia were reviewed. In Mexico, the Secretary of Public Education 
(SEP, 2017) introduces in its study plans the notion of congruence and the criteria of congruence of 
triangles from the third year of primary - where it is requested to compare geometric figures and 
establish uniqueness (p.314) -, up to the third year of secondary -level at which the triangle 
congruence criteria are expected to be determined and used (p.315). In Colombia, the Ministry of 
National Education (MEN, 2006) proposes “to recognize the congruence of figures” (p.80) in the 1st 
and 3rd grade; “Identify and justify the congruence between figures” (p.82) between 4 ° and 5 °; 
make use of figure congruence to solve problems for 6th and 7th (p.84) and study the properties of 
congruence for 8th and 9th (p.86). All of this basically refers to the congruence of triangles. 
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Given the weight and scope that congruence has not only in disciplinary geometry but also in school 
geometry, tools are required to cover a series of didactic objectives related to this concept, among 
others: interpret the task resolutions, with congruence contents, produced by the students; elaborate 
student profiles and identify some of their conceptual difficulties regarding this notion; analyze the 
statements of the tasks and develop didactic sequences on the subject. However, in the mathematics 
education literature, no studies were found that provide these analysis tools for the case of triangles, 
and even less so for the congruence of polygons, which is the central theme of the research presented 
here. 

When the authors of this writing did documentary research on mathematical education studies 
focused on polygon congruence issues, didactic proposals were found for teaching the topic (e.g. 
Carbó and Mántica, 2010; Piatek-Jimenez, 2008; Zakiz & Leron, 1991 to name a few). However, 
these works lack, for example, a systematic analysis of the possible difficulties in learning and 
teaching aspects related to the congruence of polygons; they also lack theoretical support that could 
justify the order of exposition of topics in a didactic sequence on congruence and that allow outlining 
possible profiles that account for the level of understanding that students have of this concept.  

This document sets out a set of categories - which has been called the 'Interpretive Model of the 
Conceptualization of the Congruence of Polygons' (MICP) (Peña, 2019) - which is intended to help 
cover (albeit preliminary) the shortcomings mentioned above.  

Methodology and application of the analytical tools used 
For the construction of the MICP, some of the principles that rule the Grounded Theory (GT) were 

followed in the version by Corbin and Strauss (2015), although the study was not intended to achieve 
the ultimate objectives of the GT (i.e., build theory). What follows is an outline of the category 
construction process and some central ideas of that construction process. 

In GT interpretive categories are based on empirical data collected during research and do not 
emerge from a theoretical framework given in advance (Corbin & Strauss, 2015). Following this 
general principle of the GT, the construction of the MICP was carried out, always taking care that the 
categories were oriented by empirical data. 

Initially, the empirical data was fractured, from which patterns were constructed based on which 
conceptual labels were generated. In a return to the empirical domain, the authors verified that these 
conceptual labels adequately represented the data. Then a comparative analysis was made between 
the conceptual labels. From a synthesis process carried out in the conceptual domain, categories were 
generated. Constant comparisons, asking questions and preparing memos and diagrams, analytical 
tools that are part of the TF methods, were involved in all these processes (Corbin & Strauss, 2015). 
At a later time - which Birks and Mills (2011) call 'intermediate coding' - each of the categories was 
deepened and subcategories were defined and processes of logical ordering were carried out 
synchronously between them, making use of the idea or reification proposed by Sfard and Linchevski 
(1994) (paragraphs below the authors explain this point).  

Subsequently, a theoretical sampling was carried out (Corbin & Strauss, 2015) that allowed to 
provide new properties and dimensions to the constructed categories. At a subsequent stage, these 
categories were confronted with the levels proposed by the researchers Van Hiele (trad. in 1984). 
Finally, and with the support of some of the reification ideas proposed by Sfard and Linchevski 
(1994) and by Wenger (2001), modifications were made at the conceptual level. This gave rise to the 
MICP that is exposed in this document, which has properties of a conceptual order according to the 
definition given by Corbin and Strauss (2015).  
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Literary references 
As it was told, for the construction of the MICP some of the ideas proposed by Wenger (2001) and 

by Sfard and Linchevski (1994) were used. Wenger (2001) expresses that, to signify their daily 
actions and practices and their experience in the world, the members of the communities carry out 
reification processes. The idea of reification is generally used by Wenger to refer to the process of 
shaping our experience by producing objects that translate this experience into one thing (p.84). For 
example, writing a law, creating a recipe for a cake, or proving a theorem are reification processes in 
which a certain social, gastronomic, or mathematical experience is shaped or "materialized." Thus, in 
these processes of objectification, some aspects or characteristics of a practice become objects - the 
law, the cake or the theorem - objects that can be treated as if they were material and concrete 
elements, even when they are not. Once these objects are constituted, we perceive them as if they 
existed in the world, as if they had a reality of their own. This is very clear with mathematical 
concepts and scientific structures. They are usually seen as if they had (and as if they had always 
had) an independent existence.  

Reification, Wenger (2001) argues, can refer to both a process, or a practice, and its product, that is, 
the object that results from and reflects that practice. In fact, these objects are the basis for new 
processes, which will give way to new objects. This consideration, applied to the field of 
epistemology -consideration according to which in the construction of individual and historical 
knowledge there is an iteration of processes that give rise to objects, which are part of new processes- 
underlies the organization of the categories that exposed in this document.   

Sfard and Linchevski (1994) retake the ideas of reification theory for the analysis of the 
construction of algebraic knowledge, both historically and at the student level. In particular, they 
propose that, starting from a set of processes A, a first object A is generated, from which another set 
of processes B is carried out, in order to build an object B, which serves to carry out a set of 
processes C that give rise to an object C. This development allows to build increasingly abstract 
objects. 

Wenger's ideas of reification and the interpretation made by the aforementioned authors of these 
ideas, based on constructivist positions, are part of the philosophical framework of the authors of this 
writing. This philosophical framework guided the interpretive work and the methodology from which 
the empirical data recovery methods were derived. However, in this work, these literary references 
were included in advanced stages of the analysis, when there was already a set of categories that 
described the data. With these literary references we worked only at the conceptual level: the 
categories were reorganized and renamed, assigning them much more eloquent and appropriate 
names, thus gaining generality, systematization, and abstraction. Peña (2019) describes the use of 
literary references in the construction of the MICP and details of its construction.  

Methods of collecting empirical data 
Eleven third-year high school students (14 to 15 years old) from a public school in Mexico City 

participated in the research. These students had already studied the topic of triangle congruence. Four 
questionnaires were applied. For questionnaire 1 and 2, the first two work sessions were arranged. 
The objective was to provide students with tools to work on the concept of geometry congruence 
(congruence as superposition, geometric constructions, basic notions of geometry). For the solution 
of questionnaire 3 and 4, 4 class sessions were arranged; the objective in these questionnaires was to 
collect information on the way in which the students understood the congruence criteria for triangles 
and polygons. His empirical ideas on congruence were used as empirical data for the construction of 
the MICP. In Peña (2019) a detailed description of the battery of questionnaires is presented.  
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Results 
In the following, the MICP is presented and each of its phases is exemplified. 

 
Table 1. Interpretive Model for the Analysis of Polygon Congruence 

Phase 1. Empirical intrafigural idea of congruence 
Process Object 

 In this phase, triangles, some of the components of 
the triangle (sides, angles, base, area, perimeter) and 
an idea of congruence seen as a property of the 
components of a triangle have been conceptualized; 
the conceptual object in this case is the intrafigural 
notion of congruence. In this phase it is usual to see 
representations of equilateral or isosceles triangles 
since in this type of triangles there are sides and 
angles congruent to each other. 

Phase 2. Empirical interfigural idea of congruence. Congruence as a property of triangles 
Process Object 

In this phase pairs of triangles are compared to 
determine their possible congruence. To do this, 
the congruence between the components of the 
triangles is used (a process supported in the 
previous phase). To determine the interfigural 
congruence, empirical processes are performed 
such as the superposition of the triangles (where 
the decomposition of the figure into its parts is not 
necessary), or the comparison of measurements of 
pairs of sides or corresponding angles in the 
triangles. 

In this phase the congruence relations occur 
between two specific triangles. The conceptual 
object in this Phase is an interfigural notion; In this 
phase, the students do not yet take it as an object of 
reflection. Although there is an idea of congruence, 
it only makes sense when associated with specific 
triangles. In this phase the congruence has a purely 
applicative character and is not an object of 
reflection as such, i.e., the student's reflection does 
not appear to be deliberately directed toward 
congruence as such. The notion of congruence 
grammatically functions as a predicate. 

Phase 3. Initiation of congruence as an object of reflection 
Process Object 
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In this phase, the processes and actions carried out 
respond to a need to consider triangles in a general 
way and not only as concrete cases. 
In this context, students carry out cognitive 
processes in which they reflect directly on the 
congruence related to these generic objects. In this 
phase, they change the focus of attention: from the 
concrete triangles they direct their interest towards 
congruence as an object of reflection; in these 
processes they seek to characterize the congruence 
of triangles by appealing to their components 
(sides, angles, base, area ...). 
Although the interest or need of the students in 
this phase is to get rid of the concrete cases, the 
lack of conceptual tools leads them to return to the 
use of empirical methods of representation and 
verification of congruence; however, unlike the 
previous phase, the specific triangles they use are 
considered by the student as general 
representations of the triangles. 

In this phase the student begins to conceive of 
congruence as an object on which the student 
reflects and with which he associates properties. In 
this Phase, for example, there are those answers 
where the student makes explicit reference to some 
characterization of the congruence. 
In this phase two sub-phases are distinguished: If 
the properties with which students seek to 
characterize the congruence are not mathematically 
relevant to define it, the answer is located in Phase 
3.1. In this case, the characterizations that the 
students make of the congruence of triangles are 
unsystematic, inconsistent, and usually made with 
atypical components (base, height, perimeter, area). 
If the characterizations about congruence are 
relevant, the answer would be in phase 3.2. In this 
case, these characterizations are usually coherent 
and systematic, and usually typical components are 
used (sides and angles). 
Grammatically, in this phase, congruence already 
plays the role of noun. 

Phase 4. Reflection on properties of congruence as an object of reflection 
Process Object 

In this phase, reflection processes occur that no 
longer focus only on congruence but on the 
properties associated with congruence (which 
emerged in the previous phase). It is usual to find 
processes where sufficient conditions (or 
minimum conditions) are discriminated (either 
correctly or incorrectly, from the mathematical 
point of view) to guarantee congruence. This is 
done by the student with the understanding that it 
is possible to limit, depending on certain 
conditions or reasons, the number of components 
to establish the congruence of two triangles. In the 
case in which sufficient conditions that are correct 
are chosen, they coincide with what in school 
mathematics is known as the congruence criteria 
(SSS, SAS and ASA). 

In this phase, sufficient conditions are associated 
with congruence, which are based on a definition of 
congruence that occurred in the previous phase. 
These are new properties related to this conceptual 
object, which make it much more general and more 
solid, although in this Phase it is still tied to 
empirical considerations. 
Two sub-phases are also identified in this phase: If 
the characterizations that the students carry out are 
erratic or inconsistent (e.g. when there are cases of 
consistency criteria such as AA, SSSA, SSSAA) it 
is associated with Sub phase 4.1. On the other hand, 
if the minimum conditions proposed by the students 
to guarantee consistency are mathematically correct 
(e.g. the consistency criteria), it is in Sub phase 2 

Phase 5. Processes of deductive support. 
Process Object 

Students use deductive processes, based on 
definitions and general properties, to answer the 
why of certain properties of congruence (e.g., 
sufficient conditions for congruence of polygons) 
and other properties of congruence that they can 
conjecture or anticipate. 

The mathematical concept of congruence is 
consolidated, as a general and abstract concept, by 
supporting some of its properties in deductive 
arguments. 

 
To exemplify the phases of the MICP, in the following some productions of the students are 

presented. Although examples of each phase are offered, the categorization of the students' responses 
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was not carried out considering these responses in isolation. In the interpretation of each answer, the 
response patterns identified in the course of each student's production were taken into account as an 
analysis criterion. 
 Phase 1. Empirical intrafigural idea of congruence 

 

 
Figure 1. Student response 2 to question 1 of questionnaire 3 

 
The answer of figure 1 is located in this phase since the student shows to be aware that the triangle 

can be separated into components (sides); proof of this is that he names the sides and gives them a 
measurement. In this case, the congruence relations that are observed are only intra-figural, which 
can be verified in the fact that he only directs his gaze towards the congruence of sides that are part 
of the first triangle (side A and side C).  
Phase 2. Empirical inter-figural idea of congruence. Congruence as a property of triangles.  

 

 
Figure 2. Student response 1 to question 1.2 of questionnaire 3 

 
The answer in figure 2 is found in phase 2 since the student explicitly shows that he is thinking of 

two particular triangles; this is seen when the student says "by taking measurements you can see that 
the triangles have the same measurements". Furthermore, he evaluates congruence through an 
empirical comparison method, which he calls “at a glance”. 
Phase 3. Reflection on consistency. 

 

 
Figure 3. Student 1 response to question 1.4b of questionnaire 3 

 
Figure 3 presents a student's answer to the following question: what other minimum data should we 

have to ensure the congruence of two triangles if we already have a pair of corresponding congruent 
sides? As a result, the student does not seem to propose sufficiency criteria (as expected); on the 
contrary, he proposes a way to characterize congruence in terms of necessity, the latter being a 
constant in many of his other responses. On the other hand, it seems that the student lacks conceptual 
tools to support his hypothesis, so he must resort to a known field, the superposition, even when he 
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tries to characterize the congruence far from the empirical verification methods. In this case, the 
student was in subphase 3.1, since his characterizations turn out to be atypical (since he makes use of 
the base of the triangles). 
Phase 4. Reflection on properties of congruence as an object of reflection 

 

 
Figure 4. Student response 6 to question 1.2 of questionnaire 3 

 
The answer of figure 4 corresponds to this level since the student shows to have characterized 

certain sufficient criteria for polygon congruence, although in this particular case those criteria are 
erroneous. The student shows to believe that it is possible, having (AB) ̅≅ (DF) ̅ and (𝐵𝐶) ≅
 (𝐸𝐹) ensure that (𝐶𝐴) ≅  (𝐷𝐹), this shows that he understands, at least in one level basic, the 
sufficient conditions, i.e., is aware that it is possible to exclude components in the congruence of 
triangles and still continue to ensure congruence. 
Phase 5. Processes of deductive support. 

 
Figure 5. Student response 7 to question 1.1 of questionnaire 3 

 
The answer in figure 5 is in phase 5 since the student presents a deductive argument that supports 

the congruence criterion for SAS triangles. 

Comments and conclusions 
The MICP is a preliminary model. It is hoped, in future works, to be able to further refine the model 

by adding properties to the phases. In future works, the authors of this document will seek to identify 
the types of arguments presented in each phase. The MICP is considered to be a model that can be 
useful for teachers, researchers and people involved with education in mathematics, since it allows 
analyzing the productions of students, their possible profiles in relation to performance in congruence 
tasks (Peña, 2019), in addition to suggesting hypotheses about possible trajectories of the 
construction of the concept of "congruence" in the classroom. 

The authors of the document have considered important to detail the process of construction of the 
MICP categories, because that constructive process allows readers to get a closer look at the 
construction of conceptual categories, whose details are often omitted in the research literature in 
mathematics education. The authors of the writing are aware that the work involved in the 
construction of the categories is sometimes enormous, that the data is often overwhelming and that 
there will be many moments when the researcher (in training and already trained) must reformulate 
and discard ideas that had already developed. However, even with all the problems involved in 
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constructing theoretical models or conceptual categories, the process that this entails leads, from our 
point of view, to basically understanding what it involves doing a certain type of research. 
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En el documento se presenta un conjunto de categorías para el análisis de la conceptualización de la 
congruencia de polígonos -tema central en la matemática escolar- y se detalla la aplicación de las 
herramientas analíticas empleadas, provenientes de la Teoría Fundamentada, en esa construcción. A 
ese conjunto de categorías se le llama ‘Modelo interpretativo de la conceptualización de la 
congruencia de polígonos’ (MICP). Este modelo surgió como resultado de la interpretación de datos 
empíricos recuperados durante la investigación. Las categorías del MICP pueden ser empleadas por 
profesores o investigadores para cubrir distintos objetivos didácticos (e.g., interpretar la resolución 
de tareas de contenidos de congruencia; elaborar perfiles de estudiantes o identificar sus 
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dificultades. Ver Peña, 2019) y resulta relevante porque no parece existir en la literatura un modelo 
semejante que cubra los objetivos antes planteados. 

Palabras clave: Geometría, metodologías de la investigación. 

Planteamiento del problema y pregunta de investigación 
Los criterios de congruencia y la noción de congruencia son temas importantes y fundamentales 

para la geometría, tanto para la que se enseña desde los niveles básicos de educación como para la 
disciplinar. En distintas versiones de la geometría euclidiana -propuestas por Euclides, Legendre o 
Hilbert y que presentan una organización deductiva con distintos grados de formalización- la noción 
de congruencia y los criterios de congruencia surgen desde los inicios de la axiomatización. En el 
caso de Los Elementos de Euclides, conforme a la versión de Heath (1956), la noción de congruencia 
se introduce en la Noción Común 4 y los ‘criterios de congruencia de triángulos’ se encuentran en las 
proposiciones I.4; I.8 y I.26. En el caso de la geometría de Legendre (Legendre, 1984), se habla de la 
congruencia en los inicios de la axiomatización y se muestran los criterios de congruencia para los 
triángulos en las proposiciones VI, VII y XI. Algo similar ocurre en la formalización de la geometría 
propuesta por Hilbert (1996) en donde también se incluyen los criterios de congruencia al inicio de la 
obra. Lo anterior permite suponer que en la geometría disciplinar, particularmente en las diferentes 
versiones de la geometría Euclidiana, se requiere desde los inicios de la axiomatización hacer uso de 
la noción de congruencia y de los criterios de congruencia de triángulos. 

Así como la noción de congruencia y los criterios de congruencia resultan necesarios para la 
geometría disciplinar, de igual forma resultan imprescindibles en la educación matemática escolar. 
Para verificar esta afirmación se revisaron planes de estudio de México y de Colombia. En México, 
la Secretaria de Educación pública (SEP, 2017) introduce en sus planes de estudio a la noción de 
congruencia y los criterios de congruencia de triángulos desde tercero de primaria -donde se solicita 
comparar figuras geométricas y establecer unicidad (p.314)-, hasta tercero de secundaria -nivel en el 
que se espera que se determinen y usen los criterios de congruencia de triángulos (p.315). En 
Colombia, el Ministerio Nacional de Educación (MEN, 2006) propone “reconocer a la congruencia 
de figuras” (p.80) en el 1° y el 3° grado; “identificar y justificar la congruencia entre figuras” (p.82) 
entre 4° y 5°; hacer uso de la congruencia de figuras para resolver problemas para 6° y 7° (p.84) y el 
estudio de las propiedades de la congruencia para 8° y 9° (p.86). Todo esto hace referencia 
básicamente a la congruencia de triángulos. 

Dado el peso y el alcance que la congruencia tiene no solo en la geometría disciplinar sino en la 
geometría escolar, se requieren herramientas que permitan cubrir una serie de objetivos didácticos 
relacionados con ese concepto, entre otros: interpretar las resoluciones de tareas de contenidos de 
congruencia elaboradas por los alumnos, elaborar perfiles de estudiantes e identificar algunas de sus 
dificultades conceptuales sobre esa noción; analizar los enunciados de las tareas mismas y elaborar 
secuencias didácticas sobre el tema.  No obstante, no parecen haber trabajos en investigación en 
educación matemática que brinden estas herramientas de análisis para el caso de los triángulos, y 
menos aún, para la congruencia de polígonos, que es el tema central de la investigación que aquí se 
expone.  

Al hacer investigación documental sobre reportes de estudio de educación matemática centrados en 
temas de congruencia de polígonos, solo se encontraron propuestas didácticas para la enseñanza del 
tema (Carbó y Mántica, 2010; Piatek-Jimenez, 2008; Zakiz y Leron, 1991 por citar algunos). Estos 
trabajos carecen, por ejemplo, de un análisis sistemático de las posibles dificultades en el aprendizaje 
y la enseñanza de temas afines a la congruencia de polígonos; carecen también de sustentos teóricos 
que pudieran justificar el orden de exposición de tareas en una secuencia didáctica sobre la 
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congruencia y que permitan delinear posibles perfiles que den cuenta del nivel de comprensión que 
los alumnos poseen de este concepto.  

En este documento se expone un conjunto de categorías -al que se le ha llamado ‘Modelo 
interpretativo de la conceptualización de la congruencia de polígonos’ (MICP) (Peña, 2019)- que 
tiene la intención de ayudar a cubrir (aunque sea de manera preliminar) las carencias antes 
planteadas.  

Metodología y aplicación de las herramientas analíticas empleadas 
Para la construcción del MICP se siguieron algunos de los principios que rigen la Teoría 

Fundamentada (TF) en la versión de Corbin y Strauss (2015), si bien el estudio no tenía como 
propósito alcanzar los objetivos últimos de la TF (i.e., hacer teoría). En lo que sigue se esboza el 
proceso de construcción de las categorías y algunas ideas centrales. 

En la TF las categorías interpretativas se basan en los datos empíricos que se recolectan durante la 
investigación y no emergen de un marco teórico dado de antemano (Corbin & Strauss, 2015). 
Siguiendo este principio general de la TF, se realizó la construcción del MICP cuidando siempre que 
las categorías estuvieran orientadas por los datos empíricos.  

En un primer momento se fracturaron los datos empíricos, a partir de lo cual se construyeron 
patrones con base en los cuales se generaron etiquetas conceptuales. En un regreso al dominio 
empírico, se comprobó que dichas etiquetas representaran a los datos. Enseguida se hizo un análisis 
comparativo entre las etiquetas conceptuales. A partir de un proceso de síntesis llevado a cabo en el 
dominio conceptual, se generaron categorías. En todos estos procesos estuvieron involucradas las 
comparaciones constantes, el planteamiento de preguntas y la elaboración de memos y diagramas, 
herramientas analíticas que forman parte de los métodos de la TF (Corbin & Strauss, 2015). En un 
momento posterior -que Birks y Mills (2011) denominan de ‘codificación intermedia’- se profundizó 
en cada una de las categorías y se definieron subcategorías y sincrónicamente se realizaron procesos 
de ordenamiento lógico entre ellas, haciendo uso de las ideas propuestas por Sfard y Linchevski 
(1994). 

Posteriormente, se realizó un muestreo teórico (Corbin & Strauss, 2015) que permitió dotar de 
nuevas propiedades y dimensiones a las categorías construidas. En una etapa subsecuente, estas 
categorías se confrontaron con los niveles propuestos por los investigadores Van Hiele (trad. en 
1984). Finalmente, y con apoyo de algunas de las ideas de cosificación propuestas por Sfard y 
Linchevski (1994) y por Wenger (2001), se realizaron modificaciones a nivel conceptual. Esto dio 
lugar al MICP que se expone en este documento, el cual posee propiedades de un ordenamiento 
conceptual de acuerdo con la definición que dan Corbin y Strauss (2015).  

Referentes Literarios 
Para la construcción del MICP se usaron algunas de las ideas propuestas por Wenger (2001) y por 

Sfard y Linchevski (1994). Wenger (2001) expresa que, con el fin de significar sus acciones y 
prácticas cotidianas y su experiencia en el mundo, los miembros de las comunidades llevan a cabo 
procesos de cosificación. La idea de cosificación la emplea Wenger de manera general para referirse 
al proceso de dar forma a nuestra experiencia produciendo objetos que plasman esta experiencia en 
una cosa (p. 84). Por ejemplo, redactar una ley, crear una receta para un pastel o demostrar un 
teorema son procesos de cosificación en los que se da forma o se ‘materializa’ una cierta experiencia 
social, gastronómica o matemática. Así, en estos procesos de cosificación se convierten en objetos -la 
ley, el pastel o el teorema- algunos aspectos o características de una práctica, objetos que pueden ser 
tratados como si fueran elementos materiales y concretos, aún y cuando no lo sean. Una vez 
constituidos esos objetos, los percibimos como si existieran en el mundo, como si tuvieran una 
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realidad propia. Esto es muy claro con los conceptos matemáticos y las estructuras científicas. Se 
suelen ver como si tuvieran (y como si siempre hubieran tenido) una existencia independiente.  

La cosificación, sostiene Wenger (2001), puede hacer referencia tanto a un proceso, o una práctica, 
como a su producto, es decir, al objeto que resulta y es reflejo de esa práctica. De hecho, esos objetos 
son la base para nuevos procesos, mismos que darán paso a nuevos objetos. Esta consideración, 
aplicada al terreno de la epistemología -consideración conforme a la cual en la construcción del 
conocimiento individual e histórico se da una iteración de procesos que dan lugar a objetos, que 
forman parte de nuevos procesos- subyace a la organización de las categorías que se exponen en este 
documento. 

Sfard y Linchevski (1994) retoman las ideas de la teoría de la reificación para el análisis de la 
construcción de conocimientos algebraicos, tanto a nivel histórico como a nivel del estudiante. En 
particular, ellas proponen que, partiendo de un conjunto de procesos A, se genera un primer objeto A, 
a partir del cual se realiza otro conjunto de procesos B, para así construir un objeto B, mismo que 
sirve para realizar un conjunto de procesos C que dan lugar a un objeto C. Este desarrollo permite 
construir objetos cada vez más abstractos. 

Las ideas de cosificación de Wenger y la interpretación que hacen las autoras antes citadas de esas 
ideas, basadas en posturas constructivistas, forman parte del marco filosófico de los autores de este 
escrito. Ese marco filosófico orientó el trabajo interpretativo y la metodología de la cual se 
desprendieron los métodos de recuperación de datos empíricos. Sin embargo, en este trabajo esos 
referentes literarios se incluyeron en fases avanzadas del análisis, cuando ya se contaba con un 
conjunto de categorías que describían los datos. Con esos referentes literarios se trabajó sólo a nivel 
conceptual: se reorganizaron las categorías y se renombraron, asignándoles nombres mucho más 
elocuentes y adecuados, con lo que se ganó generalidad, sistematización y abstracción. En Peña 
(2019) se describe el empleo de los referentes literarios en la construcción del MICP y detalles de su 
construcción.  

Métodos de recolección de los datos empíricos 
En la investigación participaron 11 estudiantes de tercero de secundaria (14 a 15 años) de una 

escuela pública de la ciudad de México. Estos alumnos ya habían estudiado el tema de congruencia 
de triángulos. Se aplicaron cuatro cuestionarios. Para el cuestionario 1 y 2 se dispusieron las dos 
primeras sesiones de trabajo. El objetivo fue brindar a los estudiantes herramientas para trabajar 
sobre el concepto de congruencia de geometría (congruencia como superposición, construcciones 
geométricas, nociones básicas de la geometría). Para la solución del cuestionario 3 y 4 se dispusieron 
4 sesiones de clase, el objetivo en estos cuestionarios era el recolectar información sobre la manera 
en la que los estudiantes entendían los criterios de congruencia para triángulos y polígonos. Como 
datos empíricos para la construcción del MICP se utilizaron sus ideas sobre la congruencia. En Peña 
(2019) se presenta una descripción detallada de la batería de cuestionarios.  

Resultados 
En lo que sigue se presenta el MICP y se ejemplifican cada una de sus fases. 

 
Tabla 1. Modelo Interpretativo para el análisis de la Congruencia de Polígonos 

Fase 1. Idea empírica intrafigural de congruencia 
Proceso Objeto 

 En esta fase se han conceptualizado los triángulos, 
algunos de los componentes del triángulo (lados, 
ángulos, base, área, perímetro) y una idea de la 
congruencia vista como una propiedad de los 



Modelo interpretativo de la conceptualización de la congruencia de polígonos (MICP) 

	 657	

componentes de un triángulo; el objeto conceptual 
en este caso es la noción intrafigural de la 
congruencia. En esta fase es usual ver 
representaciones de triángulos equiláteros o 
isósceles ya que en este tipo de triángulos hay lados 
y ángulos congruentes entre sí. 

Fase 2. Idea empírica interfigural de congruencia. la congruencia como una propiedad de 
triángulos 

Proceso Objeto 
En esta fase se comparan parejas de triángulos para 
determinar su posible congruencia. Para ello se 
recurre a la determinación de la congruencia entre 
los componentes de los triángulos (proceso que se 
respalda en la fase anterior). Para la determinación 
de la congruencia interfigural, se realizan procesos 
empíricos como la superposición de los triángulos 
(en donde no es necesaria la descomposición de la 
figura en sus partes) o la comparación de medidas 
de pares de lados o ángulos correspondientes en los 
triángulos.  

En esta fase las relaciones de congruencia se dan 
entre dos triángulos concretos. El objeto conceptual 
en esta Fase es una noción interfigural; en esta Fase, 
todavía no se reflexiona sobre ese objeto. Aunque 
hay una idea de congruencia, solo cobra sentido 
cuando se le asocia a triángulos concretos. En esta 
fase la congruencia tiene un carácter puramente 
aplicativo y no es objeto de reflexión como tal; i.e, 
no parece que la reflexión del estudiante se dirija 
deliberadamente hacia la congruencia como tal. La 
noción de congruencia gramaticalmente funge 
como predicado. 

Fase 3. Inicio de la congruencia como objeto de reflexión  
Proceso Objeto 

En esta fase los procesos y las acciones que se 
llevan a cabo responden a una necesidad de 
considerar a los triángulos de manera general y no 
solo como casos concretos.  
En este contexto, los alumnos realizan procesos 
cognitivos en los que reflexionan directamente 
sobre la congruencia relacionada con esos objetos 
genéricos. En esta fase, ellos cambian el foco de 
atención: de los triángulos concretos dirigen su 
interés hacia la congruencia como un objeto de 
reflexión; en estos procesos buscan caracterizar a 
la congruencia de triángulos apelando a sus 
componentes (lados, ángulos, base, área…).  
Aunque el interés o necesidad de los alumnos en 
esta fase es desprenderse de los casos concretos, la 
falta de herramientas conceptuales los lleva a 
regresar al uso de métodos empíricos de 
representación y verificación de la congruencia; sin 
embargo, a diferencia de la fase previa, los 
triángulos concretos que utilizan son considerados 
por el alumno como representaciones generales de 
los triángulos. 

En esta fase el alumno empieza a concebir a la 
congruencia como un objeto sobre el cual el alumno 
reflexiona y al cual le asocia propiedades. En esta 
Fase, por ejemplo, se encuentran aquellas 
respuestas en donde el alumno hace referencia 
explícita a alguna caracterización de la congruencia.  
En esta fase se distinguen dos sub fases: Si las 
propiedades con las que busca caracterizar a la 
congruencia no son matemáticamente relevantes 
para definirla, su respuesta se ubica en la Fase 3.1. 
En este caso, las caracterizaciones que realizan los 
alumnos de la congruencia de triángulos son 
asistemáticas, incoherentes y usualmente realizadas 
con componentes atípicos (Base, altura, perímetro, 
área). Si las caracterizaciones sobre la congruencia 
son relevantes, su respuesta se ubicaría en la fase 
3.2. En este caso, esas caracterizaciones suelen ser 
coherentes y sistemáticas, y usualmente se acude a 
componentes típicos (Lados y ángulos).  
Gramaticalmente, en esta Fase la congruencia juega 
ya el papel de sustantivo. 

Fase 4. Reflexión en torno a propiedades de la congruencia como objeto de reflexión 
Proceso Objeto 

En esta fase se dan procesos de reflexión que ya no 
solo se centran en la congruencia sino en las 
propiedades que se asocian a la congruencia (que 

En esta fase se asocian a la congruencia condiciones 
suficientes, las que se basan en una definición de la 
congruencia que se dio en la fase previa. Se trata de 
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surgieron en la fase anterior). Es usual encontrar 
procesos en donde se discriminan (ya sea correcta 
o incorrectamente, desde el punto de vista 
matemático) condiciones suficientes (o 
condiciones mínimas) para garantizar la 
congruencia. Esto lo hace el alumno con la 
comprensión de que es posible acotar, atendiendo a 
ciertas condiciones o razones, la cantidad de 
componentes a considerar para establecer la 
congruencia de dos triángulos. En el caso en el que 
se eligen condiciones suficientes correctas, 
coinciden con lo que en la matemática escolar se 
conoce como los criterios de congruencia (LLL, 
LAL y ALA).  

nuevas propiedades relacionadas con este objeto 
conceptual, que lo hacen mucho más general y más 
sólido, aunque en esta Fase todavía esté atado a 
consideraciones empíricas. 
En esta Fase se identifican también dos subfases: Si 
las caracterizaciones que realizan los alumnos son 
erráticas o incoherentes (e.g. cuando se dan casos 
de criterios de congruencia como AA, LLLA, 
LLLAA) se asocia a la Sub fase 4.1. Por otro lado, 
si las condiciones mínimas que proponen los 
alumnos para garantizar la congruencia son 
matemáticamente correctas (e.g. los criterios de 
congruencia) se ubica en la Sub fase 2   

Fase 5. Procesos de sustentación deductiva.  
Proceso Objeto 

Los alumnos recurren a procesos deductivos, 
basados en definiciones y propiedades generales, 
para dar respuesta al por qué de ciertas propiedades 
de la congruencia (e.g., condiciones suficientes 
para la congruencia de polígonos) y a otras 
propiedades de la congruencia que ellos pueden 
conjeturar o anticipar.  

Se consolida el concepto matemático de 
congruencia, como un concepto general y abstracto, 
al sustentar algunas de sus propiedades en 
argumentos de tipo deductivo. 

 
Para ejemplificar las fases del MICP, en lo que sigue se presentan algunas producciones de los 

estudiantes. Aunque se ofrecen ejemplos particulares de cada fase, la categorización de las respuestas 
de los alumnos no se realizó considerando esas respuestas de manera aislada. En la interpretación de 
cada respuesta se tomó en cuenta, como criterio de análisis, los patrones de respuesta identificados en 
el transcurso de la producción de cada alumno. 
Fase 1. Idea empírica intrafigural de congruencia: 

 
Figura 1. Respuesta del alumno 2 a la pregunta 1 del cuestionario 3 

 
La respuesta de la figura 1 se ubica en esta fase ya que el alumno muestra ser consciente de que el 

triángulo se puede separar en componentes (lados); y es que él nombra los lados y les da una medida. 
En este caso, las relaciones de congruencia que se observan solo son intrafigurales, lo cual se puede 
constatar en el hecho de que él solo dirige su mirada hacia la congruencia de lados que forman parte 
del primer triángulo (el lado A y el lado C).  
Fase 2. Idea empírica interfigural de congruencia.  
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Figura 2. Respuesta del alumno 1 a la pregunta 1.2 del cuestionario 3 

 
La respuesta de la figura 2 se encuentra en la fase 2 ya que el alumno muestra explícitamente estar 

pensando en dos triángulos particulares; esto se ve cuando el alumno dice “tomando medidas puede 
darse cuenta que los triángulos tienen mismas medidas”. Además, evalúa la congruencia a través de 
un método de comparación empírico, que él llama “a simple vista”. 
Fase 3. Reflexión en torno a la congruencia. 

 

 
Figura 3. Respuesta del alumno 1 a la pregunta 1.4b del cuestionario 3 

 
En la figura 3 se presenta la respuesta de un alumno a la siguiente pregunta ¿qué otros datos 

mínimos debemos tener para asegurar la congruencia de dos triángulos si ya se tiene un par de lados 
correspondientes congruentes? Como resultado el estudiante no parece proponer criterios de 
suficiencia (como se esperaba); por el contrario, él propone una manera de caracterizar a la 
congruencia en términos de necesidad, esto último es una constante en muchas de sus otras 
respuestas. Por otro lado, parece que el alumno carece de herramientas conceptuales para soportar su 
hipótesis, por lo que debe recurrir a un campo conocido, la superposición, aun cuando intenta 
caracterizar a la congruencia lejos de los métodos empíricos de verificación. En este caso particular 
el alumno se ubicó en la subfase 3.1, pues sus caracterizaciones resultan ser atípicas (ya que hace uso 
de la base de los triángulos). 
Fase 4. Reflexión en torno a propiedades de la congruencia. 

 

 
Figura 4. Respuesta del alumno 6 a la pregunta 1.2 del cuestionario 3 

 
La respuesta de la figura 4 corresponde a este nivel ya que el alumno muestra haber caracterizado 

ciertos criterios de suficiencia de congruencia de polígonos, aunque para este caso particular dichos 
criterios sean erróneos. El alumno muestra creer que es posible, teniendo 𝐴𝐵 ≅ 𝐷𝐹 𝑦 𝐵𝐶 ≅ 𝐸𝐹  
asegurar que 𝐶𝐴 ≅ 𝐷𝐹, esto muestra que comprende, al menos en un nivel básico, las condiciones de 
suficiencia, i.e es consciente de que es posible prescindir de componentes en la congruencia de 
triángulos y aun así seguir asegurando la congruencia. 
Fase 5. Procesos de sustentación deductiva.  
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Figura 5. Respuesta del alumno 7 a la pregunta 1.1  del cuestionario 3 

 
Se ubica la respuesta en la figura 5 en la fase 5 ya que el alumno presenta un argumento deductivo 

que sustenta al criterio de congruencia para triángulos LAL. 

Comentarios y conclusiones 
El MICP es un modelo preliminar. Se espera, en trabajos futuros, poder seguir afinando el modelo 

agregando propiedades a las fases. Particularmente, en trabajos próximos, los autores de este 
documento buscarán identificar los tipos de argumentos que se presentan en cada fase. Se considera 
que el MICP es un modelo que puede ser útil para profesores, investigadores y personas involucradas 
con la educación en matemática, pues permite analizar las producciones de los estudiantes, sus 
posibles perfiles con relación al desempeño en tareas de congruencia (Peña, 2019), además de que 
sugiere hipótesis sobre trayectorias posibles de la construcción del concepto de “congruencia” en el 
aula. 

Los autores del documento han considerado importante detallar en este escrito el proceso de 
construcción de las categorías del MICP, porque ese proceso constructivo -cuyos detalles se suelen 
omitir en la literatura en investigación en educación matemática- le permite a los investigadores 
mirar de manera crítica y a profundidad en los temas de su estudio y les permite generalmente ir más 
allá de lo que está escrito. Los autores del escrito están conscientes que el trabajo que supone la 
construcción de las categorías es a veces enorme, que en muchas ocasiones los datos abruman y que 
habrá muchos momentos en donde el investigador (en formación y ya formado) debe reformular y 
descartar ideas que ya había desarrollado. Sin embargo, aun con todos los problemas que conlleva la 
construcción de modelos teóricos o categorías conceptuales, el proceso que esto supone lleva, desde 
nuestro punto de vista, a comprender básicamente lo que implica hacer un cierto tipo de 
investigación. 
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CHILDREN’S DURATIONAL ORGANIZATION OF EVEREYDAY EXPERIENCES: A 
MATHEMATICAL PERSPECTIVE OF A LINGUISTIC STUDY 
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How do children reason about the durations of daily experiences? Following Tillman and Barner’s 
(2015) linguistic study, three children (age five, six, and seven) were asked to organize four everyday 
activities from the shortest duration to longest duration: watching a movie, brushing their teeth, 
sleeping at night, and eating lunch. After creating their “timeline”, each child was asked why they 
ordered the events as they did. By allowing the children the opportunity to reflect on common 
experiences and explain how they reasoned about durations, we can begin to recognize how children 
understand time as a quantity. Their responses showed that reflections on lived durational 
experiences were heavily influenced by physical acts, such as speed of actions or movement of the 
sun. These findings were consistent with past research on children’s conception of physical time 
(Long & Kamii, 2001; Piaget, 1969). 

Keywords: Measurement, Elementary School Education, Cognition 

Tillman and Barner (2015) presented a series of linguistic experiments to explore young children’s 
development of durational language. Through these experiments, Tillman and Barner theorized that 
children hear and use durational words, such as minute and second, but are unable to define these 
words with precise meanings, such as a minute being made of 60 seconds. The authors’ asserted, “a 
lag [exists] between production and comprehension of duration words” (Tillman & Barner, 2015, p. 
58), a point that would be supported by mathematics researchers and educators (Earnest, 2015; 
Harris, 2008; Kamii & Russell, 2012; Piaget, 1969). Thus, Tillman and Barner’s research does not 
seem to lie solely within the field of linguistics, but also mathematics education research.  

Durational words are commonly used in everyday English, for example, a parent telling their child 
“just a second” or “hang on a minute”. During casual conversation these durations are not used as 
quantified elapsed time intervals, but rather are used as informal estimates of general wait times 
(Tillman & Barner, 2015). How such informal intervals are understood and used by children is an 
underrepresented area in mathematics education research. The value of such research would be to 
establish what temporal conceptions elementary students might bring with them to the mathematics 
classroom prior to formal time instruction. 

Theoretical Framework 
Currently, the Common Core State Standards Initiative (CCSSI) places time instruction within the 

Measurement and Data strand beginning in first grade. According to Common Core, first graders are 
taught to, “Tell and write time in hours and half-hours using analog and digital clocks” (CCSSI, 
2020). There are no precursory standards that establish children’s understanding of what hours and 
minutes are, so it could be inferred that the creators of Common Core believe these durational 
conceptions are either unimportant or unnecessary for clock reading and time telling, or already 
known prior to first grade (age six). 

This lack of prerequisites seems counter to how Common Core has structured other forms of 
measurement. According to Common Core, kindergarteners should be able to, “Describe measurable 
attributes of objects, such as length or weight” (CCSSI, 2020) and, “Directly compare two objects 
with a measurable attribute in common” (CCSSI, 2020). These standards are addressed prior to 
learning the tools for such measurement. In other words, kindergarteners are explicitly taught about 
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length-based attributes before being taught how to use the tools to measure them. For example, a 
kindergartener is taught to compare two lengths of string in order to tell which is longer. This 
comparison is intended to later bring about strategies for measuring, such as aligning starting points 
or considering left-overs—both of which are important to consider when measuring time (D. Earnest, 
personal conversation, May 27, 2019). 

Unlike measuring lengths, where quantities can be physically compared against one another as 
described by the Common Core standards, measuring duration requires the creation of a hypothetical, 
iterable unit (Piaget, 1969).“The only method of [creating a “mobilized” durational unit] is to 
reproduce the physical phenomenon whose course (motion) was [the] duration” (Piaget, 1969, p. 67). 
So, when making judgements about the duration of common experiences, an individual must 
mentally reconstruct their experience, then dissociate time from perceptive influences, such as effort, 
emotion, or velocity.  

The mental process of distinguishing time from spatial influences is referred to as the 
operationalization of time (Piaget, 1969). To construct operational time, one needs to coordinate 
succession (the consecutive sequence of events) and duration (the intervals of and between events). 
This, unlike intuitive time—which is based on spatial perceptions—means the individual understands 
time is continuous, homogeneous for all individuals, and uniform in its measurement (Russell, 2008). 
For example, a child who conceived of time intuitively would believe that as they walked faster, time 
moved faster. When reasoning operationally about time, this child would know that their actions 
have no impact on the duration of their experience.  

Piaget (1969) contended that children were able to reason operationally about time by the age of 
nine (around fourth grade). Long and Kamii (2001), however, found it was not until sixth grade 
(around the age of 11) and Russell (2008) argued that it was not until eighth grade (around the age of 
13). Irrespective of which of these studies might demonstrate an accurate age for the 
operationalization of time, none place the necessary reasoning for time measurement at first grade 
(age six), as described by Common Core (CCSSI, 2020) and Tillman and Barner’s (2015) study. I 
hope this study may begin illustrating how children in the early elementary years think about 
duration based on their lived experiences.  

Methodology 
This multiple case study (Yin, 2003) followed a modified investigation from Tillman and Barner’s 

(2015) Experiment 3, which explored how children placed familiar events on a figurative “timeline”. 
During Experiment 3, Tillman and Barner asked children, age five to seven, and adults, to place 
whole numbers, everyday experiences (e.g., watching a movie, washing hands), units of time (e.g., 
seconds, hours), and timed durations (e.g., four minutes, two hours) on an open number line. 
Participants were not asked about their reasoning for their placements, instead a quantitative analysis 
was completed on each age group.  

To understand how children might reason about different durations from reflections on their daily 
experiences, I asked three children (age five, six, and seven) to organize four activities from shortest 
to longest amount of time, following the last study of Experiment 3. Each child was asked to reflect 
on why they arranged the events as they did, so that I could complete a qualitative analysis.  
Participants and Procedure 

To represent the same youth population used by Tillman and Barner (2015), three children: Kris 
(age five), Sam (age six), and Casey (age seven) were interviewed. All three participants were from 
the same elementary school in a large suburban city in the western United States. Each child, and 
their parents, consented to participate in this interview, as part of a larger study on how children 
reason about durational experiences.  
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Kris, Sam, and Casey were video, and audio recorded during one-on-one interviews. The interview 
protocol was modified from Tillman and Barner’s (2015) Experiment 3. Each child was given four 
cards with pictures and words of common activities: watching a movie, brushing their teeth, sleeping 
at night, and eating lunch. These activities slightly differed from those used in Experiment 3 in order 
to better relate to the sample population. Each child was asked to arrange the cards along a 
continuum from what took the shortest amount of time to the longest amount of time. After 
completing their “timeline”, each child was asked to explain why they organized the cards as they 
did.  

Following each interview, field notes were taken, and each interview was transcribed. Transcripts 
captured words, hesitations, and actions of each child. All transcripts were member checked by the 
child and their parents prior to analysis. 
Data Analysis 

Given the exploratory nature of this research, and the open-endedness of the responses, I used a 
constant comparison analysis (Glaser & Strauss, 1967). Reasonings were coded inductively, then 
codes were compared to note any similarities, differences, or apparent progression between and 
across participants.  

The focus of this analysis was not on the accuracy of the child’s organization, but rather the 
durational reasoning presented during their explanation. For example, Casey, age seven, ordered the 
events: brushing teeth as the shortest duration, then sleeping at night, then eating lunch, then finally 
watching a movie as the longest duration. This order was not the same as either of the other two 
participants, nor was it accurate by the actual average length of each activity. However, Casey’s 
explanation displayed a different interpretation of what sleeping at night meant, which explained how 
her durational order made sense.  

After initial coding, themes were created, hypothesizing possible attributes being attended to during 
the three children’s durational reasoning, such as effort exerted, standard units of time, and physical 
indicators of passing time. These themes were compared against previous studies of children’s 
conceptions of time. 

Findings 
Tillman and Barner’s (2015) quantitative results showed that children in all three age groups (five, 

six, and seven years old) performed fairly poorly when organizing the durations of common events. 
The authors’ asserted that given these results, “it seems highly unlikely that children’s learning of the 
rank ordering of duration is mediated by knowledge of the approximate durations of events (e.g., that 
children learn ‘an hour’ by mapping it to events described as ‘an hour’, and noting the duration of 
those events)” (Tillman & Barner, 2015, p. 68). In other words, when children organize familiar 
experiences, it does not seem that they are using an understanding of the actual duration of each 
activity. 

Through the interviews, I found that at some point, each of the three children explained their 
sequence of events using standard durational units (e.g., minutes, hours). However, when asked how 
they knew these units, none of them were able to justify the actual durations. Rather, other 
explanations for the durations were given, such as how enjoyable the experience was or what their 
effort to complete the activity.  
Kris: Age Five 

Kris began by sorting the activities into two columns, what he called the “short amount of time 
side” (brushing teeth and watching movie) and the “long amount of time side” (sleeping at night and 
eating lunch). When asked if he felt that it took the same amount of time to watch a movie as brush 
your teeth, he said that one was shorter, and pointed to the brushing teeth card. Similarly, when 
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questioned about sleeping at night and eating lunch, he said sleeping at night was longer. This 
progression can be seen in Table 1. 

 
Table 1. Kris’s Organization Process and Reasoning 

Initial Order “Short amount of time” 
Brushing teeth 

Watching a movie 

“Long amount of time” 
Sleeping at night 

Eating lunch 
Final Order Brushing teeth Watching a 

movie 
Eating lunch Sleeping at night 

Reasoning “Like five 
minutes.” 

“You can watch 
much.” 

“About 10 
minutes.” 

“About 30 
minutes.” 

“Like 15 
minutes.” 
 

Kris’s initial ordering of the events was more of a classification than a seriation, where he “put 
everything that [was] alike together” (Piaget, 1985, p. 100) under the umbrellas, “short” or “long” 
amounts of time. One question that I overlooked during the interview was why he chose to group 
these events in such a way.  Instead, I focused on his sequencing of events from the original 
Experiment 3 (Tillman & Barner, 2015). Though I do feel this was a missed opportunity to better 
understand his overall durational reasoning. 

After creating his final “timeline”, Kris began by explaining his reasoning from the middle of the 
events, with watching a movie. He stated that it was placed in the middle because “you can watch 
much”. Here, Kris seemed to be equating the amount of activity (“much”) with duration, a common 
conception in early time reasoning (Piaget, 1969).  

As Kris continued his explanation, he switched his reasoning from activity of an event, to standard 
units of time—explaining that brushing teeth was five minutes, eating lunch 10 minutes, and sleeping 
at night 30 minutes. I asked Kris about his use of these specific durational words, which prompted 
him to add that watching a movie took “like 15 minutes”. From this, it seems that Kris knows that the 
word “minutes” can be used to explain lengths of time, an understanding highlighted by Tillman and 
Barner (2015). However, looking at how he now ordered the minutes of each event (5, 15, 10, 30), 
the value does not align with the chronological duration. 

I asked Kris specifically about the chronology of the durations, comparing the order of the numbers 
given versus the order the events were placed. This comparison seemed to confuse Kris, as 
highlighted in the following excerpt.  

A (Author): You said this was five minutes [taps brushing teeth card], 15 [watching movie card], 10 
[eating lunch card], 30 [sleeping at night car], is that the right order? 

K (Kris): I don’t know. 
A: Do numbers go 5, 15, 10? 
K: No/ 
A: Do they go [flipped watching movie and eating lunch cards] 5, 10, 15? 
K: No. [furrows his brow and shakes his head] 
A: [Puts cards back] Okay, so you think it takes you longer to eat than watch a movie? 
K: Yup! 

Kris seemed confused by the rearranging of the cards, and focused more on his perceived duration 
of each event rather than the numbers he had assigned to the minutes of each event. This aligns with 
Tillman and Barner’s (2015) findings that overall, the five-year-old participants performed better on 
organizing the duration of familiar events than on organizing timed durations (such as nine seconds 
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or two minutes). There may also be a connection to Kris’s concept of number, although more study 
would be needed to make such a claim.  
Sam: Age Six 

Sam quickly organized the four events: first, brushing teeth on the far left (shortest duration), then 
eating lunch, watching a movie, and finally sleeping at night on the far right (longest duration), as 
shown in Table 2. She was very deliberate about pulling the cards in increasing durational order, 
moving from shortest to longest activity, and did not verbalize her reasoning during this process, as 
the other two participants did.  

 
Table 2. Sam’s Organization Process and Reasoning 

Final Order Brushing teeth Eating lunch Watching a movie Sleeping at night 
Reasoning “That’s two 

minutes.” 
“Pretty easy and 

you can sometimes 
shove it in your 

mouth.” 

“It’s not longer 
than, if you would 

start like in the 
middle of the night 
it wouldn’t even be 
in the middle of the 
night, it would be, 

like, before the 
middle of the 

night.” 

“Would be like all 
the night, it’d be 
like all the day.” 

“I sometimes count 
it of a second and 
then made it up to 

two minutes.” 
“30 seconds in a 

minute, 60 seconds 
in two minutes.” 

 
When asked to explain why she chose to order the events as she did, Sam started her explanation 

with watching a movie, similar to Kris. However, where Kris explained the duration of a movie 
through action, as “watching much”, Sam explained the duration compared to the time of day one 
might watch a movie (night) and the progression of time chunked as “the night”. Sam went on to 
compare watching a movie being the middle of the night to sleeping at night being all night and all 
day. This reasoning seemed to align with the use of start and end points in measurement reasoning 
(D. Earnest, personal conversation, May 27, 2019; Kamii & Russell, 2012; Piaget, 1969), where 
darkness and light serve as figural endpoints. Because in Sam’s reasoning she could watch a movie 
that both starts and ends in the dark, but sleeping at night starts in the dark and ends in the day (light), 
the duration of sleep is longer than watching a movie.  

From using physical indicators of time (sun-up versus sun-down), Sam changed her durational 
measure to explain eating lunch through effort and activity. This use of action to explain time is a 
common characteristic of reasoning intuitively about time (Piaget, 1969). When asked how “shoving 
food in her mouth” changes the amount of time the activity takes, Sam responded by saying: 

S (Sam): You would just get a handful and shove it in your mouth. [pretends to quickly shove 
handfuls of food in her mouth] 

A (Author): How would that change how long it took you to eat your lunch? 
S: Um, uh [looks up, hesitates for six seconds] I don’t know. 

Sam seemed to correlate her actions to the amount of time that something can take to complete, but 
she could not reason how or why. Piaget (1969) explained that young children are unable to conserve 
velocity, believing that quicker actions equate to more time. Sam seemed to have moved past this 
reasoning. When she modeled eating quickly to explain how eating your lunch is a shorter activity 
than watching a movie, she seemed to demonstrate the inverse relationship between action and 
duration (i.e., moving faster results in a shorter duration).  
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Finally, when asked why she put brushing teeth at the far-left side of the timeline, Sam quickly 
responded, “cause that’s two minutes”. This was the first time Sam used standard units. This was also 
the first time during Sam’s explanation that she did not hesitate in her response. I asked how she 
knew it took two minutes to brush her teeth, which cause her to pause repeatedly and stumble 
through an explanation of counting two minutes, which consisted of counting 30 seconds (which she 
explained was a minute) twice.  

From other interviews I have conducted with children of Sam’s age, “two minutes” has been 
repeatedly given as the duration of brushing teeth. Through many of these other interviews, children 
have explained that it is two minutes because: “That’s what my mom told me”, “That’s what the 
dentist said to do”, and “That’s how long my toothbrush counts to”. I cannot say if any of these 
accounts explain Sam’s reasoning, however, with her inaccurate calculation of 30 seconds to a 
minute and the immediacy of her initial response, I would conjecture that she has been told by an 
outside source that brushing teeth takes two minutes.  
Casey: Age Seven 

Casey’s process of organizing the events was much slower than the other two participants. She 
began by moving watching a movie, eating lunch, and sleeping at night to the right side (longer 
durations) and brushing teeth to the far left (shorter duration). She then arranged the three “longer 
duration” activities along the “timeline”, as seen in Table 3. 

 
Table 3. Casey’s Organization Process and Reasoning 

Initial Order Brushing teeth Watching a movie 
Eating lunch 

Sleeping at night 
Final Order Brushing teeth Sleeping at night Eating lunch Watching a movie 
Reasoning “It’s just easy so 

you can go really 
quick.” 

“Takes a long time 
because I’m not 

that tired.” 

“I’m a really slow 
eater.” 

“Like an hour, 
that’s why it’s 
really long.” 

“Not as long much 
time as eating.” 

 
From the beginning, Casey seemed to focus on the effort she took to complete each activity as an 

explanation for the amount of time it took to complete. Casey began by stating that brushing her teeth 
was “easy, so you can go really quick”. This reasoning seemed different than Sam’s description of 
eating being “easy and you can sometimes shove it in your mouth”, in that Casey explained that 
because it is easy you can go fast. This causal relationship seems to demonstrate a more advanced 
conception about the inverse relationship between velocity and duration, and was reaffirmed by 
Casey later in the interview, as shown below. 

A (Author): If you brush your teeth fast, what does that do to the amount of time it takes you to brush 
your teeth? 

C (Casey): Less, fast, it takes less amount of time because you go fast. 
A: So faster makes less amount of time? 
C: Yes. 
A: If you were eating your lunch and you wanted it to take longer, what could you do? 
C: Like eat really slow. 

Prior to this exchange, Casey had explained that she was a slow eater when she compared sleeping 
at night as taking a long time but not as much time as eating. This comparison may seem illogical, 
since for most people sleeping at night takes longer than eating, however, I believe that Casey 
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interpreted sleeping at night as the act of falling asleep not as the entire duration of being asleep. 
Thus, Casey described falling asleep as taking a “long time” because she’s “not that tired”.  

When Casey then compared the duration of falling asleep against eating lunch, Casey seemed to, 
“Directly compare two objects with a measurable attribute in common” (CCSSI, 2020). In other 
words, Casey took the attribute time and compared the two events. And while I would argue that to 
Casey, time is the effort she exerts to complete an activity—not necessarily the operationalized time 
Piaget (1969) discussed—she still seemed to be correlating two events with this common attribute to 
order their lengths.  

Similar to Sam, when I asked Casey about the duration of the final event, watching a movie, she 
flipped her reasoning from effort (easy, really slow) to standard units (an hour). Once again, Casey 
compared the events by stating, “[watching a movie is] like an hour and none of these stuff (points to 
other three cards) takes like an hour, so that’s why it’s really long”. This is interesting, though, 
because unlike her previous comparison of two efforts, this is comparing effort against a standard 
duration. Unfortunately, I did not ask how she knew that a movie took an hour, however, this mixing 
of temporal conceptions may indicate some transition in reasoning, from action being a proxy for 
duration to time being a standardized quantity.  

Discussion 
From a linguistic framework, Tillman and Barner (2015) concluded that “the lexical category that 

children form for duration words is not a simple grouping of these words, but rather a structured, 
ordered scale that reflects some knowledge of the relative temporal magnitudes of the words” (p. 73). 
This scale, Piaget (1969) might have argued, results from the operationalization of time—from 
intuitive perceptions of time to the coordination of temporal and spatial relations.  

Across the three interviews, Kris, Sam, and Casey demonstrated varied conceptions about time 
measurement as they organized the four events (watching a movie, brushing their teeth, sleeping at 
night, and eating lunch) along their figural timelines. But, by providing the opportunity for these 
children to share their reasoning, several common themes arose that echoed past mathematical 
research, most notably the use of action as a proxy for duration.  

Piaget (1969) noted “that to primitive intuition, time is simply the ‘prolongation of activity’” (p. 60) 
and was representative of pre-operational thinking. Kris, Sam, and Casey all explained time through 
activity, where “watching much” or “eating slowing” justified the placement of their duration. This 
attention to activity may indicate an intuitive perception of time, which, for this age range, would 
align with past research (Long & Kamii, 2001; Piaget, 1969; Russell, 2008). 

Additionally, both Sam and Casey went further to explain how ease of activity created shorter 
durations (i.e., it’s easy so it doesn’t take much time). Perceptively, though, I believe that Sam and 
Casey were using the term “easy” as a substitute for “routine”. Some activities such as waiting for 
paint to dry or being a passenger on a long road trip, might be considered “easy” as they involve little 
effort, however, the actual duration of these activities could be quite long. For Sam and Casey, the 
act of eating lunch or brushing teeth, may be so routine that it has created an instance of “temporal 
compression” (Flaherty, as cited by Evans, 2004, p. 736), where low levels of stimuli cause low 
levels of information processing, resulting it time feeling like it passes quickly. Conversely, when 
Casey described falling asleep at night as “[taking] a long time because I’m not that tired”, it seems 
she was describing a “protracted duration” (Flaherty, as cited by Evans, 2004, p. 737), where the 
event felt long, despite the fact that she situated it on the shorter duration side of her timeline. Both 
temporal compression and protracted durations are based on perception, thus, indicative of intuitive 
reasoning of time. 

Beyond the focus on activity, all three children used standard units of time to explain their sequence 
of events. This was not unexpected for two reasons. First, Common Core places time instruction in 
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first grade (CCSSI, 2020), which both Sam and Casey had experienced (as a first and second grader, 
respectively). And second, much of what young children understand about time is the result of what 
their parents and other adults have told them (Earnest, 2018; Lareau, 2011; Piaget, 1969). This was 
most evident by Sam’s description of brushing her teeth taking two minutes with no real explanation 
of why. However, for all three children, the actual durations they understand for these standard units 
cannot be fully analyzed given the current data. Kris seemed to understand that minute was a word to 
describe time, but he sorted the durations as 5, 15, 10, 30 minutes and was not able to reason about 
the ordering of the numbers. Casey conceptualized an hour as being a long amount of time, but never 
explained what an hour meant beyond this. There is clearly more to learn about how children reason 
about these durational units as measurements of time and their everyday activities.  

Tillman and Barner (2015) presented a broad quantitative analysis of how children order durational 
words and experiences. Many of their findings aligned with previous mathematical research on 
children’s conceptions of time (Earnest, 2015, 2018; Harris, 2008; Kamii & Russell, 2012; Piaget, 
1969). It is encouraging to see common findings across fields of research, linguistics and 
mathematics. 
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In recent years, researchers have advocated for measuring angles by measuring circular arcs (i.e., 
circular quantifications of angularity). Leveraging results from a teaching experiment with ninth-
grade students, I demonstrate the existence of non-circular quantifications of angularity, which have 
not previously been acknowledged in existing empirical research or standards. 

Keywords: Cognition, Geometry and Geometrical and Spatial Thinking, Measurement 

Angularity is an important geometric attribute throughout K–12+ curricula. It arises in many 
contexts including classifying shapes, congruence, similarity, transformations, construction, proof, 
coordinate systems, and trigonometry. Despite this prevalence, few studies have investigated how 
students reason about angularity (Smith & Barrett, 2017). At the undergraduate level, researchers 
have argued that robust quantifications of angularity are critical for trigonometry (Akkoc, 2008; 
Moore, 2013). However, research on angularity with high school students is especially scarce. This 
presents a problem. In fact, Moore (2013) noted, “future studies that investigate secondary students’ 
quantification of angle measure are needed…” (p. 243). To this end, I conducted a teaching 
experiment with ninth-grade students to understand how they quantified angularity. In this report, I 
elaborate the quantifications of angularity indicated by two students and consider implications of 
these results.  

Theoretical Components and a Hypothesis 
This study was informed by principles of quantitative reasoning (Thompson, 1994; 2011). A 

quantity is an individual’s conception of a measurable attribute of an object or situation; quantities 
are mental constructions consisting of three interrelated components: (a) an object, (b) an attribute, 
and (c) a quantification. A quantification involves a collection of mental operations that an individual 
could carry out to measure an attribute or interpret a measurement value in a given context. For 
example, upon assimilating an angle model an individual might establish a goal of determining how 
open the angle model is in degrees; alternatively, an individual might be asked to consider how to 
make a one-degree angle. In these instances, the collection of mental operations activated would be 
components of the individual’s quantification of angularity.  

Following Thompson’s (2008) first-order conceptual analysis, Moore (2013) elaborated that 
quantifying angularity involves (a) considering a circle centered at an angle’s vertex, (b) making a 
multiplicative comparison of two lengths (e.g., arc length and circumference), and (c) recognizing 
this ratio is invariant across all possible circles centered at the angle’s vertex; for example, a one-
degree angle “subtends 1/360 of the circumference of any circle centered at the vertex of the angle” 
(p. 227). This approach is compatible with the CCSSM standards, where angle measure is explicitly 
introduced in Grade 4. I refer to these quantifications of angularity as circular quantifications of 
angularity because they leverage multiplicative comparisons of arcs and other circular lengths (e.g., 
circumference, radius, etc.). Circular quantifications of angularity yield coherent interpretations for 
angle measure across standard units of angular measure; thus, such quantifications of angularity are 
productive, particularly for the study of precalculus mathematics and beyond. However, circular 
quantifications of angularity are sophisticated, and angle measure is introduced relatively early in 
curricula. Therefore, it is reasonable to question: Is it possible for students to quantify angularity in 
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other ways? Might these other quantifications support students in later constructing circular 
quantifications of angularity?  

When one discusses the measure of an angle, one is describing the size of the interior of the angle 
(Hardison, 2019). The major hypothesis investigated in the present study was that students might 
establish productive non-circular quantifications of angularity by enacting extensive quantitative 
operations on angular interiors. Extensive quantitative operations are operations that introduce units 
(Steffe, 1991). In length and area contexts, Steffe & Olive (2010) provide numerous examples of 
such operations including iteration (imagining making and uniting copies of an established unit to 
produce a composite whole) and partitioning (imagining the simultaneous production of equal-sized 
parts within an established whole). 

Methods 
The data and analyses presented in subsequent sections are drawn from a teaching experiment 

(Steffe & Thompson, 2000; Steffe & Ulrich, 2013) conducted over an academic year in the 
southeastern U.S. with four ninth-grade students. At the time of the study, all students were enrolled 
in a first-year algebra course. The overarching goal of the teaching experiment was to investigate 
how the students quantified angularity and how these quantifications changed throughout the study 
(see Hardison, 2018); the author served as teacher-researcher for all teaching sessions. Throughout 
the study, students engaged in mathematical tasks involving rotational angle models (e.g., rotating 
laser) and non-rotational angle models (e.g., hinged wooden chopsticks). Each student participated in 
13–15 video-recorded sessions, which were conducted individually or in pairs approximately once 
per week outside of their regular classroom instruction; each session was approximately 30 minutes 
in length. The records of students’ observable behaviors (e.g., talk, gestures, written responses, etc.) 
were analyzed in detail via conceptual analysis (Thompson, 2008; von Glasersfeld, 1995). In this 
report, the activities of two students, Bertin and Kacie, are foregrounded to illustrate the existence of 
non-circular quantifications of angularity and to evidence that the construction of circular 
quantifications of angularity can be supported by non-circular quantifications.  

Data and Findings 
The results in the following sections are structured around the analysis of four purposefully selected 

examples of mathematical interactions with Bertin or Kacie.  
Angular Repetition and Iteration 

To establish models for students’ ways of reasoning at the onset of the teaching experiment, 
students were asked to solve a variety of tasks. One such task involved two pairs of hinged wooden 
chopsticks: one short pair that could be freely adjusted and one long pair which was fixed. Each 
student was asked to set the short pair of chopsticks to be four times as open as the long pair of 
chopsticks. When presented with this task, Bertin proceeded by immediately tracing four adjacent 
copies of the long chopsticks on a piece of paper and setting the short pair of chopsticks to contain 
these four adjacent copies.  

I refer to Bertin’s physical actions as angular repetition. Through angular repetition, Bertin 
produced an angle model four times as open as the given angle model. Because Bertin engaged in 
angular repetition without hesitation, I infer he imagined uniting adjacent copies in visualized 
imagination prior to his physical actions. In other words, the immediacy of Bertin’s activities 
suggests an anticipation indicative of the mental operation of angular iteration. Nothing in Bertin’s 
observable activities indicated that Bertin was considering circular arcs as he solved this task; 
instead, the figurative material subjected to angular iteration was the interior of the given angle 
model. Because this task was from his initial interview, Bertin’s way of reasoning was previously 



Acknowledging non-circular quantifications of angularity 

	 673	

established and not engendered by the teacher-researcher. Thus, Bertin’s activities indicated he may 
have constructed a non-circular quantification of angularity prior to the study.  
One-Degree Angles 

Three months later, Bertin was asked how to make an angle with a measure of one degree. Bertin 
replied, “If you get a ninety-degree angle [gestures a right angle], you can divide that into nine so it 
would be like ten degrees each, and then you can divide each one of those into ten, but it would need 
something like really really small to write with.” The gesture Bertin enacted indicated he first 
brought forth a familiar angular template in visualized imagination, specifically a right angle. His 
response also indicated he had assigned this right-angle template a measure of 90°, thereby positing it 
as a composite unit. Bertin then imagined partitioning the right angle into nine 10° parts, each of 
which he subsequently partitioned into ten 1° subparts. Thus, Bertin indicated producing 90 one-
degree angles within a right angle in visualized imagination. As in the previous example, Bertin’s 
way of reasoning did not leverage circles or arcs; instead, Bertin demonstrated he had established a 
normative conception of a one-degree angle via extensive quantitative operations enacted on the 
interior of a familiar angular template.  
Contraindication of a Circular Quantification of Angularity 

Five months into the study, Bertin was presented with tasks involving central angles to determine 
whether he had constructed a circular quantification of angularity. In one task, he was asked to 
determine the measure of a central angle in degrees, given that the length of the green subtended arc 
was one inch and the green circle’s circumference was six inches (Figure 1 left). 

 

 
Figure 1: A Central Angle Task (left) and a Model of Bertin’s Solution (right) 

 
After an approximately 10-second pause, Bertin tentatively responded, “like seventy,” and 

explained that he “kind of based off of ninety degrees” as he dragged the cursor to form a right angle 
containing the given central angle. When pressed for how he might precisely determine the measure, 
Bertin indicated with the cursor that he imagined partitioning the right angle into ten-degree parts; he 
then counted how many of these parts were contained in the central angle’s interior. The green lines 
in Figure 1 (right) approximate how Bertin dragged the cursor to indicate ten-degree parts. 
Afterwards, Bertin reiterated, “it’s like around seventy somewhere.”  

Bertin’s activities indicated his reliance upon a non-circular quantification of angularity and were 
remarkably similar to his production of one-degree angles: he started with a familiar template (a right 
angle); posited this right-angle template as a 90° composite unit; and he partitioned it into nine 10° 
parts, which he leveraged to solve the task at hand. Bertin’s solution is commendable; however, 
notably absent are any reference to the given measures for the arc or circumference. Thus, Bertin’s 
activities contraindicate a circular quantification of angularity.  
Evidence That Non-Circular Quantifications Can Support the Circular Counterpart 

To illustrate that non-circular quantifications of angularity might support the construction of the 
circular counterpart, I present and analyze Kacie’s activities on a final interview task involving a 
central angle. At this point, Kacie had developed a non-circular quantification of angularity similar to 
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Bertin’s. In particular, Kacie had established the following way of reasoning: if n adjacent copies of 
an angular section exhaust a full angle, then the angle has a measure of 360°÷n. The central angle 
task from Kacie’s final interview involved determining the measure of a blue central angle 
subtending a green arc 3.47 cm long in a circle of circumference 22.83 cm. Kacie’s reasoning is 
described in the transcript, which has been edited for brevity. 

T: How would you determine the measure of the blue angle?  
K: Um, [11s pause]. You could subtract, um, the three point four seven and the twenty two point 

eighty three. And that might give you your measurement. Because that’s what that angle is like 
that – well, no. Just kidding. [16s pause]. Yeah. I guess you could subtract.  

T: And what would that subtraction tell you?  
K: Um [4s pause]. No! Wait. You could do twenty two point eight three divided by – wait, no. Yeah. 

Divided by three point four seven and that would give you the number of times the angle would 
go around the circle. And then you could do … three hundred sixty divided by that number and 
then that would give you the measurement of the angle.  

T: Can explain why that works?  
K: … well twenty two point eighty three divided by three point forty seven … would give you a 

number of how many times the green arc could go around the circle. And then that would give 
you how many times the blue angle would need to go to the circle to reach back to its starting 
point. And then if you did three hundred and sixty divided by the number of times the blue angle 
needed to go around it would give you the measurement 

Kacie used the known arc length as a unit for measuring the known circumference. She considered 
the quotient of these lengths (i.e., 22.83÷3.47) without enacting the numerical division and 
interpreted this quotient as how many times the green arc “could go around the circle.” Kacie also 
interpreted this quotient in terms of the central angle, which indicated she mentally united the arc and 
the central angle and was subjecting these united objects to the same mental operations. Having 
established the number of adjacent copies of the central angle needed to exhaust a full angle, Kacie 
relied on a previously established way of reasoning to solve the task. In short, Kacie was able to 
solve this task involving arc length by leveraging the non-circular quantification of angularity she 
had previously established. 

Discussion, Conclusions, and Implications 
Bertin and Kacie developed powerful non-circular quantifications of angularity reliant upon (a) 

establishing mental templates for familiar angles, (b) positing these familiar templates as composite 
angular units, and (c) making and measuring other angles via the application of extensive quantitative 
operations to angular interiors. These non-circular quantifications of angularity have not previously 
been identified and celebrated in empirical literature. Such quantifications are productive and should 
be recognized in classrooms and curricular standards along with circular quantifications. I 
hypothesize non-circular quantifications of angularity naturally precede, and are necessary for 
constructing, circular quantifications of angularity. Future studies are needed to investigate this 
hypothesis; however, Bertin’s spontaneous angular repetition during the initial interview and his 
description of one-degree angles evidence that non-circular quantifications can precede circular 
quantifications, and Kacie’s activities evidence that non-circular quantifications of angularity can 
support the circular counterpart. Additional research is needed to determine the prevalence of circular 
and non-circular quantifications of angularity at various grade levels. 
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The purpose of the study was to examine prospective teachers’ uses of diagrams and approaches to 
congruence while solving proof tasks. Eight prospective high school mathematics teachers were 
given two proof tasks to solve at the beginning and end of a mathematics education course. Analysis 
revealed that at the beginning of the course preservice teachers’ approached congruence proofs 
using a perceptual or correspondence approach and interacted and used a descriptive mode of 
interaction with diagrams. At the end, their approaches to congruence included more instances of 
transformations and measures and their interactions with diagrams included fewer uses of the 
descriptive mode and more instances of representational and functional modes. 

Keywords: Geometry and Geometrical and Spatial Thinking; Reasoning and Proof; Representations 
and Visualization 

Introduction and Related Literature 
The study of geometry in high school is often students’ first experiences with conjecturing, 

justification, and formal proof. Most mathematics standards recommend that students be familiar 
with different approaches to proof that include synthetic, analytic, and transformational methods 
(Coxford, 1991; National Governors Association Center for Best Practices & Council of Chief State 
School Officers, 2010). Yet many teachers have not had experiences using geometric transformations 
to write formal proofs. There is also research that suggests students’ and teachers’ interactions with 
diagrams can support their conjecturing and proving activities (Herbst, 2004; Gonzalez & Herbst, 
2009; Chen & Herbst, 2013).  

There is significant research related to students’ and teachers’ abilities to write formal proofs. In a 
recent research synthesis, Stylianides, Stylianides, and Weber (2017) identified three perspectives on 
proof abstracted from the literature: “proving as problem solving, proving as convincing, and proving 
as a socially embedded activity” (p. 239). We adapted a proving as problem solving perspective in 
which participants were presented four proof tasks to solve in a task-based interview setting. Within 
this perspective, Selden and Selden (2013) make distinctions between the formal-rhetorical part of a 
proof and the problem-centered part of the proof. The former focuses on the logical sequencing of 
steps when writing a formal proof while the latter refers to the creative problem solving that is 
involved in considering how one might go about proving a conjecture. The problem-centered part of 
proving is similar to the identification of a proof plan (Melis & Leron, 1999) or proof idea (Reiss, 
Heinze, Renkl, Grob, 2008) that occurs prior to the writing of a formal proof. It is within this area 
that we focus our analysis on describing how preservice teachers interact with diagrams while 
constructing proofs involving congruence. 

Gonzalez and Herbst (2009) investigated high school students’ conceptions of congruence and then 
identified perceptual (PERC), correspondence (CORR), transformational (TRANS), and measure 
preserving (MeaP) conceptions of congruence. The perceptual conception is one that relies on visual 
information provided in a diagram to determine if two objects appear congruent. The correspondence 
conception is one in which two objects are congruent if corresponding sides and angles are 
congruent. The transformational conception uses properties of geometric transformations to map one 
geometric object to another. The measuring conception relies on measures of objects to determine if 
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they are congruent. The tasks selected for the current study could be approached by students holding 
any of these four different conceptions of congruence.  

Conceptual Framework 
Building on the work of Duval (1995), Herbst (2004) proposed four modes of students’ interaction 

with diagrams as empirical (EMP), representational (REPR), descriptive (DESC), and generative. 
With empirical interactions, the actor has proximal, physical experiences with diagrams. The actor’s 
operations on diagrams (measuring, looking, drawing) is limited to actual properties of the physical 
drawing. This identifies the diagram as an object; that is, a diagram is taken as a figure without 
semiotic mediation (Chen & Herbst, 2013). In the representational mode, the actor uses distal 
physical experiences to make depictions about the diagram and the diagram is seen as a sign of the 
object. Herbst (2004) also suggests two other modes of interactions, descriptive and generative, to 
characterize the role of diagrams in the process of proving. In the descriptive mode the actor sets up a 
distal relationship with a diagram while making statements that could be read off the diagram. Also 
students use visual perception when they are doing proofs and verify this perception by additional 
symbols like hash marks or arcs. This mode is a hybrid mode that students use both visual perception 
to make conjectures like the empirical mode and also see diagrams as symbols to justifying their 
statements like the representational mode when proving (Chen & Herbst, 2013). Conversely, within 
the generative mode, students make sensible changes that are not originally given and make 
“reasoned conjectures” in predicting and making hypotheses about the figure. Students interact in 
proximal relationship and work generatively with diagrams by using definitions and properties of the 
geometric objects as well as making changes. Gonzalez and Herbst (2009) proposed the functional 
mode (FUNC) of interaction to define students’ interactions with dynamic geometry diagrams. They 
describe how students relate outputs and inputs when they use the dragging feature of the dynamic 
geometry software.  Within this mode the combination of dragging and measuring provides students 
opportunities to explore relationships. Students may also check invariants when making changes to 
the diagram by dragging and set up the same relation between several diagrams. The purpose of this 
study was to examine preservice teachers’ (PT) interactions with diagrams as they solved proof tasks 
that were amenable to synthetic or transformational approaches.  

Context and Methods 
The current study took place at a large public university. Eight preservice (PT) high school 

mathematics teachers (four males and four females, identified as S1-S8) enrolled in a senior level 
mathematics education course agreed to participate. Approximately three weeks of the course were 
devoted to the study of transformations, congruence, and similarity. An emphasis on proof and 
justification was included throughout the course which addressed number (real, complex), rates of 
change, functions (linear, exponential, logarithmic), and statistics. The participants were required to 
solve three tasks at the beginning and four tasks (three were the same) at the end of the semester. At 
the beginning, PTs were provided iPads with the ShowMe app (interactive whiteboard app) and 
asked to record themselves solving the tasks. At the end, PTs were invited to participate in task-based 
interviews; they were provided with the same materials and technology they had used in class. For 
this paper, analysis of the first two tasks is provided. These tasks were selected and adapted from 
high school mathematics curriculum and prior research that emphasized transformational and 
synthetic approaches to proof. Task 1 was adapted from the Mathematics Vision Project Secondary II 
Curriculum (Module 5, page 16, https://www.mathematicsvisionproject.org/secondary-mathematics-
ii.html). Task 2 was modified from professional development materials created by Jim King that 
were used to prepare teachers to teach congruence using a transformation approach (Figure 1). 
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Figure 1. The first two geometry tasks used in the study 
 

For each of the eight PTs, video recordings of their work on the first two tasks from the beginning 
and end were reviewed and coded to characterize their approach to proving congruence and coded to 
identify how they interacted with diagrams. The data were analysed by the researchers independently 
in line with the theoretical framework. Afterwards researchers discussed and agreed on the codes for 
trustworthiness and consistency. 

Results  
The most common conception of congruence involved a combination of the CORR with PERC 

based reasoning. At the beginning, only one PT (S4) used a TRANS approach on the first task. This 
PT and one other (S6), changed the placement of the second triangle in the second task for ease of 
determining which sides and angles corresponded to one another. Although this repositioning 
involved a rotation, this strategy was not used to justify why the quadrilaterals were congruent and 
thus not coded as a TRANS approach. At the end three PTs (S3, S4, S8) used a TRANS approach. 
Also only two PTs chose to use dynamic geometry in solving the first task (S1, S8). When examining 
PTs’ interactions with diagrams, we note that there were 11 instances of the DESC, two instances of 
the REPR, and three instances of the GENE at the beginning. At the end, there was a greater variety 
in the types of interactions with diagrams. There were seven instances of the DESC, three instances 
of the REPR, three instances of GENE, and two instances of FUNC mode. 

On the first task, all teachers at the beginning made conjectures about the two equilateral triangles 
and the four congruent right triangles created by the circles. Three of the teachers (S1, S4, S8) made 
conjectures about the quadrilateral and among these only S4 used reflections in his proof. Most of the 
PTs noticed that the sides of the quadrilateral are radii of the two circles and used that information to 
prove triangles congruent. The PTs who made conjectures about the quadrilateral proved it was a 
parallelogram (S1) or a rhombus (S4, S8). Almost all PTs (except S4) built their conjectures based on 
the PERC. Even if teachers approached the first task by PERC, they also used a CORR (coded as 
PERC-CORR). Only S4 utilized the TRANS during the reasoning process at the beginning.  None of 
the teachers used dynamic geometry at the beginning. At the beginning teachers generally interacted 
with figures DESC, but there are GENE (S2, S4) and a REPR instances (S8). At the end S1 and S8 
tried to prove their conjectures for Task 1 using dynamic geometry. Especially, S1 measured all the 
line segments and used the drag test to justify his/her conjectures (congruent triangles) and S8 used 
reflections as well as dragging. Also there was one MeaP, three instances of PERC, two instances of 
CORR, and two instances of TRANS conceptions. From the point of interaction with diagrams, PTs’ 
interactions have varied at the end as three instances involve a DESC, two instances of REPR, one 
instance of GENE, and two instances of FUNC mode of interaction with diagrams. 
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Figure 2: Example of correspondence 

approach 
Figure 3: Example of generative mode 

 
On the second task, at the beginning most teachers (S1, S2, S5, S6, S8) used a CORR approach 

combined with the PERC. They often started the task by marking the given information and using the 
fact that the two triangles are congruent to identify corresponding parts. In the process of 
constructing their proof they often made inferences about congruent objects from the diagram using 
visual perception. At the end, there were no instances of a completely PERC and three instances of 
the use of TRANS (S3, S4, S8), one of which was combined with a CORR. PTs’ descriptions of each 
of the TRANS described the transformation (e.g., rotation, translation) and stated where points would 
be mapped, but did not specify a center and angle of rotation or a translation vector (Figure 4).  Four 
PTs used a combination of perceptual and correspondence approaches and one PT decided to skip 
this question. 

Discussion 
When looking across the eight participants and two tasks implemented before and after the course 

we observed that there were no instances of EMP interactions. This is not surprising since most 
observations of empirical interactions with diagrams occur before high school (Herbst, 2004). 
Although there was no change in the number of GENE, only one participant was the same and two 
new participants used this mode. The number of REPR modes increased by one and the number of 
DESC decreased from 11 to 7. The appearance of the FUNC mode was identified in participants who 
used dynamic geometry. Analysis of the conceptions of congruence across participants shows more 
variation in the ways PTs reason. While at the beginning participants wrote proofs that primarily 
used PERC and CORR approaches, at the end participants used MeaP when using dynamic geometry 
and used transformations more often. 

The identification of the interaction between PERC and CORR approaches to congruence was 
useful to the researchers in describing how PTs engaged in proof problems using an approach with 
which they were familiar (correspondence), but when unsure about how to continue made inferences 
from the diagram based on visual information to proceed with the proof. Their proof idea, proving 
two figures congruent using a CORR approach, was correct, but it was in the details of formalizing 
that idea that they encountered challenges. While Selden and Selden (2013) make distinctions 
between the formal-rhetorical part of a proof and the problem-centered part of the proof the challenge 
experienced by many of our participants seemed to lie somewhere between these two activities. 
While in many cases they understood how to go about solving the proof problem, it was in the details 
of logically moving from one step to the next where they encountered challenges. This aspect of 
proof writing might be worth examining in future research. 
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Geometric figures can play a mediating role in students' reasoning, solving a problem, or justifying 
the truth of a proposition. These objects have been studied in various investigations, where the 
interactions that students have with figures that are constructed by the teacher or presented in a 
textbook have been analyzed. In this report, we describe an example of the interaction that 
undergraduate students had with figures constructed by us, prior to solving a task; and constructed 
by them during said resolution. The results show a tendency towards the empirical operations of the 
students on the figures with which they interacted; and the need to incorporate auxiliary elements in 
the figures, such as labels or segments, in order to solve the proposed tasks. 

Keywords: Geometry and Geometrical and Spatial Thinking; Representations and Visualization; 
Reasoning and Proof; Student-figure interaction; Empirical operations 

In this work we show part of an investigation with undergraduate students, in which the role of a 
geometric figure during the resolution of different tasks was characterized. Taking into account the 
work of Herbst and Arbor (2004), we describe the modes of interaction that the students had with the 
figures, according to the way in which they were presented: accompanied by a proposition before 
carrying out a task; or constructed by the student during the resolution of the task. 

Literature review 
Various studies have analyzed the characteristics and functions of geometric figures during the 

process of solving a task. Below we show a description of some investigations that have been 
relevant in the study of the geometric figure, and the main ideas that have emerged around this topic. 

Spatial and conceptual properties of a geometric figure 
A geometric figure is considered by Fischbein (1993) as a mental representation where spatial and 

conceptual properties of a geometric object interact. Spatial properties are those that have to do with 
the shape, size and position of the figure; while the conceptual properties are related to the abstract 
idea of a geometric object, with characteristics such as ideality and perfection. 

The heuristic role of the geometric figure 
Duval (1995) suggests that the geometric figure can play a heuristic role in the reasoning of an 

individual to solving a task. From the point of view of the author, the representation of a geometric 
figure can help find the main idea of a proof or support the solution of a problem. 

To describe the heuristic role of the geometric figure, Duval (1995) defines four forms of 
apprehension: perceptual, sequential, descriptive, and operational. Particularly, the heuristic role of a 
figure can be presented with the operative apprehension, since this refers to the modification of a 
figure in such a way that ideas for the solution of a task are produced. 

Difference between drawing and geometric figure 
Laborde (1996) points out that a drawing is a material identity on a support (paper, for example), 

which acts as a signifier of a theoretical referent. In this sense, the author defines the geometric figure 
as a set of pairs, whose components are a geometric reference and one of the possible drawings that 
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represent it. Relations between the drawing and its referent are constructed and interpreted by those 
who produce or reads the drawing, so the meaning of a geometric figure is determined by who 
interacts with it. 

In this investigation we use the term geometric figure when we refer to the graphic representations 
of objects or geometric situations, which are described in a proposition. 

Research Problem 
Many of the studies regarding the geometric figure analyze the interactions that an individual has 

with figures that are constructed and presented by a teacher or in a textbook, leaving aside the 
interactions with figures that are constructed by students during the resolution of a task. The purpose 
of this research is to investigate and describe the different interactions that undergraduate students 
had with geometric figures presented in two different ways: presented by us and constructed by them. 

Theoretical framework 
The analysis of the obtained results was made considering what was established by Herbst and 

Arbor (2004) regarding the modes of interaction between a subject, a diagram and a geometric 
object. The authors use the term diagram equivalently to what we refer to as a geometric figure; 
while by geometric object they refer to the referent represented in the diagram. The modes of 
interaction that had an impact on the results obtained are described below: 

Empirical: is that interaction where a subject performs physical operations on a diagram (for 
example, measuring, observing or incorporating new elements). The arguments presented about these 
actions are restricted by the characteristics of the diagram and the properties of the instruments used 
(ruler, compass, etc.). In this sense, the subject considers the diagram as an equivalent of the 
geometric object it represents, allowing it to communicate its results based on the operations it 
performs. 

Representational: in this mode of interaction, the subject interprets the geometric object through the 
graphic representation of the diagram, limiting himself to considering only the characteristics of said 
object established in a proposition. With this interaction the diagram does not provide additional 
knowledge about the geometric object, but only acts as a sign of it. Unlike the empirical interaction, 
the characteristics of the diagram are not restricted by physical operations, but by the geometric 
knowledge of the subject to interpret and represent what is established in a proposition. 

The remaining modes of interaction are descriptive and generative. The first has to do with the 
simultaneous interpretation of the signs shown in a diagram with the properties established in a 
proposition, while the second suggests the joint construction of a diagram and a deductive proof. 
However, these modes of interaction are not reflected in the results presented here. 

Method 
This section describes the characteristics of the research participants, as well as the way the tasks 

implemented in the research were presented. 
Participants 
The research participants were students between 20 and 22 years old, who were chosen considering 

the experience suggested by their respective careers (BUAP, 2011), particularly in geometry courses. 
Implemented Tasks 
The tasks were applied in two different ways: a group was presented with tasks whose content was a 

proposition and a figure that represented it; while another group was presented with the same tasks, 
but showing only the proposition and suggesting that the respective figures were constructed. In each 
task, it was requested to justify a property of the figure based on the characteristics described in the 
proposition. 

Results 
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The following results reflect significant aspects of students behavior, when interacting with pre-
constructed figures and with figures constructed by them. 

Results about the task with figure 
The task that was implemented was the following: in the figure (Illustration 1) the parallelogram 

ABCD is presented, from which it is known that the points M and N are midpoints of the sides DC 
and AB respectively. How do you justify that the AM and CN segments are parallel? 

 
Illustration 1. Figure that accompanied the proposal of the task. 
A student traced over the figure the segment MN and considered that it was the perpendicular 

bisector of the segments DC and AB (Illustration 2). This action was the starting point for the 
justification of the student's response. 

 
Illustration 2. Trace made on the figure presented. 
The student explicitly manifests knowledge about the properties of a perpendicular bisector, in 

particular, the perpendicularity of this line with the segment it divides. However, the student assumes 
this property without any justification and without relating it to the properties of the figure shown. 
The perception of the figure leads the student to affirm the parallelism of the AM and CN segments, 
without this affirmation having a logical support. 

The form of interaction between the student and the figure is totally empirical, since the arguments 
are restricted by the line that he drew in the figure and his observation to argue the justification. 

Results about the task without figure 
The wording of the task that was only composed of one proposition was as follows: A 

parallelogram of vertices A, B, C and D, has as midpoints of two opposite sides the points M and N 
respectively (M is the midpoint of CD and N is the midpoint of AB). How do you justify that the MA 
and NC segments are parallel? 
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Illustration 3. Figure and student response. 
Illustration 3 shows the response of a student who identifies a pair of triangles within the 

parallelogram that he constructed. The student argues the congruence of these triangles to justify his 
answer. However, the answer was inconclusive since the student did not mention that the congruence 
of the triangles results in the parallelism of the AM and CN segments. 

The interaction of the student with the figure is representational type, since only considered the 
properties of the geometric object described in the proposal, to construct his figure. In addition, the 
characteristics of the figure constructed are restricted by the geometric knowledge of the student and 
not by empirical actions. 

Conclusions 
The figure as an object for support in solving geometric tasks involves various aspects that must be 

considered, one of them is the way a student interacts with a figure during the resolution of a task. 
The results that we present indicate a tendency towards the empirical interaction of the students 

with the figures that accompany a proposition, mainly, it reflects a need to incorporate new elements 
on the figures. In the tasks that contained only one proposition, a need to externalize the mental 
image of the geometric object that was described was reflected. The representation of this object can 
help to keep a check on the arguments that are established to justify a property. 
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Las figuras geométricas pueden jugar un papel mediador en el razonamiento de los estudiantes, al 
resolver un problema o justificar la veracidad de una proposición. Estos objetos han sido estudiados 
en diversas investigaciones, donde se han analizado las interacciones que los estudiantes tienen con 
figuras que son construidas por el profesor o presentadas en un libro de texto. En este reporte, 
describimos un ejemplo de la interacción que tuvieron estudiantes de licenciatura con figuras 
construidas por nosotros, previo a la resolución de una tarea; y construidas por ellos durante dicha 
resolución. Los resultados muestran una tendencia hacia las operaciones empíricas de los 
estudiantes sobre las figuras con las que interactuaron; y la necesidad de incorporar elementos 
auxiliares en las figuras, como etiquetas o segmentos, para poder resolver las tareas propuestas. 

Palabras clave: figura geométrica, interacción estudiante-figura, operaciones empíricas 

En este trabajo mostramos parte de una investigación con estudiantes de licenciatura, en la que se 
caracterizó el papel que juega una figura geométrica durante la resolución de diferentes tareas. 
Tomando en cuenta el trabajo de Herbst y Arbor (2004), describimos los modos de interacción que 
tuvieron los estudiantes con las figuras, según la forma en que estas fueron presentadas: acompañada 
de una proposición antes de realizar una tarea; o construida por el estudiante durante la resolución de 
la tarea. 

Revisión de Literatura 
En diversos estudios se han analizado las características y las funciones de las figuras geométricas 

durante el proceso de resolución de una tarea. Enseguida mostramos una descripción de algunas 
investigaciones que han sido relevantes en el estudio de la figura geométrica, y las principales ideas 
que han surgido en torno a este tema. 

Propiedades espaciales y conceptuales de una figura geométrica 
Fischbein (1993) considera que una figura geométrica es una representación mental donde 

interactúan propiedades espaciales y conceptuales de un objeto geométrico. Las propiedades 
espaciales son aquellas que tienen que ver con la forma, tamaño y posición de la figura; mientras que 
las propiedades conceptuales están relacionadas con la idea abstracta de un objeto geométrico, con 
características como idealidad y perfección. 

El papel heurístico de la figura geométrica 
Duval (1995) sugiere que la figura geométrica puede jugar un papel heurístico durante el 

razonamiento de un individuo al resolver una tarea. Desde el punto de vista del autor, la 
representación de una figura geométrica puede ayudar a encontrar la idea principal de una prueba o 
apoyar la solución de un problema. 

Para describir el papel heurístico de la figura geométrica, Duval (1995) define cuatro formas de 
aprehensión: perceptiva, secuencial, descriptiva y operativa. Particularmente, el papel heurístico de 
una figura se puede presentar con la aprehensión operativa, ya que esta se refiere a la modificación 
de una figura de tal forma que se produzcan ideas para la solución de una tarea. 

Diferencia entre dibujo y figura geométrica 
Laborde (1996) señala que un dibujo es una identidad material sobre un soporte (papel, por 

ejemplo), la cual actúa como un significante de un referente teórico. En este sentido, la autora define 
a la figura geométrica como un conjunto de pares, cuyos componentes son un referente geométrico y 
uno de los posibles dibujos que lo representan. Las relaciones entre el dibujo y su referente son 
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construidas e interpretadas por quien produce o lee el dibujo, así, el significado de una figura 
geométrica es determinado por quien interactúa con ella. 

En esta investigación utilizamos el término figura geométrica cuando nos referimos a las 
representaciones graficas de objetos o situaciones geométricas, las cuales se describen en una 
proposición. 

Problema de investigación 
Muchos de los estudios referentes a la figura geométrica analizan las interacciones que un individuo 

tiene con figuras que son construidas y presentadas por un profesor o en un libro de texto, dejando de 
lado las interacciones con figuras que son construidas por los estudiantes durante la resolución de una 
tarea. El propósito de esta investigación es indagar y describir las diferentes interacciones que 
estudiantes de licenciatura tuvieron con figuras geométricas presentadas de dos diferentes formas: 
presentadas por nosotros y construidas por ellos 

Marco teórico 
El análisis de los resultados obtenidos se hizo considerando lo establecido por Herbst y Arbor 

(2004) respecto a los modos de interacción entre un sujeto, un diagrama y un objeto geométrico. Los 
autores utilizan el término diagrama de forma equivalente a lo que nosotros nos referimos como 
figura geométrica; mientras que por objeto geométrico se refieren al referente representado en el 
diagrama. Los modos de interacción que tuvieron incidencia en los resultados obtenidos se describen 
a continuación: 

Empírico: es aquella interacción donde un sujeto realiza operaciones físicas sobre un diagrama (por 
ejemplo, medir, observar o incorporar nuevos elementos). Los argumentos que se presentan sobre 
estas acciones son restringidos por las características del diagrama y las propiedades de los 
instrumentos que se utilizan (regla, compás, etcétera). En este sentido, el sujeto considera al 
diagrama como un equivalente del objeto geométrico que representa, lo que le permite comunicar sus 
resultados con base en las operaciones que realiza. 

Representacional: en este modo de interacción el sujeto interpreta al objeto geométrico a través de 
la representación gráfica del diagrama, limitándose a considerar únicamente las características de 
dicho objeto establecidas en una proposición. Con esta interacción el diagrama no aporta un 
conocimiento adicional sobre el objeto geométrico, sino que actúa únicamente como un signo de 
este. A diferencia de la interacción empírica, las características del diagrama no están restringidas por 
operaciones físicas, sino por el conocimiento geométrico del sujeto para interpretar y representar lo 
establecido en una proposición. 

Los modos de interacción restantes son el descriptivo y generativo. El primero tiene que ver con la 
interpretación simultanea de los signos mostrados en un diagrama con las propiedades establecidas 
en una proposición, mientras que el segundo sugiere la construcción conjunta de un diagrama y una 
prueba deductiva. Sin embargo, estos modos de interacción no están reflejados en los resultados que 
aquí presentamos. 

Método 
En esta sección se describen las características de los participantes de la investigación, así como la 

forma en que fueron presentadas las tareas implementadas en la investigación. 
Participantes 
Los participantes de la investigación fueron estudiantes de entre 20 y 22 años, quienes fueron 

elegidos considerando la experiencia que sugerían sus respectivas carreras (BUAP, 2011), 
particularmente, en los cursos de geometría. 

Tareas Implementadas 
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Las tareas se aplicaron de dos formas distintas: a un grupo se le presentaron tareas cuyo contenido 
era una proposición y una figura que la representaba; mientras que a otro grupo se le presentaron las 
mismas tareas, pero mostrando únicamente la proposición y sugiriendo que se construyeran las 
respectivas figuras. En cada tarea se solicitó justificar una propiedad de la figura con base en las 
características descritas en la proposición. 

Resultados 
Los siguientes resultados reflejan aspectos significativos del comportamiento de los estudiantes, al 

interactuar con figuras preconstruidas y con figuras construidas por ellos. 
Resultados sobre la tarea con figura 
La tarea que se implementó fue la siguiente: en la figura (Ilustración 1) se presenta el paralelogramo 

ABCD, del cual se sabe que los puntos M y N son puntos medios de los lados DC y AB 
respectivamente. ¿Cómo justificas que los segmentos AM y CN son paralelos? 

 
Ilustración 1. Figura que acompañó a la proposición de la tarea. 

Un estudiante trazó sobre la figura el segmento MN y consideró que era la mediatriz de los 
segmentos DC y AB (Ilustración 2). Esta acción fue el punto de partida para la justificación de la 
respuesta del estudiante. 

 
Ilustración 2. Trazo realizado sobre la figura presentada. 

El estudiante manifiesta explícitamente el conocimiento sobre las propiedades de una mediatriz, en 
particular, la perpendicularidad de esta recta con el segmento que divide. Sin embargo, asume esta 
propiedad sin ninguna justificación y sin relacionarla con las propiedades de la figura mostrada. La 
percepción de la figura conduce al estudiante a afirmar el paralelismo de los segmentos AM y CN, 
sin que esta afirmación tenga un sustento lógico. 

El modo de interacción entre el alumno y la figura es totalmente empírico, ya que los argumentos 
están restringidos por la línea que trazó en la figura y su observación para argumentar la justificación. 

Resultados sobre la tarea sin figura 
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La redacción de la tarea que solo estaba compuesta por una proposición fue la siguiente: Un 
paralelogramo de vértices A, B, C y D, tiene como puntos medios de dos de sus lados opuestos a M y 
N respectivamente (M es punto medio de CD y N es punto medio de AB). ¿Cómo justificas que los 
segmentos MA y NC son paralelos? 

  
Ilustración 3. Figura y respuesta del estudiante. 
En la Ilustración 3 se observa la respuesta de un estudiante quien identifica un par de triángulos 

dentro del paralelogramo que construyó. El estudiante argumenta la congruencia de estos triángulos 
para justificar su respuesta. Sin embargo, la respuesta quedó inconclusa ya que no mencionó que la 
congruencia de los triángulos trae como consecuencia el paralelismo de los segmentos AM y CN. 

La interacción del estudiante con la figura es de tipo representacional, ya que solo consideró las 
propiedades del objeto geométrico, descritas en la proposición, para construir su figura. Además, las 
características de la figura construida están restringidas por el conocimiento geométrico del 
estudiante y no por acciones empíricas. 

Conclusiones 
La figura como objeto para el apoyo en la resolución de tareas geométricas involucra diversos 

aspectos que deben ser considerados, uno de ellos, es la forma en que interactúa un estudiante con 
una figura durante la resolución de una tarea. 

Los resultados que presentamos señalan una tendencia hacia la interacción empírica de los 
estudiantes con las figuras que acompañan a una proposición, principalmente, se refleja una 
necesidad de incorporar nuevos elementos sobre las figuras. En las tareas que contenían solo una 
proposición se reflejó una necesidad de exteriorizar la imagen mental del objeto geométrico que se 
describía. La representación de dicho objeto puede ayudar a llevar un control sobre los argumentos 
que se establezcan para justificar una propiedad. 
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Geometric measurement is a critical domain that is difficult for many students. The focus of this 
study was to determine if the incorporation of design processes into instructional activities for area 
measurement may enhance engagement and learning of students from low-resource, historically 
marginalized communities. We adapted activities from a learning trajectory for area measurement, 
prompting Grade 3 students to integrate knowledge of arrays, multiplication, and area measurement. 
Results suggest the design focus prompted students’ integration of knowledge of space and number 
by engaging in novel representations of designed objects and by prompting multiplicative thinking. 

Keywords: Design Experiment, Elementary School Education, Geometry and Geometrical and 
Spatial Thinking, Learning Trajectories 

We employed design and measurement tasks to teach mathematics across complex cultural 
contexts. Bishop (1988) considered mathematics a poly-cultural activity. He said people in many 
cultures engage in six fundamental mathematical activities to develop mathematical knowledge: 
counting, locating, measuring, designing, playing and explaining. Similarly, “…science learning can 
be understood as a cultural accomplishment” (National Research Council [NRC], 2012, p. 283). The 
Common Core Standards for Mathematics recommend students use geometry to solve design 
problems (National Governors Association Center for Best Practices and Council of Chief State 
School Officers, 2010). The Next Generation of Science Standards (NGSS Lead States, 2013) 
suggest constructing explanations and designing solutions to prepare students for STEM fields. At 
Grades 3 – 5, students should, “Generate and compare multiple possible solutions to a problem based 
on how well each is likely to meet the criteria and constraints of the problem” (NGSS Lead States, 
2013, p.46). We explored design work as a means to engage mathematical learning across cultural 
groups among students. 

We selected area measurement and design problems as tools to support mathematics instruction 
across cultural contexts. We used a learning trajectory (LT) for area measurement (Barrett, Clements, 
& Sarama, 2017) to develop plausible assessment and instructional tasks (Barrett, Cullen, Behnke & 
Klanderman, 2017; Barrett & Battista, 2014; Battista, 2006, 2012; Sarama & Clements, 2009). The 
Cognitively-Guided Instruction group (Carpenter & Fennema, 1992; Fennema, Carpenter, & Franke, 
1997) benefited from productive adaptations of tasks (Brown & Campione, 1996). Likewise, we 
drew on students' community funds of knowledge to adapt our tasks (Celedòn-Pattichis et al., 2018; 
Wager & Carpenter, 2012). 

We had two goals: (a) determine if using design work to adapt instructional activities from an LT 
for area measurement would enhance learning and engagement, and (b) find whether design 
processes support mathematical learning. We expected the tasks to help students establish area units 
as cognitive tools for measuring space, through multiplication or addition. By anticipating spatial 
collections of units, students might extend skip counting and transition toward multiplicative 
reasoning in an array structure. We sought to promote students’ use of arrays as models to measure 
area. We expect to suggest a model for improving the development of asset-based LTs that bridge 
cultural, community-based practices among elementary students. This was our rationale for adapting 
existing LT instructional tasks to (1) feature design processes, and, (2) integrate multiplication 
operations, arrays and area measurement. 
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Method 
Participants were a convenience sample of twenty-two Grade 3 students in an urban Midwest 

classroom and their teacher.  Their school district consists of approximately 13,000 students (20.1% 
White, 57.7% Black, 11.3% Hispanic). Approximately 68% of the students at the school receive free 
or reduced lunch and 8% are English learners. We used a written assessment adapted from the LT 
(Barrett, Clements, & Sarama, 2017, pp. 105-115), with classroom observation to identify four levels 
of thinking among 22 students: Physical Coverer and Counter (3 students), Complete Coverer and 
Counter (5), Area Unit Relater and Repeater (9) and Initial Composite Structurer (3). We targeted 
these levels of thinking in design work within area measurement tasks. 

Instruction Design Cycle 
What we report here is the feasibility study phase of a design experiment (Middleton, Gorard, 

Taylor & Bannan-Ritland, 2008). This phase is meant to evaluate an intervention through qualitative 
methods such as observations, interviews, and case studies to determine what aspects of the 
intervention work and those that need improvement. 

Prior to instruction, the researchers observed and helped students in the classroom to build 
familiarity and rapport. Later, we interviewed students in focus groups. We asked them how they 
may already use mathematics outside of the classroom to count, locate, measure, design, play or 
explain (Bishop, 1988). We conducted three lessons during one week of school in the Fall of 2019. 
Each lesson was led by one of the authors, with assistance from the classroom teacher. Each lesson 
began with whole-class discussion of a complex measurement question on area. The first lesson was 
an adaptation of patio tasks targeting LT levels often found among Grade 3 students (Barrett et al., 
2017, p. 133-137). We set a designing task using a novel problem, to find the number of buses that 
could fit in a parking lot. Day 2, we asked them to design and draw a parking lot to fit a given 
number of cars or buses. Finally, on Day 3, we asked students to design and draw a park for pets, to 
provide room for a given number of dogs to move around freely for exercise. The teacher and 
researchers surveyed students’ progress by assisting students who asked questions and posing 
questions to students while they worked. Students worked independently at first, and later in teams of 
two or four. The researchers kept field notes. Student work was collected for analysis. At the end of 
each lesson, the researchers reflected on what occurred in the class to develop the goal and a focal 
task for the subsequent lesson. 

We analyzed the students’ work in two ways. First, we examined all three tasks to determine 
strategies used to solve each. We asked ourselves how students made use of arrays or units in 
developing solutions. For the second and third tasks, we examined whether the students met the 
constraints of the task in the process of designing a solution. 

Results 
For the sake of the paper, we only discuss the results of the third day of instruction. We presented 

students with an image of a dog kennel. In the image it showed that a 6 x 6 foot square was an 
adequate area for a dog to run around in. We mapped out the square area on the floor of the 
classroom so students could see the space, walking around inside the mapped-out region to show the 
space needed per dog.  We gave students a 1.5 x1.5 inch square cutout piece of cardboard. We told 
the students it represented the space that one dog needed to move around. The task we posed for 
them was to design a rectangular dog park (Constraint 1) that had enough room for 24 dogs 
(Constraint 2). At the end of the lesson, we had students present their designs. Table 1 shows the 
strategies students used in creating their dog parks.  
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Table 1: Strategies Used in Designing Dog Park 

Strategies Number of 
Students 

Consistent Units with Some Use of Arrays 3 
Consistent Units with Grouping 7 
Consistent Units with no Grouping 7 
Inconsistent Units No Clear Spatial Arrangement 1 
No Use of Units Shown 4 

 
Ten students made use of grouping and arrays to create their dog parks. Most students (n = 17) 

made use of consistent units in their designs. In dealing with the constraints students sometimes met 
both constraints (see Table 2), but still they were not successful in the total design project. For 
example, some students created a rectangular area that had room for more than 24 dogs. Other 
students accounted for the space for 24 dogs but appointed another rectangle to be the actual dog 
park.  

 
Table 2: Met Dog Park Constraints 

Constraints Number of 
Students 

Area of Park Design for 24 Dogs 6 
Dog Park Rectangle 4 
Both Constraints Met 6 
Neither Constraint Met 6 

 

Conclusion 
Given the brief span of the intervention we conducted, we were not expecting students to move on 

to a new level of the learning trajectory (LT) for area measurement strategies. Rather, we used the LT 
levels as a rubric to find a suitable instructional level given students’ exhibited knowledge of area 
measurement. Our findings with these design-focused tasks suggest students were creating designs 
and engaging with area measurement tasks that involved multiplication schemes in productive ways 
which is in keeping with AURR levels. This finding suggests design-centered tasks of this type offer 
ways of supporting student thinking and of observing their reasoning at these particular levels of a 
LT for area. This may provide a way of improving the instructional task descriptions as the LT is 
modified to broaden its impact on a wider range of students in various contexts and communities. 

Furthermore, the design process of instruction appears helpful in focusing students’ attention on the 
meaningful association among arrays, multiplication operations with number, and the measure of 
rectangular shapes. By engaging contexts that fit with our observations about the students’ own 
experiences, we apparently gained access to familiar stories from their daily routines and 
community-based language for spatial quantity. The teacher was pleased to note that several students 
who typically did not engage in mathematics stayed engaged with the tasks for as long as they did. 
More work is needed to find what motivated this level of investment in the tasks. 

Dealing with design constraints had mixed results from our vantage point; some students did not 
address any of the constraints, although other students successfully addressed one or more 
constraints. Nevertheless, students in Grade 3 demonstrated the capability to address design 
constraints related to measurement and space. The design emphasis, with the integration of 
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measurement, multiplication schemes, and arrays as tools appears to be a viable way to adapt 
learning trajectory-based activities for area measurement. The lesson outcomes indicate promise that 
students in Grade 3 can engage in design activities with constraints related to multiplicative 
reasoning using skip-counting and grouping schemes. The interaction among these schemes may 
have prompted students to engage in the quantitative reasoning by access to their knowledge of such 
contexts as scanning to find whether a parking lot is empty, partly filled, or full. We believe the 
prominence and meaningfulness of the context provided a way for the mathematics of area 
measurement to be addressed as an integrated part of instruction on multiplication and arrays. This is 
consistent with work in statistics education showing the importance of linking context knowledge to 
the statistical schemes for organizing and reporting on data in such a context (Langrall, Nisbet, & 
Mooney, 2006).  

We believe further design cycles may need to draw out a more comprehensive analysis of the 
multiplication processes and the arrays as tools for measuring the capacity of a parking lot to hold 
cars. We plan further work with the same students to have them redesign a dog park to meet 
constraints related to the area measurement and to the shape of the region (by requiring a rectangle). 
We also expect to include further ways to prompt students to check their own design by using a 
grouping scheme for collections of units. This could focus them more on iterating squares to fill 
space, and link to arrays and measuring area. The process of testing, designing, retesting and 
redesigning are vital STEM skills for students to develop (https://stem.getintoenergy.com/stem-
skills-list/). The redesign process is important as we learn to extend the instructional tasks found in 
learning trajectories (e.g., the area LT) to different communities.  

Ideally, teachers will use similar design-based tasks to adapt and work with their students in 
different community contexts. The principles of designing, measuring and describing, taken from 
analyses across a wide range of culture and communities by Bishop (1988) may productively inform 
both teachers and researchers who want to adapt learning trajectories for other content areas. Our 
findings suggest that designing, describing and measuring may be productive ways of engaging 
students as young as grade 3 in substantive mathematical projects. This may support them as they 
learn the structural advantages of noticing or setting up arrays to support area measurements and 
multiplication operations. 
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This work reports a teaching experiment, which explores the use of writing as a metacognitive tool in 
high school Geometry problem solving. We develop a qualitative research study, to explore how 
explicit writing directives can help students to understand, organize and monitor the steps involved 
in the different phases of a cycle of activities for Geometry problem solving in ninth grade. 

Keywords: Problem Solving; Metacognition; High School Education; Geometry and Geometrical 
and Spatial Thinking 

Introduction 
In my professional experience as a teacher I have observed lack of comprehension in Mathematics 

concepts and procedures in students as well as disorganized strategies when solving problems. Such 
disorganization is observed when students start solving the problem without clearly identifying the 
data, nor the procedure and the developed rationale to get an answer. Also, the notes they make in the 
process are disorganized and lack a systematic feature. 

From 2006 to 2013, the Mexican Ministry of Education set a nationwide multiple choice evaluation 
focused to language, mathematics and other subjects from the national syllabus for each school cycle 
in basic education (ENLACE). From 2015 up to now, such evaluation changed only to language and 
mathematics (PLANEA). Such  evaluations, known by their acronyms in Spanish, serve as a 
diagnostic for basic education in Mexico, however, a noticeable side effect was that many teachers 
and students, looking for the improvement in their school rank, developed strategies for success in 
multiple choice answers, demeaning their skills to face open ended questions in mathematics. 

Theoretical framework 
This experiment is focused in Veenman (2012) identified learning process, as areas where 

metacognitive skills are mainly developed: reading,  problem solving, learning by discovery and 
writing, also, we considered Hyde’s (2002) research with primary school students where reading and 
math problems solving are mixed. 

Veenman (2012) describes metacognitive skills as the regulation of cognitive process, this means, 
the acquired capacity for supervision, orientation, direction and control of one`s learning behavior 
and problem solving. Actually, metacognitive skills are the learning activities and the main 
determiners to learning results. 

Hyde (2006) follows the guidelines of cognitive psychology and uses the braiding term to state that 
language, thinking and mathematics can be braided into one entity, achieving though connections 
among those three important processes, a stronger, more lasting and powerful result than if worked 
individually. With the braiding term it is suggested that the three components are inseparable, with 
mutual and necessary support. He assures that the stronger the connections among the related ideas 
are, the deeper and richer the understanding of the concept will be. 

Hyde (2006), states that the braiding context benefits kids to imagine, visualize and connect 
mathematics into context. He assures that this model has been used efficiently in the instruction of 
small classes involving the teacher’s support. The questions are useful to discuss the problem orally, 
so students interiorize such questions to use them by themselves for later tasks. 
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After reviewing Veenman’s (2012) work, which distinguishes between the metacognitive 
knowledge and the metacognitive skills to focus their development in science teaching, as well as 
Hyde’s (2006) research, who applies the Braiding Model in primary education to solve problems in 
mathematics, we consider some useful elements in their work to design our teaching experiment that 
uses writing from self-instructions as a metacognitive tool when solving geometry problems. 

 Methodology 
In our teaching experiment, students were given self-instructions shown as simple questions, to help 

them develop the activities at the starting, during and after solving the problem (Table 1). This was 
intended to gradually introduce the students so, through writing, they started analyzing the given 
information in the problem, continued with the necessary rationale and representations to interpret 
the problem situation, and finally they followed the adequate procedures, verifying through 
justification that they had the right answer realizing how they go to it. 

In the teaching experiment, 12 problems selected by the Ministry of Education in the State of 
Jalisco were selected to practice for the State’s Olympics in Mathematics in Primary and Secondary 
schools (OEMEPS), since these problems require reasoning and creativity in students, they must 
work with descriptions, explanations and justifications when solving them, and different paths could 
be followed for the answers. 

These problems were solved in 20 sessions, 45 minutes each, by 10 students from 9th grade in 
Mexico City, and they were highly motivated working for their admission exams for High School. 
The first four sessions, self-instructions were explained to them from examples in collective problem 
solving. In the rest of the sessions, students answered individual worksheets for 12 problems with 
self-instructions written on the blackboard as a reminder. The last four sessions, different solving 
processes for each problem were exteriorized and each student defended his/her answers. The written 
productions for data analysis are the sources as well as the notes from the teacher-researcher. 

 
Table 1: Veenman’s connections between self-instructions and metacognitive skills. 

Self-instructions designed to use writing 
when solving problems. 

Veenman’s Learning Activities representing 
metacognitive skills. 

St
ar

t 

What information am I given in the 
problem? Reading.  

What do I need to find? Task analysis, 
What knowledge do I have about the 
topic? Activation of previous knowledge.  

D
ur

in
g 

How am I going to do it?  Planning. 
Which steps should I follow?  Follow or change the plan. 
Which drawings can help me get to 
the solution?  Note taking. 

A
fte

r 

How do I justify my answer? Performance evaluation. 
Is this the only way to get to the 
answer? Summing up. 

Which other ways could be used? Process Reflection.  
 

Results 
Results are presented according to the self-instructions order for the teaching experiment. Such self-

instructions guided the research and oriented students to work in the activities at the staring of the 
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problem, then the activities during its solving and finally, activities after the problem solving. 
Students followed self-instructions with their own presentation style, for instance, one student 
organized through a subsequent number, another uses a hyphen to each (Fig 1b). 
 

 
a 

 
b 

Figure 1. Complete answers by two students. 
 

Activation of previous knowledge was given through students answers to the first three questions at 
the starting of the problem solution, which is the process of remembering the information kept in 
their minds, relate it to the identified information and deciding which process they will use to obtain 
the answer, as we see during the problem solving. 
 

“that trapezoid a = b = c”  “4 trapezoids 
identical to the original”  
“I know the trapezoids features, they have a 
major base and a minor base, and they also 
have height”. 
a 

“The trapezoid sides are the same, except the 
base”  
“4 identical trapezoids similar to the original 
and that fit in the original” That angles BC 
and AB are 60º”. 
b 

Figure 2. Two students’ answers at the starting of the task.  
 

During the problem solving students come up with the same answer for the questions “How am I 
going to do it?” and “Which steps should I follow?” When describing their procedures organization 
and clearly relate the ideas for the process (Figure 3a and 3b).They also rely on their notes and the 
trapezoids they draw out form the step description (note taking) or in the marks in the given drawings 
in the task along with the drawings they sketch as well as written signals (a, b, c, f).Together, 
descriptions and drawings guided them to follow the process step by step and get the right answer. 
(Fig. 1a, 1b). 

Once the problem solution is obtained, the last questions lead them to think about the process they 
had applied when describing their justification as well as to look for other ways to solve the problem, 
however, in this problem none of them identified another procedure to obtain the answer. 
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“I must draw 4 trapezoids equal to the 
original; with them I will form another 
trapezoid similar to the original with 
different measures and at the end of the 
original trapezoid I will draw the line 
segment to see how it looks once I finish”.  
“All trapezoids are the same and the other is 
escalated”.  
a 

“On a piece of paper I will trace the figure 
and I will try to divide the trapezoid into four 
equals to the trapezoid”. “I must divide the 
trapezoid  into isosceles triangles knowing 
that the isosceles triangles together aligned 
make a trapezoid” 
 
 
b 

Figure 3. Two students’ answers when developing the task.  

Conclusions 
With the use of this learning experiment we noticed, first of all, self-instructions are indeed an 

action plan, they guide students step by step during all the problem solving process, and secondly, 
when students wrote down the justification to their answers they carefully reviewed the steps they 
followed. This means, not only did they analyze if they got the correct answer but also recognized the 
successful steps to solve the problem, this means that writing helped them understand the solving 
process, guided by the self-instructions given at the beginning of the experiment. 
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Este trabajo reporta un experimento de enseñanza, que explora si el escribir de forma sistematizada 
puede ser una herramienta que les facilite la resolución de problemas a los estudiantes de educación 
básica. Desarrollamos un estudio de investigación cualitativa, para indagar como las directivas de 
escritura de manera explícita pueden ayudar a los estudiantes a entender, organizar y controlar los 
pasos implicados en las distintas fases de un ciclo para la resolución de problemas de geometría en 
el noveno grado de educación.  

Palabras clave: Autoinstrucciones, Escritura. Resolución de Problemas. 

Introducción 
A lo largo de mi experiencia profesional como docente he observado una deficiente comprensión de 

conceptos y procedimientos matemáticos por parte de los estudiantes, así como estrategias 
desorganizadas en la resolución de problemas. Esta desorganización se observa cuando ellos 
comienzan a resolver el problema pero no distinguen claramente los datos, ni los procedimientos y el 
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razonamiento que desarrollan para llegar a la respuesta. De la misma manera las anotaciones que 
realizan en el proceso son desordenadas y carecen de un carácter sistemático.  

De 2006 a 2013, el Ministerio de Educación Pública aplicó en todo el país una evaluación de opción 
múltiple guiada en lenguaje, matemáticas y otras asignaturas del plan de estudios nacional en cada 
ciclo escolar de la educación básica (ENLACE). A partir del 2015 a la fecha cambio la evaluación 
enfocada unicamente a lenguaje y matemáticas (PLANEA). Estas pruebas conocidas por sus siglas 
en español, ayudan a diagnosticar la educación básica en México, pero un efecto secundario no 
deseado de este tipo de valoración, fue que muchos profesores y estudiantes, en sus esfuerzos por 
mejorar las marcas de sus escuelas, desarrollan estrategias para lograr el éxito en pruebas de opción 
múltiple, en detrimento de las habilidades para hacer frente a preguntas abiertas en matemáticas.  

Marco teórico  
Este experimento está centrado en los procesos de aprendizaje que han sido identificados por 

Veenman (2012) como las áreas donde mayormente se desarrollan las habilidades metacognitivas: 
lectura, resolución de problemas, aprendizaje por descubrimiento y escritura, además consideramos 
las indagaciones con estudiantes de primaria efectuadas por Hyde (2006), donde se combina la 
lectura y la resolución de problemas de matemáticas.  

Las habilidades metacognitivas las describe Veenman (2012) como la regulación de los procesos 
cognitivos, es decir la capacidad adquirida de la supervisión, orientación, dirección y control de la 
propia conducta en el aprendizaje y la resolución de problemas. En sí las habilidades metacognitivas 
son las propias actividades de aprendizaje y son el principal determinante de los resultados en el 
mismo. 

Hyde (2006) se guía por los principios de la psicología cognitiva y utiliza el término de trenzado 
para indicar que el lenguaje, el pensamiento y las matemáticas pueden ser entrelazados en una sola 
entidad, logrando que al hacer conexiones entre estos tres procesos importantes, el resultado sea más 
fuerte, durable y poderoso que si se trabajará cada uno de forma individual. Con el término trenzado 
sugiere que las tres componentes son inseparables de apoyo mutuo y necesario. Afirma que cuanto 
más fuerte son las conexiones entre las ideas relacionadas más profunda y más rica es la comprensión 
del concepto.  

Hyde (2006) hace hincapié que el contexto del trenzado beneficia a los niños para imaginar, 
visualizar y conectar las matemáticas con el contexto. Afirma que este Modelo se ha utilizado con 
eficacia en la instrucción de una clase con grupos pequeños y con el apoyo del maestro. Las 
preguntas son eficaces para discutir el problema en grupos pequeños así como las estrategias de 
representación en el lenguaje oral, de esta manera los estudiantes comienzan a internalizar estas 
preguntas para utilizarlas por si mismos durante las tareas posteriores.  

Una vez revisado el trabajo de Veenman (2012), que hace una distinción entre el conocimiento 
metacognitivo y las habilidades metacognitivas para orientar el desarrollo de éstas en la enseñanza de 
las ciencias; así como las investigaciones de Hyde (2006) quien aplica el Modelo del Trenzado en 
educación primaria, para la resolución de problemas en matemáticas; consideramos algunos 
elementos útiles de dichos trabajos para hacer el diseño de nuestro experimento de enseñanza que 
consiste en utilizar la escritura a partir de autoinstrucciones como herramienta metacognitiva en la 
resolución de problemas de geometría.  

Metodología 
En nuestro experimento de enseñanza se dieron autoinstrucciones a los estudiantes, presentadas 

como preguntas sencillas, para auxiliarlos en el desarrollo de las actividades del inicio, durante y 
después de la resolución del problema (Tabla 1). Lo anterior con la intención de inducirlos 
gradualmente para que a través de la escritura comenzaran un análisis de la información 
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proporcionada en el problema, continuarán con la exploración y representaciones necesarias para 
interpretar la situación del problema y finalmente siguieran los procedimientos adecuados, 
verificando por medio de la justificación que llegaron a la respuesta correcta y se dieran cuenta cómo 
lo hicieron. 

En el experimento de enseñanza, se seleccionaron 12 problemas propuestos por la Secretaría de 
Educación de Jalisco para el entrenamiento de las Olimpiadas Estatales de Matemáticas en 
Educación Primaria y Secundaria (OEMEPS) debido a que estos problemas requieren razonamiento 
y creatividad del estudiante, en los cuales se deben trabajar descripciones, explicaciones y 
justificaciones en su resolución y se pueden seguir diferentes caminos para obtenerla. 

Estos problemas fueron resueltos en 20 sesiones de 45 minutos cada uno, con un grupo de 10 
estudiantes de noveno grado de una escuela en la Ciudad de México, quienes estaban altamente 
motivados trabajando para preparar sus exámenes de admisión para bachillerato. En las primeras 
cuatro sesiones se explicaron las autoinstrucciones a los estudiantes a partir de ejemplos en la 
resolución de problemas trabajando colectivamente su aplicación. El resto de las sesiones los 
estudiantes contestaron las hojas de trabajo individual para los 12 problemas, con las 
autoinstrucciones expuestas en el pizarrón como recordatorio. Las últimas 4 sesiones se 
exteriorizaron los diferentes procesos de solución en cada problema y cada estudiante defendío sus 
respuestas.  Las fuentes de datos para el análisis son las producciones escritas de los estudiantes, y las 
notas de campo del profesor-investigador. 
 

Tabla 1: Conexión entre las autoinstrucciones y las habilidades metacognitivas de Veenman 
Autoinstrucciones diseñadas para utilizar la 
escritura en la resolución de problemas 

Actividades de Aprendizaje representativas de las 
Habilidades Metacognitivas (Veenman) 

In
ic

io
 

¿Cuáles son los datos que me da el 
problema? Lectura  

¿Qué necesito encontrar ? Análisis de la tarea 
¿Qué conocimientos tengo acerca del 
tema?  Activación de los conocimientos previos  

D
ur

an
te

 

¿Cómo le voy hacer?  Planificación 

¿Qué pasos voy a seguir?  Seguir el plan o cambiar el plan  

¿Qué dibujos me pueden ayudar para 
llegar a la solución?  Toma de notas  

D
es

pu
és

 

¿Cómo justifico la respuesta que 
encontré? Evaluación del desempeño 

¿Es el único camino que se puede 
seguir para llegar a la respuesta? Recapitular  

¿Qué otras formas puedes aplicar?  Reflexión sobre el proceso  

Resultados  
La presentación de los resultados va de acuerdo con el orden de las autoinstrucciones diseñadas para 

el experimento de enseñanza, las cuales fueron la guía de la investigación y orientaban a los 
estudiantes a trabajar las actividades al inicio de la resolución del problema, enseguida las 
actividades durante la resolución y por último las actividades después de la resolución del problema. 
Los estudiantes siguieron las autoinstrucciones dando cada uno su estilo de presentación, por ejemplo 
mientras que un estudiante les da un orden por medio de un número subsecuente (Figura 1a), otro 
simplemente utiliza un guión para cada una (Figura 1b). 
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a 

 

 
b 

Figura 1. Respuestas completas de dos estudiantes  
 

A través de las respuestas de los estudiantes a las tres primeras preguntas del inicio de la resolución 
del problema (Figura 2a y 2b) se dio la activación de los conocimientos previos, que es en sí el 
proceso de recordar la información registrada en su memoria, relacionarla con la información que 
identificaron y tomar la decisión de que proceso aplicarán para obtener la respuesta como lo vemos 
durante la resolución del problema. 
 

“que el trapecio a = b = c” “4 trapecios 
idénticos al original”  

“Se las características de los trapecios, tienen 
una base mayor y una base menor, tienen 

también una altura”. 
a 

“Que sus lados del trapecio son iguales, 
menos la base”  

“ 4 trapecios idénticos semejantes a el 
original y que quepan en el original ” “Que el 

ángulo BC Y AB miden 60º”. 
b 

Figura 2. Respuestas del inicio de la resolución de dos estudiantes  
 

Durante el proceso de solución del problema los estudiantes brindan una misma respuesta, para las 
preguntas ¿cómo le voy  hacer?  y ¿qué pasos voy a seguir?, al describir la organización de sus 
procedimientos y relatar con claridad las ideas para el proceso (Figura 3a y 3b).  Se apoyan también 
en las anotaciones y representaciones de los trapecios plasmadas por ellos fuera de la narración de los 
pasos (la toma de notas) o las marcas en los dibujos dados en el problema en conjunto con los dibujos 
que ellos elaboraron así como las señales escritas (a, b, c, f). En conjunto las descripciones y los 
dibujos les orientaron para seguir sus procedimientos paso a paso y tener la solución de manera 
correcta (Figura 1a y 1b).   

 
“Debo trazar 4 trapecios iguales al 
original, con esos trapecios formare otro 
trapecio parecido al original con diferentes 
mediadas y al final en el trapecio original 
trazaré los segmentos de recta para ver 
como me quedo ya formado”.  
“Que todos los trapecios son iguales y otro 
es a escala”. 

a 

“En una hoja calcaré la figura y intentare 
dividir el trapecio en cuatro iguales 
iguales a el trapecio”. “Tengo que dividir 
el trapecio en triángulos isosceles sabiendo 
que los triángulos isósceles juntos en 
forma lineal hacen un trapecio” “Porque 3 
triángulos juntos linealmente hacen un 
trapecio”.  
  
b 

Figura 3. Respuestas del desarrollo de la resolución de dos estudiantes 
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Después de obtener la solución del problema, las últimas preguntas los guiaron a reflexionar sobre 
el proceso que habían aplicado anteriormente al narrar su justificación y a buscar otros caminos que 
los llevaran a la solución del problema, aunque en este problema ninguno de ellos identificó otro 
procedimiento para llegar a la respuesta.  

Conclusiones 
Con la aplicación del experimento de enseñanza nos percatamos, en primer lugar, que las 

autoinstrucciones son en sí un plan de acción, las cuales guían al estudiante paso a paso durante todo 
el proceso de la resolución del problema y en segundo lugar, que cuando ellos escribieron la 
justificación de sus respuestas revisaron detenidamente los pasos que siguieron. Esto es, no solo 
analizaron si llegaron a la respuesta correcta, sino que reconocieron qué pasos les resultaron exitosos 
en la resolución, es decir, la escritura les ayudó a entender el proceso de solución, orientados por las 
autoinstrucciones dadas al inicio del experimento. 
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A study developed with engineering students from the University of Sonora, Mexico, about their 
difficulties to justify geometric propositions is presented here. The work is framed within an 
Analytical Geometry course designed with GeoGebra as support, and refers the topic of loci. The 
theory of geometric paradigms is used to explain these difficulties and the study reveals that the 
geometry education of students entering University is mainly limited to natural geometry, showing a 
precarious familiarity with the methods of natural axiomatic geometry. 

Keywords: Geometry and Geometrical and Spatial Thinking, Instructional activities and practices, 
Technology 

Introduction 
To explore the extent to which engineering students can justify geometric propositions, five 

teaching sequences on the subject of geometric loci have been designed. The sequences have been 
designed to be implemented with GeoGebra, taking as reference the methods used by Descartes 
(1954, pp. 50-55) in the presentation of his hyperbolograph, to identify the geometric relationships of 
the construction and find the equation of the hyperbola. The activities were proposed in an Analytical 
Geometry course taught to 35 Civil Engineering students during the first semester of 2018.  

Theoretical elements 
Students’ responses were analyzed within the framework of the geometric paradigm theory 

proposed by Houdement and Kuzniak (2003); According to these authors, under the term elemental 
geometry, three distinct types of paradigms coexist that lead to the distinction of three types of 
geometry: natural geometry, natural axiomatic geometry and formalist axiomatic geometry. The first 
two geometries are described below, as they are those used in the present work, as written by 
Kuzniak (2006): 

Natural geometry can be seen as an empirical science in which objects are closely linked to reality, 
which can be measured and physically compared. The propositions in this geometry are validated 
experimentally as they depend on the sensory perception of them. 

In natural axiomatic geometry, geometric objects are only approximations to reality and are defined 
by the axioms of classical Euclidean Geometry. The propositions here are validated by 
demonstrations constructed from euclidian axioms and previously proven geometric results.  

In the design of the teaching sequences, we attempt to recover the ideas developed by Descartes on 
geometric loci, particularly those in the construction of the hyperbolograph (Descartes, 1954, pp. 50-
55). From Descartes’s method we retake two main principles: 

1. Identification of the quantities that change and those that remain constant during the plotting 
of the curve and the relationships between them, as shown in Arcavi (2000). 

2. Deduction requires the use of the methods of natural axiomatic geometry, since it is based on 
the properties of similar triangles, established as theorems in this geometry.  



Difficulties to justify geometric propositions when solving loci problems with GeoGebra 

	 703	

Both characteristics seem desirable to us in the mathematical formation of an engineer, the first 
because of the importance it has in algebraic modeling of geometric situations and the second 
because it facilitates the explanation and argumentation of geometric results.  

Design and implementation of didactic sequences 
Based on the ideas of Descartes, Arcavi and Kuzniak, and the use of GeoGebra, we have developed 

a series of didactic sequences on the notion of loci. The main goal is for engineering students to 
justify some elementary geometric results with arguments typical of natural axiomatic geometry.   

There is a total of five sequences on which the students worked over a two-week period, where each 
student had a computer with GeoGebra installed and worked independently. In all the sequences, the 
students are first offered a construction in GeoGebra, in which the Cartesian axes are omitted so that 
students can concentrate on the elements of the construction and the relationships that manifest by 
varying the elements of the figures. As an example, the following table summarizes the objectives 
and characteristics of sequence 2. 
 

Table 1 Characteristics of Sequence 2 
Objectives: a) Identify the relationships between quantities, which are preserved by varying k and presenting 
geometric arguments about their veracity. b) Verify that the curve plotted by P is a circumference and 
geometrically justify this result. c) Algebraically represent the relationships identified in (a). d) Find the 
equation in terms of s and t of the circumference of Figure 1b, and in terms of x and y in Figure 1c. 

Characteristics of the constructions 
AB is a fixed line, CBD is an 
angle of value k, BE is the 
bisector of CBD, AP is parallel 
to the bisector traced from A, 
and P is the intersection 
between AP and BP. 

The construction is the same as 
in Figure 1a, but it adds a 
perpendicular to AB from P that 
intersects AB in Q, also labels 
segment BQ as s and QP as t.  

The construction is the same as shown 
in Figure 1b but has been translated and 
rotated so that the AB line matches the 
X-axis and to and B match the origin. 

   

Figure 1a Figure 1b Figure 1c 
 

This sequence begins with the GeoGebra construction from Figure 1a, in which the student is asked 
to explore the construction by varying the slider k, which controls the CBD angle, and to note that the 
point P describes a circumference when moving the construction. The tasks here are intended to 
systematize exploration: that those quantities (measures of angles and segments) that change are first 
distinguished from those that remain constant, and then that the students establish the possible 
relationships between these quantities, mainly equality relationships. The work with this construction 
concludes by requesting the students to geometrically justify the detected relationships. The sequence 
concludes with the introduction of Cartesian coordinates to be used as a reference (Figure 1c) and 
algebraically express the curve drawn by point P when the parameter k is changed.  
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Analysis 
Throughout the development of these activities, we have focused our attention on the questions in 

which students are asked to justify some geometric proposition, since our main interest is to observe 
the nature of the arguments they built. We will focus our analysis on the answers to these questions 
in sequence 2. 

In this activity, having explored the construction shown in Figure 1a, and once they have 
established which angles remain the same when dragging k, students seamlessly conclude that the 
triangle ABP is isosceles. As can be seen in the following responses, their difficulties begin when 
they try to justify some of the results obtained. Item (d) of the worksheet asks them to justify why 
does the triangle remains isosceles and item (e) asks them to justify why does the segment BP works 
as the radius of the circle, i.e. why does its magnitude not change. The construction provides data on 
the angles and on the segment AB, it was expected that they would conclude that the triangle ABP is 
isosceles on the basis that two of their angles always remain the same and that they could argue that 
as a consequence their opposite sides AB and BP should always be the same. 

Four types of responses were detected, illustrated below: 
In the first type we place the students who have offered answers whose forms of argumentation are 

inconsistent, in which arguments that appear to be located in Paradigm 2 are mixed with others based 
on facts observed with little or no relation to what is asked to justify. In this case we locate the 
following answers:  
 

Table 2 Example of type 1 answers 
d) It is isosceles since two angles remain the same, since they are co-

corresponding angles with others and thus we can determine if they are 
equal or not. 

e) Because it acts as the radius of a circle that which always has the same 
magnitude and is linked to a center as in the current case. 

 
In a second case, another student uses the isosceles triangle definition to justify that the triangle is 

isosceles. And when he tries to justify why the segment BP maintains its constant magnitude, he uses 
its visual perception as a source of argumentation.  
 

Table 3 Example of type 2 answers 
d) Because it has two equal angles and two equal sides, which are 

characteristics that made it an isosceles triangle 
e) Because the construction makes the segment AP to always be of fixed 

length. 
 

It is clear that the students located in this case do not recognize the hypotheses of the problem and 
confuse the causes with the effects on the construction, indicating that they do not base their response 
on a deductive reasoning and are therefore located in Paradigm 1. 

In the third type of responses the students mix Paradigm 1 ways of arguing with arguments specific 
to Paradigm 2, this is the case of the following response, which provides an answer to item (d) that 
was independent from the observation, but does not make it clear that equality of the angles implies 
equality of the sides, instead the student responds to item (e) very clearly that in the case of an 
isosceles triangle with a fixed side, the other side must have a fixed length. We consider that the 
answer to the first item does not correspond to Paradigm 2, but its response to the second item fits in 
the ways of arguing specific to this paradigm.  
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Table 4 Example of type 3 answers 
d) Despite of its movement there is still two equal sides and two equal 

angles. 
e) Segment AB’s length is 8 and as it is an isosceles triangle it’s the same as 

BP, then, despite the movement, they will measure the same and stay 
constant. 

 
Finally, the fourth type of response includes those that can be located in Paradigm 2, where it is 

observed that the student recognizes the data provided as hypotheses from which he can build his 
arguments. The following two responses illustrate this case. 
 

Table 5 Example of type 4 answers 
d) Because it has two equal internal angles and therefore the opposite sides 

to the angles are equal. 
e) Since the triangle is isosceles, it forces the segment BP to remain the 

same length as AB, and as AB never changes, neither does BP. 

Conclusions 
Of the 35 students who were part of the group, 8 of them were able to present arguments to justify 

propositions, which can be located in Paradigm 2, those represented in the Type 4 responses. The 
rest, to some extent, showed arguments of Paradigm 1. This proportion illustrates a serious problem, 
showing that most students are unable to use deductive arguments to justify geometric propositions. 
We emphasize that their responses indicate that they can identify geometric facts, but they cannot 
present deductive arguments to explain them. 

These results motivate us to, in the future, study the characteristics of the teaching of Geometry at 
the pre-university level, where the source of some of the difficulties observed could be found. 
Finally, we want to add that the use of GeoGebra has been attractive to students, but this has not been 
reflected in improving the nature of the arguments put forward by students.  
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Se presenta aquí un estudio desarrollado con estudiantes de Ingeniería de la Universidad de Sonora, 
México, sobre sus dificultades para justificar proposiciones geométricas. El trabajo está enmarcado 
en un curso de Geometría Analítica diseñado con apoyo de GeoGebra y se refiere al tema de lugares 
geométricos. Se utiliza la teoría de los paradigmas geométricos para explicar estas dificultades y el 
estudio revela que la formación en geometría de los estudiantes que ingresan a la Universidad, está 
limitada principalmente a la geometría natural, mostrando una precaria familiaridad con los 
métodos de la geometría axiomática natural. 

Palabras clave: Geometría y Pensamiento Geométrico y Espacial, Actividades y Prácticas de 
Enseñanza, Tecnología 

Introducción 
Con el propósito de explorar hasta qué punto los estudiantes de ingeniería pueden justificar 

proposiciones geométricas, se han diseñado cinco secuencias didácticas sobre el tema de lugares 
geométricos. Las secuencias han sido diseñadas para desarrollarse con GeoGebra y tomando como 
referencia los métodos usados por Descartes (1954, pp. 50-55) en la presentación de su 
hiperbológrafo, para identificar las relaciones geométricas de la construcción y encontrar la ecuación 
de la hipérbola. Las actividades fueron propuestas en un curso de Geometría Analítica impartido a 35 
estudiantes de Ingeniería Civil durante el primer semestre de 2018.  

Referencias teóricas 
Las respuestas de los estudiantes se analizaron en el marco de la teoría de paradigmas geométricos 

propuesta por Hedemount y Kuzniak (2003); según estos autores bajo el término geometría 
elemental, coexisten tres tipos distintos de paradigmas que conducen a distinguir tres tipos de 
geometría: la geometría natural, la geometría axiomática natural y la geometría axiomática 
formalista, se describen a continuación las dos primeras geometrías, que son las que se utilizan en el 
presente trabajo, según la versión de Kuzniak (2006): 

La geometría natural puede verse como una ciencia empírica en la que se trabaja con objetos muy 
ligados a la realidad, que pueden ser medidos y comparados físicamente. Las proposiciones aquí 
pueden validarse experimentalmente porque dependen de la percepción sensorial que se tiene de 
ellas.  

En la geometría axiomática natural los objetos geométricos son solamente aproximaciones a la 
realidad y son definidos por los axiomas de la Geometría Euclidiana clásica. Las proposiciones aquí 
son validadas mediante demostraciones construidas a partir de los axiomas euclidianos y de 
resultados geométricos previamente demostrados.  

En el diseño de las secuencias didácticas, se han intentado recuperar las ideas desarrolladas por 
Descartes  sobre lugares geométricos, en particular aquellas que están presentes en la construcción 
del hiperbológrafo (Descartes, 1954, pp. 50-55). Del método utilizado por Descartes, rescatamos dos 
características que serán tomadas en cuenta para el diseño de las secuencias: 
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1. La identificación de las cantidades que cambian y las que permanecen fijas durante el trazado 
de la curva y de las relaciones entre ellas, tal como se muestra en Arcavi (2000). 

2. La deducción exige el uso de los métodos propios de la geometría axiomática natural, puesto 
que está basada en las propiedades de los triángulos semejantes, establecidas como teoremas 
en esta geometría. 

Ambas características nos parecen deseables en la formación matemática de un ingeniero, la 
primera por la importancia que tiene en la modelación algebraica de situaciones geométricas y la 
segunda porque facilita la explicación y la argumentación de resultados geométricos.  

Secuencias y aplicación 
Retomando las ideas de Descartes, Arcavi y Kuzniak y apoyándonos en el software GeoGebra, 

hemos elaborado una serie de secuencias didácticas sobre la noción de lugar geométrico. La idea es 
que los estudiantes de ingeniería justifiquen algunos resultados geométricos elementales con 
argumentos propios de la geometría axiomática natural.   

Las secuencias fueron cinco en total y los estudiantes las desarrollaron a lo largo de dos semanas, en 
un centro de cómputo en el que cada quien contó con una computadora con el software GeoGebra 
instalado. En todas las secuencias se ofrece primeramente al estudiante una construcción en 
GeoGebra, en la que se omiten los ejes cartesianos para que los estudiantes se puedan concentrar en 
los elementos de la construcción y las relaciones que se manifiestan al variar elementos de las 
figuras. Como ejemplo, la siguiente tabla resume los propósitos y características de la secuencia 2. 

 
Tabla 1 Características de la secuencia 2 

Propósitos: a) Identificar las relaciones entre las cantidades, que se conservan al variar 𝑘  y presentar 
argumentos geométricos sobre su veracidad. b) Verificar que la curva trazada por 𝑃 es una circunferencia y 
justificar geométricamente este resultado. c) Expresar algebraicamente las relaciones identificadas en a).  d) 
Encontrar la ecuación en 𝑠 y 𝑡 de la circunferencia de la Figura 1b) y en términos de 𝑥 y 𝑦 en la Figura 1c). 

Características de las construcciones 

𝐴𝐵 es una recta fija, 𝐶𝐵𝐷 es un 
ángulo de medida 𝑘 , 𝐵𝐸  es la 
bisectriz del ángulo 𝐶𝐵𝐷 , 𝐴𝑃 
es la paralela a la bisectriz 
trazada por 𝐴 y 𝑃 es el punto de 
intersección de 𝐴𝑃  y 𝐵𝑃. 

La construcción es la misma que 
en la Figura 1a), pero se ha 
trazado desde 𝑃 , una 
perpendicular a 𝐴𝐵 que interseca 
a 𝐴𝐵  en 𝑄  y se ha etiquetado 
como 𝑠 al segmento 𝐵𝑄 y como 
𝑡 al segmento 𝑄𝑃.  

La construcción es mostrada en la 
Figura 1b), pero se ha trasladado y 
rotado para que la recta 𝐴𝐵  coincida 
con el eje 𝑋 y 𝐵 coincida con el origen. 

   

Figura 1a Figura 1b Figura 1c 
 
En esta secuencia, se inicia con la construcción de la Figura 1a, en la que se han trazado las rectas 

AB y BD (de tal forma que BD forme un ángulo de k grados con la recta fija AB), la bisectriz del 
ángulo CBD y una recta paralela a la bisectriz EB, que pasa por A. Luego se pide al estudiante que 
explore la construcción haciendo variar el deslizador k, el cual controla el ángulo CBD, y que al 
mover la construcción observe que el punto P describe una circunferencia. Las tareas aquí pretenden 
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sistematizar la exploración: que se distingan primero aquellas cantidades (medidas de ángulos y 
segmentos) que cambian de las que permanecen constantes, durante el movimiento y luego que 
establezca las relaciones posibles entre estas cantidades, principalmente las relaciones de igualdad. El 
trabajo con esta construcción concluye con la solicitud al estudiante de que justifique 
geométricamente las relaciones detectadas. La secuencia concluye con la introducción de 
coordenadas cartesianas para tomarlas como referencia (Figura 1c) y expresar algebraicamente la 
curva trazada por el punto P, cuando se hace variar el parámetro 𝑘.  

Análisis de resultados 
A lo largo del desarrollo de estas actividades, hemos concentrado la atención en aquellas preguntas 

en las que se solicita a los estudiantes justificar alguna proposición geométrica, porque nuestro 
interés principal es el de observar la naturaleza de las argumentaciones construidas por los 
estudiantes. Concentraremos nuestro análisis en las respuestas a estas preguntas en la secuencia 2. 

En esta actividad, después de haber explorado la construcción mostrada en la Figura 1a y una vez 
que han establecido cuáles son los ángulos que permanecen iguales al arrastrar k, los estudiantes 
concluyen sin dificultades que el triángulo ABP es isósceles. Como podrá verse en las respuestas 
siguientes, sus dificultades empiezan cuando intentan justificar algunos de los resultados obtenidos. 
En el inciso d) se les pide que justifiquen por qué el triángulo se mantiene isósceles y en el inciso e) 
se solicita que justifiquen por qué el segmento BP funciona como radio del círculo, es decir por qué 
su magnitud no cambia. La construcción ofrece datos sobre los ángulos y sobre el segmento AB, se 
esperaba entonces que llegaran a la conclusión de que el triángulo ABP es isósceles partiendo de que 
dos de sus ángulos permanecen siempre iguales y pudieran argumentar que por lo tanto sus lados 
opuestos AB y BP debieran ser siempre iguales. 

Se detectaron cuatro tipos de respuestas, que ilustraremos a continuación: 
En un primer caso ubicamos a los estudiantes que han ofrecido respuestas cuyas formas de 

argumentación han resultado poco coherentes, en los cuales se mezclan argumentos que parecieran 
ubicarse en el Paradigma 2, con otros basados en hechos observados con poca o nula relación con lo 
que se pide justificar. Ubicamos en este caso las respuestas siguientes:  

 
Tabla 2 Un ejemplo de respuestas de tipo 1 

d) Es isósceles ya que 2 ángulos permanecen iguales ya que son ángulos 
correspondientes con otros y así podemos determinar si son iguales o no. 

e) Porque actúa como el radio de un circulo el cual siempre tiene la misma 
magnitud y está anclado a un centro, así como ocurre en el presente 
círculo. 

 
En un segundo caso, el estudiante recurre a la definición de triángulo isósceles para justificar que el 

triángulo es isósceles. Y cuando intenta justificar por qué el segmento BP mantiene su magnitud 
constante, recurre a su percepción visual como fuente de argumentación.  

 
Tabla 3 Un ejemplo de respuestas de tipo 2 

d
) 

Porque tienen dos ángulos iguales y dos lados iguales por lo tanto son 
características por la cual se conforma un triángulo isósceles. 

e
) 

Porque la construcción obliga a que el segmento AP siempre se 
mantenga fijo. 
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Es claro que los estudiantes ubicados en este caso no reconocen las hipótesis del problema y 
confunden las causas con los efectos en la construcción, lo cual indica que no basan su respuesta en 
un razonamiento deductivo y por lo tanto se ubican en el Paradigma 1. 

En un tercer tipo de respuestas se observa que el estudiante mezcla formas de argumentar del 
Paradigma 1 con argumentos propios del Paradigma 2, éste es el caso de la respuesta siguiente, en la 
se ofrece una respuesta al inciso d) que se ha desprendido de la observación, pero no deja en claro 
que la igualdad de ángulos implica la igualdad de lados, en cambio responde al inciso e) con mucha 
claridad al respecto de que tratándose de un triángulo isósceles con un lado fijo, el otro lado deberá 
tener una magnitud fija. Consideramos que la respuesta al primer inciso no corresponde al Paradigma 
2, pero su respuesta al segundo inciso cae en las formas de argumentar propias del este paradigma.  

 
Tabla 4 Un ejemplo de respuestas de tipo 3 

d) A pesar de su movimiento siguen siendo con dos lados iguales y tiene 
ángulos iguales. 

e) El segmento AB mide 8 y al ser triángulo isósceles mide igual que BP, 
entonces a pesar del movimiento medirán lo mismo y se mantiene 
constante. 

 
Y el cuarto tipo de respuesta son las que propiamente pueden ubicarse en el Paradigma 2, en donde 

se observa que el estudiante reconoce los datos proporcionados, como hipótesis a partir de las cuales 
puede construir sus argumentaciones, las siguientes dos respuestas ilustran este caso. 

 
Tabla 5 Un ejemplo de respuestas de tipo 4 

d) Porque tiene dos ángulos iguales y por lo tanto dos lados iguales que son 
los opuestos a los ángulos iguales. 

e) Porque al ser triángulo isósceles obliga a que el segmento BP 
permanezca de la misma magnitud del AB, y como AB nunca cambia, 
este tampoco. 

Conclusiones 
De los 35 estudiantes que integraban el grupo, 8 de ellos pudieron presentar argumentos para 

justificar proposiciones, que pueden ubicarse en el Paradigma 2 y que aquí hemos catalogado como 
respuestas de Tipo 4. El resto, en mayor o menor medida, mostraron utilizar las formas de 
argumentación propias del Paradigma 1. Esta proporción ilustra un problema serio, al mostrar que la 
mayor parte de los estudiantes se encuentran imposibilitados para usar argumentos deductivos al 
justificar proposiciones geométricas; destacamos que sus respuestas indican que pueden identificar 
hechos geométricos, pero no pueden presentar argumentos deductivos para explicarlos. 

Los resultados nos motivan a estudiar en el futuro las características de la enseñanza de la 
Geometría en el nivel pre-universitario, en donde pudiera encontrarse la fuente de algunas de las 
dificultades observadas. Queremos agregar por último que el uso de GeoGebra ha resultado atractivo 
para los estudiantes, pero esto no se ha reflejado en mejorar la naturaleza de las argumentaciones 
presentadas por los estudiantes.  
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Currently, the spatial imagination is not explicitly developed in schools, it will be necessary to 
interpret 3D objects that are represented in 2D. To develop the ability of 3D spatial imagination, it is 
necessary to consider the spatial location and relative position between objects. Relating sets of 
points with appropriate variations of triads of type (x, y, z) promotes this ability. In this ongoing 
research, the numerical variation of the entries associated with the graphic objects provides 
indicators of location and relative position of points, lines or planes to high school students. We find 
selective numerical variation, supports the development of spatial imagination, whose repeated use 
will train a habit in orientation, which must be worked to become transparent. 

Keywords: Geometry and Geometrical and Spatial Thinking 

According to research related to the analysis of syllabus and textbooks of middle and higher 
education, for the study of topics such as vector spaces, an explicit introduction to the development 
of spatial imagination is not considered necessary, which then is a disadvantage in graphic 
interpretations. However, in these syllabus there is a graphic approach that tries to be solved through 
the graphic point-ordered pair relationship, which does not seem to be sufficient for the type of tasks 
proposed. At the same time, 3D representations are scarce and the problems associated with 
interpretation are not addressed because they are used as an illustration and not as a mathematical 
object; due to that situation, students do not have the opportunity to go beyond a formal education 
that emphasizes algebraic treatment, because they do not have graphical representations (Van 
Dormolen, 1986). 

On the other hand, students show a natural propensity to identify more easily some directions over 
others in tasks of graphic interpretation in the case of graphs in representations of 3D spaces, which 
contributes to disorienting the student in tasks of spatial imagination (Cohen , 2001). Other sources 
of conflict arise in the interpretation of perspective, due, among other things, to the fact that we must 
reorganize the information to understand that this interpretation is present and that the graphic 
representation is subordinate to it, that is, "seeing and knowing" are two different things, according to 
Parzysz (1988). Preference to identify lines or sets of lines in a general way can also be an obstacle if 
there is not a direct instruction to determine their orientation (Bakó, 2003). 

Because the interpretation of the perspective or 3D depth in a plane is a work in which the visual 
information must be decoded, from our point of view it is necessary to have indicators that guide the 
spatial imagination to carry out an adequate treatment of 3D graphic objects. 

Some learning proposals to work with 3D space, link the figural properties of drawing with its 
mathematical characteristics through the use of orthogonal projections, which have a constructive 
and prescriptive foundation, that is organized through parallelism and perpendicularity (Parzysz , 
1988), and goes in the direction of establishing spatial indicators for students to improve their spatial 
imagination. Therefore, we consider it of great importance to provide such indicators that guide 
students for the interpretation of 3D space in terms of locating the position of points as well as sets of 
points in their relative positions. 

 



Spatial imagination to work on 3D space using a figural device 

	 712	

Theoretical framework 
In learning mathematics, the use of signs as semiotic instruments (Vigotsky, 1981a) that allow 

knowledge to be mediated, provides adequate conditions for students to develop reflective practice 
(Radford, 2006, 2012); therefore, it is important to associate mathematical ideas such as graphics, in 
terms of a practice that uses semiotic instruments, particularly when we establish relationships 
between algebraic objects and graphics, to integrate the interpretation of 3D graphics into a single 
body of knowledge, as in this case. 

On the other hand, mathematical objects such as graphs, have a visual and abstract character, so it 
can be considered as a figural concept (Fischbein, 1993), mathematical objects that can be thought of 
in a double status, as objects and as concepts. In particular, geometric objects are figural concepts, 
since they reflect spatial properties (shape, position, magnitude) and at the same time, they possess 
conceptual qualities such as ideality, abstraction, generality, perfection, among others (Fischbein, 
1993), and apparently this is also the case for graphs. 

Because the figural properties are ostensive, that is "they are in front of the eyes", they allow us to 
differentiate their location and their relative position, in addition to the fact that their position is the 
only property of graphic objects, because they are represented in homogeneous spaces of 
representation where the only quality is their position (Nemirovsky, 2001). We are able to lean on 
these properties to develop spatial imagination, which in our case includes both, the ability to locate 
points, as well as the ability to establish the relative position between graphic objects that include 
points, lines and planes. 

In order to establish spatial indicators for the spatial imagination, we will be using a treatment on 
the position of points of the type (x, y, z) which by means of the numerical variation of their 
coordinates, describes points and sets of associated points as points, lines and planes, which 
depending on the situation take on the role of spatial indicators. Used in this way, the triads become 
signs that associate properties of algebraic description and spatial position, which makes them what 
we have named, a figural device, when used for this dual purpose. Besides that, due to its perceptual 
nature, its repeated use would allow students to develop habits of thought (Cuoco, Goldenberg and 
Mark, 1996) until they acquire a form of transparency (Roth, 2003) in their location and relative 
position. 

Next, we propose what are our research hypotheses: 
1. The spatial imagination can be developed by positional approximations by means of the 

numerical variation of the triad (x, y, z) associated with the points that can describe lines and 
planes, as well as the hability to establish their relative position. 

2. The acquisition of habits of thought plays a central role in the acquisition of the ability of 
spatial imagination, if the variation of the triads is associated with the position of the objects 
described. 

Methodology 
In particular, in the case of visual interpretation of three-dimensional space, it is possible to make 

use of certain types of figural devices when we use the triad (x, y, z) that has its origin in the 
representation of points in three-dimensional spaces. Based on their position properties, we explore 
the relationship between each coordinate of the triad (x, y, z) and those of the points in space. 

The activity carried out establishes that each of the coordinates refers to a specific orientation in 
space, which makes it possible to make constant some of the values of the coordinates to vary one or 
two of them or to vary all three. This allows the coordinate to be associated with the relative position 
of the points and point sets, using the axes as an orientation reference. 

We proceeded with two different environments for locating points and sets of points. On the one 
hand, in a physical environment we made use of a manipulable (Godino, 1998) for the realistic 
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representation of the 3D space, where we used a model consisting of three slightly transparent plastic 
sheets, of different colors, assembled in such a way that they represented the eight octants, and the 
joints of each sheet formed the axes of space. For the second environment, graphical representations 
were used in GeoGebra. 

The developed procedure was based on establishing a location relationship supported by the 
numerical variation in the triad coordinates (x, y, z), asking for the point or set of points that were 
described from the variations made and the coordinates with constant values in the two 
environments. 
Implementation 

The implementation of this research was carried out in two groups of the sixth semester of high 
school: group A, consisted of 20 students and group B, consisted of 36, all of them 17 and 18 years 
old and none of them with a notion of 3D space. They were given a class where they were introduced 
to three-dimensional space, explaining concepts and placing triads in different octants. After this, we 
did a case study with the student Elías from group B, and we did a follow-up interview that we 
describe below. 

First phase: physical model and location of areas associated with the signs. It was a reminder of 
the positional meaning that the triad can acquire, as in cases where the points have the following 
signs: a) (±, -, ±) b) (+, +, +) c) (+, - , ±) d) (-, +, ±) e) (+, ±, ±) f) (-, -, -). The work was accompanied 
by the comparison of the location of the triad that Elías made first in his worksheets, varying the 
possibilities of orientation depending on the signs. He was also asked for suggestions on points with 
specific properties. 

Second approach: Variations. The researchers proceeded to make variations, first, we set a 
coordinate allowing the variation in the two remaining positions, so that the sets of points described 
formed planes to reflect on the properties of the lines formed by the intersections of parallel and 
perpendicular planes at this stage, particularly with the canonical planes. Then we set a pair of 
coordinates allowing the variation of the missing position, so that the sets of points described now 
formed lines, parallel to one of the axes, as in the cases of (-1, 2, z), (1, y, 3) or (x, 2, -1), among 
others; the sets were located in the space provided by GeoGebra. 

We present an extract from the interview with Elías, that allowed the researchers to see the use of 
the triad as a figural concept in the case of the variation of two coordinates with the other one fixed; 
we asked him to mention 5 triads in which the first coordinate had the same value and the second and 
third varied, those points were graphed in the software (Figure 1) and he was asked: 

INV: What do you observe about these points? (Figure 1) 
Elías:  Now they are all facing each other. 
INV:  Would they be on some plane? Would all the points be inside this? (indicates the region of the 

points) 
Elías:  From the plane? Yes. 
INV:  What plane would it be? 
Elías:  It would be (5, y, z) 
After Elías said (5, y, z), the plane was graphed as in Figure 2 to verify: 
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  Figure 1: Graphed points       Figure 2: Plane (5, y, z)      Figure 3: Planes (2, y, z) y (x, 2, z) 

 
Subsequently, the student was asked to mention four triads in which the first and second coordinates 

were fixed and the third varied, those points were graphed in GeoGebra and Elías was able to 
visualize that they were “on top of each other”, that is “there is only one line left” and there could be 
two planes - (2, y, z) and (x, 2, z) - that could go through that line (Figure 3). 
Results. 

In the group stage of the experiment, students were able to have a first adequate approach to three-
dimensional space, this was observed qualitatively from the variational management they gave to 
triads with different signs, placing them correctly in one of the eight octants of space, and by making 
sense of the "new" axis, the Z axis. In addition, although the manipulative was only used at the 
beginning to determine the orientation and the octants, in the interview the student Elías used it and 
expressed that this model made it easier for him to locate the triads, that is, it allowed him to better 
organize his thoughts. We saw this reflected at different times: when he identified each graphed 
plane and related them to their corresponding triads; when he was asked to mention five triads where 
only the first one was fixed and the other two varied, managing to visualize the plane in which they 
were located; and finally, when he chose different triads, with the first two coordinates fixed and 
varying the third, to visualize the intersection of two planes that form in them, and these, in their role 
as a figural device led him to also identify the line generated with those triads. Achieving an 
approximation to the transparency of the particularly chosen triads. 
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Actualmente en las escuelas no se desarrolla explícitamente la imaginación espacial, esta será 
necesaria para interpretar objetos 3D que se representan en 2D. Para desarrollar la habilidad de la 
imaginación espacial en 3D es necesario considerar la ubicación espacial y la posición relativa 
entre objetos. Relacionar conjuntos de puntos con variaciones adecuadas de triadas del tipo (x, y, z) 
promueve esta habilidad. En esta investigación en curso, la variación numérica de las entradas 
asociadas a los objetos gráficos proporciona indicadores de ubicación y posición relativa de puntos, 
rectas o planos a los estudiantes de bachillerato. Encontramos que la variación numérica selectiva 
apoya el desarrollo de la imaginación espacial, cuyo uso reiterado tiende a formar un hábito en la 
orientación, el que debe ser trabajado para convertirse en transparente. 

Palabras clave: Geometría y Pensamiento Geométrico y Espacial 

De acuerdo con investigaciones relacionadas con el análisis de programas de estudio y libros de 
texto de nivel medio superior y superior, para el estudio de temas como el relativo a los espacios 
vectoriales no se considera necesaria una introducción explícita al desarrollo de la imaginación 
espacial, lo que luego es una desventaja en la interpretación gráfica. Sin embargo, en dichos 
programas hay un enfoque gráfico que pretende ser resuelto a través de la relación punto gráfico-
pareja ordenada, que no parece ser suficiente para el tipo de tareas que se proponen. Al mismo 
tiempo las representaciones 3D son escasas y no se atienden las problemáticas asociadas a la 
interpretación porque son usadas como una ilustración y no como un objeto matemático, por lo que 
los estudiantes no tienen oportunidad de ir más allá de una educación formalista que enfatiza el 
tratamiento algebraico, debido a que no cuentan con representaciones gráficas (Van Dormolen, 
1986). 

Por otro lado, los estudiantes manifiestan una propensión natural a identificar con más facilidad 
unas direcciones sobre otras en tareas de la interpretación gráfica en el caso de gráficas en 
representaciones de espacios 3D, lo que contribuye a desorientar al estudiante en tareas de 
imaginación espacial (Cohen, 2001). Otras fuentes de conflicto se presentan en la interpretación de la 
perspectiva debido, entre otras cosas, a que debemos reorganizar la información para entender que 
esta interpretación está presente y que la representación gráfica se supedita a ella, es decir “ver y 
saber” son dos cosas distintas al decir de Parzysz (1988). También puede ser un obstáculo la 
preferencia para identificar unas rectas o conjuntos de ellas de manera general si no hay una 
instrucción ex profeso para determinar su orientación (Bakó, 2003). 

De manera que la interpretación de la perspectiva o profundidad 3D en un plano es un trabajo en el 
que se debe decodificar la información visual, desde nuestro punto de vista es necesario contar con 
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indicadores que orienten la imaginación espacial para llevar a cabo un tratamiento adecuado de los 
objetos gráficos en 3D. 

Algunas propuestas de aprendizaje para trabajar con el espacio 3D ligan las propiedades figurales 
del dibujo con sus características matemáticas a través del uso de proyecciones ortogonales, las 
cuales tienen un fundamento constructivo y prescriptivo, el que es organizado a través del 
paralelismo y la perpendicularidad (Parzysz, 1988), lo que avanza en la dirección de establecer 
indicadores espaciales a los estudiantes para mejorar su imaginación espacial. Por ello, consideramos 
de gran importancia proporcionar dichos indicadores que orienten a los estudiantes para la 
interpretación del espacio 3D en términos de ubicar la posición de puntos así como de conjuntos de 
ellos en sus posiciones relativas. 

Marco Teórico 
En el aprendizaje de la matemática, el uso de los signos como instrumentos semióticos (Vigotsky, 

1981a) que permitan mediar el conocimiento proporciona condiciones adecuadas para que los 
estudiantes desarrollen una práctica reflexiva (Radford, 2006, 2012); por ello, es importante asociar 
las ideas matemáticas como la gráfica en términos de una práctica que hace uso de instrumentos 
semióticos, en particular cuando establecemos relaciones entre los objetos algebraicos y los gráficos 
para integrar en un solo cuerpo de conocimiento la interpretación de la gráfica 3D, como en el caso 
que nos ocupa. 

Por otro lado, los objetos matemáticos como la gráfica tienen un carácter visual y abstracto, por lo 
que puede ser considerada como un concepto figural (Fischbein, 1993), objetos matemáticos que 
pueden ser pensados en un doble estatus, como objetos y como conceptos. En particular, los objetos 
geométricos son conceptos figurales, ya que reflejan propiedades espaciales (forma, posición, 
magnitud) y al mismo tiempo, poseen cualidades conceptuales como idealidad, abstracción, 
generalidad, perfección, entre otras (Fischbein, 1993), y al parecer este también es el caso de las 
gráficas. 

En tanto que las propiedades figurales son ostensivas, esto es “están frente a los ojos”, nos permiten 
diferenciar su ubicación y su posición relativa, además de que su posición es la única propiedad de 
los objetos gráficos, debido a que son representados en espacios de representación homogéneos 
donde la única cualidad es su posición (Nemirovsky, 2001). Estamos en condiciones de apoyarnos en 
estas propiedades para desarrollar la imaginación espacial, que en nuestro caso incluye tanto la 
habilidad para localizar los puntos, así como la de establecer la posición relativa entre objetos 
gráficos que incluyen puntos, rectas y planos. 

Con el objeto de establecer indicadores espaciales para la imaginación espacial, estaremos haciendo 
uso de un tratamiento sobre la posición de puntos del tipo (x, y, z) que mediante la variación 
numérica de sus coordenadas nos describen puntos y conjuntos de puntos asociados como puntos, 
rectas y planos, los cuales según sea la situación toman dicho papel de indicadores espaciales. Usadas 
así las triadas se transforman en signos que asocian propiedades de descripción algebraica y de 
posición espacial, lo que las convierte en lo que hemos dado en llamar un dispositivo figural cuando 
es usado con este doble propósito. Además de que, por su naturaleza perceptual, su uso reiterado 
permitiría a los estudiantes desarrollar hábitos de pensamiento (Cuoco, Goldenberg y Mark, 1996) 
hasta adquirir una forma de transparencia (Roth, 2003) en la localización y la posición relativa de 
ellos. 

A continuación, proponemos las que son nuestras hipótesis de investigación: 
1. La imaginación espacial puede ser desarrollada por aproximaciones posicionales mediante la 

variación numérica de la triada (x, y, z) asociada a los puntos que pueden describir rectas y 
planos, así como pueden establecer su posición relativa. 
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2. La adquisición de hábitos de pensamiento juega un papel central en la adquisición de la 
habilidad de imaginación espacial si se asocia la variación de las triadas con la posición de 
los objetos descritos. 

Metodología 
En particular, en el caso de la interpretación visual del espacio tridimensional, es posible hacer uso 

de cierto tipo de dispositivos figurales cuando usamos la triada (x, y, z) que tiene su origen en la 
representación de los puntos en el espacio tridimensional. Con base en sus propiedades de posición 
exploramos la relación entre cada coordenada de la triada (x, y, z) y las de los puntos sobre el 
espacio. 

La actividad desarrollada establece que cada una de las coordenadas se refiere a una orientación 
específica en el espacio, lo que permite hacer constantes algunos de los valores de las coordenadas 
para variar uno o dos de ellos o variar los tres. Esto permite asociar la coordenada con la posición 
relativa de los puntos y conjuntos de puntos, usando a los ejes como referencia de orientación. 

Procedimos con dos entornos distintos para la localización de puntos y conjuntos de puntos. Por un 
lado, en un entorno físico hicimos uso de un manipulable (Godino, 1998) para la representación 
realista del espacio 3D, donde usamos un modelo formado por tres láminas de plástico ligeramente 
transparente, de diferentes colores, ensambladas de tal forma que representaban los ocho octantes, las 
uniones de cada lámina formaban los ejes del espacio. Para el segundo entorno se usaron 
representaciones gráficas en GeoGebra. 

El procedimiento desarrollado se basó en establecer una relación de localización apoyada en la 
variación numérica en las coordenadas de la triada (x, y, z), preguntando por el punto o conjunto de 
puntos que eran descritos a partir de las variaciones hechas y de las coordenadas con valores 
constantes en los dos entornos. 
Puesta En Marcha. 

La puesta en marcha de esta investigación se llevó a cabo en dos grupos de sexto semestre de 
bachillerato: el grupo A, conformado por 20 estudiantes y el grupo B, conformado por 36, todos ellos 
de 17 y 18 años y ninguno con noción del espacio 3D. Se les dio una clase donde se les introdujo al 
espacio tridimensional, explicando conceptos y ubicando triadas en diferentes octantes. Después de 
esto, hicimos un estudio de caso con el estudiante Elías del grupo B, le hicimos una entrevista de 
seguimiento que describimos a continuación. 

Primera fase: modelo físico y localización de zonas asociadas a los signos. Se trató de un 
recordatorio del significado posicional que puede adquirir la triada como en los casos en que los 
puntos tienen los siguientes signos:    a) (±, -, ±)    b) (+, +, +)    c) (+, -, ±)    d) (-, +, ±)    e) (+, ±, ±)    
f) (-, -, -). El trabajo se acompañó de la comparación de la ubicación de la triada que Elías hizo 
primero en sus hojas de trabajo variando las posibilidades de orientación dependiendo de los signos. 
También se le pidieron sugerencias sobre puntos con propiedades específicas. 

Segunda aproximación: Variaciones. Las investigadoras procedimos a hacer variaciones, en 
primer lugar, fijamos una coordenada permitiendo la variación en las dos posiciones restantes, de 
manera que los conjuntos de puntos descritos formaron planos para reflexionar en las propiedades de 
las rectas formadas por los cruces de planos paralelos y perpendiculares en esta etapa, en particular 
con los planos canónicos. Luego fijamos un par de coordenadas permitiendo la variación de la 
posición faltante, de manera que los conjuntos de puntos descritos ahora formaron rectas paralelas a 
alguno de los ejes como en los casos de (-1, 2, z), (1, y, 3) o (x, 2, -1), entre otros; los conjuntos 
fueron ubicados en el espacio proporcionado por GeoGebra. 

Presentamos un extracto de la entrevista con Elías que a las investigadoras nos permitió ver el uso 
de la triada como concepto figural en el caso de la variación de dos coordenadas con la otra fija; le 
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pedimos que mencionara 5 triadas en las que la primera coordenada tuvieran el mismo valor y la 
segunda y la tercera variaran, se graficaron esos puntos en el software (Figura 1) y se le preguntó: 

INV:   ¿Qué observas de estos puntos? (Figura 1) 
Elías: Ahora todos están uno frente a otro. 
INV: ¿Estarían sobre algún plano? ¿Todos los puntos estarían adentro de esto? (señala la región de 

los puntos) 
Elías: ¿Del plano? Sí. 
INV: ¿Qué plano sería? 
Elías: Sería (5, y, z) 

Luego de que Elías dijo (5, y, z), se graficó el plano como en la Figura 2 para comprobar: 
 

         
  Figura 1: Puntos graficados     Figura 2: Plano (5, y ,z)   Figura 3: Planos (2, y, z) y (x, 2, z) 

 
Posteriormente, se le pidió al estudiante que mencionara cuatro triadas en las que la primera y la 

segunda coordenadas fueran fijas y la tercera variara, se graficaron esos puntos en GeoGebra y Elías 
pudo visualizar que estaban “uno encima del otro”, es decir que “queda una línea nada más” y que 
podrían ser dos planos - (2, y, z) y (x, 2, z) - los que podían pasar por esa línea (Figura 3). 
Resultados.  

En la etapa grupal del experimento se logró que los estudiantes tuvieran un primer acercamiento 
adecuado al espacio tridimensional, esto se observó de forma cualitativa a partir del manejo 
variacional que le daban a las triadas con diferentes signos ubicándolas correctamente en alguno de 
los ocho octantes del espacio y al darle sentido al “nuevo” eje, el eje Z. Además, aunque el 
manipulable sólo se usó al inicio para determinar la orientación y los octantes, en la entrevista el 
estudiante Elías hizo uso de él y expresó que este modelo le facilitaba ubicar las triadas, es decir, le 
permitía una mejor organización de sus pensamientos. Lo cual vimos reflejado en diferentes 
momentos: cuando identificó cada plano graficado y los relacionó con sus triadas correspondientes; 
cuando se le pidió que mencionara cinco triadas donde solo la primera quedara fija y variaran las 
otras dos, logrando visualizar el plano en el que se encontraban; y finalmente, cuando escogió 
diferentes triadas con las dos primeras coordenadas fijas y variando la tercera, para visualizar la 
intersección de dos planos que se forman en ellas, y estos en su papel de dispositivo figural 
propiciaron que también identificara la recta generada con esas triadas. Logrando una aproximación a 
la transparencia de las triadas elegidas particularmente. 
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Spatial ability is important in the learning and understanding of mathematics and has been 
recognized as an indicator of mathematics achievement and STEM success. The present study aims 
to investigate how experiences with computer-aid design programs can enhance student’s spatial 
ability measured by mental rotation skills. Quantitative data were collected before and after 
intervention using the redrawn Vandenburg and Kuse Mental Rotation Test by Peters et al. (1995). A 
paired sample t-test and 95% confidence intervals indicated a statistically significant difference 
between observed pre and post test scores. The calculated Cohen’s d effect size of 0.63 indicated the 
CAD intervention had a positive impact on students’ mental rotation skills. It can be concluded that 
utilizing these technologies can aid in developing and improving spatial abilities which can lead to 
improved mathematics achievement and STEM success. 

Keywords: Spatial Thinking, STEM, Teaching Tools, Technology 

Introduction and Literature Review 
Improving mathematics science, technology, engineering and mathematics (STEM) success is a 

very relevant issues in research and education. Spatial ability has been recognized as a predictor of 
adult success in STEM areas across several longitudinal studies that followed a large population of 
both normative and intellectually gifted individuals from adolescence to adulthood (Shea, Lubinski, 
& Benbow, 2001; Wai, Lubinski, & Benbow, 2009).  In addition, researchers have found that spatial 
ability provides validity to mathematical and verbal reasoning abilities yet in education there is little 
emphasis on the development of spatial abilities (Basham & Kotrlik, 2008). Psychologists and 
education researchers have been interested in the connection between spatial ability and mathematics 
achievement since the mid-1900’s (Bishop, 1980) and prior research has supported this link (e.g. 
Carr et al., 2019; Casey, Nuttal, & Perzris, 1997; Ganley & Vasilyeva, 2011; Gilligan, Flouri, & 
Farran, 2017; Hawes, Moss, Caswell, Seo, & Ansari, 2019; Rabab’h & Veloo, 2015; Rutherford, 
Karamarkovick, & Lee, 2018; Verdine et al., 2014). Despite the acknowledgement and confirmation 
of the connections between spatial ability and STEM success, specifically mathematics achievement, 
there is little research on the development of spatial abilities. In the current study, researchers 
investigated how the implementation of computer-aided design software and 3D printing class with 
adolescents is associated to growth in spatial ability measured via mental rotation skills. 

Mental Rotation. Spatial ability is often organized into three categories: (1) spatial perception, (2) 
spatial visualization, and (3) mental rotation (Linn & Peterson, 2004). All three categories are 
important for learning and understanding of mathematics and can improve students’ problem solving 
and reasoning skills. In the current study mental rotation is measured as an indicator of spatial ability.  

Mental rotation of objects is a fundamental spatial ability that affects several aspects of life. Mental 
rotation is primarily associated with the skill to mentally rotate images or objects into particular 
orientations. The ability to mentally rotate objects includes the visual inspection and mental 
simulation of the object’s rotation in space (Hegarty & Waller, 2005). Mental rotation ability is 
important for success in several academic and career fields, especially the science, technology, 
engineering, and mathematics (STEM) domains (Károlyi, 2013). Mental rotation skills are utilized in 
performing many everyday tasks such as rearranging furniture, packing the car trunk, navigating a 
map, and parking a car, among many other examples academic and job tasks in non-STEM careers.  
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Mental rotation is especially useful in several career areas (e.g. architecture, industrial design, 
engineering, sculpting, surgery, kinesiology, dentistry, and aviation). Interventions and activities that 
develop and improve mental rotation skills could lead to increased success in STEM and related 
domains. Computer-aided design (CAD) programs and 3D printing activities is an excellent way to 
utilize advanced technologies to develop and improve students’ spatial abilities. 

CAD Programs. Computer-aided design programs are utilized to create detailed three-dimensional 
models and two-dimensional drawings. Computer-aided design programs are most commonly used 
by engineers for drafting, designing, and developing diverse and complex machinery components 
(Sharma & Dumpala, 2015). They are also widely used by designers due to its ability to offer the 
creation of intricate designs (Martin & Velay, 2012) in a way that is more accessible to others. 
Computer-aided design programs and manufacturing tools, such as 3D printers, are ever-present in 
current product commercialization environment and students entering this environment need to be 
practiced in using such tools (Johnson & So, 2015). The utilization of CAD programs in 3D printing 
and design classes showed positive influences on student’s mathematics skills, real-life skills, 
interests and motivation (Kwon, 2017). There are several types of CAD programs on the market such 
as TinkerCAD, SketchUp, SolidWorks, and AutoCAD, all of which are used create 2-dementional 
renderings of 3-dementional designs. 

CAD and Mental Rotation. Spatial ability and mental rotation in children are often neglected in 
early education but can be promoted through experiences with three-dimensional modeling programs 
(Matthews & Geist, 2002). Students’ mental rotation has been identified as a predictor of success in 
STEM domains and computer-aided design (CAD) programs have overcome barriers to spatial 
expression (Chang, 2014) that has been an essential tool in engineering education (Chester, 2007). 
Mental rotation skills could be developed and improved through the use of certain technologies (e.g. 
CAD software and 3D printing) which can lead to improved mathematics achievement and STEM 
success. 

Methodology 
In the present study a quasi-experimental study was conducted to explore the relationship between 

the utilization of CAD programs and students’ mental rotation skills. To determine how the 
implication and use of CAD programs in a classroom influenced student’s mental rotation skills, data 
were collected during a week-long CAD intervention. The current study was guided by the following 
research question: How will student’s mental rotation skills be influenced after experiences and 
utilizing computer-aid design programs in a 3D printing class?  

Participants. The sample was comprised of  1 middle school student and 24 high school students 
who attended a one-week STEM summer camp at a research-intensive university. The ethnic 
backgrounds of the sample included 15 Caucasians (60%), 7 Hispanics (28%), 1 African Americans 
(4%), and 2 whom did not disclose ethnicity (8%). The sample is comparable to the United States 
population with a noted difference that African Americans were slightly underrepresented in the 
sample. The sample included 5 females (20%) and 20 males (80%), females were underrepresented 
in the sample regardless of the level of comparison.   

Instrument. The Mental Rotations Test was used to assess participants mental rotation skills 
(Peters et al., 1995) and adaptation of the original paper and pencil Mental Rotations Test by 
Vandenberg and Kuse (1978). The test contained 24 items with five 3D drawings of cubical figures 
per item. Each item contained one target figure on the left and four answer choices on the right. The 
participants were to identify which two of the answer choices were identical to the target but rotated 
along the y axis. The two other answers were mirror-images of the target and thus could not become 
identical to the target by rotation. The test was given in two parts, the participants were given three 
minutes to complete the first 12 questions, a two-minute break, and three minutes to complete the 
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remaining 12 questions. Two undergraduate students recorded participants answers into an excel 
spreadsheet which was then checked by a senior doctoral student. Recorded answers were then 
scored by the instructor. One point was given for each correct answer, and one point is subtracted for 
each incorrect answer yielding a maximum of 48 points. The internal consistency for this sample was 
measured using Cronbach’s (1951) alpha coefficient; score reliability was high with a 0.84 for the 
pre-test and 0.89 for post-test. All participants were tested both before and after the intervention at 
the same time by the same test administrator and instructions. 

CAD Programs Used for Instruction. In the present study two different 3D CAD programs 
(TinkerCAD and SketchUp) were introduced and utilized. These two CAD programs were chosen 
because they both are available free TinkerCAD, owned by Autodesk, is a free, online 3D modeling 
program that runs in a web browser and is known for its simple interface and ease of use. TinkerCAD 
allows users to start their designs with 3D geometric primitives (Avila & Bailey, 2016) that can be 
combined and manipulated.  Geometric primitives are basic geometric shapes (e.g. sphere, cube, 
cylinder, pyramid) that can be assembled with others to construct more complex shapes (Boubekeur, 
Kaiser, & Ybanez Zepeda, 2019). Starting with these basic 3D shapes provides a much simpler mode 
to create complex shapes and objects. TinkerCAD provides an easy, early training ground to 
introduce solid modeling and 3D printing to a younger or less experienced students.  

SketchUp, owned by Trimble Inc., is a 3D modeling computer program used for a variety of 
applications including but not limited to architectural, interior design, mechanical engineering, and 
video game design. SketchUp starts with 2D geometric primitives (e.g. point, line, plane, circle) and 
allows users to push or pull them into 3D objects (Avila & Bailey, 2016). SketchUp provides a 
platform for users to sketch and create 3D designs with much more creativity, precision, detail, and 
complexity than TinkerCAD. SketchUp could be considered an intermediate to advanced CAD 
program but is still user friendly and accessible. Several SketchUp packages are offered at different 
price points but a free web-based version is now available. The free version was used in the present 
study. 
Intervention  

During a one-week STEM summer camp participants were randomly assigned and placed in a 3D 
printing class. The class met for one and a half hours each day for one-week: Monday through 
Friday. The class was instructed and facilitated by a third year female Mathematics Education PhD 
student who had previous training in 3D printing and Sketch-Up. She also had two years of 
experience (two projects per school year) utilizing a 3D printer, TinkerCAD, and Sketch-Up in high 
school Geometry classes (on level and pre-AP). On the first day participants took the pre-test and 
listened to an introduction to 3D printing, the engineer design process, and were given guidelines for 
the first project Make your own Trophy (see Table 10. They created TinkerCAD accounts, explored 
the software, and created their trophy. Day two the instructor introduced SketchUp and guided 
participants through how to use the available tools. They then received three open-ended final 
projects to choose from. 

 
Table 1: Project descriptions  

Project Title Description 
Make your own 

trophy 
Create an award for yourself to receive at the end of the camp that is less than 

5”x5”x5”, has your name, and consist of at least 10 shapes. 
 

Fusion of Art and 
Function 

Design and create something that is both fun/interesting to look at and is 
functional. 
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Project Title Description 
Historical Structure Choose and replicate any historical structure of your choice. 

 
Product Prototype Invent the next big thing; design and create a prototype of a brand-new product. 

 
For the final project participants were given the option to work in TinkerCAD or SketchUp; which 

required participants to self-assess their skill level and choose a platform for which they were 
comfortable using. It was unknown to the instructor what prior knowledge, skills, and/or experiences 
participants would have entering the class, therefore a beginner program and an 
intermediate/advanced program were offered so participants of various skill levels would remain 
actively engaged by attempting to avoid disengagement caused by frustration, boredom of a steep 
learning curve of the CAD program. Only two participants chose to work in SketchUp. Day three and 
four were project workdays where the participants worked independently on their final projects. 
During this independent work time their trophies were being printed and participants were taken in 
small groups to the 3D printer room to see them in action. The instructor provided them with 
additional information about the printer and printing procedures then answered any questions they 
had. On the fifth day participants finished their final project and shared their design.  
Data Analyses 

Quantitative data were collected pre and post intervention to assess participants mental rotation 
skills using the Mental Rotations Test - Form A (Peters et al., 1995). First, data were analyzed using 
a paired sample t-test to investigate the statistical differences between mental rotation skills before 
and after the intervention. Prior to conducting the paired sample t-test, Q-Q plots and box plots of the 
pre-test and post-test scores were analyzed to assess score distribution and check for outliers. Second, 
to provide a visual representation of the results, 95% confidence intervals (CIs) for the pre and post 
test scores were examined. The 95% CI indicates that if the study was conducted an infinite number 
of times, the calculated point estimate would be captured 95% of the time. Using 95% CIs provides a 
visual depiction of the preciseness of the estimate and a direct comparison model for other similar 
studies (Thompson, 2002). Finally, Cohen’s d effect size estimates were computed to quantify the 
magnitude of the difference between pre and post test scores. Due to the small sample size of the 
present study t-test results may be skewed therefore effect size is more suitable for the given data. 
Effect size indices are valuable in quantifying the effectiveness of an intervention because they are 
unitless, making them comparable across studies, and do not depend on sample size (Sullivan & 
Feinn, 2012). Reporting effect size is an important practice in order to report and interpret results in a 
trustworthy way that is usable for scholars and practitioners (Thompson, 1999a). In addition, 
reporting effect sizes, even for results that are not statistically significant, aids in compelling 
researcher to think meta-analytically and provides grist to possible future meta-analyses (Cumming 
& Finch, 2001; Thompson, 1999b; Thompson, 2001). Statistical package SPSS 25 was used in the 
aforementioned data analyses. 

Overall, the results indicated that mental rotation skills, as measured by the instrument, were 
improved by the CAD intervention. No class time was spent on reviewing mental rotations or 
practicing with similar diagrams. Therefore, direct instruction in the concept is not a potential threat 
to validity.  
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Developing knowledge of the characteristics and properties of two- and three- dimensional 
geometric shapes are considered key content for elementary-aged students to learn. Quadrilaterals, 
one of the conceptually complex topics in geometry, have a range of attributes such as side length, 
angle measure, relationships between opposite/adjacent angles/sides, length and bisection of 
diagonals, etc. Previous research corroborated that transitioning from the introductory information 
about attributes of these shapes to mentally manipulating and proving the properties is challenging. 
Many teachers across elementary through senior grades, struggle with geometry content, and 
consequently, so do their students (Bhagat & Chang, 2015). Research reports that prospective 
teachers have difficulty in identifying specific shape types based on properties, rather than visual 
recognition (Burger & Shaughnessy, 1986) and struggle to determine other properties or define the 
relationships between various quadrilaterals. Drawing on Tall and Vinner’s (1981) description of 
concept-image and concept definition, this study aims to add to the existing literature by answering 
the research question: What conceptions do prospective elementary mathematics teachers have of the 
attributes of the family of quadrilaterals? 

The participants in this study were 19 prospective elementary teachers (2 male and 17 female) 
between 17-24 years of age enrolled in a content course designed to support knowledge of geometry 
and measurement in the elementary curriculum using a problem-solving approach. Data sources 
include the PSTs responses on a 26-item (15 closed and 11 open-ended) geometry tests. Findings 
showed that PSTs reasonings seemed to be fixed towards certain images rather than mental 
manipulation of the attributes and concept definitions (Vinner, 1991). For instance, PSTs considered 
rectangle as a figure with two long parallel sides and two shorter parallel sides and four 90° angles, 
while defined parallelogram as a slanted shape. PSTs tended to over-generalize the attributes of 
certain common quadrilaterals showing a continuous exposure to a geometrical shape in specific 
orientation (e.g., square having a horizontal base). While responding to the question, ‘do the 
diagonals of kite bisect each other?’, most of the PSTs responded incorrectly having generalized the 
properties of the diagonals of a square, rectangle, and rhombus.  

The results of this study highlight the importance of emphasizing the two-way interaction between 
concept image and concept definition by explicitly showing interactions between theoretical  and 
practical application of the learned ideas. Creating the definitions of quadrilaterals based on 
understanding of attributes (Fujita & Jones, 2007; Usiskin & Griffin, 2008), and exploring the 
inclusive relationship between various quadrilaterals (Fujita, 2012) may support PSTs in developing 
conceptions using non-prototypical examples. In this regard, time, high-quality tasks, and appropriate 
scaffolding are essential to strengthening understanding of quadrilaterals specifically, and geometric 
concepts more broadly. 
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This poster describes how programming robots might support both the development of spatial 
reasoning and growth in mathematical understanding using interpretive video analysis of two Grade 
4 students’ attempts to program their robot to follow a pentagon. 

Theoretical Perspective. We argue that programming robots to move could lead to growth in 
mathematical understanding and contribute to developing spatial reasoning. We draw on Pirie and 
Kieren’s (PK) (1994) model of growth in mathematical understanding which describes modes of 
engagement with mathematical concepts as seven distinct levels with increasing abstraction. We 
suspect that spatial reasoning is essential to all modes, but that it is especially relevant to the first 
three elements (primitive knowing, image making, and image having). 

“[S]patial reasoning … refers to the ability to recognize and (mentally) manipulate the spatial 
properties of objects and the spatial relations among objects” (Bruce et al., 2017, p. 147). Davis et al. 
(2015, p. 141) attempted to collect the many competencies and habits associated with spatial 
reasoning into a model that represents the emergent complexity of spatial reasoning skills as co-
evolved and complementary nature of the mental and physical actions.  

Research Question. We questioned how programming robots might provide children with 
opportunities to gain mathematical understanding and develop spatial reasoning.  

Data Collection Techniques and Analyses. Consistent with Knoblauch et al.’s (2013) notions of 
interpretive video analysis, we reviewed and selected one video based on instances of observable 
spatial engagement from 9 months of weekly videos collected of 32 Grade 4 students in 2 
classrooms. In this video, a pair of students is attempting to program an EV3 LEGO Mindstorm robot 
to trace the third vertex of a pentagon having previous success following the first two straight-turn 
segments. We identified spatial elements in the two students’ interactions according to Davis et al.’s 
(2015) framework while they engaged in determining how to steer their robot to travel around the 
108o vertex. We then analysed levels of mathematical understanding according to the PK model. 

Summary of Findings. In this video one can observe the children working with many aspects of 
spatial reasoning and mathematical understanding. Drawing upon Davis et al.’s (2015) elements of 
spatial reasoning, the students were simultaneously INTERPRETING, [DE]CONSTRUCTING, 
MOVING, SITUATING, ALTERING and SENSATING. In the video, we observed the pair engage 
in how the distance the robot turns relates to the number of wheel rotations. The mathematical 
concepts included additive thinking, angles, properties of shape, measurement (distances, robot 
turns), multiplicative thinking (number of wheel rotations), pattern recognition, and direct proportion. 
Students’ growth in understanding dynamically progressed between primitive knowing, image 
making, and image having. Our findings highlight how programming robots could support both the 
inner modes of PK’s growth in mathematical understanding and contribute to developing spatial 
ability. 

References 
Bruce, C. D., Davis, B., Sinclair, N., McGarvey, L., Hallowell, D., Drefs, M., Francis, K., Hawes, Z., Moss, J., 

Mulligan, J., Okamato, Y., Whiteley, W., & Woolcott, G. (2017). Understanding gaps in research networks: 
Using “spatial reasoning” as a window into the importance of networked educational research. Educational 
Studies in Mathematics, 95(2), 143–161. https://doi.org/10.1007/s10649-016-9743-2 



Growth in mathematical understanding and spatial reasoning with programming robots 

	 730	

Davis, B., Okamoto, Y., & Whiteley, W. (2015). Spatializing school mathematics. In Spatial reasoning in the early 
years: Principles, assertions, and speculations (pp. 139–150). Routledge. 

Knoblauch, H., Tuma, R., & Schnettler, B. (2013). Videography. Introduction to interpretive videoanalysis of social 
situations. Springer.  

Pirie, S., & Kieren, T. (1994). Growth in mathematical understanding: How can we characterise it and how can we 
represent it? Educational Studies in Mathematics, 26(2/3), 165–190. https://doi.org/10.1007/BF01273662. 

 
 



Geometry and Measurement 

In: Sacristán, A.I., Cortés-Zavala, J.C. & Ruiz-Arias, P.M. (Eds.). (2020). Mathematics Education Across Cultures: 
Proceedings of the 42nd Meeting of the North American Chapter of the International Group for the Psychology of 
Mathematics Education, Mexico. Cinvestav / AMIUTEM / PME-NA. https:/doi.org/10.51272/pmena.42.2020 

731	

FUNKY PROTRACTORS CREATED BY PROSPECTIVE TEACHERS 

Hamilton L. Hardison 
Texas State University 

HHardison@txstate.edu 

Hwa Young Lee 
Texas State University 

hylee@txstate.edu 

Keywords: Geometry and Geometrical and Spatial Thinking, Instructional Activities and Practices, 
Measurement, Teacher Knowledge 

Angles and angle measure are important and frequently leveraged concepts throughout school 
mathematics curricula. Yet, relative to other quantities like length, area, and volume, very little 
scholarly literature addresses how students and teachers understand angle measure (Smith & Barrett, 
2017). From the scant extant literature, it is clear that developing productive conceptions of angle 
measure is non-trivial for students and teachers alike (Akkoc, 2008; Lehrer, Jenkins, & Osana, 1998; 
Smith & Barrett, 2017). In the U.S., individuals’ challenges in quantifying angularity may be 
partially attributed to instructional approaches that (a) overemphasize the use of conventional 
protractors to measure angles and (b) fail to address how the design of these conventional tools 
renders them appropriate for measuring angles (Moore, 2012). This is especially problematic given 
that well-prepared beginning teachers must be skilled in explaining how to select appropriate tools 
for particular mathematical goals (Association of Mathematics Teacher Educators, 2017).  

To occasion conversation and reflection about angular measurement and protractors in our geometry 
courses for prospective teachers, we designed tasks involving a collection of non-standard tools that 
might be used to measure angles. We refer to these tools as funky protractors (Hardison & Lee, 
2020a). For each funky protractor we designed, we altered one or more features to differentiate it 
from a conventional protractor (e.g., uncommon shape, equally spaced linear or angular intervals, 
non-standard angular unit of measure, etc.). We intentionally designed some funky protractors to be 
valid tools for measuring angles and others to be invalid; in previous implementations, we have 
asked prospective teachers to determine which funky protractors are valid tools for measuring angles 
and to justify their decisions. Thus, funky protractor tasks are the angular analogue of the “strange 
ruler” tasks others have used to promote critical thinking about linear measure (Dietiker, Gonulates, 
& Smith, 2011). Elsewhere, we have discussed prospective teachers’ decisions regarding the validity 
of funky protractors, as well as the strategies they leveraged to support their decisions (Hardison & 
Lee, 2020b, this volume).  

In this poster presentation, we report on an extension of the funky protractor tasks, which we 
implemented with prospective middle and secondary teachers enrolled in one section of a geometry 
content course at a large public university. After evaluating the validity of four funky protractors and 
engaging in a whole-class discussion, prospective teachers were asked to create two of their own 
funky protractors: one that would be a valid tool for measuring angles and one that would not be a 
valid tool for measuring angles. We present examples of the funky protractors that prospective 
teachers created and analyses of these items. In particular, we (a) summarize how successful 
prospective teachers were in creating valid and invalid tools for angular measurement, (b) describe 
the features prospective teachers manipulated when designing their own funky protractors, and (c) 
discuss prospective teachers’ perspectives on the pedagogical utility of funky protractors.  
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Gestures have been shown to improve students’ abilities to process new mathematics concepts 
(Goldin-Meadow et al., 2009) and reduce cognitive load (Ping & Goldin-Meadow, 2010). Producing 
gestures related to mathematical concepts have been shown to support reasoning as learners ground 
their understanding of math concepts in body-based movement (Walkington et al., 2014). Such 
findings show the affordances of gesturing to create meaningful representations in mathematics. 
However, less is known about how giving students the option to gesture in activities impacts 
engagement and vocabulary acquisition for geometry concepts.  

We adapted a modified version of the game Taboo, designed for high-school geometry students 
(Carter, 2015), where players take turns being the hint-giver with 60 seconds to verbally describe 
geometry terms on cards (e.g., intercept, parallelogram, function). The hint-giver creatively 
describes each term, avoiding the taboo words (e.g., intercept: cross, axis, graph).  

A pilot study was conducted to examine whether the option to gesture while playing Geometry 
Taboo may contribute to engagement, performance, and vocabulary acquisition for high school 
geometry students. The study took place in two tenth grade geometry classes. The first day, 25 
participants completed a paper-and-pencil timed pretest that required matching the 25 terms from the 
Geometry Taboo cards with pictures. The second day, students played the game in small groups for 
two rounds consisting of each player in the group having one turn to describe as many geometry 
terms as possible to their group. One group was able to use speech and gestures to describe terms on 
the cards; the other group was restricted to speech only hints. The next day, students completed a 
mirroring posttest and online survey about their experience. 

An ANCOVA, controlling for pretest performance revealed no significant differences in posttest 
scores by condition but overall students improved slightly from pretest (M = .34, SD = .19) to 
posttest (M = .48, SD =.23). Next, an ANCOVA predicting total points earned by each student during 
the game, controlling for pretest found no significant differences but there was a trend that students 
in the speech-and-gesture condition (M = 8.2 points, SD = 4.2) scored more points than students in 
the speech-only condition (M = 6.0 points, SD = 2.9), p = .08. This suggests that the option to gesture 
may make describing terms easier rather than relying on speech alone. Surveys suggested largely 
positive perceptions of the game; 21 students responded that they would like to play again in class. 

We draw limited conclusions from this pilot study. The exposure to the intervention may have been 
insufficient; more time playing could have led to increased learning. However, differences in game 
performance and student input suggest that the option to gesture makes the game easier and 
accessible for students, which in turn, could impact engagement and learning. 
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Deficiencies in elementary students’ conceptual understanding of spatial measurement have 
persisted, emerging through educational research (e.g., Kamii & Kysh, 2006) and national 
assessments (e.g., National Assessment of Educational Progress [NAEP]). Investigating several 
decades of results from the NAEP, Kloosterman, Rutledge, and Kenney (2009) described persistent 
measurement deficiencies. Research suggests that elementary students struggle with conceptual 
understanding of spatial measurement (i.e., length, area, volume) and graduating preservice teachers 
(PSTs) often share their struggles. For example, elementary students struggle in understanding 
distinctions between area and perimeter and relationships between their measures (e.g., Bamberger & 
Oberdorf, 2010; Barrett & Clements, 2003; Woodward & Byrd, 1983). The intuitive expectation that 
measures of perimeter and area always increase or decrease together is an enduring, commonly held 
misconception (e.g., Lappan, Fey, Fitzgerald, Friel, & Phillips, 1998; Tan Sisman & Aksu, 2016). 
PSTs, soon to be teaching such concepts, have shown similar misconceptions (e.g., Ma, 1999; Livy, 
Muir, & Maher, 2012; Wanner, 2019).  

We examined definitions related to length and area measurement in 11 textbooks specifically 
developed for use with preservice elementary teachers in mathematics content courses. Our selection 
of the textbooks was guided by Raven (2006) and represents a wide range of textbooks that vary in 
organization, coverage of topics, and attention to pedagogy. The books are written by 
mathematicians, mathematics educators, or both. 

Two researchers adapted and clarified an existing framework to code definitions of spatial 
measurement in elementary curricula with respect to selected aspects (Gilbertson, He, Satyam, 
Smith, & Stehr, 2016). We identify the coding unit, a definition, as a focused description of meaning, 
set apart from other text. We captured definitions of length and area using the textbook index and 
scanning relevant sections. Two researchers independently coded each definition and met to compare 
coding and resolve discrepancies. 

Based on Stehr and He (2019), we used a four-step measurement process: (1) select an object and 
measurable attribute, (2) select a unit of measure, (3) compare the attribute of the object with the 
unit, and (4) express the measure. We provide our analytical frameworks and findings in the poster. 
In the first step of the measurement process, select an object and an attribute of that object to be 
measured. A measurable spatial attribute is a characteristic of an object that can be quantified, has 
dimensionality, takes up space, and often has clear boundaries. To select a unit of measure in the 
second step, note that the unit could be standard or nonstandard, a reproducible unit that tessellates 
space, using parts of a unit as needed, and may be be continuous or discrete. In the third and fourth 
steps, the measure of an attribute is expressed by comparing the attribute to the unit to determine the 
number of units and parts of units that cover or fill the space without leaving gaps or overlaps. The 
comparison may include procedural tool use. The final measure of an attribute is expressed as a 
multiple of the standard or nonstandard unit. 

The goal in analyzing textbook definitions and finding variation is not necessarily to point out gaps 
or failings, because textbooks may add to definitions through tasks or other text. We focus attention 
on the ways definitions could be written at multiple levels of sophistication and with careful choice 
of aspects, hoping to open a larger discussion. 
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The results of a literature review of an ongoing research about the construction of the solid conic 
section and its transition to plane conic section are presented. The review was done in Mathematics 
Education and History of Geometry Teaching with a main emphasis on the construction of the solid 
conic as a cutting of the cone, these treatments of conics absent in the curriculum can give meaning 
to the current treatments of school mathematics. The review concludes with five essential elements 
that will define the type of study, the study object, and the position of our research in the field. 
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The initial research object for the development of the literature review was construction of the conic 
as a cone’s cutting and its transition to the plane. As a first point, one of the problems reported by 
Mathematics Education research is the absence of conic section’s geometric treatments in High 
School Education, because the conic section’s algebraic treatments is in Analytical Geometry class 
(Pérez-Moguel, 2018; Salinas & Pulido, 2017; Contreras, Contreras & García, 2003); nevertheless, 
the meanings of these notions are linked to the Plane and Space Geometry. 

In this way, History of Geometry Teaching recognizes: school mathematics are based on the 
mathematics of the 17th century (Barbin, 2008; 2012; Dennis, 2009); in particular, the solid conic 
section’s construction isn’t since 1905 in the curriculum (Barbin, 2012; 2008), and it’s replaced by a 
narrative about the cuttings of a cone made by Apollonius of Perga (Fried, 2007; 2001), and then to 
define them on the plane from the foci and directrix (as the case may be), without any link to the 
Apollonius’ cuttings (Salinas & Pulido, 2017). Indeed a second point, we identify conics as "a 
perennial notion with many properties, many theories and contexts, geometric and algebraic 
approaches, relations between plane geometry and space" (Barbin, 2008, p. 157); therefore, we 
synthesize the chronology of the study and development of this notion: Solid Conic Section; Plane 
Conic Section; Analytical Conic Section (Coolidge, 1968; Bartolini Bussi, 2005; Bongiovanni, 2007). 

As a third and more important point, the research of Pérez-Moguel (2018) will be a fundamental 
antecedent because her historical-epistemological study of parabola’s geometrical construction as a 
cone’s section, she identifies a series of actions and activities that encourage us to ask ourselves 
about the practices associated to construction of the solid conic section and its passage to plane conic 
section. Among these actions, Pérez-Moguel (2018) highlights the transition between 3D and 2D 
dimensions in solid parabola’s construction, coinciding with Salinas and Pulido (2017) who consider 
that spatial ability is fundamental in the construction of solid conic sections. Therefore the new 
object of investigation, modified after the review will be: spatial processes, and practices associated 
to solid conic section’s geometrical construction relative to the cone’s cutting, and its transition to 
the plane conic section, in the original text Apollonius of Perga: Conics. 
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We investigated how 53 elementary teachers interpreted the impact of the contexts in which they 
work on their mathematics instruction, and what those interpretations reveal about the agency 
individual teachers were able to achieve. Latent class analysis revealed two distinct classes, with 
teachers in one class perceiving that their contexts had a greater and more supportive impact than 
teachers in the other class. Interviews of four elementary mathematics specialists then revealed that 
the extent to which agency was achieved depended on not only their evaluations of the constraints 
and affordances of their contexts, but also their past experiences and future goals. 

Keywords: teacher agency; policy; elementary mathematics specialists; latent class analysis  

Although decades of policy have sought to limit teacher agency through, for example, highly 
prescriptive curriculum and accountability regimes (e.g., Biesta, 2010), discourses in mathematics 
education have emphasized how teachers exert agency in their specific enactments of broader policy 
(National Research Council, 1997; OECD, 2005). Theories of agency suggest that mathematics 
teachers have always interpreted and responded to policies, even those designed to limit agency, 
based on their experiences and frames of references (e.g., O’Day, 2002; Osborne et al., 1997; 
Zancanella, 1992). Discourses focused on agency, however, raise questions about what it might mean 
for teachers to be agents and the extent to which teachers can achieve agency. In this paper, we share 
a mixed methods study that investigates how elementary mathematics teachers achieve agency in 
their unique contexts. In particular, we focus on how elementary teachers interpret the impact of the 
contexts in which they work on their mathematics instruction and what those interpretations reveal 
about the agency they are able to achieve.  

Theoretical Framings & Related Literature 
We view agency as a temporal process informed by the past (iterational dimension), oriented 

towards the future (projective dimension), and achieved in the present (practical-evaluative 
dimension) (Emirbayer & Mische, 1998). In other words, teachers build upon past experiences and 
understandings to refashion and appropriate patterns of behaviors. Motivated to create a future that is 
different from the past and present, teachers generate possible trajectories of action. Although agency 
is tied to the past and future, it can only be achieved in the present as teachers make judgements 
based on evaluations of the constraints and affordances of their contexts. An implication is that, in 
response to present problems, teachers who are able to draw upon a greater repertoire of past 
experiences or form a wider range of alternative futures might achieve greater levels of agency 
(Priestley et al., 2015). 

However, agency is not simply a quality of teachers; it is a dynamic interplay between both 
individual efforts and ecological conditions (Biesta & Tedder, 2007). Carried out in concrete 
situations, agency is achieved as teachers engage with their ecological contexts. Teachers may 
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achieve agency in one situation but not another, and that may depend on the availability of social, 
cultural and economic resources. 

Prior studies on teacher agency have highlighted the importance of both teacher capacity and 
ecological capacity. Regarding the former, research suggests that teachers’ experiences and beliefs 
play an important role in the achievement of agency (Sloan, 2006; Vähäsantanen, 2015). A wide 
range of past experiences may enhance agency by allowing teachers to see alternatives to the present, 
while strong beliefs about student learning enable teachers to develop a broader set of aspirations 
(Priestley, 2011; Priestley et al., 2012). In contrast, when teachers’ discourses and goals are framed 
in terms of policy (e.g., meeting accountability expectations), projective elements of agency are 
reduced because teachers’ potential to envision alternative futures is narrowly defined by the 
constraints of policy (Biesta et al., 2015). 

Regarding the latter, research suggests that the ecological contexts in which teachers work influence 
the extent to which teachers are able to achieve agency. Teachers’ evaluation of the professional 
obligations of their contexts may limit the actions they take towards projected goals (Priestley et al., 
2012). For example, teachers working in contexts where standardized outcomes are highly valued 
may feel pressured to forgo ambitious instructional practices for those that are better suited for 
meeting accountability expectations (e.g., those focused on developing procedural fluency). 
However, access to ecological resources, such as professional relationships with administration and 
other teachers, may foster agency by supporting teachers to develop their practice, take risks, and see 
alternative futures (Coburn & Russell, 2008; Priestley et al., 2013). 

Our study builds upon existing research by examining how elementary mathematics teachers - a 
group not yet investigated in the research on teacher agency - are able to achieve agency in their 
unique ecological contexts. We expand beyond the individual case study methodology commonly 
used in studies on teacher agency to also include quantitative analyses of surveys reporting the extent 
to which teachers evaluated their contexts as impacting their mathematics instruction. Specifically, 
we investigated the following questions: 1) how do elementary mathematics teachers interpret the 
impact of their ecological contexts on their mathematics instruction? and 2) what do different 
interpretations reveal about the agency individual teachers are able to achieve? Though the practical-
evaluative (present) dimension is foregrounded, the judgments mathematics teachers make about the 
affordances and constraints of their contexts are influenced by the projective (the instructional goals 
teachers have for the future) and iterational dimensions (the past experiences they draw upon to 
achieve those goals). 

Methods 
Study Context 

This study originates from a larger multi-year project focused on the beliefs, knowledge, practices, 
and student achievement for certified elementary mathematics specialists (EMSs) (McGatha et al., 
2017). Among 55 participating teachers, there were 24 EMS and 31 comparison teachers that were 
recruited from the same schools (or districts) and same grade levels as the EMS teachers. A variety 
of data were collected for the larger project, including teacher surveys, measures of teacher 
knowledge, and observations of teachers’ instructional practices. In addition, eight EMS teachers 
were selected as case study participants and each participated in five semi-structured interviews that 
were audio-recorded and transcribed. 
Data & Participants 

For the present study, we focused on a set of items from the teacher survey that asked participants 
about the impact of 14 items on their mathematics instruction. The 14 items were: 1) current state 
standards; 2) district curriculum frameworks; 3) district and/or school pacing guides; 4) state 



Elementary mathematics teacher agency: Examining teacher and ecological capacity 

	 742	

testing/accountability policies; 5) district testing/accountability policies; 6) textbook/program 
selection policies; 7) teacher evaluation policies; 8) students’ motivation, interests, and effort in 
mathematics; 9) students’ reading abilities; 10) community views on mathematics instruction; 11) 
parent expectations and involvement; 12) principal support; 13) time for you to plan; 14) time 
available for your professional development (see Figure 1 for survey directions). These items were 
completed by 53 teachers (23 EMS and 30 non-EMS). In addition, we analyzed the interviews of 
four case study EMS teachers: Amy, Denise, Emma, and Mary. Selection of the cases is further 
discussed in the Data Analysis section. 

 

 
Figure 1: Survey Directions 

 
Amy and Denise taught at the same school in a district with five K-4 elementary schools. Part of the 

instructional day at this school included a math intervention time where students engaged in Rocket 
Math, a fluency program, with the stated goal of improving state standardized test scores. The 
district’s curricular program was Math in Focus and teachers were provided a pacing guide that 
suggested how much time to spend on each topic. 

Emma and Mary taught at different schools within a district that served 13 elementary schools. The 
district’s curricular program was Go Math and, as in Amy and Denise’s school, teachers were 
provided a suggested pacing guide. The district administration also encouraged teachers to engage 
students in weekly problem solving, though this was taken up by teachers in various ways, which 
will be further discussed in the cases of Emma and Mary. 
Data Analysis 

Using the 14 survey items described above, we employed latent class analysis (LCA) with the 
poLCA package in R (Linzer & Lewis, 2011) to identify groups of teachers who perceived different 
impacts of their ecological contexts (i.e., the 14 items) on their mathematics instruction. To create 
binary variables for LCA, we first created a holistic score for each item combining ‘extent’ and 
‘nature’ of impact (e.g., great impact and mostly inhibits =1; great impact and mostly supports =5). 
Based on exploratory factor analysis, we consolidated the 14 items into 6 factors. These were named 
by their ‘type’: standards (items 1, 2), textbook/pacing guide (items 3, 6), accountability policies 
(items 4, 5, 7), students/community (items 8, 9, 10, 11), principal (item 12), and time (items 13, 14). 
To dichotomize each factor, we calculated the average score of the items and coded “supportive” 
(average > 3) as 2 and “inhibitive or mixed” as 1. Then we conducted the LCA analysis using the 
factor scores for each participant. After 100 iterations of 2-class and 3-class models, we selected the 
2-class model because both the Bayesian information criterion (BIC) and the Akaike information 
criterion (AIC) were minimized (2-class: BIC =  422.575, AIC = 396.961; 3-class: BIC = 443.926, 
AIC = 404.520). 

We selected two teachers from each latent class: Amy and Emma from the first class and Denise 
and Mary from the second class. As described earlier, Amy and Denise taught at the same school and 
Emma and Mary taught in the same district. These teachers were selected because they worked in 
similar ecological contexts and, comparing across the two classes, we were able to explore how they 
interpreted the impact of their contexts on their instruction differently and how those interpretations 
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influenced their achievement of agency. These four teachers participated in five semi-structured 
interviews that elicited their vision and goals for teaching mathematics, supports available for and 
challenges anticipated in enacting that vision, the resources available for teaching (e.g, curriculum 
materials), the influence of state-mandated standardized assessments, and their understanding and 
implementation of mathematics teaching standards. Our analysis attended explicitly to how the 
iterational (e.g., prior experiences; understanding of math standards), projective (e.g., vision and 
goals for teaching) and practical-evaluative (e.g., resources, supports, and challenges for enacting 
vision; influence of standardized assessments) dimensions informed how each teacher was able to 
achieve agency. 

Results 
Classes of Impact on Mathematics Instruction 

The LCA analysis revealed two distinct latent classes: SUPPORTED (Ecological Factors Supported 
Instruction) and MIXED (Ecological Factors Inhibited and Supported Instruction). Teachers in 
SUPPORTED (45% of teachers), on average, perceived that their ecological contexts had a greater 
and more supportive impact on their mathematics instruction than those in MIXED (55% of 
teachers). For example, teachers in MIXED had a 0% probability of reporting that accountability 
policies (state testing, district testing, and teacher evaluation) supported their mathematics 
instruction, compared to an 87% probability among teachers in SUPPORTED. The three factors that 
had the greatest difference in perceived support between the two classes are accountability policies, 
standards, and principal support. Figure 2 shows, for each class, the probability of a teacher reporting 
that a particular factor supported their mathematics instruction. 

 

 
Figure 2: Conditional item probability plot for two classes 

 
Cases of Amy and Denise (Same School) 

Amy was an instructional coach for several years, and after completing an EMS program, returned 
to the classroom as a third-grade teacher. Illustrative of the SUPPORTED class, Amy conveyed little 
concern with regard to the district’s accountability policies and pacing guide. For example, Amy 
perceived that the only stress regarding state testing was that “the computers didn’t work the way 
they were supposed to.” Amy’s evaluation may explain why she did not use the test preparation 
materials like her partner teacher did: 

When my kids started doing that packet and I watched them, I’m like, “This is crap. I am not 
doing this. Stop…” The conversations were so much better than making them do 25 
problems on their own. And my partner did it the traditional way…My principal is cool with 
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it. He was like, “I don’t want you to spend the whole month prep on it. They don’t need it. 
They can think and that’s the main thing.” 

This agentic activity - deciding not to engage students in test preparation materials - was supported 
by Amy’s principal, who accepted her justification that her students were able to think and reason 
mathematically. Amy’s decision to engage in mathematical conversations rather than practice 
problems also reflected her vision of mathematics instruction and her goals for student learning. 
Making specific references to the Standards for Mathematical Practice, Amy explained, “…it’s so 
important for kids to be able to interchange numbers and to problem solve. And I think, honestly, the 
math practice standards are probably something that gets skipped over so much, and those are so 
important…Like taking a problem, making sense of it.” 

Drawing upon her goals and vision for mathematics learning, Amy was also able to achieve agency 
when she decided to devote extra time for Calendar Math in place of Rocket Math: “I kinda talked to 
my principal about it. I would like next year, instead of doing the Rocket Math, it’s so very, it’s a 
basic, it’s a procedure, is what it is.…instead of doing Rocket Math with the group, I would like to 
teach Calendar [Math] to my second group. Because I add so much.” Perceiving support from her 
principal, Amy saw Calendar Math as an alternative future to Rocket Math that better reflected her 
vision for instruction by developing a deeper understanding of mathematics concepts and providing 
students opportunities for reasoning and sense-making. 

Amy’s achievement of agency drew to a large degree upon her capacity to enact her goals for 
student learning and develop a wide repertoire for maneuvering her school context. In other words, 
she was able to draw upon her past experiences and imagine alternative futures to test preparation 
and Rocket Math. Supported by resources (e.g., the principal), and unconstrained by accountability 
policies, Amy was able to achieve a relatively great deal of agency. 

At the same school as Amy, Denise taught fourth grade. The interviews took place during her fifth 
year of teaching. Illustrative of the MIXED class, Denise associated a great deal of stress and risk 
with the district pacing guide, which she described as constraining what and how she teaches: “I 
think it’d be more free on your pacing of how you teach and then you can do fun projects but it’s 
like, ‘oh, we can’t do that cause it’s gonna take a week to do that. And it’s gonna put us behind,’ and 
so to me I always feel like it goes back to that pacing guide.” In this excerpt, Denise attended to how 
the pacing guide constrained her agency to engage her students in fun projects and hands-on 
activities. Such learning opportunities figured prominently in Denise’s broader description of her 
vision for mathematics teaching and learning: 

I want them to have, to know the vocabulary, to be able to use it and just, and that just comes 
with understanding. I'd see like presenting the lesson but then we have our hands-on activity, 
like we're doing things together like as we're working though the lesson and understanding 
concepts, they’re doing it with me or they have their boards and they’re writing it out. 

Unlike Amy, whose vision emphasized sense-making and engaging in mathematical practices, 
Denise viewed mathematics learning as participating in interactive activities to practice vocabulary 
and procedures after teacher demonstration.  

Denise also felt pressured by state tests, stating “I think that’s the pressure that’s put on you to do 
well because that’s what’s reflected in the school on the state test.” She saw students’ standardized 
performance as reflecting on her performance as a teacher, which is a stark contrast to Amy who only 
described stress related to the computer testing system. Influenced by her evaluation of the pressures 
of her ecological context, Denise engaged in substantial test preparation, stating “I’ll go back and like 
go lower so that way we can walk our way up but going back in that re-teach piece like a month - 
like with review, of course we review before the [state standardized] test but it’s like being better 
about, okay, you did fractions last month, let’s do like a bell ringer right now.” In this, Denise 
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describes that she prepares for the state test by reteaching previously taught content, sometimes 
starting at a “lower” level. She even wishes that she had more time throughout the year to spiral back 
on prior knowledge.  

Denise acted similarly in response to students’ lack of advancement in their Rocket Math fluency 
program. She said that: 

I pulled back from that [fluency] because it wasn’t working. It’s like for some of them - 
don’t get me wrong. Like my lower kids though it wasn’t working for them because it’s like 
part of it they don’t put in the work… it’s like you get to the sixth time they’re not passing it 
and then it’s like okay, so let’s go back re-teach. 

Denise’s solution to the perceived problem of low math fluency was to reteach and review. By 
blaming students for their lack of effort, she also engaged in deficit discourses about students (“my 
lower kids…don’t put in the work”) that relieved her of responsibility for student learning. These 
cases illustrate that her agency was constrained by a lack of past experiences and beliefs that would 
allow her to imagine alternatives to reteaching and reviewing. 

Constrained by the pacing guide and accountability policies of her ecological context, Denise 
seemed to enact a self-limiting form of agency framed by short-term goals and discourses focused 
around achievement and fluency. And without a range of past experiences or ambitious instructional 
goals to draw upon, Denise’s repertoire for maneuvering her context was limited. 
Cases of Emma and Mary (Same District) 

Emma and Mary both taught fourth grade, but at different elementary schools within their district. A 
representative of the SUPPORTED class, Emma perceived that her context’s accountability policies 
positively impacted her mathematics instruction. Though she acknowledged stress and pressure 
associated with standardized testing, she perceived that her context supported her in meeting such 
accountability expectations. For example, she explained that the curriculum was aligned with state 
standards, that instructional coaches taught students test-taking strategies, and that the district’s 
weekly problem solving provided test preparation throughout the school year. For Emma, such 
policies supported her instructional goals, which were focused on achievement and proficiency: “My 
goal, always talk to them about improvement. That no matter where you start--for example, I had a 
student last year that started at common assessment for the first quarter at 19%, and then she got to 
45%.” 

Emma’s beliefs and goals for student learning are reflected in her understanding of problem solving. 
She explained that problem solving included highlighting and underlining key words to figure out 
which operation to use. Emma described that in her class, 

We would give a problem at the beginning of the week, and then the same type of skill 
problem at the end of the week…During the problem-solving time we would meet with that 
group that was struggling. Then, the last day of the week we would do it again and see how 
they improved. 

For Emma, “problem solving” did not primarily involve making sense of problems and reasoning 
about numbers and concepts, but rather practicing and acquiring answer-getting skills. 

Though Emma perceived that her ecological context supported her mathematics instruction, she 
seemed to enact a form of agency limited by her goals and conceptions of proficiency and 
achievement. Specifically, Emma did not achieve agency in ways that afforded students opportunities 
to meaningfully engage in conceptual understanding of mathematics, as her repertoire of iterational 
beliefs and projective futures was constrained. 

Unlike Emma, Mary perceived that her context negatively impacted her mathematics instruction. 
Representative of the MIXED class, Mary perceived that accountability policies and the pacing guide 
constrained her instruction, stating that 
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Because you know you’re behind in your timeline and you know that students are going to 
be assessed on all these skills and you worry...Do I really want them to be able to just know 
how to get the right answer from rounding, or do I want them to really understand the 
number sense behind it? 

Mary’s achievement of agency was constrained by the pressures of standardized testing, limiting her 
ability to maneuver between district policies and her own goals for student sense-making. 

Though Mary’s agency was constrained by her ecological context in some instances, she was able to 
achieve agency in others. For example, Mary was able to take up an informal leadership role in her 
building to present to peers about problem solving. In describing the goals of her presentation, she 
stated that: 

Just because you’re getting the kids a word problem does not mean that they are participating 
in problem solving because I remember student teaching within the district six years ago and 
there was Word Problem Wednesday and the teacher did the word problem up on the board 
for the kids and then the kids did the word problem that was exactly the same but with 
different numbers. 

In this excerpt, Mary achieves agency in challenging, in front of her peers, the view that word 
problems imply problem solving: in particular, if students are mimicking the teachers’ solution, they 
are not truly engaged in problem solving. Ironically, Mary’s counterexample of problem-solving 
describes Emma’s approach. Drawing upon her experiences and goals for student learning, Mary was 
able to achieve agency in promoting a problem solving that emphasized student reasoning and sense-
making. 

Though Mary was able to build upon iterational and projective dimensions to achieve agency in 
some instances (e.g., promoting problem solving opportunities), her repertoire for maneuvering her 
ecological context was constrained by practical-evaluative dimensions in other instances (e.g., 
rushing to cover the assessed material). In other words, though she was able to imagine a sort of 
problem solving that aligned with her goals for student learning, her achievement of agency was 
constrained by accountability policies. 

Discussion & Conclusion 
Our study contributes to the research base on teacher agency by revealing how elementary 

mathematics teachers perceive and achieve agency differently, even though they may share some 
ecological conditions. Using LCA, we found two unique classes: teachers in SUPPORTED perceived 
that their contexts had a greater and more supportive impact on their mathematics instruction than 
those in MIXED. Interviews then allowed us to investigate cases where agency was achieved 
differently within and between these classes. Drawing upon the theoretical literature (Biesta & 
Tedder, 2007; Emirbayer & Mische, 1998), these cases revealed the temporal nature of agency; in 
particular, how teachers’ evaluations of their ecological contexts’ constraints and supports 
dynamically interacted with their iterational experiences and projected goals (see Table 1). 
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Table 1: Summary of temporal dimensions of four case study teachers 
 SUPPORTED Class MIXED Class 

Same 
School 

Amy (achieved great deal of agency) 
• Iterational: beliefs about student learning 

focused on sense-making and 
mathematical practices 

• Practical-evaluative: felt supported by 
principal & unconstrained by context 

• Projective: able to imagine alternatives to 
test preparation and Rocket Math  

Denise (constrained and self-limiting form 
of agency) 
• Iterational: beliefs about student learning 

focused on fluency and achievement 
• Practical-evaluative: felt constrained by 

pacing guide and accountability  
• Projective: unable to imagine alternatives 

to reteaching for test preparation and 
fluency  

Same 
District 

Emma (self-limiting form of agency) 
• Iterational: beliefs about student learning 

focused on proficiency and achievement 
• Practical-evaluative: perceived context as 

supporting goals 
• Projective: unable to imagine problem 

solving that focuses on reasoning and 
sense-making  

Mary (constrained agency) 
• Iterational: beliefs about student learning 

focused on sense-making and problem-
solving 

• Practical-evaluative: felt constrained by 
pacing guide and accountability 

• Projective: able to imagine problem 
solving that aligns with goals and vision  

 
Emma’s case suggests that feeling supported by one’s ecological context is not sufficient for 

achieving agency, especially when teachers – even certified EMSs - lack ambitious goals and visions 
for mathematics instruction. Foregrounding the iterational and projective dimensions of the cases of 
Emma and Denise raises an important implication for teacher education: the need for teachers to have 
strong professional discourses about mathematics teaching and learning beyond those framed by 
policy (Biesta et al., 2015). Attention to the practical-evaluative dimension reveals that Mary’s 
agency was constrained by her context’s accountability policies as they conflicted with her goals for 
student learning. Such factors were not as constraining for Amy as she had more personnel resources 
(e.g., principal) to draw upon. This suggests a second implication for policy: the need to build 
ecological capacity. Mary’s case illustrates how a teacher - one with experiences and visions aligned 
with ambitious mathematics teaching - can achieve agency in some situations and not others, 
depending on the availability of social, cultural and economic resources (Priestley et al., 2013). 

If policies are to promote teacher agency, our findings suggest a need for building both teacher 
capacity and ecological capacity. This includes not only attending to the repertoire of past 
experiences and future trajectories mathematics teachers are able to draw upon, but also the ways 
their ecological contexts constrain and support their mathematics instruction. And, in our view, 
mathematics educators are especially well positioned to advocate for such policies. 
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In this study, we tested the extent to which researchers with classroom experience can predict 
students’ happiness and engagement in elementary math classes. The research group analyzed lesson 
transcripts and hypothesized which classrooms students rated as high-engagement/high-happiness. 
We sorted the teachers into high or low groups with 50% accuracy. We suggest four possible 
explanations for the group’s inability to accurately guess: (1) students and adults have different 
views of which classroom practices will generate student happiness, (2) failure to consult literature 
on the conceptualization of happiness in elementary aged children, (3) existence of a halo effect and 
(4) contextualized relationships in classroom environments matter. To conclude, we suggest 
methodological improvements to increase the probability of identifying high engagement practices in 
elementary math classrooms via transcript analysis. 

Keywords: affect, emotion, beliefs, and attitudes; elementary school education; policy matters  

Introduction 
Students’ experiences in the classroom matter. We see two components of the student experience as 

especially important: levels of academic achievement and happiness. Drawing on the conceptual 
framework of Talebzadeh & Samkan (2011), student happiness is associated with several factors 
related to school performance of both students and teachers. Psychologists note that student 
happiness affects the school environment and can increase students’ performance on measures of 
academic achievement as well as socio-emotional growth; outcomes often touted as key goals of 
education (Suldo, 2016) Additionally, there is a relationship between student happiness, teacher 
happiness, and learning (Blazar & Kraft, 2017). These three factors interact in different ways 
depending on the student’s level of happiness. In general, happy students perform better 
academically and socially (Parrish & Parrish, 2005; Quinn & Duckworth, 2007). Although Parrish 
and Parrish (2005) did not look at measures of student achievement specifically, they did find that as 
students’ happiness increases, students also increase in collaborative learning, respect, and enjoyment 
of school.  Quinn & Duckworth (2007) found that students ages 10-12 who had higher levels of 
subjective well-being “went on to earn significantly higher final grades after controlling for IQ” (p. 
3). Additionally, Quinn & Duckworth (2007) noted that students with higher levels of subjective 
well-being were more successful than their peers at raising their level of academic achievement.  
More broadly, researchers of happiness note that happiness is often linked with personal well-being 
(e.g., Graham, Powell, Thomas & Anderson, 2017; Price, Allen, Ukoumunne, Hayes & Ford, 2017). 
Because elementary school students spend upwards of a fourth of their day at school, understanding 
how students conceptualize happiness in the classroom is important for their overall well-being 
(Graham, Powell, Thomas & Anderson, 2017). If researchers have the ability to identify high 
happiness classrooms using transcripts, there may be opportunities for school-level actors to provide 
specific pedagogical support to increase students’ self-reported measures of happiness in their 
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elementary math class. Furthermore, understanding which instructional components predict student 
happiness will support future efforts to validly measure and improve student happiness at the 
classroom level. Given the importance of student happiness in the classroom, this paper investigates 
the ability of a research team to identify elementary math classrooms where students rated their 
experience as high engagement/high happiness versus classrooms where students rated their 
experience as low engagement/low happiness. Using survey data at the student level, transcript 
review, and video observations, this is the first study of U.S. public schools that provides guidance 
regarding the methods researchers should use to gauge students’ happiness and engagement in 
elementary math classrooms. In the subsequent sections, we explain our original investigation to 
predict students’ level of engagement/happiness using three lesson transcripts, why our findings 
aligned with previous research regarding the use of transcripts to predict a student’s class perception, 
and we provide suggestions to improve the use of transcripts to predict students’ conceptualizations 
of happiness in the elementary math classroom. 

Investigation & Methods 
We began with a group of twelve elementary math teachers, all of whom participated in a larger 

study that randomly assigned fourth and fifth-grade teachers to student rosters in four East Coast 
school districts in the United States (Blazar, 2015). This subset of teachers was selected based on 
high value-added scores, which allowed the investigation to focus on students’ 
engagement/happiness while holding increases in students’ academic achievement levels on 
standardized tests constant. Before beginning the project, researchers learned that six of the teachers 
received high ratings for engagement/happiness and six teachers received low ratings for 
engagement/happiness. Engagement/happiness ratings came from a student survey. 

For each teacher, the research group reviewed three lesson transcripts and three video recordings of 
the class over one academic year. Due to IRB restrictions, two senior research group members had 
access to video recordings and transcripts of each class. The other four members of the research 
group only had access to the transcripts of each class. Each week researchers were randomly 
assigned two of a particular teacher’s three videos or transcripts to review. Researchers met in person 
each week to discuss features of lessons that would align with their perceptions of high 
engagement/happiness or low engagement happiness. Given the thin literature base regarding the 
identification of student engagement/happiness via transcript and video review, the group used an 
open coding system. Prior to the weekly meeting, researchers worked independently to identify the 
most salient features of a teacher’s practice that would align with students’ conceptualization of their 
elementary math classroom as either a high engagement/happiness space or a low 
engagement/happiness space. At the end of each meeting, one researcher wrote a memo regarding the 
prominent features of the teacher’s practice that the researchers hypothesized would increase or 
decrease students’ engagement/happiness in math class. The research team also offered a guess about 
the engagement/happiness level of students in the class. The research group discussed their guesses 
until arriving at a consensus. The guesses were recorded in a spreadsheet.  

At the conclusion of the coding and guessing process for all twelve teachers, the faculty advisor 
shared with researchers the survey results from each teacher’s students. The research group was not 
successful at guessing whether students would rate a particular teacher as either high 
engagement/high happiness or low engagement/low happiness. In the end, only 50% of the 
predictions aligned with student perceptions of engagement and happiness in the math classroom 
(Table 1). 
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Table 1: Research Team Guess Spreadsheet 
Teacher Identification Number Happiness/Engagement Score via Student Survey Researcher Guesses 

12002 High Low 

12006 Low Low 

12008 Low Low 

12020 Low High 

13102 High Low 

14019 Low Low 

14030 High High 

14040 High Low 

14060 Low High 

14117 High High 

14127 Low High 

11070 High High 
 

The transcripts and the video did not provide the research team with the level of context required to 
accurately assess the dynamics in the classroom that would align with a student’s perception of 
happiness/engagement in their elementary math class (Miles & Huberman, 1994; McCormack, 
2000). As predicted by other studies that relied on transcript review, with limited context the research 
team was unable to accurately guess students' level of engagement/happiness. 

Identification of Methodological Issues 
After reviewing the original investigation, we propose four methodological issues that decreased the 

probability that the research group could correctly identify whether students rated the classroom as 
high or low engagement/happiness: (1) students and adults have different views of which classroom 
practices will generate student happiness, (2) failure to consult literature on the conceptualization of 
happiness in elementary aged children, (3) existence of a halo effect and (4) contextualized 
relationships in classroom environments matter. 

Differing Conceptualizations of Happiness Related Classroom Practice  
The literature on student happiness indicates that students and teachers may approach features of a 

happiness and engagement from different perspectives, which may indicate why a group of 
researchers were unable to view the transcripts from the student perspective. In a mixed-methods 
study, Tenny (2011) found that while the themes that emerged in her literature review also emerged 
in her findings, additional themes emerged that were not present in the literature. Based on the 
review of the literature, Tenny (2011) expected the following to impact student happiness: 
appropriate level of challenge, level of academic support, engagement and enjoyment through hands 
on meaningful, and collaborative activities, and positive relationships. Students also stated that 
physical and mental breaks, frequency of testing and homework were also important factors in their 
happiness.  While researchers are capturing salient features of what contributes to classroom 
happiness for students, their adult objectivity can serve as a hindrance to them being able to identify 
components of classroom instruction that are important to young children. Holder and Coleman 
(2008) state that happiness in children may be different than that of adults because children lack the 
cognitive maturity and life experiences that influence the happiness of adults. In their study of how 
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well-being is conceptualized and practiced in schools, Graham et al. (2017) found that teachers and 
students differed in their responses. In addition, the student-reported teacher actions that contributed 
to well-being were divergent among elementary- and secondary-aged students (Graham et al., 2017). 
Failure to Consult Literature on Elementary Student’s Conceptualization of Happiness 

The research team did not consult the literature on student engagement/happiness in elementary 
school classes. Instead, the team reviewed the literature for studies that specifically focused on 
elementary school math classrooms and student engagement and happiness; finding none, the team 
decided to conduct the qualitative analysis using an open coding system. In retrospect, the literature 
on the elementary student engagement/happiness broadly could have provided the initial 
investigation with a stronger approach. Without a framework, the group brought their personal 
experiences and conceptualizations of student happiness to the transcript review process. Examining 
the classroom memos, the researchers lacked a clear definition regarding what features of a 
classroom would be indicators of a student’s perception of a specific classroom as high 
engagement/happiness versus low engagement/happiness (Merriam, 1998). 
Possibility of Halo Effect 

The halo effect could have significantly biased our results. Students who score higher on 
standardized tests might be more likely to rate their teachers and classrooms higher in 
engagement/happiness (Egalite & Kisida, 2018). While we knew all the teachers in the study had 
substantial improvements in how their students performed on standardized testing, we were not privy 
to students’ academic success. Without knowing the students’ baseline math scores, it was unclear if 
students made substantial gains in the year of the study or if students had experienced greater gains in 
the years previous to joining the classroom of study. As a result, it may be that teachers rated as high 
engagement were rated so because of students’ experiences and growth in math classes the year 
before and had limited relationship with the current teacher’s actual day-to-day practices. 
Relationships Matter (students-to-student & teacher-to-student) 

The literature on student happiness indicates that relationships in the school are important to the 
way students conceptualize happiness. During our initial investigation, the research group used data 
that did not capture the relationships in the classroom. As a result, the group could not determine the 
peer-to-peer effects in a specific classroom nor could the group accurately gauge the level of 
connectivity between teachers and students. Our use of transcripts and videos without interacting 
with teachers and students provided insufficient data regarding the level of relationships in the 
classroom; thus the relationship between student connectivity to their peers or teacher was missing 
(Miles & Huberman, 1994; McCormack, 2000). To be clear, we are not saying that teachers are 
unimportant; rather, the relationship among teachers and students underscores the academic and 
social processes in the classroom, and more emphasis should be placed on these relationships when 
understanding how teachers impact student outcomes--whether academic or those relating to student 
well-being (Blazar & Kraft, 2017). 

Recommendations 
Our findings indicate that using transcripts to capture a student's conceptualization of 

happiness/engagement is complicated. If researchers, administrators, and teachers are interested in 
measuring student’s happiness and engagement in elementary classrooms they should consider 
adhering to the following strategies: 

1. Stimulated recall interviews with students (Davis, 1989). This method allows children to 
impart insights on the thought process and behavior of other children and “provide us with a 
point of view to which we apparently have lost direct access.” (Davis, 1989, p. 39). 

2. Measure a student's level of happiness and engagement over more than one time period. 
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3. Researchers should attempt to collect contextual information such that researchers can utilize 
classroom, teacher, and student information to identify practices that support student 
engagement/happiness (McCormack, 2000). 
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This self-study is a collaboration of Mathematics Teacher Educators (MTEs) with the goal of 
raising issues of identity and equity within their elementary mathematics methods courses. A 
common problem of practice surfaced among the MTEs of how to support prospective teachers (PTs) 
in their development of seeing students’ mathematical strengths. The research question was: How 
can MTEs collaboratively work towards addressing issues of identity and equity across varied 
institutional contexts? 

Self-study involves the systematic studying of the self as a teacher within a context, aimed at 
improvement (LaBoskey, 2007) and is still emerging as a means for MTEs to study their own 
practice (Suazo-Flores et al., 2018). We sought to explore pedagogical practices in our methods 
courses to support PTs in seeing the mathematical strengths of PK-6 students. We selected an article 
by Skinner, Louie and Baldinger (2019) as a common course reading and developed a protocol that 
included pre/post PT reflective prompts around the article’s strategies for seeing students’ 
mathematical strengths. In order to examine our pedagogical practices we gathered and analyzed the 
following: (a) positionality statements, (b) lesson plans, including the selection of discussion 
facilitation questions, (c) post-implementation reflections from the MTEs and PTs, and (d) 
recordings and notes from our monthly meetings. Reflecting on these data offered insight into 
pedagogical changes for future course iterations. 

Engaging in iterative cycles of practice, reflection, and change allowed us to continually learn from 
each other and modify our instruction. Based on insights from our colleagues and our own self-
reflections, issues of practice to be taken up in future iterations were identified. These included the 
need to (a) directly address power and privilege with our PTs, (b) model and discuss trusting 
elementary students with challenging mathematics tasks, and (c) interrogate systemic issues in 
mathematics teacher preparation, such as purposeful field placements, and PT and elementary student 
assessment tools. Holistically, the self-study process helped us to develop collective terminology and 
refine our understanding and use of equity-based practices encompassing various mathematics 
education organizations’ definitions and position statements. Through self-study we supportively and 
collaboratively pushed each other to reflect on our own teaching with and through equity-based 
pedagogies, recognizing that our enactment is vital for PTs who teach mathematics for equity and 
access (Chao et al., 2014).  
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In this poster, we propose a model for school math instructional improvement that is adaptable to 
local settings and the organizations and practitioners in them. Different school districts have different 
problems of practice, and thus adaptive integration of interventions is important as they go to scale—
as Penuel et al. (2011) find, successful “scaling up” depends on local actors who make continual, 
coherent adjustments to interventions as they make their way through various levels of an 
organization. Indeed, school- and district-level infrastructures that are not optimally designed to 
support instructional improvement can constrain professional development (PD) efforts to improve 
the effectiveness of the existing teaching force (Spillane & Hopkins, 2013). Similarly, school 
districts have been shown to influence the ways in which schools and school leaders implement a 
wide range of improvement efforts at the school level, thus helping or hindering such implementation 
(Honig & Rainey, 2014). 

The model we propose is particularly designed to improve teachers’, teacher leaders’, and 
administrators’ understanding of effective math teaching and learning, and to enhance the 
organizational capacities of schools and districts to support such improvements in math. The model is 
grounded in a Design-Based Implementation Research process involving collaboration between 
researchers, and district and school personnel to co-develop math PD from district through teacher 
levels. The components are: (1) gathering information about problems of practice collaboratively 
identified by districts, schools, and the research team, and developing related goals; (2) designing and 
implementing coherent PD that is aligned with identified problems of practice; and (3) engaging in 
iterative cycles of development, implementation, and revision to productively adapt the model to 
changing conditions. The iterative redesign process enhances the productive adaptation of the model, 
allowing it to be effective at scale.  

In this poster, we will present our preliminary findings from the first cycle of iterative co-design of 
the model with stakeholders in four different school districts, including design considerations and 
challenges that emerged from the co-design process. In doing so, our aim is to make a significant 
contribution to the knowledge base regarding the process of organizational change in educational 
settings, effective teacher and administrator PD in math, and researcher-local stakeholder 
collaboration. 
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Research is needed to better understand how elementary teachers develop and make progress 
toward enacting and supporting new visions of mathematics instruction while transitioning to an 
informal leadership role (Chval et al., 2010). This study follows 13 elementary mathematics teachers 
within a Midwestern United States school district who are pursuing Elementary Mathematics 
Specialists (EMS) certification through fellowships provided via a project funded by the National 
Science Foundation. The fellows, working in six school-based teams, were asked as a part of their 
program to create and maintain action plans: revisable documents outlining their evolving visions 
and plans for improving mathematics teaching in their schools. In analyzing these plans, we 
investigated the question: What initiatives do the groups plan to implement in their buildings, and 
how do these plans evolve over the course of the school year? 

Initial data included focus group interviews with each team and all four iterations of the action 
plans. Each school team submitted a revised version of their action plan monthly as a part of their 
EMS course. In order to name the ways in which each team evolved throughout the course of the 
project, we defined the following components of the fellows’ plans: the scope of the initiative 
(within-own-classroom, grade-level teams, schoolwide, district-wide), focus (challenging perceptions 
of student competency, building a positive mathematical culture, supporting student identity 
formation through instructional practices), and medium (collaboration between mathematics leaders, 
grade-level collaboration, professional development, teacher observation, class restructuring). 

A cross-case comparison revealed multiple trajectories for the groups of fellows. While five of six 
school-based teams named goals for their own classroom instruction in the first iteration of their 
plan, not one team applied a schoolwide lens. However, on the fourth iteration, all six teams were 
seen to employ a schoolwide lens. Interestingly, we found that only one school had maintained the 
same focus on “eliciting student thinking/providing student feedback” from the first to fourth version 
of their action plan, and that particular team additionally named that focus at a schoolwide level on 
the fourth iteration. 

We also examined various factors of support (district, administrative, colleagues) and identity 
(leadership and confidence in mathematical content knowledge) as potential impacts on the 
trajectories followed by each school team. For example, one school team began to apply a 
schoolwide scope due to an empowering administrator who asked the fellows to develop professional 
development for staff, while another team adopted a schoolwide scope because the team perceived 
their peers’ conceptions of student competency as deficit-based. Future analysis will continue to 
monitor the evolution of fellows’ action plans for the duration of the larger project. 
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The purpose of this research study was to consider how a group of early career mathematics teacher 
educators (MTEs), from across the U.S., who participated in a continuous improvement lesson study 
(Berk & Hiebert, 2009), learned to better support their elementary preservice teachers’ (PSTs) 
learning. In this poster, we share the continuous improvement lesson study process we used and 
discuss changes made to our researched lesson throughout the process. We also share the final 
version of the lesson and call on other MTEs to utilize continuous improvement lesson studies. 

Methodology 
This study took place across institutions and adopted the continuous improvement framework (a 

type of lesson study) which presents a model of curriculum development through studying one 
researched lesson with cycles of planning, enactment, analysis and revision (Berk & Hiebert, 2009). 
Four MTEs participated in this study over a period of five semesters in which either all or some of 
the MTEs taught the lesson. Once the lesson was finalized, we sought to answer the following 
research questions: What was the nature of the changes made to the researched lesson throughout the 
continuous improvement lesson study process? How did these refinements better support our PSTs? 
To answer these questions, all lesson changes were mapped for each iteration of the lesson and 
rationales for the changes were gathered from transcribed group meetings and individual MTE 
reflections. In addition, we gathered evidence of our PSTs’ thinking, both written and oral, to 
document how PSTs’ thinking changed and contributed to the changes made. Breaking the lesson 
down by components and lesson iteration, we were able to investigate each component’s 
effectiveness. We used open coding and coded MTE written reflections and transcripts for places we 
discussed changes and the rationales for those changes. 

Results and Implications 
Eight structural changes (those changes made on how the lesson was structured) from the initial 

lesson to the final version were identified. We will share the changes ranging from which elements of 
a case-study to present to the PSTs at different points in the lesson to the types of questions we asked 
to better elicit PSTs’ noticing of children’s single digit multiplication thinking (Jacobs, Lamb & 
Philipp, 2010). As early career MTEs, we found that our commitment to developing a researched 
lesson following the continuous improvement framework deepened our sense of belonging to the 
MTE community, acted as an important means of professional development, and because of our 
collaborations, we were able to orchestrate better discussions. We were able to push our PSTs’ 
learning to higher levels, more so than we could have done on our own. 
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Multiplication and division are vital topics in upper level elementary school. A teacher’s 
pedagogical content knowledge (PCK) influences both instruction and students’ learning. However, 
there is currently little research examining teachers’ PCK within this domain, particularly regarding 
professional education of future teachers. To help address this need, the present paper presents an 
initial validity argument for a survey of preservice teacher’s PCK for multiplication and division. 

Keywords: Teacher Knowledge; Number Concepts and Operations 

Overview & Purpose  
Multiplicative reasoning is a critical concept in upper elementary school (grades 3-5) that facilitates 

student reasoning of later mathematics concepts (Hackenberg, 2010). Whole number multiplication 
and division is formally introduced in grades 3-5 (CCSSI, 2010), leading to their inclusion in initial 
licensure mathematics methods courses for early childhood, elementary, and middle grades 
preservice teachers (PSTs). However, there is limited research on PSTs’ professional knowledge in 
this area (Thanheiser et al., 2014). Such literature tends to focus on PSTs’ understanding of the 
content (Harkness & Thomas, 2008; Menon, 2003), and often conveys a large portion of novice 
teachers lack sufficient understanding of declarative knowledge related to multiplication and 
division. Yet, the professional knowledge needed to teach mathematics, or Mathematical Knowledge 
for Teaching (MKT), involves more than a deep understanding of the content (Hill et al., 2008b). 
Pedagogical Content Knowledge (PCK) “goes beyond knowledge of subject matter,” in that it is a 
“particular form of content knowledge that embodies the aspects of content most germane to its 
teachability” (Shulman, 1986, p. 9). Indeed, there is evidence to suggest that PCK for mathematics is 
more sophisticated than content knowledge (Copur-Gencturk et al., 2019), but there is relatively little 
study of PSTs’ PCK for multiplication and division of whole numbers (Thanheiser et al., 2014). One 
reason for this is the relative difficulty in defining and creating measures of PCK (Copur-Gencturk et 
al., 2019; Hill et al., 2008a). In our own work, we sought such a measure to gauge the effect of a 
teacher education initiative. The lack of a measure of PSTs’ PCK for multiplication and division, 
therefore, fueled our need to create such a measure. Thus, the purpose of this study is to construct an 
initial validity argument for a survey of preservice teachers’ pedagogical content knowledge for 
elementary children’s multiplicative reasoning. 

Background Literature & Theoretical Perspectives 
Pedagogical Content Knowledge 

This study reports on the design and initial validation of an MKT assessment of whole number 
multiplication and division. Current assessments of MKT have focused on either specific courses, 
such as Geometry or Algebra I (Herbst & Kosko, 2014; McCrory et al., 2012) or a wide range of 
content within a single mathematical domain, such as numbers and operations (Hill et al., 2008a). For 
example, McCroy et al. (2012) developed an instrument to test teachers’ mathematics-teaching-
knowledge of Algebra, constructing items specific to student reasoning of algebra problems. 
McCrory et al.’s (2012) definition of mathematics-teaching-knowledge is similar to PCK, as it 
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includes knowing a student's mathematical reasoning and understanding possible misconceptions. 
Similar to McCrory et al. (2012), Herbst and Kosko (2014) developed items to investigate MKT in 
Geometry teachers by constructing items based on students reasoning and approach to geometry 
problems. Hill et al. (2008a) also created items focusing on PCK, but the majority of their assessment 
is focused on both common and specialized content knowledge for teaching. While the 
aforementioned efforts for designing PCK items have met some success, when scholars have 
designed MKT assessments for specific concepts, such as fractions, the focus tends to be on content 
knowledge, and not PCK (Izsák et al., 2019). 

Although prior research provides useful contributions to the field, the lack of specified focus on 
aspects of PCK in measurement development has led to underspecification of the domain both within 
and beyond our focus on multiplication and division. Analyzing items from two different MKT 
measures, Copur-Cencturk et al. (2019) note that “what constitutes PCK and how PCK differs from 
[specialized content knowledge] SCK are not well articulated… We need a more in-depth 
understanding of teachers’ instructional strategies that help their students learn and how teachers’ 
knowledge of students’ thinking is revealed in mathematics instruction and informs their teaching” 
(p. 494). Hill et al. (2008a) suggest the problem is two-fold in that there is a lack of research on 
teachers’ PCK and that “the field has not developed, validated, and published measures to assess” (p. 
373) such knowledge. Since Hill et al.’s (2008a) writing this statement, items assessing PCK have 
been successfully written and validated. However, these are typically couched in an overarching 
assessment of MKT (Depaepe et al., 2015; Herbst & Kosko, 2014). By contrast, this paper focuses 
explicitly on PCK. Shulman (1986) defines aspects of PCK as: 

An understanding of what makes the learning of specific topics easy or difficult: the 
conception and preconceptions that students of different ages and backgrounds bring with 
them to the learning of … frequently taught topics and lessons. If those preconceptions are 
misconceptions … teachers need knowledge of the strategies ... in recognizing the 
understanding of learners (p. 9). 

 There are two primary subdomains of PCK: Knowledge of content and students (KCS) and 
knowledge of content and teaching (KCT). KCS is defined by Ball et al. (2008) as the knowledge of 
knowing students as well as knowing the mathematical framework. Within this domain of PCK it is 
required that teachers know how a student is going to think through a problem and anticipate what 
problems students will find daunting and confusing (Ball et al., 2008). In contrast, Ball et al. (2008) 
defined KCT as having the knowledge of how to effectively teach combined with the knowledge of 
the mathematical subject matter. Teachers with a high level of KCT can use various models to 
illustrate a concept to students at varying stages of learning (Ball et al, 2008).  

Both subdomains have been successfully assessed within the literature. Hill et al. (2008a) developed 
an assessment to identify KCS and was, to an extent, successful. The findings suggest that in order to 
answer an item pertaining to a common student error, student understanding, common student 
developmental sequences, and common student computations a teacher must possess content 
knowledge (CK) and KCS (Hill et al., 2008a). McCroy et al. (2012) suggested a framework to 
develop an assessment to measure KCT outside of Algebra by establishing the difference of math 
knowledge and teaching knowledge. In addition, Herbst and Kosko (2014) constructed an instrument 
to measure KCS and KCT as well as common content knowledge (CCK) and specialized content 
knowledge (SCK). The items developed to assess KCS in teachers “probe[d] for their knowledge of 
students’ conceptions and errors in tasks” pertaining to geometry (Herbst & Kosko, 2014, p. 41). 
Their assessment was able to detect that experienced teachers were more successful at identifying 
student conceptions/misconceptions than less experienced teachers.  The KCT items Herbst and 
Kosko (2014) constructed followed the same trend; experienced teachers were better able to 
determine appropriate tasks and examples to effectively illustrate a concept in comparison to less 
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experienced teachers (Herbst & Kosko, 2014). These prior efforts at constructing PCK items, in the 
context of MKT as a larger construct, informed our own efforts at item design. 

The present paper focuses on KCS of Multiplication and Division and follows item design 
recommendations of Ball et al. (2008) and Herbst and Kosko (2014). Specifically, items were written 
to assess teachers’ knowledge of students’ conceptions and errors in whole number multiplication 
and division for grades 3 to 5. In the next section, we describe this process in detail. 
Development of the PCK-MaD Assessment 

In this section, we describe the development of items for an assessment of Pedagogical Content 
Knowledge for Multiplication and Division (PCK-MaD). Items for the initial version of PCK-MaD 
were designed specifically to assess the KCS dimension of Ball et al.’s (2008) MKT framework. We 
anticipate including KCT items in a later version of the assessment but sought to focus on KCS as an 
initial step. Following recommendations from prior work in this area (Ball et al., 2008; Herbst & 
Kosko, 2014), we designed items focusing specifically on variations in upper elementary school 
children’s conceptions of multiplication and division. To do this, we focused on grades 3-5 Common 
Core Standards for Mathematics on multiplication and division standards (CCSSI, 2010) as a means 
of identifying key concepts to write items. Next, we conducted a literature review of mathematics 
education research on these and related concepts that described the nature of children’s reasoning. 
We paired this review of research with a review of practitioner resources (Battista, 2012; Van de 
Walle et al., 2019).  

Figure 1 provides an example item to help illustrate this process of item design, writing, and 
revision. The item, designated M01, was designed to assess teachers’ knowledge of children’s 
developmental skip-counting, and aligns with CCSS standard 3.0A.A.1 specifying that children need 
to interpret products of whole numbers. Variations of skip-counting have been observed by 
researchers, including a phenomenon where students begin to miss certain skip-counts (Mulligan & 
Mitchelmore, 1997; Sherin & Fuson, 2005). Steffe (1994) describes this as a point where children are 
beginning to compose iterable units, counting with whole numbers other than 1, but that this action is 
still very dynamic for the child. Rather, the composite whole number has not been fully abstracted 
for the child, and as they attempt to skip-count, they may lose track between coordinating the unit to 
be skip-counted and coordinating the number of skip-counts. In Figure 1, we illustrate this form of 
reasoning with a context of multiplying 7 and 8, and an illustration of skip-counting with one’s 
fingers. Distractors were included to represent other points in learning progressions described for 
practitioners (Battista, 2012; Van de Walle et al., 2019). For example, Battista (2019) describes 
repeated addition as distinct from uncoordinated skip-counting. It is also a distinction that may be 
difficult for some PSTs to observe, making option #4 a useful distractor. Although Figure 1 provides 
a final version of item M01, multiple revisions occurred as language and figures were reviewed and 
critiqued by the project team. 
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Figure 1. Example PCK-MaD item assessing for understanding of children’s developmental skip-
counting. 

After all items had been successfully vetted by project team members, we conducted cognitive 
interviews with two elementary math coaches who were widely recognized by the field for their 
expertise. Cognitive interviewing is a process in which a participant engages in a one-on-one 
interview to complete an assessment. After completing each item, the participant is asked what they 
thought the item was asking them to do, what they answered, and why they answered the way they 
did (Karabenick et al., 2007). For the PCK-MaD, cognitive interview data was used to examine 
whether items were interpreted as intended, and whether rationales for responses focused on aspects 
of students’ mathematical thinking (i.e., KCS). Each interview was roughly 2 hours in length, but 
within this time through feedback on items was given.  

Item M15, Figure 3, illustrates an example of a question that was not altered based on the feedback 
from the two math coaches. By contrast, Figure 2 depicts an example that was drastically modified 
due to the constructive criticism. This item was originally designed to be multiple response but was 
modified to become a multiple-choice item. In addition, the language of the item pertaining to the 
sample students reasoning was revised to be clearer of the intended thought process due to the 
discrepancy of responses from the two expert teachers: 

Expert Teacher #1: “Billy is decomposing items into equal parts.” 
 
Expert Teacher #2: “It looks like he is counting visual items by one” 
 In response to why she answered that way: 
Expert Teacher #2: “Because of the fact that all twenty were represented by stars so it looks like he 

counted 1, 2, 3, 4, 5.” 

The different responses illustrated to us that the item stem was unclear, and some of the options 
may have been interpreted in ways we did not intend. The reasoning for “Billy” was modified to be 
clearer of his mathematical reasoning of counting the stars and changed to a multiple-choice item to 
not distract the users further. Unfortunately, the cognitive interviews also resulted in one item being 
removed completely from the assessment due to the overall confusion of the participants. Some items 
were revised with very minor adjustments (missing punctuation, a typo in an image, etc.). Following 
cognitive interviews, 9 items received some revision (minor to moderate), 4 items remained as-is, 
and 1 item was fully removed.  
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Original Question Revised Question 

Figure 2: PCK-MaD questions M02 example of revision after cognitive interviews. 

Another outcome of our cognitive interviews was a realization of the cognitive demand of several 
items. Evidence from the literature suggests that KCS items may be more difficult than other MKT 
domains (Copur-Cencturk et al., 2019; Herbst & Kosko, 2014), and we found that many of our KCS 
items were indeed more difficult. Therefore, we created three additional items, following cognitive 
interviews, in an effort to have KCS items with an easier difficulty level.  

Following the framework of Herbst and Kosko (2014) items were developed to measure KCS in 
pre-service teachers. Revision of the items based on the feedback from the expert teachers resulted in 
the pilot PCK-MaD assessment. The adjustments made to the items added to clarity and refined the 
level of difficulty of the language. However, to properly vet the items and gather further validity of 
the assessment, we collected pilot data from preservice teachers (PSTs) enrolled in a teacher 
education program. This process served to collect validity evidence for an initial validity argument 
for the PCK-MaD.  

Method 
Sample and Procedure 

Participants included 58 PSTs, with 47 preparing to become elementary teachers (grades K-3 with 
an endorsement option for grades 4-5) and 11 preparing to become middle grades teachers (grades 4-
9). Participants were in the latter half of their teacher education (31 juniors; 27 seniors). The majority 
of junior participants were elementary PSTs (n=27) preparing to take the first of two mathematics 
methods courses. Although these participants had some pedagogical coursework and field 
experience, they hadn’t received formal education on PCK for multiplication/division. Four juniors 
were middle grades PSTs who had completed the first of two mathematics methods courses. Senior 
elementary PSTs (n=20) had completed two mathematics methods courses, with several field-based 
assignments relating to multiplicative reasoning across grades K-3. All participating elementary 
PSTs expressed their intent to complete an additional mathematics methods course focusing on 
grades 4-5, but none had completed this course at time of data collection. The majority of middle 
grades PSTs (7 of 11) were seniors and were enrolled in the second of two mathematics methods 
courses in their program.  
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Analysis and Results 
Given the early stage of developing our PCK survey, the present paper examines validity evidence 

from test content and response processes. Validity evidence for response processes refers to 
“whether test takers are, in fact, reasoning about the material given instead of following a standard 
algorithm applicable only to the specific items on the test” (AERA et al., 2004, p. 15). Wolf and 
Smith (2007) suggest that psychometric measures can be used to assess the degree that the theoretical 
rationales for item content align with response processes. Therefore, to examine evidence for 
response processes in the present paper, we conducted a classical item analysis to examine the 
internal reliability of items and the resulting measure, and to examine the relative difficulty of those 
items in comparison with one another.  

The PCK survey included 15 questions, with six questions conveyed in a multiple-response (i.e., 
select all that apply) format. For example, question M15 presents six different student algorithms and 
asks the survey respondent to select those that used all partial products (see Figure 3). This 
effectively conveys six different items for M15. Thus, for the 15 questions we examined, there were 
41 items, due to the six multiple response questions. Our initial item analysis model, including all 41 
items, resulted in a Cronbach’s alpha coefficient of .47. For surveys and piloted assessments such as 
the one in this paper, the typically accepted threshold is at or near .70 (Nunnally & Bernstein, 1992). 
Therefore, we examined the point-biserial correlations for each item to identify candidates for 
removal. Point-biserial coefficients below .30 are considered to not meaningfully contribute to the 
total score, possibly due to variance in response (Crocker & Algina, 2006). Rather than remove all 
such items, it is customary to remove one item at a time, so that the remaining items’ point-biserial 
coefficients can be recalculated for a new model. In addition to identifying particularly low 
coefficients, items are examined in the context of their theoretical contributions to the model, as well 
as evidence from cognitive interviews and/or written work on the surveys. For example, the sixth 
item on question M15 had an initial point-biserial coefficient of .021 (see Figure 3). The low 
coefficient essentially flagged the item for review. We then considered evidence from our cognitive 
interviews in which unfamiliarity with the lattice method and how it functioned mathematically 
resulted in incorrect responses. Thus, this option for question M15 was removed. A similar process 
took place for all iterations of item analysis. Our final model included 21 items, from nine questions, 
with a Cronbach’s alpha coefficient of .68. This suggests at least 68% of the variance in responses is 
due to the measured construct (PCK for multiplication and division). Point-biserial coefficients for 
most items were above or near the .30 threshold. Item difficulty for the remaining items ranged from 
.20 (20% of the sample answered correctly) to .90 (90% of the sample answered correctly), with a 
mean score of 14.88 (SD = 3.14, Range = 5 to 16).  

Validity evidence for test content considers how well assessment content represents PCK for 
children’s multiplicative reasoning, and how well this content aligns with interpreting PSTs’ scores 
(AERA et al., 2004). To analyze this, we will examine the intended purpose of the assessment (i.e., 
to measure the effect of teacher education) using an independent samples t-test for PCK scores of 
juniors and seniors. Results were statistically significant (t = 2.686188, df = 56, p = .00933), 
indicated that senior PSTs had higher PCK scores (15.8674) than junior PSTs (13.6690). To ensure 
the comparison between junior and senior PSTs was not influenced by major, we examined the 
difference between elementary and middle grades PSTs’ scores and found no statistically significant 
difference (t = 0.673, df = 56, p = .503). We also examined whether PSTs who had a field placement 
in grades 3-5 would have higher PCK scores and found no statistically significant difference between 
those with and without such field experience (t = 0.396, df = 56, p = .743). Considered collectively, 
these results suggest that, for participants in the current study, the PCK survey distinguishes between 
PSTs who are earlier or later in their teacher education program. Such a difference does not appear to 
be due to intended licensure (elementary or middle grades) or having grades 3-5 field experience. 
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Figure 3: PCK-MaD that assesses children’s strategy-use with partial products. 

Discussion 
To our knowledge, there is no prior assessment for PCK of multiplication and division for whole 

numbers. This study reported on the initial piloting of our assessment of PST’s knowledge of content 
and students (KCS) with a focus on multiplicative reasoning. Given the need for additional research 
on PSTs’ PCK for multiplication and division (Thanheiser et al., 2014), development of a measure 
for this domain has the potential for informing the field in this regard. The findings of this study 
suggest that our survey can distinguish between PCK scores of PSTs at different levels of teacher 
education (i.e., senior vs. junior). On one hand, this provides useful validity evidence for the PCK-
MaD’s ability to distinguish between PSTs at different points in their teacher education. However, 
this finding also lends support for the effectiveness of teacher education programs at developing 
PSTs’ PCK. Both implications of this particular finding, while useful, should be interpreted with 
caution as the current study represents an initial pilot of an assessment and involves a sample from a 
particular teacher education program. 

Psychometric data from the PCK-MaD item analysis and data from the two cognitive interviews 
suggest that the piloted assessment does measure the intended construct. However, future research is 
needed to improve the assessment. Results suggest initial support for an assessment of KCS, but 
additional items focusing on KCT should be developed. Further, results here focus predominately on 
responses from PSTs, suggesting a need to examine responses from inservice teachers to establish a 
better understanding of normative KCS in the field. Despite the early stage of this work, results 
suggest that the PCK-MaD may be used as-is for assessing the effect of teacher education initiatives. 
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In this study, we explored teachers’ attention to and flexibility with referent units as well as how 
teachers’ understanding of referent units is related to their performance on other fraction concepts 
and their professional background. By using data collected from 246 U.S. mathematics teachers in 
Grades 3–7 where fractions are taught, we found that teachers’ attention to and flexibility with 
referent units were moderately related. Whereas some teachers’ professional background variables 
could explain their flexibility with referent units, none of the variables was linked to their attention to 
referent units. Furthermore, both teachers’ attention to and flexibility with referent units seemed to 
be associated with their performance on other fraction concepts.  

Keywords: Rational Numbers, Teacher Knowledge 

Fractions are critical content in the upper elementary and middle grades curriculum (e.g., Common 
Core State Standard Initiatives [CCSSI], 2010). Despite teachers’ computing well on fraction 
arithmetic, they usually struggle with understanding fractions conceptually (e.g., Izsák, 2008). For 
instance, teachers can confuse problem situations asking for division by a fraction with those asking 
for multiplication by a fraction (e.g., Ma, 1999) or overgeneralize rules for whole numbers to 
fractions such as division makes numbers smaller (Jansen & Hohensee, 2016).  

Several scholars have argued that such difficulties with understanding fractions might be related to 
the whole number bias (e.g., Vamvakoussi, Christou, & Vosniadou, 2018), whereas others have 
argued that not understanding number magnitude may be the underlying reason (e.g., Siegler, 2016). 
Scholars in mathematics education have also brought up referent units (RU), which are critical, yet 
overlooked, for having a conceptual understanding of fractions (e.g., Izsák, Orrill, Cohen, & Brown, 
2010). Empirical work has provided support for the importance of RU (e.g., Izsák, Jacobson, and 
Bradshaw, 2019). For example, Izsák et al. (2010) analyzed 201 U.S. middle grades teachers’ 
responses to a set of items and found two classes that distinguish the teachers based on their 
understanding of RU. In a recent study that analyzed 990 U.S. middle grades teachers’ responses to a 
multiple-choice assessment, Izsák et al. (2019) found that teachers who were proficient in RU tended 
to perform better on the remaining components of reasoning about fractions. 

Although past research has provided insights into teachers’ understanding of RU, it has focused 
heavily on such understanding in fraction multiplication and division situations, given that RU 
change during the process (e.g., Izsák et al., 2019). Thus, these studies capture teachers’ flexibility 
with RU, which can be defined as “a teacher’s ability to keep track of the unit to which a fraction 
refers . . . and to shift their relative understanding . . . as the referent unit changes” (Lee, Brown, & 
Orrill, 2011, p. 204). Although fraction multiplication and division situations provide an invaluable 
opportunity to examine whether teachers can identify referent units correctly and think accordingly 
as the referent unit changes, we argue that RU are important in any fraction concept. Our argument is 
grounded in the view that understanding RU also includes attention to RU, even in less explicit 
situations. To illustrate what we mean by attention to RU, when comparing fractions, creating 
equivalent fractions, and performing fraction operations such as fraction addition and subtraction, the 
same referent unit is used for the fractions involved. For instance, when two fractions are added, both 
fractions refer to the same whole. Thus, attention to RU could capture another characteristic of 
teachers’ understanding of RU.  
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In sum, although prior work has provided evidence for the importance of RU in understanding 
fractions, we still know little about the relationship between different characteristics of RU. In 
particular, we hypothesized that in addition to flexibility with RU, attention to RU is an important 
characteristic of teachers’ understanding of RU and, in general, of their overall performance on 
fractions. To test our hypothesis, we created two constructed-response problems, one capturing 
teachers’ attention to RU in a fraction comparison situation and the other capturing teachers’ 
flexibility with RU in a fraction multiplication situation involving a visual representation. By using 
data collected from 246 U.S. in-service teachers who were teaching mathematics in Grades 3–7, we 
examined the relationship between teachers’ performance on these two problems and the extent to 
which teachers’ professional background was related to their responses to these two problems. 
Finally, we explored how teachers’ responses to these two problems were related to their overall 
performance on a fractions measure. We aimed to answer the following research questions: 

1. To what extent do teachers pay attention to RU?  
2. To what extent do teachers demonstrate flexibility with RU? 
3. What is the relationship between teachers’ attention to and flexibility with RU?  
4. What aspects of teachers’ professional background are related to their attention to and 

flexibility with RU?  
5. To what extent are teachers’ attention to and flexibility with RU, along with their 

professional background, associated with their overall performance on fractions? 
Our study contributes to the current literature in three significant ways. First, prior work has not 

focused on the relationship between teachers’ understanding of different characteristics of RU. Thus, 
by examining the relationship between teachers’ attention to and flexibility with RU, we aimed to 
contribute teachers’ understanding of RU and fraction operations. Second, limited research (Izsák et 
al., 2019) has investigated the relationship between teachers’ professional background and their 
understanding of RU. Thus, knowing the extent to which teachers’ professional background is 
associated with their attention to and flexibility with RU will have implications for mathematics 
teacher education. Finally, by investigating the relationship between teachers’ understanding of RU 
and their performance on a fractions measure, we aimed to provide further evidence for how 
teachers’ understanding of RU might be linked to their overall performance on fractions.  

Theoretical Framework 
Referent units can be defined as units number refer to in mathematical situations. Although it is 

possible for teachers and students to perform algorithms correctly without relying on RU, a 
conceptual understanding of fractions requires one to explicitly attend to the units and to be aware of 
the units in these situations (Philipp & Hawthorne, 2015). Let us illustrate the RU in two different 
problem situations:  

1.  Which fraction is larger: 1/3 or 1/2? 
2.  One serving of yogurt is 1/3 of a cup. For one meal, Amanda ate 1/2 of a serving. How many 

cups of yogurt did Amanda eat? 
In the first problem, the answer can be found by finding a common denominator for both fractions 

and noticing that 2/6 is smaller than 3/6. However, the comparison makes only sense if both fractions 
refer to the same unit. Thus, attention to RU is necessary to develop a conceptual understanding in 
situations where the referent unit stays the same. In this way, teachers can overcome several 
misconceptions such as the larger the denominator, the larger the fraction or adding across 
numerators and denominators (Newton, 2008). In the second problem, however, the numbers refer to 
different units. Whereas 1/3 and the product, 1/6, refer to 1 cup, 1/2 refers to one serving, which is 
1/3 of a cup. When performing the standard algorithm, the answer, 1/6, can be found by multiplying 
across numerators and denominators. On the other hand, a conceptual understanding of fractions 
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requires showing flexibility with RU by understanding that the RU for 1/2 and 1/3 are different and 
thinking accordingly as the referent unit changes. Therefore, partitioning the serving size into two 
parts and shading one part is needed to show 1/2 of 1/3 (Figure 1b). Because the problem asks for the 
number of cups, the referent unit of 1/6 then becomes 1 cup, the whole rectangle (Figure 1c). 

 

 
Figure 1: (a) 1/3 of the rectangle;   (b) 1/2 of the 1/3;    (c) 1/6 of the rectangle 

 
Most prior work on RU has focused on teachers’ understanding of fraction multiplication and 

division, and reported both future and in-service teachers’ struggle with RU (e.g., Baek et al., 2017; 
Izsák, 2008; Izsák et al., 2019; Lee, 2017; Webel et al., 2016). Much of this research used fraction 
multiplication and reported teachers’ reliance on the overlapping method, which uses the same 
referent unit for the multiplier, multiplicand, and product. These studies have acknowledged that 
using the overlapping method either results in incorrect answers or causes mostly step-by-step 
algorithms instead of conceptual understanding about what it means to multiply two fractions. 

Methods 
The data were collected from 246 in-service mathematics teachers in Grades 3–7 across 21 states in 

the United States. Teachers in our sample were mostly female (84%) and White (68.1%). In addition, 
25.2% of the teachers had a master’s degree, 77% of them were teaching mathematics in Grades 3–5, 
and 23% were teaching mathematics in Grades 6–7. While 70.3% had traditional certification, 19.3% 
had a credential in mathematics, and 52.5% were fully certified.  

As seen in Table 1, the fractions measure used in this study consisted of a set of six items adapted 
from prior research (e.g., Siegler, 2015), the DTMR survey (Izsák et al., 2019) and the Teacher 
Education and Development Study in Mathematics (TEDS-M) survey (Tatto et al., 2012), and 
teacher education resources (Van de Walle, Karp, & Bay-Williams, 2019). We also administered the 
background survey (Izsák et al., 2019) and collected information regarding the professional 
background of our sample.   

 
Table 1: Fractions measure items 

Key concept Item 
Attention to 
RU 

Is it possible for 1/3 to be greater than 1/2? Explain your thinking. 
 

Equivalent 
fractions 
 
 
 

In the figure, how many MORE small squares need to be shaded so that 4/5 of the total number 
of small squares are shaded? Explain your answer. 
 

     
     

Comparing 
fractions 

For each set of fractions, put < , >, or = to make the statement true. 
     !

!"
    !"

!"
          !"

!"
    !"

!"
          !"

!!
    !!

!!
          !"

!"
    !"

!!
           !"

!"
    !"

!"
          !"

!"
    !"

!"
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Estimating the 
sum of 
fractions 

The fractions !"
!"

 and !"
!!

 have been placed on a number line. Without computing, please 

estimate the sum of !"
!"
+ !"

!!
	by placing a dot on the number line where you think the sum would 

be found. Explain your answer. 

 

Flexibility 
with RU 

This item cannot be displayed because it is currently part of the DTMR survey (Izsák et al., 
2019). We provided a drawn rectangle and asked teachers to model fraction multiplication and 
explain their answer. 	

Estimating   
the quotient of 
fractions 

The fractions !"
!"

 and !"
!!

 have been placed on a number line. Without computing, please 

estimate the quotient of 	!"
!!
÷ !"
!"

by placing a dot on the number line where you think the quotient 
would be found. Explain your answer. 

 

 
We independently coded the items on attention to and flexibility with RU. The agreement was over 

90% for each item. We classified teachers’ responses to the item on attention to RU into three 
categories: no attention to RU, partial attention to RU, and full attention to RU. Specifically, teachers 
assigned to the first category did not refer to any RU implicitly or explicitly in their explanations. 
The second category included teachers who were using the same referent unit. The third category 
captured teachers who responded that the answer depended on the referent unit. We also classified 
teachers’ responses to the item on flexibility with RU into three categories: no flexibility with RU, 
partial flexibility with RU, and flexibility with RU. The first category included teachers who did not 
demonstrate flexibility with RU at all in their responses such as “I am unsure how to model that the 
product of 1/3 × 1/4 is 1/12.” The second category included teachers who used the overlapping 
method such as “She should draw two vertical lines to divide the rectangle into 3 equal-sized parts 
across, then shade in one of the vertical rectangles. The shaded piece that is overlapped demonstrates 
the 1/12.” The third category included teachers who demonstrated flexibility with RU by keeping 
track of the units with explanations such as: “She should divide the picture into 3 equal-sized pieces 
vertically and show that 1/3 of the 1/4 is 1/12 of the whole.” We also scored the remaining four 
fraction items and the agreement was greater than 90%.  

To report teachers’ attention to and flexibility with RU, we computed the percentages of responses 
in each category. To investigate the relationship between teachers’ attention to and flexibility with 
RU, we used a Pearson chi-square test. We also computed the correlation between these categories 
by using gamma statistics, given that the categories for each problem were ordinal. To investigate the 
relationship between teachers’ responses to the referent unit problems and their professional 
background variables, we ran a separate ordinal logistic regression for each problem. Finally, to 
examine the relationships among teachers’ overall performance on other items of the fractions 
measure, their attention to and flexibility with RU, and the professional background variables, we ran 
a linear regression in which the total score was predicted by teachers’ attention to and flexibility with 
RU and the aforementioned background variables.  

Results 
Teachers’ Attention to Referent Units 

As shown in Figure 2, 54.5% of the teachers demonstrated attention to RU by responding that 1/3 
could be greater than 1/2, depending on the referent unit. For instance, one teacher explained that “If 
I am comparing two different-sized objects, then 1/3 may be greater than 1/2.” On the other hand, 
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19.9% of the teachers demonstrated partial attention to RU by reporting that 1/3 could not be greater 
than 1/2 and by explicitly using the same referent unit to justify their responses. Furthermore, 25.6% 
of the teachers did not demonstrate attention to RU (Figure 2). Specifically, 57% of these teachers 
did not provide any explanation that showed why 1/3 could not be greater than 1/2, whereas 25.4% of 
the teachers constructed equivalent fractions in their explanations. For example, one teacher wrote 
“To easily compare these fractions, you can find common denominators, 2/6 and 3/6. The one half 
will always be greater than the one third.” Lastly, 17.6% of the teachers either made factual 
statements in their explanations without mentioning any referent unit or they converted fractions into 
percentages by reporting that 1/3 and 1/2 means 33% and 50%, respectively.  

 
Figure 2: Teachers’ performance on the item that measured their attention to RU 

 
Teachers’ Flexibility with Referent Units  

 Teachers’ responses to the flexibility with RU item suggested that only 11.8% of the teachers 
demonstrated flexibility with RU (Figure 3). Those teachers reported that the referent unit for 1/4 
was the entire rectangle and that the referent unit for 1/3 was 1/4 of the rectangle (i.e., the shaded 
part), not the entire rectangle. They also pointed out that 1/12 was 1/3 of the 1/4 rectangle. For 
example, one teacher explained “divide the picture [1/4 of the given rectangle] into 3 equal-sized 
pieces vertically and show that 1/3 of the 1/4 is 1/12 of the whole.” On the other hand, the remaining 
teachers (88.2%) appeared to struggle demonstrating flexibility with RU. In particular, 44.3% of the 
teachers demonstrated partial flexibility with RU by relying on the overlapping method. They did not 
specify different RU for 1/3 and 1/4, and their explanations implied that for both 1/3 and 1/4, they 
considered the entire rectangle as their referent unit. For instance, one teacher explained that “Divide 
the rectangle vertically into 3 equal-sized parts and shade in one part. The overlapping part between 
the horizontally shaded part and vertically shaded part (one square) is 1/12.” Unlike the 
aforementioned two categories, 43.9% of the teachers did not demonstrate any flexibility with RU. 
Those teachers did not appear to consider any referent unit, and they did not provide explanations for 
each fraction. 

 

 
Figure 3: Teachers’ performance on the item measuring their flexibility with RU 
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Relationship between Attention to and Flexibility with Referent Units  
We found a significant, but moderate relationship between relationship between teachers’ attention 

to and flexibility with RU (χ2(4) = 13.3, p = .01; G = .35). As shown in Figure 4, 60.3% of the 
teachers who did not pay attention to RU failed to demonstrate flexibility with RU, whereas 35.1% of 
the teachers who paid attention to RU failed to demonstrate flexibility with RU.  

 
Figure 4: Teachers’ performance on for different levels of attention to RU 

 
Relationship Between Understanding of Referent Units and Professional Background  

We also examined the relationships between teachers’ understanding of RU and their various 
professional background variables. As shown in Table 2, none of the variables for teachers’ 
background was associated with their attention to RU, whereas middle grades teachers and 
traditionally certified teachers showed more flexibility with RU compared with upper elementary and 
non-traditionally certified teachers. For example, the odds of middle grades teachers showing 
flexibility with RU was 2.67 times higher than that of elementary grades teachers (p = .001). This 
means that middle grades teachers were 2.67 times more likely to demonstrate flexibility with RU 
than elementary grades teachers.  
 

Table 2: Logistic Regression of Probability of Attention to and Flexibility with RU 

Teachers’ professional background 
Attention to 

RU 
Flexibility with 

RU 
Number of mathematics content courses (3 or more) 0.880 (.23) 0.667 (.18) 
Number of mathematics methods courses (3 or more) 1.084 (0.32) 1.088 (0.32) 
Fully certified teachers 0.875 (0.24) 0.923 (0.25) 
Middle school mathematics teachers (Grades 6 & 7)  0.983 (.30) 2.666** (.81) 
Traditionally certified teachers 1.265 (0.38) 2.098* (.64) 

Note. Odds rations shown. Standard errors are in parentheses. *p < 0.05, **p < 0.01. 

Relationship Between Knowledge of Referent Units and Fractions 
As shown in Table 3, teachers’ attention to and flexibility with RU significantly predicted their 

overall performance on the fractions measure. Specifically, when teachers’ attention to and flexibility 
with RU were entered into the model separately, teachers who paid attention to RU significantly 
outperformed those who did not pay attention (effect sizes of .41 and .58 for the partial attention to 
and attention to referent unit categories, p = .035 and p < .0001). Similarly, those who demonstrated 
partial flexibility or flexibility with RU also performed significantly better on the fractions measure 
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compared with those who did not show flexibility with RU (effect sizes of .52 and .60 for teachers 
who were in the groups showing partial flexibility and flexibility with RU, p < .0001 and p = .007). 

Table 3: Teachers’ performance on fractions predicted by their Attention to and Flexibility with 
Referent Units and Professional Background  

 Attention to 
RU 

Flexibility with 
RU 

Attention to and 
flexibility with RU, 

and professional 
background 

Attention to and flexibility with RU    
Partial attention to RU 0.140* (.067)  0.142* (.064) 
Attention to RU 0.198*** (.053)  0.175*** (.052) 
Partial flexibility with RU  0.171*** (.047) 0.105* (.048) 
Flexibility with RU  0.198** (.073) 0.115 (.072) 
Professional background    
Number of mathematics content courses   −0.042 (.046) 
Number of mathematics methods courses   0.059 (.50) 
Fully certified teachers   −0.024 (.046) 
Middle school mathematics teachers   0.206*** (.053) 
Traditionally certified teachers   0.039 (.052) 
Note. N = 238 for all models. The numbers in parentheses are standards errors.  *p < 0.05, **p < 0.01, ***p < 0.001. 
 

Finally, when teachers’ attention to and flexibility with RU were included in the model along with 
their professional background variables, teachers who demonstrated partial attention to RU or those 
who demonstrated full attention to RU still performed better than those who did not demonstrate 
attention to RU (effect size of .43 and p = .028 for the partial attention to RU category; and effect 
size of .53 and p = .001 for the full attention to RU category). However, teachers’ flexibility with RU 
did not seem to be significantly correlated with their overall performance on the fractions measure. 
This is possibly because of the correlation we reported earlier between teachers’ professional 
background variables and their flexibility with RU. Of these variables, the only significant predictor 
of teachers’ overall performance was being a middle grades teacher. Indeed, the difference between 
elementary and middle grades teachers’ performance was an effect size of .63, p < .001. Other 
variables, such as the number of courses or being fully certified, did not link to their overall 
performance on fractions. 

Discussion 
In the present study, we examined U.S. in-service teachers’ attention to and flexibility with RU and 

the relationship between these two characteristics, along with how teachers’ understanding of RU 
was linked to their professional background and performance on the fraction items. We found that 
although about half of the teachers paid attention to RU, only 12% of the teachers showed flexibility 
with RU, which suggests that showing flexibility with RU is a more difficult concept to grasp. Our 
findings regarding teachers’ flexibility with RU are similar to those from prior work (e.g., Lee et al., 
2011; Webel et al., 2016). Furthermore, in alignment with past research (e.g., Izsák, 2008; Lee et al., 
2011; Webel et al., 2016), teachers in our study commonly used the overlapping method to model 
fraction multiplication, indicating these teachers’ difficulty with making sense of fraction 
multiplication.  

Furthermore, our findings suggest a significant, but moderate relationship between teachers’ 
attention to and flexibility with RU. These results may provide initial evidence that these items 
capture different characteristics of teachers’ understanding of RU. It is interesting that teachers’ 
performance on the item measuring flexibility with RU was associated with the teachers’ preparation 
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route, whereas the item measures attention to RU was not associated with any teacher background 
indicators. This may be because teacher education programs focus more on modeling fraction 
multiplication and division, given that many studies on future teachers have focused on fraction 
multiplication (e.g., Baek et al., 2017).   

In a similar vein, it is important to point out that the number of mathematics content and methods 
courses was not associated with teachers’ attention to and flexibility with RU. In an extensive review, 
Olanoff et al. (2014) reported an urgent need for research that finds ways to improve future teachers’ 
understanding of fractions. The present study suggests that emphasizing attention to RU in teacher 
preparation programs, even when the referent unit stays the same, could help future teachers improve 
their understanding of fractions.  

Our findings also underscore the importance of teachers’ attention to and flexibility with RU in 
relation to their performance on other fraction concepts. In particular, teachers who paid attention to 
RU performed better than those who did not. Similarly, teachers who demonstrated flexibility with 
RU performed better on other fraction concepts than those who did not demonstrate such flexibility. 
Furthermore, when both attention to and flexibility with RU were included together, in addition to 
teachers’ professional background variables, teachers who paid attention to RU or those who used the 
overlapping method for fraction multiplication performed better on the remaining items of the 
fractions measure than did those who did not pay attention to RU or those who showed no flexibility 
with RU. However, teachers who showed full flexibility with RU did not perform well compared 
with those who did not show any flexibility after adjusting for attention to RU. In sum, these findings 
also confirm the importance of teachers’ understanding of RU in their mastery of other fraction 
concepts.  
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One important aspect of teaching is reviewing tasks in preparation for instruction. The goal of the 
multicase study of four secondary teachers was to examine the interplay between their mathematical 
knowledge for teaching [MKT] and what they attend to when reviewing a mathematics task. We 
engaged secondary mathematics teachers in a semi-structured, clinical interview focused on a non-
routine mathematical task involving exponential growth. The results suggest experienced teachers 
may not explicitly attend to learning opportunities in their review of a task, and their own 
mathematical work contributes to their anticipation of student work and thinking. This work 
highlights how researchers focused on MKT can use clinical interviews as a tool for extracting and 
describing a teacher’s MKT. 

Keywords: Mathematical Knowledge for Teaching; Instructional Activities and Practices; 
Curriculum Enactment 

Mathematical knowledge for teaching [MKT] is the “knowledge needed to carry out the work of 
teaching mathematics” (Ball, Thames, & Phelps, 2008, p. 395). Ball et al. (2008) clarify that teaching 
mathematics includes “everything that teachers must do to support the learning of their students” (p. 
395). As such, this work includes planning, instruction, and assessment. Others in the literature 
suggest, in agreement, that pedagogy, the curriculum, and teachers’ mathematical understanding are 
interconnected (e.g., Davis & Simmt, 2006; Sullivan, Knott, & Yang, 2015). For example, Sullivan et 
al. (2015) argue that “tasks do not exist separately from the pedagogies associated with their use nor 
are the pedagogies independent of the task” (p. 84).  

One aspect of the mathematical work of teaching is reviewing mathematical tasks for potential use 
during instruction (Ball, 2017). From selection to implementation, teachers’ use of mathematical 
tasks impacts the types of learning opportunities their students experience (e.g., Stein, Grover, & 
Henningsen, 1996). Sullivan et al. (2015) note that tasks allow students the opportunity to experience 
mathematical concepts and ideas. They claim that “the role of the teacher is to select, modify, design, 
redesign, sequence, implement, and evaluate tasks” (p. 83). Furthermore, “in planning and teaching, 
the role of the teacher is to identify potential and perceived blockages, prompts, supports, challenges, 
and pathways” (Sullivan et al., 2015, p. 86).  

The purpose of this research study was to explore the aspects of a teacher’s MKT elicited when 
reviewing a mathematics task. Specifically, we claim that aspects of a teacher’s MKT including 
specialized content knowledge [SCK], knowledge of content and teaching [KCT], and knowledge of 
content and students [KCS] (Ball et al., 2008) become evident during task analysis. To investigate 
our claim, we pursued the following research question: What aspects of a secondary mathematics 
teachers’ MKT can we describe from their review of a nonstandard exponential functions task? Our 
focus on exponential functions answers a call for increased research considering topics at the 
secondary level (Speer, King, and Howell, 2015). 
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Methods 
The study was part of a larger research study focused on the work of 16 high school teachers from 

the Great Plains region of the United States while they were teaching exponential functions in 
courses ranging from Algebra I to Precalculus.  The research team identified the teachers as “highly 
effective” based on recommendations from the teachers’ administrators or peers. The teachers had 5 
to 25 years of teaching experience.  

Data collection for the larger study consisted of multiple stages. First, a member of the research 
team conducted classroom observations of five lessons pertaining to exponential functions. In 
addition to observations, the teachers engaged in pre- and post-lesson interviews focused on the 
entire set of lessons as well as pre- and post-lesson interviews for each lesson. Second, a member of 
the research team administered a pre- and post-lesson assessment measuring the teachers’ students’ 
understanding on exponential functions topics. Finally, each teacher engaged in a semi-structured, 
clinical interview, called the MKT Interview, which focused on the teachers reviewing two non-
standard exponential functions tasks. In this paper we focus on the first task of the MKT Interview, 
the Xbox Xponential task (see Figure 1). 

 

 
Figure 1: The Xbox Xponential task (modified from Mathelicious, 2015). 

 
During a semi-structured, clinical interview, a member of the research team asked the teacher to 

review the Xbox Xponential task. The teachers were prompted to articulate the mathematical 
opportunities to learn the task had the potential to support if used during classroom instruction. 
During the interview, the researchers collected video data of the teacher engaging with the task. Data 
analysis focused on how teachers approached the task mathematically and the descriptions they used 
to express the ways they thought students would interact with the task. We chose the Xbox task 
because it supported students to think about key mathematical ideas related to exponential functions 
and contained nonstandard elements. Specifically, the task provided opportunities for students to 
think about how a change in the independent variable other than one unit impacts the change in the 
dependent variable and how to capture that change in a table, an expression, and an equation. We 
anticipated that learners would work through calculating specific values using a multiplicative 
relationship between dependent and independent variables using recursive reasoning (part one), 
generalizing their work into an expression for a specific year (part two), and creating a general 
equation for the relationship (part three). This work provided the opportunity for students to learn 
about: the connections between multiplicative growth and exponential functions, the connections 
between repeated multiplication and exponents, and the importance of defining independent and 
dependent variables. 
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The Cases 
Guided by an interpretive theoretical perspective (Creswell, 2013), we selected four teachers who 

engaged with the Xbox Xponential task during the clinical MKT interview in this multicase study 
(Stake, 2006). As part of our theoretical perspective, our participants developed “subjective meanings 
of their experiences,” and our role as researchers was to interpret our participants’ responses by 
relying “as much as possible on the participants’ views” (Creswell, 2013, pp. 24-25). However, our 
analysis included interpretations and observations to investigate the teachers’ MKT. The individual 
cases of Helen, Abby, Frankie, and Molly provided contrasting views of the Xbox Task and their 
cross-case analysis provided evidence of their collective MKT. 
Helen 

For part one of the task, Helen immediately identified the gaps in time and indicated them with 
arrows and increments from cell to cell in the table. For example, from 1983 to 1993, she drew an 
arrow and wrote “+10” to indicate the 10-year gap in time. She noted that all of the gaps in time are 
even which made “them all nice and easy” because “you [do] not have to deal with what happens if it 
is not an even number.” After determining the gaps in time, Helen used a recursive strategy to find 
the values for the processing speeds by multiplying the previous value by a power of two based on 
the number of two-year intervals. For part two of the task, Helen initially wrote 𝑦 = 1.2 ∙ 2!"". After 
moving on to part three of the task, she returned to part two to modify her answer to 𝑓 100 = 1.2 ∙
2!""/! which she simplified to 𝑓 100 = 1.2 ∙ 2!". Finally, for part three of the task, she wrote her 
answer as 𝑓 𝑡 = 1.2 ∙ 2!/!. Helen completed all parts of the task as designed before addressing what 
learning opportunities were possible. With the exception of Helen’s comment about the gaps in time 
in the table for part one being “nice and easy,” Helen did not comment on her thinking while 
completing the task. It is interesting to note that Helen was able to attend to the two-year gaps and 
intervals in part one of the task, but she did not initially attend to them in part two of the task. It was 
only after moving on to part three that she returned to correct her answer. 

With respect to the sequence of tasks, Helen claimed that “it’s always easier for students to handle 
the numeric at first, especially if it’s their first introduction to exponential functions.” Starting with 
the table supports this view. She believed that her students would be able to “reason their way 
through” the table by attending to the two-year intervals and gaps in time. While some students might 
use a “brute force” strategy of repeatedly multiplying by two, Helen hoped that the table would 
motivate her students “to start thinking of another way.” By doing that, she claimed that this “would 
allow them to make that jump into actually formalizing [the context] and writing it algebraically in 
general.” Helen sees exponents as a tool students could use to complete the task. Helen noted that the 
sequence of tasks supports students at all levels to be able to complete the task since “not all students 
would be able to start [with part three].” The sequence gives all students “a path towards getting the 
ultimate goal of the [task] which would be coming up with [the function in part three].” Throughout 
these comments Helen is primarily focusing on students’ completion of the task and the prior 
knowledge they need for successful completion of the task.  

Helen highlighted that repeated multiplication is “a huge aspect of why we use exponential 
functions.” She viewed the table as potentially supporting her in teaching students “about the 
behavior of exponential functions.” Specifically, “the idea that you are doubling every certain 
number of years.” In contrast to her previous comments, Helen, is now focused on student thinking 
about a key mathematical idea. Her comments stemmed from her view that the doubling is occurring 
every two years is “an interesting twist from the [tasks] that [her students] may be used to seeing.” 
She hypothesized that her students would not recognize that they would need to divide the value in 
the exponent by two which is the same mistake she initially made when completing the task herself.  
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Abby 
For part one of the task, Abby filled in the table by repeatedly multiplying the value in the previous 

table cell by two, ignoring the gaps in time. After completing the table in this way, she moved on to 
part two. She first wrote the equation, 𝑓 𝑥 = 1.2(2)!!!. Then, when she attempted to define her 
variable, x, she realized her error in part one. She then returned to part one of the task by identifying 
the size of the gaps in the years: +2, +4, +10, +8, and +4 respectively. Then, for each of the table 
cells, she identified the number of two-year intervals and multiplied the previous values by two 
raised to the exponent related to that number of intervals. For example, from 1983 to 1993 she 
multiplied 4.8 by 25 in order to calculate the value associated with 1993, or ten years after 1983. 
Later in the interview, Abby admitted that she did not attend to the years and assumed that they were 
“nice equal” intervals.  

After completing the table for the second time, Abby returned to her earlier work where 𝑓 𝑥 =
1.2(2)!!! was already written on the paper. Abby then defined x as “every two years.” After asking 
herself, “does that work?” and checking values, Abby erased the original exponent 𝑥 − 1 as well as 
her definition for the variable x. Looking back at the table, Abby changed the definition of the 
variable x to “# of yrs since 1997” and changed the exponent to 𝑥/2. Again, Abby checked her work 
by evaluating using her equation and comparing the values with the table in part one of the task. 
After reading the prompt for part three of the task, Abby noted that she “should read the question” for 
part two of the task. For her answer, Abby wrote and calculated 𝑓 100 = 1.2 2!" = 1.251×
10!" for part two of the task. She then moved on to part three of the task where she wrote 𝑓 𝑡 =
1.2(2)!/! and defined the variable t as “# of yrs since 1997.” Abby appeared to skim the task initially 
and completed what she assumed the parts of the task were asking. It was only after moving on to 
subsequent parts did Abby identify that she may have made an error. This suggests that Abby 
assumed that the task followed the format of (1) fill in the table for consecutive values, then (2) write 
an equation to model the context.  

Abby noted that the overall sequence of tasks allowed students to access the mathematics at 
different levels. First, she liked “that we can model it numerically with the table.” This is something 
that the students “could get just with a little calculator work and it is something that [the students] 
could actually conceptualize.” Second, she noted that the task is an easy context to understand which 
would motivate students to complete it. Finally, the sequence of tasks “stair steps” students through 
the parts towards an answer and “gives them a method to check their work as they go.” Specifically, 
the table allows students to see that they should divide by two in part two of the task as well as 
provides them with a way to check their function in part three of the task. Overall, Abby viewed the 
goal of the task as formulating a model which she claimed is done in part three of the task. She did 
not articulate any mathematical ideas that students would have the opportunity to think about through 
engagement with the task.  

Abby noted that she could use the task to highlight the connections between the context and the 
actual real-world data. She noted that the task “would definitely teach [the students] to pay attention 
to their data.” This mirrors the mistake Abby made while completing the task. Using this task, she 
might ask students to determine whether Moore’s Law is true. Abby emphasized the use of graphing 
and using the table to check answers as strategies she would use to teach the task as well as a strategy 
for students to complete the task; again, highlighting Abby’s focus on what students will do. 
Frankie 

Frankie only completed portions of the task for herself, and only after being prompted to do so by 
the interviewer. Frankie never filled in values for the table in part one of the task. However, she 
noted that, in order to complete the table, a rule like 1.2×2! would be helpful and “is almost 
demanded” by the task design. In part two of the task, Frankie used her previously identified rule as a 
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guide to find the answer 𝑆!"## = 1.2×2!""/!. Frankie viewed part three of the task as a more formal 
version of the rule she constructed earlier. Specifically, the answer to part three of the task was 
𝑆(𝑡) = 1.2×2! with the caveat that the t needed to be “adjusted.” That is, “if t is the number of years, 
then you also have to have the idea that it’s going to be divided by two.” As a result, she rewrote her 
answer as 𝑆(𝑡) = 1.2×2!/!.  

Frankie highlighted the gaps in time for the various gaming systems. She noted that her students 
would likely need experience with problems that contain varying gaps in time to be successful in 
completing the task. In particular, she believed that her students’ “tendency would be to just double 
and not pay attention to the years and how far apart they [are].” For those students who did attend to 
the gaps in years, Frankie expressed concern that they would get “hung up” on the 10-year jump. She 
believed that the table “is not necessarily going to get [the students] to an expression.” To complete 
the table, the students might need “some intermediate values” in the table in addition to “really 
think[ing] about how the doubling is happening and how many doublings would take place.” Frankie 
highlighted that students do not encounter tasks with interval gaps in other areas of the curriculum 
with the exception of linear functions. As a result, it would not be something that the students would 
immediately notice. 

Frankie did not see a connection between part one of the task and part two of the task which might 
stem from the fact that she never completed the task as designed. As noted before, Frankie used a 
rule to support writing the answer to part two of the task. She claimed that her students would need to 
have “recogniz[ed] that doubling piece” in order to find the answer to part two of the task. While 
Frankie acknowledged that her students would need to have identified that the doubling was 
occurring over a two-year span, she did not connect part one of the task as supporting this realization 
in her students. If students successfully identified the doubling was occurring every two years, she 
believed some of her students would simplify their answers to part two of the task to “be two to the 
50th power.” Other students, she believed would simply raise to the 100th power without dividing by 
two. In her experience, her students, “when given something like 1.2×2!, [the students] know to put 
a number in there and to get something.” She noted that her students do not consider how “the power 
is changing.” Throughout her comments Frankie is focused on the aspects of the task students are 
familiar or unfamiliar with and how they will respond.  

Frankie viewed the purpose of the task as writing an example of a known formula type which 
matches the given data. She argued that “adjust[ing]” the power in part three of the task was the 
trickiest part of the overall task. She believed that her students would be able to work through parts 
one and two of the task “pretty well” and would not necessarily need to recognize “that any number 
of years is going to have to have [an] adjustment.” While Frankie thought that students at “several 
levels” could be successful, she was concerned about students getting “caught up in the information” 
which would “keep them from moving forward.”  
Molly 

Prior to starting the task Molly said that she had seen the task before when looking for material. 
When Molly began working on part one, she noted the varying gaps in years given in the table and 
said “this would give students an opportunity to start thinking about doubling periods.” Molly 
suggested that she might have structured the table to start at year 0 and use the number of years since 
1977 instead of using the actual years. As she continued to discuss student thinking around the table 
Molly created a table with “# of doubling periods” as the independent variable which she completed 
for three doubling periods. She transferred her work from the created table to the table provided in 
the task. Even though Molly said that she would present the information differently, she liked the 
way the task designers chose to present the information. Molly thought that the structure of the table 
would cause students to think about doubling periods as opposed to years. She said, “I think they’re 
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just thinking about doubling periods and they’re working with exponents without realizing that’s 
what they’re working with.” Molly did not complete the remainder of part one and it did not appear 
that Molly completed any of part the task for herself; rather, she the work she did was in service of 
illustrating the thinking she expected students to engage in.  

When she began part two, Molly underlined “write an expression” and “a century.” While 
discussing why the task designers included “a century,” Molly initially seemed to misinterpret the 
task, she said “a century, ok and then they’ve given them another little hint here, so they’re telling 
them that even though 2077 isn’t, oh no, I’m sorry I was going back to 1965, so maybe that’s what a 
student would do too.“ It seemed as if Molly had not thoroughly read the task and assumed that the 
initial processor speed was given for the year 1965. After clarifying the instructions Molly wrote the 
expressions 1.2 2 !""/! and 1.2 2 !". As with part one, Molly’s work appeared to be in service of 
illustrating potential student thinking. She said the thinking in part two was similar to the thinking 
required for part one because students needed to focus on the number of doubling periods. She 
expected students to write 1.2 2 !" instead of 1.2 2 !""/! because “they’re not going to want to see 
a fraction there so they would think about, it’s doubled, I had to multiply it by two, fifty times.” 
Molly said students might struggle with seeing how to come up with a pattern based on the starting 
point because they have to move from doing the problem recursively in part one to needing to base 
their expression off of a starting point in part two. 

For part three, Molly underlined “write an equation for the expected processor speed for a given 
year” and then wrote 𝑦 = 1.2 2 !!!"## /! while explaining that part two can be generalized by 
starting with an original value and “multiplying by two a whole bunch of times.” Molly explained the 
exponents as subtracting 1977 from the year you are looking for and then dividing by two. The 
equation mimics Molly's process in calculating the processor speeds. Only after the interviewer asked 
Molly a question which prompted her to reread the task did she write 𝑦 = 1.2 2 !/! as her final 
answer for part three. Again, indicating that Molly did not thoroughly read the task but worked off of 
assumptions about the nature of the task. Molly summarized the overall structure of the task as, 
“from scaffolding from something that’s very simple, just coming up with number answers … I need 
fifty years in the future, so I’m not going to be able to just keep extending my chart to get that … and 
so now I needed to take this and extend it to something where I can generalize.” Molly said that this 
sort of task structure was common.  

Cross Cases Analysis and Discussion 
With this research study, we sought to describe aspects of a teacher’s MKT based on what they 

attend to when reviewing a mathematics task for potential use during instruction. We claim that the 
previous case summaries provide rich opportunities to explore and describe aspects of the teachers’ 
MKT including specialized content knowledge [SCK], knowledge of content and teaching [KCT], 
and knowledge of content and students [KCS] (Ball et al., 2008). 

Ball et al. (2008) identified SCK as the “mathematical knowledge not typically needed for purposes 
other than teaching” (p. 400). This knowledge includes the ability to identify and interpret student 
mathematical work as well as the ability to make “features of particular content visible to and 
learnable by students” (Ball et al., 2008, p. 400). We chose this task partially because the relationship 
“doubling every two years” has the potential to make important mathematics visible to students. 
Specifically, doubling indicates that the relationship is exponential while the “every two-year period” 
adds a unique difficulty when compared to tasks the teachers would typically use. In the previous 
summaries, we saw that all of the teachers noted that “doubling every two years” was a significant 
part of the task. The ways in which the teachers spoke about the significance of “doubling every two 
years” revealed interesting aspects of their SCK 
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Helen saw the gaps in the years as something students needed to attend to in order to complete the 
table. She anticipated that students may not realize the number of years passed needed to be divided 
by two. She hoped the gaps would encourage students to use exponents as a push towards writing a 
function. Here she seemed to be implying something about student thinking but this was not explicit. 
When Helen talked about doubling, she explicitly discussed student thinking saying that students will 
understand something about the nature of exponential functions. Here we see that Helen’s SCK 
allowed her to see the usefulness of the two-year gaps as supporting her students towards using 
exponents and writing an equation. 

In contrast, Molly discussed the two-year gaps as doubling periods. Unlike the other teachers Molly 
did not anticipate the two-year gaps to be an issue for students. Rather she described students as 
finding the number of doubling periods for the two- and four-year gaps without necessarily realizing 
that they are dividing the number of years by two. Molly believed that students would realize that 
two years is one doubling period and that four years is two doubling periods. Molly thought that 
students might have more difficulty in thinking about the number of doubling periods for the ten-year 
gap. From Molly’s interview, it is clear she saw the structure of the table as a key aspect of the task 
because it supports students in thinking about doubling periods. Molly’s identification of aspects of 
the task which makes visible the key mathematical idea of doubling periods of exponential functions 
is an important component of SCK.  

KCT “combines knowing about teaching and knowing about mathematics” (Ball et al., 2008, p. 
401). For example, Ball et al. (2008) noted that teachers must “choose which examples to start with 
and which examples to use to take students deeper into the content” (Ball et al., 2008, p. 401). With 
respect to the task design, Abby, Molly, and Helen commented that they liked how the sequencing of 
the task provided scaffolding towards the equation and that starting with numerical calculations was 
easier for students. They all saw the goal of the task as doing something (writing a function) rather 
than thinking about some key mathematical ideas. This suggests that the three teachers KCT includes 
the idea that students can develop models of exponential growth from exploring values in a table, 
then calculating a larger value, and finally writing a formalized equation. 

In contrast to Abby, Helen, and Molly, Frankie did not see the first part of the task as supporting 
students in completing the later parts of the task. For example, she identified the ten-year gap as 
especially significant as an obstacle that could prevent successful completion of the task. Frankie 
claimed that having a rule is almost required to complete the table and frequently discussed prior 
experience students would need to be successful in completing the task. Frankie’s view of the 
purpose of the task was slightly different from Abby, Helen, and Molly. Where Abby, Helen and 
Molly saw the purpose as writing an equation based on the work done to create the table, Frankie saw 
the purpose as fitting a known equation type to the situation. This suggests that Frankie’s KCT, as 
elicited by the task and the interview, does not include the same construct that the other teachers’ 
have.  Frankie's view of the purpose may be a consequence of her choice to write an equation to 
solve the first part of the task instead of solving the task as written. Her reliance on her equation to 
complete the table may have prevented her from seeing the ways that the table supported students to 
write an expression in part 2 and an equation in part 3. 

Ball et al. (2008) defined KCS as the “knowledge that combines knowing about students and 
knowing about mathematics” (p. 401). This knowledge includes an understanding of the content so 
that the teacher can identify what has the potential to be confusing, challenging, easy, motivating, 
and interesting for students (Ball et al., 2018). In the preceding cases we saw that Helen, Abby, and 
Molly all wrote answers at some point during their work on the task that did not address the prompt 
as written, but rather what they assumed the prompt was. . For example, some errors stemmed from 
not realizing that the years in the table do not all have a gap of two or writing an expression with 100 
as an exponent. All three teachers corrected their errors as they progressed through the task. Then, 
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the teachers anticipated students encountering difficulty with the aspects of the tasks in which the 
teachers themselves made mistakes. This suggests that an aspect of the teachers’ KCS is based on 
and includes knowledge of their own errors with respect to the task, indicating they possess the 
mathematical understanding to complete the task as written. 

One of the most striking differences among how teachers reviewed the Xbox task surfaced when 
considering the coherence between the teachers’ doing of the task and the ways students would think 
about and engage in the task. Molly focused on the way students would need to think about the 
mathematical concepts inherent in the task and only completed aspects of the tasks as a way to 
articulate student thinking. Unlike Molly, Abby and Helen completed the tasks for themselves before 
talking about students. When Abby and Helen discussed students, they tended to focus on describing 
what students may do and struggle with, but they did not articulate why or what thinking would 
create the struggle.  Frankie, in contrast, did not complete the task as designed and discussed things 
not related to student mathematical thinking. Of the four teachers, Molly showed the greatest 
integration between the mathematics of the task and the students’ thinking related to the task. That is, 
this task review assessment elicited evidence of Molly's SCK/KCS for exponential functions that we 
were not able to elicit from Helen or Abby. 

Conclusion 
The MKT interview was useful for gathering insight into teachers’ MKT related to KCS, KCT, and 

KCC. The insight comes from doing an interview that allowed for teachers to articulate their own 
thinking in regards to a non-traditional task rather than selecting predetermined answers. We 
hypothesize that the interactions within an MKT interview provide a more genuine representation of 
MKT and call for further investigation. 
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This study reports an analysis of inductive reasoning of Mexican middle school mathematics 
teachers, when solving tasks of generalization of a quadratic sequence in the context of figural 
patterns. Data was collected from individual interviews and written answers to generalization tasks. 
Based on Cañadas and Castro’s inductive reasoning model, we found that most of the teachers 
followed four stages to obtain a general rule: observation of particular cases, search of patterns, 
conjecture formulation and generalization. 

Keywords: Reasoning and Proof, Algebra and Algebraic Thinking, Inductive Reasoning, Figural 
Pattern, Generalization, Teacher.  

Introduction 
Inductive reasoning is a thought process that leads to the discovery of general rules by the 

observation and combination of specific instances (Polya, 1994). It is considered to be an important 
route to develop critical thinking and student´s ability to solve problem situations, to generalize 
different mathematical patterns and for mathematics learning (Sosa Moguel, Aparicio Landa, & 
Cabañas-Sánchez, 2019; Castro, Cañadas, & Molina, 2010; Papageorgiou, 2009; Haverty, 
Koedinger, Klahr, & Alibali, 2000). In addition, it also contributes on the route to make 
mathematical proof. However, students face difficulties with the formal validation processes. Some 
of these difficulties are linked to their reasoning skills and their capabilities to make and understand 
proofs immediately. For this, an adaptation process is required, as well as a logical progression in the 
development of their reasoning, from closer everyday reasoning to the concrete, to more abstract 
mathematical reasoning (Castro, Cañadas & Molina, 2010). Thus, it is recognized that induction 
fosters the development of these types of abilities, from the formulation of conjectures and their 
formal proof to guarantees of the veracity of the conjecture (Cañadas & Castro, 2007). In this regard, 
the National Council of Teachers of Mathematics [NCTM] (2000) stresses the need to develop 
middle school students’ proficiency in using inductive (and deductive) reasoning to examine patterns 
and structures in order to identify regularities and make and evaluate conjectures about possible 
generalizations, in linear or quadratic patterns. Based on these demands on students, mathematics 
teachers are implicitly linked. To do so, they need the ability to help students make, refine, and 
explore conjectures on the basis of evidence and use a variety of reasoning techniques to confirm or 
refute those conjectures (NCTM, 2000). According to Brodie (2010), “teachers can, through 
questions and prompts, try to provoke learners into thinking in particular ways and support them to 
compare, verify, explain, and justify their conjectures” (p. 45). In addition, Ball and Bass (2003) say 
that, teachers need abilities in providing resources to the students to allow them to develop these 
skills and to use environments that make this possible. 

On the other hand, most of the inductive reasoning research that studies it as a thought process and 
as a generator of knowledge in generalization tasks context, mainly refer to linear relationships. Few 
have been focused on quadratic ones (Kirwan, 2017), both in training and in-service teachers. This 
article examines the inductive reasoning of Mexican middle school mathematics teachers, when 
solving tasks of generalization of a quadratic sequence. 
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Theoretical Framework 
Inductive reasoning is the human thought action that produces statements and reaches conclusions, 

starting with the observations of particular cases until arriving at a generality (Cañadas, 2002). It is a 
cognitive process that contributes to the advancement of knowledge, where more information is 
obtained than is provided by the initial data with which that process begins. Inductive reasoning in 
this study is analyzed from the inductive reasoning model proposed in Cañadas and Castro (2007). 
This model is based on Polya´s (1966) steps, Cañadas´s empirical work (2002) and Reid´s (2002) 
stages. 
Inductive Reasoning Model 

The inductive reasoning model is made up of seven stages. They are presented in an ideal order. 
They start with the observation of particular cases and end with the generalization. Not all these 
stages necessarily occur. In the following we describe these stages:  

Observation of particular cases. The starting point of inductive reasoning is the experience with 
particular cases. 

Organization of particular cases. The use of different strategies to systematize and facilitate work 
in particular cases. 

Search of patterns. Some regularity or behavior is detected. Patterns are considered as something 
that is repeated regularly (Stacey, 1989), their recognition allows the development of the ability to 
generalize. There are different types of patterns: numerical, pictorial, figural, computational 
procedures or repetitive patterns (Amit & Neria, 2008). 

Conjecture formulation. It is a statement about all possible cases, based in particular ones but with 
an element of doubt. This statement seems reasonable, but the validity needs to be validated. It has 
not been convincingly validated and it is not yet known that there are many examples that contradict 
it, nor is it known that it has any false consequence (Mason, Burton, & Stacey, 1988). 

Conjecture validation. At this stage, there is an attempt to validate the conjecture for new specific 
cases, but not in general. 

Generalization. Mathematics patterns are related to a general rule, not only to some cases. Based 
on a conjecture which is true for some particular cases, and having validated such conjecture for new 
cases (conjecture validation), students might hypothesize that the conjecture is true in general. 
Generalization is the deliberate extension of reasoning or communication beyond considered cases, 
recognizing and explaining their similarity (Kaput, 2008). 

General conjectures justification. At this point, a formal proof can provide the final justification 
that guarantees the truth of the conjecture. 

Method 
This research is a qualitative and interpretative. It was carried out with sixteen middle school 

mathematics teachers (nine women and seven men) with between 5 and 14 years of teaching 
experience in public schools in Mexico. They were voluntarily involved in this study through 
inductive reasoning workshops in the context of mathematics education congresses. The participating 
teachers had professional qualifications as middle school teachers (Nine a mathematics bachelor's 
degree, two in Mathematics Education and five in Telesecundaria), so they all studied mathematical 
concepts such as sequences and linear an quadratic sequences. The selection criterion of the 
participants was to have experienced as a third grade teacher the  teaching quadratic sequences using 
numerical and figural patterns. Taking into account the above, two task were designed on the 
generalization of quadratic sequences (see figure 1).  The patio tile task adapted from Kirwan's study 
(2017) and the frog quadratic pattern task from Rivera's study (2013). 
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These tasks consist of increasing patterns with arithmetic progression of order 2 in the natural 
numbers. Teachers worked individually for 20 to 30 minutes on the tasks. After the analysis of their 
answers, six of them were interviewed, to understand in greater depth their inductive reasoning 
process and also because they had shown different ways of reasoning. 
 

Table 1: Quadratic sequence tasks used in the research. 
Task 1: The patio tile task. 
In the building of a patio, circular stones of equal size 
are placed. To observe the progress of the 
construction, you take a photo of the patio by stage. 
 

 
a. How many circular stones have been placed for the 
sixth stage if the construction of the patio is carried 
out in the same way? Justify your answer. 
b. How many stones are there in stage 50? Justify 
your answer.   
c. How can you find the number of circular stones for 
any number of stages? Explain your answer 

Task 2: The frog quadratic pattern task. 
Observe at the sequence of the following 
figures. Extensively justify the solution 
process in each of the questions. 

 
a. How many gray squares are there in  
figure 5? 
b. How many gray squares are there in  
figure 7? 
c. How many gray squares are there in  
figure n? 
 

Results 
In this study the inductive reasoning stages most of the teachers followed were: Organization of 

particular cases, search of patterns, conjecture formulation and generalizing. Less frequently, the 
organization of particular cases and the conjecture validation. None of the teachers showed the 
involvement of  the conjecture justification step.(see Table 2). 

 
Table 2. Stages of inductive reasoning followed by mathematics teachers 

Task 

Stages 
Observation 

of 
particular 

cases 

Organization 
of particular 

cases 

Search of 
patterns 

Conjecture 
formulation 

Conjecture 
validation Generalization 

General 
conjectures 
justification. 

T1 11 5 12 7 2 11 0 
T2 9 4 11 8 6 8 0 

Observation and organization of particular cases 
In task 1, eleven teachers observed particular cases and in task 2, nine. Most identified the number 

of objects at each stage of the sequence. In some cases, their work consisted of strategic counts based 
on the decomposition of the figures. The visualization of the figural pattern was fundamental to help 
teachers identify some configurations at the given stages. Other teachers relied on counting to 
establish the k-th terms and identify the type of sequence. Although it is recognized that teachers 
worked with particular cases, at least 3 of them faced difficulties in advancing to the following 
stages. 
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The teachers who used the organizing the particular cases stage (see Table 2) used double-entry 
tables, in which they established a correspondence between two variables, the number of objects in 
the figural pattern, with the number of the stage or figure, in the context of the demands of the tasks. 
The tables were represented in two ways, vertical and horizontal. This last form was used by the 
teachers who used the differences method in their inductive process to identify the type of sequences. 
Search for Patterns 

The teachers who identified the pattern resorted to two ways of proceeding (see Table 3): 
A) Figure decomposition: The objects of the figural pattern were perceived as basic 
configurations: squares and / or rectangles. From this, a useful mathematical structure was 
associated to explain and justify the behavior of these objects. 
B) Differences method: They identified the recurrence pattern between the k-th terms of the 
sequence associated with the figural pattern. Subsequently, they worked with the first difference 
and recognized that it is not constant, then the second differences were determined and observed 
that it is constant. Thus, they derived that the sequence is quadratic. Finally, they find the 
coefficients of the sequence of the form 𝑎𝑥! + 𝑏𝑥 + 𝑐, to establish the general rule of quadratic 
sequence. 

Formulation and justification of the conjecture 
 The teachers analyzed the behavior of the objects in the figures (figural pattern). At first, they made 

their conjectures through additive and multiplicative structures, then they transformed them into an 
algebraic structure, in terms of n (demand for the task) or with another variable. Few justified their 
conjectures. Of those who did, it was of the algebraic type and they validated it with particular cases. 
Generalization 

The results show that eleven of the sixteen teachers managed to construct the general rule that 
explains the behavior of the figural pattern in task 1 and eight teachers in task 2. Those who 
generalized without making conjectures used the difference method to recognize the type of sequence 
(quadratic) and based on that, they determined the general rule associated with the figural pattern. 
The generalization constructed by those who formulated a conjecture, verified its veracity. In some 
teachers, this process was carried out with the particular cases proposed and in others, through new 
cases, such as near and far terms. This process consisted of evaluating the conjecture, in 
correspondence between the quantity of the objects and the number of the stage or figure. Two ways 
of expressing the general rule were recognized, one algebraically and the other verbally. 

 
Table 3: Ways of proceeding for the teacher when solving generalization tasks 
Ways of 

proceeding Task Examples 

 
 

Figure 
decomposition 

 
 
 
 

T1 

 
 
 
 
 
 
Based on this way of perceiving the objects of the figural 
pattern in T1, they constructed a general rule associated with 
a multiplicative and additive structure: 𝑛 + 1 𝑛 + 2 + 2 
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T2 

 
 
 
 
 
 
Based on this way of perceiving the objects of the figural 
pattern in T1, they constructed a general rule associated with 
a multiplicative and additive structure:  4 1 + 2𝑛 +
𝑛 𝑛 + 1  

 
 
 
 
 
 

Differences 
method 

 
 
 

T1 

 
 
 
 
 
Based on this way of perceiving the objects of the figural 
pattern in T1, they constructed a general rule associated with 
an algebraic expression: 𝑥! + 3𝑥 + 4 
From the algorithm of: 
 𝑎 +𝑏 + 𝑐 = 8;  3𝑎 + 𝑏 = 6;  2𝑎 = 2, they found the 
coefficients of the sequence. 

 
 
 

T2 

 
 
 
 
 
 
Based on this way of perceiving the objects of the figural 
pattern in T1, they constructed a general rule associated with 
an algebraic expression: 𝑥! + 9𝑥 + 4 
From the algorithm of: 
𝑎 +𝑏 + 𝑐 = 14;  3𝑎 + 𝑏 = 12;  2𝑎 = 2, they found the 
coefficients of the sequence. 

 

 

Discussion and conclusion 
This article examined the inductive reasoning of Mexican middle school mathematics teachers, 

when solving quadratic sequences generalization tasks. From a methodological point of view the 
tasks encouraged teacher´s work in near and far stages in order to build and validate a conjecture 
which explains the behavior of the involved figural pattern and to establish it as the general rule. 
Although as was mentioned above, not all of them showed the validation of their conjectures. On the 
other hand, it was recognized that not all of these stages necessarily occurred in the inductive 
reasoning processes carried out by teachers. 

With regard to solving tasks in figural patterns generalization, teachers showed the inductive 
process as a strategy. The study has reported that working with well-defined figurative patterns 
favors that they be interpreted as configurations in a certain way (Rivera, 2010). In this sense, the 
teacher's task in this study consisted of involving a significant generalization of patterns. This study 
also recognizes that the objects of some figural patterns are complex to interpret, even when their 
construction is well defined. As an example,  task 2 where the figural pattern involved more than one 
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object, gray and white squares, in relation to the figure number. The task required the teacher to 
represent algebraically the behavior of the variable, that is, the gray squares which make up a 
rectangular figure, also made up of white squares. The distribution of gray squares was not related to 
a specific geometric figure. These variables influenced teachers' difficulties to recognize the behavior 
of gray squares.  

In line with Rivera (2010), in this study the context of generalization of figural patterns engaged 
teachers in the coordination of perceptual and symbolic inferential abilities, more specifically, the 
figural pattern that is high in Gestalt goodness, because it tends to have a well-defined structure that 
has easily discernible parts and a balanced, and harmonious form of the pattern, which allowed most 
of the teachers to specify an algebraically useful formula. Naturally, the teachers proceeded in a 
different way when working with the objects of the figural pattern of each task. 
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Este estudio reporta un análisis del razonamiento inductivo de maestros mexicanos de matemáticas 
de secundaria, al resolver tareas de generalización de una sucesión cuadrática en un contexto de 
patrones figurales. Los datos fueron recolectados de entrevistas individuales y respuestas escritas de 
tareas sobre generalización. Con base en el modelo de razonamiento inductivo de Cañadas y Castro, 
encontramos que la mayoría de los maestros siguieron cuatro etapas para obtener una regla 
general: observación de casos particulares, búsqueda de patrones, formulación de conjeturas y 
generalización. 

Palabras clave: Razonamiento Inductivo, Patrón figural, Generalización, Maestro.  

Introducción 
El razonamiento inductivo es un proceso del pensamiento que conduce al descubrimiento de reglas 

generales mediante la observación y la combinación de instancias específicas (Polya, 1994). Se 
considera una ruta importante para desarrollar el pensamiento crítico y las habilidades de los 
estudiantes para resolver situaciones problemáticas, para generalizar diferentes patrones matemáticos 
y para el aprendizaje de las matemáticas (Sosa Moguel, Aparicio Landa y Cabañas-Sánchez, 2019; 
Castro, Cañadas, & Molina, 2010; Papageorgiou, 2009; Haverty, Koedinger, Klahr y Alibali, 2000). 
Además, también contribuye en la ruta para hacer pruebas matemáticas. Sin embargo, los estudiantes 
enfrentan dificultades con los procesos formales de validación. Algunas de estas dificultades están 
relacionadas con sus habilidades de razonamiento y sus capacidades para hacer y comprender 
pruebas de inmediato. Para ello, se requiere un proceso de adaptación y seguir una progresión lógica 
en el desarrollo de su razonamiento, desde un razonamiento cotidiano más cercano al concreto, hasta 
un razonamiento matemático más abstracto (Castro, Cañadas y Molina, 2010). Así, se reconoce que 
la inducción fomenta el desarrollo de este tipo de habilidades, a partir de la formulación de conjeturas 
y su prueba formal para garantizar la veracidad de la conjetura (Cañadas y Castro, 2007). Al 
respecto, el Consejo Nacional de Maestros de Matemáticas [NCTM] (2000) enfatiza la necesidad de 
desarrollar la competencia de los estudiantes de secundaria en el uso del razonamiento inductivo (y 
deductivo) para examinar patrones y estructuras para identificar regularidades; establecer y evaluar 
conjeturas sobre posibles generalizaciones, en patrones lineales o cuadráticos. Sobre la base de estas 
demandas en los estudiantes, los maestros de matemáticas están vinculados implícitamente. Para 
hacerlo, necesitan de la habilidad para ayudar a los estudiantes a hacer, refinar y explorar conjeturas 
sobre la base de evidencia y usar una variedad de técnicas de razonamiento para confirmar o refutar 
esas conjeturas (NCTM, 2000). Según Brodie (2010), "el maestro puede, a través de preguntas y 
sugerencias, tratar de provocar que los estudiantes piensen de manera particular y ayudarlos a 
comparar, verificar, explicar y justificar sus conjeturas" (p. 45). Además, Ball y Bass (2003) afirman 
que los maestros necesitan habilidades para proporcionar recursos a los estudiantes que les permitan 
desarrollar estas destrezas y utilizar entornos que lo hagan posible. 

Por otro lado, la mayoría de las investigaciones de razonamiento inductivo, que lo estudian como un 
proceso de pensamiento y como un generador de conocimiento en el contexto de tareas de 
generalización, se refieren principalmente a relaciones lineales. Pocos se han centrado en los 
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cuadráticos (Kirwan, 2017), tanto en la formación como en el servicio de los docentes. Este artículo 
examina el razonamiento inductivo de los maestros mexicanos de matemáticas de la escuela 
secundaria, al resolver tareas de generalización de una sucesión cuadrática. 

Fundamentación Teórica 
El razonamiento inductivo es la acción del pensamiento humano que produce afirmaciones y llega a 

conclusiones, comenzando con las observaciones de casos particulares hasta llegar a una generalidad 
(Cañadas, 2002). Es un proceso cognitivo que contribuye al avance del conocimiento, donde se 
obtiene más información de la que proporcionan los datos iniciales con los que comienza ese 
proceso. El razonamiento inductivo en esta investigación se analiza a partir del modelo de 
razonamiento inductivo propuesto en Cañadas y Castro (2007). Este modelo se basa en los pasos de 
Polya (1966), el trabajo empírico de Cañadas (2002) y las etapas de Reid (2002). 
Modelo del razonamiento inductivo 

El modelo de razonamiento inductivo consta de siete etapas. Se presentan en un orden ideal. 
Comienzan con la observación de casos particulares hasta la generalización. No todas estas etapas 
ocurren necesariamente. A continuación describimos estas etapas: 

Observación de casos particulares. El punto de partida del razonamiento inductivo son las 
experiencias con casos particulares. 

Organización de casos particulares. Uso de diferentes estrategias para sistematizar y facilitar el 
trabajo con casos particulares.  

Identificación de patrones. Se reconoce alguna regularidad o comportamiento. Los patrones se 
consideran como algo que se repite con regularidad (Stacey, 1989), su reconocimiento permite el 
desarrollo de la habilidad para generalizar. Existen diferentes tipos de patrones: numéricos, 
pictóricos, figural, procedimientos computacionales o patrones repetitivos (Amit & Neria, 2008) 

Formulación de conjeturas. Es una afirmación sobre todos los casos posibles, basados en los 
particulares, pero con un elemento de duda. La conjetura es una afirmación que parece razonable, 
pero cuya veracidad no ha sido validada. No se ha validado de manera convincente y aún no se sabe 
que haya ejemplos que lo contradicen, ni se sabe que tenga alguna consecuencia falsa (Mason, 
Burton , & Stacey, 1988). 

Validación de las conjeturas. En esta etapa, se intenta validar las conjeturas para nuevos casos 
específicos, pero no en general.  

Generalización. Los patrones matemáticos se relacionan con una regla general, no solo con algunos 
casos. Con base en una conjetura que es cierta para algunos casos particulares, y habiendo validado 
dicha conjetura para casos nuevos (validación de la conjetura), los estudiantes podrían hipotetizar 
que la conjetura es verdadera en general. La generalización es extender deliberadamente el 
razonamiento o comunicación más allá de los casos considerados, reconociendo y explicando su 
similitud (Kaput,2008). 

Justificación de las conjeturas. En este punto, una prueba formal puede proporcionar la 
justificación final que garantiza la veracidad de la conjetura. 

Método 
Es una investigación cualitativa e interpretativa. Se llevó a cabo con dieciséis maestros de 

matemáticas de secundaria (nueve mujeres y siete hombres) con 5 y 14 años de experiencia docente 
en escuelas públicas de México. Participaron voluntariamente en esta investigación a través de 
talleres de razonamiento inductivo en el contexto de congresos de Educación Matemática. 

Los maestros participantes tenían calificaciones profesionales como maestros de escuela intermedia 
(nueve una licenciatura en matemáticas, dos en educación matemática y cinco en telesecundaria), por 
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lo que todos estudiaron conceptos matemáticos como sucesiones y sucesiones lineales y cuadráticas. 
El criterio de selección de los participantes era que hubiesen experimentado como maestro de tercer 
grado la enseñanza de sucesiones cuadráticas utilizando patrones numéricos y figurales. Teniendo en 
cuenta lo anterior, se diseñaron dos tareas sobre la generalización de sucesiones cuadráticas (ver 
figura 1). La tarea de mosaico de patio se adaptó del estudio de Kirwan (2017) y la tarea de patrón 
cuadrático de rana del estudio de Rivera (2013). 

Estas tareas consisten en patrones crecientes con progresión aritmética de orden 2 en los números 
naturales. Los maestros trabajaron individualmente durante 20 a 30 minutos en las tareas. Después 
del análisis de sus respuestas, se entrevistó a seis de ellos para comprender en mayor profundidad su 
proceso de razonamiento inductivo y también porque habían mostrado diferentes formas de 
razonamiento. 

 
Tabla 1: Tareas de sucesiones cuadráticas utilizadas en la investigación  

Tarea 1: Tarea de la piedra del patio. En la 
construcción de un patio, se colocan piedras 
circulares de igual tamaño. Para observar el avance 
que sigue la construcción, se toma una foto al patio 
por etapa 
 

 

a. ¿Cuántas piedras circulares se han colocado para 
la sexta etapa si en la construcción del patio se avanza 
de la misma manera? Justifica tu respuesta.   

b. ¿Cuántas para la etapa 50? Justifica tu respuesta.   
c. ¿Cómo se puede hallar la cantidad de piedras 
circulares para cualquier número de etapa? Describe 
ampliamente tu respuesta. 

 
Tarea 2: Tarea del patrón cuadrático de la 
rana. Observa la secuencia de las siguientes 
figuras. Justifica ampliamente el proceso de 
solución en cada una de las preguntas. 

 
a. ¿Cuántos cuadrados grises conforman la 
figura 5? 

b. ¿Cuántos cuadrados grises conforman la 
figura 7? 

c. ¿Cuántos cuadrados grises conforman la 
figura n? 
 

Resultados  
En este estudio, las etapas de razonamiento inductivo que siguió la mayoría de los maestros fueron: 

Organización de casos particulares, Búsqueda de patrones, formulación de conjeturas y 
generalización. Con menos frecuencia, la organización de casos particulares y la validación de 
conjeturas. Con respecto al paso de justificación de conjeturas, ninguno de los maestros mostró haber 
estado involucrado (ver Tabla 2). 

Tabla 2. Etapas del razonamiento inductivo que siguen los maestros de matemáticas 

Tarea 

Etapas 

Observación 
de casos 

particulares 

Organización 
de casos 

particulares 

Búsqueda 
de patrones 

Formulación 
de la 

conjetura 

Validación 
de la 

conjetura 
Generalización 

Justificación 
de la 

conjetura 
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T1 11 5 12 7 2 11 0 
T2 9 4 11 8 6 8 0 
 

Observación y Organización de Casos Particulares 
En la tarea 1, once maestros observaron los casos particulares y en la tarea 2, nueve. La mayoría, 

identificó la cantidad de objetos en cada etapa de la sucesión. En algunos casos, este trabajo consistió 
de conteos estratégicos, basado en la descomposición de las figuras. La visualización del patrón 
figural fue fundamental, ya que contribuyó a que los maestros reconocieran determinadas 
configuraciones en las etapas dadas. Otros maestros, se apoyaron del conteo para establecer los 
términos k-ésimo e identificar el tipo de sucesión. Si bien se reconoce que los maestros trabajaron 
con casos particulares, al menos 3 evidenciaron dificultades para avanzar a las etapas siguientes.  

Los maestros que recurrieron a la organizaron los casos particulares (ver tabla 1) se apoyaron de 
tablas de doble entrada, en las que establecieron una correspondencia entre dos variables, cantidad de 
objetos del patrón figural, con el número de la etapa o figura, en el marco de las demandas de las 
tareas. Las tablas fueron representadas de dos formas, vertical y horizontal. Esta última forma, fue 
utilizada por los maestros que se apoyaron del método de diferencias en su proceso inductivo, para 
identificar el tipo de sucesión.  
Identificación del Patrón 

Los maestros que identificaron el patrón, recurrieron a dos formas de proceder (ver tabla 2): 
A. Descomposición de la figura: Percibieron los objetos del patrón figural como 

configuraciones básicas: cuadrados y/o rectángulos. A partir de ello, asociaron una 
estructura matemática útil para explicar y justificar el comportamiento de estos 
objetos. 

B. Método de diferencias: Identificaron el patrón de recurrencia entre los términos k-
ésimo de la sucesión asociada con el patrón figural. Posteriormente, trabajaron con la 
primera diferencia y reconocieron que no es constante, luego se determinaron las 
segundas diferencias y observaron que es constante. Por lo tanto, derivaron que la 
sucesión es cuadrática. Finalmente, encuentran los coeficientes de la sucesión de la 
forma 𝑎𝑥! + 𝑏𝑥 + 𝑐, para establecer la regla general de la sucesión cuadrática.  

Formulación y Justificación de la Conjetura 
Los maestros percibieron el comportamiento de los objetos en las figuras (patrón figural). Al 

principio, hicieron estas conjeturas a través de estructuras aditivas y multiplicativas, luego las 
transformaron en una estructura algebraica, en términos de n (demanda de la tarea) o con otra 
variable. Pocos justificaron sus conjeturas. De los que lo hicieron, fue el tipo algebraico y lo 
validaron con casos particulares. 
Generalización  

Los resultados evidencian, que once de los dieciséis maestros, lograron construir la regla general 
que explica el comportamiento del patrón figural en la tarea 1 y ocho, en la tarea 2, esto es, 
generalizaron.  Los que generalizaron sin formular conjeturas, usaron el método de diferencias para 
reconocer el tipo de sucesión (cuadrática) y con base en ello, determinaron la regla general asociada 
al patrón figural. La generalización construida por quienes formularon una conjetura, la verificaron 
para comprobar su veracidad. En algunos, este proceso fue realizado con los casos particulares 
propuestos y en otros, mediante nuevos casos, como términos cercanos y lejanos. Este proceso 
consistió en evaluar la conjetura, en correspondencia entre la cantidad de los objetos con el número 
de la etapa o figura. Se reconocieron dos formas de expresar la regla general, una de forma algebraica 
y otra, verbal. 
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Tabla 3: Formas de proceder de los maestros al resolver tareas de generalización 
Formas de 
proceder Tarea Ejemplos 

 
 
 

Descomposición 
de la figura 

 
 
 
 

T1 

 
 
 
 
 
 
 
Con base en esta forma de percibir los objetos del patrón 
figural en T1, construyeron una regla general asociada a una 
estructura multiplicativa y aditiva:  

𝑛 + 1 𝑛 + 2 + 2 
 
 
 

T2 

Con base en esta forma de percibir los objetos del patrón 
figural en T2, construyeron una regla general asociada a una 
estructura multiplicativa y aditiva:  

4 1 + 2𝑛 + 𝑛 𝑛 + 1  

 
 
 
 
 
 
 

Método de 
diferencias 

 
 
 

T1 

 
Con base en esta forma de percibir los objetos del patrón 
figural en T1, construyeron una regla general asociada a una 
expresión algebraica:  

𝑥! + 3𝑥 + 4 
A partir del algoritmo de 𝑎+𝑏 + 𝑐 = 8;  3𝑎 + 𝑏 = 6;  2𝑎 =
2, hallaron los coeficientes de la sucesión. 
 

 
 
 

T2 
 

Con base en esta forma de percibir los objetos del patrón 
figural en T2, construyeron una regla general asociada a una 
expresión algebraica:  

𝑥! + 9𝑥 + 4 
A partir del algoritmo de 𝑎 +𝑏 + 𝑐 = 14;  3𝑎 + 𝑏 =
12;  2𝑎 = 2, hallaron los coeficientes de la sucesión. 
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Discusión y conclusiones 
Este artículo examinó el razonamiento inductivo de los maestros mexicanos de matemáticas de 

secundaria, al resolver tareas de generalización de sucesiones cuadráticas. Desde un punto de vista 
metodológico, las tareas alentaron el trabajo del maestro en etapas cercanas y lejanas, para construir 
y validar una conjetura que explica el comportamiento del patrón figural involucrado y establecerlo 
como la regla general. Aunque como se mencionó anteriormente, no todos evidenciaron la validación 
de sus conjeturas. Por otro lado, se reconoció que no todas estas etapas ocurrieron necesariamente en 
los procesos de razonamiento inductivo llevados a cabo por los maestros. 

Con respecto a la resolución de tareas en la generalización de patrones figurales, los maestros 
mostraron el proceso inductivo como una estrategia. La investigación ha documentado que trabajar 
con patrones figurales bien definidos favorece que sean interpretados como configuraciones de cierta 
manera (Rivera, 2010). En este sentido, la tarea del maestro en esta investigación consistió en 
involucrarse en una generalización significativa de los patrones. Este estudio también reconoce que 
los objetos de algunos patrones figurales son complejos de interpretar, incluso cuando su 
construcción está bien definida. Como ejemplo, la tarea 2. El patrón figural involucraba más de un 
objeto, cuadrados grises y blancos, en relación con el número de la figura. La tarea demandó 
representar algebraicamente el comportamiento de la variable, es decir, los cuadrados grises que 
conforman una figura rectangular, también compuesta de cuadrados blancos. La distribución de 
cuadrados grises no está relacionada con una figura geométrica específica. Estas variables influyeron 
en las dificultades de los maestros para reconocer el comportamiento de los cuadrados grises. 

En línea con Rivera (2010), en esta investigación, el contexto de generalización de patrones 
figurales involucró a los maestros en la coordinación de habilidades inferenciales perceptivas y 
simbólicas, más específicamente el patrón figural que es alto en la bondad de Gestalt, porque tiende a 
tener una definición bien definida, estructura que tiene partes fácilmente discernibles, forma 
equilibrada y armoniosa del patrón, lo que permitió a la mayoría de los maestros especificar una 
fórmula algebraicamente útil. Naturalmente, los maestros procedieron de manera diferente al trabajar 
con los objetos del patrón figural de cada tarea. 
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Researchers, who have studied the understanding of the density property in the set of decimal 
numbers, have shown that the student uses the property of the discrete of natural numbers to solve 
tasks related to density. So, a restructuring of concepts is necessary, that is, a conceptual change 
from “the discrete” to “the dense”. This report presents evidence from ten pre-service teachers from 
Mexico City that this change can initiate through the implementation of a didactic sequence. The 
pre-service teachers managed to visualize that a decimal number can be found in an interval. 
Consequently, they were able to conceive an infinity. However, several of them persisted with the 
idea of the existence of a successor in the set of decimal numbers.  

Keywords: Teacher training, rational numbers, Concepts of numbers and operations, Mathematical 
knowledge for teaching  

The challenges that students face when solving situations related to the density property 
of rational numbers have not been an easy process. When a student concludes elementary school, he 
believes that there is no other number between two decimal numbers. For example, in Argentina, 
fifth graders (10 years old) think that between 4.2 and 4.3 there is no other decimal 
(Broitman, Itzcovich & Quaranta, 2003). Ávila (2008) reports that only 10% of students in 
elementary school answer correctly the exercises of density property raised in the national 
evaluations in Mexico. 

After elementary school, students still have the same thinking about the discrete property of natural 
numbers during middle school. This can be confirmed in the research carried out by Neuman (1998). 
He exposes that German seventh graders in elementary education (13 years old) associated common 
properties with natural numbers to solve questions related to the density of fractions. Hart, in 
1981 (as cited in Widjaja, Stacey & Steinle, 2008), stated that between 22% and 39% of students 
from 12 to 15 years old thought that there were eight, nine or ten decimal numbers between 0.41 and 
0.42 (for example, the nine decimal numbers in the order of thousandths: 0.411, 0.412, 0.413, 0.414, 
0.415, 0.416, 0.417, 0.418, and 0.419). 

The students in college and pre-service teachers are in the last stage of schools. In the United States, 
future teachers think there is a finite number of intermediate numbers in an interval and a rational 
number has a successor (Tirosh, Fischbein, Graeber & Wilson, 1999). In Indonesia, half of a 
population of pre-service teachers considered a finite amount of decimal numbers between two given 
numbers (Widjaja et al., 2008). Most of the 62 pre-service teachers and more than a tenth of 71 
students specialized in mathematics at the university level in Finland used 
properties corresponding to the natural number system on tasks associated with the density property 
of fractions (Merenlouto & Lehtinen, 2004). 

This problem seems to persist from elementary school therefore the attention was focused on pre-
service secondary teachers; in this level the properties of decimal numbers including the density 



An approach to density in decimal numbers: A study with pre-service teachers 

	 804	

property are studied in more depth. It should mention that this document is an extension of a brief 
research report presented by Suárez-Rodríguez and Figueras in 2019. 

Objectives 
Considering the need to overcome the difficulty that a pre-service teacher has about the property of 

density in the decimal numbers’ set, a didactic sequence was proposed (see Suárez-Rodríguez, 2017) 
to generate a metaconceptual awareness. In the process of conceptual change, the student begins to 
assume a metaconceptual awareness when he is aware that their assumptions and beliefs are 
hypothetical and limit how you interpret the information you learn (Vosniadou, 1994). Therefore for 
the present research, the following aims were established: 1. Identify and write explanatory 
framework — different ways of expressing an individual’s interpretations (Vamvakoussi, Vosniadou 
& Van Dooren, 2013) — that pre-service teachers make about the density property of decimal 
numbers when they have a metaconceptual awareness, and 2. Analyze the actions of the 
participants in solving the activities if a conceptual change is promoted. 

Theoretical Framework 
Carey, in 1987, proposes the cognitive-developmental approach to Conceptual Change, in 

which she explains how childhood cognition works and develops alternatives to initiate a process of 
conceptual change. The author points out that the knowledge of an individual’s concept, initially, is 
linked to a naive theory (it consists of explanations of innate concepts or concepts learned from 
everyday experience related to science). An example of a naive theory, or naive idea, in mathematics 
is one in which the student believes that there are only nine numbers between 1.2 and 
1.3, namely: 1.21, 1.22, 1.23, 1.24, 1.25, 1.26, 1.27, 1.28, 1.29 (Suárez-Rodríguez, 2017). Once the 
knowledge is associated with naive theories, this will be linked with others forming a knowledge 
system in the student (Carey, 1987). 

Vosniadou (1994) proposes that naive theories constitute the mental models of the human being and 
that these models are the first step to initiate a process of conceptual change. For Vosniadou, a 
mental model is a representation that the student forms about ideas that he or she acquires, either 
through experience or instruction, and that is accompanied by presuppositions. When a student 
assumes metaconceptual awareness these models change, the synthetic models are produced and 
represent the students’ attempts to reconcile the culturally accepted scientific views with the 
presuppositions of their naive theories (Vosniadou, 1994). Finally, conceptual change requires 
changes in the presuppositions and beliefs that the student must make in his representations so that he 
can access the scientific concepts, and thus achieve an understanding of the concepts 
learned (Vosniadou , 1994; Vosniadou, Vamvakoussi, and Skopeliti, 2008). 

In the educational field of mathematics, Stafylidou and Vosniadou (2004) and Vosniadou and 
Verschaffel (2004) often use explanatory frameworks instead of mental models or synthetic 
models. The first explanatory frameworks that the student carries out are the first reflections that 
form a coherent and solid structure about what he learns along with his presuppositions and beliefs 
(Vosniadou and Verschaffel, 2004). Continuing the idea to these researchers, we can say that the 
initial explanatory frameworks are the first thoughts a student makes about what he perceives, what 
he sees, what he plays and explains in his own way, in his words. In the context of a learning process 
likewise, the expression conceptual change is a process of restructuring concepts when the student is 
learning information that is not compatible with his knowledge built up to now so the student must 
make a resignification of concepts. This is how the understanding of the density property involves a 
process of conceptual change, gradually, a restructuring from “the discreet” to “the dense”, as argued 
by Suárez-Rodríguez and Figueras (2019). 
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A conceptual change: the restructuring of the discrete to the dense 
Ni and Zhou (2005) point out in their research three possible causes that make the student has 

difficulties to answer tasks associated with rational numbers when he uses knowledge about the 
natural number. A first cause is related to the innate, that is if the property of the discrete of the set of 
natural numbers is innate in nature. The second cause is related to the teaching of the properties of 
the set of natural numbers and the set of rational numbers. And finally, the relationship between 
student´s learning the concepts and learning the symbology of those concepts. Faced with this, 
Vamvakoussi and Vosniadou (2012) devised a strategy using the analogy between stretching an 
“elastic band” and the density property. The student, as he stretches the elastic band, observes that 
there is more space between “the two points drew”; therefore, there are more “imaginary points”. 
Thus, the students (between 13 and 17 years old) achieved to imagine a similar relationship between 
the stretch of the garter and the property of density. In the research performed by Vamvakoussi and 
Vosniadou  with 15-year-old students, in 2004, different explanatory frameworks were identified and 
described, related to a thought linked to finite or infinite quantities of rational numbers in an interval 
(see Table 1). 
 

Table 1: Characterization of thinking about the quantity number  
of numbers in an interval 

Naive thinking about 
the discrete 

It is thought that there is no other number between two consecutive false rational 
numbers. Vamvakoussi and Vosniadou (2004) created this expression to refer that 
exists a successor of a rational number. 

Advanced thinking 
about the discrete  

It is thought there is a finite quantity of numbers between two consecutive false 
rational numbers. 

Mixed thinking 
between discrete and 
dense  

In some cases, it is thought that between two rational numbers there is an infinity of 
numbers; and in other cases, it is thought there is a finite number of intermediate 
numbers. 

Naive thinking about 
the dense  

It is understood that there is an infinity of numbers in an interval, but this situation 
is not justified by using the density property. The symbolic representation of the 
extremes of an interval influences the way of thinking; it is believed there can only 
be an infinite number of decimal numbers between decimals and an infinity of 
fractions between fractions, but not an infinity of fractions between decimals or 
otherwise. 

Advanced thinking 
about the dense 

There is a sophisticated understanding of the density property; that is, it is 
understood that there is an infinite number of numbers between two rational 
numbers, regardless of their symbolic representation and this is justified through the 
use of the density property. 

Methodology 
Participants 

The population studied was 10 pre-service teachers in mathematics at the secondary basic education 
of an institution in Mexico City, in 2017. One of these participants was 36 years old and the others 
were between 18 and 23 years old. 
Educational experimentation design 

The implementation of the didactic sequence with the pre-service teachers focused on one purpose: 
to generate metaconceptual awareness. Vamvakoussi and colleagues (2013) indicate that conceptual 
change through instruction is a slow and gradual process because it not only involves the 
reorganization of conception but also of the entire knowledge system. However, the authors describe 
that a conceptual change can be achieved gradually with the following criteria: (a) an in-depth 
exploration of the concepts to learn, (b) to take into account the student's prior knowledge, (c) to 
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facilitate a metaconceptual awareness, (d) to provide meaningful experiences, and (e) to encourage 
the use of various representations, whether graphic, written, or made with digital resources. 

Considering the previous criteria and the backgrounds that shape the problem about around the 
understanding of the density property by the student, we designed and elaborated of the activities of 
the didactic sequence. The sequence was structured in two stages. The first stage is to recognize the 
participants’ first explanatory frames through a paper and pencil questionnaire (diagnosis) and 
individual interviews. The second stage was elaborated with individual and group activities to 
identify and analyze their actions, in turn, their explanatory frameworks. This stage was carried out 
in four sessions about 1. The perception of the dense in concrete materials. 2. Addition and 
subtraction of decimals, 3. Localization of decimals in intervals, and 4. Comparing decimal numbers. 

Results 
Results of the questionnaire as diagnosis (first stage) 

The pre-service teachers answered an 11-question questionnaire which showed the first explanatory 
frameworks related to the categories proposed by Vamvakoussi and Vosniadou (2004) about the 
property of the discrete and the property of density. Below are the responses of several participants to 
some questions, as well as some of their comments expressed in the individual interviews to find out 
the justification for their answers. 

Naive thinking about the discreet. Some pre-service teachers considered that the extremes of an 
interval are consecutive and therefore they assured there cannot another number in this 
interval. Figure 1 shows the case of Amanda. She carried out the process of a fractional 
representation to a finite decimal writing, and she argued that both ends of the interval are 
consecutive. 

 
Figure 1: Naive thinking about discrete (example) 

  
Advanced thinking about the discreet. The finite subdivision process in an interval was one of the 

initial explanatory frameworks the participants operated to confirm the existence of a finite of 
decimal numbers in a range. The notion that only numbers on the order of tenths — at most 
hundredths — are decimal numbers may be influenced by responses related to finite sets within an 
interval. For example, Fabiola evokes a finite process, considering a certain number of decimal 
places of a number to affirm that there are nine decimal places in the given interval; therefore, the 
idea of false consecutive numbers underlies (see Figure 2). 

 

 
Figure 2: Advanced thinking about discrete (example) 

  

5. Can you find decimal numbers and or fractions between 0.49 and 1/2? Write your answer. 
 
 
Amanda shows that 1/2 = 0.5 = 0.50 is the successor of 0.49. She mentions in the 

interview “0.49 and 1/2 are consecutive”. 
Amanda indica que 1/2 = 0.5 = 0.50 es el sucesor de 0.49. Ella menciona en la 
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It is worth mentioning that some pre-service teachers have an initial explanatory framework that a 
successor is a number greater than itself. Perhaps, Isabella thinks the successor of any number is a 
larger number, as in her example: natural 7, 8 (See Figure 3). 

  
Figure 3: Belief of the successor’s existence as a larger number (example) 

  
To finish this first stage of the didactic sequence, it is concluded that half of the pre-service teachers 

tend to have combined thinking between the discrete and the dense, while three of them apparently 
have advanced thinking about the discrete and the rest tend to have naive thought related to the 
discreet. 
Results of the activities of the didactic sequence (second stage) 

The following paragraphs describe some actions and explanatory frameworks of the teachers in 
training who interacted with activities in the didactic sequence. 

Performances related to the perception of the dense in concrete materials. The purpose of the 
first activities of the didactic sequence is that the future teacher conceives the notion of an infinity of 
numbers in an interval through an “infinity of points” in a geometric context. They reported that the 
more the elastic band was stretched (Vamvakoussi & Vosniadou, 2012), there could be more space; 
therefore, more imaginable points. The same occurs when blowing up a balloon. The 
participants pointed out that the more the balloon was blown up, the more space there would, be 
therefore, more imaginary points. 

Performances identified with addition and subtraction with decimal numbers. For this second 
session, participants answered to two activities that emerged from the activities made by Broitman et 
al. (2003). The objective of the activities is the recognition of skills in writing different decimal 
numbers. In one of the activities, the teacher-researcher writes the number 1.5 on the board, then the 
pre-service teacher writes the greatest number of addends and that the total sum approaches or equals 
10. Some participants revealed the use of numbers until two decimal places in this first experience, 
for example, Karen’s explanatory framework. She used numbers with two decimal places, even 
considering the number 0 for the hundredths, as can be seen in Figure 4. Karen only writes down the 
numbers between 0 and 1. She first writes the sequence 0.5, 0.4, 0.3, and then registers 0.25, 0.75, 
0.80, and 0.15; that is, she decomposes to hundredths. Then she writes 0.20, 0.70, 0.40, and 0.30 and 
recognizes that zero can have the hundredths position. Perhaps she did not perceive the equivalence 
between 0.3 and 0.30 as well as 0.4 and 0.40 since the activity required different numbers. 

   
Figure 4: Karen’s record on the addition and subtraction activity 

Nicolás’ explanatory framework was based on registering numbers up to six decimal places, but 
apparently, he had a strategy (see Figure 5). He wrote down the number 0.000001 and then 0.000009, 
and in the following rows the position of the digit 9 changes. Nicolás wrote 9 in the position of the 
millionths, then in the position of the hundred-thousandths, then in the ten-thousandths, the 
thousandths, the hundredths, and finally, in the tenths. The process that Nicolás followed was to 
multiply 9 by 1/10n, where n is a natural number, starting with the millionth position (that is, n = 
6). The sum of the numbers that Nicolás wrote is 1. This participant used numbers up to millionths 
and in the diagnostic questionnaire showed examples related to advanced thinking associated with 
the discrete. This fact highlights a process of a gradual conceptual change since he recorded numbers 
with up to two decimal places in some questionnaire responses. 

9. What is the successor of the natural number 6?            
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Figure 5: Nicolás’ record on the addition and subtraction activity 

  
Performances linked to locating decimal numbers in intervals. The two activities in this session 

were developed from one made by Brousseau (1981) that seek to locate numbers in an interval, as 
well as find intervals for a given number. In one of the activities, future teachers should look for the 
interval in which the number “thought” by a colleague is found and pose questions to find that 
interval. The ends of this interval must be decimal numbers whose decimal places are 
consecutive. Figure 6 shows an example of a participant who wrote the intervals his colleagues 
mentioned and marked with an “X” those that did not correspond. Olga considered the numerical 
representation until ten-thousandths in the hidden number, 28.9306. She had shown evidence 
of naive thinking concerning discrete in the development of the diagnostic questionnaire. It seems, 
that Olga has been doing a restructuring of concepts because she believed there were only numbers 
up to two decimal places. Perhaps, she used the numerical representation of the order of the ten-
thousandths as a consequence of the socialization of the previous activities (related to additions and 
subtractions). 

Performances associated with comparing decimal numbers. The two comparison activities, in 
the last session of the didactic sequence, are part of a study carried out by Castillo in 2015, in 
Mexico. Understanding the density property of decimals from the decimal comparison property is the 
aim of the activities. In one of the activities, each future teacher must complete a decimal numbers’ 
series. Figure 7 shows the work made by that one of the five participants carried out and completed 
the sequence correctly. His strategy consisted in detailing the last digits of the numbers that appear to 
“modify” them and, in other cases, to “add digits” without altering the ordering. 

Some teachers in training did not perceive the equivalence between decimals, for instance, 
Olga, Isabella, Oscar, and Amanda (see Figure 8). Olga added a zero in the ten-thousandth position 
of the number 30,871. Isabella and Olga added two zeros in the hundred-thousandth and millionth 
positions of the number 30.8712. While Oscar added a zero in the position of one hundred-
thousandths of the number 30.8721, and Amanda added a zero to the end of the expression 30.87125. 

 

 
Figure 6: Future teacher’s record on the location activity 



An approach to density in decimal numbers: A study with pre-service teachers 

	 809	

  
Figure 7: Future teacher’s record on the comparison activity 

  

  
Figure 8: Records of four participants in the comparison activity 

  
After completing the individual test, the future teachers wrote down the numbers written on their 

worksheets on the board (see Figure 9). In order for the pre-service teacher to achieve a 
metaconceptual awareness that the property of density helps to visualize the fact that there is no 
successor in the set of decimal numbers, it was shown that between pairs of false consecutive ones it 
is found at least a decimal number, therefore an infinity. For example, in Figure 9 (see oval) that 
observed between the pair of false consecutive 30.8711 and 30.8712 are located the least seven 
decimal numbers, larger than the first and smaller than the second: 
30.87112, 30.871103, 30.87119, 30.871105, 30.871102, 30.87115 and 30.871106 

Finally, the teacher-researcher asked the participants if there were other strategies to find 
intermediate numbers in this activity. Nicolás mentioned “the arithmetic mean”. The teacher-
researcher accomplished a brief example with a pair of numbers from the activity to show the 
arithmetic mean helps to find intermediate numbers in an interval. 

  
Figure 9: Participants’ annotations in the comparison activity 

Conclusions and implications 
The socialization of the activities of the didactic sequence with the pre-service teachers promotes an 

approach to the understanding of the density property of the decimal numbers, and, in consequence, 
a process of conceptual change from the discrete to the dense. In the development of the diagnostic 
questionnaire, the ten future teachers had evidenced examples of thought associated with the property 
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of the discrete of natural numbers. During the implementation of the activities of the didactic 
sequence, the ten participants achieved to extend the number of decimal places, a strategy that 
allowed them to locate numbers in an interval. However, three future teachers questioned the 
mediation about the existence of a decimal’s successor; they even included in their explanatory 
framework the existence of a successor to a decimal number as a larger number. 

Developing the writing of decimal expansion of a number is considered a task that may help the 
future teacher, or a student in general, in understanding the series’ concept. Sums of arithmetic or 
geometric progressions with infinite terms are series’ examples. A number with periodic decimal 
writing expresses an approximation of a rational number, which is the limit value of rational, for 
example, the limit value of the decimal expansion 0.0123123123... is 41/3330. Likewise, the 
development of writing infinite decimal expansions that cannot be expressed as a fraction could help 
the student to understand the irrational number’ concept. Finally, as indicated by Suárez-Rodríguez 
and Figueras (2019), the didactic sequence is an example of a teaching model that may be of interest 
to in-service teachers who could start studying the density property in their classroom’s lessons. 
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Investigadores que han estudiado la comprensión de la propiedad de densidad en el conjunto de los 
números decimales han mostrado que el estudiante usa la propiedad de lo discreto de los números 
naturales para resolver tareas relacionadas con la densidad. Por lo que es necesaria una 
reestructuración de conceptos, es decir, un cambio conceptual: de “lo discreto” a “lo denso”. En 
este informe se presentan evidencias de diez profesores en formación, de la Ciudad de México, de 
que se puede iniciar ese cambio a través de la puesta en marcha de una secuencia didáctica. Los 
profesores en formación lograron visualizar que en un intervalo se puede encontrar un número 
decimal, en consecuencia, lograron concebir una infinidad. No obstante, varios de ellos persistieron 
con la idea de la existencia de un sucesor en el conjunto de los números decimales.  

Palabras clave: preparación de maestros en formación, números racionales, conceptos de números y 
operaciones, conocimiento matemático para la enseñanza 

Los desafíos que enfrentan los estudiantes para resolver situaciones relacionadas con la propiedad 
de densidad de los números racionales no han sido un proceso sencillo. Un estudiante que concluye 
la educación primaria cree que no hay otro número entre dos decimales. Por ejemplo, en Argentina, 
los estudiantes de 5to de primaria (10 años de edad) piensan que entre 4.2 y 4.3 no hay otro decimal 
(Broitman, Itzcovich, y Quaranta, 2003). Por otro lado, Ávila (2008) informa que solo el 10% de los 
estudiantes de la educación primaria responde correctamente ejercicios vinculados con esta 
propiedad en los exámenes nacionales en México. 

Concluida la educación básica primaria los estudiantes siguen teniendo un pensamiento 
concerniente con la propiedad de lo discreto del conjunto de los números naturales durante la 
educación básica secundaria. Como prueba de ello se encuentra la investigación forjada por Neuman 
(1998) en la que él expone que estudiantes alemanes, de 7° de la educación elemental (13 años de 
edad), asociaron propiedades afines con los números naturales para resolver preguntas relacionadas 
con la densidad de fracciones. Hart, en el año 1981 (como se citó en Widjaja, Stacey, y Steinle, 
2008), afirmó que entre el 22% y el 39% de los estudiantes de 12 a 15 años de edad pensaban que 
había ocho, nueve o diez números decimales entre 0,41 y 0,42 (por ejemplo, los nueve números 
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decimales del orden de los milésimos: 0.411, 0.412, 0.413, 0.414, 0.415, 0.416, 0.417, 0.418 y 
0.419).  

En la última etapa escolar se encuentran los estudiantes universitarios, así como los que se preparan 
para ser profesores. En Estados Unidos, futuros profesores piensan que hay una cantidad finita de 
números intermedios en un intervalo y que un número racional tiene un sucesor (Tirosh, Fischbein, 
Graeber, y Wilson, 1999). En Indonesia, la mitad de una población de profesores en formación 
considera una cierta cantidad de números decimales entre dos dados (Widjaja et al., 2008). Una 
mayoría de 62 profesores en formación y más de una décima parte de 71 estudiantes que se 
especializan en matemáticas a nivel universitario, en Finlandia, utilizaron propiedades 
correspondientes con el sistema de los números naturales en tareas asociadas con la propiedad de 
densidad de las fracciones (Merenlouto y Lehtinen, 2004). 

Esta problemática pareciera persistir desde la escuela primaria, por ello la atención se enfocó hacia 
los profesores en formación de secundaria, nivel en el cual se estudia con más profundidad las 
propiedades de los números decimales, entre ellas la propiedad de densidad. Cabe mencionar que el 
presente documento es una extensión de un breve informe de investigación presentado por Suárez-
Rodríguez y Figueras en el año 2019. 

Objetivos 
Atendiendo a la necesidad de superar la dificultad que tiene un estudiante para profesor acerca de la 

propiedad de densidad en el conjunto de los números decimales, se pretendió poner en marcha una 
secuencia didáctica (ver Suárez-Rodríguez, 2017) con la finalidad de generar una conciencia 
metaconceptual. En el proceso de cambio conceptual, el estudiante empieza a asumir una conciencia 
metaconceptual cuando es consciente de que sus presuposiciones y creencias son hipotéticas y 
limitan la forma en que interpreta la información que va aprendiendo (Vosniadou, 1994). Por tanto, 
para la presente investigación se plantearon los siguientes objetivos: 1. Identificar y describir los 
marcos explicativos –distintas formas de expresar las interpretaciones de un individuo 
(Vamvakoussi, Vosniadou, y Van Dooren, 2013)–   que hacen los futuros profesores sobre la 
propiedad de densidad de los números decimales cuando tienen una conciencia metaconceptual , y 2. 
Analizar las actuaciones de los participantes en la resolución de las actividades en caso de que se 
promueva un cambio conceptual. 

Marco teórico 
Carey, en el año 1987, propone el enfoque de desarrollo-cognitivo del Cambio Conceptual, en el 

que ella explica cómo actúa la cognición infantil y desarrolla alternativas para iniciar un proceso de 
cambio conceptual. La autora señala que el conocimiento de un concepto de un individuo, 
inicialmente, está ligado a una teoría ingenua (aquella que consiste en explicaciones de concepciones 
innatas o concepciones aprendidas de la experiencia cotidiana relacionadas con las ciencias). Un 
ejemplo de una teoría ingenua, o idea ingenua, en matemáticas, es aquella en la que el estudiante cree 
que solo hay 9 números entre 1.2 y 1.3, a saber: 1.21, 1.22, …, 1.29 (Suárez-Rodríguez, 2017). 
Luego de que el conocimiento esté asociado con teorías ingenuas, este se va relacionando con otros 
formando un sistema de conocimientos (Carey, 1987). 

Vosniadou (1994) propone que las teorías ingenuas constituyen los modelos mentales del ser 
humano y que estos modelos son el primer paso para iniciar un proceso de cambio conceptual. Para 
Vosniadou, un modelo mental es una representación que forma el alumno sobre ideas que adquiere, 
bien sea por experiencia o por instrucción, y que va acompañada de presuposiciones. Cuando un 
estudiante asume una conciencia metaconceptual estos modelos van cambiando, se producen los 
modelos sintéticos, que representan los intentos que hace el estudiante para reconciliar las opiniones 
científicas culturalmente aceptadas con las presuposiciones de sus teorías ingenuas 
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(Vosniadou,1994). Finalmente, el cambio conceptual requiere de cambios en las presuposiciones y 
creencias que el aprendiz debe realizar en sus representaciones para que pueda acceder a los 
conceptos científicos, y así lograr una comprensión de los conceptos aprendidos (Vosniadou, 1994; 
Vosniadou, Vamvakoussi, y Skopeliti, 2008).  

En el ámbito educativo de las matemáticas, Stafylidou y Vosniadou (2004) y Vosniadou y 
Verschaffel (2004) suelen usar marcos explicativos en lugar de modelos mentales o modelos 
sintéticos. Los primeros marcos explicativos que hace el alumno son las primeras reflexiones que 
forman una estructura coherente y sólida sobre lo que aprende junto con sus presuposiciones y 
creencias (Vosniadou y Verschaffel, 2004). Siguiendo la idea a estos investigadores, se puede decir 
que los marcos explicativos iniciales son los primeros pensamientos que hace un estudiante acerca de 
lo que percibe, de lo que ve, de lo que interpreta, y lo explica a su manera, con sus propias palabras. 
Así mismo, en el contexto de un proceso de aprendizaje, la expresión cambio conceptual es un 
proceso de reestructuración de conceptos cuando el estudiante está aprendiendo información que no 
es compatible con sus conocimientos construidos hasta el momento, por lo que el estudiante debe 
realizar una resignificación de conceptos. Es así como la comprensión de la propiedad de densidad 
conlleva un proceso de cambio conceptual, de manera paulatina, una reestructuración de “lo discreto” 
a “lo denso”, como lo sostienen Suárez-Rodríguez y Figueras (2019). 
Un cambio conceptual: la reestructuración de lo discreto a lo denso 

Los autores Ni y Zhou (2005) en su investigación señalan tres posibles causas que hacen que el 
alumno tenga conflictos para responder tareas asociadas con los números racionales cuando usan 
conocimientos acerca del número natural. Una primera causa se relaciona con lo innato, es decir, si la 
propiedad de lo discreto del conjunto de los números naturales es de naturaleza innata. La segunda se 
relaciona con la enseñanza de las propiedades del conjunto de los números naturales y la del conjunto 
de los números racionales. Por último, la relación entre el aprendizaje de los conceptos que el niño 
adquiere y el aprendizaje de la simbología de dichos conceptos. Ante esto, Vamvakoussi y 
Vosniadou (2012) diseñaron una estrategia usando la analogía entre el estiramiento de una “liga 
elástica” y la propiedad de densidad. El alumno a medida que estira la liga observa que hay más 
espacio entre “dos puntos que están dibujados”, por ende, hay más “puntos imaginarios”. 
Efectivamente, los estudiantes (entre 13 y 17 años de edad) lograron concebir una relación de 
semejanza entre el estiramiento de la liga y la propiedad de densidad. 

En la investigación forjada por Vamvakoussi y Vosniadou, en el año 2004, se identificaron y se 
describieron distintos marcos explicativos concernientes a un pensamiento vinculado con cantidades 
finitas –o infinitas– entre dos números racionales por estudiantes que tenían entre 15 y 17 años de 
edad (ver Tabla 1).  

Tabla 1: Caracterización del pensamiento sobre la cantidad de números en un intervalo 
Pensamiento ingenuo sobre 
lo discreto 
 

Se piensa que no hay otro número entre dos números racionales consecutivos 
falsos. Esta expresión la acuñaron Vamvakoussi y Vosniadou (2004) para referir 
que existe un sucesor de un número racional. 

Pensamiento avanzado 
sobre lo discreto 

Se cree que hay un número finito de números entre dos números racionales 
consecutivos falsos. 

Pensamiento compuesto 
entre lo discreto y lo denso 

En algunos casos se piensa que entre dos números racionales hay una cantidad 
infinita de números, y en otros, que hay un número finito de números intermedios. 

Pensamiento ingenuo sobre 
lo denso 

Se comprende que hay una infinidad de números en un intervalo, pero no se 
justifica la situación usando la propiedad de densidad. La representación simbólica 
de los extremos de un intervalo influye en la forma de pensar; se cree que sólo 
puede haber una infinidad de números decimales entre decimales y una infinidad 
de fracciones entre fracciones, pero no una infinidad de fracciones entre decimales, 
o al contrario. 
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Pensamiento avanzado 
sobre lo denso 

Hay una comprensión bastante sofisticada de la propiedad de densidad, es decir, se 
pone de manifiesto que se entiende que entre dos números racionales hay una 
infinidad de números independientemente de su representación simbólica, y se 
justifica con la propiedad de la densidad. 

Metodología 
Participantes 

La población estudiada fue de 10 profesores en formación en matemáticas de la educación básica 
secundaria de una institución en la Ciudad de México, en el año 2017. Uno de estos participantes 
tenía 36 años de edad y los nueve restantes entre 18 y 23. 
Diseño de la experimentación educativa 

La puesta en marcha de la secuencia didáctica con los profesores en formación se centró en una 
finalidad: generar conciencia metaconceptual. Vamvakoussi y colegas (2013) indican que el cambio 
conceptual a través de una instrucción es un proceso lento y gradual, porque no solo involucra la 
reorganización de una concepción sino de todo un sistema de conocimientos. No obstante, los autores 
describen que se puede lograr un cambio conceptual paulatinamente con los siguientes criterios: (a) 
una exploración profunda de los conceptos a aprender, (b) tener en cuenta el conocimiento previo del 
estudiante, (c) facilitar una conciencia metaconceptual, (d) proporcionar experiencias significativas, y 
(e) fomentar el uso de diversas representaciones, ya sean gráficas, escritas, o hechas con recursos 
digitales. 

Teniendo en cuenta los anteriores criterios y los antecedentes que reúnen la problemática en torno a 
la comprensión de la propiedad de densidad por parte del alumno, se procede al diseño y elaboración 
de las actividades de la secuencia didáctica. La secuencia se estructuró en dos etapas. La primera para 
reconocer los primeros marcos explicativos de los participantes a través de un cuestionario 
(diagnóstico) de papel y lápiz y entrevistas individuales. La segunda etapa se elaboró con actividades 
individuales y grupales para identificar y analizar sus actuaciones, a su vez, sus marcos explicativos. 
Esta etapa se llevó a cabo en cuatro sesiones sobre: 1. La percepción de lo denso en materiales 
concretos, 2. Adición y sustracción de decimales, 3. Localización de decimales en intervalos, y 4. 
Comparación de números decimales. 

Resultados 
Resultados del cuestionario como diagnóstico (primera etapa) 

Los profesores en formación atendieron a un cuestionario de 11 preguntas el cual arrojó los 
primeros marcos explicativos relacionados con las categorías propuestas por Vamvakoussi y 
Vosniadou (2004) sobre la propiedad de lo discreto y la propiedad de densidad. A continuación se 
muestran las respuestas de varios participantes a algunas preguntas, así mismo se muestran algunas 
manifestaciones dadas por ellos en las entrevistas individuales con el ánimo de conocer la 
justificación de sus respuestas. 

En Pensamiento ingenuo sobre lo discreto. Hubo estudiantes para profesor quienes consideraron 
que los extremos de un intervalo son consecutivos y por ello aseguraron que no puede haber otro 
número en dicho intervalo. En la Figura 1 se muestra el caso presentado por Amanda. Ella realizó el 
proceso de una representación fraccionaria a escritura decimal finita, y usó el argumento de que 
ambos extremos del intervalo son consecutivos.   
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Figura 1: Pensamiento ingenuo sobre lo discreto (ejemplo) 

 
En Pensamiento avanzado sobre lo discreto. El proceso de subdivisiones finitas en un intervalo 

fue uno de los marcos explicativos iniciales que usaron los participantes para afirmar la existencia de 
una cantidad finita de números decimales en un intervalo. La concepción de que solamente los 
números del orden de los décimos –a lo mucho de los centésimos– son los números decimales, puede 
estar influida en las respuestas relacionadas con conjuntos finitos dentro de un intervalo. Por 
ejemplo, Fabiola evoca un proceso finito, toma en cuenta una determinada cantidad de cifras 
decimales de un número para afirmar que hay nueve números decimales en el intervalo dado, por 
ende, subyace la idea de los números consecutivos falsos (ver Figura 2). 

 

 
  Figura 2: Pensamiento avanzado sobre lo discreto (ejemplo) 

 
Cabe mencionar que algunos profesores en formación tienen un marco explicativo inicial de que un 

sucesor es un número mayor que él. Posiblemente, Isabella piensa que el sucesor de cualquier 
número es un número mayor, como su ejemplo: naturales 7, 8 (Ver Figura 3).  

 

 
Figura 3: Creencia de la existencia de un sucesor como número mayor (ejemplo) 

 
Para finalizar esta primera etapa de la secuencia didáctica se concluye que la mitad de los 

estudiantes a profesor tienden a tener un pensamiento combinado entre lo discreto y lo denso, 
mientras que tres, al parecer, tienen un pensamiento avanzado sobre lo discreto y los dos restantes 
tienden a tener un pensamiento ingenuo afín con lo discreto.  
Resultados de las actividades de la secuencia didáctica (segunda etapa)  

En los siguientes párrafos se describen algunas actuaciones y marcos explicativos de los profesores 
en formación quienes interactuaron con actividades de la secuencia didáctica. 

Actuaciones vinculadas con la percepción de lo denso en materiales concretos. La finalidad de 
las primeras actividades de la secuencia didáctica es que el futuro profesor conciba la noción de una 
infinidad de números en un intervalo a través de una “infinidad de puntos” en un contexto 
geométrico. Ellos refirieron que entre más se estiraba la liga elástica (propuesta de Vamvakoussi y 
Vosniadou, 2012) podía haber más espacio, por ende, más puntos imaginables. De la misma manera 
sucedió con el inflamiento de un globo. Los participantes señalaron que entre más se inflaba el globo 
habría más espacio, en consecuencia, más puntos imaginarios.  

5. ¿Puedes encontrar números decimales y/o fracciones entre 0.49 y 1/2? Justifica tu respuesta. 
 
 
 
Amanda indica que 1/2 = 0.5 = 0.50 es el sucesor de 0.49. Ella menciona en la entrevista 

que “0.49 y 1/2 son consecutivos”. 
5. Can you find decimal numbers and or fractions between 0.49 and 1/2? Write your 

2. ¿Cuántos números decimales hay entre 1.2 y 1.3?     
 

Fabiola registró que hay 9 números en el intervalo. Ella dice que solo se encuentran 1.21, 
1.22, 1.23, 1.24, 1.25, 1.26, 1.27, 1.28 y 1.29 (manifestaciones en la entrevista).  

 

9. ¿Cuál es el sucesor del número natural 6? 
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Actuaciones identificadas con la adición y la sustracción con números decimales. Para esta 
segunda sesión los participantes respondieron a dos actividades que surgieron de las actividades 
hechas por Broitman y colaboradores (2003). El objetivo de las actividades es el reconocimiento de 
destrezas en la escritura de números decimales distintos. En una de las actividades la docente-
investigadora escribe el número 1.5 en el pizarrón, luego los estudiantes para profesor escriben la 
mayor cantidad de sumandos y que la suma total se aproxime o se iguale a 10. El uso de números 
hasta dos cifras decimales se puso de manifiesto en esta primera experiencia por algunos 
participantes, por ejemplo, el marco explicativo de Karen. Ella utilizó números con dos cifras 
decimales, incluso tuvo en cuenta el número 0 para las centésimas, como se puede apreciar en la 
Figura 4. Karen únicamente anota números comprendidos entre 0 y 1. Ella primero escribe la 
secuencia 0.5, 0.4, 0.3, y luego registra 0.25, 0.75, 0.80 y 0.15, es decir, descompone hasta 
centésimas. Enseguida ella anota 0.20, 0.70, 0.40 y 0.30 y reconoce que el cero puede tener la 
posición de las centésimas. Al parecer, ella no percibió la equivalencia entre 0.3 y 0.30, así mismo, 
0.4 y 0.40, puesto que la actividad requería números diferentes. 

 
Figura 4: Registro de Karen en la actividad de adición y sustracción 

 
El marco explicativo de Nicolás se basó en el registro de números hasta con seis cifras decimales, 

pero al parecer tenía una estrategia (ver Figura 5). Él anota el número 0.000001 y después 0.000009, 
y en las siguientes filas va cambiando la posición del dígito 9. Nicolás ubica el 9 en la posición de las 
millonésimas, luego en la posición de las cienmilésimas, las diezmilésimas, las milésimas, las 
centésimas, y finalmente en las décimas. El proceso que realizó Nicolás fue multiplicar 9 por 1/10n, 
donde n es un número natural, comenzando por la posición de las millonésimas (es decir, n=6). Se 
observa que la suma de los números que Nicolás escribió es 1. Este participante, quien en el 
cuestionario-diagnóstico mostró ejemplos relacionados con el pensamiento avanzado asociado con lo 
discreto, utilizó números hasta millonésimos. Este hecho pone en evidencia un proceso de inicio de 
cambio conceptual de manera paulatina, puesto que él registró números hasta con dos cifras 
decimales en algunas respuestas del cuestionario. 

 
Figura 5: Registro de Nicolás en la actividad de adición y sustracción 

 
Actuaciones identificadas con la localización de números decimales en intervalos. Las dos 

actividades de esta sesión se elaboraron a partir de una hecha por Brousseau (1981) que tienen la 
intención de localizar números en un intervalo, así como encontrar intervalos para un número dado. 
En una de las actividades los futuros profesores deben buscar el intervalo en el que se halla el 
número “pensado” por un compañero y van elaborando preguntas con el fin de encontrar dicho 
intervalo. Los extremos de este intervalo deben ser números cuyas cifras decimales sean 
consecutivas. En la Figura 6 se muestra un ejemplo de un participante quien escribió los intervalos 
mencionados por sus compañeros e iba marcando con una “equis” cuáles no correspondían. La 
representación numérica hasta los diezmilésimos en el número escondido, 28.9306, fue tomada en 
cuenta por Olga. Ella había mostrado evidencias de un pensamiento ingenuo concerniente con lo 
discreto en el desarrollo del cuestionario-diagnóstico. Olga, al parecer, ha estado haciendo una 
reestructuración de conceptos, pues ella creía que solo existían números hasta con dos cifras 
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decimales. Es posible que ella haya usado la representación numérica del orden de los diezmilésimos 
como consecuencia de la socialización de las actividades anteriores (relacionadas con adiciones y 
sustracciones). 

Actuaciones asociadas con la comparación de números decimales. Las dos actividades de 
comparación, de la última sesión de la secuencia didáctica, se derivaron de una tarea hecha por un 
estudiante para profesor de una investigación realizada por Castillo en el año 2015, en México. La 
comprensión de la propiedad de densidad de los decimales a partir de la propiedad de comparación 
de decimales constituye el propósito de las actividades. En una de ellas, cada profesor en formación 
debe completar una ordenación de números decimales. En la Figura 7 se evidencia la labor realizada 
por uno de los cinco participantes que completaron la secuencia de manera correcta. Su estrategia fue 
detallar los últimos dígitos de los números que aparecen allí para “modificarlos”, y en otros casos, 
para “añadir dígitos o cifras” sin alterar la ordenación. 

Algunos estudiantes para profesor no percibieron la equivalencia entre decimales, son los casos de 
Olga, Isabella, Oscar y Amanda (ver Figura 8). Olga agrega un cero en la posición de las 
diezmilésimas de la cantidad 30.871. Isabella y Olga agregaron dos ceros en las posiciones 
cienmilésimas y millonésimas del número 30.8712. Oscar agregó un cero en la posición de las 
cienmilésimas del número 30.8721. Y Amanda agregó un cero al final de la expresión 30.87125. 

 

 
Figura 6: Registro de un profesor en formación en la actividad de localización 

 

 
Figura 7: Registro de un futuro profesor en la actividad de comparación 

 

 
Figura 8: Registros de cuatro participantes en la actividad de comparación 
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Concluida la prueba individual, los futuros profesores anotaron en el pizarrón los números escritos 
en sus hojas de trabajo (ver Figura 9). Con el objetivo de que el estudiante para profesor lograra una 
conciencia metaconceptual de que la propiedad de densidad ayuda a visualizar el hecho de que no 
existe un sucesor en el conjunto de los números decimales, se mostró que entre pares de consecutivos 
falsos se halla al menos un número decimal, en consecuencia, una infinidad. Por ejemplo, en la 
Figura 9 (ver óvalo) se observa que entre el par de consecutivos falsos 30.8711 y 30.8712 se 
localizan al menos siete números decimales, mayores que el primero y menores que el segundo: 
30.87112, 30.871103, 30.87119, 30.871105, 30.871102, 30.87115 y 30.871106. Finalmente, se 
cuestionó a los participantes si había otras estrategias para hallar números intermedios en esta 
actividad. Nicolás mencionó “la media aritmética”. Se realizó un breve ejemplo con un par de 
números de la actividad para mostrar que con ella se puede hallar números intermedios en un 
intervalo.  

 
Figura 9: Anotaciones de los participantes en la actividad de comparación 

Conclusiones e implicaciones 
La socialización de las actividades de la secuencia didáctica con los profesores en formación 

promueve un acercamiento a la comprensión de la propiedad de densidad de los números decimales, 
en consecuencia, un proceso de cambio conceptual: de lo discreto a lo denso. En el desarrollo del 
cuestionario-diagnóstico, los diez profesores en formación habían evidenciado ejemplos de 
pensamiento asociado con la propiedad de lo discreto de los números naturales. Durante la puesta en 
marcha de las actividades de la secuencia didáctica, los diez participantes lograron extender la 
cantidad de cifras decimales, estrategia que les permitió ubicar números en un intervalo. Sin 
embargo, la mediación sobre la existencia de un sucesor de un decimal fue cuestionada por tres 
profesores en formación, ellos aun incluían en su marco explicativo la existencia de un sucesor de un 
número decimal como un número mayor. 

Se considera que el desarrollo de la escritura de una expansión decimal de un número es una tarea 
que posiblemente puede ayudar al profesor en formación, o a un estudiante en general, en la 
comprensión del concepto de series. Las sumas de progresiones aritméticas o geométricas con 
infinitos términos son ejemplos de series. Un número con escritura decimal periódica expresa una 
aproximación de un número racional, que es el valor límite de dicho racional, por ejemplo, el valor 
límite de la expansión decimal 0.0123123123… es 41/3330. De igual manera, el desarrollo de la 
escritura de expansiones decimales infinitas que no se pueden expresar como fracción podría ayudar 
al estudiante en la comprensión del concepto de número irracional. Finalmente, como lo indican 
Suárez-Rodríguez y Figueras (2019), la secuencia didáctica es un ejemplo de un modelo de 
enseñanza que puede ser de interés para profesores en servicio quienes podrían iniciar el estudio de la 
propiedad de densidad en sus aulas de clases. 
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 We report our findings and perspective to document the knowledge exhibited by three experienced 
high school teachers in their instructional decisions for lessons on the equation of an exponential 
function. We describe the nature of the mathematical ideas and connections teachers promoted in 
discourse and the decisions that supported the emergence and connections of the mathematics. 
Despite similarities in the structure of the mathematical activities, differences existed in the ideas 
that emerged in the three teachers’ discussions regarding the relationship between the exponent 
value and the independent variable. We describe links between collections of teacher decisions to 
their influences on the mathematics discourse. 

Keywords: Teacher Knowledge; Classroom Discourse 

Introduction and Background Literature 
This study aims to contribute to understanding the nature and quality of mathematics teachers’ 

decisions as a means of describing teachers’ knowledge for teaching mathematics in practice. The 
field widely accepts that teachers’ knowledge strongly relates to their effectiveness (e.g., 
Charlambous & Hill, 2008). Expanding on the work to document and assess a cognitive perspective 
of teachers’ mathematical knowledge for teaching, a call exists to integrate conceptualizations of 
teachers’ knowing and their actions in the classroom (Depaepe et al., 2013). Reviewing literature, 
Stahnke et al. (2016) categorized studies of teacher knowing in action by the situation-specific 
processes investigated, namely perception, interpretation, and decision-making (Blömeke et al., 
2015). Stahnke et al. concluded decision-making is the most challenging for pre-service teachers 
(PSTs). Meanwhile, decision-making of experienced teachers is tacit, effortless, and based on 
sophisticated networks of schema (e.g., Shavelson & Stern, 1981). To inform preparation of PSTs, 
we sought to learn from experienced secondary teachers by inquiring into their decisions in teaching 
exponential functions topics. 

Despite observations of more powerful ways of understanding exponential growth (e.g., Confrey & 
Smith, 1994), high school curricula often introduce exponential functions through tasks that facilitate 
making a correspondence between a quantity growing by repeated multiplication and another related 
quantity (Davis, 2009). Defining exponential growth by repeated multiplication provides a 
potentially useful entry point (Weber, 2002); however, the metaphor is insufficient for explaining the 
meaning of expressions such as 22/3 (Davis, 2009). In action, learners may reason about changes in 
the y-value without attending to the y-value’s relationship to the x-value (Ellis et al., 2016) and 
therefore struggle to connect the repeated multiplication to the closed form of an equation (Davis, 
2009). The closed form of an equation, when developed, can represent a correspondence view of the 
function. That is, one builds a rule to represent the relationship between an x-value and its associated 
y-value in the form of an algebraic equation y = f (x). We sought to describe how teachers work 
within their available resources and constraints (Schoenfeld, 2011) to facilitate students meeting 
teachers’ learning goals for understanding of equations of exponential functions. 
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Theoretical Framing 
We view knowledge or knowing from an enactivist epistemology (Maturana & Varela, 1992). 

Enactivism stems from evolutionary biology and conceptualizes an organism interacting and co-
evolving with its environment. An organism “knows” within the environmental context if it acts in a 
way that is fitting and effective for the context (Maturana, 1988). Therefore, knowing or cognition is 
not a thing a person holds but “acting in a world that emerges in the doing itself” (Maheux & Proulx, 
2015, p. 212). Knowledge is the body of effective behaviors and the underlying cognition that 
engender one to perceive the situation and categorize which behaviors are effective (Varela, 
Thompson, & Rosch, 1991). Learning is “a reciprocal activity — the teacher brings forth a world of 
significance with the learners” (Towers et al., 2013, p. 425). 

In classroom mathematics discourse, there is both “doing something (some thing) recognizable as 
mathematics, but also producing mathematics as this thing that we are doing when we do what we 
do” (Maheux & Proulx, 2015, p. 215). The mathematics is the “world of significance” that the 
teacher brings forth with the learners by implementing a plethora of decisions both to set up the 
environment and to respond to (and with) the students. The mathematical ideas (i.e., concepts, 
patterns, principles, procedures, relationships) that emerge are not isolated entities. They are 
connected to and built up from other ideas with forms of coherence and structure fitting for the doers 
of the mathematics. As Towers et al. (2013) indicate, enactivism prompts observing “the relationship 
between things in a mathematical environment (ideas, fragments of dialogue, gestures, silences, 
diagrams, etc.), rather than to what each of those things might mean or represent in their own right 
and for the individual generating them” (p. 425). We conceptualize the mathematics as the emerging 
ideas in the discourse of the mathematical activity and the connections made to build up and connect 
the new ideas from and to other ideas. We define knowing for teaching mathematics as the teacher 
decisions to perturb the learning environment and to participate with students to influence the 
emergence of mathematics in ways they deem effective for student learning. 

Interested in describing experienced teachers’ knowing for teaching exponential functions enacted 
in whole class discourse (WCD), we sought to describe the nature of the mathematical world that 
emerged as well as the teacher activity that supported its emergence. We describe the nature of the 
mathematics in terms of the emergent ideas and the connections, consistency, and justifications 
offered in the discourse. Our research investigated: With respect to the equation of an exponential 
function, what is the nature of the mathematical ideas promoted in WCD and what instructional 
decisions supported the mathematics to emerge and connections to develop? 

Methods 
As part of a larger study, we collected data from 16 high school teachers engaged in the teaching of 

exponential function topics in the courses of Algebra I, Algebra II, College Algebra, and Pre-
Calculus. All teachers were identified as highly effective and experienced by their administrators or 
peers and had obtained master’s degrees. The corpus of data included classroom observations and 
interviews regarding teacher instruction. This study focused on the WCD of three teachers, Gabe, 
Evelyn, and Abby who had 28, 19, and 24 years of teaching experience respectively. Gabe and 
Evelyn taught College Algebra while Abby taught IB Math 3 (equivalent to Algebra II). We focused 
on these three teachers because we perceived surface-level similarities in their lesson structures for 
introducing the equation of an exponential function or geometric sequence. 

We transcribed the classroom observations and partitioned each lesson into smaller segments of 
episodes and sequences (Wells, 1996) based on transitions of classroom tasks. Transcribed 
interviews included images of documents the teacher referenced during the interview when 
appropriate. Using the classroom videos and transcripts we developed concept maps representing the 
mathematics in WCD, noting connections made between the mathematical ideas (Leinhardt & Steele, 
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2005). Looking across the concept maps in three teachers’ classrooms, we identified three common 
themes: the role of the independent variable, the relationship between the recursive multiplication 
and exponential form, and the definition of exponential. We created narratives describing the 
emerging mathematics and contributing teachers’ decisions for each teacher and theme (i.e., nine 
narratives in total). We used comparative methods to identify contributing decisions and teacher 
actions in cross case analyses of the three teachers. 

Findings 
These findings focus on the first theme that emerged during the analysis of the classroom discourse 

surrounding writing the equation of an exponential function; specifically, the relationship between 
the value of the independent variable and the exponent of the algebraic expression. 
Gabe Narrative 

To write each of the three equations, students were told to complete a table of values given at least 
four consecutive entries and ∆x=1 (see Figure 1). Students only needed to determine the y-intercept 
(i.e., the value when x=0) for y5, the table included the y-intercepts for y6 and y7. Once students 
identified multiplying by two to move down the entries in the table (y5), Gabe reviewed using 
exponents by leading students through going from 1 to 16 in the table via repeatedly multiplying by 
two. Gabe asked students how 1(2)(2)(2)(2) could be re-written, thus encouraging them to recall their 
work with exponents. After writing 1(2)4 Gabe asked students for the exponent for y5. In using an 
example (y5) students were told and then reminded (in y6) that the exponent represents repeated 
multiplication, so x was the exponent in the general equation. The following excerpt from the WCD 
highlights Gabe’s implicit connection between using exponents in the equation for y5 due to repeated 
multiplication and the exponent being x in the equation. 

T: So, this <the (2)(2)(2)(2) > would be two to what power? You said something power. 
S: Three... fourth. 
T: To the fourth power. <writes 1(2)4 under the expression 1(2)(2)(2)(2)> 
T: So, what we're doing each time is we're multiplying by two, what's our exponent going to be? 
S: x 
T: Just x. <writes y5=1(2)x > So, that's the equation for the first one. [E1:S4:L13-18] 

In discussing writing the equation for y6 Gabe stated, “[n]ow when we write it in this form, it's what 
we're multiplying by each time because that's what the exponent represents, a series of 
multiplications” [E1:S7:L3]. When writing the equation for y7, the exponent was written but not 
mentioned. During notes, when introducing y=abx, Gabe defined the exponent saying, “[a]nd then 
our exponent's the number of times that we're going to be doing it” [E2:S1:L1].  

Due to the structuring of the task (i.e., having students write equations from a table of values void of 
context), defining the independent variable was not needed. Rather, x was implicitly defined as being 
the exponent because the exponent represents repeated multiplication. Additionally, a need did not 
exist for making an explicit correspondence between defining the independent variable and stating 
that x was the exponent. In moving from 1(2)4 to asking students what the exponent would be for y5, 
Gabe focused exclusively on the y5 column and did not discuss that the four in the exponent 
connected to the row corresponding to x=4. In fact, the x column of the table was not included on the 
note sheet that students were given (see Figure 1).  
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Figure 1: Re-creation of a portion of the note sheet Gabe created and gave to students 

 
Evelyn Narrative 

Evelyn introduced writing the equation of an exponential function in two lessons involving the 
discussion and then summary of three tasks (see Table 1). The prompts for the tasks provided the 
value of a quantity at a point in time and information that the quantity grew by a multiplicative factor 
over a set time period (i.e., each day or each year). In small groups, students determined the value of 
the quantity at other points of time, utilizing recursive multiplication or division. In WCDs, Evelyn 
oriented students to represent their computations as numerical expressions in a table and then 
generalize to an equation. 

On the One Grain of Rice task, students worked to find how many grains of rice a girl would have 
on the thirtieth day if she started with one grain of rice and the number of grains doubled each day. 
As Evelyn predicted prior to the lesson, students reached different answers depending on whether 
they labeled the starting value Day 1 or Day 0. She considered having students compare the effects of 
labeling the staring value as Day 1 or Day 0, but in class she chose to have the class come to a 
consensus in choosing to state the girl received one grain of rice on Day 1, meaning the point (1,1) 
was in the data set. In WCD, Evelyn noted there could be another choice of creating that point as 
(0,1). The choice would affect the final answer but not their process. Rather than discussing the effect 
of the choice, the focus shifted to representing the situation and the students’ computations in a table. 

The tables created for the One Grain of Rice and Social Media WCDs captured the repeated 
multiplications used to calculate the values. Evelyn led students to rewrite the expressions as 
repeated multiplication and then exponential expressions. By recognizing a pattern down the right 
column of the table, the class generalized that to calculate the value for any point in time multiply the 
starting value by the growth factor some number of times.  

To generalize beyond the table, Evelyn asked students to find expressions for larger values in the 
table (i.e., the number of users in year 2052). The class discerned a relationship between the 
exponents in the expressions for the dependent variable and the value of the time variable. For 
example, students noticed the exponent of the expression for a given year could be found by 
subtracting five from the years since 2000. The class looked across the two columns to generalize the 
relationship between the value of the independent variable and the computational exponential 
expression to find the number of users (or grains of rice) associated with the value of the time 
variable. Therefore, they developed equations to find the value of the dependent quantity in year x or 
day d. 

Evelyn then presented the contexts for each of the three tasks and the equations they found for each 
situation reminding students how they defined the independent variable (Table 1) and then replaced 
each of these with “x.” The class made observations that each equation involved a time period and 
that the exponent was some sort of time period. Evelyn then presented the general form, y = abx and 
the class discussed the role of each parameter. The meaning of x was given as “some time period” 
and was not defined as the value of the independent variable. 
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Table 1. Three task summary provided by Evelyn  
One Grain of Rice 

Started with one grain of 
rice and doubled each day. 

Social Media 
Started with 3.2 million users and 

tripled each year after 2005. 

Fruit Flies 
Started with 5 flies and they 

quadruped each day of 
vacation. 

Grains of Rice = 2day – 1 #Social Media Users = 3.2(3)year-2005 #Fruit Flies = 5(4)#days 
 

Abby Narrative 
Before this observation, students spent time solving and presenting their solutions to the domino 

skyscraper task (http://threeacts.mrmeyer.com/dominoskyscraper/) which posed the question, “If you 
wanted to topple over a domino the size of a skyscraper, how many dominoes would you need?” 
Students were told, “a smaller domino can topple a domino that is up to 1.5 times larger in every 
dimension” and that the first domino was 5 mm tall. In four small groups, students generated 
solutions for several skyscrapers by guessing and checking, creating a table, and using an exponential 
equation. Abby began this class by shifting the conversation from the solution to the task to the 
equations the students generated.  

Abby asked Group 4 to present their equation y=5(1.5)x and table for the domino task, telling them 
to define their variables and connect their table to their equation. They explained why their equation 
was y=5(1.5)x, where x represented the domino number and y represented the height of the domino, 
and connected it to their table. After the presentation, the class worked in small groups to “make a 
very clearly defined table. Identifying your variables, alright? And matching it up with your equation, 
alright? You want to make sure your equation matches up” [E1:S2:L1]. 

In a small group discussion, Abby asked the students why their equation un=5∙1.5n-1 differed from 
the one presented. The students offered that the difference of “minus 1” in the exponent was due to 
their choice to label the initial domino of height 5 the first domino instead of the zeroth domino in 
their table. The teacher engaged in a similar discussion with another group which had the equation 
= !"#,!!!

!.!!
 . Although there is not more WCD on this point, Abby engaged with two of the four groups 

focusing on why their equation was different from the one presented. In these group conversations 
with Abby, students explained how they constructed their table, how it was different than the table 
presented and how that impacted their equation, with particular attention to how the independent 
variable was defined. 

In WCD, Abby returned to this theme when developing with students the equation for the general 
term of a geometric sequence. She began by highlighting the equation y=5(1.5)x and its associated 
table. She connected it with their work on geometric sequences by noting that the equation generated 
a geometric sequence (the y column in the table), that 5 was the initial value, and 1.5 was the 
common ratio. She pointed out that this table labeled the initial domino as the zeroth term, but that 
the convention for geometric sequences was to label the initial term (domino) as the first term.  

Abby highlighted the work of the group who produced the equation un=5∙1.5n-1, indicating that their 
first domino was 5 and that it aligned with the initial term of a geometric sequence being called the 
first term. The class established that the difference in the exponents between the two equations 
reflected the difference between starting with x=0 and x=1. Abby connected this to transformations 
explaining the difference as one equation being the other shifted to the right one. Through an 
interactive discussion, the students connected the equation un=5∙1.5n-1 to the general term of a 
geometric sequence of the form un=u1∙rn-1, where n is the term number, r is the common ratio, and u1 
is the first term. Abby concluded this episode with the comment, “These are equivalent. <Pointing to 
y=5(1.5)x and un=5∙1.5n-1.> It’s just a matter of defining your variable. Where your starting point is. 
But they are really equivalent equations” [E4:S6:L10]. 
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Cross-Case Analysis 
Differences existed in the ideas that emerged in the three teachers’ discussions regarding the 

relationship between the exponent value and the independent variable in the development of the 
exponential equations. For Gabe, the idea of the connection between the x-variable and exponent was 
minimal. In both discussion of a specific function (y5) and the general forms, Gabe’s class indicated 
the value of the exponent corresponded to the number of multiplications by the constant multiplier 
and the exponent was x. No connection was made between x as the number of multiplications and the 
x column of the table. The x column was only referred to when finding the y-intercept as the value of 
y that corresponded to an x-value of zero and consistently indicated the place where they start doing 
the repeated multiplications. 

For Evelyn, consistency existed in providing intellectual need and opportunity to make a connection 
between the expression that represents the y-value and the corresponding value of the time variable in 
each of three contextualized tasks. The class developed tables by thinking about changes in the 
independent variable by one, implicitly attending to the x-value but focusing on the relationship 
between values in the y-column. Evelyn asked students to write an expression for a large x-value, 
skipping values in the table. Thus requiring students to look between columns of the table and 
generate the relationship between the x-value and the exponent value. They used this observed 
relationship to write the final equation for the functions in question. These conversations emerged in 
the particular discussions of generating the equations from tables but did not emerge in the end 
discussions regarding the general form. In fact, Evelyn noted in her interview that finding the value 
of the exponent would depend on the specific problem context. Specifically, she said, “[u]m, so to 
see that form of the starting value, the base and then that the exponent relies on whatever the context 
of the problem is” [Pre-Int Obs2 08:35]. We did not see a connection made between the exponent 
value as a transformation of the independent variable and the exponent as counting the number of 
multiplications. 

The student groups in Abby’s class created their own equations to model the situation of toppling 
dominos. Consistently, Abby directed students to check their equations with their table; thus the 
exponents of the student equations could be modified to account for the values of the corresponding 
domino number (independent variable). Ideas emerged from the particulars of individual groups 
making different choices in their work on the same task. The students’ equations differed based on 
how they defined the starting value (i.e., Domino 0 vs. Domino 1). Abby built from the varied 
approaches of the students to motivate the generalizations providing standard language and 
definitions as needed. The result was a final general idea that the exponent of the general term of the 
sequence differed based on the labeling of the term number. Abby connected the idea to a horizontal 
transformation of functions. 

The notion that different equations exist dependent upon defining the independent variable emerged 
in both Evelyn’s and Abby’s class due to the opportunity for students to create their own tables 
modeling the situation. The contexts of the domino and grain of rice tasks did not specify that the 
starting domino or day corresponded to a specific value of the independent variable; therefore, 
students made different choices. Abby allowed student groups to develop their own equations and 
made sure students matched all representations of the situation (sequence, table, context, equation, 
and later graph). She chose to have multiple groups present their solutions; therefore, the class saw 
three equations meant to capture the same relationship. The different equations presented a need for 
Abby to provide some closure to the idea. Students in Evelyn’s class did not create equations on their 
own, but they made different choices in how they labeled the first value. Evelyn chose to lead the 
WCD of creating the equation and opted to label the independent variable as most of the students did. 
Not all students saw how the equation might look different based on defining of the independent 
variable. 
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All three classes developed and filled in tables, initially, through applying repeated multiplication. 
To write the equation, Evelyn and Abby’s classes attended to the relationship between the x-value 
and the y-value or exponents of the expression of the corresponding y-value. Evelyn facilitated 
attention to this relationship by asking students to skip values in the table to find the y-value 
associated with a large x-value. Abby asked students to check to see if their equation was correct by 
paying attention to input-output correspondence in the tables.  

In Gabe’s class, it is unknown if and how students attended to the x-column of the table to 
determine the equation due to the nature of the tables presented. The values of x in the tables 
presented were equal to the number of multiplications. Referring to the x-column was not necessary 
since the rows of the table increased in ∆x values of one and the tables provided a row corresponding 
to x = 0. When Gabe asked students what the exponent of the equation should be and a student said, 
x¸ it was unclear if x referred to the corresponding input for an output in a single row of a table, if x 
was a generalization for counting the number of multiplications, or if the exponent was x due to prior 
knowledge that exponential equations have an x in the exponent.  

All three teachers included WCDs toward the end of the lessons providing general forms of the 
equations of exponential functions (or geometric sequences). Table 2 summarizes the language 
teachers used for these WCDs. Gabe provided his informal language tied to the process of finding the 
equations in the table.  Evelyn asked students to compare and notice similarities of the structures of 
the three equations generated. Students described the parameters using their own language which tied 
to the class’s previous mathematical activity. Using the explored domino sequence and equations as 
examples of the parameters to introduce vocabulary, Abby provided formal definitions of term, term 
number, and common ratio prior to introducing the general term. Abby’s generalizing discussion was 
the only one which described the exponent of the equation as a transformation of the independent 
variable. 

 
Table 2. Language and origin of language when defining a general exponential form. 

Gabe Evelyn Abby 
𝑦 = 𝑎𝑏!  

a: “a-riginal”, y-intercept, value at 
0 

b: What you’re multiplying by 
x: How many times you multiply 

𝑦 = 𝑎𝑏!  
a: starting value 

b: what you’re multiplying by 
each time period 

x: some sort of time period 
y: total amount of stuff 

𝑈! = 𝑈!𝑟!!! 
𝑈!: First term 

r: Common ratio 
n: Term number 
𝑈!: nth term 

Teacher-provided language Student provided language Teacher-provided language 

Discussion and Conclusions 
The enactivist lens prompted us to not only notice single ideas but the relationships and connections 

among utterances in the discourse which emerged from the nature of the mathematical activity in the 
room: the activity of creating equations to describe the data of the tables. While the structures of 
these lessons are similar, attending to connections among ideas as facilitated in the mathematical 
activity allowed us to notice if and how the thread of the role of the independent variable was integral 
to the activity. Viewing from an enactivist lens, the teachers’ knowing is seen from the mathematical 
worlds they facilitate to emerge in that context. 

Gabe provided tasks incorporating functions and representations of those functions where implicit 
minimal attention to the x-column or relationship between the x and y values was sufficient. Labeling 
the exponent as x worked for every equation. He presented the general forms of the equation in a way 
that aligned with the taught process which included simple procedures and easy-to-remember 
language. The mathematics of Gabe’s classroom was largely characterized by closed-form 
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mathematics, one-word responses, and narrow examples facilitating single ideas to emerge 
sequentially. We posit Gabe’s facilitated instruction prioritizing a mathematics that might be easy for 
students to replicate without error.  

Evelyn asked questions encouraging students to notice and test patterns (e.g., patterns in the 
relationship between the values of the independent variable and the exponent in the expression for 
the corresponding y-value). Connections made between ideas existed within the tables which were 
artifacts of the activity of the mathematical discourse. The inductive reasoning repeated at a higher 
level when the class compared the structures of the three generated equations and y=abx. The 
generalizations about exponential functions were tied to the idea of multiplying a starting value 
repeatedly to find a total rather than formalizing a relationship between the independent and 
dependent variable. Evelyn accepted the language and definitions offered by the students rather than 
providing formal language. Her decision-making prioritized students making and testing 
generalizations based on the inductive reasoning inspired by the collective mathematical activity.  

In Abby’s class, the attention to the relationship between the independent variable and the equation 
was grounded in the class practice of reconciling the multiple representations of the growing quantity 
(context, table, multiple versions of equations, and graphs). Prior to generating the general form of a 
geometric sequence, Abby provided vocabulary for the relevant parameters of the domino task which 
corresponded to finding the value of term n. Her decisions positioned students as doers of 
mathematics, enabling students to identify the pertinent mathematical concepts. The decisions 
positioned her to provide a shared formal language connecting the class’ mathematical activities of 
representing the domino task, making sense of others' representations, and making generalizations 
about properties of geometric sequences. 

We viewed teacher knowing through the decisions teachers make as they engaged in activity 
(including mathematical activity) with their students to promote the emergence of a mathematical 
world. Taking this lens freed us from concerning ourselves with the individual actions of the teacher 
and each student to notice the nature of the activity (pedagogical and mathematical) which seemed to 
facilitate the emergence and connections among ideas. This work suggests developing teachers as 
decision makers by engaging PSTs in considering and a deliberate analysis (Brown & Coles, 2011) 
of the mathematical worlds afforded by collections of teacher moves. 
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According to several studies, working with vectors is a problem for students from different 
educational levels. In this document we propose a Planeacion Didáctica Argumentada (PDA) to 
address the vector concept at  lower secondary school level, emphasizing its features (magnitude, 
direction and sense) such that, it facilitates the formalization of the mentioned concept in a 
mathematical context. After implementing the PDA, we evidence that with the right instruction, 
students can develop skills to work with vectors. After analyzing the results, is possible to establish 
some aspects that must be considered while teaching vectors, for example: the aspects of the teacher, 
students, curriculums and the previous physics and math necessary contents. 

Keywords: Teaching Activities and Practices, Interdisciplinary Studies. 

Introduction 
Vector is a mathematical object whose operation goes further than conventional numerical treatment 

(Zea, 2013); in Physics it can be characterized by displacement, speed, acceleration and force. 
Working with vectors in Physics at an early stage will allow students to develop skills and have a 
better understanding of the topic when they are working with a mathematical context later on. 
(Poynter &Tall, 2005). There are investigations that have focused on identifying difficulties when 
working with vectors (Knight, 1995; Nguyen & Meltzer, 2003; Flores et al., 2007; Flores et al., 2008; 
Mora, 2011; Barniol & Zavala, 2014 and Barrera et al., 2016); the common denominator of these 
investigations is that students have difficulties mainly with the concepts of scalar quantity and vector 
quantity, magnitude and direction of a vector, etc. Knight (1995) and Nguyen & Meltzer (2003) 
agree that students' misconceptions about vectors is the absence of a clear idea about vector. 
However, despite the fact that the most recurring difficulties of students are known and have been 
reported to occur at the basic level (Knight, 1995), didactic proposals do not specify how to work 
with the vector concept at the basic level and it is not known what could enable the formalization of 
this concept as a mathematical object. 

Consequently, the objective of this document was to design and implement a didactic proposal to 
address the notion of vector at  lower secondary school level, emphasizing its characteristics: 
magnitude, direction and sense. And due to the educational context, the Planeación Didáctica 
Argumentada (PDA) model was used as a methodology to achieve the objective. 

Method 
The actions that were carried out to during the research are described below. 

The curriculum 
The Natural Sciences curriculum of basic education in Mexico was consulted to know the lower 

secondary school topics related to vectors, as well as to find out if the curriculum suggests any 
specific treatment for this concept and with this, compile elements to include in the didactic proposal, 
such as: the curricular standards, the didactic approach, the competitions, etc. 

The results of the review indicated that the curriculum does not consider a specific topic on the 
vector concept, therefore no expected learning was found for this concept; however, it is stated that: 
"the student must be able to represent forces with vectors and add them by the parallelogram and 
polygon methods." 
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The textbooks 
The textbooks of the following authors were reviewed: Barragán (2013); Chamizo (2014); 

González, Lluis and Pita (2014) and Cuervo (2015), to see the characteristics of activities involving 
vectors. This information was taken as a starting point for the design of activities in the didactic 
proposal and, to take the aspects that the textbooks do not deepen and that are necessary to address 
vectors. 

We note that the vector concept is implicit in the topic of "motion" to represent displacements. In 
addition, in the topic of force, it is necessary to use vectors for the graphical representation and the 
graphical addition of forces. The revised textbooks lack of graphic examples and activities that 
promote vector learning, which is natural since the curriculum does not mention a particular type of 
work with the vector concept. We also note that different definitions of vector and the concept of 
direction are provided (based on the straight line that the vector contains, relative to a positive angle, 
and based on a reference angle). 
Conceptual aspects for research 

Through the reviewed literature, the fundamental concepts for studying vectors were identified, 
such as: magnitude, scalar magnitude, vector magnitude, vector, features of a vector (magnitude, 
direction and sense). These concepts were addressed in the activities of the didactic proposal. 

The definition of vector depends on the context in which is being worked, in this case it was used in 
the context of mechanics, since it is the one that fits the contents of the basic level textbooks 
reviewed. So: Vector is a quantity that has magnitude, direction and sense, according to Dávila and 
Pajón (2015). In addition, the arrow was used as a vector representation (Hibbeler, 2004). 
Planeación Didáctica Argumentada (PDA) 

In this research, the Planeación Didáctica Argumenta (PDA) was used as a methodology to design 
and implement the activities on the vector concept. The PDA enables students to learn content of 
their interest, and teachers allow them to review what has been done and what is achieved (Sánchez, 
2016). 

To design the PDA, the following elements were considered (Sánchez, 2016): internal and external 
context of the class, diagnosis of the class, preparation of the class plan (in three moments: 
beginning, development and closure), material resources, organization of the group, space, time, 
assessment and the argumentation of the planning (justification of the chosen teaching strategies). 

The elements mentioned above were organized in a planning format, which can be designed at the 
teacher´s discretion, provided that the essential characteristics of the PDA are considered. The 
following describes how the PDA was implemented. 

Description of the internal and external context. The PDA was implemented in a secondary 
school with an eighth grade group of 16 students (9 girls and 7 boys) between the ages of 13 and 14, 
during the 2016-2017 school period. The institution is located in Zumpango del Río, Guerrero, 
Mexico. 

Group diagnosis. At the time of the implementation of the PDA, the group examined was in the 
fourth school term and had no Physics teacher. Through an interview, a substitute teacher stated the 
existence of difficulties in mathematics, a lack of participation in class by students, and the fact of 
there had not been any work with vectors. 

Students´ previous knowledge. Evidence was found in class notes that students had worked with 
displacement, velocity, and acceleration, but there was no mention of the vector characteristics of 
these concepts. 

Class plan. Six activities were designed to be carried out in three phases: initiation, development 
and closure. In activities 3, 4 and 5, we worked with the graphic representation of vector, and in 
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activities 1, 2, 3 and 6 with the definition of vector. Prior to the implementation of the activities, we 
worked with angle measurement and the use of the protractor. The material resources, organization, 
space and time were proposed accordingly to the characteristics of each activity. 

To assess learning, a checklist with insufficient, sufficient and outstanding scales was used to 
determine the performance of the students based on the objectives of each activity. As an example, 
Activity 3 (“Jimena goes home and to school”) is presented below. A time of 90 minutes was 
proposed to solve this activity following 4 objectives: 

1. Establishing the graphical representation of vector quantities using arrows. Use the vector 
notation 𝑋. 

2. Applying the characteristics of a vector: magnitude (the distances that Jimena walks), 
direction (horizontal, vertical, inclined) and sense (up-down, left-right), based on the type of 
route Jimena takes. 

3. Defining the vector as a quantity that has magnitude, direction, and sense. 
4. Recognizing and express events around us that can be represented with vectors. 

Planning Argument. The activities involved contexts known by the students and in accordance 
with the curriculum guidelines; for their resolution, inexpensive and easily available materials were 
required. The scenarios were chosen according to the needs of each activity and in the spaces of the 
educational institution. Individual, team and group participation was encouraged in order to 
contribute ideas to formalize concepts. The checklist for the evaluation record allowed continuous 
observation of the progress of students in the development of tasks, actions, procedures, skills and 
attitudes. 

Results 
The analysis of results was carried out based on the suggested objectives for each activity and 

taking into account a scale to assess performance (insufficient, sufficient and outstanding). Below are 
some results of Activity 3. 

 
Figure 1: Student result who drew curves instead vectors. 

 
The students managed to describe Jimena's route in words, considering the distance (magnitude), 

direction and sense; however, they did not discern that Jimena walked twice in the same direction but 
in a different route. Five students correctly used an arrow (vector) to represent the route, while two 
others drew "curves" instead of vectors (Figure 1). 

To express the features of the distance traveled by Jimena, two students mistakenly determined the 
direction as “inclined” of some vectors and the sense as “lying down” instead of referring to “left or 
right”. Three students correctly determined the magnitude, direction and sense of the vectors (see 
Figure 2). 
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Figure 2: Student who obtained outstanding performance in determining the characteristics of a 

vector. 
 

To achieve the formalization of the definition of vector, first, we mention that examples of everyday 
situations can be represented with vectors. Later, with the teacher's guidance, the vector concept was 
defined, and its features were also defined (Figure 3).  

 

 
Figure 3: Student evidence in relation to the definition of vector and description of its features. 

Conclusions 
The reviewed literature made it possible to know aspects that students require to be able to work 

with vectors, know strategies that have been implemented and the possible difficulties that they may 
face. 

The implementation of the PDA allowed us to reflect on the role of the teacher, since the fact of 
designing a class plan requires constant precision and adjustments in their practice, as well as 
identifying opportunities for improvement. In particular, this work made possible to make 
connections between Physics, Mathematics and everyday life. 

This document suggests developing topics that are easier for students prior to working with vectors, 
involving different representations or contexts in the same topics, as we believe that those will allow 
us to know in more detail the learning styles of students. We propose, for the assessment, to 
implement the use of an evidence portfolio, in addition to the checklist, so that the student takes into 
account all the activities. 
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UNA EXPERIENCIA DE CLASE: CONCEPTO VECTOR 

De acuerdo con varios estudios, trabajar con vectores es un problema para estudiantes de diferentes 
niveles educativos. En este documento proponemos una Planeación Didáctica Argumentada (PDA) 
para abordar el concepto vector en el nivel secundario, enfatizando sus características (magnitud, 
dirección y sentido) de tal manera que, se facilite la formalización del mencionado concepto en un 
contexto matemático. Luego de implementar la PDA, evidenciamos que con la instrucción adecuada, 
los estudiantes pueden desarrollar habilidades para trabajar con vectores. Luego de analizar los 
resultados, es posible establecer algunos aspectos que deben ser considerados en la enseñanza de 
vectores, por ejemplo: los aspectos del profesor, estudiantes, plan de estudios y los conocimientos 
previos de física y matemática necesarios. 

Palabras clave: Actividades y prácticas docentes, Estudios interdisciplinarios. 

Introducción 
El vector es un objeto matemático cuyo operatividad va más allá de todo tratamiento numérico 

convencional (Zea, 2013), en Física se puede caracterizar en desplazamiento, velocidad, aceleración 
y fuerza. Trabajar con vectores en Física en una etapa temprana permitirá a los estudiantes 
desarrollar habilidades y tener una mejor comprensión del tema cuando posteriormente trabajen en 
un contexto matemático. (Poynter yTall, 2005). Existen investigaciones que se han centrado en 
identificar las dificultades al trabajar con vectores (Knight, 1995; Nguyen y Meltzer, 2003; Flores et 
al., 2007; Flores et al., 2008; Mora, 2011; Barniol y Zavala, 2014 y Barrera et al., 2016), el común 
denominador de estas investigaciones es que los estudiantes tienen dificultades principalmente en los 
conceptos de cantidad escalar y cantidad vectorial, magnitud y dirección de un vector, etc. Knight 
(1995) y Nguyen y Meltzer (2003) coinciden en  los estudiantes no tienen una idea clara sobre 
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vector. Sin embargo, a pesar de que se conocen las dificultades más recurrentes de los estudiantes y 
que se ha informado que estas ocurren en el nivel básico (Knight, 1995), no se ha especificado en 
propuestas didácticas cómo trabajar con el concepto vector en el nivel básico, lo que podría 
posibilitar la formalización de este concepto como objeto matemático. 

En consecuencia, el objetivo de este documento fue diseñar e implementar una propuesta didáctica 
para abordar la noción de vector en el nivel secundaria, destacando sus características: magnitud, 
dirección y sentido. Y debido al contexto educativo, se utilizó el modelo de Planeación Didáctica 
Argumentada (PDA) como metodología para lograr el objetivo. 

Método 
Las acciones que se llevaron a cabo durante la investigación se describen a continuación. 

El Plan de Estudios 
Se consultó el Plan de Estudios de Ciencias Naturales de educación básica en México para conocer 

los temas relacionados con vectores señalados en el nivel secundaria, así como conocer si el plan de 
estudios sugiere algún tratamiento específico para el concepto vector y con ello, recopilar elementos 
a incluir en la propuesta didáctica, tales como: los estándares curriculares, el enfoque didáctico, las 
competencias, etc. 

Los resultados de la revisión indicaron que el plan de estudios no considera un tema específico 
sobre el concepto vector, por lo que no se encontraron aprendizajes esperados sobre este concepto, 
sin embargo, se afirma que: "el alumno debe ser capaz de representar fuerzas con vectores y sumarlos 
por los métodos del paralelogramo y del polígono ". 
Los libros de texto 

Se revisaron los libros de texto de los siguientes autores: Barragán (2013); Chamizo (2014); 
González, Lluis y Pita (2014) y Cuervo (2015), para conocer las características de las actividades que 
involucran vectores. Esta información se tomó como punto de partida para el diseño de actividades 
en la propuesta didáctica y, para tomar los aspectos que los libros de texto no profundizan y que son 
necesarios para abordar el concepto de vector. 

Observamos que el concepto de vector está implícito en el tema del "movimiento" para representar 
los desplazamientos. Además, en el tema de la fuerza, es necesario utilizar vectores para la 
representación gráfica y la suma gráfica de fuerzas. Los libros de texto revisados carecen de ejemplos 
gráficos y actividades que promuevan el aprendizaje de vectores, lo cual es natural ya que el plan de 
estudios no menciona un tipo particular de trabajo con el concepto de vector. También observamos 
que se proporcionan diferentes definiciones de vector y el concepto de dirección (basadas en la línea 
recta que contiene el vector, en relación con un ángulo positivo y con base a un ángulo de 
referencia). 
Aspectos conceptuales de la investigación 

A través de la literatura revisada, se identificaron los conceptos fundamentales para el estudio de 
vectores, tales como: magnitud, magnitud escalar, magnitud vectorial, vector, características de un 
vector (magnitud, dirección y sentido). Estos conceptos fueron abordados en las actividades de la 
propuesta didáctica. 

La definición de vector depende del contexto en el que se esté trabajando, en este caso se utilizó en 
el contexto de la mecánica, ya que es el que se ajusta a los contenidos de los libros de texto de nivel 
básico revisados. Entonces: Vector es una cantidad que tiene magnitud, dirección y sentido, según 
Dávila y Pajón (2015). Además, se usó la flecha como representación gráfica de vector (Hibbeler, 
2004). 
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Planeación Didáctica Argumentada (PDA) 
En esta investigación se utilizó la Planeación Didáctica Argumenta (PDA) como metodología para 

diseñar e implementar las actividades sobre el concepto vector. La PDA permite a los estudiantes 
aprender contenidos de su interés, y a los profesores les permiten revisar lo hecho y lo logrado 
(Sánchez, 2016). 

Para diseñar la PDA se consideraron los siguientes elementos (Sánchez, 2016): contexto interno y 
externo de la clase, diagnóstico del grupo, elaboración del plan de clase (en tres momentos: inicio, 
desarrollo y cierre), recursos materiales, organización del grupo, espacio, tiempo, evaluación y la 
argumentación de la planeación (justificación de las estrategias docentes elegidas). 

Los elementos mencionados anteriormente se organizaron en un formato de planeación, que puede 
diseñarse a criterio del profesor, siempre que se consideren las características esenciales de la PDA. 
A continuación se describe cómo se implementó la PDA. 

Descripción del contexto interno y externo. La PDA se implementó en una escuela secundaria 
con un grupo de octavo grado de 16 alumnos (9 mujeres y 7 hombres) de entre 13 y 14 años, durante 
el período escolar 2016-2017. La institución está ubicada en Zumpango del Río, Guerrero, México. 

Diagnóstico del grupo. En el momento de la aplicación de la PDA, el grupo examinado estaba en 
el cuarto bimestre del período escolar y no contaba con profesor de Física. A través de una entrevista, 
un profesor suplente manifestó la existencia de dificultades en matemáticas, la falta de participación 
de los estudiantes en clase y el hecho de no haber trabajado con vectores. 

Conocimientos previos de los estudiantes. En las notas de clase se encontró evidencia de que los 
estudiantes habían trabajado con desplazamiento, velocidad y aceleración, pero no se mencionaron 
las características vectoriales de estos conceptos. 

Plan de clase. Se diseñaron seis actividades para ser desarrolladas en tres fases: inicio, desarrollo y 
cierre. En las actividades 3, 4 y 5 se trabajó con la representación gráfica de vector, y en las 
actividades 1, 2, 3 y 6 con la definición de vector. Previo a la implementación de las actividades, 
trabajamos con la medición de ángulos y el uso del transportador. Los recursos materiales, la 
organización, el espacio y el tiempo se propusieron de acuerdo con las características de cada 
actividad. 

Para evaluar los aprendizajes se utilizó una lista de cotejo con escalas insuficientes, suficientes y 
sobresalientes para determinar el desempeño de los estudiantes en función de los objetivos de cada 
actividad. A modo de ejemplo, a continuación se presenta la Actividad 3 (“Jimena se va a casa y a la 
escuela”). Se propuso un tiempo de 90 minutos para resolver esta actividad siguiendo 4 objetivos: 

1. Establecer la representación gráfica de cantidades vectoriales mediante flechas. Usar la 
notación de vector 𝑋 . 

2. Aplicar las características de un vector: magnitud (las distancias que recorre Jimena), 
dirección (horizontal, vertical, inclinada) y sentido (arriba-abajo, izquierda-derecha), según el 
tipo de ruta que tome Jimena. 

3. Definir vector como una cantidad que tiene magnitud, dirección y sentido. 
4. Reconocer y expresar eventos que nos rodean que puedan representarse con vectores. 

Argumentación de la planeación. Las actividades involucraron contextos conocidos por los 
estudiantes y de acuerdo con lo establecido en el plan de estudios, para su solución se requirieron 
materiales económicos y de fácil acceso. Los escenarios fueron elegidos de acuerdo a las necesidades 
de cada actividad y en los espacios de la institución educativa. Se incentivó la participación 
individual, en equipo y grupal con el fin de aportar ideas para formalizar conceptos. La lista de cotejo 
para el registro de evaluación permitió la observación continua del progreso de los estudiantes en el 
desarrollo de tareas, acciones, procedimientos, habilidades y actitudes. 
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Resultados 
El análisis de resultados se realizó con base a los objetivos propuestos para cada actividad y 

teniendo en cuenta una escala para evaluar el desempeño (insuficiente, suficiente y destacado). A 
continuación se muestran algunos resultados de la Actividad 3. 

 

 
Figura 1: Los estudiantes dibujaron curvas en lugar de vectores. 

 
Los estudiantes lograron describir en palabras la ruta de Jimena, considerando la distancia 

(magnitud), dirección y sentido, sin embargo, no distinguieron que Jimena caminó dos veces en la 
misma dirección pero en una ruta diferente. Cinco estudiantes utilizaron correctamente una flecha 
(vector) para representar la ruta, mientras que otros dos dibujaron "curvas" en lugar de vectores 
(Figura 1). 

Al expresar las carcaterísticas de la distancia recorrida por Jimena, dos estudiantes determinaron 
erróneamente la dirección como “inclinada” de algunos vectores y el sentido como “acostado” en 
lugar de referirse a “izquierda o derecha”. Tres estudiantes determinaron correctamente la magnitud, 
la dirección y el sentido de los vectores (ver Figura 2). 

 
Figura 2: Estudiantes que obtuvieron desempeño destacado al determinar las características de un 

vector (actividad 3). 
 

Para lograr la formalización de la definición de vector, primero se mencionaron ejemplos de 
situaciones cotidianas se pueden representar con vectores. Posteriormente, con la orientación del 
docente, se definió el concepto de vector y también se definieron sus características (Figura 3). 
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Figura 3: Producción de un estudiante en relación a la definición de vector y la descripción de sus 

características. 

Conclusiones 
La literatura revisada permitió conocer aspectos que requieren los estudiantes para poder trabajar 

con vectores, conocer las estrategias que se han implementado y las posibles dificultades que pueden 
enfrentar. 

La implementación del PDA nos permitió reflexionar sobre el rol del docente, ya que el hecho de 
diseñar un plan de clase requiere precisión y ajustes constantes en su práctica, así como identificar 
oportunidades de mejora. En particular, este trabajo permitió establecer conexiones entre Física, 
Matemáticas y la vida cotidiana. 

Este documento sugiere desarrollar temas que sean más fáciles para los estudiantes antes de trabajar 
con vectores, así como involucrar diferentes representaciones o contextos en los mismos temas, ya 
que creemos que lo anterior nos permitirá conocer con mayor detalle los estilos de aprendizaje de los 
estudiantes. Proponemos, para la evaluación, implementar el uso del portafolio de evidencias además 
de la lista de cotejo, con la finalidad  que el alumno tenga en cuenta el total de actividades. 
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In this paper, we aim to explore how prospective elementary mathematics teachers (PMTs) learn to 
teach mathematics through their engagement in a pedagogically informative Making experience. 
Grounded in a commognitive perspective, we define learning to teach mathematics as changes in any 
of these four discourse activities: mathematizing and identifying (Heyd-Metzuyanim & Sfard, 2012), 
in addition to pedagogy and designing. We present our analysis of one PMT's discourse activity, 
exposing Making as an effective venue for provoking all four discourses and revealing their 
intertwined nature, further illustrating that one’s identity is as central to learning to teach 
mathematics as is their learning of mathematics, pedagogy, and design. We conclude with a 
discussion of the implications of these findings for the research and practice of teacher education. 

Keywords: Teacher Knowledge; Teacher Education - Preservice; Affect, Emotion, Beliefs, and 
Attitudes; Technology 

Teacher knowledge literature continues to evolve, with recent conceptualizations building on 
previous characterizations of distinctive knowledge domains in order to promote a wider focus on 
their integration (Scheiner, Montes, Godino, Carrillo, & Pino-Fan, 2019). In the current study, we 
adopt this perspective by viewing teachers as learners and foregrounding their identities (Sfard & 
Prusak, 2005) in order to recognize what affective, interpersonal, and social matters can bring to this 
conversation. That is, by honoring the interrelationship between the learning of mathematics and the 
learners themselves, we hope to move beyond the “static, explicit and objective” (Scheiner, et al. 
2019, p. 161) outlooks on knowledge to recognize the blended nature of knowing (Scheiner, 2015). 
And because our teachers are designing manipulatives to share with children with the intention of 
promoting their mathematical learning, the promise of this approach is suggested by the proposition 
that teachers’ “invention[s] of ‘objects-to-think-with’... [offer] the possibility for personal 
identification” (Papert, 1980, p. 11). 

Adopting a communicational perspective on learning (Sfard, 2008), our objective is to explore the 
premise that learning to teach mathematics can be seen as changes in discursive activities that include 
narratives about mathematics and identity. The following question guides this research: As practicing 
and prospective elementary mathematics teachers Make new manipulatives and corresponding tasks 
to support the teaching and learning of mathematics, what might their discourses reveal about the 
epistemology of learning to teach mathematics?  

Theoretical Framework 
Our theoretical framing is organized around the learning theories of commognition and 

constructionism. Commognition encompasses both interpersonal “communication” and individual 
“cognition” (Sfard, 2007, p. 570). Discourse, with its affective and social aspects, is central to 
commognition, and learning is seen through changes in discourse (Heyd-Metzuyanim & Sfard, 
2012). The constructionist perspective adds a dimension of participation in a discourse community 
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with a view toward the learning that can happen during the process of making a shareable object 
(Harel & Papert, 1991). 

Heyd-Metzuyanim & Sfard (2012) take a commognitive perspective to frame mathematics learning 
as the interplay between talking about mathematical objects (mathematizing) and talking about 
participants of the discourse (identifying). Sfard (2008) defines discourse as “a special type of 
communication made distinct by its repertoire of admissible actions and the way these actions are 
paired with (re-)actions” (p. 297). Discourse can include speech, gestures, and visual mediators (e.g., 
graphs, symbols, manipulatives) (Sfard, 2008).  From there, identity is viewed as a collection of 
“narratives about individuals that are reifying, endorsable, and significant” (Sfard and Prusak, 2015, 
p. 16), and identity discourse is viewed as integral to the learning of mathematics [see also Graven & 
Heyd-Metzuyanim (2019)]. We supplement mathematizing and identifying with two additional forms 
of discourse that also may be relevant to the learning of mathematics: pedagogy (narratives about 
teaching and learning) and designing (narratives about design decisions). Thus, this framework 
provides us with a lens through which to study how the process of making a manipulative can 
provoke the four discourse activities of mathematics, pedagogy, design and identity, and help us to 
see the intertwined nature of a teacher’s learning. 

Methodology 
This project is part of a larger study that aims to test and refine the hypothesis that a pedagogically 

genuine, open-ended, and iterative design experience centered on the Making and sharing of a 
physical manipulative for mathematics learning would be formative for the development of 
practicing and prospective elementary mathematics teachers’ (PMTs’) inquiry-oriented pedagogy. 
That study took place in the spring of 2019 in a graduate-level mathematics course for PMTs at a 
mid-sized university in the northeastern United States. Thirteen participating students comprised ten 
groups (yielding ten projects). The PMTs were tasked with designing and 3D printing a manipulative 
that would be shared with a child to support their meaningful learning of mathematics. Written 
assignments provided autobiographical information of the PMTs’ experiences as mathematics 
students, as well as reflections on clinical interviews they conducted throughout the semester. 
Snapshots of the PMTs designs in progress are included in the data, as are the physical “printouts” of 
their manipulatives and video recordings of the course’s design sessions. 

For this project, we took an exploratory case study approach (Yin, 2009) that focuses on “Moira,” a 
PMT whose initial design was a tool intended to simulate the “keep change flip” algorithm for 
fraction division. She thought this tool would make fraction division meaningful by providing a 
concrete representation in which a child could physically “keep” the dividend, “change” the division 
symbol, and “flip” the divisor. However, the course’s teacher educator pushed back on Moira’s idea 
by asking her, “When dividing fractions, why do you flip the second fraction and multiply?” In re-
action to this prompt, Moira becomes intent on figuring out “why we flip the second,” a move that 
signals a change in her mathematical discourse.  In a subsequent session, we noticed that she deviates 
from this intention, opting instead for a new fraction tool design that could support meaningful 
comparisons of fractions with a broader age-range of students. Effectively, her new design takes 
familiar fraction strips and connects them end to end to turn them into eight partitioned rings that can 
be stacked vertically on a cylindrical pedestal. 

We chose Moira as an exploratory case because the change in her mathematical discourse 
constitutes learning, but we also sought to understand this learning through the lenses of the other 
discourses. Accordingly, we invited her back after the course ended for a voluntary, follow-up, semi-
structured and task-based interview (Ginsburg, 1997). In addition to helping us understand Moira’s 
rationale for abandoning her earlier fraction division design, we viewed the manipulative she had 
made for fraction comparison as an instance of her design discourse and sought to use it to assess her 
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understanding of fraction division. This interview was video-recorded and added to the corpus of 
Moira’s data, along with written artifacts from the interview. That data was then analyzed through 
the conceptual lenses of the four discourse activities: identifying, mathematizing, pedagogy, and 
designing. 

Results 
In this section, we present two central results from the follow-up interview. The first result concerns 

Moira’s decision to change her tool design, and our analysis of this choice through the discourses of 
mathematizing [M], Pedagogy [P], Designing [D], and Identifying [I]. Moira reflects, “I wanted to 
make something that could be interpreted in many different ways [M/P/D], that wasn’t something 
that I was just forcing them to, like, all right, you have to use it this way. I wanted it to be able to be 
manipulated [M/P/D/I].” As she considers her initial “keep, change, flip” tool, she articulates, “You 
basically were just, like, flipping the fraction upside down in my initial tool and ... it was just not 
useful [M/P/D] ... So I decided to switch to comparing fractions and then I came up with this 
[fraction comparison tool] [M/D/I].” 

These reflections reveal how Moira’s initial decision to abandon her fraction division design is not 
just about mathematizing, but also about identifying: as a teacher, it is important to her that her 
students have the opportunity to develop their own ways of thinking about fractions with a tool that 
can be used in a variety of ways. Moira acknowledged that the pedagogy promoted by the instructor 
in the classroom was also part of her decision to change her design:  

Moira: Well, [the change of design] was because we were talking and you [the teacher educator] said, 
“you’re just teaching them how to – you’re just giving them a way to solve the problem.” And I 
realized, you’re right ... It wasn’t helping them learn how to do a problem [M/P/D/I]. 

By switching to a design for comparing fractions, Moira can participate in the discourse endorsed in 
the teacher education classroom and honor the teacher she wants to be. 

A second result related to Moira’s learning emerges from the interviewers’ awareness that her 
current tool could be used to make sense of fraction division and a question about whether Moira 
realizes this capability in her tool. The interviewers ask her about this possibility, prompting Moira’s 
in-the-moment reflections: “½ divided by 2. ½, this divides it into two equal parts, and I know this 
equals fourths, so this is ¼” [M/I]. Then, in investigating 1 divided by 1/3, Moira takes the 1 and 1/3 
ring, guesses the answer is 3, and says, “I know I can do it, and I’m seeing it, but I don’t know how 
to describe it” [M/I]. Moira is using her tool to make sense of this problem when the interviewers 
prompt her to explain whole number division (e.g., 6 divided by 3). As Moira reasons through whole 
number examples [M], she exclaims, “Oh! So, so, if I am dividing 1 by ⅓, there are three thirds in 1, 
so it’s 3! Yes! You can do division with these … Wow! Fractions make so much sense now” [M/I].  

Although Moira’s reflections on the ½ and (later) ⅓ examples seem the same, the shift from her use 
of a partitive conception of division to a measurement one gives her sought-after language to 
“describe” her tool’s utility in her understanding of fraction division. Moira’s mathematical 
discovery is intertwined with an expression that reveals how emotionally invested she is in this 
realization. The moment culminates in self-reflection: “Honestly, I’m so impressed with myself [I]. I 
did not think that it had this capability. I thought it was only for comparing fractions [M/P/D/I].  So 
we’ve learned something today, haven’t we all…” [I].  

As she uses her tool to think through fraction ideas [M], Moira comes to recognize its potential not 
only for her own learning, but also for teaching fraction division in a way that aligns with her identity 
as a teacher [P/I]. Moira’s body language and energy substantiate her enthusiasm for this discovery. 
Finally, the whole experience leads her to identify herself as part of a community of learners who can 
struggle and reason as part of a sense-making process. 
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Conclusion and Implications 
As in a woven tapestry, learning to teach mathematics weaves together four threads or discourses 

that are unique to a PMT’s discursive experiences and particular to a learning community where 
inquiry pedagogy is promoted. In this sense, to characterize Moira’s learning to teach mathematics as 
a complex structure of discursive activities interwoven in dialectical unity is to illuminate the 
brilliance of a tapestry threaded by what she wants to teach (mathematizing), how she wants to teach 
it (pedagogy), decisions about what resources to make available (designing), and the kind of teacher 
she wants to be (identifying). Zooming in on that tapestry might provide a view on a single thread of 
Moira’s understanding of fraction division, but focusing on a single thread obscures the others with 
which it is interwoven. Collectively, these threads contribute to a more intellectually honest depiction 
of the “organic whole” (Scheiner, 2019, p. 165) that is learning to teach mathematics.  

This project set out to explore the proposition that learning to teach mathematics can be credibly 
conceived as changes in mathematizing, identifying, pedagogy, and designing discourses. Our 
analysis of data related to Moira’s experiences making a physical manipulative for sharing with a 
child reveals how her experiences provoked all four discursive activities, and revealed the 
intertwined nature of these discourses. This finding resonates with a view of mathematics teacher 
learning that emphasizes the blending and transformation of constituent knowledge domains into 
emergent knowing. It also resonates with an acknowledgment of the complex dynamics of 
mathematics teacher knowledge in action (Scheiner, 2019). 

Our study also establishes that identity is as central to learning to teach mathematics as is the 
learning of mathematics, pedagogy, and design. The ensuing changes of discourse have revealed that 
although sometimes viewed as distinct, teacher learning domains are inherently connected to a 
PMT’s identity. In light of research by Pratt and Noss (2010), its centrality can be understood in the 
context of a design project carried out in a Maker community where PMTs were engaged in creative 
activity, leveraging their personal experiences and invoking personal design decisions, reflections, 
and articulations. All in all, implications of this finding speak to the potential of interdisciplinary 
experiences like the design experience as venues for the meaningful learning of learning to teach 
mathematics within teacher preparation coursework. 
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Even though mathematical reasoning [MR] is at the heart of several elementary curricula around the 
world, very little is known about the meanings given to MR by teachers. In this paper, adopting a 
commognitive perspective (Sfard, 2008), we aim at better understanding the different meanings 
teachers give to MR. To do so, we used the Mathematical Discourse for Teaching framework 
(Cooper and Karsenty, 2018) to analyze elementary teachers’ discourse about MR. Through 
individual and collective interviews, we gathered the data. We coded the data by first highlighting 
the vocabulary used to give meaning to mathematical reasoning by the teachers and, secondly, by 
identifying the utterances linked to their Mathematical Discourse for Teaching. Analyses revealed 
that elementary school teachers’ discourse about MR is coherent with the prescribed curriculum. 

Keywords: Teacher knowledge, Elementary School Education, Reasoning and Proof, Mathematical 
Knowledge for teaching. 

This paper presents an analysis of teachers’ discourse about mathematical reasoning [MR]. The MR 
is at the heart of several curricula around the world. In Quebec, where this project takes place, it is 
one of the three competencies of the elementary and secondary school curriculum (MEQ, 2001)1. 
According to Loong, Vale, Bragg and Herbert (2013), primary school teachers feel confused or 
uncertain about the task of defining Mr. Likewise, the meanings given to MR could play an 
important role in how teachers approach it in class (Stylianides and Ball, 2008). Taking a 
commognitive perspective, we aim at describing the discourse about MR of elementary teachers. In 
doing so, we want to better understand how MR can be fostered in classrooms from the teacher 
perspective. 

What do we know about Mathematical Reasoning discourse at elementary level? 
Despite a growing interest in MR and teachers’ practices, very little is known about the meanings 

given to MR by teachers as well as how they promote its development in the classroom. Clarke, 
Clarke and Sullivan (2012) asked 104 elementary school teachers which MR related terms, from a 
given list, they frequently used in math class. Only four terms—explaining, justifying, proving and 
reasoning—were chosen by more than 50% of the teachers. To evaluate a professional development 
[PD] that aims at fostering MR in elementary classrooms, Herbert, Vale, Bragg, Loong and Widjaja 
(2015) explore the different meanings given to MR by teachers from Australia and Canada 
(Vancouver) involved in the PD. Their analysis highlights seven meaning categories that elementary 
teachers may attribute to MR: 1) thinking; 2) communicating; 3) solving problems; 4) validating 
thinking; 5) forming conjecture, 6) using logical arguments for validating conjectures; and, 7) 
connecting different mathematical aspects. Those categories emerged from the discourse developed 
during the PD. However, what about terms used and meaning given by teachers who never 
participate in this kind of PD? This study aims at investigating this question. 

                                                             
1 The three competencies are 1) to solve a situational problem related to mathematics, 2) to reason using 
mathematical concepts and processes and 3) to communicate by using mathematical language. 
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Mathematical Discourse for Teaching 
From a commognitive perspective, cognition and communication are two aspects of the same 

ontology, i.e. discourse. Discourses are constituted of keywords, visual mediators, rules of discourse, 
routines and generally endorsed utterances (Sfard, 2008). Knowledge and practices are two aspects of 
the discourse associated with the teaching of mathematics (Cooper and Karsenty, 2018). So, in the 
same way, the investigation of the meaning that mathematical reasoning can take in elementary 
school can be done by considering the teachers’ discourse, rooted in practice. 

Cooper (2014) reformulated the Mathematical Knowledge for Teaching framework of Ball et al. 
(2008) from a commognitive perspective: Mathematical Discourse for Teaching [MDT]. As the 
MKT framework, the MDT framework is divided into two types of discourse: Mathematical 
discourse and pedagogical discourse. Mathematical discourse [MD] consists of common content 
discourse (the mathematical discourse that is common to a large portion of educated society), 
specialized content discourse (mathematical discourse that is typical of teachers of mathematics) and 
discourse at the mathematical horizon (patterns of mathematical communication that are appropriate 
in higher grade levels). Pedagogical content discourse [PCD] consists of discourse about content and 
teaching, discourse about content and students and discourse about the curriculum and resources. 

Adopting this framework, we can reformulate our aims as: What are the keywords, visual 
mediators, rules, routines and generally endorsed utterances that constitute MDT of elementary 
teachers in relation to MR? 

Some methodological insights 
The data used in this paper came from a larger project that aims to document how MR is defined 

and fostered by elementary and secondary teachers. Six elementary teachers with 2 to 16 years of 
experience participated in one 60 minutes individual interview (Pseudonymes: Martine, Gisèle, 
Aurélie, Jeanne, Alice, Agathe). Five of them participated in a 120 minutes collective interview. All 
interviews were video or audio recorded. 

Three different moments constituted the individual interview. First, the interviewer asked the 
participant to recall a moment of her teaching or to present a task that she gives her students in which 
MR would be promoted. This allowed us to stay in an area known to the participant. Furthermore, it 
informed about the learning environment that teachers considered favourable to the development of 
MR. Then, two examples of tasks including one with a student’s solution were presented to the 
participant. The participant was then invited to decide on the possibility for a student solving these 
tasks to develop MR or not and to justify their answer. If the answer was positive, she was asked to 
describe the possible reasoning processes in their own words. Finally, to close the meeting, the 
participant was invited to give in a few sentences her definition of MR. 

The collective interview sought to encourage exchanges between practitioners around MR so as to 
bring out the discursive elements shared by them. The first part of the interview aimed at defining 
MR. The interview therefore began with the question that had ended the individual interview: “How 
do you define mathematical reasoning in a few words or sentences?” This was followed by an 
activity where participants constructed a conceptual map with vocabulary words widely used to 
define MR during individual interviews or in the literature. The second part of the interview was to 
see how the teachers could reinvest the conceptual map to comment on students’ written work. 
Finally, the group interview ended once again by offering each participant the opportunity to add 
something related to their definition of MR. 

In order to analyze the data, the videos and audiotapes were viewed/listened to repeatedly, and 
transcribed (Powell, Franscisco & Maher, 2003). Using Nvivo software, a first layer of coding made 
it possible to highlight the keywords used to give meaning to MR by the teachers. A second layer of 
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coding made it possible to identify what seem as endorsed utterances linked to MDT for this group of 
teachers. By focusing mainly on keywords and endorsed utterances, discourse about the curriculum 
and resources [DCR] was particularly highlighted by the analysis. 

Mathematical Discourse for Teaching and Mathematical Reasoning 
When asked specifically to define MR, teachers use different keywords that seem to come from a 

common discourse about MR. For example, MR is linked to logic and argumentation, which are two 
words used to define reasoning in general dictionaries. But other keywords are more specific. For 
Martine, MR is to communicate and understand why. Similarly, Aurelie defines MR as explaining 
why. For Agathe it is also to communicate but to explain how. Gisele refers to MR as applying 
concepts and explaining what you have done. Alice used the metaphor of the toolbox. For her, MR is 
knowing when to use your toolbox, justifying and identifying and extrapolating patterns. Jeanne 
refers to organizing, thinking and making sense. 

In relation to the PCD of the participants, generally endorsed utterances are usually embedded in 
DCR. Here are two illustrative examples. 
Analyzing, making choices, applying, justifying and Mathematical Reasoning 

In the teachers’ discourse, analyzing, making choices, applying and justifying are important aspects 
of MR. Most teachers refer to those terms and they usually do so specifically by referring to the 
evaluation grid provided by school boards and based on MELS (2011) document. 

Aurelie: it’s the evaluation criteria. 30 points for the analysis, 50 points for applying it … The last 
evaluation criterion is justifying, with 20 points.  

Gisele: Once I understand, I have analyzed the problem, then I have to make choices in what I know 
and what I think that will help me to reason with it. 

This grid also renders MR processes a linear structure in the teachers’ discourse as illustrated by 
Gisele's utterance above. Moreover, it is possible to draw a parallel between the grid and Pólya’s 
problem-solving model: 1) understand the problem that is similar to analyzing; 2) develop a plan or 
make choices; 3) implement the plan or apply; and finally, 4) verify or justify. This is what Agathe 
feels in connection with MR: 

Agathe: Listen… I have the impression that reasoning with MR, well, this is the old one … this is the 
old problem solving from 15 or 20 years ago. 

The criteria for assessing MR competency therefore play an important role in the discourse on MR. 
This role contributes to blurring the discourse on problem solving and MR. 
Problem Solving and Mathematical Reasoning 

In addition to being used as a quasi-synonym for MR, problem solving takes three other meanings 
for the teachers. First, it’s a pedagogical method that can foster MR. Second, it’s a competency 
evaluated with a particular type of task. Third, it’s the type of task that evaluates problem solving. 
Those last two meanings are embedded as for both, problem solving is seen as more global and 
complex than MR. 

Alice: Well, that’s why it’s interesting to teach with problems too. So, not to make problems after the 
concepts, to bring the concepts with the problems. 

Martine: Well, the link I do between solving and reasoning is that… In fact, well, a situation to learn 
and evaluate, it should be complex. So, for sure, every child can have a different answer. Then, he 
[the child] uses the concepts uh that we include in reasoning [competency] because there is a need 
and then goes and solves it. So, I think reasoning is like a prior to solving [competency] because 
it is part of knowledge. 
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We can link those elements of discourse to the type of tasks used by teachers to evaluate each 
competency. Both types of task, namely situational problem and problem using application (MEQ, 
2001), have different characteristics. The wording of the former is longer, includes a context, many 
steps to do, many concepts and processes to use and, as the students have to make choices in the data 
in order to solve the task, many solutions are possible (Lajoie & Bednarz, 2012). The wording of the 
latter is usually shorter, with one or two steps and the students have to choose the concepts and 
processes needed to solve it. 

Discussion and Conclusion 
Similarly to Herbert et al. (2015), the meanings given to MR by those 6 elementary teachers are 

broad and manifold. Likewise, as shown by the partial analysis presented, those meanings are tied to 
and somehow limited by teachers’ DCR. In fact, the discourse found in the Quebec curriculum 
(MEQ, 2001), just like the one in math education literature, is also quite blurry (author, year). As MR 
is a competency which must be assessed with a specific grid and so-called problem using application 
task, this grid greatly colours their whole discourse. However, the evaluation criteria seem to favour 
a linear vision of the MR activity. Although questioned by the teachers, this linear vision of MR 
conveyed by the grid could limit learning opportunities for students as it gives the impression that 
MR is a series of steps to follow. Moreover, the criteria make it difficult for teachers to differentiate 
problem solving competency from MR otherwise than by the type of task used. 

Like the discourse in the mathematics education community, the discourse of teachers is formed 
from a set of discourses related to different fields: educational institutions, psychology, pedagogy, 
mathematics education. These discourses are sometimes incommensurable. Thus, as they point out, 
enriching and clarifying the vocabulary related to the MR, whether in the curriculum or in training 
could, among other things, open up new possibilities for developing it in the classroom: 

Agathe: But that proves that we have to have a common language… We teach mathematics 
differently depending on our understanding. 
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We worked to identify how the availability of two languages, Spanish and English, facilitates the 
teaching of mathematics when students' mathematical thinking forms the basis of instruction. To this 
end we studied seven teachers in training, one expert teacher and seven bilingual elementary 
students working on learning and teaching fractions. Using a theoretical framework focused on the 
use of one-on-one interviews, translanguaging and responsive teaching, we identified two aspects of 
language in the teaching of mathematics in the bilingual classroom: (1) Language is a hidden 
resource that bilingual teachers possess and (2) the maintenance and furthering of linguistic abilities 
should not be isolated from the teaching of mathematics. We argue that these two aspects are 
situated and integrated into the practice of teaching and in this way should be part of the preparation 
of bilingual teachers. 

Key Words: Elementary School, Bilingual Teacher Preparation Programs, Teacher Educators  

Our article presents a study we conducted based on our interest to understand more deeply how to 
support the preparation of bilingual teachers, particularly those bilingual in Spanish-English. The 
study was conducted in the context of an extracurricular program with bilingual 5th grade students 
(Spanish-English). This extracurricular program focused on teaching fractions. Our focus on 
fractions has two theoretical foundations: (1) children's mathematical thinking (Empson & Levi, 
2011; Carpenter et al., 2014; Jacobs & Empson, 2016), and (2) how students' mathematical thinking 
supports teacher training (Hunt et al., 2019; Krause & Maldonado, 2019).  

Our work focuses on understanding what factors influence the linguistic negotiation between 
teacher and student during the teaching of mathematics. Specifically, our research focuses on 
identifying these factors when teacher educators and elementary students interact during the teaching 
and learning of fractions. In this specific context, this research answers the following question: How 
does the availability of two languages, Spanish and English, facilitate the teaching of mathematics 
when students' mathematical thinking is used as the basis for fraction instruction? 

Theoretical Background 
Recent proposed reforms in the field of mathematics education promote environments that 

encourage student participation in mathematical reasoning, problem solving, and the use of common 
sense when learning mathematics (National Council of Teachers of Mathematics, 2014). All these 
reforms have a research foundation that comes from monolingual classrooms. To date, there is little 
evidence to suggest that reforms that work in the monolingual context could also be carried out in 
bilingual contexts in the same manner. For example, decades of research confirm that instruction 
based on students' mathematical thinking improves student learning (Fennema et al., 1996; Simon & 
Schifter, 1993; Saxe et al., 1999; Jacobs et al., 2007). However, these investigations do not mention, 
or consider, the importance and influence of language in the way students express their mathematical 
ideas. Furthermore, as bilingual teachers we often have to adapt the use of language. This particular 
practice adds a level of difficulty in teaching due to the idiosyncrasy of how different speakers learn 
languages in multicultural contexts (Urciuoli, 1985).  
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 Theoretical Framework 
Next, we present the concepts that were considered as theoretical foundations for our study. 

One-on-One Interviews as an Approximation of Practice  
Grossman et al. (2009) presented a theoretical framework for teaching practice that includes three 

main components: approximation, representation and decomposition. Our work focuses on one of 
these central practices: approximation of practice. The teaching practice approach is defined by 
Grossman et al. (2009) as a way to provide opportunities for representation and experimentation 
through simulations of aspects of the teaching practice. Grossman et al. (2009) also make the case 
that engaging in approximation of practice allows the trainee to engage in repetition. Repetition 
allows pre-service teachers to gain fluency with common teaching moves, so that they can place 
greater attention on more nuances and individualized aspects of practice.   

In our study we designed an approximation of practice by developing an after-school program 
where BPSTs worked on one-on-one interviews (Ginsburg, 1997) with a bilingual elementary 
student. 
Translanguaging as a means of communication in the Bilingual Classroom  

In addition to working in spaces where approaches to educational practice are available to BPSTs, 
we also focused our study around translanguaging. García et al. (2017) define a classroom where 
translanguaging can be observed as a "space built collaboratively” by teachers and students, where 
each has their own linguistic practices. In this space the main goal is to teach and learn in “deeply 
creative and critical ways” (p.2). Maldonado et al. (2018) have pointed out the lack of studies that 
focus on this practice when teaching or learning mathematics. They argue that it is necessary for 
mathematics educators to cultivate translanguaging and build classrooms in which teachers and 
students work and enrich the practice and culture of the language, involve families and communities 
as sources of knowledge, and create a democratic classroom that co-creates knowledge (Maldonado 
et al., 2018). We used this lens to understand the language practices of BPSTs and their students in 
order to understand the development of BPSTs instructional practices.  
Responding in the Moment to the Mathematical Ideas of the Students 

To illustrate how translanguaging is positioned during mathematics instruction and how BPSTs 
became involved in translanguaging while teaching mathematics, we used the theoretical framework 
of Jacobs and Empson (2016), responsive teaching. They conceptualize responsive teaching as a 
“type of teaching in which teachers’ instructional decisions about what to pursue and how to pursue 
it are continually adjusted during instruction in response to children’s content-specific thinking, 
instead of being determined in advance" (p.1). Their work establishes a framework of questions that 
identifies four categories of instruction: (a) ensure that the student understands the context of the 
problem, (b) explore details of the strategy the student uses to solve the problem, (c) encourage the 
student to consider other strategies, and (d) connect the student's mathematical thinking with 
symbolic notation. 

These three principles provided the theoretical basis in the design of the extracurricular program in 
our study and in the data analysis. 

Methods and Data Analysis 
For the analysis we followed the parameters of an exploratory case study (Yin, 1984).  

Data Collection 
The data for this study comes from an extracurricular program for bilingual 5th grade students. 

BPSTs worked once a week for approximately 30 minutes at a time. We recorded a total of 20 
sessions. We also held three interview sessions with each of the BPSTs. The first interview was 
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conducted at the beginning of the extracurricular program, the second during the middle of the 
semester and the third at the end of the extracurricular program. 

Participants 
Seven BPSTs, one bilingual Latina teacher with more than 12 years of experience, and seven 5th 

grade students participated in this study. All teachers identified themselves as Latinx. All seven 
BPSTs had taken (the previous semester) the bilingual mathematics methods course that the first 
author of this article designed and taught. 
Analysis 

First, the three authors created a list of preliminary codes reported in our experience through the 
research project. This list was extensive and detailed (Saldaña, 2015). The three authors met to 
discuss the initial code list and we generated a common code list (Saldaña, 2015). After this coding 
process, we meet to compare the codes and carry out a triangulation process (Vallejo & de Franco, 
2009).  

Results and Discussion 
The interactions between the teachers in training and the 5th grade students showed important 

aspects in the use of language in the teaching-learning process. The following represent a few 
reflections on the discoveries made during this analysis process. 
Language: A Hidden Resource 

The interactions between Aurora and her student, Yerina, allowed us to notice the fluidity with 
which each one changed from one language to another. For our study, we have defined fluency as the 
ability to move from one language to another. In the following transcript of Aurora interacting with 
Yerina, it can be seen that they both use English and Spanish, while Aurora makes sure that Yerina 
understands the context of the problem: 

Aurora: Carlos tiene una caja [Yerina repeats with Aurora] de comida de gato [Carlos has a box of 
cat food] 

Yerina: Él le da a su gato un [Aurora helps Yerina to read one-fourth] un cuarto [He feeds his cat one 
fourth] 

Aurora: One-fourth 
Yerina: …de la caja para la comida. ¿Cuánto le queda de la caja? […of the box. How much of the 

box is left?] 
Aurora: [Aurora repeats the problem] Entonces Carlos tiene una caja de comida de gato. Él le da a su 

gato un cuarto de la caja de la comida. ¿Cuánto queda de la caja? [Carlos has a box of cat food. 
He feeds his cat ¼ of the box. How much of the box is left?] 

This type of interaction is an example of what García and Sylvan (2011) has described as 
translanguaging. In the context of our study, this practice is particularly important for two reasons: 1) 
while Aurora made sure that Yerina understood the problem statement, she was able to see that any 
difficulty that might appear in relation to understanding the context of the problem, is not related 
with the ability to understand one language or another, that is, it is not a linguistic barrier, 2) 
providing the space to express mathematical ideas, as provided to Yerina, facilitated the 
communication of mathematical ideas and the interaction between Aurora and Yerina. 
Language: Not an Isolated Resource  

The following example shows how in the initial interactions between Aurora and Yerina, Aurora 
focuses on guiding Yerina towards a specific strategy. In this way Yerina's strategy becomes more 
like Aurora's strategy and Yerina's mathematical thinking is no longer the main source of instruction 
at that time. 
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Aurora: So what number do we see? ¿Qué números ves? [What numbers do you see?] 
Yerina: One fourth. 
Aurora: One fourth, okay.  Un cuarto ¿de qué? [A fourth of what?] 
Yerina: ¿De la caja? [Of the box?] 
Aurora: Entonces ¿cuántas cajas tiene Carlos? [Then, how many boxes does Carlos have?] 
Yerina: Una. [One] 
Aurora: Una, nada más tiene una. ¿Podemos dibujar la caja? ¿Sí? …. y ¿es comida para Carlos? O 

¿para quién? [One, he only has one. Can we draw the box? Yes? … and is it food for Carlos?] 
Yerina: Gatos [Cats] 
Aurora: Aja, para el gato. Y dice … él le da a su gato un cuarto de la caja para la comida. So, he 

gives one fourth. [Aha, for the cat. And it says … he feeds his cat a fourth of the box. So,…]  
Yerina: So he gives her like this much. 
Aurora: So, it would be, okay kind of like in the middle. So, let’s draw one in the middle. Let’s see. 
[Yerina draws a line] 
Aurora: Okay, ¿entonces cuántas partes tenemos ahí? [Okay, then how many parts do we have 

there?] 
Yerina: Uno…dos. [One … two] 

In our experience as mathematics educators we have seen that teacher educators tend to guide the 
student towards a specific strategy. Typically, they suggest the use of a drawing, as we saw in this 
sample. At the same time, Jacobs and Empson (2016) have documented the same experience working 
with in-service teachers. Although, language seemed to help in the interaction between Yerina and 
Aurora, we noticed language was not the only resource needed in this instance to help Yerina express 
her mathematical thinking. Aurora, could have used this opportunity to uncover how Yerina was 
thinking, instead of suggesting that she draw the box.  

Conclusions 
We found that the availability of the two languages made it easier for BPSTs 1) to reach the same 

understanding of the context of the problems, ruling out the use of one language or another as an 
obstacle to reaching a common agreement, and 2) that the teacher also needs to develop the ability to 
respond instantly to the student's mathematical ideas. This practice in the case of bilingual 
interactions does not necessarily depend on the use of a specific language. Once language has been 
ruled out as a non-influencing factor in solving the problem, the teacher needs to have the ability to 
create the space for the student to freely express their mathematical ideas. In our study we 
investigated the language factors in one-to-one interactions between BPSTs and a bilingual student in 
the context of approximations, but we need more studies that investigate the representation and 
decomposition of practice. 
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En este estudio se identifica de que manera la disponibilidad de dos idiomas, español-inglés, facilita 
la enseñanza de las matemáticas cuando el pensamiento matemático de los estudiantes es la base 
para la instrucción. Identificamos dos aspectos intrínsecos del lenguaje en la enseñanza de las 
matemáticas en el aula bilingüe: (1) El lenguaje es un recurso oculto que poseen los maestros 
bilingües y (2) el lenguaje no debe ser estudiado como un recurso aislado en la enseñanza de las 
matemáticas. Argumentamos que estos dos aspectos están situados e integrados en la práctica de la 
enseñanza y de esta manera deben formar parte en la preparación de maestros bilingües.  
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Palabras clave: Educación Primaria, Preparación de Maestros en Formación, Educadores de Docentes 

Nuestro artículo presenta un estudio que realizamos teniendo como base el entender más a fondo 
cómo apoyar la preparación de maestros bilingües en formación, particularmente aquellos en español 
e inglés. El estudio se realizó en el contexto de un programa extracurricular con estudiantes bilingües 
de 5to grado de primaria (español-inglés). Este programa extracurricular se enfocó en la enseñanza 
de fracciones. Nuestro  enfoque  en fracciones tiene dos fundamentos teóricos: (1) el pensamiento 
matemático de los niños (Empson & Levi, 2011; Carpenter et al., 2014; Jacobs & Empson, 2016), y 
(2) cómo el pensamiento matemático de los estudiantes apoya la preparación de maestros en 
formación (Hunt et al., 2019; Krause & Maldonado, 2019).  

Nuestro trabajo se enfoca en entender qué factores influyen en la negociación lingüística entre el 
maestro y el alumno durante la enseñanza de las matemáticas. Específicamente nuestra investigación 
se centra en identificar estos factores cuando maestros en formación y estudiantes de primaria 
interactuaban durante la enseñanza y aprendizaje de fracciones. En este contexto especifico, la 
presente investigación responde la siguiente pregunta: ¿De qué manera la disponibilidad de dos 
idiomas, español e inglés, facilita la enseñanza de las matemáticas cuando el pensamiento 
matemático de los estudiantes es usado como base para la instrucción de fracciones? 

Antecedentes Teóricos 
Recientes reformas propuestas en el campo de la educación de matemáticas promueven entornos 

que fomentan la participación de los estudiantes en el razonamiento matemático, la resolución de 
problemas y el uso del sentido común al aprender matemáticas (National Council of Teachers of 
Mathematics, 2014). Todas estas reformas tienen un fundamento de investigación que proviene de 
aulas monolingües. Hasta la fecha, existe poca evidencia que sugiera que el éxito de estas reformas 
en el contexto monolingüe, podría trasladarse sin ningún cambio al aula bilingüe. Por ejemplo, 
décadas de investigación confirman que la instrucción basada en el pensamiento matemático de los 
estudiantes mejora el aprendizaje de los estudiantes (Fennema et al., 1996; Simon & Schifter, 1993; 
Saxe et al., 1999; Jacobs et al., 2007). Sin embargo, estas investigaciones no mencionan, o tienen en 
cuenta, la importancia e influencia del idioma en la manera cómo los estudiantes expresan sus ideas 
matemáticas. Por ejemplo, sólo lo que implica usar el pensamiento matemático de los estudiantes en 
la práctica, requiere que acomodemos estos pensamientos para nuestro propio entendimiento en el 
mismo momento en que recibimos las respuestas y explicaciones de los estudiantes sobre lo que 
piensan y entienden de una idea matemática. Además, como maestros bilingües muchas veces 
debemos adaptar el uso del lenguaje. Esta práctica en particular agrega un nivel de dificultad en la 
enseñanza debido a la idiosincrasia de cómo los diferentes hablantes aprenden idiomas en contextos 
multiculturales (Urciuoli, 1985).  

Marco Teórico 
A continuación, se abordan los conceptos que fueron considerados como fundamentos teóricos para 

el estudio que se presenta en esta propuesta. 
Entrevistas Uno-a-Uno Como Aproximación de la Práctica Docente 

Grossman et al. (2009) presentaron un marco teórico para la práctica docente que incluye tres 
componentes principales: aproximación, representación y descomposición. Nuestro trabajo se enfoca 
en una de estas prácticas centrales: aproximación de la práctica docente. La aproximación de la 
práctica docente está definida por Grossman et al. (2009) como una forma de proporcionar 
oportunidades para la representación y experimentación a través de simulaciones de aspectos de la 
práctica docente. Grossman et al. (2009) también exponen que participar en la aproximación de la 
práctica permite al aprendiz participar en la repetición. La repetición permite a los maestros en 
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formación ganar facilidad y fluidez con movimientos de enseñanza comunes, para que puedan poner 
mayor atención en más matices y aspectos individualizados de la práctica. 

En nuestro estudio, diseñamos una aproximación de la práctica educativa mediante el desarrollo de 
un programa extracurricular en el que los maestros en formación trabajaron en entrevistas 
individuales (Ginsburg, 1997) con un estudiante bilingüe de 5to grado de primaria.  
TransLenguaje Como Medio Comunicación en el Aula Bilingüe 

Además de trabajar en espacios donde aproximaciones de la práctica educativa están disponibles 
para los maestros en formación, también centramos nuestro estudio alrededor de el teórico de 
TransLenguaje. García et al. (2017) definen un aula en dónde se puede observar el uso 
TransLenguaje como un "espacio construido en colaboración" por docentes y alumnos, donde cada 
uno tiene sus propias prácticas lingüísticas, y que tiene como objetivo el de enseñar y aprender de 
manera "profundamente creativa y crítica" (pág. 2). Maldonado et al. (2018) han señalado la falta de 
estudios que se centran en esta práctica cuando se enseñan o aprenden matemáticas. Ellas 
argumentan que es necesario que los educadores de matemáticas cultiven TransLenguaje y 
construyan aulas en las que los maestros y los estudiantes trabajen y enriquezcan la práctica y la 
cultura del lenguaje, involucren a las familias y las comunidades como fuentes de conocimiento y 
creen un aula democrática que co-crea conocimiento (Maldonado et al., 2018). Usamos este lente 
para comprender las prácticas lingüísticas de los maestros en formación y sus estudiantes para 
comprender el desarrollo de las prácticas de instrucción de los maestros en formación. 
Contestando en el Momento a las Ideas Matemáticas de los Estudiantes 

Para ilustrar cómo se ubica TransLenguaje durante la instrucción de matemáticas y cómo los 
maestros en formación se involucraron en la práctica de TransLenguaje al hacer matemáticas, 
usamos el marco teórico de Jacobs y Empson (2016), enseñanza receptiva. Ellas, conceptualizan 
enseñanza receptiva como un "tipo de enseñanza en la que las decisiones de instrucción de los 
maestros sobre qué idea seguir y cómo seguirla se ajustan continuamente durante la instrucción en 
respuesta al pensamiento específico de los estudiantes, en lugar de determinarse de antemano" (pág. 
1). Su trabajo establece un marco de preguntas que identifica 4 categorías de instrucción: (a) asegurar 
que el estudiante entienda el contexto del problema, (b) explorar detalles de la estrategia que el 
estudiante usa para resolver el problema, (c) animar al estudiante a considerar otras estrategias, y (d) 
conectar el pensamiento matemático del estudiante con notación simbólica.  

Estos tres principios proporcionaron la base teórica en el diseño del programa extracurricular en 
nuestro estudio y en el análisis de datos.  

Método de Análisis 
Para el análisis seguimos los parámetros de un estudio de casos exploratorios (Yin, 1984).  

Recopilación de datos 
Los datos de este estudio provienen de un programa extracurricular para estudiantes bilingües de 5to 

grado. Los maestros en formación trabajaron una vez por semana por aproximadamente 30 minutos a 
la vez. Se realizaron un total de 20 sesiones durante el transcurso de un semestre.  

También realizamos tres sesiones de entrevistas con los maestros en formación. La primera 
entrevista se realizo al inicio del programa extracurricular, la segunda durante la mitad del semestre y 
la tercera al final del programa extracurricular.   
Participantes 

En este estudio participaron siete maestros bilingües en formación, una maestra Latina bilingüe con 
mas de 12 años de experiencia y 7 estudiantes de 5to grado. Todos los maestros se identificaron 
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como Latinx. Los siete maestros en formación habían tomado (el semestre anterior) el curso de 
métodos de enseñanza de matemáticas bilingües que el primer autor de este artículo diseñó y enseñó.  
Análisis  

Primero, los tres autores creamos una lista de códigos preliminares informados en nuestra 
experiencia a través del proyecto de investigación. Esta lista fue extensiva y detallada (Saldaña, 
2015). Los tres autores nos reunimos para discutir la lista de códigos iniciales y generamos una lista 
común de códigos (Saldaña, 2015). Después de este proceso de codificación, nos reunimos para 
comparar los códigos y realizar un proceso de triangulación (Vallejo & de Franco, 2009).  

Resultados y Discusión 
Las interacciones entre los maestros en formación y los alumnos de 5to grado mostraron aspectos 

importantes en el uso del lenguaje en el proceso de enseñanza-aprendizaje. A continuación, se 
muestran algunas reflexiones sobre los descubrimientos que se obtuvieron durante el este proceso de 
análisis. 
Idioma: Un Recurso Oculto 

Las interacciones entre Aurora y su estudiante, Yerina, nos permitió notar la fluidez con la que cada 
una, cambiaba de una lengua a otra. Para nuestro estudio, hemos definido fluidez como la capacidad 
de moverse de un idioma a otro. En la siguiente transcripción de Aurora interactuando con Yerina, se 
puede notar que ambas usan el inglés y el español, mientras que Aurora se asegura que Yerina 
entienda el contexto del problema:  

Aurora: Carlos tiene una caja [Yerina repite con Aurora] de comida de gato 
Yerina: Él le da a su gato un [Aurora ayuda a Yerina a decir la palabra] un cuarto 
Aurora: One-fourth 
Yerina: De la caja para la comida, ¿cuánto le queda de la caja? 
Aurora: [Aurora repite la pregunta] Entonces Carlos tiene una caja de comida de gato. El le da a su 

gato un cuarto de la caja de la comida. ¿Cuánto queda de la caja? [Aurora espera unos cuatro 
segundos] 

Este tipo de interacción es un ejemplo de lo que García y Sylvan (2011) ha descrito como 
TransLenguaje. En el contexto de nuestro estudio esta práctica es particularmente importante por dos 
razones:  1) mientras Aurora se aseguraba que Yerina entendía el enunciado del problema, se pudo 
percatar que cualquier dificultad que pudiera aparecer con relación a comprender el contexto del 
problema, no está relacionada con la capacidad de comprender una lengua u otra, es decir no es una 
barrera lingüística.   2)  El proveer el espacio para expresar las ideas matemáticas, tal como le fue 
facilitado a Yerina facilitó la comunicación de las ideas matemáticas y la interacción entre Aurora y 
Yerina.  
Idioma: No es un Recurso Aislado  

El siguiente ejemplo muestra como en las interacciones iniciales entre Aurora y Yerina, Aurora se 
enfoca en guiar a Yerina hacia una estrategia especifica. De esta manera la estrategia de Yerina se 
convierte mas en la estrategia de Aurora y el pensamiento matemático de Yerina, ya no es la fuente 
principal de la instrucción en ese momento. 

Aurora: So, what number do we see? ¿Qué números ves? 
Yerina: One fourth. 
Aurora: One fourth, okay.  Un cuarto ¿de qué? 
Yerina: ¿De la caja? 
Aurora: Entonces ¿cuántas cajas tiene Carlos? 
Yerina: Una. 
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Aurora: Una, nada más tiene una. ¿Podemos dibujar la caja? ¿Sí? …. y ¿es comida para Carlos? O 
¿para quién? 

Yerina: Gatos 
Aurora: A ha, para gato. Y dice … él le da a su gato un cuarto de la caja para la comida. So, he gives 

one fourth.  
Yerina: So, he gives her like this much. 
Aurora: So, it would be, okay kind of like in the middle. So, let’s draw one in the middle let’s see. 

[Yerina dibuja una línea] 
Aurora: Okay, ¿entonces cuántas partes tenemos ahí? 
Yerina: Uno…dos. 

En nuestra experiencia como educadores de matemáticas hemos visto que los maestros en 
formación tienden a guiar al estudiante hacia una estrategia especifica. Típicamente, sugieren el uso 
de un dibujo, como lo vimos en esta muestra. Al mismo tiempo, Jacobs y Empson (2016) han 
documentado la misma experiencia trabajando con maestros en servicio.  En este instante notamos 
que el lenguaje no era el único recurso necesario para ayudar a Yerina a expresar su pensamiento 
matemático. Aurora podría haber aprovechado esta oportunidad para descubrir cómo estaba 
pensando Yerina, en lugar de sugerirle que dibujara la caja. 

Conclusiones 
Encontramos que la disponibilidad de los dos idiomas facilitó a los maestros en formación 1) llegar 

a un mismo entendimiento del contexto de los problemas descartando el uso de un idioma u otro 
como obstáculo para llegar a un acuerdo común, y 2) que el maestro necesita también desarrollar la 
capacidad de responder en el momento a las ideas matemáticas del estudiante. Esta práctica en el 
caso de interacciones bilingües no depende necesariamente del uso de una lengua especifica. Una vez 
que el lenguaje ha sido descartado como un factor que no influye en solucionar el problema, el 
maestro necesita tener la capacidad de crear el espacio para que el estudiante pueda libremente 
expresar sus ideas matemáticas. En nuestro estudio investigamos los factores del lenguaje en las 
interacciones individuales entre BPST y un estudiante bilingüe en el contexto de aproximaciones en 
la práctica. Sin embargo, necesitamos más estudios que investiguen las representaciones y la 
descomposición de la práctica docente. 
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The aim of this article is to describe the characteristics of the pedagogical knowledge used by a 
teacher to introduce the multiplication of fractions in elementary education. In order to achieve this 
aim, a sixth-grade teacher was observed while she was teaching the multiplication of fractions 
according to the Mexican curriculum. Results show that the teacher defines the multiplication of 
fractions as a repetitive sum and she uses this notion to guide students in carrying out 
multiplications; however, this strategy creates difficulties since the curriculum presents the fraction 
also as a multiplicative operator.   

Keywords: Culturally Relevant Pedagogy; Teacher Knowledge; Rational Numbers; Elementary 
School Education. 

Background 
The multiplication of fractional numbers is taught in basic education. Teaching this topic is aimed at 

helping children in developing their mathematical reasoning, and it is considered an essential topic 
for understanding further contents and for applying it in their daily lives (NCTM, 2013, 2014; 
Lamon, 2012; SEP, 2011). It is expected that children understand the fraction as a multiplicative 
operator, in terms of calculating a part of a whole (Son, 2012). However, the different meanings of 
the fraction and the relationship between the factors pose difficulties for students’ understanding (De 
Castro, 2008; García, 2014; Lamon, 2012). These difficulties might be derived also from teaching 
practices focused on the repetition of the fractional numbers multiplication algorithm and from the 
students’ belief that fractions and natural numbers share the same properties and laws (De Castro, 
2008). Researchers like Isiksal and Cakiroglu (2011) point out that, in the classroom, the 
multiplication of fractions is reduced to a routine and mechanized procedure, instead of 
understanding its meaning and functionality.  

In addition to the conditions mentioned above, teachers might hold misconceptions regarding this 
content; for example, believing that the product is bigger than the factors, understanding this 
multiplication as a repetitive sum (Isiksal & Cakiroglu, 2011; Rifandi, 2014; Thompson & Saldanha, 
2003; Valdemoros, 2010), and dealing with it as a routine problem (Chinnappan & Desplant, 2012). 
Yasoda (2009) states that teacher knowledge to teach the multiplication of fractions is, mainly, of 
algorithmic nature, which makes difficult to students to comprehend its meaning and the relationship 
between the factors (Son, 2012). A didactic barrier is to take as a reference the natural numbers as a 
way of understanding the multiplication of fractions, specifically, the rule that the product is bigger 
than the factors (Prediger, 2008). Related to what has been stated before, the aim of this research is to 
describe the didactic knowledge related to the practice of a teacher who introduces and teaches the 
multiplication of fractions to children in basic education.  
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Reference Framework 
To teach mathematics, the teacher requires, besides knowing mathematics, a didactic knowledge 

(Ball et al., 2008; Carrillo, Escudero & Flores, 2014; Carrillo, Climent, Contreras, & Muñoz, 2013; 
Shulman 1986). This knowledge refers to a group of strategies that the teacher has to represent ideas, 
analogies, examples, illustrations and explanations related to a mathematical content (Chick, Baker, 
Pham & Cheng, 2006). The teacher is expected “to hold clear concepts, images, structures and basic 
approaches related to a topic…, as well as knowing how to identify in his students the difficulties and 
conceptual errors that they could face (problems related to the derivation rules, for example the rules 
related to the product, quotient or the chain), as well as what this means in their learning. This 
knowledge also requires teachers to use activities or methodological strategies so that students can 
identify and build new understandings based on their previous ideas” (García, 2009, p. 42). 

In addition to the relevance of understanding the didactic knowledge in mathematics, it is necessary 
to specify the concept of multiplication of fractions when using whole numbers. Son (2012) 
considers that this type of multiplication makes reference to the part-part or part-whole. When the 
fraction involves whole numbers as a first factor (n out of a/b), the multiplication points out a 
repeated sum, where the whole number is the number of times the fraction is repeated; on the other 
hand, if the fraction is the first factor (a/b out of n) the fraction is an operator and it refers to the part 
that will be taken from the whole number.  

Methodology  
The study is qualitative, and it was designed as a case study. Data was collected through non-

participant observation in order to grasp the natural context where the mathematical teaching-
learning process occurs. A sixth grade teacher participated in the research; she works in a rural 
school in Mexico and we have named her, Elena. Lessons related to the Multiplication of fractions 
were audio and video recorded, according to the current study plan (SEP, 2011). In total, two lessons 
were video recorded, each lasting three hours approximately. Recordings were carried out under the 
informed consent of the teacher, respecting the dates and timing established by the teacher, in order 
to avoid affecting de natural and cultural context. In addition to the recordings, notes were taken in a 
fieldwork journal, to support in triangulating information.  

Video-recordings were transcribed and fragmented into units of analysis. The analysis was based on 
Miles and Huberman (2007) framework, this allowed to identify aspects related to the didactic 
knowledge that Elena used when teaching the multiplication of fractions. The syllabus (SEP, 2011) 
posits that the student should use the fraction as a multiplicative operator through problems type a/b 
out of n. The results of class observation are shown in the following section.  

Analysis  
To achieve the learning objective stated in the syllabus (SEP, 2011), Elena used specific and 

centered strategies to help students in constructing their knowledge through the interaction with their 
peers, working individually and under her guidance. Elena first taught the part-whole concept of the 
fraction and implemented an activity in which she presented the multiplication of fractions. The 
activity is described next.  

To introduce the part-whole concept of the fraction, Elena gave the half of a sheet paper (1/2) to 18 
out of the 24 students of the group, and asked them to identify which part of the group (3/4) had a 
piece of paper:   

Elena:  How many are in total? 
Students: 24! 
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Elena:  If you are 24 and I want to give half of a paper sheet to !
!
 of the class. How many of you are 

going to get a piece of paper? 
Students: 18! 

In the construction of this interpretation of the fraction, Elena induces the answer that she wants to 
get from students by asking directly “I want to give half of a paper sheet to !

!
 of the class. How many 

of you are going to get a piece of paper?” Students’ responses evidence their use of their previous 
knowledge on fractions (SEP, 2011), since they first recognized the denominator, called “whole 
number”, then they determine that !

!
 from the total of students is the same as 18. With respect to 

Elena’s knowledge, it was noticed that she does not only expects an answer but its validation:  

Elena: If I wanted to know how many halves of paper sheets I used with !
!
 of you, what do I have to 

do? Check it out, there you have the sheets of paper… stand up and count how many [children 
have !

!
 of a piece of paper].  

This validation leads students to work on the multiplication as a repeated sum (8× !
!
) where the 

fraction as an operator is left out. Elena gave suggestions, such as separating into two groups, one 
group with the students who had a piece of paper and the other group without it, she told them: “get 
together or count each other”. Getting students into groups allowed Elena to construct the 
multiplication of fractions concept, however, she formalized and institutionalized the demonstration !

!
 

out of the group = 18 students (Chevallard, 1998), and she raised the meaning of the multiplication 
as a repetitive sum: “What have we been doing? Counting each… a half plus a half, plus a half, plus 
a half, plus a half, plus a half until I completed !"

!
. Therefore, in the same way as in the sum, [in the 

multiplication] I was adding a half, plus a half…” In her discourse, it is possible to see that the 
multiplication is 18 students per !

!
 of a paper sheet.   

Elena generalized the fraction multiplication as a repetitive sum, even though she did not point out 
the relationship between !"

!
 (total halves of paper sheets) and !

!
 of the class. Based on this meaning, 

Elena introduced new activities; for example, she asked children to solve 4× !
!
 by using paper strips: 

Elena: How can I multiply 4× !
!
 ? To make this simpler, we are always going to try to write the whole 

numbers first, ok? In a multiplication, it is the same if I write the numbers before [as a first factor] 
or if I write them after [as a second factor]. But now, to make it easier, I am going to write the 
whole number first. Then, what do I need? Out of this paper sheet, we are going to get whole 
number [she gives the paper sheets to the students]. The problem says that I need four strips… 
because we need four whole numbers.  

Students: [They measure and cut the paper sheets to obtain the strips that represent the whole 
numbers, as it is shown in Figure 1]. 
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Figure 1: Graphic Representation to calculate 𝟒× 𝟐

𝟑
. 

In this activity, Elena allows students to discover the algorithm by themselves, which consists 
in  𝑎× !

!
= !

!
× !

!
= !×!

!×!
. In Elena’s explanation, a limitation regarding content knowledge was 

identified, which could influence students’ comprehension on the topic, we refer to the position of 
the whole numbers in the multiplication of fractions (commutation property). Although the product is 
the same, the meaning of the factors changes; when the whole number is the first factor (4×!

!
) the 

multiplication represents an abbreviated sum, but when the whole number is the second factor (!
!
×4) 

it corresponds to a multiplication of fractions as an operator (Son, 2012). Elena’s interpretation could 
be based on the commutation law. 

It is possible to argue that for Elena there is no difference when using the whole number as a first or 
second factor. Elena’s argument is focused on the product, as she tells their students when 
institutionalizing the algorithm “To make this simpler, we are always going to try to write the whole 
numbers first, ok? In a multiplication, it is the same if I write the numbers before [as a first factor] or 
if I write them after [as a second factor]. But now, to make it easier, I am going to write the whole 
number first”. In doing so, the difference between a reduced sum and a fraction as a multiplicative 
operator is not recognized. 

Conclusions  
Results show that as part of her didactic knowledge (SEP, 2011), Elena uses strategies and tools 

according to the sixth graders academic level and to the syllabus requirements, which is identified in 
the examples to represent graphically and to work the multiplication algorithm with rational 
numbers. The use of paper, as didactic tool, allowed students to represent the algorithm and the 
multiplication of fractions product, as Elena does in class. It is evident that through students’ 
interaction in the classroom, they can construct and validate this content knowledge. However, in 
Elena’s practice, we identified that the meaning of this multiplication differs from the curricular 
objectives, because the fraction is considered only as a repetitive sum, which can, in turn, generate 
comprehension problems to students. Therefore, didactic and mathematical knowledge is 
fundamental to comprehend the difference in meaning of a/b out of n and n out of a/b.  
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El artículo tiene como objetivo describir el conocimiento didáctico que una profesora utiliza para 
introducir la multiplicación de fracciones en educación básica. Para ello se observó a una profesora 
de sexto grado de educación primaria (México), enseñando este contenido de acuerdo con el Plan de 
estudios vigente durante la toma de datos. Los resultados muestran que la docente recupera el 
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concepto de fracción para definir y trabajar la multiplicación de fracciones como una suma 
reiterativa, pero esta estrategia genera dificultades dado que el Plan de estudios plantea la fracción 
como operador multiplicativo.   

Palabras clave: Pedagogía culturalmente relevante; Conocimiento del Profesor; Números Racionales; 
Educación Primaria. 

Antecedentes 
La multiplicación de números fraccionarios se enseña en la educación básica, con la finalidad de 

que los niños desarrollen un razonamiento matemático para comprender otros contenidos de mayor 
complejidad y para su vida cotidiana (NCTM, 2013, 2014; Lamon, 2012; SEP, 2011). Se espera que 
los niños entiendan la fracción como un operador multiplicativo, en términos de calcular una parte de 
un conjunto (Son, 2012). Sin embargo, para los alumnos es difícil comprender la multiplicación de 
fracciones debido a los diferentes significados de la fracción y de la relación entre los factores (De 
Castro, 2008; García, 2014; Lamon, 2012). Tal dificultad, en ocasiones, es producto de una 
enseñanza centrada en la mecanización y memorización del algoritmo de la multiplicación con 
números fraccionarios, y debido a que los niños creen que las fracciones presentan las mismas 
propiedades y leyes que los números naturales (De Castro, 2008). Investigadores como Isiksal y 
Cakiroglu (2011) apuntan que, en el aula, la multiplicación de fracciones se reduce a un 
procedimiento rutinario y mecanizado, en lugar de entender su significado y su funcionalidad.  

Aunque existe el compromiso de enseñar la multiplicación de fracciones, el profesor llega a tener 
conceptos erróneos de este contenido, por ejemplo, que el producto es mayor que los factores o 
generalizar su definición como una suma reiterada (Isiksal & Cakiroglu, 2011; Rifandi, 2014; 
Thompson & Saldanha, 2003; Valdemoros, 2010), así como abordar problemas rutinarios 
(Chinnappan & Desplant, 2012). Yasoda (2009) afirma que el conocimiento del profesor para 
enseñar la multiplicación de fracciones es, principalmente, de naturaleza algorítmica, lo cual le 
dificulta a los estudiantes comprender su significado y la relación entre los factores (Son, 2012). Un 
obstáculo didáctico es tomar como referente los números naturales para entender la multiplicación de 
fracciones, en específico, la regla de que el producto es mayor que los factores (Prediger, 2008). En 
relación con lo anterior, la presente investigación tiene como objetivo describir el conocimiento 
didáctico inmerso en la práctica de una profesora que introduce y enseña la multiplicación de 
fracciones a niños de educación básica.  

Marco de referencia 
Para enseñar matemáticas el profesor requiere, además de saber matemáticas, un conocimiento 

didáctico (Ball et al., 2008; Carrillo, Escudero & Flores, 2014; Carrillo, Climent, Contreras, & 
Muñoz, 2013; Shulman 1986). Este conocimiento se refiere al conjunto de estrategias que el docente 
dispone para representar ideas, analogías, ejemplos, ilustraciones y explicaciones en torno a un 
contenido matemático (Chick, Baker, Pham & Cheng, 2006). Se espera que el profesor “tenga claro 
los conceptos, imágenes, estructuras y planteamientos básicos vinculados a un tema…, además sepa 
identificar en sus estudiantes las dificultades y errores conceptuales que enfrentarán estos (problemas 
con las reglas de derivación, como por ejemplo las del producto, cociente o de la cadena), así como 
lo que esto signifique en su aprendizaje. Este conocimiento también reclama al profesor que, 
mediante actividades o estrategias metodológicas, el estudiante pueda identificar y discernir sobre sus 
ideas previas” (García, 2009, p. 42). 

Además de la relevancia de entender el conocimiento didáctico en matemáticas, es indispensable 
precisar el concepto de multiplicación de fracciones cuando se tiene números enteros. Son (2012) 
considera que este tipo multiplicación hace referencia a la parte-parte o parte-todo. Cuando 



Introducir la multiplicación de fracciones. Un estudio sobre el conocimiento didáctico del profesor 

	 866	

involucra números enteros como primer factor (n de a/b), la multiplicación indica una suma 
reiterada, donde el entero es la cantidad de veces que se repite la fracción; en cambio, si la fracción es 
el primer factor (a/b de n) la multiplicación indica que la fracción es un operador y refiere la parte 
que se tomará del entero.  

Metodología  
El estudio es de corte cualitativo y está centrado en el estudio de casos. Se recurrió a la observación 

no participante con la finalidad de tener un acercamiento al contexto natural donde ocurre el proceso 
de enseñanza y aprendizaje de las matemáticas. En la investigación participó una profesora de sexto 
grado de educación primaria, quien labora en una escuela rural en México y a quien hemos llamado 
Elena. El acopio de datos comprendió la video y audiograbación de las clases en las que Elena trató 
el contenido Multiplicación de fracciones de acuerdo con el Plan de estudios vigente en ese momento 
(SEP, 2011). En total se videgrabraron dos sesiones de clases, totalizando 3 horas aproximadamente. 
Las videograbaciones se realizaron previo consentimiento de la docente, respetando las fechas y 
tiempos programados por ella, de tal manera que no afectaran el escenario natural y cultural del salón 
de clases. Además de las grabaciones en audio y video, en una bitácora se registraron aspectos 
puntales de la práctica de la profesora, esto facilitó la triangulación de la información.  

Las videograbaciones fueron transcritas y fragmentadas en unidades de análisis, para ello se tomó 
como referencia la propuesta de análisis de Miles y Huberman (2007), lo cual permitió identificar 
aspectos relacionados con el conocimiento didáctico que Elena pone en juego al enseñar la 
multiplicación de fracciones. El Plan de estudios (SEP, 2011) apunta que el alumno debe usar la 
fracción como operador multiplicativo mediante problemas de tipo a/b de n. En la siguiente sección 
se muestran los resultados de la observación en aula.  

Análisis  
Para lograr el objetivo de aprendizaje dado en el Plan de estudios (SEP, 2011), Elena recurrió a 

estrategias específicas y centradas en que los alumnos construyeran sus conocimientos a partir de 
interactuar con sus compañeros, trabajar de manera individual y bajo la guía de la profesora. Para 
ello, Elena partió del concepto de fracción como parte-todo y de una actividad en la cual presentó la 
multiplicación de fracciones. A continuación, se describe esta actividad.  

Para introducir el concepto de fracción como parte-todo, Elena proporcionó media hoja de papel 
(1/2) a 18 de los 24 estudiantes que conforman el grupo, para que posteriormente todos determinaran 
qué parte del grupo (3/4) tiene papel:   

Elena:  ¿Cuántos somos en total en el grupo? 
Alumnos: ¡24! 
Elena:  Si son 24 y yo les quiero dar a !

!
 de ustedes media hoja de papel. ¿A cuántos les voy a dar? 

Alumnos: ¡18! 

En la construcción de esta interpretación de fracción, Elena induce la respuesta que espera obtener 
al plantearles directamente “les quiero dar a !

!
 de ustedes media hoja. ¿A cuántos [estudiantes] les voy 

a dar?” Las respuestas de los alumnos evidencian que partieron de sus conocimientos sobre 
fracciones (SEP, 2011), pues primero reconocen el denominador, llamado “entero” por los alumnos, 
y posteriormente determinan que !

!
 del total equivalen a 18 alumnos. Como características del 

conocimiento de Elena, se observa que involucra no sólo obtener el resultado sino que el alumno lo 
sustente:  
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Elena: Si yo quisiera saber cuántos medios de hoja me gasté en !
!
 de mi salón, de mis alumnos, ¿cómo 

le puedo hacer? Compruébenmelo, ahí están las hojas… párense y cuenten cuántos [niños con !
!
 

de hoja de papel].  

Esta validación le permite a Elena llevar a los estudiantes a trabajar la multiplicación como una 
suma reiterada (8× !

!
), donde deja de lado la fracción como operador. La profesora da sugerencias a 

los estudiantes, tales como hacer dos grupos, aquellos que tienen hoja de papel y quienes no la 
tienen, pues ella les dice: “júntense o cuéntense”. Agrupar a los estudiantes permite a Elena construir 
el concepto de multiplicación de fracción, sin embargo, ella es quien formaliza e institucionaliza la 
demostración !

!
 del grupo = 18 alumnos (Chevallard, 1998), y plantea el significado de la 

multiplicación como una suma reiterativa: “¿[qué] tuvimos que ir haciendo? Contando cada… medio 
más medio, más medio, más medio, más medio, más medio hasta que completé los !"

!
 . Entonces al 

igual que en la suma, [en la multiplicación] yo tendría que estar sumando medio, medio más…” En 
su discurso se evidencia que la multiplicación queda como 18 estudiantes por !

!
  de hoja papel.   

Elena generaliza la multiplicación de fracción como la suma reiterada, aunque no muestra la 
relación entre !"

!
 (total de medios de hojas) y !

!
 de grupo. Con base en este significado de la 

multiplicación de fracciones, Elena introdujo nuevas actividades orientadas a que los estudiantes lo 
pongan en práctica; por ejemplo, les pidió resolver 4× !

!
  mediante el uso de tiras de papel: 

Elena: ¿Cómo puedo multiplicar cuatro enteros por !
!
 ? Para que se nos haga más fácil vamos a tratar 

siempre de poner primero los enteros, ¿sí? En una multiplicación es lo mismo si lo pongo acá 
[como primer factor] que lo ponga acá [como segundo factor]. Pero por lo pronto, para que se nos 
haga más fácil, voy a poner primero los enteros. ¿Qué es lo que necesito entonces? En esta hoja 
vamos a ir sacando enteros [reparte hojas de papel a los alumnos]. Dice que necesito cuatro 
enteros, yo necesito cuatro tiras… porque son cuatro enteros.  

Alumnos: [Miden y recortan las hojas de papel para obtener las tiras que representen los enteros, 
como se muestra en la Figura 1]. 

 
Figura 1: Representación gráfica para calcular 𝟒× 𝟐

𝟑
. 

Esta actividad Elena deja que los alumnos descubran el algoritmo de la multiplicación de fracciones 
por ellos mismos, el cual consiste 𝑎× !

!
= !

!
× !

!
= !×!

!×!
.  En la explicación de Elena se evidencia una 

limitación en el conocimiento del contenido que podría afectar la comprensión del niño acerca del 
tema, nos referimos a la posición de los enteros en la multiplicación de fracciones (propiedad de la 
conmutación). Aunque el producto es mismo, el significado de los factores cambia; cuando el entero 
es el primer factor (4×!

!
) la multiplicación representa una suma abreviada, pero cuando es el segundo 
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factor ( !
!
×4) corresponde a multiplicación de fracciones como operador (Son, 2012). La 

interpretación de Elena podría deberse a la prevalencia de la ley de conmutación. 
Es notorio que para ella no hay una diferencia de significado en cuanto al entero como primer o 

segundo factor. El argumento de Elena está centrado en el producto, pues como ella les dices a los 
estudiantes al momento de institucionalizar el algoritmo: “Para que se nos haga más fácil vamos a 
tratar siempre de poner primero los enteros, ¿sí? En una multiplicación es lo mismo si lo pongo acá 
[como primer factor] que lo ponga acá [como segundo factor]. Pero por lo pronto para que se nos 
haga más fácil voy a poner primero los enteros”. En este sentido no se reconoce la diferencia entre 
una suma reducida y la fracción como operador multiplicativo. 

Conclusiones  
Los resultandos muestran que, como parte de su conocimiento didáctico, Elena usa estrategias y 

recursos acorde con el nivel educativo de los estudiantes de sexto grado de educación primaria y a las 
exigencias del Plan de estudios (SEP, 2011), lo cual se refleja en los ejemplos para representar 
gráficamente y trabajar el algoritmo de la multiplicación con números racionales. El uso de papel, 
como recurso didáctico, le permite al alumno representar el algoritmo y el producto de la 
multiplicación de fracciones, tal como Elena lo hace en la clase. Es evidente que a través de la 
interacción que tienen los alumnos en el salón de clases se construye y se validan los conocimientos 
en torno a este contenido. Sin embargo, en la práctica de Elena se evidencia cómo el significado de la 
multiplicación difiere con los objetivos curriculares al considerarla sólo como una suma reiterada, los 
cual puede generar obstáculos de compresión en el estudiante. En este sentido es fundamental un 
conocimiento didáctico y matemático para comprender la diferencia en los significados a/b de n y n 
de a/b.  
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This paper presents the perception that middle school mathematics teachers attribute to inductive 
reasoning and its teaching from working with the concept of quadratic equation. The data was 
obtained from a questionnaire given to 16 teachers and from their expanded responses in a group 
conversation. Through the thematic analysis method, it was found that most teachers perceived this 
type of reasoning as a process to move from the particular to the general and as a way to guide 
teaching a concept through questioning. However, they encountered difficulties in using inductive 
processes to teach the concept and attach it to an inductive logic. 

Keywords: Teacher Knowledge, Reasoning and Proof, Middle School Education.  

Introduction 
Inductive reasoning for learning mathematics in basic and middle school education is important for 

two reasons. On one hand, it is a means for the development of concepts and the resolution of 
mathematics problems (Molnár, Greiff, & Csapó, 2013; Papageorgiou, 2009; Sosa, Cabañas y 
Aparicio, 2019; Sriraman & Adrian, 2004) that assists the abstraction and generalization of the 
invariant characteristics of particular objects or situations. Klauer (1996) claims that it leads to 
“detecting regularities, be it classes of objects represented by generic concepts, be it common 
structures among different objects, or  be it schemata enabling the learners to identify the same basic 
idea within various contexts” (p. 53). On the other hand, it supports processes to speculate, argue and 
generalize in mathematics (Cañadas et al., 2007; Cañadas, Castro and Castro, 2008; Conner et al., 
2014; Martinez & Pedemonte, 2014).  

This implies that middle school teachers should develop and interpret the inductive reasoning of 
students (AMTE, 2017; NCTM, 2000). NCTM (2000) establishes that this form of reasoning must 
progress in students throughout each grade and education level so that they can become more 
proficient in the formulation of conjectures and generalizations from specific cases. In this sense, it is 
desirable that teachers have clarity about inductive reasoning and the phases that go along with the 
transition from particular instances to the general. On the contrary, they may have difficulties 
incorporating it into their practice. Therefore, the goal of this study is to examine and describe the 
perception that middle school teachers show about the inductive reasoning in relation to the teaching 
of the quadratic equation concept. 

Literature review 
Much of the research on inductive reasoning and professional development of mathematics teachers 

has been conducted with preservice teachers and most of them focused on issues associated to the 
teacher cognition, such as ways of recognizing similarities by induction from numerical and figural 
representations (Rivera & Becker, 2003), levels of deepening understanding and strategies used to 
solve a generalization problem (Manfreda, Slapar, & Hodnik, 2012), the role of induction and 
abduction in making generalizations of classes of abstract objects (Rivera & Becker, 2007), and the 
relationship between inductive and deductive reasoning with learning styles (Arslan, Göcmencelebi, 
& Tapan, 2009). Results indicate that future teachers tend to induce numerically over strategies used 
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based on the use of figures. Difficulties are also reported in generalizing quadratic patterns, even 
when a numerical pattern was identified. However, Sosa, Aparicio and Cabañas (2019) show that 
secondary school teachers who achieve generalization in these kinds of patterns are those who 
managed to connect inductive processes; they also identified difficulties to establish and abstract a 
pattern. This reinforces the need to study how teachers perceive inductive reasoning and its teaching. 

Conceptual framework 
In this study, inductive reasoning is understood as a means to produce generalizations from 

particular cases, be they ideas, qualities, objects, facts, phenomena or situations. This understanding 
is consistent with those who refer to it as a mental process oriented to infer laws or general 
conclusions through observation and connection of particular instances of a class of objects or 
situations (Glaser & Pellegrino, 1982; Haverty et al., 2000, Polya, 1957). 

The works of Reid and Knipping (2010), Polya (1967) and Sosa et al. (2019) are examples of this 
understanding. Reid and Knipping (2010) identify three characteristics of inductive reasoning: it 
comes from specific cases to conclude general rules, uses what is known to conclude something 
unknown and, it is only likely but not true. Polya (1967) proposes the following four phases of such 
reasoning to discover properties, principles and general cases in mathematics: observing particular 
cases, formulating a conjecture, generalizing and verifying conjecture. More recently, from a 
cognitive approach, Sosa et al. (2019) report that the connection of the following three processes is 
necessary to achieve generalization inductively: observation of regularities, establishment of a 
pattern and formulation of a generalization. 

Methodology 
Context and participants 

This study is part of a professional teacher development program in mathematics, in which 16 
secondary school teachers (10 women and 6 men) participated. The data was collected in the first of 
the five sessions that make up the program. Due to the relationship between inductive reasoning and 
generalization, as well as the difficulties of teachers to obtain a generalization of quadratic patterns as 
reported in the literature, the selection criteria for their participation was that they had at least one 
year of teaching experience in the third year of secondary school. This criterion is explained by the 
fact that, in the Mexican curriculum, “patterns and equations” is a topic associated with 
generalization, and the quadratic structure is studied in that education level. 
Data collection 

Data collection was conducted with a written questionnaire and audio recordings. The questionnaire 
had two items A and B (Figure 1). Item A asked for the enunciation of at least two characteristics of 
inductive reasoning in mathematics, and item B requested the description of the phases to be 
followed in order to teach some aspect of the quadratic equation in an inductive way. The replies 
were recorded in writing, and individually, and were subsequently communicated orally to the group 
for further information or clarification. 
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Figure 1: Questionnaire for data collection 

 
Data analysis 

A thematic analysis was conducted to describe the perception of teachers considering the written 
and oral answers to item A. Then, the responses given to item B were associated to the categories of 
perception previously generated and contrasted with the conceptual framework in order to identify 
how teachers interpret inductive reasoning in teaching the concept of quadratic equation. 

Thematic Analysis. This method consists of identifying, analyzing, organizing and systematically 
obtaining patterns (themes) in a data set by detecting and giving sense to the experiences and 
meanings shared in a group (Braun & Clarke, 2006; 2012). This helped to identify patterns of 
meanings in the common characteristics that teachers attribute to inductive reasoning and to form 
categories of their perception. To do this, the six phases of thematic analysis were followed: 
familiarize with the data, search for topics, review those that have potential, define and name themes, 
and produce a report (Braun & Clarke, 2012). 

Results 
Inductive reasoning perception categories 

Five categories were identified on the perception of inductive reasoning, among them were as a 
guide for mathematical knowledge and as a cognitive process. 

• Category 1: Inductive reasoning as a way to guide mathematical knowledge. This category 
consists in the fact that the students can be guided from their previous knowledge to new 
knowledge through questions. An example of this category is shown in the following 
excerpts of responses:  

Teacher L:  Give students an exercise and based on their previous knowledge draw their own 
knowledge. Create a brainstorm to learn what students know.  

Teacher M:  One of the characteristics is to begin asking key questions for the exercises and 
introducing students to the topic. Students begin to reason about the topic through questions and 
are able to visualize the previous knowledge. Guide questions. During the class, doubts may 
emerge [...] and questions may be asked [...], students can achieve the appropriation of concepts. 

• Category 2:  Inductive reasoning as a cognitive process. This category consists of perceiving 
it as a process to move from particular instances (ideas, particular cases or situations) to the 
inference of a general conclusion or result. For example: 

Teacher E:  It goes from the particular to the general...  
Teacher N:  It is a type of reasoning that consist of moving from particular to general ideas. Starting 

from concrete ideas to ideas in general. Generalize based on experiences of the given results.  
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Interpretation of inductive reasoning in teaching: logic and phases 
Four different ways of interpreting teaching a concept based on inductive reasoning were identified. 

Eight teachers interpreted it as a guide for knowledge, such was the case of teacher M (Table 1). Five 
followed a deductive logic rather than inductive logic, for example teacher O; this means that they 
begin with the approach of general formulas or definitions of quadratic equations and conclude with 
a particular example. The deductive or inductive logic was not identified in the phases described by 
two teachers, they focused on “iconic” treatments based on the association of a quadratic property 
with the area of a square figure or the product of a number with itself. Strictly speaking, only the 
phases described by one teacher could be considered as an inductive logic.  Overall, inductive 
processes were found to be absent in the phases proposed by the teachers for teaching quadratic 
equation, except for those described by teacher B (Table 1).  

 
Table 1: Transcription of the phases proposed by two teachers 

Phase Teacher M Teacher B 
1 Previous knowledge: Introductory questions 

about algebraic expression, algebraic language, 
power, law of exponents. 

Specific cases or situations which can be quantified, 
manipulated, or visualized are provided. 

2 Application of the concept of "basic" shapes 
areas (with square shapes). 

Different cases that meet the observed characteristic 
or property are asked. 

3 Delete data and replace it with literals. Start 
with formulas. 

It is required a prediction that this characteristic or 
property is fulfilled for other cases that are not 
tangible or directly observable. 

4  A rule or formula that covers all possible cases is 
obtained; that is, a generalization. 

Conclusions 
Little clarity was identified in teachers about what inductive reasoning is. Most perceive or interpret 

it as a way of guiding mathematical knowledge in a teaching situation. However, this perception 
differs from the idea of inductive reasoning as a means for the construction of concepts; that is, to 
abstract and generalize the key characteristics of an object in specific situations (Sosa, Cabañas y 
Aparicio, 2019; Sriraman & Adrian, 2004; Klauer, 1996). It was also identified that few teachers 
perceive induction as a means to promote processes of generalization and resolution of problems. 
While reference is made to the transition from the particular to the general as a feature of this 
reasoning, the responses reveal a lack of clarity about the underlying processes because there is an 
inadequate interpretation when describing the phases to teach this mathematical concept; some of 
them even used a deductive logic. Therefore, it is necessary to compare and broaden teachers' 
knowledge of inductive reasoning through learning experiences in which they recognize and 
articulate inductive processes in contexts of mathematical generalization. 
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Previous work by the authors (St. Goar et al., 2019) identified two potential key developmental 
understandings (KDUs) (Simon, 2006) in the construction of congruence proofs from a 
transformation perspective for pre-service secondary teachers in an undergraduate geometry course. 
We hypothesized the independence of the potential KDUs in previous work, meaning that students 
may have one potential KDU but not the other, and vice versa. We tested this hypothesis with 
analysis of an expanded data set and found that this hypothesis did not hold in general. We report on 
the expanded analysis and discuss implications for the scope and limitation of the potential KDUs. 

Keywords: Teacher Knowledge, Geometry and Geometrical and Spatial Thinking, Reasoning and 
Proofs 

A change has come to K-12 geometry instruction, and as a result changes to preparation of future 
teachers must follow. Many guidelines (Catalyzing Change in High School Mathematics: Initiating 
Critical Conversations [NCTM], 2018) and standards (National Governors Association Center for 
Best Practices, Council of Chief State School Officers, 2010) now recommend or require the 
teaching of geometry from a transformation perspective instead of the more traditional approach 
originating from Euclid’s Elements (Sinclair, 2008). The concepts and proofs involving congruence 
and similarity now appeal to rigid motions: reflections, rotations, and translations. That is, two 
figures are said to be congruent if and only if there exists a sequence of rigid motions carrying one 
figure onto another. This definition is notably different from those in Euclid’s Elements, where the 
criteria for congruence differs for each type of shape. Thus, the reader will note that the differences 
in mathematical structure between the transformation and Elements contexts are substantial. 

The resulting danger is that some future teachers may lack the content knowledge to handle the new 
approach. Without sufficient content knowledge, they may struggle to know what can be proved in 
this new context and how these proofs may be structured. This lack may affect how they write lesson 
plans and course materials, adapt or modify materials for the context of their class, and evaluate 
student thinking and alternate approaches. Future teachers may need support in the transformation 
context to allow them to thrive in the teaching of geometry. 

Relationship to Prior Literature 
To answer the call, some undergraduate instructors are beginning to incorporate transformation 

geometry into their geometry courses for future teachers. Because transformation geometry is 
becoming a more prominent feature of geometry in post-secondary contexts, research on how pre-
service teachers learn these topics are particularly salient. However, at this point research on how 
pre-service teachers learn transformation geometry is just beginning. Jones and Tzekaki (2016) noted 
the “limited research explicitly on the topics of congruency and similarity, and little on 
transformation geometry” (p. 139). 

Some key results informing our work are the following. Edwards (2003) explained that students in 
middle school through undergraduate contexts tend to view transformations from a motion view, as 
opposed to a map view of transformations. A motion view is characterized by conceptualizing 
transformations as physical movements, such as picking up a figure and shoving it to where it needs 
to go. A map view is characterized in terms of inputs and outputs of transformation, and 
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distinguishes the preimage from the image. For instance, a person with a motion view may think of 
an image and preimage of a figure as being the same object, simply with a different location. But a 
person with a map view can hold the idea that the image and preimage as different objects, and hence 
compare them. Research conducted after Edwards’ (2003) study with middle school students 
corroborate her results, even for high school teachers (Hegg et al., 2018; Portnoy et al., 2006; Yanik, 
2011). These results also note the difficulty that a motion view may present to generating congruence 
proofs from a transformation approach.  

Based on analysis of future teachers’ work on two congruence proofs on a midterm examination, we 
previously highlighted the importance of supporting pre-service teachers in understanding both 
directions of the “if and only if” in the definition of congruence. Further, we identified two potential 
key developmental understandings (KDUs; Simon, 2006), stated below: 

“Potential KDU 1: Understanding that applying the definition of congruence to prove congruence of 
two figures means establishing a sequence of rigid motions mapping one entire figure to the other 
entire figure” (St. Goar et al., 2019). 

“Potential KDU 2: Understanding that using a sequence of transformations to prove that two figures 
are congruent means justifying deductively that the image of one figure under the sequence of 
transformations is exactly the other figure” (St. Goar et al., 2019). 

As the results by St. Goar et al. (2019) were based on analysis of teachers’ work from a single, 
timed assessment, more work is needed to interrogate the accuracy of these potential KDUs. 

Further, we previously hypothesized the independence of these potential KDUs, meaning that 
teachers might hold KDU 1 but not KDU 2, or hold KDU 2 but not KDU 1. We generated this 
hypothesis empirically from examples of teachers’ work in our previous analysis. In considering the 
literature, we might also support and refine this hypothesis as follows. First, potential KDU 1 
pertains to constructing a sequence of rigid motions, and not explicit deductive reasoning about 
images and preimages, which is the scope of potential KDU 2. Second, constructing a sequence of 
rigid motions can be consistent with either a motion view or a map view. However, deductive 
reasoning as needed for congruence proofs might require distinguishing between overlapping figures. 
Although this could be done under a motion view, it seemed plausible to us that conceiving 
transformations as maps was more likely to support a teacher in careful work with images and 
preimages – particularly if the figure is disconnected. It seemed plausible that it is more difficult to 
conceive of “moving” a disconnected figure than “moving” a connected one. In lieu of the literature, 
although it is possible for these potential KDUs to be independently held, the following is a better 
hypothesis: Teachers hold neither potential KDU (if neither motion or map view is developed), 
potential KDU 1 but not potential KDU 2 (representing a motion view), or both potential KDUs 
(representing a map view). 

Objectives 
Hence, we proceeded with the following research questions, with the same teachers’ work on 

different congruence proofs than previously analyzed: (1) Do we continue to see evidence of the 
previously identified potential KDUs? (2) What are the scope and limitations, including the 
independence, of these potential KDUs? 

Conceptual Perspective 
Based on Usiskin and Coxford (1972), a transformation approach assumes without proof that rigid 

motions (e.g., reflections, rotations, and translations) are bijections of the plane that preserve both 
distance and angle measure. Additionally, under such an approach, two subsets of the plane are 
considered to be congruent if and only if there exist a sequence of rigid motions mapping one subset 
to the other. Similarity is treated analogously, incorporating dilations. 
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Key developmental understandings (KDUs) are described by Simon (2006). A key developmental 
understanding has two primary aspects: (1) Achieving a KDU represents a conceptual advance by the 
student. A conceptual advance is “a change in a students’ ability to think about and/or perceive 
particular mathematical relationships” (Simon, 2006, p. 362) and (2) Acquiring KDUs does not tend 
to happen “as the result of an explanation or demonstration. That is, the transition requires a building 
up of the understanding through students’ activity and reflection and usually comes about over 
multiple experiences” (Simon, 2006, p. 362). 

As Simon noted, KDUs generally cannot be found by a mathematician examining their own 
understanding of a topic, but rather through observing students’ mathematical work. As a result, our 
first steps in identifying these potential KDUs have been through the analysis of future teachers’ 
work. Simon noted also that KDUs may be identified with varying amounts of detail and that “the 
level of detail specified for a key developmental understanding is adequate if it serves to guide the 
effort for which it is needed (e.g. curriculum design, further research)” (Simon, 2006 p. 364). Hence 
our analysis here is meant to achieve this necessary detail so that the potential KDUs can be used to 
improve undergraduate geometry curricula and research.  

We use the term “potential KDU” rather than “KDU” because we see our understanding of 
teachers’ understanding as a work in progress that is only based on analysis of written work as 
opposed to cognitive interviews, which would be ideal and needed to substantiate a claim of being a 
KDU. We return to this critical piece in the discussion and questions to the audience. 

Methods 
We collected the coursework of twenty teachers in an undergraduate geometry course taught by Lai. 

We examined homework assignments and midterm exams from throughout the semester for tasks 
where teachers specifically worked on congruence proofs. Here we report analysis of four tasks. This 
resulted in 69 total proof submissions included in the analysis. 

We coded teachers’ work on tasks based on evidence of potential KDU 1 and KDU 2. During the 
course of this analysis, if some criteria had to be changed, then codes were reworked to reflect these 
updated criteria, consistent with constant comparison (Strauss & Corbin, 1994). 

Results 
Addressing the first research question, the basic statements of the potential KDUs remained intact 

after analysis of teachers’ work on additional tasks. Addressing the second research question, this 
analysis provided possible disconfirming evidence for the independence of the potential KDUs. We 
begin this section by reviewing the scope and limitations of the potential KDUs, and then compare 
evidence of each potential KDU. 
Scope and Limitations of Potential KDUs 

Potential KDU 1 is primarily focused on the construction of the sequences of rigid motions. That is, 
in order to have this potential KDU, teachers must construct a sequence of rigid motions from one 
entire figure to another entire figure. This means that aside from the creation of the rigid motions 
themselves, the rest of the deductive logic in a transformation proof is not a part of this potential 
KDU. 

Potential KDU 2 focuses on the deductive reasoning used in the proof. Specifically, teachers need 
to attempt to deductively show that their transformation extends to the entire figure. Note that a 
teachers’ work need not show entirely correct logic in order to show evidence of this potential KDU 
so long as they are attempting to extend arguments about the image of a transformation to entire 
figures and are using deductive logic to do so. 
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(Non) Independence of Potential KDUs 
We hypothesized previously the independence of potential KDU 1 and potential KDU 2, meaning 

that, teachers’ capacity to engage in deductive reasoning about the correctness of a proof may not 
depend on their capacity to construct sequences of rigid motions. We refined our view in lieu of the 
literature to hypothesize that it is most likely that teachers may hold neither potential KDU 1 nor 
potential KDU 2, hold potential KDU 1 and not potential KDU 2, or hold both. Our analysis suggests 
that our initial hypothesis is not well-supported, but our new hypothesis is. For brevity, we limit 
discussion of this to a visual summary of the results of this analysis, shown in Figure 1. 

 

 
Figure 1: The above is a summary of evidence of potential KDU 1 and potential KDU 2 across two 

homework tasks and two midterm examination tasks. 
 

Discussion and Conclusion 
In this report, we expanded on the research by St. Goar et al. (2019) by analyzing future teachers’ 

work on transformation congruence from an undergraduate geometry course. The results confirm the 
viability of potential KDU 1 and potential KDU 2 as codes for teachers’ written work on congruence 
proofs from a transformation approach. Moreover, the results do corroborate the authors’ revised 
hypothesis that that teachers may hold neither potential KDU 1 nor potential KDU 2, hold potential 
KDU 1 and not potential KDU 2, or hold both. In other words, the least likely scenario is that 
teachers hold potential KDU 2 but not potential KDU 1. Indeed, across the tasks, there are only 5 out 
of 69 instances (7%) where teachers’ work shows evidence of potential KDU 2 but not potential 
KDU 1. 

While our work was able to corroborate part of our revised hypothesis described above, the revised 
hypothesis was based on the construct of map view and motion view. We were not able to deduce 
from the available written work which type of view a teacher might hold, and as a result further 
research is needed to investigate this possible role of motion view and map view. 
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Star (2005) argues that “current characterizations of the terms procedural knowledge and 
conceptual knowledge are limiting and are in fact impediments to careful investigation of these 
constructs” (p. 405). Addressing this argument, we examined secondary mathematics teachers’ 
understanding of procedural and conceptual knowledge through the design of mathematical tasks. 
We asked 55 secondary mathematics teachers to design a procedural and a conceptual task on a 
given topic and explain why they think that the task they designed is a procedural and/ or conceptual 
task. The study results showed that 78% of teachers were able to design and correctly explain 
procedural tasks. However, only 5.5% of teachers were able to correctly design conceptual tasks. 
Teachers’ narratives were examined to categorize emerging characteristics of procedural and 
conceptual tasks as well as to address teachers’ (mis)conceptions about procedural and conceptual 
knowledge.  

Keywords: procedural knowledge, conceptual knowledge, task design, secondary mathematics 
teachers. 

Objective 
Mathematics education reform calls for building students’ and teachers’ mathematical proficiency 

that, among other strands, include conceptual understanding and procedural fluency (Kilpatrick, 
Swafford, & Findell, 2001). Star (2005) suggests that the widespread use of the terms conceptual and 
procedural in learning and teaching mathematics can be attributed to Hiebert (1986) who defined 
procedural knowledge as knowledge of procedures (e.g., syntax, steps, conventions, rules) and 
conceptual knowledge as knowledge of relationships (e.g., connected web of knowledge, a network 
of linked information). However, there are different interpretations of the conceptual/procedural 
framework (Star & Stylianides, 2013). Therefore, teachers may agree that reform-oriented 
mathematics teaching and learning should focus on conceptual knowledge, but it could be difficult to 
implement “if teachers do not have a common understanding on what conceptual knowledge is” (Star 
& Stylianides, 2013, p. 5). Considering this challenge, the purpose of this study is to utilize task 
design methodology as a way to explore secondary mathematics teachers’ understanding of 
procedural and conceptual knowledge. This study addresses the following research question: how do 
secondary mathematics teachers’ operationalize the distinction between procedural and conceptual 
knowledge through task design methodology? 

Perspectives  
Procedural vs. Conceptual Knowledge  

There is a vast existing literature on the differences between procedural and conceptual knowledge. 
Star (2005) argues that procedural and conceptual knowledge can have a superficial and/or a deep 
quality. Deep procedural knowledge is “knowledge of procedures that is associated with 
comprehension, flexibility, and critical judgment and that is distinct from (but possibly related to) 
knowledge of concepts” (Star, 2005, p. 408) while deep conceptual knowledge is about knowledge of 
concepts with rich connections.  
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In this study, we examine different ways secondary mathematics teachers express their procedural 
and conceptual knowledge by evaluating mathematical tasks that they designed. We view the 
superficial and deep quality of the two types of knowledge as an intersection between procedural and 
conceptual knowledge, as shown in figure 1. The arrows at the intersection show how the procedural 
knowledge can deepen into conceptual knowledge and how conceptual knowledge can be surfaced 
into procedural knowledge.  
Task Design  

We employed task design as a methodology to unpack teachers’ understanding of procedural and 
conceptual tasks. Research on task design has been common to study teachers’ content knowledge 
(Gellert et al., 2012). Several studies have focused on pre-service teachers’ designing tasks as part of 
their training (Chinnappan & Forrester, 2014; Hannigan et al., 2013; Rayner et al., 2009). Some 
studies have focused on designing tasks aligned with technology (Gueudet et al., 2016; Hansen et al., 
2016; Misfeldt & Zacho, 2016). Additionally, researchers have created tasks to be used by teachers 
(Jung & Brady, 2016; Tempier, 2016; Wake et al., 2016) while other researchers discussed the design 
of tasks with teachers (Coles & Brown, 2016; Johnson et al., 2016; Thanheiser et al., 2016). 
However, when examining mathematical tasks with in-service teachers, most studies have examined 
how in-service teachers choose mathematical tasks (Cartier et al., 2013; Roth McDuffie & Mather, 
2006). The field lacks studies that use task design as a methodology to address teachers’ 
misconceptions. By asking teachers to design their own tasks we can analyze further their reasoning 
(Cartier et al., 2013).   

Methods of Data Collection  
Context 

This study was part of a larger project that took place during four years from 2013 to 2016. The 
larger project was a series of professional development workshops focused on mathematics content. 
This study took place at a university located on the U.S.-Mexico border. The vast majority of people 
in this area identify themselves as Hispanics (80%). Many of them are recent immigrants from 
Mexico. The population of the main school districts reflects the demographics of the city. The 
workshop was aimed to support the training and retention of secondary school mathematics teachers.  
Participants 

Workshop participants (N=55) were selected from local secondary schools. Teachers that attended 
the professional development workshop were from five different school districts across the region.  
Most of the teachers were female (62%). Also, the majority of the teachers reported their 
race/ethnicity as Hispanics (81%), 17% reported their race as White, Non-Hispanic, and 2% as 
African American. Years of teaching experience varied from half a year to 15 years. 
Data Sources 

All 55 teachers that participated in the study answered a survey that required them to design a 
procedural and conceptual task and explain their reasoning. The purpose of this survey was to 
examine the teachers’ understanding of procedural and conceptual knowledge. Two topics were used 
for the survey: area and proportion. In addition, we conducted semi-structured interviews where 
teachers were asked to talk about their understanding of procedural and conceptual tasks. 
Data Analysis  

Once the survey data was graded, both researchers analyzed the tasks that the teachers designed and 
looked for patterns. We were interested in examining closely the types of tasks the teachers designed. 
The tasks were graded on whether they were surface or deep procedural or surface or deep 
conceptual. We also looked for patterns on their explanations. The interviews were coded to look for 
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instances in which the teachers talked about the design of mathematical tasks. Emergent codes were 
extracted using linguistic analysis and meaning coding techniques (Kvale & Brinkmann, 2009). After 
the authors coded the data separately, the two researchers held meetings to reach a consensus on the 
codes to separate them into final categories.  

Results 
Teachers created a wide array of tasks as procedural and conceptual tasks. Table 1 shows the 

percentage of the types of tasks teachers designed. The table clearly shows that teachers were able to 
correctly design procedural tasks (78%) while the majority designed a procedural task when they 
intended to design a conceptual task (80%). There is also a percentage of teachers that created tasks 
that were ill-designed or provided no answer (i.e., 22% for procedural tasks and 14.5% for 
conceptual tasks). When the explanations were analyzed along with the tasks that teachers designed, 
we found different patterns. Tables 2 and 3 show the different codes that were created based on 
teachers’ explanations and the types of tasks. The majority of teachers argue that their task is 
procedural because it includes a procedure (35%) or because it requires to substitute or “plug-in” 
values in a formula (29%).  When they were designing the conceptual task they argued that their task 
is conceptual because: it is about finding a relationship (26%), it is a multi-step problem (26%), it is a 
word problem (23%) or it has a real-world connection (21%).  

Besides designing a task teachers had to provide a solution as well as an explanation of why they 
think the task is either procedural or conceptual. For example, a teacher designed the following task: 
“solve the following, !

!
= !

!"
” as a procedural task. This teacher wrote the following explanation: 

“Must find x using cross multiplication, then division, very procedural, no connection.” For this 
teacher, this problem is procedural because is about just solving for x. Using Star’s (2005) 
classification, we rated it as a superficially procedural task, The following task was intended as a 
conceptual task:  

Laura types 168 words in 25 minutes, if she continues typing at this rate, how much time will she 
spend typing a 1500 word paper? 

The explanation for this task written by the teacher was: “Because students need to apply what they 
learned on proportions by solving real-world problems in order to make connections.” Based on this 
teacher’s explanation, there is some understanding about conceptual knowledge by using words and 
phrases like “real-world problem” and “connections.” However, upon further examination of this 
task, we can see that this task requires just procedural knowledge since, after setting up the equation, 
the solution would look very similar to the previous one. The main difference is that this is a word 
problem, which would require a student to read the problem, determine if this is a proportional 
situation, and set up the equation. Therefore, we rated it as a deep procedural task using Star’s (2005) 
classification. 

Another teacher designed the following task: “What is the maximum area of a rectangle if the 
perimeter is 20?” with an explanation that said, “it requires to use prior knowledge of area and 
perimeter”. The use of “prior knowledge” in the explanation might imply that the teacher was 
thinking about how the student would have to make connections between fixed perimeter and 
changing area. This task was one of the few that was rated as a deep conceptual task following Star’s 
(2005) classification. During interviews, teachers expressed the desire to design more conceptual 
tasks but said they need help. For instance, a teacher said about conceptual tasks, “to get them 
(students) to apply it to the real world and forces them to kind of make the connections, so it’s 
something I think I am improving on, I don’t think I am quite at the area but I am improving on it…” 
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Discussion and Conclusions  
Teachers have an understanding of procedural knowledge related to the steps that require solving a 

mathematical task. While some teachers used language related to conceptual knowledge in their 
explanations, they face challenges in designing conceptual tasks. For the majority, the actual tasks 
that they designed illustrate some misconceptions about procedural and conceptual knowledge. This 
study adds to the growing literature about procedural and conceptual knowledge (Hannigan et al., 
2013; Rayner et al., 2009; Rittle-Johnson et al., 2015; Star & Stylianides, 2013) by utilizing task 
design as a methodology. Based on teachers’ (mis)conceptions of procedural and conceptual tasks, 
more studies need to be conducted to aid teachers not only in selecting tasks but in designing them as 
well.  

 

 
Figure 1: Relationship between Conceptual and Procedural Tasks 

  
Table 1: Teacher designed tasks rated by experts as procedural and/or conceptual  

 Procedural  Conceptual 
Rated as Procedural  43   (78%) 44   (80%) 
Rated as Conceptual  0     (0.0%) 3     (5.5%) 
Ill-designed/no answer 12   (22%) 8     (14.5%) 
Total 55   (100%) 55   (100%) 

 
Table 2: Number and Percentage of Teacher Explanations for the Procedural Task  

Procedure Word-
Problem 

Substitute  Multi-step No real 
world 

connections 

No 
explanation 

Total codes 

18  (35%) 8 (16%)      15 (29%)      4  (8%)      6  (12%)       0 (0%) 51 (100%) 
 

Table 3: Number and Percentage of Teacher Explanations for the Conceptual Task  
Procedure  Word-

Problem 
Substitute  Multi-

step 
Real world 
connection  

No 
explanation 

Total codes 

12     (26%) 11 ( 23%) 1  (2%) 12 (26%) 10 (21%) 1  (2%) 47 (100%) 
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When studying mathematics education and student success, most research tends to study the in-
classroom teaching aspect. Another important aspect of mathematics education occurs outside the 
traditional classroom with tutors. While it has been shown that tutoring leads to student success (Xu, 
Hartman, Uribe, & Mencke, 2001), research has not necessarily focused on what tutoring is or what 
makes it effective. In recent years, efforts have been made to expand research in this field. Two 
major themes are the study of the types of knowledge necessary for effective tutoring and the 
interplay between these domains of knowledge to better understand the tutoring process. 

Mathematical Knowledge for Tutoring 
Burks and James (2019) began to create a theoretical framework for what constitutes “Mathematical 

Knowledge for Tutoring (MKTu)” (Burks & James, 2019) derived from Mathematical Knowledge 
for Teaching (MKT; Ball, Thames, & Phelps, 2008) model. What they determined is that a MKTu 
model would differ slightly from MKT in that the MKTu would include two overarching domains of 
affect and self-regulation. Additionally, certain domains shared by MKT and MKTu may not 
necessarily be implemented in the same manner. For example, while a classroom teacher is typically 
expected to be a master of their subject, a tutor is not, and thus, their common content knowledge 
tends to be more general, with a focus on solving problems rather than conceptual understanding. 
This new framework prompts a number of new avenues for research.  

The Study 
One such avenue is research into the relationship between a tutor’s content knowledge and the 

pedagogical decisions they make while tutoring. In this poster, we present the results of a study in 
which we develop and facilitate mock-tutoring scenarios for tutors at a generalist-model tutoring 
center, and analyze their interactions with an actor-student (Jose Saul Barbosa) through the lens of 
MKTu, with consideration given to the dimensions for tutoring centers laid out by Byerly et al. 
(2019). In a generalist model, tutors are not experts in a single content area, rather they have a more 
general knowledge on a variety of subjects (Byerly et al. 2019). This variation provides an excellent 
opportunity to study how one’s content knowledge interacts with the other domains of MKTu. In 
addition, we present the results of analyzing brief content assessments associated with the scenarios 
to draw comparisons between a tutor’s content knowledge and the choices they make while tutoring. 
This study has implications not only for understanding the ways in which a tutor’s content 
knowledge informs their tutoring, but also the ways it interacts with the other domains of MKTu. In 
studying this, we hope to contribute to future research into determining what factors and decisions 
can lead to effective tutoring. 
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Past research suggests that teacher’s intentions to root mathematics instruction in conceptual 
understanding is impeded by their content knowledge and pedagogical beliefs (Borko et.al., 1992; 
Fuller, 1996). A significant source of this knowledge and beliefs may be attributed to their own 
experiences as mathematical learners (Chicoine, 2004). Implementation of the Common Core 
Mathematical Standards and Practices, launched in 2009,  have emphasized the importance of 
instruction and learning focused on developing both mathematical procedural knowledge and 
conceptual understanding. Novice teachers have experienced the implementation of the Common 
Core during their own k-12 experience, as well as within their teacher preparation program. It may be 
that the renewed emphasis on productive mathematical dispositions and conceptual understanding 
present in the Common Core era may be realized in the content and pedagogical knowledge of these 
novice teachers. 

In an effort to better understand novice teacher’s mathematics knowledge and the potential 
influence of development of mathematical understanding under the Common Core, we have designed 
a study to examine one specific content area- the interpretation of fraction concepts. Fraction were 
chosen specifically due to the challenge they present to both pre-service and in-service teachers (Ma, 
1999). Our data collection initially focused on how novice teachers across the k-12 grade level apply 
their own mathematical understanding to interpreting fractions and applying fraction operation. To 
address this area, artifacts of teacher work comparing, adding, and division of fractions was 
collected. We then compared the solution strategies utilized by the teachers in their own work was 
compared to the instructional strategies chosen by these teachers in their classrooms. Within this 
comparison, we questioned teachers to understand the impetus for these instructional decisions. 

Results of the study suggest diverse solution strategies to the fraction problems within and across 
certification levels (e.g. elementary compared to high school). When choosing instructional strategies 
to apply for the instruction of fraction concepts the school curriculum was not often cites as a 
common resource. Instead, many of the teachers focused on their own backgrounds and experiences 
to determine their instructional approaches. This finding is of interest because of the potential for 
contradictions between teacher held beliefs on appropriate methods of instruction and instruction that 
exists in school and state curriculums.  
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Bringing to life a vision of mathematics teaching that emphasizes reasoning and proof across topics 
and grade levels can be a challenging task for teachers. To support and enhance teachers’ content and 
pedagogical knowledge for teaching reasoning and proof, we developed and systematically studied a 
capstone course for preservice teachers (PSTs) Mathematical Reasoning and Proving for Secondary 
Teachers. The course emphasized integration of reasoning and proof with teaching secondary 
mathematics across any curricular topic, not just high-school geometry.  

During our design-based research project, we developed and tested four instructional modules, each 
focusing on a particular proof theme: (1) direct reasoning and argument evaluation, (2) conditional 
statements, (3) quantification and the role of examples in proving, and (4) indirect reasoning. Each 
module comprised three types of activities: crystalize, connect and apply. The crystalize activities 
aim to help PSTs refresh their memory of a particular proof theme, within secondary school content. 
The PSTs enhance their knowledge by solving problems, as well as discussing and clarifying 
questions or misconceptions, e.g., the difference between proof by contradiction and by 
contrapositive. In the connect activities, the PSTs have an opportunity to connect their mathematical 
knowledge with knowledge of students’ conceptions. The PSTs read cases or watch video or 
animations of classroom scenarios depicting students working on problems in a particular proof 
theme. For example, in the connect activity of the Quantification and the Role of Examples in 
Proving module the PSTs analyze a dialog between three students contemplating how to interpret a 
statement “There exist three consecutive even numbers whose sum is a multiple of four” and what 
kinds of examples can prove or disprove (if possible) this statement. Next, the PSTs envision 
possible pedagogical moves to support student thinking in the scenario. The apply tasks invite PSTs 
to identify opportunities in secondary curriculum to make proof themes explicit to students, and to 
develop a lesson plan that achieves that goal. In our course, we had PSTs implement these lessons in 
actual middle and high school classrooms, videotape themselves, and reflect of their teaching 
(Buchbinder & McCrone, 2018).  

All four course modules were designed to be independent from each other and applicable for 
individual use in courses for PSTs or teacher workshops. The design of the instructional modules is 
grounded in the literature on best practices for teacher learning and professional development, such 
as focusing on deepening both content and pedagogical knowledge, engaging teachers in active 
learning experiences, and making direct connections to teachers’ classroom practices (American 
Federation of Teachers 2002; Boston & Smith, 2009, 2011; Copur-Gencturk & Papakonstantinou, 
2015). In our poster, we will show the four modules, explicate design features underlying their 
development, and provide evidence for the effectiveness of the modules.   

Acknowledgments  
This research was supported by the National Science Foundation, Award No. 1711163. The 

opinions expressed herein are those of the authors and do not necessarily reflect the views of the 
National Science Foundation. 



Advancing reasoning and proof in secondary mathematics classrooms: instructional modules for supporting teachers 

	 891	

References  
American Federation of Teachers. (2002). Principles for professional development: AFT’s guidelines for creating 

professional development programs that make a difference. Washington, DC: Author. 
Boston, M. D., & Smith, M. S. (2009). Transforming secondary mathematics teaching: Increasing the cognitive 

demands of instructional tasks used in teachers’ classrooms. Journal for Research in Mathematics Education, 
40(2), 119–156. 

Boston, M. D., & Smith, M. S. (2011). A ‘task-centric approach’ to professional development: Enhancing and 
sustaining mathematics teachers’ ability to implement cognitively challenging mathematical tasks. ZDM, 43(6–
7), 965–977. 

Buchbinder, O. & McCrone, S. (2018) Mathematical Reasoning and Proving for Prospective Secondary Teachers. 
Proceedings of the 21st Annual Conference of the Research in Undergraduate Mathematics Education, Special 
Interest Group of the Mathematical Association of America (pp. 115–128). San Diego, CA. 

Copur-Gencturk, Y. Olanoff & Papakonstantinou, A. (2015). Sustainable changes in teacher practices: A 
longitudinal analysis of the classroom practices of high school mathematics teachers. Journal of Mathematics 
Teacher Education. DOI 10.1007/s10857-015-9310-2. 

 
 



Mathematical Knowledge for Teaching 

In: Sacristán, A.I., Cortés-Zavala, J.C. & Ruiz-Arias, P.M. (Eds.). (2020). Mathematics Education Across Cultures: 
Proceedings of the 42nd Meeting of the North American Chapter of the International Group for the Psychology of 
Mathematics Education, Mexico. Cinvestav / AMIUTEM / PME-NA. https:/doi.org/10.51272/pmena.42.2020 

892	

TECHNOLOGICAL KNOWLEDGE OF MATHEMATICS PRE-SERVICE TEACHERS AT 
THE BEGINNING OF THEIR METHODOLOGY COURSES 

CONOCIMIENTO TECNOLÓGICO DE LOS FUTUROS MAESTROS DE MATEMÁTICAS AL INICIAR SUS 
CURSOS DE MÉTODOLOGÍA  

Yency Choque-Dextre 
Universidad de Puerto Rico 

yency.choque@upr.edu  

Juliette Moreno-Concepción 
Universidad de Puerto Rico 

juliette.moreno@upr.edu  

Omar Hernández-Rodríguez 
Universidad de Puerto Rico 
omar.hernandez4@upr.edu  

Wanda Villafañe-Cepeda 
Universidad de Puerto Rico 
wanda.villafane1@upr.edu 

Gloriana González 
University of Illinois 
ggonzlz@illinois.edu 

Keywords: Mathematical Knowledge for Teaching, Technology, Teacher Educators, Teacher’s 
Knowledge 

Mathematics pre-service teachers must learn how to use tools like scientific calculators, Computer 
Algebra System (CAS), text processors and dynamic mathematical environments. These tools allow 
users to work with mathematical objects, perform specialized tasks, respond in a defined 
mathematical way, and transmit mathematical knowledge (Dick & Hollebrands, 2011). To achieve 
the integration of technology in Mathematics Education, the teacher’s role is very important, since 
their beliefs and knowledge will dictate how they use technology in the classroom (Julie et al., 2010). 

The goal of this research is to determine the beliefs and knowledge about technology and its 
integration into the teaching of mathematics by a group of pre-service teachers at the beginning of 
their first course of methodology in the teaching of mathematics at the secondary level (N=11).  
Interviews were conducted, and a questionnaire was administered to determine the profile 
participants use of technology at their schools and universities. 

The results show that participants have used scientific calculators, content management software 
and online platforms. However, they have little experience with programs that allow them to work 
with mathematical objects (Dynamic Geometry or CAS). The participants have had a low level 
approach to technology, since both, they and their teachers, use the computer mainly for 
presentations, and calculators to corroborate results obtained with pencil and paper (Sacristán, 2017). 
98% of the pre-service teachers that participate have used word processors, spreadsheets, 
presentations, emails, and cloud storage for academic purposes. Likewise, 59% of the participants 
indicated that they learned to use these technologies on their own. In the case their beliefs, 
participants indicated that the technology oriented to mathematical learning improves the quality of 
education, increases student participation, cooperative work experiences, individualized learning, and 
the motivation of students. 

The participants have a positive perspective towards the use of technology in the mathematics 
classroom. However, their experiences and knowledge are not enough to do mathematical work or to 
teach mathematics. Therefore, it is necessary to expose pre-service teachers to experiences that allow 
them an integration that facilitates the learning of their students. (Julie et al. 2010; Önal, 2016; 
Sacristán 2017). We propose that, in the preparation of future teachers, a systematic and theoretical 
framework of the Technological Pedagogical Content Knowledge (TPACK), which is necessary to 
teach mathematics, is used (Harris et al., 2009; Rosenberg & Koehler, 2015). 
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Los maestros en formación deben aprender a utilizar herramientas como las calculadoras científicas, 
los sistemas algebraicos computadorizados, los procesadores de textos y los entornos matemáticos 
dinámicos.  Estas herramientas permiten a los usuarios trabajar con objetos matemáticos, realizar 
tareas especializadas, responder de una forma matemática definida y trasmitir conocimientos 
matemáticos (Dick & Hollebrands, 2011). Para lograr la integración de la tecnología en la educación 
matemática el rol del maestro es muy importante ya que de sus creencias y conocimientos dependerá 
el uso que haga de ellas en el salón de clases (Julie et al., 2010).  

El objetivo de este trabajo es determinar las creencias, el conocimiento sobre la tecnología y su 
integración en la enseñanza de las matemáticas de un grupo de maestros en formación al inicio de su 
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primer curso de metodología de enseñanza de las matemáticas en el nivel secundario (N=11). Se 
realizaron entrevistas y se administró un cuestionario para determinar el perfil de uso de la tecnología 
en la escuela y en la universidad de los participantes. 

 Los resultados demuestran que los participantes han utilizado calculadoras científicas, programas 
gestores de contenido y plataformas en línea. Sin embargo, tienen poca experiencia en programas que 
les permitan trabajar con objetos matemáticos (Geometría Dinámica o “Computer Algebra 
Systems”).  Los participantes de este estudio han tenido un acercamiento con la tecnología de bajo 
nivel ya que tanto ellos como sus maestros utilizaron la computadora principalmente para hacer 
presentaciones y las calculadoras para corroborar resultados obtenidos con lápiz y papel (Sacristán, 
2017). El 98% de los maestros en formación ha utilizado para fines académicos procesadores de 
palabras, hojas de cálculo, presentaciones, correos electrónicos y nubes de almacenamiento. 
Igualmente, un 59% indica que han aprendido ha utilizar estas tecnologías por su propia cuenta. En 
relación con las creencias, los participantes indican que la tecnología orientada al aprendizaje 
matemático mejora la calidad de la educación, la participación, el trabajo cooperativo, el aprendizaje 
individualizado y la motivación en los estudiantes.  

Los participantes tienen una orientación positiva hacia el uso de la tecnología en las matemáticas. 
Sin embargo, sus experiencias y conocimientos no son suficientes para hacer trabajo matemático o 
para enseñar matemáticas. Por ello, es necesario exponer a los futuros maestros a experiencias que 
les permita una integración que facilite el aprendizaje de sus estudiantes (Julie et al. 2010; Önal, 
2016; Sacristán 2017). Proponemos que en la formación de maestros se utilice sistemáticamente un 
marco teórico del conocimiento pedagógico, tecnológico y de contenido necesario para enseñar 
matemáticas (Harris et al., 2009; Hollebrands, 2017; Rosenberg & Koehler, 2015). 
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There is a growing consensus that mathematics teacher educators (MTEs) need a robust knowledge 
base in order to prepare prospective teachers (e.g., Chavout, 2008; 2009). However, research has 
shown that the majority of MTEs are not provided the support or training necessary to develop this 
knowledge (Masingila et al., 2012). Professional organizations have called for improved preparation 
of MTEs (AMTE, 2017; CBMS, 2012), but the ways in which MTEs develop Mathematical 
Knowledge for Teaching Teachers (MKTT) it is not yet understood. 

For the past three years, our research group has been studying the literature on MKTT (Castro 
Superfine et al., in preparation; Olanoff et al., 2018; Welder et al., 2017). As part of this work, we 
have conducted an extensive literature search of research on the knowledge MTEs use in their work 
with prospective and practicing teachers and how this knowledge is developed. Thus far, we have 
organized the extant literature into five overall themes capturing the ways in which MTEs have 
developed MKTT. In this poster, we will offer the five themes, summarize pertinent research for 
each, and discuss implications this work has on the preparation and professional development of 
MTEs. Below we offer a sampling of our findings. 

1. Learning through reflective self-study. Many MTEs who are also researchers have 
conducted reflective self-studies of their teacher education practices (e.g. Alderton, 2008; 
Allen et al., 2018; Chavout, 2009; Marin, 2014; Muir et al., 2017; Taylan & da Ponte, 2016). 
These studies vary (for example, individual vs. collaborative efforts), including whether or 
not the researchers identified professional growth as a finding of their self-study. 

2. Learning through communities of practice. Some groups of MTEs (e.g., Applegate et al., 
2020; Jaworski, 2003; Olanoff et al., in press) have formed communities of practice to 
improve the MKTT of all of the group members and/or initiate novice MTEs into the field.  

3. Learning through graduate preparation and/or professional development activities. Few 
studies describe how MTEs have taken graduate-level courses (Flores et al., 2017), or 
participated in formal professional development opportunities, as part of their own learning 
(Hauk et al., 2017; Castro Superfine & Li, 2014). Flores and colleagues (2017) suggest that 
taking graduate courses or participating in other forms of professional development can 
provide meaningful opportunities for MTEs to reflect on and build upon their own 
knowledge. 

4. Learning through research. Some authors (e.g., Chauvot, 2008, 2009; Chen et al., 2008) 
suggest that MTEs develop MKTT by being Mathematics Teacher Educators/Researchers. 
This work can involve studying one’s own practices of teaching teachers as well as studying 
the literature involving the teaching and learning of MKT. 

5. Learning through doing the work of teaching teachers. Ball and her colleagues (2008) 
suggest that MKT is the knowledge required to perform the mathematical tasks of teaching. 
Building on this, some researchers (e.g., Zopf, 2010) define MKTT as the knowledge 
required to perform the mathematical tasks of teaching teachers. Zopf and others, such as 
Jankvist and colleagues (2019) suggest that MTEs develop MKTT on the job by performing 
the work of teaching teachers. 
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The need to strengthen teachers’ mathematical knowledge for teaching in Mexico has been 
identified as a recurrent topic in the literature (Eugenio & Zaldívar, 2019; García, et al., 2019; Juárez 
Eugenio & Arredondo López, 2017; OCDE, 2012). Addressing this need, we present results from a 
diagnostic study administrated to 355 elementary teachers in Mexico enrolled in a course focused on 
rational numbers. The results are contrasted with both a similar diagnostic administrated to 360 
university students enrolled in other programs and the way in which this topic is addressed in 
textbooks in Mexico and Canada. 

We focus our analysis on the distinct representations of mathematical objects, as well as the diverse 
images, metaphors and analogies related to rational numbers (Lakoff y Núñez, 2000; Núñez y 
Marghetis, 2014). For the case of rational numbers, we considered the division of objects in equal 
parts (Confrey et al., 2009). However, our review of textbooks from Canada and the official student 
resource in Mexico (Comisión Nacional Libro de Texto Gratuito, 2019) reveled that images and 
descriptions for fractions make emphasis on dividing a shape in congruent parts. However, the area 
model for fraction requires parts with the same measure of surface area, without the need of being 
congruent. Figure 1 shows two of the questions in the diagnostic test. 

 
Question 1: Which fraction is 

represented in the shaded shape? 

 

Question 2: If the area of the rectangle is 12, what is the area 
of the shaded part? 

 

Figure 1: Diagnostic test questions related to rational numbers and the are model. 
 

The results of the diagnostic test administrated to teachers suggest that many of them attended to the 
shape of the shaded part, instead of its area. The diagnostic to other undergraduate students, which 
included written justifications of their answers, was consistent with the suggested results from the 
diagnostic to teachers. In this sense, the answers to Question 1 were 1/2, 1/3 and 2/4. Although 1/2 
and 2/4 are equivalent rational numbers, the justifications for 2/4 included the division of the shaded 
triangle in two equal parts, dividing the square in four congruent triangles. Many people who 
answered 2/4 did not answer Question 2 correctly, which suggests that they focused on the shape of 
the parts rather than the surface area. 

These results plead for the need to clarify the meaning of “equal” in the definition of fractions, both 
in teachers’ knowledge and textbooks. We consider that this analysis based on representations and 
metaphors can be extended to other school content. 



¿1/2, 1/3 o 2/4? Interpretación de respuestas de docentes de nivel básico a una evaluación 

	 899	

References  
Comisión Nacional Libro de Texto Gratuito (2019). Desafíos matemáticos, libro del alumno, Sexto grado. Secretaría 

de Educación Pública. https://www.cicloescolar.mx/2018/08/desafios-matematicos-sexto-2018-2019.html  
Confrey, J., Malony, A., Nguyen, K., Mojica, G., & Myers, M. (2009). Equipartitioning/splitting as a foundation of 

rational number reasoning using learning trajectories. In Tzekaki, M., Kaldrimidou, M. & Sakonidis, H. (Eds.), 
Proceedings of the 33rd Conference of the International Group for the Psychology of Mathematics Education, 
Vol. 2, (pp. 345-352). PME. http://www.igpme.net/wp-content/uploads/2019/05/PME33-2009-Thessaloniki.zip 

Eugenio, M. D. R. J., & Zaldívar, M. A. A. (2019). Percepciones de los futuros profesores de matemáticas de 
Francia y México sobre su formación. Unión: Revista Iberoamericana de Educación Matemática (55), 31-53. 

García, F. J., Arredondo, M. del S., & Ávila Aguirre, A. (2019). ¿Por qué Paquito no sabe sumar?. cuarenta años 
después: Ya suma pero no multiplica y menos divide. Edähi Boletín Científico De Ciencias Sociales Y 
Humanidades Del ICSHu, 8(15), 1-10. 

Juárez Eugenio, M., & Arredondo López, M. (2017). Las competencias matemáticas de los docentes de Francia y de 
México. Voces De La Educación, 2(3), 70.  

Lakoff, G. & Núñez, R. (2000). Where mathematics come from: How the embodied mind brings mathematics into 
being. Basic Books. 

Núñez, R., & Marghetis T. (2014). Cognitive linguistics and the concept(s) of number. In R. C. Kadosh & A. 
Dowker (Eds.), The Oxford Handbook of Numerical Cognition (pp. 377 – 401). Oxford University Press. 

OCDE, (2012). Mejorar las escuelas. Estrategias para la acción en México. OECD 
http://www.oecd.org/dataoecd/44/49/46216786.pdf 

 

¿1/2, 1/3 O 2/4? INTERPRETACIÓN DE RESPUESTAS DE DOCENTES DE NIVEL 
BÁSICO A UNA EVALUACIÓN 

1/2, 1/3 OR 2/4? INTERPRETATION OF ELEMENTARY SCHOOL TEACHERS’ ANSWERS TO AN 
EVALUATION 

Armando Paulino Preciado Babb 
University of Calgary 
apprecia@ucalgary.ca 

María Estela Navarro Robles 
Universidad Pedagógica Nacional 

m.estela.navarro@gmail.com 

Palabras clave: Conocimiento del profesor, Conceptos de Números y Operaciones, Números 
Racionales 

La necesidad de fortalecer el conocimiento matemático para la enseñanza de los profesores en 
México ha sido identificada como tema recurrente en la literatura (Eugenio & Zaldívar, 2019; García, 
et al., 2019; Juárez Eugenio & Arredondo López, 2017; OCDE, 2012). Atendiendo esta necesidad, 
presentamos resultados de un estudio diagnóstico a 355 profesores de educación básica en México en 
el contexto de un curso enfocado en números racionales. Los resultados se comparan con un 
diagnóstico similar a 360 estudiantes universitarios en otras carreras, así como la forma en que se 
aborda el tema en libros de texto de educación básica en México y Canadá. 

Enfocamos nuestro análisis en las distintas representaciones de objetos matemáticos, así como las 
diversas imágenes, metáforas y analogías relacionadas con los números (Lakoff y Núñez, 2000; 
Núñez y Marghetis, 2014). Para el caso de números racionales se considera la división de objetos en 
partes iguales (Confrey et al., 2009). Sin embargo, nuestra revisión de libros de texto de Canadá y del 
recurso oficial en México (Comisión Nacional Libro de Texto Gratuito, 2019), reveló que las 
imágenes y descripciones de fracción hacen énfasis en la división de una figura en partes 
congruentes. Sin embargo, el modelo de área para fracciones requiere que las partes compartan la 
misma medida de su área, sin ser necesario que sean congruentes. La Figura 1 muestra dos de las 
preguntas del diagnóstico. 
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Pregunta 1: ¿Qué fracción 
representa la figura? 

 

Pregunta 2: Si el área del rectángulo es 12, ¿cuál es el área de 
la parte sombreada? 

 

Figura 1: Preguntas correspondientes a números racionales usando el modelo de área 
 

Los resultados de la evaluación diagnóstica a maestros sugieren que muchos pusieron atención a la 
forma de las partes en lugar del área. El diagnóstico a estudiantes universitarios, que incluyó 
respuestas escritas con justificación, fue consistente con los resultados sugeridos en el diagnóstico a 
profesores. En este sentido, las respuestas a la Pregunta 1 fueron 1/2, 1/3 o 2/4. Si bien 1/2 y 2/4 son 
equivalentes como números racionales, las justificaciones para 2/4 incluyeron la división del 
triángulo sombreado en partes iguales, dividiendo al cuadrado en cuatro triángulos congruentes. 
Muchas personas que respondieron 2/4 no respondieron correctamente la Pregunta 2, lo que sugiere 
que se enfocaron en la figura, no en el área. 

Estos resultados dan cuenta de la necesidad de aclarar qué se entiende por “igual”, tanto en el 
conocimiento del profesor como en los libros de texto. Consideramos que este análisis basado en 
representaciones y metáforas se puede extender a otros contenidos escolares. 
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We report what took place in our qualitative research in mathematics education and science 
teaching, on the Relativity Principle (RP) proposed by Giordano Bruno (GB), which, up until today, 
has been adjudicated to Galileo. De Angelis and Espirito (2015) report on that situation.  

We considered the 1993, 2006, 2011 and 2017 curricula used in Mexico for science teaching, with 
emphasis in Physics, particularly of the free fall topic, which ask to contrast what was carried out by 
Aristotle and Galileo Galilei. Bruno's innovation of the relativity principle (1984/1972) is highlighted 
as follows: “TEO: With Earth move therefore, everything what is on it. Because of that, if, from one 
place outside Earth an object is launched toward it, it could lose the straightness due to its 
movement” (p.61).  

In the Concept Models (CM) theory, invented by teachers, researchers, engineers, architects in order 
to facilitate the comprehension or teaching of physical systems, Mental Models (MM) are  

models that people build to represent physical states. They do not need to be technically 
accurate but they must be functional. They evolve naturally. They are limited by factors such 
as knowledge, previous experience and the own structure of information processing of 
human been.  (Moreira, 1997, p. 45).  

The following problem was given to 117 students of seventh grade in a public school of a 
metropolitan area near Mexico City:  

Imagine a ship that moves in a constant velocity. From the tallest mast a rock is released.  
Do you believe that the rock will fall exactly at the mast´s base where the rock was released? 
Justify your answer. The proposed problem is based on one of Bruno (1584/1972, p. 161).  

The following is the most frequent Mental Model from the studied population: 
MM: “No, because, while it falls through the air, the ship moves and the rock doesn't fall in 
the same place” 

 
Figure 1. Image retrieved from Matías & Gallardo (2019, p. 98). 

The studied problem shows the need of analyzing important concepts for the comprehension of 
relativity principle, making it possible to use Giordano Bruno’s proposal as a teaching alternative. 
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Se reporta lo acontecido en una investigación cualitativa en la enseñanza de  la matemática y las 
ciencias, usando el Principio de Relatividad (PR) propuesto por Giordano Bruno (GB) hasta hoy 
adjudicado a Galileo. De Angelis, A. y Espirito, C. (2015) también reportan y reclaman dicha 
situación.  

Se contemplaron los Planes y Programas de los años 1993, 2006, 2011 y 2017 usado en México 
respecto a la enseñanza de las ciencias con énfasis en física particularmente sobre la caída libre, los 
cuales piden contrastar lo realizado por Aristóteles y Galileo Galilei. Se resalta la primicia del PR en 
Bruno (1584/1972) como sigue: “TEO: Con la tierra se mueven por tanto, todas las cosas que se 
encuentran en ella. Por consiguiente, si desde un lugar fuera de la tierra se arrojara algún objeto hacia 
ella, perdería la rectitud debido al movimiento de ésta.” (p. 61) 

Se usó la teoría de los Modelos conceptuales (MC): “Aquellos inventados por los profesores, 
investigadores, ingenieros, arquitectos, para facilitar la comprensión o la enseñanza de sistemas 
físicos…” En ella, los Modelos Mentales (MM) son  

modelos que las personas construyen para representar estados físicos. No requieren ser 
técnicamente precisos, sino que deben ser funcionales. Evolucionan naturalmente. Están 
limitados por factores tales como conocimiento, experiencia previa y la propia estructura del 
sistema de procesamiento de información del ser humano. (Moreira, 1997, p. 45).  

Se aplicó a 117 estudiantes de segundo grado de una escuela pública ubicada en el Estado México el 
problema siguiente:  

Imagina un barco que se desplaza a velocidad constante, desde el mástil más grande, se deja 
caer una piedra. ¿Crees que la piedra caerá justo en la base del mástil donde se dejó caer? 
Justifica tu respuesta. Problema propuesto con base en (Bruno, 1584/1972, p. 161).  

A continuación se muestran los MM del grueso de la población analizada. 
“MM. No, porque mientras cae sobre el aire, el barco se mueve y la piedra no cae en el 
mismo lugar”  
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Figura 1. Imagen recuperada de (Matías y Gallardo, 2019, p. 98) 

El problema usado, despierta la necesidad del análisis de conceptos importantes en la comprensión 
del PR pudiendo usar lo propuesto por Giordano Bruno como alternativa de enseñanza. 
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Twenty students who earned A or B course-grades in the proof unit(s) of a secondary course that 
addressed proof in geometry were asked to work on two proof tasks while sharing their thinking 
aloud and using smartpens. Students were classified into two categories: those who were successful 
with both proofs and those who were unsuccessful with both proofs. Large differences were observed 
in how often students in the two groups exhibited certain competencies. The largest gaps occurred in 
the ways that students: attended to the proof assumptions; used warrants in their proofs; and 
demonstrated logical reasoning. 

Keywords: reasoning and proof, geometry and geometrical and spatial thinking  

Introduction  
Proving is an important aspect of mathematical competence, and geometry is the site which has 

historically been considered to be a good starting point to teach and learn mathematical 
argumentation and proving in secondary mathematics (Reiss, Hellmich, & Reiss, 2002). Hoyles 
(2002) suggested that proving involves a range of non-trivial “habits of mind” such as looking for 
structures and invariants; identifying assumptions; and organizing logical arguments. These 
processes, she noted, must be coordinated with visual or empirical evidence and mathematical results 
and facts. The need to coordinate the linguistic and visual registers is a particularly distinguishable 
feature of proof in geometry (Sinclair, Cirillo, & de Villiers, 2017). Yet, a number of studies 
conducted in the context of secondary geometry provide evidence that the teaching and learning of 
proof in secondary geometry is a challenging endeavor (Balacheff, 1988; Cirillo, 2011; Healy & 
Hoyles, 1998; Senk, 1985). To make progress on this challenge, we sought to gain insight into the 
competencies and behaviors displayed by students who were successful and unsuccessful with two 
proof tasks. 

Theoretical Framework 
A number of studies have documented students’ difficulties with proof in geometry. For example, 

Senk (1985) conducted a study wherein she administered six proof-writing tasks to 1520 students in 
the U.S. After scoring the tasks on a scale of 0-4 where scoring >3 deemed a student to be 
“successful” on an item, Senk concluded the following: only about 30% of students in a full-year 
geometry course reached a 75% mastery of proof, and approximately 29% of students could not write 
even one valid proof. In another study, in this case, a study of high-attaining 14-15 year-old students 
in England and Wales, Healy and Hoyles (1998) found that only 19% of students were able to 
construct a proof of a familiar geometry statement, and fewer than 5% of students could construct a 
proof of an unfamiliar geometry statement. Last, in their study of 81 German upper secondary 
students, Reiss, Klieme, and Heinze (2001) found that only 20% of students were able to construct 
correct Euclidean geometry proofs. Various recommendations and student difficulties were noted in 
these studies. 

Based on study results, Senk recommended that we must look for more effective ways to teach 
proof in geometry, noting, for example, that we must find ways to support students to start a chain of 
reasoning. In the studies conducted by Healy and Hoyles (1998) and Reiss and colleagues (2001), the 
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researchers found that students were better at judging others’ proofs than they were at constructing 
their own proofs. Also, in Reiss et al.’s (2001) study, only 10% of students were able to provide a 
definition of the central concept of “congruence” and name a mathematical theorem related to 
congruence (i.e., a triangle congruence theorem). Furthermore, this study provided evidence that 
geometric competence with respect to proving is dependent on a combination of metacognition, 
spatial reasoning, methodological knowledge, and declarative knowledge (e.g., the notion of 
congruence).  

Some researchers have elaborated on why proof is so challenging for students. For example, Healy 
and Hoyles (1998) explained that the process of building a valid proof is complex in that it involves 
sorting out what is “Given” from what can be deduced, and then organizing the conclusions that can 
be drawn from the “Given” into a coherent and complete argument that meets the proof goal. When 
considering the large number of possible inferences that could be made from the “Given(s)” in a 
typical school geometry proof problem, Koedinger and Anderson (1990) noted: “Geometry proof 
problem solving is hard” (p. 512). To better understand this “hard” situation, they observed geometry 
“experts” and found that, prior to writing up the details of their proofs, experts tended to quickly and 
accurately develop an abstract proof plan that skips many of the steps required in the full proof. In 
other words, they first applied global thinking (i.e., considered the “big picture”) rather than local 
thinking (i.e., worked on one step at a time) at the start of the process. This conclusion is consistent 
with Cai’s (1994) finding in a study of problem solving in geometry that the more-experienced 
participants spent the majority of their time on orientation and organization, while less-experienced 
students spent the majority of their time on execution (i.e., doing rather than thinking or planning).  

In Battista’s (2007) review of school geometry research, he posed several unanswered questions 
related to students’ learning of proof, including: Why do students have so much difficulty with 
proof? What components of proof are difficult for students and why? and How can proof skills best 
be developed in students? (pp. 887-888). Ten years later, speaking back to these questions in their 
research review, Sinclair et al. (2017) concluded that while some researchers have attempted to 
address these questions, the reported studies tended to focus on only one or a few teachers or did not 
provide evidence of effectiveness at scale. They also suggested that more research is needed on 
students’ development of geometric proof skills and their understanding of the nature of proof. The 
lack of research in this area led us to pursue this topic. Thus, this study addresses the following 
research questions: (1) What proving competencies and behaviors are observed in students who were 
successful with solving geometric proofs? and (2) How do these competencies and behaviors 
compare to those of students who were unsuccessful with the proofs? 

Methods 
The study reported on in this paper is part of a larger research project titled: Proof in Secondary 

Classrooms: Decomposing a Central Mathematical Practice (PISC; PI: Cirillo).The goal of the PISC 
project is to better understand the difficulties involved in the teaching and learning proof in 
secondary geometry and to develop a new and improved intervention to address these challenges. 
Students who earned high marks (grades of A or B) in the geometry proof unit(s) were selected for 
individual clinical interviews for this sub-study. The rationale for interviewing students with high 
marks was to understand what high-performing students were taking away from the proof unit(s). 
Because past studies have shown that even high-attaining students struggle with non-routine as well 
as routine proof tasks in geometry (see, e.g., Healy & Hoyles, 1998; Cirillo, 2018), two proof tasks 
that, in theory, should have been somewhat familiar to the students, were selected for data collection 
and analysis. We chose triangle congruence proof as a topic for exploration because it is considered 
to be a central concept in school geometry and because limited time to conduct the interviews in the 
school setting did not permit us to take up large amounts of students’ time with longer problems.  
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The criteria for participant selection for this sub-study were as follows: (1) students were enrolled in 
a secondary course that addressed proof in geometry; (2) students earned an A or a B in the proof 
unit(s); (3) students were identified by their teacher as students who would be willing to share their 
thinking aloud during the interview; and (4) students completed the full interview protocol in the 
allotted time; (5) there were no technology glitches during the data collection, and (6) students’ 
success results on each of the two proof tasks were the same (i.e., successful or unsuccessful on both 
proofs). This selection process reduced the sample size from 31 students interviewed to 20 selected. 
Participating students spanned Grades 8-11 (ages 13-17).  

The first author conducted all student interviews. The goal was to spend about 35 minutes with each 
student; the mean interview length was about 32 minutes. The full interview protocol consisted of 
seven items. The first item was a simple “warm-up” task about geometric notation. The next four 
tasks were selected or adapted from Cirillo and Herbst (2011). The last two tasks, which were the 
ones selected for this analysis, were full-proof tasks (see Figure 1). Students spent an average time of 
7.28 minutes on Task 6 and 5.95 minutes on Task 7. Students were asked to read each task aloud to 
ease them into talking through the task and guarantee that they had read the “Given” information for 
each task. Smartpen technology (i.e., Livescribe pens) was used to audio-record the students’ 
explanations of their thinking and capture their pen strokes as they worked through the proofs. This 
methodology allowed us to capture students’ thinking in the form of verbal explanations and 
simultaneous diagram markings and other written work. 

 
Figure 1: The two full-proof interview tasks analyzed for this study 

 
Smartpen data were digitized to create a “pencast,” or video, that simultaneously replays each 

student’s handwriting and audio-recording (Livescribe, 2012). Prior to analyzing the smartpen data, 
students’ final proofs were quantitatively scored from the paper hardcopies in ways that followed 
Senk’s (1985) methods. Specifically, we adapted the rubrics for Senk’s full-proof tasks so that every 
proof was scored on a scale of 0-4. Following Senk’s approach, if students scored a 3 or a 4 on a 
proofs, they were considered to be Successful with the Proof tasks (abbreviated as SP; n=7). Students 
who scored less than 3 were considered Not successful with the Proof tasks (abbreviated as NP; 
n=13). The resulting data set consisted of two Proof Task Interviews (PTIs) from 20 students. The 
units of analysis are the individual proof tasks, resulting in 40 units of analysis. Tables 1 and 2 
include age, grade level, course grade (A or B), and task scores (0-4) for each participant in the NP 
and SP groups. 

We used constant comparative analysis (Boeije, 2002) to develop a coding dictionary. To develop 
the codes, the research team watched the PTI pencasts for six participants for both Tasks 6 and 7. 
Codes were developed for observed problem-solving behaviors and competencies that were exhibited 
through spoken and written work. This iterative process resulted in 45 possible codes for both NPs 
and SPs. After garnering an 86.59% interrater reliability and reconciling incongruent decisions, the 
second author coded the remaining data. The final phase of analysis involved looking across the 
coding results for patterns and themes.  
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Table 1: Study participants who were Not successful with both Proof tasks (NPs) 
Participant 

Number Age Grade Level Course Grade Task 6 Score Task 7 Score 

P1 14 8 A 0 0 
P2 16 10 B 0 0 
P3 15 10 B 0 0 
P4 15 10 B 0 0 
P5 14 8 A 0 1 
P6 14 8 A 1 1 
P7 17 9 B 1 1 
P8 17 10 B 1 1 
P9 16 10 B 1 1 

P10 15 9 A 1 1 
P11 13 8 A 2 1 
P12 17 11 B 2 2 
P13 17 11 A 2 2 

 
Table 2: Study participants who were Successful with both Proof tasks (NPs) 

Participant 
Number 

Age Grade Level Course Grade Task 6 Score Task 7 Score 

P14 14 8 A 3 3 
P15 14 8 A 3 4 
P16 13 8 A 4 4 
P17 13 8 A 4 4 
P18 14 8 A 4 4 
P19 14 8 A 4 4 
P20 13 8 A 4 4 

Findings 
In reporting the findings, we first describe the most prevalent competencies and behaviors among 

the students who were Successful with both Proof tasks (SPs; n = 7). Because there were multiple 
competencies and behaviors that were exhibited by a high percentage of the SPs, we chose a 
threshold of 60% for the occurrences that would be reported. That is, we report on behaviors and 
competencies observed at least 60% of time for the SPs. This decision yielded five findings across 
the data set and includes behaviors related to working with the “Givens,” marking the diagram, 
demonstrating logical thinking, and so forth. 

Regarding the second research question about the competencies and behaviors of the students who 
were Not successful with either Proof task (NPs; n = 13), the data were more inconsistent. We first 
compare NPs with SPs by reporting on the frequencies (as a percentage of the total occurrences for 
each PTI) with respect to the six findings from the SP group. Table 3 provides a summary of these 
behaviors and the frequency of occurrence. We then share three additional findings that relate to 
behaviors observed at least 20% of the time in the NP group. 
Competencies and Behaviors of Students Who Were Successful with the Proofs 

All seven SPs made productive and explicit use of the “Given” information for both tasks (i.e., 
100% of the time). They did so either as they were planning their proofs or as they began to work on 
a proof. They explicitly identified the relevant mathematical objects from the assumptions (i.e., the 
“Given”). Here is an example of P14 thinking aloud about Task 7 (P14-T7; from here forward, we 
will use the notation PX-TY to denote each participant and task): “First thing we know is that ABC 
and DE bisect each other at B. Why? Because it's the Given. Next. Well you know that B, B is the 
midpoint. Why? Because definition of line segment bisector…” 
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Table 3: Frequencies of observed competencies and behaviors for both groups  

Observed Competencies & Behaviors (rounded to nearest whole percentage) SPs 
(%) 

NPs 
(%) 

*Students productively attended to the “Given” information 100 23 
 Students correctly identified bisectors 100 12 
 Students indicated what object was being bisected 93 12 
  Students used the diagram as a resource 100 47 
 Students marked the diagram  
 Students used the diagram as a check list or planning tool 

100 
100 

65 
46 

       Students made valid claims supported by assumptions about the diagram 100 31 
*Students identified warrants as postulates, axioms, definitions, or theorems 
       Students clearly connected claims to definitions 

86 
86 

8 
12 

       Students stated or explained a definition 
       Students articulated a definition of congruent triangles 

79 
100 

4 
8 

*Students demonstrated that they were thinking in a logical manner 93 8 
  Students attended to important details while working through their proofs 
       Students articulated a plan for the proof prior to writing the proof 

68 
64 

13 
15 

       Students attended to rigor in sub-arguments 100 4 
       Students attended to triangle congruence criteria 79 15 
       Students attended to the “Prove” statement in explicit ways 64 23 
* Indicates the main findings with the largest percentage gap between SPs and NPs (> 75%) 
 

All SPs accurately marked the diagrams for both proofs (i.e., 100% frequency). The smartpen 
technology enabled us to see noticeable differences in the ways this occurred. For Task 6, SPs tended 
to mark the diagram in two distinct ways. Either they worked through the details of the proof, 
marking off congruent parts as they made their inferences, or they marked the congruent parts, using 
the diagram as a checklist to show that they had proven the triangles congruent. For Task 7, three SPs 
seemed to immediately recognize how to solve the proof, so they explained a plan for the proof and 
marked the congruent parts prior to beginning the proof (see Figure 2). Each proof task included 
some type of bisector in the “Given.” SPs were clear about what type of bisector they were working 
with 100% of the time (e.g., line segment bisector). They explicitly indicated what was being 
bisected 92.9% of the time.  

When SPs wrote or articulated their warrants (i.e., reasons for their statements), they typically 
indicated the typology in explicit ways 85.7% of the time. SPs appropriately connected claims to 
definitions 85.7% of the time, sometimes even stating the exact definition (78.6%). For both proofs, 
the concept of congruent triangles was critical toward developing a valid proof. All SPs wrote 
CPCTC as the warrant for their triangle congruence statements. When asked what it meant or stood 
for, 100% of SPs were able to articulate what CPCTC stood for or explain what it meant (i.e., 
Corresponding Parts of Congruent Triangles are Congruent). 

As they were thinking aloud, SPs’ explanations contained logical connectives, such as “next,” “and 
then,” and “we can conclude,” in 92.9% of the PTIs. The P18-T6 excerpt above is a good example of 
this. Also, P20-T6 used logical connectives “then” and “so” in various ways:  

So, we have this is congruent to that and we have that this is perpendicular to that so I guess 
we could use the right angles theorem to prove that these are congruent and then we could 
prove that this is congruent by the reflexive property of congruence. And then we can get the 
angles congruent by C-P-C-T-C. 

Although, in this explanation, P20 seemed to skip over the step of stating that the triangles were 
congruent, it was included in the written proof. 
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Figure 2: P15-T6 Used Diagram as a Checklist & P20-T7 Used Diagram as a Planning Tool 

 
Arrow 1 

 
 
 
 
 
 
 
 
 
 

Arrow 2 
 

Arrow 3 and Triangle 
Congruence Statement 

Figure 3: P16-T6 attends to sub-arguments and triangle congruence criteria 
 

SPs attended to the details of their proofs in multiple ways. They articulated a plan for the proof 
before writing the proof 64.3% of the time. SPs attended to rigor in their sub-arguments 100% of the 
time. They attended to triangle congruence criteria in explicit ways 78.6% of the time. And they 
explicitly attended to the “Prove” statement 64.3% of the time. P16-T6’s work provides evidence of 
attending to sub-arguments (i.e., branches of a proof claim and consequence) and triangle congruence 
criteria. His written work (see Figure 3) is very methodical in that he established three congruent 
parts prior to drawing in the arrows in his flow proof to connect the three congruent statements to the 
triangle congruence statement: 

Ok so then we have our three parts [draws three arrows]. So, we know that these are 
congruent and then we can say that triangle ABD is going to be congruent to triangle C, 
CBE. [Pause] I had to take a moment there to see which point was corresponding with point 
A. So, then we have our two triangles. And we can say this, because of S-A-S theorem. And 
after this, we can use my favorite theorem again to say that line segment AD is congruent to 
line segment EC because of C-P-C-T-C. So yeah. 

The smartpen allowed us to see how the student worked out the three congruence statements prior to 
writing and then drawing arrows to the triangle congruence statement. We can see from the 
combination of transcript and smartpen images that he attended to triangle congruence criteria when 
he said: “we have our three parts,” paused to accurately write the triangle congruence statement in a 
way that matched up the corresponding parts, and drew the three arrows before writing the triangle 
congruence statement. 
Competencies and Behaviors of Students Who Were Unsuccessful with the Proofs 

Large discrepancies between SPs’ and NPs’ behaviors were noted in the data. Table 4 includes 
frequencies from the PTIs (as percentages) for both groups for each finding and sub-finding. The 
differences in occurrences of the six main findings range from 35-92% with a gap of more than 80% 
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for 3 of the 6 main findings (as indicated in the table by *). For the second research question, it is not 
so productive to go through each finding one-by-one because there is little to say about the absence 
of something. Instead, we address the kinds of behaviors observed in NPs given the absence of many 
of the competencies exhibited by high percentages of SPs. Because the percentages of occurrences of 
common behaviors were much lower in this data set, we chose a lower threshold of  >20% for the 
codes that we discuss in this section.  

First, there were multiple issues noted with the ways in which students dealt with the “Given” 
information. In particular, 23.1% of the time, NPs incorrectly stated the “Given” when they read it 
aloud. The most common error for both tasks was saying “line” rather than “line segment.” Second, 
46.2% of the time, NPs omitted notation or information when they wrote the “Given” statement in 
the first line of their proof. 

NPs’ warrants were vague 61.5% of the time. They often did not identify warrants as postulates, 
definitions, or theorems, and they frequently did not seem to know definitions of relevant concepts. 
For example, P12-T6 wrote “Definition of bisect” as a reason for Line 3. Yet, in order for the 
corresponding statement, ∠ABD ≅ ∠CBD, to be true, 𝐵𝐷 would have had to have been an angle 
bisector rather than a perpendicular bisector. In the next line of the proof, the student’s warrant 
references the particular diagram, rather than a definition. 

NPs displayed a lack of confidence in 34.6% of the PTIs. They sometimes would say that they 
could not remember definitions or reasons for their statements. For example, when asked about a 
reason for one of the steps in her proof, one NP said, “I don’t have one.” This statement also 
indicates a lack of using logical reasoning. Other comments made by NPs as they shared their 
thinking included: “I don’t know how to do this one” [P1]; “I don’t know how to explain it” [P4]; 
and “I remember having a lot of trouble on this because I didn’t understand” [P11]. 

Discussion and Conclusions 
Making use of smartpen technology, we explored the competencies and behaviors of high-attaining 

students with the expectation that even high-attaining students would have gaps in their abilities to 
prove. Clear differences were noted in the approaches taken by students who were successful with 
the two proof tasks, compared to students who were unsuccessful with those tasks. These findings 
contribute to the research on the teaching and learning of proof in geometry, specifically, the first 
part of Battista’s (2007) question: What components of proof are difficult for students and why? 
There are several important take-aways from these findings.  

First, when we compare the frequency percentages of competencies and behaviors observed in the 
two student groups in Table 4, the differences are relatively large. For example, the difference 
between how often SPs were observed productively attending to “Given” information compared to 
how often NPs did so was 77%, with SPs doing so 100% of the time and NPs only 23% of the time. 
This finding indicates that more work is needed to support students to productively attend to proof 
assumptions.  

With respect to geometric diagrams, 100% of SPs marked their diagrams, made valid claims 
supported by assumptions about diagrams, and used the diagrams as a check list or a planning tool, 
particularly when solving a proof at the “global” level (Koedinger & Anderson, 1990; Cai, 1994). In 
contrast, NPs did not always mark their diagrams; they sometimes used the diagrams to plan; and 
they rarely made appropriate assumptions about the diagrams. Rather than using the “Given” 
information to draw valid conclusions, NPs put forth inappropriate inferences which often seemed to 
come from what the diagram “looked like.” Doing so follows the perceptual proof scheme described 
by Harel & Sowder (2007).  
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There was also ample evidence to suggest that SPs had strong understandings related to the 
typology of warrants and that they understood how to use them to develop proof arguments. In 
contrast, this competency was rarely observed in the PTIs of NPs. Instead, NPs were sometimes 
observed justifying statements using reasons related to particular diagrams (e.g., B is the midpoint). 
Additionally, at times, NPs simply wrote, as their warrants, some mathematical object (e.g., bisector) 
without writing anything further, such as clearly identifying the type of bisector or explicitly stating 
whether they were thinking about a theorem or definition. NPs explicitly connected claims to 
definitions, stated definitions, and were able to articulate a definition of congruent triangles less than 
15% of the time. These issues connect to Reiss and colleagues’ (2001) claims about the importance 
of coordinating declarative knowledge with higher order skills. Regarding higher order skills, 
evidence that students were reasoning through their proofs in a logical manner was observed 93% of 
the time for SPs, compared to only 8% of NPs.  

The likelihood of SPs attending to important details in their proofs was also much greater than the 
likelihood of NPs doing so. The area of greatest difference was with respect to sub-arguments. SPs 
attended to sub-arguments in rigorous ways 100% of the time; NPs did so only 4% of the time. This 
finding relates to logical reasoning in that a sub-argument is a chain of reasoning that begins with an 
assumption and involves more than one deduction (Cirillo, Murtha, McCall, & Walters, 2017). SPs 
were also observed attending to other kinds of details in ways that were not observed in the NP data, 
such as: developing a plan for their proof (i.e., thinking at the global rather than local level); 
attending to triangle congruence criteria; and attending to the “Prove” statement. SPs were observed 
doing these things most of the time; while NPs were not. These findings are consistent with Healy 
and Hoyle’s (1998) descriptions of what makes proving so complex. In particular, they argued that 
proving involves: sorting out what is “Given” from what can be deduced and then organizing the 
conclusions that can be drawn from the “Given” into a coherent and complete argument that meets 
the proof goal.  

The use of smartpen technology allowed us to “see” and analyze the data in ways that we would not 
have been able to see or do without it. For example, the active ink feature in the pencast videos 
allowed us to track the ways in which students marked their diagrams and how they shifted back and 
forth between diagram and proof. We conjecture that this kind of analysis is only the tip of the 
methodological iceberg in terms of what is possible to do with this and other tracking technologies. 
What kinds of insights into student thinking might be gained from more studies like this one, is an 
open but exciting question. 
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This report proposes a framework for describing student analogical reasoning activities in abstract 
algebra that moves beyond the traditional literature-based treatment of analogical mapping. The 
Analogical Reasoning in Mathematics (ARM) framework captures the activities that students engage 
in when anticipating, creating, and reasoning from mathematical analogies. This considers activities 
along several dimensions including: inter/intra domain activity, foregrounded/backgrounded 
domain, and attention to similarity/difference. These dimensions are integrated with Gentner’s 
(1983) analogical mapping framework to characterize student activity when they are presented with 
tasks where reasoning by analogy can productively support their mathematical investigations. By 
characterizing these activities, we can better develop tasks to support students in productively 
analogizing between mathematical domains. 

Keywords: Advanced Mathematical Thinking, Algebra, Analogical Reasoning 

Throughout history, analogies have played a vital role in the development of key mathematical 
concepts and connections such as Descartes’ recognition of the analogical similarities between 
algebra and geometry (Crippa, 2017). In modern mathematics instruction, analogies have been 
argued to be useful in developing student conceptual understanding by assisting students in utilizing 
prior knowledge to make sense of new contexts and develop conceptual understanding rich in 
connections across mathematical domains. However, unguided analogical reasoning may result in 
unproductive mathematical reasoning (Sidney & Alibali, 2015). By investigating the nature of 
students’ mathematical reasoning as they develop and reason from analogies in mathematical 
contexts, we can begin developing support for students to productively reason by analogy. 

Outside of mathematics education, Gentner (1983) introduced the Structure-Map Theory (SMT) to 
describe analogical reasoning as mappings across domains. In particular, this notion of mapping 
requires attention to similarity across domains. This type of focus is consistent with much of the 
theories that followed (e.g. Holyoak & Thagard, 1989). Attending to similarity is crucial for 
generating analogies. Surface similarities provide an access point for the generation of analogies 
(Holyoak & Koh, 1989). These components of analogical reasoning are shown in Figure 1 below. 

 
Figure 1: Components of Analogical Reasoning 

Although the framework above is useful for categorizing a particular analogical mapping, there 
exist nuances of analogical reasoning within mathematical thinking that are not explicitly captured by 
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this framework. In this paper, I present the Analogical Reasoning in Mathematics (ARM) framework 
for characterizing the mathematical activity of students as they anticipate, create, and reason from 
analogies between mathematical domains. In particular, this framework expands upon the ubiquitous 
components of mapping across domains and attending to similarities, and introduces a new 
component of foregrounding a domain. This interpretive qualitative study seeks to contribute to 
answering the following research question:  

What are the mathematical activities of students as they reason by analogy about structures between 
group theory and ring theory? 

Theoretical Framing 
I adopt Gentner’s SMT as a foundation for developing a conceptual framework for identifying and 

describing analogical reasoning in mathematics. In particular, I borrow the concept of domains and 
the process of mapping across domains as a basis for identifying and describing analogical reasoning 
in mathematics. I define analogical reasoning as the act of identifying or conjecturing about a 
perceived correspondence between two (or more) domains. In addition, I define analogical activity as 
mathematical activity occurring within and around analogical reasoning. 

A domain is a collection of knowledge held about a mathematical concept or situation. For example, 
one could reason specifically about the domain of two-digit addition problems, or more generally 
about the domain of binary operations. A key aspect of reasoning by analogy is to utilize knowledge 
in one domain in order to develop knowledge within another. This process occurs through mapping 
across domains. The domain from which knowledge originates is known as the source domain, while 
the domain to which source knowledge is being applied is the target domain.  

I also adapt the content of mappings described by Gentner to this conceptual framework. Gentner 
proposed that three categories of content may be mapped between domains: objects, attributes and 
relations. Objects can be a single entity (e.g., a triangle), component parts of a larger object (e.g., the 
angles of a triangle), or coherent combinations of smaller objects (e.g., all equilateral triangles) An 
attribute is defined as a property or description of an object. This could include a definitional 
property of an object or a non-definitional descriptor of an object. Relations are properties that relate 
two or more objects, attributes or other relations together. A visual of these aspects in the context of 
an analogy between a ruler and a number line can be seen in Figure 2. 

 
Figure 2: Mapping Between a Ruler and a Number Line 

Methodology 
Data Collection 

The context of abstract algebra was chosen because of the existence of several naturally occurring 
structural similarities between group theory and ring theory. I conducted an initial pilot study with 
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two mathematics students, one an undergraduate student in pure mathematics, and the other a 
graduate student pursuing a PhD in mathematics education. The participants in the present study 
included two undergraduate mathematics students who had previously taken a course in modern 
algebra emphasizing the theory of groups.  Five 60-90-minute-long task-based interviews were 
conducted with the each participant. The initial interview helped to assess the participant’s content 
knowledge of group theory before beginning to explore topics in ring theory. The ring interview 
provided the participants with the definition of ring and various tasks designed to acclimate the 
student to working with rings. The three subsequent interviews provided students with the 
analogizing task focused on reconstructing one of subrings, ring homomorphisms, or quotient rings 
by analogy with a structure in group theory. The interview tasks were constructed around three basic 
types: (1) Explicit elicitation of analogy generation, (2) example generation and checking (i.e., “give 
an example of a subring.”), and (3) proof-writing (i.e., “Is the homomorphic image of a commutative 
ring commutative?”) An example of a task meant to elicit explicit analogies is the following: Make a 
conjecture for a structure in ring theory that is analogous to subgroups in group theory. 
Data Analysis 

I used techniques outlined by Corbin and Strauss (2015) to analyze the data. First, the transcripts 
were segmented by identifying shifts in a particular mathematical idea or focus. Segments were 
identified by two criteria: (1) presence of analogical activity, and (2) shifts in mathematical focus. 
Each of the six interviews in which the analogizing task was given was coded for mapping activity 
and attending to similarity, as well as open coded for other aspects of analogical activity. 
Microanalysis was intermittently performed on segments when the nature of the analogical activity 
was unclear within a segment. Diagramming was incorporated to aid in making sense of how 
concepts fit together with one another. As a part of ongoing analysis, I wrote research memos to aid 
in explicating my thinking about concepts and generating new hypotheses. Results of microanalysis, 
diagramming, and memoing were regularly shared with colleagues to assist in ensuring the viability 
of my interpretations. Finally, the interviews focused on group theory and rings were used to help 
triangulate interpretations of the students’ activity when possible. 

From this process of coding and subsequent axial coding, two dimensions of activity related to 
analogical reasoning were identified in addition to the activity of mapping and attending to similarity, 
and one component of analogical reasoning was identified. These are each discussed at length in the 
following section. 

Results 
In this section, I share an overview of the Analogical Reasoning in Mathematics (ARM) framework 

with extended attention on categorizations that did not exist in the literature on analogy: intra-domain 
activity, and attending to differences. I then describe the component of foregrounding a domain 
which allows for deeper description of student mathematical activity while reasoning by analogy. 
Finally, I exhibit examples of mathematical activity during analogical reasoning that are 
characterized with the aid of the expanded framework. 
The Analogical Reasoning in Mathematics (ARM) Framework 

As shown in Figure 1, the literature on analogy is heavily focused upon mapping activity and 
attention to similarity. Within Gentner’s (1983) framework, the heart of analogical reasoning is the 
process of mapping between domains. I refer to activity in which mapping occurs as inter-domain 
activity due to the nature of the activity as necessarily involving two or more domains along with 
activity occurring across those domains. However, there are times when a student may not engage 
with mapping activity. Instead, the student engages with activity that lies completely within a single 
domain. This category of activity is referred to as intra-domain activity. Intra-domain activities are 
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those activities that operate within a single domain, either by focusing specifically on one domain, or 
by blending domains together. In addition, students may also attend to differences during the process 
of reasoning by analogy. Figure 3 exhibits the expanded framework for analogical reasoning 
including three components of analogical activity along with the dimensions of each component. 
Those marked with a ‘*’ represent new aspects identified within the present study. 

 
Figure 3: The ARM Framework 

Foregrounding a Domain. The participants in this study were seen to place emphasis on different 
domains throughout the process of reasoning by analogy. This component of activity is referred to as 
foregrounding a domain. Consider the following quote from a student providing a rationale for their 
definition of what they call “normal subrings”: 

Well I used the normal subgroup definition to apply it to normal subrings just because that 
act of using an operation I guess to apply it to your subring and making sure it's still and the 
ring itself is kind of the point of a normal subgroup so it's got to be important to use that for 
subrings or for normal subrings. 

Within this first example, the student is justifying her definition of ‘normal subring’ by specifically 
pointing to the definition of normal subgroup and claiming that she “applied it to normal subring.” 
The student is emphasizing the source domain as the motivation for her definition as is thus 
foregrounding the source domain of groups.  

In contrast, consider the following exchange in which another student is reasoning about a proposed 
idea of normality in rings: 

Student B:  I don't know. We didn't talk about normal rings, so I didn't even think about that. I 
don't know. Well, with rings, you do have a lot more conditions than you do with groups, so I 
don't think I would need this normal on my ring because that's already included in my ring. So, I 
don't think I would have to mess with it. 

Interviewer: Okay. Could you explain what you mean by that? Like you say, “It's already included 
in the ring.” 

Student B:  Groups have four conditions or something to be called a group, and then rings have 
seven of them. So, since rings have more conditions, I think being normal is already one of those 
conditions, in a sense. 
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Within the second example, the focus of the student’s reasoning is on the concept of ‘normal rings’ 
to which he then draws comparisons to normal subgroups. Thus, in this second example, the student 
is foregrounding the target domain of rings.  
Characterizing Activity Using the ARM Framework 

Through reintegration with the widely identified dimensions of mapping activity and similarity, the 
dimensions of intra-domain activity and attending to differences, and the component of 
foregrounding domains offer insights into detailing ways in which student mathematical activity 
during analogical reasoning can be characterized and interpreted. In this section, I use the ARM 
framework to characterize several identified mathematical activities during analogical reasoning. 
Table 1 provides a brief overview of the activities characterized and described in this section. 

 
Table 1: Overview of Identified Activities 

Activity Description of Activity Dimensions of Activity 
Exporting Projecting known aspects of the 

source domain into the target domain. 
• Inter-domain 
• Attending to similarities 
• Foregrounding source 

Importing Selectively pulling aspects of the 
source domain into the target domain. 

• Inter-domain 
• Attending to similarities 
• Foregrounding target 

Recalling Recalling information that one 
possesses about the source domain. 

• Intra-domain 
• Neither similarities or differences 
• Foregrounding source 

Distinguishing Recognizing an anomaly between the 
source and target domain. 

• Inter-domain 
• Attending to differences 
• Foregrounding source 

Adapting Modifying the target to accommodate 
a distinction between the source and 
target. 

• Inter-domain 
• Attending to differences 
• Foregrounding target 

 
Exporting and Importing Across Domains. The activity of exporting across domains occurs when 

a student projects an aspect of the source domain over to the target domain. In contrast, importing 
occurs when a student selectively pulls aspects over from the source domain into the target domain. 
The terms “exporting” and “importing” are chosen purposefully to be analogous to the meaning of 
the words in the context of international trade in the sense that you export outward from the country 
in which you reside, but import into the country in which you reside. 

Consider the following example of a student exporting attributes from the source domain of groups 
to the target domain of rings:  

So, normal subgroup… First condition is that H is a subgroup of G, and the second condition 
is that gHg-1 is a part of H, and then you can say, therefore, H is normal to G. So, now we're 
going to call this normal subring. We give this one a name. First condition is that S is a 
subring of R. Second condition, I don't know. Maybe we say rSr-1 is in S, just to copy it. 

A visual of this student’s work is seen in Figure 4 below. In this example, the student is 
constructing a definition for what they call “normal subrings.” The student constructs a “normal 
subring” by copying over known aspects of normal subgroups into the context of ring theory.  

To contrast with the activity of exporting, consider the following example from the pilot study in 
which a student is making a conjecture about what comes next in the study of ring theory after 
having developed the concept of subring: 
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Like Abelian rings, or like... giving them that type of thing where you give them special 
names… Special types of rings, "This is the golden ring." So these, you gave me these 
properties on the last page. But I'm sure if you have all these properties, it's probably a 
special type of ring. 

In this example, the student is importing the objects of “special” groups, such as Abelian groups, 
from the source domain into the target domain. The emphasis is on the target which is evident by the 
fact that the student does not immediately assume that there are Abelian rings just as there are 
Abelian groups. Rather, this student has discriminately chosen which aspect of group theory they 
wished to pull over into the target domain of rings. 

Characterizing the activities of exporting and importing with respect to the components of mapping 
and comparing, it is clear that each of these activities are examples of inter-domain activity focused 
on attending to similarity. They are indistinguishable by examining these two components alone. 
However, a distinguishing feature can be determined by examining which domain is being 
foregrounded while engaging with the activity. 

 

 
Figure 4: Student Exporting Properties from Source to Target 

 
Recalling Source Knowledge. By expanding the component of mapping across to domains to 

include intra-domain activity, a greater range of mathematical activities during analogical reasoning 
become observable. One such activity is that of recalling source knowledge. Consider the following 
example of a student recalling attributes after being asked to make a conjecture for a structure in ring 
theory analogous to group homomorphisms: 

So, let me just try to recall that… So, group homomorphism. So, there exists a phi that maps 
from A to B. So, A ... or, I guess maybe it'd be easier to say phi maps from (A,*) to (B,*). So, 
phi of a equals some b. 

In this case, the student is foregrounding the source and is neither attending to similarity or 
difference. Although the student is not explicitly engaging in reasoning by analogy in this example, 
the student is recalling information about the source domain with the intent of utilizing the 
information for the purpose of analogical reasoning. This is evidenced in the following quote from 
the same student in which the student exports from the source: 

So, now let's talk about ring homomorphism. Homomorphism. I don't know, I feel like it 
would be the same thing. There exists, let's just say psi or something from one ring to 
another ring such that psi is one-to-one. Or, I don't know what you say, onto. 

Distinguishing and Adapting. Just as expanding the component of mapping to include intra-
domain activity revealed new perspectives on analogical activity, so too does adding the dimension 
of attending to differences along with similarities provide new insight. One such activity is 
distinguishing between domains. Distinguishing occurs when a student recognizes an anomaly 
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between the source and target domain. Consider the following example in which a student is making 
observations about the definition of ring: 

So it has ... what I noticed immediately is that, it has two binary operations addition and 
multiplication. Whereas with group theory we're only dealing with one binary operation at a 
time. 

It is clear from this example that the student is attending to differences and mapping objects 
between the source and target domains. During distinguishing activity, the student is foregrounding 
the source. This is due to the nature of anomalies being detected within the target only by a direct 
comparison to what is already known about the source.  

The attention to differences in examples such as this impacted the student’s reasoning by analogy 
later on in the interview process through the activity of adapting the target domain. Adapting occurs 
when a student modifies the target to accommodate a distinction between the source and target. 
Consider the following statement from the student as they conjectured about the definition of ring 
homomorphism: 

What would be one for.... We have two [operations] here. Start with phi going from G to H. 
There's two operations here so I'm like, I don't exactly know if it should just be one of them, 
or both of them, or how I would do that here. Could I do like three elements, like a, b, and c, 
and then have like the addition and multiplication? 

A visual of this student’s work is seen in Figure 5. In this instance, the student is keying in on the 
difference she identified between the domains two interviews prior and attempting to adapt the 
homomorphism property she learned in group theory to the context of rings. Adapting activity is 
characterized by inter-domain activity and attending to differences. Unlike distinguishing activity, 
adapting activity foregrounds the target since the focus is on constructing new information within the 
target.  

 
Figure 5: Student Adapting a Structure to the Target 

Discussion 
An Application to a K-12 Context 

Although the ARM framework was developed in the context of abstract algebra, I argue the 
framework has utility across mathematical contexts. I use an example of students’ reasoning about 
integer operations to illustrate the utility of the framework to capture analogical activity in other 
contexts. Consider the following statement in which a child is solving the problem -5 – (-3) = 
! (Bishop et al, 2014). 

Five minus 3 is an easy fact for me. So, um, using negatives it will probably be the same 
thing like using normal numbers. It will probably be the same thing, but with negatives it’ll 
probably be negative 2. 
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The child is mapping between the source domain of “normal” numbers and the target domain of 
negative integers. Because they are emphasizing their knowledge about how subtraction of positives 
work, they are foregrounding the source. In addition, it is clear that the child is attending to 
similarities (i.e., “…it will probably be the same thing…”) This characterization of the child’s 
activity allows us to see that the child is engaging in the activity of exporting from the source 
domain. To summarize this brief analysis, this child appears to be relying heavily upon their 
knowledge about “normal numbers” in order to understand a subtraction problem with negative 
numbers. 
Conclusions and Implications 

Analogical reasoning in mathematics provides students with the opportunity to develop their 
conceptual understanding in mathematics that is rich in connections across mathematical contexts 
(Sidney & Alibali, 2015). Within this study, students were provided the opportunity to leverage 
analogy and analogical reasoning to make comparisons across domains and reinvent mathematical 
structures by analogy. By characterizing mathematical analogizing activity, we can support students 
in coming to create connections across mathematical domains by providing a tool for carefully 
analyzing how students engage with analogical reasoning in mathematics. 

For the purposes of research, the ARM framework provides a foundation for analyzing student 
analogical activity specific to mathematics. Thus, the framework can be used for generating insight 
into student’s thinking involving analogical reasoning. The results in this paper have only shown a 
snapshot of students’ analogical reasoning in an interview setting. Further research can focus on how 
student’s leverage analogical reasoning over an extended period of time. Finally, the ARM 
framework and the analogical activities identified in this paper can aid instructors in developing tasks 
which leverage analogical reasoning by attending to the possible activities of their students while 
working the tasks. Future research should address ways in which to foster more productive reasoning 
by analogy in the context of instruction. 
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In this theoretical paper we compare the Piagetian perspective on knowledge construction to 
mathematical model construction, with the aim to understand how mathematical modeling enables 
learning of mathematics and learning of science, as is often claimed. We do this by examining data 
through two lenses:(i) examining the role of cognitive conflict as it arises during validation of a 
model and (ii) viewing model validation as a reflection on activity-effect relationship. We explain 
why we chose to look deeply into model validation specifically, present examples for each lens, and 
consider implications. 
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There has been much interest over the past few decades in the teaching and learning of 
mathematical modeling. Typically, investigations seek to understand the process of model 
construction. However, research has also looked into how learning of curricular mathematics beyond 
modeling may occur as students generate and validate their mathematical models (Zbiek & Connor, 
2006). Taking on a Neo-Vygotskian, socio-cultural perspective, Zbiek and Connor elaborated on the 
cognitive processes that constitute modeling as to situate thinking about how learning takes place 
during mathematical modeling. In addition, empirical studies have also shown how a modeling 
approach to instruction may have an impact on student achievement (e.g. Czocher, 2017; Schukajlow 
et al, 2012). At the same time, two lines of inquiry have used mathematical modeling as an 
instructional paradigm to guide students’ construction of mathematical knowledge. The first uses 
mathematical modeling tasks to teach mathematical concepts (Lesh et al., 2000) and the second uses 
the term model to capture the evolution of conceptual models through mathematical activity 
(Gravemeijer, 1999; Lesh, Doer, Carmona, & Hjlmarson, 2003). Both lines of inquiry agree that 
mathematics can be learned through constructing models. However, for one to know how 
mathematical modeling can best be leveraged to learn mathematical concepts, one first needs to 
understand how mathematical modeling may enable learning. In this paper, we illuminate data drawn 
from cognitive modeling task-based interviews using two theoretical lenses on mathematical 
modeling in order to elaborate how learning may enabled through mathematical modeling.  

Perspective on Learning and Knowledge Construction 
In order to understand how learning is occasioned through modeling we take on a Piagetian view on 

learning and knowledge construction. In this view, learning is considered as a process of 
transforming one’s way of knowing and acting. According to Piaget, all construction consists of 
activity and all activity is goal-directed. In this sense, all construction (of cognitive structure) is goal 
directed (von Glasersfeld, 1983). Hence, we begin from the position that mathematical modeling is a 
goal-directed activity and the modeler is working towards an anticipated model as a goal. Two 
theories have been highlighted in the constructivist perspective as ways of learning to occur: the 
theory of equilibration and reflective abstraction. To support our view of modeling as a process of 
construction, we adapt both these views to mathematical modeling and compare their merits.  
Theory of equilibration 

One tenet highlighted in constructivist theory is that conceptual transformation is induced by a 
perturbing experience. Perturbation is experienced when the cognizing subject is met with a 
constraint or clash in the externalized world and therefore goes through adaptation to regain 
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equilibrium (absence of clashes). According to Piaget, disequilibria is stimulated by conflict, either 
between an individual’s action schemes and external realities or among different schemes within an 
individual. The cognitive structure undergoes assimilation and accommodation repeatedly until it 
seems “fit” in the externalized world. A scheme is an intellectual structure that organize events as 
they are perceived and classified according to common characteristics. Assimilation is the cognitive 
process by which a person integrates new matter into existing schemata or patterns of behavior. 
Assimilation does not result in a change of schemata, but it does affect the growth and its part of the 
development. Accommodation modifies the cognitive structure (scheme) to make it “fit” the 
external world. According to Piaget, accommodation can happen in two ways: one can create a new 
scheme in which to place the new stimulus or modify an existing schema so that the stimulus fits 
into. Both forms of accommodation result in change in the configuration. Piaget refers to the process 
of assimilation and accommodation as adaptation (Wadsworth, 2004). 

Scholars have since explored the contours of disequilibria and cognitive conflict in different ways. 
Limon (2001) defined cognitive conflict as something that occurs when a students’ mental balance is 
disturbed by experiences that do not fit their current understanding. Zazkis & Chernoff (2007) stated 
cognitive conflict is “invoked when a learner is faced with a contradiction or inconsistency of his or 
her ideas” (p. 196). Berlyne (1970) elaborated cognitive conflict as “a condition in which mutually 
interfering processes occur simultaneously and in which selection of a motor response from a set of 
competing alternatives is therefore hampered” (p. 968), which is more amenable to empirical work 
seeking to understand it in the context of mathematics teaching and learning. Zazlavasky (2015) 
argued that perplexity, confusion and doubt are often associated with and evoked by cognitive 
conflict, suggesting that they may be used as proxies for identifying instances of cognitive conflict. 
Within the literature on mathematical modeling, Lesh et al (2003) identified three kinds of cognitive 
conflicts arise as models are constructed: within-model mismatches, model-reality mismatches, and 
between-model mismatches. Researchers have studied how cognitive conflict influences or changes a 
students’ conceptual understanding (Chan, Burtis, & Bereiter, 1997; Ernest, 1996). At the same time, 
there is also a body of research questioning the role of cognitive conflict in the learning of a concept 
with evidence that cognitive conflict is only one of the many important factors contributing to 
learning a concept (Kang, et al., 2004; Zimmerman & Bloom, 1983). 
Theory of Reflective Abstraction 

The theory of equilibration only considers how a conceptual change is established when there is a 
presence of clashes between the cognizing subject and the stimuli. However, it is incapable of 
explaining how we learn during the absence of clashes. Reflective abstraction addresses this issue.  
Piaget’s (2001) reflective abstraction is a process by which higher level mental structures could be 
developed from lower level structures. This is done in two phases. In the first phase, the structure at 
the lower developmental level is projected onto a higher level and in the second phase these 
structures are reorganized (Campbell,2001). Piaget (2001) acknowledged that reflective abstraction is 
not necessarily a conscious process.  

Reflective abstraction was a significant contribution to addressing the learning paradox (Pascual-
Leone, 1976) because it allows for knowledge to be constructed from already-existing knowledge. 
Simon and colleagues elaborated on reflective abstraction, offering a new explanation for conceptual 
learning in mathematics that not only addresses the learning paradox but also can contribute to the 
basis for the design of mathematics instruction (Simon, Tzur, Heinz, & Kinzel, 2004). The 
mechanism, Reflection on Activity-Effect Relationship (Ref*AER) builds on von Glaserfeld’s (1995) 
tripartite model of a scheme: (1) recognition of a certain situation (S), (2) specific activity associated 
with that situation (A), and (3) the expectation that the activity produces a certain, previously 
experienced result or the anticipated the activity-effect relationship (A/E) (Tzur & Simon, 2004). 
According to Simon and colleagues, an occasion that can result in learning is present when a learner 
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sets a goal (G). The goal is then assimilated into situations (S) that are part of the learner’s existing 
conceptions. From the set of conceptions related to S, activities (A) are called upon to work towards 
the goal to which the learner anticipates the effect of these activities (A/E). While carrying out these 
activities, the learners’ mental systems engage in continual monitoring, including distinguishing 
effects of the activity that advance the goals from effects that do not advance them. During the 
reflection, the learner identifies patterns in the outcomes and abstracts a relationship between the 
activity and the effect it had on reaching the goal. This abstraction results in a new activity-effect 
relationship. Here, activities refer to mental activities, the learners’ goal are not necessarily 
conscious, and the effects are the assimilatory conceptions that the learner brings to the situation. 

Perspective on Mathematical Model Construction 
We view mathematical modeling as a goal-directed activity. To elaborate the modeling process, we 

appeal to the cognitive perspective on modeling (Kaiser, 2017) where a mathematical model is 
considered to be a cyclic process that transforms a real-world problem into a mathematical problem. 
From this perspective it is common to represent model construction through a mathematical 
modeling cycle (MMC) such as Blum & Leiß’s (2007) characterization. Empirical studies have 
described dimensions along which a model can change as it is constructed (Czocher & Hardison, 
2019) and different ways a modeler can validate her model (Czocher, 2018). Validation is a crucial 
part of mathematical modeling, because non-viable models are of little use for solving real-world 
problems. In many mathematical modeling cycles, validating occurs at the end of the process (e.g. 
Blum & Leiß’s, 2007). However, Czocher (2018) argued that validating not only occurs when one 
checks the final results against the real-world phenomena, she attempted to model but in different 
ways throughout model construction. When a student attempts to validate her model, she holds two 
models in her mind: the model she is constructing and the model she anticipates constructing.  As a 
consequence of this comparison, the modeler chooses to accept, revise, or reject the model she is 
constructing. In this way, validating is responsible for the iterative nature of modeling as well as 
ongoing monitoring (Czocher, 2018). Therefore, we conclude that since (a) the outcomes of 
validating lead to modifications of the model, and (b) modelers validate both their final products and 
monitor their evolving models, validating has a significant contribution in model construction.  

For these reasons, we argue that looking deeply into model validation will lead us to understand 
how learning happens through modeling. To move the field forward, the paper focuses on what 
happens during validation that leads to the acceptance, rejection or revision of the model, specifically 
by looking at model validation through two related but different lenses: (1) cognitive conflicts during 
model validation and (2) viewing validation as a ref*AER. Informed by the review of the relevant 
constructs, we conceptualize cognitive conflict that arises during validating the model as a 
discomfort the modeler experiences due to a perceived discrepancy between the model under 
construction and the model she anticipates constructing.  At the same time, validating can be seen as 
a reflection on Activity-Effect relationship. When a student engages in a modeling task, she is 
working towards a goal(G) of modeling a real-world situation. To reach this goal, she calls upon 
activities or activity sequences (A), which she had previously abstracted as having certain effects 
(A/E), that will help her to map her understanding of the real-world situation to a mathematical 
structure. While executing these activities, she then monitors the effects of these activities through 
the interpretation of her constructed model. Then, validation is the reflection that compares the 
anticipated effect to the constructed effect. As Simon and colleagues stated, “the ability to set the 
goal subsumes the ability judge the results” (2004, p.318).  

We make the case that if cognitive conflicts and reflective abstraction contribute to the construction 
of knowledge, then in the mathematical modeling context, it is through model validation that 
cognitive conflict and ref*AER enable learning. This paper first presents an analysis using the first 
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lens to investigate the decisions made during validation, addresses the constraints, and then presents 
the second lens that could address the limitations of the first.  

Methods 
Data for this study were drawn from a larger study of one-on-one modeling task-based interviews 

with undergraduate STEM majors at a large university in the United States.  The students were 
enrolled in a semester course on differential equations. The overarching goal of the interviews were 
to explore and document students’ mathematical reasoning during modeling.  We present examples, 
to illustrate our case, from one student Jayden, working on the falling body problem.  

The falling body problem: On November 20, 2011, Willie Harris, 42, a man living on the 
west side of Austin TX died from injuries sustained after jumping from a second-floor 
window to escape a fire at his home. What was his impact speed?  

Jayden was purposefully selected to look deeply into the mechanisms of model validation, because 
he employed multiple strategies to model the scenario and exhibited observable modeling 
mechanisms that helped us in explaining our lenses on model validation. Our primary research goal 
was to build second-order models (Steffe & Thompson, 2000) of his mental activities to explain the 
factors that shaped his decisions about revising his mathematical model (or not) as an outcome of his 
engagement in model validation. Since we did not have direct access to Jayden’s mental activities, 
the second-order models are what we inferred from Jayden’s observable activities including his 
language, verbal descriptions and discourse, written work, and on occasion gestures, when they were 
salient.  

For our retrospective analysis of Jayden’s engagement with the falling body task, we carried out 
five rounds of data analysis to arrive at examples that could serve for theory-building. First, we 
coded the interview for instances of validating, using the method of constant comparison and 
according to the operationalization in Czocher (2018).  Next, we surveyed the validating instances 
for any identifiable cognitive conflicts and these instances were isolated. Third, we selected examples 
illustrating cognitive conflict to seek evidence of learning. Fourth, we catalogued instances of 
validation that failed to be instances of cognitive conflict. Fifth, we applied ref*AER to explain the 
failed examples. Below, we share illustrations of the third and fifth steps. 

Findings 
Lens 1 - Cognitive Conflicts during Model Validation 

We offer two illustrations of when cognitive conflict arose for Jayden during model validation. We 
leverage the illustrations to explain how Jayden modified the model under construction to 
accommodate the anticipated model or otherwise left the conflict unresolved.  

Jayden began from kinematics equations and successfully modeled the falling body situation 
without accounting for air resistance. He justified his choice, asserting that air resistance would be 
negligible “when there is either no air or no fluid to fall through, or you were infinitely close to the 
ground.”  The interviewer challenged Jayden to take air resistance into consideration. In response, he 
constructed a first order, linear, homogeneous equation to model the falling body. He wrote 
!"(!)
!"

+ 𝛽𝑄 = 0, where Q represented the position of the body and !"
!"

 represented its velocity. He 
then wrote the generic solution 𝑄 𝑡 = 𝐶𝑒!!". Jayden wrote 𝑄 𝑡 = 𝐶𝑒!!" with the intention of 
figuring out “what λ has to equal”. Jayden modeled the situation with the initial condition for 
position as 𝑄 0 = 0. Later, Jayden indicated that he was not sure if the model he constructed was 
correct. Jayden stated, “I’m not sure if that’s right, I’m not sure if there should be some sort of 
constant increase as you get faster”. He drew two graphs showing an increasing relationship between 
velocity and the air resistance (figure 1). However, he was unsure which representation best matched 
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the situation. He indicated that the linear relationship or the exponential relationship will determine if  
!"(!)
!"

+ 𝛽𝑄 would equal zero or would equal a forcing term, respectively. 

 
Figure 1: Students’ representation of the relationships between drag force and velocity 

 
He continued to solve the differential equation assuming the initial positions and initial velocity to 

be zero. He substituted the general solution 𝑄 𝑡 = 𝐶𝑒!!" in !"(!)
!"

+ 𝛽𝑄 = 0  and obtained the 
expression λ𝐶𝑒! + 𝛽𝐶𝑒! = 0 which resulted in𝜆 = −𝛽 (figure 2). He then engaged in validating the 
model he presented by commenting on the reasonableness of it by stating the following:  

it doesn’t really tell me a whole lot because I don’t know what the graph should look like. I 
feel like it probably equal some sort of forcing term…because I don’t think that the solution 
would end up being…as he increases in position, I don’t think it’s going to be 𝐶𝑒!𝛽𝑡 … I 
don’t think that this correctly models it. 

 
Figure 2: First order linear differential equation with initial conditions 

 
Jayden engaged in model validation when he commented on the reasonableness of the model. Here, 

the model under construction is the mathematical expression based on the assumption that the 
velocity and force change linearly and the anticipated model is the mathematical expression based on 
his  assumption that “as the velocity gets larger, the force might get greater and greater and greater” . 
Jayden was experiencing a conflict between the model he constructed and the model he idealized, 
hence anticipated. 

Jayden was able to resolve the conflict when he realized that “the wind is always just an opposing 
force [so] it could be treated like the force of friction.”  He then rejected his mathematical model by 
attempting a different solution that used Newton’s laws of motion because they incorporated the 
surface area of the body and air resistance. In this episode, Jayden attended to the model under 
construction by modifying the assumptions that the model was based on in order to accommodate the 
anticipated model. We inferred, based on his sketches, that his anticipated model was his idealization 
(based on his real-world knowledge) that as the velocity increases the force due to air resistance 
should increase nonlinearly. 

Next is an example where Jayden left the conflict unresolved. Assuming the presence of air 
resistance, Jayden modelled the falling body using Newton’s laws of motion, taking into the 
consideration the surface area of the falling body and a coefficient to capture the influence of air 
resistance. He introduced the downward force that the body would experience as 𝐹 = 𝑚𝑎, the air 
resistance as 𝐹!" = 𝜇! ∙ 𝑠!, and the net force the body would experience as the addition of the two 
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forces. Here 𝜇!  is was the coefficient of air resistance and 𝑠!  was the surface area (Figure 2). 
However, he mentioned that the velocity should be somewhere in these equations as well. This was 
evidenced by the following statement he made: 

I just kind of thought of something. His velocity should be somewhere in here also. Because 
the faster you go the more the force will be…but I have no clue how to put that in. 

 
Figure 3: Student’s model of the falling body including air resistance and surface area.  

 
In order to incorporate velocity in his model Jayden performed a dimensional analysis to balance 

both sides of the equation in terms of units. He equated 1𝑁 = !"∙!
!!

, to the units of  𝜇! ∙ 𝑠!. While 
performing the dimensional analysis, he decided that the surface area should not be there. He 
scratched out the symbol for surface area and instead added the “change in velocity for a time” of the 
body to the expression (Figure 3). He equated the mass of the body times the coefficient of air 
resistance times the “change in velocity for a time” of the body to net the force that the body would 
experience due to air resistance. After arriving at the aforementioned model, Jayden explained: 

Intuitively I don’t think I trust that…I mean that’s the answer that I reached, but I really 
think that has something to do with the surface area. Because this pencil will drop faster 
[drops his pencil from his hands] than a big piece of paper weighing the same amount…so I 
don’t know. 

In this instance, Jayden validated the model by commenting on the reasonableness of it, appealing 
to his lived experiences. Jayden’s statement that the model was not trustworthy indicates that he 
experienced a cognitive conflict. In this case the model under construction was the mathematical 
expression he produced (without surface area) and the anticipated model was his idealized view of 
the world, where an object’s surface areas affects its velocity through air resistance. Jayden indicated 
that he did not know how to rectify the dispute and therefore presented this as the final expression for 
wind resistance. He then discussed how he would set the force equal to !"(!)

!"
+ 𝛽𝑄, obtained from 

earlier work, in order to find the falling man’s impact speed. In this scenario, Jayden accepted his 
model. However, the conflict was left unresolved.   

While analyzing cognitive conflicts during model validation was a useful way to look at what 
happened during model validation that led to the acceptance, rejection, and revisions of the model, 
there were limitations to it. First, taking this perspective assumes that learning during mathematical 
modeling only occurs during the rejection or/and revision of the model. This is not necessarily true. 
Learning could also happen when one is satisfied with the model and accepts it because accepting the 
model may also have transformed the modelers way of knowing and acting about the model. This 
perspective ignores this case. Second, not all validating instances coincide with instances of cognitive 
conflict. Therefore, it is necessary to explain such instances where model validation is present, but 
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conflict is not. The second lens of looking at validating was drawn upon to address some of these 
limitations. 
Lens 2 – Validation as a Ref*AER 

The following is an example of model validation which could not be explained through the first 
lens, can now be explained by viewing validating as a Ref*AER. Recall the scenario where Jayden 
modelled the falling body with air resistance with the expression !"(!)

!"
+ 𝛽𝑄 = 0 and initial values 

𝑄 0 = 0. While considering the initial conditions to solve the differential equation, Jayden stated:  

I’m just trying to think what initial conditions I need to use. I guess I’ll have to just say…  𝑄 0 =
0 because his position is 0. But I guess it will be better if I said that this was [pause] let’s see 
[long pause] … I guess this is fine [pointing at 𝑄 0 = 0]. 

Jayden validated his model through evaluating the reasonableness of the initial condition 𝑄 0 = 0. 
However, he was not experiencing a conflict because there was no evidence for a discrepancy 
between the model under construction and the anticipated model. When Jayden stated “I’m just 
trying to think what initial conditions I need to use” we take that as an indication of him recalling the 
activities that would lead him to the desired effect and filtering the ones that would not. Here the goal 
is to solve the differential equation (G), the activity is drawing on the appropriate initial condition 
(A), and the effect is what comes out of solving the differential equation using the selected initial 
condition (E). Jayden first considered the initial condition 𝑄(0) = 0, and next he considered whether 
they would advance him toward his desired goal. This is evident when he said, “But I guess it will be 
better if I said that this was…” Through reflecting, Jayden ultimately conformed to his initial choice 
𝑄 0 = 0, and therefore accepted his model. In this instance, Jayden was continuously monitoring 
and reflecting on the effect of selecting 𝑄 0 = 0 as the initial condition would have towards 
reaching his ultimate goal.  

The following is an example where Jayden rejected his model, which can also be explained using 
the Ref*AER lens. Jayden’s initial approach was to draw from the equations of motion from 
mechanics. To find the impact speed of the falling body, Jayden wrote the equation 𝑠 = 𝑢𝑡 + !

!
𝑎𝑡! , 

where 𝑠 is the distance the body travelled, 𝑢 is the initial velocity, 𝑎 is the acceleration due to 
gravity, and 𝑡 is the time it took to travel a distance s.  As soon as he realized that the equation 
contains the time of fall 𝑡, Jayden scratched out the expression and resorted to 𝑣! − 𝑢! = 2𝑎𝑠 .  The 
reason being the first expression required the time of fall, which was not given in the task. This was 
an instance of validation because he scratched out the first expression and attempted a different 
solution. However, there was no evidence of conflict. In this instance, the goal for Jayden was to find 
the impact speed without using the time of fall (G). He stated, “I could find the time of fall, but it’s 
not necessary”. His activity (A) was selecting 𝑣! − 𝑢! = 2𝑎𝑠  over 𝑠 = 𝑢𝑡 + !

!
𝑎𝑡!  through 

cataloguing existing equations and reflecting on the effect they had in reaching the desired outcome 
(E). As a result of validating, he rejected his initial expression and selected another one to meet his 
desired effect. 

Discussion & Conclusions 
This study investigated the mechanisms of model validation through two lenses: (i) looking at 

cognitive conflicts that arise due to the discrepancy between the model under construction and the 
anticipated model, and (ii) viewing model validation as a reflection on activity-effect relationship. 
Our analysis offers insight into potential mechanisms for model construction and suggests a strong 
link between model construction and Piagetian explanations of knowledge construction. Studying the 
nature of cognitive conflicts students experience while engaging in mathematical modeling and 
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viewing model validation as Ref*AER may be an avenue towards elaborating how learning occurs 
through mathematical modeling because it may inform us about how students make decisions about 
the viability of their models. 

Given the preceding analysis, we close with two considerations: limitations and future directions. 
This study only informs us how learning may be enabled through mathematical modeling and is not 
capable to inform us on what was learned. At the same time, the paper does not discuss the explicit 
treatment of the two lenses and how they can be leveraged to analyze the mechanism of model 
construction, yet. Future analysis will investigate this. In order to understand what was learned 
through modeling, instances of validating will be analyzed closely, using the lenses presented in this 
paper, to see the following: why do modelers chose to accept, revise, and reject the models? how do 
they do so? and in what ways? However, this theoretical paper outlines the extent to which these 
learning theories are applicable to mathematical modeling. This we believe is a significant 
contribution as it sets us open to understanding what is it that is being learned through mathematical 
modeling. These mechanisms can then be leveraged to develop instructional theory that fosters 
mathematical conceptual learning through mathematical modeling. 
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In this report, we present how one prospective elementary teacher (PT) engaged in the Ant Farm 
Task, which we designed to investigate PTs’ reasoning about coordinate systems. We highlight the 
cognitive resources the PT drew upon in solving the task via the establishment of a Cartesian 
coordination and consider educational implications.  
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From fifth grade onward, students and their teachers are often expected to represent and reason 
about various mathematical concepts (e.g., geometrical shapes, functions, etc.) using the Cartesian 
plane. However, coordinate systems are often taken for granted; meaning, students are assumed to 
develop proficiency in using this representational tool in relatively unproblematic ways, and teachers 
are assumed to have developed understandings of coordinate systems capable of supporting their 
students’ mathematical activity. Additionally, textbooks and curricular standards (e.g., CCSSM) 
describe how to draw and use a Cartesian plane but rarely provide motivation for establishing a 
Cartesian coordination. Generally, the rules of “generating” a Cartesian plane are given with minimal 
explanation for why we construct it in such a way or why using an ordered pair of numbers locates a 
point. In this report, we present how one prospective elementary teacher (PT) engaged in the Ant 
Farm Task (AFT), a task we found helpful in motivating a Cartesian coordination. We highlight the 
cognitive resources the PT drew upon in solving the task via establishing a Cartesian coordination 
and consider educational implications of the task and our findings.  

Theoretical Framing 
By coordinate system we mean a representational space in which an individual systematically 

coordinates quantities (Thompson, 2011) to organize some phenomenon. A coordinate system does 
not represent by itself; it must be created and interpreted by a cognizing subject (cf., von Glasersfeld, 
1987). Put differently, we consider coordinate systems to be constructed by an individual in goal-
directed activity. Relatedly, we have distinguished between two types of coordinate systems 
depending on the goal they serve: spatial and quantitative (Lee, Hardison, & Paoletti, 2020).  

Spatial coordinate systems are used to quantitatively organize a space in which a phenomenon is 
situated. Constructing a spatial coordinate system involves (mentally) overlaying a coordinate system 
onto some physical or imagined space being represented and tagging objects within that space with 
coordinates. For example, consider a Cartesian plane overlaid onto an amusement park from a bird’s 
eye view where the axes are aligned with two streets in the park. On the other hand, quantitative 
coordinate systems are used to coordinate sets of quantities by constructing a geometrical 
representation of the product of measure spaces. Constructing a quantitative coordinate system 
involves an individual extracting quantities from the space in which a phenomenon occurs and 
projecting them onto a new space, different from the space in which the quantities were originally 
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conceived. For example, imagine a Cartesian plane with one axis representing the amount of wait 
time for a ride in the amusement park and the other axis representing the number of people in line for 
that ride. 

Both coordinate system types involve coordinating quantities. Our use of spatial and quantitative as 
modifiers is intended to foreground the different mental actions involved in establishing a 
coordination of quantities in each type of coordinate system. We use the Cartesian plane as an 
example to illustrate this distinction. When constructing a spatial Cartesian plane, an individual starts 
with a space they want to organize. In order to quantitatively describe the location of objects or 
points within this space, the individual can establish a reference point and orthogonal lines through 
the reference point and use these frames of reference to describe each point’s location in terms of its 
horizontal and vertical distance from the reference point. In other words, the individual can establish 
a Cartesian coordination via decomposing the location of a point along two orthogonal lines in 
relation to a reference point (see Figure 1a). In this case, the point’s location is conceived of as a 
logical multiplication (Piaget et al., 1960) of the horizontal and vertical displacement from the 
reference point. 

 

 
Figure 1: Model of the operations involved in establishing (a) a spatial Cartesian coordination and 

(b) a quantitative Cartesian coordination 

In contrast, when constructing a quantitative Cartesian plane, an individual starts with two 
quantities they have disembedded (Steffe & Olive, 2010) from the space in which a phenomenon 
occurs (i.e., the individual has extracted them from the situation while maintaining an awareness of 
the quantities within the situation). Overlaying the quantities onto two number lines, and arranging 
the number lines orthogonally, the individual can produce a two-dimensional space, different from 
where the quantities were originally conceived. Finally, a point is constructed as the intersection of 
the perpendicular projections from each point/quantity on each number line (see Figure 1b) and a 
quantitative Cartesian coordination is established. In this case, the point is conceived of as a 
multiplicative object holding both quantities’ values simultaneously (Saldanha & Thompson, 1998). 

Students’ Cartesian Coordinations in Literature 
Several studies provide insights into students’ Cartesian-like coordinations described above in 

graphing contexts. For example, Nemirovsky and Tierney (2004) presented a situation to Rose, an 
eight-year-old, in which blocks were added to or taken away from a paper bag over time. Rose was 
asked to show how the number of blocks in the paper bag changed over time using a line marked 
with Start and End. Rose produced a curve (Figure 2a) to represent the change in quantity over time. 
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This example shows a child spontaneously using the space above the line to show change in 
quantities over time. DiSessa et al. (1991) and Sherin (2000) presented a scenario describing the 
motion of a motorist over time to middle and high school students and asked them to produce a 
picture describing the motorist’s motion. In solving this task, students tended to use a horizontal line 
representing the road and made marks such as dots and line segments to represent quantities (e.g., 
speed). Gradually, the horizontal line transformed into a number line representing time and some 
students produced a graph such as that in Figure 2b to describe the motorist’s speed over time. This 
example demonstrates how middle and high school students utilized the vertical distance from a 
horizontal line to represent change in speed over time. Collectively, these examples illustrate how 
students, starting with a horizontal line, can use a vertical dimension to represent change in quantities 
over time and hence construct Cartesian-like systems. However, they do not explain how students 
might establish a Cartesian coordination starting with two (number) lines.   

 

 
Figure 2: Two examples: (a) Rose’s “time line” representation in Nemirovsky & Tierney (2004), p. 

42 (b) Carl’s representation in Sherin (2000), p. 432 

In her previous work with four ninth-graders, Lee (2017) examined students’ constructions of 
spatial coordinate systems and observed students establishing a spatial Cartesian coordination. For 
example, when asked to locate a missing person (point A) in reference to a rescuer (P) on a map, one 
ninth-grader described the location of A in relation to P by decomposing the straight motion from P 
to A into a horizontal and vertical movement from P to A (see Figure 2c). After observing students’ 
constructions of spatial coordinate systems, we were motivated to explore how students might 
leverage their ways of coordinating spatially in order to coordinate quantitatively via the AFT (Lee & 
Hardison, 2016; 2017). The findings we present in this report extend the literature base by (a) 
examining PTs’ constructions of coordinate systems which can inform educational support for PTs, 
which are scarcely documented and (b) identifying the cognitive resources that may be leveraged to 
engender a spontaneous Cartesian coordination starting with two (number) lines.  

The Ant Farm Task 
In previous work, we have hypothesized that spatial coordinations necessarily precede quantitative 

coordinations (Lee & Hardison, 2017). We designed the AFT as a possible way of bridging these two 
types of coordinations. In contrast to the above tasks, we designed the AFT to (a) be entirely situated 
in a spatial context in which PTs could leverage their spatial coordination, (b) start with two given 
lines, and (c) have the potential for engendering some of the mental actions involved in establishing a 
quantitative coordination. In the AFT, PTs were provided with two transparent tubes representing 
two ant farms (Figure 3a) and asked to imagine that each contained exactly one giant ant moving 
around haphazardly. Additionally, we provided a model of this situation in a dynamic geometry 
environment (DGE; Figure 3b); the DGE sketch contained two long, thin rectangles (ant farms), each 
containing a point (ant) moving haphazardly. The points’ movement could be paused/activated by 
action buttons, and the rectangles could be moved or rotated within the DGE. Given this scenario and 
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the DGE sketch, we asked PTs, “Can you make a single point to show the locations of both ants at 
any moment in time?” Following this prompt was an explanation that if we were to hide both ants, 
they should be able to use their new point to determine the location of the two hidden ants. We 
presented the spatial situation without referencing any quantities explicitly (e.g., an ant’s distance 
from the end of the tube). One possible solution to the AFT involves establishing a conventional 
Cartesian coordination. Through the AFT, we investigated (a) how PTs might modify their ways of 
coordinating spatially to coordinate quantitatively and (b) what cognitive resources PTs draw upon 
when constructing a two-dimensional coordinate system from two one-dimensional lines.  

 

 
Figure 3: Ant Farm Task (a) plastic tubes representing the ant farms and (b) accompanying 

dynamic geometry environment sketch.  

Methods 
We draw on data from a teaching experiment (Steffe & Thompson, 2000) with four PTs. The 

overarching goal of the teaching experiment was to investigate how PTs construct and reason about 
coordinate systems, as well as how PTs’ ways of thinking changed throughout the teaching 
experiment. All four PTs were enrolled in an elementary or middle grades teacher preparation 
program at a university in the southern U.S. PTs participated in eight 60-minute long teaching 
sessions, which were conducted individually or in pairs. In this report, we present and analyze data 
from one teaching session wherein one PT, Ginny, and her partner, Hermione, solved the AFT. We 
focus our analyses on Ginny with occasional remarks regarding Hermione as appropriate. We focus 
specifically on Ginny because her solution to the AFT contained features common to other PTs’ 
activities on the task and a unique feature—introducing number lines.  
Data Sources and Analysis Methods 

Investigating PTs’ mathematical thinking, which is not directly accessible, requires making 
inferences from PTs’ observable activities. Therefore, the models of Ginny’s thinking we build are 
second-order models (Steffe & Thompson, 2000) of what we infer from her visual illustrations, 
verbal descriptions, and physical gestures. For each teaching episode, we collected video recordings 
of PTs’ actions, a screen recording of PTs’ activities in the DGE, and digitized written work. 

We conducted both on-going and retrospective analyses and modeled PTs’ constructive activities 
(Steffe & Thompson, 2000). On-going analyses involved testing and formulating hypotheses during 
the teaching experiment based on ways PTs engaged in each teaching episode. We inferred, from 
PTs’ engagement, instances that corroborated or contraindicated our hypotheses. After the 
completion of the teaching experiment, we re-visited the data corpus to do an in-depth retrospective 
analysis. The retrospective analysis involved four main activities that collectively refined the initial 
explanatory models developed during the teaching experiment. The four activities were (a) watching 
the entire video set or subsets of the video holistically without interruption to observe recurring 
patterns in PTs’ activities or shifts in their reasoning, (b) identifying instances that offered insights in 
building working models of the recurring patterns or shifts in their reasoning, (c) constructing 
annotated transcripts of such instances with rich descriptions of PTs’ actions, and (d) 
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constructing/refining explanatory models of PTs’ constructions of coordinate systems. Specific to the 
AFT, we analyzed the cognitive resources PTs drew upon when constructing a two-dimensional 
system from two one-dimensional lines.  

Findings 
We present our findings regarding Ginny’s reasoning about the AFT in four phases. We highlight 

Ginny’s activities in each phase and analyze the cognitive resources that supported her in 
establishing a Cartesian coordination. 
Attending to Variability and Locational Simultaneity by Superimposition 

When first posed with the prompt in the AFT, Ginny reiterated the problem, asking, “So, we need to 
make one point while they’re moving to show where they are while they’re moving? At any point in 
time?” to which her partner Hermione added, “I think it’s hard because they’re moving around a lot.” 
We took these initial comments to indicate that both PTs were attending to, and perturbed by, two 
things: variability in the ants’ locations and locational simultaneity required in the desired single 
point.  

Ginny and Hermione proposed some ideas to address these elements. For instance, Hermione 
suggested using the mid-points of each tube, since “the ants always pass the middle.” However, both 
PTs noticed that the ants were not always at the middle of each tube. Instead, Ginny superimposed 
the tubes in various ways to observe where the ants crossed each other. Specifically, Ginny aligned 
the two ant farm rectangles on top of each other in the DGE so that one rectangle was perfectly 
overlaid onto another and animated the ants. Next, she observed instances where the ant points 
occupied the same location at the same time. She identified three such points and claimed that one of 
those could be used as the desired point. However, Ginny acknowledged that these three points do 
not capture all of the possible ants’ locations.  

Seeking alternative solutions, Ginny joined the ends of the two plastic tubes, making the two tubes 
into one long tube, and explained, “You know both of the ants are on the same path. In the direct 
center, I guess that would be the one point to describe where they both are,” as she drew a circle and 
point in the circle’s center. As such, Ginny assumed the ants were moving in the center of each tube 
and, taking a cross-sectional view, identified one point as a projection of both ants in each tube.  

From her activities, we infer that superimposing and attending to the intersection of the two points 
was a way for Ginny to account for locational simultaneity. When she superimposed one tube onto 
another, she accounted for locational simultaneity for three different instances in time; when she 
superimposed the tubes by joining their ends, she accounted for simultaneity for all instances in time, 
but from a different perspective. Although these points did not indicate where the ants were in each 
tube, Ginny demonstrated flexibility in taking different perspectives in viewing the ants and tubes. 
Collectively, Ginny’s activities indicated that she viewed the tubes as objects she could manipulate 
and rearrange to serve her goal; they were not fixed objects, which we viewed as a critical cognitive 
resource in her thinking.  
Establishing the Single Point as Being Dynamic  

Approximately 20 minutes into the session, Ginny placed the tubes in the DGE perpendicularly (see 
Figure 4a) and explained she wanted to see if the ants met in the middle, where the tubes intersected. 
With the ants animated in the DGE, Ginny and Hermione observed that the ants crossed each other at 
the middle, but Ginny was unsure how to proceed: “I still don’t think [we can come up with just one 
point] because they’re never, they’re not always in the same place at the same time.” Wondering if 
the PTs conceived of the desired point as being static, the teacher-researcher (TR) asked, “So, what if 
somehow that point might move appropriately with the ants?” To which Hermione expressed, “So, 
you’re saying the point can move now?” Hermione’s response suggested she had interpreted the 
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initial prompt as requesting a static desired point and she was now considering whether the desired 
point could be dynamic. Although this interaction was occasioned by the TR, we view this 
interaction as critical because the PTs established the desired point as potentially being dynamic.  

 

 
Figure 4: (a) Tubes arranged perpendicularly in the DGE and (b) Ginny’s three number lines. 

Using Number Lines 
Approximately 30 minutes into the session, Ginny proposed a new idea: “What if we made the 

edges of the tubes a number line and the middle of the tube zero. So this [pointing to the left side of a 
tube] would be the negative side and this [pointing to the right side of the same tube] would be the 
positive side and this [pointing to the center of the tube] would be zero.” Next, Ginny drew three 
number lines as shown in Figure 4b, explaining that the first and second number line each 
represented the ant’s location in Tube 1 and Tube 2, respectively. Picking two locations as examples, 
she explained that if Ant 1 is at –5 and Ant 2 is at 2, then the single point –3 on the third number line, 
obtained by adding –5 and 2, should represent both ants’ positions. When asked what the third 
number line was, Ginny explained, “[It is] corresponding to where the point is on, it would be I guess 
both of the tubes.” As such, instead of superimposing one ant farm onto the other, Ginny created a 
third object to account for locational simultaneity.  

Up to this point, we hypothesized that Ginny overlaid a number line onto each tube, and thus 
constructed a one-dimensional spatial coordinate system. Relatedly, there were two hypotheses to be 
tested: (a) whether Ginny’s number lines were viewed as number lines superimposed onto the spatial 
situation, and (b) whether the numbers on her number lines were conceived of as distances (e.g., 
from the edge of the tube) or numerical values labeling each ants’ location.  

In Ginny’s three number line representation (Figure 4(b)), although simultaneity was accounted for, 
the variability of the ants’ positions yielded a non-unique point on the third number line. Relatedly, 
the TR asked, “what if Ant 1 is at –4 and Ant 2 is at 1?” Almost immediately, Ginny drew two 
perpendicular lines and explained, “So, if we had a graph and we do... negative five and then two, 
this point right here [plotting the point in Figure 5a] would describe where they are. So, instead of 
doing the adding them together you would graph it on a graph.” She further explained that the point 
she plotted showed that the black ant is at 2 and the red ant is at –5. At this point, the two tubes in the 
DGE placed in front of the PTs were positioned perpendicularly (like in Figure 4a). We account for 
the sudden shift in her thinking to (a) Ginny’s attention to locational simultaneity and attempting to 
capture both ants’ locations and (b) recalling her previous graphing experience from the image on the 
DGE.  
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Figure 5: (a) Ginny’s drawing of number lines arranged perpendicularly; (b) Hermione’s point in 

the DGE; (c) Ginny’s construction of the single point. 

While Ginny was showing her new solution for finding the desired point, Hermione plotted the 
point shown in Figure 5b in the DGE and asked Ginny if the point she plotted would be the single 
point. Ginny explained “So, this [pointing to her drawing in Figure 5a] would be a totally different 
graph... so you’d get information from where the ants are on the number line on the tube. Then you 
would graph it on a different paper. So, it’s not like a point on these [pointing to the plastic tubes] it’s 
like a point on this [pointing to her paper].  

Ginny’s explanation in response to Hermione’s question indicated Ginny has constructed number 
lines, disembedded from the Ant Farm situation, and arranged them to produce a different space from 
the original Ant Farm space. Thus, we inferred she constructed a quantitative coordinate system with 
her number lines in the sense that she viewed her “graph” as a space different from the space in 
which the number lines were initially conceived. Also, by the way she explained “getting information 
from where the ants are on the number line on the tube,” we inferred her number lines consisted of 
numerical values indicating location in reference to the middle of the tube and that her number lines 
were not yet spatial coordinate systems superimposed onto the spatial situation.  
Establishing the Cartesian Coordination  

Noticing Ginny’s differentiation between her “graph” and the ant farm space, approximately 35 
minutes into the session, the TR commented, “I’m curious, so it sounds like you see this as a 
different space from that space, is what it sounds like.” Ginny responded, “Yeah, I mean, I guess you 
can make it the same space but...” and sat in thought looking back and forth at the DGE screen and 
her sketch in Figure 5a for approximately 7 seconds. She then continued, “I guess you could make it 
the same space because...if put a number line on this,” pointing to the ant farm tubes in the DGE. 
Pointing to each ant farm tube in the DGE, Ginny further explained, “So this [referring to the 
horizontally placed tube] would be your x and your y [pointing to the vertically arranged tube] of 
your graph and your dots [referring to the ants] would be your values and you just need to connect 
them to make your point [moving her fingers in the air consistent with the blue arrows in Figure 
1b].”  

Finally, Ginny constructed a line through Ant 1, perpendicular to Tube 1, and a line through Ant 2, 
perpendicular to Tube 2 and indicated that the intersection of the two lines would show the location 
of both ants in each tube (Figure 5c). After the TR hid the two perpendicular lines, both PTs verified 
their new method worked by considering several positions of ants by hiding the ants, animating the 
single point, guessing where the ants should be within each tube, and then checking the ants’ 
locations. When the TR asked why they think this method works in general, Ginny explained that by 
placing the tubes perpendicularly, a horizontal line can be used to describe the red ant moving 
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vertically and a vertical line to describe the black ant moving horizontally. In conclusion, Ginny 
established a Cartesian coordination leveraging her spatial coordinations.  

Conclusion and Discussion 
From Ginny’s activities in the AFT, we highlight three cognitive resources we see as critical for 

establishing a Cartesian coordination given two lines that would enable holding a sustained image of 
two locations simultaneously for arbitrary positions of points on each line. First, Ginny’s attention to 
variability in the ants’ locations coupled with imagining the single point as moving along with the 
two ants was a critical development during the teaching session. Second, Ginny recognized the tubes 
(or number lines) as objects that could be manipulated and rearranged which supported her to 
arrange them in a particular way (e.g., perpendicularly) so that the locations of each ant could be 
accounted for simultaneously. Third, drawing from her spatial coordinations, Ginny utilized the two-
dimensional space outside of the one-dimensional tubes spaces to construct a point outside of the 
tubes (or number lines). Specifically, she projected vertically from the horizontal tube in which the 
ant moved horizontally and projected horizontally from the vertical tube in which the ant moved 
vertically. Supported by these cognitive activities, Ginny successfully constructed a single point that 
simultaneously captured the location of both ants.  

For Ginny and Hermione, devising a system to coordinate the location of two points using a single 
point appeared novel, meaning that establishing a Cartesian coordination by rearranging lines 
orthogonally and projecting from the two lines was non-trivial despite their prior school experiences. 
Recall that although Ginny eventually constructed a system she called a “graph,” she initially viewed 
it as different from the ant farm space. We suspect this was due to her past experiences with 
coordinate systems focused predominantly on quantitative coordinate systems. Thus, viewing the Ant 
Farm space as a space analogous to her coordinated number line space was an additional critical 
realization for Ginny in solving the AFT. 

Given the preceding findings, we close with two considerations: one limitation and one direction for 
further study. First, the wording of the initial AFT prompt may have hindered PTs from viewing the 
single point as being dynamic; therefore, variations of the prompt might be considered in future 
implementations. Second, the cognitive resources presented here that foster the establishment of a 
Cartesian coordination may be specific to Ginny and the AFT, which require further research with 
more PTs. Future research can also look into what engendered Ginny’s transition from one phase to 
another (e.g., TR moves) and how these can be leveraged to support PTs and consequently their 
future students’ constructions of coordinate systems.  
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This study examines pre-service teachers’ (PSTs’) views of tasks that engage students in 
mathematical argumentation. Data were collected in two different mathematics courses for 
elementary school education majors (n = 51 total PSTs). Analyzed were (a) written journals in which 
PSTs defined tasks that promote student engagement in argumentation, (b) tasks PSTs posed to 
engage students in mathematical argumentation, and (c) accompanying explanations in which PSTs 
motivated tasks they posed. The analysis revealed that PSTs interpret tasks that foster argumentation 
in terms of activities of argumentation that a task elicits and space for argumentation that the task 
provides. Several features that PSTs associated with each of the two major task characteristics were 
identified. While posing tasks to engage students in argumentation, PSTs did not place equal 
emphasis on all of the identified features.  

Keywords: Reasoning and Proof, Mathematical Knowledge for Teaching, Teacher Education-Pre-
service. 

Background 
Curricular standards in mathematics recognize mathematical argumentation as an essential 

disciplinary practice with which all students should engage and become proficient (e.g., National 
Governors Association Center for Best Practices and Council of Chief State School Officers  
[CCSSM], 2010; National Council of Teachers of Mathematics [NCTM], 2000). Engaging students 
in constructing viable arguments and critiquing the reasoning of others is the desired instructional 
goal (CCSSM, 2010). Past research on argumentation shows, however, that contrary to curricular 
recommendations and recognized importance of argumentation in student learning, teaching 
mathematics with a focus on argumentation is still far from a common practice (e.g., Bieda 2010; 
Staples, Bartlo, Thanhaiser, 2012). 

Past research with practicing (and pre-service teachers, PSTs) documented challenges that teachers 
face while facilitating argumentation in their classrooms (e.g., Bieda 2010; Kosko, Rougee, & 
Herbst, 2014), explored the role of the teacher in promoting argumentation (e.g., Aylon & Even, 
2016; Conner, Singlertary, Smith, Wagner, Francisco, 2014; Graham & Lesseig, 2018), and explored 
how teachers interpret argumentation in the context of mathematics classrooms (e.g., Park & 
Magiera, 2019). While overall, the research interest in argumentation is growing, research attention 
to teachers’ views of tasks that promote student engagement in mathematical argumentation has been 
limited.  

Researchers agree that tasks play an essential role in how students experience mathematics (Krainer, 
1993; Simon & Tzur, 2004; Zaslavsky, 2008). However, research on curricular materials reveals that 
school mathematics textbooks, even textbooks designed to support mathematics curriculum reforms, 
offer limited collections of tasks that, by their inherent design, provide opportunities for engaging 
students in argumentation (e.g., Bieda, Ji, Drwencke, & Pickard, 2013; Dolev & Even; 2015; Stacey 
& Vincent, 2009). Understanding how teachers interpret tasks that engage students in argumentation 
could help gauge students’ opportunities for experiencing argumentation in mathematics classrooms. 
Research-based information about teachers’ views of tasks that engage students in mathematical 
argumentation can also aid the efforts of helping teachers develop a more comprehensive knowledge 
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of argumentation. Thus, in a bid to address these existing gaps, this study uses problem-posing as a 
context for exploring elementary PSTs’ views of mathematical tasks that engage students in the 
practice of argumentation. This research was guided by the following question: What characteristics 
of tasks that promote mathematical argumentation emerge from the analysis of problems PSTs’ pose 
to build students’ capacities in mathematical argumentation, and PSTs’ descriptions of problems that 
engage students in argumentation? 

Conceptual Framework 
Problem Posing 

Problem-posing, which includes designing new and modifying existing tasks, is recognized as an 
essential element of mathematical activity (Silver, 1994). Teachers’ ability to design and pose 
mathematical tasks is one of the central aspects of mathematics teaching (Krainer, 1993; NCTM, 
2000). Classroom problems provide students with the opportunity for thinking and learning (Smith & 
Stein, 1998). Thus problem-posing is perceived as integral to teaching a “high leverage” practice, a 
gateway to understanding that serves as a learning and instructional tool (Ball & Forzani, 2009). 
While posing problems, teachers go beyond thinking about problem-solution, they need to consider 
the overall goal of the task, think about what and how students can make sense of the mathematics 
they learn, and what understandings, skills, and attitudes they develop (Crespo, 2015; Lavy & Shriki, 
2007; NCTM, 1991). Researchers recognize that the activity of problem-posing can provide a 
window into an understanding of teachers’ mathematical and pedagogical content knowledge 
(Ellerton 2015; Lee, Capraro, & Capraro, 2018). 
Mathematical Argumentation 

Toulmin, Rieke, and Janik (1984) described argumentation broadly as “the whole activity of making 
claims, challenging them, backing them up by producing reasons, criticizing those reasons, rebutting 
those criticisms, and so on” (p. 14). This description is consistent with the notion of argumentation 
presented in the Standard for Mathematical Practice #3 (CCSSM, 2010). Mathematics education 
researchers generally agree that in school mathematics, argumentation involves a wide range of 
activities. These activities include constructing, validating, or refuting mathematical claims, 
producing and criticizing justifications, formulating conjectures, generalizing, representing 
mathematical ideas, constructing counterexamples, or communicating reasons, to name some. (e.g., 
Lakatos, 1976; Knudsen, Lara-Meloy, Stevens, & Rutstein, 2014; Krummheuer, 1995; Ramsey & 
Langrall, 2016). The existing frameworks that guide the examination of textbook tasks for their 
affordances of engaging students in argumentation (e.g., Bieda et al., 2014; Stylianides, 2009) 
classify the kinds of argumentation-related activities elicited by the task. Given that the focus of this 
research was on PSTs’ interpretations of tasks that engage students in argumentation, not on the 
implementation of classroom tasks to engage students in argumentation, Toulmin et al. (1984) broad 
description of argumentation together with frameworks proposed to classify the types of 
argumentation-related activities elicited by written tasks provided an attractive guide for this study. 
They allowed negotiating a wide range of meanings that PSTs bring while thinking about tasks that 
engage students in argumentation and to place argumentation within the individual and social space a 
task might create for student engagement in argumentation. 

Method 
Participants and Study Context 

The study was conducted in the Midwestern university in the U.S. Participants were 51 PSTs 
preparing to teach grades 1-8 mathematics enrolled in two mathematics content and concurrent 
pedagogy with field experience set of courses for elementary education majors. The two pairs of 
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courses were Number Systems and Operations for Elementary School Teachers and Teaching 
Elementary School Mathematics (n = 23) and Algebra and Geometry for Teachers and Teaching 
Middle School Mathematics (n = 28). Curricula of each set of courses were coordinated. In the 
context of their mathematics courses, PSTs studied concepts fundamental to the K-8 mathematics 
and engaged in mathematical argumentation as learners. In their corresponding pedagogy with field 
experience courses, they focused on teaching strategies that support students learning of K-8 
mathematics and support students’ mathematical reasoning skills. They conducted focused 
observations in their field placement classrooms to identify teacher moves, instructional strategies, 
and classroom interactions that supported student reasoning. In the context of their education and 
field experience work PSTs also prepared and conducted two problem-based interviews with students 
for the purpose of engaging students in the practice of mathematical argumentation and learning 
about student mathematical thinking.  
Data and Data Analysis 

Collected in the Number Systems and Operations for Elementary School Teachers course were (a) 
written journals in which each PST described tasks that engage students in argumentation, (b) two 
tasks each PST posed (one at a time) in preparation for their interviews of elementary school 
students, and (c) explanations in which each PST described why task they posed creates an 
environment for student engagement in argumentation.  

Collected in the Algebra and Geometry for Teachers course were: (a) written journals in which each 
PSTs described tasks that engage students in argumentation, (b) PSTs’ analyses and critiques of three 
instructor-provided tasks (completed one at a time) in which they discussed each task’s potential to 
engage students in argumentation, and (c) revisions of instructor-provided tasks PSTs’ proposed to 
enhance each task’s potential to engage students in argumentation and PSTs’ explanations for each 
revision. Instructor-provided tasks that provided context for PSTs’ problem-posing activity are 
shown in Figure 1. 

 

Figure 1: Instructor-provided Tasks that PSTs Analyzed and Revised 

Qualitative analytical-inductive methods were used for data analysis. In the first round of the 
analysis, a large subset of all data (about 25%) that consisted of all types of artifacts was first 
carefully annotated to discern PSTs’ perceptions of tasks that engage students in argumentation. The 
goal was to create a code-book that could reliably capture task characteristics identified across PSTs’ 
definitions, tasks they posed (designed or revised), journals in which they described why tasks they 
posed could engage students in argumentation, or interviews during which they discussed their tasks. 
To illustrate the coding process, consider included in Figure 2 task that PST A44 posed together with 

Task 1: How many red pattern blocks will be used if the pattern of figures is extended until there is a total of 
13 polygons? 

 
Task 2: Kay made summer lemonade from a mix using l2 tablespoons of lemonade mix and 20 cups of water. 

How many tablespoons of lemonade mix will she need if she plans to use 30 cups of water to make lemonade 
that tastes just the same? 

 
Task 3: Below is a growing sequence of figures.  

a) Draw the 1st, 5th, and 6th figures 
b) How is the pattern changing? 
c) What would the 100th figure look like? How many tiles it 

has? How can you justify your prediction? 
 Fig 2         Fig 3           Fig 4 
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explanation PST A44 provided about her task. Following the initial round of the analysis, the 
annotations were further compared and contrasted, and their descriptions revised to formulate a final 
set of codes that were then applied to the entire corpus of data. If any new task characteristics were 
identified during this process, new codes were introduced, and the code-book was augmented. The 
final list of codes was further compared and contrasted until no new task characteristics were 
identified. In the final stage of analysis, all codes were again compared and contrasted, leading to the 
identification of two major task characteristics. Task features identified across each PST’s responses 
were then tabulated to identify the overall patters in PSTs’ interpretations of tasks that facilitate 
student engagement in mathematical argumentation. 

 
PST A44’s Task 1 (task posed)  Annotations  
Kim has 5,372 songs on iTunes. She deletes 438 songs. How many songs does she 
have on iTunes now? 
A student solves this problem by subtracting the thousands, hundreds, tens, and one’s 
from 5,372 by 438. Then she adds the sum of each number place together to get the 
final answer of 4,934 songs. Does this strategy work? Why or why not? Can this 
strategy work for any subtraction problem? Use examples to explain your reasoning.

 

Call for justification of a 
strategy 
(Does this strategy work? Why 
or why not?) 
 
Call for evaluating reasoning of 
others 
 
Call for generalization 
(Can this strategy work for any 
subtraction problem?) 
 
Call for communicating 
thinking, reasoning 
(Use examples to explain your 
reasoning)  

PST A44’s Explanation about Task 1 Annotations  
This task takes a simple subtraction problem and turns it into an engaging 
mathematical problem for the student. The student must understand how this 
subtraction problem was solved by someone else using what I assume will be a 
method that is different from how the student traditionally solves a subtraction 
problem. The task asks several questions of the student to clarify that they understand 
how the problem was solved and help them build upon their argumentation of how 
they got the solution and how it works. The task can be applied to other example 
problems to help the student with their understanding of the subtraction strategy and to 
help them explain their mathematical reasoning. I think the most likely problem that 
could occur is that the student may not fully grasp or understand the technique given 
to solve the subtraction problem. They may not get the idea of subtracting the place 
value or may struggle with the negative numbers that show up in this problem because 
they are not used to working with negatives in a standard subtraction problem. Lastly, 
it might be the wording of the problem, that stumps the student. However, with a little 
help, I do think that most sixth graders can absolutely understand this technique and 
argue how it works. The main math skill required to understand this task is place value 
and sixth graders should certainly have a strong understanding of this concept. 

Task is engaging 
 
Task engages in evaluating the 
reasoning of others 
 
Task engages in generalizing 
 
Task is non-routine, requires 
deeper thinking, challenging 
 
Task builds on student existing 
knowledge, understanding 
 
 
 

Figure 2: Example of Task Posed and Task Explanation (PST A44, Task 1) 

Results 
Table 1 summarizes the characteristics of tasks identified across PSTs’ responses. The analysis 

revealed that while posing tasks to engage students in argumentation, PSTs considered (a) activities 
of argumentation in which students could engage given their task and (b) space for argumentation 
that their task provides. Overall across the analyzed tasks, task explanations, and PSTs’ definitions of 
tasks that engage students in argumentation, individual PSTs included between 2 to 11 different task 
features. 
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Table 1: PSTs’ views about tasks that promote mathematical argumentation 
Major Task Characteristics Task Features (n, %*) 

Activities of Argumentation  Task promotes providing justifications  48 (94%) 
 Task encourages making generalizations 34 (67%) 
 Task elicits explorations, generating 

conjectures, evidence, and claims 
31 (61%) 

 Task promotes evaluating arguments or 
reasoning of others 

28 (55%) 

Space for Argumentation Task elicits communicating thinking and 
reasoning  

47 (92%) 

 Task enables the use of multiple solution 
strategies and ways of thinking 

36 (71 %) 

 Task draws on students’ existing knowledge 
and allows them to make connections 

34 (67%) 

 Task engages in deeper thinking, is complex  33 (65%) 

 Task supports the use of multiple 
representations, manipulative materials to 
guide thinking 

31 (61%) 

 Task requires that students reflect and make 
sense of their results 

20 (39%) 

 Task fosters the development of concepts 14 (27%) 
* Rounded to the nearest %. 

 
Activities of argumentation. As summarized in Table 1, PSTs associated argumentation with a 

broad range of activities in which a student could engage in the context of posed tasks. These 
activities, categorized as task features, were emphasized across the analyzed data to a different 
degree. For example, while almost all PSTs (94%), in at least one of their tasks, included an explicit 
call for justifying a result, claim or strategy, only about half of the participants (55%) designed tasks 
that would engage students in evaluating arguments or reasoning of others. About two-thirds of PSTs 
(67%) formulated tasks that engaged students in generalizing, and a little less than two-thirds of 
PSTs (61%) formulated tasks that encouraged explorations, generating conjectures, evidence, and 
claims.  

Consider the presented earlier task posed by PST A44 (Figure 2). By its design, this task engages a 
student in evaluating the validity of a given strategy. The task statement requires that a student 
justifies his or her strategy assessment. The task also elicits thinking about the strategy generality by 
prompting the student to reason about whether or not the presented strategy can be applied to other 
subtraction problems. Consider also the following task which PST A15 posed modifying the 
instructor-provided Task 1 (Figure 1): “How many red pattern blocks will be used if the pattern is 
extended until there are 200 polygons? Justify your response.” PST A15’s task also includes an 
explicit call for justification. The intention to engage a student in generalizing was evident is 
explanation PST A15 included. PST A15 described her thinking about this task modification and her 
desire to engage a student in thinking about pattern generalization and exploring and developing a 
general conjecture about the pattern sharing: 

I increased the number of polygons in order to prevent the student from merely counting the 
blocks. Increasing the number requires that the student finds a general rule or equation. They 
can investigate the relationship between the blocks. I also asked the student to justify it. (PST 
A15, Task 1) 
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Space for argumentation. This category of task characteristics describes ways in which the PSTs 
thought about and designed their tasks to create an environment for student engagement in 
argumentation. As summarized in Table1, PSTs varied in approaches they used to generate a context 
for student engagement in argumentation within their tasks. For example, almost all PSTs (92%) 
designed tasks, so the task elicited communicating thinking and reasoning. A large group of PSTs 
(71%) described and proposed tasks that were open to diverse ways of thinking and solution 
strategies. The focus on the latter task feature is illustrated with the excerpts below: 

Mathematical tasks that foster argumentation must be challenging., directional, often have 
more than one specific answer and can be represented in multiple ways (PST A44) 
Flexibility is also very important in fostering mathematical argumentation. Understanding 
that there are multiple ways to view a problem or multiple solutions that could be found is 
important because it allows students to challenge ideas and use evidence to prove why their 
answer is efficient. (PST B17) 

About a two-thirds of PSTs, (67%), thought about opportunities their task might give students for 
drawing on students’ existing knowledge and making connections, for engaging in deeper thinking 
(65%), or for supporting student thinking by encouraging them to use multiple representations or 
manipulative materials (61%). For example, PST A23 shared:  

Using manipulatives in tasks helps students reason and make claims. When students are able 
to visualize and make structure of their work, they better understand the problem and are 
able to make and justify claims. (PST A23) 

In contrast, only 39% of PSTs considered tasks that require students to reflect and make sense of 
their results as one that can engage students in argumentation, and only 27% of PSTs envisioned that 
tasks that facilitate concept development might engage students in argumentation. An excerpt from 
PST A18’s journal presented below illustrates the former task feature: 

Tasks should encourage students to go back to their own work. A student should see if they 
used evidence or showed enough work to support their explanation. Are the equations and 
tables labeled? Can everything be proved? Tasks [that encourage reflection] can help and 
improve students’ skills in making, justifying, and evaluating mathematical claims. (PST 
A18) 

Presented below task posed by PST A2, together with accompanying task explanation, serve as an 
illustration of PSTs’ thinking about how a task that provides space for concept development can 
engage students in argumentation. PST A2 shared: 

The mathematical task I designed is a word problem that will require students to think about 
multiplication- this task is designed for a third-grade student. Example task: Sue invited 8 
friends to her birthday party. She was making goodie bags for each of her friends. If she puts 
5 pieces of candy in each bag how many total pieces of candy does she need? Justify your 
answer. 

While motivating her task PST A2 wrote: 
Mathematical argumentation requires a student to not only explain how they arrived at their 
answer but to think about the mathematical ideas, concepts, theories, and reasoning that are 
used in the problem. This task presents students with a fundamental multiplication property – 
equal-sized groups and repeated addition. Multiplication can be viewed as repeated addition 
of equal-sized groups. With this task, the student will be exposed to this idea because the 
task is asking them to find the total pieces of candy when there are 8 groups (bags of candy) 
with 5 pieces each (candy pieces). […] One potential error I could see with this problem is a 
student potentially grouping 8 pieces of candy 5 times. If this were to happen, this would still 
result in the correct solution of 40 and would be a great opportunity to talk about the 
commutative property of multiplication. 
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Summary and Discussion 
This study contributes to the research on argumentation in school mathematics in two ways. First, it 

extends the existing analytical models for engagement in mathematical argumentation, which 
emphasize the structural or cognitive aspects of argumentation (e.g. types of arguments being 
generated, or degree of justification) and provide a framework that can serve as a guide for the design 
of tasks that support student engagement in argumentation. Second, it offers insights into PSTs’ 
understanding of mathematical argumentation by describing the kinds of opportunities for 
argumentation that PSTs envision as they pose tasks to engage students in argumentation. 

The analysis revealed that while posing written tasks and thinking about task affordances for 
engaging students in argumentation, PST considered (a) activities of argumentation in which a 
student might be involved while working on the task and (b) the space for argumentation that the task 
generates. PSTs viewed both of these task characteristics as contributing to the overall potential of 
the task for building students’ capacities in argumentation. This finding extends previous conceptual 
frameworks for analyzing the potential of written tasks for engaging students in argumentation, 
which exclusively focused on the types of activities of argumentation that task elicits (Bieda et al., 
2014; Stacey & Vincent, 2009; Stylianides, 2009). 

The results also document task features related to the two identified major task characteristics and 
show that PSTs do not equally emphasize these features while designing tasks to engage students in 
argumentation. For example, concerning the activities of argumentation, almost all PSTs in this study 
posed tasks that elicited justifying. A large proportion of PSTs formulated tasks that promoted 
conjecturing and generalizing, but tasks that engaged students in evaluating arguments and reasoning 
of others were posed less frequently. PSTs’ choices of task features identified as representative of the 
space of argumentation posed tasks afforded also varied. For example, the results suggest that PSTs 
might be more likely to associate opportunities for mathematical argumentation with tasks that elicit 
communicating thinking and reasoning, or tasks that allow for divergent ways of thinking and 
solution strategies. About two-thirds of PSTs in this study considered also task complexity, the extent 
to which task allows students to build on their prior knowledge and make connections, or facilitates 
the use of multiple representations as a viable task environment that offers space for engaging 
students in argumentation. Less frequently, PSTs envisioned that tasks that promote concept 
development or elicit students’ reflections on their thinking might provide space for argumentation. 

The results of this study provide important insights for mathematics teacher educators about 
supporting PSTs’ visions of argumentation in mathematics classrooms. For example, it is likely that 
without intentional efforts focused on heightening PSTs’ awareness of tasks that engage students in 
analyzing and critiquing the reasoning of others, PSTs might limit students’ opportunities for 
experiencing this aspect of argumentation. Particularly, because, as reported by Bieda and colleges 
(2014) in their review of several elementary school textbooks in the U.S., tasks designed to engage 
students in evaluating claims were rarely present within the elementary school textbooks. This study 
did not examine how PSTs’ envision classroom implementation of tasks for the purpose of engaging 
students in argumentation. To generate a more robust picture of PSTs’ knowledge in the area of 
mathematical argumentation future research should investigate PSTs’ interpretations of tasks that 
engage students in argumentation and the nature of opportunities for engaging students in 
argumentation PSTs see in classroom tasks, with concurrent attention to PSTs’ visions of task 
implementation. 
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In this paper we present the results of an investigation related to the developing of mathematical 
knowledge and skills by first semester university students when solving a Model Eliciting Activity 
[MEA] which involves quadratic function knowledge. This was a qualitative research. The 
theoretical framework was Models and Modeling Perspective [MMP]. The results show that the 
students used their mathematical knowledge and skills related to linear and quadratic functions to 
describe the situation; they moved from a quantitative cycle of understanding (associated with linear 
and quadratic behaviors), to an algebraic cycle of understanding (associated with quadratic 
behaviors). 

Keywords: Modeling, problem solving, university level. 

Learning the concept of function has been studied by several researchers (Gutiérrez and Prieto, 
2015; Hernández, 2013; Oviedo, 2013). Why is so important to learn the concept of function? López, 
Navarro and Fuchs (2018) answer that it is a necessary knowledge to model events and phenomena 
in different professional areas. Villarraga (2012) describes, for example, the type of situations that 
can be modelled using the quadratic function such as: optimization problems related to cost, demand, 
and areas, or physical problems. Despite the importance of understanding the quadratic function, 
difficulties have been identified in its learning, such as the poor articulation between algebraic and 
graphic representations (Díaz, Haye, Montenegro and Córdoba, 2013) needed to describe situations 
and phenomena.  

Several authors (Gutiérrez and Prieto, 2015; Hernández, 2013; Oviedo, 2013) have created 
proposals to address the learning of the quadratic function. However, many of the proposals are 
reduced to the manipulation of parameters of algebraic expressions and the study of the 
transformations in the corresponding graph. Little research addresses the development of 
mathematical knowledge and skills associated with the quadratic function in the context of problem 
solving or modeling situations close to real life. One of the studies carried out in this direction was 
that of Aliprantis and Carmona (2003). They used the Models and Modelling Perspective framework 
(Lesh, 2010) to design and implement an activity to promote the development of knowledge of the 
quadratic function and associated concepts, such as variables, the relationship among them (quadratic 
and linear), the product of linear relationships, and the maximization; as well as to encourage 
students to develop skills for modeling and problem solving, such as conjecture, argument, 
description, and explanation. The participants in this study were high school students. 

The research described in this paper has been carried out with students from the first university 
semester. The goal was to promote the development of mathematical knowledge and skills associated 
with the quadratic function during the process of solving situations close to real life. The research 
question is: What knowledge and skills do first-semester college students exhibit when performing an 
MEA in which the concept of quadratic function underlies? 



Mathematical knowledge and skills of university students when solving a MEA 

	 950	

Theoretical Framework 
Learning mathematics, according to MMP (Lesh and Doerr, 2003), is based on the construction of 

models, which  
are conceptual systems (consisting of elements, relations, operations, and rules governing 
interactions) that are expressed using external notation systems, and that are used to 
construct, describe, or explain the behaviors of other system(s)—perhaps so that the other 
system can be manipulated or predicted intelligently. (Lesh and Doerr, 2003, p. 10). 

These models can be internal and external, that is, they inhabit both the thinking of students and the 
equations, schemes, computer applications or other representational resources used by science 
experts or schoolchildren (Lesh and Doerr, 2003). Models can be created by carrying out Model 
Eliciting Activities (MEAs), which are simulations of “real life” situations. In carrying out MEAs, 
students go through iterative sequences where they express, test, and revise their own ways of 
thinking (Lesh and Caylor, 2007). During the knowledge development process students build and 
modify their models through the phases of differentiation and refinement of the conceptual systems 
they construct (Lesh and Doerr, 2003). 

MEAs “involve sharable, manipulatable, modifiable, and reusable conceptual tools (e.g., models) 
for constructing, describing, explaining, manipulating, predicting, or controlling mathematically 
significant systems” (Lesh and Doerr, 2003, p. 3). Researchers mention that such descriptions, 
explanations, and constructions should not be considered as simple processes that students create to 
get 'the answer', but they are key elements in the learning process. Thus, the process is the product. 

MEAs “involve mathematizing—by quantifying, dimensionalizing, coordinatizing, categorizing, 
algebratizing, and systematizing relevant objects, relationships, actions, patterns, and regularities” 
(Lesh and Doerr, 2003, p. 5). One feature that distinguishes MEAs from other problem-solving 
activities is the writing of a letter. In the letter, students must explain the method they used to find the 
solution to the problem; this method can be used by a client to solve other problems with similar 
characteristics. 

Methodology 
The methodology was qualitative. The MEA (Figure 1) whose results are described in this paper, is 

part of a didactical sequence (Lesh, Cramer, Doerr, Post and Zawojewski, 2003) designed during the 
research project. It was implemented in a two-hour session with a group of 12 undergraduate 
students, who were 18 years old. Students were organized in four teams of three members each. The 
participants had a laptop and Excel and GeoGebra software. The process of solving the problem was 
carried out in four phases. 1) students read an informative article related to the context of the problem 
(warm-up activity according to the MMP). 2) they read the problem (Figure 1) and worked as a team 
to solve it. 3) They presented their results in a plenary discussion. 4) Students solved the problem 
individually at home. In this paper, the results of the phase 2 are presented, based on the discussions 
generated during the plenary (phase 3). The data were obtained from the worksheets, Word, Excel 
and GeoGebra files, and from video recordings of the face-to-face session. The concepts associated 
with this activity are those mentioned before (Aliprantis and Carmona, 2003). 
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Figure 1: MEA 

Data analysis was based on two criteria: quantitative and algebraic cycles of understanding (Vargas, 
Reyes & Cristóbal, 2016). The quantitative cycle of understanding is one in which students are able 
to describe the variables and relations among them in a numerical way. The information and 
relationships can be organized in tables and graphs. In the Algebraic cycle of understanding, students 
exhibit some mastery of the language of algebra to solve the problem. Those who reach this last 
cycle have gone through different stages of differentiation, integration, and refinement of their 
conceptual systems and have a deeper domain of the representations. During each of the cycles, 
verbal representation was present to justify the conjectures and explanations. 

Results 
Students went through two cycles of understanding (Table 1). The first cycle was quantitative and 

the second one was algebraic. At the beginning, four teams (100% of the total) revealed a way of 
thinking related to linear variation (column 2, Table 1) during the quantitative cycle. Then, students 
from teams 1, 2 and 3 (75% of teams) moved from their procedures characterized by linear to a 
quadratic variation (column 3, Table 1). Only the members of the teams 1 and 2 extended their ways 
of thinking into an algebraic cycle of understanding. A detailed description is shown below. 
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Table 1: Student’s cycles of understanding to solve the MEA 
  Cycle of understanding  Result 

Quantitative  Algebraic Correct  Incorrect 
Linear Quadratic Quadratic   

E1  ✓ ✓  ✓    ✓ 
E2  ✓ ✓  ✓  ✓   
E3  ✓ ✓    ✓   
E4  ✓       ✓ 

 
First Cycle of Understanding: Quantitative 

All the students identified the data: capacity of the bus, cost of the journey, initial price, and the 
discount. They also realized that they needed to write a letter that included the procedure for solving 
the problem. Two ways of addressing the situation in this cycle were distinguished: linear and 
quadratic behavior. 

Linear behaviour. All the students calculated the value of the profit corresponding to the 
maximum number of passengers, i.e. 49 persons. Students' conjecture was that the more passengers, 
the greater profit, which denotes linear thinking. Two procedures were distinguished, one in which 
the profit per passenger was obtained, exhibited by teams 1, 2 and 3, and another in which the profit 
per group was obtained, realized by team 4. The procedures are discussed below. 

Procedure to obtain the profit when 49 passengers travel (maximum capacity of the bus)  
Procedure: profit per passenger. The procedure of the teams 1, 2 and 3 (75% of teams) was to 

subtract the corresponding discount for 49 passengers from the initial price, i.e. they carried out the 
operation: 3650-2400. The result (1250) was reduced by the cost of the trip, i.e. 1250-1300. Students 
interpreted this quantity (-50) as the profit per passenger. However, because the amount was 
negative, they expressed that it was a loss of $50 per person. Thus, $2450 would be the loss 
corresponding to the trip of 49 passengers, as shown in Figure 2. 

 
Figure 2: Operations carried out by Team 1 to obtain the Profit related to 49 Passengers. 

Procedure: Profit per passenger 
 

Procedure to obtain the profit corresponding to 49 passengers (maximum capacity of the bus). 
Procedure: profit per group. Students of team 4 used the spreadsheet to operate with the cost of the 
trip, the maximum passenger capacity and the initial price, i.e., $1300, 49, and $3650, respectively 
(cells D6, E6 and D10 in Figure 3). They related these data using formulas (Table 2) to calculate the 
discount, the expenditure, the income related to the initial price, the income related to the discounted 
price, and the profit corresponding 49 passengers. 
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Figure 3: Procedure to obtain the profit corresponding to 49 Passengers by Team 4. Procedure: 

profit per group 
 

Table 2: Formulas Used by Team 4 
Cell Formula 
E3 =(B48*A48) 
E7 =(D6*E6) 
E10 =(D10*E6)-E3 
E14 =(E10-E7) 
F9 =(D10*E6) 

 
Quadratic behavior. The members of teams 1, 2 and 3 (75% of the teams) made several operations 

using different amounts of passengers and analyzed how the results varied. Students from teams 1 
and 2 (50%) used trial and error procedure, in a disorganized way. Students from team 3 (25%) 
performed a systematized procedure. Team 4 (25%) was the only team that did not perform many 
operations.  

Trial and error procedure. Students from teams 1 and 2 (50% of the total) performed operations 
with different quantities of passengers. This allowed the students from team 1 to identify how income 
varied and to find out for what quantity of passengers a maximum income was produced (Figure 4). 
In turn, the students from team 2 identified in a more organized way how the profit varied and found 
the quantity of passengers that corresponded to the maximum profit.  

Figure 4 shows the procedure developed by the team 1, as a representative example of the teams 1 
and 2 procedures. Students calculated the income corresponding to 24, 28, 37, 36 and 38 passengers. 
However, they believed that they were finding the profit. They noted that there was a dependency 
relationship involving the number of passengers; they expressed that "the profit depends on the 
passengers". 
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Figure 4: Procedure to obtain the Income and to analyze the Variation for Different Amounts of 

Passengers by the Team 1 
 

Figure 4 shows how students made a graph that describes the way in which the income varies. 
Students noticed that an "income maximum value" or "peak" was obtained when they made 
operations with 37 passengers. They did not identify an interval where the function was increasing or 
decreasing. They pointed out that, from the maximum value (37), the income corresponding to 36 
and 38 passengers "goes down the same", in the same way they mentioned that "35 and 39 have the 
same [corresponding income value]”.  

Exploration of results by systematized test. Students from team 3 constructed a table (Figure 5) with 
the labels: "Passengers", "Price per passenger", "Discount per passenger" and "Total Profit". They 
related the amounts of each row in a horizontal way, and obtained the profit, according to the 
quantity of passengers. They identified that the maximum profit, $28800, is obtained when 24 
passengers are traveling. Figure 5 shows part of the table created by team 3. 

 

 
Figure 5: Team 3 Procedure (passengers, price per person, discount per person, total profit) 

Algebraic Cycle of Understanding 
Students of teams 1 and 2 (50% of teams) generalized patterns. Students from team 3 (25% of the 

total) constructed syncopated expressions to perform the calculation. Students from team 4 (25%) did 
not generalize. 

Generalization of patterns through algebraic expression. Figure 6 shows the expression obtained 
by the students of team 1 to calculate the profit. It is not identified as a function by the students, but 
as a formula. The quantities 3650 and 50 represent the initial price and the discount per person, 
respectively. The value 63700 is the result of multiplying 1300*49, that is, the cost per person 
multiplied by 49. Therefore, 63700 is the expenditure when attending the maximum passenger 
capacity.  
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The corresponding expenditure of n passengers would be 1300n. The correct expression was 
(3650 − (𝑛 − 1) ∗ 50)𝑛 − 1300𝑛). The algebraic model that the students had to construct to 
calculate the profit was 𝑓(𝑥) = −50𝑥! + 2400𝑥, in its simplest form, where x represents the number 
of assistants. 

 

 
Figure 6: Algebraic Expression of Team 1 for Calculating the profit 

 
These students used the GeoGebra software to identify the number of passengers corresponding to 

the maximum profit. They found that 37 passengers were needed to produce a maximum value of 
4750 (Figure 7). However, according to the problem data, the correct values were 24 passengers and 
$28800. 

 
 Figure 7: Team 1 procedure to obtain the maximum profit.  

 
Generalization of patterns in a syncopated way. Students from team 3 (25% in the group) 

generalized their procedure relationships through natural language and mathematical symbols (Figure 
8). 

 
Figure 8: Generalization of Patterns to obtain the profit by Team 3. 

 
Plenary Discussion 

During the plenary session the students presented their letters and discussed their results. Students 
from team 4, based on their letter, showed how they calculated the profit. They were challenged by 
the rest of the teams with questions such as "What if there were 10", "How many would have to 
attend so that I could earn a lot of money". Students from teams 2 and 3 mentioned that 24 
passengers were needed to get a maximum profit of $28800. In the letters they wrote this result, 
however, they did not explain the method they used to find the solution so they did not develop a 
shareable and reusable model (Lesh and Doerr, 2003). Students from team 1 told their classmates that 
they "discovered a formula by trial and error”. They wrote in the letter the quantities corresponding 
to the maximum profit (according to their expression), as well as the expression itself. In other 
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words, they not only mentioned how many passengers were needed to obtain a maximum profit, but 
also presented the client with a shareable and reusable tool with which they could know the profit for 
any number of passengers. However, they also did not explain how they found their procedure. 

Conclusions 
What knowledge and skills do first-semester college students exhibit when performing an MEA in 

which the concept of quadratic function underlies? Students exhibited the knowledge mentioned by 
Aliprantis and Carmona (2003): variable recognition, variation, linear relation and quadratic relation, 
maximum. They were able to identify the data of the problem and relate them to obtain new data. 
The relationships were expressed verbally and in writing, through operations on paper and formulas 
in Excel. Regarding mathematical skills, they used trial and error procedures, and built tables and 
graphs to analyze the variation of quantities. They identified a maximum value denoted as "peak", 
"mountain" or "bell curve" in the graphical form as the maximum profit. Students were able to 
generate conjectures (associate profit with linear behavior), describe and explain the situation, and 
finally, evaluate their conjectures. The results showed how the students were able to identify patterns, 
generalize and express them in a rhetorical and symbolic way, and use the GeoGebra CAS system to 
find answers.  

One aspect that is emphasized in the MMP is letter and, therefore, model building. Although 
students obtained solutions, it was difficult for them to describe the procedures they used to arrive at 
their answers, as well as to develop general procedures that would be useful for similar situations. 
Considering the process as the product was not easy, as it involved giving importance to the process 
of mathematization. Students are used to giving unique and accurate answers, and this is what 
happened when they carried out the MEA.  

One thing that stands out in this study is that before students associated quadratic behavior to the 
situation, they associated linear behavior. In other words, the activity presented in this paper has the 
potential to give students elements to characterize each type of function and, based on the context, 
discuss the differences between linear and quadratic behaviors. 
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En este documento se presentan los resultados de una investigación relacionada con el desarrollo de 
conocimientos y habilidades matemáticas por estudiantes universitarios de primer semestre al 
resolver Actividades Provocadoras de Modelos [MEA] que implican conocimiento acerca de la 
función cuadrática. La investigación fue de tipo cualitativa. El marco teórico fue la Perspectiva de 
Modelos y Modelación [PMM]. Los resultados muestran que los estudiantes utilizaron sus 
conocimientos y habilidades matemáticas relacionadas con la función lineal y cuadrática para 
describir la situación; transitaron de un ciclo de entendimiento caracterizado por procedimientos 
cuantitativos (en el que asociaron comportamientos lineales y cuadráticos a la situación), a un ciclo 
de entendimiento algebraico (en el que asociaron comportamientos únicamente cuadráticos).  

Palabras clave: modelación, resolución de problemas, matemáticas de nivel universitario. 

El aprendizaje del concepto de función ha sido objeto de estudio en diversas investigaciones 
(Gutiérrez y Prieto, 2015; Hernández, 2013; Oviedo, 2013). ¿Por qué es importante aprender el 
concepto de función? López, Navarro y Fuchs (2018) responden que es un conocimiento necesario 
para modelar sucesos y fenómenos en distintas áreas profesionales. Villarraga (2012) da cuenta, por 
ejemplo, del tipo de situaciones que pueden ser modeladas mediante la función cuadrática como: 
circunstancias de optimización relacionadas con costo, demanda y áreas, o en problemas físicos 
como intensidad de iluminación sobre una superficie. Pese a la importancia de comprender la función 
cuadrática, se ha identificado que existen dificultades en su aprendizaje, como la escasa articulación 
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entre las representaciones algebraica y gráfica (Díaz, Haye, Montenegro y Córdoba, 2013) necesaria 
para describir situaciones y fenómenos.  

Diversos autores (Gutiérrez y Prieto, 2015; Hernández, 2013 y Oviedo, 2013) han creado propuestas 
para atender el aprendizaje de la función cuadrática. Sin embargo, muchas se reducen a la 
manipulación de parámetros de la expresión algebraica para estudiar transformaciones en la gráfica 
correspondiente. Son escasas las investigaciones en las que se atiende el desarrollo de conocimientos 
y habilidades matemáticas asociadas a la función cuadrática en el contexto de la resolución de 
problemas o modelación de situaciones cercanas a la vida real. Una de las investigaciones realizadas 
en esta dirección fue la de Aliprantis y Carmona (2003), quienes en el marco de la Perspectiva de 
Modelos y Modelación (Lesh, 2010) diseñaron e implementaron una actividad para promover el 
desarrollo del conocimiento de la función cuadrática y conceptos asociados como el reconocimiento 
de variables, relación entre ellas (cuadráticas y lineales), producto de relaciones lineales y 
maximización, así como para propiciar en los estudiantes el desarrollo de habilidades para la 
modelación y solución de problemas, como conjeturar, argumentar, describir y explicar. Los 
participantes en estudio fueron estudiantes de secundaria. 

La investigación descrita en este artículo se llevó a cabo con estudiantes del primer semestre 
universitario. El objetivo fue propiciar el desarrollo de conocimiento y habilidades matemáticas 
asociadas a la función cuadrática durante el proceso de resolución de problemas cercanos a la vida 
real. La pregunta de investigación es: ¿Qué conocimientos y habilidades exhiben estudiantes 
universitarios de primer semestre al resolver un problema en el que subyace el concepto de función 
cuadrática? 

Marco Teórico 
Aprender matemáticas, de acuerdo con la PMM (Lesh y Doerr, 2003), se basa en la construcción de 

modelos, los cuales  
son sistemas conceptuales (que consisten de elementos, relaciones, operaciones y reglas que 
rigen interacciones) que son expresados al usar sistemas de notación externa y que son 
utilizados para construir, describir o explicar los comportamientos de otros sistemas –quizá 
de manera que el otro sistema pueda ser manipulado o predicho inteligentemente. (Lesh y 
Doerr, 2003, p. 10). 

Estos modelos pueden ser internos y externos, es decir, habitan tanto en el pensamiento de los 
estudiantes como en las ecuaciones, esquemas, aplicaciones computacionales u otros recursos de 
representación que utilizan expertos en ciencia o bien escolares (Lesh y Doerr, 2003). Los modelos 
pueden ser creados al realizar Actividades Provocadoras de Modelos (MEA), las cuales son 
simulaciones de situaciones de la “vida real”. Al realizar las MEA los estudiantes pasan por 
secuencias iterativas donde expresan, prueban y revisan sus propias formas de pensamiento (Lesh y 
Caylor, 2007). Durante el proceso de desarrollo de conocimiento, los estudiantes construyen y 
modifican sus modelos mediante las fases de diferenciación y refinamiento de los sistemas 
conceptuales que construyen (Lesh y Doerr, 2003). 

Las MEA implican el uso de “herramientas conceptuales que son compartibles, manipulables, 
modificables y reutilizables (por ejemplo, modelos) para construir, describir, explicar, manipular, 
predecir, o controlar matemáticamente sistemas significativos” (Lesh y Doerr, 2003, p. 3). Los 
investigadores mencionan que tales descripciones, explicaciones y construcciones no deben ser 
consideradas como simples procesos que los estudiantes crean para conseguir “la respuesta”, sino 
que son elementos clave en el proceso de aprendizaje. De manera que, el proceso es el producto. 

Las MEA “usualmente involucran la matematización, es decir, cuantificar, dimensionar, coordinar, 
categorizar, algebrizar y sistematizar objetos relevantes, relaciones, acciones, patrones y 
regularidades” (Lesh y Doerr, 2003, p. 5). Una característica que distingue a las MEA de otras 
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actividades de resolución de problemas es la escritura de una carta. En ella los estudiantes deben 
explicar el método que utilizaron para encontrar la solución del problema; este método puede ser 
utilizado por un cliente para resolver otros problemas de características similares. 

Metodología 
La metodología que se siguió en esta investigación fue de tipo cualitativa. La MEA (Figura 1) cuyos 

resultados se describen en este documento, forma parte de una secuencia didáctica (Lesh, Cramer, 
Doerr, Post y Zawojewski, 2003) diseñada durante el proyecto de investigación. Fue implementada 
con un grupo de 12 estudiantes universitarios de nuevo ingreso, de aproximadamente 18 años, en una 
sesión de dos horas. Los estudiantes trabajaron en cuatro equipos de tres integrantes cada uno. Cada 
participante tenía una laptop con la MEA, Excel y GeoGebra. El proceso de resolución del problema 
se llevó a cabo en cuatro fases. 1) los estudiantes leyeron un artículo informativo relacionado al 
contexto del problema (actividad de calentamiento de acuerdo con la PMM). 2) leyeron el problema 
(ver Figura 1) y trabajaron en equipo en la resolución de éste. 3) expusieron sus soluciones en una 
discusión plenaria. 4) los estudiantes resolvieron el problema de manera individual en casa. En este 
documento solo se presentan los resultados de la fase 2, sustentados en las discusiones generadas 
durante la plenaria (fase 3). Los datos del estudio se obtuvieron del trabajo hecho por los estudiantes 
(hojas escritas); archivos de Word, Excel o GeoGebra; y de videograbaciones de la sesión presencial. 
Los conceptos asociados a esta actividad son los mencionados en la introducción (Aliprantis y 
Carmona, 2003). 

 
Figura 1: MEA 

 
El análisis de datos se realizó con base en los ciclos de entendimiento cuantitativo y algebraico 

(Vargas, Reyes & Cristóbal, 2016). El ciclo de entendimiento cuantitativo es aquel en el que los 
estudiantes son capaces de describir de manera numérica las variables involucradas en el problema. 
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La información y las relaciones pueden ser organizadas en tablas y gráficas. En el ciclo de 
entendimiento algebraico los estudiantes exhiben cierto dominio del lenguaje del álgebra para 
solucionar el problema. Quienes alcanzan este ciclo han transitado por distintas etapas de 
diferenciación, integración y refinamiento de sus distintos sistemas conceptuales y tienen un dominio 
superior en el manejo de las representaciones. Durante cada uno de los ciclos, la representación 
verbal estuvo presente para justificar las conjeturas y las explicaciones de los estudiantes. 

Resultados 
Los estudiantes transitaran por dos ciclos de entendimiento (Tabla 1). El primero fue cuantitativo y 

el segundo algebraico. Inicialmente, los cuatro equipos (100% del total) revelaron una forma de 
pensar relacionada con la variación lineal (columna 2, Tabla 1) durante el ciclo cuantitativo. 
Enseguida, los alumnos de los equipos 1, 2 y 3 (75% de equipos) transitaron de sus procedimientos 
caracterizados por la variación lineal a una de tipo cuadrática (columna 3, Tabla 1); sin embargo, el 
equipo 4 no lo logró. Solamente los integrantes de los equipos 1 y 2 extendieron sus ideas a un ciclo 
de entendimiento algebraico. Una descripción en detalle se muestra enseguida. 
 

Tabla 1: Ciclos de entendimiento de los estudiantes al resolver la MEA 
  Ciclos de entendimiento  Respuesta 

Cuantitativo  Algebraico Correcta  Incorrecta 
Lineal Cuadrático Cuadrático   

E1  ✓ ✓  ✓    ✓ 
E2  ✓ ✓  ✓  ✓   
E3  ✓ ✓    ✓   
E4  ✓       ✓ 

 
Primer Ciclo de Entendimiento: Cuantitativo 

Todos los estudiantes identificaron los datos del problema: capacidad del camión, costo del viaje, 
precio inicial y el descuento. También, se percataron que tenían que elaborar una carta en la que 
desarrollaran un procedimiento para solucionar el problema. Se distinguieron dos formas de abordar 
la situación en este ciclo, porque algunos equipos la asociaron a un comportamiento lineal y otros a 
uno cuadrático. 

Comportamiento lineal. Los integrantes de los cuatro equipos (100% de los equipos) calcularon el 
valor de la ganancia correspondiente a la cantidad máxima de pasajeros, es decir, 49 personas. La 
conjetura de los estudiantes fue que, a mayor cantidad de pasajeros, mayor ganancia, lo que denota 
un pensamiento lineal. Se distinguieron dos procedimientos, uno en el que se obtuvo la ganancia por 
pasajero, exhibido por los equipos 1, 2 y 3; y otro en el que se obtuvo la ganancia por grupo, 
elaborado por el equipo 4. Enseguida se discuten los procedimientos. 

Procedimiento para obtener la ganancia para 49 pasajeros (capacidad máxima del camión). 
Método: ganancia por pasajero. El procedimiento de los equipos 1, 2 y 3 (75% de equipos) consistió 
en sustraer al precio inicial el descuento correspondiente por 49 pasajeros, es decir, efectuaron la 
operación: 3650-2400. Al resultado (1250) le restaron el costo del viaje, o sea, 1250-1300. Los 
estudiantes interpretaron esta cantidad (-50) como la ganancia por pasajero. No obstante, debido a la 
naturaleza negativa, expresaron que se trataba de una pérdida, en este caso de $50 por persona. De 
esta manera, la pérdida por 49 pasajeros era de $2450, como se muestra en la Figura 2. 
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Figura 2: Operaciones llevadas a cabo por el equipo 1 para obtener la Ganancia relacionada a 49 

Pasajeros por el Equipo 1. Método: Ganancia por Pasajero 
 

Procedimiento para obtener la ganancia correspondiente a 49 pasajeros (capacidad máxima del 
camión). Método: ganancia por grupo. Los estudiantes del equipo 4 utilizaron la hoja de cálculo para 
operar con el costo del viaje por pasajero, la capacidad máxima de pasajeros y el precio inicial del 
paquete, es decir, $1300, 49 y $3650, respectivamente (celdas D6, E6 y D10 en la Figura 3). 
Relacionaron estos datos mediante fórmulas (Tabla 2) para calcular el descuento, el egreso, el 
ingreso relacionado con el precio inicial, el ingreso relacionado con el precio con descuento y la 
ganancia correspondiente a 49 pasajeros. 

 
Figura 3: Procedimiento para obtener la Ganancia correspondiente a 49 Pasajeros por el Equipo 4. 

Método: Ganancia por Grupo 
 

Tabla 2: Fórmulas Utilizadas por el Equipo 4 
Celda Fórmula 
E3 =(B48*A48) 
E7 =(D6*E6) 
E10 =(D10*E6)-E3 
E14 =(E10-E7) 
F9 =(D10*E6) 

 
Comportamiento cuadrático. Los integrantes de los equipos 1, 2 y 3 (75% de los equipos) hiceron 

varias operaciones, usaron diferentes cantidades de pasajeros y analizaron cómo variaban los 
resultados. Los estudiantes de los equipos 1 y 2 (50%) recurrieron al ensayo y error, de manera 
desordenada. Los estudiantes del equipo 3 (25%) exhibieron un procedimiento sistematizado. El 
equipo 4 (25%) fue el único que no realizó varias operaciones.  
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Procedimiento de ensayo y error. Los estudiantes de los equipos 1 y 2 (50% del total) realizaron 
operaciones con cantidades distintas de pasajeros. Esto permitió que los integrantes del equipo 1 
identificaran la forma en cómo variaba el ingreso y encontraran para qué cantidad de pasajeros se 
producía un ingreso máximo (Figura 4). Por su parte, los alumnos del equipo 2 identificaron de 
manera más organizada cómo variaba la ganancia y encontraron la cantidad de pasajeros que 
correspondía a la ganancia máxima. 

En la Figura 4 se muestra el procedimiento elaborado por el equipo 1, como ejemplo representativo 
del trabajo de los equipos 1 y 2. Los estudiantes calcularon el ingreso que se generaba si viajaban 24, 
28, 37, 36 y 38 pasajeros. No obstante, creían que habían obtenido la ganancia. Observaron que 
existía una relación de dependencia en la que estaba involucrada la cantidad de pasajeros; expresaron 
que “la ganancia depende de las personas que vayan [pasajeros]”. 

 
Figura 4: Procedimiento para obtener el Ingreso y para analizar la Variación para Distintas 

Cantidades de Pasajeros por el Equipo 1 
 
En la misma Figura 4 se observa el bosquejo de una gráfica que describe la forma en cómo varía el 

ingreso. Los estudiantes notaron que se obtenía un ingreso “máximo” o “cúspide” para 37 pasajeros. 
No identificaron un intervalo de crecimiento o decrecimiento. Señalaron que, a partir del valor 
máximo, los ingresos correspondientes a 36 y 38 pasajeros “van bajando igual”, del mismo modo 
mencionaron que “35 y 39 tienen el mismo [correspondiente valor de ingreso]”. 

Exploración de resultados por ensayo sistematizado. Los estudiantes del equipo 3 construyeron una 
tabla (Figura 5) con los rótulos: “Pasajeros”, “Precio p/p”, “Descuento p/p” y “Ganancia Total”. 
Relacionaron las cantidades de cada fila de manera horizontal, y obtuvieron la ganancia, según la 
cantidad de pasajeros. Identificaron que la ganancia máxima, $28800, se obtiene cuando viajan 24 
pasajeros. En la Figura 5 se muestra parte de la tabla creada por el equipo 3. 

 
Figura 5: Procedimiento del Equipo 3 
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Ciclo de Entendimiento Algebraico 
Los estudiantes de los equipos 1 y 2 (50% de equipos) generalizaron patrones. Por su parte, los 

estudiantes del equipo 3 (25% del total) construyeron expresiones sincopadas para realizar el cálculo. 
Los estudiantes del equipo 4 (25%) no presentaron generalizaciones. 

Generalización de patrones mediante expresión algebraica. En la Figura 6 se muestra la 
expresión obtenida por los estudiantes del equipo 1 para calcular la ganancia. No es identificada 
como función por los estudiantes, sino como una fórmula. Las cantidades 3650 y 50 representan el 
precio inicial del paquete y el descuento por pasajero, respectivamente. El valor 63700 es el resultado 
de multiplicar 1300*49, es decir, el costo del paquete por pasajero por 49 pasajeros. De manera que 
63700 es el egreso cuando asiste la capacidad máxima de viajeros.  

El egreso correspondiente a n pasajeros sería 1300n. La expresión correcta era (3650 − (𝑛 − 1) ∗
50)𝑛 − 1300𝑛. El modelo algebraico que los estudiantes debían construir para calcular la ganancia 
era 𝑓 𝑥 = −50𝑥! + 2400𝑥 en su forma simplificada, donde 𝑥 representa la cantidad de asistentes. 

 
Figura 6: Expresión Algebraica del Equipo 1 para Calcular la Ganancia 

 
Estos estudiantes emplearon el software GeoGebra para identificar la cantidad de pasajeros con la 

que se producía la ganancia máxima. Encontraron que eran necesarios 37 pasajeros para producir un 
valor máximo de 4750 (Figura 7). Sin embargo, de acuerdo con los datos del problema, los valores 
correctos eran 24 pasajeros y $28 800. 

 
Figura 7: Procedimiento del equipo 1 para obtener la Ganancia Máxima  

 
Generalización de patrones de manera sincopada. Los estudiantes del equipo 3 (25% en el 

grupo) generalizaron su procedimiento mediante lenguaje natural y símbolos matemáticos (Figura 8). 

 
Figura 8: Generalización de Patrones para el Cálculo de la ganancia por el Equipo 3. 

 
Discusión Plenaria 

Durante la plenaria los estudiantes expusieron sus cartas y discutieron sus resultados. Los 
integrantes del equipo 4, con base en su carta, mostraron cómo calcularon la ganancia. Fueron 
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cuestionados por el resto de los equipos con preguntas como “¿Qué pasa si van 10?”, “¿Cuántos 
tendrían que asistir para que pudiera ganar mucho dinero?”. Los alumnos de los equipos 2 y 3 
mencionaron que eran necesarias 24 personas para obtener una ganancia máxima igual a $28800. En 
sus cartas escribieron este resultado, sin embargo, no explicaron el método que utilizaron para 
encontrar la solución por lo que no elaboraron un modelo compartible y reutilizable (Lesh y Doerr, 
2003). Los estudiantes del equipo 1 comunicaron a sus compañeros que “descubrieron una fórmula al 
tanteo”. Mostraron en su carta las cantidades correspondientes a la ganancia máxima (de acuerdo con 
su expresión), así como la expresión misma. Es decir, no sólo mencionaron qué cantidad de pasajeros 
eran necesarios para obtener una ganancia máxima, sino que presentaron al usuario una herramienta 
compartible y reutilizable con la que podrían conocer las ganancias para cualquier cantidad de 
pasajeros. No obstante, tampoco explicaron cómo encontraron su procedimiento. 

Conclusiones 
¿Qué conocimientos y habilidades exhiben estudiantes universitarios de primer semestre al resolver 

un problema en el que subyace el concepto de función cuadrática? Los estudiantes exhibieron los 
conocimientos mencionados por Aliprantis y Carmona (2003): reconocimiento de variables, 
variación, relación lineal y relación cuadrática, máximo. Fueron capaces de identificar los datos del 
problema y relacionarlos para obtener nuevos datos. Las relaciones las expresaron de manera verbal 
y escrita, mediante operaciones en papel y fórmulas en Excel. Respecto a las habilidades 
matemáticas, emplearon procedimientos de ensayo y error, y construyeron tablas y gráficas para 
analizar la variación de las cantidades. Identificaron un valor máximo denotado como “cúspide”, 
“montaña” o “campana de Gauss” en la forma gráfica, el cual relacionaron con la ganancia máxima. 
Los alumnos fueron capaces de generar conjeturas (asociar a la ganancia un comportamiento lineal), 
describir y explicar la situación, y finalmente, evaluar sus conjeturas. En los resultados se observó 
cómo los estudiantes lograron identificar patrones, generalizarlos y expresarlos de manera retórica y 
simbólica, y utilizar el sistema CAS de GeoGebra para encontrar respuestas.  

Un aspecto que se enfatiza en la PMM es la carta y, por lo tanto, la construcción de modelos. Si 
bien los estudiantes obtuvieron soluciones, les fue difícil describir los procedimientos que utilizaron 
para llegar a sus respuestas, así como desarrollar procedimientos generales que fueran útiles para 
situaciones similares. Considerar que el proceso es el producto no fue sencillo, ya que implicaba 
darle importancia al proceso de matematización. Los estudiantes están acostumbrados a dar 
respuestas únicas y exactas, y ello fue lo que ocurrió cuando realizaron la MEA.  

Algo destacable en este estudio, es que antes de que los estudiantes asociaran a la situación un 
comportamiento cuadrático, asociaron un comportamiento lineal. Es decir, la actividad que se 
presentó en este documento tiene el potencial de dar elementos para que los estudiantes caractericen 
cada tipo de función y, con base en el contexto, discutan las diferencias entre comportamientos 
lineales y cuadráticos. 

Referencias  
Aliprantis, C. D., & Carmona, G. (2003). Introduction to an Economic Problem: A Models and Modeling 

Perspective. In R. Lesh, & H. M. Doerr. (Eds.). Beyond Constructivism: Models and Modeling Perspectives on 
Mathematics Problem Solving, Learning, and Teaching (pp. 255-264). United States of America: Lawrence 
Erlbaum Associates, Publishers. 

Díaz, M. E., Haye, E. E., Montenegro, F., & Córdoba, L. (2013). Dificultades de los alumnos para articular 
representaciones gráficas y algebraicas de funciones lineales y cuadráticas. I Congreso de Educación 
Matemática de América Central y El Caribe, República Dominicana. Retrieved from 
http://funes.uniandes.edu.co/4072/ 



Conocimientos y habilidades matemáticas de estudiantes universitarios al realizar una MEA 

	 965	

Gutiérrez, R. E., & Prieto, J. L. (2015). Deformación y reflexión de funciones con GeoGebra. El caso de las 
parábolas definidas por la expresión 𝑔 𝑥 = 𝑎𝑥!. Números. Revista de Didáctica de las Matemáticas, 88, 115-
126. Retrieved from http://funes.uniandes.edu.co/6578/ 

Hernández, C. M. (2013). Consideraciones para el uso del GeoGebra en ecuaciones, inecuaciones, sistemas y 
funciones. Números, 82, 115-129. Retrieved from 
http://www.sinewton.org/numeros/numeros/82/Enlared_01.pdf 

Lesh, R. (2010). Tools, researchable issues and conjectures for investigating what it means 
 to understand statistics (or other topics) meaningfully. Journal of Mathematical Modeling and Application, 1(2), 

16-48. 
Lesh, R., Cramer, K., Doerr, H. M., Post, T., & Zawojewsky, J. S. (2003). Model development sequences. In R. 

Lesh, & H. M. Doerr. (Eds.). Beyond Constructivism: Models and Modeling Perspectives on Mathematics 
Problem Solving, Learning, and Teaching (pp. 35-58). United States of America: Lawrence Erlbaum 
Associates, Publishers. 

Lesh, R., & Caylor, B. (2007). Introduction to the special issue: Modeling as application versus modeling as a way 
to create mathematics. International Journal of computers for mathematical Learning, 12(3), 173-194. 

Lesh, R., & Doerr, H. M. (2003). Beyond Constructivism: Models and Modeling Perspectives on Mathematics 
Problem Solving, Learning, and Teaching. United States of America: Lawrence Erlbaum Associates, 
Publishers. 

López, F. J., Navarro, Y., & Fuchs, O. L. (2018). Realidad aumentada como andamiaje para la comprensión del 
concepto de función y gráfica lineal y cuadrática en tercer año de educación en el nivel medio superior de la 
BUAP. Investigación e Innovación en Matemática Educativa, 4, 244-247. Retrieved from 
http://revistaiime.org/index.php/IIME/issue/view/8 

Oviedo, N. (2013). Enseñanza y aprendizaje de Ecuación Cuadrática con apoyo Geogebra. Actas del VII CIBEM 
Retrieved from http://www.cibem7.semur.edu.uy/7/actas/pdfs/810.pdf 

Vargas-Alejo, V., Reyes-Rodríguez, A. V. & Cristóbal-Escalante, C. (2016). Ciclos de entendimiento de los 
conceptos de función y variación. Educación Matemática, 28(2), 59-84 

Villarraga, S. P. (2012). La función cuadrática y la modelación de fenómenos físicos o situaciones de la vida real 
utilizando herramientas tecnológicas como instrumentos de mediación (Tesis de maestría, Universidad 
Nacional de Colombia, Bogotá, Colombia). Retrieved from de http://www.bdigital.unal.edu.co/9004/ 

 
 



Mathematical Processes and Modeling 

 

966	

966	

MATHEMATICAL	PROCESSES	AND	
MODELING:	

	
	BRIEF	RESEARCH	REPORTS	

 



Mathematical Processes and Modeling 

In: Sacristán, A.I., Cortés-Zavala, J.C. & Ruiz-Arias, P.M. (Eds.). (2020). Mathematics Education Across Cultures: 
Proceedings of the 42nd Meeting of the North American Chapter of the International Group for the Psychology of 
Mathematics Education, Mexico. Cinvestav / AMIUTEM / PME-NA. https:/doi.org/10.51272/pmena.42.2020 

967	

MODEL ELICITING ACTIVITY FOR HYPOTHESIS TESTING WITH ENGINEERING 
STUDENTS  

ACTIVIDAD PROVOCADORA DE MODELOS PARA PRUEBA DE HIPÓTESIS CON ESTUDIANTES DE 
INGENIERIA 

Sergio Damian Camacho-Aguilar 
Universidad de Guadalajara 

damian.camacho18@uabc.edu.mx 

Martha Elena Aguiar 
Barrera 

Universidad de Guadalajara  
martha.aguiar@academicos.

udg.mx 

Humberto Gutiérrez Pulido 
Universidad de Guadalajara 

humberto.gutierrez@cucei.udg.
mx  

This report describes the models that students from the Electronics Engineering Division of the 
University of Guadalajara built with the implementation of a model eliciting activity (MEA) called 
Nanomaterials. The purpose was to document and analyze the underlying ideas and relationships 
that the students exhibited when solving a near-real-life problem in which various concepts of 
statistical inference emerge. The theoretical framework used was the Models and Modeling 
Perspective (MMP). The results indicate that the implementation of the activity generated hypothesis 
testing models, which integrated various means of representation, decision making and the use of 
concepts such as: null hypothesis, alternative hypothesis, confidence level, mean, sample, among 
others associated with statistical inference. 

Keywords: Experiment design, Modeling, Problem solving, STEM. 

Introduction 
Nowdays there is a lot of information in print and digital formats. This demands the mastery of 

tools to analyze and understand that information, and use it to make decisions for the benefit of 
society (Lesh & Doerr, 2003). People who understand the information around them in their different 
economic, social, political or cultural contexts can make sense of it and reap its benefits. 

Hypothesis testing is considered to support data interpretation, decision making and statistical 
inference, which "is where the power of statistics lies" (Makar & Rubin, 2018, p. 264). However, 
there are conceptual complications associated with statistical inference, especially in hypothesis 
testing, such as: a) confusion in the logic of hypothesis testing, b) the way in which the null 
hypothesis and the alternative are combined, c) the construction of a statistical hypothesis (Inzunsa & 
Jiménez, 2013; Lesh, 2010; Alvarado, Estrella, Retamal & Galindo, 2018; López, Batanero & Gea, 
2018). These complications illustrate the complexity of the logic and fundamental concepts of 
hypothesis testing (Makar & Rubin, p. 269). 

This study presents the results obtained in the implementation of a Model Eliciting Activity (MEA). 
It was developed under the Models and Modeling Perspective (MMP) (Lesh & Doerr, 2003; Lesh, 
Hoover, Hole, Kelly & Post, 2000). The activity simulated a problem close to real life where students 
could build mathematical interpretations and manipulate information to make decisions. With it, an 
alternative is sought to generate better access to statistical inference. 

The questions that guided this research were: 1) what are the models that engineering students 
create to give meaning and solution to a real life problem situation, which is related to hypothesis 
testing, 2) what mathematical concepts emerge during the implementation of the activity associated 
with statistical inference? 
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Theoretical framework 
In the MMP  "models are expected to be among the most important kinds of knowledge that 

students" (Lesh, 2010, p.17). According to Lesh & Doerr models are considered as: 
conceptual systems (consisting of elements, relations, operations, and rules governing 
interactions) that are expressed using external notation systems, and that are used to 
construct, describe, or explain the behaviors of other system(s)—perhaps so that the other 
system can be manipulated or predicted intelligently.  (Lesh & Doerr, 2003, p. 10) 

Furthermore, "models are assumed to be highly situated, continually adapting, richly distributed, 
and socially shaped human constructs " (Lesh, 2010, p. 19), where modeling, as the process of 
building and developing models, includes a "series of parallel, interactive sequences of interactive 
cycles in which current forms of thought are repeatedly expressed, tested and revised" (Lesh, 2010, p. 
17). In the framework of MMP, MEAs are proposed in order to motivate students to solve real-life 
problems through the construction of mathematical models that allow them to generate solutions, and 
they can “repeatedly revealing, testing and refining or extending their ways of thinking " (Lesh et al., 
2000, p. 597).  

Methodology 
The MEA, named Nanomaterials, developed from Ramirez, Yu, Xu & Chen (2015), poses a 

situation of uncertainty related to a production process. The activity consists of four pages, the first 
two of which present a newspaper article describing the manufacturing process (printing) of nano 
circuits for biosensors. The third page contains a section of warm-up questions that introduce the 
student to the production process and uses of biosensors in health. The fourth page introduces the 
students to the problem, which refers to the discrepancy that exists between the molds and the 
magnitude of the printed circuits, and asks them to support the production process technicians to 
determine with certainty and with the information they have, the type of discrepancy that exists 
between the molds and the printed circuits. 

The activity was refined with five previous implementations with different students (April-October 
2019), where several aspects were adjusted. It is until the sixth implementation that we consider that 
we achieved an activity that meets the attributes of the MPA.  

The implementation of the activity was developed according to Lesh & Doerr's (2003) suggestions 
which are: 1) reading a newspaper article that introduces the student to the context (production of 
biosensors), 2) construction of interpretations developed in teams, and 3) exposition and discussion 
of constructed models. The teacher performs the roles of facilitator and observer. 

The six principles for the design of MEAs were used in the construction and refinement of the 
activity. 1) Reality: the situation is likely to occur in the students' real life; 2) Model construction: the 
activity generates in students the need to build, modify or refine a model; 3) Documentation of the 
model: the students' constructions explicitly reveal how they are thinking about the situation and its 
resolution (initial, intermediate and final interpretations); 4) Self-evaluation: the students are clear 
how to evaluate if their constructions are useful or good enough; 5) Generalization of the model: the 
model built by the students can be used for other situations and shared with other people; 6) Simple 
prototype: the activity solution provides a useful prototype for interpreting other structurally similar 
situations (Lesh et al. 2000; Lesh & Doerr, 2003). However, for the analysis of results only the first 
four design principles could be evaluated, due to the availability of resources.  

The initial, intermediate and final ideas outlined by Lesh and Doerr (2003) were integrated into the 
principle of documentation of the model, and these were characterized in the MEA as follows. a) The 
initial ideas were proposals about what data are important, how to address the problem, and what 
steps for solution are most useful, and may or may not be associated with the use of statistics. b) 
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Intermediate ideas were those focused on the identification and explanation of patterns, relations or 
specific behavior of the data of the situation to be solved; it includes the use measures of central 
tendency and dispersion, construction of descriptive graphs or simple operations such as obtaining 
differences between the data, among others. c) Final ideas were the formal approaches of null and 
alternative hypothesis, confidence levels to decide, making the decision to reject or accept the null 
hypothesis, and includes possible suggestions to improve the production process according to the 
results obtained. 

The study was of a descriptive qualitative nature. The means of collecting information were: videos, 
audios, and the written (physical and digital) of seven students from the Electronic and Computer 
Engineering Division of the University of Guadalajara, who were finishing the Probability and 
Statistics course (second semester). The final information was obtained in a 60-90 minute session, 
where the implementation of the activity took place. Three work teams were organized, Team 1 with 
two members (1A, 1B), Team 2 with three (2A, 2B, 2C) and Team 3 with two students (3A, 3B). 

Results 
The main results of the study are summarized below. They have been grouped according to the six 

principles for the design of MEAs, which were outlined above. 
Reality principle. The reading and discussion of the newspaper article on biosensor production 

allowed the students to engage with the context of the activity, and revealed the knowledge they had 
about biosensors. This was done by relating the activity to some biosensors that they already knew 
about: "Apple Watch, exercise band, cardio exercise machines, heart rate sensor, temperature sensor 
and step counter". 

Model construction principle. Team 1 made a graph to visualize the behavior of the data (mold 
measurements and impressions), which helped them to understand and interpret the situation 
visually. Team 2 proposed procedures such as: obtaining differences between the measurements of 
the shapes and impressions, determining an average of each of the measurements, calculating the 
standard deviation and variance of the data in order to analyze the information.  

Model documentation (initial, intermediate, and final ideas). The students during the 
implementation developed a series of interpretations that went through several modifications and 
refinements, which helped them to orient their work towards what they considered to be the best 
answer. 

Initial interpretations. The teams in their first working dialogues mentioned ideas of how to analyze 
the information of the problem, but without arguing why they were useful: 1A: "What if we make a 
graph", 2B: "What if we take out the differences between the mold and the print", 2B: "Let's make a 
bell graph", 2A: "Let's make a scatter graph". It was identified that students initially resort to data 
analysis with graphs and manipulate them with simple operations (differences); with the idea of 
making sense of the information of the problem.  

Intermediate interpretations. Students identified patterns and relationships after graphing the data set 
and calculating some statistics (mean, variance, standard deviation).For example, Team 1 looked at 
their line graph and noted a dependency relationship between the mold and print measurements; 1B: 
"the mold is larger than the print," 1B: "look at the means are different," but without formally making 
a correlation or hypothesis to prove the differences, they only made some informal statements that 
could lead them to make the null and void hypothesis; 1A: "in fact the measurements should be the 
same," 1B: "the mold is larger than the print”.  

Final interpretations. The final model in all teams was a hypothesis testing procedure, which 
integrated graphic, tabular, algebraic, written and verbal representations. Here they posed the 
relationship between the measurements of the molds and the prints, for example: 1A: "the null 
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hypothesis is that the measurements of the molds are equal", posed by the student that defines the 
type of contrast to be developed. 1B: "the other hypothesis is that the moulds are larger than the 
impressions". The approach of this alternative hypothesis complemented and guided the construction 
of his model, in addition to using other concepts such as: sample and confidence level to refine and 
define their model. 

Principle of self-evaluation. Team 1, modified their decision to use graphs and linear regression to 
explain their proposed model. This was because, after a second analysis of the activity specifications, 
they felt that their proposal was not sufficiently useful. This redirected their work towards building a 
hypothesis test, a decision that they felt allowed them to test with greater certainty whether their 
guess was acceptable or not. In other words, the students self-evaluated the usefulness of their answer 
and modified it in search of a better one. 

Conclusions 
The MEA Nanomaterials contributed to the study of MMP, specifically in topic of hypothesis 

testing of inferential statistics, being an original design for electronic engineering students. 
According to the research questions, the MEA Nanomaterials promoted the construction of models 

to perform the hypothesis testing procedure; which integrated different mathematical concepts such 
as: sample, mean, variance, null and alternative hypothesis, confidence level, scatter plot, among 
others. In addition, it made evident that the hypothesis test is not a trivial issue, since students had to 
develop a series of interpretations (initial, intermediate and final) (Lesh et al. 2000). They used 
various means of representation (graphical, tabular, written, algebraic, spoken language) (Lesh & 
Doerr, 2003) to refine, modify and extend their ways of thinking about this relevant procedure within 
statistical inference. In addition, access to the web and the use of Excel made it easier for students to 
build visual, manipulable and dynamic representations (Lesh, 2010). 
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En este reporte se describen los modelos que estudiantes de la División de Ingeniería en Electrónica 
y Computación de la Universidad de Guadalajara, construyeron con la implementación de una 
Actividad Provocadora de Modelos (APM) llamada Nanomateriales. El propósito fue documentar y 
análizar las ideas y relaciones subyacentes que los alumnos exhibieron al resolver una problemática 
cercana a la vida real en la que emergen diversos conceptos de inferencia estadística. El marco 
teórico utilizado fue la Perspectiva de Modelos y Modelación (PMM). Los resultados indican que la 
implementación de la actividad generó modelos de prueba de hipótesis, que integraron diversos 
medios de representación, la toma de decisiones y el uso de conceptos como: hipótesis nula, 
alternativa, nivel de confianza, media, muestra, entre otros asociados con la inferencia estadística 
formal.  

Palabras clave: Diseño de experimentos, Modelación, Resolución de problemas, STEM. 

Introducción 
La gran cantidad de información en formatos impresos y digitales en la era actual demanda el 

dominio de herramientas de interpretación, análisis y toma de decisiones para poder comprender esa 
información y utilizarla en beneficio de la sociedad (Lesh & Doerr, 2003). Las personas que 
comprenden la información que les rodea en sus diferentes contextos económicos, sociales, políticos 
o culturales pueden darle sentido y aprovechar sus beneficios (Lesh, 2010, p.27). 

Se considera que la prueba de hipótesis apoya la interpretación de datos, la toma de decisiones y la 
inferencia estadística, que “es donde reside el poder de la estadística” (Makar & Rubin, 2018, p. 
264). Sin embargo, se han identificado varias complicaciones conceptuales asociadas con la 
inferencia estadística, especialmente en prueba de hipótesis, tales como: a) confusiones en la lógica 
del contraste de hipótesis, b) la forma en la que se combinan la hipótesis nula y la alternativa, c) la 
construcción de una hipótesis estadística (Inzunsa & Jiménez, 2013; Lesh, 2010; Alvarado, Estrella, 
Retamal & Galindo, 2018; López, Batanero & Gea, 2018). Estas complicaciones ilustran aún más la 
complejidad de la lógica y los conceptos fundamentales de las pruebas de hipótesis (Makar & Rubin, 
2018; p. 269). 

El presente estudio expone los resultados obtenidos en la implementación de una Actividad 
Provocadora de Modelos (MEA por su nombre en inglés: Model Eliciting Activities). Misma que fue 
desarrollada bajo la Perspectiva de Modelos y Modelación (PMM) (Lesh & Doerr, 2003; Lesh, 
Hoover, Hole, Kelly & Post, 2000). La actividad simuló una problemática cercana a la vida real 
donde los alumnos pudieron construir interpretaciones matemáticas y manipular información para 
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tomar decisiones. Con ella se busca una alternativa para generar un mejor acceso a la inferencia 
estadística. 

Las preguntas que guiaron esta investigación fueron: 1) ¿cuáles son los modelos que los estudiantes 
de ingeniería crean para dar sentido y solución a una situación problemática de la vida real, que está 
relacionada con la prueba de hipótesis?, 2) ¿qué conceptos matemáticos emergen durante la 
implementación de la actividad asociados con la inferencia estadística?  

Marco teórico 
En la PMM, se “espera que los modelos se encuentren entre los tipos de conocimiento más 

importantes que desarrollan los estudiantes” (Lesh, 2010, p.17), de acuerdo con Lesh & Doerr los 
modelos son considerados como:  

Sistemas conceptuales (consisten en elementos, relaciones y reglas que gobiernan las 
interacciones) expresados mediante el uso de sistemas de notación externa, y utilizados para 
construir, describir, o explicar los comportamientos de otros sistemas de tal forma que el otro 
sistema pueda ser manipulado o predicho de manera inteligente (Lesh & Doerr, 20003, p. 10) 

Además, “se asume que los modelos están altamente situados, adaptándose continuamente, 
ricamente distribuidos y con construcciones con formas sociales” (Lesh, 2010, p. 20), donde la 
modelación, como el proceso de construcción y desarrollo de modelos, incluye una “serie de 
secuencias paralelas e interactivas de ciclos interactivos en los que las formas actuales de 
pensamiento se expresan, prueban y revisan repetidamente” (Lesh, 2010, p.17). La PMM, propone 
MEAs, para que los estudiantes se motiven a resolver problemas de la vida real a través de la 
construcción de modelos matemáticos que les permitan generar soluciones y puedan "revelar, probar 
y refinar repetidamente o ampliar sus formas de pensamiento "(Lesh et al., 2000, p. 597).  

Metodología 
La APM, nombrada Nanomateriales, desarrollada a partir de Ramirez, Yu, Xu  & Chen (2015), 

plantea una situación de incertidumbre relacionada con un proceso de producción. La actividad 
consta de cuatro páginas, en las dos primeras se presenta un artículo de periódico que describe el 
proceso de fabricación (impresión) de nano circuitos para biosensores. La tercera página contiene 
una sección de preguntas de calentamiento que introducen al estudiante con el proceso de producción 
y usos de los biosensores en la salud. En la cuarta página se les presenta a los estudiantes la 
problemática, que se refiere a la discrepancia que existe entre los moldes y la magnitud de los 
circuitos impresos, y se les solicita que apoyen a los técnicos del proceso de producción para 
determinar con certeza y con la información que tienen, el tipo de discrepancia que existe entre los 
moldes y los circuitos impresos. 

La actividad fue afinada con cinco implementaciones previas con diferentes alumnos (abril-octubre 
de 2019), donde se ajustaron varios aspectos. Es hasta la sexta implementación en la que 
consideramos logramos obtener una actividad que reúne los atributos propios de las APM.  

La implementación de la actividad se desarrolló de acuerdo con las sugerencias de Lesh & Doerr 
(2003) que son; 1) lectura de un artículo de periódico que introduce al estudiante en el contexto 
(producción de biosensores), 2) construcción de interpretaciones desarrolladas en equipo y 3) 
exposición y discusión de los modelos construidos. El docente asume los roles de facilitador y 
observador. 

Los seis principios de diseño de APM se utilizaron en la construcción y refinación de la actividad: 
1) Realidad: la situación es posible que ocurra en la vida real de los alumnos; 2) Construcción del 
modelo: la actividad genera en los estudiantes la necesidad de construir, modificar o refinar un 
modelo; 3) Documentación del modelo: las construcciones de los alumnos revelan explícitamente 
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cómo están pensando en la situación y su resolución (interpretaciones iniciales, intermedias y 
finales); 4) Autoevaluación: los alumnos tienen claro cómo evaluar si sus construcciones son útiles o 
suficientemente buenas; 5) Generalización del modelo: el modelo construido por los alumnos puede 
utilizarse para otras situaciones y compartirse con otras personas; 6) Prototipo simple: la solución 
para la actividad proporciona un prototipo útil para interpretar otras situaciones estructuralmente 
similares. (Lesh et al. 2000; Lesh & Doerr, 2003). Sin embargo, en el análisis de resultados sólo se 
pudieron evaluar los primeros cuatro principios de diseño, debido a la disponibilidad de los recursos.  

Las ideas iniciales, intermedias y finales que señalan Lesh y Doerr (2003) se integraron en el 
principio de documentación del modelo, y se caracterizaron en la APM como sigue. a) Ideas 
iniciales, fueron las propuestas acerca de qué datos son importantes, cómo abordar el problema y qué 
pasos para la solución son más útiles, pudiendo o no estar asociadas con el uso de la estadística. b) 
Ideas intermedias, son aquellas centradas en la identificación y explicación de patrones, relaciones o 
comportamiento específico de los datos de la situación a resolver; incluye el uso de medidas de 
tendencia central y de dispersión, construcción de gráficas descriptivas u operaciones sencillas como 
obtener diferencias entre los datos, entre otras.  c) Ideas finales, son los planteamientos formales de 
hipótesis nula y alternativa, niveles de confianza en la decisión, tomar la decisión de rechazar o 
aceptar la hipótesis nula, e incluye posibles sugerencias para mejorar el proceso de producción en 
función de los resultados obtenidos.  

El estudio fue de carácter cualitativo descriptivo. Los medios de recolección de información fueron: 
vídeos, audios, y los escritos (físicos y digitales) de siete estudiantes de la División de Ingeniería en 
Electrónica y Computación de la Universidad de Guadalajara, que estaban terminando el curso de 
Probabilidad y Estadística del segundo semestre. La información final se obtuvo en una sesión de 60-
90 minutos, donde se llevó a cabo la implementación de la actividad. Se organizaron tres equipos de 
trabajo, el Equipo 1 con dos integrantes (1A, 1B), el Equipo 2 con tres (2A, 2B, 2C) y el Equipo 3 
con dos alumnos (3A, 3B).  

Resultados 
A continuación, se resumen los principales resultados del estudio. Se han agrupado de acuerdo a los 

seis principios para el diseño de APMs, que ya antes se señalaron.  
Principio de realidad. La lectura y discusión del artículo de periódico (sobre producción de 

biosensores) permitió a los estudiantes involucrarse con el contexto de la actividad, y reveló el 
conocimiento que tenían sobre biosensores al relacionar la actividad con algunos que ellos ya 
conocían como: “Apple Watch, banda de ejercicio, máquinas de cardio para el ejercicio, sensor de 
ritmo cardiaco, sensor de temperatura y contador de pasos”.  

 Principio de construcción de modelo. El Equipo 1 hizo un gráfico para visualizar el 
comportamiento de los datos (medidas de molde e impresiones), que les ayudó a entender e 
interpretar la situación visualmente. El Equipo 2 propuso procedimientos tales como: obtener las 
diferencias entre las medidas de las formas e impresiones, determinar un promedio de cada una de las 
medidas, calcular la desviación estándar y la varianza de los datos para analizar la información.  

Documentación del modelo (ideas iniciales, intermedias y finales). Los estudiantes durante la 
implementación desarrollaron una serie de interpretaciones que transitaron por varias modificaciones 
y refinamiento, que les ayudó a orientar su trabajo hacia lo que consideraban como mejor respuesta. 

Interpretaciones iniciales. Los equipos en sus primeros diálogos de trabajo mencionaron ideas del 
cómo analizar la información del problema, pero sin argumentar el por qué eran útiles: 1A: “¿Y si 
hacemos una gráfica?”, 2B: “Y si sacamos las diferencias entre el molde y la impresión”, 2B: 
“hagamos una gráfica de campana”, 2A: “hagamos una de dispersión”. Se identificó que los alumnos 
recurren inicialmente al análisis de datos con gráficas y a la manipulación de éstos con operaciones 
sencillas (diferencias); con la idea de dar sentido a la información del problema.  
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Interpretaciones intermedias. Los alumnos identificaron patrones y relaciones después de graficar 
los datos y calcular algunos estadísticos (media, varianza, desviación estándar). Por ejemplo el 
Equipo 1 observó su gráfica de líneas y señaló una relación de dependencia entre las medidas de 
moldes e impresiones; 1B: “el molde es más grande que la impresión”, 1B: “mira las medias son 
diferentes”, pero sin llegar a plantear de manera formal una correlación o el planteamiento de 
hipótesis para probar las diferencias, solo realizaron algunas afirmaciones informales que pudieran 
llevarlos al planteamiento de la hipótesis nula y alternativa;  1A: “de hecho las medidas deberían ser 
iguales”, 1B: “el molde es más grande que la impresión”, 

Interpretaciones finales. El modelo final en todos los equipos fue un procedimiento de prueba de 
hipótesis, que integró representaciones gráficas, tabulares, algebraicas, escritas y verbales. Aquí ellos 
plantearon la relación entre las medidas de los moldes y las impresiones, por ejemplo: 1A: “la 
hipótesis nula es que las medidas de los moldes son iguales”, planteamiento por el alumno que define 
el tipo de contraste a desarrollar. 1B: “la otra hipótesis es que los moldes son más grandes que las 
impresiones”. El planteamiento de esta hipótesis alternativa complementó y orientó la construcción 
de su modelo, además de utilizar otros conceptos como: muestra y nivel de confianza para refinar y 
definir su modelo. 

Principio de autoevaluación. El Equipo 1, modificó su decisión de usar gráficas y regresión lineal 
para explicar su modelo propuesto. Esto debido a que, después de analizar por segunda vez las 
especificaciones de la actividad, consideraron que su propuesta no era lo suficientemente útil. Esto 
reorientó su trabajo hacia la construcción de una prueba de hipótesis, decisión que, según ellos, les 
permitía probar con mayor certeza si su conjetura era aceptable o no. En otras palabras, los alumnos 
autoevaluaron la utilidad de su respuesta y la modificaron en búsqueda de una mejor. 

Conclusiones 
La APM Nanomateriales contribuyó al estudio de la PMM, específicamente en el tema de prueba de 

hipótesis de la estadística inferencial, al ser un diseño original para los estudiantes de ingeniería 
electrónica. De acuerdo con las preguntas de investigación la APM Nanomateriales propició la 
construcción de modelos tipo procedimiento de prueba de hipótesis que integraron diferentes 
conceptos matemáticos como; muestra, media, varianza, hipótesis nula y alternativa, nivel de 
confianza, gráfica de dispersión, entre otros. Además, dejó en evidencia que la prueba de hipótesis no 
es una idea trivial, ya que los alumnos tuvieron que desarrollar una serie de interpretaciones 
(iniciales, intermedias y finales) (Lesh et al. 2000) donde usaron varios medios de representación 
(gráfico, tabular, escrito, algebraico, lenguaje hablado) (Lesh & Doerr, 2003) para refinar, modificar 
y ampliar sus formas de pensar acerca de este procedimiento relevante dentro de la inferencia 
estadística. En adición, el acceso a la red y uso de Excel les facilitó a los alumnos la construcción de 
representaciones visuales, manipulables y dinámicas (Lesh, 2010).  
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This paper describes a modeling task designed to improve students’ understanding of music and 
related unit structures (e.g., whole note, half note). Fourteen upper elementary students were asked 
to build models of melodies using Cuisenaire rods and make arguments about how their models 
represented what they heard. Our analysis of students’ models suggested four categories of models. 
Students exhibited one- or two-dimensional reasoning with either (or both) height and length 
correspondence that varied in terms of duration and/or pitch features. 

Keywords: Modeling, Representations and Visualization, Measurement 

Background and Literature Review 
Mathematical modeling focuses the relevance of mathematics through the use of authentic contexts 

where students use their mathematics to solve relevant problems (COMAP & SIAM, 2016). There is 
a growing emphasis on the inclusion of mathematical modeling in school mathematics (e.g., National 
Council of Teachers of Mathematics, 2000; National Governor’s Association Center [NGAC] & 
Council of Chief State School Officers [CCSSO], 2010). While the phrase mathematical modeling 
has been used in many ways, we consider the description of mathematical modeling from the 
Common Core State Standards, which describes modeling as “the process of choosing and using 
appropriate mathematics and statistics to analyze empirical situations, to understand them better, and 
to improve decisions” (NGAC & CCSSO, 2010). In this description, the main focus of mathematical 
modeling is learning to make decisions and assumptions when interpreting a real-world scenario 
using a mathematical lens. These scenarios are often posed using open-ended tasks where students 
have the freedom and flexibility to create their own non-prescribed models (COMAP & SIAM, 
2016). Because mathematical modeling requires creativity and allows for varied solution strategies, 
modeling tasks inherently provide multiple entry points and differentiation opportunities (Cirillo et 
al., 2016).  

Prior research studies showed that mathematical modeling tasks were helpful in revealing student 
thinking and that modeling tasks enable students of differing performance levels to interpret, invent, 
and find solutions (e.g., Aguilar Battista, 2017; Carmona & Greenstein, 2007; Koellner-Clark & 
Lesh, 2003; Mousoulides, Pittalis, Christou, & Sriraman, 2010). Despite the existing literature on 
mathematical modeling, there is a need for further research in the elementary grade levels. An 
analysis of 29 articles (published between the years 1991-2015) that focused on elementary 
mathematical modeling (ages 10 and below) revealed that more research (as well as teacher training) 
related to mathematical modeling in the elementary grades is needed (Stohlman & Albarracin, 2016). 

In the modeling task that we share in this report, students are expected to use “the language of 
mathematics to quantify real-world phenomena and analyze behaviors” (COMAP & SIAM, 2016, p. 
8). The real-word phenomena is the representation of musical notes. We chose to develop a modeling 
task for music because musical notes are inherently mathematical due to the proportional relationship 
of their size (i.e., duration of each note). Additionally, integrating music and mathematics appears to 
be a particularly effective intervention for students to improve students’ conceptual understanding of 
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fractions, especially for high needs students (Courey et al., 2012). In order to contribute to the 
understanding of framing instruction with modeling tasks in earlier grades, we focused on the 
following research questions in our study: What were the mathematical assumptions and decisions 
students made when creating physical models to represent musical melodies? What were the 
underlying mathematical characteristics of their models and were there any similarities and/or 
differences between models? 

When learning a mathematical concept, children use actions. While these actions can initially be 
physical or mental, ultimately, the actions are mental that may or may not have been derived from 
physical actions or words (Sarama & Clements, 2009). When creating our own models during the 
design phase of the task, we determined that our own mental actions included unitizing: defining a 
unit and a sub-unit (i.e., whole and half notes). Unitizing is defined as “the process of constructing 
chunks in terms of which to think about a given commodity” (Lamon, 2012, p. 104). Because 
unitizing is a subjective process, encouraging flexibility and highlighting the relationship between 
unitizing and understanding fractions and equivalence is important (Lamon, 2012). We focused on 
students’ unitizing mental actions while analyzing their models. 

Methodology 
The motivation for the Modeling Music task was to utilize the multiple ways in which music can be 

represented to emphasize the proportional relationship of musical notes. To show the different 
representations of music as well as how these different representations are related, we developed a 
framework which had the components of song, sound wave, sheet music, and physical tools. This 
particular modeling task attended to the bi-directional relationships between melody, sheet music, 
and physical tools representations. 

Four melodies (Melodies A, B, C, and D) were created and then purposefully sequenced to highlight 
differences in the length of the notes (Figure 2). The first two melodies (A and B) were solely 
comprised of either whole or half notes. The third melody (C) was a combination of whole and half 
notes and the fourth melody (D) was a combination of whole, half, and quarter notes. 

 

Melody A 

 

Melody B 

 

Melody C 

 

Melody D 

 

Figure 1. Sheet music for Melodies A, B, C, and D 
 

Participants and Implementation 
Fourteen upper-elementary (fourth and fifth grade) students participated in the Modeling Music task 

during a summer ice skating camp in July 2019. The daily schedule of the camp limited the time 
allotted for the Modeling Music task to 45 minutes and as a result, students were only able to create 
models for the first three melodies. The activity sequence for the Modeling Music task consisted of 
three parts: (1) listening to the melody, (2) recording and sharing notices and wonders about the 
melody, and (3) building the model using Cuisenaire rods. Students were not provided with any 
guidance or direction when building their models, which required them to make their own 
assumptions and decisions during the modeling process, as well as identify the underlying 
mathematical relationships in their models. 
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Data Collection and Analysis 
In order to better understand students’ modeling strategies, the data we collected during task 

implementation included students’ individual written responses to the notices and wonder prompts 
for each melody, a written record of students’ verbal descriptions of each melody, and photographs 
of the Cuisenaire rod models students created for each melody. The students’ models and their 
written descriptions were analyzed using comparative analysis (Merriam, 1998). The similar models 
were first categorized into similar chunks (e.g., models using one-dimensional reasoning). In the next 
revision, this classification was elaborated into more defined categories and we looked for the 
unitizing structures involved in the models. We used measurement ideas to analyze the multiple 
representations of proportional relationships and we used basic principles of measurement (e.g., 
relating size and units) to explore how these relationships were connected within the context of 
music. 

Results and Discussion 
Students’ notices and wonders for each of the melodies highlighted several common themes. Some 

of these themes revealed the underlying mathematics students observed (e.g., distance between notes, 
length of notes). Other themes revealed students’ perceptions of the sound (e.g., pitch, tempo). 
Students’ Cuisenaire rod models of the melodies revealed their modeling strategies, including the 
assumptions and decisions they made for mathematizing the melodies. 
Modeling Single Note Melodies (Melody A and B) 

When modeling single note melodies, students built either a single rod model or a collection of rods 
model to represent one note (see Table 1). The main difference between these models was how 
students decided to represent one unit. With the single rod model, students decided to define one note 
with one rod, whereas with the collection of rods model, students decided to define one note with a 
collection of rods in a staircase shape. With both the single rod model and collection of rod models, 
students assumed that the notes in the melody were identical and chose to iterate their unit to reflect 
this assumption. 
 

Table 1: Student Models of Single Note Melodies (Melody B) 
Single Rod Model Collection of Rods Model 

 

 

Modeling Two-Note Melodies (Melody C) 
When modeling the two-note melody, students had to decide how to represent both whole and half 

notes in a single model. Students’ models were categorized based on which characteristics of the rods 
they attended to when representing the different notes as summarized in Table 2. 
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Table 2: Categories for Two-Note Melodies (Melody C) 
Category and Sample Model Defining Characteristics 

(1) 1-D: Length Correspondence (Duration) 

 

Attended to rod length to represent each 
note. Length of half note (red) corresponded 
to length of whole note (purple). 

(2a) 2-D: Height Correspondence (Duration) 

 

Attended to horizontal length (number of 
rods) and height (length of rods) to 
represent each note. Length of starting rod 
of half note (yellow) corresponded to length 
of starting rod of whole note (orange). 

(2b) 2-D: Length Correspondence (Duration) 

 

Attended to horizontal length (number of 
rods) and height (length of rods) to 
represent each note. Number of rods 
representing each note had a 4:2 proportion. 

(3) 2-D: Height, Length Correspondence 
(Duration) 

 

Attended to horizontal length (number of 
rods) and height (length of rods) to 
represent each note. Length half note 
(yellow) corresponded to length of starting 
rod of whole note (orange) and number of 
rods representing each note had a 2:1 
proportion. 

(4) 2-D: Height, Length Correspondence 
(Duration and Pitch) 

 

Attended to horizontal length (number of 
rods), height (length of rods), and pitch 
(starting rod) to represent each note. 
Number of rods representing each note had 
a 4:2 proportion. Used same starting rod for 
both whole and half notes. 

Conclusion 
The Modeling Music task clearly provided students with multiple entry and exit points as evidenced 

by the sheer variety in students’ models. In addition, unpacking students’ mental actions when 
building their models revealed commonalities in students’ thinking related to unitizing and 
proportional reasoning (e.g., half/whole note relationships). Our analysis provided a method of 
categorizing students’ models based on their defining characteristics, which brought to light the 
assumptions and decisions made by students during the modeling process. 

Research related to students’ mathematical modeling strategies provides opportunities for rich 
descriptions of student thinking. Our findings are promising in terms of further study of modeling 
tasks and the value of using modeling tasks to explore students’ reasoning and strategies, including 
application of prior knowledge, when solving open-ended problems. The Modeling Music task also 
suggests a framework for task design and model categorization that can allow for further 
mathematical modeling research in the elementary grades.  

Our findings can also inform instructional decisions. Having a framework for model categorization 
(in terms of underlying mental actions) allows us to anticipate student thinking, which can help 
educators better prepare instruction related to both mathematical modeling and the development of 
measurement concepts. 
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Identifying patterns is an important part of mathematical reasoning, but many students struggle to 
justify pattern-based generalizations. Some researchers argue for a de-emphasis on patterning 
activities, but empirical investigation has also been shown to support discovery and insight into 
problem structures. We introduce a phenomenon we call empirical re-conceptualization, which is the 
development of a generalization based on an empirical pattern that is subsequently re-interpreted 
from a structural perspective. We define and elaborate empirical re-conceptualization by drawing on 
data from secondary and undergraduate students, and identify three major affordances: Empirical 
re-conceptualization can serve as (a) a source of verification, (b) a means of justification, and (c) a 
vehicle for generating insight. 

Keywords: Reasoning and Proof, Cognition, Algebra and Algebraic Thinking 

Objective: Leveraging the Power of Pattern-Based Generalizations 
Recognizing and developing patterns is a critical aspect of mathematical reasoning. Many students 

are adept at recognizing and formalizing patterns (Pytlak, 2014), but they can also struggle to 
understand, explain, and justify those very patterns they develop (Čadež & Kolar, 2014). One source 
of students’ difficulties may rest with the empirical nature of those generalizations. Students can 
become overly reliant on examples and infer that a universal statement is true based on a few 
confirming cases (Knuth, Choppin, & Bieda, 2009). One potential solution is to help students 
understand the limitations of empirical evidence and thus recognize the need for deductive arguments 
(e.g., Stylianides & Stylianides, 2009). These approaches have shown some success in helping 
students see the limitations of examples, but they also frame empirical reasoning strategies as 
stumbling blocks to overcome. 

In contrast, we have identified a phenomenon that we call empirical re-conceptualization, in 
which students identify a pattern, form an associated generalization, and then re-interpret their 
findings structurally. From this perspective, students can bootstrap their pattern-based generalizations 
into mathematically meaningful insights and arguments. In this paper, we describe and elaborate the 
construct of empirical re-conceptualization and address the following questions: (a) What 
characterizes students’ abilities to leverage pattern-based generalizations in order to develop 
mathematical insights? (b) What are the conceptual affordances of empirical re-conceptualization? 
We offer a secondary example, discuss the affordances experienced, and consider ways in which 
instruction can support the practice of empirical re-conceptualization. 

The Drawbacks and Opportunities of Empirical Reasoning 
While an emphasis on patterning that lacks meaning can promote the learning of routine procedures 

without understanding (Fou-Lai Lin et al., 2004), there are also a number of affordances that can 
arise from empirical investigation. The act of developing empirically-based generalizations can foster 
the discovery of insight into a problem’s structure, which could consequently support proof 
development (de Villiers, 2010). The degree to which pattern generalization is an effective route to 
proof is an open question, but there is evidence that students can and do engage in a dynamic 
interplay between empirical patterning and deductive argumentation (e.g., Schoenfeld, 1986).  
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Students lack sufficient experience with developing meaning from patterns. Curricular materials 
emphasize patterning activities that end with a generalization, typically an algebraic rule; developing 
an associated justification is seldom emphasized in standard classroom tasks. In fact, students 
typically receive little, if any, explicit instruction on how to strategically analyze examples in 
developing, exploring, and proving generalizations (Cooper et al., 2011). We propose that empirical 
re-conceptualization can be one way to provide opportunities to develop mathematical insight and 
deductive argumentation from pattern-based generalizing activities.  

Theoretical Perspectives: Structural Reasoning  
Harel and Soto (2017) identified five major categories of structural reasoning: (a) pattern 

generalization, (b) reduction of an unfamiliar structure into a familiar one, (c) recognizing and 
operating with structure in thought, (d) epistemological justification, and (e) reasoning in terms of 
general structures. The first category further distinguishes between result pattern generalization 
(RPG) and process pattern generalization (PPG) (Harel, 2001). RPG is a way of thinking in which 
one attends solely to regularities in the result. The example Harel gave is observing that 2 is an upper 

bound for the sequence 2 , 2 + 2, 2 + 2 + 2, … because the value checks for the first 
several terms. When we refer to empirical re-conceptualization and the identification of a pattern 
based on empirical evidence, we are referring to RPG. In contrast, PPG entails attending to regularity 
in the process. Harel discussed how one might engage in PPG to determine that there is an invariant 
relationship between any two consecutive terms of the sequence, 𝑎!!! = 𝑎! + 2, and therefore 
reason that all of the terms of the sequence are bounded by 2 because 2 < 2. 

We define empirical re-conceptualization as the process of re-interpreting a generalization based on 
RPG from a structural perspective. By structural perspective, we mean engaging in any of the 
following activities: (a) shifting from RPG to PPG; (b) reducing an unfamiliar structure into a 
familiar one; (c) carrying out operations in thought without performing calculations; (d) forming and 
reasoning with a new conceptual entity; or (e) shifting from figurative to operative activity. In short, 
re-interpreting a generalization from a structural perspective entails the ability to recognize, act upon, 
and reason with general structures. 

Methods 
Barney (a 7th-grade student) and Homer (a 9th-grade student) participated in a paired teaching 

experiment (Steffe & Thompson, 2000), which took place across five sessions averaging 75 minutes 
each. An aim of the teaching experiment was to investigate the students’ generalizations about the 
areas and volumes of growing figures, and then to study their development of combinatorial 
reasoning by exploring the growing volumes of hypercubes and other objects in 4 dimensions and 
beyond. 

All teaching sessions were videoed and transcribed. We first drew on Ellis et al.’s (2017) RFE 
Framework to identify generalizations, and then used open coding to infer categories of generalizing 
activity based on the participants’ talk, gestures, and task responses. We then identified an emergent 
set of relationships between the participants’ patterning activities and the types of generalizations 
they formed; this yielded the category of empirical re-conceptualization. In a final round we re-
visited the data corpus in order to identify all instances of empirical re-conceptualization, the 
generalizations that led to each instance, and the subsequent explanation or justification. In this 
manner we were able track the changes in students’ activity after engaging in re-conceptualizing, 
which led to the identification of the affordances detailed below. 
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Results 
We found three major affordances of engagement in empirical re-conceptualization. Namely, 

empirical re-conceptualization can serve as (1) a source of verification, (2) a means of justification, 
and (3) a vehicle for generating insight. Within the third category, we identified three types of 
insight: (3a) re-interpretation within a different context or representational register, (3b) the creation 
of a new generalization, and (3b) the establishment of a new piece of knowledge. In order to 
characterize the phenomenon of empirical re-conceptualization and its associated affordances, we 
present an exemplar case. 
Secondary Case: Growing Volumes in Three Dimensions and Beyond 

Barney and Homer explored the added volumes of three-dimensional, four-dimensional, and other 
n-dimensional “cubes” that grew uniform amounts in every direction. They began by determining the 
added volume of an n by n by n cube that grew 1 cm in height, width, and length. The students 
worked with physical cubes to consider the component pieces and determined that the added volume 
would be 3n2 + 3n + 1. When they then investigated the added volume of a cube that grew x cm in 
each direction, the students simply generalized from their prior result. Homer wrote “(3x)n2 + (3x)n 
+ x2”, replacing the 3 in the first two terms of his original expression with a 3x, and replacing the 1 in 
the last term, which he had conceived as 12, with an x2. Unsure about the correctness of this 
expression, Barney said, “let me model on the cube”, which he used to verify that the first term, 3xn2, 
was correct because it represented three additional rectangular prisms, each with a volume of xn2. 
Both students then realized errors in the next two terms. Barney explained that the second term 
should actually be 3x2n “because you’re adding 3 of x by x by n.” Both students also realized the 
final term would have to be x3. 

The students’ original generalization was based on the result of their prior activity in building up 
additional volume components, rather than attending to the process by which they grew the cube’s 
volume. However, Barney then experienced a need to verify Homer’s result, which led to re-
conceptualizing the generalization within the context of volume. He took the algebraic structure and 
made sense of it geometrically, in the process coordinating his mental activity of constructing 
component volumes and translating those quantities to algebraic representations.  

The students eventually went on to determine expressions of added volume for the 2nd, 3rd, and 4th 
dimensions, which the teacher-researcher wrote in Figure 1. Homer then saw a pattern in the 
expressions, exclaiming, “Oh, I know what’s happening!”: 

Homer: It is simple, as 2 – sorry I’m writing on it. [Begins to draw the blue lines.] Two plus 1 is 3, 
and 2 plus 1 is 3, 3 plus 3 is 6, 3 plus 1 is 4, 1 plus 3 is 4. [Writes the red numbers.] 

TR: Whoa. Huh. 
Barney: Wow. It’s just that one triangle, Pascal’s triangle, right? 

Homer recognized the pattern in which each coefficient could be determined by adding the sum of 
the coefficients of the prior consecutive terms. Pascal’s triangle then became a mechanism for 
determining the additional volume of a 5th-dimensional solid, which the students wrote as “5n4 + 
10n3 + 10n2 + 5n1 + 15”. They then decided to check their answer by listing the arrangements of 
three ns and two 1s (the 10n3) case, which served to verify that the coefficient was indeed 10. Barney 
then realized that given that they had verified the 10n3 case, they did not need to check the 10n2 case: 
“We can basically just take this and switch all the ns to 1s and 1s to ns.” This explanation of 
symmetry caused Homer to then extend that finding to new cases: “Oh, and you know what? You 
can do the same for these (pointing to the 5n4 and the 5n1 terms)…you can just replace these 1s for 
ns.”  
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Figure 1: Expressions for added volume in the 2nd, 3rd, and 4th dimensions 

 
Homer and Barney initially developed a generalization based on Pascal’s triangle, which allowed 

them to determine the expression for added volume. Their subsequent listing activity enabled the 
students to re-interpret that expression combinatorially. That pattern allowed the students to engage 
in a verification process and subsequently reason about outcomes to develop a new insight, that there 
must be symmetry in the coefficients. Barney was able to reflect on his operations in listing the ten 
outcomes and realize that there was nothing special about the characters n and 1, and that they could 
simply be reversed in the case of determining the combinations of two ns and three 1s. This then 
supported Homer’s new generalization. 

Discussion 
Empirical re-conceptualization can serve as a source of verification, such as when Barney checked 

the algebraic expression for adding x cm to a cube by appealing to the notion of volume. It can also 
serve as a source of justification, which we saw when Barney justified Homer’s pattern of xs in the 
expression 3xn2 + 3x2n + n3. We also saw the students developing insight. They developed new 
knowledge and understanding, such as when Barney generated the idea that the coefficient of n3 must 
be identical to the coefficient of n2, which then supported Homer’s ability to establish a new 
generalization that could be extended to the other terms, 5n4 and 5n. 

These affordances suggest that empirical re-conceptualization can serve as a vehicle to transform 
empirical patterns into meaningful sources of verification, justification, and insight. Certainly, 
students may also identify and generalize patterns that they do not understand or cannot justify. A 
danger is that students will engage in empirical investigation but then not seek to re-conceive their 
findings structurally. We find it useful to explore the conditions that can best support students’ 
transition to the productive next step, that of empirical re-conceptualization. Our data suggest that 
directing students back towards the contextual genesis of the patterns they generalize may be an 
effective strategy for supporting empirical re-conceptualization. With the support of concrete 
contexts for meaning making, the activity of generalizing empirical patterns can serve as a bridge to 
more generative and productive mathematical activity. 
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Promoting students’ mathematical creativity while problem solving is critical to prepare students for 
future learning and careers. In this paper, we introduce the Creativity-in-Progress Rubric (CPR) on 
Problem Solving as a tool to enhance mathematical creativity while cultivating problem-solving 
heuristics and fostering metacognition. With its two categories, Making Connections and Taking 
Risks, the CPR aims to develop mathematical discourse centered around aspects of creativity 
involving fluency, elaboration, flexibility, and originality.  

Keywords: Advanced Mathematical Thinking, Assessment and Evaluation, Metacognition, Problem 
Solving 

Mathematical creativity and problem solving are two interrelated research constructs in that “[t]rue 
problems need the extra-logical processes of creativity, insight, and illumination, in order to produce 
solutions” (Liljedahl, Santos-Trigo, Malaspina & Bruder, 2016, p.19). Numerous research studies 
and curriculum documents have emphasized the importance of mathematical creativity in 
mathematics and mathematics courses (e.g., Borwein, Liljedahl, & Zhai, 2014; CUPM, 2015; Leikin, 
2009; Silver, 1997; Sriraman, 2009). Similarly, many research studies (e.g., Carlson & Bloom, 2005; 
Pólya, 1957; Schoenfeld, 2013) have emphasized the importance of problem-solving practices and 
identified a need to foster skills (e.g., metacognition, creativity) beyond accumulation of facts or 
procedural steps during problem solving. It seems that exploring mathematical creativity and 
problem solving together at the tertiary level in mathematics courses is rare (e.g., Zazkis & Holton, 
2009). As a first step towards understanding ways to foster and enhance students’ mathematical 
creativity at tertiary level, our research team designed a formative assessment tool, the Creativity-in-
Progress Rubric (CPR) on Problem Solving that capitalizes on interactions between creativity and 
problem-solving constructs. In this paper, we introduce the CPR on Problem Solving and its 
development. We provide empirical examples from undergraduate Calculus 1 student interviews to 
illustrate potential benefits of using CPR. 

Theoretical Background 
In our work, we view mathematical creativity as a process of offering new solutions or insights that 

are unexpected for the student with respect to their mathematics background or the problems they 
have seen before (Liljedahl & Sriraman, 2006; Savić et al., 2017). In contrast to examining final 
products of those processes, this definition is process-oriented, providing a dynamic view of 
creativity rather than a static one. This definition also encompasses creativity relative to the student 
versus creativity relative to the field of mathematics (Leikin, 2009).  

Our conception and development of the Creativity-in-Progress Rubrics (CPR) was guided by this 
operational definition of mathematical creativity and situated within two theoretical perspectives: 
Developmental, and Problem Solving and Expertise-Based (Kozbelt, Beghetto, & Runco, 2010). The 
primary assertion of the Developmental theory is that creativity develops over time, and the main 
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focus of investigation is a person’s process of creativity. This perspective also emphasizes the role of 
environment, in which interaction takes place, to enhance the creativity. The Problem Solving and 
Expertise-Based theory with the emphasis on the role of an individual’s problem-solving process 
brings forth key concepts such as problems and heuristics. 

In our work, we adopted Schoenfeld’s (1983) formulation of a problem as a task that the problem 
solvers “don’t know how to go about solving it” (p. 41). Thus, problem solving becomes a process in 
which the problem solver tries to attain some outcomes without having an immediate access to 
known methods (to that particular individual) (Schoenfeld, 2013). This description of problem 
solving aligns with our mathematical creativity definition as both of them focus on a process relative 
to the individual. 

Creativity-in-Progress Rubric 
In our previous research studies (see Creativity Research Group, n.d.), we explored the ways in 

which mathematical creativity could be explicitly valued and fostered in tertiary level proof-based 
mathematics courses. The CPR on Proving was rigorously constructed through triangulating 
research-based rubrics, mathematicians’ and students’ views on mathematical creativity, and 
students’ proving attempts (Karakok et al., 2015; Savić et al., 2017; Tang et al., 2015). Following the 
development, the CPR on Proving was implemented as a formative assessment tool in several proof-
based courses. Some instructors used it to facilitate in-class discussions on proof construction and 
evaluation of this process (El Turkey et al., 2018) whilst others gave it to students to be used on 
homework problems and write-ups of solutions (Omar et al., 2019). For example, one instructor, in 
an elective proof-based combinatorics course asked students to reflect on their proving process of 
assigned problems using the CPR. One of the students of this course, when asked to discuss the use 
of the CPR, stated “The reflection process – the rubric itself helped kind of outline where you should 
go if you were lost, in a very general sense.” Another student said, “I think it’s helped me …reflect 
on the sort of creative process that I have and it’s kind of helped me understand the ways that I can 
be mathematically creative.” 

We have expanded our research program by modifying the CPR on Proving to problem solving by 
utilizing existing studies in problem solving. This effort allowed us to include more tertiary 
mathematics courses and student populations in our exploration of creativity. The CPR on Problem 
Solving has two categories: Making Connections (Figure 1) and Taking Risks (Figure 2). These 
categories are divided into subcategories that are reflective of the different aspects of creativity found 
in prior research. The rubric provides three general levels: Beginning, Developing, and Advancing, 
each of which serves as a marker along the continuum of a student’s progress in that subcategory. 
This continuum among levels of the rubric communicates the possible states of growth, aligning with 
the theoretical constructs of the Developmental perspective. 
Making Connections Category 

The category of Making Connections is defined as a process of connecting the problem with 
definitions, formulas, theorems, representations, and examples from the current or prior courses and 
connecting the attempted problem solutions to each other. Various researchers (e.g., Schoenfeld, 
2013; Silver, 1982) have highlighted the importance of prior knowledge in problem-solving 
processes acknowledging that such knowledge helps the problem solver to understand the problem 
and influences the choices of approaches and tools to be used (e.g., examples, representations). The 
subcategories in Making Connections communicate these ideas to the problem solver and encourage 
them to push their processes in these areas forward along the continuum. Furthermore, the Between 
Solutions subcategory encourages the solver to examine their different solution attempts, connect 
them, and generalize them for thorough understanding. 
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Figure 1: Making Connections Category of the CPR on Problem Solving 

 
This category encompasses the fluency and elaboration components of Torrance’s definition of 

creativity (Leikin, 2009). As fluency describes flow of associations and use of basic knowledge, with 
its subcategories of between definitions, formulas, theorems, between representations, and between 
examples and continuum levels, Making Connections provides opportunities to enhance fluency. As 
elaboration relates to generalization of ideas, moving in rubric’s the continuum toward advancing 
levels of each subcategory provides opportunities for generalization. 
Taking Risks Category 

The category of Taking Risks in our rubric is defined as a process of actively attempting a solution, 
demonstrating flexibility in using multiple solution paths, posing questions about reasoning within 
solutions, and evaluating solution attempts or solutions. The subcategories of Flexibility, Posing 
Questions, and Evaluation of Solution Attempt align with Pólya’s (1957) problem-solving heuristic. 
In the third step of this heuristic, Pólya discusses the process of carrying out a plan and in the fourth 
step, the solver examines the reasoning and results of their solution attempt and tries to solve the 
problem in different ways. In addition, the continuum levels of the Posing Questions subcategory 
provide ways for the solver to move from the state of being stuck to less stuck by explicitly asking 
various types of questions. 

 
Figure 2: Taking Risks Category of the CPR on Problem Solving 
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We note that the Tools and Tricks and Flexibility subcategories directly relate to the originality and 
flexibility components of Torrance’s definition of creativity (Leikin, 2009), respectively. Torrance 
describes originality as a unique way of thinking, which could be evident in the process of using a 
trick (e.g., adding one and subtracting one) or introducing a mathematical object (e.g., defining a new 
function) that is unconventional for a student or a course that the student is in. Torrance defined 
flexibility as approaching a problem in multiple ways and producing multiple solutions, which is 
captured in our Flexibility subcategory. Within the Taking Risks category, we claim that the process 
of moving forward in the continuum of levels towards the advancing level requires a problem solver 
to take an intellectual risk in their problem-solving process. 

Discussion 
In our research project, instructors of Calculus 1 at several different institutions were asked to use 

the CPR on Problem Solving with tasks that we designed (El Turkey et al., in press). Each instructor 
decided how to implement these tasks and the CPR, where some used them as part of assignments 
and others had in-class sessions. We conducted interviews with students from these courses. In our 
preliminary analysis, we noted that students’ experience and the usage of the CPR align with four 
themes of a problem-solving activity that Schoenfeld (2013) claimed to be necessary and sufficient 
for the analysis of the success of a problem solver’s problem-solving attempt: a) The individual’s 
knowledge; b) The individual’s use of problem solving strategies, known as heuristic strategies; c) 
The individual’s monitoring and self-regulation (an aspect of metacognition); and d) The individual’s 
belief systems (about him- or herself, about mathematics, about problem solving) and their origins in 
the students’ mathematical experiences. 

We claim that the first two themes (a & b) directly relate to the CPR. When students utilize the CPR 
during their problem-solving attempt, they demonstrate their knowledge and use of problem-solving 
strategies. For example, one Calculus 1 student stated that the rubric prompted her to think about 
class work during problem solving. Discussing her required use of the CPR on an assignment during 
an interview, she said, “I was trying to think about the definitions we used in class and like drawing 
pictures with that” and continued by discussing that the flexibility and evaluation subcategories 
guided her problem-solving approach. 

We believe the third theme (c) was encompassed by the usage of the rubric as a reflection tool as 
the problem solver tried to move forward on the continuum. The CPR connects to the fourth theme 
(d) as it may increase students’ awareness and shift in their perception about their own creative 
processes (Cilli-Turner et al., 2019). For example, a student from another Calculus 1 course at a 
different institution stated that, “So, I feel like [the rubric has] definitely improved my creativity the 
way that …made me think a little bit more about what I’m actually writing down instead of just 
doing the problem.” Our preliminary analysis seem to indicate that as a reflective tool, the CPR can 
help facilitate discussions on students’ attempts and provide guidance on how to enhance students’ 
mathematical reasoning and creative potentials. Ultimately, it may serve to make the link between 
problem solving and mathematical creativity more salient and accessible in any classroom context. 

Acknowledgments 
This material is based upon work supported by the National Science Foundation under Grant Nos. 

#1836369/1836371. Any opinions, findings, and conclusions or recommendations expressed in this 
material are those of the author(s) and do not necessarily reflect the views of the National Science 
Foundation. 



Creativity-in-progress rubric on problem solving at the post-secondary level 

	 990	

References 
Borwein, P., Liljedahl, P., & Zhai, H. (Eds.). (2014). Mathematicians on creativity. The Mathematical Association 

of America. 
Carlson, M. P., & Bloom, I. (2005). The cyclic nature of problem solving: An emergent multidimensional problem-

solving framework. Educational studies in Mathematics, 58(1), 45-75. 
Cilli-Turner, E., Savić, M., Karakok, G. and El Turkey, H. (2019). Tertiary students’ ever-changing views on 

mathematical creativity. In Proceedings of the 12th Southern Hemisphere Delta Conference on the Teaching 
and Learning of Undergraduate Mathematics and Statistics, Fremantle, Australia. 

Committee on the Undergraduate Programs in Mathematics. (2015). Curriculum guide to majors in the 
mathematical sciences. Washington DC: Mathematical Association of America. 

Creativity Research Group (n.d.). Retrieved from www.creativityresearchgroup.com 
El Turkey, H., Karakok, G., Tang, G., Regier, P., Savić, M., & Cilli-Turner, E. (in press). Tasks to Foster 

Mathematical Creativity in Calculus 1. In Proceedings of the 23rd Annual Conference on Research in 
Undergraduate Mathematics Education, Bostan, MA.  

El Turkey, H., Tang, G., Savić, M., Karakok, G., Cilli-Turner, E., & Plaxco, D. (2018). The Creativity-in-Progress 
Rubric on Proving: Two Teaching Implementations and Students’ Reported Usage. Primus, 28(1), 57-79 

Karakok, G., Savić, M., Tang, G. & El Turkey, H. (2015). Mathematicians’ views on undergraduate student 
creativity. In K. Krainer and N. Vondrová (Eds.), CERME 9-Ninth Congress of the European Society for 
Research in Mathematics Education (pp. 1003-1009). Prague, Czech Republic.  

Kozbelt, A., Beghetto, R. A., & Runco, M. A. (2010). Theories of creativity. In The Cambridge Handbook of 
Creativity (pp. 20-47). New York, NY, USA: Cambridge University Press. 

Leikin, R. (2009). Exploring mathematical creativity using multiple solution tasks. In R. Leikin, A. Berman, & B. 
Koichu (Eds.), Creativity in mathematics and the education of gifted students (pp. 129-145). Haifa, Israel: Sense 
Publishers. 

Liljedahl, P., Santos-Trigo, M., Malaspina, U., & Bruder, R. (2016). Problem solving in mathematics education. In 
Problem Solving in Mathematics Education (pp. 1-39). Springer, Cham. 

Liljedahl, P., & Sriraman, B. (2006). Musings on mathematical creativity. For the Learning of Mathematics, 26(1), 
20–23. 

Omar, M., Karakok, G., Savić, M., & El Turkey, H. (2019). “I felt like a mathematician”: Homework problems to 
promote creative effort and metacognition. Primus, 29(1), 82-102.  

Polya, G. (1957). How to solve it: A new aspect of mathematical method (2nd ed.). Princeton University Press. 
Savić, M., Karakok, G., Tang, G., El Turkey, H., & Naccarato, E. (2017). Formative assessment of creativity in 

undergraduate mathematics: using a creativity-in-progress rubric (CPR) on proving. In R. Leikin & B. Sriraman 
(Eds.), Creativity and Giftedness: Interdisciplinary perspectives from mathematics and beyond (pp. 23-46). 
New York, NY: Springer. 

Schoenfeld, A. H. (1983). The wild, wild, wild, wild, wild world of problem solving: A review of sorts. For the 
Learning of Mathematics, 3, 40-47. 

Schoenfeld, A. H. (2013). Reflections on problem solving theory and practice. The Mathematics Enthusiast, 10(1/2), 
9-34. 

Silver, E. (1982). Knowledge organization and mathematical problem solving. In F. K. Lester & J. Garofalo (Eds.), 
Mathematical problem solving: Issues in research (pp. 15–25). Philadelphia: Franklin Institute Press. 

Silver, E. A. (1997). Fostering creativity through instruction rich in mathematical problem solving and problem 
posing. ZDM Mathematical Education, 3, 75–80. 

Sriraman, B. (2009). The characteristics of mathematical creativity. ZDM Mathematics Education, 41, 13-27 
Tang, G., El Turkey, H., Savić, M., & Karakok, G. (2015). Exploration of undergraduate students’ and 

mathematicians’ perspectives on creativity. In T. Fukawa-Connelly, N. Infante, K. Keene, & M. Zandieh (Eds.), 
Proceedings of the 18th Annual Conference on Research in Undergraduate Mathematics Education (pp. 993-
1000). Pittsburgh, PA.  

Zazkis, R., & Holton, D. (2009). Snapshots of creativity in undergraduate mathematics education. In R. Leikin, A. 
Berman, & B. Koichu (Eds.), Creativity in mathematics and the education of gifted students (pp. 345-365). 
Haifa, Israel: Sense Publishers. 

 
 



Mathematical Processes and Modeling 

In: Sacristán, A.I., Cortés-Zavala, J.C. & Ruiz-Arias, P.M. (Eds.). (2020). Mathematics Education Across Cultures: 
Proceedings of the 42nd Meeting of the North American Chapter of the International Group for the Psychology of 
Mathematics Education, Mexico. Cinvestav / AMIUTEM / PME-NA. https:/doi.org/10.51272/pmena.42.2020 

991	
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This paper extends work in the area of quantitative reasoning at the undergraduate level. Task-based 
interviews were used to examine 16 calculus students’ difficulties when solving three related rates 
problems. Analysis of students’ verbal responses and written work revealed several difficulties, 
including dealing with several time-dependent quantities. The paper concludes with a 
recommendation for the teaching of related rates problems at the undergraduate level.  

Keywords: quantitative reasoning, related rates problems, derivatives, problem solving. 

Related rates problems involve at least two rate quantities (i.e., instantaneous rates of change) that 
can be related algebraically by an equation, function, or formula. Although related rates problems 
constitute an essential part of any first-semester calculus course in the United States, several 
researchers have argued that there is a shortage of research that has examined students’ thinking 
about related rates problems at the undergraduate level (e.g., Engelke, 2007; Mkhatshwa, 2020; 
Speer & King, 2016). Of the few studies involving related rates problems, Mkhatshwa (2020) 
reported on students who exhibited poor calculational knowledge of the product and quotient rules of 
differentiation, something that limited their success in a non-routine related rates problem they were 
asked to solve. Engelke (2007) described beneficial components of a successful solution to a related 
rates problem, including drawing a diagram, determining a functional relationship (algebraic 
equation), and checking the answer for reasonability. Other studies have found that mathematizing 
(Freudenthal, 1993) related rates problems is problematic for students (Martin, 2000; White & 
Mitchelmore, 1996).  

While these studies have provided useful information about how students set up and solve related 
rates problems, there is still much to be explored about what different modes of reasoning, such as 
quantitative reasoning (Thompson, 1993, 1994b, 2011) might reveal about students’ difficulties with 
solving related rates problems that have real-world contexts such as kinematics. Quantitative 
reasoning seems a particularly important lens for studying students’ understanding of related rates 
problems since they inherently deal with quantities. In addition, students’ difficulties with solving 
related rates problems in these studies have all been reported from a researcher’s perspective (i.e., 
observed difficulties), and have not considered a student perspective (i.e., student-reported 
difficulties). Thus, in order to build on these studies, the present study investigated students’ 
difficulties with solving related rates problems from a student perspective. The research question we 
investigated is: What do calculus students identify as difficulties when engaged in reasoning 
quantitatively about solving related rates problems?   

Related Literature 
Evidence from studies that have examined students’ reasoning about geometric related rates 

problems (Mkhatshwa, 2020) shows that students who are able to visualize and perform physical 
enactments of situations described in related rates problems tend to be successful in solving these 
problems (Carlson, 1998; Carlson, Jacobs, Coe, Larson, & Hsu, 2002; Monk, 1992). Several 
researchers have identified lack of facility with implicit differentiation as a major cause for students’ 
failure to solve related rates problems successfully (Clark et al., 1997; Engelke, 2004; Mkhatshwa, 
2020; Piccolo & Code, 2013). Piccolo and Code (2013) argued that students’ difficulties with solving 
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related rates problems stem from a weak understanding of implicit differentiation, rather than a 
misunderstanding of the physical context of such problems. Hare and Phillippy (2004) posited that 
“implicit differentiation is a difficult concept for many students to understand because the level of 
difficulty of the concept is higher than the level of difficulty of explicit functions” (p. 7). Conflicting 
findings have been reported on calculus students’ ability to mathematize related rates problems (cf., 
Martin, 2000; Mkhatshwa, 2020; White & Mitchelmore, 1996). Analysis of students’ written 
responses to geometric related rates problems by Martin (2000) revealed that overall performance 
was poor, and that “the poorest performance was on steps linked to conceptual understanding, 
specifically steps involving the translation of prose to geometric and symbolic representations” (p. 
74). Findings of a recent study (Mkhatshwa, 2020) on students’ thinking about related rates problems 
in real-world contexts indicated that mathematizing routine related rates problems is straightforward 
for students. 

Theoretical Perspective 
This study draws on the theory of quantitative reasoning (Thompson, 1993, 1994b, 2011). 

Quantitative reasoning is the act of analyzing a problem in terms of the quantities and relationships 
between the quantities involved in the problem (Thompson, 1993). In this study, quantitative 
reasoning refers to how students interpreted rate quantities (i.e., instantaneous rates of change) when 
solving related rates problems, and how they reasoned about quantities and relationships between 
quantities when engaged in talking about difficulties they had with solving these problems. What is 
important in quantitative reasoning is making sense of quantities and relationships between quantities 
(Smith III & Thompson, 2007; Thompson, 1993). Thompson (2011) described three tenets that are 
central to the theory of quantitative reasoning, namely a quantity, a quantitative operation, and 
quantification. A quantity is a measurable attribute of an object (Thompson, 1994b). Examples of 
quantities in this study include the speed of an airplane, the area of a puddle, and the volume of a 
balloon. A quantitative operation is the process of forming a new quantity from other quantities 
(Thompson, 1994b). We designed three tasks (Task 1, Task 2, and Task 3 in the methods section) 
that provided opportunities for students to perform quantitative operations by creating new quantities 
through the process of implicit differentiation. Quantification is the process of assigning numerical 
values to quantities (Thompson, 1994b). The three tasks used in this study provided opportunities for 
students to engage in quantification.  

Methods 
Task-based interviews (Goldin, 2000) were used to investigate calculus students’ quantitative 

reasoning while solving related rates problems. The interviews covered three tasks: 
Task 1 [motion context]: Two small planes approach an airport, one flying due west at a 
speed of 100 miles per hour and the other flying due north at a speed of 120 miles per hour. 
Assuming they fly at the same constant elevation, how fast is the distance between the planes 
changing when the westbound plane is 180 miles from the airport and the northbound plane 
is 200 miles from the airport? 
Task 2 [non-motion context]: A leak from the sink is creating a puddle that can be 
approximated by a circle, which is increasing at a rate of  per second. How fast is the 
radius growing at the instant when the radius of the puddle equals 8 𝑐𝑚? 
Task 3 [non-motion context]: For the next problem, let me give you a little background on 
a formula that we will use. Suppose a gas is inside a container. Many gases under normal 
conditions follow the "ideal gas law," 𝑃𝑉 = 𝑘𝑇, where 𝑃 is the pressure the gas exerts on the 
container, 𝑉 is the volume of the container, 𝑇 is the temperature of the gas, and 𝑘 is a 
constant. 𝑃 is measured in "atmospheres," 𝑉 is measured in cubic meters, and 𝑇 is measured 
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in Kelvins. Kelvins is a lot like Celsius, except that it is scaled so that 0 means absolute zero 
(lowest possible temperature), which makes water's freezing point to be . Do you 
have any question(s) about this formula, or any of the quantities [like temperature in 
Kelvins] before we proceed? 
In a laboratory, an experiment is being done on a gas inside a large flexible rubber balloon. 
For the experiment, the temperature of the gas is being heated at a rate of 8 degrees Kelvin 
per second. At one point, when the temperature of the gas is , the pressure is 1.5 
atmospheres, the volume of the gas is one cubic meter, and the volume of the gas is 
increasing at a rate of 0.01 𝑚! per second. At that moment, is the pressure in the balloon 
increasing or decreasing? What is the rate of that increase/decrease? 

After students concluded their work on each task, the interviewer asked the following questions: (i) 
What does your answer [derivative] tell you in the context of this task? (ii) How would you answer 
the question posed in this task? (iii) What was the easy part for you when solving this task? and (iv) 
What was the difficult part for you when solving this task? With these questions, our goal was two-
fold. First, we wanted to examine students’ interpretations of derivatives in motion and non-motion 
contexts (questions i. and ii.). Second, we wanted to gain an insight on what is straightforward and 
what is difficult about solving related rates problems from a student perspective (questions iii. and 
iv.). 
Setting, Participants, Data Collection, and Data Analysis 

The study participants were 16 undergraduate students at a research university who were enrolled in 
five different sections of a calculus I course taught by three different professors. Details about the 
participants, including opportunities they had to learn about related rates problems during classroom 
instruction are provided in Mkhatshwa (2020). Data for the study consisted of transcriptions of 
video-recordings of the task-based interviews and work written by the students during each interview 
session. On average, each interview session lasted for about 65 minutes. The data was analyzed in 
two stages. In the first stage, we used two emergent codes i.e., student actions that evolved from the 
data. These codes are: (1) the difficulty of dealing with several time-dependent variables (quantities), 
and (2) the difficulty of finding the value of the constant 𝑘 in Task 3. In the second stage of the 
analysis, we tallied the number of students in each of codes found in the first stage of the analysis. 

Results, Discussion, and Conclusions  
Since Task 3 was the only non-routine task, and one that most of the students were least successful 

in solving, we limit our discussion of student-reported difficulties with solving related rates problems 
to this task. There are three findings from this study. First, when asked about the difficult part about 
solving the task, six students stated that everything about the task was hard. Amos’ reasoning about 
the difficulty of solving Task 3 is representative of the six students. 

Researcher:  What was the easy part for you when solving this task [Task 3]? 
Amos:   None of the problem was easy for me. 
Researcher:  What was the difficult part for you when solving this task? 
Amos:   Reading the task, differentiating the given equation [𝑃𝑉 = 𝑘𝑇], and figuring   

  out where to plug in the given values [quantities in the task, e.g., the      
 temperature of the gas given as  ] in order to solve the problem. 

In response to the first question (i.e., the easy part), Amos stated that “none of the problem was 
easy” for him. When asked about the difficult part, he noted reading the task, differentiating the 
equation given in the task, and using all the given information in the task to solve the problem posed 
in the task. When probed about the type of differentiation he would use in this task, Amos stated that 
he would “have to use implicit differentiation.” Two other students identified implicit differentiation 
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as the challenging part when solving the task. Students’ difficulties with implicit differentiation (i.e., 
performing quantitative operations) when solving related rates problems have been reported by other 
researchers (cf., Clark et al., 1997; Mkhatshwa, 2020; Piccolo & Code, 2013). 

Second, four other students stated that there were several variables (quantities) to keep track of, and 
that this was the main challenge for them when solving the task. The following excerpt illustrates 
how Felix, whose reasoning is representative of these students, commented about the difficult part 
when solving the task. 

Researcher:  What was the difficult part for you when solving this task? 
Felix:    There are more than two variables [quantities], 𝑃, 𝑉, and 𝑇 in the same     

 equation [𝑃𝑉 = 𝑘𝑇]. 

Felix remarked that having several quantities, namely pressure (𝑃), volume (𝑉), and temperature 
(𝑇) in the same problem was problematic for him when solving the problem posed in the task. He, 
however, did not elaborate on this. We argue that the unfamiliar context may have been the challenge 
for Felix more than having several variables. This is because in Task 1 (a familiar task to Felix and 
one that has several variables as well), Felix did not claim that having several variables in the 
problem was the difficult part. Instead, he said the difficult part was finding an equation that relates 
the quantities in the task, that is, mathematizing the problem. On the contrary, 10 students claimed 
that Task 2 (a routine task) was easy to solve because it had fewer variables compared to Task 1 and 
Task 3. When asked about the easiest part about solving Task 2, one of the 10 students, James, 
commented, “we only had one variable to track and that’s the radius, so it was fairly easy to solve.” 
When asked about the difficult part when solving Task 2, he said, “I don’t think there were any 
challenges.” We argue that the number of variables play a huge role in students’ ability to solve 
related rates problems successfully.  

Third, four students stated that finding the value of the constant 𝑘 was the difficult part for them 
when solving Task 3. We note that although only four students identified solving for the constant 𝑘 
as the problematic part in Task 3, half of the 16 students in this study were unsuccessful in finding 
the value of 𝑘 . Since finding the value of the constant 𝑘  entails engaging in the process of 
quantification i.e., substituting the given values of the quantities of 𝑃, 𝑉, and 𝑇 in the equation 
𝑃𝑉 = 𝑘𝑇 and then solving for 𝑘, we argue that substituting known quantities and solving for an 
unknown quantity in an equation is perhaps not only problematic for secondary school students, but 
also for undergraduate students. Based on the student-reported difficulties when solving related rates 
problems in this study, we recommend that calculus instruction should provide more opportunities 
for students to make sense of, and to solve non-routine related rates problems that have several 
quantities. The interested reader is referred to Mkhatshwa (2020) for observed (i.e., researcher-
reported) difficulties that were exhibited by the students when solving the three tasks used in the 
present study. 
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Reasoning-and-proving is viewed by many scholars to be a crucial part of students’ mathematical 
experiences in secondary school. There is scholarly debate, however, about the necessity of formal 
proving. In this study, we investigated the notion of “proof for all” from the perspective of secondary 
mathematics teachers and we analyzed, using the framework of practical rationality, the 
justifications they gave for whether or not all students should learn proof. Based on interviews with 
twenty-one secondary teachers from a socioeconomically-diverse set of schools, we found that 
teachers do not share the same opinion on who should learn proving but they expressed obligations 
toward individual student learning as justifications both for teaching proving to all students and for 
not teaching proving to some students. 

Keywords: Reasoning and Proof; Teacher Beliefs; High School Education; Equity and Diversity. 

Reasoning-and-proving, the broad mathematical practice of conjecturing, justifying, critiquing 
arguments, constructing proofs and more (Stylianides, 2008), is central to the discipline of 
mathematics and can also be a powerful process through which students learn mathematics (de 
Villiers, 1995; Stylianides et al., 2017). Policymakers (National Governors Association & Council of 
Chief State School Officers, 2010; Secretaría de Educación Pública, 2014) and scholars (e.g., 
Mariotti, 2006) alike have called for reasoning-and-proving to be a part of all students’ learning 
experiences in school. But there are also critiques of this general framing of learning “for all” such as 
Martin (2003) who pointed out that “for all” often comes as impositions on underserved groups, and 
Battey (2019) pointed out that “for all” can gloss over learners’ individuality, proposing “for each 
and every” as a replacement framing. With regard to formal proof in particular, Weber (2015) noted 
that it may be unnecessary at the secondary level to explicitly develop “proving” and that it may be 
sufficient to push for clear explanations and valid justifications and that doing so may more easily 
integrate with students’ mathematical experiences prior to secondary school. 

Where do mathematics teachers, as the ones directly responsible for enacting curricular 
recommendations, stand on this issue of “proof for all”? How are teachers thinking about the scope 
and appropriateness of proof for students? Past studies have examined teachers’ views of proof (e.g., 
Ko, 2010) or their views on mathematical processes including proof (e.g., Sanchez et al., 2015) but 
the question of who they think should learn proof is fundamental. In this study, we interviewed 21 
secondary mathematics teachers from an economically-diverse set of schools in Cape Town, South 
Africa. Although outside North America, it has similarities to North American contexts in terms of 
mathematics teaching being heavily influenced by European colonization and having typical 
instruction that is procedural in nature (Webb & Roberts, 2017). Moreover, the question of who 
should experience proof is one with worldwide relevance as we consider broadly students’ 
mathematical experiences. 
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Personal and Theoretical Perspectives 
Because this study involves our analysis of teachers’ perspectives on proving, it is important that we 

reveal salient information about our own perspectives for the sake of transparency. Samuel is an 
American white man of Western European descent who attended rural public schools and then public 
universities where he earned degrees in both mathematics and education. Mitchelle is an African 
woman who attended the Kenyan elementary, secondary, and undergraduate education system, and is 
currently in the U.S. pursuing a doctoral degree. Rajendran, an Indian born in South Africa, attended 
urban primary and secondary public schools during the apartheid era and then proceeded to study at 
public universities where he earned degrees in both mathematics and education. Although from 
diverse backgrounds, we all share a view that proving—in the sense of constructing reasonably 
complete and logically valid arguments for mathematical claims—is important for all students in the 
general education system as well as most students in the special education system. Although this is 
our opinion, we value hearing the voices of teachers and taking seriously their perceptions of what is 
possible and why. 

In terms of our approach to teachers’ perceptions, we see teachers as participants in a cultural 
practice of teaching governed by norms (i.e., tacitly expected behaviors or unquestioned historical 
practices) and obligations (i.e., requirements perceived as inherent to their role as a mathematics 
teacher) (Herbst & Chazan, 2011). These norms and obligations influence the choices that teachers 
make in their own teaching (e.g., Webel & Platt, 2015). Obligations, in particular, can be used to 
categorize the justifications that teachers provide for their instructional choices. For example, a 
teacher may decide to present a proof to students rather than have them construct the proof 
independently because she feels an obligation to complete the lesson in a single class period and stay 
“on pace.” Or a teacher may decide to emphasize formal terminology in a proof because he feels an 
obligation to the mathematics discipline to maintain “rigor.” 

We have two central research questions. RQ1) According to secondary mathematics teachers, who 
should learn proving in their formal mathematics education? RQ2) What justifications do secondary 
mathematics teachers provide for their answer about who should learn proving? 

Method 
The study was conducted in the Cape Town metropolitan area of South Africa, which is a port city 

on the southwest coast. South Africa, since its democratization in the 1990s, has pursued curricular 
reforms centered on universal education (Webb & Roberts, 2017). Its official standards call for 
elements of reasoning-and-proving to be taught to all learners. The 21 teachers participating in this 
study varied in their professional preparation and experience (from 1 year to 15 years teaching) but 
they all were mainly involved in teaching mathematics to grades 10–12 leaners. Their five schools 
were in drastically different socio-economic neighborhoods. 

The first author, sometimes with the third author, conducted two types of semi-structured 
interviews. All 21 teachers participated in focus group interviews (approx. 20–40 minutes), organized 
by school, focused on the purposes of mathematics education and curricular issues related to proving. 
Ten of the 21 teachers also participated in individual interviews (approx. 10– 30 minutes) focusing 
on proving tasks and their experiences with proof learners. The analysis reported here specifically 
addresses the question of “who should learn proof in school?” 

The interviews were transcribed and coding was in two phases. Phase 1 involved reading the 
transcripts and applying broad codes to any segments that related to the overarching research 
questions. We noted the groups of learners that teachers identified as who should learn proving. 
Phase 2 involved qualitative coding based on the practical rationality framework (Herbst & Chazan, 
2011), particularly the professional obligations. We briefly describe these codes here: 
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• Disciplinary: teachers’ perceived obligations related to mathematics as a subject area (e.g., 
proving is the “core” of mathematics) 

• Institutional: teachers’ perceived obligations related to the educational system, school policies, 
or administrators (e.g., proving is included on official assessments)  

• Individual: teachers’ perceived obligations related meeting the needs and expectations of 
specific learners (e.g., proving can help learners gain deeper understanding) 

• Interpersonal: teachers’ perceived obligations to balance the needs of a diverse class of 
learners and managing productive interactions (e.g., proving promotes respectful critique) 

• Worldly obligations: teachers’ perceived obligations related to the real-world usefulness of 
what is being taught (e.g., proving will help learners use logic beyond mathematics) 

The worldly obligation code emerged from our own data set. Overall, multiple authors coded the 
obligations and met regularly to clarify (e.g., code two obligations within the same justification 
statement) and reconcile any discrepancies in the coding. 

Findings 
Several of the teachers expressed the opinion that some students should be exempted from the 

opportunity to learn proving (see below), but more than twice as many teachers expressed that all 
students should have an opportunity to learn proving. Others (i.e., some who only participated in the 
focus group interviews) did not express an opinion on this question, but the sections below provide 
brief findings with regard to the rationality that the teachers exhibited. 
Teachers’ Rationality for All Students Learning Proving 

Teachers who stated that all students should learn proving provided a variety of justifications for 
that position. The most common justification related to the teachers’ obligation toward individual 
student learning. Teachers explained that proving can help students to understand mathematical 
content in deeper or more inter-connected ways. For example, Panyanga said: 

All of [the students] should know how we get to things, not just the application… I’ll just 
make an example with Pythagoras’ theorem, you find that they know how to use it but they 
don’t really understand it properly [without proving it]. 

An implicit obligation here is for the teacher to support students in understanding mathematics 
“properly,” not just execute applications, and proving is something that promotes an understanding of 
“how we get to things.” A similar point was raised by another teacher, Rhyan, who said about 
proving opportunities, “You have to give people space to experience the idea” because this helps 
them to move beyond knowing just “that a parallelogram has opposite sides equal” to understanding 
how that result connects with other pieces of knowledge in geometry. 

Other teachers, in justifying that all students should learn proving, looked beyond the classroom. 
Specifically, teachers expressed a worldly obligation by connecting mathematical proving to 
students’ current or future lives beyond mathematics. For example, Portia said that 

…to prove something is not just a mathematical skill, it’s a skill in logic, it’s a skill in trying 
to figure out and to validate your arguments. And that is not confined to only mathematics… 
I think it is a valuable skill and I think that everybody has the ability to do it. You don’t need 
to say, ‘Okay, this is exclusively for those who score high marks [in mathematics].’ 

Shabeer made a similar point that “being able to prove something in geometry, it helps you even 
being able to prove it in something unrelated to geometry.” We also viewed references to general 
“critical thinking” as part of this worldly obligation. 

Beyond individual and worldly obligations, a few teachers cited disciplinary or institutional 
obligations. We turn now, however, to those who had different opinions altogether. 
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Teachers’ Rationality for Not All Students Learning Proving 
Although one teacher commented that, were it in her power, she would remove proof from the 

official curriculum, we focus in this section on the several teachers who stated that only certain 
groups of students should learn proof. The most frequent justification that teachers provided for this 
position had to do with their individual obligation to support or cater to students’ needs. For 
example, when asked who should learn proof, Shannon said the following: 

I think our students must learn proofs but not all the students. Because … with a particular 
class I can prove a theorem or I can do a proof. But with another particular class I will see 
that if I want to prove this theorem, I will do more harm than good… For those learners 
whom I can say they may be average to above average, yes. If we say let us prove it and let 
us use it, they will acutely enjoy the proving and the using of the proof. 

For Shannon, she wants to teach proof when the result, as she perceives it, is an enjoyment of 
learning and students who see the usefulness of the proof. She has identified these benefits as being 
attached to some “but not all” students. For the other students, she refers to proving as doing “more 
harm than good,” which we interpret to refer to confusion and struggles that can occur when she 
teaches proving. Other teachers expressed a similar obligation to help students avoid struggle. One 
said that proofs can cause students to become “discouraged” and another mentioned that those who 
“shouldn’t learn the proofs are those learners [who] at the beginning are struggling… it’s not going 
to be worth it to learn the proofs,” whereas “those learners who excel should be focusing on the 
proofs because it’ll help them understand actually most of the math much better.” In this excerpt, 
avoiding proof and teaching proof were both rooted in individual obligations to either help students 
avoid struggle or help them achieve understanding. 

Another justification that teachers mentioned had to do not with students’ struggles but with their 
future plans after secondary school. For example, Shabeer said that “there is a certain group of 
students [who] should learn proofs and it depends maybe on what that student plans to do when he’s 
done with school.” This life-after-school idea connects with the worldly obligation in our framework. 
A similar point, but with different underpinnings, came from Trevelyan who said that proof should 
be “for the other students who are going to do something with the mathematics… are going to go and 
study further with the mathematics… because that’s the core of what mathematics is.” In this 
instance, a disciplinary obligation is evident as proof is an essential part of mathematics and thus is 
relevant for those who will pursue higher mathematics. 

Discussion 
Our goal was to recognize teachers’ rationality because this is important as we attempt to work 

collectively to improve proof learning. As scholars, it is not safe to presume that all teachers 
necessarily view proving as worthwhile for all students. Yet, our findings suggest that teachers on 
both sides of the issue were deeply attuned to individual obligations. Thus framing proof as a way to 
support individual learning, and in particular addressing the idea (not expressed by the teachers) that 
proving can be fruitful for “struggling” students may be a way to find common ground. Conversely, 
appeals to the disciplinary obligation of proving may inadvertently send the message that proving is 
only for students who are on a pathway to higher mathematics. The worldly obligation may be an 
opportunity to promote more universal opportunities for proof learning. Or in listening to some 
teachers we may, like Weber (2015), have to take seriously the notion that formal proof may not be 
the most productive approach to reasoning for all students. 
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In this work we considered interactions between researcher/interviewer and two case subjects in the 
context of two task-based interviews to isolate ways that subjects’ problem-solving performance was 
influenced by the choice of interventions that researcher opted to employ. In order to capture shifts 
in the students’ actions that could be attributed to specific interventions a problem-solving map was 
constructed for each individual.  Shifts and transitions in actions were then corresponded to the 
nature of exchanged taking place prior to the shift. In the case of Tuna, probing guidance lead her 
struggle to a productive end. For Sam, suggesting the use of a two-way table as scaffolding shifted 
his struggle in a productive manner. 

Keywords: Problem Solving, Intervention, Clinical Task-Based Interview 

The goal of the research reported here was twofold. First, we examined problem solving processes 
of two 5th grade students when working on a task that entailed algebraic thinking. The goal was to 
identify junctions where students’ progress on the task was constrained. The second goal was to 
identify ways in which the researchers’ modes of interventions seemingly impacted the problem 
solvers’ performance, particularly at constrained junctions. Our research was motivated by the desire 
to better unpack ways in which researchers’ choices of questions might influence results concerning 
children’s problem-solving abilities and performance, an area rarely explored in mathematics 
education. With increased interest in using clinical interviews and teaching experiments that rely on 
direct interactions between subjects and researchers such an exploration is both timely and needed. 

Literature Review 
Mathematical problem solving is defined as “an activity that relies heavily on the problem solvers’ 

in-the-moment decision making and improvising and the type of insights that they may develop in 
the course of their actions” according to Manouchehri & Zhang (2013, p.68).  What remains 
unknown is how students decide what strategies to use and what might contribute to shifts in their 
approaches.  Much of the literature concerning the mathematical problem-solving performance of 
learners relies on task-based interviews, either in structured or semi-structed setting.  Rarely has the 
interviewer’s role and their comments in the course of problem-solving process has been scrutinized, 
linking learners’ performance to potential impact of the probing questions the interviewer might have 
asked. This considers even in occasions where questions may consist of eliciting the learners’ own 
thinking (i.e.  explain what you were thinking, why did you do this, etc.) All these comments are 
forms of intervention that force reflection, either implicitly or explicitly and elucidate cognitive 
reactions resulting to some kind of mathematical outcome. 

Methodology 
Videotapes of two task-based interviews (Litchman, 2012) with two 5th grade students were used as 

data sources to carefully unpack researcher/participant interactions as one task was used towards 
capturing students’ problem-solving performance. During these interviews, the researcher had used a 
common task focused on capturing students’ algebraic thinking (see Figure 1). Each interview lasted 
approximately 20 minutes. 

Analysis consisted of two phases. First, Using Schoenfeld’s (1985) problem solving path as a 
platform we traced the learners’ actions throughout their encounters with the problem with the goal 
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of launching a solution.  Phases included reading the problem, analyzing the problem, exploring, 
planning, implementing and verifying the solution method. Of particular interest was determining 
stages at which progress seemed constrained. 
Task 1: Where am I? 

The seats in the auditorium of Joyful Elementary School with a capacity of 300 people are labeled 
as follows and the rest of the seats follow the same pattern. 

 
Front 

Row 1 1 2 3 4 5 6 7 8 9 10 

Row 2 11 12 13 14 15 16 17 18 19 20 
Row 3 21 22 23 24 25      

Figure 1 
1. Chris is in seat 48? What row is he in? 
2. Tyler is two rows behind and four seats to the right of Seat 42. What is his seat number? 

During the second phase of data analysis we considered the influence of the 
researcher/interviewer’s comments on the problem solvers’ transitions along the problem-solving 
map.  Note that during the interviews, as a protocol, the researcher was allowed to ask “why” and 
“how” questions to understand the reasoning of students’ problem solving strategies. Further, 
common to task-based interview tradition, students were asked whether their answer made sense and 
to explain their reasons.  Additionally, questions regarding how students assessed their own progress, 
what may have caused them to be stuck or what they found confusing were considered ways that the 
research could gain a better understanding of sources that contributed to the problem solvers’ 
choices.  Indeed, we examined how these seemingly “unobtrusive comments” impacted the 
mathematical work that problem solvers produced. 

Preliminary Findings 
Our findings will be grounded in illustrations of shifts in two students’ problem-solving practices in 

the presence of interactions with the interviewer. Due to the limitation of space, we consider only 
two examples to highlight ways that the task-based interactions influenced the learners’ problem-
solving actions and progress. 

Sam and Tuna both encountered the same impasse during the episodes of exploring and planning, 
but their resolutions were different. Sam and Tuna both struggled as they worked on the task but 
there were significant differences in the nature of their struggle. Sam directly implemented his 
solution method after analyzing the problem based on his understanding from the task. On the other 
hand, Tuna asked analytical questions to the interviewer to clarify her understanding from the 
question and then she went back and forth between either correcting or recalling her prior knowledge 
and creating new knowledge in the exploring phase. While Sam struggled making sense of the 1st 
question, Tuna’s constraint was misinterpreting her prior knowledge of multiplication for the 2nd 
question. 
Initial actions 

Figure 2 illustrates problem solving maps of the two interviewed subjects (Sam and Tuna).  Figure 
2(left column) depicts a map of Sam’s problem-solving process. He first reads the problem and 
analyze the pattern going by ten then implement his strategy of counting by 10 backwards from 48 
until he reaches 8. Then, he verifies his solution by his multiplication fact. (6x8=48). Once he was 
asked how he had arrived the number 6, he we went back to planning phase and adjusted his solution 
method. Then, he verified his new solution with another multiplication fact. (8x5=40). Lack of 
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reliance on an organizational scheme hindered his ability to move forward in generalizing his 
answers. However, once Sam was provided with two-way table, he analyzed the problem again, 
relied on his initial interpretation of the task and solved it.  The transcript below shows Sam’s shift in 
his struggle with multiplication facts to a productive end. Using two-way table reminded him his first 
interpretation of the task and obtained the final result. However, once he was suggested to use a two-
column table to organize his data, he managed to successfully launch a solution.  

S: So then, if you are like 6 rows over, it will probably be 48 because if he is if he is wait, if it says he 
was 48? 

I: Yeah! Chris is in seat 48. It is asking for uhm what row is he in? What we can do is I can give you 
this table Ok? Did you use two-way table before? 

S: Yeah 
I: Ok. Just go with that. 
(C is filling in the table as Row: 5 Seat Number: 41,42,43, 44…) 
S: (While he is writing the number 44) AHA! 
I: What happened? 
S: It is row 5. 

 
Activity Problem-solving process(timeline) 

Problem Solved 
 

                                          8                                                  11 

Implementing & Verifying 
solution method 

  3                     5                                           10 

Planning Adjusting 
solution 
method 

                 4  
 
 

                                       9 Constructing 
solution 
method 

Exploring Creating new 
knowledge 

                             7 
 
 
 
 
 
 

    6 

                   4               7 
 
 
 

       3                              8 
 

                          6 
  

Recalling 
prior 

knowledge 
Correcting 

prior 
knowledge 

Analyzing Problem 
 

    2          2               5 

Reading Problem 
 

1    1 

Figure 2: Tracking of Sam and Tuna’ s problem solving (Red lines represent intervention) 
Sam: Blue lines 1-5 & red lines 6-8 

Tuna: Green lines 1-7&red lines 8-11 

I: Uhm how do you know that? Why did you use 6 times 7 is equal to 42? How did you decide to use 
that? 

T: Uhm. Uhm yeah, uhm wait oh wait never mind. I will just solve it never mind. Because I was 
thinking like going like that uhm wait. I think it will be row 6 because like seat 42. Because in 
each row, one of the multiples are in 7 are (inaudible) in it. So, 42 will be in the row 6. 

I: So, in each row, there are multiples of what? 
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T:7 and uhm because I know. Wait no! You are actually in row 5. Because in row 4, last seat will be 
40 and row 5, seat 42 will be in it needs to keep going through and you find in in row 5. 

Transcript above shows Tuna’s transition from her previous strategy to the new solution due to the 
interactions with the interviewer. Immediately after the interviewer re-voiced her claim as in each 
row there are multiples of seven, Tuna recalled her prior knowledge of last seat in each row is 10 
times the row number and she constructed new solution method based on her first interpretation of 
the task. She then implemented her solution method as adding 2 rows to row 5 and claimed that Tylor 
will be in row 7 and she said that “since it will be in row 7 last seat in row 7 will be 70 but the seat it 
is in row 7 so I know that his seat would be the 6th seat in row. If 70 is the last seat you have to take 
away 4 will get you to 66.”. She finally obtained the correct response after going back and forth 
between problem solving phases. 

Conclusion 
Our results highlight several important theoretical considerations.  While clinical interviews are 

widely used as vehicles to learn about what students know and how they work mathematically 
around selected tasks with the desire to identify gaps and strengths in their approaches, little attention 
has been paid to how these actions may have been influenced by the researchers’ choices of 
questions.  It is commonly assumed that interviewer’s role is to be an objective observer that asks 
why and how questions without a careful examination of how such interventions might have 
influenced the work that learners produce in the course of interactions.  In our analysis we offered 
how students’ problem-solving pathways were influenced by the interviewer’s comments.  As such, 
we problematize we perceived notions of students’ problem solving competencies reported in the 
literature without a careful examination of interactions in the course of interviews that could have  
impacted participates’ work either through provoking reflection or prompting schemes that may not 
have been recalled during their work on tasks. 
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The theme of proportionality begins formally in the last years of primary school, and involves the 
mastery of notions such as comparison of ratios, fractions, and percentages. In this research, a study 
was carried out with 18 students of fourth and fifth grades of primary education between the ages of 
9 and 13, with the objective of assessing their performance in solving problems that involved 
comparing ratios and having relative thinking. Both types of problems involve proportional thinking. 
The purpose is to know what is the difference between the two groups, as well as to identify if there is 
a difference between performance in the two types of problems. It was found that students in both 
grades have more difficulty in solving relative thinking type problems and that there is no substantial 
difference between the two groups that participated 

Keywords: Problem solving, Reasoning and Proof. 

In research aimed at studying proportional reasoning in children who attend primary school, the 
difficulty they face in solving problems that involve operating with notions such as ratio, fraction and 
developing relative thinking is recognized. 

This report presents the results of a study carried out with children in 4th and 5th grade of primary 
school using computer software in which two types of problems were presented that required the use 
of reasoning and relative thinking for their resolution. 

Background and theoretical framework 
Among the studies that focus on the comparison of ratios, Fishbein, Pampu, and Manzat, (1970) 

investigated the influence of the total number of marbles, in any set, when comparing ratios between 
sets, noting the possibility of estimating using W1/B1 and W2/B2 type ratios. Sing (2001), based on 
studies with sixth graders students on the understanding of concepts of proportion and ratio when 
solving problems such as buying sweets, delivering pizzas and a situation of enlarging and reducing a 
rectangle, emphasizes that it is necessary to have built multiplicative structures and iteration schemes 
for proportional thinking. Boyer, Levine, and Huttenlocher (2008), conducted two studies using 
computer programs, based on the application of a proportional equivalence task. They examined 
where students make mistakes in processing proportions involving discrete quantities.  

The interpretation of the results of this study is made within the framework of the following 
theoretical approaches. Vergnaud (1991), mentions that the first acquisitions of numerical structures 
are made during the first years of primary school: additive structures and multiplicative structures. 
Addition is associated with grouping situations, which make it possible through directed situations to 
know the rules and procedures of the additive structures, necessary for the acquisition of the 
multiplicative structures. With respect to multiplication, it establishes that the first great form of a 
multiplicative relation, implies establishing a relation between two quantities of the same type with 
other two of the same type, that is, there are four quantities put in relation. 

Multiplication requires an understanding of functions that assume the quantities involved, notions 
such as scalar operator, fractional operator, unit value, etc., Vergnaud (1991). According to this 
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approach it is possible to write relationships and representations between quantities in the form of 
proportions and arrive at the notion of fraction, ratio and consequently the comparison of ratios. On 
the other hand, Lamon (1999) defines two types of thinking in the field of proportionality: relative 
thinking, in which the comparison between two quantities is made from one with respect to the other 
and not independently, which is what characterizes additive thinking. Noelting (1980), based on his 
experiment of comparing mixtures of orange juice and water, established a hierarchical 
differentiation of stages of development of proportional reasoning, based on the comparison of ratios. 

Research questions, objectives and method 
General objective 

To assess whether there is a difference between fourth and fifth grade students in terms of their 
performance on two types of problems that involve recognizing relationships of proportionality and 
having relative thinking. 
Specific objectives 

Recognize how the results of reason comparison problems differ from relative thinking problems. 
Observe what difference there is between the results of the fourth grade of primary school students 

with respect to the fifth grade of primary school students. 
Research questions 

What is the difference between the results of ratios comparison problems and relative thinking 
problems? 

What is the difference between the results of the fourth grade of primary school students with 
respect to the fifth grade of primary school students? 
Hypothesis  

H0= There is no difference in results between ratios comparison problems and relative thinking 
problems. 

H1= There is a difference in the results between the problems of comparison of ratios and the 
problems of relative thinking. 

H0= There is no difference in the answers of 4th grade students compared to 5th grade students in 
primary education. 

H1= There is a difference in the answers of 4th grade students compared to 5th grade students. 
A total of 18 students participated in this research, 10 fourth graders and 8 fifth graders from a 

private school in Mexico City. The participants were between the ages of 9 and 13, with a mean of 
10.17 years and a standard deviation of 0.89. 

A program was designed in the PsychoPy software version v.3 .2.3. The program that was carried 
out in PsychoPy, is the instrument that allowed obtaining the data in the present investigation, it was 
made up of three general parts, the first one presented the instructions of the activity to the students, 
in the following part of the instrument eight problems of the type comparison of reasons were 
presented to the students, the activities carried out by Noelting (1980) were taken as a model, in the 
third part of the instrument eight problems in the category relative thought were proposed, some 
activities carried out by Lamon (1999), referring to relative and absolute thought were taken into 
account and others were adapted. For the implementation the institution provided access to the 
computer room and the test was done twice to each student, when the children arrived at the room 
they were informed that it was an investigation that was being done for a university and that it was 
not to qualify them. 
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Results and discution. 
The procedure implemented to evaluate the answers was to calculate the percentage of correct 

answers per student in the first moment, then to calculate the percentage of correct answers per 
student in the second moment and finally to calculate the average of moments one and two. 

With the mean of the moments one and two of the students, an analysis of variance (ANOVA) of 
repeated measures (grade five vs. grade four) X2 (Types of problems: Comparison of ratios vs. 
relative thinking) was performed in the statistical program called JASP. The school grade is defined 
as the inter-subject variable and the problem type variable is defined as the intra- subject variable. 

For the main effect with respect to the types of problems, within subjects, a large statistic of 
F(49,201), (0.001<p) is reported, it can be said that without considering the group that responded to 
the instrument there are significant differences with respect to the two types of problems presented, 
the problems of comparison of reasons with respect to the problems of relative thinking. That is to 
say, the students of both courses respond better to the problems of comparison of reasons than to 
those of relative thinking, in this way the null hypothesis is rejected and the alternative hypothesis is 
accepted which mentions that if there is a difference between both types of problems. 

On the other hand, another effect within subjects in relation to the two school grades is reported as a 
statistic F(0.274), (p= 0.608) this indicates that there is no difference between the two groups that 
answered the instrument. The ANOVA test suggests that in this case, regardless of the grade level of 
the students, both grades show a higher percentage of correct answers in one type of problem than in 
the other, thus accepting the null hypothesis. 

On the other hand, as an effect of the test between subjects, there was no effect between the factors 
degree and types of problems F(.411), p=0.53. That is, the grade does not affect performance on 
either type of problem. The analysis of variance does not reveal any significant interaction. 

Figure 1 shows the lack of interaction between problem type and grade, both perform better in 
answering problems of the comparison of reasons type and lower in solving problems of the relative 
thinking type, fourth graders are slightly above correct answers relative to fifth graders. 

 
Figure 1: Comparative chart between the results of two types of problems in two school grades. 
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The results of the statistical test indicated that if there are differences between students' responses to 
the two types of problems, both problems show very large differences in student responses, even 
though proportional reasoning is at play in both. 

It is believed that problems of the Relative Thinking kind present a greater level of difficulty to 
students because, as reported by Lamon (1993), students are more familiar with using additive 
structures and when facing situations that involve the use of multiplicative structures, they cannot 
perceive the multiplicative nature of situations involving ratio and proportion. Unlike problems of the 
comparison of ratios, it is not necessary to give meaning to any quantity, "in these problems the 
notion of ratio is the very object of the question, by means of a certain quality: which orange tastes 
more like orange? Which vehicle goes faster?" (Block, Mendoza and Ramírez, 2010, p 67). 

It is necessary to provide students with opportunities to develop relative thinking, to create contexts 
in classrooms to encourage multiplicative thinking while giving meaning to the notion of ratio, and to 
find the value of ratio where necessary. 

Future research should seek to link students' relative thinking and their understanding of ratio and 
proportion. It is essential that bridges be built between these two issues related to proportional 
thinking, so that it can contribute to the creation of new educational programs that favor 
understanding in proportionality. Work must also be done on the training of teachers, who face 
various challenges in teaching proportional reasoning (Hilton and Hilton, 2018). 
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El tema de la proporcionalidad se inicia formalmente en los últimos años de la escuela primaria, 
implica el dominio de nociones, como la comparación de razones, fracciones y porcentajes. En esta 
investigación se realizó un estudio con 18 alumnos de cuarto y quinto grado de educación primaria 
con una edad entre los 9 a 13 años, con el objetivo de evaluar su desempeño al resolver problemas 
que implicaron comparar razones y tener un pensamiento relativo. Ambos tipos de problemas 
conllevan tener un pensamiento proporcional. El propósito es conocer cuál es la diferencia entre los 
dos grupos, así como identificar  si existe diferencia entre la ejecución en los dos tipos de problemas. 
Se encontró que los alumnos de ambos grados presentan más dificultad al resolver los problemas del 
tipo pensamiento relativo y que no hay una diferencia sustancial entre los dos grupos que 
participaron. 

Palabras clave: Resolución de problemas, razonamiento y demostraciones 

En las investigaciones dirigidas a estudiar el razonamiento proporcional en los niños que asisten a la 
primaria, se reconoce la dificultad que enfrentan ante la resolución de problemas que implican operar 
con nociones como razón, fracción y el desarrollo del pensamiento relativo. 

En este reporte se presentan los resultados de un estudio realizado con niños de 4° y 5° grado de 
primaria a través de un software informático en el que se plantearon dos tipos de problemas que para 
su resolución requería el uso de comparación de razones y del pensamiento relativo. 

Antecedentes y marco teórico 
Entre los estudios que focalizan la comparación de razones, Fishbein, Pampu, y Manzat, (1970) 

investigaron acerca de la influencia del número total de canicas, en cualquier conjunto, al comparar 
razones entre conjuntos, señalando la posibilidad de estimar utilizando razones del tipo W1/B1  y 
W2/B2 . Sing (2001), con base en estudios con alumnos de sexto grado sobre la comprensión de 
conceptos de proporción y razón al resolver problemas como la compra de dulces, reparto de pizzas y 
una situación de ampliar y reducir un rectángulo, enfatiza que se necesita tener construidas 
estructuras multiplicativas y esquemas de iteración para el pensamiento proporcional. Boyer, Levine, 
y Huttenlocher (2008), realizaron dos estudios mediante el uso de programas de computadora, 
basados en la aplicación de una tarea de equivalencia proporcional. Examinaron dónde se equivocan 
los estudiantes al procesar proporciones que implican cantidades discretas.  

La interpretación de los resultados de este estudio, se realiza en el marco de los siguientes 
planteamientos teóricos. Vergnaud (1991), menciona que en el curso de los primeros años de la 
escuela primaria se hacen las primeras adquisiciones de las estructuras numéricas: las estructuras 
aditivas y las estructuras multiplicativas. La adición está asociada con situaciones de agrupamiento, 
que posibilitan a través de situaciones dirigidas conocer las reglas y procedimientos de las estructuras 
aditivas, necesarias para la adquisición de las estructuras multiplicativas. Respecto a la 
multiplicación, establece que la primera gran forma de una relación multiplicativa, implica establecer 
una relación entre dos cantidades del mismo tipo con otras dos del mismo tipo, es decir, hay cuatro 
cantidades puestas en relación. 
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En la multiplicación se requiere de la comprensión de funciones que asumen las cantidades 
implicadas, nociones tales como operador escalar, operador fraccionario, valor unitario, etc., 
Vergnaud (1991). De acuerdo a este planteamiento se da la posibilidad de que las relaciones y 
representaciones entre cantidades se escriban en forma de proporciones y se arribe a la noción de 
fracción, de razón y en consecuencia a la comparación de razones. Por otra parte, Lamon (1999), 
define dos tipos de pensamiento en el campo de la proporcionalidad: pensamiento relativo, en el que 
la comparación entre dos cantidades se hace de una respecto a la otra y no de manera independiente 
que es lo que caracteriza al pensamiento aditivo. Noelting (1980), con base en su experimento de 
comparar mezclas de jugo de naranja y agua, estableció una diferenciación jerárquica de etapas de 
desarrollo del razonamiento proporcional, basándose en la comparación de razones. 

Preguntas de investigación, objetivos y método 
Objetivo General:  

Evaluar si existe diferencia entre los alumnos de cuarto y quinto grado de primaria en cuanto a su 
desempeño en dos tipos de problemas que implican reconocer las relaciones de proporcionalidad y 
tener un pensamiento relativo. 
 Objetivos específicos:  

Reconocer qué diferencia existe  entre los resultados de los problemas de comparación de razones 
con respecto a los problemas de pensamiento relativo. 

Observar qué diferencia hay entre los resultados de los alumnos de cuarto grado de primaria con 
respecto a los alumnos de quinto grado de primaria. 
Preguntas de investigación:  

¿Qué diferencia existe entre los resultados de los problemas de comparación de razones con 
respecto a los problemas de pensamiento relativo? 

¿Qué diferencia existe entre los resultados de los alumnos de cuarto grado de primaria con respecto 
a los alumnos de quinto grado de primaria? 
 Hipótesis 

H0= No hay diferencia en los resultados entre los problemas de comparación de razones y los 
problemas de pensamiento relativo. 

H1= Existe diferencia en los resultados entre los problemas de comparación de razones y los 
problemas de pensamiento relativo. 

H0= No hay diferencia en las respuestas de los alumnos de 4º grado respecto a las de los alumnos 
de 5º grado. 

H1= Existe diferencia en las respuestas de los alumnos de 4º grado respecto a las de los alumnos de  
5º grado. 

Un total de 18 alumnos participaron en esta investigación, 10 niños de cuarto grado y 8 niños de 
quinto grado de educación primaria de una escuela privada de la Ciudad de México.. Los 
participantes cuentan con una edad comprendida entre los 9 a 13 años de edad, con una media de 
10.17 años y una desviación estándar de 0.89.  

Se diseñó un programa en el software PsychoPy versión v.3.2.3. El programa que se realizó en 
PsychoPy, es el instrumento que permitió obtener los datos en la presente investigación, se conformó 
de tres partes generales, la primera de ellas presentó a los estudiantes las instrucciones de la 
actividad, en la siguiente parte del instrumento se presentaron a los estudiantes ocho problemas del 
tipo comparación de razones, se tomaron como modelo las actividades realizadas por Noelting 
(1980), en la tercera parte del instrumento se proponen ocho problemas en la categoría pensamiento 
relativo, se tuvieron en cuenta algunas actividades realizadas por Lamon (1999), referentes al 
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pensamiento relativo y absoluto y otros se adaptaron. Para la implementación la institución brindó el 
acceso al aula de cómputo y la prueba se hizo dos veces a cada estudiante, cuando los niños llegaban 
al aula se les informaba que era una investigación que se estaba realizando para una universidad y 
que no era para calificarlos. 

Resultados y discusión. 
El procedimiento implementado para evaluar las respuestas fue calcular  el porcentaje de respuestas 

correctas por alumno del primer momento, posteriormente calcular el porcentaje de respuestas 
correctas por alumno en el segundo momento para finalmente calcular la media del momento uno y  
dos.  

Con la media de los momentos uno y dos de los estudiantes se realizó un análisis de varianza 
(ANOVA) de medidas repetidas (grado escolar: quinto de primaria vs. cuarto de primaria) X2 (Tipos 
de problemas: Comparación de razones vs Pensamiento relativo) en el programa estadístico llamado 
Jasp. El grado escolar se define como la variable inter-sujeto y la variable tipo de problema se define 
como la variable intra-sujeto. 

Para el efecto principal con respecto a los tipos de problemas, dentro de sujetos, se reporta un 
estadístico grande de F(49.201),  (0.001<p), se puede decir que sin considerar el grupo que respondió 
el instrumento hay diferencias significativas respecto a los dos tipos de problemas presentados, los 
problemas de comparación de razones con respecto a los problemas de pensamiento relativo. Es 
decir, los alumnos de ambos cursos responden mejor los problemas de comparación de razones que 
los de pensamiento relativo, de esta manera se rechaza la hipótesis nula y se acepta la hipótesis 
alternativa que menciona que si existe diferencia entre ambos tipos de problemas.  

Por otra parte, otro efecto dentro de sujetos en relación con los dos grados escolares se reporta un 
estadístico F(0.274), (p= 0.608) esto indica que no existe diferencia entre los dos grupos que 
respondieron el instrumento. La prueba ANOVA sugiere que en este caso sin tomar en cuenta el 
grado escolar que cursen los alumnos, ambos grados muestran tener un porcentaje mayor de 
respuestas correctas en un tipo de problema que en el otro, aceptando así la hipótesis nula.   

Por otro lado, como efecto de la prueba entre sujetos, no hubo efectos entre los factores grado y  
tipos de problemas   F(.411), p=0.53. Es decir, el grado escolar no afecta el rendimiento en ninguno 
de los dos tipos de problemas. El análisis de varianza no revela alguna interacción significativa.  

La figura 1 muestra la falta de interacción entre el tipo de problema y el grado, ambos tienen un 
mejor rendimiento al responder problemas del tipo comparación de razones y un rendimiento más 
bajo al resolver problemas del tipo de pensamiento relativo, los alumnos de cuarto grado están 
ligeramente por encima con respecto a las respuestas correctas en relación con los alumnos de quinto 
grado.  
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Figure 1: Gráfica comparativa entre los resultados de dos tipos de problemas en dos grados 

escolares. 
Los resultados de la prueba estadística realizada indicaron que si hay diferencias entre las respuestas 

de los alumnos de los dos tipos de problemas, ambos problemas muestran diferencias muy grandes 
en las respuestas de los estudiantes, aunque el razonamiento proporcional está en juego en ambos. 

Se cree que los problemas del tipo Pensamiento Relativo presentan un nivel de dificultad mayor a 
los estudiantes debido a que como reporta Lamon (1993), los estudiantes están más familiarizados 
con utilizar estructuras aditivas y al enfrentar situaciones que implican el uso de estructuras 
multiplicativas, ellos no pueden percibir la naturaleza multiplicativa de las situaciones que implican 
la razón y proporción, a diferencia de los problemas de tipo comparación de razones, en los que no es 
necesario dar significado a ninguna cantidad, “en estos problemas la noción de razón es el objeto 
mismo de la pregunta, mediante determinada cualidad: ¿qué naranjada sabe más a naranja? ¿Qué 
vehículo va más rápido?” (Block, Mendoza y Ramírez, 2010, p 67).  

Es necesario brindar a los estudiantes oportunidades para desarrollar un pensamiento relativo, crear 
contextos en las aulas de clase para incitar el pensamiento multiplicativo a la par de dar significado a 
la noción de razón y encontrar el valor de la razón en los casos en los que sea necesario.  

Futuras investigaciones deben buscar vincular el pensamiento relativo de los estudiantes y su 
comprensión de la razón y la proporción. Es indispensable que se construyan puentes entre estos dos 
temas relacionados al pensamiento proporcional, de modo que se pueda contribuir a la creación de 
nuevos programas educativos que favorezcan la comprensión en la proporcionalidad. También se 
debe trabajar en la capacitación de los profesores, los cuales enfrentan varios desafíos en la 
enseñanza del razonamiento proporcional (Hilton y Hilton, 2018).  
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The transition to learning how to prove is difficult for undergraduates. We are aware of the many 
varied struggles students have, but we know less about their development as they are learning. This 
is vital as development is more than just an accumulation of competencies. To examine these 
developments, a series of four task-based interviews across a semester were conducted with (N=11) 
undergraduate students enrolled in a transition to proof course. Video of students constructing 
proofs was analyzed qualitatively; changes in how students chose what proof technique to use were 
common. Stages in students’ rationales are illustrated using two students as cases. The results show 
students’ decision-making in starting a proof and remind us that such judgement takes time to grow. 
Instructors and curriculum developers may use these results in designing tasks and supports for the 
transition-to-proof. 

Keywords: Reasoning and Proof, Post-Secondary Education 

The transition-to-proof is difficult for undergraduate students (Moore, 1994; Selden & Selden, 
1987). Students struggle with learning how to prove (Iannone & Inglis, 2010; Selden & Selden, 
2013). The transition-to-proof is a shift in the “game” of mathematics, from answering “exercises” 
that are largely procedural (Schoenfeld, 1992) to now writing arguments and justifications. 
Researchers have identified the types of errors students make (Selden & Selden, 1987) and their 
struggles (Selden & Selden, 2003): use of examples, notation and symbols, quantifiers, and general 
logic (Epp, 2003; Selden & Selden, 1987). Students also struggle with larger issues, such as 
providing empirical rather than deductive arguments (Harel & Sowder, 2007) and having difficulty 
writing formal arguments (Alcock & Weber, 2010). Another strand of research has focused on 
students’ strategies and approaches to the proving process (Karunakaran, 2014; Savic, 2012). 

We know then students’ struggles and strategies while proving at singular points in time, but few 
have looked at how students develop, at how their strategies change over the course of the learning 
process. Development is not necessarily about accumulating competencies: "For some psychologists, 
development is reduced to a series of specific learned items, and development is thus the sum, the 
culmination of this series of specific items. I think this is an atomistic view which deforms the real 
state of things" (Piaget, 1964, p. 38). Thinking about proving as the sum of skills and assessing 
whether or not students have those skills is not enough for us to understand students’ learning 
process. We do not yet know how students put the pieces together while they are learning how to 
prove nor the order in which they occur. We lack models of students’ cognitive development in this 
domain.  

In response to this gap, the research question guiding this work is: How does undergraduate 
students' proving develop over the duration of a transition to proof class? The purpose of this study is 
to understand how students come to learn how to prove. In this paper, I examine one prevalent 
development that occurred and illustrate it through two participants. 
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Conceptual Framework 
Proving as Problem Solving 

While there are multiple ways to think about proving as an activity, I take the conceptualization of 
proving as a form of problem solving (Stylianides et al., 2017). I further take problem solving to be 
the activity a person engages in when stuck, reaching an impasse (Savic, 2012). Under this definition, 
a task can elicit problem solving in one student but not another, depending on whether or not they 
become stuck at any point. There are a lack of robust frameworks for characterizing a student’s 
proving (Savic, 2012), but by considering proving as problem solving, we can look to work on 
problem solving. I focused on the components of strategies (heuristics) and monitoring and 
judgement of problem solving (Schoenfeld, 1985b; 1992). Moreover, the focus here was on proving 
as a process (Karunakaran, 2014), rather than on the product, the correct proof.  

Development at its most base level may refer to change over time. Development does not happen in 
a vacuum; it is undoubtedly informed by instruction. A common way to consider development is in 
terms of stages, in which a person passes through each stage on their way to full mastery (e.g. Lo, 
Grant & Flowers, 2008; van Hiele, 1959). I conceptualize development simply as taking a “snapshot” 
- a characterization of some construct at a point in time - and looking across these at multiple 
timestamps for change (Figure 1). 

 
Figure 1: Conceptualization of development, by capturing snapshots of student’s proving and 

comparing over time. 
 
The purpose in taking this simple view of development is to provide as much description as possible 

and look for natural change, which may then inform the creation of potential frameworks and models 
for how students develop in a transition to proof course. 

Method 
A series of four semi-structured interviews were conducted with N=11 undergraduate students in a 

transition to proof mathematics course at a large Midwestern university. Their ages were 18 and up. 
This transition to proof course was designed to ease the transition from calculus-based to upper-level 
math courses that involved writing proofs. This course was a prerequisite for Linear Algebra, so a 
variety of STEM (science, technology, mathematics, and engineering) majors were enrolled in this 
course as well. The first half of the course focused on logic, including direct proof, proof by 
contradiction, proof by contrapositive, and proof by cases. The second half introduced basic concepts 
in real analysis, linear algebra, and number theory.   
Data Collection 

The four interviews were spread across a semester. Each interview was also task-based, consisting 
of two proof construction tasks. Participants worked for no more than 15-20 minutes on each proof 
construction and debriefed their thought process after with the interviewer. All eight tasks were from 
one content area, basic number theory. Tasks were selected by the researcher to not be heavily 
dependent on content knowledge nor a singular specific proof technique. Interviews were audio- and 
video-recorded, and interview notes and student work were collected.  

In order to capture their strategies and reasons for using certain strategies, I used a think-aloud 
protocol (Ericsson & Simon, 1980; Schoenfeld, 1985a), where participants voice their thoughts aloud 

Proving	at	
Time	1	

Proving	at	
Time	2	

Proving	at	
Time	3	

Proving	at	
Time	4	



Stages in using proof techniques: Student development in the transition to proof 

	 1016	

about a task. Based on the affordances and constraints of asking probing questions (Schoenfeld, 
1985a), I minimized interviewer intervention during task performance. Because the phenomenon of 
interest was the proving process itself, keeping the process intact without interruption as much as 
possible was of the utmost importance. 
Analysis 

Qualitative analysis was conducted on video data of participants working on the proof construction 
tasks. First, video was analyzed for moments when students became stuck. Then, in those moments, I 
recorded students’ strategies, termed proof-specific intentions (Satyam, 2018). Students’ strategies 
were refined using open coding and constant comparison. Lastly, I looked for change in each 
student’s strategies over the eight tasks spanning the semester.  

Indicators of an impasse. Through watching videos of students’ attempts to prove, certain 
observable behaviors contributed to my judgment of when a student was stuck. A list of these 
include: silence, no writing, staring at paper, holding paper closer to one’s face, sitting back from the 
paper to look at it as if from a distance, tapping/playing with their pen/pencil, and touching face with 
hand or pencil. These behaviors were not exhaustive and individuals exhibited different behaviors 
specific to themselves, but they cover much of what we see when a person is stuck. 

Results: Shifts in How Students Chose A Proof Technique to Use 
A common development that occurred across participants was change in how they chose what proof 

technique to pursue, when trying to construct a proof. By proof technique, I mean tools such as direct 
proof, cases, etc. Proof by contradiction may be referred to here as just contradiction and proof by 
contrapositive as contrapositive for brevity sake. Eight of eleven participants (pseudonyms used) 
showed this development, based on interview notes and across all tasks (see Table 1). I discuss two 
participants here, to illustrate this development. 

 
Table 1: Select Developments in Proving by Participant 

 Rationale for a 
proof technique 

Harness awareness 
of solution attempt  

Check examples w/ 
other strategies 

Explore and 
monitor 

Amy    X 
Charlie X  X  
Dustin X    
Granger  X X X 
Gabriella X X   
Joel  X   
Jordan X    
Leonhard X    
Stephanie X    
Shelby X    
Timothy X X X X 
 
Case: Favoring One Proof Technique 

Stephanie was chosen here to illustrate the early stages, of where a student uses one proof technique 
predominantly. From the beginning, Stephanie favored proof by contradiction over all other 
techniques when constructing a proof. In Interview 1 – Task 1, she jumped to trying proof by 
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contradiction: She immediately identified the assumption as “A,” the conclusion of the statement as 
“B,” and wrote the negation. 

 

 
Figure 2: Beginning of Stephanie’s work on Interview 1 – Task 1 

 
She explained that she used contradiction because the statement was an implication, having an “if-

then” structure: “When I see the if-then statement, I immediately think I can do this by 
contradiction.” She explained further that she felt comfortable using this technique. Note that 
Stephanie technically wrote the negation incorrectly; the correct negation is “A and not B,” i.e. “x2 – 
y2 is odd and x or y have the same parity.” Instead, she wrote the negation as an implication, a 
common error. However, this error did not affect the rest of her proof and her reasoning for picking 
contradiction was unaffected by her execution.  

In the next interview, Stephanie’s go-to method was still contradiction. Upon starting the second 
task of Interview 2, she said, "I can see that this is an if-then statement, so automatically I'm going to 
try to use contradiction, but I don't know if it will work or not." She explained that “When I read an 
if-then statement, I'm most comfortable using negation or a contradiction. So then I just try that, even 
though I know it doesn't always work, but I just try it." The use of contradiction was automatic for 
her, saying outright she does not always know if proof by contradiction will lead to a correct 
solution. The general structure – of a statement having “if” and “then” clauses – was enough to 
determine that she could use her favored technique, but she did not make use of the statement in any 
further way to guide her choice of technique.  

Stephanie did get stuck on her proof by contradiction, so she switched to contrapositive. She 
explained during the debrief, “I'll try contrapositive and then I felt a little better after I tried 
contrapositive just because I thought [out of] both of them, probably one of them was gonna be 
right." Stephanie did not give a rationale for why, just that it was another technique.  

Summary. Stephanie’s articulations and work during Interviews 1 and 2 show how a student can 
favor one proof technique and use it whenever they can. Stephanie did have a condition for when to 
use proof by contradiction, whenever she saw an if-then statement, but this applied to nearly all 
statements to be proven in the course. Stephanie becomes less dependent on proof by contradiction 
and her rationale did become more sophisticated over time, but her work was unfortunately incorrect 
on all four tasks on Interviews 3 and 4 so they are not presented here.  
Case: Recognizing When Best to Use A Certain Proof Technique 

We turn now to a different student, Timothy, to see how rationales shift over time. Timothy was 
similar to Stephanie in having favored proof techniques in the beginning, but his rationales became 
more sophisticated and based on the statement itself as his interviews progressed, in addition to 
producing correct or partially correct proofs. 

Timothy began his interviews similar to Stephanie in terms of his rationales. Figure 3 shows 
Timothy’s attempt in Interview 1 - Task 1 (same as Stephanie’s task). When stuck in the beginning, 
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he re-read the question and wrote what was known. At this point he switched from his direct proof 
attempt to proof by contrapositive. 

 

 
Figure 3: Beginning of Timothy’s work on Interview 1 - Task 1 

 
When asked why he selected contrapositive, he explained it was a method from class but also that it 

was a tool logically equivalent to direct proof that he could use: 
Timothy: It was confusing me when I’d try to think of it the normal way so I knew the contrapositive 

is true, it’s basically the equivalent, logical equivalent. 
… 
Interviewer: So actually, so how did you come up with contrapositive? 
Timothy: Looking at it straightforward didn’t…it wasn’t working for me so I know we learned in 

class that the contrapositive is basically not B implies not A. I knew we said that was logically 
equivalent, so if I could prove the contrapositive was true, then I could prove the original 
statement was true was kinda my thinking with that. 

He explained that direct proof was not helpful for generating a proof, but he gave no specific 
rationale for choosing contrapositive over other proof techniques. His explanation implied that 
contrapositive was a legitimate tool from class, so why not use it? While it is possible he may have 
had some internal reason for using contrapositive, he neither mentioned this on his own nor 
articulated any further reasons when questioned.  

Later in this interview, he talked more about contradiction being one of his “go-to” methods and 
why: 

Timothy: I always go about it with either contradiction or induction or straight up [direct proof] so I 
kinda knew that I might be able to contradict this never equaling that, so I wrote out the 
contradiction...I guess contradiction is a little easier for me to think about. You just say the first 
part of the implication is true and the second part is false. So it’s just easier in my head, I guess, 
just to think about rather than switching around the implication, negating both parts. 

Interviewer: Okay. 
Timothy: So I guess that’s why I go to that first. 

Timothy expressed here that contradiction was easier for him than contrapositive, which involves 
switching and negating both the assumption and conclusion. He did have some rationale for why he 
might use contradiction, but it was couched in terms of ease of use, first and foremost. 
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The notion of “ease of use” as determining choice of proof techniques showed up in latter 
interviews. In his work for Interview 2 - Task 1 (Figure 4), Timothy started by defining x and y using 
the definition of consecutive numbers but in calculating xy, he became stuck over what to do next. 
He then switched to contrapositive because “sometimes that’s an easier way for me to look at it.” He 
knew that contrapositive was easier on some level for him but not for any reasons specific to the 
statement and did not further articulate why. Ultimately, his contrapositive proof was not to his liking 
and also not correct. 

 

 
Figure 4: Timothy’s work for Interview 2 – Task 1 

 
By the end of the interviews, however, Timothy showed sophisticated rationale when considering 

which proof techniques to use. In Interview 4 - Task 1 (Figure 5), Timothy became stuck after 
computing the goal, a+b, directly. 

 

 
Figure 5: Timothy’s work on Interview 4 – Task 1 
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He explained that he used contradiction because “it’s easier when I know something like is equal to 
something or is something.” He then gave this further rationale for why contradiction:  

I was trying to prove that it’s not equal to a perfect square and I know from past experiences, 
it’s easier when I know something is equal to something or is something. So I tried to use 
contradiction because I knew I could say then it is a perfect square. 

His argument was that he wanted to be able to work with an equality. Timothy also gave a reason 
for why he did not use another method, contrapositive: 

I thought about contrapositive, too, but then it would say that A and B are not perfect squares 
and that’s again, like something’s not so I mean, it’s easier for me to work when I know like 
a straight definition of something. So if I could keep this, I knew if I could keep this, like 
they are perfect squares and say this is a perfect square, then it’d be easier to work with. 

This explanation was similar to his prior one about equality of objects being easier, i.e. knowing 
things are not equal is not as helpful. His sub goal then was to find a proof technique that would give 
him a+b is a perfect square. This task is also notable for drawing out Timothy’s observations on 
contradiction: 

I never really thought about it this way but I realized when you use the contradiction, you 
don’t really have the assumption and conclusion anymore…you can actually pick any part of 
that statement you want and work with it. Rather than with an if/then statement, you start 
with the assumption and try to work to the conclusion. So you’re not as limited, I guess. 

Timothy gave a high-level explanation of the nature of proof by contradiction. He found proof by 
contradiction freer than other techniques, due to being able to work with all parts of the statement. 
This is in contrast to starting with the assumption and trying to prove the conclusion, as is done in 
direct proof but also to an extent proof by contrapositive. Note that this revelation came during this 
interview context, based on his "I never really thought about it this way but..." clause. The interview 
served as a vehicle for reflection on proof techniques for Timothy.  

Summary. Timothy went from picking a proof technique because (1) it existed as a tool, to (2) 
having a general sense that certain ones would be easier, to (3) explaining how the content of the 
statement can drive the approach, to (4) articulating understanding at the meta-level of how a 
technique functions as logical tools. His later interviews revealed insight on when to use 
contradiction that did not depend on statement content but instead meta-level structure. 

Discussion 
Both Stephanie and Timothy showed similar growth in how they chose a proof technique to pursue 

through most of their interviews. Both discussed liking and being drawn to certain techniques, as 
their go-to method. Timothy’s latter interviews especially illustrated weighing the utility of different 
techniques, to think about which would be better, whether it be a cleaner proof or just easier. He 
noticed that being able to set things equal provided more to work with and often preferred proof by 
contradiction for this reason.  

The difference between these two cases lies in where they ended: by the end of the interviews, 
Timothy articulated a general insight for when contradiction was useful. Across all the students, a 
general trajectory for how students grew in how they chose which techniques to use emerged. 
Conceptualizing this specific development as a series of stages, Figure 6 illustrates the stages 
students tended to step through. 
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Figure 6: Stages of development in how students choose proof techniques to pursue 

 
This development reveals the amount of decision-making that can go into writing even the first line 

of a proof. Timothy took the content of the statement to be proven into account when deciding how 
to begin a proof. This suggests a revisiting of the distinction between formal-rhetorical and problem-
centered aspects of proving (Selden & Selden, 2007). Acts that we expect to be formal-rhetorical, 
such as writing the first line of a proof, may retain some of the problem-solving aspects too for 
students new to proving, as they consider the content as well. It is important that the interplay 
between these two aspects – formal-rhetorical and problem-centered parts of proving – not be lost 
when teaching students. 

This development is significant because it shows that students do over time grow in their sense of 
when certain proof techniques are best suited for a problem and that there are general stages. One 
limitation is that becoming better at using tools is not necessarily reflective of deeper mathematical 
understanding, as Guin and Trouche (1999) noted about students using calculators as tools. But the 
cases here shows it is natural for even this kind of judgment to take a while to develop; noticing what 
proof technique works best for a given statement does not happen instantly but also it must be 
nurtured. This means that as instructors, we cannot expect students to have this reasoning 
immediately. Development is of course informed by instruction, so this may be an area that can be 
supported via instruction, by designing tasks that probe students to consider the strengths and 
weaknesses of each proof technique. Through this, we can better help students understand and learn 
how to prove, as a mathematical activity that makes sense. 

References 
Alcock, L., & Weber, K. (2010). Referential and syntactic approaches to proving: Case studies from a transition-to-

proof course. In F. Hitt, D. Holton, & P. Thompson (Eds.), Research in collegiate mathematics education VII 
(pp. 93-114). American Mathematical Society. 

Ericsson, K. A., & Simon, H. A. (1980). Verbal reports as data. Psychological Review, 87(3), 215–251. 
Guin, D., & Trouche, L. (1999). The complex process of converting tools into mathematical instruments: The case 

of calculators. International Journal of Computers for Mathematical Learning, 3, 195–227. 
Harel, G., & Sowder, L. (2007). Towards a comprehensive perspective on proof. In F. Lester (Ed.), Second 

handbook of research on mathematical teaching and learning (pp. 805–842). Washington, DC: NCTM.  



Stages in using proof techniques: Student development in the transition to proof 

	 1022	

Iannone, P., & Inglis, M. (2010). Self efficacy and mathematical proof: Are undergraduate students good at 
assessing their own proof production ability? In Proceedings of the 13th Conference on Research in 
Undergraduate Mathematics Education. Raleigh, NC. 

Karunakaran, S. (2014). Comparing bundles and associated intentions of expert and novice provers during the 
process of proving. (Doctoral dissertation). 

Lo, J. J., Grant, T. J., & Flowers, J. (2008). Challenges in deepening prospective teachers’ understanding of 
multiplication through justification. Journal of Mathematics Teacher Education, 11(1), 5–22. 
http://doi.org/10.1007/s10857-007-9056-6 

Moore, R. C. (1994). Making the transition to formal proof. Educational Studies in Mathematics, 27(3), 249–266. 
http://doi.org/10.1007/BF01273731 

Piaget, J. (1964). Development and learning. In R. Ripple & V. Rockcastle (Eds.), Piaget Rediscovered (pp. 7–20). 
New York, NY: W. H. Freeman. Retrieved from http://www.psy.cmu.edu/~siegler/35piaget64.pdf. 

Savic, M. (2012). Proof and proving: Logic, impasses, and the relationship to problem solving. (Doctoral 
dissertation). 

Satyam, V. R. (2018). Cognitive and affective components of undergraduate students learning how to prove. 
(Doctoral dissertation). 

Schoenfeld, A. H. (1985a). Making sense of “out loud” problem-solving protocols. The Journal of Mathematical 
Behavior, 4, 171–191. 

Schoenfeld, A. H. (1985b). Mathematical problem solving. New York, NY: Academic Press. 
Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense making in 

mathematics. In D. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 334-370). 
New York, NY: Macmillan. 

Selden, A., & Selden, J. (1987). Errors and misconceptions in college level theorem proving. In Proceedings of the 
Second International Seminar on Misconceptions and Educational Strategies in Science and Mathematics (pp. 
457–470). 

Selden, A., & Selden, J. (2003). Validations of proofs considered as texts: Can undergraduates tell whether an 
argument proves a theorem? Journal for Research in Mathematics Education, 34(1), 4-36. 

Selden, A., & Selden, J. (2007). Teaching proving by coordinating aspects of proofs with students' abilities. (Report 
No. 2007-2.) Retrieved from http://files.eric.ed.gov/fulltext/ED518762.pdf. 

Selden, A., & Selden, J. (2013). Proof and problem solving at university level. The Mathematics Enthusiast, 
10(1&2), 303-334. 

Stylianides, G. J., Stylianides, A. J., & Weber, K. (2017). Research on the teaching and learning of proof: Taking 
stock and moving forward. In J. Cai (Ed.), Compendium for research in mathematics education (pp. 237-266). 
Reston, VA: National Council of Teachers of Mathematics. 

van Hiele, P. M. (1959). The child’s thought and geometry. In Classics in mathematics education research (pp. 60–
68). Reston, VA: National Council of Teachers of Mathematics. 

 



Mathematical Processes and Modeling 

In: Sacristán, A.I., Cortés-Zavala, J.C. & Ruiz-Arias, P.M. (Eds.). (2020). Mathematics Education Across Cultures: 
Proceedings of the 42nd Meeting of the North American Chapter of the International Group for the Psychology of 
Mathematics Education, Mexico. Cinvestav / AMIUTEM / PME-NA. https:/doi.org/10.51272/pmena.42.2020 

1023	

ATTEND TO STRUCTURE AND THE DEVELOPMENT OF MATHEMATICAL 
GENERALIZATIONS IN A DYNAMIC GEOMETRY ENVIRONMENT 

Xiangquan Yao 
xzy73@psu.edu  

The Pennsylvania State University 

Central to mathematical generalization is the development of structural thinking. By examining the 
relationship between structural thinking and mathematical generalization, this study found that 
learners’ attention to different elements of a problem can result in different mathematical 
generalizations and structural generalization occurs only when learners reason based on identified 
properties. These findings imply that learners should be cultivated to attend to mathematical 
structures and to generalize beyond numerical patterns.  

Keywords: Advanced mathematical thinking 

Generalizing involves transportation of a mathematical relation from a given set to a new set for 
which the original set is a subset, perhaps adjusting the relation to accommodate the larger set. It has 
been argued that generalizing should be at the heart of mathematics activity in school (e.g., Mason, 
Johnston-Wilder, &Graham, 2005). Within the past a few decades researchers have differentiated 
different forms of mathematical generalizations (Dörfler, 1991; Yerushalmy,1993; Mason, Burton, & 
Stacey, 2010), among which are empirical and structural generalizations. Empirical generalization is 
the process of forming a conjecture about what might be true from numerous instances. It occurs 
when a learner looks at several, sometimes many, cases or instances and identifies the sameness 
among these cases as a general property. Structural generalization arises when a learner recognizes a 
relationship from one or very few cases by attending to the underlying structure within these cases 
and perceives this relationship as a general property. The distinction implies the need for learners to 
move from empirical to structural generalization. Central to this advancement is the development of 
structure thinking, which can be defined as a disposition to use, explicate, and connect mathematical 
properties in one’s mathematical thinking (Mason, Stephens, & Watson, 2009). However, most 
studies on generalizing were conducted in the context of pattern recognition. More importantly, by 
providing the first few terms of a pattern, the tasks used in these studies tend to promote 
generalization that does not necessarily demand structural thinking (Küchemann, 2010). To extend 
the study of mathematical generalization beyond the context of pattern recognition and to bring 
structure thinking to the forefront of the development of mathematical generalization, this study 
aimed to examine the relationship between structure thinking and mathematical generalization in a 
dynamic geometry environment (DGE). It was guided by one research question: How does learners’ 
structure thinking evolve and influence their generalizing activity when working on a carefully 
designed sequence of tasks in DGE? 

Theoretical Framework 
Mason et al. (2009) described mathematical structure as the identification of general properties that 

are instantiated in a particular situation as relationships between elements and differentiated five 
states of learner’s attention to mathematical structure. Holding wholes involves a certain way of 
looking at a whole situation that produces a global image that will undergo further analysis. In this 
awareness state, a learner attends to an object as a whole without explicit regard to its components. 
Discerning details shift the learner's attention toward further analysis and deep description, in which 
parts begin to be discerned and described in detail based on what the learner finds meaningful to 
inspect. The attention can focus on parts that either change or remain invariant. Recognizing 
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relationships occurs when changing or invariant relationships are detected and analyzed critically. In 
this awareness state, the learner attends to relationships between parts or between part and whole. 
Perceiving properties occurs when the learner perceives the discerned relationships as instantiations 
of general properties which can apply in many different situations. It involves the transition from 
seeing something in its particularity to seeing it as representative of a general class. This state enables 
a further categorization of different (classes of) objects. The separation of stages three and four 
indicates a subtle but vital difference between recognizing relationships in particular situations and 
perceiving relationships as instantiations of general properties which can apply in many different 
situations. Reasoning on the basis of the identified properties is the critical phase in which inductive 
and abductive reasoning about specific objects transforms into deductive reasoning by examining 
what other objects may belong to the perceived structure. In this awareness state, the learner attends 
to properties as abstracted from and independent of any particular objects and forms axioms from 
which deductions can be made. This model provides a useful tool to examine the development of 
structural thinking.  

Methodology 
The data for this study was collected from a series of task-based interviews that were a part of a 

larger research project aimed to investigate preservice secondary mathematics teachers as learners 
and teachers of mathematical generalizations in a technology-intensive learning environment. The 
task-based interview was chosen to gain knowledge about individual preservice teacher's processes to 
generalize mathematical ideas and the mathematical knowledge resulting from it. Each task in this 
study consisted of a sequence of closely related problems that aimed to promote learners to 
generalize a mathematical idea to a broader domain. These tasks were design to engage learners in 
not only empirical but also structural generalizations.  

The participants were 8 undergraduate preservice secondary mathematics teachers enrolled in a 
course that focused on teaching mathematics with various types of mathematical action technologies. 
The course took a problem-solving approach and engaged the preservice teachers in the processes of 
representing, conjecturing, generalizing, and justifying by solving and extending mathematically rich 
problems in technology-rich learning environments. Outside the class each participant participated in 
four task-based interviews, each of which was about 2 hours. During each interview, a participant 
would solve one or two mathematical tasks with the technologies they had learned in class. 
Participants’ interactions with technology were screen-recorded. During each session, the interviewer 
frequently asked the participant to articulate his/her thinking process and to make general statement 
based on his exploration. Those interactions between the interviewer and the participant were 
recorded with a camera. 

Data analysis consisted of three stages. First, the generalizations a participant constructed while 
solving each mathematical task were identified and categorized into empirical and theoretical 
generalizations. A generalization was coded as empirical if it was constructed on the basis of 
perception or numerical pattern by comparing numerous instances; it was coded as structural if it was 
constructed based on the generality of the inferred ideas, methods, or processes. Second, Mason et al. 
(2009)’s model was used to analyzed a participant's evolution of the state of attention to 
mathematical structure when constructing each mathematical generalization. The final stage involved 
coordinating the analysis in the first two stages to look for patterns about the evolution of structural 
thinking and the development of generalization.  

Results and Discussion 
Results from data analysis indicated a close relationship between the state of attention to 

mathematical structure and the forms of mathematical generalization that can potentially emerge. 
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More specifically, the study found that (1) learners’ attention to different elements of a problem can 
result in different mathematical generalizations and (2) structural generalization occurs only when 
learners can reason on the basis of identified properties. I will use participants’ work on task to 
illustrate the findings from this study. In the task, participants were asked to decide the conditions 
under which the area of the square created from the largest side of a triangle is equal to the sum of 
the areas of the squares created from the other two sides of the triangle (Part 1) and to further extend 
this relationship to quadrilateral (Part 2) and other polygons (Part 3). 

When solving Part 1 of the task, Although Joe quickly connected it with the Pythagorean theorem, 
he focused his attention on the relationship of square from a right leg and the square from the 
hypotenuse, conjectured that the areas of the two squares grew proportionally and the vertex 𝐴 shared 
by the two squares moved along a line, and then validated his conjecture by perception and 
measurement (Figure 1a). When solving Part 2 of the task, Joe made one interior angle of the 
quadrilateral a right angle by dragging and then dragged the vertex opposite to the right angle such 
that the area of the largest square was equal to the sum of the areas of the other three squares. After 
creating multiple instances of the desired diagram through dragging, informed by his knowledge 
gained from earlier exploration, he conjectured that the vertex 𝐷 opposite to the right interior angle 
moved along a line and the areas of the two squares that share the vertex 𝐴 grew proportionally 
(Figure 1b). Here, Joe attended to the relationship between the areas of the two squares and 
generalized this relationship from triangle to quadrilateral. 

 

 c.  
Figure 1: Snapshots of participants’ work 

 
In contrast, when exploring Part 2 of the task, Jen considered a right isosceles trapezoid, made two 

right triangles inside the trapezoid, and labeled the shorter base as 𝑥, the longer base as 𝑥 + 𝑎, and a 
lateral side as 𝑦 (see Figure 1c). By using the fact that the area of the largest square should be equal 
to the sum of the areas of the three squares and the Pythagorean theorem, she created an equation 
𝑥! + 𝑦! + 𝑦! + 𝑎! = (𝑥 + 𝑎)! and concluded that 𝑦 = 𝑎𝑥 after symbolic manipulations. When asked 
how to further extend the relationship to other polygons, Jen drew a pentagon with three right interior 
angles as shown in Figure 3 and labeled 𝑥, 𝑦, 𝑥 + 𝑎, 𝑦 + 𝑏 as the length of its four sides. By using the 
fact that the area of the largest square should be equal to the sum of the areas of the four squares and 
the Pythagorean theorem, he created an equation 𝑥! + 2𝑎𝑥 + 𝑎! = (𝑦 + 𝑏)! + 𝑥! + ( 𝑎! + 𝑏!)! + 𝑦! and 
concluded that 𝑥 = !!!!!!!"

!
 after symbolic manipulation. Moreover, Jen noticed that there was one 

right angle in the case of triangle, two right angles in the quadrilateral, three right angles in the 
pentagon and concluded that there would be 𝑛 − 2 right angles by extending the perceived numerical 
pattern. Here, Jen attended to the desired symbolic relationship between the sides of a polygon and 
the algebraic identity expressed in the Pythagorean theorem to search for a class of polygons that 
would satisfy the problem condition. What was generalized was a symbolic relationship rather than 
the underlying structure expressed in the Pythagorean theorem.  
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Different from both Joe and Jen, Jack made generalizations by attending the underlying structure of 
the Pythagorean theorem. The following excerpt shows his generalization of the Pythagorean 
theorem when solving Part 2 and Part 3 of the problem. 

Interviewer: Now let’s think a little bit of what we have done here. What if it is a nonagon, decagon, 
or an n-sided polygon, how can you create the polygon such that the area of the largest area is 
equal to the sum of the areas of the other squares drawing from each side of the polygon?  

Jack: From one of the vertices of the octagon, the vertex on the largest square, I need the side of each 
square and the line connecting 𝐴 to each vertex of the nonagon or the n-gon to form a 90-degree 
angle. So, you need to make 𝑛 − 2 right angles because the only ones that aren’t are the two 
vertices from the largest square. 

The above excerpt provides evidence that Jack extended the Pythagorean theorem to any polygon 
and generalized that the area of the largest square is equal to the sum of the areas of the n-1 squares 
created from each side of an n-sided polygon when the polygon is created by sequentially drawing n-
2 right angles from a vertex of the polygon to the sides of the polygon.  

This study found a close relationship between the elements that the participants attended to and the 
possible mathematical generalizations they might develop. As shown in the above examples, when 
solving the task, Joe focused on the covariation of the areas of the two squares, Jen attended to the 
algebraic identity expressed in the Pythagorean theorem, and Jack focused on the structure 
underlying the Pythagorean theorem. As a result, Joe generalized the proportionality of the areas of 
the two squares from triangle to quadrilateral, Jen applied the algebraic identity to deduce algebraic 
equations that specify a given set of quadrilaterals and pentagons that satisfy the problem condition, 
and Jack extended Pythagorean theorem and used it to decide the particular shape of an n-sided 
polygon that satisfies the problem condition. One productive way of helping learners to identify 
mathematical useful relations is to engage them to examine the generalizability of the perceived 
mathematics relations and the structures behind them. 

Pattern generalization is a typical generalization activity in school mathematics, in which a 
figurative, numerical, or tabular pattern is usually presented in the form a systematic sequence of 
elements, and learners are expected to generate a systematic set of ordered pairs from which an 
empirical relationship can be induced. This approach allows learners to identify and express a 
numerical relationship without necessarily seeing the mathematical structure that produces it. This 
study found that although the inductive nature of the dynamic geometry environment made it 
relatively easy for the participants to observe, conjecture, validate, and generalize mathematical 
relations based on perception and numerical patterns, identifying structure underlying these relations 
and generalizing them to broader contexts proved to be challenging. For instance, when solving the 
above task, the participants produced various generalizations relying on measurement and dragging, 
but only two of them were able to generalize the Pythagorean theorem from triangle to other 
polygons. A similar result was found in other tasks given to the participants. Therefore, engagement 
in pattern generalization does not necessarily support learners’ development of structural thinking. 
One plausible reason that many participants in this study were not able to generalize on the basis of 
mathematics structure is that they were not provided sufficient opportunities to engage in this way of 
thinking in their own mathematics learning experience. In order to develop learners’ ability to make 
structural generalization, they should be provided opportunities to initiate into structural thinking.  
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Posing problems is an important mathematical activity. In fact, Halmos (1980) views problems as 
the essence of mathematics and he, as well as other mathematicians (e.g., Polya, 1973) and 
mathematics educators (e.g., Brown & Walter, 1983, 1993; Silver 1994), argue that we should 
prepare our students to become better problem posers. It is not surprising then that professional 
organizations (e.g., Australian Education Council, 1991; National Council of Teacher of 
Mathematics [NCTM], 1989, 1991, 2000) have called for increased attention for students to be given 
opportunities to “create new problems by modifying the conditions of a given problem” (NCTM, 
1991, p. 95). The research community still continues to investigate the different aspects of teaching 
and learning how to pose mathematical problems (Felmer, Pehkonen, & Kilpatrick, 2016; Silver, 
2013; Singer, Ellerton, & Cai, 2013, 2015). 

To help my students and I to become better problem posers within dynamic geometry environments, 
I developed a problem-posing framework. The problem-posing framework includes the following 
systematic strategies to pose new problems by modifying the conditions of a given problem: 
reversing, proving, specializing, generalizing, extending, and further extending. The problem-posing 
framework has been a powerful tool that has helped both my students and I to create new problems 
related to a given problem within dynamic geometry environments. The initial problem from which 
we created new problems was the following: What type of quadrilateral has as vertices the points of 
intersection of the angle bisectors of the angles of a parallelogram? I will refer to this problem as the 
base problem. 

During the poster presentation, I will display the problem-posing framework and illustrate its 
usefulness with some of the problems that I and my students have generated by systematically 
varying the attributes of the base problem. Examples of posed problems include the following: 

Problem 1: The vertices of quadrilateral EFGH are the points of intersection of the angle bisectors 
of a quadrilateral ABCD. If EFGH is a rectangle, what sort of quadrilateral is ABCD? (Converse or 
reverse problem) 

Problem 2: Let E, F, G, and H be the points of intersection of the angle bisectors of the angles of a 
rectangle. Prove that EFGH is a square or a point. (Special and proof problem) 

Problem 3: What kind of quadrilateral has as vertices the points of intersection of the angle bisectors 
of the consecutive angles of a quadrilateral? (General problem) 

Problem 4: Prove that the angle bisectors of the angles of a kite are concurrent. (Extended and proof 
problem) 

Problem 5: The vertices of quadrilateral EFGH are the points of intersection of the consecutive 
exterior angles of an isosceles trapezoid ABCD. Characterize EFGH. (Further extended problem) 

Problem 6: Let E, F, G, and H be the points of intersection of adjacent angle trisectors of the interior 
angles of a parallelogram. What type of quadrilateral is EFGH? (Further extended problem) 

The author will also provide solutions to problems that are supported by proofs in some cases or 
conjectures supported by empirical evidence in other cases (such as geometric diagrams created with 
Dynamic Geometry Software or numerical examples). 
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Several recent studies have focused on helping students understand the limitations of empirical 
arguments (e.g., Stylianides, G. J. & Stylianides, A. J., 2009, Brown, 2014). One view is that students 
use empirical argumentation because they hold empirical proof schemes—they are convinced a 
general claim is true by checking a few cases (Harel & Sowder, 1998). Some researchers have sought 
to unseat students’ empirical proof schemes by developing students’ skepticism, their uncertainty 
about the truth of a general claim in the face of confirming (but not exhaustive) evidence (e.g., 
Brown, 2014; Stylianides, G. J. & Stylianides, A. J., 2009). With sufficient skepticism, students 
would seek more secure, non-empirical arguments to convince themselves that a general claim is 
true. We take a different perspective, seeking to develop students’ awareness of domain 
appropriateness (DA), whether the argument type is appropriate to the domain of the claim. In 
particular, DA entails understanding that an empirical check of a proper subset of cases in a claim’s 
domain does not (i) guarantee the claim is true and does not (ii) provide an argument that is 
acceptable in the mathematical or classroom community, although checking all cases does both (i) 
and (ii). DA is distinct from skepticism; it is not concerned with students’ confidence about the truth 
of a general claim. 

We studied how ten 8th graders developed DA through classroom experiences that were part of a 
broader project focused on developing viable argumentation. One important classroom task in the 
project was the Circle-and-Spots problem (Stylianides, G. J. & Stylianides, A. J., 2009, Brown, 
2014), which was meant to develop DA and to provide a rationale for why empirical arguments are 
not considered viable. Semi-structured interviews were conducted, in which we provided students 
with the claim “For every whole number value of n, if you compute 7n – 1 you will not get a perfect 
square,” and “Thomas’” empirical argument that checked the first seven cases in the claim’s domain. 
Students were asked questions such as if they thought the claim was true, whether the argument was 
viable, and what they would have to do to make the argument viable. Thematic analysis was used to 
develop themes among the student responses (Braun & Clarke, 2006). 

After collapsing themes, we found that five of the ten students displayed robust understanding of 
DA. They said that Thomas’ argument was not viable because it did not account for all cases in the 
claim’s domain. All of them suggested both of the following ways to make Thomas’ argument 
viable: (a) restrict the domain to just the seven cases that were checked or (b) find some sort of 
“equation,” “pattern,” or “relationship” to show why the claim was always true. Two students 
nonetheless expressed confidence that the claim was true, supporting our view that DA is distinct 
from skepticism. Two other students showed partial understanding of DA; the other three displayed 
empirical reasoning. The results provide evidence of how DA can develop in middle grades, and 
raise the question of how robustly DA can develop without students having significant prior 
experience with viable general arguments. 
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Justification is a crucial practice that involves conjecturing and justifying mathematical claims. 
Researchers have shown that elementary children are able to provide sophisticated arguments for 
their conjectures during generalizing activities (e.g., Ball, 1993; Reid, 2002). To understand the 
justification of children in the context of fractions tasks, this study examined four third graders’ 
discourse when they justified their claims in solving equal-sharing problems. 

Four third-grade children in the Midwestern United States participated in this study. Through prior 
interviews, they showed only limited understanding of fraction concepts, particularly part-whole 
relationships, as is typical for this age. Provided with a tablet, pencils, and paper, the participants 
worked in pairs to solve equal-sharing story problems (e.g., Mary, Sam, and you are sharing eight 
pizzas; how do you share the pizzas so that each of you gets the same amount?). During the 
videotaped sessions of each pair, I facilitated the participants’ interactions and observed how they 
used their intuitive knowledge for justification. Here presents an example that illustrates the 
arguments of two children when they engaged with the aforementioned task: 

Amy: …3 wholes, 3 wholes, 3 wholes [repeats her answer with confidence]. [claim] 
Betty: 1, 2, …2 wholes…and 2 halves [counts the wholes and slices of pizzas]. [claim] 
Amy: Therefore the 2 halves equals 1 whole. 
Betty: But the 2 halves do not make 1 whole. One half is here, and it takes two more (halves) to make 

1 whole [explains while pointing to Amy’s drawing] 
Amy: [Writes down numerical values inside the wholes and parts of the pizza figure]. The 2 slices 

should be counted as 1 whole. Here one slice is 5, and there one slice is 5 [points to graphics]. 5 
added by 5 is 10, so together is 10. Since each person has 2 wholes already, then (the total is) 10, 
10, and 10. Therefore, it’s 3 (wholes) (for each person).  

Betty: Mine is kind of different. I would put 15 and 15 [writes down 15 for each circle that represents 
a whole pizza]. Everyone wants 3 slices to make 15, but the two slices are not sufficient (to make 
a whole). Since each person would take 2 slices. Those make a 10.…Each person gets 15, 15, and 
10. 

These results demonstrate informal strategies the children employed for justification. Particularly, 
whole number magnitudes were used to reason and describe part-whole relationships. Further 
analysis of Betty’s discourse found that she seemingly followed a reasoning pattern similar to a 
proving technique, namely proof by contradiction. This technique first assumes the opposite of a 
claim and then uses the established facts to invalidate the claim. 

This study reveals that some third-grade children created distinct strategies to justify or refute their 
claims for fractions problems. The finding of Betty’s reasoning approach resonates the findings of 
Reid (2002) that specified logical patterns the fifth graders implicitly used for generating and testing 
conjectures. Since many U.S. elementary textbooks were found lacking written justification tasks 
(Bieda, Ji, Drwencke, & Picard, 2014), it is imperative for elementary teachers to consider enacting 
such practice in typical problem-solving fractions tasks. 
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Researchers have developed design categories or classification schemes for modeling problems 
(Bock, Bracke, & Kreckler, 2015; Czocher, 2017; Maaß, 2010) to make appropriate task choices for 
the target group of students and mathematical objectives. The task design around mathematical 
modeling needed to be carefully studied to evoke students' modeling process so that those processes 
could be traced systematically (Albarracin, Arleback, Civil, & Gorgorio, 2019). The goal of this 
study aimed to provide a task classification system to examine secondary students' modeling 
behaviors and decision-making processes while they are engaged in mathematical modeling tasks 
that draw on the content of Quantities.  

The choice of mathematical content for this work was deliberate for two reasons: (1) the content of 
Quantities under the Number and Quantity section (CCSSM, 2010) plays a foundational role in the 
development of advanced mathematical domains (e.g., algebra, functions, vectors); and (2) the 
content naturally implicates to study modeling since it requires choosing, interpreting quantity units, 
and defining appropriate quantities to create descriptive models while coordinating both 
mathematical and non-mathematical knowledge to solve problems.  

National and international research resources were reviewed to compile a list of modeling tasks (85 
tasks). Two task design heuristics were followed in this project. First, by adopting Maaß's (2010) 
modeling task design framework, I examined modeling tasks under the five categories: the scope of 
modeling (whole process or sub-process), the amount of data provided (superfluous, inconsistent, 
missing, matching), the nature of the task's relationship to reality (level of authenticity or 
artificiality), the contextual situation (personal, occupational, public, scientific), and the type of 
model used (descriptive or normative). I used these categories along with the target mathematics 
content. Second, following Czocher's (2017) task selection method, the modeling cycle (Blum & 
Leiß, 2007) was utilized to filter the tasks from the list in order to map each task with the anticipated 
stages and transitions of the modeling expected to be evoked.  

The final list of modeling tasks (14 tasks) was evaluated and critiqued by a panel of mathematics 
educators and field-tested by two researchers in high school classrooms. The tasks ranged from 
targeting specific steps to whole steps of the modeling cycle (Blum & Leiß, 2007) to study closely 
how secondary students might move between mathematical modeling stages and how their cognitive 
resources might influence their problem-solving process. This task scheme can be used for 
identifying modeling problems for the use of one-on-one clinical interviews or implemented in 
classrooms for tracking the kinds of mathematical thinking among high schoolers. 
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Calls have been made for the need to understand and advance students’ mathematical modeling 
behaviors (Cai et al., 2014). Validation is a crucial step of the modeling process that occurs when 
modelers compare their mathematical results to a real-world situation that they attempt to understand 
(Blum & Leiß, 2007), and helps them to decide whether the model needs revisions or fulfills the need 
of the problem (Zawojewski, 2013). In this study, I investigated how high school students evaluate 
and validate their models in the mathematical modeling process.  

The framework for this study stems from the two integrated theoretical stances—embodied 
cognition perspective (Lakoff & Núñez, 2000) and cognitive mathematical modeling perspective 
(Kaiser, 2017). Students’ model-based problem-solving is influenced by their internal resources (i.e., 
mathematical knowledge and beliefs) (i.e., Stillman, 2011) and external relationships with the 
environment and other individuals (Lesh & Doerr, 2003). Prior experiences might be difficult to 
communicate at times for students, but linguistic tools can be rich with representational elements 
(Kövecses & Benczes, 2010) that can be turned into a validation method in the mathematical 
modeling process (Czocher, 2018). As a result, students embody experiences, intuitions, and means 
to support transfer through language, thought, and action while engaging cognitive steps of the 
mathematical modeling process (Manouchehri & Lewis, 2017). 

This research was a qualitative, descriptive account of the validation ways employed in the 
mathematical modeling problem-solving process by eight high school students from different grade 
levels (2 ninth-graders, 2 tenth-graders, 2 eleventh-graders, and 2 twelfth-graders). Each participant 
completed 4 interviews lasting approximately 1 hour each based on one-on-one think-aloud tasks 
(Ericsson & Simon, 1998) at a public university in a Midwestern state. The selection of the 
participants was deliberate, targeting variability in mathematical backgrounds and self-efficacy 
toward solving mathematical problems. The common requirement of the interview tasks was 
choosing and interpreting quantity units and defining appropriate quantities to create descriptive 
models while using both mathematical knowledge (i.e., estimation) and non-mathematical knowledge 
to solve problems. Each interview was audiotaped and transcribed. The ongoing data analysis 
focused on the categorization of the forms of reasoning employed by the students while they were 
evaluating and validating their models, and then deciding whether their mathematical models needed 
more revisions or not. A content analysis of the transcripts (Patton, 2002) was used to detect themes 
in the students’ validation methods.  

The preliminary findings provided evidence in support of two of the themes identified by Ferri 
(2006)—knowledge-based validation and intuitive-based validation—and described three additional 
validation elements of implementation that appear to support those identified two themes: formalistic 
validating (the focus is on abstraction, formulas, mathematical correctness), realistic validating (the 
focus is on references to real situations that are enriched with verbalized or visual representations), 
and formalistic–realistic validating (the focus is on a balance between formal mathematical aspects 
and reality-based aspects of the problem).  
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Contributing to the call for improving secondary instruction, the National Council of Teachers of 
Mathematics (NCTM, 2000) emphasized that students should gain quantitative reasoning abilities 
that lead to work with quantitative information and be able to use formulas and graphs to represent 
how quantities in real-life phenomena are related to one another and change together. Ellis (2007) 
suggested that one way to support students’ quantitative reasoning is by engaging them in problem-
solving activities that require (a) exploring how changing initial quantities will affect the emergent 
quantities, (b) determining how to adjust the initial quantities while keeping the emergent quantities 
constant, and (c) determining how to adjust the emergent quantities with the initial quantities (p. 
475). In that sense, mathematical modeling problems naturally provide an environment for fostering 
and nurturing quantitative reasoning skills (Carlson, Larsen, & Lesh, 2003; Thompson, 2011).  

In this poster presentation, a partial report of a larger study, we examined two tenth-graders’—
Carlos and Ahmad (pseudonyms)—quantitative reasoning patterns and quantification processes 
while they solved mathematical modeling problems. Each student was interviewed one-on-one and 
given four modeling problems. Each interview was approximately 60 minutes long, and the students 
were encouraged to explain their reasoning processes (Ericsson & Simon, 1998). In the data analysis, 
we adopted the quantitative reasoning in context (QRC) framework (Mayes, Peterson, & Bonilla, 
2013), which has four elements: (a) the quantification act (QA), the ability to identify the 
mathematical objects and their unit measures; (b) quantitative literacy (QL), the ability to identify, 
compare, manipulate, and draw conclusions from variables; (c) quantitative interpretation (QI), the 
ability to discover patterns and trends; and (d) quantitative modeling (QM), the ability to create 
representations to explain the problem and to revise them based on their fit into reality (p. 130).  

The initial findings indicate that both the students were comfortable when identifying variables and 
their unit measures. Both recognized that they had assigned numbers as assumptions. Two distinct 
patterns emerged when comparing and manipulating the unit measures throughout the four modeling 
problems: (a) when Carlos assigned numbers, he primarily used the smallest unit as a measure and 
made calculations from the part to the whole (inductive thinking approach) (Simon,1996), whereas 
Ahmad always simplified the whole unit to reach the smallest unit at the end and made calculations 
from the whole to the part (deductive thinking approach) (Simon, 1996), (b) those thinking 
approaches impacted their quantitative interpretations on the mathematical models they had created 
(i.e., tables and graphs). For example, while Carlos explained the patterns on his graphs in a 
descriptive modeling way (Maaß, 2010) as explaining or forecasting the real-life situation, Ahmad’s 
explanations were solely focused on the generalized mathematical results and mathematical accuracy 
in a normative modeling way (Maaß, 2010). In the presentation, the excerpts will be shared under 
each reasoning pattern, and possible instructional implications will be discussed. 
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Operating from an enactivist theory of cognition, this work seeks to understand the emergent nature 
of mathematical activity mediated by manipulatives. Enactivism takes a biological approach and 
theorizes that perception consists in perceptually guided action enabled by cognitive structures that 
emerge from recurrent sensorimotor patterns (Proulx, 2013; Varela, Rosch, & Thompson, 1992). 
These processes are non-linear, unfolding, and ongoing events where meanings emerge and 
transform in interactions, not inside of minds and bodies (Malafouris, 2013; Proulx, 2019). Further, 
one’s way of knowing is driven by an evolutionary imperative to act in an adequate, fitting, and 
harmonious way with one’s environment (Maheux & Proulx, 2015). This search for harmony leads to 
a structural coupling between the individual and their environment with the individual’s history of 
recursive interactions playing a crucial role in structurally determining this course of evolution 
(Proulx, 2013). 

This work seeks to elucidate the nature of emergent mathematical activity mediated by 
manipulatives by addressing the question, “What role might manipulatives play in the emergent 
processes of sense making?” To do so, we analyzed the activity of “Dolly” and “Lyle” as they aimed 
to make sense of the flip-and-multiply algorithm for fraction division in a problem-solving interview 
using a manipulative Dolly created for engagement with fraction concepts. The data comes from a 
larger study that is exploring how an open-ended and iterative design experience centered in Making 
(Halverson & Sheridan, 2014) might inform prospective mathematics teachers’ (PMTs’) pedagogy. 
We took a revelatory case study approach to analyze and transcribe the video data (Yin, 2014), and 
focused our analysis on the particular interactions aiming to coordinate meanings of fraction division 
in the manipulative and in the algorithm that presumably substantiates those meanings (Malafouris, 
2013). 

Our analysis illuminates the role manipulatives can play in establishing a notion of sense making 
that is grounded in embodied understandings. For example, although Dolly and Lyle arrived at the 
correct answer with the manipulative early in their problem solving, they were dissatisfied because it 
did not seem to fit with the answer they derived from the algorithm. Eventually, this dissonance gave 
way as they established harmony between the two, thereby revealing the compelling power that 
embodied tool use can have for altering a space of possible actions and consequently on sense-
making activity. Our analysis also reveals what might be problematic about a pedagogical practice 
where a procedure is adequate and sense making is not the criteria for fit. The enactment of the 
algorithm was disrupted through use of a tool, ultimately leading to an authentic understanding of 
what it means to do fraction division. These findings further substantiate extant arguments for 
engaging mathematics learners in embodied, tool-mediated problem-solving activity in conjunction 
with the learning of procedures. 
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With communication being highlighted as a process standard in The Curriculum and Evaluation 
Standards for School Mathematics by the National Council of Teachers of Mathematics (NCTM) in 
1989 (NCTM, n.d.), the notion of communicating mathematically (Pimm, 1991) has since become an 
increasing important yet demanding task both for students and for teachers. Moreover, the role of 
spoken communication and how it effectively helps in the development of mathematical thinking did 
not seem clear. On the one hand, it was often assumed that students know how and what to 
communicate in the mathematics classroom, i.e. mathematical communicative competence was 
assumed to be a given (Adler, 2002; Pimm, 1987; Sfard et al., 1998) when it is the exact opposite. On 
the other, teachers face the challenge of orchestrating and facilitating meaningful mathematical 
conversations with and for their students, as Sfard et al. (1998) argued that it is “an extremely 
demanding and intricate task” (p.51) for conversations (either orchestrated or spontaneous) to be 
meaningful or productive in the mathematics classroom.  

As part of this poster presentation, the author has attempted to explore the value and process of 
spoken communication in the mathematics classroom; and surfaced some corresponding implications 
on the teaching (and learning) of mathematics. In particular, on the value of spoken communication 
in the mathematics classroom, Pimm (1991) has suggested how spoken communication can be 
considered as the pathway to written communication if used purposefully with the intent of acquiring 
the mathematics register with regard to the notion of communicating mathematically. As for the form 
of spoken communication in the mathematics classroom, Barnes’ (1976) studies on classroom talk 
can be a possible source of reference in providing a frame to understand classroom talk which 
contributes to learning. Based on these ideas, a preliminary framework (Figure 1) is proposed with 
the intent of explaining why and how spoken communication (or mathematical talk) can contribute to 
the teaching (and thus learning) of mathematics. While it may not fully explicate the value and 
process of spoken communication in the mathematics classroom, this idea can be further explored 
and refined through future research, e.g. the use of the framework as a possible structure for teacher 
professional development activities, focusing on developing the necessary mathematical knowledge 
for teaching (Ball et al., 2008) to orchestrate and facilitate mathematics talk. 

 
Figure 1: Spoken Communication as a Process in Mathematics Classrooms 
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Posing of the Problem and Justification 
In light of the distinct changes that modern society faces and the new “normal” it is necessary that 

individuals relate mathematics to their environment. Mathematical modeling is a process that allows 
one to determine a real-world problem, which is subsequently subject to observation and 
experimentation in order to obtain data and conclusions on said phenomenon (Villa-Ochoa y Ruiz, 
2009). However, at the time of implementing the modeling in the classroom, it becomes evident that 
there are difficulties that do not permit its full development. Since modeling tends to be presented as 
a mathematical application (Villa-Ochoa et al., 2009) and therefore aspects such as observation and 
experimentation are left out of this process (Berrio, Peña y Torrenegra, 2018). 
Methodology and Results 

For this research an experimental activity was developed in the classroom, which consisted of 
rolling100 dice and removing those dice that landed on the number 5.  

With the activity defined, we proposed an a priori analysis on how this process should have been 
developed (figure 1). The results obtained are shown in figure 2. 

  
Figure 1: Berrio et al (2019) Figure 2: Berrio et al (2019) 

Conclusions 
• Experimental activities in the classroom give students a more concrete sense of reality, 

allowing inferences to be made outside the initial domain, which allows them to identify the 
limitations of the proposed model. 
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• There are difficulties in solving problems of mathematical modeling on the part of students, 
because the notion of mathematical modeling that they have consists of a mathematical 
application or problem.  
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Planteamiento del problema y justificación 
Ante los distintos cambios que enfrenta la sociedad actual y la nueva “normalidad” se requiere de 

individuos que relacionen las matemáticas con su entorno. La modelación matemática es un proceso 
que permite determinar un problema de la realidad, que posteriormente es sometido a la observación, 
y a la experimentación con el fin de obtener datos y conclusiones sobre dicho fenómeno (Villa-
Ochoa y Ruiz, 2009). Sin embargo, al momento de implementar la modelación en el aula, se 
evidencian dificultades que no permiten su completo desarrollo. Pues se tiende a presentar la 
modelación como una aplicación matemática (Villa-Ochoa et al., 2009) y por consiguiente aspectos 
como la observación y experimentación quedan por fuera de este proceso (Berrio, Peña y Torrenegra, 
2018). 
Metodología y resultados 

Para esta investigación se desarrolló una actividad experimental en el aula que consistió en el 
lanzamiento de 100 dados y aquellos que quedaban con la cara superior en el número 5 se retiraban.  

Con la actividad definida, planteamos un análisis a priori sobre cómo se debía desarrollar el proceso 
(figura 1) los resultados obtenidos se muestran en la figura 2. 
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Figura 1: Berrio et al (2019) Figura 2: Berrio et al (2019) 

 

Conclusiones 
• Las actividades de experimentación en el aula, les da a los estudiantes una noción de realidad 

más concreta, lo que permite realizar inferencias fuera del dominio inicial, lo que les permite 
identificar las limitaciones del modelo planteado.  

• Existen dificultades en la resolución de problemas de modelación matemática por parte de los 
estudiantes, pues la noción de modelación matemática que tienen consiste en una aplicación o 
problema matemático. 
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Theoretical Approach 
In Schoenfeld’s (1985) Mathematical Problem-Solving (MPS) theory it is key to illustrate ideas, 

reflections of the use of diagrams and representations, heuristic strategies, and discussion of all the 
possible and distinct solution methods. For Santos (2014), the learning process is categorized into 
resources, prior mathematical knowledge; heuristic strategies, methods to reach a solution; 
metacognitive strategies, monitoring and regulation of the process itself for decision making; and 
beliefs, ideas about mathematics and how to solve problems. To verify and evaluate this process,  
Polya’s four-phases of his Problem-Solving theory (1945) consisting of comprehension of the 
problem, design of a plan, carrying out the plan, and looking back has been followed; these particular 
questions provide information on the learning process. 

Research Questions and Design 
It was necessary to analyze the effects of a didactic sequence based on MPS theory applied on first-

semester students of Teoría del Cálculo I from the LIMA programme at UdeG, for the learning of 
resources, strategies, beliefs and competences in mathematical Problem Solving. In this course, 
students are expected, in particular, to model the volume function applying the concept of Relative 
Extrema in a realistic scenario. The sequence consisted of a non-routine problem and working sheets 
with questions relating to Polya’s phases. A group of 12 students were asked to work in triads to 
design a prototype of a container in the shape of a trapezoid using a 50cm x 65cm cardboard sheet; it 
had to guarantee the maximum possible volume taking into consideration that the trapezoidal face 
must be an isosceles trapezium containing the assigned acute angles (University of Colorado, s.f.) 

Data Collection and Analysis 
Since this is a qualitative phenomenological research, focus groups’ activities were monitored and 

recorded; additionally, the answers to demi-structured interviews were analyzed through worksheets 
provided to the students. Altogether, they were triangulated with a matrix of categories and indicators 
based on the analysis of the data and the dimensions of  Schoenfeld’s theory. 

Summary 
According to data triangulation, students were able to follow Polya’s solving problem phases and 

showed a satisfactory performance according to MPS theory. The most relevant effect of the 
sequence was the fact that the contextualization of the problematic proved beneficial to the 
development of the metacognitive process by giving students guidance in the decision making of the 
procedure to follow  in the operations to perform, and in the direction to reach a solution. In general, 
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the sequence of a mathematical non-routine problem influenced positively in the learning of the 
concept of Relative Extrema, in the development of metacognitive strategies, and in modelling skills. 
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Perspectiva Teórica 
En la teoría de resolución de problemas matemáticos (RPM) de Schoenfeld (1985) es clave ilustrar 

ideas, reflexiones sobre el uso de diagramas y representaciones, estrategias heurísticas y discutir 
todos los métodos de solución posibles. Para Santos (2014), el proceso de aprendizaje se clasifica en 
recursos, conocimiento matemático previo; estrategias heurísticas, métodos para llegar a una 
solución; estrategias metacognitivas, monitoreo y regulación del proceso mismo para la toma de 
decisiones; y creencias, ideas sobre las matemáticas y sobre cómo resolver problemas. Para verificar 
y evaluar este proceso, se han seguido las cuatro fases de Polya de su teoría de Resolución de 
Problemas (1945) que consiste en la comprensión del problema, el diseño de un plan, la ejecución del 
plan y la visión retrospectiva; sus preguntas características proporcionan información sobre el 
proceso de aprendizaje. 

Preguntas de Investigación y Diseño 
Se requiere analizar los efectos de una secuencia didáctica basada en la teoría RPM aplicada en 

estudiantes de primer semestre de Teoría del Cálculo I del programa de la LIMA en UdeG, para el 
aprendizaje de recursos, estrategias, creencias y competencias en resolución matemática de 
problemas. En particular, se espera que los estudiantes modelen la función de volumen aplicando el 
concepto de Extremos Relativos en un escenario realista. La secuencia consistió en un problema no 
rutinario y hojas de trabajo con preguntas relacionadas con las fases de Polya. Se pidió a un grupo de 
12 estudiantes que trabajaran en tríadas para diseñar un prototipo de un contenedor en forma de 
trapecio usando una lámina de cartón de 50 cm x 65 cm; tenía que garantizar el máximo volumen 
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posible teniendo en cuenta que la cara trapezoidal debe ser un trapecio isósceles que contenga los 
ángulos agudos asignados (Universidad de Colorado). 

Técnicas y Análisis de Recopilación de Datos 
Al tratarse de una investigación cualitativa fenomenológica, se monitorearon y registraron las 

actividades de los grupos focales. Las respuestas a las entrevistas semiestructuradas se analizaron a 
través de las hojas de trabajo proporcionadas a los estudiantes. Además, la información recopilada se 
trianguló con una matriz de categorías e indicadores basados en el análisis de los datos y en las 
dimensiones de la teoría de Schoenfeld. 

Resumen de Hallazgos 
Según la triangulación de datos, los estudiantes lograron seguir las fases de resolución de problemas 

de Polya y mostraron un desempeño satisfactorio de acuerdo con la teoría RPM. El efecto más 
relevante de la secuencia fue que la contextualización de la problemática benefició el desarrollo del 
proceso metacognitivo al brindar orientación a los estudiantes en la toma de decisiones del 
procedimiento a seguir, operaciones a realizar y la dirección a la solución. En general, la secuencia 
de un problema matemático no monótono influyó positivamente en el aprendizaje del concepto de 
Extremos Relativos, en el desarrollo de estrategias metacognitivas y en las habilidades de modelado.  
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Various policy leaders and educational scholars have advocated for teachers to implement 
mathematical modeling in their classrooms (e.g., Common Core State Standards in Mathematics, 
2010). In spite of arguments in favor of modeling, the implementation of modeling is still relatively 
rare in teaching practice in most countries including the United States (Blum, 2015). What makes 
modeling not viable or desirable from the perspective of secondary mathematics teachers? In what 
ways do teachers’ day-to-day routines or views of their professional responsibilities align or not with 
modeling? In this study, we employed practical rationality as a framework for examining how 
teacher decisions are rationalized at the level of the instructional situation and to further understand 
the potential challenges of enacting modeling in classrooms. 

The practical rationality approach suggests that instructional norms and professional obligations 
come into play in teachers’ instructional decisions (Herbst & Chazan, 2012). Teachers view their role 
as entwined with obligations to different stakeholders corresponding to four sources of obligations: 
disciplinary obligation, institutional obligation, individual obligation, and interpersonal obligation. 
This study presents an analysis of the norms that are perceived by secondary teachers in relation to 
modeling and the professional obligations that they use to justify their departure from or alignment to 
the associated norm through the use of a scenario-based survey.  

Secondary mathematics teachers (n=176) from the Midwestern United States participated in the 
study, varying in terms of their experience of teaching different courses and experience of enacting 
modeling tasks. They were randomly assigned to one of two groups. Each group includes four 
narrative sets in the situation of modeling. Within each narrative set, teachers were asked to choose 
what they would do next, presenting three options that included a hypothesized normative 
instructional action (e.g., close off the opportunities for students to use their everyday life 
knowledge) and two less typical actions (e.g., encourage students to bring in their background 
experiences). These hypothesized actions are based on prior studies of the enactment of modeling 
tasks (e.g., Leiß, 2007), non-traditional tasks (e.g., Herbst, 2003), and word problems (e.g., Chazan, 
Sela, & Herbst, 2012), and classroom observations in the United States. 

Our findings show that while 68.2% of teachers chose to give clear directions for factor selection 
for their students and 94.3% of teachers expected students to find a symbolic representation (e.g., 
functions) as their final product of modeling, these teachers felt strongly obligated to teach the 
underlying mathematical concepts and the properties. In addition, only 34.1% of teachers were 
amenable to emphasize the social justice aspect of the task. However, for those who chose not to 
attend to social justice issues, they felt strongly obligated to interpersonal obligations (e.g., maintain 
a classroom environment that is conceived to learning) and disciplinary obligations (e.g., teach a 
valid representation of the mathematical knowledge and practices). The findings imply that the 
environmental impacts (e.g., disciplinary obligations) on the instructional practice of mathematical 
modeling should be taken into account. In the poster session, we will further illustrate how practical 
rationality can be used to better understand how teacher decisions are rationalized in mathematical 
modeling. 
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Texts presenting novel statistics can shift learners attitudes and conceptions about controversial 
science topics. However, not a lot is known about the mechanisms underlying this conceptual 
change. The purpose of this study was to investigate two potential mechanisms that underlie learning 
from novel statistics: numerical estimation skills and epistemic cognition. This research investigated 
two treatments—a numerical estimation and epistemic cognition intervention—that were expected to 
enhance people’s ability to make sense of key numbers about climate change. Results indicated that 
undergraduate students (N = 516) who were given instruction on numerical estimation strategies 
before shown novel climate change statistics had fewer misconceptions when compared with people 
who did not. Findings provide emerging evidence that supporting mathematical reasoning skills can 
enhance conceptual change in science. 

Keywords: Numerical Estimation, Epistemic Cognition, Conceptual Change, Plausibility Judgments, 
Mathematics For Sustainability 

Now more than ever, people need to be skeptical of the information that they encounter online. 
Inaccurate, self-authored misinformation is being created and circulated at an alarming rate (see, e.g., 
Allcott, Gentzkow, & Yu, 2019; Kata, 2012). Internet searches for controversial science topics like 
climate change, genetically modified foods, and vaccinations reveal millions of articles, much of 
which include scientifically incorrect information (e.g., Kortum, Edwards, & Richard-Kortum, 2008; 
Scheufele, & Krause, 2019); and much of this misleading information relies on misleading data. 

Numerical data (e.g., statistics) found in the news can be a powerful tool for conceptual change, 
whether that change is for better or for worse. On the one hand, prompting people to estimate just a 
handful of statistics about climate change and then presenting them with the actual value can shift 
their attitudes, beliefs, and misconceptions to be more aligned with scientists (Ranney & Clark, 
2016). On the other hand, presenting people with misleading statistics can shift their scientifically 
correct conceptions and attitudes to be less aligned with those of scientists (Ranney & Clark, 2016). 
Taken as a whole, this research suggests that statistics can be used as a catalyst for conceptual 
change. However, the mechanisms that underlie this change process remain understudied. 

The purpose of this study was to examine mechanisms that underlie the learning that occurs when 
people encounter novel statistical information. Namely, I draw from theory on conceptual change 
(Dole & Sinatra, 1998, Lombardi, Nussbaum, & Sinatra, 2016), and epistemic cognition (the active 
reflection on whether information is true or justified; Chinn, Rinehart, & Buckland, 2014) to examine 
the impact of two mechanisms of conceptual change when learning from real-world numbers—
numerical estimation skills and epistemic cognition. 

Theoretical Framework 
Conceptual Change 

When individuals encounter statistics in the news or online that conflict with their prior 
conceptions, conceptual change may occur. Conceptual change represents a particular kind of 
learning that occurs when new information conflicts with a learners’ background knowledge, leading 
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to a restructuring of conceptual knowledge (Dole & Sinatra 1998; Murphy & Mason, 2006). 
Conceptual change researchers tend to describe concepts as either consistent or inconsistent with the 
understanding of experts and many define conceptual change as a correction of scientifically 
inaccurate conceptions, or misconceptions. For example, if a person holds the misconception that 
scientists believe that humans are not responsible for climate change and reads a statement that “97% 
of scientists agree that climate change is caused by humans,” then there may be potential for the 
learner to question their idea and shift them to be more consistent with scientists. In this way, a single 
number has the potential to instigate conceptual change. Of course, there are many contributing 
factors and processes left unexplained in in this simplistic example, as conceptual change can be 
viewed as a process that is contingent upon people’s motivation, emotion, and attitudes—factors that 
are often called warm constructs (see Dole & Sinatra, 1998; Pintrich, Marx, & Boyle, 1993; Sinatra, 
2005; Sinatra & Seyranian, 2016). As such, the extent to which people engage with and learn from 
numerical data may be influenced by motivational factors such as their beliefs about their ability to 
succeed in mathematics (self-efficacy; e.g., Bandura, 1997), or emotional factors such as their trait-
level anxiety associated with engaging in mathematics (mathematics anxiety; e.g., Ramirez, Shaw, & 
Maloney, 2018). 

Plausibility judgments for conceptual change. When individuals encounter a novel statistic, they 
may implicitly or explicitly judge whether that information is plausible and then shift their 
conceptions accordingly. Research on plausibility judgments for conceptual change offers a useful 
frame for investigating these shifts in understanding. The Plausibility Judgments for Conceptual 
Change model (PJCC), posits that novel information (like novel statistics) can incite conceptual 
change because they prompt learners to appraise or reappraise the plausibility of their existing beliefs 
(Lombardi et al., 2016). When people encounter a novel explanation like a statistical figure, they first 
pre-process the information (e.g., by employing numerical estimation skills to judge the 
reasonableness of the number), and then make a judgment of the plausibility of the conception 
supported by the new information. Plausibility judgments can be either implicit or explicit. The 
extent to which people explicitly evaluate the plausibility of a conception depends, in part, on their 
views about knowledge (epistemic motives and dispositions); more explicit plausibility evaluations 
are thought to lead to greater potential for conceptual change—but only if the learner finds the new 
conception to be more plausible than their previous conception. That is, learners process statistical 
information and then appraise the plausibility of their initial conceptions based on this information; 
learners that find a novel conception more plausible than prior conceptions have higher potential for 
conceptual change. 
Numerical Estimation 

One way that learners process numbers is by estimating whether they are reasonable (e.g., Reys & 
Reys, 2004). Research on measurement estimation concerns the explicit estimation of real-world 
measures (Bright, 1976; Sowder & Wheeler, 1989) and is useful for understanding factors that help 
people judge whether real-world quantities are reasonable. Findings suggest that peoples’ estimation 
accuracy and judgments of reasonableness improve when they use measurement estimation 
strategies, such as the benchmark strategy—the use of given standards and facts that can be applied 
by the learner through mental iteration and proportional reasoning to better estimate and judge the 
plausibility of real-world quantities (e.g., Brown & Siegler, 2001; Joram et al., 1998). For example, a 
person’s estimate of the number of jellybeans in a container is likely to be more accurate and they 
will be a better judge of reasonableness of other peoples’ guesses if they are first told the number of 
jellybeans in a different container. Measurement estimation strategies may therefore support people’s 
comprehension and evaluation of given real-world quantities. 
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Epistemic Cognition 
Epistemic cognition is the thinking that people do about knowledge and knowing (Chinn, et al., 

2014; Sandoval, Greene, Braten, 2016) and is hypothesized to predict the extent to which learners 
evaluate the plausibility of a claim in light of new information (Lombardi et al., 2016). There are 
multiple models of epistemic cognition (for a review, see Sandoval et al., 2016), but for the purpose 
of this study, I draw from the AIR model of epistemic cognition (Chinn et al., 2014). According to 
this model, epistemic cognition is considered to be a situated process that relies on individuals’ Aims 
(goals and associated values of goals), Ideals (espoused standards for achieving epistemic aims), and 
Reliable processes for knowing (schema for producing true, justified beliefs; Chinn et al., 2014). 
An Existing Learning Intervention: EPIC 

Prior classroom and laboratory studies have demonstrated the impact of presenting people with 
surprising numbers about controversial topics on their understanding of social issues (for reviews, 
see Ranney et al., 2019; Yarnall & Ranney, 2017). Many of these studies are grounded in a paradigm 
called “Numerically Driven Inferencing” (NDI, Ranney, Cheng, Garcia de Osuna & Nelson, 2001; 
Ranney & Thagard, 1988), which assumes that individuals’ understanding of numerical information 
is connected to their knowledge, attitudes, and beliefs about larger issues. One of the central 
techniques from this perspective is called EPIC, an acronym for an intervention which introduces 
novel numerical information by prompting learners to Estimate quantities, state a Preference for what 
they would like the quantity to be, Incorporate the answer, and then Change their preferences 
afterward (e.g., Ranney & Clark, 2016; Rinne et al., 2006). Studies that use EPIC often 
operationalize conceptual change in terms of shifts in the preferences that individuals state for given 
numbers (i.e., differences between the “P” and the “C” in EPIC).  

In sum, I contend that in order for learners to select high quality content from which to learn, they 
must develop skills to evaluate epistemic aspects of new information and also develop estimation 
skills necessary to accurately evaluate the statistics that they encounter along the way. That is, they 
must learn epistemic cognition and numerical estimation skills. Currently, there is little to no 
empirical research that investigates the role of estimation skills and epistemic cognition in conceptual 
change processes. My research is therefore guided by five questions:  

1. To what extent does estimation of and exposure to novel statistics regarding climate change 
(i.e., an adapted EPIC intervention) shift learners’ knowledge of climate change? 

2. To what extent does enhancing this intervention with instruction on estimation strategies 
change learners’ knowledge of climate change? 

3. To what extent does enhancing this intervention with prompts to activate epistemic aims 
change learners’ knowledge of climate change? 

4. Is there an interaction between estimation skills and epistemic thinking on conceptual change? 
5. To what extent do warm constructs (i.e., mathematics anxiety, mathematics self-efficacy, 

epistemic dispositions, and reported surprise from reading statistical information) mediate 
relations between pre- and post-intervention knowledge? 

Methods 
To answer my research questions, I formed a nationally representative Qualtrics panel of 516 

undergraduate students to participate in an experimental online survey. Participants’ median reported 
age was 20years, and 81% identified as Female, 64% White, 11% African American, 9% Asian, 9% 
Hispanic, and 43% as either Liberal or Very Liberal. All participants (a) completed a pretest to 
measure their misconceptions about climate change, mathematics self-efficacy and anxiety, and prior 
epistemic dispositions, (b) were randomly assigned to one of five conditions created by a control 
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group and combinations of two interventions (see below), and (c) completed an identical post-test of 
knowledge and a demographics questionnaire. 
Outcome Measure 

Knowledge. Knowledge of human-induced climate change was a primary outcome in this study and 
was measured using seven items from the 28-item human induced climate change knowledge 
questionnaire (HICCK; Lombardi, Sinatra, & Nussbaum, 2013). Construct and content validity of the 
abbreviated scale was established through pilot studies and cognitive interviews (see Thacker, 2020). 
The knowledge questionnaire was given to participants just prior to and immediately after instruction 
and was intended to measure participants’ conceptions about the consensus on human-induced 
climate change and were selected to align with information presented in the EPIC intervention. For 
example, participants rated their agreement with statements such as, “greenhouse gas levels are 
increasing in the atmosphere” on a scale from 1 (strongly disagree) to 5 (strongly agree). The 
measure at pre and posttest was reliable at conventional levels (Cronbach’s alpha = .85 pre, .88 post). 
Covariates 

Mathematics Self-Efficacy and Anxiety Questionnaire (MSEAQ). Participants mathematics-
specific self-efficacy and anxiety were measured using the Mathematics Self-Efficacy and Anxiety 
Questionnaire (MSEAQ; May, 2009). The MSEAQ consists of 28 items that can be divided into two 
subscales, mathematics self-efficacy (13 items) and mathematics anxiety (15 items). Construct 
validity was established in a prior study using factor analytic methods with an online sample and by 
establishing strong correlations with a classic measures of mathematics anxiety (s-MARS) and 
mathematics self-efficacy (see May, 2009). The instrument was shown to be reliable overall 
(Cronbach's Alpha = .96), as were the two subscales for mathematics self-efficacy (Cronbach's Alpha 
= .94) and mathematics anxiety (Cronbach's Alpha =.93). Average scores for the two subscales were 
computed and used in mediation analyses.  

Epistemic dispositions. Baseline epistemic dispositions were measured using the Actively Open-
Minded Thinking scale (AOT; Stanovich & West, 1997). The AOT is a measure of epistemic 
dispositions toward knowledge that consists of seven items. Participants reported their agreement 
with five statements (e.g., “Changing your mind is a sign of weakness”) on a scale from 1 
(completely disagree) to 7 (completely agree). The Chronbach’s alpha was found to be .70 with the 
main analytic sample. The AOT was included in mediation analyses to observe whether epistemic 
dispositions mediate conceptual change outcomes, as inferred from the Plausibility Judgments for 
Conceptual Change model (Lombardi et al., 2016). 

Surprise. Participants in the main analytic sample who were assigned to estimate quantities about 
climate change by way of the EPIC intervention were also prompted to report their sense of surprise 
after being shown the true values. Namely, participants were asked to “Rate how surprised you are 
by this number” on a scale from 1 (not at all) to 7 (extremely surprised). Surprise ratings had 
Cronbach’s alpha = .82. Similar to prior research (e.g., Munnich et al., 2007), I expected that 
participants’ sense of surprise from exposure to novel statistics would correspond with change in 
climate change beliefs. Participants in the control group did not estimate climate change numbers and 
therefore were not prompted to report surprise. 
Interventions and Experimental Conditions  

Participants were randomly assigned to one of five conditions: (1) a control group in which 
participants were presented with an 817 word expository text about the greenhouse effect (2) the 
EPIC task; (3) the EPIC task accompanied with an estimation skills modification that presents 
learners with strategies for using the given “hints,” (4) an EPIC task accompanied with an epistemic 
cognition modification, or (5) an EPIC task accompanied by both estimation and epistemic cognition 
modifications. These interventions and modifications are described below. 
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The EPIC task required learners to estimate 12 climate change-related quantities before being 
presented with the scientifically accepted answer. Six of these items were taken from Ranney & 
Clark (2016) and asked participants to estimate unitless proportions. The remaining six were created 
by Thacker (2020) to be more mathematically challenging, requiring participants to estimate raw 
units of length, area, volume, mass, and temperature and included a “hint” that might be rescaled to 
better estimate the unknown quantity (see Table 1 for sample items). 

The estimation skills modification consisted of a 132-word text that provided direct instruction on 
how to use the “hints” embedded in half of the EPIC items to more accurately estimate unknown 
numbers followed by two interactive examples (see Table 1 for an excerpt). The epistemic cognition 
modification was intended to activate epistemic aims and consisted of an open answer text-box that 
appeared after each of the twelve number estimates, prompting participants to “...reflect on the 
differences between your estimate and the true value. How does the true value change what you 
know about climate change or the way you think about climate change? Explain.” This prompt was 
intended to activate epistemic aims. 

 
Table 1. Sample Items from the EPIC Intervention and Modifications to the Intervention. 

Sample EPIC Items 

Source # of 
items 

Sample item Correct 
Answer 

Ranney & Clark 
(2016) 

6 What is the change in percentage of the world’s ocean ice cover 
since the 1960s? (units in %) 

40% 
Decrease 

Thacker (2020) 6 What was the average Arctic Sea ice thickness in 2008?  
Hint: Arctic ice thickness was 3.64 meters in 1980 

1.89 meters 

Excerpt from Numerical Estimation Strategies Modification 

Numbers that you already know can help you estimate numbers that you do not know. For example, if you know 
that about 300 pennies fit in a small, 8oz milk carton, you can use this information to estimate the number of 
pennies that fit in a larger container…   
When using benchmarks, you may want to round values to make mental computation easier. For example... 

Excerpt from Epistemic Cognition Instruction Modification 

...Please reflect on the differences between your estimate and the true value. How does the true value change what 
you know about climate change or the way you think about climate change? Explain. 

Results 
Preliminary analyses revealed no significant differences in pre-intervention knowledge between 

conditions (F = 1.54, p = .187). Skew ranged from -.78 to -.34 and kurtosis ranged from .01 to .36 for 
the revised knowledge measure though both failed the Shapiro-Wilk normality test (p < .001 for both 
pre- and post-knowledge), as such, both classic and robust analyses are presented. An initial omnibus 
test revealed significant differences between the five conditions when the seven-item knowledge 
score at post-test was used as the main outcome (F = 3.126, p = .0147). This finding was 
corroborated with nonparametric ANOVA analyses using a Kruskal-Wallis rank sum test (Kruskal-
Wallis Chi-squared = 17.18, df = 4, p = .001). Raw means and standard deviations by condition and 
overall for all variables are shown in Table 2. 
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Table 2. Descriptives by Condition for the Main Analytic Sample of N = 516 Undergraduate 
Students. 

  Min, 
Max 

Alph
a 

Full Sample 
(n=516) 

Control 
(n=103) 

EPIC 
(n=103) 

EPIC+EC 
(n=103) 

EPIC+EST 
(n=104) 

EPIC+EC+EST 
(n=103) 

     Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 
Knowledge 

(Pre) 
1, 5 .85 3.88 0.60 3.82 0.58 3.98 0.56 3.84 0.66 3.93 0.53 3.81 0.66 

Knowledge 
(Post) 

1, 5 .88 4.08 0.75 3.88 0.66 4.20 0.72 4.06 0.78 4.19 0.68 4.06 0.80 

Knowledge 
Gain 

(Post − Pre) -4, 4 na 0.20 0.57 0.06 0.42 0.22 0.50 0.22 0.73 0.26 0.49 0.25 0.65 
Active Open 
Mindedness 

5, 5 .70 4.84 0.86 4.74 0.81 5.03 0.89 4.83 0.83 4.83 0.89 4.78 0.85 

Mathematics 
Self-Efficacy 

1, 5 .94 3.27 0.87 3.31 0.97 3.20 0.81 3.33 0.83 3.24 0.86 3.29 0.87 

Mathematics 
Anxiety 

1, 5 .93 2.98 0.86 2.98 0.90 2.95 0.84 2.98 0.90 2.95 0.81 3.03 0.87 

Surprise (in 
Reaction to 
EPIC Items) 

1, 5 .82 2.83 0.73 NA NA 2.79 0.67 2.83 0.75 2.85 0.81 2.87 0.71 

 
Control versus all other conditions (RQ1). To address my first research question, I used contrasts 

to assess the knowledge of the control group compared with the combined average of the remaining 
four groups. A Welch’s two sample t-test revealed significant differences in mean post-intervention 
knowledge between control (M = 3.88) and EPIC conditions (M = 4.12, t = 3.23, p = .001, Cohen’s d 
= .33), as did Yuen’s method of trimmed means, bootstrapped T, and bootstrapped medians (all p < 
.009). In other words, students assigned to the EPIC conditions performed about one third of a 
standard deviation better on the seven-item knowledge posttest when compared with the control. 

Estimation intervention versus no estimation intervention (RQ2). To address my second 
research question, I first dropped the control from analysis to consider only the four EPIC conditions, 
and then used planned contrasts to compare those who were given estimation instruction with those 
who were not. A Welch’s two sample t-test revealed a marginally significant and positive impact of 
the estimation intervention on post-intervention knowledge (b = .09, SE = .05, p = .086). After 
adjusting for prior knowledge, nonparametric ANCOVA methods using a Thiel-Sen estimator 
revealed significant differences in post-intervention knowledge scores for those at the upper third 
(Difference = .31, 95% CI = 0.04-0.58) and fourth (Difference = .17, 95% CI = 0.08-0.27) of five 
evenly spaced points along the range of prior knowledge, a range that includes 67% of the analytic 
sample. In other words, the estimation intervention appeared to be effective in shifting knowledge for 
participants on the upper end of the prior knowledge range1. 

Epistemic cognition intervention versus no epistemic cognition intervention (RQ3). To answer 
my third research question, I again used contrasts to compare those who were given epistemic 
cognition prompts with those who were not after dropping the control from analysis. Contrasts 
                                                             
1 Pairwise comparisons using the Benjimani-Hochberg method revealed significant differences 
between post-intervention knowledge scores when comparing the control and unmodified EPIC 
intervention (p = .022, Cohen’s d = .46) and when comparing the control and EPIC supplemented 
with estimation strategy instruction (p = .026, Cohen’s d = .46). 
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revealed no significant differences on the revised knowledge scale at post-test, even after adjusting 
for prior knowledge. 

Tests for interactions (RQ4). To answer my fourth research question, I tested for main effects and 
interactions of the two modifications to the EPIC intervention. I first ran classic two-way ANOVAs 
followed by robust two-way ANOVAs using Johansen's heteroscedastic method for trimmed means 
(see Wilcox, 2017, Chapter 10). Both sets of tests revealed no significant main effects or 
interactions when post-intervention knowledge was the outcome. 

Mediating role of warm constructs (RQ5). To explore relations between prior knowledge, warm 
constructs, and post-intervention knowledge, I tested a hypothesized model inferred from Lombardi 
and his colleagues (2016; presented in Figure 1a.) using maximum likelihood estimation with robust 
(Huber-White) standard errors and a scaled Yuan-Bentler test statistic in R using Lavaan 0.6-3 
(Rosseel, 2012). The model resulted in acceptable fit at conventional levels (CFI = .99, TLI = .93, 
RMSEA = .077; Hu & Bentler, 1999). 

As expected, results revealed that warm constructs mediated relationships between prior- and post-
intervention learning outcomes (see Figure 1b for all coefficients). Notably, I found indirect effects 
of prior knowledge on post-test knowledge through active open-minded thinking (indirect effect = 
.059, p < .01). 
 

 
Figure 1a. Hypothesized model to address RQ5. 
Intercorrelations between warm constructs (surprise, 
mathematics anxiety, mathematics self-efficacy, and 
constructive epistemic dispositions) are included in 
the model but not shown in this figure. 

 
Figure 1b. Full path model. Only significant paths at the 
.05 level are shown. Intercorrelations between warm 
constructs were included in the model but not shown in this 
figure. Standard errors range between .010 and .132. 

Significance 
I sought to investigate whether the learning that occurs when people encounter novel statistics was 

enhanced with additional instruction on estimation strategies or prompts to activate epistemic aims. I 
found that students who learned from novel statistics performed about a third of a standard deviation 
better than a control group on a post-test of climate change knowledge, which is consistent with prior 
findings demonstrating the effectiveness of EPIC for climate change learning (e.g., Ranney & Clark, 
2016; Ranney et al., 2019).  

I also found that enhancing this intervention with numerical estimation instruction had a small but 
positive impact on students’ science learning; an effect that was concentrated among students in the 
upper range of the prior knowledge distribution. These findings provide emerging evidence that 
numerical estimation skills can be leveraged for improved scientific learning. Future research support 
students’ numerical estimation skills as applied to additional policy-relevant topics. 

Findings also revealed that prompts to activate epistemic aims had no detectable effect on 
undergraduate students learning. To date, efforts to design micro-interventions intended to shift 
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epistemic dispositions are only emerging. Only longer interventions spanning the duration of several 
weeks have yielded impacts on patterns of epistemic thinking (e.g., Lombardi et al., 2013; Chinn & 
Buckland, 2012). More research is needed to explore whether such an intervention is possible. 
Related to this, I found no significant interactions between intervention conditions, likely due to the 
very small and insignificant effects of the epistemic cognition intervention. With improved 
intervention design, future research might explore whether such an interaction might exist. 

Though the brief online intervention created for this study was not found to shift learners’ epistemic 
dispositions, learners’ baseline epistemic dispositions were shown to be important mediators of 
conceptual change processes. Namely, a path model revealed that epistemic, motivational, and 
affective constructs were important predictors of conceptual change outcomes, as predicted by the 
Plausibility Judgments for Conceptual Change model (Lombardi et al., 2016), and that epistemic 
dispositions significantly mediated relationships between pre-intervention knowledge and post-
intervention knowledge.  

Conclusions 
Findings from this study contribute to better understanding the extent to which individuals shift 

their conceptions about climate change based on just a handful of novel statistics and illuminate 
mechanisms that underlie such conceptual changes. Evidence that epistemic cognition, estimation 
skills, motivational, and emotional factors play a role in conceptual change provide empirical support 
for the Plausibility Judgments for Conceptual Change model (Lombardi et al., 2016). Findings also 
provide emerging evidence that mathematical knowledge can be leveraged for conceptual change 
regarding scientific topics. By creating and testing instructional interventions, this study also 
provides both mathematics and science instructors and those concerned with public understanding of 
science with a collection of strategies for better preparing people with skills to navigate the minefield 
of deceptive statistics found in today’s online news landscape. 
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The phenomenon of the sea level rise is a pressing environmental and social issue of the present age. 
Starting with the assumption that mathematics can be utilized to help students explore this 
phenomenon, we designed a simulation in NetLogo, in which students investigated the relationships 
between the quantities of temperature rise, height of future sea level, and total land area. In this 
paper, we present the analysis of a whole-class design experiment in a sixth-grade classroom and 
discuss how our design helped students to examine sea level rise as both an environmental and a 
social issue. 

Keywords: Social Justice, Interdisciplinary Studies, Technology, Mathematics for Sustainability 

In 2001, The Intergovernmental Panel on Climate Change (IPCC) projected that the global sea level 
would rise up to .88 meters by 2100, which was only .09 meters in 1900 (Raleigh, Jordan, & 
Salehyan, 2008). Sea level rise would not only cause inundation and displacement of wetlands and 
lowlands, coastal erosion, and flooding (Nicholls & Mimura, 1998), it would also bear a severe 
impact on people residing in low-lying coastal areas (Rowley, Kostelnick, Braaten, Li, & Meisel, 
2007) as these would be the first people to experience flooding. Further, damage of properties, loss of 
lives, and injuries caused due to increased sea level would disproportionately impact the poorer 
section of the society, who, despite being the least contributor to sea level rise, would be most 
vulnerable to its impact (Dodman & Satterthwaite, 2008). Lack of preparedness and financial 
limitation would make poor people more susceptible to the effects of sea level rise (Walker & 
Burningham, 2011). Hence, like any other climatic issue, sea level rise also qualifies as an issue of 
social injustice. 

Climate Issues and School Curriculum 
Research shows that the introduction of climatic issues in the school curriculum would help 

students as the future citizens to develop an awareness about and cultivate sensitivity towards the 
climate (Shepardson, Niyogi, Choi, & Charusombat, 2009). Mathematics education inarguably plays 
a significant role in the process. Mathematics literacy is not only necessary to identify the different 
traits that indicate climatic disruptions, but it also helps students to predict the future impacts of 
climate change (Barwell, 2013). Although school mathematics has traditionally modified itself and 
accommodated issues that marked the needs of the time, climatic phenomena have seldom been 
incorporated in mathematics textbooks or tasks (Renert, 2011). When Abtahi et. al. (2017) 
investigated Norwegian and Canadian mathematics teachers’ opinion regarding inclusion of climatic 
issues in mathematics classroom, they found that even though the teachers acknowledge their moral 
obligation towards educating students about climate, they indicate that the complexity of climatic 
issues, the lack of students’ mathematical and technical knowledge, and the lack of resources and 
time are some of the roadblocks towards implementation of climatic issues in mathematics 
classrooms. The study reported in this paper aimed to address those challenges by designing an 
interactive simulation and accompanying tasks and questioning that would help students explore the 
causes and consequences of sea level rise in a way that would make this complex phenomenon 
accessible to sixth grade students. Specifically, we report on how we assisted students to reason 
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covariationally about the quantities involved and how this reasoning helped students understand how 
their own city can be affected by the sea level rise. 

Design and Methods 
Most of the information about sea level rise in the news and public media is in the form of data and 

graphs. To support students’ interpretation of data and graphs, this study focused on students’ 
covariational reasoning about the quantities underlying the phenomenon. Covariational reasoning 
involves coordinating two quantities as the values of those quantities change (Confrey & Smith, 
1994). A student reasons covariationally when she envisions two quantities varying simultaneously 
(Thompson & Carlson, 2017). For instance, as air temperature increases, the height of sea level also 
increases. To support students’ understanding of the sea level rise, we designed an interactive 
simulation and a set of integrated activities that asked students to reason about the relationships of 
the quantities. 

We designed the Sea Level Rise simulation using NetLogo (Wilensky, 1999), a multi-agent 
programmable modeling environment. We hoped that the dynamic environment of NetLogo, together 
with its animated outputs and result plots, would provide students with a self-exploratory space to 
change and reverse change the values of different quantities, which is not always practical with 
physical manipulations. Four cities familiar to the students were selected and arranged vertically 
according to their elevations from the sea level (Figure 1). The user can drag the temperature rise 
slider to the left and right, manipulate its value, and observe the impact of the change on the height of 
sea level and total land area. The simulation was accompanied by a set of activities and discussion 
questions that we hoped would prompt students to reason about different covarying quantities and 
identify the environmental and social aspects of sea level rise. For example, questions such as “What 
would happen to Manhattan if height of future sea level doubles?” not only required students to focus 
on the covariational relationship between height of future sea level and elevation of Manhattan, but 
also to identify the consequences of sea level rise on lives of people living at lower elevation, such as 
Manhattan. 

 
Figure 1: Sea level rise simulation 

 
Our goal was to explore the ways that our design, which included engineering learning 

opportunities for students to reason covariationally, helped students to reason about sea level rise as 
an environmental and a social issue. More specifically, we examined the research question: How did 
our design help students develop an understanding of sea level rise as an environmental and a social 
issue?  
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This study took place in a public elementary school located in the North-Eastern part of the United 
States. We conducted a week-long design experiment (Cobb et. al., 2003) in a sixth-grade classroom 
containing 17 students. The teacher conducted the whole-class instruction and a research team 
member interacted with a small group of students. All the sessions were video recorded, transcribed, 
and coded using the software program Quirkos. In this paper, we focus on our interaction with a 
student named Ani to illustrate how our design helped students explore the phenomenon as an 
environmental and a social issue.  

Findings 
The Sea Level Rise simulation provided the students with a dynamic environment to drag the 

temperature rise slider and observe its impact on the height of sea level (Figure 2). For instance, 
when Ani was asked “What happens if I lower the temperature?,” he dragged the temperature rise 
slider to the left and said, “the lower the height of sea level.” 

  
Figure 2: Temperature rise increases, height of sea level increases, total land area decreases 

 
To prompt the students to reason numerically between the two covarying quantities, we asked them 

to graph the relationship between temperature rise and the height of future sea level. Students used 
the simulation to find the height of future sea level for different values of temperature rise and plotted 
the ordered pairs on a graph. When Ani was asked to explain the graph, he stated that the graph was 
“rising like super straight line” because “when temperature rises 0.5, it rises by 4 feet every time.” 
From his response it seems that Ani attributed the “straight” shape of the graph to the constant 
increase of height of future sea level for a uniform change of temperature rise. 

 
Figure 3: Ani’s graph showing the relationship between global temperature (horizontal axis?) and 

height of future sea level (vertical axis) 
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To help students identify the consequences of sea level rise in their own lives, we encouraged them 
to think about the impact of sea level rise on total land area. When we asked Ani to state what would 
happen to the total land area if the sea level rises, he responded, “the less land, the total land area is 
going to be less.” He further justified, “because the more higher the sea level is, it takes over land. 
So, instead of land over water, it will be under water.” Through his reasoning, Ani identified the 
direction of change between the height of sea level and total land area. The graphics of the simulation 
(Figure 2) were powerful in helping Ani coordinate the direction of change of the two quantities. We 
further prompted Ani to think and explain why an increasing temperature results in a rise of sea level 
and a reduction of land area. Ani thought briefly and said, “The higher the global temperature, the 
higher the sea level. Rising the global temperature, the ice caps in the Antarctica will melt which 
makes more water to go into the water and sea level rises, which means less land area.” Ani not only 
explicitly described the relationship between the three quantities but also identified melting ice caps 
in Antarctica as a consequence of increased temperature and a cause of the rising sea level. 

In the Sea Level Rise simulation, the inclusion of the names of places familiar to the students 
helped them identify the consequences of sea level rise in connection to their own lives. Students 
were relieved to find themselves located at a higher sea level, compared to their neighboring towns of 
Newark and Manhattan. They identified that if sea level rises, then that will “cause places like…low 
elevation like Newark go under water.” Students also expressed their anxiety about the lack of 
economic affluence of people to endure the impact of displacement caused by flooding. For example, 
during the small group conversation when we asked the students, “What is going to happen to our 
home (if sea level rises)?”, Ani replied, “It is gonna be destroyed, and we cannot rebuild it.” Further, 
he added that the situation would be different for rich people, since their homes would also be 
“Destroyed, but they can rebuild it.” Ani resonated the argument of Dodman and Satterthwaite 
(2008) that climatic threats, such as sea level rise and flooding are issues of social injustice since they 
bear down a disproportionate impact on the people belonging to different socio-economic strata. The 
students’ articulations “they can rebuild it” and “we cannot rebuild it” indicate that students 
recognized how low socioeconomic conditions of certain people limit their access to resources and 
opportunities to fight the impact of climatic disruption. 

Conclusion 
Consistent with Barwell’s (2013) assertion, this study illustrates that students’ mathematical 

reasoning provided them a platform to engage in a meaningful discussion around sea level rise. 
Students not only reasoned covariationally between rising air temperature, height of future sea level, 
and total land area, and examined the environmental aspect of sea level rise, they also explored the 
social aspect of the climatic phenomena. Students identified that economic disparity makes poor 
people more vulnerable to the risk associated with sea level rise (Dodman & Satterthwaite, 2008), 
while wealthy people possess both resources and financial stability to escape its impact. So, through 
this study we convey that incorporating climatic issues in mathematics classroom is complex, but it is 
high time that mathematics educators and researchers acknowledge their roles and responsibilities in 
empowering students mathematically and helping future citizens to become more sensitive towards 
the climate. 
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In a world that is in increasing demand for creativity, mathematics courses and programs need to 
shift from more routine and computational to more creative and problem-solving focused. We 
present preliminary results of a qualitative research study in which we examined students’ 
perceptions of mathematical creativity in an introduction-to-proofs course. We conducted interviews 
with students as well as collected their reflection assignments at the end of the semester. Using a 
definition of creativity from a relativistic perspective, we analyzed interview data to describe how 
students’ perspectives of mathematical creativity evolved throughout the semester and the sources of 
those shifts. Students shifted from previously not seeing themselves, others, or mathematics as 
creative, to believing they are creative. The sources found in the data are related to content and 
course design. 

Keywords: University Mathematics, Creativity, Affect, Emotion, Beliefs, and Attitudes 

Introduction 
Curriculum-standard documents, both in the United States and internationally, mention creativity as 

an important skill when learning mathematics (Askew, 2013). Additionally, creativity has become 
one of the most sought-after skills for academia and industry employers (World Economic Forum, 
2016). While the mathematical creativity literature at the K-12 level is well-developed, there remain 
few studies at the undergraduate level and fewer still that investigate students’ beliefs about 
creativity and its role in mathematics. In this qualitative study, we explored students’ perceptions of 
mathematical creativity and how they evolved over the semester of an introduction-to-proofs course. 
Furthermore, we examine the sources of these shifts as evidenced by the students’ own words.  

Theoretical Perspective  
As with many of our research projects on mathematical creativity (Tang et al., 2015; Savic, 

Karakok, Tang, El Turkey, & Naccarato, 2017), this study uses a developmental perspective of 
creativity (Kozbelt, Beghetto & Runco, 2010). This theoretical lens contends that creativity develops 
over time and emphasizes the role of the environment in the development of creativity.  Such an 
environment should provide students authentic mathematical tasks and opportunities to interact with 
others (Sriraman, 2005).  

We operationalize mathematical creativity as “a process of offering new solutions or insights that 
are unexpected for the student, with respect to their mathematical background or the problems 
[they’ve] seen before” (Savić et al., 2017; p.1419). This definition focuses on the process (Pelczer & 
Rodriguez, 2011) of creation, rather than the product that is created at the end of a process (Runco & 
Jaeger, 2012).  
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Background Literature 
Moore-Russo and Demler (2018) examined the perceptions of U.S. faculty and staff participants 

from gifted mathematics programs and found that, through counts of coding using several creativity 
frameworks, mathematical creativity in education was more of a process than “a subjective 
experience” (p.23). This particular orientation allows us to keep a dynamic view rather than a static 
one to capture nuances in the individual’s thinking. Furthermore, our definition takes a relativistic 
perspective—creativity relative to the student—in contrast to absolute creativity for the field of 
mathematics (Leikin, 2009). For example, Levenson (2013), using a similar viewpoint, focused on 
the discussion of ideas put forth by individual students and how these ideas helped in developing a 
product of collective mathematical creativity in fifth- and sixth-grade mathematics classrooms. 
Levenson also emphasized the teachers’ roles in facilitating these discussions.  

While there is literature on mathematicians’ and mathematics instructors’ perceptions on 
mathematical creativity (Borwein, Liljedahl & Zhai, 2014; Sriraman, 2009), research on students’ 
perceptions on mathematical creativity as well as classrooms that impact these perceptions has 
received less attention.  In one of our earlier studies, we examined university students’ and 
mathematicians’ definitions of mathematical creativity using three process categories: taking risks, 
making connections, and creating ideas (Tang, El Turkey, Savić, & Karakok, 2015). We found that 
students rarely associated making connections using different mathematical content with creativity 
compared to mathematicians (9% of students’ responses compared to 38% of mathematicians’ 
responses). This study alerted us to think about explicitly valuing and discussing the processes that 
are deemed to be important in developing mathematical creativity (El Turkey et al., 2018). In this 
paper, we explore the following research question: In what ways do students’ views on creativity 
evolve in an introduction-to-proofs course which explicitly valued mathematical creativity? 

Methods 
Data were collected in an introduction-to-proofs course at a small liberal arts college in the 

Southwestern United States. This course was taught using an inquiry-based learning (IBL) pedagogy 
(Laursen et al., 2014), where students often worked on proofs in small groups and gave presentations 
to the class on proofs constructed both in class and for homework. The instructor explicitly valued 
creativity by making use of the Creativity-in-Progress Rubric (CPR) on Proving (Savić et al., 2017; 
El Turkey et al., 2018), a formative assessment tool developed by the authors that students can use to 
persevere in proving and encourage creative processes. The rubric has two main categories: making 
connections and taking risks (see Author, 2017 for a more detailed discussion of the CPR on 
Proving). The instructor gave assignments and exam questions where students had to use the rubric 
to assess their own or other’s work.  

At the end of the semester, 4 female and 3 male students agreed to be interviewed and participated 
in 60 to 90-minute semi-structured interviews. During the interview, students were asked to describe 
the course, discuss their views on creativity, and discuss the use of the CPR in the course. As part of 
a larger study, interviews were coded using hypothesis coding (Saldaña, 2013) with five categories, 
one of which being creativity. This is the coding category we focus on for this report. Three of the 
seven participants’ transcripts were coded separately by the first and second author with 97% 
agreement. Because of this high degree of inter-rater reliability, the remaining transcripts were coded 
by only the first author. 

Results  
From three of the students interviewed (all of whom identified as female), an explicit shift in the 

way they thought about creativity or how they viewed themselves as creative people was reported. 
The students that reported an evolution in perspective on creativity were able to ascribe this to one of 



Sources of evolution of university students’ views on mathematical creativity 

	 1071	

two sources: mathematical content and course design. In what follows, we show a sampling of 
student quotes where they indicate a shift in perspective and ascribe a reason to this change. 

For instance, Stephanie (all names reported are self-chosen pseudonyms) spoke about content with 
respect to learning new tools to work with.  That is, she feels that having a larger mathematical 
toolbox allows one to be more creative when proving or problem solving. 

I think I started to look at creativity a little bit different through this course...Prior to this it’s 
been all very applied mathematics...So before, just using the trig equations to solve geometry 
was creative for me. Whereas now, this has just opened up a whole new door of 
opportunities for it because I can solve a proof using a contradiction, while somebody else 
used a contrapositive and somebody else used a direct proof and somebody else used 
induction, and we all do it completely different. 

Whereas, Olivia attributed her shift to the social structure of the course.  As the course included 
collaboration and presentation, Olivia reported that the environment was conducive for growth and 
students were able to see each other’s creativity and began to feel more creative as the semester 
progressed. 

We kind of all went in with kind of not really feeling confident in our abilities to be creative, 
so it was really interesting to see students that were quiet, reserved early on like show their 
work later in the semester and they had done something like totally cool and amazing...So, I 
feel you know their ability, like their confidence levels went up and I could say that’s true of 
me as well. So, I wanna say that it’s, you know it wasn’t that like all the creative people took 
this course because I didn’t consider myself creative and I took the course, and I would say 
that that’s probably true of other students as well. 

In a later part of her interview, Stephanie echoed Olivia’s comment almost exactly with her 
assessment of the course culture and its contribution to everyone’s creativity. 

At the beginning of the semester, I think a lot of people in that class were very shy and quiet, 
and so it was kind of hard to judge where their creativity was because they weren’t sharing it 
as much. Um, by the end of the course you had everybody speaking, you had everybody 
giving their opinions and how to work on things together, and you saw everyone grow. You 
saw everyone coming up with their own tools and tricks. And everyone was posing 
questions, not just the few of us that were outspoken to begin with. So, you definitely saw 
growth in the class, um not only with the shyness but with the creativity and coming up with 
their own ideas to change things and make them better. 

The IBL practices of the course required students to present their work to each other.  The instructor 
also especially encouraged multiple presentations on the same problem if different students 
approached the problem using different methods. Two of the interviewees spoke directly to this 
aspect of the course design as contributing to their own creativity. That is, this shift seems to be a 
result of seeing others’ work as creative and reflecting it back on themselves. For instance, Peyton 
said: 

I really, I really did not feel like I was being creative at all throughout the course. It really was just 
things in my head, it makes sense that led to a conclusion that made sense. But, considering that I 
thought other people were exceptionally creative, I kind of thought that maybe they though that 
about me too. 

In fact, Peyton had perhaps the starkest change in her beliefs on mathematical creativity and in 
seeing herself as a creative person. The following excerpt shows that Peyton started the semester 
believing that mathematics was not a creative subject and ended with a completely opposite 
viewpoint. 
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Interviewer: And in your reflections you said…‘I think I am on the spectrum that generally believes 
that, believes there is no need for creativity in mathematics. That’s been a key reason why I enjoy 
math. I know, I know if I get the answer then I have done it correct. There is a set process and if I 
learn the process then…I’ll be successful’. So, do you wanna comment on that part? 

Peyton: I…should have made that more in the past tense, because I believed that prior to taking this 
course…There has been, you can figure out problems and it’s creative in the sense that you can 
figure out how, where you wanna start with the problem. But I like being able to know that if I 
am doing it correctly, the process correctly, then I will get to the answer… I enjoy knowing when 
I’m gonna do something correctly as opposed to just spending a lot of time and then not even 
knowing if it’s gonna yield good results. But this course changed that quite a bit, because there 
really was no assurance that anything would be correct, but it still… required me to use different 
thought processes to get to a result hoping for the best, which was stressful to say the least, but 
still, it was fun. 

Discussion 
These three females explicitly acknowledged that their previous perceptions of not seeing 

themselves, others or mathematics as creative shifted to thinking they or mathematics are creative. 
We found two main sources of these shifts a) content - having more mathematical tools to work with, 
b) course design - developing a mathematical community that allows students to see each other’s 
creative work with opportunities to reflect and connect back to their own work. Thus, for these 
students, content and course design seem to be important sources in shifting students’ perceptions of 
themselves, others, or mathematics as creative. 

Furthermore, although Stephanie does not explicitly mention the CPR on Proving, she mentions two 
of the subcategories “Tools and Tricks” and “Posing Questions”. By using the CPR on Proving, it is 
evident that this particular instructor’s course design and teacher actions aimed to explicitly value 
and foster students’ mathematical creativity. This facilitated the evolution of students’ perspectives 
on mathematical creativity. The connection between course design, teachers’ actions, and changing 
students’ perspectives on mathematical creativity requires additional exploration and our future work 
aims to examine this connection in detail and catalog specific creativity-fostering teacher actions.  In 
particular, we wish to determine not only which teacher actions are more fruitful to afford such 
changes, but also what other course design features can contribute to shifts in student appreciation of 
mathematical creativity and fostering of creative behavior in the classroom. 
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LEARNING TO POSE PROBLEMS WITHIN DYNAMIC GEOMETRY ENVIRONMENTS: 
A SELF STUDY INVOLVING VARIGNON’S PROBLEM 

José N. Contreras 
Ball State University 
jncontrerasf@bsu.edu 

This paper reports my second experience on my trajectory to learn how to pose mathematical 
problems within Dynamic Geometry Environments. I used The Geometer’s Sketchpad and 
mathematical reasoning as tools to verify the plausibility and reasonability of each new problem 
situation. Using a problem-posing framework that I had developed during my first problem-posing 
experience within dynamic geometry environments, and subsequently refined and enriched with 
subsequent tasks, I was able to generate a diversity of problems by modifying the attributes of 
Varignon’s problem. Among the problems generated were special problems, general problems, 
extended problems, further extended problems, converse problems, and proof problems. Examples of 
each of these types of problems are provided. 

Keywords: Problem posing, problem solving, teacher educators, technology  

Engaging in problem-posing tasks is recognized by mathematicians (e.g., Halmos, 1980; Polya, 
1945/1973), mathematics educators (Brown & Walter, 1983, 1993; Kilpatrick, 1987; Silver, 1994, 
2013), and professional organizations (Australian Education Council, 1991; National Council of 
Teacher of Mathematics [NCTM], 1989, 1991, 2000) as a worthwhile mathematical activity. 
According to Halmos (1980), the heart, the essence, of mathematics consists of problems. NCTM 
(1991), on the other hand, calls for all students to “be given opportunities to formulate problems from 
given situations and create new problems by modifying the conditions of a given problem” (p. 95). 

Purpose of the Study 
Problem posing continues to receive increased attention from curricular, pedagogical, and research 

perspectives as attested by the recent publications of two books: Mathematical problem posing: 
From research to effective practice (Singer, Ellerton, & Cai, 2015) and Posing and solving 
mathematical problems: Advances and new perspectives (Felmer, Pehkonen, & Kilpatrick (2016). 
Initially, most research focused on understanding and documenting students’ abilities to pose 
mathematical problems (Ellerton, 1986a, 1986b, 1988; English, 1996, 1997, 1998, 2003; Silver & 
Cai, 1996). If teachers and prospective teachers are to engage their students in problem-posing 
activities, it is important that they have experiences in problem generation.  To help students to 
enhance their problem-posing abilities, research also examined teachers’ approaches to pose 
mathematical problems (Author, 1998; Crespo, 2003; Ellerton, 2013; Engström & Lingefjärd, 2007; 
Lavy & Shriki, 2010; Silver et al. 1996). However, as noticed by Beswick and Goos (2018) and 
Castro Superfine and Li (2014), mathematics teacher educator knowledge has received limited 
attention. 

While numerous studies on problem posing have investigated both students and teachers’ abilities to 
pose problems, little research has been done on mathematics teachers educators’ abilities to pose 
mathematical problems.  I extend this research on problem posing by focusing on myself as teacher 
educator, a teacher of teachers. As noted by Suazo-Flores et al. (2019), qualitative methodologies 
such as narrative inquiry, self-study, and autoethnography have increasingly becoming modes of 
inquiry in mathematics teacher education research. 

The purpose of this paper is to describe the types of problem that I have generated by modifying the 
conditions of Varignon’s problem. To understand how I came to pose the problems, I present a brief 
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story of my experiences with a problem-posing framework and how it enhanced my abilities to pose 
mathematics problems with the support of The Geometer’s Sketchpad (GSP). 

Perspectives on Mathematical Problem Posing 
Problem posing tasks involve both the generation of new problems aimed at exploring and 

examining a given situation, as well as the reformulation of given problems (Silver, 1994). As noted 
by Silver (1994), problem posing can occur before, during, and after solving a given problem. 

When we are trying to solve a challenging problem, a strategy is to reformulate the problem into an 
equivalent problem to make it more accessible. For example, we could reformulate a geometric 
problem in terms of algebra. A second way to reformulate a problem is to “think of a related, more 
accessible problem” (Polya, 1945/1973).  

Problem posing can also occur before and after problem solving. It can occur before problem 
solving when the goal of the task is not to solve a mathematical problem, but to simply create new 
mathematical problems. It can occur after solving a problem as we examine the problem and pose 
follow-up questions or problems, a stage in the problem-solving process coined “looking back” by 
Polya. Brown and Walter (1983, 1993, 2004) have reported extensively about this type of problem 
posing by applying what they call the “What-if?” and “What-if-not” strategies in which problem 
conditions and constrains are changed.  

While solving problem is recognized almost universally as an important mathematical, curricular, 
and pedagogical activity, problem posing is not, as evidenced by research examining opportunities to 
pose problems afforded by textbooks (Cai & Jiang, 2016; Cai, Jiang, Hwang, Nie, & Hu, 2016). 

Methods of Inquiry 
As stated by Pinnegar (1998), self-study is a “methodology for studying professional practice 

settings” (p. 33). LaBoskey (2004) adds that ‘the aim for teacher educators engaged in self-study is to 
better understand, facilitate, and articulate the teaching-learning process” (p. 857). To illuminate the 
process of learning to pose mathematical problems, I decided to conduct a self-study research of how 
I came to learn to pose mathematical problems within dynamic geometry environments. 
My Background 

I was a high school mathematics teacher for 7 years at a state University in Mexico. After 
completing a bachelor’s degree in Mathematics with a minor in mathematics teaching, I came to the 
USA and completed a Master’s degree and a Ph. D degree in mathematics education. I have about 24 
years of teaching experience at the University level. Currently, I teach content and methods courses 
at the undergraduate and graduate levels, mostly for prospective and practicing teachers. 

First encounter with the concept of mathematical problem as the essence of mathematics. As 
undergraduate, I did not realize the importance of problems for mathematics. I conceived 
mathematics mainly as a well-integrated body of knowledge involving concepts and procedures 
connected through theorems whose proofs revealed explicitly the connections. As part of an 
assignment in one on my methods courses, I read Halmos’s (1980) article The Heart of Mathematics 
where he argues that “the heart of mathematics consists of problems”. Halmos concludes his article 
with a call to all instructors that they should “train our students to be better problem-posers” (p. 524). 
However, I did not interiorize nor appreciate the importance of the idea of learning how to pose 
problems. 

First explicit encounter with the concept of posing problems. As a graduate student, I was one 
day perusing some books at the library when I encountered by chance Brown & Walter’s (1983) The 
art of problem posing. The title of the book intrigued and intimidated me. It intrigued me because it 
seemed like a book from which I could learn how to pose problems. It intimidated me because 
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learning how to pose problems seemed more like an art, and I did not see myself as a creative person. 
I left the book where it was and I did not think for a longtime of learning how to enhance my abilities 
to pose mathematical problems. 

First experience on posing problems within dynamic geometric environments. The first 
problem-posing experience within dynamic geometry environments that I had was with the following 
problem: Prove that the angle bisectors of the angles of a parallelogram form a rectangle 
(Landaverde, 1970, p. 85). As a result of this experience and other experiences posing problems 
without the use of technology, I developed the problem-posing framework displayed in Figure 1 
(Contreras & Martínez-Cruz, 2003). Notice that the base problem is the initial given problem whose 
attributes are to be modified to pose new related problems.  

The base problem. I used as base problem the well-known Varignon problem. Typically, the 
Varignon problem is stated as a theorem (The midpoints of a quadrilateral are the vertices of a 
parallelogram). I consider this theorem as a mathematical situation within an implicit problem that 
we can reformulate as a proof problem or as a more open-ended problem. My version of Varignon’ 
problem is as follows: Let E, F, G, and H be the midpoints of the consecutive sides of a 
parallelogram ABCD. What type of quadrilateral is EFGH? 

 
Figure 1: A Problem-Posing Framework 

Analysis and Results 
Using the problem-posing framework, I posed a diversity of problems that after analysis I classified 

as special problems, converse problems, extended problems, prove problems, and further extended 
problems. Typical problems of each of these types are displayed in Table 1.  

 
Table 1: Examples of problems generated using the problem-posing framework 

 
Type of problem 

 
Problem 

Special and proof problem  If E, F, G, and H are the midpoints of the consecutive sides of a rhombus 
ABCD, prove that EFGH is a rectangle.  

  Proof 
Problem

Converse
 Problem 

General 
Problem

Extended 
 Problem

Special 
Problem

Base Problem

Mathematical 
    Situation
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Converse problem of a 
special problem  

E, F, G, and H are the midpoints of the consecutive sides of a 
quadrilateral ABCD. If EFGH is a rectangle, what type of quadrilateral 
is ABCD? 

 
Converse problem of a 
general problem  

If E, F, G, and H are the midpoints of the consecutive sides of a 
quadrilateral ABCD. If EFGH is a parallelogram, what sort of 
quadrilateral is EFGH? 

 
Extended problem 
 

ABC is a triangle. Characterize quadrilateral BDEF where D, E, and F 
are the midpoints of the sides BC, CA, and AB, respectively. (Extended 
problem to a triangle, which is a degenerate case of a quadrilateral) 

Extended and proof 
problem 

Prove that the medial quadrilateral of a kite is a rectangle. 

 
Further extended and proof 
problem  

Prove that the points of intersection of the angle bisectors of the 
consecutive interior angles of a parallelogram ABCD are the vertices of 
a rectangle. 

 
Further extended problem  

I, J, K, and L are the points of intersection of the sides of a 
parallelogram ABCD with the interior angle bisectors. What sort of 
quadrilateral is IJKL? 

Conclusion 
Researchers (e.g., Crespo, 2003; Crespo & Sinclair, 2008; Nicol, 1999; Silver at al., 1996) report 

that students, teachers, and prospective teachers typically generate problems that are “predictable, 
undemanding, ill-formulated, and unsolvable” (Crespo & Sinclair, 2008). While there is some degree 
of predictability on the types of problems suggested by the problem-posing framework, I used a 
diversity of language to make them more interesting. I believe that I created a diversity of well-posed 
problems, each of which is a good and interesting problem because each one opens the mathematics 
involved or required by the problem (Crespo & Sinclair, 2008). In addition, I used mathematical 
reasoning and conceptual understanding to generate each problem. The plausibility of each problem 
was supported with GSP, but I went beyond exploring each problem with GSP and I provide a 
mathematical solution. In summary, I was actively engaged in the authentic process of doing 
mathematics. I have made public my second experience in posing mathematical problems within 
dynamic geometry environments to challenge other mathematics educators to test the problem-posing 
framework in other appropriate mathematical contexts. 
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Teachers’ noticing of key aspects of instruction is an important skill for learning from and improving 
their teaching because noticing enables the opportunity for change. We investigated what teachers 
notice in short video clips of a real classroom teacher’s interaction with students around a 
mathematics problem by conducting the largest survey study on teacher noticing to date. According 
to our analysis of data collected from 496 fourth- and fifth-grade teachers from 48 states, the key 
issues that were vital to improving teaching and students’ learning caught the attention of only 
13.7% of teachers. However, 67.5% of the teachers focused on interpreting issues around content-
specific teaching and learning, and 17.7% paid attention to general issues, such as the classroom 
climate.  

Keywords: Mathematical Knowledge for Teaching, Teacher Knowledge 

Teacher noticing, or the act of observing and interpreting classroom events (e.g., Sherin & van Es 
2009), influences the likelihood for desirable teacher actions such as responding to student mistakes 
and making a variety of other pedagogical choices. Yet, the act of noticing classroom events that are 
pedagogically relevant for improving teaching and advancing students’ thinking is not a simple skill. 
During any second of classroom instruction, teachers are inundated with numerous inputs (e.g., each 
individual student’s attention, students’ reaction to given tasks, or the impact of his/her choice of 
sequencing of activities on students’ thinking), requiring teachers to be selective in their noticing. 
Research demonstrates that teachers’ noticing of classroom events is widespread; aspects of the 
classroom that capture teachers’ attention include classroom climate, students’ math thinking, and the 
organization of the classroom (e.g., Sherin & van Es, 2009). Furthermore, when teachers attend to 
one particular classroom occurrence, they are consciously or unconsciously missing other events 
occurring in the classroom. Effective teaching thus relies in part on noticing and attending to the 
most pedagogically relevant aspects of the class and filtering out other aspects (Sherin, Russ, & 
Colestock, 2011). 

Researchers acknowledge the importance of noticing for teaching expertise and have conducted 
explorations of teacher noticing skills that made significant contributions to the field. Yet studies on 
teacher noticing to date also have certain limitations, namely that they are conducted with limited 
numbers of teachers, with teachers who were attending a professional development program targeting 
their noticing skills, or with teachers from only certain school districts (e.g., Jacobs, Lamb, & Phillip, 
2010; van Es, 2011). Our current understanding of mathematics teacher noticing is thus informed in 
large part by research settings that involved prompts and facilitators guiding teachers to attend to 
certain aspects of classroom events and samples that limit generalizability. We argue that an analysis 
investigating what teachers across the United States notice independent of a professional 
development setting or teacher education program seeking to improve their noticing skills is needed 
to better understand the overall trend in teachers’ noticing skills. This analysis will advance not only 
our general understanding of teachers’ noticing, but also our preparedness to help teachers improve 
their noticing skills to develop more effective teaching.  

Objectives 
The present study is the first large-scale analysis of mathematics teachers’ noticing. Fourth- and 

fifth-grade teachers (N = 496) watched four short videos of classroom mathematics instruction that 
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targeted fraction concepts. The instruction was aligned with the upper elementary mathematics 
standards (National Governors Association and Council of Chief School Officers, 2010). We 
consider certain types of noticing to be more beneficial for teachers to make changes to their content-
specific pedagogical practices. As such, we intentionally selected videos that showed instructionally 
problematic teaching moments and/or students’ confusion around the targeted mathematical content. 
Our aim was to investigate whether these key moments would attract teachers’ attention compared 
with other generic issues. Although we did not direct teachers’ attention to these specific particular 
issues, we specifically asked them to report what they noticed around the mathematical content. 
Again, our rationale was that teachers cannot make content-specific pedagogical decisions if they 
cannot notice these issues. Building on prior work on teachers’ noticing (van Es & Sherin, 2008), we 
aimed to explore the following research questions: 

1. What overall topics of the classroom instruction presented in the video clips caught the 
teachers’ attention? What levels of analysis did teachers’ noticing entail?  

2. What subtopics of the classroom instruction at each level of analysis did teachers notice?  

Methods 
This study used data from 496 fourth- and fifth-grade teachers. The teachers completed an online 

mathematics teaching survey that included four videos of classroom instruction from Kersting and 
colleagues developed to capture teachers’ useable knowledge (2008, 2010, 2012). For each of the 
four videos, teachers were asked, “Please list the three most significant things that you notice 
regarding how the teacher and the students in the clip interacted around the targeted mathematical 
content.” The videos were presented in a random order for each participant. For our analysis, we 
include teachers who provided responses to at least one of the videos.  
Analysis 

We developed a 4-point rubric to evaluate the depth and topics of teachers’ responses. Our goals 
were to differentiate between teachers’ surface-level noticing and more sophisticated noticing, and 
also to identify responses focused on content-specific teaching and learning-related issues that 
limited students’ understanding of the concepts in the videos. Thus, we created our rubric to 
distinguish among purely descriptive responses, analytical responses, and responses that focused on 
the problematic content-specific issues in each video. We also coded a subsample of responses to 
ensure that our rubric captured qualitative differences in teachers’ responses. An important 
distinction between our rubric and those used in prior studies is that we consider both content and 
depth of analysis within single codes, whereas other rubrics use separate codes to capture content and 
stance of analysis (e.g., Sherin & van Es, 2009) 

In our rubric, Level 1 responses did not include mathematics-specific events (e.g., describing 
seating arrangements, describing the teacher’s tone of voice); Level 2 responses focused on content-
specific aspects that were either purely descriptive or that contained a binary judgment (e.g., restating 
the problem, stating that the lesson was good); Level 3 responses analyzed some aspect of students’ 
mathematical thinking or the teacher’s mathematics pedagogy (e.g., noticing that the students were 
confused, interpreting why the teacher chose to use a strategy); Level 4 responses included responses 
that focused on the problematic issues related to students’ mathematical understanding or teachers’ 
mathematical instructional practices.  

Our rubric also captured the topics of teachers’ noticing responses. Adapting the methods of van Es 
and Sherin (2008), we differentiated among responses related to three topic categories: the 
mathematics pedagogy code identified responses that focused on teaching actions and strategies, such 
as the use of manipulatives or questioning techniques; the mathematical thinking code identified 
responses that focused on students’ thinking and ideas; and the general code identified responses that 
were not related to the mathematical content.  
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After we finalized our rubric and gained confidence in using the rubric to reliably code responses, 
we coded the remaining responses by rotating the order and combination of the responses to the 
videos. Interrater reliability as measured by exact agreement was 95.3% for Noticing Levels and 
95.9% for the Noticing topics. Furthermore, coefficient kappa was .927 and .909 for noticing levels 
and noticing topics. Teachers’ responses were scored with a high degree of consistency.  

Results 
On the basis of our analysis of 5,382 responses, the vast majority of responses (72%) were related to 

pedagogical content, such as the actions, choices, or strategies the teacher used during the lesson (see 
Figure 1). 13.2% of the responses were focused on students’ mathematical thinking, and 14% of the 
responses were about the general classroom climate and environment not specific to mathematics.1 In 
terms of the depth of teachers’ analysis of classroom events, we found that 14.8% of the responses 
had no focus on mathematics and 33% were purely descriptive (i.e., they did not indicate any 
analysis or interpretation; see Figure 2). Nearly half of all the responses (47.79%) included some 
level of analytical thinking about students’ learning and teachers’ pedagogical choices around the 
mathematics content but did not identify the key mathematical ideas related to the problematic 
mathematics content. Only about 6% of responses included an analysis of key mathematical issues 
around either the teachers’ pedagogical choices, students’ understanding, or both. 

 
Figure 1. Percentages of overall noticing topics across 5,382 responses. MP = mathematics 

pedagogy; MT = mathematical thinking of students; G = general. Figure 2. Percentages of noticing 
depth levels across 5,382 teacher responses. 

 
Aspects of Mathematics Classroom Events Teachers Noticed at Level 1 and Level 2 

Level 1. Level 1 of our rubric contained responses that did mention mathematics but merely in a 
descriptive or evaluative way (e.g., “good” or “important” or “difficult”), without any analysis. The 
vast majority of Level 1 responses (91.4%) focused on teaching-related issues, such as the 
instructional tools and questioning strategies the teacher used. Among those responses focusing on 
content-specific pedagogical issues, almost one-third of the responses (30%) mentioned the use of 
manipulatives, visuals, or hands-on materials (e.g., “The students were working with manipulatives;” 
“I like that they used the pie fraction pieces”).  

Level 2. Level 2 responses included analytical or interpretive statements about the mathematics 
content in the video, but they did not identify the problematic mathematics content. At Level 2, 

                                                             
1Recall that teachers were asked to list three things they noticed. Some listed two and gave no answer for the third 
one. We assigned the “no answer” responses a score of 0, and we include these responses in the “general” noticing 
category.  
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79.8% of responses focused on content-specific pedagogical issues, whereas 20.2% focused on 
students’ mathematical thinking.  

Among the issues related to students’ mathematical thinking, the majority of responses (74.6%) 
focused on what students seemed to understand or were struggling to understand (“Students are 
manipulating the pieces, but I can’t tell if they are truly understanding the concept;” “The kids don’t 
seem to have an understanding of parts to whole”). In relation to how students engaged with the 
problem (“The student used trial and error to find the correct fraction pieces to use;” “I noticed 
students were engaged in the lesson with the chips and did not seem to give up in understanding in 
solving the problem”), 8.5% of the responses focused on students’ readiness to deal with the given 
concept or problem (“Her work with one student seemed effective, but I don’t think the whole class 
was ready to tackle this problem;” “The students obviously had background knowledge on how to 
solve these problems”). 

Discussion 
The concept of teacher noticing has important implications for student learning, research and 

teacher education because teachers do not address events that do not catch their attention. The 
majority of prior work on mathematics teacher noticing has been conducted with teachers in a 
program aiming to improve teachers’ noticing skills; thus, the present study is unique by 
investigating trends in what a national sample of fourth- and fifth-grade mathematics teachers noticed 
independent of professional development or teacher education programs.  

In alignment with prior work, our study indicated that pedagogical topics caught teachers’ attention 
more often than any other topic (e.g., Sherin & van Es, 2009). In fact, more than two-thirds of 
teachers noticed content-specific pedagogical topics in each video; however, one-third of the teachers 
did not report anything on students’ mathematical thinking.  

Our study contributed to the current understanding of noticing in that teachers analyzed pedagogical 
strategies in greater depth, and their analyses targeted a wide range of pedagogical strategies. In 
contrast, teachers’ analysis of students’ mathematical thinking seemed limited. As scholars in several 
studies have noted, attending to and interpreting students’ thinking is an important aspect of quality 
teaching (e.g., Ball & Cohen, 1999; Jacobs et al., 2010) and one that contributes to students’ learning 
(Carpenter, Fennema, Peterson, Chiang, & Loef, 1989). Thus, teachers’ lack of attention to students’ 
mathematical thinking may indicate a lack of attention to their own students’ thinking. Therefore, 
teachers may need more targeted interventions to learn to focus on students and how they analyze 
students’ thinking.  
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This paper characterizes the way three preservice mathematics teachers (PSTs) understand and 
quantify the rate of change as they model the link between carbon dioxide (CO2) pollution and global 
warming. I also discuss what PSTs learned about the concept of forcing by CO2, a key metric of 
global warming. The PSTs completed a mathematical task during an individual, task-based 
interview. The study revealed three levels of understanding of the rate of change in relation to 
quantitative operations (comparison versus coordination), graphing activity (pointwise versus 
smooth and continuous), and concavity (discovering versus anticipating). Depending on their level of 
understanding, PSTs could imagine the rate of change changing discretely or continuously with 
respect to an independent variable. PSTs also learn four central ideas regarding the forcing by CO2 
as a result of working on the task. 

Keywords: Cognition, Modeling, STEM/STEAM, Teacher Education - Preservice 

Introduction 
Climate change is a pressing issue for this century with potentially irreversible and disastrous 

consequences for social and natural systems (Intergovernmental Panel on Climate Change [IPCC], 
2013). The United Nations has called for incorporating climate change education in schools 
(Anderson, 2012; Global Education Monitoring [GEM], 2016). Since students have different 
interests and learning abilities, teachers from all disciplines can contribute to climate change 
education (McKeown & Hopkins, 2010). Mathematics teachers can play a central role in this 
endeavor since mathematical modeling represents a promising approach for connecting mathematical 
learning and climate change education (González, 2018, 2019; Barwell & Suurtamm, 2011; Barwell, 
2013a, 2013b). Teachers, however, need to be prepared for the challenge, which requires teacher 
education programs to prepare preservice mathematics teachers (PSTs) for incorporating climate 
change into their instruction. 

Lambert and Bleicher (2013) have identified two key concepts from climate sciences that preservice 
science teachers need to learn about in order to understand climate change: (a) the Earth’s energy 
balance, and (b) the link between carbon dioxide (CO2) pollution and global warming. It is 
reasonable to extend this premise to PSTs since they are less familiar with concepts from climate 
science than preservice science teachers. Therefore, a starting point may involve studying the energy 
balance and the link between CO2 and global warming as dynamic situations where two (or more) 
variables change together (covariation). In this paper, I characterize, from a covariational reasoning 
perspective, the way three PSTs think about the rate of change as they model the link between CO2 
pollution and global warming. I also discuss what PSTs learned about the concept of Forcing by 
CO2, a key metric for assessing the impact of CO2 pollution on global warming. 

Conceptual Framework 
Covariational reasoning refers to “the cognitive activities involved in coordinating two varying 

quantities while attending to the ways in which they change in relation to each other” (Carlson, 
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Jacobs, Coe, Larsen, & Hsu, 2002, p. 354). Johnson (2015) distinguished two categories of 
quantitative operations that students use when reasoning about covariation and rate of change: 
operations of comparison (QO-Comp) and operations of coordination (QO-Coord). QO-Comp 
involves conceiving a quantity’s variation in chunks and produces associations of amounts of change 
between covarying quantities. The amounts of change in y are compared for (not necessarily equal) 
amounts of change in x in order to make viable claims about the rate of change. QO-Coord involved 
conceiving a quantity’s variation smoothly and produces relationships between covarying quantities. 
The relationships are coordinated through division to create a new quantity measuring degrees of 
change that supports accurate claims about the rate of change. Carlson and colleagues’ concept of 
covariational reasoning and Johnson’s (2015) QO-Comp and QO-Coord informed the discussion 
about the ways PSTs understood and quantified the rate of change. 

Methodology 
This paper is part of a larger study that investigated how PSTs make sense of simple mathematical 

models of climate change. Three secondary PSTs ⎯hereafter Jodi, Pam, and Kris⎯ enrolled in a 
mathematics education program at a large Southeastern university in the United States participated in 
that larger study. Here, I focus on their responses to one task of the larger study: the Forcing by CO2 
Task. 
The Forcing by CO2 Task 

The Erath’s energy balance accounts for all heat flows (in Joules per second per square meters, or 
Js−

1m−
2) that there exit in the continuous heat exchange between the sun, the planet’s surface, and the 

atmosphere (Figure 1a). The sun warms up the planet’s surface at an approximately constant heat 
flow S. As the surface heats up, it radiates heat to the atmosphere (R). A small fraction of it escapes 
to space (L), but the majority (B) is absorbed by greenhouse gases (GHG) in the atmosphere. The 
atmosphere then re-radiates a fraction of the absorbed heat back to the surface (A), further increasing 
its temperature. The heat flow A represents the magnitude of the greenhouse effect, which enhances 
the planet’s mean surface temperature. The energy balance shows that changes in the concentration 
of GHG result in changes in the planet’s mean surface temperature. The Fording by CO2 Task 
(Figure 1b) focuses on carbon dioxide (CO2) because it is a key driver of global warming, as human 
activity produces large amounts of it by burning fossil fuels (IPCC, 2013). 

The task defines the forcing by CO2 as F = (S + A) – R, which is a measure of the warming effect 
over the planet’s surface produced by an instantaneous increase in the atmospheric CO2 
concentration, C, (in parts per million, or ppm). If C increases, then the atmosphere can absorb more 
heat and, consequently, can radiate more heat towards the surface (A increases). Thus, as C increases, 
so does F, but 𝑙𝑖𝑚!→! 𝐹 𝐶 = 45 since S and R remain constant, which puts a cap on the growth of 
A and, consequently, on the growth of F. This suggests that F increases asymptotically towards 45 
Js−

1m−
2 as C increases, producing an increasing, concave-downward graph. 

Data Collection 
Each PST completed the task during an 80-minute long, individual, task-based interview (Goldin, 

2000). The interview followed a semi-structured format and was video recorded and transcribed for 
analysis. I started the interview by showing each PST a 7-minute long video introducing the concepts 
of energy balance and greenhouse effect. After the video, the PST and I had a Q&A session in which 
I summarized the central ideas regarding the energy balance and the greenhouse effect and clarified 
any questions they may have had about those ideas. The video and Q&A session were meant to 
provide PSTs with a basic knowledge regarding the energy balance and the greenhouse effect so that 
they could start working on the task. 
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Figure 1. (a) the Earth Energy Balance (Left) and (b) the Forcing by CO2 Task (Right). 

 
Once the Q&A session ended, PSTs were given the Forcing by CO2 Task along with a diagram of 

the energy balance (Figure 1a). The interview had four distinct parts. First, PSTs were asked to think 
about how F changes as C increases by examining the diagram of the energy balance. The diagram 
had no values for the heat flows to encourage PSTs to imagine changes happening dynamically. 
When PSTs experienced difficulties, I gave them initial values for the heat flows so that they could 
find F-values by using the given definition F = (S + A) – R. Second, PSTs had to think about two 
theoretical scenarios Scenario 1 described a completely transparent atmosphere (an atmosphere that 
absorbs no surface heat) and was assumed to happen for C = 0 ppm. Scenario 1 corresponded to the 
minimum forcing (F-value) for the given initial values of the heat flows. Scenario 2 described a 
completely opaque atmosphere (an atmosphere that absorbs all surface heat) and was assumed to 
happen for C = 1,000,000 ppm (highest concentration possible). Scenario 2 corresponded to the 
maximum forcing (F-value). The PSTs were expected to imagine how F increased from Scenario 1 
to Scenario 2 and anticipate the graph’s concavity. Third, I introduced the Excel Simulation, a 
spreadsheet that allowed PSTs to enter C-values and obtain the corresponding F-values. The Excel 
Simulation assisted PSTs in examining and quantifying changes in F for corresponding changes in C 
and evaluating the accuracy of their graphs. Finally, I asked PSTs to draw the graph of the Sensitivity 
of F to C, or the rate of change of F with respect to C. Here, I examined the PSTs’ ability to conceive 
the rate of change as a measure of sensitivity and as a quantity in and of itself that covaried with C. 
Data Analysis 

Interview videos and transcripts were analyzed through the Framework Analysis (FA) method 
(Ward, Furber, Tierney, & Swallow, 2013). I watched all videos and divided them into smaller 
episodes. For each episode, I took notes regarding PSTs’ views of forcing, covariational reasoning, 
and understandings of rate of change. I used the notes to develop an analytic framework, which 
included six codes about forcing, eight codes regarding covariation, and five codes about rate of 
change. The analytic framework was applied back to the data to code all episodes. Next, I looked for 
patterns across the participants’ responses and categorized codes into themes. The patterns and 
themes helped me characterize the way PSTs understand the forcing and the rate of change. 
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Results 
The Direction of Change of the Forcing 

During the first part of the interview, PSTs looked at the diagram (Figure 1a) and identified the heat 
flows that changed when C increased and those that remained constant (i.e., unaffected by changes in 
C). In doing so, PSTs thought about how an increment in C influences the atmosphere’s capacity to 
absorb and radiate heat (changes in B and A, respectively), which represents a foundational idea to 
understand the forcing by CO2. PSTs inferred the direction in which F was changing by utilizing the 
given definition F = (S + A) – R. They noticed that an increase in C resulted in an increase in A, while 
the heat flows S and R remained constant, which meant that F increased when C increased. For 
instance, Kris stated “if B increases, then A is going to increase, and S and R stay the same [pauses]. 
So, [F] is going to be positive”. 

During the second part of the interview, PSTs thought about Scenario 1 and Scenario 2. They 
realized that the scenarios represented the minimum and maximum forcing, respectively. For 
instance, Jodi described Scenario 2 as follows: 

A would be 390 over 2, which is going to be [uses calculator]. So, A is 195, and we would need, we 
would want S to equal A [writes S = A]. But, since 240 is greater than 195, we would need to add [F] 
[writes 240 = 195 + F]. And, that would make F = 45. In the case we add more CO2 to the 
atmosphere and L no longer is emitted 

The PSTs assumed Scenario 1 occurred for C = 0 and found that F = (240 + 0) – 390 = −150 
Js─1m─2. For Scenario 2, they assumed it occurred for C = CM and had F = (240 + 195) – 390 = 45 
Js─1m─2. They represented these scenarios in the coordinate plane by the points (0 , –150) and (CM , 
45), respectively. Then, Pam and Jodi drew a line incident to both points as the graph of F (Figure 2), 
while Kris could not decide whether the graph should be an increasing, concave-downward curve or 
an increasing line. She stated that a line “would imply that it is like a constant rate of change with C 
and [F].” Kris’s understanding of rate of change appeared more advanced than Jodi and Pam’s since 
it involved the realization that the shape of a graph is related to the variation in the rate of change. 
The Rate of Change of the Forcing 

During the third part of the interview, the Excel Simulation was introduced. Here, the PSTs also 
learned that F follows the rule “F increases by 4 Js−

1m−
2 every time C doubles1” which is widely 

accepted among the experts (Huang & Shahabadi, 2014; IPCC, 2013). 

 
Figure 2. (a) Pam’s linear graph of F (left) and (b) Jodi’s linear graph of F (right). 

 
                                                             
1 A more real estimate is about 3.7 Js−

1m−
2 (IPCC, 2013), but I rounded it to 4 Js−

1m−
2 for simplicity. 



Reasoning about the rate of change while linking co2 pollution to global warming 

	 1089	

PSTs were asked to find out whether F was a linear or a nonlinear function of C. All three PSTs 
determined F-values corresponding to equally spaced C-values. Then, they compared the differences 
∆!𝐹 and noticed they were decreasing, discarding the linear model. After that, PSTs demonstrated 
three different ways of quantifying the rate of change and understanding its connection to the 
concavity of the graph of F, as they drew new versions of that graph. Pam did not anticipate the 
concavity of the graph from interpreting the decreasing increments ∆!𝐹, suggesting she did not see 
them as an indicator of concavity or a measure of the variation in the degree of change of F with 
respect to C. Instead, Pam used the rule “F increases by 4 Js−

1m−
2 when C doubles” to coordinate C-

values with F-values, creating a discrete collection of pairs (C , F) and drawing the graph of F using 
a pointwise approach (Figure 3a). When finished, Pam said “Oh! This looks like a logarithmic thing I 
hate”, suggesting she did not anticipate the concavity of her graph as much as she discovered it. 

In contrast, Jodi anticipated the concavity of F by interpreting the decreasing increments ∆!𝐹 as 
indicating that F increased less and less as C increased. 

So, the relationship is not linear because the change in y over the change in x is not equal between 
two points. But, I see that, as we increase [C], the change in F is less. So, we may end up getting a 
function that looks like that [draws a tiny, increasing, concave-down curve] 

Although Jodi anticipated the concavity, she still used the Excel Simulation to create a discrete 
collection of pairs (C , F). She then used a pointwise approach to draw her final version of the graph 
of F. This is an interesting behavior because it suggests that she did not have complete confidence on 
her interpretation of the differences ∆!𝐹 in terms of concavity. A possible explanation is that her 
understanding of those differences as an indicator of concavity and a measure of the degree of 
change of F may have been still stabilizing in her mind. 

Finally, Kris anticipated the concavity of F by interpreting the decreasing average rate of change of 
F. Her interpretation confirmed her previous suspicion that the graph was an increasing, concave-
downward curve. 

 
K: That is really weird, how like, if you look at the change from [C = 0] to [C = 1] [pauses] 
I: There is a big jump 
K: Yeah, like over a hundred (F increases more than 100 Js−

1m−
2). And then you get from [C = 10] to 

[C = 20] and it is only like four (F increases by approximately 4 Js−
1m−

2). So like, for every 
change [of] 2.5 [in C], [F] changes like one-ish. So that is what I was thinking about when I said 
that [the graph] may look like this [draws an increasing, concave-downward curve] 

 
Kris’s way of quantifying the average rate of change of F supported both anticipating concavity and 

drawing the graph of F in a smooth and continuous way (Figure 3b). Also, Kris’s use of ratios 
represents a step forward in the formalization of the concept of rate of change in relation to the 
comparison of the differences ∆!𝐹 for equal increments ∆𝐶. 
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Figure 3. (a) Pam’s final graph of F (Left) and (b) Kris’s final graph of F (Right). 

 
The Sensitivity of F to C 

Pam and Kris participated in the fourth part of the interview involving the Sensitivity of F to C (i.e., 
the rate of change of F with respect to C). Unfortunately, Jodi did not have time to participate during 
that last part. The analysis of Pam and Kris’s responses suggest two different ways of quantifying the 
sensitivity of F to C and two different ways of conceiving that sensitivity covarying with C. 

Pam quantified the sensitivity by the steepness of the graph of F corresponding to unequally-spaced 
values of C (each interval was twice as long as the previous one). She then attended to the variation 
in the steepness as she moved from one interval of C to the next. She translated that variation into 
degrees of sensitivity (e.g., more or less sensitive). 

P: So, it is not super sensitive here [uses two fingers to indicate the steepness of the graph of F for 
2224 ≤ C ≤ 4448] 

I: Could you tell me a little bit more about how you figured that out by looking at this graph [point 
at her graph of F]? 

P: Here [points at the interval [0 , 278]], [C] increased a little bit, and the force [sic] went crazy 
[moves her index finger up quickly to indicate a large increase in F], I mean compare to 
everything else, it went higher. Here [points at the interval [278 , 556]], [C] increased a little bit 
more, and the sensitivity didn’t increase that much. So, [F] is not as sensitive when there is more 
concentration [moves her fingers to the right to indicate the increase in C] 

The transcript above shows how Pam imagined the steepness decreasing as she moved from one 
interval of C to the next. This helped her identify the direction of change of the sensitivity (i.e., it 
decreases as C increases). However, she did not notice that the decline in steepness slowed down as 
C increased, hence she could not anticipate the concavity of the graph of the sensitivity. In order to 
draw the graph, Pam first found four values of the average rate of change of F: 4/278, 4/556, 4/1112, 
and 4/2224, corresponding to the intervals [278 , 556], [556 , 1112], [1112 , 2224], and [2224 , 
4448], respectively. Then, Pam notice that “my concentration increases by double, and my sensitivity 
goes down by half [writes ‘concentration × 2, sensitivity ÷ 2’]”. She used that rule to create the 
discrete collection of pairs (278 , 1/2 F’(0)), (556 , 1/4 F’(0)), (1112 , 1/8 F’(0)), and (2224 , 1/16 
F’(0)), where F’ represents the sensitivity of F to C. Then, Pam drew the graph of the sensitivity with 
a pointwise approach (Figure 4a). This suggests she discovered the concavity of the graph of the 
sensitivity rather than anticipating it. 

In contrast, Kris’s ways of quantifying the sensitivity involved thinking in terms of how resistant F 
was to changes in C, as indicated by the graph of F. When I asked her how the sensitivity changes as 
C increases, Kris replied “sensitivity decreases because [F] is more resistant to a change in C”. She 
then drew a decreasing, concave-upward graph of the sensitivity in a smooth and continuous way 
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(Figure 4b). Since she did not justify the concavity of her graph, I asked her to elaborate on how she 
figured the concavity out, to which she replied: 

As we increase C by equal amounts each time [uses two fingers to indicate equal increments in C], 
F is increasing by smaller, and smaller, and smaller amounts [uses two fingers to indicate 
decreasing increments in F]. So, it is becoming less sensitive to the changes in C. Because it takes a 
bigger change in C to equal the equal change in F. 

Because one must double C to create the same increment in F, she claimed that “the sensitivity 
decreases at a decreasing rate”. Kris’s quantification of the sensitivity allowed her to anticipate 
concavity, draw an accurate graph, and make viable claims about the rate of change of the sensitivity. 
This suggests that Kris not only reasoned about the rate of change of F, but also about the rate of 
change of the rate of change of F, which is foundational to understand second derivative in Calculus. 

 
Figure 4. (a) Pam’s graph of sensitivity (Left) and (b) Kris’s graph of sensitivity (Right). 

 
Finally, by thinking about the sensitivity of F to C, Pam and Kris learned that the forcing by CO2 

becomes less sensitive to changes in C as C increases. This is another characteristic of the forcing 
widely accepted among the experts (Huang & Shahabadi, 2014; IPCC, 2013). 

Conclusions 
The study revealed three different levels of understanding of the rate of change among the PSTs. 

Level 1 is represented by Pam; she did not demonstrate quantitative operations related to reasoning 
about the rate of change F. She created a discrete collection of pairs (C , F) and used  a pointwise 
approach to draw the graph of F. The concavity was discovered after finishing the graph and no 
viable claims about the rate of change were made. Level 2 is represented by Jodi; she associated 
changes ∆!𝐹  with equal changes ∆𝐶  and compared those associations (QO-Comp) to anticipate 
concavity and make viable claims about the rate of change. She, however, created a discrete 
collection of pairs (C , F) and used a pointwise approach to draw the graph of F. This suggests that 
her understanding of the relationship between a graph’s shape and the rate of change was not 
completely stable in her mind. Level 3 is represented by Kris; she coordinated changes ∆!𝐹 with 
changes ∆𝐶 through division (QO-Coord) to create a single quantity that allowed her to anticipate 
concavity, make viable claims about the rate of change, and draw an accurate graph of F. 

The analysis of Pam and Kris’s responses suggest two different ways of quantifying the sensitivity 
of F to C and two different ways of conceiving covariation between the sensitivity and C. Pam 
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quantified the sensitivity by the steepness of the graph of F corresponding to an interval of C. This 
allowed her to identify the direction of change of the sensitivity (i.e., it decreases when C increases). 
Then, she compared (QO-Comp) the values of the average rate of change of F for consecutive, 
unequally-long intervals of C (each interval was twice as long as the previous one) in order to define 
a correspondence rule between values of sensitivity and values of C: the sensitivity halves every time 
C doubles. Pam’s QO-Comp allowed her to draw an accurate graph but did not support the ability to 
make claims about the rate of change of the sensitivity or anticipate concavity. In contrast, Kris 
quantified the sensitivity as the resistance of F to changes in C, as defined by the graph of F. This 
allowed her to identify the direction of change of the sensitivity (i.e., it decreases when C increases). 
Then, she coordinated (QO-Coord) changes in resistance with changes in C in order to draw an 
accurate graph of the sensitivity in a smooth and continuous way, make claims about the rate of 
change of the sensitivity, and anticipate concavity. Most interestingly, Kris’s QO-Coord supported 
reasoning about the rate of change of the rate of change of F, a key idea to understand the second 
derivative in Calculus (Johnson, 2012). 

Finally, the study also shows that PSTs learned four important aspects about the forcing by CO2: (1) 
an increase in atmospheric CO2 concentration enhances the atmosphere’s capacity to absorb and 
radiate heat, which further warms the planet’s surface; (2) the forcing has a theoretical minimum 
value, when the atmosphere absorbs no surface heat, and a theoretical maximum value, when the 
atmosphere absorbs all surface heat; (3) the doubling CO2 rule for the forcing (F increases by 4 
Js−

1m−
2 every time C doubles); and (4) the forcing by CO2 becomes less sensitive to changes in C as C 

increases. 
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Mathematics has developed into an extensive body of knowledge because there is, and has been, a 
continuous search for finding solutions to problems posed by someone. Therefore, problem posing is 
a fundamental activity of doing mathematics (Brown & Walter, 1983, 1993; Halmos, 1980; 
Contreras, 2019, 2020; Kilpatrick, 1987; Polya, 1973; Silver, 1994). Even though some researchers 
(Crespo, 2003; Crespo & Sinclair, 2008; Ellerton, 1986a, 1986b, 1988; English, 1996, 1997, 1998, 
2003; Lavy & Shriki, 2010; Silver & Cai, 1996; Silver et al., 1996) have provided some insights 
about issues pertaining to this line of investigation, we do not know enough about the extent to which 
preservice teachers, who themselves are students, are able to pose problems by modifying the 
conditions of a given problem. In fact, the research community continues to investigate the different 
aspects of teaching and learning how to pose mathematical problems (Ellerton, 2013; Felmer, 
Pehkonen, & Kilpatrick, 2016; Silver, 2013; Singer, Ellerton, & Cai, 2013, 2015) including analysis 
of textbooks (Cai & Jiang, 2016; Cai et al., 2016). 

From a mathematical point of view, generalizing, proving general statements, and generating 
problems by considering converse-type problems, are important mathematical activities. 
Generalizing mathematical patterns is one of the most important processes that contributes to the 
development of mathematics. According to Sawyer (1982), generalizing “is probably the easiest and 
most obvious way of enlarging mathematics knowledge” (p. 55). Proving these general statements is 
one of the central activities of doing mathematics. When creating or discovering a theorem, it is often 
worthwhile to investigate whether the converse of the theorem holds or what additional conditions or 
restrictions must be added for having a converse-type theorem. 

In this study, 17 prospective secondary mathematics teachers were asked to pose problems related 
to each of four geometric situations. The four problem situations were chosen as to allow for posing 
general problems, problems about proving general formulas, and converse-type problems. The 
students generated a total of 225 responses (199 mathematical problems or questions, 4 
nonmathematical problems or questions and 22 statements). The 199 mathematical problem were 
categorized as well-posed problems (168) and ill-posed problems (31). I used Author’s (1998) and 
Moses, Bjork, & Goldenberg’s (1990) frameworks for analyzing the strategies that the students used 
to pose the problems. The framework includes mainly the following seven strategies to pose the 
problems: variation of unknowns, variations of knowns or givens, variations of restrictions, reversing 
knows and unknowns (converse-type problems), generalizing, thinking of patterns, and proving 
(Contreras, 2003; Moses et al., 1990). 

The most common strategies used by the students to pose the problems, and number of problems, 
were: generalization (38), variation of knowns (25), variation of unknowns (21), and a combination 
of strategies (12). Even though students generated a diversity of problems, only 10 students posed 
general problems and only two students posed at least one general problem for each geometric 
situation. In addition, the students rarely posed converse-type problems and proving problems. Given 
that most of the students were majoring in mathematics, the findings are not very encouraging. Thus, 
appears to be a need for prospective mathematics secondary mathematics teachers to learn how to 
pose these types of problems. 
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The understanding of complex quantitative relationships requires analyzing the cognitive processes 
of mathematical representations in students (Vygotsky, 1988), within school cultural environments. 
The development of concepts at an early age represents an opportunity in the forming of habits of 
abstract thinking for students of basic education (Carpenter et al, 2005; Carraher & Schliemann, 
2007). The understanding of the quantitative relationships of mathematical concepts requires several 
areas: 1) the analysis of cognitive processes, through their mathematical representations and their 
discourse; 2) contemplate the school cultural environment in which children learn 3) the possibility 
of understanding complex concepts such as the order of operations or algebraic thinking.  

For the present study, the understanding of quantitative relationships of 30 third-grade primary 
school students was analyzed, in complex mathematical tasks of the order of operations and algebraic 
thinking, in their schooled cultural environment (public primary). A teaching experiment was 
implemented based on tests of mathematical competence, concrete manipulative tasks based on part-
whole relation (Davydov, 1962), and a content analysis of the students' discourse. The assessment of 
understanding was based on reactive tests of the order of operations and algebraic thinking. These 
tests were complementary with interviews with each participant. The tasks in the three stages of the 
teaching experiment were correlated with each other (RhO Spearman) to assess the internal 
consistency of the assessment. 

The results indicate that 27% of the third-grade students expressed at least a potential understanding 
of the algebraic thinking tasks. The meaning of the variable and the unknown was linked to unknown 
or hidden quantities. 47% also expressed this understanding of the order of operations tasks. The 
justification for using the order of operations was the union between quantities that are multiplied 
compared to quantities that are added. The average scores of the children during the 10 sessions of 
the sequence had a high correlation with the average scores of the students in the tasks of algebraic 
thinking (0.733 (p <0.000)) and the order of operations (0.769 (p < 0.000)). The results are 
compatible with the findings of multiple investigations of the order of operations or PEMDAS 
(Glidden, 2008; Gunnarsson et al., 2016; Linchevski & Livneh, 1999; Papadopoulos & Gunnarsson, 
2020; Taff, 2017; Zorin & Carver, 2015). 

It is possible, thanks to the potential of the formation of complex thinking habits, to understand 
algebraic thinking tasks and the order of operations schoolchildren at an early age, from concrete and 
significant experiences; When a child comes to understand and see the significance of mathematical 
tasks, he becomes enthusiastic about learning mathematics. 
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A current of Ethnomathematics ("... set of knowledge produced or assimilated by an indigenous 
sociocultural group: counting, measuring, organizing space and time, designing, estimating and 
inferring, valid in their own context" (Villavicencio p.173 2001, cited by Avila p. 22 2014) is defined 
as the study of mathematics from other cultures, as indigenous peoples in various parts of the world 
(Suarez , Acevedo and Huerta s , 2009). Since each indigenous culture has its own language, 
representations of numbers, symbols, and number systems, so its instruments, units of measurement, 
and local forms of measurement make up a unique mosaic such as the O'dam culture that has a 
history ancestral in embroidery. 

From the above, it is important then to prioritize meaningful learning in the 
classroom and support of learning strategies that enable students that are facing real problem 
situations, relevant and link with their environment, for this , the pedagogical approach that 
Challenge-Based Learning has meets the necessary conditions to achieve meaningful learning in 
students, discarding the idea that the teacher must teach a mathematical area or content so that 
learning can arise in students. 

So, how to potentiate the learning of geometric concepts about transformations of figures in the 
plane, taking into account the cultural context of O’dam students? Thus, the challenge was proposed 
to the students to develop an embroidered backpack (bhai’mkar) or napkin, typical of their culture, 
with designs that included figure transformations such as translations, rotations and symmetries. The 
research was based on the ACODESA methodology: collaborative learning, scientific debate and 
self-reflection (Hitt and Cortés, 2009). Data was collected through observation, photographs, videos 
and products made by students (Figure 1). The proposed activities allowed students to explore 
different sources of available queries, interviews and search for information in textbooks. Through 
exhibitions, it was observed that the students were able to describe the type and characteristics of the 
transformations used to design their embroidery, thus helping to naturally identify movements in the 
plane in embroidery’s in their community. 

The O'dam indigenous cultural group uses a naturalistic and geometric cut in their handicrafts, so 
even though the students did not explicitly know the types of transformations used in their 
embroidery’s; applied, demonstrated and communicated learning based on figure transformations. 

 
Figure 1. O'dam embroidery designs based on figure transformations 
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Una corriente de la Etnomatemática (“…conjunto de los saberes producidos o asimilados por un 
grupo sociocultural autóctono: contar, medir, organizar el espacio y el tiempo, diseñar, estimar e 
inferir, vigentes a su propio contexto” (Villavicencio, p. 173, 2001, citado por Ávila p. 22 2014,) está 
definida como el estudio de las matemáticas desde otras culturas, como pueblos indígenas de diversas 
partes del mundo (Suárez, Acevedo y Huertas, 2009). Dado que cada cultura indígena tiene su propio 
lenguaje, representaciones de números, símbolos, y sistemas numéricos, por lo que sus instrumentos, 
unidades de medida y formas de medición local conforman un mosaico único como lo es la cultura 
O’dam que tiene un historial ancestral en bordados. 

A partir de lo anterior es importante priorizar el aprendizaje significativo en el aula, y apoyarse de 
estrategias de aprendizaje que permitan a los estudiantes se enfrenten a situaciones problemáticas 
reales, relevantes y de vinculación con su entorno, para esto el Aprendizaje Basado en Retos cumple 
con las condiciones necesarias para logar el aprendizaje significativo en los estudiantes para que 
pueda surgir el aprendizaje en los estudiantes con su propia vivencia. 

Entonces, ¿Cómo potencializar el aprendizaje de conceptos geométricos sobre transformaciones de 
figuras en el plano, tomando en cuenta el contexto cultural de alumnos O’dam de educación 
secundaria? Así, se propuso el reto a los estudiantes de elaborar un morral bordado (bhai´mkar) o 
servilleta, propios de su cultura, con diseños que incluyeran transformaciones de figuras como 
traslaciones, rotaciones y simetrías. La investigación se apoyó en la metodología ACODESA: 
aprendizaje en colaboración, debate científico y auto reflexión (Hitt y Cortés, 2009). Se recolectaron 
datos a través de la observación, fotografías, videos y productos elaborados de los estudiantes (Figura 
1). Las actividades propuestas permitieron a los estudiantes indagar en diferentes fuentes de 
consultas disponibles, entrevistas y búsqueda de información en libros de texto. Por medio de 
exposiciones se observó que los estudiantes lograban describir el tipo y características de las 
transformaciones utilizadas para el diseño de su bordado, ayudando así a identificar de forma natural 
los movimientos en el plano en tejidos elaborados en su comunidad. 

El grupo cultural indígena O’dam usa en sus trabajos manuales un corte naturalista y geométrico, 
por lo que aun cuando los estudiantes explícitamente no sabían los tipos de transformaciones que se 
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usan en sus bordados; aplicaron, demostraron y comunicaron el aprendizaje con base en las 
transformaciones de figuras. 

 
Figura 1. Diseños de bordados O'dam basados en transformaciones de figuras. 
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Programmatic collaborations involving mathematicians and educators in the U.S. have been 
valuable but complex (e.g., Heaton & Lewis, 2011; Bass, 2005; Bass & Ball, 2014). Sultan & Artzt 
(2005) offer necessary conditions (p.53) including trust and helpfulness. Articles in Fried & Dreyfus 
(2014) and Bay-Williams (2012) describe outcomes from similarly collaborative efforts; however, 
there is a gap in the literature in attending to how race and gender intersect with issues of 
professional status, culture, and standards of practice. Arbaugh, McGraw and Peterson (2020) 
contend that “the fields of mathematics education and mathematics need to learn how to learn from 
each other - to come together to build a whole that is greater than the sum of its parts” (p. 
155).  Further, they posit that the two must “learn to honor and draw upon expertise related to both 
similarities and differences” across disciplines, or cultures. We argue that in order to do this, we must 
also take into account race, gender, language.  For example, words like trust or helpfulness can read 
very differently when viewed from personal and professional culture, gender, or racial lenses. 

This poster shares personal vignettes from the perspective of three collaborators – one black male 
mathematician, one white female mathematics educator, and one white woman who was trained as a 
mathematician but works as a mathematics educator - illustrating some of the complexity of 
collaboration. The title of the poster comes from a moment in conversation among the authors. One 
of the women, recalling a conversation with the mathematician, said, “oh, that conversation was 
brutal,” without acknowledging or considering the history and potential painful ramifications of the 
word “brutal” when used about an interaction between a white woman and a black man - 
ramifications that could create barriers to collaboration. The mathematician returned with, “you say 
brutal, I say Thursday,” meaning that the conversation was totally within the norms of a conversation 
between mathematicians. The vignettes in the poster serve as a contribution toward an eventual 
framework for studying and discussing intersectionality in collaborations in education. 

We come to this work embodying a “humanistic perspective of mathematics as a discipline that 
drives and is driven by human endeavor” (PME-NA equity statement). Mathematics is deeply 
connected to the stories and histories of the people doing the mathematics. There has been a long 
history of positioning mathematics educators and mathematicians in problematic ways. Even more 
troubling is the way in which marginalized groups are positioned with respect to mathematics. Not 
attending to these critical identities falls short when we try to understand the goals, outcomes, and 
effects of collaborations between mathematicians and mathematics educators. 
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Spatial thinking is a process to mentally represent and transform objects and to interpret the 
relationship among these objects (Clement. 1998). Abstraction is a core component supporting faster 
and more effective spatial thinking by removing unnecessary details and producing a simpler 
representation (e.g., in mental rotation; Lovett & Schultheis, 2014).  Computational thinking (CT) is 
a concept rooted in computer science, which refers to a set of problem-solving methods to solve 
complex problems (Wing, 2006). CT has suggested abstraction as one of the main concepts (Wing, 
2006). Indeed, CT and spatial thinking interrelate with each other (Román-González, Pérez-
González, & Jiménez-Fernández, 2017). This study focuses on the interrelation between spatial 
thinking and CT. 

Giving more attention to abstraction as a concept of CT could support students’ mathematics 
learning (Rich & Yadav, 2020). Likewise, spatial thinking is essential for students to develop some 
mathematical ideas (e.g., number sense) in early ages (Cheng & Mix, 2014; Geary & Burlingham-
Dubree, 1989; Gunderson et al., 2012; Stieff & Uttal, 2015; Verdine et al., 2014). Further, some 
researchers argued that playing blocks is associated with improving children’s spatial thinking (e.g., 
Caldera et al., 1999; Connor & Serbin, 1977; Verdine et al., 2014). Although many studies have 
concentrated on constructing blocks as an intervention to promote children’s spatial thinking, far 
fewer have examined children’s computational thinking in the constructing and deconstructing 
process.  To help fill this knowledge gap, this study investigated the possible impact of debugging 
(finding and fixing mistakes) –an approach of CT (Angeli et al., 2016) – on kindergartener’s spatial 
thinking. Further, debugging might also be helpful for their mathematics skills by enhancing spatial 
thinking. 

The design of the study includes a paper guideline that serves as algorithms and an authentic model. 
The guideline is a series of solid figures showing detailed steps. Each step includes the shape of a 
building block being used and the outcome for this step while the model has mistakes when matching 
with the guideline (e.g., the incorrect orientation of piece on correct place, missing piece). The 
students need to deconstruct the given model by following the guidelines to detect the mistakes. 
Once they find and fix a mistake, they need to reconstruct the model with the guideline. In addition, 
pre- and post-tests will be used to measure students’ spatial thinking and mathematics. We 
hypothesize that CT-inspired-heuristic such as debugging an authentic model of building blocks will 
have a positive impact on spatial thinking and mathematics in early ages. The findings will contribute 
to the theory and practice of developing students’ spatial thinking in early ages. The study will also 
expand and enrich the discussion on the interplaying relations between computer science and 
mathematics. 
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We report on findings from two one-on-one teaching experiments with prospective middle school 
teachers (PTs). The focus of each teaching experiment was on identifying and explicating the mental 
processes and types of intermediate, supporting reasoning that each PT used in their development of 
combinatorial reasoning. The teaching experiments were designed and facilitated to guide each PT 
toward reinventing multiple combinatorial formulas. Drawing on a subset of this data, we describe 
the development of the PTs’ mental processes and reasoning as they came to construct formulas for 
counting permutations and arrangements without repetition, and we analyze our findings through a 
psychological constructivist framework.  

Keywords: Advanced Mathematical Thinking; Cognition; Teacher Education–Preservice 

Enumerative combinatorics is a mathematical discipline concerned with the activity of counting. 
More specifically, by “counting,” we mean finding the cardinality of particular set, either by 
exhaustive listing or by using a more sophisticated technique. Researchers have taken an increased 
look into students’ combinatorial reasoning (e.g., Batanero et al., 1997; English, 1991; Fischbein & 
Gazit, 1988; Lockwood, 2011; Maher et al., 2010; Tillema, 2013), but relatively little research has 
investigated the combinatorial reasoning of teachers, either current or prospective (exceptions to this 
include McGalliard & Wilson, 2017, and Speiser et al., 2007).  Research on teachers’ development of 
combinatorial reasoning can be an important component of studying the development of the 
specialized mathematics content knowledge (Hill et al., 2008) needed by teachers.  

The aim of the present study was to investigate the nature of prospective middle school teachers’ 
(PTs’) combinatorial reasoning. The study involved one-on-one teaching experiments with two PTs, 
DC and NK. In these teaching experiments, DC and NK were guided to develop increasingly 
sophisticated conceptualizations and ways of reasoning needed to solve increasingly complex tasks. 
Ultimately, both PTs constructed multiple generalized counting formulas and ways of making sense 
of those formulas. We present a subset of data in which the PTs developed formulas for counting 
permutations and in which DC developed a formula for counting arrangements without repetition. 
The two tasks outlined below, as well as numerous extensions to these tasks, were instrumental in 
guiding the PTs’ development. 

• 3-Cube Towers with 3 Colors. Using three different colors of cubes, how many different 
towers 3-cubes-high can be made without repeating colors? [Answer: 3!, or 6] 

• 3-Cube Towers with 5 Colors. Using five different colors of cubes, how many different towers 
3-cubes-high can be made without repeating colors? [Answer: 5×4×3, or 60] 

The following research question guided this study: How do two PTs’ conceptualizations and forms 
of reasoning develop as they are given increasingly complex tasks pertaining to permutations and 
arrangements with repetition, particularly tasks within the context of constructing block towers? 
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Literature Review 
Research on combinatorial thinking has consistently shown that students tend to struggle with 

solving counting problems. This includes, for instance, choosing an appropriate combinatorial 
operation for a given situation (e.g., Batanero et al., 1997; Fischbein & Gazit, 1988). Researchers 
have identified certain practices that help students develop in their combinatorial reasoning, such as 
productive listing (Lockwood & Gibson, 2016) and reflecting on the outcomes being counted 
(Lockwood, 2014). Tasks within the context of enumerating block towers have been shown to be 
particularly useful for developing combinatorial reasoning, both with children (Maher et al., 2010; 
Maher & Speiser, 1997) and with prospective elementary teachers (McGalliard & Wilson, 2017; 
Speiser et al., 2007). 

One study investigated the processes by which two undergraduates (former integral calculus 
students) came to reinvent four combinatorial formulas (Lockwood et al., 2015), including those 
pertaining to this study. Framing their analysis using Lockwood’s (2013) model of combinatorial 
thinking (sets of outcomes, counting processes, and formulas/expressions), the authors conjectured 
that a reinvention of counting formulas would require reasoning about counting processes—in 
particular, about the Multiplication Principle. Instead, the authors found their participants relied 
heavily on empirical patterning to reinvent certain formulas. We situate our study within the 
literature, guiding two PTs to construct generalized combinatorial formulas and develop in their 
combinatorial reasoning along the way. 

Theoretical Perspectives 
This study used a teaching experiment methodology (Steffe & Thompson, 2000) which was most 

appropriate given that the primary purpose of the study was to investigate the development of NK’s 
and DC’s conceptualizations and ways of reasoning as they were posed with increasingly complex 
combinatorial tasks. Ultimately, these tasks led to the construction of several combinatorial formulas 
and ways of using and making sense of those formulas; in this sense, our study is consistent with the 
principle of guided reinvention within the theory of Realistic Mathematics Education (Freudenthal, 
1973; Gravemeijer, 1999). We view this work as contributing toward the overarching goal of 
developing a hypothetical learning trajectory (Simon, 1995) for permutations and arrangements 
without repetition, tracing the development of the PTs’ conceptualizations and ways of reasoning as 
needed to make sense of increasingly complex tasks and—including the construction of generalized 
counting formulas.  

Mathematically, we focus on the development of two combinatorial structures: permutations and 
arrangements without repetition. A permutation is a particular ordering of a set of 𝑛 (distinct) 
objects. The number of permutations of 𝑛 objects can be expressed as 𝑛× 𝑛 − 1 × 𝑛 − 2 ×…×2×1 
, or 𝑛!. An arrangement without repetition is an ordering of a subset of 𝑘 objects from a set of 𝑛 
distinct objects, the number of which can be expressed as !!

!!! !
.  

Reformulating the elaboration of Piaget’s theory of abstraction by von Glasersfeld (1995) and Steffe 
(Steffe, 1998; Steffe & Cobb, 1988), Battista (1999, 2007) proposed levels of abstraction of sensory 
objects and motor activities (collectively called mental items). At the most basic perceptual level, a 
person has abstracted an item from their experiential flow and can perceive the item as a coherent 
unit. At this level, the item cannot be re-presented (visualized) without the presence of relevant 
sensory input. At the internalized level, a person can either re-present sensory objects in their mind 
in the absence of perceptual material or reenact a motor activity in the absence of kinesthetic signals 
from physical movement. However, the internalized level is limited in that a person cannot yet reflect 
upon an item’s re-presentation or analyze an item’s composition and structure. Only upon reaching 
the interiorized level of abstraction can a person reflect upon and analyze internalized items. 
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Interiorization “leads to the isolation of structure (form), pattern (coordination), and operations 
(actions)” (Steffe & Cobb, 1988, p. 337). Procedurally, a student’s focus shifts from performing a 
sequence of actions to analyzing the meanings and results of those actions, treating the procedure as 
an object of reflection. Upon reaching the second level of interiorization, a person can perform 
operations on mental items without re-presenting or generating the material, and they can use 
symbols as “pointers” to the abstracted material, substituting the material with these symbols. 
Procedurally, second level interiorization allows a person to mentally operate on a procedure’s 
components without actualizing the procedure using numbers. Symbols can refer to abstracted spatial 
components (e.g., “positions” in a generic 3-cube tower) or numerical components (e.g., a numerical 
procedure from reasoning about positions). At the third level of interiorization, a person can 
meaningfully represent the arithmetic/algebraic structuring of a generalized computational procedure 
with algebraic notation.  

Findings and Analysis 
In this section, we present, make inferences about, and analyze selected key events in the 

development of the PTs’ conceptualizations and forms of reasoning. 
Permutations 

Episode 1. Both teaching experiments began with the 3-Cube Towers with 3 Colors task, and in 
both cases the PT was shown an example. NK constructed all six 3-cube towers using a single blue, 
green, and red cube, deconstructing the previous tower in order to make the next one.  

NK: The easiest way to think about it would be to start with a color. So, I would start with blue at the 
top. I always start at the top and go down. So like blue, green, red would be one, and then blue, 
red, green would be two. 

NK then constructed the two 3-cube towers with a green top cube and the two towers with a red top 
cube. Notably, NK’s count did not match her intuition (that there would be 32 towers), so she used 
the cubes to construct all towers in order to verify her count. Given the first follow-up task—
counting 4-cube towers with 4 colors without repetition—NK responded,  

NK: OK, so same thing. Let’s start with blue. So we have blue, black, green, red. I’m not gonna sit 
here and make all of these because, if you start with blue, you know that there’s, if we have 3, 
then there’s 6 combinations that can have blue at the top. … So blue times 6, 6 times 4, 24.  

After asking for further elaboration, NK continued her explanation. 
NK: So, however many times you can arrange these three [bottom three cubes] is gonna be however 

many times you can arrange this whole thing, because blue will constantly be at the top. So you 
can just kind of omit it [the top cube] out of your thinking and see how many times this [bottom 
three cubes] can be combined, and then throw the blue at the top and that’s the tower of four. 

NK then indicated the same number of towers could be made with each choice of top-cube color, 
motivating her multiplication of 6×4.  

DC, on the 3-Cube Towers with 3 Colors task, constructed all six towers (so that all towers were 
present on the work-table) using a strategy similar to NK’s, except his construction process was 
anchored by the color of the bottom cube (which he called the “base”) instead of the color of the top 
cube. Given the 4-cube tower follow-up task (with black cubes added as the fourth color), DC 
deconstructed each of his original six towers; he then placed three green cubes in a line on the work 
table and was going to place three red cubes next to them, but he shifted his approach and instead 
constructed six 4-cube towers each with a green cube as base. He reasoned, 
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DC: Each color has two possible towers if that color is the base [of a 3-cube tower]. But I rose it a 
level. So this is still the red base [pointing to the two 4-cube towers with red cube second from the 
bottom], but it’s on top of the green base.  

To clarify, DC had constructed six 4-cube towers, all with a green base and two with a red cube 
second-from-the-bottom. When he said he “rose it a level,” he  was referring to his action of taking 
six 3-cube towers and adding a green cube to each. After this, DC constructed all six 4-cube towers 
with a red base. He then predicted there would be the same number of towers with blue and black 
bases, concluding there would be 6×4 = 24 total 4-cube towers. Later, DC further explained, similar 
to NK, that 4-cube towers with green bases can be made by taking the composite of six 3-cube 
towers and appending a green cube to the bottom of each tower.  

Inferences. We infer that NK conceptualized towers spatially as composites consisting of a single 
cube appended to an (n-1)-subtower, while DC had a similar spatial structuring but with the 
appending cube in the bottom position rather than the top. This spatial structuring led the PTs to 
organize their processes of tower construction by using the appended cube as an anchor, similar to 
what English (1993) calls a “major constant item.” When transitioning to the 4-cube-tower follow-up 
task, both PTs used a recursive strategy, now reconceptualizing each 3-cube tower as a composite 
unit and operating on the composite of six 3-cube towers (mentally, in NK’s case, or perceptually, in 
DC’s case) by appending to each tower an additional cube. We also infer that, initially, DC planned 
to construct each 4-cube tower systematically, but he realized the composite of 4-cube towers could 
be constructed by building on the composite of 3-cube towers.  

Analysis. Both NK and DC had interiorized the process of constructing 3-cube towers, indicated by 
the fact that their constructions were coordinated by a spatial structuring. Further, we interpret NK’s 
reasoning on the 4-cube-towers task as reasoning about “symbolic” positions (of a generic 4-cube 
tower) rather than about specific instances of towers, indicating second level interiorization of the 
process of constructing 4-cube towers. DC’s reasoning was also coordinated by a spatial structuring, 
but his reasoning relied on the perceptual material available on the worktable and did not appear to 
draw on the structure of a generic 4-cube tower. Thus, we interpret that DC interiorized the process 
of constructing 4-cube towers.   

Episode 2. NK. Extending to counting 5-cube towers with 5 colors of cubes, and without 
constructing any towers perceptually, NK reasoned, 

NK: So you could do the same thing where you start with a different color, but how many different 
combinations you can make with 4 is going to be 24. …Let’s pretend [the fifth color] is white. So 
you could start with white, and you would have 24 different combinations of these [gestured to 
other four colors of cubes] that would go under the white. So it would be 24 times 5, because 
each one of these colors would get their chance to be at the top. 

Extending to counting 6-cube towers with 6 colors, NK described her strategy more generally. 
NK: So there’s a pattern. So it’s, whatever 5 is, which we found that 5 is 120, it would be 120 times 6. 

… Sorry, I keep thinking with the mindset of, just like, you can omit the top cube. So you can 
start with like a constant, your constant would be like whatever color [is at the top].  

The next follow-up task jumped to counting 9-cube towers with 9 colors. She did not have an 
immediate answer, but she took colored pencils and paper and started reflecting on her previous 
enumerations, searching for a pattern.  

NK: Oh! Okay, okay. So, if you were to start with two colors, there are two combinations. Then you 
go to three, we found that there are six. Then you go to four, and find whatever 6 times 4 is, 
which is 24. Then you take 24 and multiply it by 5. ‘Cause we have 5 things, so I multiplied it by 
5 and got 120. And we came here, and we multiplied 120 by 6, which is… 720. And then you can 
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take that and multiply it by 7… which is 5,040. And then you can do that and multiply it by 8, 
which is the number of combinations you get if you had 8 colors, which is 40,320. And then you 
can multiply it by 9 to finally find how many it would be, which would be 362,880.  

Inferences. As with her spatial structuring of 4-cube towers from 3-cube towers, NK visualized 
appending a fifth-color cube to the top of each 4-cube subtower, then reasoning multiplicatively with 
the number of available colors. Similar to her reasoning in Episode 1, NK counted 5-cube towers by 
reasoning about positions—that is, her reasoning drew on an abstraction of the spatial structure of a 
generic 5-cube tower. With this spatial structuring guiding her reasoning, NK used a recursive 
strategy once more, multiplying the number of top-cube color possibilities by the number of ways to 
arrange the cubes in the (n-1)-cube subtower.  

Analysis. NK used an interiorized spatial structuring to guide her reasoning about the number of 
towers of any height, although at this point her reasoning was recursive in the sense that she relied on 
knowing the number of (n-1)-cube-towers to compute the number of n-cube-towers. As with the 
previous episode, NK’s reasoning is based on positions, indicating second level interiorization of her 
recursive scheme for counting n-cube towers.  

Episode 2. DC. Counting 5-cube towers with 5 colors, DC searched for a pattern in the number of 
towers that are present with a given color base cube.  

DC: I’m going to take a guess. So, we went from two of each to six of each, which means we 
multiply by 3. So when we multiply by 3 again… oh no, I should multiply by 4. I’m gonna 
multiply that [pointed to the six constructed 4-cube towers, each with a green base] by 4 because 
there are four colors, excluding the new color. I don’t know if that’s right…. So, 6 times 4, 24 
combinations. No, 24 is what we have now if we did just have the 4 of them.  

He placed the six 4-cube towers with green bases in one group, and adjacent to those he placed the 
six 4-cube towers with red bases. He then lined up six blue cubes and six black cubes to symbolize 
the 4-cube towers with blue and black bases, respectively. With this, he could see there would be 24 
4-cube towers in total. Although he still expressed uncertainty, DC predicted there would be 24×5 5-
cube towers that could be made with 5 colors.  

To help DC resolve his uncertainty, he was given five different colors of cubes arranged in a line on 
the table and was asked how many different ways the five cubes could be rearranged by 
interchanging cubes. DC exhaustively enumerated 24 of the possible 5-cube orderings, keeping the 
right-most cube (which he still called the “base”) constant and multiplying, at the end, by 5. His 
enumeration was systematic although not a complete odometer pattern (English, 1991). Moving to 
counting 6-cube orderings in a row, DC reasoned, 

DC: I know that in the 5-color scheme, there are 120 combinations per base color. Now, with a super-
base sixth color, there are six different options for the super-base, and 120 options for the regular 
base. And so 6 times 120 is… 720.  

Of note, DC’s verbal comments indicated he thought about constructing towers and enumerating 
orderings of cubes interchangeably. Extending to counting 9-color orderings in a row, DC said, 

DC: I would go through if we had seven colors and then eight colors first. All I would do is take that 
720… multiply it by 7, to get 5,040. That’s how many combinations we have for seven colors. 
Then multiply that by 8… 40,320. And then for nine, we would multiply that value by 9.  

Inferences. DC had constructed 12 of the 24 4-cube towers with 4 colors, and he placed six blue 
and six black cubes on the table to represent the remaining 12 towers. With this visual aid, DC 
predicted there would be 24×5 5-cube towers, but he did not seem to visualize “raising” this 24 5-
cube-tower composite with the added sixth color of cubes (as he did to construct 4-cube towers from 
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3-cube towers). After moving to counting 5-cube orderings, DC’s counting was systematic, and he 
reflected on this process to enumerate orderings of larger numbers of cubes.  

Analysis. At first, DC seemed to have internalized, but not interiorized, the process of constructing 
5-cube towers. After perceptually finding all 5-cube orderings with a fixed right-most cube (and 
reflecting on those actions), DC reasoned about positions—specifically, multiplying the number of 5-
cube orderings with a fixed right-most cube (24) by the number of possible right-most cubes (5)—
which indicated second-level interiorization of the process of constructing 5-cube towers. With 
subsequent tasks, his reasoning extended to counting increasingly larger orderings, indicating second 
level interiorization for a more general (recursive) scheme for counting permutations, although it 
became less apparent that DC’s reasoning was guided by his spatial structuring. 

Episode 3. Extending to counting 20-cube towers with 20 colors, NK began to search for a function 
that would produce the number of towers of a given height (and number of colors), n. Thinking the 
function would be exponential, but unable to predict a specific formula, she reflected on her previous 
strategies.  

NK: So you would start at 20, so it would be 20 times 19 times 18 times 17 times 16 times 15 times 
14 times 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1. The whole time I’ve been multiplying this 
direction [motioned from left to right, indicating starting at 1 and ending with 20], but I just 
started multiplying by the number of colors we have.  

On follow-up tasks, NK then predicted the number of 100-cube towers with 100 colors to be 
100×99×98×…×1, and she wrote a general expression for the number of 𝑛-cube towers with 𝑛 
colors to be 𝑛× 𝑛 − 1 × 𝑛 − 2 × 𝑛 − 3 ×…×1.  

DC predicted the number of 20-cube towers with 20 colors by multiplying the number of 9-cube 
towers, 362,880, by 10, then by 11, by 12, etc., and finally by 20. He searched for an “equation” that 
would calculate the number of towers, but he was not able to find one. Extending to counting 100-
cube towers, DC described that he would continue multiplying the product found in the 20-cube-
tower task by 21, by 22, by 23, etc., until finally multiplying by 100. After leading DC through a 
quick review of his work so far, DC said, 

DC: Oh wait! Would this work, where we have 2 there, and that’s the 2 combinations we can get with 
2 colors…. Then we multiply that by 3, because then we added a third color. And then we would 
multiply that by 4, because we added a fourth color. Then we multiplied that by 6, which is what 
I’m doing, but then you could just go up to 100. 

He wrote the following to express what he had verbalized: (((((2)3)4)5)6… )100. He initially 
kept the parentheses so as to maintain the order of multiplication, but he later cited the associative 
property of multiplication to reason that he could remove the parentheses. Finally, extending to 
counting n-cube towers with n colors, DC said there would be 2×3×4×…×𝑛 different towers. 

Inferences. NK’s calculations, now reversed from their original order, no longer seem to be guided 
by a mental process of recursively operating on towers of height n-1 to form towers of height n. For 
DC, after guiding him through a review of his previous enumerations, he reconceptualized 362,880 
as the product of consecutive integers (2×3×4×…×9). He then extended and generalized this 
strategy, although at this point his reasoning still seemed recursive.  

Analysis. Both NK and DC reached the third level of interiorization for counting permutations, 
indicated by both PTs’ generalized algebraic expressions. Even still, NK’s reasoning seemed more 
sophisticated than DC’s as she realized she could reverse her multiplicative process and achieve the 
same result, which we suspect is important for counting and reasoning about arrangements.  

Overall, both PTs exhibited remarkable progress in their conceptualizations and ways of reasoning 
about permutations. NK and DC were able to enumerate block tower composites successfully and 
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efficiently with cubes, either mentally or with perceptual material, and use this to structure their 
numerical reasoning. 
Arrangements—DC  

Due to space constraints, only a subset of DC’s progress toward thinking about arrangements 
without repetition is presented. 

Episode 4. DC first considered the task of counting 3-cube towers with 4 possible colors of cubes. 
He systematically constructed the six 3-cube towers with a red base, then reasoned: 

DC: If we use red as our first bottom color, our first base, after red only 3 other colors can be the 
middle color in our tower of 3. Then, for each of those, there are only 2 colors remaining. And 
since it’s a tower of 3, it’s just those 2 colors on top. … So 6 total for red, times 4.  

He clarified “times 4” was to account for the number of possible base-cube colors. Given the 3-
Cube Towers with 5 Colors task, he constructed the remaining 3-cube towers with a red base, 
including those with the newly-added fifth color, culminating in 12 3-cube towers with a red base on 
the worktable.  

DC: So now there are 12 different combinations for each color as base, times 5—60. There are 60 
possible combinations.  

Given the next follow-up task, counting 3-cube towers with 6 colors, DC initially tried to find a 
pattern, first noticing a doubling pattern in which the number of towers “per base” went from 6 
(using 4 different colors) to 12 (using 5 different colors). DC predicted there would be 24 towers per 
base in the 6-color task, but he was not certain. He resorted to systematically constructing all 3-cube 
towers with a red base using 6 colors, finding 20 towers in total. He reflected on the number of 
towers that were added when transitioning from towers with 5 colors to towers with 6 colors, but this 
did not lead to a new insight. We returned to the task of counting 3-cube towers with 4 colors, and it 
was in this task that DC made a new insight.  

Int: With the first problem with 4 colors making towers 3-cubes-high, I remember you saying in this 
original problem that you thought about it as 3 times 2…. So, you saw the 3 times 2 in that 
problem. Could we see something similar when we move up to 5 colors?  

DC: I mean, it’s 4 times 3. ‘Cause there are 4 possible options for the second tier, and then on top of 
each of those there are 3 possibilities for what can be left…. That’s 12 per base, and then 12 times 
the possible 5 bases is 60 combinations. With 6 colors, if we look at it in the same way we just 
did, there are 5 combinations for what can come on top of each base, times 4 possibilities for 
what can come on top of that second tier… 5 times 4 is 20, times the possible 6 bases, which is 
120 possible combinations. So, if we were dealing with 4 colors—Oh! Here it is, I think I might 
have just done it. We have 𝑛 times 𝑛 − 1 times 𝑛 − 2 equals that value…. This gives us the 
number of possible combinations above each base, times the number of bases, gives us the total 
number.  

Inferences. DC’s reasoning was guided by a specific spatial structuring: He conceptualized 
composites of 3-cube towers by focusing on a subset with a particular base-cube color appended to 2-
cube towers, then generated the entire composite of 3-cube towers by multiplying by the number of 
possible colors for the base. When the teacher-researcher led DC to revisit and reflect on his 
numerical procedures, he realized a numerical pattern connected to his spatial structuring: the 
number of color possibilities “on top of each base” multiplied by the number of color possibilities 
“on top of that second tier.”  

Analysis. DC’s process of counting 3-cube towers reached second-level interiorization, indicated by 
his reasoning about positions within 3-cube towers, and quickly progressed to third-level 



Two prospective middle school teachers reinvent combinatorial formulas: permutations and arrangements 

	 1115	

interiorization as he generalized his numerical procedure to counting 3-cube towers with any number 
of colors.  

Episode 5. DC was asked to count 𝑘-cube towers with 𝑛 different colors, without repetition.  

DC: Let’s just say k=5 in this instance. Then the equation would be n(n-1)(n-2)(n-3)(n-4). And… the 
integer that you're subtracting is k minus—like, goes up to k-1, but doesn't quite get to k. And so, 
it's like the reverse factorial here. Like, this is k-1 [pointed to 4 in n-4], k-2 [pointed to 3 in n-3], 
k-3 [pointed to 2 in n-2], k-4 [pointed to 1 in n-1].  

When asked to generalize from k=5 to a general k, DC used this same “reverse factorial” idea and 
wrote n(n-k-(k-1))(n-k-(k-2))(n-k-(k-3))…. He was asked if (n-k-(k-1)) might be able to be 
simplified; after some algebraic manipulation, he realized that, for any value of k, the number of 
towers of height k with n colors of cubes is n(n-1)(n-2)(n-3)…(n-(k-1)).  

Inferences. DC thought that a generalized expression for counting k-cube towers with n colors 
would require an expression involving both n and k, leading to his conceptualization of the “reverse 
factorial.”  

Analysis. DC’s process for counting arrangements had reached third-level interiorization.  

Conclusions 
The PTs’ spatial structuring was instrumental toward guiding the development of their reasoning 

about permutations and arrangements. Both PTs developed recursive strategies but progressed past 
recursion through processes of action, reflection, and abstraction. This ultimately led their processes 
of enumerating permutations and arrangements to third-level interiorization.  
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REPORT OF A CLASSROOM EXPERIENCE FOR THE DEVELOPMENT OF 
DISTRIBUTION MODELS 

EXPERIENCIA EN EL AULA PARA EL DESARROLLO DE MODELOS PARA EL REPARTO 

María José Aviña González 
Facultad de Ciencias Exactas UJED 

Angelina Alvarado Monroy 
Facultad de Ciencias Exactas UJED 

This paper presents the design and analysis of a Model-Eliciting Activity (MEA), which aims to 
support the refinement of the conceptual system associated with directly proportional distribution 
problems (example: linear function, percentage, proportion, variation, etc.). The situation explores a 
context that is close to the student, encouraging the construction of a generalizable mathematical 
model that can be transferred to diverse contexts. For the design, the principles of the Models and 
Modeling perspective (Lesh and Doerr, 2003) were considered. The target population were students 
enrolled in the first semesters of a university degree in Accounting. For the analysis, we considered 
the construction of models (performed in teams); the mathematical representations within the 
process observed (such as diagrams and tabular organizations); as well as the individual solutions 
of the students. 

Keywords: Model-Eliciting Activities, Models and modeling, Distribution problems  

Objectives and purpose of the study 
Distribution problems may represent an opportunity for college students to delve into mathematical 

notions related to the multiplicative conceptual system. Researchers such as Martínez-Juste, Muñoz-
Escolano and Oller-Marcén (2019) consider that distribution problems have gained relevance in 
recent years because they can explore a diversity of contexts close to the reality of the students. 

The multiplicative conceptual system associated with distribution problems elicit fundamental ideas 
of mathematics, that´s why it is present in the curricula from elementary education to high school. In 
Mexico, these kind of problems are introduced in the third grade of elementary school (SEP, 2017) 
and, in subsequent years, variants of these problems are developed where notions such as: 
proportionality (direct and inverse), linear function, percentage, ratio, linear equation, rational 
number, proportion, variation and arithmetic progressions. According to Sánchez-Ordoñez (2013), 
distribution problems allow on the one hand, to shape reason, proportion and proportionality as 
mathematical objects that contribute to the understanding and mastery of the multiplicative 
conceptual field by students, and on the other hand, to identify the way in which ratios, proportions 
and proportionality are recognized and manipulated by students in classroom situations (p. 71,72). 

Based on this, the intention is to answer the question: Which are the cycles of understanding that 
emerge in undergraduate students when they are solving a distribution MEA? In order to develop a 
possible answer, we present the analysis of the solutions for a situation which was solved by a group 
of students enrolled in the first semester of a degree in Accounting at the School of Economics, 
Accounting and Administration of our institution (UJED), with the intention of eliciting the notion of 
proportionality and to develop integrated knowledge in order to connect and refine the associated 
conceptual system. It should be noted that the activity was led by the teacher who is also the author 
of this article. 

The Models and Modeling perspective (Lesh and Doerr, 2003) was fundamental for the theoretical 
framework. The proposed activity was designed as a MEA. Thus, the proposed situation aims to 
promote the construction of a reusable and generalizable model that provokes mathematical 
understanding in students in order to achieve the objective of refining and eliciting concepts 
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associated with the multiplicative conceptual system; such as those associated with algebra (ratio, 
linear variation, function, etc.) as the ones associated with statistics (percentage, frequency tables, 
etc.). This activity is part of a sequence of activities which were aimed at achieving the course 
objectives, however, in this paper only the scope of the distribution MEA will be mentioned. 

The analysis presented includes the solution interpretation of the student’s productions that emerged 
during the problem solving process where the student used mathematical resources available in order 
to build a model that can be generalized to solve similar but varied situations. 
The Models and Modeling Perspective (PMM) as a theoretical framework 

This perspective was developed by Lesh and Doerr (2003) and proposes the resolution of 
problematic situations endowed with a real context, which can be approached from the particular, 
taking, as a starting point, the previous knowledge that each participant may have. Through the 
socialization of the solution proposals, the refinement of the solution model that satisfies the 
requirements of the approach is reached. The MMP considers learning as a process for developing 
conceptual systems (models), which emerge when students share and analyze situations that have 
more than one answer, so that the solution is not a number or word. The problems addressed should 
encourage students to describe, argue and explain the solution processes used. Doerr (2016) explains 
that learning mathematical content is a process of developing an adequate and productive model that 
could be used and reused in a certain range of contexts.  

The MMP considers that learning mathematics is a process that includes progressive construction of 
understanding cycles, modification, extension and refinement of ways of thinking where the subjects 
manage to elicit a mathematical concept or construct at different levels by relating data, goals and the 
possible routes of solution they are exposed to when facing a problematic situation (Lesh and Doerr, 
2003). Therefore, the product of learning is the process in which the fluidity of mathematical 
representations allows for the understanding of most of the mathematical constructions (Lesh and 
Doerr, 2003). 

In MMP, the ADM or MEA are proposed as a way to generate products that go beyond short 
answers to specific questions. MEA allow students to get involved in an interactive and iterative 
process where they express, test and redefine their ways of thinking about significant problem 
situations (Doerr, 2016). Therefore,,the meaningfulness of the context provokes new mathematical 
understanding in the students, which allows them to express, in their procedures, their current 
knowledge that can come from their experience and/or their previous mathematical knowledge. 

MEA must comply with the six design principles established by Lesh, Hoover, Hole, Kelly, and 
Post (2000) which are: reality or personal meaning, construction of the model, self-evaluation, model 
externalization or model documentation. simple prototype and model generalization. 

The characterization of understanding cycles exposed by Vargas-Alejo, Reyes-Rodríguez and 
Cristóbal-Escalante (2016) was used for the analysis of the model construction process. The 
researchers propose a characterization based on their interpretation of the MMP in which they 
identify cycles (qualitative, quantitative and algebraic) that emerge when individuals approach 
contextualized situations. Understanding cycles is also associated with eliciting a mathematical 
construct or concept, which is why, for example, in a qualitative understanding cycle the individual 
gives meaning to the situation where the problem develops and can identify the variables involved, as 
well as the possible relationship between them. However, in order to express this relationship the 
individual only elaborates verbal descriptions, diagrams, analogies or metaphors. In contrast, in a 
quantitative understanding cycle the individual makes assumptions, discards useless information and 
may establish a quantitative meaning of linguistic expressions by making numerical comparisons, for 
this, the student may use tabular and graphical representations which leads to a more elaborate 
interpretation of the situation. When the individual seeks to describe and interpret a phenomenon 



Report of a classroom experience for the development of distribution models 

	 1119	

through the construction, use, transit and coordination of different representations (tabular, graphic, 
verbal, etc.) where there is fluency between them and algebraic symbols can be manipulated to solve 
a situation, then he has reached the algebraic understanding cycle. Researchers agree that, in order to 
reach the last cycle, it is possible for the individual to pass through different interpretations of the 
situation and, previously, has managed to differentiate, integrate and refine different models. 
Design studies 

Within design research there are multiple methodologies and theoretical perspectives in education 
and other fields. Some researchers consider that process and tangible products (didactic sequences, 
associated conceptual systems, etc.) are involved in the design (Hjalmarson and Lesh, 2008). 
However, intangible products formed during the process are also relevant, since the objective of this 
methodology is to improve the design processes and, consequently, to obtain different results both 
within the process and the product. 

The design of this experiment is composed of three phases: preparing for the experiment, 
experimenting in the classroom and conducting retrospective analyzes of the data generated during 
the implementation with the students (Cobb & Gravemeijer, 2008). This type of study aims to 
develop particular forms of learning while studying the learning obtained in the designed 
environments. 
Investigation method 

The target population, the context and the data collection techniques, as well as the theoretical and 
methodological tools for its analysis, are described below. 
Study population 

The activity presented was implemented in a group of 36 students enrolled in the first semester of 
studies for a degree in accounting  and whose ages ranged between 18 and 20 years of age. In 
previous sessions, the members had solved a modeling activity, so they already had experience in 
dealing with this type of situation. The implementation of the activity required 4 sessions of one hour 
each.. During the implementation, data was collected through photographs, video, and student logs. 

The participants were organized into nine teams made up of four members each. The activity was 
solved as a team and, later, the solution reached was socialized in a group discussion. In a final 
production, the students submitted an individual solution to the problem. The role of the teacher was 
key throughout the process, asking key questions to the students aimed at deepening the solution 
model reached. 
Description of activities 

The design and characterization of the models developed during the implementation were based on 
the MMP theoretical framework. To familiarize the students with the context of the situation, the 
“warm-up” activity is presented (Figure 1), which consisted of reading a newspaper article and a 
subsequent group discussion to clarify possible doubts regarding the understanding of the context. 
The MEA (Figure 2) was then presented, which addressed a problem related to the context of the 
reading. These activities are described below, accompanied by the image of the worksheets. 

Warm-up activity (Figure 1). It had the aim of introducing the context from real and current data to 
sensitize students to the problem and motivate them to resolve the profit sharing situation in the 
ADM (Figure 2). 

Model Eliciting Activity: Income Distribution. In this activity (Figure 2), the situation shows a 
sister and brother (Alondra and Paco) who decide to start a business together where the tasks they 
would perform are divided equally. However, the time that Alondra spends doing her tasks represents 
eight times more than what her brother Paco dedicated to his tasks. The situation also takes into 
consideration that Paco contributed a little more than half of the initial investment. This has given 
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rise to the dilemma of how to distribute the income; therefore, the brother and sister have decided to 
ask for help so that the students have to propose solutions for the distribution of the profits. 

 

  
Figure 1: Warm-up activity Figure 2: MEA income distribution 

Results 
In this section, students' productions are analyzed during the resolution of the proposed activities, 

first in a team and then in a group discussion. The characterization of the understanding cycles of 
Vargas-Alejo, Reyes-Rodríguez and Cristóbal-Escalante (2016) was used for the analysis of the 
construction process of a model that responds to the situation presented in the MEA exhibited by the 
students. 
Understanding cycles 

The warm-up activity (Figure 1) introduced the context. It was during the implementation of the 
MEA (Figure 2) were the students put into evidence the understanding cycles they went through, as 
well as the concepts and representations that emerged from their previous individual knowledge. The 
interaction with their teammates allowed to observe, in the written procedures, the solution model for 
income distribution. The observations made are briefly explained below. 

Qualitative understanding cycle. This cycle took place after the students read the problem. In it, 
they selected the data that they considered important for the resolution of the ADM and discarded the 
information that they considered irrelevant. For example, within the data shown in student 
procedures is the division of labor. This data was part of the writing of the ADM; however, the 
information does not follow the arrangement in the document that allows for the visual comparison 
of the quantities. Therefore, the order where a visual comparison can be made of the data selected as 
relevant to the situation was notable in the students' productions. This allowed us to identify a 
qualitative approach to solving the problem. 

Quantitative understanding cycle. After the students made a qualitative comparison of the 
selected information, they decided to make different mathematical representations in the construction 
of a solution model. Among the procedures exhibited, the following was observed: 
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Circular diagrams. The implicit use of percentages is shown to designate the proportion of the 
graph that corresponds to a category as a percentage of investment or time dedicated to a task. 

Arithmetic representations. For the calculation of the fourth proportional, the students used the 
algorithm known as the “rule of three”. For example, this procedure allowed them to find the 
percentage proportion corresponding to the initial contribution of Paco and Alondra. 

Tabular representation. The evidence shows the tabular organization where the linear variation was 
related, the arithmetic progression and the search for the unit value. This representation was used by 
teams 1 and 2. It shows the use of rational numbers and the designation of time units (hours); the 
teams used this to be able to identify and compare the time that each member dedicated to their tasks. 

Algebraic understanding cycle. The evidence written by the members shows algebraic 
representations of linear functions. 
Solution models formalization prior to group discussion 

Students were asked to give a short presentation regarding their solution. All the teams presented 
their solutions. The solutions presented show: the distribution of the income taking into account each 
partner’s investment proportion; the time spent on their tasks; or a mix of both elements to decide the 
fairest distribution, taking into account some other characteristics such as the difficulty of the tasks. 
Group discussion of solutions achieved by the teams 

It was during the group discussion of the results by the team that a refinement of the model was 
observed. The group presentation and discussion allowed the students to appeal to mathematical 
representations that emerged during the understanding cycles and allowed, not only to support and 
argue about the solution model reacheds, but also to construct other representations that had not 
emerged in the models achieved by the teams. 

Table 2 summarizes some of the procedures shown, the mathematical concepts that emerged, as 
well as their representations. 

Table 1 Results of the implementation of the distribution activity 

Cycles Representation Procedures Mathematical concepts 

 
Qualitative Verbal  Comparison  

Quantitative  

Arithmetic 

Fourth proportional 
calculation  
Use of the circular 
diagram to represent 
quantities 
(investment and time 
worked). 

Fraction 
Reason 
Proportion 
Percentage 
Proportionality 

Diagrams 
Arithmetical 
progression  
Frequency   

Tabular  Use of algebraic 
symbolism  

Constants and variables   
Value unit  
Dimensional Unit 

Algebraic Algebraic  Use of algebraic 
symbolism Linear function   

Source: Our own elaboration based on Vargas-Alejo, Reyes-Rodríguez and Cristóbal-Escalante (2016) 
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Discussion and conclusion 
As a design study, a first conclusion is that the activity complies with the design of a MEA by 

verifying that it satisfies the design principles established by the researchers Lesh, Hoover, Hole, 
Kelly, and Post (2000). The topics addressed in the modeling tasks documented in this article have 
interested students who have been involved in developing a solution that contrasts with the situation 
raised to validate it and, later were able to refine it in more than one cycle of understanding. The 
transition between the qualitative, quantitative, as well as the algebraic cycles was observed in the 
procedures carried out by the participants during the implementation of the activity. However, the 
researchers Vargas-Alejo, Reyes-Rodríguez and Cristóbal-Escalante (2016) mention: “conceptual 
understanding or understanding is not achieved through a linear process [...] there may be 
intermediate understanding cycles between the previous cycles, which indicate a transition between 
cycles and involve an incomplete development of the differentiation, integration and refinement 
phases” (p. 70). Figure 3 shows an example regarding the transit between cycles of understanding, in 
this case, students are between the cycle of quantitative and algebraic understanding since they 
identify a “formula” to generalize the possible solutions for the distribution of profits, however, the 
expression used is not algebraic. 

 
Figure 3: Evidence of transition from the quantitative to algebraic understanding cycle 
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EXPERIENCIA EN EL AULA PARA EL DESARROLLO DE MODELOS PARA EL 
REPARTO  

REPORT OF A CLASSROOM EXPERIENCE FOR THE DEVELOPMENT OF DISTRIBUTION MODELS 

María José Aviña González 
Facultad de Ciencias Exactas UJED 

Angelina Alvarado Monroy 
Facultad de Ciencias Exactas UJED 

Este escrito presenta el diseño y análisis de una Actividad Detonadora de Modelos (ADM), la cual 
pretende apoyar el refinamiento del sistema conceptual asociado a los problemas de reparto 
directamente proporcional (ejemplo: función lineal, porcentaje, proporción, variación, etc.). La 
situación explora un contexto cercano al estudiante alentando a la construcción de un modelo 
matemático generalizable y transferible a contextos diversos. Para el diseño se consideraron los 
principios de la perspectiva de Modelos y Modelación (Lesh y Doerr, 2003). La población objetivo 
fueron estudiantes inscritos en los primeros semestres de la carrera de Contador Público. En el 
análisis se consideraron la construcción de modelos (realizada en equipos); las representaciones 
matemáticas dentro del proceso observados (como diagramas y organizaciones tabulares); al igual 
que las soluciones individuales de los alumnos.   

Objetivos y propósitos del estudio 
Los problemas de reparto pueden representar una oportunidad para que los estudiantes 

universitarios profundicen en nociones matemáticas vinculadas con el sistema conceptual 
multiplicativo. Investigadores como Martínez-Juste, Muñoz-Escolano y Oller-Marcén (2019) 
consideran que los problemas que plantean una situación de reparto han tomado relevancia en los 
últimos años debido a que pueden explorar una diversidad de contextos cercanos a la realidad de los 
estudiantes. 

El sistema conceptual multiplicativo asociado con los problemas de reparto vincula ideas 
fundamentales de las matemáticas, es por ello que está presente en la currícula desde la educación 
inicial hasta la educación media superior. En México, este tipo de problemas son introducidos a partir 
del tercer año de educación básica (SEP, 2017) y, en los años subsecuentes, se desarrollan variantes 
de dichos problemas donde se abordan nociones como: proporcionalidad (directa e inversa), función 
lineal, porcentaje, razón, ecuación lineal, número racional, proporción, variación y progresiones 
aritméticas, entre otros. Según Sánchez-Ordoñez (2013) los problemas de reparto permiten «por un 
lado, dar forma a la razón, la proporción y la proporcionalidad como objetos matemáticos que 
contribuyen al entendimiento y dominio del campo conceptual multiplicativo por parte de los 
estudiantes, y por el otro, identificar la manera como son reconocidas y manipuladas las razones, las 
proporciones y la proporcionalidad por los estudiantes en situaciones de aula» (p. 71,72). 

Dado lo anterior, se pretende dar respuesta a la pregunta: ¿Cuáles son los ciclos de entendimientos 
que emergen en los estudiantes de nivel superior al resolver la ADM de reparto? En aras de elaborar 
una posible respuesta, se presentará el análisis de las soluciones para la situación planteada y, la cual, 
fue resuelta por un grupo de estudiantes inscritos en los primeros semestres de la carrera de Contador 
Público en la la UJED con la intención de profundizar en la noción de proporcionalidad y desarrollar 
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conocimientos que se integren para conectar y refinar el sistema conceptual asociado. Cabe señalar 
que la actividad fue dirigida por el docente quien también es el autor de este artículo. 

La perspectiva de Modelos y Modelización (Lesh y Doerr, 2003) fue fundamental para el marco 
teórico, dado que la actividad de reparto propuesta, fue diseñada como una ADM. Así, la situación 
planteada pretende promover la construcción de un modelo reusable y generalizable que, a su vez, 
provoque entendimiento matemático en los estudiantes para alcanzar el objetivo de refinar y 
profundizar en conceptos asociados al sistema conceptual multiplicativo; tanto aquellos asociados al 
álgebra (razón, variación lineal, función, etc.) como a la estadística (porcentaje, tablas de frecuencia, 
etc.). Esta actividad forma parte de una secuencia de actividades las cuales estaban encaminadas a 
lograr los objetivos del curso, sin embargo, en este escrito sólo se mencionarán los alcances de la 
ADM de reparto. 

El análisis que se presentará comprende la interpretación de los procedimientos de solución que 
surgen entre los estudiantes durante la resolución del problema al hacer uso de los recursos 
matemáticos dispuestos a su alcance para construir un modelo que pueda generalizarse para resolver 
situaciones similares pero variadas. 

La Perspectiva de Modelos y Modelación (PMM) como marco teórico 
Esta perspectiva fue elaborada por Lesh y Doerr (2003) y propone la resolución de situaciones 

problemáticas dotadas de un contexto real, las cuales, pueden ser abordadas desde lo particular 
tomando, como punto de partida, los conocimientos previos que cada participante pueda tener. El 
refinamiento se lleva a cabo mediante la socialización de las propuestas de solución donde se alcanza 
un modelo de solución que satisfaga los requerimientos del planteamiento. La PMM considera al 
aprendizaje como un proceso de desarrollo de sistemas conceptuales (modelos), los cuales emergen 
cuando los estudiantes comparten y analizan situaciones que tienen más de una respuesta, por lo que 
la solución no es un número o palabra. Las problemáticas abordadas deben alentar a los estudiantes a 
describir, argumentar y explicar los procesos de solución empleados. Doerr (2016) explica que el 
aprendizaje de un contenido matemático surge durante el proceso de desarrollo de un modelo 
adecuado y productivo el cual puede ser usado y reusado en cierto rango de contextos.  

La PMM considera que aprender matemáticas es un proceso que comprende ciclos progresivos de 
construcción de entendimiento, modificación, extensión y refinamiento de formas de pensar donde 
los sujetos logran profundizar en un concepto o constructo matemático a distintos niveles al 
relacionar datos, metas y posibles rutas de solución expuestos al enfrentar una situación problemática 
(Lesh y Doerr, 2003). Por lo tanto, el producto del aprendizaje es el proceso durante el cual la fluidez 
de las representaciones permite entender la mayoría de las construcciones matemáticas (Lesh y 
Doerr, 2003). 

Dentro de la PMM se proponen a las ADM o MEA como una manera de generar productos que 
vayan más allá de respuestas cortas a preguntas específicas. Las ADM permiten a los estudiantes 
involucrarse en un proceso interactivo e iterativo donde expresan, prueban y redefinen sus maneras 
de pensar respecto a situaciones problemáticas significativas (Doerr, 2016), de esta manera, al estar 
en un contexto significativo, provocan entendimiento matemático nuevo en los estudiantes 
permitiéndoles expresar en sus procedimientos su conocimiento actual el cual puede provenir tanto 
de su experiencia como de su conocimiento matemático previo. 

Las ADM deben cumplir con los seis principios del diseño establecidos por Lesh, Hoover, Hole, 
Kelly, y Post (2000) los cuales son: significado de la realidad o personal, construcción del modelo, 
auto-evaluación, externalización del modelo o de documentación del modelo. prototipo simple y 
generalización de modelos. 

La caracterización de los ciclos de entendimiento expuesta por Vargas-Alejo, Reyes-Rodríguez y 
Cristóbal-Escalante (2016) fue utilizada para el análisis del proceso de construcción de modelos. Los 
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investigadores proponen una caracterización a partir de su interpretación de la PMM en la cual 
identifican ciclos (cualitativo, cuantitativo y algebraico) que surgen cuando los individuos abordan 
situaciones contextualizadas. Los ciclos de entendimiento también están asociados con la 
profundización de un constructo matemático o concepto, es por ello que, por ejemplo, en un ciclo de 
entendimiento cualitativo el individuo da sentido a la situación donde se desarrolla el problema y 
puede llegar a identificar las variables involucradas, así como la posible relación entre ellas, sin 
embargo, para expresar dicha relación sólo elabora descripciones verbales, diagramas analogías o 
metáforas. En contraste, en un ciclo de entendimiento cuantitativo el individuo elabora supuestos, 
descarta información que considera inútil y puede llegar a establecer cuantitativamente el significado 
de expresiones lingüísticas haciendo comparaciones numéricas, para ello, puede llegar a utilizar 
representaciones tabulares y gráficas lo que conlleva a una interpretación más elaborada de la 
situación. Cuando el individuo busca describir e interpretar un fenómeno a través de la construcción, 
utilización, tránsito y coordinación de distintas representaciones (tabulares, gráficas, verbales, etc.) 
fluidez entre ellas y puede manipular símbolos algebraicos para resolver una situación, entonces ha 
alcanzado el ciclo de entendimiento algebraico. Los investigadores coinciden que, para poder 
alcanzar el último ciclo, es posible que el individuo haya pasado por diferentes interpretaciones de la 
situación y, previamente, haya logrado diferenciar, integrar y refinar distintos modelos. 
Estudios de diseño 

Dentro de la investigación del diseño se encuentran múltiples metodologías y perspectivas teóricas 
en la educación y otros campos. Algunos investigadores consideran que, tanto el proceso como los 
productos tangibles (secuencias didácticas, sistemas conceptuales asociados, etc) están involucrados 
en el diseño (Hjalmarson y Lesh, 2008). Sin embargo, también son relevantes los productos 
intangibles formados durante el proceso, puesto que el objetivo de esta metodología es mejorar los 
procesos de diseño y, en consecuencia, a resultados diferentes tanto dentro del proceso como en el 
producto. 

Es importante considerar en el experimento de diseño las tres fases: prepararse para el experimento, 
experimentar en el aula y realizar análisis retrospectivos de los datos generados durante la 
implementación con los estudiantes (Cobb & Gravemeijer, 2008). Este tipo de estudios pretende 
desarrollar formas particulares de aprendizaje mientras se estudia el aprendizaje provocado en los 
ambientes diseñados. 

Método de investigación  
Enseguida se describe la población objetivo, el contexto y las técnicas de recolección de datos, así 

como las herramientas teórico metodológicas para su análisis. 
Población de estudio 

La actividad presentada fue implementada en un grupo de 36 estudiante inscritos en los primeros 
semestres en la carrera de Contador Público y cuyas edades oscilaban entre los 18 y 20 años de edad.  
En sesiones anteriores, los integrantes habían resuelto una actividad de modelación, por lo que ya 
contaban con experiencia para abordar este tipo de situaciones. La implementación de la actividad 
requirió de 4 sesiones con duración de una hora cada uno. Durante la implementación, los datos 
fueron recolectados mediante fotografías, video y bitácoras de los estudiantes. 

Los participantes fueron organizados en nueve equipos compuestos por cuatro integrantes cada uno. 
La actividad fue resuelta en equipo y, posteriormente, la solución alcanzada se socializó en una 
discusión grupal. En una última producción, los estudiantes entregaron una solución individual al 
problema. El rol del docente fue clave durante todo el proceso realizando preguntas clave a los 
estudiantes encaminadas a profundizar en el modelo de solución alcanzado. 
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Descripción de las actividades 
El diseño y la caracterización de los modelos desarrollados durante la implementación se 

sustentaron en el marco teórico de la PMM. Para familiarizar a los estudiantes con el contexto de la 
situación planteada se presenta la actividad calentamiento (Figura 1) que consistía en la lectura de un 
artículo de periódico y, su posterior discusión grupal para esclarecer posibles dudas respecto a la 
comprensión del contexto. Acto seguido se presentó la ADM (Figura 2) la cual abordaba una 
problemática relacionada con el contexto de la lectura. A continuación, se describen dichas 
actividades acompañadas de la imagen de las hojas de trabajo. 

  
Figura 1:Actividad de calentamiento Figura 2: ADM  Reparto de ganancias 

Actividad de calentamiento.  Expuesta en la Figura 1 con el objetivo de introducir el contexto 
desde datos reales y actuales para sensibilizar a los estudiantes respecto a la problemática y 
motivarlos a resolver la situación de reparto de ganancias en la ADM (Figura 2). 

Actividad Detonadora de Modelos: Reparto de ganancias En esta actividad (Figura 2) se plantea 
una situación en la cual dos hermanos (Alondra y Paco) quienes deciden iniciar juntos un negocio 
donde las tareas que realizarían están dividas a la por igual, sin embargo, el tiempo que Alondra le 
dedicada a las tareas que realiza representa ocho veces más del dedicado por su hermano Paco. La 
situación también contempla que, al momento de realizar la inversión inicial, Paco aportó un poco 
más de la mitad de dicha inversión. Lo anterior ha dado pie a la disyuntiva de cómo repartir las 
ganancias, por ello, los hermanos han decidido pedir ayuda para que los estudiantes propongan 
soluciones de reparto de las ganancias.  

Resultados 
En este apartado se analizan las producciones de los estudiantes durante la resolución de las 

actividades propuestas, primero en equipo y, posteriormente, la discusión de las mismas de manera 
grupal. Para el análisis del proceso de construcción de un modelo que dé respuesta a la situación 
presentada en la ADM exhibido por los estudiantes, se utilizó la caracterización de los ciclos de 
entendimiento de Vargas-Alejo, Reyes-Rodríguez y Cristóbal-Escalante (2016) 
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Ciclos de entendimiento 
La introducción del contexto se llevó a cabo con la actividad de calentamiento (Figura 1). Fue 

durante la implementación de la ADM (Figura 2) cuando los estudiantes pusieron en evidencia tanto 
los ciclos de entendimiento por los que atravesaron, como los conceptos y representaciones que 
surgieron desde su conocimiento individual previo. La interacción con sus compañeros de equipo 
permitió observar, en los procedimientos escritos, el modelo de solución para distribuir las ganancias. 
A continuación, se explican, brevemente, las observaciones realizadas. 

Ciclo de entendimiento cualitativo. Este ciclo tuvo lugar después de que los estudiantes leyeron el 
problema. En él seleccionaron los datos que consideraron importantes para la resolución de la ADM 
y desecharon la información que consideraron irrelevante. Por ejemplo, dentro de los datos que 
muestran en los procedimientos de los estudiantes está la división de trabajo. Estos datos formaban 
parte de la redacción de la ADM, sin embargo, la información no sigue la disposición en el 
documento que permita la comparación visual de las cantidades, por ello, fue notable en las 
producciones de los estudiantes el orden donde puede hacerse una comparación visual de los datos 
seleccionados como relevantes en la situación. Lo anterior, permitió identificar una aproximación 
cualitativa a la solución del problema. 

Ciclo de entendimiento cuantitativo. Después de que los estudiantes realizaron una comparación 
cualitativa de la información seleccionada, decidieron realizar distintas representaciones matemáticas 
en la construcción de un modelo de solución. Dentro de los procedimientos exhibidos se observaron: 

Diagramas circulares. se exhibe el uso implícito de porcentajes para designar la proporción de la 
gráfica que corresponde a una categoría como porcentaje de inversión ó tiempo dedicado a una tarea. 

Representaciones aritméticas. Para el cálculo del cuarto proporcional los estudiantes utilizaron el 
algoritmo conocido como “regla de tres”. Por ejemplo, este procedimiento les permitió encontrar la 
proporción porcentual correspondiente a la aportación inicial de Paco y Alondra. 

Representación tabular. La evidencia muestra la organización tabular donde la variación lineal fue 
relacionada, la progresión aritmética y la búsqueda del valor unitario. Esta representación fue 
utilizada por los equipos 1 y 2. En ella se muestra el uso de números racionales y la designación de 
unidades de tiempo (horas), los equipos la utilizaron para poder identificar y comparar el tiempo que 
cada integrante le dedicaba a sus tareas.  

Ciclo de entendimiento algebraico. Las evidencias escritas por los integrantes muestran 
representaciones algebraicas de funciones lineales.  
Formalización de los modelos de solución previa a la socialización en grupo 

Se les pidió a los estudiantes que realizaran una presentación corta respecto a su solución. Todos los 
equipos expusieron sus soluciones, entre ellas se encontraron: repartir la ganancia tomando en cuenta 
la proporción de la inversión entregada por cada socio; el tiempo dedicado a sus tareas; o bien, una 
mezcla entre ambos factores para decidir la repartición más justa tomando en cuenta algunas otras 
características como dificultad de las tareas.  
Socialización de las soluciones alcanzadas por equipos  

Fue durante la socialización de los resultados por equipo donde se observó un refinamiento del 
modelo. La exposición y discusión grupal permitió que los estudiantes recurrieran a representaciones 
matemáticas que surgieron durante los ciclos de entendimiento y permitieron, no sólo, sustentar y 
argumentar respecto el modelo de solución alcanzado en el equipo, también dio paso a la posibilidad 
de construir otras representaciones que no habían surgido en los modelos alcanzados por equipo. 

En la Tabla 2 se resumen algunos de los procedimientos mostrados, los conceptos matemáticos que 
emergieron, así como las representaciones. 
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Tabla 2 Resultados de la implementación de la actividad de reparto 

Ciclos Representación Procedimientos Conceptos matemáticos 

Cualitativo Verbal  Comparación 

Cuantitativo 

Aritmética Cálculo del cuarto 
proporcional Fracción  

Razón 
Proporción 
Porcentaje  
Proporcionalidad 

Diagramas 

Uso del diagrama de 
circular para representar 
cantidades (inversión y 
tiempo laborado). 

Tabular  Progresión aritmética 
Frecuencial 

Constante y Variables  
Valor unitario 
Unidad dimensional  

Algebraico Algebraica  Uso de simbolismo 
algebraico Función lineal 

Fuente: Elaboración propia con base en Vargas-Alejo, Reyes-Rodríguez y Cristóbal-Escalante (2016). 

Discusión y conclusión 
Al ser un estudio de diseño una primera conclusión es que la actividad cumple con el diseño de una 

ADM al verificarse que satisface los principios de diseño establecidos por los investigadores Lesh, 
Hoover, Hole, Kelly, y Post, (2000). La temática abordada en las tareas de modelación documentadas 
en este artículo han interesado a los estudiantes y se han involucrado para desarrollar una solución 
que contrastan con la situación planteada para validarla y, posteriormente, la retoman para refinarla 
en más de un ciclo de entendimiento. Se observó, en los procedimientos llevados a cabo por los 
participantes durante la implementación de la actividad, el tránsito entre los ciclos cualitativo, 
cuantitativo, así como algebraico. Sin embargo, aquí se encuentra también lo que Vargas-Alejo, 
Reyes-Rodríguez y Cristóbal-Escalante (2016) mencionan: «la comprensión o entendimiento 
conceptual no se logra por medio de un proceso lineal […] pueden existir ciclos de entendimiento 
intermedios entre los ciclos anteriores, los cuales señalan un tránsito entre ciclos e involucran un 
desarrollo incompleto de las fases de diferenciación, integración y refinamiento». (p. 70). La Figura 3 
muestra un ejemplo respecto al tránsito entre ciclos de entendimiento, en este caso, los estudiantes se 
encuentran entre el ciclo de entendimiento cuantitativo y el algebraico puesto que identifican una 
“formula” para generalizar las posibles soluciones de reparto de ganancias, sin embargo, la expresión 
utilizada no es algebraica. 

 
Figura 3: Evidencia de tránsito del ciclo de entendimiento cuantitativo al algebraico 
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This paper characterizes the engagement of two groups of students in a Precalculus course at a four-
year public university. A set of “Multiple Solutions Activities” was designed for the course to expose 
groups of students to alternative solution methods, allowing instructors to explicitly negotiate 
productive norms to foster students’ flexible knowledge. Over the duration of the semester, the 
groups developed contrasting social and sociomathematical norms. One group’s norms seem to be 
particularly influenced by students’ experience taking the same course the prior semester in a more 
traditional format. 

Keywords: Post-Secondary Education, Precalculus, Instructional Activities and Practices 

Purpose 
Many developmental mathematics courses, like College Algebra or Precalculus, tend to emphasize 

remedial content coverage and practicing procedures (Cox, 2015; Grubb, 2013; Mesa et al., 2011). 
This may not require students to change their mathematical practices and habits that contributed 
towards some students’ need for further mathematical background development (Carlson et al., 2010; 
Goudas & Boylan, 2013). Consequently, some researchers have suggested focusing on developing 
students’ argumentation skills and reasoning strategies (Chiaravalloti, 2009; Partanen & Kaasila, 
2014). 

One way to do this is to provide opportunities for students to compare, reflect, and discuss multiple 
solution methods (Rittle-Johnson & Star, 2007).  This has been shown to help develop flexible 
knowledge, which Star and Rittle-Johnson (2008) characterize as the awareness of multiple problem-
solving strategies and when to use them. However, students with underdeveloped mathematical skills 
often prefer a dependent learning style focused on mastering algorithms, making it necessary for 
instructors of developmental courses to negotiate productive norms, and promote mathematical 
practices that can help students develop flexible knowledge.  

We conducted a teaching experiment in a Precalculus class at a four-year public university, in which 
the course instructor (first author of this paper) negotiated such productive norms and practices with 
the students. Specifically, the instructors attempted to aid the development of students’ flexible 
knowledge by negotiating the social norm that it is important to understand others’ work and the 
sociomathematical norm that an acceptable solution is one that follows any mathematically valid 
approach. In this paper, we analyze two groups’ in-class engagement to answer the following 
research question: What social and sociomathematical norms developed in these groups over the 
semester? 

Framework 
Our study is framed within the emergent perspective, which views psychological and social factors 

as necessary to characterizing classroom activity. Continual student and teacher interactions 
formulate mutually established and regulated activity, which constitute norms (Cobb et al., 2001). 
Social norms portray the classroom participation structure, whereas sociomathematical norms are 
those specific to mathematical aspects of students’ activity (Yackel & Cobb, 1996). Social constructs 
are reflexively related to psychological constructs (See Table 1). For example, as students develop 
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sociomathematical norms they reorganize their mathematical values and beliefs, while productive 
social norms support students’ positive perspectives of communal mathematical activity. 

Table 1: Modified Interpretive Framework (Yackel & Cobb, 1996) 

 

Data Sources and Methods 
The data were collected in a post-secondary Precalculus class of about eighty students at a four-year 

public university. This is the only developmental mathematics course offered by the university, and 
is largely populated by students who intend to major in engineering or the physical sciences, but who 
did not meet the pre-requisite for enrolling in Calculus. In the semester of our study, the majority of 
the students enrolled in the course were retaking it because they did not attain the necessary score to 
advance to Calculus. The instructor and teaching assistant for the course were Mathematics 
Education Ph.D. candidates, who previously taught this course multiple times, but not in the semester 
preceding this study.  

Multiple Solutions Activities were designed to expose students to a variety of solution strategies, 
while creating opportunities for students to critique and analyze mathematical arguments. The 
activities were intended for groups of three or four students. Each activity had three phases. First, 
students solved a mathematics problem and cooperatively constructed a grading key for it. Second, 
students used their grading key to evaluate three fictitious students’ solutions to the same problem. 
These solutions contained errors and/or used different approaches than those previously discussed in 
class (see Fig. 1-2). After analyzing these sample solutions, students were given reflection questions 
to compare and contrast the solutions. The last phase was a class discussion facilitated by the 
instructors, which helped them respond to students' concerns and bring attention to various aspects of 
the solutions. This allowed the instructors to model practices and explicitly negotiate norms such as: 
an acceptable mathematical solution may follow any mathematically valid approach and that 
solutions must contain explanations. Four such activities were implemented throughout the semester, 
and served as a key data source for the study. 

Additionally, students participated in a pre- and post-course survey, which asked questions about 
their mathematical and role beliefs. Each item used a four point Likert scale to assess student’s 
agreement with (1 – Disagree, to 4 – Agree) or importance of (1 – Not Important, to 4 – Very 
Important) given claims. For example: “The most valid ways of solving a problem are the ones 
discussed in class,” and, “To receive full credit, my solutions must use the same methods used in 
class.” These items aimed to assess students’ openness towards other approaches, a theme the 
instructors advocated for to support the development of students’ flexible knowledge.  

Another data source was weekly writing prompts, in which students were asked to reflect on various 
topics such as their individual mathematical beliefs and practices. Several students were interviewed 
during and/or at the end of the semester to expound on their written responses. 

Analysis 
We analyzed video data by classifying students’ utterances and activity into categories within the 

interpretive framework (Table 1) and coded videos in conjunction with students’ written original 
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solutions, grading keys, and evaluations of the sample solutions. Particular attention was given to 
characterizing the sociomathematical norm of what constitutes an acceptable mathematical solution 
and the social norm of interpreting others’ solutions. Similarly, students’ individual responses to 
writing prompts were partitioned into meaning units (Tesch, 1990) and classified into categories 
within the interpretive framework.  

In this paper, we focus on the analysis of two groups of students. Group 1 included Albert, Dwayne, 
Gordon, and Harry, and Group 2 was composed of Molly, Steve, Peter, and Chad (all names are 
pseudonyms). One of the primary reasons for choosing these two groups was that three of four 
students in Group 1 were taking the course for the first time whereas all of the students in Group 2 
were taking the course for the second time.  

The survey data were analyzed by item, using a paired t-test (JMP refers to this as a Matched Pairs 
test). The pre- and post-survey were paired using a non-identifying code, which students created 
when completing the surveys. Pre-course surveys’ that did not have a matching code in the post-
course survey pool, and vice versa, were not included in the analysis. In total, we analyzed 42 
students’ surveys, of which 26 reported taking the course in a previous semester. 

Results 
The quantitative analysis revealed that over the duration of the semester, in general, students 

developed beliefs that were supportive of developing flexible knowledge. But the qualitative analysis 
revealed major variations in students’ perceptions, which could be seen in the norms developed in 
various groups of students. This was particularly evident in Group 1 and Group 2’s interactions with 
Multiple Solutions Activities, as we will show below. 
Survey Results on Flexibility 

Table 2 shows the results of two survey items that assessed students’ beliefs associated with flexible 
knowledge, both of which demonstrate a statistically significant change. 

Table 2: Flexibility Survey Items and Paired T-test Results, n = 42 (1- Disagree, 4-Agree) 
Question Pre-

Mean 
Post-Mean Prob < t 

The most valid ways of solving a problem are the 
ones discussed in class. 

2.88095 2.54762 0.0058 

To receive full credit, my solution must use the same 
methods used in class. 

2.14634 1.8297 0.0178 

The decrease in mean scores suggest that students came to assign less value to following specific 
procedures, and view it as having less influence on receiving full credit for their work. This suggests 
improved openness to learning about multiple solution approaches. This change was not homogenous 
across all students in the class, as the next sections show. 
Norms developed in Group 1 

Social Norms. One of the most evident social norms that developed within this group during the 
Multiple Solutions Activities, was the importance of interpreting and understanding others’ solutions. 
As the semester progressed, the students spent increasing effort to analyze the provided solutions to 
understand and evaluate novel approaches and to find errors in them. Even when the group to 
initially criticized novel approaches, this did not detract from their efforts to interpret a new method.  

Another social norm that developed in this group is the importance of all group members’ 
participation in collaboratively discussing each solution and their evaluation of it. The group 
exhibited a shared responsibility group to explain what they understood about each solution and to 
help clarify confusion to each other when possible. When analyzing novel solutions, group members 
would verbally share their confusion with one another. Naturally, not all group members were 
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uniformly vocal. To accommodate Albert’s introverted demeanor, the group would often ask for his 
opinion on the solutions to integrate him into the group discussions. The group demonstrated that 
they valued each other’s concerns, questions, and suggestions.  

Sociomathematical Norms. We provide one vignette of Group 1’s typical work that depicts the 
characterization of their sociomathematical norm of what constitutes an acceptable solution. During 
the last Multiple Solutions Activity of the semester, on the topic of inverse trigonometry, as Group 1 
formed their grading rubric, they explicitly expressed awareness that there are different ways to solve 
the problem besides their chosen method. Harry described reluctance to form a rubric that would be 
limited to only one familiar way of solving:  

Harry:  I don’t know if there is another way to solve it, so I don’t want to write [grading] rules. 

As they looked at the sample solutions, the group was initially dismissive of “Jennifer’s” solution 
(Figure 2-b), which utilized right triangle trigonometry with the angle  𝑢 = 𝑠𝑖𝑛!! !

!
. This 

represented a novel approach that the group was unfamiliar with.  

Gordon: This person is doing some weird math. 
Dwayne:  What did you do here? What kind of [stuff] is this? How the [heck] did you get to that? 

Their lack of familiarity with her solution was obviously discomforting to them. But, despite these 
initial reactions, the group continued to investigate.  

Gordon: [Jennifer] didn’t find the inverse sine, so. They never even solved for u.  
Harry:   She’s saying this is sine of u, this triangle, so then tangent would be opposite over 

adjacent, so one over one. That’s what she’s saying … she just didn’t do it right. 
Gordon: Right, because this should be one half, square root of three over two, and one (pointing to 

the triangle, and referring to a common right triangle).  

Gordon’s remark suggested that when using trigonometry, the triangle must have a hypotenuse of 
one. Gordon did not seem to understand how Jennifer formed her triangle. But, as Dwayne asked 
questions about Jennifer’s approach, he was able to clarify Gordon’s misconception. 

Dwayne:  “a” squared plus “b” squared” is “c” squared. How did [she] get two? (Pointing to the 
hypotenuse). Oh! [She] did one over two. That’s correct though. That’s just a different 
proportion. That is right. 

This insight helped Gordon, who eventually located the exponent mistake in Jennifer’s solution. 
After he explained the mistake to the group, he noted: 

Gordon: If she did her math right, she actually would have got it, because “a” would have come 
out as square root of three. 

Dwayne:  So her process is right … but she just made one mistake. And technically her tangent 
work is correct for the work. 

This particular example demonstrates how the social norm of collaborative analysis of an unknown 
solution mediated the development of sociomathematical norms within the group. This example 
demonstrates the group’s openness to unfamiliar solutions and the sustainment of their 
sociomathematical norm of what constitutes an acceptable solution: a solution is acceptable if it 
follows any mathematically valid method. Conversely, this sociomathematical norm may have 
influenced the social norm of understanding other’s solutions. 
Norms developed in Group 2 

Social Norms. All students in Group 2 had taken the course the semester prior. As the instructor 
tried to negotiate productive classroom social norms, this group of students developed their own set 
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of norms that reflected a more traditional mathematics class. One social norm that quickly developed 
within this group was a rejection of engagement with alternative solutions. This norm was sustained 
throughout the semester, as the group tried to avoid analyzing others’ arguments or investigating 
different solutions. Instead, the group members tried to finish the activities as soon as possible, did 
not seek input from or ignored quiet group members. Once finished responding to the reflection 
questions, the group would often disengage for the rest of the class-period, including whole class 
discussions, which may have been particularly detrimental to the instructors’ efforts of promoting 
students’ flexible knowledge (Rittle-Johnson & Star, 2007). Since student participation in these 
discussions was not included in the assessment structure of the course, this may have implicitly 
negotiated less importance or value than other aspects of the course. 

Sociomathematical Norms. The instructors attempted to negotiate the sociomathematical norm 
that an acceptable solution is one that follows any mathematically valid approach, not just a familiar 
one. However, the group was conflicted with the instructors’ negotiations, instead developing an 
alternative norm: An acceptable solution to a problem is one that uses a familiar approach or leads to 
the correct answer. The following illustrates this norm. 

 
Figure 1: Molly’s Grading of Andrea’s Solution 

During one activity, the group had to evaluate three sample solutions by the fictitious students 
"Andrea," "Dan," and "Jennifer," and then to compare and contrast these solutions. Andrea’s solution 
used an unfamiliar approach but resulted in the correct answer, Dan’s solution followed a method 
shown in class but had a wrong answer because of an intentionally included error, and Jennifer’s 
solution was both unfamiliar and also yielded an incorrect answer.  

The group favored Andrea’s solution (Fig. 1), which yielded a correct answer, although it used an 
unfamiliar method. The group concluded that Andrea’s solution was “interesting” and viable, since it 
“got them the right answer.” The students relied on the authority of the answer to determine whether 
or not the approach was valid, but without thoughtful investigation.  

The group was also receptive towards Dan's solution (Fig. 2-a), but for a different reason. Dan’s 
solution resembled the approach the instructor modeled for similar problems. The approach was 
familiar to the group members, and eventually both Molly and Steve concluded that, "He has 
everything right except the answer." When students were familiar with a procedure, they were able to 
recognize patterns and locate errors, unlike in novel solutions like Jennifer’s. 
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Figure 2 a & b: Steve’s Grading of Dan (a) and Jennifer’s (b) Solutions 

Jennifer’s solution (Fig. 2-b) used an unfamiliar approach and resulted in an incorrect answer. The 
group had a scathing first response towards the solution: 

Steve:  Oh God, this already looks bad. Oh yeah, this is real bad. 0 out of 6 … I hope this is not a real 
student, I really hope. 

The only discussion in the group was to determine if Jennifer should earn points for neatness or for 
“getting the quadrant right.” The group did not notice the arithmetic mistakes until the instructor 
pointed it out to them.  

In general, this group did not develop the sociomathematical norms that the instructors advocated 
and negotiated for. Instead, they chose to focus on the correct answer, as in Andrea’s solution (Fig. 
1), or a familiar procedure, as in Dan’s solution (Fig. 2-a). The former is indicative of intellectual 
hegemony, relying on authority to determine that an approach is mathematically valid, which hinders 
the development of students’ autonomy. The group’s affinity towards familiar approaches coincides 
with their adopted social norm of aversion to exploring novel solutions. Consequently, they were 
eager to discredit novel solutions. Without a source of authority or the familiarity of an approach, the 
group was unable to determine its mathematical validity and vehemently rejected the solution, such 
as Jennifer’s (Fig. 2-b). 
Further Differences between the Groups 

The two groups described above had varying perspectives, beliefs, and practices, which may help 
further explain some of the differences in the norms that developed amongst them. Below are some 
students’ written responses to the question whether they found it helpful to learn about different 
approaches (asked near the end of the semester). 

 Dwayne (Group 1): I think it is very helpful to me … I think multiple ways of solving a problem 
gives me an overall better [perspective] on the problem itself and gives me a better understanding 
of how it is broken down.  

Albert (Group 1):  It is also pretty helpful to try different things to prove it in different ways, 
because this will increase understanding of different methods of proving things which you may 
find useful in other problems. 
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Harry (Group 1):  I find it very helpful to learn about multiple ways of solving problems. 
Sometimes when I see a problem approached from a different mindset I can create a mental 
connection between various concepts or strengthen my knowledge of how a concept works. I also 
like seeing how you can use seemingly unrelated math concepts to find the solution to a problem. 

Molly (Group 2):  No, I like to learn one set way to do the problem. The more sets and 
procedures there are to a problem, the more confusing it can get.  

Peter and Chad (group 2) expressed that they liked learning different methods but with the intention 
of finding a method that was easiest for them to replicate. In general, a common theme in Group 2’s 
responses was their preference to learn and practice through repetition, as was evident in their 
responses to writing prompts: 

Steve: When I am learning math, I heavily rely on seeing something done out in front of me and then 
having myself try the example myself and try and get the same answer as the example. I will then 
try more examples that relate towards that problem, I just need to know the answer in the end. 

Peter: I also learn from observing, and repetition … I locked myself in a study lounge and kept 
doing complete the square problems until it came like second nature for me, just kept repeating 
the steps and applying them to different problems. 

Molly: Given problems to do on our own with some way, either discussion or an answer key, we are 
given a way to check that we are doing it right. I personally like this way because it's repetitive 
and that's how I learn best in math. 

The differences between the two groups manifested themselves in students’ attitudes towards 
instructor’s attempts to negotiate productive norms in the course, specifically, the importance of 
flexible knowledge of mathematics. Group 2 expressed their frustration with the instructor’s 
approach towards teaching the class, which differed drastically from the previous semester: 

Steve:  Last semester they constantly drilled in our head that there was only one way to do it. 
Molly:  Yeah. So that's why I feel like a lot of us, or at least personally why I'm struggling. 
Steve:  It's a lot different. 
Molly:  I don't have a set rule to follow. 

These comments may represent role beliefs that reflect the expectation that the instructor is 
responsible for abiding by the norms of a traditional mathematics class. Despite the instructor’s 
efforts, most of the Group 2 members’ beliefs and practices remained unaffected and staunchly 
sustained throughout the whole semester. At the end of the semester, Steve reflected:  

Steve: Throughout the semester my studying habits have not changed, I have [continued] the same 
strategy that I used since the beginning, but my grade has started get worse and worse, but I do 
not believe that it due on my part. 

This comment represented a deep-rooted conflict that may explain the nature of the norms that 
developed in Group 2 in contrast to the instructors’ negotiations and expectations. 

Discussion 
This study examined student engagement in a post-secondary Precalculus course, in which an 

instructor implemented novel instructional activities and pedagogical strategies. The course and its 
activities aimed towards negotiating productive social and sociomathematical norms, which were 
intended to support students’ flexible mathematical knowledge.  

Our data analysis showed that the intervention produced mixed results. At a large scale, we saw 
some improvement in students’ placing less emphasis on a single solution strategy, and possibly 
more openness towards multiple solutions (Table 2). Closer examination of student engagement 
revealed the variability between groups of students, which was evident in social and 
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sociomathematical norms developed in different groups. Group 1 developed a social norm of 
interpreting and understanding others’ solutions, which coincided with development of the 
sociomathematical norm that an acceptable solution may follow any mathematically valid approach. 
Meanwhile, Group 2’s social norm of aversion to interpret or understand another’s work developed 
concurrently with the sociomathematical norm that an acceptable solution is one with a correct 
answer or follows a familiar procedure. These data, along with the analysis of the differences 
between the two groups, suggest that there are several processes in place.   

One is the interconnectedness and co-development of social and sociomathematical norms. The 
emergent perspective (Yackel & Cobb, 1996) emphasizes the reflexive relationships between 
psychological and social factors (see Table 1). In addition to these connections, our data suggest that 
social and sociomathematical norms may mutually influence the development of one another. For 
example, Group 2’s sociomathematical norm of an acceptable solution as one following a familiar 
procedure may have influenced, and may be influenced by, the development of the social norm of 
avoiding engagement with non-familiar solutions. Thus, we assert that the interpretive framework 
can be enriched by incorporating this new dimension of reflexivity.   

Second, our study demonstrates the lingering effects of detrimental classroom practices and norms. 
The emergent perspective describes a reflexive relationship between classroom norms and students’ 
beliefs. Although classroom practices and norms dissolve after the conclusion of a course, the norms 
developed in one course affect students’ individual beliefs and practices, which our study shows can 
persist and act as barriers to the negotiation of different norms and classroom practices in another 
course. This was particularly evident in Group 2’s preference for repeated practice of a single 
procedure. Although there is value in developing procedural competences, unreflective repetitive 
practice may result in an illusion of competence. In our study, students seemed to hold onto 
inefficient practices that constrained their growth in the past, which continued to disservice them in 
the present. The case of Group 2 shows that changing these beliefs and negotiating productive norms, 
especially in developmental mathematics courses, is a gradual process. However, the case of Group 1 
demonstrates the importance and positive effects of a constructive participation structure to the 
development of productive sociomathematical norms and improved learning outcomes. 
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Covariation and covariational reasoning are key themes in mathematics education research. 
Recently, these ideas have been expanded to include cases where more than two variables relate to 
each other, in what is termed multivariation. Building on the theoretical work that has identified 
different types of multivariation structures, this study explores students’ reasoning about these 
structures. Our initial assumption that multivariational reasoning would be built on covariational 
reasoning appeared validated, and there were also several other aspects of reasoning employed in 
making sense of these structures. There were important similarities in reasoning about the different 
types of multivariation, as well as some nuances between them. 

Keywords: Multivariation, Covariation, Student reasoning, Mental actions 

Covariation and the cognitive activities involved in reasoning about it have become important 
themes in mathematics education research (e.g., Johnson, 2012; Moore, Paoletti, & Musgrave, 2013; 
Oehrtman, Carlson, & Thompson, 2008; Thompson, 1994; Thompson & Carlson, 2017). Yet, work 
on co-variational reasoning has essentially been limited to examining two variables changing in 
tandem with each other. Mathematical and scientific contexts often include more than two variables 
that are potentially related to each other. For example, the quantities pressure, volume, and 
temperature of a fix amount of gas inside of a flexible container are given by 𝑃𝑉 = 𝑘𝑇, where P, V, 
and T could all be changing simultaneously. Mathematical functions of more than one variable, 
𝑧 = 𝑓(𝑥, 𝑦), also contain this feature. Note that we use “variable” in this paper to generically mean 
any potentially varying value, including values of real-world quantities as well as mathematical 
function inputs and outputs. 

Recently, Jones (2018) used the term “multivariation” to theoretically describe situations where 
more than two variables relate to and change with one another. However, we do not yet have 
empirical data on the reasoning students might employ in making sense of these situations. This 
study was intended to explore, open-endedly, types of reasoning students might use when asked to 
think about multivariation structures. We went into this study with the assumption that 
multivariational reasoning would be related to covariational reasoning. Thus, our guiding research 
question was as follows: When analyzed through the lens of previous work on covariational 
reasoning, what reasoning mental actions are observed in students as they are asked to discuss 
different multivariational structures? 

Background Research on Covariation 
Because of our assumption that multivariational reasoning would be closely connected to 

covariational reasoning, we briefly review here some research work on covariation (see Carlson, 
Jacobs, Coe, Larsen, & Hsu, 2002; Castillo-Garsow, 2012; Johnson, 2015; Thompson & Carlson, 
2017). The central theme to this work is that covariation consists of imagining “two quantities [i.e. 
variables] changing together” (Castillo-Garsow, 2012, p. 55) in which “they are changing 
simultaneously and interdependently” (Johnson, 2012, p. 315). The work of Carlson et al. (2002) 
provided the field with a framework of covariational reasoning mental actions, and then the more 
recent work of Thompson and Carlson (2017) heavily revised this into a new framework. For our 
purposes, we use the newer framework by Thompson and Carlson, though we draw on one major 
aspect of Carlson et al.’s original work. In particular, in Carlson et al.’s (2002) original framework, 
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the first mental action of covariational reasoning was (1) coordinating one variable with changes in 
another. We believe this to essentially mean that students recognize the dependence between two 
variables, in that they perceive a change in one to correspond to a change in another (see also 
Oehrtman et al., 2008). This first mental action did not find its way into the revised framework by 
Thompson and Carlson, but it is important to our study because of the connections it has to some of 
our results.  

Beyond this first mental action, we then used the revised framework (Thompson & Carlson, 2017) 
for the remaining mental actions. These subsequent mental actions are: (2) imagining related, but 
asynchronous changes in variables (precoordination), (3) imagining generic increases/decreases 
between the variables (gross coordination), (4) coordinating the variables’ values (coordination of 
values), (5) coordinating changes in variables’ values in “chunks” (chunky continuous) and (6) 
imagining changes in the variables’ values happening smoothly (smooth continuous). These six 
mental actions were used in our study as baseline codes to categorize and organize student 
statements, as described in the methods section. We also extended this work by identifying new 
mental actions pertinent to multivariational reasoning. 

Multivariation 
Multivariation consists of situations where more than two variables are related to and possibly 

changing in conjunction with each other (Jones, 2018). Conceptual analysis has revealed different 
possible types of multivariation, which we recap in this section. 
Independent Multivariation 

Jones (2018) described independent multivariation as situations where certain variables can be held 
constant while others vary. For example, in 𝐹 = 𝐺𝑚𝑀 𝑟!, one can change the distance (r) to 
produce a different amount of force (F), while keeping mass (m) constant. Multivariable functions, 
𝑧 = 𝑓(𝑥, 𝑦), typically also behave in this way. Yet, in independent multivariation, what is held 
constant and what can change can be switched. In 𝐹 = 𝐺𝑚𝑀 𝑟! one can keep the distance (r) the 
same to see how F and m might covary with each other. It is critical to note, though, that independent 
multivariation is more than simply the covariation of two variables while holding the others constant. 
Rather, one can imagine multiple variables changing at the same time. For example, in 𝐹 =
𝐺𝑚𝑀 𝑟!, r and m could both be changing simultaneously, each impacting how F changes. In 
𝑧 = 𝑓(𝑥, 𝑦), one could trace a path in ℝ2 in which both x and y change at the same time, with z 
changing as one traces along that path (see also Martinez-Planell, Trigueros-Gaisman, & McGee, 
2015). Finally, another aspect of this multivariation is that it can include as many variables as 
desired, such as 𝑧 = 𝑓(𝑥!, 𝑥!,… , 𝑥!) having n+1 variables. 
Dependent Mulvariation 

Next, Jones (2018) described dependent multivariation as situations in which it is not possible to 
hold some variables constant while changing others. A change in any one variable in this situation 
will produce simultaneous changes in all other variables. Some real-world contexts exhibit this 
behavior (Bucy, Thompson, & Mountcastle, 2007; Roundy et al., 2015), such as 𝑃𝑉 = 𝑘𝑇. If the gas 
inside the flexible container is heated up, the increase in temperature (T) would cause simultaneous 
changes in both the internal pressure (P) and volume (V). As another example, in free-market 
economics, if one changes the price of a commodity, both demand and supply will react 
simultaneously. It may not be realistic or even possible to hold “demand” constant to observe only 
changes in supply. Similarly, for parametric functions in mathematics, 𝑥 𝑡 , 𝑦(𝑡) , if one changes t, 
then x and y both change simultaneously. 
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Nested Multivariation 
Third, Jones (2018) described nested multivariation as situations where the variables are related in a 

function composition structure. In the structure 𝑧(𝑦 𝑥 ), as one imagines a change in x, there is a 
corresponding change in y. That change in y then automatically corresponds to a change in z. It may 
be necessary sometimes to perceive the intermediary variable if it is not explicitly labelled, such as 
𝑦 = 𝑠𝑖𝑛!(𝑥) consisting of the quantities x, sin(x), and y. As x changes, sin(x) changes, which in turn 
makes y change. Of course, it is possible to conceptualize two-variable covariation between x and y 
directly in this example. However, a complete understanding of their relationship would require 
interpreting the intermediary sin(x) value (see also Breidenbach, Dubinsky, Hawks, & Nichols, 
1992). Otherwise, for instance, if x decreases into negatives, the values of y might not be accurately 
tracked. Real-world quantities can also have this nested structure. For example, in the theory of 
relativity, as an object’s velocity changes, the object’s mass changes, given by = 𝑚! 1 − 𝑣! 𝑐! . 
As the velocity (v) changes, the ratio between it and the speed of light (v/c) changes, which in turn 
changes the Lorenz factor 1 1 − 𝑟𝑎𝑡𝑖𝑜 !, which in turn changes the mass (m) (see also Jones, 
2015).  

Study Methods 
To document students’ multivariational reasoning, we recruited 10 undergraduate students to 

participate in interviews, referred to as Students A–J. Students E, G, and J were female and the others 
male. Because our study was exploratory in terms of the types of reasoning students might use, we 
decided to recruit students who were more advanced in their mathematical studies, to better ensure 
that they had had exposure to and experience with multivariational contexts. Similar to how Carlson 
et al. (2002) recruited second-semester calculus students to investigate covariational reasoning, we 
recruited students in multivariable calculus (from two different classes) to investigate 
multivariational reasoning. In the interview, the students were given two contexts for each type of 
multivariation (Table 1). These contexts were chosen for their connection to the conceptual analysis 
that helped define multivariation (Jones, 2018). For each context, the students were allowed to clarify 
the context first, and then were asked, “What does this equation/formula mean? What does it say 
about the variables in it?” The students open-endedly discussed the context, but were also asked 
several scripted questions, including how the variables related to each other, how changes in one 
variable impacted the others, whether multiple variables could change at the same time or whether 
variables could remain unchanged, and what impact increases or decreases in certain variables might 
imply. 

Table 1. Contexts Given to the Students in the Interviews 
Multivariation Context 1 Context 2 
Independent Let 𝑧 = 𝑥! − 𝑦!  be a function of 

two variables. [The function’s graph 
was also given to the student.] 

The formula 𝐹 = !"#
!!

 relates gravitational 
force (F) with mass (m) and distance (r). M 
(Earth’s mass) and G are constants. 

Dependent For a certain amount of gas in a 
flexible balloon, PV = kT relates 
pressure (P), volume (V), and 
temperature (T).  

The price (p) of a specific book is related to 
the number of books people want to buy (d for 
demand) and number of books the publisher is 
willing to print (s for supply). 

Nested Let y = sin(x) and z = y2. In other 
words, z = sin2(x). 

𝑚 = !!

!! !! !!
 relates an object’s mass (m) 

to its velocity (v). Note that mo is the “resting 
mass” and c is the speed of light. 
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Our analysis was based on our assumption that multivariational reasoning would be related to 
covariational reasoning, though also extended beyond it as well. Thus, our initial analysis consisted 
of using the covariation mental actions described previously as starting codes. We marked any place 
in the data where a student exhibited reasoning behaviors similar to one of the covariational 
reasoning mental actions. While we did, we also used open coding to mark any reasoning instances 
that did not align with one of the covariational reasoning mental actions. After doing so, we 
examined these “other” reasoning instances in order to identify themes among them. This led to the 
emergence of new codes that were not a part of the covariational reasoning mental actions. Once we 
had our final set of codes, we recoded the entire data set again, using our completed coding scheme. 
Then, within each of independent, dependent, and nested multivariation contexts, we compared the 
reasoning used across the 10 students. We looked for trends in how the students tended to reason 
about each multivariation type. We also compared the reasoning used in one type of multivariation 
with reasoning used in another to identify if certain kinds of reasoning were distinctive to one type of 
multivariation or common across them. 

Results 
Our first main result was that the students did, in fact, employ much covariational reasoning within 

these multivariation contexts, supplying evidence for our assumption that multivariational reasoning 
is rooted in covariational reasoning. We observed all of the mental actions from Thompson and 
Carlson (2017) in our students. In fact, as seen subsequently, imagining only two variables at a time 
was a common and useful action that students did. Space constraints do not permit a full treatment of 
how each aspect of covariational reasoning was observed, and we instead focus the remainder of our 
results on reasoning mental actions specific to multivariation. 
Students’ Independent Multivariational Reasoning 

In the independent multivariation contexts, all 10 of our students engaged in reasoning that was 
related to Carlson et al.’s (2002) first recognize dependence mental action. Yet, a slightly different 
aspect of that reasoning in these contexts was a similar mental action we call recognize 
independence. In this, the students decided which variable was to be treated as constant and which 
were to vary. For example, one of the first things Student B said when shown 𝑧 = 𝑥! − 𝑦! was, “x 
and y are variables, independent variables. Which basically means as one changes the other doesn’t 
necessarily have to change.” In 𝐹 = 𝐺𝑚𝑀 𝑟!, Student C stated, “As I am getting farther from the 
earth with a bowling ball, I’m not changing the mass of the bowling ball.” Recognizing independence 
then permitted the students to use another new mental action that we call decompose into isolated 
covariations. For instance, when discussing 𝑧 = 𝑥! − 𝑦!, Student D early on stated, “Whether x is 
increasing or decreasing… it is going to be increasing the z either way.” Then a few statements later, 
Student D described, “Let’s just pretend that the x2 doesn’t exist and we’re only playing with the y2… 
We see the parabola for y, which is negative, it starts at the origin and then curves down in both 
directions.” Here, Student D simplified the context to two variables at a time in order to understand 
the covariational relationships between x-z and y-z. After using this mental action to reduce the 
multivariation to covariation, covariational reasoning mental actions were then used to analyze that 
relationship between those two particular variables. 

In conjunction with recognizing independence and decomposing into covariations, a third new 
mental action we observed was that students could switch constants/variables, in which they shifted 
their conceptualization of which variables were held as constant and which were allowed to vary. For 
example, a little after the previous excerpt, Student B explained, “If we follow this path x = y, our z 
stays constant.” Similarly, Student C later stated, “Increasing the mass, getting a pebble compared to 
a rock and having them the same distance from the earth, I have increased the mass but the distance 
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is still the same.” These students demonstrated they were able to reason from different perspectives 
within the same context in terms of what changes or stays the same. 

The students were also able to perform mental actions regarding the variables all changing at the 
same time. We call one such mental action imagining simultaneous changes in inputs. In this mental 
action, two variables were considered the “inputs” and their changes were imagined as linked 
together before then coordinating this with the variable considered to be the output. To illustrate, in 
discussing 𝑧 = 𝑥! − 𝑦!, Student H explained, “I could move simultaneously in both an x direction 
and a y direction. That’s going to determine how my z direction is changing… If I’m changing my x 
and my y at the same time, then z can potentially change as well.” 

Building on imagining simultaneous changes, another mental action for independent multivariation 
was what we call coordinate these multiple simultaneous changes. For example, in the force context, 
after Student G had first decomposing into isolated covariations and then subsequently imagined 
simultaneous changes, she explained, “Say the mass is increasing and the distance is also, r is 
decreasing, then the force would definitely be increasing.” This mental action consists of aligning the 
results of the isolated covariations together into an overall image of all the variables’ changes. 
Student G also considered the possibility of m and r both increasing or both decreasing. She 
explained, “If the mass and the distance are both increasing or both decreasing, then it gets a little bit 
iffy. It depends on which one has a greater impact. [Pause] If m is increasing, at a rate that’s greater 
than the rate at which r2, the distance squared, is increasing, then the force will still increase.” Here 
we can see Student G comparing the covariations between m and F and r and F. She decided that if m 
changes by more than r2, then the positive covariation between m and F will overcompensate for the 
negative covariation between r and F.  

In Student G’s explanation, we also see another important mental action. Here, she did a mental 
action close to what Thompson and Carlson (2017) call coordinating values, but she did so without 
ever using specific numeric values. Thus, from our study, we decided that covariational and 
multivariational reasoning research would benefit from separating out what we call qualitative 
amounts of change versus numeric amounts of change. In other words, Student G was able to 
qualitatively image that the increase in F due to a large increase in m would be larger than the 
decrease in F due to a smaller increase in r2. She could have done this by using specific numeric 
values, but her coordination at the qualitative level was productive for what she wanted to 
accomplish. We see this mental action as applying to both covariation and multivariation. 

Lastly, another new mental action we saw was students attempting to articulate the type of 
relationship present between two or more variables. It appeared helpful for students to determine 
well-known relationships present between the variables. For example, for 𝑧 = 𝑥! − 𝑦! Student I 
explained, “You maybe pick some value of x and keep it there and then you just basically have z = c 
– y2. So it’s just an upside parabola.” Visualizing a parabola helped him think of how z and y would 
covary with each other. Students used other well-known relationships to assist imagining the 
situation, such as thinking of F and m as proportional, and F and r2 as inversely proportional. 
Students’ Dependent Multivariational Reasoning 

Recall it is not possible to hold some variables constant in dependent multivariation. Thus, an 
important mental action students used was, again, recognize independence/dependence. Yet, the way 
this mental action was carried out varied from student to student. For instance, in the PV = kT 
context, Student H explained, “So, if my temperature were increasing… I can think of both my 
pressure and my volume increasing. The balloon is getting bigger and the pressure inside it is 
increasing.” Here, Student H envisions a dependent relationship between all three variables 
simultaneously. However, when Student A was asked if T could change so that only P changes, 
without V changing, he explained, “If you just keep, I mean, is this according to the equation? 
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According to the equation, then I would say yeah [V can be kept constant], because if V is constant 
and P increases, then T would increase.” Student A did accept that all three could be changing 
simultaneously, but also observed that in the mathematical equation, one can leave one as constant. 
These examples illustrate two things. First, whether a context is independent or dependent 
multivariation consists, at least in part, in how the person conceptualizes it. Regardless of how things 
behave in the “real world,” if a student perceives that it is possible to hold some variables constant, 
then that is the type of situation they cognitively work with. Second, whether the students chose to 
conceptualize it as independent or dependent multivariation seemed connected with whether they 
believed they should operate mentally in a “math” world of the symbolic equations, or the way 
quantities behave in the “real” world. 

When students determined that they were in a dependent multivariation situation, they also often 
decomposed into isolated covariations. But, then, the mental action coordinate simultaneous changes 
became important. For example, after decomposing PV = kT into covariations, Student D stated, “If 
the balloon is being heated up, then its volume will greatly increase and its pressure will increase a 
little bit, depending on the capacity of the balloon to contract.” He put the individual relationships 
together into a coherent whole. However, an important difference in dependent multivariation is that 
the simultaneous nature of the changes is required, where it is not required in independent 
multivariation. This excerpt again shows qualitative amounts of change, because Student D imagined 
relative changes without using exact numeric values. As another example, Student J stated, “If the 
increasing amount of T is greater than either [the change in] P or V, that means both would be 
increasing.” She realized that if P and V both increase, they could not each increase relatively as 
much as T does by itself. Of course, students did engage in quantitative amounts of change, too, such 
as Student E examining what possibilities he could get for changes in P and V if temperature changed 
from “6 to 10.” 

Like for independent multivariation, in these contexts the students also spent time trying to 
articulate the type of relationship between the variables. For example, several students discussed 
“proportionality” between V and T, or “inverse proportionality” between P and V. In the supply and 
demand context, students also used ideas of proportionality and inverse proportionality. Some 
students tried to create a rough symbolic formula to relate them, which took the forms of 𝑝 ∝ !

!
 

(Student A), 𝑝 = 𝑘 !
!
 (Student B), 𝑝 = 𝑑 − 𝑠 (Student F), and 𝑑 = !

!
 (Student H). Note that different 

relationships can be seen depending on which quantity was seen as changing first. For example, if 
price is seen to increase first, that might signal a decrease in demand. Alternatively, if demand 
increases first, that might signal an increase in price. Other students drew graphs of p versus d and p 
versus s that matched these equations. Articulating these relationships seemed to help students 
organize their thinking about relative changes between the variables. In particular, Student J drew the 
familiar supply and demand curves (Figure 1) and used them to help her organize her thinking of 
relative changes. She first imagined that where the decreasing demand curve intersected the 
increasing supply curve defined the price. An increase in demand was represented as a shift upward 
in the demand curve, which resulted in an intersection point at a higher supply and higher price (left 
image). Similarly, an increase in price (right image) resulted in a point lower along the demand curve 
but higher along the supply curve. This kind of reasoning seems to suggest another possible mental 
action, identifying order of effect between variables. 
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Figure 1: An example of articulating relationships helping students organize their thinking 

 
Students’ Nested Multivariational Reasoning 

For this type of multivariation, as with the other types of multivariation, the students employed 
mental actions regarding recognizing relationships. In this case, the students attempted to recognize a 
chain of influence from one variable to the next. For example, with 𝑧 = 𝑠𝑖𝑛!(𝑥), Student E imagined 
an intermediary quantity in the chain. She explained, “So, you put the x in, the x gets sine’d, and then 
that sine gets squared. So, it goes in like step one, it’s turned into a sine, and then step two that sine is 
squared.” Student E recognized that there was (a) the initial x value, (b) the sine of that x value, and 
(c) the square of that sine value. In the mass-velocity context, Student E similarly explained, “The 
velocity is never going to be more than the speed of light. So, this [points to 𝑣! 𝑐!] is always going 
to be less than one, which means this [point to 1 − 𝑣! 𝑐! ] will always be positive. But the more 
velocity increases, the closer this [points to 𝑣! 𝑐!] is going to get to one, which means the smaller 
the denominator [e.g., 1 − 𝑣! 𝑐!] is going to get, which means the larger the mass is going to be. 
So, the larger velocity gets, the larger mass gets.” In this, Student E conceptualized explicitly the 
quantities (a) v, (b) 𝑣! 𝑐! , (c) 1 − 𝑣! 𝑐! , and (d) m. Several other students gave similar 
descriptions of these two contexts. 

Once the chain of influence had been recognized, students again often used decompose into isolated 
covariations. To illustrate, as Student B thought about 𝑧 = 𝑠𝑖𝑛!(𝑥) he described, “As x changes, 
we’re going to end up with y having this oscillating pattern… between positive and negative one 
repeatedly. So, as you increase x, your y is going to be jumping between 1 and –1. If you decrease x, 
same thing… If y is positive, as we increase y, z will go up. If y is negative and we decrease y, z will 
also go up.” Student B first examined x and y in isolation and then y and z in isolation. As before, 
these isolated covariations then needed to be coordinated into an overall image of the nested 
multivariation. Additionally, students also employed coordination of increases and decreases, 
including both qualitative amounts and numeric amounts. 

Once students had completed mental actions of recognizing a chain of influence, decomposing into 
isolated covariations, and coordinating increase/decrease, these seemed to help students understand 
the direct relationship between the “initial input” variable (i.e. x and v) and the “final output” variable 
(i.e. z and m). They could take their new knowledge about the context and begin to work with direct 
covariation between the initial input and the final output. They did not necessarily need to work with 
the intermediary variables anymore. For example, after working through the nested reasoning, 
Student A summarized the velocity-mass context as follows, “As it’s [v] changing, so if this gets 
bigger, then m would get bigger as well… So, if this [v] increases, m would increase and if this [v] 
decreases, m would decrease.” Thus, one part of understanding nested multivariation structures might 
be to eventually conceptualize the direct two-variable covariation between the two most salient 
variables of interest. 

As a last note, some students also attempted to circumvent the need for nested reasoning for 
𝑧 = 𝑠𝑖𝑛!(𝑥) by instead using visual reasoning on the graph of sin2(x). They first took the graph of 
sin(x) and attempted to reason what the square of that graph looked like. Once they had a graph 
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(whether correct or incorrect), the students then used that graph to vary x and report directly on its 
impact on the values of z. 

Discussion 
First, we observed that covariational reasoning was, in fact, an important part of these 10 students’ 

reasoning. In all three multivariation types, students often decomposed the context to two-variable 
covariations at a time to organize their thinking. However, we note that this decomposition into 
covariations has connection to what Johnson (2015) termed simultaneous yet independent variation. 
In her work, she explained that students sometimes covaried two variables with time and then tried to 
coordinate the variables only through the intermediary of time. Johnson concluded that a full 
comprehension requires students to not need the intermediary of time, and to imagine the variables 
changing directly in relation to each other. Likewise in multivariation, it may be important for 
students to push past decomposition into covariations to imagining a single coherent image of the 
whole multivariational structure. Some of our students were able to compile the individual 
covariations to create a holistic image of the multivariation. 

Next, our study extends covariational work by elaborating on coordination of values from the 
Thompson and Carlson (2017) framework. We suggest it be split into two types of coordination: 
qualitative amounts of change versus numeric amounts of change. Our students productively 
described “large” or “small” changes qualitatively to reason about a context. This mental action 
certainly goes beyond gross coordination. We even hypothesize that it may even be more complex 
than simply inserting numeric values into a formula and comparing resulting values (i.e. coordination 
of values), because it requires one to imagine relative sizes in changing values and coordinate them 
without the aid of specific numeric values. We perhaps even see chunky continuous coordination 
(Castillo-Garsow, 2012; Thompson & Carlson, 2017) as just adding intervals of a fixed size to 
qualitative amounts of change. Thus, we wonder if qualitative change may be between what is 
currently described as coordination of values and chunky continuous coordination. Of course, 
additional work would be required to examine if that is the case. 

Third, another key idea from our study is that it requires cognitive work to recognize dependence 
and independence among the variables in multivariation. Students spent time imagining what 
variables could be held constant, which varied, which depended on which, and whether that 
dependence could be altered. In a recent paper, Kuster and Jones (2019) similarly noticed the 
importance of “recognize” in students using variational reasoning while discussing differential 
equations. They claimed that it may have been an oversight to drop “recognize” from the original 
covariational framework (Carlson et al., 2002) in the new framework (Thompson & Carlson, 2017). 
Our data concurs that it may be important to keep mental actions of “recognize” in variational 
reasoning frameworks, because of how important it is for more complicated variational structures. 
This suggests that in moving our students from covariation to multivariation, it may be useful to 
spend time engaging students in recognizing activities. It is possible we do not help students see, for 
example, the difference between independent and dependent contexts (see Bucy et al., 2007; Roundy 
et al., 2015). 

Finally, we saw that there was much similarity in the types of reasoning across the different 
multivariation contexts. The good news is that it might not be necessary for students to learn about 
each type of multivariation separate from the others. By learning to reason about one type, they may 
simultaneously be developing reasoning abilities that transfers to other types. However, by being 
explicit about the different types, we as instructors might help students gain an appreciation for the 
nuances that exist between each type, enabling stronger reasoning. 
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Using neurodiversity as our theoretical framework, rather than a deficit or medical model, we 
analyze the narratives of five dyslexic research mathematicians to find common strengths and 
challenges for dyslexic thinkers at the highest level of mathematics. We report on 3 themes: 1) highly 
visual and intuitive ways of mathematical thinking, 2) pronounced issues with memorization of 
mathematical facts and procedures, and 3) resilience as a strength of dyslexia that matters in 
mathematics. We introduce the idea of Neurodiversity for Mathematics, a research agenda to better 
understand the strengths (as well as challenges) of neurodiverse individuals and to use that 
knowledge to design better mathematical learning experiences for all. 

Keywords: Equity and Diversity; Advanced Mathematical Thinking; Geometry and Geometrical and 
Spatial Thinking; Representations and Visualizations 

The neurodiversity movement, developed from activism of people with autism, dyslexia, and other 
cognitive differences, demands that such individuals be understood not as deficient, but as different: 
part of the natural and beneficial cognitive diversity of society (Robertson & Ne’eman, 2008). 
Cognitive neuroscience demonstrates evidence of both strengths and challenges for individuals with 
dyslexia, the largest group of students in the special education system. While some individuals with 
dyslexia have been highly successful in mathematics, students with LD/Dyslexic score on average 
lower than their neurotypical peers on mathematics achievement tests, with gaps widening over time 
(Wei, Lenz, & Blackorby, 2013). However, educational research has focused almost exclusively on 
identifying and remediating deficits of individuals with dyslexia, with a pronounced silence on how 
related strengths might matter for learning mathematics. Rejecting a deficit lens on the mathematical 
thinking of students with dyslexia/LD, we propose Neurodiversity for Mathematics, a research 
agenda to better understand the strengths (as well as challenges) of neurodiverse individuals and to 
use that knowledge to design better mathematical learning experiences for this large group of 
learners. 

Using interviews and narrative analysis, this project investigated this issue from the perspective of 
neurodiverse insiders who have experienced learning mathematics with success at the highest levels. 
Using neurodiversity as our theoretical framework, rather than a deficit or medical model, we 
analyze the narratives of five dyslexic research mathematicians to find common strengths and 
challenges for dyslexic thinkers at the highest level of mathematics. We report on three themes: 1) 
highly visual and intuitive ways of mathematical thinking, 2) pronounced issues with memorization 
of mathematical facts and procedures, and 3) resilience as a strength of dyslexia that matters in 
mathematics. 

We ground the proposed research in the academic field of Disability Studies (DS), which recognizes 
that although individuals have natural biological variations, it is the social effects of difference that 
disable rather than the impairments themselves (Linton 1998). From the DS perspective, the medical 
model and behaviorist tradition depict disability as deficits located within individuals resulting in 
identifying, pathologizing, and stigmatizing difference; thus requiring specialized knowledge (e.g., 
special educators) for individualized instruction and remedy. Academia continually reinscribes 
difference between children with and without disabilities in an unconscious effort to maintain the 
status quo, in which children with disabilities are conceptualized as fundamentally different from 
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“normal children” (Linton 1998). In order to understand and improve the experiences of dyslexic 
students, we must ground our analysis in the perspectives of those with this difference. This study 
seeks to provide a new lens on the mathematical learning of neurodiverse individuals, grounded in 
the experiences of those with cognitive differences, rather than the perspectives of researchers who 
are often neurotypical. Our study is a collaboration between the first author, a cis white female 
former math teacher and special educator currently working in mathematics and disability studies at 
the university level, and the second author, a cis white male research mathematician with dyslexia.  

Dyslexia is a hereditary neurobiological disability characterized by difficulties in reading, writing, 
and spelling, often unexpected in comparison to other academic skills (Lyons et al., 2003). While 
originally called dyslexia, these differences were reclassified “Learning Disabilities” when Specific 
Learning Disability became a category of special education services under US law. Learning 
Disabilities (LD) is a broader category that includes LD in the areas of reading (dyslexia), writing 
(dysgraphia), and mathematics (dyscalculia), as well as other variants of LD such as Auditory 
Processing. Individuals can experience LD in multiple areas. What tends to be consistent across LD 
is some form of processing and/or language difference that significant affects learning in school. A 
significant population of individuals with LD also have diagnoses of Attention Deficit Hyperactivity 
Disorder (ADHD). While LD is the term in US law, individuals often prefer the term “dyslexia.” 
Currently, laws in the US are shifting back towards dyslexia, specifically towards advocacy for 
multi-sensory, systematic reading instruction. Much of the research in LD and math is focused on 
students with dyscalculia, or significant difficulty learning mathematics. However, students with LD 
in general, which is most often most pronounced in reading, significantly underperform in 
mathematics (Wei et al., 2013).  

Currently, there is little overlap between research in mathematics education and special education 
mathematics research (Lambert & Tan, 2020). These research traditions are largely separate because 
of pronounced theoretical and methodological differences over their history of development as fields 
(Woodward 2004). Based on a recent analysis of the literature on mathematics learning across the 
two fields (Lambert & Tan, 2020), we found that special education primarily understands 
mathematics learning through behavioral and information processing approaches, using quantitative 
methods that focus on large populations. In contrast, mathematics education is focused on 
constructivist and sociocultural approaches to understanding mathematics learning through a focus 
on individual thinking and classroom contexts. Research methodologies in mathematics education 
include both quantitative and qualitative methodologies. Special education research frames the 
achievement gap for students with learning disabilities as a problem of cognitive deficits in 
individuals and seeks interventions to remediate deficiencies. Recommended interventions are 
primarily explicit or direct instruction. In previous work, we have critiqued this focus on pedagogies 
as deficit-based and promoting narratives about students with learning disabilities being unable to 
learn through inquiry (Lambert 2018). These narratives, which we face continually in schools, are 
antithetical to the larger goal of increasing access to higher-level mathematics for students with 
learning disabilities. 

There has long been speculation about the connection between dyslexia and visual-spatial talents, 
dating back to Orton in 1925 (Schneps, Rose, & Fischer, 2007). There is evidence that people with 
dyslexia have strengths in visual-spatial thinking, although not conclusively. Some of the differences 
in findings can be attributed to different ways to define and assess visual-spatial thinking (von 
Károlyi & Winner, 2004). One strength associated with dyslexia in several research studies is 3-D 
spatial thinking, connected to strengths in mechanics and complex visualization (Attree, Turner, & 
Cowell, 2009). Another strength is interconnected reasoning; many individuals with dyslexia tend to 
make unique associations between concepts, focused on the big picture (Everatt, Weeks, & Brooks, 
2008). Individuals with dyslexia describe using this strength to analyze large data sets and recognize 
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patterns. Dyslexic students scored higher than nondyslexics for original thinking (Akhavan Tafti, 
Hameedy, & Mohammadi Baghal, 2009) and creativity for tasks requiring novelty (Everatt, Steffert, 
& Smythe, 1999). There is evidence that these strengths are neurologically interconnected with the 
challenges of individuals with dyslexia (Eide & Eide, 2011). This research has been strongly 
supported by an increasing movement of adults with dyslexia to reject the medical, deficit model of 
dyslexia.  

In studies on successful dyslexic adults (2007), Rosalie Fink has found that while the adults had 
several developmental pathways to becoming successful adult readers, a consistent thread was the 
importance of reading in areas that individuals were passionate about. Another pattern in Fink’s 
findings is that these successful adults continued to have significant early deficits in reading, 
difficulties with letter switching and decoding, yet were successful readers at a much higher level 
(both as self-reported and based on reading comprehension assessments). We know of only one study 
in the area of mathematics that is similar to our work; a collaboration between a mathematics 
education researcher and an individual with dyscalculia, investigating how the second author 
developed her own strategies to support learning in an undergraduate mathematics program (Lewis & 
Lynn, 2018). We believe that collaboration across difference is necessary to develop new 
understandings of the potential for dyslexic students in mathematics. 

Research Questions 
1. What have been the experiences and mathematical learning trajectory for individuals with 

dyslexia in higher mathematics? 
2. How do individuals with dyslexia approach mathematics? 

Methods 
Participants 

Participants were recruited using emails to professional organizations of research mathematicians 
by the second author. All participants were currently employed at universities in mathematics or 
related STEM departments. Four out of 5 participants reported being actively engaged in current 
mathematical research, with one participant focused on teaching. 3 out of the 5 participants were 
diagnosed with dyslexia and/or a reading learning disability during K-12 schooling. Another 
participant was given a diagnosis later in life related to the diagnosis of a child. Another participant 
had a diagnosis of a related disability (ADHD) but whose primary difficulty was reading and reading 
comprehension. Two out of the five participants reported a diagnosis of ADHD, one had significant 
speech and language delays as a child, and one participant self-identified as autistic. Two out of five 
participants identified as cis female, with 3 identifying as cis male, however we use the pronoun 
“they” throughout the document to avoid identification. Four out of 5 participants identified as white 
or Caucasian, with one Asian-American participant. We identify this lack of diversity as a significant 
limitation to our work and hope to expand the populations included in future studies. We report data 
on participants (P1-P5) in the aggregate to avoid identification, as not all participants were 
comfortable with disclosing their disabilities in the university setting. Thus, we purposefully report 
themes across the interviewees, rather than describing each individual as a case study. We also use 
the pronoun “they” to avoid identification of participants. 
Data Collection 

The first and second author together interviewed each participant for between 60 - 90 minutes. The 
interview was semi-structured with questions in the following categories: 1) description of current 
mathematical work, 2) school experiences in mathematics, 3) school experiences and diagnosis of 
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dyslexia, 4) connections between dyslexia and mathematics. Interviews were video-recorded and 
then transcribed. 
Data Analysis 

We identified narratives within the interviews based on transcripts. We identified two kinds of 
narratives. The first was Life History Narratives, more typical retrospective narratives retelling a life 
event. We also identified a kind of narrative we called Narratives of Thinking, which we define as 
nontraditional narratives without a set sequence of events, with an experiential description of how it 
feels to think in a certain way, here related to mathematical thinking and problem solving (Lambert 
2019). After identifying narratives, we coded thematically (Riessman 2007) with both apriori and 
emergent coding. All narratives were coded by the first author with discussion of coding categories 
with the second author. 

There is a tension in our work between identifying commonalities between the participants and 
making diversity between them quite clear. When we report that 4 out of 5 interviewees noted their 
own strengths in visual thinking, we are not suggesting that 80% of people with dyslexia are visual 
thinkers. Our small set of studies is an opportunity to identify some common themes within a small, 
specific subgroup of the dyslexic population, dyslexic mathematicians. We would need different 
research to answer questions about how these preferences apply across people with dyslexia more 
broadly. 

Findings 
The research mathematicians were working in the following areas of mathematics with multiple 

participants in some categories: real analysis, three-dimensional geometry, topology, and algebraic 
topology. The life narratives of these research mathematicians describe a non-direct pathway to 
becoming a research mathematician. They describe barriers that could have limited their process, 
such as calculus focused on memorization, or classes such as organic chemistry focused on 
memorization. All participants noted that they moved forward in mathematics once they reached a 
place in which they were fascinated by the problems, most often, a visual-spatial set of problems to 
solve. 

All participants described dyslexia as a set of strengths and challenges, although the specifics of 
those strengths and challenges varied between participants. P4 notes, “the dyslexia... I explain to 
people, it's sort of like you're strong in one thing, but it makes you weak in others.” Of course, our 
study attracted individuals who were interested in talking about their dyslexia, which possibly 
created a group that was more positive about dyslexia than a randomly constructed group.  In this 
paper, we report on three themes: 1) highly visual and intuitive ways of mathematical thinking, 2) 
issues with memorization of mathematical facts and procedures, and 3) the development of resiliency 
as a strength. 
Theme 1: Highly Visual and Intuitive Ways of Mathematical Thinking 

Flexible, creative thinking.  All participants noted that they had a history of unusual ways of 
solving mathematical problems. 4 out of 5 participants described visual thinking quite specifically. 4 
out of 5 participants also noted that they were known for flexible, creative, “out of the box” solutions 
to complex problems. P3 shared that one of their collaborators once described them, saying,  

I talk in ghosts and mists. My brain seems to be really, really comfortable with just throwing 
out ideas. It just really is very flexible. It doesn't like boxes. It's just very, very flexible. And 
so, I get a sense that something is true, or something that I want, I need, is there. And then 
my brain really doesn't get bothered by the fact that some ideas don't work, it just will throw 
out lots and lots of ideas and sort of wander. And that drives co-authors nuts, because they'll 
say, "Oh, I see? That idea doesn't work." And it doesn't slow me down one bit. My brain just 
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has like five other weird ideas, two of which you can throw out immediately, and the three 
others you have to spend time on. And it just sort of keeps working that way. (P3) 

P1 noted their personal strengths in mathematics as:  
Coming out with the idea that pushes you beyond the routine. So thinking about things, 
especially a visual or spatial ideas. Questioning and poking at the routine to say how do we 
express this idea? So sort of coming up with ideas that are not in the routine, especially 
things that are related to images. (P1) 

Visualization. Four out of 5 participants repeatedly brought up visualization as a personal strength 
in their own mathematical thinking. In multiple interviews, participants described a duality such as 
“verbal” vs. “visual”, or “algebraic” vs. “geometric.” Four out of 5 participants identified as visual 
and/or geometric mathematical thinkers, with P1 noting that they learn through “geometry first, 
thinking through space” and “I can do immensely technical work in images that others can do in 
language." 

P4 describes a strong predilection for thinking visually, not just in mathematics but across topics; 
“Well my entire memory is sort of visual, it's like playing back little snippets of film.” They became 
interested in “three-dimensional geometry and topology. Anything that I can draw or sculpt or 
anything that's like three dimensional and sort of visual-based.” Once when struggling in a physics 
class, they saw a particular image in the text, of vector fields on a surface, and suddenly, the 
“pictures made it make sense.” P4 prefers to not only think with visuals, but to write with them as 
well, noting a strong preference for storyboarding mathematical papers using a series of images. 
Another participant also indicated that they chose their mathematical topic based on their preference 
for visual thinking, specifically “picture drawing and the topology of it” and “I liked the fact that I 
could pin it down and think about it as something real” (P2). Another participant identified as both: 

A details kind of thinker and like a visual thinker. I can't get interested in the details unless I 
have the picture that I think I'm working out the details for. But, once I have a picture of 
what I think should be going on, then the details become interesting . . . It's not the other way 
around. (P5) 

Symmetries and the commutative property. Three out of 5 participants at some point in their 
interviews suggested their dyslexia may have been connected to a way of seeing mirror images 
and/or symmetries in geometric shapes and algebraic equations, “Well I think I saw symmetries, I 
saw equations easily because of it. Because my brain would flip things around very easily. I 
understood equations quickly and easily because of my dyslexia” (P2). One participant wondered 
aloud if, “Somehow dyslexic thinking is naturally commutative?” (P1).  

All participants noted difficulties with language in relationship to mathematics, each slightly 
differently. Some discussed primarily issues with communicating visual thinking through language, 
or through the more linear pathway of writing. One participant described how it was difficult for 
them to visualize symbols/mathematics when the only modality that is being used is talk. 

P5: This even happens when I'm with mathematician friends and they'll be vocalizing an argument. 
There's no white board and they'll say, you do this and then you ... Yeah, I'm not necessarily 
going to follow the point. But, I'll go back to my room later and I'll remember enough of the 
points that they were trying to make that I'll get it. And, I'm okay with that, I don't have to be as 
quick witted as some of my colleagues are in mathematics, and I don't mind that. 

A: So, it's really different for you if there's paper, or there's a white board? 
P5: Yeah, if I can visualize things I'm much better off. Well, is that true? ... I'm pretty good at 

visualizing, but what I'm not good is transcribing spoken language into notation . . . If someone 
were to read out loud the definition of continuity for all blah, blah, blah. I would say, "Yeah, that 
might be right. That might be wrong. I have no idea." So, it's this translation between spoken 



“Dyslexia is naturally commutative”: Insider accounts of dyslexia from research mathematicians 

	 1153	

language, and it's kind of linear notation that mathematicians tend to use. I'm not good at that 
part. I'm good at visualizing geometric things, but not visualizing notation (P5) 

This suggests that strengths in visualization may be connected to challenges around translating 
across different forms of language and/or modalities, particularly from visual thinking into verbal 
language, or vice versa. 
Issues with Memorization of Mathematical Facts and Procedures 

None of the participants noted significant difficulties with mathematics in elementary school, with 
one consistent exception across participants: difficulty with the times tables and/or memorizing 
mathematical procedures. Some brought this up spontaneously, and for others, they clearly did not 
connect memorization of facts to mathematics. In this exchange with P2, the first author is asking 
whether or not they had any difficulties with math in K-12.  

A: Was there any part of math, like in elementary school, middle school, or high school that was 
challenging for you? 

P2: No. 
A: So memorization of facts was not challenging for you? 
P2: Oh I never could memorize anything. I had to derive everything . . . Yeah, I've never been good at 

memorizing things, just like I couldn't memorize how to spell words, I couldn't memorize facts in 
math. So I paid attention in class, and I had good enough teachers that they derived everything. 
And I figured out how to derive everything I needed to know, and I just derived everything I 
needed to know. You take a trig class, for instance, okay ... I know the trig identity for sin of 
alpha plus beta. From that trig identity, I can derive all the other ones. And then if I needed any of 
them, I would just do that. But I never actually like memorized them. I still don't memorize them.  

Similarly, P1 noted that their mother taught the multiplication tables through a smaller set of 
memorized facts, specifically the squares, and then encouraging P1 to build equations through the 
distributive property from known facts. 

In addition to the multiplication tables, participants noted the difficulty of any kind of memorization 
“without structure.” P1 notes,  

That is one of the reasons I'm slower. I have really good memory for connected facts. I can't 
remember phone numbers at all. Learning foreign languages was the one bit of school that I hated 
because you have this long list of words that had no connection to anything. So memorization 
without structure. So I memorized the structure. (P1) 

Another participant noted that they had a history understanding “concepts” in mathematics and 
struggling with “the details.” When we asked what they meant by details, they told a story about 
being negatively judged for their lack of memorization of the multiplication tables in elementary 
school:  

I could've explained to you with a picture why nine times five was 45, and my friends could 
tell you that it was 45 but they couldn't tell you why. And it struck me as really upsetting that 
someone that, just memorizing that number, was valued more than me understanding why 
that was the right answer. And it's always been a problem. But it just seems to me that why 
something is true is much more important than knowing that it is true. (P3) 

Several participants noted that their difficulties with memorization were connected to the 
expectation of speed connected to memorization. Not only was memorization without structure very 
challenging, participants were asked to do this task under time pressure, which made it feel 
impossible. 
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Theme 3: Developing Strengths Through Struggle 
Four out of 5 participants specifically mentioned resilience as a strength of dyslexia. More 

specifically, participants noted that working through challenges made them more resilient and 
perseverant, which became a considerable strength for them in higher mathematics. When asked 
what a strength of dyslexia is, P2 said, “Resiliency, I guess. Just being able to kind of overcome 
things that are not necessarily the easiest for you.” P5 described their “coping mechanisms”: 

Basically being comfortable with the fact that I'm not going to be fast at a lot of things. And, 
being okay with not being fast, that's really pretty important because I think that this kind of 
reading comprehension and fluency stuff. The fluency tests really make you think that speed 
is the whole deal. And, it was really important for me to sort of realize that no, that's not 
what matters. (P5) 

Success in mathematics, participants noted, comes with hard work. Because math gets hard for 
almost everyone, understanding what to do when that happens is a gift for a mathematician. As P1 
notes,  

Sort of actually everyone is facing struggles. Calculus is hard for most people. And so what 
we can understand about how people get through it when they have greater struggles is really 
useful for the people who are having smaller versions of those same struggles. And that 
notion of motivation ... The point that people who want to do this material but it's really hard 
for them can do it then surely that's a principle for all education. (P1) 

Discussion 
This research contributes by challenging the deficit-based approach typically used in educational 

research with students with dyslexia, thus potentially opening new avenues of educational research 
that move beyond the medical model of disability which locates LD/dyslexia solely in individual 
students. While this paper focused on only 3 themes, these findings suggest ways in which we can 
make math classrooms more accessible for students with dyslexia. We describe these as initial tenets 
of Neurodiversity for Mathematics, and plan future research to both explore insider perspectives 
further and to test these ideas in the classroom. 

1. Offer opportunities for visual thinkers to learn new concepts through visual thinking. Not 
only provide multiple modalities for learning mathematics, but explicitly connect different 
kinds of representations. For example, one participant explained how their own mathematics 
teaching relies on visuals, but also with explicit connections to algebraic representations for 
those who preferred to think that way. 

2. Remove the focus on memorization and procedural learning for students with dyslexia. As 
P1, who attended school outside of the US, noted; 
The high school calculus in the U.S., I think I wouldn't be a mathematician if I'd taken that 
because it's so emphasized it's fast, technical things ... And I make a lot of errors when doing 
calculation, and when you have a test which is multiple choice which is designed to map you 
into all your errors, I would have got very poor scores (P1). 

When mathematics focuses on speed and memorization “without structure,” the potential of those 
with dyslexia will not be realized in our schools. 
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In the mathematical community, two notions of “function” are used: the set-theoretic definition as a 
univalent set of ordered pairs, and the Bourbaki triple. These definitions entail different 
interpretations and answers to mathematical questions that even a secondary student might be 
prompted to answer. However, mathematicians and mathematics educators are often not explicit 
about which definition they are using. This paper discusses these parallel usages and the related 
implications for the field of mathematics education. 
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To frame the discussion of this paper, we invite the reader to answer the following questions that a 
secondary student might be asked about functions. 

1. Does the following diagram represent a function? 
 

 
 

2. Is the following set of ordered pairs a function? If so, what is its domain? 
{(−1,4), (0,7), (2,3), (3,3), (4,−2)} 

3. Is 𝑦 =  √𝑥 a function? If so, what is its domain? 
4. Is 𝑔 𝑥 = ln 𝑥 the inverse function of f x = e!? 
5. Does g x = ln x  have an inverse function? If so, what is it? 
6. True or false: A function is invertible if and only if it is injective. 

Two Definitions Of “Function” 
Function is an important concept in mathematics, and students’ understanding of function has been 

the subject of extensive research in mathematics education (Breidenbach et al., 1992; Leinhardt et al., 
1990; Vinner & Dreyfus, 1989). Researchers have noted the mathematical definition of function has 
evolved: Initially, functions were characterized as explicit rules that assigned numbers to other 
numbers. Over time, the notion of function became more general— a function could take any type of 
object as its inputs or outputs (e.g., differentiation can be understood as a function that maps 
differential real-valued functions to other functions)— and any correspondence can be a function, 
regardless of whether the rule for the function can be explicitly stated or not. Finally, the modern 
treatment of function is usually provided in set theoretic terms (Kleiner, 1989). Research on students’ 
understanding of function often shows that students hold varied conceptions of function that do not 
align with the formal theory, even when they can state the formal definition of function (Bardini et 
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al., 2014; Leinhardt et al., 1990; Mirin, 2018; Sfard, 1992; Thompson, 1994; Vinner & Dreyfus, 
1989).  

It is unsurprising that the meaning of function has evolved. The definitions of many mathematical 
concepts have become more precise and more abstract over time, and several concepts are now 
defined in structural or set theoretic terms although they were not originally conceived of in this way 
(Sfard, 1992). Likewise, students often hold different understandings of the same mathematical 
concept, with their understandings being internally inconsistent or at variance with the formal theory. 
We might expect there to be an agreed upon modern definition of function - or, absent a uniform 
definition, that the different definitions that mathematicians use are logically equivalent. 
Surprisingly, this is not the case. In fact, the different definitions in use do not even yield the same 
answers on questions that a secondary student might be asked. In this paper, we describe two 
commonly used definitions of functions in high school and university mathematics. We show that 
these definitions actually lead to different answers to the six questions that we posed in the beginning 
of the paper. 
One Definition Of Function: The Bourbaki Triple 

One treatment of function is that of Bourbaki (1968), which defines a function as a triple 𝑓,𝐴,𝐵 , 
where 𝐴 and 𝐵 are sets and 𝑓 is a univalent and total subset of 𝐴×𝐵.  That is, for all 𝑥 in 𝐴 (total), 
there exists a unique 𝑦 in 𝐵 (univalent) such that (𝑥, 𝑦) is a member of 𝑓. The set 𝐴 is called the 
domain of the function, 𝐵 is the codomain, and 𝑓 is the graph. We refer to this as the Bourbaki Triple 
function definition, objects of this type as Bourbaki Triple functions, and people who use this 
definition as Bourbaki Triple people.  
Another Definition Of Function: The Ordered Pairs 

Forster (2003) notes, “some mathematical cultures… [say] a function is an ordered triple of domain, 
range, and a set of ordered pairs. This notation has the advantage of clarity, but it has not yet won the 
day” (pp. 10-11). Forster then refers to the alternative definition of a function as any set of ordered 
pairs f that satisfies the following criterion: if (x, y1) and (x, y2) are in f, then y1 and y2 are equal. In 
this case, the domain of f is the set of all numbers x such that there exists some y where (x,y) is a 
member of f. There is no unique codomain; a (rather than the) codomain is any superset of the range 
of f. We refer to this as the Ordered Pairs function definition, objects of this type as Ordered Pairs 
functions, and people who use this definition as Ordered Pairs people.  

Comparing and Contrasting Definitions  
It’s worth emphasizing that a Bourbaki Triple function is a different sort of object than an Ordered 

Pairs function; a Bourbaki Triple function is an ordered triple, whereas an Ordered Pairs function is a 
set of ordered pairs. Hence, when a Bourbaki Triple person mentions a function, they are referring to 
a different type of object than that of an Ordered Pairs person. The way someone understands 
questions or statements about functions will be related to what type of object they understand a 
function to be – a triple, or a set of ordered pairs.  

Dumas and McCarthy (2015), Bourbaki Triple people, assert the following:   
 When you write 𝑓:𝑋 → 𝑌, you are explicitly naming the intended codomain, and this makes 
the codomain a crucial part of the definition of the function. You are indicating to the reader 
that your definition includes more than just the graph of the function. The definition of a 
function includes three pieces: the domain, the codomain, and the graph. (Dumas & 
McCarthy, 2015, p. 25) 

Dumas and McCarthy are correct if one is using the convention of a function as a Bourbaki Triple. 
In this case,  “𝑓:𝑋 → 𝑌” names the function (𝑓,𝑋,𝑌) with domain 𝑋, codomain 𝑌, and graph 𝑓. 
However, a look at works by authors who use the Ordered Pair notion of function suggests that 
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adopting such notation does not necessitate endorsing the view that a function is an ordered triple 
(Devlin & Devlin, 1993; Goldrei, 1998; Halmos, 1960; Stoll, 1979). Using the Ordered Pair 
interpretation, these authors write “𝑓:𝑋 → 𝑌” to mean that 𝑓 is a function with domain 𝑋 where 𝑓(𝑥) 
is a member of 𝑌 for all 𝑥 in 𝑋 (that is, 𝑌 is a codomain of 𝑓). Rather than 𝑋 and 𝑌 being part of the 
function itself, they are attributes of the function. 

We can see how the differences in the notion of function manifest themselves in interpreting a 
function definition. Consider the following sentence: “Let 𝑓:𝑁 → 𝑍, 𝑓 𝑛 = 𝑛 + 1”. Under the 
Ordered Pairs definition, the function is the set f={(𝑛, 𝑛 + 1): 𝑛 ∈ 𝑁}, and this set (function) has the 
property that 𝑁 is its domain and 𝑍 is a codomain. Under the Bourbaki Triple definition, the function 
actually at hand is the entire triple 𝑓,𝑁,𝑍 , where 𝑓 is still the set {(𝑛, 𝑛 + 1): 𝑛 ∈ 𝑁}, the domain is 
𝑁, and the codomain is 𝑍. The important thing here is that in one interpretation, the function is just 
the set {(𝑛, 𝑛 + 1): 𝑛 ∈ 𝑁} , while in the other interpretation, the function is the entire triple 
({(𝑛, 𝑛 + 1): 𝑛 ∈ 𝑍}, 𝑁,𝑍). Now consider the notation “Let 𝑔: 𝑁 → 𝑁,𝑔 𝑛 = 𝑛 + 1.” Under the 
Ordered Pairs definition, the function 𝑔 is the same as the function 𝑓. Under the Bourbaki Triple 
definition, the function at hand is the entire triple 𝑔,𝑁,𝑁 , which is a different triple than 𝑓,𝑁,𝑍  
(as 𝑍 is a different set than 𝑁).  

Notice that the domain of an Ordered Pairs function is not necessarily stipulated; it is derived as a 
consequence of the graph itself. If 𝑓 is a function, 𝑥 is in the domain of 𝑓 exactly when there exists a 
𝑦 such that (𝑥, 𝑦) is in 𝑓. For this reason, the only criterion a set of ordered pairs needs to satisfy is 
being univalent. It does not make sense to ask whether a relation f is “total” in the abstract; one 
would need to ask if 𝑓 was total on a specified set. Similarly, it does not make sense to ask if 𝑓 is 
“surjective”; one would need to specify a set (codomain) that 𝑓 might be surjective upon. The 
notation “𝑓:𝑋 → 𝑌” might be used to stipulate such sets, but this notation is not always used.   

A sharp difference between the Bourbaki Triple definition and the Ordered Pairs definition relates 
to invertibility. With the Ordered Pairs definition, the inverse for a function 𝑓, denoted by 𝑓!!, is the 
set {(𝑦, 𝑥): (𝑥, 𝑦)  ∈ 𝑓}. This set 𝑓!! is a function if and only if 𝑓 is one-to-one, i.e., 𝑓 is invertible as 
a function if and only if it is injective. With the Bourbaki Triple definition, if (𝑓,𝐴,𝐵) is a function, 
we consider the inverse of the triple to be 𝑓!!,𝐵,𝐴  where 𝑓!! is defined as above. In this case, for 
(𝑓,𝐴,𝐵) to be invertible as a function, more than injectivity is required; the triple 𝑓!!,𝐵,𝐴  must 
also be a function. This means that 𝑓!!must be total on 𝐵, requiring that 𝑓 be surjective onto 𝐵. We 
will revisit this difference later. 
How Are Functions Treated In The Literature? 

In the mathematics literature, both definitions of function are common. The Bourbaki Triple 
definition appears in some introductory proof books (e.g., Dumas & McCarthy, 2015) and other 
domain-specific textbooks, such as Abbott's (2012) textbook on real analysis. On the other hand, the 
Ordered Pairs definition also appears in some introductory proof textbooks (e.g., Forster, 2003) and 
in set theory textbooks (e.g., Enderton, 1977; Halmos, 1960; Jech, 2003). Still, other textbooks offer 
both definitions (e.g. Eccles, 1997). Finally, we will illustrate how others (e.g. Stewart, 2003) are 
ambiguous. 

In the mathematics education literature, we find the Bourbaki Triple definition to be more common. 
For instance, in their influential review of students’ understanding of functions, Leinhardt et al. 
(1990) refer to the Bourbaki Triple as the modern definition of function that mathematics educators 
would like their students to master. Other studies have used this definition as their backdrop for what 
is normatively correct, but they use the word “Bourbaki” only, without referring to the internal 
structure of the triple itself (e.g. Breidenbach et al., 1992; Vinner & Dreyfus, 1989). These authors 
tend to focus on the arbitrariness of a function as a correspondence rather than as a rule or an 
equation. Nonetheless, there is variation, and other mathematics educators have adopted the set of 
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ordered pairs definition as their background theory (e.g. Sajka, 2003). Also, it is noteworthy that 
mathematics educators often describe 𝑔 𝑥 = ln 𝑥 as the inverse function of 𝑓 𝑥 = 𝑒! (e.g. Even, 
1990; Mayes, 1994), which seems to suggest the Ordered Pairs definition (discussed below).  

In algebra and precalculus texts, we have again found both definitions used. For instance, 
Hungerford and Shaw (2009) define a function explicitly consisting “of three parts— a set of inputs 
(called the domain); a rule by which each input determines exactly one output; a set of outputs 
(called the range)” (p. 155). However, there are also books that define functions as a set of ordered 
pairs; for instance, Marecek (2017) wrote:  

A relation is any set of ordered pairs (𝑥, 𝑦). All the 𝑥-values in the ordered pairs together 
make up the domain. All the 𝑦-values in the ordered pairs together make up the range [...]  A 
function is a relation that assigns to each element in its domain exactly one element in the 
range. (Marecek, 2017, pp. 314-317)  

Consistent with the Ordered Pairs definition, Marecek (2017) notes that the domain and range are 
not specified but derived from the set of ordered pairs, and there is no notion of codomain.  

What is especially interesting to us is that some definitions stated in textbooks, and in the education 
literature, define function in such a way that it is ambiguous as to whether they are using the 
Bourbaki Triple definition or the Ordered Pairs definition. For instance, consider the way that 
Stewart (2003) defines functions in his widely used calculus textbook: “A function 𝑓 is a rule that 
assigns to each element 𝑥 in a set 𝐷 exactly one element, called 𝑓(𝑥), in a set 𝐸” (Stewart, 2003, 
p.12). 

Stewart’s (2003) definition contains an ambiguity. We can either (i) view 𝐷 and 𝐸 as part of the 
meaning of function and/or claim they need to be specified in advance, or (ii) view the statement as 
an existential statement where 𝑓 is a function if there exist sets 𝐷 and 𝐸 that fit the definition. That is, 
the definition allows for similar interpretation as the notation “𝑓:𝐷 → 𝐸”, under both types of 
function definition (Bourbaki Triple and Ordered Pairs). In the remainder of Stewart's (2003) text, he 
appears to treat a function as equivalent to its graph (p. 14) and claims all injective functions are 
invertible (p. 64). He always treats the range and image of a function equivalently and never 
concerns himself with codomains. He thus appears to be using the Ordered Pairs definition of 
function. 

Not only is there ambiguity in what an author might mean by “function,” but there is also ambiguity 
in what definition the “Bourbaki approach” to functions implies. Selden and Selden (1992) take a 
function to be a set of ordered pairs: “the formal ordered pair definition of function, first introduced 
in 1939, is often referred to as the Bourbaki approach” (p. 2). Based on the preceding discussion, one 
might think that a “Bourbaki function” is a Bourbaki Triple. However, the above quote illustrates that 
this interpretation is not so straightforward. 

 Our main point thus far is as follows: There are two different definitions of function that are not 
logically equivalent: (i) both definitions are used in advanced mathematics, secondary mathematics, 
and the writing of mathematicians; and (ii) even when an author defines functions in their text, it can 
sometimes still be ambiguous as to which definition they are using. In the next section, we discuss 
how the different definitions entail different interpretations of mathematical questions that a 
secondary student might encounter.  

Revisiting Questions 
We address each of the six previously posed questions using the most straightforward interpretation 

of the two definitions of function above: 
1. Consider the diagram in the first question at the start of this paper. A Bourbaki Triple person 

might interpret the question to be asking if the triple ({(𝑎, 𝐿), (𝑏,𝑀), (𝑐,𝑁)},𝑋,𝑌) is a 
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function. The answer is “no”; there are members of 𝑋 that are not assigned a value in 𝑌 (the 
structure is not total). We believe this is regarded as the normatively desired response. 
However, an Ordered Pairs person might interpret the question to be asking if the set 
{(𝑎, 𝐿), (𝑏,𝑀), (𝑐,𝑁)} is a function. Of course the answer is “yes”, because it is a univalent 
set of ordered pairs (assuming a, b, and c are distinct). 

2. This question was taken from Redden (2012), p. 249, Example 2. According to the Ordered 
Pairs definition, {(−1,4), (0,7), (2,3), (3,3), (4,−2)} is a function because it is univalent. Its 
domain is {−1, 0, 2, 3, 4}. We believe this is regarded by most as the normatively desired 
response (as in Redden, 2012; Even, 1990). According to the literal Bourbaki definition, we 
would say this set is not a function, for the simple reason that functions are triples and not 
ordered pairs; that is, no domain and codomain are stipulated here. If we were less literal, this 
question would be undefined; we would need to know what domain and codomain were 
stipulated. It is possible to interpret the question to be asking if there exists a domain D and 
codomain E such that 𝑓,𝐷,𝐸  is a function, where 𝑓 is the given set of ordered pairs above. 
However, we would not expect this interpretation from a secondary student.  
A Bourbaki Triple person can adopt conventions so that their answer to this question agrees 
with that of an Ordered Pairs person. If a domain is not specified, the domain of a real-valued 
relation is stipulated to be the largest set of real numbers to which the relation can apply, and 
if the codomain is not specified, it is assumed to be 𝑅 (in the context of secondary algebra, 
calculus, or real analysis). 

3. According to the set of ordered pairs definition, 𝑦 = 𝑥 is a function. That is, we interpret 
the function at hand to be the set { 𝑥, 𝑦 ∈ 𝑅×𝑅: 𝑦 = 𝑥}. As this set is univalent, it is a 
function. We believe this is regarded by most as the normatively desired response. However, 
interpreting the question using the Bourbaki Triple definition is less straightforward. What 
object are we asking is a function? If we are stipulating that the domain and codomain are 
both 𝑅, which is arguably a convention in the context of a calculus or real analysis course, 
then our question is “is ({ 𝑥, 𝑦 ∈ 𝑅×𝑅: 𝑦 = 𝑥},𝑅,𝑅) a function?” and the answer is a clear 
“no”, since this triple is not total on 𝑅. On the other hand, we can interpret the domain to be 
0,∞ , the largest domain on which it can be defined. In this case, the answer is “yes”, as the 

triple ({ 𝑥, 𝑦 ∈ 𝑅×𝑅: 𝑦 = 𝑥}, 0,∞ ,𝑅) is a function.  
4. Using the Ordered Pairs definition, 𝑔 𝑥 = ln 𝑥 is the inverse of 𝑓 𝑥 = 𝑒!. That is, the set 

{ 𝑥, 𝑦 ∈ 𝑅×𝑅: 𝑦 = 𝑒!} has the inverse { 𝑥, 𝑦 ∈ 𝑅×𝑅: 𝑦 = ln 𝑥 }, which is a function. We 
believe this is regarded as the normatively desired response; see, for instance, Stewart (2003, 
p.67), who defines logarithmic functions as the inverses to exponential functions. However, a 
Bourbaki Triple person who assumed the convention that the codomain of a real-valued 
function is R unless otherwise stated would assume that the question is asking if ({ 𝑥, 𝑦 ∈
𝑅×𝑅: 𝑦 = 𝑒!}, 𝑅 , 𝑅 ) has an inverse function, and such a structure is not invertible as a 
function because it is not surjective onto 𝑅.  

5. For similar reasons as in the previous example, an Ordered Pairs person would 
straightforwardly believe that 𝑔 𝑥 = ln 𝑥 has an inverse function (it is injective) and its 
inverse is 𝑓 𝑥 = 𝑒!, which, as we noted above, we believe is the normatively desired 
response. 
The Bourbaki Triple person would have a less straightforward answer. If they accept that 
𝑔 𝑥 = ln 𝑥 is a function, then they would interpret it as a function from 𝑅! to 𝑅 to ensure 
that it were total. Now, since g is bijective between 𝑅! to 𝑅, g must have an inverse. In this 
case, they would be interpreting “𝑔 𝑥 = 𝑙𝑛 𝑥” to name the triple { 𝑥, 𝑦 ∈ 𝑅×𝑅: 𝑦 =
𝑙𝑛 𝑥} ,𝑅!,𝑅  . However, the inverse is not 𝑓 𝑥 = 𝑒! because they would interpret 
“𝑓 𝑥 = 𝑒!” to name the triple ({ 𝑥, 𝑦 ∈ 𝑅×𝑅: 𝑦 = 𝑒!}, 𝑅 , 𝑅 ) , and this function’s 
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codomain (𝑅) is not the domain of { 𝑥, 𝑦 ∈ 𝑅×𝑅: 𝑦 = 𝑙𝑛 𝑥} ,𝑅!,𝑅 . The inverse would be 
the function ℎ:𝑅 → 𝑅!defined by ℎ 𝑥 = 𝑒! ,  which is the triple { 𝑥, 𝑦 ∈ 𝑅×𝑅: 𝑦 =
𝑒!},𝑅,𝑅! .  There is nothing contradictory about this; the Bourbaki Triple definition implies 
that functions with the same graphs but different codomains are different functions. We only 
observe that we ordinarily would not expect a student to distinguish between the differing 
codomains to receive credit for identifying the inverse of 𝑔 𝑥 = 𝑙𝑛 𝑥. 

6. As we noted in the previous section, the Ordered Pairs person agrees that a function is 
invertible whenever it is injective. The Bourbaki Triple person disagrees, claiming a function 
needs to be surjective as well. It appears there is no consensus in textbooks or amongst 
mathematics educators for whether injective functions are necessarily invertible. Some, like 
Abbott (2012, p. 155) and Stewart (2003, p. 64) assert that all injective functions are 
invertible. Others, like Mattuck (1999) and Friedberg et al. (1989), claim that injectivity and 
surjectivity are both necessary.  

Two Approaches For Coping With Difference In Mathematics Education 
Functions and their inverses are fundamental concepts. Naturally, mathematics educators would like 

students to develop productive and normatively correct understandings of functions and inverses. 
However, there are two different ways of defining functions that lead to divergent answers to basic 
questions from secondary mathematics. For instance, one would hope that there is a straightforward 
consensus answer as to whether 𝑓 𝑥 = 𝑒!   is invertible, at least in the context of secondary 
mathematics, but this is not the case. How, then, is an educator to teach students or evaluate the 
quality of a student’s understanding of functions and their inverses? 

There are at least two positions that an educator may adopt: dogmatism or contextualism. With 
dogmatism, we can insist that one of the two definitions is the right definition, argue that textbook 
writers and other researchers should use this definition, and regard those who do not act in 
accordance with this definition as being mathematically sloppy or incorrect. For instance, a Bourbaki 
Triple dogmatist might insist on using the Bourbaki Triple definition; the Bourbaki Triple dogmatist 
might call for textbooks to clarify Questions like 2 and 3 in the beginning of the paper to be 
mathematically accurate. This would involve rewrites such as “is there a set D (domain) and a set E 
(codomain) such that ({(−1,4), (0,7), (2,3), (3,3), (4,−2)},𝐷,𝐸) is a function?” If 𝑓(𝑥)  =  √𝑥 
defines a graph of a function, what could its domain be?”). The Bourbaki Triple dogmatist 
acknowledges that some textbooks and even some mathematics educators use the ordered pairs 
definition of function, but that does not mean mathematics educators should be flexible with their 
definition of function. Indeed, it would be unwise policy to draw conclusions about the nature of 
mathematics based on errors that textbook writers and mathematics educators sometimes make. 
Similar dogmatism could be recommended by an advocate for the Ordered Pairs definition. We admit 
that a dogmatist approach has several advantages. For one, it would unify the differential treatment of 
functions in textbooks and mathematics education literature. Further, it would provide clear 
normative guidelines for how functions and inverses should be discussed and how students’ 
understanding of these functions should be evaluated. 

The alternative approach, contextualism, is to declare that there is no universal definition of 
function, but rather that the definition of function depends on context. Consider the following 
passage from Dumas and McCarthy’s (2015) text in which they justify adopting the Bourbaki Triple 
definition: 

If you identified the function with its graph, then every function would have many possible 
codomains (take any superset of the original codomain). Set theorists think of functions this 
way, and if functions are considered as sets, extensionality requires that functions with the 
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same graph are identical. However, this convention would make a discussion of surjections 
clumsy, so we shall not adopt it. (p. 25) 

We highlight three ideas here. First, Dumas and McCarthy acknowledge that there was more than 
one definition of function that they could have used in their textbook. In particular, they do not say 
set theorists are wrong for defining a function as a univalent set of ordered pairs. Second, they view 
the decision on which definition to adopt as their choice. Third, they do not view their choice as 
arbitrary; they provide a reason justifying their choice; they adopted the Bourbaki triple definition 
because it made it easier to discuss and reason about surjective functions, which was one of their 
goals in the textbook. 

Similarly, Joel David Hamkins, a mathematician and philosopher from Oxford University, justifies 
why set theorists like himself prefer to think of functions as ordered pairs for mathematically 
practical reasons. For instance, Hamkins explains why it is difficult to speak of sequences of ordinals 
in set theoretic terms using the Bourbaki Triple definition. Responding to a challenge that the 
concept of function is “imprecise”, Hamkins responds: 

Many words lack meaning out of context, while becoming precise in a context. Why should 
you expect that there is a meaning for this word [function] outside of any context? [...] The 
function concept has been made absolutely precise. In fact, it has been made fully precise 
twice, in two different ways. Each group prefers to use their own precise definition, for 
sound reasons. (Hamkins, 2010)  

The contextual position, for which we advocate, synthesizes the comments above. The contextualist 
acknowledges that for mathematicians, everything else being equal, it would be best for the same 
concept to be defined in the same way across all mathematical contexts and communities. This adds 
clarity and facilitates communication between different mathematical communities. However, 
mathematicians consider other factors to consider when choosing a concept’s definition. In 
particular, mathematicians desire that their definitions should facilitate their communication, problem 
posing, and problem solving. Because the needs with respect to function vary by mathematical 
community, it is not surprising that different mathematical communities would define the function 
concept in different ways. The value of uniformity in these cases is not necessarily worth more than 
the value of utility. 

In the case of function in secondary mathematics, functions are usually used for purposes of 
modeling and equation solving. In these cases, the totality of a function tends not to matter. The 
functions 𝑓 𝑥 = 1/ 𝑥! + 1  and 𝑔 𝑥 = 1/𝑥!  are, for the most part, interpreted and acted upon in 
the same way, even though the former is total while the latter is not. It would be detrimental to the 
theory to exclude partial functions on 𝑅  like 𝑔 𝑥 = 1/𝑥!  or ℎ 𝑥 = 𝑡𝑎𝑛 𝑥 , and it would be 
cumbersome to constantly stipulate domains. For these reasons, we think it is prudent for textbooks 
to ignore the totality of functions in this context, except in the cases where the lack of totality 
matters. Similarly, inverse functions are generally used to assist in equation solving, graphing, and 
differentiation. In most cases, the use of inverses does not depend on whether the inverse is total on 
the codomain of the original function. It would be detrimental to the theory to eliminate inverse 
functions for functions that are not surjective, and it would be cumbersome to complicate the 
reasoning by introducing and changing codomains. Textbooks are justified in treating injective 
functions as always having inverses in this context. However, in other contexts in which non-total 
functions are not the object of consideration or would needlessly complicate the theory (e.g., group 
homomorphisms), it makes sense to adopt the Bourbaki Triple definition. Likewise, in contexts in 
which surjectivity or function composition play a central role, it might make sense to adopt the 
Bourbaki Triple definition. 

We conclude by offering some recommendations to the mathematics education community  for their 
investigations of functions and inverses: 
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• Be aware that there are two definitions of functions in mathematical practice and that these 
definitions entail different answers to questions that a secondary student might be asked. 

• In research reports, state which conception you have in mind and justify your choice. How did 
your conception of function allow you to achieve your pedagogical or research goals? If your 
definition of function was not germane to the study (e.g., you were only focusing on 
univalence and issues of totality and inverses did not arise), explain that too. 

• Avoid being a dogmatist when evaluating research papers. Just because a scholar used a 
different definition of function than you would prefer does not mean that they are 
mathematically incorrect. On the contrary, regardless of whether they adopted the Bourbaki 
Triple definition or the Ordered Pairs definition, they are in good company with many 
prestigious mathematicians. 

• Avoid being a dogmatist when evaluating students. Regardless of whether a student asserted 
that “every injective function is invertible” or its negation, it would be a mistake to evaluate 
this comment as mathematically incorrect. It would be more appropriate to look at the 
reasonings and understandings that the student used to justify their assertion. 

• In instruction, it is misleading to assert that mathematical definitions are always universal. 
There are multiple definitions for mathematical concepts that are not logically equivalent, even 
in secondary mathematics. Other examples besides functions include natural numbers (does 
this set include 0?) and trapezoids (is a parallelogram a trapezoid?). Rather than speak in 
absolutes, we suggest acknowledging that some mathematical concepts are defined in different 
ways, and to highlight the benefit of the definitional choice in the particular classroom context 
in question. 
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Mathematics majors, including future secondary teachers, should understand the work of pure 
mathematicians and the crucial role proof plays for the discipline of mathematics. Beyond the 
textbook proofs seen in most transition-to-proof courses, we conjectured that students might develop 
a deeper understanding of the discipline of mathematics and proof if they had the opportunity to do 
mathematical research—to try and prove an unsolved conjecture. As an added component of our 
transition-to-proof course, we designed an intervention so that students researched the Twin Primes 
conjecture or the Collatz conjecture. Students wrote reflections about their research and described 
how their perceptions of mathematics were influenced by the research.  We analyzed the reflections 
and sought to understand how the students’ views of mathematics and proof were enriched, if at all, 
through research on unsolved conjectures.       

Keywords: Reasoning and Proof; University Mathematics; Problem Solving; Affect, Emotions, 
Beliefs, and Attitudes 

Mathematics teachers should have a rich understanding of the discipline of mathematics. When a 
teacher possesses a healthy and informed conception of the discipline, she is well-positioned to pass 
on productive beliefs about mathematics to her students. Teachers and students benefit from 
understanding the important thought processes and practices that make mathematics the unique and 
enjoyable field that it is. But many mathematics majors and school teachers have naïve views of the 
discipline of mathematics (Pair, 2017; Thompson, 1992). Pair (2017) found that students in a 
transition-to-proof course were not familiar with conjectures in general and generally unaware of 
well-known conjectures such as the Twin Primes conjecture.  

Students’ Understanding of the Function of Proof 
Research has shown that many students, even mathematics majors, struggle learning to prove 

(Bleiler, Thompson, & Krajčevski, 2014). This may be due in part to the fact that students do not 
experience the functionality of proof in the same way that mathematicians do (de Villiers, 1990). For 
instance, proof for a mathematician can a be a means to convince other mathematicians that a claim 
is true. Students may not experience proof in this way if they are only asked to prove textbook 
exercises which are assumed true from the get go.  

De Villiers (1990) described five roles of proof for mathematicians that he conjectured would be 
productive for students to understand and experience: 1) Verification: Proof serves as a means of 
knowledge justification that enables mathematicians to obtain conviction that a claim is true; 2) 
Explanation: Proof provides insight into why a mathematical claim is true; 3) Systematization: Proofs 
serve to organize the deductive system of axioms, definitions, and theorems; 4) Discovery: 
Mathematicians make new discoveries through proof; and 5) Communication: A proof is a means by 
which mathematicians communicate mathematical knowledge. 

We believe that a deeper understanding of the roles of proof corresponds to a deeper understanding 
of the discipline of mathematics. Some researchers have documented the types of course activities 
(e.g. critiquing classmates’ proofs) that may engage students in these roles of proof (Bleiler-Baxter & 
Pair, 2017; Cilli-Turner, 2017). We conjectured that exploring unsolved conjectures may also 
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provide students an opportunity to deepen their understanding of the discipline of mathematics and 
experience the functionality of proof as mathematicians do.  

Transition-to-Proof Intervention Research Study 
We conducted a research study in a transition-to-proof course at a university in Southern California. 

The course was required for students majoring in either pure mathematics or secondary mathematics 
education. There were thirty-three students enrolled in this class. Twenty-five of the students agreed 
to participate in the research project which was approved by our University’s Institutional Review 
Board. Our University is a Hispanic-Serving Institution, and a diversity of races and genders are 
present in our sample.  

As an added component of the course, students explored and invented their own methods to 
navigate one of two famous mathematical conjectures: either the Twin Primes conjecture or the 
Collatz Conjecture. Typically attributed to Euclid, the Twin Primes conjecture states that there are an 
infinite number of twin primes (Rezgui, 2017). Two prime numbers 𝑥 < 𝑦 are twin primes provided 
𝑦 = 𝑥 + 2. For instance, 3 and 5 is the smallest twin prime pair. The Collatz conjecture, named for 
the German mathematician Lothar Collatz, is also known as the 3𝑛 + 1 problem (Bairrington & 
Okano, 2019). The conjecture concerns an iterative process on natural numbers. Given any natural 
number n, if n is odd multiply by 3 and add 1; or if n is even, then divide by 2; repeat the process on 
the resulting natural number; repeat again. The conjecture is that for any natural number, this 
iterative process will eventually reach 1. For instance, if we take n=3 the corresponding Collatz 
sequence is 3, 16, 8, 4, 2, 1 (if continued the sequence would cycle 4,2,1, 4,2,1…). These two 
conjectures have remained unsolved to the present day.  

Students in the transition-to-proof course explored these conjectures for an entire semester, 
documenting their work and reflections in what was called their mathematicians’ notebooks. Their 
work in the mathematicians’ notebooks accounted for 5% of their course grades. In the first notebook 
assignment, students were tasked with exploring both the Twin Primes conjecture and the Collatz 
conjecture. For subsequent assignments, students chose which conjecture they would like to explore. 
Students were assigned to research teams with other members of the class based on their conjecture 
preferences.  

About half of the students worked on the Collatz Conjecture1 and half on the Twin Primes 
conjecture, with some students exploring both. Midway through the semester the students shared 
their findings with other members of the class. Students drew inspiration from each other and 
adopted their classmates’ approaches in subsequent assignments. Twice during the semester, the 
instructor collected students’ notebooks and provided feedback and direction to guide students in 
their explorations. One assignment also required the students to watch and reflect on videos of 
mathematicians addressing their own work on the conjectures.  

See Figure 1 for an example of student exploration on the Collatz conjecture from a student’s 
notebook. This student, a Hispanic male, was working backwards from 1, trying to show that all 
numbers will eventually cycle to 1. His first line shows powers of 2, which obviously will reach 1. 
For each power of 2, he considered if it was of the form 3n+1 by subtracting 1 from the number and 
dividing by 3. When he found such a number, he would find the value of 𝑛 and use it to start a new 
number line—which started with 𝑛 and increased by a factor of 2. He wrote “[the pink] represents 
how a new line in the form of 𝑛 ⋅ 2 !, where 𝑥 ≥ 0 and 𝑛 is an odd integer, is made by subtracting by 
1 and then dividing by 3 by another line in the same form. [The green line] represents the set of 
natural numbers in order starting from 1.” This student recognized that if he could successfully show 

                                                             
1 Slightly more students worked on the Collatz conjecture than the Twin Primes conjecture. 
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that every natural number appears in one of the number lines, then he could prove the Collatz 
conjecture.  

 

 
Figure 1: Example of Student Exploration of the Collatz Conjecture 

 
We conjectured that through work on unsolved conjectures, mathematics majors would have novel 

opportunities to enrich their understanding of the nature of mathematics and the roles of proof. The 
first author (instructor of the course) designed the notebook assignments so that they  would be a 
source of data useful for providing insight into what the students were learning about the nature of 
mathematics and proof as they explored the conjectures. Students had several reflective prompts they 
were required to address in their notebooks. For instance, at the beginning of the semester, students 
responded to the prompts What is mathematics all about? and What is a mathematical proof, and 
how is it used by mathematicians? The students responded to these prompts again at the end of the 
semester; they also responded to two additional prompts: (1) How has your thinking regarding 
mathematics and mathematical proof developed and changed during this semester? Which changes 
were the result of engagement in the standard course activities (e.g. homework, tests, lectures) and 
which changes were the result of your experience conducting mathematical research (working on the 
unsolved conjectures)? and (2) What were the challenges and successes of your experience with 
mathematical research this semester? The researchers analyzed student reflections to understand 
students’ experiences working on the conjectures. In particular, we analyzed the notebook data to 
discern what students learned about the nature of mathematics and the roles of proof through their 
research. 
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Data Analysis 
The data for the research study consisted of 25 student notebooks. The instructor (first author) and 

an undergraduate student from the course (second author) analyzed the data. First, each researcher 
individually read and examined a particular students’ notebook. As we individually read through 
each student’s notebook we took note of 1) Instances where students reflected about the nature of 
mathematics; 2) Possible evidence for changes in student’s perceptions of the nature of mathematics 
(especially in regards to the five roles of proof); 3) Interesting mathematical ideas and approaches the 
student generated in working on the conjectures; and 4) Other interesting ideas expressed by the 
students. Each researcher then wrote a summary of his individual findings for the particular student’s 
notebook.  

After reading and analyzing a notebook, the researchers then shared their thoughts and findings with 
each other. We made notes on insights gained from the others’ analysis and made note when a 
student demonstrated an understanding of any of the five roles of proof. We then repeated the process 
for the next student notebook.  

Once we had analyzed all of the individual notebooks, the next step was for each researcher to 
create a holistic summary of the data that included broad themes in the students’ responses as well as 
evidence (from the data) to back up our claims. The creation of these holistic summaries involved 
sorting student quotations into categories or themes (Ryan & Bernard, 2003), providing evidence that 
students’ understandings of the nature of mathematics seemed to be enriched through the notebook 
project, and tallying how many students expressed certain ideas regarding the nature of mathematics 
in regards to the Roles of Proof framework. We also identified other recurring themes in the data 
related to students’ experiences. We then shared our findings with each other, challenging each other 
to provide evidence for claims, which led to further refinement of the findings. We now present the 
results. 

Results 
We found that students alluded to four of de Villiers’ (1990) five roles of proof while participating 

in this study: verification, explanation, systematization, and discovery.  
Verification 

Early in the semester, eight students’ descriptions of the purpose of proof alluded to the notion of 
verification. For instance, a student wrote “A mathematical proof is a tool mathematicians use in 
order to determine if their statement is true or false.” But by the end of the semester, seven additional 
students described the role of verification. These students wrote either about the role of proof in 
convincing others that a theorem is true, or the importance of proof in justifying and validating 
mathematical claims. For instance, one student wrote “Ideally, [a proof] should have no errors (holes) 
and must convince other mathematicians that it is correct and true for its purpose.” Students were 
well aware of their inability to find a convincing proof for either the Twin Primes conjecture or the 
Collatz conjecture.  
Explanation 

Only two students alluded to the role of explanation in their initial descriptions about the purpose of 
proof, but by the end of the semester nine additional students alluded to this role of proof in their 
reflections. These students used language that emphasized proof’s role in providing insight into why 
a mathematical claim is true. For instance, at the end of the semester a student wrote “At first, I feel 
like mathematics was more of just applying formulas and theorems to solve problems, but over the 
course I learned that it is more important to know why theorems work and how they work.” Other 
students described how proof was needed to understand mathematics deeply. At the end of the 
semester a student wrote, “A mathematical proof is a way to understand how and why certain 
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mathematical concepts exist. In math, there is always a reason for everything and math proofs help 
explain those reasons further. It is used by mathematicians to understand problems further and on a 
deeper level.” Students recognized the surface level simplicity of the two conjectures (some students 
described how even an elementary student could understand them) but also recognized the 
complexity of what was required to understand why the conjectures were true.  
Systematization 

Four students alluded to the systematization role of proof at the beginning of the semester, and three 
additional students alluded to systematization at the end. These students described a building up of 
mathematics—results serve as the foundation for future results. A student wrote, “Proofs are facts so 
they have a crucial part to play in the development of other proofs where progression in the proof has 
more difficulty than normal.” And another student, referencing a video she watched related to the 
twin primes, wrote, “Mathematicians use these proofs to help prove other conjectures. As Maynard’s 
proof was influenced by Zhang’s proof. Eventually, Maynard’s proof will be used to help prove other 
conjectures.” These students came to see that mathematicians work on conjectures; and proofs are 
used to build the body of mathematical knowledge. 
Discovery 

Four students alluded to the discovery role of proof, all at the end of the semester. These students 
seemed to better understand the mathematician’s quest to discover new results. One student wrote, 
“Proofs are used by mathematicians to assist them in creating other proofs to eventually have a 
breakthrough that is groundbreaking in mathematics as well as the world.”  Another student wrote, 
“Mathematics is all about solving the world’s greatest mysteries. Just from taking this class I have 
learned that mathematicians discover new problems and then spend their life trying to 
prove/understand it.” See Figure 2 for a display of how many students alluded to a role of proof in 
their reflections.  

 
Role of Proof Alluded to at the Beginning 

of the Semester 
Alluded to by the End of the Semester 

(but not at the Beginning) 
Verification 8 7 
Explanation 2 9 

Systematization 4 3 
Discovery 0 4 

Communication 0 1 
Figure 2: Number of Student Reflections on the Role of Proof 

 
Other Results 

We believe that most of the students had naïve views about pure mathematics and what it entails for 
mathematicians as they began the course. The notebook assignments provided students the 
opportunity to try their hand at proving conjectures that even famous mathematicians have not yet 
proven. This gave many of the students the opportunity to develop new ideas about what the 
discipline of mathematics and proof is all about, as many of them were dealing with a type of 
mathematics problem that they had never even conceived.  

The notion of an unsolved conjecture provoked some of the students to start thinking more deeply 
about the topic, which in-turn led to creative and outside-the-box ideas. Eight of the students either 
showed a creative process in solving the conjectures, or stated they learned they could be more 
creative/look at conjectures from different angles and perspectives. Some forms of this creativity 
included working backwards on the Collatz conjecture, creating code to help find patterns and links 
within the Collatz conjecture, as well as finding a formula for the distance between twin prime pairs. 
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One student stated in their last reflection that “I learned we can look at an idea from many different 
angles.” This student learned that some mathematical problems, such as conjectures, are not always a 
one-way road. 

Another common trend amongst the students was that in the reflections, a number of the students 
took a step back and reflected from a broader point-of-view, and said they developed a deeper 
understanding of the nature of mathematics. Some students stated that they get the “bigger picture,” 
or that they understand what happens “behind the scenes of mathematics.” Of the 25 students, 10 of 
them had reflections in this vein. A few of those students were also ones that had a narrow idea of 
what mathematics was about in the beginning of the semester. These students originally had a 
concrete perception of mathematics being about calculations. For instance, a student wrote, “to me, 
mathematics is mainly about obtaining problem-solving skills through various mathematical 
problems,” and, “mathematics is all about using formulas to solve problems.” Working on an 
unsolved conjecture may have had an effect on their idea of mathematics and showed them that there 
is more to mathematics and it is not always about performing algebra with numbers. The same 
student, in their last reflection, wrote that “mathematics is all about solving the world’s greatest 
mysteries.”  

The students’ approaches and their perceptions of mathematics were not the only things they 
reflected about. Some of the students described a variety of emotions in their reflections. Eight of the 
25 students expressed enjoyment in regards to the notebook. One student expressed how “math is 
getting more and more creative.” Another student even stated that they were reassured and glad to be 
a mathematics major after completing the notebook, writing “I made the right choice in majoring in 
math since I love proofs so much.” 
Challenges 

One of the most commonly noted student challenges was the struggle with finding where to begin 
proving the conjectures. Some of the students seemed overwhelmed at the prospect of exploring an 
unsolved conjecture that many mathematicians have tried and failed to solve. Some even expressed 
misconceptions, believing that they were being asked to prove something “impossible.” Others were 
confused how they were supposed to go about proving something “unprovable.” One student wrote, 
“I think the main challenge is just the fact that it’s a conjecture. I could not find a way to write any 
proof because I did not understand or recognize the pattern behind it. I’m not sure if I’m doing the 
assignment correctly.” Other students had a defeatist attitude, not believing that they would have 
anything positive to contribute: “Working on the conjecture was more irritating than exciting because 
I can’t prove it. It took away all the satisfaction because it is a famously unproven conjecture and I 
couldn’t solve it.”  Another student wrote, “Although it was intriguing, I gave up preemptively 
because I knew that I would not do anything that would help come to any conclusion.” Although 
these students had trouble making progress, most were able to engage with the conjectures in some 
way. In subsequent semesters when implementing this project, the first author has incorporated more 
in-class discussion time for the conjectures. This has allowed the students more opportunities to get 
ideas from their peers for how to approach the conjectures. 

Conclusions 
Overall, we are encouraged that exploration of the unsolved conjectures was a productive 

experience for most students, and helped them to understand the role of proof and the discipline of 
mathematics in novel ways. We found that students had the opportunity to learn about what Hersh 
(1991) referred to as “the back of mathematics”—the messy informal work involved in proving 
conjectures. We believe that some students experienced and understood proof’s role as verification, 
explanation, discovery, and systematization. Of the five roles of proof, explanation was most 
reflected on, with 9 students alluding to this role in their reflections (beyond the 4 that alluded to it at 
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the beginning of the semester). We believe that working on unsolved conjectures provided students a 
special opportunity to understand this role of proof, as they were forced to come to the terms with the 
fact that even when they believe a conjecture to be true, it is not always easy to understand why it is 
true. We note that of the five roles of proof, communication was the only one we could not find 
addressed in the student reflections.2 Other researchers have found that small-group work in inquiry-
based classrooms brings to the forefront the communication role for students (Bleiler-Baxter & Pair, 
2017; Cilli-Turner, 2017). Perhaps communication was not discussed by the students in our study as 
only one classroom day was devoted to student discussions of their work on the conjectures. We 
believe allotting more time for classroom discussion of conjectures may help students better 
understand the communication role of proof.  
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2 One student did address the communication role of proof; but she had previously participated in a 
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learn about the importance of communication in mathematics.   
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This paper presents the results of a large documentary study, the purpose of which is to promote a 
research and teaching program for the didactic reconceptualization of Calculus, through detailed 
argumentation that makes visible the problems surrounding the profound influence of the 
organization of Mathematical Analysis on the teaching of Calculus, which makes it difficult for 
students to understand and use the central ideas of Calculus. The study was conducted using 
theoretical notions of the onto-semiotic approach (OSA) to mathematical knowledge and instruction. 
An inquiry on the objects of study of each mathematical discipline will be presented, situating the 
different problem-situations that each one addresses and the procedures, languages, properties, 
arguments, and concepts that differentiate them. Finally, these differences are illustrated in relation 
to the notion of variable. 

Keywords: Calculus, Curriculum, Instructional Vision. 

Introduction and problem 
At the center of Calculus teaching lies a problem deeply close to the historical development of this 

discipline and to Mathematics itself. Authors such as Moreno-Armella (2014) have described that 
problem as a tension between intuition and formalism, related to the tendency to present the intuitive 
ideas of Calculus from the perspective of Mathematical Analysis (Ímaz & Moreno, 2010). Calculus 
textbooks, that materialize this teaching approach, usually organize mathematical content around the 
notions of function and limit, considered the basis for studying the derivative and the integral of a 
function. The same textbooks emphasize mathematical practices such as defining, arguing, and 
demonstrating, and not the foundational intuitive ideas of Calculus about variation and accumulation. 

This work is part of the research of Jiménez, Grijalva, Milner, Dávila-Araiza and Romero, (in 
press), which continues the line drawn by the study of Ímaz and Moreno (2010) to make a clear 
distinction, with didactic purposes, between Calculus and Mathematical Analysis. The study of 
Jiménez et al. it is a documentary research. It presents, in a critical way, historical and 
epistemological facts and arguments found in books and research articles that help explain the 
current state of Calculus teaching, drawing a path for its necessary transformation. The current 
didactic route, implicit in the textbooks, constitutes a path full of difficulties for students, associated 
with the formalized notion of limit (Cory & Garofalo, 2011; Roh, 2008 & Nagle, 2013) and other 
mathematical notions, such as real numbers and functions (Artigue, 1998). These notions are 
presented in classrooms from a perspective that seeks to establish a basis for the study of 
Mathematical Analysis and not the understanding of the key aspects of Calculus. 

As one of the results of this documentary research, this paper will present, without pretenses of 
exhaustiveness, a distinction of the contents of Calculus and Mathematical Analysis, which serves to 
show the strong influence of Analysis on the teaching of Calculus. Later, with respect to the notion of 
variable, a distinction will also be made from the perspective of Calculus and Analysis. These 
distinctions will be made using theoretical tools of the onto-semiotic approach (OSA) to 
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mathematical knowledge and instruction (Godino, Batanero & Font, 2007), which allows a detailed 
analysis of mathematical content and the establishment of categories that facilitate their contrast. 

Theoretical Elements 
In OSA a pragmatic position is assumed to study the mathematical objects that intervene and 

emerge when solving problems, putting the focus on the notion of mathematical practice to refer to 
any practical or discursive performance that is carried out when solving problems or communicating 
the obtained results. Rather than hinting at isolated practices, OSA is concerned with the systems of 
practices that are carried out to deal with problem situations. With this idea, mathematical objects are 
characterized as emerging from systems of practice, allowing the following six types of primary 
mathematical objects to be distinguished, some of which are ostensive in nature and others non-
ostensive: Problem-situations (more or less open problems, exercises, extra or intra mathematical 
applications, etc.); language (specific mathematical terms, algebraic expressions, number tables, 
graphs, diagrams, gestures, etc.); procedures (techniques, algorithms, etc., undertaken or executed by 
the subject faced with mathematical tasks); properties and propositions (attributes of the mentioned 
objects); arguments (which are used to validate and explain the propositions) and concepts 
(mathematical objects recognized as part of the mathematical structure, characterized by their 
essential properties, which allow them to be distinguished from others and are usually expressed 
through descriptions or definitions). 

Contrast of the primary mathematical objects of Calculus and Analysis 
Below is an analysis of four of the six types of primary mathematical objects, corresponding to 

Calculus and Mathematical Analysis, from which it is possible to show that the current approach to 
teaching Calculus does not fully consider the initial ideas of this discipline, but rather presents a 
version more in line with the purposes of Mathematical Analysis. 

 
Table 1. Contrast of primary mathematical objects of Calculus and Analysis 

Calculus Analysis 
Concepts: Variable magnitude, variation and 

covariation, instantaneous rate of change, 
infinitely small magnitude, differential, 

accumulation, evanescent quantity, infinite sum, 
derivative, integral, function. 

Concepts: Real number, function (increasing, 
decreasing, bijective, continuous, differentiable, 
bounded, integrable), derivative of a function, 

definite integral of a function in an interval, limit 
of a function, succession, convergence. 

Problem-situations (usually linked to physical or 
geometric contexts): To determine how much 

there is of a magnitude at all times, knowing the 
rate of change of such magnitude at all times, 

and inversely determine its rate of change at all 
times knowing how much there is of that 

magnitude in any given moment. To determine 
the quadrature of a figure formed by a curve and 
the slope of the tangent line to that curve at each 

point of it. 

Problem-situations: To define the mentioned 
concepts and establish their properties. From 

their definitions, to determine when a 
relationship is a function, when a function is 
injective, bijective, increasing, decreasing, 
continuous, differentiable or integrable. To 

determine the limit of a function. To establish 
when the limit of a function exists, when a 
function is continuous, if a discontinuity is 

removable, when a function is differentiable or 
integrable. 

Properties (they tend to be implicitly assumed): 
variable magnitudes vary continuously. 

Differential magnitudes are non-Archimedean in 
nature. Differential quantities depend on the 

phenomenon. 

Properties (presented in isolation from their 
contexts of extra-mathematical use): Theorems 
of the mean value and the intermediate value. 

Properties of the limits of functions and 
differentiable functions. Conditions of 
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integrability of a function, fundamental theorem 
of calculus, etc. 

Language: Combination of the natural language 
with specific languages from the application 

areas. Algebraic, numeric and geometric 
representations. Algebraic treatment of 

differential magnitudes, such as 𝒅𝒙,𝒅𝒚,𝒅𝒛,𝒅𝒕, 
and of infinite sums represented as 
∫ 𝒙𝟐𝒅𝒙,∫ 𝒔𝒆𝒏𝒙 𝒅𝒙 , among others. 

Language: Predominant use of analytical 
language of a formal nature and little use of 
numerical and graphic representations. The 

center of the language of analysis is that 
associated to functions and, linked to it, the 

criteria of convergence and continuity, 
representing the proximity between 

representative values by means of the absolute 
value of the difference of two magnitudes of 

interest. 

The notion of variable from the Calculus perspective 
The study of variable begins in high school, where two main meanings are promoted, one associated 

with the study and resolution of equations of two or more variables, and the other as a generalized 
number associated with the problems of numerical and figurative patterns. Subsequently, in the 
Calculus university courses, the concept of variable is not usually discussed (Biehler & Kempen, 
2013). Only when defining function is it mentioned that x is an element in a set called domain, while 
y is an element in the set called range. Consequently, the variable is considered as “something” that 
takes all the values in a certain set of numbers or “something” that represents all the elements of a 
given set. This concept of variable corresponds to Set theory, a typical approach from Mathematical 
Analysis (see Apostol, 1979, p. 40), more importantly, a decontextualized and static meaning. 

Favoring an static and decontextualized meaning of the variable generates difficulties for students in 
the modeling of physical phenomena with the tools of Calculus (López-Gay, Martínez Sáez & 
Martínez-Torregrosa, 2015), since for the students a variable is a letter that represents replaceable 
constants, that is, the variables do not vary in the students' thinking, as documented by Jacobs and 
Trigueros (cited in Thompson, Byerley & Hatfield, 2013). Thompson, Byerley and Hatfield (2013) 
affirm that to develop a variational meaning of the variable characteristic of Calculus, it is not 
enough to think of the variation as the simple substitution of one number for another; it is important 
to understand that this change in value is not arbitrary, but it occurs under a certain progression or 
sequence that is usually dependent on time. This sheds light on an important distinction: time is a 
central notion in Calculus; however, in Analysis it is not, as Bolzano expressed: “the concept of time, 
and even more that of motion, is as external to general mathematics as that of space” (quoted in 
Bottazzini, 1986, p. 98 ). 

In Calculus, the variable is a dynamic notion that is intimately linked to time and physical contexts, 
since it emerges from the study of variable magnitudes and the relationships that can be established 
between them when trying to understand, and mathematize processes and variation phenomena that 
are present in the physical and social environment, in which a measurable changing property is 
manifested. In Calculus, the verb to vary refers to a change in progress (Thompson, Ashbrook & 
Milner, 2016), whether it is actually happening, or one can imagine that it is. In this sense, a variable 
quantity can be described as a quantifiable property of an object, process, or phenomenon of 
variation. In other words, “the variable magnitude that is measured or calculated takes progressively 
different values at different times, as the phenomenon or process in which it intervenes develops” 
(Jiménez et al., In press). It is important to highlight that the quantifiable quality not only takes each 
and every one of the numerical values in a set, but it does so sequentially, as time passes. 

Consequently, the variable magnitudes in the Calculus, due to all the characteristics that they 
possess, particularly those described above, do not have the same meaning as the variable from the 
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perspective of Mathematical Analysis, where the variables have no link to physical reality, nor with 
time or motion, as Bolzano explained it. In Mathematical analysis the variables are timeless, 
dimensionless, static (they do not involve motion). The way in which the analysis variable "takes" 
the values of a set needs to be completely arbitrary, it does not obey a temporal sequence. 

Conclusions 
The analysis of primary mathematical objects allowed us to identify that the systems of 

mathematical practices of Calculus and Mathematical Analysis are essentially different. Broadly 
speaking, the mathematical practices of Calculus are oriented to the study of the phenomena of 
variation by establishing relationships between variable magnitudes, while the mathematical 
practices of Analysis focus on the definition and study of functions, derivatives, integrals, and its 
properties, through the notions of real number and limit. 

Regarding the notion of variable, it is important to highlight that Calculus students hardly have an 
approach to it from a variational perspective, which would allow them to develop the variational 
thinking necessary for understanding the fundamental ideas of this discipline that will become 
mathematical tools necessary for the prediction and control of change processes; the field of 
application of the Calculus. 

The presented arguments aim to outline, for didactic purposes, some essential differences between 
Calculus and Analysis, taking as a particular case the notion of variable, to shed light on how 
Calculus teaching neglects aspects that are central to the understanding of its foundational ideas, by 
privileging a formal treatment of the mathematical content more attached to the perspective of 
Mathematical Analysis. These reflections remind us that the discussion on how to reorient the 
teaching of Calculus, as well as didactic research, towards understanding the central ideas of 
Calculus that would allow students to be efficient users of the mathematics of change is still pending. 
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Se presentan resultados de un estudio amplio, de carácter documental, cuya finalidad es el impulso a 
un programa de investigación y docencia para la reconceptualización didáctica del cálculo, a través 
de una argumentación detallada que visibiliza la problemática en torno a la influencia profunda de 
la organización del Análisis Matemático sobre la enseñanza del Cálculo, que dificulta a los 
estudiantes la comprensión y uso de las ideas centrales del Cálculo. El estudio se realizó usando 
nociones teóricas del Enfoque Ontosemiótico del conocimiento y la instrucción matemáticos (EOS). 
Se presentará una indagación sobre los objetos de estudio de cada disciplina matemática señalada, 
ubicando las diferentes situaciones problema que aborda cada una de ellas y los procedimientos, 
lenguajes, propiedades, argumentos y conceptos que las diferencian. Por último, se ilustran estas 
diferencias con relación a la noción de variable.  

Palabras clave: Cálculo, currículo, visión de enseñanza. 

Introducción 
En el centro de la enseñanza del Cálculo yace una problemática profundamente ligada al desarrollo 

histórico de esta disciplina y de las matemáticas mismas, que autores como Moreno-Armella (2014) 
han relacionado con una tensión entre lo intuitivo y lo formal, y una tendencia a presentar el Cálculo 
desde la perspectiva del Análisis Matemático (Ímaz & Moreno, 2010). En los textos de Cálculo, que 
materializan el enfoque de su enseñanza, se suele organizar el contenido en torno a las nociones de 
función y límite, para llegar al estudio de la derivada y la integral, enfatizando prácticas matemáticas 
como fundamentar, definir y demostrar, y no en torno a las ideas intuitivas fundacionales del Cálculo 
sobre variación y acumulación. 

Este trabajo se enmarca en la investigación de Jiménez, Grijalva, Milner, Dávila-Araiza y Romero, 
(en prensa), que da continuidad a la línea trazada por la investigación de Ímaz y Moreno (2010) para 
realizar una distinción clara, con fines didácticos, entre el Cálculo y el Análisis Matemático como 
disciplinas en la enseñanza. La investigación de Jiménez et al. es de tipo documental; recopila hechos 
y argumentos de corte histórico y epistemológico en libros y artículos de investigación que permiten 
explicar el estado actual de la enseñanza del Cálculo y esbozar una línea para su necesaria 
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transformación; considerando que la ruta didáctica actual, implícita en los libros de texto, constituye 
para los estudiantes un camino plagado de dificultades asociadas a la noción formalizada de límite 
(Cory & Garofalo, 2011; Roh, 2008 y Nagle, 2013) y otras nociones matemáticas, como los números 
reales y la función (Artigue, 1998), que son presentados desde una perspectiva que busca a sentar 
bases para el estudio del Análisis Matemático y no la comprensión de las nociones centrales del 
Cálculo. 

Como uno de los resultados de esta investigación documental, en este escrito se presentará, 
primeramente, de manera general (y sin pretensiones de exhaustividad) una distinción de contenidos 
matemáticos del Cálculo y del Análisis Matemático, que permiten mostrar la fuerte influencia del 
Análisis sobre la enseñanza del Cálculo. Posteriormente, con respecto a la noción de variable, 
también se realizará una distinción desde la perspectiva del Cálculo y del Análisis. Estas distinciones 
se realizarán mediante herramientas teóricas del Enfoque Ontosemiótico, EOS, (Godino, Batanero & 
Font, 2007), las cuales permiten analizar detalladamente contenidos matemáticos y establecer 
categorías que faciliten su contraste. 

Elementos teóricos 
En el EOS se asume una posición pragmática para estudiar los objetos matemáticos que intervienen 

y emergen al resolver problemas, poniendo el enfoque en la noción de práctica matemática para 
referirse a cualquier actuación práctica o discursiva que se realiza al resolver problemas o comunicar 
los resultados obtenidos. Pero, más que hacer alusión a prácticas aisladas, el EOS se preocupa por los 
sistemas de prácticas que se realizan para enfrentar las situaciones problema. Con esta idea, se 
caracteriza a los objetos matemáticos como los emergentes de los sistemas de prácticas, permitiendo 
distinguir los seis siguientes tipos de objetos matemáticos primarios, algunos de los cuales son de 
naturaleza ostensiva y otros son no ostensivos: Situaciones problema (problemas más o menos 
abiertos, ejercicios, aplicaciones extramatemáticas o intramatemáticas, etc.); lenguaje (términos 
específicos de matemáticas, expresiones algebraicas, tablas numéricas, gráficas, diagramas, gestos, 
etc.); procedimientos (técnicas, algoritmos, etc., emprendidos o ejecutados por el sujeto ante las 
tareas matemáticas); propiedades (atributos de los objetos mencionados); argumentos (que se usan 
para validar y explicar las proposiciones) y conceptos (objetos matemáticos reconocidos como parte 
de la estructura matemática, caracterizados por sus propiedades esenciales, las que permiten 
distinguirlos de otros y suelen expresarse por medio de descripciones o definiciones). 

Contraste de objetos matemáticos primaros del Cálculo y del Análisis 
A continuación, se presenta de manera general un análisis de cuatro de los seis tipos de objetos 

matemáticos primarios, sin pretender ser exhaustivos, correspondientes al Cálculo y al Análisis 
Matemático, a partir del cual es posible poner de manifiesto que el enfoque actual de la enseñanza 
del Cálculo no considera plenamente las ideas iniciales de esta disciplina, sino que presenta una 
versión del Cálculo mas acorde a los propósitos del Análisis Matemático. 

 
Tabla 1. Contrastación de objetos matemáticos primarios del Cálculo y del Análisis 

Cálculo Análisis 
Conceptos: Magnitud variable, (co)variación, 

razón instantánea de cambio, magnitud 
infinitamente pequeña, diferencial, acumulación, 

cantidad evanescente, suma infinita, derivada, 
integral, función. 

Conceptos:Número real, función (creciente, 
decreciente, biyectiva, continua, diferenciable, 
acotada, integrable), derivada de una función, 

integral de una función en un intervalo, límite de 
una función, sucesión, convergencia, entre otras. 

Situaciones problema (normalmente vinculadas 
a contextos físicos o geométricos): Determinar 

Situaciones problema: Definir los conceptos 
mencionados y establecer propiedades de estos. A 
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cuánto hay de una magnitud en todo momento, 
conociendo la razón de cambio de esa magnitud 
en todo momento, e inversamente determinar su 
razón de cambio en todo momento conociendo 
en todo momento cuánto hay de esa magnitud. 

Determinar la cuadratura de una figura formada 
por una curva y, determinar la pendiente de la 
recta tangente a dicha curva en cada punto de 

ella. 

partir de dichas definiciones, determinar cuándo 
una relación es función, cuándo una función es 

inyectiva, suprayectiva, biyectiva, creciente, 
decreciente, continua, diferenciable o integrable. 
Determinar el límite de una función. Establecer 

cuándo existe el límite de una función, cuándo es 
continua una función, si es removible una 

discontinuidad, cuándo una función es 
diferenciable o integrable.  

Propiedades (tienden a ser asumidas de forma 
implícita): Por ejemplo, las magnitudes variables 

varían de manera continua, las magnitudes 
diferenciales tienen una naturaleza no 

Arquimediana, las cantidades diferenciales son 
propias de cada fenómeno.  

Propiedades (se presentan aisladas de sus 
contextos de uso extramatemático): Teoremas del 
valor medio y del valor intermedio. Propiedades 

de los límites de funciones y de las funciones 
diferenciables. Condiciones de integrabilidad de 
una función, teorema fundamental del cálculo, 

etc.. 

Lenguaje: combinación de la lengua materna 
con lenguajes específicos de las áreas de 

aplicación. Expresiones numéricas geométricas 
y algebraicas. que representan magnitudes 
diferenciales como 𝒅𝒙,𝒅𝒚,𝒅𝒛, d𝒕 y de las 

sumas finitas, representadas por expresiones 
como 𝒙𝟐 𝒅𝒙, 𝒔𝒆𝒏𝒙𝒅𝒙 y otras. 

Lenguaje: preponderantemente analítico, de 
carácter formal y poco empleo de las 

representaciones numéricas y gráficas. El centro 
del lenguaje del análisis es el de función y, ligado 

a ésta, los criterios de convergencia y de 
continuidad, representando la proximidad entre 

valores representativos mediante el valor absoluto 
de la diferencia de dos magnitudes de interés. 

La noción de variable desde la perspectiva del Cálculo 
El estudio de la variable inicia en la escuela secundaria, donde se promueven dos significados 

principales, uno asociado al estudio y resolución de ecuaciones de dos o más variables, y otro como 
número generalizado asociado a los problemas de patrones numéricos y figurales. Posteriormente, en 
los cursos universitarios de Cálculo no se suele discutir el concepto de variable (Biehler & Kempen, 
2013). Únicamente, al definir la función, se menciona que x es un elemento en un conjunto llamado 
dominio, mientras que y es un elemento del conjunto llamado rango. Como consecuencia, la variable 
es considerada como “algo” que toma todos los valores en cierto conjunto de números o “algo” que 
representa a los elementos de un conjunto. Este concepto de variable corresponde a un significado 
conjuntista, propio del Análisis Matemático (ver Apostol, 1979, p. 40), un significado 
descontextualizado y estático. 

Favorecer un significado estático y descontextualizado de la variable produce dificultades en los 
estudiantes para la modelación de fenómenos físicos con las herramientas del Cálculo (López-Gay, 
Martínez Sáez & Martínez-Torregrosa, 2015), pues para los estudiantes una variable es una letra que 
representa constantes reemplazables, es decir, las variables no varían en el pensamiento de los 
estudiantes, como lo documentaron Jacobs y Trigueros (citados en Thompson, Byerley & Hatfield, 
2013). Thompson, Byerley y Hatfield (2013) afirman que para desarrollar un significado variacional 
de la variable propio del cálculo no es suficiente pensar en la variación como el cambio de un 
número por otro; es importante comprender que ese cambio de valor no es arbitrario, sino que ocurre 
bajo cierta progresión o secuencia normalmente temporal. Esto arroja luz sobre un aspecto 
importante: el tiempo es una noción central en el Cálculo; sin embargo, en el Análisis no lo es, como 
lo expresó Bolzano: “el concepto de tiempo, y más aún aquel de movimiento, es tan externo a las 
matemáticas generales como aquel de espacio” (citado en Bottazzini, 1986, p. 98). 



Hacia una distinción didáctica entre el Cálculo y el Análisis. El caso de la noción de variable 

	 1180	

En el Cálculo, la variable es una noción dinámica que está íntimamente ligada al tiempo y a los 
contextos físicos, pues ésta emerge del estudio de las magnitudes variables y de las relaciones que se 
pueden establecer entre ellas al tratar de comprender, y matematizar, procesos y fenómenos de 
variación que están presentes en el entorno físico y social, en los cuales se manifiesta una propiedad 
cambiante que puede ser medible. En el Cálculo, el verbo variar se refiere a un cambio en progreso 
(Thompson, Ashbrook & Milner, 2016), ya sea efectivamente está sucediendo o bien que se puede 
imaginar que lo hace. En este sentido, una magnitud variable se puede describir como una propiedad 
de un objeto, proceso o fenómeno de variación, la cual es cuantificable. Es decir, “la magnitud 
variable que se mide o calcula toma progresivamente distintos valores en distintos momentos, a 
medida que va desarrollándose el fenómeno o proceso en que ella interviene” (Jiménez et al., en 
prensa). Es importante resaltar que la cualidad cuantificable no solamente toma todos y cada uno de 
los valores numéricos en un conjunto, sino que lo hace de manera secuencial, a la par que transcurre 
el tiempo. 

En consecuencia, las magnitudes variables en el Cálculo, por todas las características que poseen y 
que se describieron líneas arriba, no tienen el mismo significado que la variable desde la perspectiva 
propia del Análisis Matemático, donde las variables no tienen vínculo alguno con la realidad física ni 
con el tiempo o el movimiento, como lo expresó Bolzano. En el análisis Matemático las variables son 
atemporales, adimensionales, estáticas (no involucran el movimiento). La manera como la variable 
del análisis “toma” los valores de un conjunto es completamente arbitraria, no obedece 
necesariamente una secuencia temporal. 

Conclusiones 
El análisis de objetos matemáticos primarios permitió identificar que los sistemas de prácticas 

matemáticas del Cálculo y del Análisis Matemático son esencialmente distintos. A grandes rasgos, 
las prácticas matemáticas del Cálculo se orientan al estudio de los fenómenos de variación mediante 
el establecimiento de relaciones entre magnitudes variables, mientras que las prácticas matemáticas 
del Análisis se centran en la definición y estudio de la función, la derivada, la integral y sus 
propiedades, a través de las nociones de número real y límite. 

Con respecto a la noción de variable, es importante resaltar que difícilmente los estudiantes de 
Cálculo tienen un acercamiento a ésta desde una perspectiva variacional, que les permitiría 
desarrollar un pensamiento variacional necesario para la comprensión de las ideas fundamentales de 
esta disciplina que son en herramientas matemáticas necesarias para la predicción y control de 
procesos de cambio; el campo de aplicación del Cálculo. 

Los argumentos presentados brevemente pretenden esbozar, con propósitos didácticos, algunas 
diferencias esenciales entre el Cálculo y el Análisis, tomando como caso particular la noción de 
variable, para arrojar luz sobre cómo la enseñanza del Cálculo desatiende aspectos que son centrales 
para la comprensión de sus ideas fundacionales, al privilegiar un tratamiento formal del contenido 
matemático más apegado a la perspectiva del Análisis Matemático. Estas reflexiones nos recuerdan 
que sigue pendiente la discusión sobre cómo reorientar la enseñanza del Cálculo, así como la 
investigación didáctica, hacia la comprensión de las ideas centrales del Cálculo que permita a los 
estudiantes ser usuarios eficientes de las matemáticas del cambio. 
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In this research report, we describe the results of a paired-student constructivist teaching experiment 
with introductory calculus students focused on supporting their understanding of the derivative as 
rate of change. We focus on one student, Rick. We connect analyses of Rick’s ways of assimilating 
and operating with numerical units with analyses of ways of conceptualizing rates. The results are 
conjectures about the relationships between levels of units students coordinate and their ways of 
quantifying rates. 
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Background 
This report builds a connection between Johnson’s (2015) work investigating the quantitative 

operations involved in constructing rates and research investigating the constraints and affordances 
of student’s units coordinating activity as they develop understandings of calculus concepts (Boyce, 
Byerley, Darling, Grabhorn, & Tyburski, 2019; Boyce, Grabhorn, & Byerley, 2020). The goal of the 
current study is to identify connections between calculus students’ units coordination and their 
understanding of rate of change. 
Units Coordinating 

Units coordination can be thought of as students’ mental activity building and maintaining 
relationships of nested levels of units (Norton et al., 2015; Steffe, 1992). Some students bring a three-
level units coordinating structure to bear when first encountering a task, what we call assimilating 
with three levels of units. Such students would be able to quickly reason through the Bar Task below 
(Figure 1) by recognizing that the orange bar is equivalent to nine ¼’s of a purple bar, thus 9/4 of a 
purple bar fits into the orange bar. Students that assimilate with two levels of units may construct an 
ephemeral third level of units in the midst of reasoning (what we call coordinating three levels of 
units in activity) by coordinating across two two-level units coordinating structures. Such activity 
requires perceptual reflecting on the outcomes of actions on physical or mental representations, often 
resulting in conflating or dropping units. For example, a student who assimilates with two levels of 
units may state 2 1/9 as an answer to the Bar Task by claiming that two full purple bars and one 
green bar (1/9 of an orange bar) fit into the orange bar. 

 
Figure 1: Units Coordinating Bar Task (Norton et al., 2015) 

Rate of Change as a Ratio 
Johnson (2015) investigated the affordances and constraints of secondary students’ quantification of 

ratios in regard to their quantification of rate. The resulting Change in Covarying Quantities 
Framework distinguishes between quantitative operations involved in students’ quantification of rate: 
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comparison refers to a quantification of rate as associations of changes of quantities (i.e., 12 miles 
per hour means associating a distance of 12 mile with an elapsed time of 1 hour), while coordination 
refers to quantification of rate as involving at least one continuously changing quantity (i.e. 12 miles 
per hour means as time increases, the distance traveled is 12 times as large). Johnson argued that 
“students’ quantification of rate could help to explicate differences in students’ conceptions of rate” 
(p. 86-87) and that the nature of how students might develop either operation of comparison and 
coordination is unanswered. We hypothesize that students’ units coordinating activity may be helpful 
for understanding the nature of such operations. 

Methods and Results 
We conducted a paired-student teaching experiment (Steffe & Thompson, 2000) in summer 2019 at 

a large public university in the U.S. with the goal of producing models of introductory calculus 
students’ developing understandings of rate of change. Our results and analysis will focus on one 
participant, Rick. Rick participated in five weekly one-hour teaching episodes concurrent with his 
enrollment in a differential calculus course. The first author served as teacher-researcher for each 
episode while the second author served as a witness. Each episode was video recorded and all written 
work was collected and scanned for analysis. Analysis methods included both ongoing (between 
session) and retrospective modeling of Rick’s ways of coordinating units and Rick’s ways of 
reasoning about rates of change (Steffe & Thompson, 2000). Rick was assessed as assimilating with 
two levels of units at the beginning of the teaching experiment. The following analysis details our 
attempt to support Rick in quantifying a rate via the coordination operation of Johnson’s (2015) 
Change in Covarying Quantities Framework. 
12 Meters In 3 Seconds  

During the third teaching episode we focused on supporting Rick in quantifying a rate with the 
coordination operation. Rick’s conception of a rate as the amount of change in a dependent quantity 
for a unit increase in an independent quantity was persistent. Rick was presented with the task 
displayed in Figure 2. 

 
Figure 2: Comparing Rates Task 

Rick first noted that statements B and C are similar because they were “a constant rate… over a 
certain interval of time”, but that those statements are different from statements A and D because the 
latter pair did not reference a constant rate. When pushed to describe other similarities or differences, 
Rick claimed that “throughout the board… each second they would have traveled 4 meters”. Even 
though Rick attended to the absence or inclusion of the phrase constant rate, he still compared 
statements by considering the amount of distance covered in 1 second (as if each statement referred 
to a constant rate of change between distance and time). Rick then stared at option A and claimed 
“actually, I don’t know that”. He then explained that each statement described traveling 12 meters in 
3 seconds. The teacher-researcher then asked Rick to give an example where statement A is true, but 
does not describe traveling 4 meters in 1 second. 

Rick: Potentially within the first second maybe you’re, uh… stopped the entire time. And then, so 
zero to one [seconds] you travel zero [meters]. Then one to two seconds you travel six [meters]. 
Then two to three [seconds] you travel another six [meters]. So, in one second it’s not guaranteed 
to be four [meters] in that particular situation. 
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Rick was able to give several additional examples by considering individual changes in distance 
across three successive elapsed seconds, where the sum of changes in distance was 12 meters. 
Additionally, some of his examples included traveling four meters in one of the elapsed seconds but 
not all (e.g., 0 meters in the first second, 8 meters in the next second, 4 meters in the final second). 
According to Rick, “it could be any mixture of numbers leading to twelve”. 

We interpret Rick’s response as indicating that, to him, a constant rate of 4 meters per second means 
that distance must change by four meters for every second he can consider throughout the trip. 
Additionally, Rick interprets any constant rate described with a non-unit change in independent 
quantity (in this case, time) by finding the associated change in dependent quantity per increase of 
one unit of the independent quantity that would maintain the originally stated ratio.  

This explains why Rick singled out choice A as different than choices B and C but not D; For 
choice D, distance must change by four meters if we consider iterating ¼ second four times to let one 
second elapse. Even though Rick had an awareness that amounts of changes in distance can vary as 
time elapses for both statements A and D, Rick’s image of that variation necessitated considering 
unit increases in time. Rick did not consider the variation of distance for individual ¼ second 
intervals of time, and thus statement D is consistent with statements B and C (in these three cases, for 
Rick, distance must increase by four meters for any increase of one second). 
12 Meters In 0.8 Seconds 

The previous task revealed that Rick could reason about rate of change by considering amounts of 
change in a dependent quantity constrained by an associated increase of the independent quantity by 
one unit. The following excerpt describes Rick attempt to reason about a rate with a non-unit change 
in the independent quantity. Specifically, we ask Rick to compare a statement similar to the previous 
task with a statement about instantaneous rate of change. 

Teacher-Researcher: Jim travels 12 meters in 0.8 seconds. Is it possible Jim traveled 12 meters per 
second at any point during his trip? 

Rick: Potentially… I don’t want to say… Because I was thinking potentially Jim could go… travel 15 
meters per second but stop at, you know, 0.8 seconds. And then Jim would be traveling… no… If 
you travel 15 [meters]… if Jim would stop at 0.8 [seconds] exactly after having traveled that, then 
12 [meters] is eighty percent of 15 [meters]. 

Rick’s activity is focused on relating a change in distance of 12 meters to a unit rate that describes 
traveling 12 meters in 0.8 seconds. One interpretation of his response is that Rick interprets “12 
meters per second” as traveling 12 meters within one second, and thus it is possible to travel 12 
meters per second during the trip.  

Rick constructs (at least) three rates as he attempts to solve this task: 12 meters per 0.8 seconds 
(Figure 3a), 15 meters per second (Figure 3b), and 12 meters per second (Figure 3c). In each case, 
Rick can reason about a rate as a comparison of changes in distance and changes in time and appears 
to prefer reasoning about such rates over a unit interval (one second) of time. This may be due to 
Rick having not interiorized a conceptual structure for non-unit rates, thus necessitating activity to 
construct a unit rate with which to reason. 

Rick can compare two speeds by constructing unit rates for speed and comparing the two changes in 
distance associated with a common unit increase in time. In doing so, Rick does not attend to time as 
a quantity that is necessary for his goal of comparing two speeds. This may explain his initial 
response that Jim could potentially travel 12 meters per second by traveling “15 meters per second 
but stop at, you know, point-eight seconds”. Rick’s suggestion links a unit rate with a change in 
distance of 12 meters. 
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Figure 3: Author illustrations of rates that Rick constructs and compares   

Ultimately Rick decided that it was not possible that Jim traveled 12 meters per second at any point 
during his trip because, “if we’re going that specific interval [one second], that’d be fifteen meters 
per second. Not twelve”. 

Discussion 
The goal of our research was to investigate how Rick, who we assessed as assimilating with two 

levels of units, reasoned about rate of change. We have focused analysis on two particular tasks to 
exemplify the powerful ways that Rick was able to reason about unit rates and able to coordinate 
three levels of units in activity involving known quantities. Still, throughout the teaching experiment, 
Rick did not exhibit behavior indicating that he constructed rates by engaging in the quantitative 
operation of coordination. Instead Rick was persistent in constructing rates through the comparison 
operation. 

Rick is not an anomaly in that university students that assimilate with fewer than three levels of 
units exist in introductory calculus courses and appear to be at a higher risk of not finding success in 
such courses (Boyce, Grabhorn, & Byerley, 2020; Byerley 2019). Specific to our report, Johnson 
(2015) conjectured that sole reliance on the comparison operation could explain students’ struggles 
with rates. This report builds a connection between Johnson’s (2015) work investigating the 
quantitative operations involved in constructing rates and our previous research investigating the 
constraints and affordances of students’ units coordinating activity as they develop understandings of 
calculus concepts. Further, Johnson left as an open question how students develop the comparison 
and coordination operations. We conjecture that engaging in the coordination operation 
(constructing a rate so that at least one of the quantities involved is continuously changing) requires 
assimilating with three levels of units. 
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Introduction  
The concept of variable is of utmost importance since covariation, function, derivative and integral 

are built on it. However, as has been reported for decades (Rosnik, 1980), most textbooks tend to 
approach the concept of variable in an ambiguous and confusing way, due to the wide diversity of 
meanings that  implies, causing difficulties in teaching (Díaz and Morales, 2005).  

In this research is important to study in a particular way the difficulties that arise when working 
with a teaching model consisting of activities that involve the treatment of change and variation in 
situations of diverse contexts. Change is understood as the modification of states of the qualities 
involved in a phenomenon, and variation as the quantification of change; therefore, when carrying 
out these quantifications we are in the possibility of introducing the concept of variable. 

The research central problem is related to reading / transformation of the textual spaces that involve 
the notions of change and variation, to give meaning to the arithmetic and algebraic variables.  

We intend to characterize the way in which a group of future middle school math teachers give 
meaning to the notions of variation, function, variable and through experimentation with a Model of 
Teaching that incorporates work with dynamic phenomena and problem solving.  

Based on these purposes, the following research questions were asked. What are the students' 
actions when solving problems related to variation and use of variables in different fields? How does 
the level of abstraction of the idea of  change evolve, in order to give meaning to the notion of 
variable? And what are the main difficulties that arise when working iterative processes and solving 
problems related to variation and the concept of function?  

Theoretical framework  
The theoretical-methodological framework that guides this work is of the Local Theoretical Models 

(MTL) (Filloy, 1999), which allows to analyze the phenomena that occur during teaching / learning. 
Special attention is given to meanings of mathematical concepts thanks to its use more than its 
meaning in the abstract.  

During the development of the teaching-learning processes of a mathematical content, four 
interrelated elements are presented: the person who teaches, the person who learns, the mathematical 
content to teach / learn and communication that is established between the participants in the process. 
Therefore, an MTL that contemplates the characterization of the phenomena and relationships 
between the aforementioned elements, is made up of the designed Teaching Model, the Model of 
cognitive processes under which the actions of the students will be characterized, the corresponding 
formal Model to the mathematical content and the Communication Model which analyzes the 
exchange of information between the participants (Filloy, Rojano, Puig, 2008).  

In this research, the model of formal competence is supported in part by the ideas of Hans 
Freudenthal, exposed in his book Phenomenology Didactics of Mathematical Structures, specifically 
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in the analysis he makes in the chapters “Algebraic Language” and “Functions” (Freudenthal, 1983). 
We also consider the formal study of the concept of iteration, which plays a prominent role in this 
work.  

According to Freudenthal (1983), the concept of function is based on the concept of variable and the 
idea of dependency. The precision in which it is possible to describe the dependency between 
variables can be different, ranging from the use of notions of order (the more of this, the more of 
that), to relating one to the other more or less precisely, possibly numerically. 

An idea that theoretically supports the notion of iteration, since it is considered to have the potential 
to contribute in the endowment of meaning to the concepts of variation and variable, highlighting  its 
dynamic quality, from an approach with a low degree of abstraction (Choate, Devaney and Foster, 
1999; Peitgen et al., 2004). 

The formal model is an element that helps us to observe the students’ productions, in addition to 
these references, we characterize the actions based on the categories: type of approach used by 
students when solving problematic situations, either qualitative or quantitative. We identify if they 
are productions of a dynamic or static type and we classify the uses of the variable, either arithmetic 
or algebraic.  

Filloy (1999) states that there are theoretical bases that confirm that a first semantic approach to 
algebra is more convenient for the meaning endowment of concepts than a merely syntactic 
approach. In this research project, where the notions of change, variation, variable and function are 
worked on, it has been chosen to carry out a specific type approach based on a critical historical 
analysis of the concept of function, with the objectives to detect epistemological obstacles generated 
during its development (Cuevas and Díaz, 2014), and that students could present it during their 
learning process (Godino, 2003). 

Methodology  
The experimentation was carried out with 23 students (21-22 years old), who are currently studying 

the eighth semester of a Bachelor’s Degree in Secondary Education with a specialty in Mathematics 
at Benemérita and Centennial Normal School of the State of Durango, located in Durango, Mexico.  

The development of experimentation is based on the methodology defined in the Local Theoretical 
Models (Filloy, 1999), which establishes six stages: selection of the study population; design and 
application of a diagnosis; population classification, which was carried out based on the analysis of 
the level of syntactic, semantic competence and intuitive use of the population (Rojano, 1985); 
election of a representative sample  of the population; case study through clinical interviews and 
elaboration of an observation report. 

Experimentation results 
 Next, a representative problematic situation of the teaching model is presented, describing the 

students’ productions during their resolution.  
After the future teachers worked on a phenomenon of bank movements with simple interest, a 

similar problem was posed to them, but with a compound interest, since it is interesting to observe 
the way they treat phenomena where  behaviors other than linear or quadratic are presented; in this 
case, exponential type. The situation raised was as follows.  

When in a loan the percentage is added to the capital and becomes part of the debt, the 
interest on this new capital is called compound interest. 

1.  Suppose we have a capital of 200 pesos at 20% compound interest for 5 months. Complete 
the following table to find out how much will be due at the end of each month 
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One of the main difficulties presented in this situation was detecting the type of variation involved. 
To achieve this, some students tried to help themselves with the graphical representation, first 
obtaining a tabular representation of the situation, and then graphing the values as ordered pairs. 
They proceeded by placing the corresponding points and then drew a line that passes through each of 
these. Thanks to this, linear variation began to be discarded as corresponding to the phenomenon 
worked. 

 Not being able to define the type of variation involved, some students carried out a different 
process, which consisted of calculating the differences between the consecutive terms and then 
calculating the differences of the differences, but when calculating the first and second differences 
they do not obtain constant values, which causes even more confusion. They even decide to make the 
calculation of the third differences without obtaining a result that makes it possible to make sense of 
the phenomenon. It can be seen that the method is rescued as a mechanized process. 

There was another group of students who also used the method of differences and also did not allow 
them to determine the type of variation present in the phenomenon, but it was useful to discard the 
quadratic variation as a possibility, since they obtained the second difference, they did not have 
constant values.  

The Numerical processing of the situation allowed two students to observe that, as the independent 
variable increases, the differences in the dependent variable become increasingly. It seems clear in 
their reasoning since they express in a qualitative way the characteristics that the graph would have if 
it were prolonged.   

Conclusions  
During the implementation of the teaching model, the students performed different productions in 

order to make sense of the change in dynamic phenomena, by observing and characterizing them, we 
can answer the questions posed initially.  

Regarding the process of abstraction of notions of change, the following was identified. Generally, 
at first, a qualitative analysis is carried out in which the characteristics of the phenomenon that is 
modified is identified, which are expressed in the form of non-measurable qualities. By deepening in 
the analysis of the experiments, the need to measure these characteristics emerges. The qualities 
identified above are refined, to make way for the approach of magnitudes (variables) that can be 
measured.  

After determining the magnitudes involved, those that change and those that remain constant are 
identified and, in turn, a class relationship approximation is carried out that maintains and the 
direction of said relationship (dependency).  

By means of a quantitative analysis, consisting of operating arithmetically with the identified data, 
specific states of the variables are determined (use of the arithmetic variable) (regularly the initial 
state and one more). 

By organizing the information obtained, it is possible to carry out a dynamic reading of it, which 
helps to determine the relationships between the variables.  

By generalizing the arithmetic processes used, it is possible to produce an algebraic text that 
represent relationships (use of the algebraic variable), in other words: the statement of a function.  

In some cases, the verification of the correspondence of the algebraic text with the set of states of 
the magnitudes were carried out, performing the substitution of data and observing if indeed the 
function represents the phenomenon.  

Regarding the most frequent actions, there is a tendency to linearity: when the type of treatment that 
should be given to the phenomenon is not understood, a linear treatment was chosen. Students 
generate different strategies to define the kind of variation in phenomena, however, the most used 
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resource is production is the production of Cartesian graphic texts. By observing the characteristics 
of these, they try to determine the type of function worked. When performing geometric text 
production with a low curvature, the variation tends to be defined as linear. However, when it is 
evident that the geometric text has a certain curvature, it tends to be defined as quadratic.  

And finally, the most frequent difficulty arises when defining the type of behavior of the 
phenomena, resort to arithmetic text, generally in the form of tables of values. The frequent use of 
the method of differences was detected to define the variable dependent on the phenomena, 
Generally mechanically applied; the lack of meaning is evident when working with situations of 
exponential growth, where students state that they do not understand why they never obtain a 
constant value, despite making a large number of differences. 
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En esta investigación experimental, observamos y caracterizamos el desempeño de un grupo de 
futuros docentes que cursan la licenciatura en educación secundaria con especialidad en 
matemáticas (20-21 años). Adoptamos la propuesta de los Modelos Teóricos Locales como marco 
teórico-metodológico. El objetivo es caracterizar los procesos de producción de significado de las 
nociones de variación y variable mediante la aplicación de un Modelo de Enseñanza que implica el 
trabajo con fenómenos de cambio.  
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Introducción 
El concepto de variable es de suma importancia ya que sobre él se construyen ideas como la 

covariación, función, derivada e integral. Sin embargo, como se ha reportado desde hace décadas 
(Rosnik, 1980), la mayoría de los libros de texto suelen abordar el concepto de variable de forma 
ambigua y confusa, debido a la amplia diversidad de significados que implica, causando dificultades 
en su enseñanza (Díaz y Morales, 2005). 

En esta investigación interesa estudiar, de forma particular, las dificultades que emergen al trabajar 
con un modelo de enseñanza constituido por actividades que implican el tratamiento del cambio y la 
variación en situaciones y contextos diversos. Entiéndase el cambio como la modificación de estados 
de las cualidades implicadas en un fenómeno, y la variación como la cuantificación del cambio; por 
lo tanto, al llevar a cabo dichas cuantificaciones estamos en la posibilidad de introducir el concepto 
de variable. 

El problema central de la investigación está relacionado con la lectura/transformación de espacios 
textuales que involucran las nociones de cambio y variación, para dotar de significado a las variables 
aritméticas y algebraicas. 

Nos proponemos caracterizar la forma en que un grupo de futuros docentes de matemáticas de nivel 
secundaria dan significado a las nociones de variación, variable y función, mediante la 
experimentación con un Modelo de Enseñanza que incorpora el trabajo con fenómenos dinámicos y 
la resolución de problemas. 

Con base en dichos propósitos se plantearon las siguientes preguntas de investigación. ¿Cuáles son 
las actuaciones de los estudiantes al resolver problemas relacionados con la variación y el uso de 
variables en diversos ámbitos?, ¿de qué forma evoluciona el grado de abstracción de la idea de 
cambio, para lograr dar significado a la noción de variable? y ¿cuáles son las principales dificultades 
que se presentan al trabajar procesos iterativos y resolver problemas relacionados con la variación y 
el concepto de función? 

Marco teórico 
El marco teórico-metodológico que guía este trabajo es el de los Modelos Teóricos Locales (MTL) 

(Filloy, 1999), el cual permite analizar los fenómenos que se presentan durante los procesos de 
enseñanza/aprendizaje. Se otorga una especial atención a la dotación de significados de los conceptos 
matemáticos gracias a su uso, más que por su significado en abstracto. 

Durante el desarrollo de los procesos de enseñanza aprendizaje de un contenido matemático se 
presentan cuatro elementos interrelacionados: el sujeto que enseña, el sujeto que aprende, el 
contenido matemático a enseñar/aprender y la comunicación que se establece entre los participantes 
en el proceso. Por lo tanto, un MTL que contempla la caracterización de los fenómenos y relaciones 
entre los elementos mencionados, se compone por el Modelo de enseñanza diseñado, el Modelo de 
procesos cognitivos bajo el cual se caracterizarán la actuaciones de los estudiantes, el Modelo formal 
correspondiente al contenido matemático y el Modelo de comunicación, con base en el cual se 
analiza el intercambio de información entre los participantes (Filloy, Rojano, Puig, 2008). 

En esta investigación, el modelo de competencia formal está sustentado en parte en las ideas de 
Hans Freudenthal expuestas en su libro Fenomenología Didáctica de las Estructuras Matemáticas, 
de forma específica en el análisis que hace en los capítulos “Lenguaje Algebraico” y “Funciones” 
(Freudenthal, 1983). También se considera el estudio formal del concepto de iteración, que juega un 
rol destacado en este trabajo. 

Según Freudenthal (1983), el concepto de función se constituye sobre el concepto de variable y la 
idea de dependencia. La precisión con que es posible describir la dependencia entre variables puede 
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ser distinta, yendo desde el uso de nociones de orden (cuanto más esto, tanto más eso), hasta 
relacionar una con otra de forma más o menos precisa, posiblemente numérica.  

Una idea más que sustenta teóricamente la investigación es la noción de iteración, ya que se 
considera que tiene potencial para contribuir en la dotación de significado a los conceptos de 
variación y variable, resaltando su cualidad dinámica, desde una aproximación con un grado de 
abstracción bajo (Choate, Devaney y Foster, 1999; Peitgen et al., 2004).  

El modelo formal es un elemento que nos sirve para observar las producciones de los estudiantes, 
además de estos referentes, caracterizamos las actuaciones con base en las categorías: tipo de 
aproximación empleada por los estudiantes al resolver situaciones problemáticas, ya sea de tipo 
cualitativa o cuantitativa. Identificamos si son producciones de tipo dinámica o estática y 
clasificamos los usos de la variable, ya sea aritmética o algebraica. 

Filloy (1999) afirma que existen bases teóricas que confirman que un primer acercamiento 
semántico al álgebra es más conveniente para la dotación de significado de los conceptos que un 
acercamiento meramente sintáctico. En este proyecto de investigación, en donde se trabajan las 
nociones de cambio, variación, variable y función, se ha optado por llevar a cabo un acercamiento de 
tipo concreto con base en un análisis histórico crítico del concepto de función, con el objetivo de 
detectar obstáculos epistemológicos generados durante su desarrollo (Cuevas y Díaz, 2014),  y que 
podrían presentar los estudiantes durante su proceso de aprendizaje (Godino, 2003). 

Metodología  
La experimentación se realizó con 23 estudiantes (21-22 años), que actualmente cursan el octavo 

semestre de la Licenciatura en Educación Secundaria con especialidad en Matemáticas en la 
Benemérita y Centenaria Escuela Normal del Estado de Durango, ubicada en Durango, México.  

El desarrollo de la experimentación se basa en la metodología definida en los Modelos Teóricos 
Locales (Filloy, 1999), la cual establece seis etapas: selección de la población de estudio; diseño y 
aplicación de un diagnóstico; clasificación de la población, la cual fue realizada con base en el 
análisis del nivel de competencia sintáctica, semántica y de usos intuitivos de la población (Rojano, 
1985); elección de una muestra representativa de la población; estudio de casos mediante entrevistas 
clínicas y elaboración de un reporte de observaciones. 

Resultados de la experimentación  
A continuación, se presenta una situación problemática representativa del modelo de enseñanza, 

describiendo las producciones de los estudiantes durante su resolución. 
Luego de que los futuros docentes trabajaron un fenómeno de movimientos bancarios con interés 

simple, se les planteó un problema más del mismo estilo, pero con un interés compuesto, puesto que 
resulta de interés observar la forma en que hacen el tratamiento de fenómenos donde se presentan 
comportamientos distintos al lineal o cuadrático; en este caso, de tipo exponencial. La situación 
planteada fue la siguiente. 

Cuando en un préstamo el porcentaje es añadido al capital y pasa a formar parte de la deuda, 
el interés de este nuevo capital se llama interés compuesto.  

1. Supongamos que tenemos un capital de 200 pesos al 20% de interés compuesto durante 5 
meses. Completa la siguiente tabla para averiguar cuánto se deberá al finalizar cada mes  

Una de las principales dificultades presentadas en esta situación fue detectar el tipo de variación 
implicada. Para lograrlo algunos estudiantes trataron de auxiliarse de la representación gráfica, 
obteniendo primero una representación tabular de la situación, y en seguida graficando los valores 
como pares ordenados. Procedieron colocando los puntos correspondientes y luego trazaron una línea 
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que pasa por cada uno de éstos. Gracias a esto se comenzaba a descartar la variación lineal como 
correspondiente al fenómeno trabajado.  

Al no conseguir definir el tipo de variación implicada, algunos estudiantes realizaron un proceso 
distinto, que consistió en calcular las diferencias entre los términos consecutivos y luego calcular las 
diferencias de las diferencias, pero al calcular la primera y segunda diferencias no obtienen valores 
constantes, lo cual causa aún más confusión. Incluso deciden hacer el cálculo de las terceras 
diferencias sin obtener un resultado que permita dotar de sentido al fenómeno. Se puede apreciar que 
el método se rescata como un proceso mecanizado. 

Hubo otro grupo de estudiantes que también usó el método de las diferencias y tampoco les permitió 
determinar el tipo de variación presente en el fenómeno, pero sí fue útil para descartar la variación 
cuadrática como posibilidad, ya que al obtener la segunda diferencias no obtuvieron valores 
constantes. 

El procesamiento numérico de la situación le permitió observar a dos estudiantes que, a medida que 
la variable independiente aumenta, las diferencias en la variable dependiente se hacen cada vez 
mayor. Se observa claridad en su razonamiento ya que expresan de forma cualitativa las 
características que tendría el gráfico si este fuera prolongado. 

Conclusiones 
Durante la implementación del modelo de enseñanza los estudiantes realizaron distintas 

producciones con el objetivo de dar sentido al cambio en los fenómenos dinámicos, mediante la 
observación y la caracterización de éstas podemos responder a las preguntas planteadas en un inicio. 

Respecto al proceso de abstracción de las nociones de cambio se identificó lo siguiente. 
Generalmente en un primer momento, se realiza un análisis cualitativo con el cual se identifican 
características del fenómeno que se modifican, las cuales son expresadas en forma de cualidades no 
medibles. Al profundizar en el análisis de los experimentos emerge la necesidad de medir dichas 
características. Las cualidades antes identificadas se refinan, para dar paso al planteamiento de 
magnitudes (variables) que pueden ser medidas. 

Luego de determinar las magnitudes implicadas, se identifican las que cambian y las que se 
mantienen constantes y, a su vez, se realiza una aproximación  a la clase de relación que mantienen y 
la dirección de dichas relaciones (dependencia). 

Mediante un análisis cuantitativo, consistente en operar de forma aritmética con los datos 
identificados, se determinan estados específicos de las variables (uso de la variable aritmética) 
(regularmente el estado inicial y uno más). Al organizar la información obtenida, es posible llevar a 
cabo una lectura dinámica de ésta, que ayude a determinar las relaciones entre las variables.  

Mediante la generalización de los procesos aritméticos empleados, es posible producir un texto 
algebraico que represente las relaciones (uso de la variable algebraica), dicho de otra forma: el 
planteamiento de una función. En algunos casos, se llevó a cabo la comprobación de la 
correspondencia del texto algebraico con el conjunto de estados de las magnitudes, realizando la 
sustitución de datos y observando si efectivamente la función representa el fenómeno. 

Respecto a las actuaciones más frecuentes, se presenta una tendencia a la linealidad: cuando no se 
comprende el tipo de tratamiento que se debe dar al fenómeno, se optaba por un tratamiento lineal. 
Los estudiantes generan distintas estrategias para definir la clase de variación en los fenómenos, sin 
embargo, el recurso más utilizado es la producción de textos gráficos cartesianos. Mediante la 
observación de las características de éstos, tratan de determinar el tipo de función trabajada. Cuando 
se realiza la producción de un texto geométrico con poca curvatura, se tiende a definir la variación 
como lineal. Sin embargo, cuando es evidente que el texto geométrico presenta cierta curvatura, se 
tiende a definir como de tipo cuadrática. 
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Y por último, la dificultad más frecuente se presenta al definir el tipo de comportamiento de los 
fenómenos, recurren a textos aritméticos,  generalmente en forma de tablas de valores. Se detectó la 
utilización frecuente del método de las diferencias para definir el comportamiento de la variable 
dependiente en los fenómenos. Aplicado de forma mecánica generalmente; la falta de sentido es 
evidente al trabajar con situaciones de crecimiento exponencial, donde los estudiantes manifiestan no 
comprender por qué nunca obtienen un valor constante, a pesar de realizar una gran cantidad de 
diferencias. 
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By analyzing the responses of 100 introductory calculus students to two questions, this study 
addresses how students understand the fundamental theorem of calculus as it relates to function 
identity. One question involves students’ understandings of the fundamental theorem of calculus, and 
the other involves their concept definitions of function sameness. This analysis aims to better 
understand students’ concept images of function sameness, both in the context of the fundamental 
theorem of calculus and in general. 
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The fundamental theorem of calculus (hereafter “the FTC” or “the fundamental theorem”) is an 
important aspect of mathematics that we would like calculus students to understand. The FTC 
provides a relatively fast way of calculating integrals, which are used in various quantitative 
situations. One way to view an integral is as a function, say 𝑓(𝑡)𝑑𝑡,!

!  where x is a variable. This is, 
arguably, the manner in which Newton conceived it (Thompson & Silverman, 2008). In this light, the 
FTC is actually a statement of function identity: the function g defined by 𝑔(𝑥) = 𝑓′(𝑡)𝑑𝑡!

!  is the 
same function as h defined by ℎ(𝑥) = 𝑓(𝑥) − 𝑓(𝑎). This paper addresses student understanding of 
this concept; specifically, I investigate the following: how do students understand the fundamental 
theorem in relation to their conceptions of function sameness? 

There are three broad topics that apply to this investigation: student understanding of function, 
function identity, and the FTC. Research suggests that secondary and university students often do not 
have a mathematically normative understanding of function (Bardini et al., 2014; Leinhardt et al., 
1990; Mirin, 2017; Sfard, 1992; Thompson, 1994; Vinner & Dreyfus, 1989). Function and function 
identity are intertwined; how a student understands function identity is closely tied to how they 
understand function (Mirin, 2017). A student’s concept of what a function is will be closely tied to 
how they understand when two functions are identical. For example, if a student thinks of a function 
as a process, then it would make sense for that student to think of functions as identical whenever 
they represent the same process. Relatedly, if a student thinks of a function as an equation, then they 
might therefore think of different but equivalent equations as necessarily representing different 
functions. Relatedly, some university students struggle with the notion of function identity, 
classifying functions represented differently as different functions (Mirin, 2017; Mirin, 2018; 
Mulhuish & Fagan, 2017). 

There is little literature on how students understand the fundamental theorem. Thompson (1994) 
finds that students’ issues grasping the FTC are grounded in underdeveloped understandings of rate 
of change and covariation. Orton (1983) reports the types of mistakes students make in doing 
problems with definite integrals. He focuses on how students understand definite integrals as limits. 
However, his study does not address integrals in the context of the fundamental theorem or as 
functions. Thompson and Silverman (2008) make the point that an integral as a function is 
conceptually different from a definite integral as a number. That is, conceptualizing 𝑔(𝑥) =
𝑓′(𝑡)𝑑𝑡!

!  as a function is different than conceptualizing 𝑓′(𝑡)𝑑𝑡!
!  for a particular number b, in the 

same way that conceptualizing the squaring function is different from conceptualizing a particular 
number being squared. In this manuscript, I situate the FTC as a statement about function identity, 
and hence also as a statement about functions.  
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I adopt the constructs described in Tall and Vinner (1981): A student’s concept image is “the total 
cognitive structure that is associated with the concept, which includes all the mental attributes and 
associated properties and processes” (p.152). One component of a student’s concept image is their 
concept definition, which is their stated definition of a concept. This study involves investigating 
student concept definitions for function sameness, while acknowledging that there is likely more to a 
student’s concept image than their stated concept definition. 

 The overarching epistemology guiding this study is radical constructivism, as described in 
Thompson (2000). This epistemology takes the perspective that students construct their own 
mathematical realities. A guiding aspect of my research is to not assume that what is a representation 
of an abstract mathematical object to us is also viewed as an abstract mathematical object by a 
student (Thompson & Sfard, 1994). Similarly, what is the same to us (e.g. different representations of 
the same function) might not be the same to students. This mathematical reality of the students is not 
directly accessible to us as researchers – the best we can do is create models (explanations) that 
account for students’ responses (Clement, 2000). 

Task Design, Subjects, and Data Collection 
This is part of a larger study, the first portion of which can be found in Mirin (2018). A quiz was 

administered by the instructor to 102 students during the last week of an introductory calculus course 
at Anonymous State University (ASU). The course followed the Stewart (2013) text, and students 
had, within the week prior, learned about the FTC and practiced textbook problems applying it. The 
tasks discussed here are in Figure 1 (below). 

 
Figure 1: The FTC Question (1) and the Function Sameness Question (2) 

The first part of the quiz involved questions regarding derivative at a point of a single function 
represented in two different ways. The results of that portion indicated that students might have a 
mathematically non-normative concept image of function sameness. Here, I address student 
responses to the tasks in the second part of the quiz, which are relabeled as “Question 1”, the FTC 
question, and “Question 2”, the function sameness question (Figure 1, above). Notice that Question 1 
is an instance of the FTC. The normatively correct response to this question is that p and q are the 
same function. Question 2 asks the student to give their concept definition of function sameness. 
Note that there are at least two different normatively correct responses to this question; the first is 
that g and h are the same if and only if g and h share a graph (set of ordered pairs) and also share a 
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codomain, and the second only requires that they share a graph (Mirin et et al., in review). However, 
codomain was not once mentioned by students. 

Analysis and Results 
Due to the multiple choice nature of the question, coding the results of the Fundamental Theorem 

question was straightforward. Two students did not answer the question, nor did they answer 1b or 2. 
For this reason, they are excluded from the remainder of this analysis, leaving us with a convenient 
sample size of 100. Of the remaining 100, 61 chose option (i) (that p and q are the same function), 
and 39 chose option (ii) (that p and q are not the same function). One thing to note is that the students 
were not asked to “evaluate” the integral, that is, put it in closed form (e.g. as a polynomial, in this 
case). This means that there is a possibility that some students might have evaluated the integral as 
something different and have assessed p and q as different for that reason. Of the 100 students, 46 
attempted to evaluate the integral, and 29 did so correctly. Unsurprisingly, there is a strong 
correlation between those who evaluated the integral correctly and those who answered that p and q 
are the same function, with 27 out of 29 (93%) who evaluated the integral correctly also claiming 
that p and q are the same function, and 8 out of 17 (47%) who evaluated the integral incorrectly 
claiming that p and q are not the same function (χ2=12.4883, p<.05). 

The nature of students’ incorrect integral evaluations was illuminating and not due to any sort of 
minor computational errors. In fact, only two students who incorrectly evaluated the integral did so in 
such a way that it was a function of x (e.g. writing p(x)=x3+12). Instead, 14 out of 17 (82%) included 
a “+C” in their evaluation of the integral. Students’ explanations in 1b have not yet been analyzed to 
their full potential, but a preliminary reading provides insight to student thinking. Their explanations 
seem to suggest that some students might have viewed the integral as representing a string of 
symbols. This is consistent with Musgrave and Thompson's (2014) and Sfard's (1992) findings 
suggesting that some students think of a function as a string of symbols. To many of the students who 
evaluated the integral as involving a C (e.g. x3+C), it would make sense that these students would not 
think of x3+C as being the same as x3-8, as these are different strings of symbols. For example, one 
student explains “when you derive p(x) it becomes the generalized formula 3x2+C. This is not equal 
to q(x).” Similarly, the students who evaluated the integral correctly tended to find that the resulting 
string of symbols (x3-8) was identical to that in the definition of q, and therefore q and p are 
identical: “once calculated, the integral in p(x) becomes the same expression as q(x)”. 

There’s a sense in which 36 out of 46 gave consistent responses; they either (1) evaluated the 
integral correctly and wrote that p and q are the same function, or (2) evaluated the integral 
incorrectly and wrote that p and q are different functions. This is consistent with thinking of a 
function as a string of symbols; if a student evaluates the integral correctly, then they observe that the 
resulting string of symbols is the same as x3-8, and if they evaluate it incorrectly then they observe 
that the resulting string of symbols is different from x3-8 (discussed above). The remaining 10 
students had mixed responses. Those students’ explanations in 1b provide some insight into their 
understanding of function identity. For example, some students included a +C for the integral yet 
assessed p and q as the same on the grounds that they share a derivative. Relatedly, some students 
wrote that p and q are the same function while also stating that they had a different constant. For 
these students, sameness of derivative was sufficient for sameness of function, and this was reflected 
in their concept definitions (discussed below). 

Coding Question 2 results involved partitioning student answers into “extensional” and “not 
extensional”. “Extensional” includes the characterization of function identity as same graph, same 
ordered pairs, or same output for every input. Statements such as “g and h are the same when 
g(x)=h(x)” were not coded as “extensional”; this is because in the absence of a universal quantifier, 
students could view “g(x)=h(x)” to mean that g(x) and h(x) are identical as equations (strings of 
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symbols) or that g(x) transforms to h(x) under certain rules (Mirin, 2017; Sfard, 1988). Additionally, 
students might not view g(x) as representing a number or value of a dependent variable and instead 
view it as a name of a function (Musgrave & Thompson, 2014; Thompson, 1994, 2013b). Thirty-five 
students’ concept definitions were coded as “extensional”. Coding the remaining concept definitions 
is an ongoing project, but it bears mentioning that, consistent with the previous paragraph, 11 
students included sameness of derivative in their criteria for function sameness.  

I had originally hypothesized that there would be a correlation between students who give 
extensional function sameness concept definitions and those who answer that p and q are the same 
function. This is because I expected students with other, non-normative understandings of function 
identity to claim that p and q are different. This was indeed the case with at least two students, who 
asserted that p and q differ because one represents an area under a curve, and the other does not. 
However, a chi square analysis revealed no such correlation. It seems that because p could be 
expressed in closed form, students’ assessment of sameness of p and q was primarily about how they 
calculated the integral. This allowed for students to assess that p and q are the same on the grounds 
that they are expressed by the same equation, rather than requiring a robust understanding of function 
sameness. This resulted in the possibility that students who understand functions as strings of 
symbols answered that p and q are the same function.  

That so many students evaluated the integral with a “+C” is especially revealing. This might suggest 
that, despite the function notation p(x) being used and the quiz explicitly telling them that p is a 
function, these students might not have viewed p as a function (perhaps, as one student above put it, 
“a formula”). This leaves open the possibility that, when these students were asked if p and q are the 
same function, they were not viewing p as a function at all. This is consistent with the results of the 
first part of the quiz, in which students appeared to not think of a particular piecewise function as a 
function (Mirin, 2018). 

Conclusions and Future Directions 
This preliminary report provides valuable data on students’ concept images of function sameness. It 

is notable that only 61% of these calculus students identified a straightforward instance of the 
fundamental theorem of calculus as asserting function identity. However, it seems that for several of 
those students, their assessment was mostly about their calculation of an integral. Perhaps, for the 
reasons discussed above, we could investigate whether students understand an integral (such as in 1a) 
to even be a function. It might also be productive to provide a similar function sameness question as 
in 1a, but instead using the notation f ’(x) rather than providing a specific derivative that the student 
can anti-differentiate procedurally. It might additionally be wise to see how students use and 
understand the notation “+C”. 

This study also gives insight into students’ concept definitions of function sameness, with 35% 
providing an extensional (mathematically normative) answer. Interestingly, 11% included sameness 
of derivative in their criteria for function sameness. I hypothesize that the FTC question might have 
influenced students’ function sameness concept definitions. Future research can address this 
hypothesis by providing the concept definition question in a different context.  
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The transition to proof has been a heavily researched area in undergraduate mathematics research. 
As proof construction involved both formal-rhetorical and problem-solving aspects, this study 
investigated how undergraduate mathematics majors who recently completed a transition to proofs 
class engage with two different problems: one with formal rhetorical knowledge and one without. 
Overall, students exhibited behavior indicating that formal-rhetorical knowledge could continue to 
act as a barrier to approaching and solving problems. The study highlighted the importance of 
sense-making strategies and familiarity not only with mathematical content knowledge but also with 
the logical structure of mathematical arguments. 

Keywords: Problem Solving, Reasoning and Proof, University Mathematics, Advanced 
Mathematical Thinking 

Introduction 
For much of schooling, mathematics education has often had computation and applications of 

theorems or formulas at the center. However, the academic discipline of mathematics is more 
concentrated on generalizations and abstractions; coming up with rigorous and correct proofs of 
previously unproved statements was the goal for most research mathematicians. This transition to 
formal proof usually took place during undergraduate studies, with many scholars having examined 
the cognitive difficulties in learning to do formal mathematical proofs (e.g., Brown, 2007; Moore, 
1994; Thoma & Nardi, 2017). As a stark deviation from prior math experiences, this transition is 
abrupt and difficult (Moore, 1994). Despite the difficulty in learning proofs, research has recognized 
how proving and problem solving are closely related: It takes problem-solving in order to translate an 
informal argument into a valid formal proof (Mamona-Downs & Downs, 2009), and the proofs 
themselves can be divided into formal-rhetorical and problem centered parts (Selden & Selden, 
2013). This translation is not an easy task, in that it requires both knowledge and instruction. 
Students often do not learn the necessary tools explicitly or rigorously until students are asked to 
construct formal proofs. In this study, we researched undergraduate mathematics students who 
recently completed their university’s proof introductory course. Our research question was: How did 
these students engage with formal-rhetorical and problem-centered aspects of mathematical tasks? 

Framing 
The conceptual framework for this study drew from the following main areas: aspects of proof 

construction (Selden & Selden, 2013; Weber, 2005) and mathematical problem solving (Schoenfeld, 
1985) to guide our data collection and analysis. 
Aspects of Proof Construction 

Though mathematical proofs have been studied for many years prior to their formulation, two 
considerations of proof construction procedures are particularly useful to this study. One delineates 
parts of a mathematical proof, whereas the other categorizes different types of proof constructions. 
Selden and Selden (2013) developed a framework of understanding proofs to be composed of two 
parts: the formal-rhetorical part and the problem-centered part. Between different statements and 
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even different proofs of the same statement, there are different compositions when broken down into 
these constituent parts. Selden and Selden’s idea of these two components of a proof will be the 
guiding main framework for this study.  

Furthermore, Weber (2005) categorized three types of proof construction procedures demonstrated 
by undergraduate math students – procedural, syntactic, and semantic. Weber argued that learning 
opportunities are largely dependent on what type of construction students utilized. Together, the 
formal-rhetorical and problem-centered parts of proof and proof construction procedures provide a 
framework of understanding students’ problem-solving pathways. 
Mathematical Problem Solving 

Schoenfeld (1985) developed a framework of understanding mathematical problem solving. He 
delineated four types of knowledge students draw from when engaging in mathematical problem 
solving: resources, heuristics, control, and beliefs. Others shortly categorized similar ideas in 
different ways. Considering related research together in a more cognition focused formulation, 
Schoenfeld (1992) recognized that “there appears to be general agreement on the importance of these 
five aspects of cognition: the knowledge base, problem solving strategies, monitoring and control, 
beliefs and affects, and practices” (p. 42). This framework has frequently been applied to college-
level mathematics (e.g. Selden & Selden, 2003; Selden & Selden, 2013; Weber, 2005) and is useful 
for analyzing student problem-solving. 

Methods 
Ten undergraduate mathematics students, six females and four males, from a Hispanic-serving four-

year research university in California participated in this study. All of the students completed a 
transition to higher mathematics course in the previous quarter. This course, as a prerequisite for 
many mathematics courses that follow, was described as an introduction to the elements of 
propositional logic, techniques of mathematical proof, and fundamental mathematical structures, 
including sets, functions, relations, and other topics. 

We conducted and video-recorded task-based, think aloud interviews (Charters, 2003). The 
participants worked through two problems: a non-routine problem taken from the 2017 American 
Invitational Mathematics Examination II and a problem that asked students to construct an alternative 
proof of a well-known result given the argument’s outline. The second was developed in consultation 
with a mathematics professor from the study’s university, who taught a number of the participants in 
the quarter prior to data collection. For the rest of the paper, we will refer to these problems as P1 
and P2 respectively. Students chose which problems to attempt first, but they worked through both 
tasks. The difference between the two tasks was that P1 was a “real-world” problem that needed no 
formal-rhetorical knowledge, and P2 required substantial formal-rhetorical knowledge (but 
concluded with the problem-centered part). After the tasks, we collected student work and finished 
with a quick debrief aimed at understanding the students’ feelings about the problems (e.g., their ease 
and enjoyment) and clarifying the students’ strategies. In relation to our research question: the 
student work informed and documented students’ strategies and video data contributed both to our 
understanding of strategies as well as our understanding of students’ feelings of working through the 
tasks. 

To analyze the data, we did an initial round of focused coding (Maxwell, 2005), looking for 
students’ feelings and strategies through the tasks while keeping track whether it related to formal-
rhetorical or problem-centered aspects. After the initial coding, we developed another set of codes 
within strategies: sense-making, argumentation, and generality. 
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Findings 
In general, students exhibited high levels of engagement with and interest in the tasks – every 

participant requested information about the solutions after the interview. Despite differences in 
students’ feelings about the two tasks, we found similarities about what made the mathematics 
enjoyable for participants. Regarding strategies, we found that the presence and absence of formal-
rhetorical aspects related to how students’ sense-making and argumentation. 
Students’ Feelings: Familiarity, Fun, and Frustration 

Familiarity played a role from the start in how students approached the problems. Excluding 
students whose decisions on which problem to attempt first was semi-arbitrary (i.e., left vs. right, top 
vs. bottom, etc.), the remaining students were split half and half. Notably, students chose P1 because 
of an expected enjoyment, whereas others began with P2 because it was more familiar. These reasons 
were consistent among P1-starters and P2-starters. Isaac, who began with P2, explained that he was, 
“more comfortable with this kind of thing … there were aspects of everything that [he] could relate 
to.” Conversely, students who started with P1 did so because it seemed more puzzle-like and fun. 
Henry explained, he “[doesn’t] know if [he] considers proof-writing fun,” contrasting it with how P1 
was “completely uncharted … never seen it before.” While the task of constructing a proof felt 
familiar to students, only some were drawn to this comfort. Although there was certainly a problem-
centered aspect to P2, and to proofs generally, the presence of formal-rhetorical aspects seemed to 
detract from it being seen as fun P1, even when they recognized the proof’s puzzle-like aspect 
afterwards. 

There was an interesting interplay between familiarity, fun, and frustration. A common theme 
among the students was that they enjoyed feeling productive without feeling as though they were 
doing tedious work. Esther considered P1, “not as much of a math problem.” She expressed that 
sometimes she hard time motivating herself when she could think of how to code a computer 
program to compute it for her. Furthermore, students had a hard time engaging with the problem-
centered part of P2 when they did not know how to approach it. That said, it should be highlighted 
that frustration was not inherently a bad feeling. Talia found P1 to be no only more frustrating but 
also more fun. Students found enjoyment when they had tools to approach the task and there was 
some familiarity, some frustration, and a feeling of progressing in the task without having it feeling 
immediately solvable by brute force. 
Students’ Strategies 

Generality as a tool and obstacle. As a counting problem, P1 required thinking generally. All of 
the students recognized this: the students noticed that symmetry and choices were important aspects 
of the problem. For instance, Madison explained while solving, “If I can figure out how it works for 
one town, I can just apply that reasoning to other towns.” Moreover, all of the students realized that 
the existence of a five-town loop would satisfy the conditions and attempted to count those 
configurations. However, though they all recognized it as a sufficient condition, not all of the 
students investigated whether the existence of a five-town loop was a necessary condition. In fact, 
Caleb was the only student to substantively explore this. 

P2 had two major instances of generality in the desired proof. First, because the proof was a 
statement holding for every natural number, it sufficed to prove the result using a fixed but arbitrary 
natural number, maintaining its generality throughout the proof. Second, students had to represent 
two arbitrary elements of a set when proving that something was closed under multiplication. These 
uses of generality are routine in proof-writing. The students generally did not have an issue with the 
navigating the second instance, but there were instances where students reverted to considering all 
natural numbers simultaneously (as opposed to a fixed arbitrary natural number), which altered the 
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argument’s viability. Though students seemed aware of this generality’s role, maintaining the correct 
level generality and applying it to sound argumentation proved to be an obstacle in both problems. 

Sense-making to argumentation. Throughout the process, students employed different sense-
making strategies. At the lowest level, every participant asked questions, reread the problems, and 
thought about the tasks to make sure that they understood the problems. However, the process of 
understanding and solving the problems were manifested differently between P1 and P2. 

One of the most frequently used sense-making strategy was thinking of examples. Though this 
might have been due to the problems’ context, every participant’s primary approach to P1 entailed 
drawing examples. These examples then informed their understanding, helping students consider 
strategies as they constructed systematically. There were fewer instances of student example 
construction in P2: Isaiah and Gianna listed elements of the sets involved, and Megan drew a number 
line to explore parts of the problem. That said, the remaining students used symbol manipulation and, 
at most, tried thinking about the sets in their head. As another sense-making strategy in P1, two 
students considered a similar, yet simpler, problem (considering a system where there are fewer than 
the five towns). Additionally, Daniella calculated the total number of road configurations to provide 
an upper bound to the desired answer. Such a strategy not only provided a means towards an 
alternate solution path, namely subtracting the invalid configurations from the total to obtain the 
desired answer, but also provided a measure of reasonableness for future answers. Without this 
strategy, Henry and Esther got overwhelmed with the sheer number of possibilities and offered 
infinity as their initial proposed answer. 

Largely due to the real-world context of P1, students used intuition to form their strategies. Half of 
the students clearly made and explored the realization of a working condition. As Talia said, “every 
town needs a way in and a way out.” However, similar to student thinking of five-town loops, there 
was limited substantive work to show whether this was a sufficient and/or necessary condition. Isaac 
and Megan both recalled a puzzle that entailed drawing a certain figure without picking up their 
pencil. Because it seemed related enough, they took it as a potential solution strategy, taking time to 
realize that they had made an illogical jump to translate P1 into a nonequivalent problem. 
Conversely, many students explicitly unpacked the logical structure of the statement of P2 and how 
the argument outlined addressed the logical structure. Some went beyond doing this mentally or 
verbally, writing the statements translated into symbolic logic. Overall, students generally attended 
more to sense-making in P1 with sound argumentation taking a backseat, while the opposite was true 
for P2. 

Discussion & Conclusions 
The transition to proofs and higher mathematics in general is a complex process that deviates from 

what many students’ previous mathematical experience. While they may not be strangers to 
mathematical problem solving and non-routine problems, students are asked to integrate formal-
rhetorical knowledge when constructing proofs. The presence of this knowledge in problems may 
overpower the problem-solving that underlie mathematics’ appeal. Making explicit connections 
between formal-rhetorical fluency to sound argumentation and problem-solving generally in 
instruction may aid understanding and value given to proofs. 
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We present the progress of a study that seeks to answer: What learning do teachers in training 
consolidate that reflect on the teaching of Calculus to people with distinct characteristics in higher 
education? We expect to answer this using the model of reflection and action of Parada (2011) as a 
theoretical-methodological guide. The study follows an action research methodology, planned in six 
phases; here the results of the first four are reported. The learning constructed by future teachers 
will be described in terms of the three components of reflective thinking established by the model. A 
meaning so far reached by future teachers is the need to approach the context of students to pose 
problems tailored to their distinct characteristics. 

Keywords: Teacher Preparation in Training, Special Education, Calculus. 

Colombian educational policies have promoted inclusion in the country's Higher Education 
Institutions (HEIs). One of them is the Universidad Industrial de Santander (UIS) context of the 
study reported here, in which there is an agreement for special admissions, which has been 
implemented since the first period of 2014. In addition, the UIS within its strategies to face the 
problems of desertion and permanence has created a policy of Academic Excellence (Agreement No. 
018 of 2014) that is executed through accompaniment and monitoring programs for students. One of 
the programs, called SEA-ASAE, is led by the Mathematics School and is focused on serving and 
accompanying students who take math courses through peer tutoring and academic monitoring. The 
tutors who offer the accompaniment are mathematics teachers in training, who are studying a 
Bachelor’s degree in mathematics from the institution. 

The SEA-ASAE program has been developing since 2012 and has allowed the constitution of a 
Community of Practice (CoP), made up of teacher educators, professors of the mathematics subjects, 
practicing tutors and auxiliary tutors (graduates of the didactics of calculus course). Within the 
course, students who have practiced as Differential Calculus tutors with students from Science and 
Engineering programs have reported cases of students who: have Asperger, have a mild cognitive 
disability, are from indigenous communities, among others. The tutors show difficulty in attending to 
this population because they have not received the didactic training to do so; hence the need to 
promote reflection among mathematics teachers in training on teaching calculus to people with 
distinct characteristics. 

The aforementioned, offers us two problems that can be articulated in favor of educational inclusion 
in HEIs: i) mathematics teachers in training require instruction around inclusion and, ii) people with 
distinct characteristics need support and attention from people that understand their condition and 
have mathematical knowledge. For this reason, in the research reported here, we focus our attention 
on the practitioners of the CoP, who begin their participation in it as practicing tutors who, in turn, 
develop the Calculus Didactics course. Course, in which a conceptual and methodological structure 
will be developed that allows reflection on the teaching of calculus and attention to distinct 
characteristics, an experience with which we hope to achieve the research objective: describe the 
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learning built by training teachers reflecting on the teaching of calculus to people with distinct 
characteristics in higher education. 

Background 
According to Camargo (2018), since 1960 organizations such as UNESCO have pursued guiding 

principles with a view to promote inclusive education. As a result of these principles, policies have 
emerged in different countries, including Colombia. 

The Colombian political constitution of 1991 and the General Law of Education of 1994 are the 
main policies that speak of inclusion in Colombia, establishing that education is a right for all and 
that Colombians should feel included, without differentiation of race, sex, religion, political beliefs, 
and other constituent elements of Colombian multiculturalism. These policies have been gradually 
implemented, in recent decades, at various levels of education, starting with basic and secondary 
education, and to a lesser extent in Higher Education Institutions (HEIs). 

Because the inclusion policies for HEIs were not very precise, the Ministry of National Education 
(MEN), and the Higher Council for Higher Education (CESU, 2013), in the agreement for the upper 
2034, establish a regulatory framework, in where it is stated that in order to achieve a quality 
education, the entrance, permanence and graduation of students with certain distinct characteristics 
must be guaranteed, which may be people: i) With Special Educational Needs (SEN), that is, they 
have some disability status or exceptional talents; ii) from indigenous communities or reservations; 
iii) from Afro-Colombian, Palenquera and Raizal populations; iv) from departments where HEIs do 
not exist; v) coming from municipalities with difficult access or with public order problems; vi) 
victims of the Colombian internal armed conflict; and viii) demobilized from the peace processes. 

According to a study carried out by CESU (2013) in collaboration with the Development Research 
Center (CID) of the Universidad Nacional de Colombia (UNAL), it is established that students with 
distinct characteristics are the most likely to drop out of HEIs. Furthermore, it has been shown that 
these students have difficulties in understanding the mathematical objects of differential calculus. 
Moreover, according to MEN (2016), students with SEN present certain difficulties associated with 
their condition. 

One of the strategies offered by the MEN to guarantee the permanence and therefore the graduation 
of the students with distinct characteristics is to have inclusive teachers in the HEI: to have a suitable 
training both in its disciplinary, didactic, as well as in inclusive education. 

Silverman and Thompson 2008) mention that teachers must have a deep knowledge of mathematics; 
Ponte (2011) states that he must also have knowledge in the didactic; Llinares (2007), Flores (2009) 
establish that the teacher must be reflective; and Aké (2015) mentions the need to promote reflection 
among mathematics teachers about inclusive education. 

Parada (2011) based on the reflection processes within the communities of practice, proposes the 
RyA reflection and action model, which aims to guide theoretically and methodologically the actions 
carried out by mathematics teachers before, during and after class, in order to increase the capacity of 
its members to reflect critically on their professional practices. 

Theoretical and Conceptual Aspects 
The research of which the first results are reported here, is based on the R-y-A model, whose main 

objective is to promote reflection processes in communities of practice (CoP) and whose main 
elements are: participation (which may be peripheral or full), reflection and action. The fundamental 
resource that is reflected on is action, understood as the performance of the mathematics teacher in 
her or his own professional practices. 
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Figure 3. Adaptation to the R-y-A model of Parada (2011) 

 
At the center of the Model is the mathematical activity, which is where professional development 

efforts are focused. Mathematical activity is found within the Saint-Onge pedagogical triangle (1997, 
cited by Parada, 2011),where there is a relationship between the student, the teacher and the 
mathematics school. 

These relationships make the student's mathematical activity during class and the teacher's 
mathematical activity before, during and after class possible. 

Following Dewey's ideas (1989), Parada (2011) understands Reflection as a process of resolving 
doubts, conflicts, and willingness to review one's performance; that is why it seeks to promote the 
reflection processes of mathematics teachers, which is a continuous process that favors professional 
development. It is broken down into three processes: Reflection-for-action (reflection made by the 
teacher before the class), Reflection-in-action (reflection made by the teacher during the class), 
Reflection-on-action (reflection made by the teacher after the class). 

The three arrows around the spiral represent the three thoughts into which the reflective thinking of 
the mathematics teacher is broken down: mathematical thinking (the mathematical knowledge that 
the teacher uses to develop mathematical activity in the classroom), didactic thinking (arises when 
the teacher asks about the different ways of approaching the mathematical content to their students) 
and orchestral thinking (it is characterized around the conduct of the class and the way the teacher 
uses resources to promote mathematical activity in the classroom). 

Research Methodology 
The study reported here is of an action-research type, in the light of Kemmis and McTaggart (1988). 

It is carried out in six phases, which are briefly described below: 
1) Phase 0 (preliminary study): study of national and international policies around inclusion in 

Higher Education, collection and analysis of data related to the number of students with distinct 
characteristics admitted to the UIS; 2) Phase 1: characterization of the community of practice (study 
context). Design of the intervention and participation plan with the CoP. Delimitation of the 
participants of the CoP on which the intervention will be carried out; 3) Phase 2: first approach to the 
CoP. Reflection and action processes with seven teachers in training who were developing the 
calculus teaching course in the first semester of 2019; 4) Phase 3: analysis of the results of the first 
approach; 5) Phase 4: second approach to the CoP, at the time of the writing this document. This 
phase is being developed with fifteen students who are ahead in the Calculus Didactics course; and 6) 
Phase 5: Data analysis and characterization of reflective thinking, which will answer the research 
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question taking into account the three dimensions of reflective thinking (variational thinking, didactic 
thinking and Orchestral thinking) of the mathematics teacher that the R-y-A model offers. 

Some Results 
The analysis of the institutional policies (Agreement No. 282 of November 7, 2017) and the data of 

the admissions of the University allowed us to know that between 2014 and 2019, the UIS has 
registered a total of 347 students who entered through special admissions, of which 220 (63%) 
students entered careers such as engineering, science and others, which have mathematics-related 
subjects, in particular differential calculus, in their study plan. Of these students: 81 come from 
municipalities with difficult access or problems of public order, 100 victims of the armed conflict, 15 
from the Afro-Colombian, Palenquera and Raizal populations, 22 from indigenous communities and 
2 from departments where there are no HEIs. 

Regarding the first approach, through the negotiation of meanings that were made possible within 
the activities of the course, four projects were objectified, the purpose of which was to prepare a 
didactic design around an object of study of calculus aimed at a person with differentiated 
characteristics. It is from this first approach that the projects were made. 

An interesting result was the one achieved by the teacher who carried out the design aimed at a 
student from the Misak indigenous community, with whom he worked on optimization based on 
problems contextualized to the needs and characteristics of his community. For this, the teacher in 
training initially made a documentary study of the community, then interviewed the student and later 
implemented its design. With the implementation of the design, it was found that from the 
contextualized problems the student managed to appropriate and get involved in the problem 
situations that were presented to him, thus favoring his learning regarding optimization. 

First Reflections 
Until now, some learning negotiated by teachers in terms of their reflective thinking have been 

evidenced: a) in mathematical thinking, they experienced confusion in their conceptual domains 
about the mathematical objects of differential calculus such as: function, variation, limit and 
derivative; which were resignified through reflection and discussion in CoP; b) in didactic thinking, 
they valued the need to make curricular adaptations, related to the use of language and the approach 
of contextualizingproblems adjusted to meet their student’s needs and; c) in orchestral thinking, they 
managed to articulate different resources adjusted to the characteristics of the student and the 
mathematical objects of study. 
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Presentamos avances de una investigación que busca responder a: ¿Qué aprendizajes consolidan en 
sus prácticas profesores en formación que reflexionan sobre la enseñanza del cálculo a personas con 
características diferenciadas en la educación superior? La que se espera responder usando como 
guía teórico-metodológica el modelo de reflexión y acción de Parada (2011).  El estudio sigue una 
metodología de investigación-acción, planificada en seis fases, aquí se reportan resultados de las 
primeras cuatro. Los aprendizajes construidos por los futuros profesores se describirán en términos 
de los tres componentes del pensamiento reflexivo establecidos por el modelo. Un significado hasta 
ahora alcanzado por los futuros profesores es la necesidad de acercamiento al contexto de los 
estudiantes para plantear problemas ajustados a sus características diferenciadas. 

Palabras clave: Preparación de Maestros en Formación, Educación especial, Cálculo. 

Las políticas educativas colombianas, han promovido la inclusión en las Instituciones de Educación 
Superior (IES) del país. Una de ellas es la Universidad Industrial de Santander (UIS) contexto del 
estudio que aquí se reporta, en la que se cuenta con un acuerdo para las admisiones especiales, que se 
viene implementando desde el primer periodo de 2014, Además, la UIS dentro de sus estrategias para 
afrontar las problemáticas de deserción y permanencia ha creado una política de Excelencia 
Académica (Acuerdo No. 018 de 2014) que se ejecuta por medio de programas de acompañamiento y 
seguimiento a estudiantes. Uno de los programas, denominado SEA-ASAE, es liderado por la 
Escuela de Matemáticas y está centrado en atender y acompañar a los estudiantes que cursan las 
asignaturas de matemáticas mediante tutorías entre pares y monitorias académicas.  Los tutores que 
ofrecen el acompañamiento son profesores de matemáticas en formación, que cursan Licenciatura en 
Matemáticas de la institución. 

El programa SEA-ASAE se viene desarrollando desde el año 2012 y ha permitido la constitución de 
una Comunidad de Práctica (CoP), conformada por formadores de profesores, profesores titulares de 
las asignaturas de matemáticas, tutores practicantes y tutores auxiliares (egresados del curso de 
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didáctica del cálculo). Al interior del curso los estudiantes que han realizado la práctica como tutores 
de Cálculo Diferencial con estudiantes de programas de Ciencia e ingenierías han reportado casos de 
estudiantes que presentan: Asperger, discapacidad cognitiva leve, son provenientes de comunidades 
indígenas, entre otros. Los tutores manifiestan dificultad para atender a esta población pues no han 
recibido la formación didáctica para hacerlo, de allí la necesidad de promover la reflexión en los 
profesores de matemáticas en formación sobre la enseñanza del cálculo a personas con características 
diferenciadas. 

Lo antes descrito, nos ofrece dos problemáticas que pueden articularse a favor de la inclusión 
educativa en las IES: i) los profesores de matemáticas en formación requieren instrucción alrededor 
de la inclusión y, ii) las personas con características diferenciadas necesitan apoyo y atención de 
personas que comprendan su condición y tengan conocimiento matemático. Por ello en la 
investigación que aquí se reporta centramos la mirada en los practicantes de la CoP, que inician su 
participación en ella como tutores practicantes que a su vez desarrollan el curso de Didáctica del 
Cálculo. Curso, en el que se desarrollará una estructura conceptual y metodológica que permita la 
reflexión sobre la enseñanza del cálculo y la atención a las características diferenciadas, experiencia 
con la que esperamos alcanzar al objetivo de investigación: describir los aprendizajes construidos por 
profesores en formación que reflexionan sobre la enseñanza del cálculo a personas con características 
diferenciadas en la educación superior. 

Antecedentes 
Según Camargo (2018) desde 1960, organizaciones como la UNESCO han procurado principios 

orientadores con miras a favorecer una educación inclusiva. Producto de estos principios han surgido 
políticas en diferentes países, entre ellos Colombia.  

La constitución política de Colombia de 1991 y la Ley General de Educación de 1994 son las 
principales políticas en donde se habla de inclusión en Colombia, estableciendo que la educación es 
un derecho para todos y que los colombianos se deben sentirse incluidos desde la diversidad, sin 
diferenciación de raza, sexo, religión, creencias políticas, y demás elementos constitutivos del 
multiculturalismo colombiano.  Estas políticas se han venido implementando de manera paulatina, 
durante las últimas décadas, en varios niveles de la educación, iniciando por la educación básica y 
media, y en menor medida en las Instituciones de Educación Superior (IES).  

Debido a que las políticas de inclusión para las IES no eran muy precisas el Ministerio de 
Educación Nacional (MEN), y el Consejo Superior de Educación Superior (CESU, 2013), en el 
acuerdo por lo superior 2034, establecen un marco normativo, en donde se afirma que para lograr una 
educación de calidad se debe garantizar el ingreso, la permanencia y la graduación de los estudiantes 
con ciertas características diferenciadas, que pueden ser personas: i) Con Necesidades Educativas 
Especiales (NEE), es decir, que presentan alguna condición de discapacidad hasta las que presentan 
talentos excepcionales; ii) procedentes de comunidades o resguardos indígenas; iii) procedentes de 
población afrocolombiana, palenquera y raizal; iv)  procedentes de departamentos donde no existen 
IES; v)procedentes de municipios de difícil acceso o con problemas de orden público; vi) víctimas 
del conflicto armado interno colombiano; y viii)desmovilizadas de los procesos de paz.  

Según un estudio realizado por el CESU (2013) en colaboración con el Centro de Investigación de 
Desarrollo (CID) de la Universidad Nacional de Colombia (UNAL), se establece que los estudiantes 
con características diferenciadas son los más propensos a desertar de las IES. Además, se ha 
evidenciado, que estos estudiantes tienen dificultades para comprender los objetos matemáticos del 
cálculo diferencial. Además, según el MEN (2016) los estudiantes con NEE presentan ciertas 
dificultades asociadas a su condición.   

Una de las estrategias ofrecidas por el MEN para garantizar la permanencia y por tanto la 
graduación de los estudiantes con características diferenciadas, es la de contar con docentes 
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inclusivos en la IES: poseer una formación idónea tanto en su ámbito disciplinar, didáctico, así como 
en educación inclusiva. 

Silverman y Thompson 2008) mencionan que los profesores deben tener un conocimiento profundo 
en las matemáticas; Ponte (2011) expone que además debe contar con conocimiento en lo didáctico; 
Llinares (2007), Flores (2009) establecen que el profesor debe ser reflexivo; y Aké (2015) menciona 
la necesidad de promover la reflexión en los profesores de matemáticas acerca de una educación 
inclusiva. 

Parada (2011) basada en los procesos de reflexión al interior de las comunidades de práctica, 
plantea el modelo de reflexión y acción R-y-A, el cual pretende guiar teórica y metodológicamente 
las acciones llevadas a cabo por los profesores de matemáticas antes, durante y después de clase, con 
el fin de aumentar la capacidad de sus miembros para reflexionar críticamente sobre sus prácticas 
profesionales. 

Aspectos Teóricos y Conceptuales 
La investigación de la que aquí se reportan los primeros resultados, se apoya en el modelo R-y-A, 

que tiene como objetivo principal promover los procesos de reflexión en comunidades de práctica 
(CoP) y cuyos elementos principales son: la participación (que puede ser periférica o plena), la 
reflexión y la acción.  El recurso fundamental sobre el cual se reflexiona es la acción, entendida 
como la actuación del profesor de matemáticas en sus propias prácticas profesionales. 

 
Ilustración 1. Adaptación modelo R-y-A de Parada (2011) 

 
En el centro del Modelo se encuentra la actividad matemática. Que es donde se centran los 

esfuerzos de desarrollo profesional. La actividad matemática se encuentra al interior del triángulo 
pedagógico de Saint-Onge (1997, citado por Parada, 2011). En donde existen relaciones entre el 
alumno, el profesor y la matemática escolar. 

Estas relaciones posibilitan la actividad matemática del estudiante durante la clase y la actividad 
matemática del profesor antes, durante y después de la clase. 

Siguiendo las ideas de Dewey (1989), Parada (2011) entiende la Reflexión como un proceso de 
resolución de dudas, de conflictos, y de disposición para revisar su actuación; es por ello que se 
busca promover los procesos de reflexión de los profesores de matemáticas, siendo este un proceso 
continuo que favorece el desarrollo profesional, y se descompone en tres procesos: Reflexión-para-
la acción (reflexión que hace el profesor antes de la clase), Reflexión-en-la acción (reflexión que 
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hace el profesor durante de la clase), Reflexión-sobre-la acción (reflexión que hace el profesor 
después de la clase).  

Las tres flechas que se encuentran alrededor de la espiral representan los tres pensamientos en los 
que se descompone el pensamiento reflexivo del profesor de matemáticas: el pensamiento 
matemático (los conocimientos matemáticos que el profesor emplea para desarrollar la actividad 
matemática en el aula), el pensamiento didáctico (surge cuando el profesor se cuestiona sobre las 
diferentes maneras de acercar los contenidos matemáticos a sus estudiantes) y el pensamiento 
orquestal (se caracteriza alrededor de la conducción de la clase y la forma como el profesor usa los 
recursos para la favorecer la actividad matemática en el aula). 

Metodología de la Investigación 
El estudio que aquí se reporta, es de tipo investigación-acción, a la luz de Kemmis y McTaggart 

(1988). Se lleva a cabo en seis fases, que se describen brevemente a continuación: 
1) Fase 0 (estudio preliminar): estudio de políticas nacionales e internacionales alrededor de la 

inclusión en la Educación Superior, recolección y análisis de datos relacionados con el número de 
estudiantes con características diferenciadas admitidos en la UIS; 2) Fase 1: caracterización de la 
comunidad de práctica (contexto de estudio). Diseño de el plan de intervención y participación con la 
CoP. Delimitación de los participantes de la CoP sobre los que se hará la intervención;3) Fase 2: 
primer acercamiento a la CoP. Procesos de reflexión y acción con siete profesores en formación que 
desarrollaban el curso Didáctica del Cálculo en el primer semestre del 2019; 4) Fase 3: análisis de 
resultados del primer acercamiento; 5) Fase 4: segundo acercamiento a la CoP, en el momento en que 
se escribe este documento, se está desarrollando esta fase con quince estudiantes que se encuentran 
adelantado el curso de Didáctica del Cálculo; y 6) Fase 5: Análisis de los datos y caracterización del 
pensamiento reflexivo.  Se espera responder a la pregunta de investigación teniendo en cuenta las tres 
dimensiones del pensamiento reflexivo (pensamiento variacional, el pensamiento didáctico y el 
pensamiento Orquestal) del profesor de matemáticas que ofrece el modelo R-y-A.  

Algunos Resultados 
El análisis de las políticas instituciones (Acuerdo No. 282 del 7 de noviembre del 2017) y los datos 

de las admisiones de la Universidad permitieron saber que entre el 2014 y el 2019, la UIS ha 
registrado un total de 347 estudiantes que ingresaron por medio de las admisiones especiales, de los 
cuales 220 (63%) estudiantes ingresaron a carreras como ingenierías, ciencias y otras, las cuales 
tienen en su plan de estudio materias relacionadas con matemáticas, en particular cálculo diferencial. 
De estos estudiantes: 81 provienen de municipios de difícil acceso o problemas de orden público, 100 
víctimas del conflicto armado, 15 provenientes de población afrocolombiana, palenquera y raizal, 22 
pertenecientes a comunidades indígenas y 2 provenientes de departamentos donde no existen IES. 

Respecto al primer acercamiento, a través de la negociación de significados que se posibilitaron al 
interior de las actividades del curso, se cosificaron cuatro proyectos los cuales tenían como finalidad 
elaborar un diseño didáctico alrededor de un objeto de estudio del cálculo dirigido a una persona con 
característica diferenciada. De ese primer acercamiento, que proyectos se hicieron. 

Un resultado interesante, fue el logrado por el profesor que realizó el diseño dirigido a un estudiante 
de la comunidad indígena Misak, con quién trabajó la optimización a partir de problemas 
contextualizados a las necesidades y características de su comunidad.  Para ello, el profesor en 
formación hizo inicialmente un estudio documental de la comunidad, luego entrevistó al estudiante y 
posteriormente implementó su diseño. Con la implementación del diseño se pudo encontrar que a 
partir de los problemas contextualizados el estudiante logró apropiarse e involucrarse en las 
situaciones problema que se le planteaban, favoreciendo así su aprendizaje respecto a la 
optimización.  
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Primeras Reflexiones 
Hasta el momento se han podido evidenciar algunos aprendizajes negociados por los profesores en 

términos de su pensamiento reflexivo: a) en el pensamiento matemático, ellos experimentaron 
confusión en sus dominios conceptuales sobre los objetos matemáticos del cálculo diferencial como: 
función, variación, límite y derivada; los cuales resignificaron mediante la reflexión y discusión en 
CoP; b) en el pensamiento didáctico, valoraron la necesidad de hacer adaptaciones curriculares, 
relacionadas con el uso del lenguaje y el acercamiento al contexto para el planteamiento de 
problemas ajustados a sus necesidades y; c) en el pensamiento orquestal, ellos lograron articular 
diferentes  recursos ajustados a las características del estudiante y a los objetos matemáticos de 
estudio.  

Referencias 
Aké, L. (2015). Matemáticas y educación especial: realidades y desafíos en la formación de profesores. En López-

Mojica, J. y Cuevas, J. (Coords), Educación especial y matemática educativa. pp. 15-32, México: Centro de 
Estudios Jurídicos y Sociales Mispat; Universidad Autónoma de San Luis de Potosi. 

Asamblea Nacional Constituyente. (1991). Constitución Política de Colombia 1991. Bogotá: Temis. 
Camargo (2018). Breve reseña histórica de la inclusión en Colombia.  Revista Internacional de Apoyo a la 

Inclusión, Logopedia, Sociedad y Multiculturalidad. Volumen (4), pp. 181-187. 
Congreso de Colombia. (8 de febrero de 1994) Ley General de Educación. [Ley 115 de 1994]. DO: 41.214. 
Consejo Académico (Acuerdo No 018 de 2014). Por el cual se establece la política y se definen los principios 

orientadores para contribuir a la excelencia académica de los estudiantes de pregrado de la Universidad 
Industrial de Santander. Universidad Industrial de Santander, Bucaramanga.  

Consejo Académico (Acuerdo No 282 de 2017). Por el cual se dictan disposiciones sobre el ingreso a la 
Universidad de aspirantes por la modalidad de Admisiones Especiales. Universidad Industrial de Santander, 
Bucaramanga. 

Flores, P. (2009). Formación inicial de profesores de matemáticas como profesionales reflexivos. Revista UNO 17, 
37-50. 

Kemmis, S. y McTaggart, R. (1988). Cómo planificar la investigación acción. Laertes. Barcelona. 
Llinares, S. (2011). Formación de profesores de matemáticas. Caracterización y desarrollo de competencias 

docentes. Cuadernos de Investigación y Formación en Educación Matemática, (10),53-62.  
CESU, C. N. de E. S.-. (2013). Acuerdo por lo Superior 2034. Propuesta de política pública para la excelencia de 

la educación superior en Colombia, en el escenario de la paz. 
MEN (2016). Hacia una educación superior inclusiva en Colombia. 

http://www.scielo.org.co/pdf/pys/n45/n45a05.pdf recuperado el 18 de abril 
Parada, S. (2011). Reflexión y acción en comunidades de práctica: Un modelo de desarrollo profesional. (Tesis de 

Doctorado). CINVESTAV-IPN, México. 
Ponte, J. (2011). Estudiando el conocimiento y el desarrollo profesional del profesorado de matemáticas. Teoría, 

crítica y práctica de la Educación Matemática, 83-98.  
Silverman, J. y Thompson, P. (2008). Toward a framework for the development of mathematical knowledge for 

teaching.  Springer Science Businees 11:499-511. 
 



Precalculus, Calculus, or Higher Mathematics 

In: Sacristán, A.I., Cortés-Zavala, J.C. & Ruiz-Arias, P.M. (Eds.). (2020). Mathematics Education Across Cultures: 
Proceedings of the 42nd Meeting of the North American Chapter of the International Group for the Psychology of 
Mathematics Education, Mexico. Cinvestav / AMIUTEM / PME-NA. https:/doi.org/10.51272/pmena.42.2020 

1213	

FROM RECURSION TO INDUCTION: STUDENTS’ GENERALIZATION PRACTICES 
THROUGH THE LENS OF COMBINATORIAL GAMES 

Cody L. Patterson 
Texas State University 

codypatterson@txstate.edu  

Lino Guajardo 
Texas State University 

lrg74@txstate.edu  

Emma Yu 
Plano East Senior High School 

emmayyu15@gmail.com  

In this study we describe the generalization and justification practices of students in a highly 
selective summer mathematics program as they explore a sequence of problems from combinatorial 
game theory. We find that while study participants readily generate examples and reason recursively 
when analyzing Nim-like two-player combinatorial games and are able to reach valid conclusions 
about winning strategies in these games, they do not readily formalize their justifications into proofs 
using mathematical induction. We describe some obstacles that we observe in the transition between 
recursive reasoning and proof by induction. 

Keywords: Advanced Mathematical Thinking, Problem Solving, Reasoning and Proof 

Research in undergraduate mathematics education has identified obstacles to students’ acquisition 
and understanding of mathematical induction as a proof strategy (e.g., Brown, 2008; Dubinsky, 1989; 
Harel & Brown, 2008; Movshovitz-Hadar, 1993) and described the understandings that 
undergraduate students, including preservice teachers, have of induction (e.g., Stylianides, 
Stylianides, & Philippou, 2007). Harel and Brown (2008) point out that in many standard 
instructional treatments of proof by mathematical induction (PMI), problems that exemplify the 
utility of the proof strategy can be categorized into recursion and non-recursion problems based on 
whether they involve recursive representations of functions or processes. The authors note that 
insistence on the use of PMI to solve non-recursion problems, in the absence of genuine intellectual 
necessity (Harel, 2013), can reinforce students’ authoritative proof schemes.  

One genre of problems that receives little attention in introduction-to-proof courses in the U.S. deals 
with combinatorial games, deterministic two-player games with perfect information (nothing 
concealed from either player). In a two-player combinatorial game with a finite set of possible game 
states that must terminate after a finite number of moves with one player winning, each game 
position can be characterized as affording a winning strategy to the next player to move (a winning 
position) or not (a losing position). The process of classifying positions in a game as winning or 
losing often involves recursive reasoning (Lannin, Barker, & Townsend, 2006), reasoning about 
cases of a problem by referencing previously established cases. This recursive reasoning can then be 
generalized to describe the set of all winning or losing positions for the game, and this reasoning can 
be distilled into a proof by mathematical induction that formally verifies and explains this 
description. We hypothesize that the genre of problems about combinatorial games offers a potential 
setting in which PMI can fulfill the explanation function of proof (De Villiers, 1990; Hanna, 2000). 
While problems involving combinatorial games have some complexity not associated with typical 
“textbook” problems, such as requiring complex induction hypotheses (incorporating assumptions 
about both winning and losing positions), we view them as possessing the exploratory nature and 
recursive structure needed to create intellectual necessity for inductive proof. 

In analyzing students’ work on problems that invite recursive reasoning about examples and 
eventually call for generalization of this reasoning, we categorize students’ generalization activities 
into result pattern generalization, in which a general insight is obtained by observing regularity in 
results of calculations, or as process pattern generalization, in which this insight is backed by an 
understanding of regularity in the processes by which these results occur (Harel, 2001). We view 
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process pattern generalization as a potential way of transitioning from recursive reasoning about 
specific cases of a problem to the development of a general inductive argument. 

Guided by this framework, we address the following question: In what ways do students engage in 
recursive reasoning and generalization as they work on problems involving two-player combinatorial 
games, and to what extent do they formalize their justifications using PMI? 

Method of Study 
We report results of a case study (Yin, 2017) of students’ collaborative work on a sequence of 

problems involving combinatorial games, with each case consisting of the mathematical discussion, 
arguments, and written and visual representations of a group of four students. The study took place in 
an informal summer mathematics program for students ages 13-18. 

We selected sixteen students in the program who reported low levels of prior familiarity with 
puzzles about Nim-like games (based on an initial questionnaire), and assigned them to four groups 
of four students each. Each group then participated in a video-recorded task-based interview lasting 
approximately an hour and a half. Each group worked collaboratively on a sequence of five tasks, 
each of which asked participants to analyze a Nim-like two-player combinatorial game. The first 
three tasks are shown in Figure 1. At the conclusion of each problem, a researcher asked the students 
to summarize and justify their conclusions orally, and asked questions as needed to clarify our 
understanding of students’ reasoning. 

 
Figure 1: The first three problems in the task sequence. 

Our analysis focuses on three groups’ work on Problems 1 through 3 (Figure 1). The three groups in 
our analysis worked on these three problems for a total of 35 minutes, 29 minutes, and 45 minutes, 
respectively. Because our study focuses on students’ generalization and justification practices, we 
transcribed the segment of each group’s work on each of Problems 2 and 3 from the first time a 
group made a generalization or conjecture about the problem to the time when their work on the 
problem ended. We then analyzed each group’s generalization processes and attempts to justify their 
conjectures, noting the degree to which each group formalized its reasoning using induction. We 
adopt the perspective that students’ justification attempts offer some evidence of what they consider 
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to be compelling arguments about winning strategies in combinatorial games, and in particular, of 
what aspects of PMI they are motivated and able to adapt to proving processes in this context. 

Results and Analysis 
In this section we provide a detailed description of one group’s work on Problems 1 through 3 and 

briefly summarize the work of the two other groups in our analysis. 
The Case of Group 1: Evidence of Process Pattern Generalization 

Group 1, consisting of Bridget, William, Grace, and Ryan, used the names “John” and “Fluffy” in 
place of the letters A and B to refer to the two players. They used tables throughout the problem 
session to represent possible sequences moves in games, and gradually began to use these tables to 
represent branching cases that could occur within the same game. 

After finding in Problem 1 that the first player can win by ensuring that the other player always 
receives a multiple of four marbles, the group moved on to Problem 2 and began categorizing 
possible starting positions as winning or losing for Player A. In the group’s initial work on this 
problem, after identifying some examples of initial positions that are winning for Player A, Grace 
stated the conjecture, “So it’s like -- basically, all the numbers except for the multiples of 4, because 
in that case, Fluffy would win.” We interpret this as result pattern generalization, since Grace 
appeared to obtain this insight from a table of cases the group had considered, and because the group 
had not publicly justified all of its previous claims about winning positions for the first player. 

The group chose to continue considering specific examples to gather evidence for this conjecture. 
Ultimately, the group returned to its conjecture and finalized it by writing it on the board: “if N ≡ 1, 
2, or 3 (mod 4), then Player A will win (by generalization of P1). If N ≡ 0 (mod 4), then Player B 
will win.” The group then debated whether to provide a written proof of this conjecture; while 
William remarked that “If we wanted to prove that, we could probably use induction or something,” 
Grace indicated that this was not needed since they had already explained that their conjecture was 
true “by generalization of the first problem.” We interpret this segment of discussion as indicating 
that the group saw an opportunity to formalize their argument using mathematical induction, but 
found such formalization to be unnecessary in this case, possibly because of the similarity between 
the reasoning used in Problem 2 and that used for the more specific Problem 1. We hypothesize that 
Problem 2 did not create intellectual necessity for PMI for this group; a proof by induction would not 
have done more to convince this group that their conjecture was universally valid. 

On Problem 3, after testing the cases N ≤ 12, the group correctly conjectured that Player A has a 
winning strategy if and only if N is not divisible by 3. The group then went on to write an argument 
justifying this conjecture: 

If 3 [does not divide] N, then Player A will win. If 3 [does not divide] N, then N ≡ 1 or 2 
(mod 3), so Player A can leave Player B w/ a multiple of 3. If Player B has a multiple of 3, 
then B can only remove 1 mod 3 or 2 mod 3 marbles, leaving A w/ 1 mod 3 or 2 mod 3 
marbles, so A can win. 

Prior to the group’s production of this argument, William had stated that each power of 2 is 
congruent to 1 or 2 modulo 3; this allowed the group to reason that if Player B receives a multiple of 
three marbles, then any move by Player B will reduce the number of marbles to a non-multiple of 3. 
In this argument we see evidence of process pattern generalization based on the group’s work on 
specific examples: both the insight that a power of 2 cannot be a multiple of 3 (and that this is 
important in limiting what a player can do if given a multiple of 3), and the strategy of reducing the 
number of marbles to a multiple of 3. However, the argument as written does not explain why “A can 
win” after receiving a smaller number of marbles congruent to 1 or 2 modulo 3 (and one can envision 
this smaller number being outside of the range of specific examples that the group tested directly). 
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The Cases of Groups 2 and 3: Obstacles to Process Pattern Generalization 
Like Group 1, Groups 2 and 3 correctly determined that in Problem 2, Player A has a winning 

strategy if and only if N is not a multiple of 4. Neither group used induction to ground claims that a 
first move for Player A would place Player B in a losing position; they instead referenced their prior 
work on Problem 1 and examples they explored in Problem 2. We hypothesize that the regularity of 
winning and losing positions in Problem 2 led both groups to the belief that a formal proof by 
induction was not essential for justification of their conjecture. 

While both Groups 2 and 3, like Group 1, arrived at a correct answer to Problem 3, their attempts at 
justification differed significantly. In attempting to show in general that a multiple of 3 would be a 
losing position in this game, Group 2 did not take into account possible moves for the next player 
other than taking 1 or 2 marbles, even though they did account for other possible powers of 2 in the 
preliminary example work that led to their conjecture. Therefore, while Group 2 was able to render a 
partial explanation of how Player A could seize a winning strategy by taking 1 or 2 marbles if N is 
not a multiple of 3, their argument did not fully demonstrate that this first move would put Player B 
in a losing position. Group 3 attempted to prove its conjecture for Problem 3 using PMI, but in doing 
so, they attempted to establish values of N as winning or losing positions by proving the false claim 
that an integer N can be written as either a sum of an even number of powers of 2 or the sum of an 
odd number of powers of 2, but not both. They embarked upon this strategy despite the fact that 
expressing an integer as a sum of powers of 2 had not been a key part of their reasoning about 
specific examples that led to their conjecture. 

Discussion and Implications 
The results of our interviews are not necessarily indicative of students’ ability to use PMI to 

generalize and formalize recursive reasoning. We did not require students to produce formal proofs 
during the interviews, so any attempts to use induction or other proof techniques reflected students’ 
desire to confirm or formalize a result, or their sense that we wished for them to do so. In a future 
study we hope to ask groups of students to work on the same sequence of problems in one task-based 
interview, then ask them in another interview to write formal proofs of their results. 

Nonetheless, we claim that observing students’ work on combinatorial game problems provides 
useful insight about obstacles that may hinder students’ efforts to make the cross-cultural translation 
between the empirical and recursive reasoning that often occurs naturally in exploratory 
mathematical activity, and the formal inductive justification accepted by the mathematics discipline. 
First, regularity in the structure of a problem may eliminate intellectual necessity for formal proof by 
induction. Second, our preliminary results suggest that students may have difficulty translating the 
recursive reasoning used in specific examples into a proof by induction; and in fact, they may use 
reasoning disanalogous to their prior reasoning when attempting a proof by induction. Finally, when 
students do successfully transfer their recursive reasoning into an induction argument, some work 
may be needed to impress upon students a sense of the importance of a base case, and the function of 
the structure of an induction proof in providing a foundation on which higher-order cases can rest on 
lower-order cases. 
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As undergraduate physics students solve problems related to quantum mechanics, they often have to 
draw on their conceptual understanding of both linear algebra and physics concepts. One concept 
that is prevalent in both of these disciplines is change of basis. In this study, we focus our analysis on 
physics students’ mathematical conceptual knowledge of principles that underlies their use of a 
procedure on a quantum mechanics task. As students perform this task, they demonstrated 
understanding of change of basis and properties of orthonormal bases. We share examples of 
students’ reasons for performing a change of basis and demonstrate how students seem to draw on 
their conceptual understanding of properties of orthonormal bases as they implement the procedure. 
We thus exemplify how physics students apply their mathematical knowledge in interdisciplinary 
contexts. 

Keywords: Interdisciplinary studies, STEM / STEAM, University mathematics 

Undergraduate physics students are commonly required to take a course in linear algebra, seen as 
several concepts and procedures covered in a linear algebra course are also addressed in physics 
courses, particularly quantum mechanics. Physics students have to make connections between 
concepts covered in both linear algebra and physics contexts. This may be challenging for students, 
given that concepts included in both linear algebra and quantum mechanics courses are sometimes 
used differently in the two different contexts. One such example is that bases are typically 
orthonormal in quantum mechanics contexts (McIntyre, Manogue, & Tate, 2012), which is generally 
not the case in linear algebra. Furthermore, a change of basis in a quantum mechanics context may be 
performed differently than a change of basis in a linear algebra context, such as through formulaic 
substitution of commonly used bases rather than a change of basis matrix. Since instructors want 
students to have a cohesive understanding of basis and change of basis across these interdisciplinary 
contexts, it is useful to explore how students reason about change of basis in a quantum mechanics 
context. 

As students solve problems related to quantum physics, they often have to draw on their conceptual 
understanding of both mathematics and physics. In this study, we focus our analysis on physics 
students’ mathematical conceptual knowledge that underlies their use of a procedure on a quantum 
mechanics problem. We address the following research question: How do students use their 
mathematical conceptual knowledge as they perform a quantum mechanics task? 

Theoretical Framing 
Conceptual and procedural knowledge are constructs commonly used by researchers to characterize 

students’ understanding of mathematical concepts. Rittle-Johnson, Schneider, and Star (2015) have 
theorized that bidirectional relations exist between students’ conceptual knowledge and procedural 
knowledge. These researchers asserted that procedural knowledge can support students’ development 
of conceptual knowledge and vice versa. Particularly, conceptual knowledge can support students’ 
flexibility in choosing appropriate procedures (e.g., Baroody, Feil, & Johnson, 2007). Crooks and 
Alibali (2014) identified two main types of conceptual knowledge, general principle knowledge and 
knowledge of principles underlying procedures. Knowledge of principles underlying procedures 
involves understanding the “connections among the steps in a procedure and between individual 



Students’ understanding of linear algebra concepts underlying a procedure in a quantum mechanics task 

	 1219	

steps and their conceptual underpinnings” (p. 367). In this study, we use Crooks and Alibali’s (2014) 
construct of knowledge of principles underlying procedures to frame our analysis of students’ 
conceptual knowledge of the mathematical concepts underlying their use of a procedure in quantum 
mechanics problem. 

Brief Physics Background  
Quantum mechanical systems and all knowable information about them are represented 

mathematically by normalized kets, symbolized in Dirac notation as |𝜓⟩. Kets mathematically 
behave like vectors, and a ket’s complex conjugate transpose, called a bra, is symbolized as ⟨𝜓|. Spin 
is a measure of a particle’s intrinsic angular momentum and is represented mathematically by an 
operator such as 𝑆! (where the 𝑧 indicates the particle’s axis of rotation). In a spin-½ system, there 
are two possible results for the 𝑆!  measurement: ± ℏ

!
; they correspond to |+⟩  and |−⟩ , which 

comprise a set of orthonormal basis vectors called the 𝑆! basis. Any quantum state |𝜓⟩ is a linear 
combination of them: |𝜓⟩ = 𝑎|+⟩ + 𝑏|−⟩. In this study, we analyze the students’ responses to the 
two interview questions presented in Figure 1. Interview question (a) asks students to determine the 
probability of obtaining ℏ

!
  or  !ℏ

!
 in a measurement of the observable 𝑆! on a system in state |𝜓⟩. This 

is calculated by 𝑃± = ⟨±|𝜓⟩ !, where ⟨±|𝜓⟩ is an inner product between one of the basis kets and 
psi. Because |𝜓⟩ is written as a linear combination of the two vectors that comprise the 𝑧-basis, 
solving this problem requires no change of basis. The analogous information can be determined for 
other axes of rotation, such as 𝑦. To complete question (b), a change of basis is involved because the 
given state vector |𝜓⟩ is written in terms of the 𝑧-basis, but the prompt asks for the probability that 
the spin component is up along the 𝑦-axis. The two main approaches are to either change |𝜓⟩ to be 
written in terms of the 𝑦-basis (denoted |±⟩!), or change the 𝑦-basis vectors to be written in terms of 
the 𝑧-basis. In either change of basis approach, one would need to utilize the relations, |±⟩! =

!
!
 

|+⟩ ± !
!
 |−⟩.  

Consider the quantum state vector |𝜓⟩ = !
!"
|+⟩ + !!

!"
|−⟩. 

Calculate the probabilities that the spin component is up or down along the z-
axis. 

Calculate the probabilities that the spin component is up or down along the y-
axis. 

Figure 1: The interview questions analyzed in this paper. 

Methods 
Semi-structured interviews (Bernard, 1988) were conducted with 12 quantum physics students, of 

which eight were enrolled in a junior-level course at a large public research university (A) in the 
northwest United States, and four were enrolled in a senior-level course at a medium public research 
university (C) in the northeast United States. Students from these two universities were assigned 
pseudonyms of A# and C#. Both courses used a “spins first” approach, with McIntyre et al. (2012) as 
their course textbook. The interview questions were designed to elicit evidence of student 
understanding of linear algebra concepts used in their quantum mechanics course. We analyzed the 
students’ responses to the two interview questions presented in Figure 1. A relevant follow-up 
question of particular interest was: “How do you see this problem relating to basis or change of 
basis?” 
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The data collected from these interviews include video recordings of the interviews and copies of 
student work. We transcribed the students’ responses to these tasks and wrote descriptions of the 
procedures the students used and the mathematical concepts the students discussed as they explained 
their thought process and justified their choice of procedure. In writing these descriptions of the 
students’ interview responses, we noticed the students commonly referred to mathematical concepts 
of orthonormal bases, inner product, and change of basis. We thus focused our qualitative analysis on 
students’ conceptual understanding of these mathematical concepts underlying the probability 
procedure in this quantum physics context. We performed open coding (Miles, Huberman, & 
Saldaña, 2013) of the procedures the students used and the mathematical concepts they demonstrated 
an understanding of in their responses to the interview questions. We then wrote analytic memos 
(Maxwell, 2013) reflecting on how the students’ understanding of linear algebra concepts seemed to 
support their use of the procedure. 

Results 
We present our results in two subsections. We first discuss the procedures the students employed to 

solve task. We then discuss the nature of the conceptual understanding the students exhibited as they 
performed this procedure and justified their procedure choice. 
Students’ Procedures for the Task Requiring a Change of Basis 

In task (b), the students could either change |𝜓⟩ = !
!"
|+⟩ + !!

!"
|−⟩ to be written in terms of the 𝑦 

basis or change |+⟩! (and |−⟩!for spin down) to be written in terms of the 𝑧-basis. Three out of 
twelve students used the former approach, but only one did so correctly. This student, A8, added the 
change of basis equations (given on a reference sheet) |+⟩! =

!
!
|+⟩ + 𝑖 !

!
|−⟩ and |−⟩! =

!
!
|+⟩ −

𝑖 !
!
|−⟩ to find |+⟩! + |−⟩! = !

!
|+⟩. He then multiplied both sides of the equations by !

!
 to find 

!
!
|+⟩! +

!
!
|−⟩! = |+⟩, which is a z-basis vector written as a linear combination of the y-basis 

vectors. He then subtracted the given change of basis equations to find |+⟩! − |−⟩! = !
!
𝑖|−⟩ and 

multiplied both sides by !
!!

 to find !
!!
|+⟩! −

!
!!
|−⟩! = |−⟩. He then substituted |+⟩ = !

!
|+⟩! +

!
!
|−⟩!  and |−⟩ = !

!!
|+⟩! −

!
!!
|−⟩!  into |𝜓⟩ = !

!"
|+⟩ + !!

!"
|−⟩  and simplified the equation to 

find |𝜓⟩! =
!
!"
|+⟩! +

!
!"
|−⟩!. To calculate the probability that the spin component is up along the 

y-axis, he computed  !⟨+|𝜓⟩!
!
= !"

!"
 by squaring the coefficient of |+⟩!, taking for granted the fact 

that  !⟨+|+⟩! = 1 and  !⟨+|−⟩!= 0 because the basis vectors are orthonormal.  
For the calculation in question (b), ten students changed |+⟩! to be written in terms of the z- basis, 

and all of them used the appropriate change of basis formula |+⟩! =
!
!
|+⟩ + 𝑖 !

!
|−⟩ . Seven of the 

ten students who performed the rest of the procedure found the conjugate transpose as  !⟨+| =
 !
!
⟨+|  − !

!
𝑖 ⟨−|  and substituted this into the probability formula 𝑃!,! =  !⟨+|𝜓⟩

!
 to find 

𝑃!,! = ( !
!
⟨+|  − !

!
𝑖 ⟨−|)( !

!"
|+⟩ + !!

!"
|−⟩ )  

!
. They then distributed and used the orthonormality 

properties, ⟨+|+⟩ = 1 , ⟨−|−⟩ = 1 , and ⟨+|−⟩ = 0  to simplify the equation to be 𝑃!,! =
!
!"

!
, 

which gave a probability of  !"
!"

. 
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Students’ Conceptual Knowledge of Linear Algebra Underlying These Procedures 
As the students performed this procedure, they demonstrated conceptual knowledge of the linear 

algebra concepts of change of basis and properties of orthonormal bases. All of the students 
recognized a need to change the basis for this problem. They often explicitly acknowledged that they 
could not calculate this inner product without performing a change of basis. For instance, A13 
claimed, “you can’t just multiply out in, when they’re [the vectors are] in different bases.” As C6 
described how this problem was related to change of basis, she claimed, “you can’t do anything until 
you’re in the same basis.” The students each demonstrated conceptual understanding of why a 
change of basis was necessary in this task. Other students noted that performing the change of basis 
made the calculation simpler. For instance, in A8’s change of basis procedure described above, 
changing the basis of |𝜓⟩ to express the ket as a linear combination of y-basis kets allowed him to use 
the simple procedure of squaring the norms of coefficients of y-basis kets. Students who used the 
second procedure discussed how changing basis makes the calculations simpler because they can use 
orthonormality property of the bases. 

The students’ motivation for selecting the procedure of changing the basis was the ability to take 
advantage of these properties of an orthonormal basis. A21 claimed it was necessary to change basis 
in order to make assumptions about ⟨+|−⟩ = 0. C5 also suggested that a change of basis was 
necessary for the “inner products to be nice.” The students demonstrated conceptual understanding of 
properties of orthonormal bases, which underlie their procedures for this task. Their procedures were 
particularly dependent on the fact that the y-basis and the z-basis are both orthonormal, which implies 
that ⟨+|+⟩ = 1, ⟨−|−⟩ = 1, and ⟨+|−⟩ = 0. 

Discussion 
As the students used the change of basis procedure in this quantum mechanics problem, they 

demonstrated conceptual understanding of the orthogonality and normality properties of basis vectors 
and the associated inner product relations of + + = 1, ⟨−|−⟩ = 1, and ⟨+|−⟩ = 0. The students 
seemed to draw on their understanding of the principles underlying this procedure as they performed 
the probability calculation and justified their choice of procedure. Their conceptual understanding of 
these mathematical properties seemed to support them in their choice of procedure and their 
implementation of it. Baroody et al. (2007) suggested that students’ conceptual knowledge can 
supports students’ flexibility in applying procedures. Our study further illustrates how students’ 
conceptual understanding of linear algebra concepts can be useful in supporting their flexibility in 
performing procedures in quantum mechanics contexts.  

In this quantum mechanics problem, the students’ change of basis approaches involved employing 
several mathematical properties. However, their method for performing the change of basis though 
algebraic substitution is different from how they would perform a change of basis in a linear algebra 
course, which typically involves the use of a change of basis matrix. Physics students may experience 
challenges in using their understanding of linear algebra to solve problems in quantum mechanics 
contexts. Therefore, we suggest that future research can address how physics students transfer their 
understanding of change of basis across linear algebra and quantum mechanics contexts. Researchers 
can particularly focus on how physics students resolve differences they experience as they make 
connections across these disciplines. 
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Researchers have identified both the affordances of engaging students in symbolization activities and 
students’ difficulties in meaningfully representing contexts through algebraic expressions/formulas. 
In a semester-long teaching experiment, two pre-service teachers demonstrated their conflicting 
meanings for formulas with their images of a context when engaging in a task about a dynamic 
geometric object. The two students could construct both normative formulas by reasoning with a 
context and descriptions of covariational relationships between quantities within the context, but 
both still struggled to relate their formulas and quantitative relationships to one another. This result 
highlights the importance of attending to what students’ formulas mean to them, which for the 
students in this study, could be either a way of “solving” or “relating” quantities. 

Keywords: Precalculus, Algebra and Algebraic Thinking, Cognition, Teacher Education - Preservice 

Several researchers have identified students’ difficulties with symbolization within formulas, 
equations, etc. and others have illustrated students’ ability to construct their own representational 
systems (e.g., Izsák, 2003). To support pre-service teachers in working with their future students, it is 
important to start with understanding what they know and similarly, understanding where 
perturbations (i.e., cognitive conflict) might occur. In this study, I explore two secondary 
mathematics pre-service teachers’ (heretofore, students’) meanings for formulas, particularly 
focusing on the relationship between students’ images of context (i.e., the quantities they construct 
within contexts) and their associated formulas. To do so, I draw on two main bodies of research: 
symbolization activity and covariational reasoning—reasoning involving how two quantities change 
in tandem with each other (Carlson, Jacobs, Coe, Larsen, & Hsu, 2002). The research objective of 
this study builds on these researchers’ findings through a teaching experiment with two students and 
is focused on learning about the mental operations involved in students’ construction of formulas via 
reasoning with dynamic objects. Specifically, here, I focus on the students’ meanings for an area 
formula for a parallelogram. The two students expressed conflicting meanings for a formula and its 
associated context. I describe these two students’ meanings for their formulas and discuss the 
implications on students’ symbolization activity based on their conflicting meanings and how they 
resolved them. 

Background and Theoretical Perspective 
In an effort to distinguish between terms used throughout the results section, I adopt Thompson and 

Carlson’s (2017) definitions of constants and variables as students envisioning the following: a 
constant is an image involving a quantity as having a value that does not vary ever and a variable 
involves a quantity’s value varying within a setting.  I further define an undetermined constant as one 
in which the individual considering a quantity has not established a unit of measure, but anticipates 
needing to do so in order to produce a value (cf., unknown constant). The definition of variable 
relates to the notion of covariational reasoning proposed (i.e., the quantities co-varied are variables) 
and is also compatible with Küchemann’s (1981) definition of a variable as a letter “seen as 
representing a range of unspecified values, and a systematic relationship is seen to exist between two 
such sets of values” (p. 104). Lastly, I emphasize that an individual using a letter (or any other 
marking) as a symbol for a constant, parameter, or variable requires the individual to re-present that 
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letter as a quantity or quantitative relationship within a situation. That is, a letter in itself is not a 
representation; the marking is the figurative material that results from an individual’s operations.  

Methods and Task 
This study was part of a semester-long teaching experiment (Steffe & Thompson, 2000) with two 

secondary mathematics pre-service teachers at a large public university in the southeastern U.S. The 
students were selected from a pre-calculus secondary content course based on their results of a 
modified version of the MMTSM assessment (Thompson, 2012) and a pre-interview showing that the 
students had differing ways of reasoning about quantitative relationships. This report focuses on a 
task that occurred in Lily’s hour-long teaching sessions 9-12 (of 12) and Dahlia’s teaching sessions 
6-9 (of 10). As a result of open and axial coding of the video recordings and transcripts of the lessons 
and applying the definitions for constants and variables, I describe how Lily and Dahlia constructed 
and interpreted their conflicting images. 

I use the Moving Angles Task to discuss students’ representational activity and construction of 
conflicting images. In this task, students were given the manipulative in Figure 1a and the prompt, 
“Describe the relationship between the area inside the shape (shape formed by two pairs of parallel 
lines) and one of the interior angles of the shape (up to a straight angle).” After initial discussions, 
both students received a sketch in a dynamic geometric environment (DGE) (Figure 1b) to support 
their exploration (which also included dynamic magnitude bars which are outside of the scope of this 
paper). The data was analyzed using generative and axial approaches (Corbin & Strauss, 2008) in 
order to construct models of the mathematics of the students (Steffe & Thompson, 2000). For a more 
detailed description of this task and insights into how this task has supported PSTs’ covariational 
reasoning with equations, see Stevens (2018). 

 
     (a)                                                                         (b)        

Figure 1: The Moving Angles Task (a) manipulative and (b) sketch within a DGE 

Results 
Lily’s Conflicting Images 

Lily originally focused on exploring the covariational relationships between angle measure 
(specifically for ∠DAB), height of the parallelogram, and the area of the parallelogram. After much 
deliberation, she concluded (as illustrated in Figure 2a) that equal changes in height corresponded 
with equal changes in area (i.e., “when the height was partitioned in decreasing equally, so was the 
area”), and in turning the angle clockwise from a right angle, the angle “decreases by decreasing 
amounts.” 
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(a)                                                                                       (b)        
Figure 2: (a) Lily’s exploration of covariational relationships within a context (b) Lily’s reasoning 

with a static parallelogram  
After her exploration, I asked Lily to “write an equation that represents the relationship that you’re 

talking about between the angle measure and the area of the parallelogram.” After several minutes, 
Lily drew a new parallelogram and stated that, “You can find this height [of the parallelogram] using 
sine and cosine” and produced the normative formula A=b(sin(θ)*hyp), where A=area of 
parallelogram, θ= m∠DAB in Figure 1b, and hyp= length of the hypotenuse in triangle in Figure 2b. 
In contrast to her drawing in Figure 2a, Lily said she did not see angle measure and height changing 
in her drawn parallelogram in Figure 2b. I interpret this description to indicate that Lily re-presented 
the symbols in her formula as undetermined constants of quantities she constructed from a static 
shape. 

Lily indicated that her formula conflicted with her image of the relationships between quantities in 
the dynamic context, “Because I don’t know how to talk about it when I know this is true [pointing to 
statement that from 0 to 90 degrees, angle measure increases so height increases so area increases]. 
I don’t know how to relate it [her statement] to this part [her parenthetical in her formula].” She 
stated that the confusion stemmed from her understanding of her formula (Figure 2b) as “just 
solving, not relating,” where relating referred to seeing quantities (i.e., angle measure, height) as 
changing. In sum, to her, Lily, in constructing her formula, thought she was appropriately re-
presenting a procedure for calculating area measures for static parallelograms but not the 
covariational relationships she constructed through her reasoning with the dynamic parallelogram. 
Dahlia’s Conflicting Images 

Like Lily, Dahlia identified a non-linear relationship between angle measure and area of the given 
shape, and she constructed a formula similar to Lily’s formula in Figure 2b using similar reasoning 
(Figure 3a). Unlike Lily, Dahlia also provided a unit circle meaning for sine and re-presented the 
segment corresponding to the hypotenuse of the right triangle in Figure 3a also as both a hypotenuse 
of a triangle and the radius of the circle (see Figure 3b). Moreover, she re-presented a relationship 
between changing quantities within her drawn parallelogram and formula; she described y as “not 
moving” and z and θ as “changing” in her figure and formula. 

Nevertheless, Dahlia could not answer the question, “Why would we multiply a portion of the 
radius [her description of sin(θ)] by the radius [her description of y]?”. Thus, although Dahlia could 
construct a formula that re-presented varying quantities in a situation by reasoning with trigonometric 
relationships, her formula still conflicted with her image of the context. This conflict occurred 
because she thought that to calculate the area of a parallelogram, she would need to multiply the base 
length and height of the parallelogram together, but her formula indicated to her that the side length, 
h, of the parallelogram was also needed to obtain an area measurement. Thus, although Dahlia 
thought she appropriately re-presented her image of dynamic quantities in the context as a formula 
based on her reasoning with trigonometric ratios, she struggled to relate the symbols to her image of 
the context. 
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                            (a)                                         (b)        

Figure 3: (a) Dahlia’s formula for the area of a parallelogram with cosine related work dimmed for 
the reader (NOTE: m refers to AD, not the underlined segment in a different color) and (b) 

Dahlia’s diagram showing a unit circle approach for the sine relationship 

Discussion and Implications 
Researchers have often praised the symbolization activity of students developing their own symbols 

through representational activity, and this study is not an effort to discourage the use of contexts to 
support students’ meanings for formulas, equations, symbols, etc. Rather, this study indicates the 
importance of attending to the ways in which students’ symbolization activity re-presents their 
images of quantities and their relationships within given contexts. More specifically, Lily’s example 
indicates the importance of attending to students’ meanings for formulas (equations, functions, etc.) 
as ways to “solve for” or “figure out” values for constant quantities within static situations. This way 
of thinking about formulas was problematic for Lily even when she produced a normative formula 
because, for her, she was not re-presenting relationships between changing quantities with this 
formula. More generally, this view of formulas is problematic in students’ construction of variables 
because variables occur when a student re-presents values varying within a (dynamic) setting. Lastly, 
Dahlia’s example points to the importance of understanding students’ construction and role of units 
within their symbolization activity, particularly in regards to measurement contexts. By perturbing 
these meanings for formulas by attending to, for example, the role of units or the idea of a symbol as 
representative of a variable, students can accommodate their meanings for formulas to fit with their 
images of quantitative relationships in the context. 
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The first fundamental theorem of calculus relates differential and integral calculus, one of its 
important aspects according to Bressoud (2011) is that it shows the existence of two ways of 
calculating an integral: with the limit of a Riemann sum and by an antiderivative. Larsen, 
Marrongelle, Bressoud and Graham (2017) indicate that calculus is a barrier to the academic progress 
of many students and that there is a need for research that seeks to develop proposals for instruction 
to improve the understanding of its concepts. Therefore, with the idea of carrying out this type of 
research in the future, the present study seeks to identify the common interpretation of the first 
theorem of calculus and whether it is useful in solving contextual problems. Answering these 
questions will provide some elements to develop a proposal for instruction. 

This study involved 18 students between the ages of 18 and 21 from engineering careers at a 
university located in Mexico City, who had completed a calculus course. The instrument was a set of 
three problems, in two, we propose contextual situations that can be solved by applying the first 
fundamental theorem of the calculus or by performing integration and derivation operations (one 
situation is about the ratio of change of the volume of water contained in a tank, with respect to time, 
where water falls to a variable ratio; the other is about the ratio of change of the volume of water 
contained in a cylindrical tank with respect to the height of water). In the last problem, the same type 
of situation is posed in abstract form: If 𝐹(𝑥) = 𝑓 𝑡 𝑑𝑡!

! , obtain 𝐹′(𝑥), justify your answer. 
The application of the instrument was done in a university classroom, participants were provided 

with the set of problems and paper sheets to write down their answers and were given 45 minutes to 
answer them. An analysis of students' responses to the problems was carried out using constant 
comparative method to form different categories, from which, one of the conclusions obtained is the 
following: 

The common interpretation of the first fundamental theorem of calculus is that it establishes that 
integration and derivation are inverse operations, since in 71% of the answers of the shown problem 
(for which only 14 answers were given) used this argument. However, in 50% of these responses, 
mistakes are made by misusing notation when "cancelling" the inverse operations. This situation 
suggests that students, when applying the first fundamental theorem of calculus in the mentioned 
way, present a pseudo-conceptual behavior, (concept proposed by Vinner (1997)); since the way they 
proceed (making mistakes with the notation when "cancelling" the operations of integration and 
derivation when they appear together) seems to be linked to the algebraic representation of the 
situation ( !

!"
𝑓 𝑡 𝑑𝑡!

! ), not based on the concepts involved. 
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El primer teorema fundamental del cálculo relaciona el cálculo diferencial e integral, uno de sus 
aspectos importantes según Bressoud (2011) es que muestra la existencia de dos maneras de calcular 
una integral: con el límite de una suma de Riemann y con una antiderivada. Además, señala que se 
trata de un tema conceptualmente complejo. Larsen, Marrongelle, Bressoud y Graham (2017) indican 
que el cálculo es una barrera para el progreso académico de muchos estudiantes  y que hace falta 
investigación que busque desarrollar propuestas de instrucción para mejorar la comprensión de sus 
conceptos, por lo que con la idea de realizar en un futuro una investigación de este tipo, se realiza el 
presente estudio buscando identificar cuál es la interpretación común que tienen los estudiantes sobre 
el teorema fundamental del cálculo y si ésta resulta útil al resolver problemas contextuales. Contestar 
estas preguntas aportará algunos elementos para desarrollar una propuesta de instrucción. 

En este estudio participaron 18 estudiantes de entre 18 y 21 años de las carreras de ingeniería de una 
universidad ubicada en la ciudad de México, los cuales habían concluido un curso de cálculo. El 
instrumento fue una serie de tres problemas, en dos, se plantean situaciones contextuales que se 
pueden resolver aplicando el primer teorema fundamental del cálculo o realizando las operaciones de 
integración y derivación (una situación es sobre la razón de cambio del volumen de agua contenido 
en un depósito, respecto del tiempo, donde el agua cae a una razón variable; la otra es sobre la razón 
de cambio del volumen de agua contenido en un depósito cilíndrico respecto a la altura del agua). En 
el último problema, se plantea en abstracto el mismo tipo de situación: Si 𝐹 𝑥 = 𝑓(𝑡)!

! 𝑑𝑡, 
obtenga 𝐹´(𝑥), justifique su respuesta.  

La aplicación del instrumento se realizó en un aula de la universidad, se les proporcionó a los 
participantes la serie de problemas y hojas de papel para escribir sus respuestas, y se les dio 45 
minutos para contestarlo. Se realizó el análisis de las respuestas de los estudiantes a los problemas 
mediante el método comparativo constante para formar diferentes categorías, de donde, una de las 
conclusiones obtenidas es la siguiente:  

La interpretación común de los estudiantes sobre el primer teorema fundamental del cálculo es que 
establece que la integración y derivación son operaciones inversas, pues en el 71% de las respuestas 
del problema mostrado (para el cual solo se tuvieron 14 respuestas) se utiliza dicho argumento. Sin 
embargo, en el 50% de estas respuestas se cometen errores al hacer uso inadecuado de la notación al 
momento de “cancelar” las operaciones inversas. Esto sugiere que los estudiantes al aplicar el primer 
teorema fundamental del cálculo de la forma mencionada, presentan un comportamiento pseudo-
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conceptual, (concepto propuesto por Vinner (1997)); pues la forma en que proceden (cometiendo 
errores con la notación al “cancelar” las operaciones de integración y derivación cuando aparecen 
juntas) parece estar ligada a la representación algebraica de la situación ( !

!"
𝑓 𝑡!

! 𝑑𝑡 ), no 
fundamentada en los conceptos involucrados. 
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In the present investigation, the aim is to characterize and analyze the role of those elements 
necessary for the construction of Cartesian ideas in secondary school students (13-15 years old). 
After a bibliographic review about the construction and interpretation of Cartesian graphs, it was 
found that those elements that characterize a graphical functional thought are determined by: 
covariation, variation and unification of a reference system (Clement, 1989; Caballero, 2012; 
Radford, 2008). The notion of co-variation is defined as the relationship between the simultaneous 
variations of two quantities (Ferrari, 2005), while the variation in our research is characterized as the 
quantification of a change, that is, the modification of state, appearance, behavior, condition of a 
body, system or object (Caballero, 2012). Finally, the unification of a Reference System refers to 
unifying the phenomenological space with the Cartesian space, resulting in the starting point of a 
movement (Radford, 2009a). This refers to the point from which it is possible to define positions, 
organize actions and interpretations.  

According to the above, in the present investigation the following question is posed: what is the role 
of variation, covariation and the unification of a reference system in the development of Cartesian 
ideas associated with graphs? So, the objectives that are set are: to propose a didactic alternative to 
start the study of the notion of function / graph different from the strategy that is commonly 
approached within the school mathematical discourse: the equation-table-graph triad.  

Likewise, to develop meanings in the students regarding the notion of function and graph, 
articulating the notions of variation, co-variation and frame of reference, with the support of 
educational technology such as graphing calculators and motion sensors. 

This ongoing research is supported by the Theory of Objectification, which conceives teaching and 
learning as a single process that involves both knowing and being, where the objective of 
mathematical education lies in a political, social, and historical effort. and cultural aimed at the 
creation of reflective, ethical and critical subjects in historically and culturally constituted 
mathematical practices, and that reflect on new possibilities of those practices (Radford, 2019). 
Knowledge is developed in human activity, which is called joint work since it is a social form of joint 
effort through which individuals produce their means of subsistence while producing themselves as 
human beings (Radford, 2009b). 

This research has a qualitative cut, since it seeks to analyze the productions carried out by a group 
of secondary school students (13-15 years old) in four guided activities that involve the articulation 
of the three notions previously reported, with the support of motion sensors in order to link them and 
arrive at Cartesian notions associated with a graph. 

Currently the research is in process and an experimental instrument consisting of an activity where 
the articulation of the three notions is proposed has been developed. In this instrument, it is proposed 
by asking students to freely describe the movement produced by a cyclist when going down a hill 
that will be previously drawn. Another type of task within the activity will be to ask students to draw 
two hills with the same height but different gradients and they will ask themselves in which of them 
the cyclist will be able to descend faster and why. 
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For the analysis of the students' productions, a multimodal analysis will be carried out in which the 
cognitive, body and perceptual resources used by the students are considered, that is, dialogues, body 
movements and their written representations will be analyzed (Vergel, 2016). This is expected to 
have results that allow a reflection on the importance of the three elements described to strengthen 
the construction of Cartesian ideas associated with graphs in basic level students. 
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En la presente investigación se pretenden caracterizar y analizar el rol de aquellos elementos 
necesarios para la construcción de ideas cartesianas en estudiantes de nivel Secundaria (13-15 años). 
Posterior a una revisión bibliográfica alrededor de la construcción e interpretación de gráficas 
cartesianas, se encontró que aquellos elementos que caracterizan a un pensamiento funcional gráfico 
están determinados por: la covariación, la variación y la unificación de un sistema de referencia 
(Clement, 1989; Caballero, 2012; Radford, 2008). La noción de co-variación se define como la 
relación entre las variaciones simultáneas de dos cantidades (Ferrari, 2005), mientras que la variación 
en nuestra investigación se caracteriza como la cuantificación de un cambio, es decir, la modificación 
de estado, apariencia, comportamiento, condición de un cuerpo, sistema u objeto (Caballero, 2012). 
Por último, la unificación de un Sistema de Referencia se refiere a unificar el espacio 
fenomenológico con el espacio cartesiano, resultando en el punto inicial de un movimiento (Radford, 
2009a). Esto se refiere al punto a partir del cual es posible definir posiciones, organizar acciones e 
interpretaciones.  

De acuerdo a lo anterior, en la presente investigación se plantea la siguiente pregunta: ¿cuál es el 
rol de la variación, covariación y la unificación de un sistema de referencia en el desarrollo de ideas 
cartesianas asociadas a las gráficas? De manera que los objetivos que se plantean son: proponer una 
alternativa didáctica para iniciar el estudio de la noción de función/gráfica diferente de la estrategia 
que comúnmente se aborda dentro del discurso matemático escolar: la triada ecuación-tabla-gráfica. 
Asimismo, desarrollar significados en los estudiantes con respecto a la noción de función y gráfica, 
articulando las nociones de variación, co-variación y marco de referencia, con el apoyo de tecnología 
educativa como calculadoras graficadoras y sensores de movimiento.  

Esta investigación en proceso se apoya en la Teoría de la Objetivación, la cual concibe la enseñanza 
y el aprendizaje como un único proceso que implica tanto el saber como el ser, donde el objetivo de 
la educación matemática reside en un esfuerzo político, social, histórico y cultural dirigido a la 
creación de sujetos reflexivos, éticos y críticos en prácticas matemáticas constituidas histórica y 
culturalmente, y que reflexionan sobre nuevas posibilidades de esas prácticas (Radford, 2019). El 
saber se desarrolla en la actividad humana, que se denomina labor conjunta ya que es una forma 
social de esfuerzo conjunto a través de la cual los individuos producen sus medios de subsistencia 
mientras se producen a sí mismos como seres humanos (Radford, 2009b). 
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Esta investigación tiene un corte cualitativo, ya que se busca analizar las producciones que realice 
un grupo de estudiantes de nivel Secundaria (13-15 años) en cuatro actividades guiadas que 
involucren la articulación de las tres nociones reportadas anteriormente, con apoyo de sensores de 
movimiento para poder vincularlos y llegar a nociones cartesiandas asociadas a una gráfica.  

Actualmente la investigación se encuentra en proceso y se ha desarrollado un instrument 
experimental consistente en una actividad donde se plantea la articulación de las tres nociones. En 
dicho instrument se plantea por solicita a los estudiantes que describan de manera libre el 
movimiento que produce un ciclista al bajar por una colina que se les dibujará previamente. Otro tipo 
de tareas dentro de la actividad será la de solicitarle a los estudiantes que dibujen dos colinas con 
misma altura pero gradientes diferentes y se preguntará en cuál de ellas el ciclista podrá bajar más 
rápido y por qué.  

Para el análisis de las producciones de los estudiantes se llevará a cabo un análisis multimodal en el 
cual se consideran los recursos cognitivos, corporales y perceptuales que utilizan los estudiantes, es 
decir, se analizarán diálogos, movimientos corporales y sus representaciones escritas (Vergel, 2016). 
Se espera con ello, contar con resultados que permitan una reflexión sobre la importancia de los tres 
elementos descritos para robustecer la construcción de ideas cartesianas asociadas a las gráficas en 
estudiantes de nivel básico.  
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The findings of the research are shown from the perspective of mathematical modeling in the 
classroom, as a study process of phenomena or situations that could surface from everyday social and 
cultural contexts of the students, or from other sciences (Villa-Ochoa, 2010). To answer the question 
how mathematical modeling of authentic problems contributes to the study on the concept of integral 
by university students, we assume a mathematical model as a set of mathematical representations and 
relations for explaining, predicting and solving aspects of a phenomenon (Villa-Ochoa y otros, 
2009a). An authentic problem is proposed (Kaiser y Schwarz, 2010) from the analysis of a simulation 
in GeoGebra of the download speed of a file, following the phases of ACODESA methodology. 
(Hitt, 2007).  

The research was carried out with the participation of four students (aged 16-19) from a Colombian 
public university who passed the differential calculus course and had access to Aula Virtual 
GeoGebra. For the analysis of the data, the responses and written productions of the students in the 
Aula Virtual, and the recording of the responses to the structured interview (Goldin, 200) applied on 
the synchronic encounters were taken into account. 

As an initial finding, the models built allowed to recognize the integral as the accumulated size of 
the file that has been downloaded until an instant of time t and was calculated as the area below the 
speed function graphic. Initially, the speed was simulated by a constant function, so the students 
resorted to the idea of inscribing a rectangle which base was the value of t and the height was the 
value of speed to find the size. Then, the speed was simulated by a lineal function with a slope of 0,1 
for which the students divided the graphic into two regions and provided a model that represents the 
area below the curve. Afterwards, the speed was simulated by a sinusoidal function with a behavior 
similar to that generated by an internet connection, in which the speed increases or decreases, so the 
students considered the regions of the area they know and brought it neat the curve. Each student 
found a different model, by taking as a common significance that the area below the curve 
represented the size of the file until a particular time t. 
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Se presenta resultados iniciales de una investigación desde una perspectiva de la modelación 
matemática en el aula de clase, como un proceso de estudio de fenómenos o situaciones que pueden 
surgir de contextos cotidianos, sociales y culturales de los estudiantes o de otras ciencias (Villa-
Ochoa, 2010). Para dar respuesta a la pregunta ¿Cómo la modelación matemática de problemas 
auténticos contribuye al estudio del concepto de integral a estudiantes universitarios?, asumimos un 
modelo matemático como un conjunto de representaciones y relaciones matemáticas para explicar, 
predecir y solucionar aspectos de un fenómeno (Villa-Ochoa y otros, 2009a). Se propone un 
problema auténtico (Kaiser y Schwarz, 2010), a partir del análisis de una simulación en GeoGebra 
del fenómeno de la velocidad de descarga de un archivo, siguiendo las fases de la metodología 
ACODESA (Hitt, 2007).  

La investigación fue realizada con cuatro estudiantes de una universidad pública colombiana (16-19 
años) que aprobaron el curso de cálculo diferencial, y que contaban con acceso al Aula Virtual 
GeoGebra. Para el análisis de los datos se tuvo en cuenta las respuestas y las producciones escritas de 
los estudiantes en el Aula y las grabaciones de respuestas a la entrevista estructurada (Goldin, 2000) 
aplicada en los encuentros sincrónicos. 

Como resultados iniciales se tiene que los modelos construidos, permitieron reconocer la integral 
como el tamaño acumulado del archivo que se ha descargado hasta un instante de tiempo t, y fue 
calculado como el área bajo la gráfica de la función velocidad. Inicialmente la velocidad fue 
simulada por una función constante, por lo que los estudiantes recurrieron a la idea de inscribir un 
rectángulo, donde la base fuera el valor de t y la altura el valor de la velocidad para hallar el tamaño. 
Luego la velocidad fue simulada por una función lineal con pendiente 0,1 para el cual, los estudiantes 
dividieron la gráfica en dos regiones y dieron un modelo que representa el área bajo la curva. 
Posteriormente la velocidad fue simulada por una función sinusoidal con un comportamiento similar 
al generado por conexión a internet, en los cuales la velocidad aumenta o disminuye, por lo cual los 
estudiantes tuvieron en cuenta las regiones de área que conocen y las aproximaron a la curva, 
encontrando cada estudiante un modelo diferente, pero tomando como significado en común el área 
bajo la curva estaba representando el tamaño de archivo hasta un determinado tiempo t. 
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In this research, quotient strategies and their influence on decision-making in situations that involve 
the comparison of probabilities are analyzed. In order to achieve this, classical probability situations 
modeled with urns were designed. In each situation, two urns with simple extraction, involving or not 
proportional relationships, were proposed to third grade secondary school students. The analysis 
was carried out through the categorization of the results based on the relationships established 
between the components of the urns (favorable, unfavorable and possible cases). The study 
concluded that when comparing probabilities, students not only resort to the quotient (ratio): 
favorable case numbers among the number of possible cases to make their choice, but to others 
where they also include unfavorable cases. 

Keywords: probability, problem solving 

Background and the problem proposal 
Proportional and probabilistic reasoning are closely related; both require quantitative and qualitative 

analysis, as well as inference and prediction of results. This statement follows from contrasting the 
definition of proportional reasoning by Lesh, Post and Behr (1988) with what Landín and Sánchez 
(2010) propose regarding the implications of probabilistic reasoning. In this way, both reasonings are 
not limited to numerical comparisons, and although some researchers have tried distinguishing these 
concepts from each other (see Hoemann and Ross, 1971), the work presented here does not focus on 
that distinction, but on incorporating them to extract and analyze those multiplicative strategies 
derived from comparison by quotient, considering as a means the resolution of situations modeled 
with urns. 

The strategies used by students when solving probability situations modeled with urns, as Alatorre 
(1994) points out, have already been studied by researchers such as: Piaget and Inhelder (1951), 
Maury (1984, 1986), Lecoutre (1984), Fischbein et al (1970), and Thornton and Fuller (1981). 
However, although the authors refer to some indicators of why and how the selections were made, 
the uncertainty remains if other types of choices can be presented other than the ones they comment 
on or what other relationships the students establish, as well as what comparison mechanisms 
underlie in these strategies that can reveal their complexity, such as those derived from proportional 
reasoning that demand “the ability to recognize, to explain, to think about, to conjecture about, to 
graph, to transform, to compare, to make judgments about, to represent, or to symbolize relationships 
of two simple types ”(Lamon, 1999). 

In the book for the secondary education teacher (Alarcón et al. 1994), as well as in works by Green 
(1988), Falk (1980), Aguas (2014), and Cañizares and Batanero (1997), situations with two urns have 
also been raised. Despite the fact that there are situations that can be modeled with them, the urns 
themselves are a rich model for working on probability or other topics in mathematics, as long as 
these are not seen as prerequisites for understanding it, but rather a context where they coexist and 
support each other. "use proportionality and a basic understanding of probability to make and test 
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conjectures about the results of experiments and simulations” (NCTM, 2000, p. 248), leads to the 
development and strengthening of constantly interacting content. Thus, the “facility with 
proportionality develops through work in many areas of the curriculum, including ratio and 
proportion, percent, […] and probability” (NCTM, 2000, p. 212). Therefore, the present research 
consists of analyzing the quotients that arise when comparing probabilities. The strategies followed 
by secondary education students are classified in order to delve deeper into the processes they carry 
out to establish a result. It is proposed to identify what elements they consider when making their 
comparisons (favorable, unfavorable or possible cases), what types of choices they make based on 
the relationships established and what the particularities of these relationships are, which are 
fundamental for this study, because what is intended is to obtain indications of how the different 
quotients that they establish influence their decisions. The study is oriented by the following question 
and research purpose:  

Research question: When solving probability situations, what are the quotients that secondary 
school students establish to make a choice? 

Purpose: To identify, analyze and classify the strategies followed by third grade students of 
secondary education students when solving situations of classical probability contextualized with the 
urn model, focusing attention on those strategies that involve comparing by quotient to see how they 
influence the decision-making.   

Method 
The research is qualitative with an instrumental case (Stake, 1999) made up of a group of 35 third 

grade students from secondary education in Mexico City. Ten situations were designed, with and 
without proportionality, which involved the comparison of probabilities. The urn model was used to 
design the situations. From Lamon's (1993) classification, the problems posed correspond to those of 
part-part-whole, which Özgün-Koca (2009) includes in his study within those of numerical 
comparison, because most of the problems that were posed can be assumed as discrete sets where a 
whole corresponds to possible cases and subsets of that whole to favorable and unfavorable cases, 
respectively. For the implementation of the situations, three work sessions of 50 minutes were used. 
In each session, students solved three to four situations individually without instruction (prior or 
during implementation) of the resolution, which favored independent thinking and led to the 
identification and analysis of various strategies. In this paper it was interesting to illustrate those 
related to the comparison by quotient. 

Theoretical Interpretative Framework 
As a result of the analysis, an interpretative framework was constructed for the classification of the 

strategies derived from the quotient comparison that emerged from the implementation. Two types of 
comparisons were identified: a) additive — through a difference, and, b) multiplicative — through a 
quotient. The first implies an absolute thought, and the second a relative one (Lamon, 1999); the 
multiplicative one is interesting to illustrate in this paper. Table 1 shows sixteen expressions 
identified by comparing the elements of two urns by quotient, where F represents the number of 
favorable cases, D the number of unfavorable cases and F + D corresponds to the number of possible 
cases. Subscripts 1 and 2, in 𝐹!, 𝐹!, 𝐷! and  𝐷! indicate the reference point, which states whether the 
favorable or unfavorable cases correspond to the first or second urn, respectively. 

 
Table 1: Relationships that are established when comparing by quotient 

Reference point 
𝐹 

Reference point 
𝐷 

Reciprocal of reference 
point 𝐹 

Reciprocal of reference 
point 𝐷 

Expression i Expression ii Expresion iii Expression iv 
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!!
!!

 with !!
!!

 !!
!!

 with !!
!!

 !!
!!

 with !!
!!

 !!
!!

 with !!
!!

 

Fraction: Part – Part Fraction: Part – Part 
Ratio: When the antecedent is 𝐹 and 𝐷 and the 

consequent is  𝐹 and 𝐷 
Ratio: When the antecedent is 𝐹 and 𝐷 and the 

consequent is 𝐹 and 𝐷 
Reference point       

Urn 1 
Reference Point       

Urn 2 
Reciprocal of reference 

point Urn 1 
Reciprocal of reference 

point Urn 2 
Expression v Expression vi Expresion vii Expresion viii 
!!
!!

 with !!
!!

 !!
!!

 with !!
!!

 !!
!!

 with !!
!!

 !!
!!

 with !!
!!

 

Fraction: Part – Part Fraction: Part – Part 
Ratio: When the antecedent is  𝐹 and the 

consequent is 𝐷 
Ratio: When the antecedent is 𝐷 and the 

consequent is  𝐹 
Expression ix Expression x Expression xi Expression xii 
!!

!!!!!
 with !!

!!!!!
 !!

!!!!!
 with !!

!!!!!
 !!!!!

!!
 with !!!!!

!!
 !!!!!

!!
 with !!!!!

!!
 

Fraction: Part-Whole. When the part is  𝐹 Fraction: Whole-Part. When the part is 𝐹 
Ratio: When the antecedent is 𝐹 and the 

consequent is  𝐹 + 𝐷 
Ratio: When the antecedent is  𝐹 + 𝐷 and the 

consequent is  𝐹 
Expression xiii Expression xiv Expression xv Expression xvi 
!!

!!!!!
 with !!

!!!!!
 !!

!!!!!
 with !!

!!!!!
 !!!!!

!!
 with !!!!!

!!
 !!!!!

!!
 with !!!!!

!!
 

Fraction: Part-Whole. When the part is  𝐷 Fraction: Whole-Part. When the part is  𝐷 
Ratio: When the antecedent is 𝐷 and the 

consequent is  𝐹 + 𝐷 
Ratio: When the antecedent is  𝐹 + 𝐷 and the 

consequent is 𝐹 
 
In the comparison by quotient (see Table 1), considered as a fraction or ratio, they appear during the 

relationships established with the elements that make them up (part-part, part-whole, whole-part and 
antecedent-consequent), using strategies to compare them (see Table 2); where in the part-part 
relationship a, b, c and d are the parts; in the part-whole a and c are the parts and b and d are the 
whole; in whole-part a and c are the whole and b and d are the parts; in the antecedent-consequent 
relationship a and c are the antecedents and b and d are the consequents. 

 
Table 2: Strategies to compare the relationships established in Table 1 

1st Strategy: Fraction-ratio (part-part, part-whole and whole-part) with the use of: 
Multiples: If multiplied !

!
!
!

; and !
!

!
!

, the expressions !"
!"

 and !"
!"

 are obtained, and as  𝑏𝑐 = 𝑎𝑑 we 

can then establish the proportion !"
!"
= !"

!"
, which would be equivalent to: !

!
= !

!
. This indicates that the 

sets represented by 𝑎 and 𝑏, and 𝑐 and 𝑑 are equiprobable. 
Cross products: Given the ratios !

!
 and !

!
, when making the products 𝑎𝑑 and 𝑏𝑐, equality is obtained as 

𝑎𝑐 = 𝑏𝑑, then the following proportion is established: !
!
= !

!
. This indicates that the sets represented by 𝑎 

and 𝑏, and 𝑐 and 𝑑 are equiprobable. Cross products are a particular case of using multiples to compare 
ratios or fractions. 
Submultiples: By simplifying !

!
, !
!

 is obtained, and by simplifying !
!

, !
!

 is also obtained; then the 
following proportion is established: !

!
= !

!
, which indicates that the sets represented by 𝑎 and 𝑏, and 𝑐 and 

𝑑 are equiprobable. 
Adding and subtracting fractions or ratios: Given the ratios !

!
 and !

!
, when subtracting !

!
− !

!
, the 
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difference of !
!"
= 0 is obtained; then the following proportion is established: !

!
= !

!
. This indicates that 

the sets represented by 𝑎 and 𝑏, and 𝑐 and 𝑑 are equiprobable. 
Adding and subtracting fractions or ratios in their decimal form: It is part of the fraction-ratio 
relationship, which allows for representation in decimal form to compare and make choices. By 
simplifying !

!
, 𝑚 is obtained, and by simplifying !

!
, 𝑚 is also obtained, where 𝑚 is a decimal number; 

then the following proportion is established: !
!
= !

!
. This indicates that the sets represented by 𝑎 and 𝑏, 

and 𝑐 and 𝑑 are equiprobable. 
2nd Strategy: The relationship within. It is presented in an additive or multiplicative way. 
Additive form: Given the ratios !

!
 and !

!
, if 𝑎 ± 𝑎 !

!
= 𝑏, and 𝑐 ± 𝑐 !

!
= 𝑑, or if           𝑏 ±

𝑏 !
!

= 𝑎, and 𝑑 ± 𝑑 !
!

= 𝑐, then the following proportion is established: !
!
= !

!
. This indicates 

that the sets represented by 𝑎 and 𝑏, and 𝑐 and 𝑑 are equiprobable. 
Multiplicative form: Given the ratios !

!
 and !

!
, if 𝑎 !

!
= 𝑏 and 𝑐 !

!
= 𝑑, or if      𝑏 !

!
= 𝑎, and 

𝑑 !
!

= 𝑐 , then the following proportion can be established: !
!
= !

!
. This indicates that the sets 

represented by 𝑎 and 𝑏, and 𝑐 and 𝑑 are equiprobable. 
3rd Strategy: Rule of three. A quaternary relationship is established where one of the four elements is 
unknown and the other three must be related to find its value. This value is compared with that obtained 
in another similar quaternary relationship. 
To obtain percentages: Given the ratios !

!
 and !

!
, if !

!
 is multiplied by 100 in order to obtain the percentage 

of 𝑎 with respect to the percentage of 𝑏, it is considered 100%. Also, when !
!
 is multiplied by 100 to get 

the percentage of 𝑐 with respect to the percentage of 𝑑, it is considered 100%. If ! !""
!

= ! !""
!

, then 

the following proportion could be established: !
!
= !

!
, which would indicate that the sets represented by 𝑎 

and 𝑏, and 𝑐 and 𝑑 are equiprobable. 
To obtain 𝑎, 𝑏, 𝑐 or 𝑑: given the ratios !

!
 and !

!
, if !"

!
= 𝑑 and !"

!
= 𝑏, and 𝑑 turns out to be a multiple 

or submultiple of 𝑏, then the following proportion can be established: !
!
= !

!
. This indicates that the sets 

represented by 𝑎 and 𝑏, and 𝑐 and 𝑑 are equiprobable. 
4th Strategy: The relationship between. It is presented in an additive or multiplicative way. 
Additive Form: Given the ratios !

!
 and !

!
, if 𝑎 ± 𝑎 !

!
= 𝑐 , and 𝑏 ± 𝑏 !

!
= 𝑑 ,                                  

or if 𝑐 ± 𝑐 !
!

= 𝑎, and 𝑑 ± 𝑑 !
!

= 𝑏, then the following proportion is established: !
!
= !

!
. This 

indicates that the sets represented by 𝑎 and 𝑏, and 𝑐 and 𝑑 are equiprobable. 
Multiplicative form: Given the ratios !

!
 and !

!
, if 𝑎 !

!
= 𝑐 and 𝑏 !

!
= 𝑑, or if 𝑐 !

!
= 𝑎 and 

𝑑 !
!

= 𝑏, then the following proportion is established: !
!
= !

!
. This would indicate that the sets 

represented by 𝑎 and 𝑏, and 𝑐 and 𝑑 are equiprobable. 
 
If the previous relationships are not in proportion, then the sets represented by a and b, and c and d 

would not be equiprobable, therefore, it would be necessary to identify which of the two sets is more 
likely based on the cases (favorable, unfavorable or possible) that were considered and the 
relationships that were established to make the comparisons. In the aforementioned strategies, the 
relationships within and between are considered by Noelthing (1980) when working with mixing 
situations, and although this researcher only considers relationships within and between of a 
multiplicative nature, Alatorre (1994) extends them to order relations of an additive or subtractive 
nature, but she does not consider them as it is done in this study using quotient comparison, as she 
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points out the differences without taking the basal amount into account, and from our perspective the 
additive form includes the basal amount when considering how many of how many. Quotient 
comparison is closely related to relative thinking, Lamon (1999) distinguishes this type of thinking as 
one where multiplicative structures are involved and differentiates it from absolute thinking where 
additive-type relationships are established. 

Analysis of Results 
For the purpose of this research, it is convenient to analyze the types of choices, the comparisons 

that are established, the strategies that are followed and the reference point that is considered in the 
comparison of probabilities, which is the meaning of the relationships that are given between the 
cases (favorable, unfavorable or possible). Table 3 illustrates the quantitative comparison by quotient 
and its implications in order to exemplify the monitoring of the strategies identified in the 
implementation. 

 
Table 3: Illustration of the type of choice, the strategy and the order relations identified in the 

quantitative comparison by quotient 
Choice based on Strategy (see Table 2) Relationships (see Table 1) 

 
Higher quotient; 

Lower quotient; or 
Equal quotient 

 

1st Fraction-ratio (part-part) Favorable-unfavorable v and vi 
Unfavorable-favorable vii and viii 

1st Fraction-ratio (part-whole)  

Favorable-possible ix and x 
Possible-favorable xi and xii 

Unfavorable-possible xiii and xiv 
Possible-unfavorable xv and xvi 

 
Consideration of favorable and unfavorable cases. The favorable and unfavorable cases of each set 

are compared by means of quotients (see expressions i, ii, iii, iv, v, vi, vii and viii in Table 1) and are 
chosen based on the highest, lowest or equal quotient. In the following, one of the strategies based on 
the choice of the highest quotient is exemplified. 

Choice based on the highest quotient. Strategy: Fraction-ratio, part-part – with or without the use of 
submultiples and their representation in decimal form. 

Order Relation: Favorable-Unfavorable. 
 

Situation I. In a fair there are 
two games of chance: a roulette 
wheel and an Urn. You can spin 
the roulette wheel and bet to 
land on the white slot, or you 

can attempt to extract a white ball in 
urn mixed with black ones without looking. In 
which game is there a greater probability of 
winning? Explain how you determined your 
answer.  

Student strategy. Example 1 (E1). Urn. There is a 
greater chance of winning at the urn. I was 
removing the median [half] to the colors of each 
game. In roulette they were the same colors and in 
the urn was a white ball rather than a black one and 
I saw that there was a 
better probability of 
winning. 

Figure 1: Student strategy. In example 1 (E1), the highest quotient is chosen.  
Quotient comparison (favorable-unfavorable) arriving at its decimal representation with the use of 

submultiples 
 

U r n a  1 Urna 2
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In E1, a comparison of favorable and unfavorable cases is presented. To simplify the comparison of 
variables, submultiples are used and it ends with a decimal representation. In expressions v and vi 
(see Table 1), it is chosen based on a higher quotient, because the quotients in these expressions 
represent the number of favorable for each unfavorable. On the contrary, if expressions vii and viii 
are presented, the choices will be correct only if chosen based on the lowest quotient, which 
represents the number of unfavorable for each favorable. Hence, the significance of order relations: 
favorable-unfavorable or unfavorable-favorable. 

Regarding the expressions i, ii, iii and iv of Table 1, correct choices would be provided if one 
considers the second quotient in i and iii; that is to say, this result is greater than the first quotient, 
whose elements are assigned the denominators of the comparative quotients. However, if it turns out 
to be less than the first, a correct choice is made if the set whose elements were assigned to the 
numerators is chosen. On the other hand, if expressions ii and iv are considered, the choice would 
also depend on the second quotient. If it turns out to be greater than the first quotient, the set that has 
remained in the numerators must be chosen. Yet, if it turns out to be less, a correct choice would be 
made if the set whose elements were in the denominators is chosen; this relates to the expressions i, 
ii, iii and iv, where the resulting quotients represent the number of favorable of a set for each 
favorable of the other, and in the same sense, the number of unfavorable of a set for each unfavorable 
of the other. 

Consideration of unfavorable and possible cases. The possible and unfavorable cases of each set 
are compared by means of quotients (see expressions xiii, xiv, xv and xvi in Table 1) and the choice 
is made based on the highest, lowest or equal quotient. In the following, one of the strategies based 
on equal quotient is exemplified. 

Choice based on equality of quotients. Strategy: Fraction-ratio, part-whole – with or without the use 
of submultiples and their representation in decimal form. 

Order Relation: Unfavorable-Possible 
 

Situation II. A teacher shows her students two 
black bags; the first bag contains 9 black and 6 
white marbles, and the second bag contains 15 
black and 10 white marbles. Which bag should 
they choose so that there is a greater probability 
that they will select a black marble on their first 
attempt? Explain the procedure you followed to 
make the choice. 

Student strategy. Example 2 (E2). Any bag. Any 
bag has the same probability.  

 Bag 1 Bag 1 
White Marbles
Total Marbles

 9
15

 15
25

 

Probability 0.6 0.6 
 

Figure 2: Student strategy. In example 2 (E2), the equal quotient is chosen.  
Quotient comparison (unfavorable-possible) reaching its decimal representation  

without the use of submultiples 
 
In E2, the comparison of unfavorable and possible cases in each set is presented. First, the cases of 

the first set were related and those of the second followed (see expression xiii of Table 1). It is 
important to note that in example 2 the decimal results obtained correspond to the probabilities of the 
unfavorable cases of each set. In expressions xv and xvi (see Table 1), it is chosen based on a higher 
quotient; this is because the resulting quotient determines the number of possible cases for each 
unfavorable one. Conversely, if expressions xiii and xiv are presented, the choices will be correct 
only if chosen based on the lowest quotient; this is because the quotient represents the number of 
unfavorable for each possible. In expressions ix and x, it is chosen based on a higher quotient; this is 
because they represent the number of favorable for each possible. On the other hand, if expressions 
xi and xii are presented, the choices will be correct only if chosen based on the smallest quotient; this 
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is because the resulting quotient represents the number of possible for each favorable. It is 
noteworthy that expressions ix and x are the only ones that are used and considered in the 2011 Study 
Programs (SEP, 2011) to represent probabilities and make comparisons between them. 

Final considerations  
The results of this study concluded that with the probability of the event A, the students establish the 

quotient (ratio) !
!
, determined by Laplace as the ratio of the number of favorable cases F to that of all 

the cases possible P. However, if they are presented with a probability comparison situation, they 
usually resort to other quotient comparisons where they also include unfavorable cases D such as: !

!
 o 

!
!

 or their reciprocals, and not necessarily the one established by Laplace. The research showed that 
these ratios led students to choices based on determining the urn with greater probability; hence, the 
importance of placing greater emphasis on quotient comparison strategies that result from comparing 
probabilities. The reference point is decisive for understanding the relationships that students 
establish and the interpretation they give to their quotients. For example, the interpretation of the 
quotient (ratio) !

!
 is completely distinct from the one represented in the quotient (ratio) !

!
, and in the 

same way, the interpretation is different   !!
!!
> !!

!!
 to !!

!!
< !!

!!
. From a purely mathematical standpoint, 

these comparisons would have no greater difficulty, but from a pedagogical and didactic perspective 
of teaching and learning of probability, the change in the reference point when establishing the 
comparisons influences the treatment of the object of study and its interpretation. The incorporation 
of didactic orientations in the teaching materials for basic education curriculum is suggested, which 
includes an analysis of the strategies by quotient that the students can carry out when solving 
probability problems. A detailed analysis of the varied strategies presented by students would have a 
positive effect in the teaching and study of this branch of mathematics. 
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En esta investigación se analizan estrategias por cociente y su influencia en la toma de decisiones en 
situaciones que implican la comparación de probabilidades. Para ello, se diseñaron situaciones de 
probabilidad clásica modeladas con urnas. En cada situación se plantearon dos urnas con 
extracción simple, que implican o no relaciones de proporcionalidad, a estudiantes de tercer grado 
de educación secundaria. El análisis se realizó a través de la categorización de los resultados con 
base en las relaciones que se establecen entre los componentes de las urnas (casos favorables, 
desfavorables y posibles). El estudio arrojó que, al comparar probabilidades, los estudiantes no sólo 
recurren al cociente: números de casos favorables entre número de casos posibles para hacer su 
elección, sino a otros donde además incluyen a los casos desfavorables.  

Palabras clave: probabilidad, resolución de problemas 

Antecedentes y planteamiento del problema 
Los razonamientos proporcional y probabilístico guardan estrecha relación; ambos requieren de un 

análisis cuantitativo y cualitativo, así como de la inferencia y la predicción de resultados. Esta 
afirmación se desprende de contrastar la definición de razonamiento proporcional de Lesh, Post y 
Behr (1988) con lo que Landín y Sánchez (2010) proponen respecto a las implicaciones del 
razonamiento probabilístico. De esta manera, ambos razonamientos no se limitan a comparaciones 
numéricas, y aunque algunos investigadores han intentado distinguir entre sí a estos conceptos (véase 
por ejemplo Hoemann y Ross, 1971); el trabajo que aquí se expone no se centra en distinguirlos sino 
en incorporarlos, para extraer y analizar aquellas estrategias multiplicativas derivadas de la 
comparación por cociente, considerando como medio la resolución de situaciones modeladas con 
urnas. 

Las estrategias utilizadas por los estudiantes al resolver situaciones de probabilidad modeladas con 
urnas, como lo señala Alatorre (1994), ya han sido estudiadas por investigadores como: Piaget e 
Inhelder (1951), Maury (1984, 1986), Lecoutre (1984), Fischbein et al. (1970), y Thornton y Fuller 
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(1981). Sin embargo, aunque los autores refieren algunos indicadores del porqué y cómo se 
realizaron las elecciones, queda la incertidumbre si se pueden presentar otro tipo de elecciones 
distintas a las que ellos comentan o qué otras relaciones establecen los alumnos, así como qué 
mecanismos de comparación subyacen en estas estrategias y que pueden dejar ver la complejidad de 
las mismas, como las que se derivan de un razonamiento proporcional que demandan “la capacidad 
de reconocer, explicar, pensar, hacer conjeturas, graficar, transformar, comparar, emitir juicios, 
representar o simbolizar relaciones de dos tipos simples” (Lamon, 1999). 

 
En el libro para el maestro de educación secundaria (Alarcón et al. 1994) así como en trabajos de 

Green (1988), Falk (1980), Aguas (2014), y Cañizares y Batanero (1997), también se han planteado 
situaciones con dos urnas. No obstante que existen situaciones que pueden ser modeladas con ellas, 
las urnas en sí mismas son un modelo rico para trabajar temas de probabilidad u otros de las 
matemáticas, siempre y cuando estos no sean vistos como prerequisitos para comprenderla, sino un 
contexto donde conviven y se apoyan mutuamente. “Utilizar la proporcionalidad y una comprensión 
básica de la Probabilidad para formular y comprobar conjeturas sobre los resultados de experimentos 
y simulaciones” (NCTM, 2000, p. 248), nos lleva al desarrollo y fortalecimiento de contenidos que 
interactúan de manera constante. Así, la “destreza con la proporcionalidad se desarrolla a través del 
trabajo con muchos temas del currículo: razón y proporción, porcentaje, […] y probabilidad” 
(NCTM, 2000, p. 212).  

De esta manera, la presente investigación consiste en analizar los cocientes que surgen al comparar 
probabilidades. Para ello se clasifican las estrategias que siguen estudiantes de educación secundaria 
con la finalidad de profundizar en los procesos que llevan a cabo para establecer algún resultado. Es 
decir, se plantea identificar qué elementos consideran para hacer sus comparaciones (casos 
favorables, desfavorables o posibles), qué tipo de elecciones realizan con base en las relaciones que 
establecen y cuáles son las particularidades de estas relaciones, que para este estudio son 
fundamentales, porque lo que se pretende es obtener indicios de cómo los distintos cocientes que 
pueden establecer influyen en sus decisiones. El estudio está orientado por la siguiente pregunta y 
propósito de investigación. 

Pregunta de investigación: Al resolver situaciones de probabilidad, ¿cuáles son los cocientes que 
estudiantes de educación secundaria establecen para hacer una elección? 

Propósito: Identificar, analizar y clasificar las estrategias que siguen estudiantes de tercer grado de 
educación secundaria al resolver situaciones de probabilidad clásica contextualizadas con el modelo 
de urna, centrando la atención en aquellas estrategias que implican comparar por cociente para ver de 
qué manera influyen en la toma de decisiones.  

Método 
La investigación es cualitativa con un caso instrumental (Stake, 1999), conformado por un grupo de 

35 alumnos de tercer grado de educación secundaria de la Ciudad de México. Se diseñaron 10 
situaciones, con y sin proporcionalidad, que implicaron la comparación de probabilidades. Para el 
diseño de las situaciones se recurrió al modelo de urna. De la clasificación de Lamon (1993), los 
problemas planteados corresponden a los de Parte-parte-todo —que Özgün-Koca (2009) incluye en 
su estudio dentro de los de comparación numérica— porque la mayoría de los problemas que se 
plantearon pueden asumirse como conjuntos discretos donde un todo corresponde a los casos 
posibles y los subconjuntos de ese todo a los casos favorables y desfavorables, respectivamente. Para 
la implementación de las situaciones se utilizaron tres sesiones de trabajo, cada una de 50 minutos. 
En cada sesión los alumnos resolvieron individualmente de tres a cuatro situaciones sin instrucción 
(previa o durante la implementación) de la resolución, lo que favoreció un pensamiento 
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independiente y conllevó a la identificación y análisis de diversas estrategias. En este documento 
interesó ilustrar las relacionadas con la comparación por cociente. 

Marco teórico-interpretativo 
Como resultado del análisis, se construyó un marco interpretativo para la clasificación de las 

estrategias derivadas de la comparación por cociente que surgieron de la implementación. Se 
identificaron dos tipos de comparaciones: a) aditiva —por medio de una diferencia— y, b) 
multiplicativa —por medio de un cociente—. La primera implica un pensamiento absoluto, y la 
segunda uno relativo (Lamon,1999); siendo la multiplicativa la que interesa ilustrar en este 
documento. En la Tabla 1 se muestran dieciséis expresiones identificadas al comparar por cociente 
los elementos de dos urnas, donde F representa el número de casos favorables, D número de casos 
desfavorables y F+D corresponde al número de casos posibles. Los subíndices 1 y 2, en 𝐹!, 𝐹!, 𝐷! y 
 𝐷! indican el punto de referencia, es decir, si los casos favorables o desfavorables corresponden a la 
primera o segunda urna, respectivamente. 

 
Tabla 1: Relaciones que se pueden establecer cuando se compara por cociente 

Punto de referencia 
𝐹 

Punto de referencia 
𝐷 

Reciproco del punto de 
referencia 𝐹 

Reciproco del punto de 
referencia 𝐷 

Expresión i Expresión ii Expresión iii Expresión iv 
!!
!!

 con !!
!!

 !!
!!

 con !!
!!

 !!
!!

 con !!
!!

 !!
!!

 con !!
!!

 

Fracción: Parte – Parte Fracción: Parte – Parte 
Razón: Cuando el antecedente es 𝐹 y 𝐷 y el 

consecuente es  𝐹 y 𝐷. 
Razón: Cuando el antecedente es 𝐹 y 𝐷 y el 

consecuente es 𝐹 y 𝐷. 
Punto de referencia 

Urna 1 
Punto de referencia 

Urna 2 
Reciproco del punto de 

referencia Urna 1 
Reciproco del punto de 

referencia Urna 2 
Expresión v Expresión vi Expresión vii Expresión viii 
!!
!!

 con !!
!!

 !!
!!

 con !!
!!

 !!
!!

 con !!
!!

 !!
!!

 con !!
!!

 

Fracción: Parte – Parte Fracción: Parte – Parte 
Razón: Cuando el antecedente es  𝐹 y el 

consecuente es 𝐷. 
Razón: Cuando el antecedente es 𝐷 y el 

consecuente es  𝐹. 
Expresión ix Expresión x Expresión xi Expresión xii 
!!

!!!!!
 con !!

!!!!!
 !!

!!!!!
 con !!

!!!!!
 !!!!!

!!
 con !!!!!

!!
 !!!!!

!!
 con !!!!!

!!
 

Fracción: Parte-todo. Cuando la parte es  𝐹 Fracción: Todo-parte. Cuando la parte es 𝐹 
Razón: Cuando el antecedente es 𝐹 y el 

consecuente es  𝐹 + 𝐷. 
Razón: Cuando el antecedente es  𝐹 + 𝐷 y el 

consecuente es  𝐹. 
Expresión xiii Expresión xiv Expresión xv Expresión xvi 
!!

!!!!!
 con !!

!!!!!
 !!

!!!!!
 con !!

!!!!!
 !!!!!

!!
 con !!!!!

!!
 !!!!!

!!
 con !!!!!

!!
 

Fracción: Parte-todo. Cuando la parte es  𝐷. Fracción: Todo-parte. Cuando la parte es  𝐷. 
Razón: Cuando el antecedente es 𝐷 y el 

consecuente es  𝐹 + 𝐷. 
Razón: Cuando el antecedente es  𝐹 + 𝐷 y el 

consecuente es 𝐹. 
 
En la comparación por cociente (véase la Tabla 1), considerado como fracción o razón, se pueden 

presentar, durante las relaciones que se establecen con los elementos que las conforman (parte-parte, 
parte-todo, todo-parte y antecedente-consecuente), las siguientes estrategias para compararlas (véase 
la Tabla 2), donde en la relación parte-parte a, b, c y d son las partes; en la parte-todo a y c son las 
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partes y b y d son los todos; en todo-parte a y c son los todos y b y d son las partes; y en la relación 
antecedente-consecuente a y c son los antecedentes y b y d son los consecuentes. 

 
Tabla 2: Estrategias para comparar las relaciones que se establecen en la Tabla 1 

1a.- Estrategia: Fracción-razón (parte-parte, parte-todo y todo-parte) con el uso de: 
Múltiplos: Si se multiplica !

!
!
!

 y !
!

!
!

 se obtienen las expresiones !"
!"

 y !"
!"

, y si 𝑏𝑐 = 𝑎𝑑 entonces 

se puede establecer la proporción !"
!"
= !"

!"
 que sería equivalente a: !

!
= !

!
. Esto significa que los conjuntos 

representados por 𝑎 y 𝑏, y 𝑐 y 𝑑 son equiprobables. 
Productos cruzados: Dadas las razones !

!
 y !

!
 , si al efectuar los productos 𝑎𝑑 y 𝑏𝑐 se obtiene la igualdad 

𝑎𝑐 = 𝑏𝑑, entonces se establece la proporción: !
!
= !

!
. Esto significa que los conjuntos representados por 𝑎 

y 𝑏, y 𝑐 y 𝑑 son equiprobables. Los productos cruzados son un caso particular del uso de múltiplos para 
comparar razones o fracciones. 
Submúltiplos: Si al simplificar  !

!
 se obtiene !

!
, y al simplificar !

!
 también se obtiene !

!
, entonces se 

establece la proporción: !
!
= !

!
, lo que significa que los conjuntos representados por 𝑎 y 𝑏, y 𝑐 y 𝑑 son 

equiprobables. 
Suma y resta de fracciones o razones: Dadas las razones !

!
 y !

!
 , si al hacer la sustracción !

!
− !

!
 se obtiene 

la diferencia !
!"
= 0 , entonces se establece la proporción:  !

!
= !

!
. Esto significa que los conjuntos 

representados por 𝑎 y 𝑏, y 𝑐 y 𝑑 son equiprobables. 
Suma y resta de fracciones o razones en su representación decimal: Parte de la relación fracción-razón, y 
se llega a su representación en forma decimal para comparar y hacer la elección. Si al simplificar !

!
 se 

obtiene 𝑚, y al simplificar !
!
 también se obtiene 𝑚, donde 𝑚 es un número decimal, entonces se establece 

la proporción: !
!
= !

!
. Esto significa que los conjuntos representados por 𝑎 y 𝑏, y 𝑐 y 𝑑 son equiprobables. 

2ª.- Estrategia: Relación dentro. Se presenta de forma aditiva o multiplicativa. 
Forma aditiva: Dadas las razones !

!
 y !

!
, si 𝑎 ± 𝑎 !

!
= 𝑏, y 𝑐 ± 𝑐 !

!
= 𝑑, o si               𝑏 ±

𝑏 !
!

= 𝑎  y 𝑑 ± 𝑑 !
!

= 𝑐, entonces se puede establecer la proporción: !
!
= !

!
. Esto significaría que 

los conjuntos representados por 𝑎 y 𝑏, y 𝑐 y 𝑑 son equiprobables. 
Forma multiplicativa: Dadas las razones !

!
 y !

!
, si 𝑎 !

!
= 𝑏  y 𝑐 !

!
= 𝑑 , o si 𝑏 !

!
= 𝑎  y 

𝑑 !
!

= 𝑐, entonces se puede establecer la proporción: !
!
= !

!
. Esto significaría que los conjuntos 

representados por 𝑎 y 𝑏, y 𝑐 y 𝑑 son equiprobables. 
3ª.- Estrategia: Regla de tres. Se establece una relación cuaternaria donde uno de los cuatro elementos es 
desconocido y los otros tres deben ser relacionados para encontrar su valor. Este valor es comparado con 
el obtenido en otra relación cuaternaria similar.  
Para la obtención de porcentajes: Dadas las razones !

!
 y !

!
, si se multiplica !

!
 por 100 para obtener el 

porcentaje de 𝑎 respecto al porcentaje de 𝑏, considerado como el 100%. Y !
!
 también se multiplica por 

100 para obtener el porcentaje de 𝑐 respecto al porcentaje de 𝑑, considerado como el 100%, si ! !""
!

=
! !""
!

, entonces se podría establecer la proporción:  !
!
= !

!
, lo que significaría que los conjuntos 

representados por 𝑎 y 𝑏, y 𝑐 y 𝑑 son equiprobables. 
Para la obtención de 𝑎, 𝑏, 𝑐 o 𝑑: Dadas las razones !

!
 y !

!
, si !"

!
= 𝑑 y !"

!
= 𝑏, y 𝑑 resulta ser múltiplo 

o submúltiplo de 𝑏, entonces se puede establecer la proporción: !
!
= !

!
. Esto significaría que los conjuntos 

representados por 𝑎 y 𝑏, y 𝑐 y 𝑑 son equiprobables. 
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4ª.- Estrategia: Relación entre. Se presenta de forma aditiva o multiplicativa. 
Forma aditiva: Dadas las razones  !

!
 y !

!
, si 𝑎 ± 𝑎 !

!
= 𝑐, y 𝑏 ± 𝑏 !

!
= 𝑑, o si               𝑐 ±

𝑐 !
!

= 𝑎, y 𝑑 ± 𝑑 !
!

= 𝑏, entonces se puede establecer la proporción: !
!
= !

!
. Esto significaría que 

los conjuntos representados por 𝑎 y 𝑏, y 𝑐 y 𝑑 son equiprobables. 
Forma multiplicativa: Dadas las razones !

!
 y !

!
, si 𝑎 !

!
= 𝑐  y 𝑏 !

!
= 𝑑 , o si 𝑐 !

!
= 𝑎  y 

𝑑 !
!

= 𝑏, entonces se puede establecer la proporción: !
!
= !

!
. Esto significaría que los conjuntos 

representados por 𝑎 y 𝑏, y 𝑐 y 𝑑 son equiprobables. 
 
Si las relaciones anteriores no están en proporción, entonces los conjuntos representados por a y b, y 

c y d no serían equiprobables, por lo que habría que identificar cuál de los dos conjuntos tiene mayor 
probabilidad con base en los casos (favorables, desfavorables o posibles) que se consideraron y las 
relaciones que se establecieron para hacer las comparaciones. En las estrategias descritas 
anteriormente se encuentran las relaciones dentro y entre consideradas por Noelthing (1980) al 
trabajar situaciones de mezclas, y aunque este investigador sólo considera las relaciones dentro y 
entre de carácter multiplicativo, Alatorre (1994) las amplía a relaciones de orden y de carácter aditivo 
o sustractivo, pero no las considera como se hace en este estudio en la comparación por cociente, 
pues ella señala las diferencias sin tomar en cuenta la cantidad basal y desde nuestra perspectiva la 
Forma aditiva sí incluye esta cantidad basal al considerar cuántas de cuántas. La comparación por 
cociente está estrechamente relacionada con el pensamiento relativo, Lamon (1999) distingue a este 
tipo de pensamiento como aquel donde se involucran estructuras multiplicativas y lo diferencia del 
pensamiento absoluto donde se establecen relaciones de tipo aditivo.  

Análisis de los resultados  
Por la finalidad que esta investigación persigue consideramos conveniente analizar el tipo de 

elecciones, las comparaciones que se establecen, las estrategias que se siguen y el punto de referencia 
que se considera en la comparación de probabilidades, es decir, el sentido de las relaciones que se 
dan entre los casos (favorables, desfavorables o posibles). En la Tabla 3 se ilustra la comparación 
cuantitativa por cociente y sus implicaciones, para ejemplificar el seguimiento de las estrategias 
identificadas en la implementación. 

 
Tabla 3: Ilustración del tipo de elección, las estrategias y la relación de orden identificada en la 

comparación cuantitativa por cociente 
Elección con base en el  Estrategia (véase Tabla 2) Relaciones  (véase Tabla 1) 

 
Cociente mayor; 

Cociente menor; o 
Cociente igual. 

 

1ª Fracción-razón (parte-parte). Favorables-desfavorables v y vi 
Desfavorables-favorables vii y viii 

1ª Fracción-razón (parte-todo).  

Favorables-posibles ix y x 
Posibles-favorables xi y xii 

Desfavorables-posibles xiii y xiv 
Posibles-desfavorables xv y xvi 

 
Consideración de casos favorables y casos desfavorables. Se comparan por medio de cocientes los 

casos favorables y desfavorables de cada conjunto (véanse las expresiones i, ii, iii, iv, v, vi, vii y viii 
de la Tabla 1) y se elige con base en el mayor, menor o igual cociente. En lo que sigue se ejemplifica 
una de las estrategias con base en la elección del cociente mayor. 

Elección con base en el cociente mayor. Estrategia: Fracción-razón parte-parte con o sin la 
utilización de submúltiplos y su representación en forma decimal.  
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Relación de orden: Favorables-Desfavorables. 
 

Situación II. 1.- En una feria 
hay dos juegos azar: una ruleta 
y una urna, ¿en qué juego existe 
mayor probabilidad de ganar, en 
la ruleta si se apuesta a que al 

girarla se detenga en un sector blanco o 
en la urna si se apuesta a que en la primera 
extracción sin ver la bola será blanca? Explica 
como le hiciste para determinar tu respuesta.   

Estrategia del estudiante. Ejemplo1 (E1). Urna 2. 
Hay más probabilidad de ganar en la urna. Pues fui 
sacando la mediana [mitad] a los colores de cada 
juego. En la ruleta eran los mismos colores y en la 
urna había una bola blanca más que negra y vi que 
había mejor 
probabilidad de ganar.  

Figura 1: Estrategia del estudiante. Ejemplo 1 (E1) se elige el cociente mayor. Comparación por 
cociente (favorables-desfavorables)  

llegando a su representación decimal con el uso de submúltiplos 
 
En E1, se presenta la comparación de casos favorables y desfavorables. Para simplificar la 

comparación de variables se utilizan submúltiplos y se termina con una representación decimal. En 
las expresiones v y vi (véase Tabla 1) se elige con base en cociente mayor, porque los cocientes en 
estas expresiones representan el número de favorables por cada desfavorable. Por lo contrario, si se 
presentan las expresiones vii y viii las elecciones serán correctas sólo si se elige con base en el 
cociente menor, que representan el número de desfavorables por cada favorable.  De aquí la 
importancia de las relaciones de orden: favorables-desfavorables o desfavorables-favorables. 

En cuanto a las expresiones i, ii, iii y iv de la Tabla 1 se tendrían elecciones correctas si se 
considera, en i y iii el segundo cociente, es decir, si este resulta ser mayor al primer cociente se debe 
elegir el conjunto cuyos elementos se asignaron a los denominadores de los cocientes comparados. 
Sin embargo, si resulta ser menor al primero, se realiza una elección correcta si se elige el conjunto 
cuyos elementos se asignaron a los numeradores. Por otra parte, si se consideran las expresiones ii y 
iv la elección también dependería del segundo cociente, si resulta ser mayor al primer cociente se 
debe elegir el conjunto que haya quedado en los numeradores. Pero si resulta ser menor, se haría una 
elección correcta si se elige el conjunto cuyos elementos quedaron en los denominadores, esto debido 
a que en las expresiones i, ii, iii y iv los cocientes resultantes representan el número de favorables de 
un conjunto por cada favorable del otro, y en este mismo sentido, el número de desfavorables de un 
conjunto por cada desfavorable del otro.  

Consideración de casos desfavorables y casos posibles. Se comparan por medio de cocientes los 
casos posibles y desfavorables de cada conjunto (véanse las expresiones xiii, xiv, xv y xvi de la Tabla 
1) y se realiza la elección con base en su mayor, menor o igual cociente. En lo que sigue se 
ejemplifica una de las estrategias con base en la igualdad de cociente. 

Elección con base en la igualdad de cocientes. Estrategia: Fracción-razón parte-todo con o sin el 
uso de submúltiplos y su representación en forma decimal.  

Relación de orden: Desfavorables-Posibles. 

U r n a  1 Urna 2
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Situación IX. Una profesora muestra a sus 
estudiantes dos bolsas negras; en la primera 
deposita 9 canicas negras y 6 blancas, y en la 
segunda deposita 15 negras y 10 blancas ¿qué bolsa 
deben elegir para que tengan mayor probabilidad 
de que en la primera extracción sin ver la canica 
sea negra? Explica el procedimiento que seguiste 
para realizar la elección. 

Estrategia del estudiante. Ejemplo (E2). Cualquier 
bolsa. En cualquiera de las bolsas se tiene la misma 
probabilidad. 

Figura 2: Estrategia del estudiante. Ejemplo 2 (E2) se elige el cociente igual.  Comparación por 
cociente (desfavorables-posibles) llegando a su representación decimal  

 
En E2, se presenta la comparación de casos desfavorables y posibles en cada conjunto. Primero se 

relacionaron los casos del primer conjunto y posteriormente los del segundo (véase la expresión xiii 
de la Tabla 1). Es importante señalar que en E2 se establece que los resultados decimales obtenidos 
corresponden a las probabilidades de los casos desfavorables de cada conjunto. En las expresiones xv 
y xvi (véase Tabla 1) se elige con base en cociente mayor; esto porque el cociente resultante 
determina el número de casos posibles por cada desfavorable. Por lo contrario, si se presentan las 
expresiones xiii y xiv, las elecciones serán correctas sólo si se elige con base en el cociente menor; 
esto debido a que el cociente representa el número de desfavorables por cada posible. En las 
expresiones ix y x se elige con base en cociente mayor; esto porque representan el número de 
favorables por cada posible. En cambio, si se presentan las expresiones xi y xii, las elecciones serán 
correctas sólo si se elige con base en el cociente menor; esto debido a que el cociente resultante 
representa el número de posibles por cada favorable. Es importante comentar que las expresiones ix y 
x son las únicas que se utilizan y consideran en los Programas de estudio de 2011 (SEP, 2011), para 
representar probabilidades y realizar comparaciones entre ellas.  

Consideraciones finales  
Con los resultados del estudio se concluye que, si se solicita la probabilidad del evento A, los 

estudiantes establecen el cociente (razón) !
!
, determinado por Laplace como la razón entre el número 

de casos favorables F y el de todos los casos posibles P. Sin embargo, si se les plantea una situación 
de comparación de probabilidades, suelen recurrir a otros cocientes de comparación donde además 
incluyen a los casos desfavorables D como: !

!
 o !

!
 o sus recíprocos, y no necesariamente al 

establecido por Laplace. En la investigación se mostró que estas razones llevaron a los estudiantes a 
elecciones correctas con base en determinar la urna con mayor probabilidad. De aquí la importancia 
de poner mayor énfasis en las estrategias de comparación por cociente que resulten de comparar 
probabilidades. El punto de referencia es determinante para comprender las relaciones que los 
estudiantes establecen y la interpretación que le dan a sus cocientes. En este sentido, por ejemplo, la 
interpretación del cociente (razón) !

!
 es totalmente distinta a la representada en el cociente (razón) !

!
, 

y de igual manera es distinta la interpretación !!
!!
> !!

!!
 a !!

!!
< !!

!!
. Desde un punto de vista puramente 

matemático estas comparaciones no tendrían mayor dificultad, pero desde un sentido pedagógico y 
didáctico de la enseñanza y del aprendizaje de la probabilidad, el cambio en el punto de referencia al 
establecer las comparaciones influye en el tratamiento del objeto de estudio y su interpretación. Se 
sugiere la incorporación de orientaciones didácticas en los materiales curriculares de educación 
básica, donde se incluya un análisis de las estrategias por cociente que los estudiantes pueden llevar a 
cabo al resolver problemas de probabilidad. Se considera que un análisis detallado de las estrategias 
variadas que presentan los alumnos tendría un aspecto positivo en la enseñanza y estudio de esta 
rama de las matemáticas. 
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This work reports the results of a research aimed to know the probabilistic reasoning of high-school 
students when they deal with the notion of random intervals. An activity was carried out involving 
students between ages 16 and 17 who built random intervals through physical and computational 
simulations. The research question guiding this work was: Which reasoning do students exhibit when 
they estimate the probabilities of events related to the experience of creating random intervals from a 
frequentist approach? From the data analysis, partly based on the Grounded Theory, four categories 
were established. They suggest that the patterns observed in this work are likely present in situations 
demanding the frequentist approach to probability.   

Keywords: Reasoning, Frequentist approach, probability, random intervals 

Problem statement 
The educational research on the probabilistic reasoning of students is a complex field since it 

involves an abundance of concepts, innovative instructional proposals, conceptions, misconceptions, 
and difficulties as well as a number of methodological approaches and conceptual frameworks (Jones 
et al., 2007; Chernoff & Sriraman, 2014). It has been recently stressed that educators and teachers 
must research and document the implementation of innovative approaches and materials in class to 
allow for a close integration of probability and statistics (Chernoff, Paparistodemou, Bakogianni, 
Petocs, 2016; Langrall, Makar, Nilson, Shaughnessy, 2017). It has been suggested to give probability 
teaching a modeling approach (Pfannkuch et al., 2016) starting from extra-mathematical situations or 
contexts of the natural or social reality. That is, modeling will allow students to acquire or create 
probabilistic concepts when solving problems emerged from real situations. For this supposition to 
be feasible, it is necessary to start with simple random situations that can be repeated under a set of 
well-defined conditions. Then, they will allow for the observation of patterns of outcomes. In our 
opinion, situations with coins, dice, urns, and roulettes can play a mediating role in the acquisition of 
probabilistic concepts and the fundamentals of modeling (Sharma, 2016). In this work, we assume 
the hypothesis that the situations based on random devices, with the aid of digital gadgets, can be 
mediators between abstract concepts and real situations. They can also be the support of fertile 
situations to contribute to the integrated learning of probability and statistics.  

Traditionally, introductory high-school courses deal with probability and statistics separately. 
However, statistical analyses must include probabilistic reasoning since it allows to handle situations 
of uncertainty and variability intrinsic to the phenomena studied by statistics. Still, some approaches 
of probability teaching avoid developing reasoning on uncertainty and variability handling instead of 
promoting it and focus on more formal aspects (set theory), calculus (classic approach of 
probability), and technical elements (combinatorics). One way of including uncertainty and 
variability in probability classes is to organize situations and present problems that produce data 
following an unknown distribution. So, students have to analyze them to obtain conclusions, as in the 
estimation of the probability of events.  
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Saldanha (2016) and Prodromou (2016) argue that the study of samples of a distribution obtained 
through a digital simulation provides an adequate resource to link probability to statistics, especially 
from a frequentist approach. For that reason, we consider there should be research on how students 
reason when facing problems that link probability to statistics and that the frequentist approach of 
probability must be further studied. 
Research question 

Given that probability is studied in preuniversitary levels, it is important to explore the possibilities 
that technology offers to study its link to inference in high school. Particularly, this work explores the 
idea of introducing the notion of random intervals (RI). The aim is to set a background that helps 
reasoning on confidence intervals (CI), and so a research question was formulated: 

Which reasonings do students show when they estimate the probability of events related to the 
experience of creating random intervals through a frequentist approach? 
Background 

The work presented here calculates probabilities from the frequentist approach of probability. So, 
we review some research that includes the frequentist approach of probability with technology and 
particularly focus on the work by Ireland and Watson (2009). The work explores the understanding 
of elementary-school students (ages 10−12) regarding the connection between theoretical probability 
and experimental probability (frequentist approach of probability) after students work with 
manipulatives (coins, dice) and the software ThinkerPlots. Ireland and Watson propose a framework 
to interpret the students’ understanding as a continuum from concrete (experimental) to abstract 
(theoretical) in which manipulatives, the simulator, and the Law of Large Numbers are especially 
important. The findings lead them to conclude that it is necessary to explicitly teach the connection 
between theoretical and experimental probability; it is not enough for students to observe the 
behavior of the outcomes from simulations to achieve such connection. 

Another study on the frequentist approach was that by Stohl and Tarr (2002). The authors report an 
instructional sequence with the aim of assessing how technological tools allow for and limit the 
development of the notion of inference from probabilistic situations. The participants were 23 
students in sixth grade (ages 11−12) who worked in pairs and used the computational tool Probability 
Explorer to formulate and evaluate inferences during a 12-day teaching period. Among the 
conclusions, the authors state that the tasks designed in the context of games of chance and urns (one 
in the context of fishing in a lake) allowed the students to perceive relationships between empirical 
and theoretical probability as well as the role of the sample size in such relationships. 

Conceptual framework 
For the aims of this work, we have chosen concepts referring to two dimensions: content and 

cognition. From the first, content related to random intervals is presented and the same is done with 
probabilistic reasoning from the second. 
Mathematical content relevant to the study 

The content of this study refers to the estimation of probabilities through the frequentist approach of 
the probability of events related to the experience of generating random intervals. Then, some 
concepts on the frequentist approach of probability should be reviewed. 

A repetitive phenomenon is that which can be repeated under a set of given conditions such that 
every repetition of the phenomenon is considered equivalent to its predecessors. Particularly, a 
random experience E is a repetitive phenomenon in which a characteristic is observed to change from 
one repetition to another and cannot be predicted; still, the set of all potential outcomes can be 
determined (sample space). Consider a random experience E and its sample space S while an event A 
is a subset of S. If experience E is repeated 𝑁 times and 𝑛 is the number of times event A occurs, 
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then the quotient 𝑛 𝑁 is the relative frequency of A. The relative frequency of an event depends on 𝑁 
such that it varies as the values of 𝑁 change. The most important characteristic of the relative 
frequencies of an event is that they converge in a given number as the number of repetitions grows 
indefinitely.  

A random interval is defined as an interval in which at least one of the end points is a random 
variable, and so it gives rise to a family of intervals. Since we cannot assume that the students master 
the topic of distributions, the task design was carried out based on the experiment of drawing a ball 
from an urn containing 10 numbered balls from 0 to 9. If the random variable is the number printed 
on the ball, its distribution is the discrete uniform distribution taking the values 𝑥 = 0,1,2,… ,9 and a 
probability 𝑝 = !

!"
. Students are asked to observe the events of the type “𝐸!  = the interval 𝐼! contains 

number 𝐶, where 𝐶 is any number between 0 and 9.” Table 1 shows the probabilities of events 𝐸! . 
These events are not mutually exclusive; hence the sum of their probabilities is higher than 1. 

 
Table 1. Probabilities that the event cE occurs 

Event 𝐸! 𝐸! 𝐸! 𝐸! 𝐸! 𝐸! 𝐸! 𝐸! 𝐸! 𝐸! 

Probability 9
45

 
17
45

 
23
45

 
27
45

 
29
45

 
29
45

 
27
45

 
23
45

 
17
45

 
9
45

 

 
Probabilistic reasoning 

Batanero et al. (1996) define probabilistic reasoning as a mode of reasoning that refers to 
judgements and decision making under uncertainty; therefore, it is relevant to real life. This 
reasoning includes the ability to: identify random events in nature, technology, and society; analyze 
the conditions of such events and derive suppositions to make an adequate modeling; construct 
mathematical models and explore different scenarios and outcomes; and apply mathematical methods 
and procedures of probability and statistics. 

Methodology 
Participants 

The participants of this research were 16 students between ages 16 and 17 from a public school in 
Mexico City who had never taken a formal course on probability. One of the researchers was the 
class teacher and conducted the activity. 
Activity 

The activity was created using the principles of design to support the students’ statistical reasoning 
proposed by Cobb and McClain (2004). Those principles must consider five aspects: 1) central 
statistical ideas (in this work, we focus on population, sample, random intervals, relative frequency, 
probability, and law of large numbers), 2) the instructional activity (the questions were formulated to 
observe whether the students created a conception of the central ideas), 3) the classroom activity 
structure (it must start by pointing out relevant aspects, variables to consider and how they will be 
mediated, the topic to cover, the activity development, and the students’ discussion on the data 
obtained), 4) computer tools used by the students (in this work, an applet was made using Fathom), 
and 5) the classroom discourse (it refers to the language used, which should cover the possible 
judgements that students make on the central ideas). 

For the development of the activity, the following situation was presented to the students: 
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Two balls are drawn from an urn containing 10 balls numbered from 0 to 9. Consider the interval 

formed by the integer values found between the minimum and maximum of the values drawn 
(considering the end points). Which is the probability that the value contain number 8? 

*Containing number 8 means that 8 is between the minimum and maximum values or it is one of 
them. 

 
Technology 

Biehler (2013) states that, if it is to be considered in statistics teaching, a digital tool should allow 
students to perform several actions as: quickly dragging and dropping variables in a graph to 
visualize distributions and relationships between variables; visualizing in real time how data and 
parameters change dynamically, affecting measures and related representations; and linking multiple 
data representations to informally observe statistical trends. Fathom allows for these actions and 
more.  

The applet provided to the students (Figure 2) works as follows:  
In an urn called collection 1, 10 balls numbered from 0 to 9 are placed. In Sample of Collection 1 is 

a sample of size 2, symbolizing the two values drawn from the urn with which the interval [min, 
max] is created. A measure, belongs to, is defined and consists in using the function if (Si) when 
number 8 is in the interval or No in the opposite case. A collection of measures in different sizes is 
taken and the tool Summary shows the number of If  and No in a certain number of repetitions of the 
event. The plot shows the behavior of the relative frequencies. 

Results and data analysis 
For the analysis of the students’ responses, we sought words or ideas that were common and placed 

them in codes. This response grouping process is proposed in the Grounded Theory by Birks and 
Mills (2015). 

For instance, when they created intervals in the applet, students were asked what they observed in 
the plot. Some of the responses were “the dots are too scattered,” “the dots generated by the data are 
too separated.” They were placed in the code scattering since the students described how the dots in 
the plot were placed using the words “scattered” and “separated.” Another type of response was “The 
plot is more constant when we placed more intervals.” In these responses, the student observed that 
the dots in the plot (relative frequencies) were close to a constant value when many intervals were 
generated. These responses were placed in the code Tendency to regularity. Finally, in responses as 
“In the plot, the dots seem closer when we place more intervals and they are separated when there are 
fewer,” we observed that students managed to see there was a difference when the number of 
intervals increased. These responses were placed in the code Variability. This analysis process was 
used to group the responses to all the questions in the activity.  

The activity was divided in two parts; in the first one, the students carried out a physical simulation. 
To do so, they were given a bag with 10 balls numbered from 0 to 9. Each student obtained 10 
intervals by drawing two balls without replacement. They wrote down the interval formed by the two 
values obtained 𝑥!"#, 𝑥!"#  on a table (Figure 1.a) and determined whether number 8 belonged to 
the interval.  
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            a                            b 
Figure 1. a) Example of table filled in by students and b) group results. 

 
Then, the students were asked to write down the relative frequencies of their classmates (Figure 

1.b), and they were also asked about the probability that the interval contained the number 8. Some 
responded they had to obtain the mean or average (the best approximation), others expressed they 
had to pay attention to the one repeated the most (mode), and other students used the total relative 
frequency since they observed that 49 out of 160 intervals contained number 8. At the end of the 
physical simulation, the students were asked what would happen if they obtained 100 or 1 000 
intervals to promote the use of the software. Three predictions were presented for this question: 1) 
proportionality (8/16)1, which indicates that the number of favorable cases in 100 intervals must be 
proportional to 49/160; that is, approximately 30 in 100 intervals and 300 in 1 000; 2) approximation 
(3/16), where students propose a range of possible values around the proportional value of the 
frequency (values around 30 are suggested for 100 intervals while 300 are indicated for 1 000); and 
3) the attention bias in favorable cases, in which only absolute frequencies, for instance, are said to 
“increase.” The “approximation” responses are the most appropriate given that they take into account 
data on the relative frequency and predict a certain variability; attention bias is the response with the 
least quality.  

In the second part of the activity, the students use an applet created in Fathom (Figure 2) by the 
authors and are explained how it works. Once they are familiarized with the software, the students 
are asked to create blocks of 5, 10, 20, … intervals, observe the corresponding plot, and write down 
their observations. Responses were classified in three codes, but it must be highlighted that the 
language used in their responses was mostly geometric and not probabilistic. They refer to the “dots” 
in the plot without providing any indication that they represent “relative frequencies:” 1) dispersion 
(5/16), they only say that the first dots in the plot are too separated; 2) a trend towards regularity 
(3/16), they only say that the “last” dots in the plot make a constant straight line; and 3) variability 
(4/16), they only deal with the separation between the dots at the beginning and their tendency to 
create a constant straight line at the end. The responses with the best quality are those classified in 
variability. 

 



High-school students’ probabilistic reasoning when working with random intervals 

	 1259	

 
Figure 2. View of applet created by the students using Fathom. 

 
Once the results of the applet were observed represented in the plot, the students were asked to tell 

the probability that an event contain the number 8. The responses to this question were classified in 
three codes: 1) relative frequency (8/16) when the students responded with the relative frequency that 
they obtained when they used the applet (considering 20, 100, and 1 000 tries); 2) approximation 
(6/16), when the students provided an interval or range within the relative frequency (as in “it is 
found around 0.306”). To know whether they were sensitive to the number of repetitions of the 
experiment (or number of intervals), the students were directly asked: What is the difference when 
there are a few and many intervals? The analysis of the responses led us to the codes above: 1) 
variability (7/16), 2) tendency to regularity (4/16), and 3) dispersion (1/16). Still, analyzing the 
responses according to the sense of their expressions, we proposed three additional codes: 1) 
geometric language (8/16) where they describe the behavior of the plot and not that of the relative 
frequencies, using terms as “dot,” “straight line,” or “constant” but not probabilistic terms; 2) 
variable probability (3/16), when they use the term probability in the same way as relative frequency, 
meaning that it changes as the number of experiments increases (for example “The probability is 
more constant when the interval is greater”); and 3) a priori probability (2/16), when, from their 
expression, we understand frequencies tend to a certain number (“The more intervals there are, the 
better defined the constant is and also the probability we look for” and “The more dots there are, the 
closer we are to the probability”). In these responses, students noticeably make a difference between 
relative frequencies and probability. Therefore, they are closer to the correct probability 
interpretation. 

Finally, they are once again asked a prediction question: “If you had 1 000 intervals (without using 
the applet), how many of them would contain the number 8? Why?” The responses were classified 
in: 1) approximation (6/16), when students provide a range of 300 or say “approximately around 
300;” 2) frequency (5/16), when they provide the frequencies obtained using the software; and 3) 
approximation to the value found using the software (4/16), when they say that they would obtain 
something similar to the result provided in the applet. 

Discussion and conclusions 
During the coding process, the synthesis of features present in several responses allow us to propose 

four categories that can provide a global notion of the progress and difficulties the students face in 
the process of conceptualizing not only the random intervals but also the probability in itself. They 
are: 

Sensitivity to variability expressed in two ways. The first consists in accepting that, in prediction 
problems, it is impossible to accurately predict the number of favorable cases of an event in a series 
of repetitions of an experiment, but the relative frequency is known to be close to the probability. The 
second one consists in knowing that successive relative frequencies change greatly in a few 
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repetitions of the experiment, while in the long run, they are stabilized around a constant. Our 
observations indicate that the activities using the software allow students to perceive variability. This 
is especially revealed when the simulation process is accompanied by the representation of the 
trajectory of the relative frequencies and also when, in prediction problems, several students do not 
provide exact values but intervals or ranges in which results can be found. This achievement is 
important since it is the basis to subsequently understand the law of large numbers. 

No conservation of probability. It consists in believing that the probability of an event changes 
according to the implementations of the random experience. This phenomenon is similar to that of no 
conservation of the quantities described by Piaget (Gisnburg & Opper, 1988, p. 149). In the present 
case, the students do not use the term “relative frequency”, preferring instead to use the term 
“probability.” By doing so, they accept the notion that probability changes according to the number 
of experiments done. Although this is apparently a matter of terminology, it reflects the fact that the 
students are confused and do not conceive probability as a constant number related to an event. 

Descriptive probability. It consists in believing that probability only offers information on the 
random experiences that have already occurred without reporting the future implementations of such 
experience. It is related to the previous category in that probability only describes a past state, and, 
when making new experiments, the state will change; therefore, probability will also change. Under 
this belief, there can be the misconception that probability does not allow for predictions. It is 
believed that the constant achieved when many experiments are repeated only occurs when a series 
of experiments are conducted. However, there is no assurance that the constant will be the same 
when carrying out other repetitions of the same random experience. This conception can be even 
more present in real random experiences different from games of chance; for example, social, 
medical, or weather problems. 

Absence of a probabilistic language. It consists in describing a procedure or probabilistic result 
using non-probabilistic terms associated to a representation. In the students’ responses to the question 
What is observed? Several students use geometric terms (dots, closeness/distance, constant, straight 
line) in the trajectories of relative frequencies without making any reference to relative frequencies 
and probability. The tendency to not use probabilistic terms to say what trajectories means raises the 
question of whether students understand the probabilistic meaning of trajectories of relative 
frequencies; that is, whether they interpret such representations as relative frequencies trending 
towards probability. 

The four categories that emerged from the data of the exploration of the students’ reasoning are 
more general to the particular situation of random intervals studied. They can also make sense in 
probability situations where there are problems to be solved through digital probabilistic simulations 
and a frequentist approach of probability. Indeed, in any situation where a computational simulation 
is used, it is suitable to consider and remember variability. In any preuniversitary teaching design, it 
should be considered that students can be at a stage where they do not accept the continuity of 
probability. They might also believe that probability only describes outcomes that have already 
occurred without any future consequences. Furthermore, care must be taken so that students interpret 
computational representations of probabilistic objects, as trajectories of relative frequencies, in 
probabilistic terms.  

We also conclude that the use of technology was important because students managed to observe 
that relative frequencies in the plot generated by the applet converged in one value. Although they 
used geometric language, we think that better responses could be obtained by stressing what the 
constant and each point represent. 

Finally, as a result of the analysis, we observed several ways in which the study can be improved to 
continue with another research cycle. Particularly, we have seen that the formulation of some 
questions should be improved, and more questions must be added to obtain further information on 
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some aspects. For instance, it would be suitable to include an additional question to find to what 
extent do students who make geometric descriptions of the trajectories of relative frequencies 
understand the probabilistic background of the situation. 
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The topics of correlation and linear regression constitute a complex and subtle system of statistical 
and mathematical ideas whose teaching-learning raises numerous practical and theoretical 
problems. In this research paper, the patterns of reasoning that students exhibit, under the approach 
of informal inferences when they face problems of correlation and regression line are identified. To 
achieve this, activities were  implemented in two stages: in the first stage, two problems (one of 
estimation and other of best-fit line) were applied to be solved using pencil and paper; the second 
stage incorporates the use of the Fathom software. 

Keywords: Correlation, Linear Regression, Technology, Informal Inferences, Reasoning. 

Background and Issues  
Covariational statistical reasoning consists of the processes that allow subjects to perceive, describe 

and justify the relationships between statistical variables. These processes occur in two ways, on the 
one hand they occur in the subject's mind, and on the other, in the spoken or written discourse that 
occurs when relationships between variables are described or justified (Moritz, 2004). When the solid 
arguments or generalizations that students make are highlighted, based on the information they have, 
instead of only the representations they carry out, we speak of inferences; in this study we will refer 
to informal statistical inferences (without a formal instruction or explicitly formal 
procedure). Several authors have reported relatively recently, studies on informal inferential 
reasoning using the informal statistical inferences made by students as the premise (Ben-Zvi, 2006; 
Pfannkuch, 2005). For example, in the aforementioned Ben-Zvi work, the informal statistical 
reasoning of 5th grade students is analyzed and developed within a technological environment, 
reporting that the use of technological tools showed argumentative advantages in the way students 
presented ideas.  

In this sense, we focus on covariational reasoning starting with informal inferences that students 
make, taking as reference some relevant clues about this type of reasoning. For example, Zieffler and 
Garfield (2009, p. 11) summarize some findings: often, students, 1) are significantly influenced by 
their personal beliefs regarding their covariational judgments; 2) they frequently assume that there is 
a correlation between two events that is non existent (illusory correlation) ; 3) they are liable to imply 
causal relationships when dealing with covariation tests; and 4) have difficulty reasoning about 
covariation when the relationship between variables is negative. Regarding the determination of the 
line of best fit, some studies, such as those by Casey (2014) and Casey and Wasserman (2015), show 
that: 1) it is necessary to induce students to convert the data collected in tables into a graphic 
representation (Dispersion diagram); 2) Students have difficulty observing the global trend of a data 
set when reading a scatter plot, because they focus their attention on isolated points and perceive the 
data as a series of individual cases, rather than considering them holistically (with invisible 
characteristics for isolated points); 3) Many students, when drawing a line of best fit, focus their 
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attention on characteristic points such as the first or last, the highest or the lowest, or a subset of 
these. 

Theoretical framework 
This work uses the theory of Rubin, Hammerman and Konold (2006) on informal inferences 

reasoning seen as statistical reasoning that considers the dimensions of: Aggregate,  Signals and 
Noise, and Various Forms of Variability. An aggregate vision involves the added characteristics of 
individual cases, that when seen together, enable properties to emerge that are different from those of 
the individual cases.. Signals and noise refers, on the one hand, to constant elements in statistics such 
as the mean or the best fit line (signals) and on the other to variable elements that serve to introduce 
variability around any signal (noise). The idea of considering the various forms of variability refers 
to the fact that when making judgments from a set of data, the variability that underlies the situation 
must be considered. Various studiesin the area of statistical education show that students at all levels 
have difficulties when reasoning about these ideas (Ben-Zvi and Garfield, 2004; Bakker et al., 2004). 

Based on these ideas, we propose as a central objective of this research: To determine and 
characterize the reasoning patterns of high school students in the face of correlation problems and the 
line of best fit, as informal inferences. 

Method 
First stage of the study 

Participants. The questionnaire was applied to a group of 30 high school students (16 to 18 years 
old) who were taking the subject of Statistics and Probability at the College of Sciences and 
Humanities, Plantel Vallejo, located in Mexico City. Two instructor-researchers, co-authors of this 
article participated in the application of the questionnaire; they provided worksheets containing the 
problems and guided the dynamics of the sessions, in particular clarifying doubts about the 
instructions of the activities without delving into the content. 

Instruments and Execution. The questionnaire was applied to students who had not received formal 
and expository instruction on these topics. Two problems were chosen to report on, which are shown 
in Figure 1. The first priblem is an Estimation problem taken from Moore (1988) and which was 
modified to the present version. The second is a best fit line problem for which a scatter diagram of 
the variables Height and Weight is presented, in a situation in which they are directly correlated and 
with a linear trend. Given the diagnostic nature of the questionnaire, a didactic sequence was not 
elaborated as such, instead the students were given a series of problems that were solved individually 
during two sessions of 90 min each, only allowing the use of pencil and paper. 
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Estimation Problem 

The Morales family is about to install solar panels at their home to cut down on heating costs. To better 
understand the savings that installing these panels can mean, the Morales have been recording their gas 
consumption for the last year and a half. The table shows the data with the average gas consumption and 
the average ambient temperature for each month: 

Average 
Temperature 

(° C) 
5.2 -9.8 -5.4 0.2 4.1 11.3 

Gas 
Consumption 

(m 3 ) 
17.6 30.5 24.9 21 14.8 11.2 

Average 
Temperature 

(° C) 
16.3 18.5 18.5 18 15.2 11.8 

Gas 
Consumption 

(m 3 ) 
4.8 3.4 3.4 3.4 5.9 8.7 

Average 
Temperature 

(° C) 
1.8 0.7 -10.4 1.8 17.1 10.7 

Gas 
Consumption 

(m 3 ) 
17.9 20.2 30.8 19.3 6.3 10.7 

If the average temperature recorded in a month is 8 ° C, what is the gas consumption expected by the 
Morales family in that month? Explain your answer: 

Line of Best Fit Problem 

The graph below shows the height and weight data for 10 high school students. Draw the line that you 
think best fits the data. 

 

Explain the criteria you used to draw the line: 
 

Figure1. Estimation and Best Fit Line Problem 
Analysis Methodology. The analysis of the responses was carried out 

through a coding process (types of reasoning or inferences) of the responses, gradually refining 
through comparative analysis. Each researcher carried out an open coding of the data, generating 
codes that represent patterns of reasoning according to the similarities in the procedures and 
arguments declared by the students, which were then compared with each other. Comparison of these 
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coding proposals resulted in a more consistent and abstract set of codes than the descriptions initially 
developed; this preliminary scheme facilitated inducing some central ideas of the students' 
covariational reasoning. 
Second stage of the investigation 

Participants. The activities were applied to a group of 40 high school students (20 couples) (16 to 
18 years old) from the Colegio de Bachilleres Plantel 2, which is also located in Mexico City. Given 
the uncontrollable nature of the classroom, certain students were absent from some class 
sessions. Similarly, the two researchers involved in the first stage of the study participated in the 
experiment. In addition to guiding the class sessions, their participation included supporting the 
students in manipulating the Fathom software. As in the previous stage, the professor-researchers 
were prevented from delving into the thematic content. 

Instruments and Execution. Again, for this report we have chosen two problems that we want to 
focus on: the first, which deals with the estimation of a response value, which was the same as in the 
first stage, only in this case the use of the Fathom software was incorporated as a tool for the student 
to be able to build a scatter diagram on and obtain the least squares line, to make the requested 
estimate. The second (figure 2) also deals with proposing the line that best fits the data, but the 
context of the situation was modified. Unlike the first stage, in this stage the students collected 
statistical data by measuring some of their own physiological attributes (namely, for the same 
student, the measurement of their height against that of their arm). In addition, they used the software 
to draw and manipulate a line that they considered best fit the data. 

Line of Best Fit Problem 

According to studies of the anatomy of the human body, there is a certain relationship between the height of people and the 
measurement of some parts of the body.       

With the data of the measurement of the arms (from elbow to shoulder) and the height of your colleagues, which were 
collected in the first work session, and which are shown in the table, answer what is asked of you. 

X (arm, 
cm) 30 33 35 36 32 38 

Y (height, 
cm) 153 164 175 177 160 175 

X (arm, 
cm) 34 31 35 29 28 38 

Y (height, 
cm) 167 154 180 162 155 180 

 

Figure 2. Problem of best fit line. 
 

Analysis Methodology. The coding process of the data obtained in this stage was extended to the 
search for solid and consistent relations between the codes identified in both phases of the study; this 
process was carried out by investigating possible coincidences and patterns that we considered 
emerged with sufficient sense and coherence. Once the responses from the two stages of the study 
were coded, conceptual connections were identified between the proposed codes, to finally define the 
reasoning patterns as informal inferences made by the students. 
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Results 
Analysis of the first stage of the study 

During this stage, a system of codes representing the types of reasoning or inferences showing the 
student responses was developed, these codes are defined in terms of the arguments exhibited, that is 
to say the identification correlation between variables, use of all available data, or perception of the 
uncertainty that underlies the data. Some evidence of student responses is presented. 

For the problem of estimation, a type of reasoning was defined as Arithmetic Interpolation (4/28 
responses) representing the responses where the student takes a range of values in which  the data of 
the given temperature (8 ° C) is included and with its corresponding gas consumptions, the student 
obtains the average to make the estimate. In this case the student uses data from the two variables, 
which we consider a slight statistical approach towards obtaining the arithmetic average. The 
response of the student E10 is presented as evidence in figure 3, where it can be seen that he chooses 
two temperature values (5.2 ° C and 10.7 ° C) among which is the data of 8 ° C - of which the 
estimate is requested - and with their corresponding gas consumption values (17.6 m3 and 10.7m3) 
calculate their average to give their estimated answer. 

 
Figure 3. Student response E10. Arithmetic Code Interpolation 

The following code we call Proportional Arithmetic (8/28) includes the answers where students 
look for a proportionality factor; choosing a pair of data (X-Temperature, Y-Consumption) and with 
the given temperature of 8 ° they form a rule of three, assuming that there is a proportional 
relationship between the variables. The student's answer E9 is shown as an example, in which he 
chooses the pair of values that correspond to the first month of the table (5.2 ° C, 17.6m3) and with 
the value of 8 ° C he forms a rule of three. 

 
Figure 4. Student answer E9. Proportional Arithmetic Code 

 
The Arithmetic Reasoning Following A Pattern (2/28) includes the answers where the students take 

as a reference the given temperature value (8 °) and try, from the data in the table, to “complete” this 
value by means of some arithmetic procedure, and once they get it they use that data in order to 
obtain their answer. 
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In the Arithmetic Type Without Defined Pattern (6/28) the students used some basic operations 
(addition, subtraction, multiplication and division; in one case the square root is used) but without 
being able to deduce a well-defined procedure. 

In the Perception Of The Trend code (6/28) the student does not carry out any operation and only 
focuses his attention on the data in the table and his answers are based on a visual analysis of the 
trend of the data, in particular in the meaning of their behavior. 

Finally, the code Without Argument (2/28) was defined, which represents those responses where 
the student only provides the result, without arguing or making their procedure explicit. 

For the problem of drawing the line of best fit, two characteristic types of reasoning were found, 
the Partition code (6/21 responses) where the responses were classified in which the student draws 
the line or refers to the fact that their position must be such that passes through the middle of the 
cloud of points, following its direction, that is to say, traced diagonally, leaving the same number of 
points on one side and the other of the line, as shown in Figure 5. 

 
Figure 5. Student response E14. Partition Code 

 
The Belonging code (15/21) includes the responses that show two types of behavior, on the one 

hand, those where the student draws or refers to the fact that the line must pass through as many 
points as possible or through all of them, and there are also the answers where the student draws the 
line insuring that it passes through specific points of the cloud, as in the answer shown in 
the following Figure, where it is argued that it must pass through two points (the lowest and the 
highest).  

	
Figure 6. Student response E28. Membership Code 

 
Analysis of the second stage of investigation 

For the estimation problem, most of the identified reasoning was presented in the same way as in 
the diagnostic questionnaire, however, at this stage it stands out that the Arithmetic 
Interpolation code is absent in the students' responses and was replaced by the Use code of 
Software (3/15 pairs), in which the student uses the software to modify the position of a point in the 
cloud up to the given temperature value (8 ° C) and, following the trend of the data set, provides the 
estimated value of gas consumption. An evidence of this code is shown below: 
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Figure 7. P4 partner response. Software Use Code 

 
In the problem of the line of best fit, some students took the measurement of the arm (from elbow to 

shoulder) and with its corresponding height they formed a new bivariate database; It is from this set 
that the respective scatter diagram with which the students worked with was constructed. 

The Partition and Belonging codes emerged with a frequency similar to that observed in the 
previous stage, with the exception of a new argument that we called Closeness (7/19 couples); The 
code includes the answers in which the students position the line with the help of the software in such 
a way that it is as close as possible to most of the points. The response of the pair of students P6 is 
included as evidence. 

 
Figure 8. Pair answer P6. Closeness Code 

A summary table of the analysis and initial coding is shown for the two stages of the study: 
Table 1. Coding Process 

Code First stage Second stage Relative frequency 
Arithmetic Interpolation ü 

 
0.143 0.000 

Use of Software 
 

ü 0.000 0.200 
Arithmetic Proportionality ü ü 0.286 0.267 

Arithmetic Following a Pattern ü ü 0.071 0.267 
Arithmetic Without Following a 

Pattern ü ü 0.214 0.267 
Perception of the Trend ü 

 
0.214 0.000 

No Argument ü 
 

0.071 0.000 
Partition ü ü 0.286 0.211 

Closeness 
 

ü 0.000 0.368 
Belonging ü ü 0.714 0.421 

 
The next phase of the analysis was to compare the codes defined in the two stages of the 

study and to identify common covariational reasoning traits and some arguments raised in the second 
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stage; the process of conceptualization of reasoning (inference) of student responses are described 
below. 

Based on the inferences made by the students, conceptual connections were identified between the 
reasoning they exhibit, hence the codes Perception of Tendency and Use of Software (estimation 
problem) were reclassified in the reasoning pattern Notion of Aggregate, since in both students use 
the complete set of values that they are given to argue their responses; regardless of whether or not 
their results are normatively correct.  On the other hand, the 
codes Interpolation, Proportionality, Arithmetic following a pattern, Arithmetic without following a 
Patern (estimation problem), Partition and Belonging (problem straight adjustment) will 
be reclassified as a search for a signal. The interconnection between these codes lies in the fact that 
the students infer that there must be a kind of clue to solve the problem, and they carry out a search 
in the data that was provided. It seems that the student suspects that there is a hidden pattern or 
structure in a subgroup of data (he does not use the totality of the data or contemplate the set of 
points) that will lead him to constant structures, absent of uncertainty or variation, that are familiar to 
him. Finally, the Closeness code (best fit line problem) was renamed as Sense of Variability, since 
features are perceived, albeit in a spurious way, that students infer a relationship between the fit 
model and the points of the cloud, in the scatter diagram. The No Argument code that was presented 
in the estimation problem, by not providing evidence of some type of inference made by the students, 
was not considered at this stage of the analysis. 
  

Table 2. Process Conceptualization 
Code 

 

Informal Reasoning Pattern / 
Inferences 

  
Perception of the Trend 

Use of Software 
Notion of Aggregate 

  
Arithmetic Interpolation 

Arithmetic Proportionality 
Arithmetic Following a Pattern 
Arithmetic Without Following a 

Pattern 
Partition 

Belonging 

Search for a Signal  
  
  
  

Closeness Sense of Variability 
Table 2 shows a summary of the conceptualization and definition of the identified reasoning 

patterns. 

Conclusions 
From our theoretical perspective, an informal inference is a type of reasoning that includes 

considerations in several dimensions (Rubin, Hammerman and Konold, 2006) and in specific study 
conditions. In our case a first dimension is the Notion Added, where a holistic perception of the 
problem situation over the contemplation of individual cases is privileged. In this sense, the initially 
defined codes, Perception of the trend and Use of software, present as a pattern that the 
students consider all the data they have available.On the one hand, they estimate the value of the 
requested response variable (gas consumption) by making a purely visual analysis based on the trend 
of the data set, that is, they argue their response based on the global behavior of the set of values. On 
the other hand, when they use Fathom, when constructing the scatter diagram and observing the trend 
of the point cloud again, they identify that there must be a certain relationship between the points, so 
they choose one and modify its position in such a way that the value matches  the independent 
variable (8 ° C temperature) with that of the corresponding response variable (gas consumption), 
following the general "shape" of the cloud. Although it is true that in none of the above cases the 
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response of the students is normatively adequate, it does allow us to appreciate that under certain 
circumstances they are able to perceive that in bivariate relationships it is necessary to consider the 
characteristics and behavior of the data as a whole and, based on this, infer the value of some 
particular point of interest. 

Another dimension to consider is reflected with the pattern that we define as Search for a signal , 
where the answers show that given the difficulty represented by the uncertainty or the intrinsic 
variation in this type of problem, the students try to solve the situation in a familiar terrain for them 
or with which they feel comfortable, possibly for this reason they mostly use arithmetic procedures 
(rule of three, proportionality factor or additions and subtraction) to make the estimation; where they 
also only use part of the data. It is also the case of the best fit line problem, in which in the absence of 
the notion of uncertainty or of this aggregate view, they partially use the available data, referring 
to the linear function model as an alternative to fit a line to a distribution of points that presents a 
linear trend, considering only some of these points in their choice, ignoring the influence of all of 
these and their joint variation, and above all, defining two types of data: those that do or do not 
belong to the linear model that they choose to plot. 

As a third dimension we propose, Sense of Variability, represented by the code that was initially 
defined as Closeness. In this pattern of reasoning, the answers that refer, albeit briefly, to the 
perception that there is some variation that underlies these types of problems and that that must be 
considered when proposing a line of adjustment for a set of points., just as the students did when 
plotting and arguing that the line should be positioned as close to most of the points as possible. 

We trust that the identification of these reasoning patterns as the way in which students make 
informal inferences in the face of statistical association problem situations adds to the body of 
knowledge in the study of bivariate data, without neglecting the importance of exploring obstacles of 
learning, such as the apparent disconnection that the student has between the predictive or inferential 
nature inherent in the linear regression model and its identification as the line that best fits the set of 
points, as well as the difficulty to conceive the data set as an aggregate , that is, as a system in which 
they are linked to each other and have the property of being deviations from the same model. 
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Los temas de correlación y regresión lineal constituyen un sistema complejo y sutil de ideas 
estadísticas y matemáticas cuya enseñanza-aprendizaje plantea numerosos problemas prácticos y 
teóricos. En esta investigación se identifican patrones de razonamiento que exhiben los estudiantes, 
bajo el enfoque de inferencias informales cuando enfrentan problemas de correlación y regresión 
lineal; para esto se implementaron actividades en dos etapas: en la primera se aplicaron dos 
problemas (uno de estimación y otro de recta de mejor ajuste) para ser resueltos a lápiz y papel; en 
la segunda se incorpora el uso del software Fathom. 

Palabras clave: Correlación, Regresión Lineal, Tecnología, Inferencias Informales, Razonamiento. 

Antecedentes y Problemática  
El razonamiento estadístico covariacional consiste en los procesos que le permiten a los sujetos 

percibir, describir y justificar las relaciones entre variables estadísticas; estos procesos se presentan 
en dos sentidos, por un lado ocurren en la mente del sujeto, y por otro, en el discurso hablado o 
escrito cuando se describen o justifican relaciones entre variables (Moritz, 2004). Cuando se destacan 
las argumentaciones sólidas o generalizaciones que los estudiantes realizan, a partir de la 
información con que cuentan, en lugar de solo las representaciones que llevan a cabo se habla de 
inferencias: en este estudio nos referiremos a las inferencias estadísticas informales (sin una 
instrucción formal o procedimiento explícitamente formales). Varios autores han reportado en fechas 
relativamente recientes, estudios sobre el razonamiento inferencial informal tomando como premisa 
las inferencias estadísticas informales que realizan los estudiantes (Ben-Zvi, 2006; Pfannkuch, 2005). 
Por ejemplo en el trabajo de Ben-Zvi mencionado, se analiza y desarrolla el razonamiento estadístico 
informal de estudiantes de 5° dentro de un ambiente con tecnología, reportando que el uso de 
herramientas tecnológicas mostró ventajas argumentativas en la presentación de ideas por parte de 
los estudiantes.  
 

En este sentido, nos enfocamos en el razonamiento covariacional partiendo de inferencias 
informales que los alumnos hacen, tomando como referencia algunas pistas relevantes sobre este tipo 
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de razonamiento; por ejemplo, Zieffler y Garfield (2009, p. 11) resumen algunos hallazgos: a 
menudo, los estudiantes, 1) se encuentran influenciados significativamente por sus creencias 
personales con respecto a sus juicios covariacionales; 2) suponen frecuentemente que existe 
correlación entre dos eventos que no lo están (correlación ilusoria); 3) son susceptibles a implicar 
relaciones causales cuando tratan con pruebas de covariación; y 4) tienen dificultad para razonar 
acerca de la covariación cuando la relación entre las variables es negativa. Sobre la determinación de 
la recta de mejor ajuste, algunos estudios, como los de Casey (2014) y Casey y Wasserman (2015), 
manifiestan que: 1) es necesario inducir a los estudiantes convertir los datos recopilados en tablas en 
una representación gráfica (diagrama de dispersión); 2) los estudiantes tienen dificultad para observar 
la tendencia global de un conjunto de datos cuando leen un diagrama de dispersión, debido a que 
enfocan su atención en puntos aislados y perciben los datos como una serie de casos individuales, en 
lugar de considerarlos de manera holística (con características invisibles para puntos aislados); 3) 
muchos estudiantes, al trazar una recta de ajuste, enfocan su atención en puntos característicos como 
el primero o el último, el más alto o más bajo, o en un subconjunto de estos. 

Marco Teórico 
Este trabajo toma ideas de la teoría de  Rubin, Hammerman y Konold (2006) sobre inferencias 

informales vistas como razonamientos estadísticos que implican considerar las dimensiones de: 
Agregado, Señales y Ruido,  y Diversas Formas de Variabilidad. Una visión de agregado implica 
que las características de los casos individuales, al ser vistas en conjunto, permiten que emerjan 
propiedades que son diferentes de las que tienen los casos individuales por sí mismos. Señales y 
ruido, se refiere por un lado a elementos constantes en estadística como la media o la recta de ajuste 
(señales) y por otro a elementos variables que sirven para introducir variabilidad alrededor de 
cualquier señal (ruido). La idea de considerar las diversas formas de variabilidad, se refiere a que al 
elaborar juicios a partir de un conjunto de datos se debe considerar la variabilidad que subyace en la 
situación. Diversas investigaciones en el área de la educación estadística manifiestan que estudiantes 
de todos los niveles presentan dificultades al razonar sobre estas ideas (Ben-Zvi y Garfield, 2004; 
Bakker et al., 2004). 
Con base en estas ideas planteamos como objetivo central de la investigación: Determinar y 
caracterizar los patrones de razonamiento de estudiantes de bachillerato ante problemas de 
correlación y de recta de mejor ajuste, como inferencias informales.  

Método 
Primera etapa de la investigación  

Participantes. El cuestionario se aplicó a un grupo de 30 alumnos de bachillerato (16 a 18 años de 
edad) que se encontraban cursando la asignatura de Estadística y Probabilidad y pertenecientes al 
Colegio de Ciencias y Humanidades, Plantel Vallejo, localizado en la Ciudad de México. 
Participaron en la aplicación del cuestionario dos profesores-investigadores coautores del presente 
artículo; proporcionaron hojas de trabajo que contenían los problemas y guiaron la dinámica de las 
sesiones, en particular aclarando dudas sobre la instrucción de las actividades sin profundizar en los 
contenidos. 

Instrumentos y Ejecución. El cuestionario se aplicó a estudiantes que no habían recibido instrucción 
formal y expositiva sobre dichos temas. Se eligieron dos problemas para reportar que se muestran en 
la figura1, el primero es un problema de Estimación tomado de Moore (1988) y que se modificó a la 
presente versión. En el segundo problema, de recta de ajuste, se presenta un diagrama de dispersión 
de las variables Talla y Peso,  en una situación en que están correlacionadas directamente y con una 
tendencia lineal. Dado el carácter diagnóstico del cuestionario, no se elaboró como tal una secuencia 
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didáctica, sino una serie de problemas que fueron resueltos individualmente por los alumnos durante 
dos sesiones de 90 min cada una, permitiéndose únicamente el uso de lápiz y papel. 
 

Problema de Estimación 

La familia Morales está a punto de instalar paneles solares en su casa para reducir el gasto en la 
calefacción. Para conocer mejor el ahorro que puede significar la instalación de dichos paneles, los 
Morales han ido registrando su consumo de gas durante el último año y medio. En la tabla se muestran 
los datos con el promedio del consumo de gas y de la temperatura media ambiental de cada mes: 

Mes Nov Dic Ene Feb Mar Abr May Jun Jul 
Temperatura 
Media (°C) 

5.2 -9.8 -5.4 0.2 4.1 11.3 16.3 18.5 18.5 

Consumo de 
Gas (m3) 17.6 30.5 24.9 21 14.8 11.2 4.8 3.4 3.4 

Temperatura 
Media (°C) 

18 15.2 11.8 1.8 0.7 -
10.4 

1.8 17.1 10.7 

Consumo de 
Gas (m3) 3.4 5.9 8.7 17.9 20.2 30.8 19.3 6.3 10.7 

Si la temperatura media registrada en un mes es de 8°C ¿Cuál es el consumo de gas esperado por la 
familia Morales en dicho mes? Explica tu respuesta:  

Problema de Recta de Mejor Ajuste 

La siguiente gráfica muestra los datos de la talla y el peso de 10 estudiantes de bachillerato. Traza la 
recta que piensas se ajusta mejor a los datos. 

 

Explica el criterio que utilizaste para trazar la recta:  
Figura 1. Problema de Estimación y de Recta de mejor ajuste 

 
Metodología de Análisis. El análisis de las respuestas fue llevado a cabo mediante un proceso de 

codificación (tipos de razonamiento o inferencias) de las respuestas, refinándose gradualmente a 
través de un análisis comparativo. Cada investigador realizó una codificación abierta de los datos 
generando códigos que representan patrones de razonamiento según las semejanzas en los 
procedimientos y argumentos declarados por los estudiantes, que luego fueron comparados entre sí. 
La comparación de estas propuestas de codificación dio lugar a un conjunto de códigos más 
consistente y abstracto que las descripciones inicialmente elaboradas; este esquema preliminar 
facilitó inducir algunas ideas centrales en el razonamiento covariacional de los estudiantes. 
Segunda etapa de la investigación 

Participantes. Las actividades se aplicaron a un grupo de 40 estudiantes (20 parejas) de bachillerato 
(16 a 18 años) del Colegio de Bachilleres Plantel 2, que también se encuentra ubicado en la Ciudad 
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de México; dada la naturaleza poco controlable del aula escolar, ciertos estudiantes se ausentaron de 
algunas sesiones de clase. De igual manera, en el experimento participaron los dos investigadores 
involucrados en la primera etapa del estudio; además de guiar las sesiones de clase, su participación 
incluyó el apoyar a los alumnos en la manipulación del software Fathom. Al igual que en la etapa 
previa, se evitó que los profesores-investigadores profundizaran en los contenidos temáticos. 
Instrumentos y Ejecución. Nuevamente, para este reporte hemos elegido dos problemas en los que 
deseamos enfocarnos: el primero, que trata sobre la estimación de un valor respuesta, fue el mismo 
que en la primera etapa, solo que en este caso se incorporó el uso del software Fathom como una 
herramienta para que el estudiante estuviera en posibilidad de construir un diagrama de dispersión y 
obtener la recta de mínimos cuadrados, para realizar la estimación pedida. El segundo (figura2) 
también trata sobre proponer la recta que mejor ajusta a los datos pero el contexto de la situación fue 
modificado. A diferencia de la primera etapa, en esta los estudiantes recolectaron los datos 
estadísticos a través de la medición de algunos atributos fisiológicos propios (a saber, para un mismo 
estudiante, la medida de su talla contra la de su brazo); además, utilizaron el software para trazar y 
manipular una recta que consideraran se ajustara mejor a los datos. 
 

Problema de Recta de Mejor Ajuste 

Según estudios de la anatomía del cuerpo humano, existe cierta relación entre la talla (altura) de las personas y la medida de 
algunas partes del cuerpo.                                                                                   

Con los datos de la medida de los brazos (del codo al hombro) y de la altura de tus compañeros, que se recolectaron en la 
primera sesión de trabajo, y que se muestran en la tabla, contesta lo que se te pide. 

X (brazo,cm) 30 33 35 36 32 38 34 31 35 29 28 38 

Y (altura,cm) 153 164 175 177 160 175 167 154 180 162 155 180 
 

Figura 2. Problema de Recta de Mejor Ajuste 
 

Metodología de Análisis. El proceso de codificación de los datos obtenidos en esta etapa se extendió 
a la búsqueda de relaciones sólidas y consistentes entre los códigos identificados en ambas etapas del 
estudio; dicho proceso se realizó indagando posibles coincidencias y patrones que consideramos 
emergieron con suficiente sentido y coherencia. Una vez que se codificaron las respuestas de las dos 
etapas del estudio, se identificaron conexiones conceptuales entre los códigos propuestos, para 
finalmente definir los patrones de razonamiento como inferencias informales que realizan los 
alumnos. 

Resultados 
Análisis de la primera etapa de investigación 
Durante esta etapa se desarrolló un sistema de Códigos que representan los tipos de razonamientos o 
inferencias que muestran las respuestas de los estudiantes, estos códigos se encuentran definidos en 
función de las argumentaciones que exhiben, es decir,  la identificación de la correlación entre las 
variables, la utilización de todos los datos disponibles o la percepción de la incertidumbre que 
subyace en los datos. Se presentan algunas evidencias de las respuestas de los estudiantes. 

Para el problema de estimación, un tipo de razonamiento se definió como Aritmético Interpolación 
(4/28 respuestas) que representa las respuestas donde el estudiante toma un intervalo de valores en el 
que se encuentra incluido el dato de la temperatura dado (8°C) y con sus correspondientes consumos 
de gas obtiene el promedio para realizar la estimación. En este caso el alumno utiliza datos de las dos 
variables, lo que consideramos un ligero acercamiento estadístico al obtener el promedio aritmético. 
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Se presenta como evidencia la respuesta del estudiante E10 en la figura3, donde se aprecia que elige 
dos valores de temperatura (5.2°C y 10.7°C) entre los que se encuentra el dato de 8°C –del que se 
pide la estimación- y con sus correspondientes valores de consumo de gas (17.6 m3 y 10.7m3) calcula 
su promedio para dar su respuesta estimada. 

 
Figura 3. Respuesta estudiante E10. Código Aritmético Interpolación 

 
El siguiente código lo llamamos Aritmético Proporcional (8/28) incluye las respuestas donde los 

estudiantes buscan un factor de proporcionalidad; eligiendo una pareja de datos (X-Temperatura, Y-
Consumo) y con la temperatura dada de 8° forman una regla de tres, asumiendo que entre las 
variables existe una relación proporcional. Se muestra como ejemplo la respuesta del estudiante E9, 
en la que elige la pareja de valores que corresponden al primer mes de la tabla (5.2°C, 17.6m3) y con 
el valor de 8°C forma una regla de tres. 

 
Figura 4. Respuesta estudiante E9. Código Aritmético Proporcional 

El razonamiento Aritmético Siguiendo Un Patrón (2/28) incluye las respuestas donde los 
estudiantes toman como referencia el valor de la temperatura dado (8°) y tratan, a partir de los datos 
de la tabla, de “completar” este valor mediante algún procedimiento aritmético, y una vez que lo 
consiguen utilizan esos datos para obtener su respuesta. 

En el tipo Aritmético Sin Patrón Definido (6/28) los estudiantes utilizaron algunas operaciones 
básicas (suma, resta, multiplicación y división; en un caso se utiliza la raíz cuadrada) pero sin que se 
pueda deducir un procedimiento bien definido. 

En el código Percepción De La Tendencia (6/28) el estudiante no realiza operación alguna y sólo 
enfoca su atención en los datos de la tabla y sus respuestas se basan en un análisis visual de la 
tendencia de los datos, en particular en el sentido de su comportamiento.  
Finalmente, se definió el código Sin Argumento (2/28) que representa aquellas respuestas donde el 
estudiante solo aporta el resultado, sin argumentar o hacer explícito su procedimiento. 

Para el problema de trazar la recta de mejor ajuste se encontraron dos tipos de razonamiento 
característicos, el código Partición (6/21 respuestas) donde se clasificaron las respuestas en las que el 
estudiante traza la recta o hace referencia a que su posición debe ser tal que pase por en medio de la 
nube de puntos, siguiendo la dirección de ésta,  es decir trazada de forma diagonal, dejando de un 
lado y del otro de la recta, el mismo número de puntos, como lo muestra la Figura 4. 
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Figura 5. Respuesta estudiante E14. Código Partición 

 
En el código Pertenencia (15/21) se incluyen las respuestas que muestran dos tipos de 

comportamiento, por un lado aquellas donde el estudiante traza o refiere que la recta debe pasar por 
el mayor número posible de puntos o  por la totalidad de estos, y también están las respuestas donde 
el estudiante traza la recta cuidando que pase a través puntos específicos de la nube, como en la 
respuesta mostrada en la siguiente Figura, donde se argumenta que debe pasar por dos puntos (el más 
bajo y más alto).	

	
Figura 6. Respuesta estudiante E28. Código Pertenencia 

 
Análisis de la segunda etapa de investigación 

Para el problema de estimación, la mayoría de los razonamientos identificados se presentaron de 
igual forma que en el cuestionario diagnóstico, sin embargo en esta etapa destaca que el código 
Aritmético Interpolación se encuentra ausente en las respuestas de los estudiantes y fue sustituido por 
el código Uso de Software (3/15 parejas), en el cual el estudiante utiliza el software para modificar la 
posición de un punto de la nube hasta el valor de temperatura dada (8° C) y, siguiendo la tendencia 
del conjunto de datos, proporciona el valor estimado del consumo de gas. Una evidencia de este 
código se muestra a continuación: 

 
Figura 7. Respuesta pareja P4. Código Uso de software 

 
En el problema de recta de mejor ajuste algunos alumnos se tomaron la medida del brazo (del codo 

al hombro) y con su correspondiente altura conformaron una nueva base de datos bivariados; a partir 
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de este conjunto es que se construyó el respectivo diagrama de dispersión con el que trabajaron los 
estudiantes. 

Los códigos Partición y Pertenencia emergieron con una frecuencia similar a la observada en la 
etapa previa, con la excepción de un nuevo argumento que denominamos como Cercanía (7/19 
parejas); el código engloba a las respuestas en las que los estudiantes posicionan la recta con ayuda 
del software de tal manera que se encuentre lo más cerca posible de la mayoría de los puntos. Se 
incluye como evidencia la respuesta de la pareja de estudiantes P6. 

 
Figura 8. Respuesta pareja P6. Código Cercanía 

Se muestra una tabla resumen del análisis y codificación inicial, para las dos etapas del estudio: 
 

Tabla1. Proceso de Codificación  
Código Primera Etapa Segunda Etapa Frecuencia Relativa 

Aritmético Interpolación ü    0.143 0.000 
Uso de Software   ü  0.000 0.200 
Aritmético Proporcionalidad ü  ü  0.286 0.267 
Aritmético Siguiendo un Patrón ü  ü  0.071 0.267 
Aritmético Sin Seguir un Patrón ü  ü  0.214 0.267 
Percepción de la Tendencia ü  

 
0.214 0.000 

Sin Argumento ü  
 

0.071 0.000 
Partición ü  ü  0.286 0.211 
Cercanía   ü  0.000 0.368 
Pertenencia ü  ü  0.714 0.421 

  
La siguiente fase del análisis consistió en comparar los códigos definidos en las dos etapas del 

estudio e identificar rasgos de razonamiento covariacional comunes, así como algunos razonamientos 
que surgieron en la segunda etapa; el proceso de conceptualización de los razonamientos 
(inferencias) de las respuestas de los estudiantes a continuación se describe.  

En función de las inferencias que realizan los estudiantes se identificaron conexiones conceptuales 
entre los razonamientos que exhiben, de ahí que los códigos Percepción de la Tendencia y Uso de 
Software (problema de estimación) se reclasificaron en el patrón de razonamiento Noción de 
Agregado pues en ambos casos los estudiantes hacen referencia a la utilización del conjunto 
completo de valores de los que disponen, para argumentar sus respuestas; independientemente de que 
sus resultados sean o no correctas normativamente.  Por otro lado los códigos Interpolación, 
Proporcionalidad, Aritmético Siguiendo un Patrón, Aritmético Sin Seguir un Patrón (problema de 
estimación), Partición y Pertenencia (problema de recta de ajuste) se reclasificaron como Búsqueda 
de una Señal. La interconexión entre estos códigos radica en que los estudiantes infieren que debe 
existir una especie de clave o pista para resolver el problema, y realizan una búsqueda en los datos 
que se le proporcionaron. Parece que el alumno sospecha que existe un patrón o estructura ocultos en 
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un subgrupo de datos (no utiliza la totalidad de datos ni contempla el conjunto de puntos) que lo 
llevarán a estructuras constantes, ausentes de incertidumbre o variación, que le son familiares. 
Finalmente se renombró al código Cercanía (problema de recta de ajuste) como Sentido de 
Variabilidad, ya que se perciben rasgos, aunque de manera espuria, de que los estudiantes infieren 
una relación presente entre el modelo de ajuste y los puntos de la nube, en el diagrama de dispersión. 
El código Sin Argumento que se presentó en el problema de estimación, al no aportar evidencias de 
algún tipo de inferencia realizada por los alumnos, no se consideró en esta etapa del análisis.  
 

Tabla 2. Proceso de Conceptualización  

Código 
 

Patrón de Razonamiento /Inferencias 
Informales 

 
Percepción de la Tendencia 
Uso de Software 

Noción de Agregado 
 

Aritmético Interpolación 
Aritmético Proporcionalidad 
Aritmético Siguiendo un Patrón 
Aritmético Sin Seguir un Patrón 
Partición 
Pertenencia 

Búsqueda de una Señal 
 
 
 

Cercanía Sentido de Variabilidad 
  

La tabla 2 muestra un resumen de la conceptualización y definición de los patrones de razonamiento 
identificados. 

Conclusiones 
Desde la perspectiva teórica que abordamos, una inferencia informal es un tipo de razonamiento que 

incluye consideraciones en varias dimensiones (Rubin, Hammerman y Konold, 2006) y en 
condiciones específicas de estudio. En nuestro caso una primera dimensión es la Noción de 
Agregado, donde se privilegia una percepción holística de las situación-problema por sobre la 
contemplación de los casos individuales. En este sentido los códigos inicialmente definidos, 
Percepción de la tendencia y Uso de software, presentan como patrón el que los estudiantes 
consideran la totalidad de los datos con que disponen; por un lado hacen la estimación del valor de la 
variable respuesta pedido (consumo de gas) haciendo un análisis puramente visual a partir de la 
tendencia del conjunto de datos, es decir que argumentan su respuesta con base en el comportamiento 
global del conjunto de valores. Por otro lado cuando utilizan Fathom, al construir el diagrama de 
dispersión y observar nuevamente la tendencia de la nube de puntos, identifican que debe existir 
cierta relación entre los puntos, por lo que eligen uno y modifican su posición de tal manera que 
coincida el valor dado de la variable independiente (8°C de temperatura) con el de la variable 
respuesta (consumo de gas) correspondiente, siguiendo la “forma” general de la nube. Si bien es 
cierto que en ninguno de los casos anteriores la respuesta de los estudiantes es la normativamente 
adecuada, si permite apreciar que bajo ciertas circunstancias son capaces de percibir que en las 
relaciones bivariadas es necesario considerar las características y comportamiento de los datos como 
un todo y, con base en esto inferir el valor de algún punto particular de interés. 

Otra dimensión a considerar se ve reflejada con el patrón que definimos como Búsqueda de una 
señal, donde las respuestas arrojan que ante la dificultad que les representa la incertidumbre o la 
variación intrínseca en este tipo de problemas, los alumnos tratan de resolver la situación en un 
terreno familiar para ellos o con el que se sienten cómodos, posiblemente por esto utilizan en su 
mayoría procedimientos aritméticos (regla de tres, factor de proporcionalidad o sumas y restas) para 
hacer la estimación; donde además solo utilizan una parte de los datos. También es el caso del 
problema de la recta de ajuste, en el que ante la ausencia de la noción de incertidumbre o de esa 
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visión de agregado, utilizan parcialmente los datos disponibles, haciendo referencia al modelo de la 
función lineal como alternativa para ajustar una recta a una distribución de puntos que presenta una 
tendencia lineal, considerando sólo algunos de estos puntos en su elección, ignorando la influencia de 
la totalidad de estos y su variación conjunta, y sobre todo, definiendo dos tipos de datos: los que 
pertenecen o no al modelo lineal que ellos eligen trazar.  

Como tercera dimensión proponemos, Sentido de Variabilidad, representada por el código que se 
definió inicialmente como Cercanía. En este patrón de razonamiento se incluyeron las respuestas que 
hacen referencia, aunque de manera somera, a la percepción de que existe cierta variación que 
subyace en este tipo de problemas y que debe considerarse al momento de proponer una recta de 
ajuste para un conjunto de puntos, tal y como lo hicieron los estudiantes al trazar y argumentar que la 
recta debe posicionarse lo más cerca posible de la mayoría de los puntos. 

Confiamos en que la identificación de estos patrones de razonamiento como la manera en que los 
estudiantes llevan a cabo inferencias informales ante situaciones-problema de asociación estadística 
abona al cuerpo del conocimiento en el estudio de datos bivariados, sin dejar de lado que es 
importante explorar obstáculos de aprendizaje como son la aparente desvinculación que tiene el 
estudiante entre la naturaleza predictiva o inferencial inherente al modelo de regresión lineal y su 
identificación como aquella recta que mejor se ajusta al conjunto de puntos, así como la dificultad 
para concebir al conjunto de datos como un agregado, es decir, como un sistema en el que están 
ligados unos a otros y tienen la propiedad de ser desviaciones de un mismo modelo.  
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This paper presents a case study that is part of a research studying how university statistics teachers 
integrate digital tools in their practice. The case study is of a teacher who claims to follow 
constructionist ideas for her teaching of statistics, using the R programming language. The teacher 
developed a series of activities with R, aiming to promote the understanding of statistical concepts. 
We observed 11 of her classes, in a three-week period. These classes were analyzed using as 
framework the notion of Instrumental Orchestration and Papert's construccionist principles. We 
identified four ways in which this teacher orchestrates her class and the constructionist elements 
present in them. 

Keywords: University Mathematics, Data Analysis and Statistics, Technology, Programming and 
Coding 

Introduction 
For the study, at university level, of statistics and its advanced models, the use of digital 

technologies (DT) is necessary, due to the high computing and graphing requirements of the 
discipline. Additionally, mathematics education researchers point out that digital technologies can be 
used to rethink the teaching and learning of statistics concepts, by supporting students' statistical 
reasoning (Biehler et al., 2013) and facilitating access to the fundamental ideas of the discipline 
(Burrill, 2014).  

In contrast, the results of a 2017 survey (Ruiz & Sacristán, 2019) of Mexican university statistics 
teachers showed that, although they use different digital resources in their teaching practice, most 
tend to limit their use to computation, graphing and visualization in practical sessions and/or in tasks, 
without changing their teaching, nor achieving what they themselves believe can be achieved using 
DT. 

However, in the survey data, the responses of a particular teacher caught our attention: this teacher 
uses the R1 programming language to engage her students in expressive exploratory activities to 
confront their intuitions regarding statistical concepts and practice. This teacher pointed out that she 
changed her use of technology in her classes after she became familiar with the constructionism 
paradigm (Papert, 1991), which we describe below. Thus, unlike most of the other participants in the 
survey (Ruiz & Sacristán, 2019), this teacher does not restrict the use of DT to perform calculations 
and draw graphs to solve tasks; rather, her aim is to promote conceptual learning in her students, 
through R-based programming. That is why we decided to conduct a case study of her practice, in 
order to identify how she integrates R, designs and implements activities using this language, in order 
to promote a conceptual learning of statistical ideas, and identify which of constructionist ideas are 
present in her practice. 

For the case study, we used as a theoretical framework, the notion of Instrumental Orchestration 
(Guin & Trouche, 2002), derived from Rabardel’s (1995) Instrumental Approach. In this regard, 
                                                             
1 https://www.r-project.org/ 
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Drijvers et al. (2009) note that the different forms of orchestration of teachers are related to their 
views of mathematics learning and teaching. Through the case study presented in this paper, we aim 
to identify the relationship between the studied teacher's view and her forms of orchestration, in 
particular, the research question were: What types of orchestrations can we observe in this teacher's 
practice? And what are the construccionist elements in those orchestrations? 

Conceptual and theoretical framework 
The construccionism proposal 

The constructionist paradigm proposed by Papert (1991), follows the premise from constructivism 
that learning involves the construction of knowledge structures. Constructionism adds to that premise 
the idea that learning is facilitated when an individual consciously engages in the creation of a public 
entity – that is, of an object or product that can be shared with others (Papert, 1991). Thus, 
constructionism emphasizes the active role of the individual in the construction of their knowledge. 

Sacristán et al. (2020) identified a long list of the principles and ideas that are part of 
constructionism. From their perspective, these are organized around four themes: (1) Epistemology, 
and conceptions of mathematical knowledge and of mathematics; (2) Conception of learning and of 
the role of the student; (3) Pedagogy and design; and (4) Computer programming and microworlds. 

From a constructionist perspective, the use of DT artifacts in the classroom requires a rethinking of 
the teaching practices: emphasis is placed on inquiry and on the learner, instead of on a specific 
curriculum or on facts to be learned. For this reason, the use of the computer is conceived as an 
object-to-think-with (Martinez & Stager, 2013): Papert (1980b) believes that computers can provide 
environments to develop and work, especially through programming with powerful ideas and/or 
intellectual skills, that respond to one’s own interests and needs. He also considers that the challenges 
that arise when programming can be learning opportunities. 

Statistics education researchers (e.g., Chance et al., 2007) agree that the use of DT artifacts in 
teaching must be accompanied by changes in teaching style; they further point out that the teacher 
plays an important role in leveraging DTs to achieve such rethinking. 
Instrumental Orquestration 

The notion of Instrumental Orchestration was proposed by Guin and Trouche (2002) to take into 
account how a teacher directs and conducts his classes. It refers both to the different ways in which a 
teacher organizes and uses available artifacts, whether technological or not, and the teacher's 
performance during class seeking an effective use of those artifacts. 

Drijvers et al., (2009) define instrumental orchestration as “the teacher’s intentional and systematic 
organisation and use of the various artefacts available in a […] learning environment in a given 
mathematical task situation” (p. 482). It is composed of three elements: (i) the didactical 
configuration consisting of the arrangement of the artifacts, whether technological or not, and the 
learning setting; (ii) the exploitation mode which refers to the ways the teacher decides to carry out a 
given task, in order to exploit the proposed configuration; and (iii) the didactical performance , 
which involves the teacher’s decisions and interventions taken while teaching in the chosen didactic 
configuration and exploitation mode (Drijvers et al., 2009). 

The first form of instrumental orchestration mentioned in the literature (by Guin & Trouche, 2002) 
is the so-called sherpa-student orchestration, in which students carry out a task with an artifact (a 
calculator), while the work of one of them is projected and the teacher guides the actions of that 
student. In this orchestration, the didactical configuration is an arrangement that allows students to 
observe the projection while working on their own calculator, following the actions of the sherpa 
student. This mode of exploitation is determined by the teacher when guiding the sherpa student in 
his/her actions. 
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Trouche (2004) also distinguishes the sherpa-at-work orchestration, which has the didactical 
configuration described above and where the sherpa student is used to guide the work of the class in 
the exploitation mode. Other types of orchestrations identified by Drijvers et al. (2009) are: 
technical-demo, explain-the-screen, link-screen-board, discuss-the-screen, spot-and-show. In the 
exploitation modes of the first three orchestrations, the teacher has a central role; while the other 
orchestrations promote student intervention. On her part, Tabach (2011, 2013) distinguishes other 
types of orchestration: monitor-and-guide, not-use-tech and discuss-tech-without-it. In the monitor-
and-guide orchestration, the teacher uses a learning management system to guide students to perform 
tasks similar to those of the demo-technical and explain-the-screen orchestrations. In the not-use-tech 
orchestration, technology is available but the teacher decides not to use it. The last form of 
orchestration proposed by Tabach (2013) is the discuss-tech-without-it, which corresponds to settings 
where it is not possible for students to have the technology element. Drijvers (2012) distinguishes 
one more type of orchestration, which he calls work-and-walk-by. In that orchestration, students 
work with a computer, either individually or in pairs, while the teacher walks between them to 
monitor their work and guide them when needed. 

For Drijvers et al. (2009), teachers’ different types of orchestration relate to their views on 
mathematical learning and teaching. For example, for one of his observed teachers it was important 
to achieve certain mathematical learning objectives, stressing the relationship between what happens 
in the technological and paper-and-pencil environments; thus, the type of orchestration that he used 
most was the link-screen-board one.  

Drijvers et al. (2009) also point out that the demo-technical orchestration was the most prevalent 
among the observed teachers, because they "felt the need to familiarize students with basic 
techniques, in order to prevent technical obstacles from hindering the mathematical activities" (p. 6). 

Based on these proposals, we analyzed the orchestration of the case study teacher. Next, we present 
the methodology of the study. 

Methodology 
As noted in the introduction, in 2017 we conducted a survey, using an online questionnaire, to get 

an insight into how university teachers use DT in their teaching of statistics. From the responses of 
31 teachers, and interviews of three of them, the teacher, Mayra (pseudonym), was selected for a 
qualitative case study. As also noted, this teacher was chosen because she claimed to have a 
constructionist view of learning and teaching, which is why she uses technological tools in order to 
promote in her classes student-centered activities that will help them develop their conceptual 
learning (an appropriation) of statistical concepts. 

We carried out an initial semi-structured interview with Mayra; observed 11 of her classes; and also 
had 6 conversations with her, in which she discussed details of her classes, the decisions she made 
and how her practice compares to other courses. All interviews (both formal and informal), as well as 
her classes, were recorded (audio for the interviews and video for the classes). We also analyzed the 
activities and assessments that she designed and implemented with her students. 

The analysis of the data from the observations of her classes, focused on identifying the 
instrumental orchestration elements of her practice. Data from the interview and of her comments 
were used to complement the analysis of the classes and determine her vision of the teaching and 
learning of statistics and of the discipline itself. 

The observation of the classes was divided into episodes when changes, in either the didactic 
configuration or in the mode of exploitation of Mayra’s orchestration, were identified. We attempted 
to distinguish Mayra’s types of orchestrations, using as reference those reported in the literature, and 
taking into account what Tabach (2013) pointed out, in terms of identifying whether an orchestration 
is a variant of another one, or a new orchestration. 
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In addition to that, guided by Papert's ideas (1980a, 1980b, 1991) and the synthesis of 
constructionist principles carried out by Sacristán et al. (2020), we attempted to identify the 
constructionist aspects in Mayra’s classes. 

Case study 
Mayra's background, her teaching practice and her current activities design  

Mayra is a biologist but has been teaching probability and statistical courses for 17 years, both at the 
undergraduate and graduate level. The topics covered in her courses have a strong practical 
orientation, as they address students of biology and environmental sciences. 

DT resources always have been part of Mayra's teaching, because statistics needs them (for data 
processing, calculations and graphing). Initially, she used programs such as Excel, Statistica, and 
MiniTab, mainly to perform the calculations required in the formulas associated with a concept or 
statistical procedure. When using those resources, her classes used to have a traditional format, and 
only when necessary she showed students how to use those DT resources to perform calculations and 
get some results. The type of orchestration of those classes corresponded to the demo-technical one, 
where DTs were used to get a result that helped respond to a specific statistical problem. 

When Mayra was introduced to the R programming language in 2007, she felt that her possibilities 
to statistically analyze the data of her professional practice were extended: "the window that opened 
to me when I got to know R, was precisely the possibility of adapting a set of analytical procedures 
to the data, and not the other way around".  

A short time later, Mayra was introduced to the constructionist paradigm and was struck by the fact 
that learners did not need to be experts in programming to become creators of (increasingly complex) 
projects, be able to work independently and with, implicit or explicit, mathematical concepts. It was 
then that her view of statistics education changed and she decided to use R to develop a new way of 
teaching. 

Thus, adopting the idea that students could construct their own knowledge, without the need of an 
excessively guided instruction but, rather, through a more construccionist pedagogy, Mayra designed 
a series of R-based activities so that students could explore data, using numerical, graphical and 
tabular records. In the course of several school cycles, Mayra refined the design of the activities: In 
her first proposals, the activities aimed to introduce the R programming language, so that later the 
students could use it for calculations and graphs; but in that case the tool was just integrated, without 
changing her teaching practice. The activities were then modified in order to explore statistical 
concepts (e.g. mean, standard deviation), or sets of concepts (included in the curricula) through 
different types of representations. For that, the activities present, through several parts, a particular 
problem involving a specific statistical concept. It should be noted that each activity leads the student 
to continuously explore and link the different types of representations, so that they can infer the result 
of an action, justify their decisions, explore the commands and propose different solutions. Mayra 
says: "The aim of the exercises became one that I had not been able to see[:] find in each of these 
thematic units, the essential concepts that they had to learn." She pointed out that her aim became to 
promote a more conceptual learning in her students through the activities that they had to solve, 
discuss and share. She explained that she is now aims to use DT resources, not to make easier what 
has always been done, but to rethink her teaching and change the usual roles in class of both teachers 
and students, as well as of technology. 

Her activities with R are designed to be solved in class, in teams of two or three students. Through 
these activities, she aims to promote in students exploratory work with questioning and inference; in 
other words, students do a similar job to that of a statistical user. In this way, her activities coincide 
with what Papert promoted (1980a, 1980b): i.e., to use programming as an activity for students to do 
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math, instead of learning about math. Thus, as Kynigos (2015) explains, whereas traditional school 
practices may impose an artificial picture of mathematics, by presenting the products of 
mathematical activity, the constructionist paradigm focuses on the mathematical activity and the 
expression of meanings through the use of and tinkering of representations in the form of digital 
artifacts.  

 

 
Figure 1: Script of an R-based activity on Analysis of Variance (ANOVA)  

 
For example, one of Mayra’s activities (see Figure 1) focuses on the analysis of variance (ANOVA) 

by presenting a real situation of the study of crabs under three temperature treatments. Some of the 
aims of the activity include exploring the components of the variance through the different 
representations and relating them to various elements in the ANOVA table (sum of squares, degrees 
of freedom, etc.); and familiarizing students with the F-distribution and the parameters that define it. 
The teacher explained that the purpose of this activity is for students to have to build representations 
themselves using R; that is, for  

students to have to use an ANOVA table... to look there  for certain values that will help 
them give an answer [to the situation raised]. Do the same graphically, forcing them to relate 
what they are seeing on a graph to the numerical value; make them reflect on the magnitude 
of that difference, or on that variation, or on that number in terms of the problem, in general, 
[or] in terms of the units being used.  

Although Mayra's approach focuses on students solving activities, we also observed some of her 
regular lessons (without technology), and others where group discussions of the activities (with 
technology) were carried out. In her regular lessons she presents a statistical concept or method and 
the symbology to be used. She also leads discussions on the relationships of that concept with others 
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previously studied, and on relevant theoretical aspects. Mayra then assigns students an R-based 
activity to be carried out in teams of two or three students. When students complete the activity in R, 
or when Mayra needs to help them with their progress, she leads a group review of the activity. 
Types of orchestration in Mayra's observed classes  

Throughout our observations, of her regular lessons, the sessions where students carried out the R-
based activities, and the group reviews of those activities, we identified four types of orchestrations 
in Mayra’s practice, as presented below. 

Discuss-tech-without-it orchestration. In her regular lessons, Mayra does not use technology; 
however, there are times when either she, or the students, refer to the R commands to talk about a 
concept or statistical process. For example, in an episode where the teacher asked for a reference 
value needed to interpret the F-value present in an ANOVA, under a null hypothesis, a student’s 
answer was in terms of the R (qf) command used for calculating quantiles in hypothesis tests for the 
F-distribution. The teacher used this idea to discuss how R presents the results of an ANOVA. In this 
episode we observed the discuss-tech-without-it orchestration, where she explained how statistical 
processes in the R environment are presented and how R commands are used for expressing 
statistical ideas. In this orchestration, the didactical configuration corresponds to a traditional class 
arrangement, in which students follow the explanations of the teacher on the blackboard. In addition 
to this material artifact (the blackboard), the didactic configuration includes symbolic artifacts, such 
as graphic representations, symbols, and terms that denote certain statistical concepts and the 
contexts in which the statistical problems are presented (the problems are usually taken from real 
situations and data). The exploitation mode includes Mayra’s explanations, using the blackboard for 
annotations and to illustrate concepts. Part of the exploitation mode relates to how Mayra’s 
explanations are characterized, where she aims to discuss the relevance of a newly presented 
statistical concept and/or the approach of a particular method. 

Although her regular lessons refer to the statistical content of the activities to be carried out by her 
students, these are not theoretical sessions with activities as a practical component; on the contrary: 
the discussions and contexts addressed in these regular lessons serve as a scaffolding for students, so 
that they can develop the activities in R. In this sense, the contexts of the proposed problems play an 
important role, and by referring to them, Mayra links her different types of class-formats. The 
orchestration of Mayra’s regular lessons do not show constructionist aspects, since they are more 
instructionist (Papert, 1980b) ways of teaching, although she does promote student participation, so 
that students are not passive and they may benefit from what is discussed, which is fundamental for 
carrying out the R-based activities. 

Work-and-walk-by orchestration. In classes dedicated to solving the activities, we observed the 
work-and-walk-by orchestration. Some of the artifacts involved in this didactical configuration are 
the resources shared in computer folders by the teacher, which include the designed activities as R-
scripts and databases to be used with those activities. The symbolic artifacts include the (previously 
studied or newly presented in the lessons) statistical concepts. Other artifacts include the 
programming language, in particular the commands related to those statistical concepts. Following 
Papert’s (1980a, 1980b) ideas, these artifacts become objects-to-think-with and for exploring the 
mathematical and statistical ideas. 

The didactical configuration of this orchestration requires students to have access to the computer 
resources, and for the classroom setup to allow them to gather as teams on one or more computers. In 
classes that we observed, almost every student used their own computer. In the exploitation mode of 
the work-and-walk-by orchestration, the teacher promotes student teams to investigate, on their own, 
the R-based activity, looking for their own solutions, discussing them within each team and also with 
other teams; Mayra interacts with one team at time, seeking to: (i) emphasize important aspects and 
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the relationship between the procedures/results of the activity and the theoretical concepts involved; 
and (ii) address students' particular doubts and difficulties. 

How the teacher's aims for the programming activities are fulfilled, depends on how students are 
able to outline a solution proposal to the problem and refine it through different attempts, until 
reaching an appropriate response in terms of the given context. According to Mayra, the activities’ 
approach generates a need for students to ask themselves "what do I want to do? What do I want to 
do it for? What is the information I'm going to get with that particular step, through that method?" 
Mayra states that when students fail an attempt, they need to find out the reason for such a result and 
that reflection exercise leads to a more profound learning than if they didn’t make mistakes, where 
the result simply confirms their reasoning. These different roles of the teacher and students –the latter 
having an active role in their learning process– that involve collaboration and communication, are 
central constructionist aspects (as described in Sacristán et al., 2020) in this orchestration, which also 
includes other constructionist aspects such as: problem solving, exploration, the construction of new 
objects and/or ideas, the need to overcome obstacles and debug, etc.. 

One of the advantages of Mayra’s proposed activities is that they are conceived and designed taking 
into account a problem from real biological/environmental practices (the students’ study area), so 
that the context and the results of that problem become references for students. This helps articulate 
the explanations given in the regular lessons with what is done in the R environment. Sometimes, 
discussions that emerge during the activities are taken up in subsequent regular lessons to make 
connections between topics. 

In Mayra’s didactical performance, there are times when she decides to lead a plenary discussion of 
some proposed solution, of a result or of a doubt, either to facilitate the understanding of the concepts 
or to help the pace of the different teams in solving the problems. 

Sherpa-at-work and link-screen-blackboard orchestrations. When Mayra leads classes to 
review the activities that were carried out, we observe a variation of the sherpa-at-work orchestration, 
in which a team of students participates to present their work. The didactical configuration consists 
of an arrangement where a team projects their work so that it can be shared with the other students. 
In the exploitation mode, the teacher selects a team of students to present and discuss how they 
followed the R-based activity guidelines, and their solutions to the problem –thus fulfilling the 
constructionist aspect of sharing and discussing "public entities" (Papert,1991). 

The didactical performance in this orchestration includes the validation by the teacher of the 
different solution proposals, confronting the misconceptions and difficulties that arose in the activity, 
and the assessment of students’ understandings of the concepts under study. 

The review classes also involve the link-screen-blackboard orchestration. For example, during the 
review of an activity on the Additive Model, the first part focused on exploring the corresponding 
dataset and indicating its difference with datasets that were used in the T-test. In her explanations, 
she emphasizes how data needs to be arranged in order to perform the statistical method. She uses a 
whiteboard to show how data needs to be arranged, noting how subscripts can serve to distinguish 
between the numbering of a data observation and the treatment for each observation, and how this is 
reflected in the R t.test command inputs. 

Conclusions 
In this study we observed how Mayra, through her constructionist teaching approach, implemented 

activities, as promoted by Papert (1980a), to get her students involved in doing statistics through 
programming and by generating R-based representations, rather than learning about statistical 
concepts. Other constructionist aspects in Mayra's orchestrations were observed in her classroom 
dynamics and in the participants’ roles (except in the regular lessons). In Mayra’s three class formats, 
we identified four types of orchestrations. In the orchestration types presented in the research 
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literature (Drijvers et al. 2009, Guin & Trouche, 2002; Trouche 2004, Tabach, 2011, 2013) there are 
few examples where teamwork is encouraged. Mayra's orchestrations involve much more varied aims 
and considerations than those illustrated in Drijvers et al. (2010). Also, while the demo-technical 
orchestration is the most frequently observed in the study by Drijvers et al. (2010), Mayra’s classes 
do not present this type of orchestration. 

Pratt et al. (2011) state that immersion in the use of statistics software is important for teachers to 
gear student learning of statistical ideas, and helps them appreciate the role that DTs play in 
promoting understanding of statistical concepts and methods.  

Mayra, using her own experience, generated activities that reflect a greater use of technology in the 
classroom. In this document we show a novel way to use the R programming language in the 
teaching of statistics, in which students have a much more active role in the construction of their 
knowledge. 
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En este artículo se presenta un estudio de caso que forma parte de una investigación con profesores 
de estadística de nivel universitario para estudiar su incorporación de herramientas tecnológicas 
digitales en su enseñanza. El estudio de caso corresponde a una profesora que dice adoptar ideas 
del construccionismo para su enseñanza de la estadística con el lenguaje de programación R. La 
profesora desarrolló una serie de actividades con R, para promover la comprensión de conceptos 
estadísticos. Observamos 11 de sus clases, en un periodo de 3 semanas. Sus clases se analizaron 
considerando la noción de Orquestación Instrumental  y los principios construccionistas de Papert. 
Identificamos cuatro formas en la que esta profesora orquesta su clase y los elementos 
construccionistas presentes en éstas. 

Palabras clave: Matemáticas de Nivel Universitario, Análisis de Datos y Estadística, Tecnología, 
Programación y Codificación Computacional 

Introducción 
La estadística que se estudia en el nivel superior, y sus modelos avanzados precisan del uso de 

tecnologías digitales, debido en gran parte a las elevadas necesidades de cómputo y graficación de la 
disciplina. Además, investigadores en educación matemática señalan que su uso puede aprovecharse 
para replantear la enseñanza y el aprendizaje de conceptos estadísticos, promoviendo el desarrollo 
del pensamiento propio de la disciplina (Biehler et al., 2013) y permitiendo que los alumnos accedan 
a las ideas estadísticas fundamentales (Burrill, 2014).  

En contraste con lo anterior, los resultados de una encuesta que realizamos en 2017, con profesores 
de estadística de nivel universitario (Ruiz & Sacristán, 2019) mostraron que, si bien los profesores 
utilizan distintos recursos tecnológicos digitales (TD), en su práctica docente, la mayoría tiende a 
limitar su uso al cómputo, graficación y visualización en las sesiones prácticas y/o en tareas, sin 
cambiar su forma de enseñanza ni llevando a cabo lo que ellos consideran que puede lograrse al usar 
TD. 
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Sin embargo, de entre los resultados, nos llamó la atención una profesora que utiliza el lenguaje de 
programación R2 para involucrar a sus alumnos en actividades expresivas de exploración para 
confrontar sus intuiciones sobre los conceptos y la práctica estadística. Esta profesora señaló que 
hubo un cambio en la forma en que usa la tecnología en sus clases a partir de que conoció el 
planteamiento del construccionismo (Papert, 1991), enfoque que describimos más abajo. Así pues, a 
diferencia de la mayoría de los encuestados (Ruiz & Sacristán, 2019), esta profesora no se restringe a 
utilizar las TD para realizar cálculos y obtener gráficas para resolver tareas, sino que su principal 
objetivo es promover un aprendizaje más conceptual por parte de sus alumnos a través de la 
programación con R. Por ello, la forma de enseñanza de esta profesora llamó nuestra atención, y 
decidimos hacer un estudio de caso de ella para identificar de qué forma integra R, diseña y conduce 
las actividades con este lenguaje, para fomentar el aprendizaje conceptual de ideas estadísticas y 
cuáles de las ideas construccionistas son parte de su práctica.  

Para el estudio de caso, hemos utilizado como marco teórico, la noción de Orquestación 
Instrumental (Guin & Trouche, 2002), la cual se deriva de la Aproximación Instrumental de Rabardel 
(1995). Al respecto, Drijvers et al. (2009) señalan que las diferentes formas de orquestación de los 
profesores se relacionan con su visión sobre el aprendizaje y la enseñanza de las matemáticas. En la 
parte del estudio de caso, presentada en este documento, pretendemos identificar, en particular, la 
relación entre la visión de la profesora y sus formas de orquestación. Por ello, las preguntas de 
investigación que guían lo aquí descrito, es: ¿Qué tipo de orquestaciones se observan en la enseñanza 
de esta profesora?; y como sub pregunta ¿cuáles son los elementos construccionistas en esas 
orquestaciones? 

Marco conceptual 
La propuesta del Construccionismo 

El paradigma construccionista propuesto por Papert (1991), parte de la premisa constructivista de 
que el aprendizaje implica una construcción de estructuras de conocimiento. La propuesta 
construccionista añade a esto, la idea de que el aprendizaje se promueve cuando un individuo se 
involucra conscientemente en la creación de una entidad pública –es decir, un objeto o producto que 
pueda ser compartido con otras personas (Papert, 1991). Así, esta propuesta enfatiza el rol activo del 
individuo en la construcción de su propio conocimiento.  

Sacristán et al. (2020) identificaron una larga lista de los principios e ideas que forman parte de la 
propuesta construccionista. Desde su perspectiva, éstos se organizan alrededor de cuatro temas: (1) 
Epistemología y concepciones sobre el conocimiento matemático y sobre la matemática; (2) 
Concepciones del aprendizaje y el rol del estudiante; (3) La pedagogía y el diseño; y (4) La 
programación computacional y los micromundos.  

Desde la perspectiva construccionista, el uso de artefactos TD en el aula requiere un 
replanteamiento de la forma de enseñanza, de manera que se hace hincapié en la indagación y en el 
aprendiz, no en un currículo específico o en hechos a ser aprendidos. Por esta razón, se promueve el 
uso de la computadora como algo con qué pensar (Martinez & Stager, 2013): Papert (1981) considera 
que la computadora puede proveer ambientes que permitan desarrollar y trabajar con ideas poderosas 
y/o habilidades intelectuales, que respondan a los intereses y necesidades de cada individuo, sobre 
todo a través de la programación. También considera que las eventualidades que surjan al programar, 
pueden ser oportunidades de aprendizaje.  

Investigadores en educación estadística (e.g., Chance et al., 2007) coinciden que el uso de artefactos 
TD en la enseñanza debe ir acompañado de cambios en las formas de enseñanza; señalan, además, 

                                                             
2 https://www.r-project.org/ 
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que el profesor juega un rol importante en el aprovechamiento de las TD para alcanzar tal 
replanteamiento. 
La Orquestación Instrumental  

La noción de Orquestación Instrumental fue propuesta por Guin y Trouche (2002) para dar cuenta 
de cómo un profesor dirige y lleva a cabo sus clases. Se refiere tanto a las distintas formas en las que 
un profesor organiza y usa los artefactos disponibles, ya sean tecnológicos o no, así como al 
desempeño del profesor durante la clase para sacar provecho de dicha configuración.  

La orquestación instrumental se define como la organización y uso sistemático e intencional de los 
artefactos a disposición del profesor en el aula, durante la realización de una tarea determinada en un 
ambiente de aprendizaje (Drijvers et al., 2009). Se compone de tres elementos: (i) la configuración 
didáctica que consiste en la disposición de los artefactos, ya sean o no tecnológicos, y del ambiente 
de aprendizaje; (ii) los modos de explotación que se refieren a las formas indicadas por el profesor 
para llevar a cabo la tarea dada, en busca de sacar provecho de la configuración propuesta; y (iii) el 
desempeño didáctico del profesor, incluye sus decisiones e intervenciones desarrolladas en el 
ambiente de aprendizaje (Drijvers et al., 2009). 

La primera forma de orquestación instrumental mencionada en la literatura fue la llamada 
orquestación alumno-sherpa, en el cuál los alumnos desarrollan cierta tarea ayudados de un artefacto 
(una calculadora), mientras que el trabajo de uno de ellos se proyecta y el profesor, regula la 
intervención de dicho estudiante (Guin & Trouche, 2002). En esta orquestación la configuración 
didáctica consiste en un arreglo que permite a los alumnos observar la proyección y manejar su 
propia calculadora, siguiendo las acciones del alumno sherpa. El modo de explotación lo determina 
el profesor, indicando al alumno sherpa que acciones realizar. 

Trouche (2004) también distingue la orquestación sherpa-en-el-trabajo, la cual tiene una 
configuración didáctica como la descrita antes y en cuyo modo de explotación se guía el trabajo de la 
clase a través del alumno sherpa. Otros tipos de orquestaciones identificadas por Drijvers et al. 
(2009) son: demostración-técnica, explica-la-pantalla, enlaza-pantalla-pizarrón, discute-la-pantalla, 
indica-y-muestra. Los modos de explotación de las primeras tres orquestaciones implican que el 
profesor tome un papel central, mientras que las siguientes orquestaciones promueven la intervención 
de los alumnos. Por su lado, Tabach (2011, 2013) distingue otros tipos de orquestación: monitorea-y-
guía, no-usa-tecnología y discute-la-tecnología-sin-ella. En la de monitorea-y-guía, el profesor 
utiliza un sistema de administración del aprendizaje para guiar a los estudiantes o llevar a cabo tareas 
similares a las de las orquestaciones demostración-técnica y explica-la-pantalla. En la orquestación 
no-usa-tecnología, la tecnología está disponible pero el profesor decide no hacer uso de ella. La 
última forma de orquestación propuesta por esta autora, discute-la-tecnología-sin-ella, corresponde a 
escenarios donde no es posible que los alumnos dispongan del elemento tecnológico. Drijvers (2012) 
distingue un tipo de orquestación más, al que denomina como circula-mientras-trabajan (work-and-
walk-by). En esa orquestación, los estudiantes trabajan con una computadora, ya sea individualmente 
o en pares, mientras el profesor circula entre ellos para monitorear su trabajo y guiarlos cuando es 
necesario. 

Para Drijvers et al. (2009), las diferentes formas de orquestación de los profesores se relacionan con 
su visión sobre el aprendizaje y la enseñanza de las matemáticas. Por ejemplo, para uno de los 
profesores que observaron era importante alcanzar ciertos objetivos de aprendizaje matemático, 
vinculando lo que sucede en los ambientes tecnológicos y de papel-y-lápiz; así, utilizaba más 
frecuentemente la forma de orquestación enlaza-pantalla-pizarrón. 

Drijvers et al. (2009) también señalan que la orquestación demostración-técnica era la más frecuente 
entre los profesores que observaron, debido a que éstos “sienten la necesidad de familiarizar a los 
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alumnos con técnicas básicas, para prevenir obstáculos técnicos que inhiban las actividades 
matemáticas” (p. 6).  

Es con base en estas propuestas, que analizamos la orquestación de la profesora estudio de caso. A 
continuación presentamos la metodología del estudio. 

Metodología 
Como se señaló en la sección de introducción a este artículo, en 2017 realizamos una encuesta, 

mediante un cuestionario en línea, para tener un panorama sobre cómo profesores de nivel superior 
utilizan las TD en su enseñanza de la estadística. A partir de las respuestas de 31 profesores, y de las 
entrevistas a tres de ellos, se seleccionó a la profesora, que llamamos Mayra, para realizar un estudio 
de caso de tipo cualitativo. Como también se señaló, esta profesora fue elegida ya que decía tener una 
visión construccionista del aprendizaje y la enseñanza, razón por la cual utiliza las herramientas 
tecnológicas de manera que en sus clases se da un papel primordial a la actividad de los alumnos; 
además, busca promover un aprendizaje más conceptual en sus alumnos (una apropiación de los 
conceptos estadísticos).  

Se realizó una entrevista inicial semi-estructurada a Mayra, se observaron 11 de sus clases, y se 
tuvieron 6 conversaciones fuera de clase en las que Mayra comentaba detalles de la clase, de las 
decisiones que tomaba y algunos contrastes de su práctica con otros cursos. Tanto las entrevistas 
(formales e informales) como las clases, se grabaron (en audio las entrevistas, en video las clases). 
También se recolectaron las actividades y evaluaciones que Mayra había llevado a cabo con sus 
alumnos.  

El análisis de los datos de las observaciones de sus clases se centró en la identificación de los 
elementos de su práctica que componen el modelo de orquestación instrumental. Los datos de la 
entrevista y los audios de sus comentarios se utilizaron para complementar el análisis de las clases y 
para determinar la visión de la profesora respecto a la enseñanza y aprendizaje de la estadística y de 
la disciplina misma. 

La observación de las clases se dividió en episodios, según se identificara un cambio, ya sea en la 
configuración didáctica, o en el modo de explotación de la orquestación de Mayra. Tratamos de 
distinguir sus tipos de orquestaciones, a partir de las señaladas en la literatura, considerando lo 
señalado por Tabach (2013) para identificar si se trata de una variante de cierta orquestación o de una 
nueva orquestación.  

Adicionalmente, se llevó a cabo una identificación de los aspectos construccionistas de las clases de 
Mayra, guiado por las ideas de Papert (1980, 1981, 1991), y la síntesis realizada por  Sacristán et al. 
(2020) en donde se distinguen los principios construccionistas. 

Estudio de caso 
Antecedentes de Mayra, sus formas de enseñanza y su diseño actual de las actividades 

La profesora Mayra es bióloga pero cuenta con 17 años de experiencia docente impartiendo cursos 
de probabilidad y estadística, tanto a nivel licenciatura como posgrado. Los temas abordados en sus 
cursos tienen una fuerte orientación práctica, ya que se dirigen a alumnos de carreras biológico-
ambientales. 

Los recursos TD siempre formaron parte de la enseñanza de Mayra, debido a que en estadística no 
se puede prescindir de ellos (para procesamiento de datos, cálculos y graficación). Al principio, 
usaba programas como Excel, Statistica y MiniTab, principalmente para realizar los cálculos 
prescritos en las fórmulas asociadas al concepto o procedimiento estadístico. Cuando utilizaba esos 
recursos, las clases mantenían un formato tradicional y cuando era necesario, mostraba cómo 
utilizarlos para realizar cálculos y obtener algún resultado. El tipo de orquestación de esas clases, 



Tipos de orquestación en un estudio de caso de una enseñanza construccionista de la estadística 

	 1292	

correspondía a la demostración-técnica, donde las TD eran el medio para obtener un resultado a 
partir del cual responder a una situación estadística concreta. 

La percepción de Mayra, al conocer el lenguaje de programación R en el año 2007, fue que se le 
ampliaron las posibilidades de analizar estadísticamente los datos de su práctica profesional: “la 
ventana que se me abrió cuando conocí R, fue justamente la posibilidad de adecuar un conjunto de 
procedimientos analíticos a los datos, y no al contrario”. 

Poco tiempo después, Mayra conoció el planteamiento construccionista y le llamó la atención que 
los aprendices no necesitaban ser expertos en lenguaje de programación para convertirse en creadores 
de proyectos (cada vez más complejos), poder trabajar de forma independiente, y abordar, implícita o 
explícitamente, conceptos matemáticos. Fue entonces que su visión de la educación estadística 
cambió y decidió usar R para desarrollar una nueva forma de enseñanza. 

Así, con la idea de que los alumnos pudieran construir su propio conocimiento, sin necesidad de una 
instrucción demasiado guiada, Mayra diseñó una serie de actividades buscando una pedagogía más 
construccionista, basadas en el uso del lenguaje de programación R para la exploración de datos, por 
parte de los alumnos, usando los registros numérico, gráfico y tabular. Durante varios ciclos 
escolares, Mayra depuró y refinó el diseño de las actividades: En sus primeras propuestas, las 
actividades buscaban introducir el lenguaje de programación R, para que después los alumnos 
pudieran utilizarlo para obtener cálculos y gráficas; siendo ésta, una incorporación de la herramienta 
sin cambiar la forma de enseñanza. Luego las actividades se modificaron para explorar conceptos 
estadísticos (e.g., media, desviación estándar), o conjuntos de conceptos (incluidos en los planes de 
estudio) a través de distintos registros de representación. Para ello, las actividades plantean una 
problemática particular, cuya resolución se lleva a cabo por etapas donde se pone en acción un 
concepto determinado. Cabe mencionar que cada actividad lleva al alumno a explorar y vincular 
continuamente los distintos registros de representación, a tratar de inferir el resultado de una acción, 
a justificar sus decisiones, a explorar los comandos y a plantear distintas propuestas de solución. Al 
respecto Mayra comenta: “el objetivo de las practicas se convirtió en un objetivo que yo no había 
sido capaz de ver[:] encontrar en cada una de esas unidades temáticas, cuáles eran los conceptos 
esenciales que tenían que aprender.” Señaló como objetivo promover en sus alumnos un aprendizaje 
más conceptual a través de las actividades que resuelven, discuten y comparten. Explicó que busca 
ahora un uso de los recursos TD,  no como auxiliares para hacer más fácil lo que siempre se ha 
hecho, sino para replantear su enseñanza y cambiar los roles usuales en clase tanto del profesor y los 
alumnos, como de la tecnología.  

Sus actividades con R están diseñadas para realizarse en clase, en equipos de dos o tres alumnos. A 
través de dichas actividades, buscaba promover en los alumnos un trabajo de exploración, de prueba 
y error, de cuestionamiento e inferencia; en otras palabras, que realizaran un trabajo parecido al de un 
usuario de la estadística. De esta manera, coincide con las propuestas de Papert (1980, 1981) de 
utilizar la programación como una actividad para que los alumnos hagan matemáticas en lugar de 
aprender acerca de las matemáticas.  Así, mientras que en la escuela tradicional se impone una 
imagen artificial de las matemáticas, con objetos acabados de la actividad matemática, la propuesta 
construccionista se enfoca en esa actividad matemática y en la expresión de significados a través del 
uso y re-creación de representaciones en forma de artefactos digitales (Kynigos, 2015). 

Por ejemplo, una de las actividades (ver Figura 1) trata sobre el análisis de la varianza (ANOVA): 
presenta una situación real en torno a cangrejos sometidos a tres tratamientos de temperatura. 
Algunos de los objetivos de la actividad incluyen explorar los componentes de variación en los 
distintos registros y relacionarlos con diversos elementos en la tabla de ANOVA (suma de cuadrados, 
grados de libertad, etc.), además de familiarizarse con la distribución de F y los parámetros que la 
definen. La profesora explicó que el propósito de esta actividad es que los alumnos tengan ellos 
mismos que construir las representaciones y programar; es decir, que 
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 los alumnos [tengan] que ir a una tabla de ANOVA… a buscar ahí, ciertos valores que… 
[les permitan] dar una respuesta [a la situación planteada]… Hacer lo mismo gráficamente, 
obligarlos a relacionar lo que estaban viendo en una gráfica con ese valor numérico, hacerlos 
reflexionar sobre la magnitud de esa diferencia, o de esa variación, o de ese número en 
términos del problema en general, en términos de las unidades que estaban siendo utilizadas.  

Si bien el planteamiento de Mayra se dirige hacia la resolución de las actividades por parte de los 
alumnos, también se observaron clases de tipo magistral (sin tecnología) y otras donde se hace una 
revisión grupal de las actividades (con tecnología). En las clases de tipo magistral se presenta un 
concepto o método estadístico y la simbología a utilizar. Se discuten las relaciones de este concepto 
con otros previamente estudiados y los aspectos teóricos pertinentes. Después, la profesora asigna a 
los alumnos una actividad en R, para realizarse en equipos de dos o tres alumnos. Al finalizar los 
alumnos la actividad en R, o en momentos donde la profesora requiere de uniformizar su progreso, se 
realizan las revisiones grupales de la actividad considerada. 

 

 
Figura 1: Guión de una actividad en R sobre Análisis de Varianza (ANOVA)  

 
Tipos de orquestación en las clases observadas de Mayra 

A lo largo de nuestras observaciones, tanto de las clases de tipo magistral, de las de resolución de 
actividades y de las de revisión, se distinguieron cuatro tipos de orquestación de Mayra, como se 
presenta a continuación. 

Orquestación discute-tecnología-sin-ella. En las clases de tipo magistral de Mayra, ella no utiliza 
tecnología; sin embargo, hay ocasiones en que, ya sea la profesora o los alumnos, hacen referencia a 
los comandos en R relacionados con un concepto o proceso estadístico involucrado en la explicación. 
Por ejemplo, en un episodio donde la profesora preguntaba por un valor de referencia para interpretar 
el valor F obtenido en un ANOVA, bajo cierta hipótesis nula, un alumno dio su respuesta en términos 
del comando de R (qf) asociado al cálculo de cuantiles para la distribución F en pruebas de hipótesis. 
La profesora aprovechó esta idea para discutir la forma en que R despliega los resultados de un 



Tipos de orquestación en un estudio de caso de una enseñanza construccionista de la estadística 

	 1294	

ANOVA. En este episodio se observó la orquestación discute-tecnología-sin-ella, donde se explica el 
manejo de los procesos estadísticos en el ambiente de R y se utilizan sus comandos para expresar 
ideas estadísticas. En esta orquestación, la configuración didáctica corresponde al arreglo tradicional 
de una clase en la que los alumnos atienden la explicación del profesor, auxiliado del pizarrón. 
Además de este artefacto material (el pizarrón), en la configuración didáctica, se incluyen artefactos 
simbólicos, como las representaciones gráficas, los símbolos y los términos que denotan ciertos 
conceptos estadísticos y los contextos en los que plantea las problemáticas estadísticas (generalmente 
tomadas de situaciones y datos reales). El modo de explotación incluye las explicaciones de la 
profesora, usando el pizarrón para anotar e ilustrar. Parte del modo de explotación se relaciona con 
las características de las explicaciones de la profesora, las cuales buscan discutir la pertinencia de un 
nuevo concepto estadístico y/o del planteamiento de un determinado procedimiento.  

Aunque las clases de tipo magistral hacen referencia al contenido estadístico de las actividades a 
desarrollar por los alumnos, no se trata de sesiones teóricas cuya componente práctica se encuentra 
en las actividades; al contrario: las discusiones y contextos abordados en esas clases de tipo 
magistral, sirven como andamiaje para los alumnos, para que puedan desarrollar las actividades en R.  
En este sentido, los contextos de las problemáticas planteadas juegan un papel importante, ya que la 
profesora conecta, a través de referencias a éstos, los distintos tipos de clases. En estas clases de tipo 
magistral de Mayra, no es posible señalar aún aspectos construccionistas en su orquestación, al ser 
más un modo más instruccionista (Papert, 1981) de enseñanza, aunque Mayra busca la participación 
de los alumnos, para que no estén pasivos y sus clases le son valiosas, ya que lo discutido es 
fundamento de las actividades con R. 

Orquestación circula-mientras-trabajan. En las clases dedicadas a la resolución de actividades, 
se observó la orquestación circula-mientras-trabajan (work-and-walk-by). Parte de los artefactos que 
componen esta configuración didáctica son los recursos electrónicos que la profesora comparte en 
carpetas con los alumnos, los cuales incluyen las actividades diseñadas en R y las bases de datos 
utilizadas. Entre los artefactos simbólicos se encuentran los conceptos estadísticos mismos (previos y 
los recién presentados en las clases de tipo magistral), además del lenguaje de programación, en 
particular los comandos que engloban dichos conceptos estadísticos. Estos artefactos constituyen 
entonces objetos con los cuales pensar y un medio para la exploración de ideas matemáticas, en 
particular, las estadísticas, siguiendo las ideas propuestas por Papert (1980, 1981). La configuración 
didáctica de esta orquestación requiere que los alumnos tengan acceso al recurso computacional y 
que el mobiliario del aula permita que se reúnan en equipo para utilizar una o varias computadoras. 
En las clases observadas, casi todos los alumnos utilizaban su propia computadora. Como modo de 
explotación, los alumnos realizan la actividad planteada en R, discutiendo entre ellos, en ocasiones 
también con otros equipos. Esta forma de orquestación, se centra en las actividades de los equipos de 
alumnos, permitiéndoles desarrollar sus propios intentos de solución. Mayra interactúa con un equipo 
a la vez, buscando: (i) enfatizar aspectos importantes y la relación entre los métodos/resultados de la 
actividad y los conceptos teóricos abordados; y (ii) abordar dudas y dificultades particulares de los 
alumnos.  

El logro del objetivo de la profesora en las actividades de programación, se basa en la necesidad de 
los alumnos, de esbozar una propuesta de solución al problema e irlo refinando a través de distintos 
intentos, hasta alcanzar una respuesta que sea adecuada en términos del contexto dado. Siguiendo a 
Mayra, el planteamiento de las actividades genera en los alumnos la necesidad de preguntarse “¿qué 
es lo que quiero hacer? ¿Para qué quiero hacerlo? ¿Cuál es la información que voy a obtener con ese 
particular paso, en el procedimiento?” Mayra afirma que cuando los alumnos hacen un intento 
fallido, se enfrentan con la necesidad de encontrar el porqué de tal resultado y que este ejercicio de 
reflexión conlleva un tipo de aprendizaje distinto al obtenido en los intentos donde no se cometen 
errores, en los cuales el resultado ayuda a confirmar su razonamiento. El cambio en los roles del 
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profesor y los alumnos, el rol activo de éstos últimos en su proceso de aprendizaje, la colaboración y 
la comunicación, son aspectos construccionistas ligados a esta orquestación (Sacristán et al., 2020). 
También se observan otros aspectos construccionistas relacionados con la resolución de problemas, 
la exploración, la construcción de nuevos objetos y/o ideas y la superación de obstáculos o 
depuración.  

Una de las virtudes de las actividades planteadas por Mayra es que se desarrollan considerando una 
problemática asociada a la práctica biológica/ambiental (el área de formación de los alumnos), de 
manera que el contexto y los resultados obtenidos se convierten en referentes para los alumnos. Ello 
da pie a la articulación de las explicaciones dadas en la clase magistral y lo realizado en el ambiente 
R. En ocasiones, las discusiones surgidas durante las actividades son retomadas en clases magistrales 
subsecuentes para relacionar los temas discutidos. 

En su desempeño didáctico, hay momentos en que la profesora decide hacer un discusión plenaria 
de alguna propuesta de solución, resultado o duda, ya sea porque tiene un interés particular para 
facilitar el trabajo o la comprensión de los conceptos o porque busca que el trabajo de los distintos 
equipos sea un poco más homogéneo. 

Orquestaciones sherpa-en-el-trabajo y vincula-pantalla-pizarrón. Finalmente, Mayra conduce 
clases en las que se revisan las actividades realizadas. En ellas, se observa una variación de la 
orquestación sherpa-en-el-trabajo (sherpa-at-work), en la cual participa un equipo de alumnos para 
presentar su trabajo. La configuración didáctica consiste de un arreglo que permita proyectar el 
trabajo de un equipo y que los demás alumnos lo observen. Como modo de explotación los alumnos 
de un equipo utilizan R para discutir sus respuestas a la actividad y seguir los planteamientos de la 
profesora – cumpliendo el aspecto de compartir y discutir “entidades públicas” que señala Papert 
(1991). El desempeño didáctico relativo a esta orquestación incluye la validación por parte de la 
profesora de las distintas propuestas de solución, la confrontación de las ideas erróneas y dificultades 
que surgieron en la actividad y la evaluación de la comprensión, por parte de los alumnos, de los 
conceptos abordados.  

En las clases de revisión también se presenta la orquestación vincula-pantalla-pizarrón. Por ejemplo, 
durante la revisión de una actividad sobre el Modelo Aditivo, la primera parte se centraba en explorar 
el conjunto de datos e indicar la diferencia de éste con los conjuntos de datos usados en la prueba de 
T. Durante esta explicación, el énfasis estuvo en el arreglo de los datos para realizar el procedimiento 
estadístico. La profesora utilizó el pizarrón para representar los datos arreglados, señalando cómo los 
subíndices sirven para distinguir el número de dato y el tratamiento al que corresponde, y cómo esto 
se refleja en las entradas del comando t.test.  

Conclusiones 
En nuestro estudio se observó cómo Mayra, a través de una propuesta construccionista, puso en 

práctica actividades para que sus alumnos se involucraran en hacer estadística a través de la 
programación y generación de representaciones en R, en lugar de aprender acerca de sus conceptos, 
como propuso Papert (1980). Otros aspectos construccionistas en la orquestación de Mayra se 
observaron en la dinámica del aula, y en los roles de los participantes (excepto en las clases 
magistrales). En sus tres tipos de clases, se distinguieron cuatro tipos de orquestación de Mayra. En 
pocos de los tipos de orquestación presentados en trabajos previos (Drijvers et al. 2009, Guin & 
Trouche, 2002; Trouche 2004, Tabach, 2011, 2013), se fomenta el trabajo en equipos. Las 
orquestaciones de Mayra implican una planeación con intenciones y consideraciones mucho más 
variadas que las referidas en Drijvers et al. (2010). Por ejemplo, mientras que la orquestación-demo-
técnica es la más frecuentemente observada en el estudio de Drijvers et al. (2010), en las clases de 
Mayra no se presenta este tipo de orquestación.  
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Pratt et al. (2011) señala que la inmersión en el uso de tecnología ayuda a los profesores a replantear 
el papel que las TD juegan en promover la comprensión de conceptos y métodos estadísticos. Mayra, 
por su experiencia propia, generó actividades que reflejan un mayor aprovechamiento de la 
tecnología en el aula. En este documento mostramos una manera novedosa de utilizar el lenguaje de 
programación R en la enseñanza de la estadística, en la cual los alumnos tienen un rol mucho más 
activo en la construcción de su conocimiento. 

Referencias 
Biehler, R., Ben-Zvi, D., Bakker, A., & Makar. (2013). Technology for enhancing statistical reasoning at the school 

level. En M. A. Clements, A. J. Bishop, C. Keitel, J. Kilpatrick, & F. K. S. Leung (Eds.), Third International 
Handbook of Mathematics Education (pp. 643–689). Springer. 

Burrill, G. (2014). Tools for learning statistics: Fundamental ideas in statistics and the role of technology. En T. 
Wassong, D. Frischemeier, P. Fischer, R. Hochmuth, & P. Bender (Eds.), Mit werkzeugen mathematik und 
stochastik lernen -using tools for learning mathematics and statistics (pp. 153–164). Springer Fachmedien 
Wiesbaden. 

Chance, B., Ben-Zvi, D., Garfield, J., & Medina, E. (2007). The role of technology in improving student learning of 
statistics. Technology Innovations in Statistics Education 1(1). http://escholarship.org/uc/item/8sd2t4rr 

Drijvers, P. (2012). Teachers transforming resources into orchestrations. En G. Gueudet, B. Pepin, & L. Trouche 
(Eds.), From text to 'lived’ resources: mathematics curriculum materials and teacher development (pp. 265-
281). Springer. 

Drijvers, P., Doorman, M., Boon, P., Gisbergen, S. V., & Reed, H. (2009). Teachers using technology: 
Orchestrations and profiles. En M. Tzekaki, M. Kaldrimidou & H. Sakonidis (Eds.), Proceedings of the 33rd 
Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 481-488). 

Guin, D., & Trouche, L. (2002). Mastering by the teacher of the instrumental genesis in CAS environments: 
necessity of instrumental orchestrations. Zentralblatt Für Didaktik Der Mathematik, 34(5), 204-211 

Kynigos, C. (2015). Constructionism: Theory of learning or theory of design? En S. J. Cho (Ed.), Selected regular 
lectures from the 12th International Congress on Mathematical Education (pp. 417–438). Springer International 
Publishing. https://doi.org/10.1007/978-3-319-17187-6_24 

Martinez, S. L., & Stager, G. (2013). Invent to learn. Making, tinkering, and engineering in the classroom. 
Constructing Modern Knowledge Press. 

Papert, S. (1980). Teaching children to be mathematicians vs. Teaching about mathematics. En R. P. Taylor (Ed.), 
The Computer in the school: tutor, tool, tutee (pp. 177–196). Teachers College Press, Teachers College, 
Columbia University. 

Papert, S. (1981). Desafío a la mente: Computadoras y educación. Ediciones Galápagos. 
Papert, S. (1991). Situating constructionism. En Harel, I. & Papert, S. (Eds.), Constructionism: Research reports and 

essays (pp. 1-18). Ablex Publishing Corp. 
Pratt, D., Davies, N., & Connor, D. (2011). The role of technology in teaching and learning statistics. In C. 

Batanero, G. Burrill, & C. Reading (Eds.), Teaching statistics in school mathematics-challenges for teaching 
and teacher education: A Joint ICMI/IASE Study (pp. 97–107). Springer Science & Business Media. 

Rabardel, P. (1995). Les hommes et les technologies: Approches cognitives des instruments contemporains. Armand 
Colin. 

Ruiz, P., & Sacristán, A. (2019). Consideraciones de Profesores Universitarios sobre el Uso de Recursos Digitales 
para la Enseñanza de la Estadística. 5º Coloquio de Doctorado del Departamento de Matemática Educativa, 
Cinvestav. http://www.matedu.cinvestav.mx/~5toColoquiodeDoctorado/matriarticul5to.html 

Sacristán, A.I., Santacruz-Rodríguez, M., Buteau, C., Mgombelo, J., & Muller, E. (2020). The constructionist nature 
of an instructor’s instrumental orchestration of programming for mathematics, at university level. In B. 
Tangney, J., Rowan Byrne  & C. Girvan (Eds.), Constructionism 2020 (pp. 525–536). The University of Dublin, 
Trinity College, Ireland. TARA. hdl.handle.net/2262/92768  

Tabach, M. (2011). A mathematics teacher's practice in a technological environment: A case study analysis using 
two complementary theories. Technology, Knowledge and Learning, 16(3), 247-265. 

Tabach, M. (2013). Developing a general framework for instrumental orchestration. En B. Ubuz, C. Haser, M. 
Mariotti (Eds.), Proceedings of the Eighth congress of the European Society for Research in Mathematics 
Education, Antalya, Turkey (p. 2744 -2753). Ankara, Turkey: Middle East Technical University on behalf of 
the European Society for Research in Mathematics Education. https://www.mathematik.uni-
dortmund.de/~erme/doc/CERME8/CERME8_2013_Proceedings.pdf 



Tipos de orquestación en un estudio de caso de una enseñanza construccionista de la estadística 

	 1297	

Trouche, L. (2004). Managing the complexity of human/machine interactions in computerized learning 
environments: Guiding students’ command process through instrumental orchestrations. International Journal 
of Computers for Mathematical Learning. 9(3), 281-307. 

 
 



Statistics and Probability 

In: Sacristán, A.I., Cortés-Zavala, J.C. & Ruiz-Arias, P.M. (Eds.). (2020). Mathematics Education Across Cultures: 
Proceedings of the 42nd Meeting of the North American Chapter of the International Group for the Psychology of 
Mathematics Education, Mexico. Cinvestav / AMIUTEM / PME-NA. https:/doi.org/10.51272/pmena.42.2020 

1298	

HIGH SCHOOL STUDENTS’ MISCONCEPTIONS ABOUT SIGNIFICANCE TESTING 
WITH A REPEATED SAMPLING APPROACH 

DIFICULTADES DE ESTUDIANTES DE BACHILLERATO SOBRE PRUEBAS DE SIGNIFICACIÓN A TRAVÉS 
DE UN ENFOQUE DE MUESTREO REPETIDO 

Ernesto Sánchez Sánchez 
Centro de Investigación y de Estudios 

Avanzados del IPN 
esanchez@cinvestav.mx 

Víctor N. García Rios 
Centro de Estudios Tecnológicos en Aguas 

Continentales No. 09 
nozairg@hotmail.com 

Eleazar Silvestre Castro 
Centro de Investigación y de Estudios 

Avanzados del IPN 
eleazar.silvestre@gmail.com 

Guadalupe Carrasco Licea 
Colegio de Ciencias y Humanidades, Plantel Sur. 

UNAM. 
gcarrascolic@gmail.com 

In this paper, we address the following questions: What misconceptions do high school students 
exhibit in their first encounter with significance test problems through a repeated sampling 
approach? Which theory or framework could explain the presence and features of such patterns? 
With brief prior instruction on the use of Fathom software to generate empirical sampling 
distributions, 18 pairs of high school students participated in a series of lessons involving four 
significance test problems addressed by a repeated sampling approach. Based on the analysis of 
students’ responses to the first problem, we identified four misconceptions about significance testing. 
A framework to explain the misconceptions is conjectured. 

Keywords: Misconceptions, significance testing, empirical sampling distribution (ESD), 
verificationism, skepticism. 

Sampling and inference are fundamental statistical ideas (Burril & Biehler, 2011). Statistical 
inference involves using a sample to make a claim about the population from which it has been 
drawn, quantifying the uncertainty in the process, then making decisions based on the information it 
provides. It arises from the necessity to evaluate experimental outcomes in any scientific domain. To 
fulfill this purpose, statistical inference relies on mathematical knowledge and thinking. This implies 
that the notions of sampling and inference are important components of statistical literacy and should 
be considered as candidates for compulsory topics in mathematics education curricula (Watson, 
2006). However, the topic of statistical inference is usually not introduced until the university level, 
where it is compressed in an introductory course on statistics and probability. This is a concern, since 
teaching the wide scope of concepts that constitute statistical inference in just one semester often 
leads to poor understanding by students, who may only retain a set of terms and procedures.  

A potential solution to this problem is to introduce the notion of statistical inference at different 
levels of education, with the degree of formality adapted to each level. Recent calls from the statistics 
education community to promote and advance the understanding of statistical inference (Pratt & 
Ainley, 2008) have spurred interest in exploring ways to introduce concepts related to statistical 
inference at the primary and high school levels. This research trend is consistent with the idea that 
Heitele, invoking Bruner, formulated 45 years ago: “…that any subject can be taught effectively in 
some intellectually honest form to any child at any stage of development” and that fundamental ideas 
“differ on the various cognitive levels, not in a structural way, but only by their linguistic form and 
their levels of elaboration” (1975, p. 187). Additionally, the rapid development of technological tools 
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in education have allowed for new ways of representing both mathematical and statistical ideas that 
make these ideas more accessible at pre-university levels (Biehler, Ben-Zvi, Baker, Makar, 2013).  

The notion of significance testing is a critical element in the understanding of statistical inference, 
and is an application of an important principle of scientific thinking: “one does not have evidence for 
a claim if nothing has been done to rule out ways the claim may be false” (Mayo, 2018, p. 5). 
However, the idea of validating the outcomes of scientific research by searching for ways to 
demonstrate the falseness of the claims is contrary to intuition: According to Fischbein (1987), 
people’s natural inclination is to look for confirmatory evidence. Given the importance of and 
difficulties in understanding the concept of significance testing, therefore, we contend that this 
concept should be introduced at the high school level, when students are capable of reasoning in a 
formal way. By developing an understanding of some pertinent components of significance testing 
earlier in their mathematical education, we propose that students would be in a better position to 
tackle problems involving statistical inference at the university and professional levels. Accordingly, 
we formulated the following hypotheses: 1) It is possible to design and implement a series of lessons 
for high school students that involve reasoning with and about significance testing. 2) The use of 
technological resources is key to the implementation of the former. 3) The understanding gained 
about students’ reasoning in response to such problems may point to a better teaching approach for 
significance testing. Using these hypotheses, we formulated our research question: 

What misconceptions do high school students exhibit in their first encounter with significance test 
problems through a repeated sampling approach using computational simulation? What intuitions 
may explain these misconceptions? 

We are motivated to investigate students’ reasoning about significance testing by the fact that on the 
one hand, significance tests are extensively used in a wide range of scientific research domains to 
evaluate the results of experimental outcomes (Haig 2016; Winch & Campbell, 1970), while on the 
other hand, many students and researchers have a tendency to misunderstand the objective of 
significance tests and to misuse the associated concepts and results (Cohen, 1994; Goodman, 2008; 
Morrison & Henkel, 1997). This tension has given rise to two contrasting reactions to the use of 
significance tests in experimental research: a) The development and refinement of concepts 
embedded in the test, as well as the ways they are used in experimental procedures (Mayo, 2018); b) 
a strong opposition to the use of significance tests and calling for their retirement from experimental 
research practices (Amrhein, Greenland, & McShane, 2019). This situation points to the need for a 
better understanding of the ways in which students reason about significance testing.  

Background 
One of the considerable challenges in the teaching of statistics at the college level is enabling 

students to rationally interpret the system of ideas that constitute significance testing (Castro-Sotos et 
al., 2009; Vallecillos, 1996). Batanero (2000) identified three main concepts involved in significance 
testing that students often misunderstand: 1) the nature of the test, 2) the nature of the p-value, and 3) 
the significance level. In their own study, Castro-Sotos et al. (2009) described two frequent 
misconceptions about significance testing: 1) it is viewed as a mathematical proof that establishes the 
truth of one of the two hypotheses, and 2) it is viewed as a probabilistic proof by contradiction: that 
is, if the null hypothesis is rejected, the p-value is the probability of making the wrong decision. 
Castro-Sotos et al. (2009) also detailed several misconceptions about the concepts of the p-value and 
significance level, including: a) the p-value is the inverse of the normative definition (the p-value 
represents the probability of the hypothesis being true, given the outcome of the sample); b) the p-
value is the probability of a simple event (the p-value represents the probability of obtaining the 
observed outcome); and c) the p-value is the probability of the null or alternative hypothesis being 
true. 



High school students’ misconceptions about significance testing with a repeated sampling approach 

	 1300	

Lane-Getaz (2017) explored how early education may decrease the incorrect use (and possible 
abuse) of significance testing. The researcher examined learning outcomes related to statistical 
inference for social science students in an introductory course on statistics that incorporated 
randomization and simulation tasks. The study demonstrated progress made by the students during 
the course and highlighted several difficulties and misconceptions that could be tackled through 
instruction. 

Other than the previous study, however, the following have not received much attention in the 
research on students’ understandings and misunderstandings about significance testing: 1) students’ 
reasoning about significance testing in the context of a classroom intervention, and 2) the use of 
digital resources to generate empirical sampling distributions (ESDs) as a support for learning about 
significance testing. Both are addressed in our current experiment. 

Conceptual framework 
Reasoning is any process whose objective is to determine the validity or plausibility of a proposition 

or result by means of certain premises (data or propositions). Mathematical reasoning, in a broad 
sense, can be elaborated at different levels of formality, given that premises can range from intuitions 
to firmly instituted axioms, and derivation processes can range from persuasive argumentations 
(examples, induction, analogies) to well-established mathematical and logical procedures. 

Reasoning is accompanied by sense-making, which involves linking a new proposition or 
unexpected result to previous knowledge or beliefs held by the learner (Shaughnessy et al., 2009). 
Sense-making is supported by intuition which, according to Fischbein, “…expresses the fundamental 
need of human beings to avoid uncertainty” (1987, p. 28). Doubtful information and uncertain 
propositions prevent actions and reasoning. Intuitions are necessary to act and reason because they 
are considered to be true by the subject. While intuitions derived from perceptions of reality are 
generally correct, “mental representations, hypothetical ideas and solutions may be biased, distorted, 
incomplete, vague or totally wrong. To believe, however, at least temporarily, in such mental 
productions, a certain excess of confidence is required” (p. 28). In summary, in the reasoning 
process, people need to start from certainties, which is why they tend to trust their intuitions (beliefs 
or conceptions) more than what would be justified under objective evaluation. According to 
Fischbein, the excess of confidence in intuitions is a mechanism that allows reasoning to be carried 
out, but at the expense of the risk of spurious conclusions. Fischbein goes on to explain that people’s 
cognitive mechanism for acting and reasoning in certain environments consists of producing a 
coherent structure (Gestalt) while preserving “facts and segments which fit together and to discard 
those which may disturb the unity” (p. 35). In particular, drawing from the psychology literature, 
Fischbein explains that people manifest a bias to confirmation and are reluctant to seek non-
confirmatory evidence; when it does appear, they tend to ignore it. They also tend to not consider 
other plausible scenarios nor that the very same evidence can also account for alternative hypothesis. 
We can add that hypothetical deductive reasoning is a formal expression of the need to start from 
(assumed) certainties in a scientific and controlled manner. However, such reasoning requires 
maturity and practice, given that it does not usually appear in a spontaneous way in specific 
situations, even when subjects have reached the formal operational stage of development proposed 
by Piaget (Schmid-Kitsikis, 1983). 

The logic of significance testing requires overcoming the cognitive tendencies described by 
Fischbein. Indeed, a null hypothesis is a hypothesis that one tries to reject, rather than confirm, as is 
often believed: for Fisher (…), the null hypothesis is “the hypothesis that the phenomenon to be 
demonstrated is in fact absent.” An experimental outcome is deemed significant when the null 
hypothesis is rejected, and not significant when the null hypothesis is not rejected. A statistic is a 
function that assigns a number to each sample of a given size. In the simplest case (the one used in 
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this study), this may be the proportion of an attribute in the sample. Significance testing is made 
possible by the ability to model the sampling distribution of the statistic under the assumption that 
the null hypothesis is true. It should be noted that in order to understand the role of the sampling 
distribution, one must apply hypothetical deductive reasoning. Once a sample has been drawn from 
the population and a statistic is calculated, a probability of the given event occurring or a more 
extreme value is computed, under the assumption that the null hypothesis is true. This probability is 
known as p-value. If the p-value is low (generally <5%), the null hypothesis is rejected, and the result 
is deemed significant. 

A repeated sampling technique using software and random simulations allows students to construct 
an approximation to the sampling distribution of the statistic, which is usually referred to as an 
empirical sampling distribution (ESD). To simplify presentation, we define the following 
terminology as related to ESDs: assume that N samples of size k are simulated with H0:P=θ, where θ 
is the probability of success. In this instance, success means selecting an element from the population 
that presents the feature R, and θ represents the proportion of elements of the population with the 
feature R. We define the statistic X as the “number of success cases in the sample” and use the 
notation ESD(N,k,P=θ) to denote an ESD of that statistic. 

Method 
Participants and data. The following results arise from data corresponding to responses provided 

by a group of 36 high school students to the first of four activities in a series of lessons on 
significance testing. Students were arranged in 18 pairs throughout the intervention, each with access 
to a computer equipped with Fathom. At the time of the intervention, the students were enrolled in 
their second year of high school (16-17 years old) and had not previously taken a course on statistics 
or probability. Activities were selected from statistics textbooks and then modified to align with the 
participants’ school level and the repeated sampling approach. While solving the problems, each pair 
wrote a report that detailed their analysis and solution to the task; these reports constitute our main 
data source. 

Instruments. The first problem of the series of lessons appears below; Table 1 summarizes the 
statistical data and the solution to the task. 

Coca-Cola’s advertising campaign claims that the majority of people (more than 50%) prefer 
Coca-Cola to Pepsi. To corroborate this, an experiment was conducted, where 60 randomly-
selected participants tasted both beverages in a blind test. Thirty-five of the participants 
preferred the Coca-Cola. Based on these results, would you accept the hypothesis that more 
than 50% of people prefer Coca-Cola to Pepsi? 

Table 1. Data and solution to the first problem 
Null Hypothesis (𝑯𝟎) N Rejection freq. p–value Conclusion 

𝑷 = 𝟎. 𝟓𝟎 60 𝑿 ≥ 𝟑𝟕 𝒑 = 𝟎. 𝟏𝟐𝟔 𝑯𝟎 is not rejected 
The intervention began with an introductory session aimed to enable students to use Fathom to 

generate ESDs. This was followed by a series of four lessons, each of which featured a problem 
involving significance testing. From the second lesson on, the lessons unfolded as follows: First, the 
instructor facilitated a discussion about students’ solutions to the previous problem, inviting students 
to explain the motives and rationales behind their procedures; second, students were tasked with a 
new problem that gave them the opportunity to apply newly-gained skills and understandings about 
significance testing. Students worked on the problems in self-selected pairs and described their 
solutions on a worksheet. During this time, the instructor’s role mainly involved posing questions to 
stimulate inquiry and helping students overcome technical difficulties (not to provide normatively 
correct answers). 
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We rely on principles of the grounded theory methodology (Birks & Mills, 2011; Glaser & Strauss, 
1967/2008) for coding students’ answers to the problems. This is a general research methodology in 
the social sciences (Holton, 2008) that involves constructing theories or frameworks through the 
gathering and analysis of data (as opposed to analyzing the data using an existing theoretical 
framework). As previously stated, the data analyzed in this study were students’ responses to 
significance test problems. These responses were digitally transcribed, then analyzed in order to 
generate a set of codes and categories. Several misconceptions were identified using this procedure. 

Results 
Students’ responses were analyzed and coded in three general categories: reasoning, hypothesis, and 

conclusion. In this report, we will only examine the four misconceptions identified in the first 
category (reasoning) exhibited in responses to the first problem. A more thorough analysis of the data 
can be found in García (2017); however, we consider the following evidence sufficient in 
exemplifying the identified misconceptions. 

It should be noted that the descriptions of the emergent patterns use the authors’ language and not 
necessarily the terminology students actually used when describing these ideas. Each identified 
misconception is a result of the constant comparative method, which allows for abstraction of the 
subtle differences in students’ answers. 

Misconception 1: Majority in the ESD. Students generate an ESD (500, 60, P=0.50, or similar) and 
identify the number of samples in which the statistic X takes a value greater than 30. If this number is 
greater than 250 (N/2), the null hypothesis is rejected, and if it is lower than 250 (N/2), then it is not. 
It should be noted that this procedure ignores information given by the sample and the significance 
level. This misconception is consistent with the belief that the ESD represents the population, or an 
approximation of the population. This misconception was the most frequent in the data, identified in 
13 out of 18 responses, and can be exemplified by R6’s answer: 

…we considered surveys in which we had at least 31 favorable cases for Coca-Cola, which 
was a total of 233 surveys… while surveys with 30 favorable cases, that is, 50% or less, 
represented 267 surveys… a quantity greater than 50%. 

The pair concluded that it is not true that there is a greater preference to Coca-Cola over Pepsi and 
included Figure 1a in their response. 

 

 

 
Figure 1: a) Majority in the ESD (pair R6); b) Mode (pair R13) 

Misconception 2: Mode. Students generate an ESD (500, 60, P=0.50) and identify its mode. If this 
value is greater than 30, the null hypothesis is rejected, and if it is equal to or lower than 30, it is not. 
As in the previous case, this reasoning ignores both the observed outcome and the significance level, 
and is also compatible with the belief that the ESD provides some information about the probability 
of the null hypothesis being true: In other words, it is assumed that p = frequency(H), where H is an 
independent variable. This misconception emerged in three responses. An example is provided by 
R13: 
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…our most frequent value in the surveys was 28 people (out of 60) that liked Coca-Cola 
more, so we can see there are less than 50% that liked Coca-Cola the most. 

The pair concluded that Coca-Cola’s advertised claim is false and supported their argument with 
Figure 1b). 

Misconception 3: Majority in the sample. This is the only misconception in which students 
completely ignore the ESD and rely exclusively on the observed outcome (35/60 that preferred Coca-
Cola). According to this line of reasoning, if the proportion of favorable to unfavorable outcomes is 
greater than 0.5, the null hypothesis is rejected, otherwise it is not. R2’s response exhibits this 
misconception: 

…we can say that a majority is 51% or more, and the experiment’s result showed that 35 out 
of 60 people preferred Coca-Cola, which is 59% of the total [(59% x 60) = 35.4]. Thus, we 
can conclude that they are not wrong in their conclusion. 

The pair concluded that Coca-Cola’s advertised claim is true, but unlike other students who 
participated in previous explorations of the task (Garcia & Sanchez, 2014), these students were 
unable to apply the ESD results generated with the software to support their argument. 

Misconception 4. Extreme hypothesis. In this case, 𝑃 > 0.5  is taken to be the alternative 
hypothesis. Students arbitrarily establish a margin of error, M (e.g., 5% or 10%). Then, they pick a 
value for P such that 0.5 –  𝑀 < 𝑃 < 0.5 and generate an ESD (500, 60, 𝑃 ≠ 0.50) to observe the 
values within the range of this distribution. If the value of the statistic at hand is in this range (which 
is the case for this problem), then the hypothesis 𝑃 > 0.5 gets rejected. R10’s response demonstrates 
this line of reasoning: 

…in general, we must take a greater number of surveys of the population so we can conclude 
that indeed more than 50% like or prefer Coca-Cola, because in these surveys there must be 
a range of around 10 values more and 10 values less around the expected value […] in the 
simulated survey, despite the percentage being lower than 50% (because P = 44%) and is 
expected to have a value of 26, we obtain results that go from 16 (the lowest value of X with 
a non-zero frequency) to 38 (the highest value of X with a non-zero frequency), from which 
we can see a greater value (for X) than in the original problem, which is why the 35 do not 
assure that most people like Coca-Cola. 

As previously stated, these responses were provided to the first of the four problems in the series of 
lessons. It should be noted that the process of addressing students’ ideas and solutions may have 
allowed them to gradually incorporate some previously absent but significant elements involved in 
significance testing, such as using all of the appropriate facts in the problem and determining if the 
observed outcome could be labeled as an outlier or not. Nevertheless, students were ultimately 
unable to provide solutions to this problem that were consistent with the logic of significance testing. 

Conclusions and discussion 
We propose an explanation based on Fischbein’s (1987) theory about intuition for the first three 

observed misconceptions. According to Fischbein, intuition is related to people’s tendency to avoid 
uncertainty and to look for confirmatory evidence. This idea, coupled with the traditional focus on 
proof in mathematics teaching, led us to propose a category in the context of our experiment called 
naïve verificationism, which consists of the belief that the objective of a significance test is to 
demonstrate the veracity of the null hypothesis. Critical verificationism, on the other hand, consists 
of the belief that the objective of the test is to compute the probability of the null hypothesis being 
true (or false). However, as students continue to participate in discussions about the problems and 
analyze solution strategies, they develop a kind of skepticism, which involves recognizing that it isn’t 
possible to conclusively verify any hypothesis based on the evidence provided by a sample. 
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According to Fischbein (1987), people try to produce coherent structural schemata in which they 
can integrate their intuitions (certainties), beliefs (theories), and observations (evidence). Such 
structural schemata underpin the reasoning process—justifying the solution of a problem or 
explaining a phenomenon. In this sense, the misconception of mistaking an ESD with the population 
(or its approximation; Garfield & Ben-Zvi, 2008) is compatible with naïve verificationism, given that 
if the sampling distribution represents the population, then analyzing the ESD alone would be enough 
to verify the validity of the hypothesis. We interpret Misconception 1 (Majority in the ESD) as a 
manifestation of students’ efforts to align the ESD, a new concept for our participants, to their 
expectations of verifying the null hypothesis. In a similar way, another way to create a structural 
schema is to believe that the ESD is a distribution in which each value for the statistic is taken as a 
possible hypothesis, with the frequency of each hypothesis (statistic) allowing for the computation of 
the probability of the truth (or falsehood) for each one; such reasoning demonstrates critical 
verificationism. The mode of such a conceived distribution would be the most likely hypothesis 
(statistic), and this is consistent with Misconception 2 (Comparing the mode of the ESD with the null 
hypothesis).  

In Misconceptions 1 and 2, students do not assign a specific role to the information provided by the 
sample, given that their conception of the ESD makes this task an unnecessary one. These results 
show that the intended purpose and meaning of an ESD is not clear to students, despite their 
participation in activities in which they produced and interacted with different ESD’s using physical 
and computational simulations. 

In Misconception 3 (Majority in the sample), students do not ignore sample results as in previous 
cases, but create a simpler structural schema: they assume that because the information provided by 
the sample is the only information available when making a decision, it alone contains the key to the 
solution of the problem. Therefore, it is assumed that the proportion of favorable to unfavorable 
outcomes in the sample closely mirrors the corresponding proportion of the population. In this 
misconception, the information provided by the ESD is completely ignored, and therefore 
demonstrates naive verificationism. Shaughnessy (1992, p. 478) referred to two false conceptions 
that are related to this misconception: “people inadequately believe that there’s no variability in the 
real world” and that “people often have an unjustified overconfidence in small samples.” Nickerson 
(2000, p. 254) and, in a similar way, Castro-Sotos et al. (2009) report that one of the most common 
beliefs about significance tests among researchers and students is that “by rejecting the null 
hypothesis, a theory that predicts the falseness of the null hypothesis is established.” Such a claim is 
compatible with naïve verificationism, because it responds to a desire of establishing the falseness of 
an hypothesis. This particular misconception emerged only in the first problem and was abandoned 
as students gained experience in generating and analyzing ESDs. 

Furthermore, in Misconception 4 (Extreme hypotheses), students incorporate the idea of a margin of 
error by defining an interval on one side of the null hypothesis, with the opposite side representing 
the alternative hypothesis. An extreme hypothesis is selected in this interval. If the distribution 
generated by the extreme hypothesis captures the value of the statistic, there is no reason to reject the 
null hypothesis. That is, if the value of the statistic (in this case, 35) can plausibly occur in a more 
extreme ESD (P < 0.5), then the event is also plausibly occurring for the null hypothesis (P = 0.5) as 
well, and the null hypothesis should therefore not be rejected. In using such reasoning, students 
exhibit intuitions that are partially aligned with the logic of significance testing: for example, the idea 
of “taking more extreme values” is used when defining a p-value, and considering “what would 
happen if the hypothesis was…” demonstrates hypothetical-deductive reasoning that is used in the 
establishment of the hypothesis. However, such intuitions are not appropriately applied. An 
important feature of this line of reasoning is that it relies on an arbitrary, but well-intended criterion: 
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the null hypothesis is rejected when the statistic is not contained in a certain range of the simulated 
ESD. 

In summary, the misconceptions that students exhibited in their solutions to the first problem 
correspond to the intuitive idea that the objective of a significance test is to verify the null 
hypothesis, or to estimate the probability that it is true. It is likely that a tendency to verificationism 
also explains some of the misunderstandings and misuses of ESDs evidenced even by experimented 
learners. This is why it is critical in the teaching of statistics to enable students to develop alternative 
reasoning schemes—that is, schemes based in reasonable skepticism. 
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In this article we analyze the fundamental ideas of statistics in the Mexican curriculum of basic and 
high school education, with the purpose of establishing relationships with some curricula and 
recommendations of organizations that promote statistical education. The results show that statistics 
are present from kindergarten to high school, as established by international recommendations; 
however, statistical inference is absent from the secondary school curriculum, including high school. 
The methodology of teaching in basic education gives importance to real contexts and to the posing 
of statistical questions to respond with the data, but in high school there is a greater emphasis on 
statistical procedures. Technology for data analysis and simulation is practically absent in the 
curriculum of all levels. 

Keywords: Probability, data analysis and statistics, curriculum, technology 

Study objectives 
In the last three decades, statistics has had the greatest growth in the mathematics curriculum of 

basic education and high school in many countries, due to its importance as a methodological tool, 
but also due to the relevance of literacy and statistical thinking in modern society. In this way, 
organizations and researchers that promote statistics education have issued recommendations on the 
fundamental statistical ideas that should be in the curricula, as well as the teaching perspectives more 
according with the needs of literacy and statistical thinking of today's society. 

In this context, it is pertinent to analyze the status and significance of statistics in pre-university 
educational levels in Mexico. It is interesting to analyze contents and didactic orientations, with the 
purpose of characterizing their teaching and contrasting with the recommendations and trends of the 
international curriculum. 

Background 
Holmes (2003) points out that in England since 1961, contents of data and chance were introduced 

in high school curriculum, in the late 1960s were extended to primary and secondary school. In the 
1980s and 1990s the Curriculum and Evaluation Standards for School Mathematics (NCTM, 1989) 
and Principles and Standards for School Mathematics (NCTM 2000) were published in the United 
States, curricular documents in which data Analysis and Probability appears as an integral part of the 
Mathematics curriculum. Guidelines for Assessment and Instruction in Statistics Education (GAISE) 
(Franklin et al., 2005) was published in 2005 as a framework for statistics education from 
kindergarten to high school. Meanwhile, in 1992 in New Zealand, Statistics and Probability were 
included for the first time as a teaching area at all educational levels; in 2007 three main statistical 
areas were included in the eight levels of pre-university education: statistical research, statistical 
literacy and probability. 

In Mexico, the Statistics and Probability appear for the first time in secondary education curriculum 
in 1975, and in the case of some high school programs since the end of the 1970s. The high school 
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curriculum consists of three components formative (basic, propaedeutic and professional). Statistics 
is part of the propaedeutic component, that is, it is not part of the basic table of subjects, but most 
educational institutions integrate at least one course of Statistics and Probability into their 
curriculum, either optional or compulsory. 

Theoretical perspective 
Statistical fundamental statistical ideas 

In the search to define a set of fundamental statistics and probability ideas that must be learned by 
students before finishing high school, Burrill & Biehler (2011) propose the following themes: 

1. Data. 
2. Variability. 
3. Distribution. 
4. Representations. 
5. Association and modeling between two variables. 
6. Probability models. 
7. Sampling and inference. 

Guidelines for Evaluation and Instruction in Statistical Education 
The Guidelines for Assessment and Instruction in Statistics Education (GAISE Report) (Franklin, et 

al., 2005) proposes a central teaching model based on solving statistical problems as a four-
component research process: posing questions to answer with the data, collect the data, analyze the 
data and interpret results to answer the questions. The GAISE Report visualizes probability as a tool 
for statistics; in this sense, it is considered that the relationship between classical and frequency 
approach should be explored to compare theoretical probabilities and observed frequencies. Use 
probability to understand randomization in statistical work in the case of sampling and design of 
experiments. 

Methodology 
The methodology we have used is documentary in nature (Bardin, 2006). The sources of 

information were the most current official curricular documents. The contents, expected learning and 
didactic guidelines were analyzed to contrast them with the same entities proposed by Burrill & 
Biehler (2011) and Franklin et al., (2005). In each curriculum document, the presence of the 
fundamental ideas was reviewed in detail; Likewise, statements that inform about the contents, 
expected learning and didactic guidelines were analyzed in the text. 

Results and Discussion 
The study of statistics appears from the kindergarten, while the study of probability begins in the 

fifth grade of primary school. In basic education, both areas are included as themes in the 
mathematics subject, while at the high school are part of a subject by itself, generally called 
Probability and Statistics, or simply Statistics. In the lower grades of primary education, the 
importance to distinguish particular questions (referring to an element) from statistical questions 
(referring to a group) is pointed out. These teaching guidelines are in accordance with the 
recommendations of the GAISE report for the primary level. In grades 5 and 6, the notions of 
qualitative and quantitative variables are introduced, and the calculation of descriptive measures of 
center and dispersion of the data (mode, mean and range) appears for the first time. The guidelines 
suggest collecting data from the classroom and school context, and asking questions that require the 
use of such descriptive measures. The study of probability begins in the fifth year of primary school, 
beginning by the distinction of random and non-random experience, the idea of sample space and the 
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determination of its elements through the use of tree diagrams. The expected learning consists of 
identifying chance games and carrying out experiments to record the results in tables of relative and 
absolute frequencies (frequency approach to probability). 

Meanwhile in high school, the expected learnings in statistics emphasize again the collection and 
recording of data, and representations for the organization and interpretation of data; in this way, in 
addition to the bar and circular diagrams, histograms, frequency polygons and line graphs (time 
series) are considered. In the calculation of descriptive measures of the data, the mean, median, 
mode, range and mean deviation are considered. The instructional guidelines emphasize collecting 
data from school contexts such as the classroom or issues of interest to students that appear in the 
media. Teachers are directed to construct the graphs manually so that students understand how they 
are constructed. Instead, the use of spreadsheet to construct frequency histograms and polygons is 
suggested in an isolated and superficial way. Regarding probability, students are expected to carry 
out random experiments and record results as an approximation to frequency probability. It is further 
proposed that they determine the theoretical probability of a random experiment and of two mutually 
exclusive events using the rules of addition and multiplying probabilities.  

Chance games and experiments are proposed in the didactic orientations where both are contrasted. 
In the second grade, the use of simulation of random phenomena by means of some software is 
proposed only as a recommendation, which is in full agreement with the recommendations of various 
authors and the international curriculum (Chaput, Girard and Henry, 2011; Burrill & Biehler, 2011). 

In high school there is not unique curriculum; however, from 2008 there is a proposal for an official 
curriculum that we will take as a reference for the analysis. The course of Statistics and Probability I 
offers a review and deepening of the contents of the secondary school; the variance and standard 
deviation, quartiles, deciles and percentiles are added. An introduction to two-variable data analysis 
(bivariate data), which includes scatterplots, linear correlation, and simple linear regression. This 
topic is highly recommended in the GAISE Project and is one of the fundamental statistical ideas for 
high school (Burrill and Biehler, 2011) for its importance in developing multivariate thinking and 
prediction theory. In some countries such as Costa Rica and Chile this subject does not yet appear in 
the high school curriculum. In the course of Statistics and Probability II, the topics of sets, counting 
techniques and mutually exclusive events appear before calculating the theoretical and frequency 
probability; Bernoulli, Binomial, Normal and Poisson probability distributions and Bayes' theorem 
are included. Statistical inference is not part of the official curriculum, it is only considered in the 
case of CCH (a particular high school system offered by the National University) optionally in the 
last semester. 

Regarding the use of technology in the statistics and probability teaching, there are superficial 
references in the all levels of Mexican curriculum. Its use is suggested for the simulation of random 
phenomena as a means of estimating theoretical probabilities, but there are no references for its use 
in the analysis and exploration of data, a situation that is widely recommended in the international 
recommendations and curricula of New Zealand, Spain, United States and other countries. 

Conclusions 
The study of the data is present from kindergarten to the high school, while the study of chance 

begins in the fifth grade of primary education, which is very similar to the international curriculum, 
thus claiming that the statistics and probability they have an important status in the education of 
citizens. However, there are some differences in some levels, particularly in the high school, where 
the absence of statistical inference in the official curriculum, -widely recommended in the 
international curriculum-, is observed. 

The data collection, organization and representation of data, and descriptive measures of the data, 
constitute the backbone of the statistical content throughout all basic education and high school. Data 



Fundamental statistical ideas in primary, secondary and high school Mexican curriculum: Reflections from the 
international perspective 

	 1311	

collection techniques (surveys, observation, interviews, information consultation) are common at all 
levels, but increase in complexity in high school with a general description of random sampling 
methods and not random. 

In the same way, graphical representations evolve from simple pictograms in kindergarten to bar 
and circle diagrams in primary school, to histograms, frequency polygons, and line graphs to 
visualize quantitative data. However, stem and leaf plots, box plots, and dot plots are absent in the 
curriculum, which are common in curricula from other countries. Descriptive measures begin with 
calculating frequencies in kindergarten, calculating mode in primary, and calculating mean, mean, 
mode, and mean deviation in high school, to expand standard deviation, variance, and correlation in 
high school. 

For its part, probability in primary school begins with the study of notions of chance through simple 
random experiments and calculation of the frequencies of the results. In secondary education, the 
classical approach is introduced and its contrast with the frequency approach is promoted, this is an 
aspect highly recommended in the international curriculum. However, in high school that link 
between the two approaches is not encouraged and more emphasis is placed on the classical approach 
using combinatorial techniques. 

Regarding teaching methodology, we observe a uniform trend in basic education, suggesting the use 
of real and meaningful contexts for students and the posing of statistical questions that must be 
answered with the data, which represents, in our opinion, an innovative trend, according to the 
perspective of development of statistical thinking. This trend is interrupted in high school, which 
focuses more attention on later stages of the statistical research cycle, such as data analysis. 

The use of computer technology in data analysis and the simulation of random phenomena only has 
superficial references at all educational levels, which constitutes the greatest difference with the 
international curriculum. This is undoubtedly a pending subject, as is the absence of statistical 
inference in high school, which must be improved in the Mexican curriculum.  
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En este artículo analizamos las ideas fundamentales de estadística en el currículo mexicano de 
educación básica y bachillerato, con el propósito de establecer relaciones con algunos currículos y 
recomendaciones de organismos que promueven la educación estadística. Los resultados muestran 
que la estadística está presente desde preescolar hasta bachillerato, tal como lo establecen 
recomendaciones internacionales; sin embargo, la inferencia estadistica está ausente del currículo 
de secundaria, incluso del bachillerato. La metodología de enseñanza en educación básica otorga 
importancia a contextos reales y al planteamiento de preguntas estadísticas para responder con los 
datos, pero en bachillerato se hace mayor énfasis en el cálculo estadístico. La tecnología para 
análisis de datos y simulación está prácticamente ausente en el currículo de todos los niveles.  

Palabras clave: Probabilidad, análisis de datos y estadística, currículum, tecnología 

Objetivos del estudio 
En las últimas tres décadas, la estadística ha tenido el mayor crecimiento en el currículo de 

matemáticas de la educación básica y bachillerato de diversos países, debido a su importancia como 
herramienta metodológica, pero también por la relevancia que tiene la cultura y el pensamiento 
estadístico en la sociedad moderna. De tal forma, organismos e investigadores que promueven la 
educación estadística han emitido recomendaciones sobre los fundamentos y las ideas centrales de la 
estadística que deben estar en los currículos de cada nivel educativo, así como las perspectivas de 
enseñanza más acordes a las necesidades de alfabetización y pensamiento estadístico de la sociedad 
actual.  

En este contexto, es pertinente analizar el estatus y significado que tiene la estadística en los niveles 
educativos pre-universitarios en México. Interesa analizar contenidos y orientaciones didácticas, con 
el propósito de caracterizar su enseñanza y hacer un contraste con las recomendaciones y la tendencia 
del currículo internacional. 

Antecedentes 
Holmes (2003) señala que, en Inglaterra, desde 1961 se introdujeron contenidos relacionados con 

datos y azar en cursos de bachillerato, a finales de la década de 1960, estos contenidos fueron 
extendidos a la escuela primaria y secundaria inglesa. En la década de 1980 y 1990 se publican en los 
Estados Unidos los Curriculum and Evaluation Standards for School Mathematics (NCTM, 1989) y 
Principles and Standards for School Mathematics (NCTM 2000), documentos curriculares en los que 
el eje de Análisis de Datos y Probabilidad aparece como parte integral del currículum de 
matemáticas. En 2005 se publica Guidelines for Assessment and Instruction in Statistics Education 
(GAISE Report) (Franklin et al., 2005), como un marco para la educación estadística desde 
preescolar hasta el bachillerato. Mientras tanto, en 1992 en Nueva Zelanda se incluye por primera 
vez la estadística y probabilidad como área de enseñanza en todos los niveles educativos. En 2007 se 
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incluyen tres grandes líneas de contenido estadístico en los ocho niveles de la educación 
preuniversitaria: investigación estadística, cultura estadística y probabilidad.  

En México, aparecen contenidos sobre estadística y probabilidad por primera vez en los programas 
de estudio de educación secundaria en 1975, y en el caso de algunos programas del nivel medio 
superior desde finales de la década de 1970. El currículo de bachillerato consta de tres componentes 
formativas (básica, propedéutica y profesional). La estadística es parte de la componente 
propedéutica, es decir, no forma parte del cuadro básico de materias, pero con base en su autonomía 
curricular, la mayoría de las instituciones educativas integran al menos un curso de estadística y 
probabilidad en su currículo, ya sea de manera optativa u obligatoria. 

Perspectiva teórica 
Ideas estadísticas fundamentales de estadística 

En la búsqueda por definir un conjunto de ideas fundamentales de estadística y probabilidad que 
deben ser aprendidas por los estudiantes antes de concluir el bachillerato, Burrill & Biehler (2011) 
proponen las siguientes: 

1. Datos.  
2. Variabilidad.  
3. Distribución.  
4. Representaciones.  
5. Asociación y modelación entre dos variables.  
6. Modelos de probabilidad.  
7. Muestreo e inferencia.  

Lineamientos para la Evaluación e Instrucción en Educación Estadística 
El reporte Guidelines for Assessment and Instruction in Statistics Education (GAISE) (Franklin, et 

al., 2005) propone un modelo central de enseñanza basado en la resolución de problemas estadísticos 
como un proceso investigativo de cuatro componentes: formular preguntas para responder con los 
datos, recolectar los datos, analizar los datos e interpretar resultados para responder las preguntas 
planteadas. En cuanto al enfoque de enseñanza y el contenido de probabilidad en el currículo, el 
reporte GAISE visualiza a la probabilidad como una herramienta para la estadística. En este sentido, 
se considera que se debe explorar la relación entre enfoque clásico y frecuencial para comparar 
probabilidades teóricas y frecuencias observadas. Usar la probabilidad para comprender la 
aleatorización en el trabajo estadístico en el caso del muestreo y diseño de experimentos. 

Metodología  
La metodología que hemos utilizado es de carácter documental (Bardin, 2006). Las fuentes de 

información fueron los documentos curriculares oficiales más actuales. Se analizaron los contenidos, 
aprendizajes esperados y orientaciones didácticas para contrastarlos con los mismos entes que 
proponen Burrill & Biehler (2011) y Franklin et al., (2005). En cada documento curricular se revisó 
con detalle la presencia de las ideas fundamentales; asimismo se analizaron en el texto, enunciados y 
declaraciones que informan sobre los contenidos, aprendizajes esperados y orientaciones didácticas.  

Resultados y discusión 
El estudio de la estadística aparece desde el nivel preescolar, mientras que el estudio de la 

probabilidad inicia en quinto grado de primaria. En la educación básica, ambos contenidos se 
incluyen como temas en la materia de matemáticas, mientras tanto en el nivel bachillerato los 
contenidos son parte de una materia por sí sola, denominada por lo general como Probabilidad y 
Estadística, o simplemente Estadística. En los grados inferiores de la educación primaria se señala la 



Ideas fundamentales de estadística en primaria, secundaria y bachillerato en el curriculo mexicano: Reflexiones 
desde la perspectiva internacional 

	 1314	

importancia de que los alumnos aprendan distinguir preguntas particulares (referidas a un elemento) 
de preguntas estadísticas (referidas a un grupo o colectivo). Estas orientaciones didácticas están 
concordancia con las recomendaciones del reporte GAISE para el nivel primaria. En los grados 
superiores se amplía el uso de representaciones de los datos a diagramas de barras y circulares. En 
los grados 5 y 6 se introducen las nociones de variables cualitativas y cuantitativas, y aparece por 
primera vez el cálculo de medidas descriptivas de centro y dispersión de los datos (moda, media y 
rango). En las orientaciones se sugiere la recolección de datos del contexto del salón de clases y la 
escuela, y el planteamiento de preguntas que requieren del uso de tales medidas descriptivas. El 
estudio de la probabilidad inicia en quinto año de primaria, se empieza introduciendo la distinción 
experiencia aleatoria y no aleatoria, la idea de espacio muestral y la determinación de sus elementos 
mediante el uso de diagramas de árbol. Los aprendizajes esperados consisten en identificar juegos en 
los que interviene el azar y realizar experimentos para registrar los resultados en tablas de frecuencias 
relativas y absolutas (enfoque frecuencial de la probabilidad). 

Mientras tanto en secundaria, los aprendizajes esperados en estadística enfatizan de nuevo en la 
recolección y registros de datos, y un repertorio más amplio de representaciones para la organización 
e interpretación de los datos; de tal forma, además de los diagramas de barras y circulares, se 
contemplan los histogramas, polígonos de frecuencias y gráficas de línea (series de tiempo). En el 
cálculo de medidas descriptivas de los datos se contempla la media, mediana, moda, rango y la 
desviación media. Las orientaciones didácticas hacen hincapié en recopilar datos de contextos 
escolares como el salón de clases o asuntos de interés para los estudiantes que aparecen en los 
medios. Se orienta a los docentes a construir las gráficas manualmente para que los estudiantes 
comprendan cómo se construyen. En cambio, el uso de hoja de cálculo para construir histogramas y 
polígonos de frecuencia se sugiere de manera aislada y superficial. 

En cuanto a probabilidad, se espera que los estudiantes realicen experimentos aleatorios y registren 
resultados como un acercamiento a la probabilidad frecuencial, se propone además que determinen la 
probabilidad teórica de un experimento aleatorio y de dos eventos mutuamente excluyentes 
utilizando las reglas de la suma y de la multiplicación de probabilidades. Se proponen juegos de azar 
en las orientaciones didácticas y experimentos donde se contrasten ambas. En segundo grado se 
propone el uso de simulación de fenómenos aleatorios mediante algún software solo como una 
recomendación, lo cual está en plena concordancia con las recomendaciones de diversos autores y el 
currículo internacional (Chaput, Girard y Henry, 2011; Burrill & Biehler, 2011). 

En cuanto al nivel bachillerato no existen programas únicos a nivel nacional, sin embargo, a partir 
de 2008 hay una propuesta de currículo oficial por parte de la SEP que tomaremos como referencia 
para el análisis. El curso de Estadística y Probabilidad I ofrece un repaso y profundización de los 
contenidos de la escuela secundaria, se agregan la varianza y desviación estándar, cuartiles, deciles y 
percentiles. La novedad en este nivel es la introducción al análisis de datos de dos variables (datos 
bivariados), en el que se incluyen los diagramas de dispersión, correlación lineal y regresión lineal 
simple. Este tema es muy recomendado en el proyecto GAISE y es una de las ideas fundamentales de 
estadística para el bachillerato (Burrill y Biehler, 2011) por su importancia para desarrollar el 
pensamiento multivariado de los estudiantes e introducirlos a la teoría de la predicción. En algunos 
países como Costa Rica y Chile aún no aparece esta temática en el currículo.   

En el curso de Estadística y Probabilidad II, aparecen los temas de conjuntos, técnicas de conteo y 
eventos mutuamente excluyentes previo al cálculo de la probabilidad teórica y frecuencial, 
distribuciones de probabilidad Bernoulli, Binomial. Normal y Poisson, probabilidad condicional y 
teorema de Bayes. La inferencia estadística no forma parte del currículo oficial definido por la SEP, 
solo es contemplada en el sistema de bachillerato CCH (sistema de bachillerato ofrecido por la 
Universidad Nacional), de manera opcional en el último semestre.  
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En cuanto al uso de tecnología en la enseñanza de la estadística y probabilidad en todos los niveles, 
apenas hay referencias superficiales en el currículo mexicano. Se sugiere su uso para la simulación 
de fenómenos aleatorios como un medio para estimar probabilidades teóricas, pero no hay 
referencias de su uso en el análisis y exploración de los datos, situación que es ampliamente 
recomendada en las recomendaciones internacionales y currículos de Nueva Zelanda, España y otros 
países.  

Conclusiones 
El estudio de los datos tiene presencia desde el nivel preescolar hasta el bachillerato, mientras que el 

estudio del azar inicia en el quinto grado de la educación primaria, lo cual guarda mucha similitud 
con el currículo internacional. Sin embargo, existen algunas diferencias en cuanto a lo contenidos en 
algunos niveles, particularmente en el bachillerato, donde se observa la ausencia de la inferencia 
estadística en el currículo oficial, ampliamente recomendada en el currículo internacional.  

Los contenidos temáticos recolección de datos, organización y representación de datos, y medidas 
descriptivas de los datos, constituyen la comuna vertebral del contenido estadístico en educación 
básica y bachillerato. Las técnicas de recolección de los datos (encuestas, observación, entrevista, 
consulta de información) son comunes en todos los niveles, pero aumentan de complejidad en el 
bachillerato con una descripción general de los métodos de muestreo aleatorio y no aleatorio.  

De la misma manera, las representaciones gráficas evolucionan desde los pictogramas sencillos en 
preescolar a diagrama de barras y circulares en la primaria, a histogramas, polígonos de frecuencia y 
gráficas de línea para visualizar datos cuantitativos. Sin embargo, se encuentran ausentes en el 
currículo gráficas de tallo y hoja, gráficas de caja y gráficas de puntos, que son comunes en 
currículos de otros países. Las medidas descriptivas inician con el cálculo de frecuencias en 
preescolar, cálculo de la moda en primaria, y el cálculo de la media, media, moda y desviación media 
en secundaria, para ampliar a la desviación estándar, varianza y la correlación en el bachillerato.  

Por su parte, la probabilidad en la escuela primaria inicia con el estudio de nociones de azar a través 
de experimentos aleatorios sencillos y cálculo de frecuencias de los resultados. En la educación 
secundaria se introduce el enfoque clásico y se promueve su contraste con el enfoque frecuencial, un 
aspecto muy recomendado en el currículo internacional. Sin embargo, en el bachillerato esa liga entre 
ambos enfoques no es fomentada y se hace mayor énfasis en el enfoque clásico con uso de técnicas 
combinatorias.  

En cuanto a la metodología de enseñanza observamos una tendencia uniforme en la educación 
básica, sugiriendo el uso de contextos reales y significativos para los estudiantes y el planteamiento 
de preguntas estadísticas que se deben responder con los datos, lo cual representa a nuestro juicio una 
tendencia innovadora y acorde con la perspectiva de desarrollo de pensamiento estadístico en los 
estudiantes. Esta tendencia es interrumpida en el bachillerato, que centra mas su atención en etapas 
posteriores del ciclo de investigación estadística, como es el análisis de los datos.  

El uso de la tecnología computacional en el análisis de datos y la simulación de fenómenos 
aleatorios solo tiene referencias superficiales en todos los niveles educativos, lo que constituye la 
mayor diferencia con el currículo internacional. Sin duda esta es una asignatura pendiente, al igual 
que la ausencia de la inferencia estadística en el bachillerato, que se debe mejorar en el currículo 
mexicano.  
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With the implementation of Common Core in most states, the pre-k-12 mathematics curriculum now 
contains a significant amount of probability and statistics, mainly situated in middle and secondary 
grades. Statistical association is a challenging concept, and secondary students are expected to use 
contingency tables to begin to reason about association of categorical variables. This requires 
proportional reasoning, which is a focus of middle grades mathematics and necessary for more 
advanced study but remains a struggle for even most adults. Researchers call for use of multiple 
representations to develop conceptual understanding, and I consider a traditional contingency table 
in addition to a mosaic plot to see how students reason through a series of tasks. 

Keywords: Cognition, Data Analysis and Statistics, Representations and Visualization, Geometry and 
Geometrical and Spatial Thinking 

Statistical skills develop over time and in order for all high school graduates to have statistical 
literacy, instruction should begin early and expand through middle and high school (Bargagliotti et 
al., 2020). Association can exist between variables that are quantitative, like a person’s height in 
centimeters, as well as variables that are categorical, like a person’s eye color. Association of two 
categorical variables is included in the eighth and ninth grade curriculum in most states. Statistical 
(in)dependence can be determined numerically or visually and it certainly requires proportional 
reasoning, which researchers have identified as a “major connecting idea” when reasoning with 
probability and statistics where it is important to help students make explicit connections between 
data and proportions (Watson & Shaughnessy, 2004). 

When considering bivariate data that are quantitative, there are well developed and standard 
graphical methods to aid students in determining (in)dependence, namely the use of a scatterplot 
(Friendly, 1999). The widely accepted Cartesian plane serves as a structure to visualize the data and 
determine if a linear or other type of association might be present. When the data are categorical, a 
two-way contingency table is used, but a standard graphical display does not exist for considering 
association of categorical variables (Friendly, 1999). Bar graphs, either segmented or side by side are 
often used to display frequencies in contingency tables; however, a mosaic plot is a default display 
used in some statistical software. Researchers in Australia (Pfannkuch & Budgett, 2017) recently 
noted some promising results of students working with an interactive mosaic plot, which assisted 
students in appropriately applying proportional reasoning with problems dealing with probability, 
especially when considering independence. A mosaic plot is based on a unit square that is vertically 
divided in proportion to marginal frequencies of one variable and further divided into rectangular 
regions that are proportional in area to each of the joint frequencies (see Figure 1).  

Mosaic plots are often non-numerical and can be used to understand what the displayed data implies 
quantitatively and determine independence. Visualization can aid engagement with meanings and 
concepts that are not readily available through symbolic representation and when information is 
displayed visually, we are able to “see” the story, picture a cause-effect aspect of a relationship, and 
vividly remember it (Arcavi, 2003). Visuals can “group together clusters of information that can be 
apprehended at once” (Arcavi, 2003, p. 218), and “visualization at the service of problem solving, 
may also play a central role to inspire a whole solution, beyond the merely procedural.” (p. 224). 
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Figure 1. Contingency tables and corresponding mosaic plots. 

 
Although elementary students are not likely to reason proportionally, previous studies indicate that 

younger students can reason correctly about association when only doubling and halving are 
required.  The present study investigates how pre-k-12 students reason about association of 
categorical variables using contingency tables with and without mosaic plots.  

Framework 
Seminal work aimed to understand how students reason with complete contingency tables 

(Batanero, Estepa, Godino, & Green, 1996) provides the basis of my framework. Proportional 
reasoning requires the comparison of ratios and the use of all four cells in a multiplicative manner. I 
developed a framework which includes eight conceptions of reasoning with contingency tables (see 
Table 1), which are based on the five levels (L1-L5) identified by Perez-Echevarria (1990, as cited in 
Batanero et al., 1996).  

 
Table 1 Graph Type and Variable Values for Different Items 

Code Description and features 
N0 No cells in the table are used to decide about independence or association. 
N1 No interior cells and one or more marginal cells are used to decide about 

independence or association. 
L1 Localist-1: One interior cell in the table is used. 
L2 Localist-2: Two cells in the table are used. 
L3 Localist-3: Three cells in the table are used. 
A1 Localist-4: All four cells in the table are used in an additive way. 
P1 Proportional-1: All four cells in the table are used with proportional reasoning that 

compares risk (part to whole ratios). One conditional relative frequency is compared 
to another, focusing on the interior cells. 

P2 Proportional-2: All four cells in the table are used with proportional reasoning that 
compares risk (part to whole ratios), and compares one conditional relative 
frequency to a marginal relative frequency. 
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P3 Proportional-3: All four cells in the table are used with proportional reasoning that 
compares odds (part to part ratios) and compares the odds for one category to 
another category for the same variable through subtraction or a ratio. 

 
When considering the problems where the mosaic plots were provided, I used the same base codes 

and appended an additional code to indicate how the mosaic plot seemed to function. I considered 
whether the mosaic plot was a hindrance (M-), seemed to have no impact on the solution (M), or was 
helpful (M+). 

Research Design 
Since my interest is of the “how” and “why” nature, a qualitative, multiple-case study design is 

appropriate (Patton, 2005). I conducted think-aloud interviews (Charters, 2003) with seven 
participants that ranged in age from seven to 17 because I wanted to get a sense of ways that students 
across upper elementary, middle school and high school would respond to the same tasks. The 
reasoning about contingency tables of students in this age range has been underrepresented in past 
studies. 

Each interview was semi-structured and used a protocol I develop based on the literature. The tasks 
all used the same context, but varied in the completeness of the contingency tables, numerical values 
of the frequencies, and whether there was an association among the variables. The words 
“association” and “independent” were used in the questions along with an additional explanation of 
their meaning. For the first part of the interview, I provided them with a series of problems with 
contingency tables and asked questions to ascertain their understanding of what the values in the 
tables represent. Then I introduced a mosaic plot by having them create one with a simple example. 
After verifying they could reason with it in conjunction with a contingency table, I presented two of 
the initial problems along with an accompanying mosaic plot. This study focuses on these two tasks. 
I concluded by asking them questions about the mosaic plot in general.  

I recorded each interview with two video cameras, capturing both a close-up view of the student 
work as well as a broader view of the student to include gestures and facial expressions. Each of the 
seven interviews was transcribed and both an augmented transcript, noting participant actions, and a 
lesson graph, including notes of interesting moments, were created. The framework was used to code 
the data. 

Results and Significance 
The mosaic plot was never a distraction and was most often helpful. The two tasks considered in 

this study proved difficult for most students, and only two of the older students, Scott and Klaus, 
were able to provide comprehensive explanations for the tasks (Scott: Task 1 P2/P2M, Task 2 
A1/P2M+; Klaus: Task 1 N)/P2M+, Task 2 A4/P2M+). These correct explanations occurred each 
time a mosaic plot accompanied the problem, but only once when it did not (Scott, Task 1). When the 
mosaic plot was provided, it improved all students’ reasoning with the exception of this one problem 
Scott was able to solve without it.  

The younger students always showed improved reasoning when the mosaic plots were provided, but 
because of their limited proportional reasoning, they were not able to provide a completely correct 
solution and justify their reasoning. As the literature suggests, they were able to use numbers and 
benchmark fractions to reason about the data, but they conflated percentages with frequencies. 
Additionally, they did not have an understanding of the structure of a contingency table, often 
indicating the marginal frequencies for the rows and columns were a different group of people. 
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Some of the improvements in performance on the problem when the mosaic plot was included could 
be due to other factors like seeing the problem for a second time and working with different 
contingency tables between reasoning without and with the mosaic plot. However Scott and Klaus 
both verified they were looking at the mosaic plot and used it to solve the problem and overall, 
explanation and justification was more limited when there was no mosaic plot provided. Clear and 
complete explanations more frequently occurred when the mosaic plot was included. For example, 
when Scott was using the mosaic plot in the second task, he said, “just look at the mosaic, it's pretty 
clear” and provided a succinct explanation.  

Interestingly, the mosaic plot seemed to help Klaus as he reasoned through the second task. With 
the contingency table alone, his additive understanding was apparent and he remained with his initial 
reasoning relying on the larger numbers. (see Figure 2).  

 

 
“The majority of soccer players play 

violin.  And the majority of basketball 
players play saxophone.” 

   
“So,	I	don't	think	those	percents	mean	anything	in	this	
situation.”	
	

Figure 2. (a) Klaus’s work considering greatest numbers in comparison with smaller numbers in a 
contingency table and (b) computation of conditional probabilities.  

 
Although he computed percentages that he could compare to reason proportionally, he did not 

recognize their usefulness. However, when he later reasoned with the mosaic plot accompanying the 
same problem, he clearly used the mosaic plot to compare the two categories and their proportions. 

Conclusion 
Overall, the mosaic plots appeared to be accessible, appealing, and useful to students. Scott claimed 

it allowed him to visualize the total as a whole and the percentages better than the table. In addition, 
all participants agreed mosaic plots were helpful and that having to draw it themselves helped them 
to understand it. Cici, the youngest participant mentioned it helped her to “memorize it a little more 
in your head.”  

Mosaic plots may be a useful representation for students when reasoning about (in)dependence of 
categorical variables. Future work might consider different aspects of contingency tables, how 
students understand and work with the constituent components, and how they reason across different 
representations.  
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The sampling distribution (SD) is a foundational concept in statistics, and simulations of repeated 
sampling can be helpful to understanding them. However, it is possible for simulations to be 
misleading and it is important for research to identify possible pitfalls in order to use simulations 
most effectively. In this study, we report on a key misconception students had about SDs that we call 
the “multi-sample distribution.” In this misconception, students came to believe that a SD was 
composed of multiple samples, instead of all possible samples, and that the SD must be constructed 
by literally taking multiple samples, instead of existing theoretically. We also discuss possible origins 
of this misconception in connection with simulations, as well as how some students appeared to 
resolve this misconception. 

Keywords: Statistics, Sampling Distribution, Process and Object, Multi-sample Distribution 

It is important to help pre-service mathematics teachers develop their own conceptual understanding 
of statistics content (Conference Board of the Mathematical Sciences, 2001), because their 
conceptual understanding impacts learning opportunities available for their students (Ball, Lubienski, 
& Mewborn, 2001). In statistics, one concept of critical importance is the sampling distribution (SD). 
It forms the conceptual basis of much of elementary statistics, including confidence intervals, 
hypothesis testing, and correlation testing (Lipson, 2003). Thus, if we want students to develop 
strong conceptual understandings of elementary statistics, it is essential to help our pre-service math 
teachers develop strong understandings of SDs, as well. 

Much research aimed at conceptual understanding of SDs focuses on exploration activities in which 
students repeatedly sample from a population (Aguinis & Branstetter, 2007; Chance, delMas, & 
Garfield, 2004; delMas, Garfield, & Chance, 1999; Glencross, 1988; Mills, 2002; Peck, Gould, 
Miller, & Zbiek, 2013; Watkins, Bargagliotti, & Franklin, 2014). These simulations are meant to 
show the emerging properties of the SD that: (a) the shape of the distribution is approximately 
normal, (b) 𝜇! = 𝜇, and (c) 𝜎! = 𝜎 𝑛 . However, some have realized that these same simulations 
might inadvertently be misleading (Watkins et al., 2014). It is beneficial for teacher educators to 
know what misunderstandings their students might develop from such simulations in order to use 
them most effectively. Our study seeks to build on this research by describing a previously 
undocumented misconception seen in pre-service teachers, which gets at the heart of what a SD even 
is. We also examine how this misconception might be resolved. 

Background on the Sampling Distribution 
Brief Recap of Sampling Distributions 

Many types of statistical studies are based on using a sample to estimate or test certain population 
parameters, such as the population’s mean (µ) or standard deviation (σ). Sampling distributions (SD) 
are what underlie the statistical methods used to do this. The basic idea of a SD is that, given a fixed 
sample size n, if all possible samples of size n are taken from the population, then the statistic of 
interest from all those samples creates a distribution in and of itself (Triola, 2010). For example, a 
SD for means is constructed by taking the sample means (𝑥) of all samples of the same size n from 
the population and putting them together to create a new distribution (see Figure 1). Note that there is 
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a different SD for every sample size n that is chosen, because n is the same for all samples within a 
given SD. The Central Limit Theorem (CLT) then guarantees that a SD for means will always have 
the same mean as the population, 𝜇! = 𝜇 , and a standard deviation given by 𝜎! = 𝜎 𝑛 . If n is 
sufficiently large, often cited as n > 30 (e.g., Triola, 2010), the CLT states that the SD will be an 
approximately normal distribution. Similar properties hold for SDs for proportions. It is important to 
note that SDs are theoretical in nature, in that they do not need to be empirically constructed to be 
used in statistical analysis. The CLT guarantees those properties that are needed for statistical 
analysis. 

 

 
Figure 1: Creation of a Sampling Distribution, taken from Triola (2010, p. 281) 

 
Brief Literature Review on Sampling Distributions 

A common tool for teaching SDs and the CLT are simulations, in which physical enactment or 
computer software is used to create the results of many samples and to partially construct a SD. 
Using simulations to help students learn about SDs has been recommended as far back as the 1970s 
(e.g., Committee on the Undergraduate Program in Mathematics, 1972). Some have demonstrated 
that these simulations can give insight into otherwise theoretically intractable ideas (e.g., Mills, 2002; 
Simon, 1994). Yet other research has shown that simulations are insufficient by themselves. delMas 
et al. (1999) found that when students were allowed to experiment with simulations, their 
understanding did improve by a little bit, but not by as much as expected. They realized that the 
simulations alone did not force students to notice relevant features, and that activities needed to 
carefully scaffold student noticing (see also Chance et al., 2004). Lipson (2003) explained that there 
is a jump between an empirically constructed approximation to a SD using simulations and the actual 
theoretical SD. However, Lipson’s focus was more on the influence that disconnect had on students’ 
understanding of inference. In this paper, we examine how that disconnect directly impacts students’ 
understanding of SDs themselves. Further, because simulated distributions are not perfect 
representations of the theoretical SD, Watkins et al. (2014) saw that students were sometimes misled 
by simulations. They observed students who incorrectly believed that the SD’s mean got “closer” to 
the population mean as n increases. In fact, the CLT guarantees that 𝜇! = 𝜇 exactly, regardless of 
sample size. The misconception we discuss is related to what Watkins et al. observed, and might 
even be a root cause of it. 

Taken together, this literature shows that simulations can be a useful tool in statistics education, so 
long as they are used carefully. We must be fully aware of potential pitfalls simulations might 
contain. We should continue to unpack possible issues in understanding SDs with simulations, in 
order to most effectively use simulations. This study adds a key, previously undocumented 
misconception, related to what a sampling distribution fundamentally is, that we observed in pre-
service teachers who experienced this type of simulation activity. 



Students’ “multi-sample distribution” misconception about sampling distributions 

	 1324	

Theoretical Perspective: Processes versus Objects 
We view the concept of SDs as having a close connection to the theoretical notion of processes 

versus objects (Sfard, 1991, 1992). This lens gives valuable insight into possible SD misconceptions, 
and can help produce paths toward their resolution. In short, a process means an activity that can be 
conceptualized as being carried out, like imagining counting up to 1 million. It does not necessarily 
need to be enacted to be a process, but imagined. An object, then, is the encapsulation of such a 
process into a single cognitively entity. The “size” 1 million is a conceptual object, which can 
emerge out of imagining the process of counting up to 1 million. 

SDs inherently deal with the process of repeated sampling. That is, one can conceptualize taking a 
sample and recording its sample mean (or proportion), and then taking another sample and recording 
its sample mean (or proportion), and so on. However, the full comprehension of SDs is to realize that 
this process can be encapsulated into a final result: the distribution of all sample means (or 
proportions). The SD is the object that results from the process of repeated sampling. We view 
simulations, through this lens, as essentially a representation of the process aspect of a SD. It permits 
the process to be quickly viewed over a large number of samples (as seen in Figure 2). However, in 
these simulations the object aspect of the completed SD is typically not reached. This limitation 
comes because such simulations usually do not depict when every sample has been represented 
exactly one time in the simulation, or at least represented in exactly equal proportion to every other 
possible sample. This matches Lipson’s (2003) assertion that there is a jump from the empirically-
simulated approximate SD to the actual theoretical SD. In this study, we examine how this issue led 
pre-service teachers to make incorrect conclusions about the fundamental nature of what a SD is.  

 

       
Figure 2: Example of a simulation (http://onlinestatbook.com/stat_sim/sampling_dist/) 

Methods 
This report emerged from a broader study we were engaged in regarding pre-service mathematics 

teachers resolving their misconceptions about confidence intervals. Students for the study were 
recruited from an undergraduate “Teaching Statistics and Probability” course for mathematics 
education majors, focused on conceptual understanding and on task exploration. The pre-service 
teachers had all completed a pre-requisite undergraduate statistics course, or AP statistics. In the 
education class we recruited from, the students used a simulation of repeated sampling, as discussed 
in the literature review, to develop the ideas of SDs. 

The major purpose of the larger study was to understand how students might resolve 
misconceptions they held and to document the route they took in doing so. To recruit students for 
interviews, the students were given a quiz in their class regarding misconceptions on SDs and 
confidence intervals. Because the misconception we report on in this paper had not previously been 
documented, our specific misconception was not tested for, but emerged during the interviews while 
the students discussed other aspects of their understanding. From the quiz results, five students with 
varying levels of misconceptions about confidence intervals were selected to participate in two, hour-
long interviews. We give the students the pseudonyms Danielle, Ethan, Corinne, Tiana, and Anna.  
During the interviews, the students were asked to explain how confidence intervals are constructed, 
to design their own hypothetical study that would use confidence intervals, and to discuss various 
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aspects of SDs and confidence intervals. While conducting the interviews, the interviewer (Author 1) 
noticed a trend in terms of how all five students seemed to be talking about SDs. Thus, the 
interviewer began to follow up on this trend as well, and to make sure each student was asked about 
it. As the purpose of the larger study was to help students resolve misconceptions, the interviewer 
also attempted, impromptu, to document instances of students resolving this misconception during 
the interviews. 

To analyze this trend, we went through all of the parts of the interviews where students made 
statements or gave explanations regarding SDs. In examining all instances of normatively incorrect 
statement or explanation, we realized they typically dealt with one main misconception about SDs. 
That is, most incorrect statements or explanations about SDs seemed rooted in the same 
misunderstanding. Once we singled out this misconception, we went back to the interviews to try to 
identify where the misconception came from in terms of prior knowledge or in-class activity. In 
doing so, we saw an important likely connection to the in-class simulation. Finally, as the interviewer 
had attempted, in the moment, to understand and document these confusions, we tracked the 
students’ evolving conceptions of SDs over the interviews and looked for what was discussed in 
conjunction with changes in their understanding. This aided us in identifying what might help resolve 
the underlying misconception. 
Limitations 

There are some limitations to our analysis of this misconception. First, we had only five students in 
the sample, which is few. However, this report focuses only on documenting and discussing the 
misconception, rather than on establishing how common it is. Yet, since all five students in this study 
did share this same misconception, we posit that it is likely to be more widely shared. Second, this 
study was not originally designed to uncover this misconception, but it rather emerged from the data. 
Future work can be done to examine this misconception more systematically and to identify how 
common it might be among typical pre-service teachers. 

Results 
The Multi-sample Distribution Misconception 

All five students suggested that to do statistics, one essentially uses a “sampling distribution” that 
contains some of the samples of size n from the population, as opposed to a completed sampling 
distribution of all possible samples. For example, consider Corinne’s explanation. 

Corinne: If you took a bunch of samples and you found their means, you would get a sampling 
distribution. 

Interviewer: How many samples? 
Corinne: More than 30. 

Corinne implied that if one has a certain amount of samples (i.e. “30”), then the distribution of those 
sample means is a SD. In another example, Ethan was describing how his hypothetical statistical 
study could be done. He seemed to imply that to obtain a SD, one would literally collect several 
samples in practice and compile them into a SD. The interviewer was initially unsure what he meant, 
and asked about how he imagined a SD. 

Interviewer: What’s a sampling distribution? 
Ethan: The distribution of the means of your samples. 
Interviewer: How many? 
Ethan: Are you talking about in my thing [i.e. hypothetical study], or just in general? … [The SD is] 

the means of how many samples you take. 
Interviewer: But what if you only take one [sample]? 
Ethan: If you only take one sample then, [pause] I’m lost. 
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… 
Interviewer: [The SD] is the distribution of the means of all your samples. Okay. All the samples that 

you take, or all the samples that you could take? 
Ethan: That you take. 

Here, Ethan explained that a SD is created by empirically collecting multiple samples during a 
statistical study. That is, he did not conceptualize a theoretical SD with the properties guaranteed by 
the CLT. In fact, at one point Ethan suggested that “all possible samples” really meant all the 
samples it was possible for someone to practically take. Ethan was not alone in believing one must 
collect multiple samples to empirically create a SD to do statistics. Most of these students described 
that to carry out their hypothetical study, they would need to take many samples to create a SD, as 
seen in the following statements. 

Tiana: I want to take 30 samples of size 100. 
Corinne: I would take 100 samples of size 30. 
Ethan: I would get at least 200 samples just to be realistic. 
Danielle: You take a large number of samples, like say 1,000, to get a sampling distribution of 𝑥. 

It is clear that these students were all thinking of a SD as a collection, not of all possible samples, 
but of several literally collected samples. We call the conceptualization of such a distribution of 
many, but not all, samples the multi-sample distribution, denoted M-SD. We consider it a 
misconception when the M-SD is seen as being the SD. We claim that the M-SD misconception is 
closely connected to perceiving only the process part of the SD. That is, the process of repeated 
sampling is understood, but it does not have a theoretically completed end of all possible samples 
that is the object SD. In this way, M-SD is not “wrong,” but incomplete in a critical way. The 
students even seemed to understand that this process could continue, with more samples, to create a 
“better” M-SD, but they typically did not understand that the process has an end-result object that is 
the theoretical SD. 

In conjunction with the M-SD misconception, the students in our study exhibited some 
misconceptions previously reported on in the research literature. For example, many claimed that 
𝜇! ≈ 𝜇 rather than 𝜇! = 𝜇 (cf. Watkins et al., 2014), as in the following excerpt from Corinne. 

Corinne: [𝜇𝑥] is the mean of the means you sampled… In the real world, we never get to work with 
the distribution where µ and 𝜇𝑥 are equal. We just get closer and closer [with more samples]. 

In fact, we believe previously reported misconceptions like this regarding 𝜇! may really be a 
symptom of an underlying M-SD misconception. Note that the mean of the M-SD is technically 𝑥!, 
as opposed to 𝜇! because it is only a sample of sample means rather than the population of all sample 
means (where 𝑥 refers to a sample and µ to a population). In this perspective, it is true that 𝑥! ≈ 𝜇 as 
the students claim. It is only in the SD of all samples where 𝜇! = 𝜇 exactly. 
Possible Origins of the M-SD Misconception 

During the interviews, the students described aspects of their thinking that matched with the 
simulation activity used in their class to discuss SDs. In the classroom activity, each student 
randomly selected samples from a population and computed the sample mean of them. The activity 
culminated in the students plotting their sample means together to create a visual representation of 
what is, essentially, a M-SD. This activity may have fostered M-SD thinking in the students. For 
example, in her interview, Tiana recounted this simulation activity and explained that she understood 
the image she saw – of the multiple sample means plotted together – as being the SD. Regardless of 
whether the instructor may have mentioned that the image was not the SD, the strong visual that 
represented the culmination of the simulation activity seemed powerful enough that she interpreted it 
as though she were seeing a SD. 
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By contrast, Corinne did recognize in her interview that there is such a thing as a distribution of all 
sample means. However, she discarded it as anything practically useful in doing statistics, explaining 
instead, as seen in her excerpt above, that “in the real world, we never get to work” with the actual 
SD. She explained that you could only use the actual SD “in something like manufacturing where 
you have data on every item or when you have a small population. But in that case it would be 
pointless because you could just do a census and know the population parameters.” She explained 
that, practically speaking, in order to do statistics one would need to create the type of distribution 
seen in their class, that was made up of a collection of multiple sample means rather than all sample 
means. 

Another root of the M-SD misconception may lie in classroom discussion of the CLT. One property 
of SDs given by the CLT is that if the common sample size for all samples is sufficiently large, often 
given as n > 30, then the SD is approximately normal. However, students may have confused this 
with believing that they need at least 30 samples for the (M)-SD to be approximately normal. The 
simulation activity may have inadvertently led them to focus on the wrong thing for “n > 30.” In the 
simulation, the students saw that with each new sample mean added, the distribution began to 
resemble a normal distribution more. For example, when Ethan was explaining his hypothetical 
statistical study, he settled on wanting to collect 30 samples. 

Interviewer: Why is 30 a magical number to you? 
Ethan: The central limit theorem wants 30 [samples] for the sampling distribution to be normally 

distributed. 

Notice that Ethan is justified in asserting that “30” is connected to the normality property given by 
the CLT. But, he did not appear to connect n > 30 as representing the sample size of each of those 
samples, as opposed to the number of samples needed to create a reasonably normal (M)-SD. This 
result is supported in the students excerpts from the previous section about wanting 30, 100 or 1,000 
samples to make a sampling distribution. 
Possible Resolutions of the M-SD Misconception 

We defined the resolution of this misconception as recognizing that (a) the SD is a theoretical 
distribution from all possible samples and (b) that it does not need to be empirically constructed to be 
used. From our process-object perspective, the M-SD misconception essentially lacks the object 
component. Thus, resolution of this misconception is based on extending their process-oriented 
conception to include an object. Danielle, Ethan, and Corinne each gave some evidence of resolving 
this misconception. First, consider Danielle. One important part of her resolution of this 
misconception involved clearly distinguishing between sample size and number of samples.  

Interviewer: How many samples do we need to take before we can use the sampling distributions and 
assume that they are normal? 

Danielle: I think generally they say it’s supposed to be like 35 or 30. 
Interviewer: Samples? 
Danielle: Yeah. That’s the size of the sample [pause]. So wait, your question is? 
Interviewer: How many samples? 
Danielle: Oh, how many samples do we need to take. So, usually when we are using these types of 

things like our equations [refers to a formula sheet] we just take one sample!  

Here, Danielle seemed to have realized the mismatch in thinking that multiple samples are needed 
to literally create an SD versus the fact that the statistical formulas use only one sample. Then, by 
thinking of just this single sample, she began to create for herself the ideas of a SD. 

Danielle: Any kind of sample you take is going to fall… somewhere. It is possible to get one that is 
farther away from the population mean… [Draws Figure 3]. If you were to take a sample, just one 
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sample, then it will fall somewhere along here in this range that is close to the population mean 
[gestures toward the middle a population distribution in Figure 3]. 

 
Figure 3: Danielle building on the simulation to now imagine all possible sample means 

 
By reasoning with only a single sample, Danielle began to think more theoretically about where that 

single sample mean could be. In fact, this theoretical thinking seemed to help her imagine all possible 
samples, without having to literally collect all of them. 

Danielle: So, if you could possibly take every single sample of that certain size and you were to be 
able to plot that, the sampling distribution would be normal and so we, since that concept is true, 
then we can just pull one sample point and it will be a point from somewhere on the sampling 
distribution. 

We can see that Danielle had now conceptualized a SD as having all possible samples, and that it 
was theoretically, not empirically constructed. The single sample used in statistics was a member of 
this theoretical distribution. In fact, thinking of a single 𝑥 more abstractly appeared helpful for some 
students in transitioning from the empirically-grounded M-SD to the theoretically-based SD. Corinne 
also used single 𝑥’s to help make this transition. 

Interviewer: What happens if someone only picks one sample? Let’s make this the smallest possible 𝑥 
and this the largest possible 𝑥. [Here the interviewer writes a number line and marks two points 
along it.] 

Corinne: Without even knowing anything about this, most of them are going to be in the middle. So 
chances are that this one single [𝑥], it’s here somewhere [gestures to the middle of the number 
line.] 

Here, Corinne made an assertion about where a given 𝑥 might be, without trying to create multiple 
samples. The interviewer tapped into this by then asking Corinne to imagine where all possible 𝑥’s 
might fall along this number line. Corinne began to piece together where they might be, including 
that many 𝑥’s would fall toward the middle. She eventually drew a SD similar to Figure 3. The 
interviewer asked about some of the specific properties of this new distribution. 

Interviewer: Is µ the same as 𝜇𝑥? [i.e. assuming all possible samples] 
Corinne: I think at this point they are the same. 
Interviewer: Why? 
Corinne: Because at this point, if we have taken every possible sample, and take their means, and we 

are finding the mean of all those means, that is mathematically the same as finding the mean of 
all of those at once, which is finding µ. 

… 
Interviewer: So you are saying we can use just one sample [to do statistics]? 
Corinne: But you’re basing it off of information about all possible samples. 

By leaving the empirical enactment from the simulation, Danielle and Corinne could begin to 
reason theoretically about where one 𝑥 might lie, and then to where multiple 𝑥’s might lie, to then 
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where all 𝑥’s might lie. This seemed to help them extend the process seen in the simulation to an 
imagining of a completed SD object with all possible 𝑥’s being represented.  

Discussion 
We agree with the body of research that claims simulations are important for developing students’ 

understanding of SDs (e.g., Mills, 2002; Simon, 1994). We also believe our study helps us better 
understand why simulation activities might be misleading in some ways, as noted by Watkins et al. 
(2014). Our process-object perspective suggests that simulations can only account for the process 
part of the conception of SDs, and cannot adequately portray the object part. We believe this is the 
reason for the possible disconnect Lipson (2003) described between the empirical simulation and the 
theoretical SD. If a simulation can only achieve the process component, the M-SD becomes a 
possible misconception students might develop. To be clear, we see the process component of a 
conception of SDs as essential, and simulations as a valuable way to develop the process component. 
That is, if one tried to simply create the object SD without first developing the process behind it, one 
might be left with a pseudostructural conception instead (Sfard, 1992; Sfard & Linchevski, 1994). In 
other words, the students might conceive of an SD object, but without understanding the underlying 
process that leads to it. Thus, we promote simulations as a useful way to develop the process, but 
claim that instruction must, at some point, move past the empirical simulation into a theoretical SD. 
Of course, simply “telling” students that there is a completed theoretical SD after observing a 
simulation might be insufficient to bridge the gap between process and object. Rather, it seemed 
important for some of our students who resolved the misconception to reason more theoretically 
about the distribution of a single hypothetical 𝑥. This led to where multiple 𝑥’s, and eventually all 
𝑥’s, might be distributed. 

It was also important for our students to explicitly confront the difference between the sample size 
and the number of samples, which we believe is related to the misconception that 𝜇! gets closer to µ 
as sample size increases (Watkins et al., 2014). As sample size increases, it is true that a M-SD will 
have an 𝑥! closer to µ. However, since a SD deals with all samples, not an increasing number of 
samples, it will always have 𝜇! = µ. 

Finally, we wish to emphasize that the M-SD misconception is not “wrong,” but simply incomplete. 
In the spirit of perceiving misconceptions as useful building blocks, rather than faulty thinking that 
must be removed and replaced (see Smith, diSessa, & Roschelle, 1993/94), we find that resolving 
this misconception deals with adding on to what is already there, rather than taking away. Viewing 
the M-SD misconception in this light makes the path toward its resolution clearer, in that we can take 
the students’ understanding as is and help them extend it to a completed process-object conception of 
SDs. 
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This study investigated the intuitive knowledge of conditional probability in one four-year-old child. 
Six clinical interviews were video-recorded for analyzing transcripts and expressions from the child. 
Findings from this research suggest that the child has a pre-operational intuition about change in 
sample space in non-replacement situations. He also seems to have an intuitive understanding of 
independent events. Furthermore, although his judgments are mainly subjective, he does use 
quantitative justifications, although, inconsistently. 

Keywords: Cognition, Early Childhood Education, Probability. 

According to Nikiforidou, Pange and Chadjipadelis (2013) and Antonopoulos and Zacharos (2013), 
the study of probabilistic thinking in preschoolers is very limited. Jones, Langrall, Thorton and 
Mogill (1997) list sample space, probability of an event, probability comparisons and conditional 
probability as four key constructs in probability thinking; however, while the first three constructs 
have been investigated by several researchers, they point out that there are few studies related to 
conditional probability in young children. As one of the key constructs in probability thinking, it 
would be worthwhile to identify how this construct first begins to develop in young children. In this 
way, we can better understand how to advance children’s early probabilistic reasoning. Thus, we 
examined the following research question: How does a preschooler think about conditional 
probability? In this study we investigated the intuitive knowledge of one four-year old child in 
situations involving conditional probability and independence. The study focused on these concepts 
from an informal perspective.  

Literature Review/Framework 
Xu and Tenenbaum (2005) demonstrated that preschoolers might possess some intuitive notions of 

conditional probability despite having not reached the formal operational stage identified by Piaget 
and Inhelder (1975). Jones and Tarr (1997) validated a framework for assessing probabilistic 
thinking through a characterization of four levels in conditional probability and independence. 
Following are the first two levels briefly described: 

• Level 1. Subjective: Students’ judgments are based on their own construction of reality, 
looking for non-existent patterns and imposing their own system of regularity. Students 
believe past outcomes will always affect the future outcomes, and they “deny the existence of 
independence” (Jones & Tarr, 1997, p. 51). The level of subjectivity does not allow any 
meaningful attention to independence and conditional probability. 

• Level 2. Transitional: Students in this level occasionally use quantitative information for 
making conditional probability judgments.  

Some researchers (Nikiforidou & Pange, 2010, Nikiforidou, et al. 2013) highlight the importance of 
considering intuition when investigating children’s probabilistic thinking. In this way, Fischbein 
(1975) argued that children have intuitive probabilistic knowledge. These intuitive notions are 
implicit forms of cognition beyond cognitive structures and conceptual systems. Fischbein (1975) 
categorized intuitions into pre-operational, operational and post-operational. Specifically, pre-
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operational intuitions can be influenced by subjective or perceptual considerations, and operational 
intuitions are basic intuitions that are expressed through formal rules of logic.  

Methods 
In this study we used a case study analysis to investigate notions of conditional probability in one 

four-year-old child, Mack. Six clinical interviews of 5 minutes each were conducted and video-
recorded. Tasks designed as games were used in each interview. In these games, Mack was asked to 
predict the outcomes in different scenarios. Correct predictions were reinforced with tokens. We 
analyzed each of the activities focusing on Mack´s predictions and his reasons for providing his 
answers. After transcribing each interview, in the video records we identified Mack´s expressions, 
actions, and fluency in his answers. From these records, we selected the video-segments that met one 
of the following criteria: showed any justification given by Mack, revealed specific indicators of a 
particular kind of intuition, or showed specific features associated with his notions of conditional 
probability. For the chosen segments, we included descriptions of Mack´s actions associated with his 
verbal expressions in the transcriptions. Later, we organized the completed transcriptions into two 
non-disjunctive groups: those that enabled us to infer Mack’s intuitions, and those that reveal 
different kinds of judgments.    

 

Results 
We describe the results from the interviews according to Mack’s intuitions and judgements. We 

begin with a discussion of the BALLS situation. In this situation, we mixed two green balls and two 
red balls in a bag. We asked Mack to predict the color of the ball that he thinks will have the greatest 
chance of being chosen from the bag. He answered “red,” giving the reason that it is his favorite 
color. He then chose a red ball without looking inside. After that, he recognized that there were two 
green balls and one red ball remaining in the bag. Here, we suggest a pre-operational intuition 
associated with the chance of selecting a green ball, because after reviewing the bag, he quickly 
predicted the selection of a green ball for a follow-up selection. He gave as his reason for this 
prediction, that he likes all the colors (subjective consideration). 

His pre-operational intuition of chance is further confirmed in the next trial in which there was one 
ball of each color left. In this case, he predicted that the red ball would be chosen, arguing that red is 
his favorite color. Similarly, in a scenario involving two red and two green balls in the bag, he 
selected a red ball which was then replaced; when he was asked which ball had the greatest chance of 
being selected, he answered red again arguing that it was his favorite color. Then, the red ball was 
not replaced, and he predicted that a green ball would be more likely to be chosen, again arguing that 
he likes all the colors. In this case, the number and color of the balls were not confirmed as in the 
previous situation. In a subsequent scenario, we added one green ball to the two red balls and two 
green balls. In this case, Mack predicted the green ball again arguing that he liked all the colors. In 
summary, when the chance of choosing the different colored balls was equal, he predicted a red ball 
arguing that red is his favorite color; but, when the chance of choosing a green ball was greater, he 
selected that color, arguing that he likes all of the colors. These situations reveal that Mack has an 
intuitive recognition that the sample space changes. For example, after selecting some of the balls 
from the bag, he changed his decisions according to the remaining number of colored balls without 
checking which balls were left in the bag. Furthermore, these decisions reflect an intuitive notion of 
conditional probability as the probability of the subsequent choice of ball appears to be conditioned 
on the knowledge of the previous choice.   

We now turn to a discussion of Mack’s judgements in situations involving independent events. In 
the COINS tasks, Mack was asked to predict the resulting color (yellow or red) after flipping a coin. 
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He was asked to first toss the coin without making a prediction. The outcome was yellow. On the 
next toss, he predicted the coin to be red. In the third toss, he looked more confident in his guessing 
than previously. Then, the following discussion took place:  

Interviewer (I): Now, which color do you think that you will get if you throw the coin? 
Mack (M): Mmm, red 
I: Why do you think is red? 
M: Because it’s my favorite color.  
I: Ok, it’s your favorite color, very nice, let’s see 
M: [tossed the coin and got yellow] 
I: Yellow! Now, let’s do it again. What color do you think you will get? 
M: Red  
I: Red again? Ok, why red?  
M: Dark 

Mack’s choices in the coin tossing situation seems to reveal an intuitive recognition that previous 
outcomes do not affect subsequent outcomes. In a follow-up scenario, we used two coins that were 
flipped one immediately after the other. Mack was asked to predict the color he would get tossing the 
second coin once he had tossed the first coin; he answered yellow, and the reason that he said was 
“shine!” In different scenarios, the main justification of his predictions continued being “my favorite 
color!” when his predictions were red. However, he seemed to change his justifications when he had 
a clearer intuition about the possible chance of the outcomes, as in the BALLS situation. He also 
included subjective arguments like “because is dark,” “I am sweety,” and “because it’s my mom’s 
favorite color.” 

In the FIGURES situation (Figure 1), Mack was asked to predict from which piece of cardboard the 
figure was chosen (situation inspired by Lucas, Bridgers, Griffiths, and Gopnik, 2014). Covering the 
pieces of cardboard, we selected a diamond and asked Mack from which piece of cardboard the 
image was taken. He linked the selection of the color (red cardboard) with the red flowers in the 
interviewer’s blouse. Repeating the experiment twice, he changed the kind of judgment in the second 
repetition: 

 

 
Figure 1. Pieces of colored cardboard 

 

I: I take the blue diamond. 
M: The yellow one. 
I: Do you think it’s from the yellow one? 
M: (nodded) 
I: Why? 
M: Because there is more.  
I: There is more what? There is more… 
M: Shapes. 

Although the quantity of shapes did not affect the chance, Mack´s attention moved away from 
subjective arguments to the quantity of shapes. In a similar situation in which there were two 
triangles on the yellow piece of cardboard and one on the red piece, Mack’s first guess was that the 
triangle came from the yellow piece of cardboard, because “there is two of them.” Although this was 
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not technically a prediction because Mack was looking when we selected the triangle, he seemed to 
be appealing to the number of triangles as a justification for his choice. In, yet, another situation 
where two triangles were on the yellow piece of cardboard and three on the red piece, his judgements 
associated with the number of triangles became clearer. We took one triangle without letting him see 
where it came from: 

I: I took this triangle from one of these two cardboards, what cardboard do you think this triangle 
came from? 

M: Red. 
I: Why do you think is red. 
M: Because there is more. 
I: There is more in red? 
M: More triangles. 

However, in a following task, the triangle was not replaced, and he expressed the same argument in 
selecting the red piece of cardboard when they were the same number of triangles in each one.  

Conclusions 
This study identified the intuitive knowledge of a four-year-old child in situations involving 

conditional probability and independence. Although the child does not have any formal knowledge 
about sample space, he has a pre-operational intuition about changes in the sample space in non-
replacement situations. In other words, Mack quickly adapted his choices and justifications 
depending on the different options he had once the sample space changed. Additionally, as seen in 
the COINS task, Mack did not seem to consider past outcomes when making future predictions. 
These findings seem counter to Jones and Tarr’s (1997) framework related to the lack of attention to 
independence and conditional probability for children who are in the subjective level.  

Mack’s judgments were mainly subjective as Jones and Tarr (1997) characterize for the subjective 
level and Fischbein (1975) characterizes for pre-operational intuitions. However, over the course of 
the interviews, Mack changed his judgments from subjective to quantitative without instructional 
interventions. Although his quantitative reasoning was inconsistent and sometimes irrelevant, notions 
of quantity did influence his decisions. The trajectory of Mack’s judgments provides an intriguing 
situation for further research. In particular, when he felt more confident about the possible answer, he 
appealed to the quantity of objects to justify his predictions. It seems that Mack has an intuition about 
the likelihood of an object being chosen that is associated with the quantity of objects involved. This 
suggests that intuitions about chance in conditional situations associated with quantitative reasoning 
may be stronger than Jones and Tarr (1997) argue for the subjective level. Nevertheless, although 
Mack mentioned number of objects in his justifications, he did not associate such numbers in his 
predictions.  
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Context plays a crucial role when students engage in analysis and interpretation of data, and is 
broadly recognized as one of the main elements that separate the studies of mathematics and 
statistics (Cobb & Moore, 1997). The ways that students engage with the environment surrounding 
data within a statistical task are of interest to researchers because of this. In this analysis of a 
teaching experiment with third grade students, interactions with self-collected wingspan data led to 
insights about graphs as students attended to individual values, but students varied in their 
willingness to use the data to describe/infer more broadly. 

Keywords: Data analysis and Statistics, Measurement, Elementary School Education 

When working with data, the context surrounding it plays an essential role in developing students’ 
understanding. Context is one feature that can separate the study of statistics from the study of 
mathematics (Cobb & Moore, 1997). Watson (2009) posited that one of the goals of statistical 
literacy is for “students to be able to tell a story from a context with a distribution” (p. 33). With the 
potential for students’ statistical investigations to involve the collection and use of survey or 
measurement data (Lovett & Lee, 2016; Makar, 2014), it is of particular importance to carefully 
unpack the impact of self-collected data (which may include the students themselves) on their 
statistical analysis.  In this work, we investigated the ways that students in a third grade classroom 
engaged with context as they completed an activity involving wingspan data. The guiding research 
question included: how would the use of self-collected measurement data impact students’ 
descriptions and their ability to infer based on their data collection and display? 

Conceptual Framework 
According to Watson (2007), a learner’s ability to engage productively with context is one of the 

hallmarks of statistical literacy. When “meaningless or nonexistent” context is provided for data, 
students will often apply incorrect or inappropriate procedures, while when the context is 
“interesting, and relevant to students’ worlds” they are more likely to use statistical ideas (Doerr & 
English, 2003, p. 111). However, when students engage with the context too personally, they may 
also make assumptions that are not supported by statistical evidence (Watson, 2007). Students may 
focus so closely on the story behind data that they prefer making conclusions based on their informal 
knowledge of the data’s context over patterns in the data itself (Ben-Zvi et al., 2012; Biehler et al., 
2018; Pfannkuch, 2011).  

Within statistics, there are two broadly defined categories; descriptive and inferential. Descriptive 
statistics focuses on the “organization, summarization, and presentation” of data (Paparistodemou & 
Meletiou-Mavrotheris, 2008, p. 83). Inferential statistics looks at how patterns for a particular group 
could be viewed more broadly. Recently, research has focused on the importance of exposure to tasks 
which build inferential reasoning for students as young as the elementary grades (Makar, 2014; 
Pfannkuch, 2011; Watson, 2001). Graphical displays are an important part of both descriptive and 
inferential statistics. They can help students see the distribution of data more clearly, with 
distribution being defined as the overall picture of data based on expectation (center), variation, and 
shape (Watson, 2009). Watson (2007) concludes based on her longitudinal work with students in 
both the elementary and secondary grades that learners can benefit from opportunities to create their 
own displays and compare/contrast them with displays made by others to investigate their “success in 
telling the story of data” (p. 61). Despite this much remains unknown about the intricacies and 
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impact of such an approach. This work looks specifically at the context of self-collected 
measurement data and how the nature of the data may have impacted elementary students’ display 
creation and descriptions/inferences. 

Methods 
This research aimed to investigate the ways that a group of third grade students from a Midwestern 

State engaged in a task related to class wingspans. Using characteristics of a teaching experiment 
methodology (Steffe & Thompson, 2000), a focus group of five students were recruited to participate 
in the study. The wingspan task unfolded in three stages. First, the focus group were asked to 
measure each other’s wingspans, and to consider reasons for observed differences. Second, the focus 
group collected measurements from the rest of their class and used these measurements to create 
displays individually or in pairs. Students had previously been introduced to bar graphs and 
pictographs involving categorical data but had not used them to represent quantitative data. Finally, 
participants presented their displays to the focus group. The purpose of this discussion was to 
consider the ways that different displays conveyed similar information, examine the overall 
distribution of class wingspans, and hypothesize about the distribution of wingspans for other classes 
or grade level groups. Video recordings of discussions, transcriptions of the activity, and student 
work served as data sources for analysis. 

Data analysis consisted of three phases. First, video-data were segmented to isolate instances during 
which students seemingly contemplated the self-collected or personal nature of the data. These were 
broadly defined to consist of occasions where they referenced specific data values or general 
characteristics of specific groups (i.e. their class, other classes, other grades). The second phase of 
analysis focused on identifying ways that the context shaped students’ interactions with the data 
towards description or inference. The third phase concentrated on analyzing the type of 
descriptions/inferences identified during the second phase of analysis. 

Findings 
The context of the physical measurement of wingspans impacted the ways that students engaged 

with the data in a descriptive sense. It led to a focus on individual students’ measurements which 
both helped and hindered students’ perceptions as they attempted to describe the data. Including self-
collected data based on their own classroom seemingly led to an appreciation for how individual 
values fit within the data, but at times this focus on individuals appeared to inhibit students from 
looking at their displays more holistically.  
Personalization of data 

Locating self-based measurements amongst the data set was critical to enhancing students’ 
understanding of the characteristics of displays produced. This approach to data reading seemed to 
have motivated them to both create and understand their graphs (Lovett & Lee, 2016). Finding one’s 
own measurements in the display anchored their interpretations and descriptions of the overall data 
as depicted in this vignette (all names are pseudonyms): 

Julie: Everybody’s was in the 50s but mine – but that kind of makes sense because I’m shorter than 
everybody. 

Researcher: Oh, so you think that maybe it’s connected to your height? 
Katelyn: Yeah, because people say that if you’re really tall then you have a big wingspan 
Julie: Yeah like Katelyn and Bob are the tallest people and they have the longest – um 
Bob: Wingspan 

In both this and other instances, students referenced the data values of both themselves and others in 
the class. One wingspan, which was lower than all the others, is given an interpretation when Julie 
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recognizes that the value represents her and makes a potential connection with height. This is 
pursued further by others who recognized that the higher wingspans also represent those in the group 
who are taller. In this way students were able to give some justification for the variation in the data 
and make a potential connection with height. Their prior experiences may have impacted this 
interpretation, as evidenced by Katelyn’s statement about what “people say” about height and 
wingspan. 

Interpreting based on individual measurements or personal experiences led to varying approaches to 
inference. When asked what the graph for another, unspecified third grade class might look like, 
students first believed that the graphs might be similar, as when Bob and Julie referenced their 
displays (Figure 1) and said, “It would look a lot like this/ours”, or when Jeff said, “Most of them 
would be in the 50s”. This provides evidence that some students viewed their data as representative 
of third graders in general. Others believed the graphs would look different, but for varying reasons. 
Abbie based her analysis on another specific class, saying, “If I were to measure Ms. Johnson’s class, 
she has some really tall kids,” leading her to conclude that they would have more values on the right 
side of the graph. Katelyn was unwilling to describe what a graph for another class would look like 
because they have “different people – one class could have all the tall people”. In this case, 
envisioning specific classes led to inferences regarding a single case (Abbie) or an unwillingness to 
make any conclusion (Katelyn), characteristics that have been seen previously in young students with 
regards to informal inference (Ben-Zvi et al., 2012; Makar, 2014). Abbie’s and Katelyn’s 
observations also provide further evidence that students inferred a more general relationship between 
height and wingspan; for them, referencing height appears to be sufficient to justify potential 
variation in wingspan. 

 

 
Figure 1: Jeff/Bob’s display (left), Julie’s display (middle), Katelyn’s display (right) 

 
Differences in Displays 

The self-collected data were helpful for engaging students in interpreting their wingspans at an 
individual level, but the data collection and display creation process also led to some issues which 
kept students from seeking structural characteristics of the data. Students were intent on critiquing 
the format of others’ displays (things like labels and titles), and characterized them as either correct 
or incorrect.  This tendency can plausibly relate to the procedural and standalone nature of instruction 
on graph creation that students often experience (Friel et al., 2001). This led to a focus on minor 
discrepancies in students’ data lists. Some values were left out accidentally by one or more of the 
participants, while other values differed slightly based on measurement. While this led to a 
discussion of measurement variability, students were also intent on tracking and noting these 
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differences. Questions like, “Did you get John?” or “Which number is Maggie?” were common. 
When asked to compare their graphs, two students said, “They’re all different”. The following 
captures the difficulty students experienced in viewing and interpreting their displays holistically: 

Researcher: Look at these side by side and look at the shape. What do you notice? 
Abbie: Oh, it’s the same 
Jeff: Oh they’re the same 
Bob: It’s the same thing 
Jeff: It’s the same thing except these are pictures and those are like bars (pointing) 
Abbie: Wait wait wait!  
Researcher: What do you mean it’s the same thing? 
Abbie: It’s not the same thing – it’s not the same thing 
Katelyn: It’s not the same thing because Julie is missing a 40 

Note that while students’ graphs had similar structures (Figure 1), Julie’s graph does not include a 
value in the 40-44 inch category, whilst the other two graphs do. Thus, an exchange that initially 
seemed to be moving students towards a discussion of the more general characteristics of their 
displays transitioned to a focus on an individual value. Discrepancies related to the self-collected 
nature of the data seemed to inhibit their ability to summarize the wingspan characteristics in this 
instance. Despite this, students did note some of the general characteristics of the data based on their 
displays. A consensus was reached that the “average” for the class was “50-55 inches” because it was 
“the highest” value amongst the data set. Thus, students’ conception of “average” in this case 
appeared more closely aligned with ideas related to the formal ideas of “median” and “mode”, a 
phenomenon previously reported by researchers who had considered students of the same age group 
(Makar, 2014; Mokros & Russell, 1995). Katelyn also noted during the discussion how the data “all 
go up and down”, a reference to the unimodal shape of the distribution. Students determined that 
potential values could be anywhere between 40 and 65 inches, and believed this to apply to third 
graders in general. While some students envisioned that the graph for another class might look 
different in terms of “average”, students also believed that the wingspans of another class would fall 
within this range, demonstrating awareness of reasonable variation between samples. 

Discussion/Limitations 
This research investigated how the use of self-collected measurement data would impact students’ 

statistical analysis. The results suggest that positioning themselves within the data at times helps 
students distinguish relationships between values. However, the personal nature of the data, along 
with slight differences in representation due to measurement/sampling variability, at times kept 
students’ attention on the differences between their graphs and the individuals represented by each 
element as opposed to aggregate characteristics of the distribution. However, the 
exploratory/preliminary nature of this study limits the scope of its conclusions. A future study 
comparing students engaged in tasks utilizing self-collected versus teacher-provided (not self-
collected) data would be essential to gain further evidence of whether the characteristics observed in 
this study are truly related to the use of self-collected data. 
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The research about inequalities has reported that students treat them as equations; this parallelism 
also has an effect on the syntax that has a repercussion on the semantics of the literals used in 
algebra. The student often makes algebraic transformations without regard to the constraints of 
inequality. There are also conflicts with the type of solution, finally, variability can represent a 
problem from the treatment with the intervals, since it is related to the idea of multiple solutions. 

We consider that the study of numerical inequalities and the variability of intervals are basic 
resources for the adequate use of linear inequalities.  In the first, inequalities reflect the relationship 
that gives meaning to the use of signs of inequality by comparing quantities, while in the second they 
help to establish a relationship of dependency associated with the set of solutions. 

We propose to develop this research as part of a reflective practice within a collective work that 
allows the student to "meet" with knowledge in a process of semiotic mediation and ethical 
collaboration, Radford (2020). 

This ongoing research aims to develop the transit of the interpretation of the unequal sign from the 
numerical field, through the treatment of intervals and variability through the use of tables, to support 
the solution of linear inequalities associated with problem constraints for decision making, carrying 
out a treatment of variables as a generalized number.  

To justify these relationships we will first use the model of the real line and the symmetry of the 
position of values, in particular, to make sense of the product by negative numbers, and then focus on 
the algebraic treatment of the inequalities and then make sense of the solutions over the previously 
used model. We would be developing this research with populations of high school students in 
Honduras and Mexico. 
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Las investigaciones desarrolladas sobre las desigualdades han reportado que los estudiantes las 
tratan como las ecuaciones, este paralelismo también tiene un efecto en la sintaxis que repercute en la 
semántica de las literales utilizadas en el álgebra. El estudiante con frecuencia hace transformaciones 
sin tener en cuenta las restricciones de la desigualdad dominando la regla del despeje. También hay 
conflictos con el tipo de solución, por último, la variabilidad puede representar un problema a partir 
de un tratamiento con los intervalos, ya que está relacionada con la idea de múltiples soluciones. 

Consideramos que el estudio de las desigualdades numéricas y la variabilidad de los intervalos son 
recursos básicos para el uso adecuado de las inecuaciones lineales.  En el primero las desigualdades 
reflejan la relación que da sentido al uso de los signos de desigualdad comparando cantidades, en el 
segundo este contribuye a establecer una relación de dependencia asociada al conjunto solución. 

Planteamos desarrollar esta investigación como parte de una práctica reflexiva al interior de una 
labor conjunta que permita que el estudiante se “encuentre” con el saber en un proceso de mediación 
semiótica y colaboración ética, Radford (2020) 

Esta investigación en curso pretende desarrollar el tránsito de la interpretación del signo desigual 
desde el ámbito numérico, pasando por el tratamiento de intervalos y la variabilidad a través del uso 
de tablas, para sustentar la solución de las inecuaciones lineales asociadas a restricciones de 
problemas para la toma de decisiones, llevando a cabo un tratamiento de las variables como un 
número generalizado.  

Para justificar estas relaciones usaremos inicialmente el modelo de la recta real y la simetría de la 
posición de valores, en particular, para dar sentido al producto por números negativos, para luego 
centrarse en el tratamiento algebraico de las inecuaciones y después darles sentido a las soluciones 
sobre el modelo previamente usado. Esta investigación la estaríamos desarrollando con poblaciones 
de estudiantes de educación media en Honduras y México. 
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The research reported here sought to answer the question: How do students’ ways of thinking, about 
statistical concepts (data, distribution, variability, and sample) and process quality control techniques, 
changes while solving a Model Eliciting Activity [MEA] proposal? (Lesh, Hoover, Kelly, Hole & 
Post, 2000). Learning process quality control techniques is important for industrial engineering 
students because "these techniques are useful for identifying where, how, when and how often 
problems occur (statistical regularity)" (Gutiérrez-Pulido, 2005, p. 146). 

We implemented a MEA proposal designed to identify the model's students generate in their 
problem-solving approach; which allows them to test the quality of their solutions, maintain 
productive thinking, in a short period of time and with a minimum of interventions (Lesh et al., 
2000). In the activity, a discrepancy was raised between a pet food factory and a government 
institution due to anomalies in the weight of the product bags, hence the student is asked to write a 
letter to the editor of the magazine where the problem was reported. The letter should describe a 
method for verifying the packaging of the product. It was sought that with the models created the 
students would reinforce the concepts related to process control techniques, mainly descriptive 
techniques and control charts for variables.  

Eighteen students participated in the activity, working first individually, and then in groups of three; 
at the end of the session, the participants share their work in a plenary session to the rest of their 
classmates. We qualitatively analyze the models and modeling process by reviewing voice and video 
recording from each session and categorized the level of understanding of the statistical concepts as 
described by Garfield & Ben-Zvi (2008). 

A preliminary analysis of the models showed a change in the way concepts are thought of as data 
and dispersion. Students shift from perceiving data as individuals to data as a group. It was also noted 
that they began with a partial recognition of variation, and grew to think about the application of 
variation (Watson, Kelly, Callingham & Shaughnessy, 2003). Furthermore, students' ideas about 
concepts related to control techniques for variables were noted and need further refinement.  
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La investigación que aquí se reporta buscó responder a la pregunta ¿cómo cambia la forma de 
pensar acerca de los conceptos estadísticos (dato, distribución, variabilidad y muestra) y de las 
técnicas de control de calidad de procesos (carta de control de variables) de un grupo de estudiantes 
universitarios al resolver una propuesta de Actividad Provocadora de Modelos [APM]? (Lesh, 
Hoover, Kelly, Hole y Post, 2000). Aprender las técnicas de control de calidad de procesos es 
importante para los estudiantes de ingeniería industrial debido a que “son útiles para identificar 
dónde, cómo, cuándo y con qué frecuencia se presentan los problemas (regularidad estadística)” 
(Gutiérrez-Pulido, 2005, p. 146). 

Se diseñó e implementó una propuesta de APM para identificar los modelos que los estudiantes 
generan en su proceso de solución; proceso que les permite probar la calidad de sus soluciones, 
mantener un pensamiento productivo, en un periodo corto de tiempo y con un mínimo de 
intervenciones (Lesh et al., 2000). En la actividad se planteó una discrepancia entre una fábrica de 
alimento para mascotas y una institución gubernamental por anomalías en el producto, por lo que se 
solicita al estudiante escribir una carta al editor de la revista donde se reportó la situación, en la carta 
debe describir un método para verificar el envasado del producto. Se buscó que los modelos creados 
los estudiantes reforzaran los conceptos relacionados con las técnicas de control de procesos, 
principalmente las cartas de control de variables.  

La actividad se implementó con 18 estudiantes que trabajaron primero de manera individual, 
posteriormente en grupos de tres integrantes, los cuales finalmente presentaron su trabajo en una 
plenaria al resto de sus compañeros. Para analizar cualitativamente los modelos y el proceso de 
modelación se revisaron grabaciones de audio y video de la implementación, y se categorizaron 
niveles de comprensión de los conceptos estadísticos con base en Garfield y Ben-Zvi (2008).  

En un análisis preliminar de los modelos se observó un cambio en las formas de pensar de los 
conceptos como dato y dispersión, que permitió pasar de pensar en cada dato de manera individual a 
concebir el dato como un grupo. Asimismo, se notó que comenzaron con un reconocimiento parcial 
de la variación y llegaron a pensar en la aplicación de la variación (Watson, Kelly, Callingham y 
Shaughnessy, 2003). Además, se advirtieron ideas de los estudiantes acerca de conceptos 
relacionados con las técnicas de control de variables que necesitan refinarse posteriormente a la 
implementación de la APM. 
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One of the key components of probabilistic thinking is attention to outcomes within a sample space 
(Chernoff & Zazkis, 2011). Researchers are also interested in the notion of computational thinking, 
including the use of simulation and programming (Weintrop et al., 2016). According to Lockwood 
and De Chenne (2020), coding can “facilitate mathematical learning” in combinatorics, an area with 
close connections to the concept of sample space. In addition, simulations can lead to solutions which 
are very close numerically to those found using theory. This study investigates how learners interpret 
these two solution types within a probability task. 
Methods 

Using a clinical interview methodology (Clement, 2000), a preservice secondary mathematics 
teacher engaged with a probability task. Greg (a pseudonym), was asked to determine the likelihood 
of obtaining 3 blue marbles in a situation where 10 marbles are drawn without replacement from a 
bag containing 50 green, 20 yellow, and 30 blue marbles (theoretical solution using hypergeometric 
distribution approximately 0.2812). The interview was video recorded and transcribed, and analysis 
focused on Greg’s two solution strategies.  
Preliminary Findings 

Greg’s first strategy was to think about different “possibilities”, referencing the task’s sample space. 
He listed different “configurations” that would be possible, saying, “I could go through and do this 
systematically by hand.” Greg stated that it would take a long time to list all of these out and seemed 
perplexed about how he would actually get to some sort of numerical solution, but that it might 
involve permutations or combinations. He then stated that his next step “would probably be to run 
some sort of simulation,” going on to describe how he would “code” the situation using random 
numbers, conditionals, and loops, and run 10,000 trials in Excel to get an idea of what the likelihood 
might be. According to Greg, “What that would do is it would give me some sort of framework to 
judge my work.” His results from the simulation would allow him to check whether his theoretical 
approach was going “in the right direction”. The researcher then asked whether he would consider 
giving the results of his program as his answer to the task. He said, “Yes and no.” While he would 
give the answer as an approximation, he believed that to answer the question “fully” he would need 
to go back to his theoretical method which involved enumerating all the possibilities. It appeared that 
he viewed the simulation approach as a way to verify a potential theoretical solution, not as a true 
solution in its own right.  
Discussion 

This research suggests that learners may view experimental or simulated solutions to probabilistic 
tasks differently than those they arrive at using theoretical methods involving concepts like sample 
space. In this case, it appeared that a theoretical solution was valued more highly by Greg than one 
which utilized programming, and that his simulation was primarily useful as an approximation or 
verification tool. This brings up questions about what it means to “solve” a problem involving 
likelihood. However, these conclusions are extremely preliminary, based on one individual’s 
responses. More research needs to be done to see if others respond similarly to solutions found using 
theory versus those obtained using simulation. 
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Although gender differences in mathematics are smaller than they have been in the past, prominent 
voices still attribute these differences to a variety of fixed individual factors, such as genetic 
characteristics of men and women. We hold the alternative view that these differences can be 
ultimately attributed to malleable factors. From this vantage, societies could influence gender 
differences in mathematics by changing students’ experiences in school. In this study, we built on 
prior work suggesting that mathematics anxiety causes lower mathematics scores. In particular, we 
found that mathematics anxiety entirely explains the gender differences evident in mathematics 
scores from the 2012 US Programme for International Student Assessment (PISA). Furthermore, we 
found that gender moderates the mediating role of mathematics anxiety: math anxiety is more 
detrimental for male than for female students. Because math anxiety is a malleable individual 
characteristic, we conclude that gender differences reveal more about gendered societal experiences 
than they do about innate characteristics of men and women. 

Keywords: Gender and Sexuality; Equity and Diversity; Assessment and Evaluation; Affect, 
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Headlines such as “Men in science think they are more intelligent than female counterparts, study 
reveals” (Richards, 2018) and “Study: 6-year-old girls say they are less ‘brilliant’ than boys. Why?” 
(Botkin-Kowacki, 2017) and “Why don’t young girls think they are smart enough?” (Cimpian & 
Leslie, 2017) are not uncommon in the media today. Many researchers have challenged claims that 
“boys are better at math than girls” (e.g., Ding et al., 2006; Hyde et al., 2008). However, small 
average score differences between boys and girls on large-scale mathematics tests remain, 
particularly at the top of the score distribution, leading some to assume that girls are not as talented 
as boys in mathematics.  

In this paper, we use the 2012 Programme for International Student Assessment (PISA) dataset to 
examine this small but persistent gender gap on mathematics exams. Although gaps analyses have 
been criticized for deficit thinking and not supporting individual students’ mathematical identities 
(e.g., Gutiérrez, 2008), they often inform researchers and policymakers about necessary adjustments 
to educational systems. Lubienski (2008) notes, “It is dangerous for the mathematics education 
community to refrain from gaps analyses and allow others to speak in our place” (p. 352). Two recent 
cases illustrate this point. Mark Perry (2016), an economics professor at the University of Michigan 
Flint Campus used boys’ and girls’ average score differences on the mathematics portion of the SAT 
to assert that “closing the STEM gender degree and job gaps may be a futile attempt in socially 
engineering an unnatural and unachievable outcome” (para. 12). Likewise, Eric Rasmusen (2019), a 
professor in the highly-ranked Kelley School of Business at Indiana University, publicly and 
repeatedly agreed with an article entitled “Are Women Destroying Academia? Probably.” In the 
article, differences in IQ scores were used to say that “geniuses” were most often men, and women’s 
empathetic and emotional nature is the “enemy” of genius and, therefore, academia (Welton, 2019; 
see also Brice-Saddler & Paul, 2019). We find these views problematic because they frame female 
achievement in terms of fixed, innate characteristics.   

Over the years, much scholarly work has been dedicated to understanding boys’ and girls’ 
mathematics score differences, and has produced clear evidence for a wide variety of contributing 
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factors. Nearly all of these factors—high-stress and timed environments, decreased curricular 
alignment, negative depictions in media—are related to high mathematics anxiety, which itself is a 
malleable factor. If educators can lessen mathematics anxiety in early grades, then more girls might 
increase their confidence in mathematics and subsequently pursue STEM careers. This can have a 
global effect, as Smith and colleagues (2015) note, because more women in STEM increases 
creativity and innovation. As we discuss below, researchers have also documented that mathematics 
anxiety affects a larger percentage of girls than boys and operates to reduce mathematics 
performance. Looking across these findings suggests the question that guided our research: To what 
extent does mathematics anxiety explain the small but persistent gender gap in mathematics exam 
performance?     

Perspectives 
Mathematics Gender Gaps Analyses  

Researchers have found that girls outperform boys on many school measures, from grade point 
average to number of undergraduate, masters, and doctoral degrees in their postsecondary years (e.g., 
Carnevale et al., 2018). Although several researchers have found no significant gender differences on 
mathematics tests like state-mandated end of course assessments, National Assessment of 
Educational Progress (NAEP), and Pearson’s Stanford Achievement Test (e.g., Ding, et al., 2006; 
Hyde et al., 2008), some suggest that there still might be a slight gap in scores at the higher end of 
the score distribution, specifically, on more challenging items that may not have been explicitly 
taught in school (e.g., Downey & Vogt Yuan, 2005, Lubienski & Ganley, 2017). For instance, a 2016 
study by Stewart et al. found no overall gender difference for math calculation, geometric concepts, 
basic math concepts, and addition. The researchers did find a significant difference in solving “real-
life complex math problems,” which had multiple steps and required the test-taker to respond orally 
(p. 53). In addition, researchers have found significant score differences on the AP Calculus exam, 
the mathematics SAT, and the quantitative portion of the Graduate Record Exam (Niederle & 
Vesterlund, 2010). Cimpian and colleagues (2016) found that score differences on the Early 
Childhood Longitudinal Study were significant as early as first grade at the higher end of the 
distribution and widened throughout elementary school. Other researchers, even as early as Aiken’s 
1972 publication, have found little to no score differences for elementary-aged children––especially 
on curriculum-aligned tests, but find that a gap in scores expands in the high school years (e.g., 
Aiken, 1972; Casey et al., 2001, Hyde et al., 2008).  

We first discuss factors that have been shown to contribute to boys’ and girls’ score differences on 
mathematics tests. A number of researchers note that timed tests can be particularly damaging to 
math-anxious students (e.g., Walen & Williams, 2002; Whyte & Anthony, 2012). Neiderle and 
Vesterlund (2010) suggest that, on average, boys are more competitive and confident than girls and 
use this competitive nature in high-stress test-taking environments. As mentioned, some scholars 
suggest that girls perform better on school-taught material (Downey & Vogt Yuan, 2005; Lubienski 
& Ganley, 2017) as well as tasks that involve computations and memorized procedures (Ganley & 
Vasilyeva, 2014). In other words, if the test is not aligned to curriculum to which they have been 
exposed, boys tend to score better. Others suggest differences in the ways girls and boys solve 
problems, with studies showing that, as early as 1st grade, girls tend to use concrete strategies like 
modeling and counting while boys use more creative problem-solving strategies (Fennema et al., 
1998) Lubienski and Ganley (2017) state, “Girls’ teacher-pleasing behavior is likely a consequence 
of gender socialization and […] is likely linked to later differences in mathematical problem-solving 
approaches, with girls following teacher-given rules more often than boys” (p. 74). In contrast, many 
researchers suggest that boys tend to have better spatial skills, which could improve scores on 
problems with measurement, space, and shape (e.g., Halpern et al., 2007; Lubienski & Ganley, 
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2017). Cimpian and colleagues (2016) found that teachers consistently rated girls’ mathematical 
proficiency lower than boys with similar achievement and behaviors. Some researchers suggest that 
stereotype threats and negative depictions of girls and math in the media might deter girls from 
pursuing STEM courses and careers, with the “math is for boys” stereotype influencing students as 
early as 2nd grade (e.g., Cvencek et al., 2011; Gunderson et al., 2012). Halpern and colleagues (2007) 
believe sociocultural forces such as parent beliefs and expectations, teacher encouragement, and peer 
influences contribute to score differences. Van Langden and colleagues (2006) suggest that the more 
gender equality in a country, the smaller the score differences. They also posit that girls do better in 
math when they are in “integrated classrooms” instead of “differentiated systems,” i.e., separate 
classes in which students are placed according to ability.  In sum, competitive environments, timed 
tests, decreased curricular alignment, teacher-pleasing behaviors, less gender equity in a country, a 
“math is for boys” viewpoint––almost all factors mentioned––could be related to mathematics 
anxiety.  
Mathematics Anxiety 

Mathematics anxiety has been defined as “a feeling of tension and anxiety that interferes with the 
manipulation of numbers and the solving of mathematical problems in a wide variety of ordinary and 
academic situations” (Richardson & Suinn, 1972, p. 551). It differs from general anxiety and test 
anxiety; math anxiety can be exhibited in people who excel in testing situations in other subjects, and 
it can occur even during anticipation of interacting with numbers.  

Dowker (2019) describes two dimensions of mathematics anxiety: cognitive and affective. The 
cognitive dimension closely relates to test anxiety and involves performance anxiety, worry, and 
“fear of failure.” The affective dimension is often labeled as “emotionality” and refers to fear, 
nervousness, tension, and their related physiological reactions. Most importantly, the affective 
dimension occurs in the presence of numerical situations, with or without a test. Mathematics anxiety 
is not just correlated to performance deficits, but many researchers have suggested that mathematic 
anxiety has a causal relationship with performance deficits (e.g., Hembree, 1990; Ma, 1999). Ma 
(1999) describes two theoretical models that typically guide mathematics anxiety research: an 
interference model and a deficits model. In the interference model, mathematics anxiety disturbs the 
recall of prior knowledge and experiences, often causing lower scores; some scholars refer to this as 
the “debilitating anxiety model” (Carey et al., 2016). In the deficits model, researchers believe 
repeated poor performances produce increased levels of mathematics anxiety. In this model, lower 
scores are often attributed to poor test-taking skills and study habits. Several researchers have posited 
a bidirectional relationship between these two models, creating a vicious cycle of high mathematics 
anxiety and low mathematics scores (e.g., Carey et al., 2016; Dowker, 2019).  

Working memory and the brain. Math anxiety has been shown to deprive people of their working 
memory, leading to lower scores, supporting Ma’s interference model (e.g., Beilock & Willingham, 
2014; Dowker, 2019). One might think that students with larger amounts of working memory could 
memorize every fact and formula and thus have lower levels of mathematics anxiety, but a 
counterintuitive result has been found. Children with high levels of working memory have a more 
pronounced negative relationship between math anxiety and math achievement (e.g., Beilock & 
Willingham, 2014; Dowker, 2019; Lubienski & Ganley, 2017; Lyons & Beilock, 2012; Maloney & 
Beilock, 2012). Dowker (2019) posits that those with higher levels of mathematics anxiety have 
more preoccupying thoughts and mental rumination, depleting crucial working memory resources. 
Consistent with Dowker’s findings, Maloney and Beilock (2012) say, “Math anxious individuals tend 
to worry about the situation and its consequences. These worries compromise cognitive resources, 
such as working memory, a short-term system involved in the regulation and control of information 
relevant to the task at hand” (p. 404). In other words, students might be quite talented at memorizing 
formulas and procedures for use in normal classroom activities or homework, but the effects of 
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mathematics anxiety might break down these rote procedures during stressful situations. Although 
other students might be able to solve the problem in a creative or novel way, students who have 
relied on rote memorization could further deplete their cognitive resources.  

Neurologically, children with math anxiety show more activity in their right amygdala when 
performing mathematical tasks, and this area of the brain is known for processing negative emotions 
and fear (e.g., Beilock & Willingham, 2014; Chang & Beilock, 2016). When the right amygdala was 
active, there was a decrease in activity in the areas of the brain responsible for mathematical 
reasoning (Chang & Beilock, 2016). Psychologists at the University of Chicago refer to this as 
“working memory disruption,” hypothesizing that students with higher working memory resources 
often use algorithms and problem-solving strategies with multiple steps, which are more susceptible 
to disruption during situations that induce anxiety (Ramirez et al., 2013). Further, Lyons and Beilock 
(2012) showed that the anticipation of doing math triggered the dorso-posterior insula in the brain, 
which is the area of the brain associated with bodily threat but also visceral pain; therefore, 
mathematics anxiety can be neurologically associated with physical pain.  

Teacher, peer, and parent influences. Several researchers have noted how others might influence 
a student’s level of mathematics anxiety. As early as 1959, Banks suggests that repeated failure, 
parents’ and peers’ unhealthy attitudes towards mathematics, and teacher insecurities can all 
contribute to students’ negative associations with mathematics. Beilock et al. (2010) agree that 
mathematically anxious teachers at the elementary level impact students’ mathematics achievement, 
especially when girls mimic the anxieties of their female teachers. Unfortunately, this can be a 
cyclical problem as the majority of elementary teachers are female, and a disproportionate number of 
preservice teachers have mathematics anxiety or worry that they will be unable to teach mathematics 
effectively. Brown and colleagues (2011) found this number to be 60% of preservice teachers, while 
Jackson and Leffingwell (1999) found that only 7% of preservice teachers in their study had only 
positive mathematics experiences in their K-16 schooling. Whyte and Anthony (2012) suggest that 
parents who suffer from math anxiety can transfer this to their children, and parents who give math a 
low status or, contrastingly, apply extra pressure to their children may contribute to mathematics 
anxiety as well.  
Interventions to Decrease Math Anxiety  

Some researchers have suggested that there is an optimal amount of mathematics anxiety that will 
positively affect performance. The graph is a curvilinear relationship, an inverted U-shaped curve. 
Cognitive reactions to mathematics anxiety might include “blanking out” or self-doubt, while an 
affective reaction might include the fear of looking stupid. Physical reactions for both dimensions 
might include perspiring, an increased heart rate, or nausea (Frieberg, 2005). In a 2010 study, 
researchers informed one group of participants that anxiety could help to improve performance but 
said nothing to the control group (Jamieson et al., 2010). When students took a practice Graduate 
Record Examination (GRE), the control group had more salivary alpha amylase (sAA)—an indicator 
of stress—than the test group. In addition, the group that was told anxiety improves performance had 
higher scores both on the practice test and on the actual GRE, taken 1-3 months later.   

Jamieson et al. had a simple approach for lessening the impact of mathematics anxiety on high-
stakes standardized tests like the GRE, but others have posited interventions to help with 
mathematics anxiety in everyday situations. In recent years, Ganley et al. (2019), have proposed the 
use of the Math Anxiety Scale for Teachers (MAST) to reduce the harmful effects of teachers’ 
mathematics anxiety on students’ learning. They note that teachers with high levels of mathematics 
anxiety avoid the subject, spending less time on mathematics lessons, especially in whole class 
discussions. Whyte and Anthony (2012) suggest promoting a positive classroom culture with 
effective teaching practices, such as having students share creative approaches to problem solving. 
They also suggest utilizing math fiction books, journal writing, and math autobiographies in the 
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classroom. Researchers who noted the negative impact of timed tests (e.g., Walen & Williams, 2002; 
Whyte & Anthony, 2012) suggested providing ample time for assessments. Recently, Schaeffer et al. 
(2018) used an app to help mathematically anxious parents creatively interact with their children 
while discussing mathematics. After using the app for even a short period of time, parents reported 
feeling less anxious about math, and these results were maintained even two years after the study. 
This was an important finding, as parents’ negative associations with math are often reflected in their 
children. Maloney and Beilock (2012), also note the importance of journal writing, saying that 
writing about emotions for 10-15 minutes before a test can boost the scores of students with 
mathematics anxiety. Lastly, students develop a negative relationship with mathematics when they 
are told there is only one right way to do a problem. When less emphasis is put on memorization and 
more weight is placed on creative problem-solving, students are less dependent on their working 
memory when working on mathematics problems.  

Methods 
Data for the present study come from the public release version of the 2012 US PISA data set. 

These data were selected because they are nationally representative, include trustworthy instruments 
measuring the focal constructs of our investigation (i.e., mathematics anxiety and of student 
achievement) as well as important covariates. More recent PISA data has not included the variables 
of interest. Participants were 4978 students aged 15 to 16 years old. The sample was 50.7% male, 
52% White, 13.1% Black, 24.0% Hispanic, 4.6% Asian, 4.3% identified as multiracial, and 2.1% 
identified as other (n = 67, missing). 

We used the PISA mathematics score as the dependent variable in our analysis. Because not all 
students answer the same questions when taking the PISA assessment, five plausible values are 
reported for each student instead of a single score. The differences between the plausible values for a 
specific student capture the uncertainty about the student’s estimated math score. We completed the 
analyses described below with each of the five math scores, then used accepted methods to pool 
results (Rubin, 1987).  

The first independent variable was a math anxiety instrument based on 5 rating items (e.g., “I often 
worry that it will be difficult for me in mathematics classes,” “I get very tense when I have to do 
mathematics homework,” “I get very nervous when doing mathematics problems,” “I feel helpless 
when solving a mathematics problem,” and “I worry that I will get poor grades in mathematics”). 
The composite score for the five-item math anxiety questionnaire was available within the PISA 
dataset. According to the technical report (OECD, 2014), the variable was transformed to an 
international metric with a mean of 0 and a standard deviation of 1 for all OECD countries that 
participated in the PISA 2012 (OECD, 2014). The internal validity of this multi-item construct was 
evaluated with Cronbach alpha = 0.88 and deemed to have good internal consistency. The sample 
mean was -0.104 and ranged between -2.370 and 2.550. By design, not all students answered each 
section of the survey. Thus, there were 1720 students with missing scores on the math anxiety 
measure. We used full information maximum likelihood estimator which is robust to missing data 
and this technique allowed us to include all students in the analysis. Self-reported gender was the 
second independent variable, and a summary of this variable is provided above. Finally, we used the 
PISA standardized index of economic, social and cultural status (ESCS) which summarizes 
occupational status, parent education, family wealth, home educational resources, and an index of 
possessions relative to each country context. The sample mean was 0.188 and ranged between -3.80 
and 3.12 (n = 63, missing).  

A mediation effect is said to occur when a mediating variable helps explain or account for the 
relationship between an independent and dependent variable. For example, in this study we wanted to 
know if the relationship between gender and mathematics score is mediated by math anxiety. A 
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moderation effect occurs when a moderating variable influences the effect of the dependent variable 
on the independent variable. For example, gender is said to moderate the relationship between math 
anxiety and math scores if the relationship between these variables differed by gender. Moderated 
mediation describes a theoretical model that includes a variable that moderates the mediating effect 
of another variable on the outcome. In this study, we wanted to know whether the extent to which 
math anxiety accounts for the relationship between gender and math scores differs by gender—a 
moderated mediation model. 

 

 
Figure 1: Conceptual model for moderated mediation. 

 
As shown in Figure 1, the total effect of gender on math scores is the sum of the direct effect, c’, 

and the indirect (or mediated) effect, a x b. The coefficient d describes how gender moderates the 
mediating effect of math anxiety on the relationship between gender and math scores. Following 
Shevlin et al. (2015) we operationalized moderated mediation by testing the path diagram in Figure 2 
which includes an interaction term between gender and math anxiety. In this figure, the moderated 
mediation is investigated by examining coefficient d, which quantifies the gender difference in the 
math anxiety, math score relationship. We used lavaan, an R package, to estimate two structural 
equation models for (1) mediation and (2) moderated mediation for each of the five plausible values 
for the outcome variable. We used another R package (mice) to combine the results across the five 
models we estimated. We compared these models with a regression model that used gender and other 
covariates to predict math scores. 

 
Figure 2: Path diagram used for analyzing moderated mediation. 

Results 
In the baseline regression model (see Table 1), we found a small (0.093), statistically significant (p 

< .001) relationship between gender and math scores in our sample after controlling for race and 
ESCS. The goal of our subsequent analysis was to understand how much of this relationship could be 
explained by mathematics anxiety. The second model shows that once anxiety is included as a 
mediating variable, the relationship between gender and math scores is no longer statistically 
significant (0.020, p = 0.42). Thus, in this sample, anxiety completely mediates the relationship 
between gender and math scores. The total effect is still the same (0.093, p < .001), but most of this 
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effect is indirect via math anxiety (0.074, p < .001). The size of this effect can be quantified as the 
percent mediation: the indirect effect explains 80% of the total effect. 

In the final model, the relationship between gender and math scores is not statistically significant 
(0.009, p = 0.71). In this model we can compare the indirect effects by gender. For males, the indirect 
effect is 0.085 (p < .001) and for females the indirect effect is 0.064 (p < .001). Moreover, the 
difference is statistically significant (.021, p < .01). We concluded that gender does influence the 
extent to which math anxiety explains the relationship between gender and math scores, and in 
particular, we found a stronger indirect relationship between these variables for male students. 

 
Table 1: Regression and path coefficients for the baseline regression model and for the mediation 

and moderated mediation models. 

 
Regression Model Mediation Model Moderated Mediation 

predicting Math Scores β (SE) β (SE) β (SE) 
Male  0.093 (0.025) *** 0.02 (0.024) 0.009 (0.024) 
Anxiety 

 
-0.333 (0.013) *** -0.288 (0.018) *** 

Male by Anxiety 
  

-0.096 (0.027) *** 
ESCS 0.334 (0.014) *** 0.283 (0.014) *** 0.283 (0.014) *** 
Black -0.833 (0.039) *** -0.817 (0.038) *** -0.81 (0.038) *** 
Hispanic -0.273 (0.034) *** -0.277 (0.032) *** -0.276 (0.032) *** 
Asian 0.47 (0.061) *** 0.427 (0.058) *** 0.425 (0.058) *** 
Multicultural -0.083 (0.063) -0.12 (0.06) * -0.131 (0.06) * 
Other race -0.647 (0.09) *** -0.604 (0.086) *** -0.596 (0.086) *** 
predicting Anxiety 

  Male  
 

-0.222 (0.036) *** -0.222 (0.036) *** 
ESCS 

 
-0.151 (0.02) *** -0.151 (0.02) *** 

Black 
 

0.048 (0.057) 0.049 (0.056) 
Hispanic 

 
-0.011 (0.048) -0.011 (0.048) 

Asian 
 

-0.13 (0.087) -0.129 (0.086) 
Multicultural 

 
-0.113 (0.091) -0.113 (0.091) 

Other race 
 

0.13 (0.131) 0.13 (0.131) 
Direct & Indirect Effects 

  Male Indirect 
  

0.085 (0.014) *** 
Female Indirect 

  
0.064 (0.011) *** 

Difference Male/Female Indirect  0.021 (0.007) ** 
Indirect Effect 

 
0.074 (0.012) *** 0.064 (0.011) *** 

Total Effect 
 

0.093 (0.025) *** 0.073 (0.025) ** 
 

Limitations 
This study used cross-sectional data, therefore only associations—not causal relationships—can be 

investigated. Furthermore, mediation relationships depend on theory—not statistics. If the mediation 
model we presumed for this study is not accurate, then the results of the model are not meaningful 
(Maxwell & Cole, 2007). Finally, our conceptual model has anxiety causally preceding mathematics 
scores. Although we have argued in our review of the literature that this assumption is reasonable, 
not all scholars agree. Moreover, the data we used in this study cannot be used to settle this question 
because they are cross-sectional and non-experimental. 

Discussion and Implications 
The goal of this study was to better understand the influence of mathematics anxiety on the small 

but persistent gender gap in mathematics achievement. We applied moderated mediation to 
rigorously investigate these relationships, attending to missing data, and controlling for potential 
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confounding variables at the same time. This rigorous method enabled us to accurately evaluate the 
associations between multiple variables in a large sample data set and draw robust conclusions. 

 Based on a large sample of 15-year-old students in the US, the results show that math anxiety 
entirely mediated the association between gender and math scores. In particular, the higher math 
anxiety of female students entirely explained female students’ lower math scores. We also examined 
a moderated mediation model, in which we allowed the relationship between math anxiety and math 
scores to vary by gender. The results show that gender does moderate the mediation relationship 
between math anxiety and math scores. In particular, the anxiety of male students had a stronger 
negative association with mathematics scores than did the math anxiety of female students. Further, 
the moderated mediation finding suggests that although there are fewer male than female math-
anxious students, the male students who have math anxiety may benefit more than similar female 
students from interventions because their experience of anxiety is more debilitating. Our results 
suggest that known interventions that decrease mathematics anxiety might be helpful in narrowing or 
eliminating the gender gap in mathematics achievement. For example, de-emphasizing rote 
memorization and encouraging creative problem-solving can lessen mathematics anxiety in early 
grades. As girls’ mathematics anxiety has been linked to their math-anxious teachers in elementary 
grades, further studies using tools like the Mathematics Anxiety Scale for Teachers (Ganley et al., 
2019) would be beneficial. In addition, it will be important to investigate math anxiety’s relationship 
to other factors related to boys’ and girls’ score differences, such as high-stress environments, 
decreased curricular alignment, and negative depictions in media. 
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In this study, we investigated two students’, ages ten and eleven, emotions while they engaged in 
mathematical problem solving. During three task-based interviews, the students explored parts of the 
unsolved problem the Graceful Tree Conjecture. While they were engaged in the interviews, they 
self-identified the emotions of frustration and joy they were feeling using the Wong-Baker Scale. The 
students displayed the interplay of the emotions of frustration and joy or which we consider to be 
productive struggle. A descripted case of Georgia is included to describe her emotions while problem 
solving.  

Keywords: Affect, Emotion, Problem Solving 

Past researchers have documented that students experience both positive and negative emotions 
while engaged in mathematics (Hannula, 2015; O’Dell, 2017) and Else-Quest, Hyde, and Hejmadi 
(2008) and Williams (2002) have found an association between students having positive emotions 
during problem-solving and the development of mathematical understanding. However, much of the 
research completed on emotions have been documented through surveys and not while students are 
engaged in mathematical problem solving (Hannula, 2015).  

O’Dell (2017) documented that when students are experiencing the emotion of frustration followed 
by the emotion of joy while the student is engaged in mathematical problem solving, they are 
experiencing productive struggle. Struggle is when “students expend effort to make sense of 
mathematics, to figure something out that is not immediately apparent" (Heibert & Grouws, 2007, p. 
387). It has been acknowledged allowing students the opportunity to struggle is beneficial (Hiebert & 
Grouws, 2007; Kapur, 2010). Kapur (2010) said when students are allowed to struggle they are able 
to significantly outperform students of a similar ability who have not been granted the opportunity to 
struggle. Kapur further found when a student has engaged in productive struggle they are able to 
better transfer that knowledge to mathematical concepts to which they have not yet been exposed. 

Warshauer (2015) and Zeybek (2016) stated researchers know productive struggle is beneficial but 
there is limited research on what productive struggle looks like. O’Dell (2017) has documented that 
productive struggle is the interplay of the emotions of frustration and joy, but we want to examine 
first how students express the emotions of joy and frustration, second how they self-identify their 
emotions of frustration and joy, and lastly if they self-identify as having more frustration during 
problem solving, do they then experience more joy.  

With these ideas, the following questions guided our research study:  
1. How do students display the emotions of joy and frustration while they are engaged in 

problem solving?  
2. How do students self-identify the emotions of frustration and joy they experience while 

problem solving? 

Theoretical Framework 
To examine how students display and identify emotions, we draw on the concept of positioning 

theory (Van Langenhove & Harré, 1999). Positioning theory is “the study of local moral orders as 
ever-shifting patterns of mutual and contestable rights and obligations of speaking and acting” (van 
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Langenhove & Harré, 1999, p. 1). Thus, positioning theory allowed us to examine how students 
position themselves through their engagement with the mathematics and the other participants. In 
mathematics education positioning theory has been used to examine social interactions (e.g., Turner, 
Dominquez, Maldonado, & Empson, 2013; Wood, 2013; Yamakawa, Forman, & Ansell, 2009) and 
researchers have identified that students’ emotions are linked to their positioning (e.g. Daher, 2015; 
Evans, Morgan, & Tsataroni, 2006). Further, Wood (2013) used positioning theory to examine 
micro-level moment-to-moment interactions that allow a researcher to document the exact moment 
an identity was enacted. A person positions themselves through conversations, actions, and 
dispositions. Through the events and moment-to-moment interactions storylines are created. These 
storylines allow a researcher to document the exact moment a student displayed a disposition or in 
our case, an emotion.  

Methods 
The participants of the study were two students using the pseudonyms Luna and Georgia. Luna was 

10 and in Grade 4 and Georgia was 11 and in Grade 5. The study took place on a university campus 
close to their elementary school in the Midwestern United States. The two students participated in 
three semi-structured, task-based interviews (Goldin, 2000). The interviews took place over three 
weeks and each interview lasted approximately 60 minutes. For the three interviews, the students 
explored an unsolved graph theory problem, the Graceful Tree Conjecture. This is a problem that has 
been used in previous studies that have documented students display productive struggle while 
engaged with the Graceful Tree Conjecture.  
Graceful Tree Conjecture 

During the three task-based interviews, the students explored the Graceful Tree Conjecture. The 
Graceful Tree Conjecture is an unsolved problem in graph theory that is accessible to young children. 
While the parts of the problem the students explored have been previously solved, the entire problem 
remains unsolved. The students explored different classes of tree graphs which are connected graphs 
without a cycle. This means all tree graphs contain one less edge than node (vertex). It is believed 
that all tree graphs can be assigned a graceful labeling. This means when the nodes are distinctly 
labeled 1 through n or the number of nodes in the graph. The edges are labeled with the absolute 
value of the difference between the two connecting nodes. If the edges are labeled distinctly 1 
through n-1, the graph is labeled gracefully (see Figure 1 for an example of a graceful and non-
graceful labeling). The Graceful Tree Conjecture states that all tree graphs can be labeled gracefully. 

 

 
Graceful Labeling 

 
Non-Graceful Labeling 

Figure 1: Example of Graceful Labeling and Non-Graceful Labeling 
 

Overview of Task-Based Interviews 
During the three task-based interviews, Luna and Georgia explored different classes of tree graphs 

in increasing sophistication (see Figure 2). We not only challenged the students to find a graceful 
labeling for the first four distinct graphs but to find a pattern or justification that would show they 
could label any graph in the given class gracefully.  

  

45

36

1 2

5 4

3

2 1 21

3

12

21

3 6

5 4



Elementary students and their self-identified emotions as they engaged in mathematical problem solving 

	 1362	

 

1. Star Graphs 
 

2. Path Graphs 
 

3. Double Star Graphs 4. Comets 
Figure 2: Graphs Students Explored in Increasing Sophistication 

 
While the students explored the different classes of tree graphs, they were given a page on which to 

record labels for the first four distinct graphs in the class, a question that asked them to draw the next 
graph in the class, and statement to record their pattern. They were also given enlarged copies of each 
graph with numbered square and circle chips (see Figure 3 for an example of the students using the 
enlarged copy of each graph and numbered chips). The enlarged copies were given to the students so 
they could find solutions to the graphs without having to erase. 

 

 
Figure 3: Example of enlarged copy of the graph and chips and image of how students self-

identified emotions 
 
During the first interview, the students were introduced to the meaning of the word conjecture, tree 

graphs, edges and nodes, what a graceful labeling was, and the Graceful Tree Conjecture. Next, they 
explored Star Graphs and Path Graphs. During the second interview, the students were reminded of 
the task, reviewed their solutions for Path Graphs, and explored Double Star Graphs. During the final 
interview, the students reviewed the problem, the Double Star Graphs, and explored Comets. 

During each of the three interviews, the students self-identified their emotions or feelings using the 
Wong-Baker Faces (see Figure 3). Under the happy face, the words extreme joy was listed (we refer 
to this as level 6) and under the most upset face the words extreme frustration was listed (we refer to 
this as level 1). Students were instructed to move a chip to whatever they were feeling. An alarm 
sounded every three minutes as a reminder to mark their feelings.  
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Analysis 
The task-based interviews were video recorded and the student work was collected. Next, the three 

interviews were transcribed using the program Transana (Woods & Fassnacht, 2016). This included 
the non-verbal actions, such as hand or arm motions, facial expressions, and the Wong-Baker level 
the students self-identified as. We then used a framework created by Else-Quest et al. (2008) and 
adapted by O’Dell (2017) to examine the emotions of frustration and joy the students displayed. 
Because of O’Dell’s (2017) prior findings that the most common emotions students displayed were 
frustration and joy, we only examined the transcripts and video for those emotions (see Table 1 for 
modified framework).  
 

Table 1: Analytic Framework 
Emotion Definition Example 

Frustration/Distress Disappointment, discontent, 
displeasure 

I am stuck. 
Man, this is confusing. 

Joy/Pleasure Delight, amusement, pride I got it! 
 
We examined the transcripts using the analytic framework and documented anytime an emotion of 

joy or frustration was displayed using Transana (Woods & Fassnacht, 2016). If the study displayed 
several statements or emotions of joy in a row, each individual statement or motion was documented 
as its own occurrence. We also document every time a student changed their self-identified emotion 
on the Wong-Baker Faces. Both authors both did this and discussed any discrepancies until we both 
agreed. Next, we created reports through Transana to account for each emotion and self-identified 
level displayed by the student. 

Results 
During analysis, we examined the emotions of frustration and joy the students displayed while 

working (see Table 2) and what level on the Wong-Baker Scale they marked. First, we will share the 
overall instances of frustration and joy, next we will give a description of Georgia during the third 
session to show how her emotion was displayed with her self-identified emotions, and lastly, we will 
share how the students self-identified on the Wong-Baker Scale. 
Frustration and Joy 

After analysis of the data, we used Transana to run reports of the instances of frustration and joy. 
We found 51instances of frustration and 92 instances of joy (see Table 2 for instances).  

 
Table 2: Frustration and Joy Displayed by Interview 

 Interview 1 
F     J 

Interview 2 
F     J 

Interview 3 
F     J 

Total 
F     J 

Georgia 6     12 5      16 22    19 33    47 
Luna 2     10 13     18 3     17 18    45 

 
Joy was typically displayed by both students when they made progress on the Graceful Tree 

Conjecture. Luna displayed joy, most commonly by verbal statements such as “I got it! So, I just 
have to figure out this pattern” when she found a graceful labeling. Another example of joy for Luna 
was, “that would be three. Yay!” with a big smile and saying “Okay, I have got to make sure I did 
this right.” She also displayed joy when she was sharing her pattern verbally to one of the researchers 
and Georgia.  
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Georgia also displayed joy when she found a graceful labeling. Her joy was displayed more often 
by physical movement. One example is when she found a solution to a graph, she circled her arms 
around her head smiling and saying “my brain powers.” Another instance of joy she motioned her 
hands over her page and said: “Ta-da!” She often clapped her hands with excitement, danced in her 
seat, or made a fist of joy.  

Frustration was typically displayed while attempting to find a graceful labeling for a specific tree 
graph, searching for a pattern in a class of tree graphs, and when we pushed the students to create a 
generalization for each specific class of tree graphs. Luna gave verbal statements in a similar way 
that she displayed joy. She often things such as, “That wouldn’t work” or “Wait, that wouldn’t work 
because the five is supposed to be there.”  

Georgia again displayed her frustration more visually and kinesthetically. She would make faces of 
frustration, show frustration through her eye movements, leaning her body back in the chair, and toss 
chips down on the table when she got stuck.  
Descriptive Case Study of Georgia 

Georgia was a Grade 5 student. Her story from the third interview was chosen to be documented 
because she displayed the largest amount of frustration and joy. She worked on the Comet Graphs 
(see Figure 3). She began the session by identifying herself as a level five on the Wong-Baker Scale. 
Showing her joy of starting the interview session. The researcher then introduced the class of tree 
graphs called Comets. Georgia displayed joy by stating, “Those look really cool.” She began to 
attempt to label the first distinct graph in the class (see Figure 4 for her labelings) and displayed 
several signs of frustration. After making an angry face at the camera, she said (time is shown as 
minutes and seconds into the interview): 

(6:15)   I am trying to remember my line graph pattern. 
She then continued to move chips around. Several seconds later she made a motion with her hands and 
gave a big smile showing joy. She asked: 

(6:40)   Is that graceful? 

 

 
Figure 4: Georgia’s solutions to the first four distinct comet graphs 

After deciding that it is and recording her solution, Georgia began to work on a graceful labeling for 
the next graph. The timer sounded and she moved down to level four on the Wong-Baker Scale. 
Georgia stated: 

(7:27)   I am feeling a little confused. 

She continued to work and at nine minutes into the interview, she shook her head displaying clear 
signs of frustration. Georgia stated with a frustrated undertone: 

(9:05)   Wait, how would you label it gracefully? Like, how would you? 

Georgia continued to work on the labeling and thirty seconds later she gave a sly smile and said: 
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(10:15)   Got it! 
(10:21)   That is graceful right? 

The researcher told her she was correct and the three-minute timer sounded. Georgia moved her tile 
to level 5 or second highest level on the Wong-Baker Scale and stated: 

(10:31)   I feel good! 

Georgia then began working on the third distinct graph in the class. The next timer went off and 
Georgia moved down to level 4. She continued to work. At 15:23, Georgia tossed a chip with an 
angry look on her face showing a sign of frustration. Next, she said: 

(15:23)   I am stuck. 

She continued to work making two more facial movements of frustration and several seconds later 
said: 

(16:25)   Ugg 

The timer went off again, Georgia moved down to level 3. She said:  

(17:12)   This is confusing. 
(17:31)   So I was just doing it line by line trying to figure it out.  

Georgia continued to move chips around looking for a pattern and making visual signs of frustration 
but no verbal signs. At twenty minutes in, the researcher told both girls they stuck at the same place. 
Georgia put a big smile on her face showing a sign of joy. She continued to work on finding a label 
but did not show any signs of frustration. The timer went off at 24 minutes and Georgia moved her 
level up to four.  

At 26 minutes in, Luna found a graceful labeling for the third graph. Georgia examined Luna’s 
paper, followed suit quickly, and stated she found a solution that was the same as Luna’s solution. 
Both girls began working on the next graph, repeatedly saying, “I think I can” and laughing. Several 
minutes later, Georgia stated with frustration: 

(37:16)   Urg, this is where I got confused last time.  

When the timer went off next, Georgia moved her level down to 3. She continued to work on her 
graph. She stated: 

(38:41)   Oh, wait, no, no, no. Four minus what equals five. Four. Five. Six 
(39:03)   So I want this to be four so two minus what equals four? 
(39:16)   Ten. Six. 
(39:40)   And I want my three to be here. Brain is working. 

At 39:51, Georgia began clapping and smiling and then stated: 
(39:52)   This is my only hiccup. That is what my teacher says. That is my only hiccup. 

She thought she had an almost graceful labeling but had one edge that did not have the proper 
number for a graceful label (she was missing a five). She continued: 

(40:18)   I know but, wait, wait, wait. 

Georgia made an angry face and made a joke about not liking fives. The timer went off and Georgia 
moved her tile up to four and continued to move chips around. Two minutes later, Georgia 
exclaimed: 

(42:19)   Eight! Ah. One is always here and then it goes. Wooo (hands on her head). That is the 
second biggest number because that is the third biggest number. 
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She continued to work. Next, she said excitedly: 
(43:19)   Oh, I am so excited! 

She found a solution to the fourth graph and after prompting from Luna, Georgia moved her tile to 
level six but said: 

(43:45)   It is kind of confusing because I have mixed emotions.  

And then she moved her tile back down to level four. She examined her solutions looking for a 
pattern and stated: 

(44:23)   So this is one and then and then it counts by twos. This is the second biggest number. 
That is the biggest. That is the third biggest number. This is the fifth biggest number. 

Georgia continued to examine her solutions and found a pattern to generalize that any Comet graph 
can be labeled gracefully (see Figure 5 for her generalization). She shared that the bottom row of 
nodes were odd numbers and the biggest, the middle row of nodes was one and the even numbers, 
and the center node was the second biggest number. 

 

 
Figure 5: Georgia’s generalization to Comet Graphs 

 
Self-Identified Emotions 

 While the two students were engaged in the task-based interviews they self-identified their 
emotions of frustration and joy using the Wong-Baker Scale. The face of the most frustration we 
assigned a numeric value of one and the face with the most joy has a value of 6. Both subjects 
expressed familiarity with the scale from visiting the doctor’s office. A timer went off every three 
minutes to remind them to mark how they were feeling and they were encouraged to move the tile to 
a new face if their emotion changed. We used Transana to run reports for every time the students 
self-identified using the tile and the Wong-Baker Scale (see Table 3) 

 
Table 3: Frequency of tile movement on the Wong-Baker Scale  

Level Luna 
Day 1 

 
Day 2 

 
Day 3 

 
Total 

Georgia 
Day 1 

 
Day 2 

 
Day 3 

 
Total 

1 0 0 0 0 1 0 0 1 
2 0 0 0 0 0 0 0 0 
3 1 3 2 6 1 1 3 5 
4 2 4 5 11 4 3 5 12 
5 3 5 3 11 6 3 3 12 
6 1 0 1 2 3 0 1 4 
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When either Luna or Georgia changed their tile to a higher level of frustration (lower number) on 

the Wong-Baker Scale they typically made some type of comment to discuss why they were moving 
down. The comment almost always had to do with them being “confused” or as Luna would say, 
“cornfused.” Neither student ever identified being more frustrated than a level 3 besides Georgia on 
the first day. This happened at the end of the session and with the tile movement Georgia stated, “I 
feel sad because we have to leave.” 

Midway through the first interview, Luna decided that they should treat level six (extreme joy) as if 
they are experiencing similar feeling to riding a roller coaster and only move to that level if they felt 
that way. After that statement, there were only two more instances of extreme joy. Luna’s extreme 
joy came at the beginning of the third interview and said, “I feel good.” 

Luna and Georgia tended to move their tile up when they were finding success on the graphs but 
that was not always the case. Several times both students would shift their tile higher when they 
reached a similar place on finding graceful labelings and were encouraged by the researcher to work 
together. Luna also tended to move her tile up at times while engaged in struggle and showing 
frustration but would not give a reason. For example, while trying to find a labeling for the third 
distinct Comet Graph she stated, while moving her tile up from three to four, “I am feeling better 
because” but did not give a reason. Both students never stated they reached extreme frustration 
besides, Georgia when she was sad they had to leave or even the level two. They also seldom reached 
level six of extreme joy. 

Discussion and Conclusions 
The results of this study are similar to Else-Quest et al. (2008) and O’Dell (2017) that students 

displayed both frustration and joy while engaged in mathematical problem solving. When O’Dell 
(2017) completed a similar study, she found students displayed more frustration than joy; however, 
we found the students to display more joy than frustration. Both studies still contained the oscillation 
between frustration and joy while engaged in problem solving. While Georgia and Luna were 
struggling through finding a graceful labeling they displayed several instances of frustration and 
when they found a successful labeling they displayed instances of joy. Other times they found joy in 
working together on the problem and through making jokes, such as “I think I can” while working.  

When self-identifying their emotions, the two students repeatedly moved their tile to more frustrated 
when they stated they were “confused” and moved their tile toward joy when they found solutions. 
At other times we were not sure why they moved their tile toward joy while they were clearly still 
frustrated during the problem solving. Interestingly, they never—with the exception of Georgia being 
sad about the interview was over—moved to high frustration, level one or two. They only 
documented level three eleven times even though we documented 51 instances of frustration. The 
ratio of joy to frustration (levels 1-3 frustration and 4-6 joy) was 52 to 13. This demonstrated that 
even though the mathematical task was rigorous and an unsolved mathematics problem the students 
reported significantly more joy than frustration by a four to one ratio.  

Overall, both of the students in this study were able to preserve through the struggle and frustration 
and were able to find joy and pride in their work on an unsolved graph theory problem. Unsolved 
problems are not typically included in elementary school but we found these problems to give 
students the opportunity to experience mathematics more similar to how mathematicians experience 
mathematics as a quest to describe patterns and relationships.  
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A student’s perceptions of, feeling towards, and beliefs about mathematics have long been known to 
be associated with their learning and performance in mathematics. But how might we observe and 
document changes in these attitudes and dispositions? How might a student’s affects respond when 
the nature of mathematics changes? To answer these questions, we adopt a life stories theoretical 
perspective and read these stories through an affect lens. In so doing, we observe patterns of change 
in students’ affects that correspond to milestones in their concurrent mathematics course. We present 
a vignette that illustrates one student’s redemptive story of her transformation towards productive 
affects. Taken together, we suggest that curricula can be enacted in ways that afford such redemptive 
changes. 

Keywords: Affect, Emotion, Beliefs, and Attitudes. 

Introduction 
In 2017, in the California State University (CSU) system, over 25% of entering, full-time freshman 

(16,628 students) were placed into a remedial mathematics sequence. Their stories within remedial 
mathematics courses were bleak, with students describing experiences of increased anxiety and 
negative dispositions towards mathematics (Maciejewski, Tortora, & Bragelman, under review). A 
change to this placement system was needed. 

Later that year, the CSU Chancellor’s office issued Executive Order 1110, which abolished 
remediation across its 23 campuses, leaving the institutions to individually determine reform of their 
general education mathematics curriculum for the 2018 academic year. San José State University 
embarked on a curricular redesign, Math 1, that emphasized four principles: an inclusive 
environment where students were no longer tracked by ability; content emphasizing contemporary 
mathematics rather than the traditional algebra sequence; a student-centered classroom experience; 
and a curriculum that also targeted non-cognitive components to support students’ disposition 
towards mathematics (Maciejewski et al., accepted). In short, the reform targets multiple processes of 
the instructional dynamic (Cohen, Raudenbush, & Ball, 2003). In this work, we orient on the 
interactions between students and the reform curriculum by exploring students’ change in affect 
towards mathematics as evidenced in their emergent life stories during Math 1. 

Life Stories 
We approach learners’ experiences through a life narrative or life story methodology (McAdams, 

1985, 2008; McAdams, 2018; McAdams & McLean, 2013; McLean et al., 2018. Indeed, “stories are 
the best vehicles known to human beings for conveying how (and why) a human agent, endowed 
with consciousness and motivated by intention, enacts desires and strives for goals over time” 
(McAdams, 2008, p. 244). They capture both consistent and inconsistent patterns over time 
(McAdams, 1985), such as a person repeatedly identifying as ‘bad at math’ across interviews or as a 
person describing what sequence of events led them to changing their major. Stories evolve over 
time, implying individuals’ meanings attributed to important events may also change (Singer & 
Salovey, 2010). Last, stories are contextual (McAdams, 2013), suggesting stories are both created 
and discontinued within established cultural norms and traditions.  
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Affect and Stories 
The affective domain in mathematics education encompasses varying concepts and theories and 

manifold approaches to its study (Goldin et al., 2016), and there is a clear alignment between life 
stories as a methodology and affect as a theoretical lens. Di Martino and Zan (2010) provide an entry 
point to examining students’ affects towards mathematics through stories, with the Three-
dimensional Model of Affect (TMA) having been developed from thousands of students’ life stories 
with mathematics. We approach affect in this work through the TMA of Di Martino and Zan (2010); 
in particular, we restrict our attention to the categories of emotion and competence. Rather than 
approaching students’ affect towards mathematics through more traditional life stories approaches 
(cf. McAdams and McLean, 2013), we explore students’ change in affect by capturing multiple 
narratives across a semester of a reform introductory university mathematics course, in situ. Unlike 
Di Martino and Zan (2010), we explore change in affect across multiple narratives from each 
participant. 

Method 
In this multiple case study, we draw on empirical data collected during the first semester 

implementation of Math 1 in Fall 2018 at San José State University. The case study focus was 
twofold: an examination of students’ mathematics experiences and affect in a reform general 
education mathematics course and an examination of a specific institutional implementation of a new 
curriculum (Yin, 2009). Within a life story methodology, qualitative methods were employed for the 
inquiry, most notably classroom observations and semi-structured interviews. Data was collected 
across two course sections of Math 1, and a subset of this data, ten students’ stories about their 
mathematics learning experiences, is the primary unit of analysis here. 
Setting and Participants 

Under Executive Order 1110, incoming freshmen at San José State University are no longer 
required to take a basic skills assessment, which would normally have determined the starting point 
in their course sequence. Rather, multiple academic indicators are used to place students into the 
mathematics sequence appropriate for their degree focus. Math 1 served as the first of several 
mathematics courses for mathematics-intensive degree programs. However, students in non-
mathematics intensive programs had the option to self-enroll in Math 1 as it satisfied their general 
education mathematics requirement. Of the 288 students enrolled in Math 1 in Fall 2018, 10 
consented to the interviews. 

The first author conducted three to four interviews across the semester, depending on students’ 
availability, with a total of 53 interviews. Interview questions focused on personal background and 
school experiences, with an emphasis on school mathematics experiences both before and during 
Math 1. The first set of interviews was conducted during Unit 1, before the first assessment. The 
second set was conducted during Unit 2. The third set was conducted during Unit 3, and the fourth 
set, if availability allowed, was conducted in the last week of the semester, before finals. This work 
focuses on the participants who interviewed at all four time points, amounting to five participants in 
total. 
Coding 

Interview data was transcribed using an online transcription service, and the results were transferred 
into Microsoft Excel for coding. The interview data was separated into time points by participant, 
and each time point was broken into narrative utterances between interviewer and interviewee. Di 
Martino and Zan (2010) inform our coding for affect. Drawing on their descriptors for emotion and 
competence, we assigned codes of emotion (positive or negative) and competence (high or low) to 
narrative utterances, when applicable. Each time point was reduced to a single descriptor of affect 
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dependent on the frequency of emotion and competence codes: more negative affect, less negative 
affect, less positive affect, and more positive affect. McAdams and McLean (2013) inform our 
coding for life story constructs.  

Results 
Table 1 displays participants’ change in affect across a semester of Math 1. Participants’ affect 

across the semester changes in relation to the reform curriculum and their perceived performance in 
the course. While changes in affect do not necessarily align with changes in perceived performance, 
emergent life stories seem to coincide with changes in participants’ affect and perceived 
performance. Whereas we identify three types of changes in Table 1, we discuss one in this proposal 
due to space constraints. 

 
    Entering   Test  Affect   Test  Affect   Test  Affect 
    Affect   1 After Test 1   2 After Test 2   3 After Test 3 

Brian   more 
negative 

  30 more negative   50 less negative 
(redemption) 

  80 less positive 

Alejandra more 
negative 

  50 negative 
(redemption) 

  80 less positive   100 more positive 

Becky   more 
positive 

  86 more positive   84 less positive 
(contamination) 

  78 less positive 

Cici   more 
negative 

  32 more negative   34 more negative   56 less negative 
(redemption) 

Frank   more 
negative 

  100  less positive 
(agency) 

  75 less positive 
(contamination) 

  91 less negative 

Table 1. Affect and perceived performance across a semester of Math 1 
 

Redemption - Alejandra’s Story 
Alejandra is the first in her family to attend college. While not required to take Math 1, she enrolled 

in it due to her more negative affect towards math, in her words, ‘to start anew’. Her narrative 
suggests her negative perception of math developed in high school. Moving into Math 1, she 
struggles initially, as the course’s focus on explanation and reasoning was difficult for her to 
understand. She explains that she felt lost with her first group. In her second interview, Alejandra 
describes how she felt during the first test: 

Alejandra:  I did feel more confident, after the end. Right, I knew I failed this. After the end I felt 
like, I don't even know if I could say for certain I did it, wrong or right.  Cause I was like, this 
answer ... you can answer the question, you can answer really simply even with equations or 
make it as complicated as you want to. At the end of the day, I guess you could say it was a flip 
of the coin. 

In the same interview, she later describes her work with a new group, newly assigned after the first 
assessment, particularly one member, who has a noticeable impact on her understanding of the 
concepts. 

Alejandra:  I think just surrounding myself with people who understand the material has made me 
understand that material more. The previous test, I think what happened was my group, we didn't 
talk about anything, so I was very confused, as were they. 

Alejandra suggests the negative experiences of the first test and her first group pushed her to find 
what was missing for her success in the course. These narrative excerpts alone would not indicate a 
redemptive story; also necessary was her shift in performance and in her affect in the subsequent 
interviews. For example, in her fourth interview, she describes the end of her redemptive story: 
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Alejandra:  I think when we were doing the disease population problem, and I was telling people 
where to move and stuff. And they'd be like, "I don't understand." And I would explain to them 
and in my head I was like, "You know this, like you're explaining to them. They're not explaining 
to you." 

Alejandra experiences a change in perceived competence, part of her overall shift in affect across 
the semester. For her, Math 1 was the context for her redemptive story with mathematics. 

Discussion 
We highlight the theoretical underpinnings of our work as opening up potential new perspectives 

and approaches to understanding the development and evolution of students' affects towards 
mathematics. To assess change in affect, we could have used an established instrument with a 
pre/post design (e.g. the Mathematics Attitudes and Perceptions Survey (Code, et al., 2016)). 
However, any such instrument is inherently limited in scope: though they might capture the “first 
order” affects that bear on performance, say, they cannot capture the full lived experience of the 
students in mathematics. What’s more, there are no objectively positive affects in mathematics, but 
rather productive affects; persistence during “effortful struggle”, for example. A life story 
methodology captures these. 

Participants’ stories unfolded during a mathematics course that was intended to be a new 
mathematical experience, different from the traditional curriculum from high school. Our analyses 
demonstrate transformations of negative affects into productive ways of working with mathematics. 
This presents an opportunity: curricula can be designed and enacted to afford such productive 
transformations. The culture of a course can be a culture of change. 
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Using videos and transcripts from a lesson on square roots and follow-up conversations with 
students and teachers, we analyze factors that can facilitate episodes of productive struggle, 
including student and teacher dispositions, task features, and classroom conditions. We highlight 
choices and task features that honored student autonomy and maintained students’ engagement in, 
and success with, the lesson. We also discuss students’ equitable access to the mathematics of the 
lesson. 
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Background and Theoretical Framework 
The phenomenon of productive struggle is a relatively new research focus in the study of classroom 

mathematical activity. Warshauer (2015) characterized productive struggle in terms of students’ 
“effort to make sense of mathematics, to figure something out that is not immediately apparent” 
(Hiebert & Grouws, 2007, p. 287). Her findings suggest that teacher interactions with students in 
moments of productive struggle can either maintain or subvert the cognitive demands of tasks, thus 
strengthening or hindering student learning and understanding. 

Sengupta-Irving and Agarwal (2017) discuss the implications of collective effort and decision 
making in persistence through challenging episodes, as well as indicators of these occurrences that 
allow educators to facilitate productive peer interactions. Granberg (2016) investigates the role of 
student observation and analysis of errors and mistakes in turning struggle into a productive event. 
She relates her definition of unproductive struggle to Schoenfeld’s (1985) description of the behavior 
of novices, in which ideas are not revisited and knowledge is not reconstructed. Zeybek claims that 
tasks with high-level cognitive demands, specifically those which lend themselves to multiple 
approaches and allow for more than one correct answer, are essential to students’ development of 
deep understanding (Zeybek, 2016). 

In keeping with Harel’s Necessity Principle (Harel, 2013), we hypothesize that students’ acquisition 
of mathematical ideas is both more likely and more robust when animated by an intellectual need to 
understand a situation or solve a problem. Therefore, we conceptualize productive struggle as 
follows: we say that students are engaged in productive struggle when they autonomously attempt to 
use resources - including their own knowledge, knowledge of their peers and teachers, and physical 
resources such as technological tools - to overcome an intellectual obstacle, and when this process 
leads to the discovery or consolidation of a mathematical idea, technique, or problem-solving 
strategy.  

Guided by this framework, we aim to address the question: What student and teacher dispositions, 
task features, and classroom conditions are conducive to productive struggle? 

Study Method and Participants 
This study was conducted at a two-week summer mathematics program for upper-elementary and 

middle school students in 2018. Our studied focused on one course which covered concepts of area, 
perimeter, and the Pythagorean theorem. The course was taught by an inservice seventh grade 
algebra teacher (Rita) and included seventeen students entering grades 6 and 7, two preservice 
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teachers (PSTs), and a doctoral student with experience teaching in special education programs. 
Sixteen students, Rita, and her three assistants (the two PSTs and the graduate student) participated in 
our study. Eight students were male and eight were female; all but one student belonged to ethnic 
minority groups. 

The classroom was videotaped at all times, with a second camera used to capture episodes of small-
group work. During breaks, we often conducted brief audiotaped interviews with Rita to capture her 
perspective on activity that had just occurred. After each day’s class, Rita and her assistants 
completed written reflections and participated in a videotaped small-group debrief of the morning’s 
events. 

Throughout the program, we observed and recorded instances in which the entire class’s activity 
met our criteria for productive struggle: that students are engaged in a sustained effort to overcome 
an intellectual obstacle; that students autonomously use resources to overcome the obstacle; and that 
the effort results in the discovery or consolidation of a mathematical idea, technique, or strategy. In 
this report, we present our analysis of one such instance, informed by observations from both 
students and teachers, in order to illuminate characteristics of a lesson and learning environment that 
can stimulate productive struggle. 

Data Analysis 
Our analysis of classroom, debrief, and interview transcripts focuses on an episode that occurred 

during the seventh day of the program. Following an activity on the Pythagorean theorem, Rita 
presented students with a planned sequence of problems on squares, square roots, and areas and 
perimeters of rectangles. Each time Rita presented a problem, students were asked to work out the 
problem on individual whiteboards at their seats, concealing their work until Rita prompted the entire 
class to reveal their answers. Students’ work on the problems revealed some lingering confusion 
about the distinction between squaring a number and taking the square root of a number and the 
distinction between the area and the perimeter of a square; Rita and her assistants addressed these 
confusions as the class progressed through the tasks. 

For the last problem in the sequence, Rita drew a picture of a square, labeled the area as “A = 40 
cm2”, and asked students for the length of a side (“l = ?”). Videos of students’ work revealed that 
most students approached this problem by observing that the length must be between 6 and 7 
centimeters, then attempting to obtain increasingly precise approximations for the side length by 
iteratively selecting decimal numbers between 6 and 7, squaring them by hand, and using the result 
to decide whether to guess a higher or lower value for the side length.  

Rita led a brief discussion of side lengths that students had tried so far. This discussion organically 
reverted to small group and individual work, with students attempting to refine approximations. 
During this process, a student discovered a bag of four-function calculators (with square root keys) 
behind the teacher’s desk, and Rita encouraged students to use them to continue their work on the 
problem. The episode closed with a discussion of how the square root function on the calculator 
could quickly provide an approximation for the side length of the square, and why no terminating 
decimal value would yield an area of exactly 40. 

We selected four students for one-on-one interviews at the end of the lesson based on the key roles 
they played in the development of the episode. During interviews, students had access to rulers, four-
function calculators with square root keys, grid paper, and sheets of blank copy paper, as well as their 
personal electronic devices, when they were available. 

In reviewing classroom and interview data, we conducted a thematic analysis (Braun & Clarke, 
2006), coding themes in classroom discourse and in students’ and teachers’ descriptions of the 
episode that corresponded to elements of our framework for productive struggle or suggested factors 
that contributed to the episode’s development. We organized our analysis according to the extended 
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instructional triangle of Boerst and Ball (2007), which suggests we may gain insight by analyzing the 
work of students, work of teachers, mathematics in which students and teachers are engaged, and 
learning environment. We analyzed video and transcripts of the classroom episode, and then 
triangulated our observations with insights from our interview with Rita and the post-class debrief. 
We summarize the themes we identified in Table 1. 

 
Table 1: Factors Supporting Productive Struggle in the Square of Area 40 Task 

Student Factors 
Curiosity about the value of an unknown quantity* 
Willingness to persist through lengthy calculations* 
Disposition to use tools strategically*+ 
Approximation sense: understanding when a guess is 
too high or too low; deciding when to move closer to 
one endpoint of an interval 

Teacher Factors 
Commitment to growth mindset (shared by Rita and 
assistants)* 
Commitment to probing rather than directing student 
thinking 
Disposition to enlist students in addressing each other’s 
thinking 
Disposition to allow students to use technology to make 
work more efficient* 
Strategies for sustaining student motivation and 
engagement 

Task Factors 
Problem was “not too easy, not too hard”+ 
Problem came at the end of a sequence of tasks that 
gradually increased in difficulty* 
Problem addressed students’ conceptions of perimeter 
and area* 
Problem rewarded sustained effort with successively 
more accurate approximations 

Learning Environment Factors 
Calculators were available in room, but not immediately 
visible* 
Classroom norms permitted students to move about the 
room and share ideas and approximations with each other 

* Indicates an observation supported by teachers’ comments during the interview or debrief 
+ Indicates an observation supported by students’ comments during post-task interviews 

 
Based on our observations as well as those of Rita and the assistants, the children’s work on the 

Square of Area 40 task satisfied our criteria for productive struggle. Their work was productive in 
that it created learning opportunities that were realized in the collaboration among students and 
teachers: the co-construction of a process for interpolating a solution x to the equation x2 = a, where a 
is a given real number, the consolidation of this process into the notion of the square root, and a 
discussion of how a calculator rounds the results of calculations and can appear to give a whole 
number output, even when the true value is not a whole number. 

Teachers’ discussions after the lesson revealed several student dispositions that contributed to the 
lesson’s success in stimulating productive struggle. Foremost among these was genuine curiosity and 
excitement about the problem situation, as the doctoral student pointed out during the post-class 
debrief: “[the] question created so much engagement … intense discussion, action, like everybody’s 
running around, digging in to get that exact number.” Another factor was the students’ willingness to 
persist through laborious pencil-and-paper calculations as they tested their guesses. During the 
episode, several students tested guesses that had three significant digits of precision. In the post-class 
debrief, the doctoral student recalled that “they were just … very excited, trying to be precise.” Also 
important, in our own observation, was the students’ strategic knowledge for approximation. For 
example, at least one student observed that since 40 was closer to 36 than to 49, her first guess for the 
side length should be closer to 6 than to 7. Students’ approximation sense helped them obtain more 
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accurate guesses for the square’s side length, allowing them to obtain areas closer to 40 and 
bolstering their motivation to continue. 

Both Rita and one of the PSTs spoke about the importance of helping students interpret struggle and 
temporary adversity through a growth mindset, so that students were not discouraged by temporary 
setbacks. Several choices by Rita and her colleagues bolstered students’ sense of mathematical 
agency, and their disposition to encourage students to help one another through obstacles. This 
included heavy use of probing questions and tendencies to frequently have students describe their 
work in detail. We hypothesize that such facilitation moves by teachers can help students reinforce 
the conceptual content of a lesson for themselves and others, and allows them to enlist their peers as 
resources in pursuing a shared strategy. 

Characteristics of the classroom environment also played a role in the episode’s development. In 
their initial work on the task, students performed calculations by hand. Gradually, some students 
began to use the calculator functions of their phones to explore more efficiently; some students 
noticed this and questioned whether the use of calculators was contrary to class norms. The initial 
lack of calculators encouraged students to perform calculations by hand, which helped them become 
accustomed to the parameters and goals of the problem. However, the availability of calculators to 
only students with personal devices threatened to limit some students’ access to the full depth of the 
task. The class set of calculators helped to resolve this, though some students still had access to more 
precise approximations.  

Technology played an additional role in the resolution of the task: one student discovered that when 
she squared one of her estimates on her phone, the device reported that the square was 40. However, 
switching the phone to landscape orientation revealed more digits, showing that the value was equal 
to 40 to only thirteen decimal places. This helped the student to see that the device was automatically 
rounding values, even when it appeared to report a whole-number answer. Rita, noticing this insight, 
asked the student to share it with the entire class, again helping one student’s access to the 
mathematics in the task become a resource for others. 

Discussion 
Granberg (2016) posits that when students are prematurely offered procedures for solving 

mathematics problems, the intellectual challenge of problem solving is lost, and students’ inquiry 
into the nature of such problems is cut short. The Square of Area 40 task led to an episode of 
productive struggle in which students refined their conceptions of squares and square roots in an 
exploratory way without being guided to use a particular procedure or strategy. We hypothesize that 
the autonomy afforded to students during this activity strengthened their sense of agency as well as 
their understanding of the nature and purpose of the task. This sense of autonomy was a result of 
choices made by both students and teachers during the activity. 

We hypothesize that the conditions we have described - student and teacher dispositions, task 
features, and classroom conditions - can be tailored to create a learning environment which facilitates 
productive struggle. These factors can further be considered in bringing productive struggle from a 
thing we strive to achieve into something that can be operationalized in creation of tasks to be 
facilitated in the research environment. However, some care is necessary to ensure that the benefits 
of productive struggle accrue to all students and that the knowledge and resources enjoyed by some 
students are marshalled for the benefit of the entire class. In orchestrating the lesson, Rita and her 
colleagues explicitly reinforced productive processing of adversity, encouraging students when they 
made mistakes or when their calculations did not turn out as anticipated. They also noticed some of 
the insights available to students with personal handheld devices and worked to draw other students 
into discussions about these insights. By attending to issues of equity, the teachers enhanced the 
lesson’s effectiveness and deepened students’ opportunities for learning. 
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This	 text details the advances of a study based on the enactivist perspective of knowledge 
embodiment (Maturana and Varela, 1984; Varela, 2000). The purpose is to document the current 
knowledge about number, space and measuring, of children in a multigrade primary school located 
on a coffee plantation, where they also live and coexist with daily coffee-related activities. The 
recorded repertoire of these children’s enacted learnings will be the foundation for teachers to 
propose situations that can help retrieve knowledge obtained beyond classrooms, through a corporal 
and sensitive experience. As Varela argues, this approach challenges the common classroom ethos 
and calls for a transformation of the research community’s modus and values. 

Keywords: Elementary Education, Embodiment and Gestures Studies, Rural Education, Concept of 
Number and Calculations. 

Evidence derived from own experience and formal research has shown for years that children build 
knowledge (Resnick, 1989; Resnick & Greeno, 1990), which in most cases is not related to formal 
school learnings. This can be observed particularly among the contents in the field of mathematics 
prescribed by formal education and the skills that are acquired outside of it (Nunes, T., 1993; Padilla, 
2015). In cases where out-of-school knowledge is documented, a distinction is made between this 
kind of knowledge and the one school code considers relevant to teach or learn within its boundaries. 
The idea that "real math" is learned only by interacting and appropriating the "true mathematical 
objects" presented by study programs, seems to underlie. 

Our consideration, grounded on the ideas of the theory of enactivism, is that direct experience is a 
significant source of knowledge; that in the exchanges we experience via our actions, with and 
through our body, we produce experiences that may enhance or limit our conceptual understanding, 
while this last one also hinges on the different cognitive domains that we reach progressively.  

Thus, girls, boys, youths, adults… we all build explanations and procedures which, from the formal 
perspective of the school institution, may be considered insufficient or not compatible with the 
criteria of "appropriate behavior", even if they constitute initial, provisional and effective 
explanations. When juxtaposed to time constraints, fragmented content, grading, planning, 
prescriptions, study programs, textbooks, and other formal devices that require attention at each 
school year, the students' knowledge, intuitions, incomplete procedures, affections, emotions, and 
interactions are interpreted as obstacles unrelated to school activity -more so with respect to 
mathematical content- and thus they are often avoided. Taking this into account, we assert that 
learning through concrete action is an approach of greater complexity, validity, and tradition.  

The studies carried out by Piaget and his collaborators display how cognitive structures arise from 
recurring action patterns with a perceptual basis. Lozano, when referring to the enactivist approach, 
states: "The activities we carry out with different objects when interacting with the world result in 
cognitive structures such as mathematical concepts and categories" (2014:170). Knowing through 
concrete action is applicable to different fields, particularly in the field of mathematics as it is held in 
this research. 
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Purposes of the study  
Identify and document -from an enactivist point of view- the understanding of numbers, space, and 

measure created by girls and boys from their own corporeal and interactive experience with their 
environment.  

Work with the teachers of these children to build frameworks that integrate knowledge built from 
the corporeal, sensitive and interactive experience, linking it with the mathematical knowledge 
prescribed by the school while also making this last one more flexible.  

Theoretical perspective  
Even though the field of mathematical education is assisted by numerous theoretical perspectives 

that aid in analyzing what occurs inside and outside the classroom with respect to teaching processes 
and mathematical content learning, for our work we chose a theoretical reference based on the 
enactivist perspective (Maturana and Varela, 1984; Varela, 2000), which sustains that knowledge is 
built from the actions that we carry out in our daily experience and by the particular constitution of 
each individual, in a specific social and cultural context. This perspective of constructivist 
orientation conceives cognition in a broad sense, and therefore recognizes and addresses other 
dimensions -such as emotion, affection, and social interaction- in and for learning.  

Lozano (2014:179) synthesizes substantial aspects of this approach: "Through enactivist ideas, 
individual learning is reconciled with social interaction, mind with body, reason with emotion, and 
knowledge with mathematical knowledge. Its concepts, as I understand them, allow for a broader 
perspective on learning and teaching mathematics, while taking its complexity into account ".   

Enactivism, is separated from mind-body dualism and offers a theoretical perspective that coincides 
with what our experience and research work has shown us: knowing entails interacting with the 
world, starting from the individual story of each person and their context. Therefore, learning can 
only be conceived from the multiplicity of factors coexisting within it. Although more complex, this 
approach encompasses substantial dimensions that are omitted by other perspectives. Its 
understanding of perception, the fact that it does not recognize representations as a product of 
cognition, the relevance given to intuition, and its consideration of common sense (Varela, 
2000:275), are significant disruptions that expand the perspectives regarding cognition understanding 
and analysis, and set it apart from the compartmentalized, formal, rigid and "disembodied" 
knowledge. We ponder that this approach will facilitate the creation of alternatives for students to 
regain interest in school mathematics content and in the knowledge about this subject produced by 
themselves. 

Research method 
Our work is a qualitative research, which process is thought of as a participant training space. The 

researcher joins as an apprentice and collaborator in both school and community activities, as well as 
with the teacher, the parents, and students. Consequently, there is no room for "observers", as the 
enactive approach holds that, as cognitive agents, we are active participants who enact in the world.  
Context 

The farm where the study is carried out, like others in the area, is located in a mountainous region of 
the state of Chiapas; the natural environment is exuberant, located in a rural area only connected to 
urban settlements through public transportation options that run a limited number of times a day. No 
public transportation gets directly to the farm. Internet connection is unstable to nil. Housing for 
workers and their families are equipped with basic drinking water services, electricity, a sanitary 
network, cement flooring. Health and education services are present. The elementary school is 
multigrade as a result of the limited number of students, while preschool is monograde.  
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Data Sources 
Both the in and out-of-school activities deployed by the children of the farm constitute the 

sources. Recreational scenarios are designed to promote varied interactions where enacted 
knowledge can be deployed. Multilayered and semi-structured interviews are also carried out. 

Analysis 
We work through triangulation, with the purpose of complementing and enriching information 

collected through different activities and people. The criteria for analysis are in process of 
elaboration since they are put together from the previously mentioned scenarios. 

Results 
Up until now (February 2020) two visits have been made to the farm cumulating a total of three 

weeks living and sharing with the community -with the children, in particular- from Monday to 
Sunday. The following visits are designed to enhance participation and gradually foster an 
environment of confidence. Through these stays, the development of a wider perspective on the 
dynamics, roles, activities, needs, and complex knowledge required for the cultivation and harvest 
(tapisca) of coffee, as well as for orientation, recognizing harmful and edible plants -to name just a 
few domains- has been possible. Records of interviews and informal talks are being reviewed. 

Discussion  
We think it is fundamental that, since cognition is intimately related to action and actions occur in 

specific settings, learning has to be investigated in accordance to the situation in which it occurs. 
Knowledge in a specific location is associated with appropriate behavior or effective action in that 
location (Maturana, 1987:66). We believe that this perspective is promising for discovering new 
knowledge and that, through its formation, the active experience of the students can be brought out.  

The conditions of multigrade groups are commonly perceived as deficient as they are associated 
with isolated communities with limited resources and even with indigenous populations. However, 
our approach highlights the opportunities that a multigrade classroom provides for the creation of 
knowledge in an enactive and collaborative environment. Associating age with school grade and 
defining the contents applicable to that entire group of individuals through it is not that reasonable. 
Even more so considering all the evidence that supports the case for making the students' approach to 
any knowledge more flexible. Multigrade, and its wide possibilities as a learning context, is a 
promissory area with great potential which, we believe, can be successfully articulated to the 
enactive approach. 
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Se reportan los primeros avances de un estudio sustentado en la perspectiva enactivista, de 
corporización del conocimiento (Maturana y Varela, 1984; Varela, 2000). El propósito es 
documentar los conocimientos sobre número, espacio y medida, que tienen niñas y niños de una 
escuela primaria multigrado enclavada en una finca cafetalera, donde residen y conviven con la 
actividad laboral. El repertorio documentado de conocimientos enactados de esos niños, sustentará 
el acompañamiento para que sus maestros propongan situaciones que recuperen los conocimientos 
construidos más allá del salón de clase, mediante la experiencia corpórea y sensitiva. Este enfoque 
constituye, como sostiene Varela, un desafío a la cultura del salón de clases, y convoca a 
transformar el estilo y valores de la comunidad de investigadores. 
 

 
Palabras clave: Educación primaria, Estudios de embodiment y gestos, Educación Rural, Concepto 
de Número y Operaciones. 

Evidencias derivadas de la propia experiencia, así como otras basadas en procesos de investigación 
formal, han mostrado desde hace años que las y los niños construyen conocimientos (Resnick, 1989; 
Resnick & Greeno, 1990), que, en la mayoría de los casos, no tienen cabida en la escuela. En 
particular, esta situación se observa entre los contenidos de matemáticas prescritos en la educación 
formal y aquellos conocimientos que se aprenden fuera de ella (Nunes, T., 1993; Padilla, 2015). En 
los casos en que se identifica el conocimiento surgido más allá de la escuela, se establece una 
distinción entre ese conocimiento y lo que la cultura escolar considera relevante de enseñar o 
aprender en su territorio.  Al parecer, subyace la idea de que las “verdaderas matemáticas” se 
aprenden al interactuar y apropiarse de los “verdaderos objetos matemáticos”, incluidos en los 
programas de estudio. 

Nuestra consideración, sustentada en los planteamientos de la teoría de la enactividad, es que la 
experiencia directa es una importante fuente de conocimientos; que en el intercambio que tenemos 
con el mundo, a partir de nuestras acciones con y a través de nuestro cuerpo, producimos 
experiencias que posibilitan o limitan nuestra comprensión conceptual que, a su vez, depende de los 
diferentes dominios cognitivos que progresivamente alcanzamos.  

Así, niñas, niños, jóvenes, adultos, todos, construimos explicaciones y procedimientos, que, desde 
la perspectiva formal de la institución escolar, pueden considerarse insuficientes, o no cumplen los 
criterios de un “comportamiento adecuado”, aunque para quien los genera constituyen explicaciones 
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iniciales provisorias y efectivas. Frente a prescripciones de tiempo, contenidos fragmentados, 
graduados, planeaciones, procedimientos, programas de estudio, libros de texto y otros dispositivos 
formales que requieren cubrirse durante cada ciclo escolar, los conocimientos de los estudiantes, sus 
intuiciones, procedimientos incompletos, afectos, emociones e interacciones, particularmente 
respecto de contenidos matemáticos, se interpretan como irruptores, poco pertinentes a la actividad 
escolar, por lo que es preferible obviarlos. Ante esa situación, sostenemos que conocer a través de la 
acción concreta, es un planteamiento cada vez de mayor complejidad, vigencia y larga tradición. 

Los estudios realizados por Piaget y sus colaboradores, mostraron en su momento cómo las 
estructuras cognitivas surgen de pautas recurrentes de acciones, con una base perceptual. Lozano, al 
referirse a la postura enactivista, plantea: “Las actividades que llevamos a cabo sobre los objetos al 
interactuar con el mundo dan lugar a estructuras cognitivas tales como los conceptos y categorías 
matemáticas” (2014:170). Conocer a través de la acción concreta, aplica a diferentes campos, 
particularmente en el campo de las matemáticas como se sostiene en este estudio. 

Propósitos del estudio 
Identificar y documentar desde un enfoque enactivo, los conocimientos sobre número, espacio y 

medida, que construyen niñas y niños a partir de su experiencia corporal e interaccional con su 
entorno. 

Generar con los profesores de esos niños, andamiajes que incorporen los conocimientos que ellos 
han construidos a partir de la experiencia corpórea, sensitiva e interaccional, vinculando y 
flexibilizando el conocimiento matemático que se prescribe en la escuela. 

Perspectiva teórica 
Si bien en el campo de la educación matemática existen numerosas perspectivas teóricas para 

analizar lo que sucede dentro y fuera del aula con respecto a procesos de enseñanza y aprendizaje de 
contenidos matemáticos, elegimos como referente teórico la perspectiva enactivista (Maturana y 
Varela, 1984; Varela, 2000), que sostiene que el conocimiento surge de las acciones que realizamos 
en nuestra experiencia cotidiana y por la constitución particular de cada individuo, en un contexto 
social y cultural específico. Esta perspectiva, de referentes constructivistas, concibe la cognición en 
un sentido amplio, por lo que reconoce y aborda otras dimensiones -como la emoción, el afecto y la 
interacción social- en el y para el aprendizaje.  

Lozano (2014:179) sintetiza aspectos sustanciales del enfoque: “A través de las ideas enactivistas, el 
aprendizaje individual se reconcilia con la interacción social, el cuerpo con la mente, la razón con la 
emoción y el conocer con el conocimiento matemático. Sus conceptos, desde mi punto de vista, 
permiten tener una perspectiva amplia acerca del aprendizaje y la enseñanza de las matemáticas, 
tomando en cuenta su complejidad.”  

El enactivismo, se deslinda del dualismo mente-cuerpo y ofrece una perspectiva teórica que 
coincide con lo que la experiencia y el trabajo de investigación nos ha expuesto: conocer implica 
interactuar con el mundo, desde la historia de cada persona y su contexto, por lo cual el aprendizaje 
no puede concebirse sino a partir de la multiplicidad de factores que en él concurren. Aunque resulta 
más compleja, esta aproximación incorpora dimensiones sustanciales, que otras posturas omiten.  Su 
concepción de percepción, el no reconocer a las representaciones como producto de la cognición, el 
dar relevancia a la intuición y ponderar del sentido común (Varela, 2000:275), son rupturas 
importantes que amplían perspectivas para la comprensión y análisis de la cognición, así como para 
diferenciarse de la concepción de conocimiento compartamentalizado, formal, rígido y 
“desencarnado”. Consideramos que esta aproximación contribuirá a generar alternativas para que los 
alumnos recuperen el interés por los contenidos escolares de matemáticas y por los conocimientos 
que sobre el tema, ellos mismos construyen. 
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Método de investigación 

Se trata de una investigación de corte cualitativo, cuyo proceso se prevé como espacio de formación 
para los participantes. Quien investiga se incorpora como aprendiz y colaborador en las acciones de 
la escuela y la comunidad, con el maestro, padres y los alumnos. Siguiendo el enfoque de esta 
investigación, no hay cabida a “observadores”, ya que la perspectiva enactiva sostiene que los 
agentes cognitivos somos activos participantes que enactamos en el mundo.  
Contexto 

La finca donde se lleva a cabo el estudio como otras de la zona, se encuentra en el área de montaña 
del estado de Chiapas; el entorno natural es exhuberante. En un área rural, comunicada con 
asentamientos urbanos a través de varias opciones de transporte público terrestres, en ciertos horarios 
del día, sin embargo, ningún transporte colectivo llega directamente a la finca. La conexión a 
internet, es de inestable a nula.  En esa finca las viviendas para los trabajadores y sus familias, 
cuentan con servicios básicos de agua potable, electricidad, red sanitaria, piso de cemento, servicio 
de salud, y educativo. Por el número de alumnos, la escuela primaria es multigrado y la de educación 
preescolar, unitaria.  
Fuentes de datos 

Las diferentes actividades escolares o desplegadas en otros escenarios, por los niños de la finca, 
constituyen las fuentes.  Se diseñan situaciones lúdicas para promover interacciones variadas donde 
sea posible desplegar conocimientos enactados. También se realizan enttrevistas a profundida y 
semiestructuuradas.  

Análisis 
Se trabaja mediante triangulación, con el propósito de complementar y enriquecer  información 

recabada a través de diferentes actividades y personas. Los criterios para un análisis más fino, están 
en proceso de elaboración, ya que se construyen a partir de las situaciones que se generan. 

Resultados 
A la fecha (febrero 2020) se han realizado dos estancias en la Finca, un total de 3 semanas 

conviviendo con las personas  de lunes a domingo, con las niñas y niños.  Las siguientes estancias, 
presentando,   ante la familia, participar e ir construir paulatinamente un clima de confianza. De 
ambas estancias se ha podido tener un panorama más amplio de las dinámicas, roles, actividades, 
exigencias y conocimientos complejos, que demanda  el trabajo de cultivo y cosecha (tapisca) de 
café. Así como de los múltiples referentes que ponen en juego para orientarse, reconocer plantas 
dañinas y comestibles, por citar solo algunos dominios. Se cuenta con registros de entrevistas y 
pláticas informales que esttán en proceso de revisión.  

Discusión 
Consideramos fundamental que, dado que la cognición está íntimamente relacionada con la acción, 

y las acciones ocurren en lugares determinados, entonces el aprendizaje tiene que ser investigado en 
relación a la situación en la que ocurre. El conocimiento, en un lugar determinado, está asociado con 
la conducta adecuada o la acción efectiva en ese lugar (Maturana, 1987:66). Consideramos que esta 
persspectiva es promisoria para develar conocimientos y que mediante su construcción propiciar que 
se despliegue la experiencia activa de los estudiantes. 

La condición de trabajo de los grupos multigrado en muchos espacios se valora como deficitaria 
porque se asocia a comunidades aisladas, con recursos limitados e incluso con población indígena. 
Sin embargo, nuestra postura reivindica las condiciones que ofrece un aula multigrado para la 
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construcción de conocimientos de  forma enactiva y colaborativa. Asociar una edad a un grado 
escolar y suponer por ello que eso determina los contenidos pertienentes para toda esa franja de 
individuos, es poco sostenible. Aún más si se cuenta con tanta evidencia que argumenta a favor de 
flexibilizar el acercamiento de los estudiantes a cualquier conocimiento. Multigrado, y sus amplias 
posibilidades como contexto de aprendizaje, es una línea promisoria y con gran potencial, que 
perfilamos, puede articularse con éxito al enfoque enactivo. 
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Rejecting pedagogies of deficit built around deficit mythologies about the mathematical potential of 
students with learning disabilities (Lambert 2018), this study will document an intervention designed 
to engage students in mathematical problem-solving and discussion, building student computational 
skills as well as number sense and participation in the mathematical practices. In this paper, we 
provide close analysis of the development of a fourth-grade student who demonstrated growth in 
participation and conceptual understanding of multiplication across the intervention. 

Keywords: Equity and Diversity; Special Education; Number Concepts and Operations; Instructional 
Activities and Practices. 

Research on the mathematical learning of students with disabilities has focused on medical deficits 
within children and prescribed behavioral mathematics teaching to remediate these deficits (Lambert 
& Tan, 2020). Locating the problem not within individual students, but within limited access to 
opportunities to make mathematical meaning, we designed an intervention for students with 
disabilities ages 8 through 11 significantly underperforming in multiplication and division and 
including students with disabilities. This intervention is designed to engage students in mathematical 
problem-solving and discussion, building both student number sense and participation in the 
mathematical practices. Our full study explores the growth of student strategic thinking, accuracy for 
multiplication and division, and participation in mathematical discourse.  In this brief report, we 
focus on one student whose measurable math score did not increase during and after the intervention. 
While she displayed no measurable growth in her math score, she displayed growth in participation 
and strategy development. Our research question for this brief report focused on one student: How 
did one student participate in a mathematics intervention designed to promote student meaning-
making and discussion? What shifts in participation are in evidence? What shifts in conceptual and 
procedural understanding of multiplication?  

Schools in the US are being asked to provide intervention within Multi-Tiered System of Support 
(MTSS) in mathematics. However, interventions are often not aligned with classroom instruction 
based on Common Core State Standards, creating difficulties for students who must make sense of 
different approaches to mathematics. Our intervention using number strings is designed to align with 
a focus on meaning making in the curriculum. The intervention consisted of 8 sessions of number 
strings (Lambert, Imm & Williams, 2107) designed and facilitated by undergraduate tutors after 6 
hours of professional development led by the first author. Each tutor was observed 2-4 times by a 
member of the research team and offered feedback. In addition, all tutors participated in a session in 
which they analyzed the participation of the students in their small group. Future analysis will focus 
on the teaching moves of the novice tutors. 

A number string is a short (15–20-minute) daily instructional routine in which a teacher presents a 
carefully designed sequence of problems one at a time for children to solve mentally (Lambert, Imm 
& Williams, 2017). Instead of interventions that focus on direct instruction, number strings provide 
opportunities for students to engage in mathematical discourse, both in describing their own 
strategies and connecting with the mathematical strategies of others. Research on number strings has 
found that students participating in number string routines are able to adopt new strategies 
(O’Loughlin 2007) and make connections between conceptual understanding and procedures. Studies 
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on number strings have not previously focused on students with disabilities or students who are 
significantly underperforming in mathematics.  

One issue in the assessment of students with disabilities is the difficulty of capturing growth that 
may be unusual in its learning trajectory or slower than peers. Van Geert and van Dijk (2012) 
describes the importance of moving beyond group-level data in understanding the variability for 
students that may exist at the level of strategies and engagement, recommending collecting data on 
inter-individual variability to better understand strategic change. We document conceptual growth 
through analysis of student participation and discourse, including attention to non-verbal 
communication. We used aspects of the coding scheme by Ing at al. (2015). A Complete Share was 
an answer that was accurate and explained in enough detail that we could confidently code the 
strategy. A Partial Share was either inaccurate or did not include enough detail that researchers could 
determine the exact strategy path of the student. We added the last two categories to track students 
who had nonverbal engagement in the problem. Nonverbal captured moments in which we could see 
evidence of nonverbal engagement, yet students did not verbally share in discussion (such as students 
counting on fingers). No Engagement was coded if the student did not demonstrate verbal or 
nonverbal engagement. 

Methods 
The study was situated in grades 3 – 5 at an elementary school in California. Demographics are as 

follows: 76.3% are Socioeconomically Disadvantaged, 14.4% are Students with Disabilities, 58.9% 
are English Learners, and 9.9% of students are Homeless. The majority of students at the school are 
Hispanic (88.3%) with the second largest demographic category being White students (7.5%). The 
full study included 12 student participants in 3rd grade, 6 students in 4th grade, and 18 students in 
5th grade. 12 students had current IEPs, with an addition 4 students in the referral process. Each 
group met for 8 sessions, twice a week for 4 weeks. We collected two primary kinds of data: a) 
researcher-created multiplication and division paper and pencil assessments (Multiplication + 
Division CCSS CBM Math Assessment) with all students taking the assessment three times (pre, 
during and post intervention), and b) video records of the tutors teaching the number strings to 
document student participation and strategy development. In order to ascertain growth in student 
accuracy, we scored the MD-CBM before, during and after the intervention. After analysis of the 
first MD-CBM assessment, the first researcher met with the classroom teachers to decide the students 
who would be placed into the Tier 2 intervention. We assessed student use of strategies and 
participation in mathematical problem-solving and discussion through analysis of transcripts. Two 
authors each coded the small group we present in this paper, resolving any discrepancies. We will 
determine intercoder reliability for the final paper. 

Findings 
This paper is a case study that focuses on one student (Inez) within one small group of 6 students in 

a fourth-grade class taught by undergraduate tutor Yola (all names are pseudonyms). Comprised of 
students with and without disabilities, the students in this small group had the lowest scores on 
multiplication in their class. Inez is Latina and classified as an English Learner, as well as a student 
of significant concern for her classroom teacher. The teacher noted that Inez rarely shared in math 
class and seemed to have significant issues with number sense. Inez appeared eager to participate in 
this small group, even when she did not share. She seemed particularly to enjoy talking to Yola. 

In the first two sessions, Inez did not volunteer to answer questions. She shared twice when called 
on. Unlike her peers, she did not use her fingers to keep track as she skip counted. Instead, we could 
see her subvocalizing her counting and losing track. In discussions, we wondered if Inez needed 
support to help her keep track of her count. Starting in the second session, Yola passed out card stock 
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arrays for the students. Inez began using these arrays to keep track of her counting. However, Inez 
seemed to need additional experience with the arrays. Initially, Inez counted each square as 2. For 
much of the first 6 sessions, Inez demonstrated her ability to count by 2s and 5s, but not other 
numbers. Inez appeared to prefer counting by 2s and 5s so much that she used this strategy to solve 
problems that neither 2 or 5 were factors.  Asked to solve 9 x 5, she got the answer of 10 by skip 
counting by 2s, because “I thought it would be easier to count by twos.” In discussions with Yola, we 
decided at the end of Session 2 that Inez needed to sit closer to Yola, who supported her in using her 
fingers or the array as a tool. Yola also spoke to Inez during turn and talks, which seemed to support 
Inez sharing in the small group. This shift seemed to mark a pronounced difference in engagement 
(Table 1) from a lack of engagement in the first two problems to a more sustained engagement in 
mathematical discussion in the subsequent sessions. 

 
Table 1: Shifts in Inez’s Participation in Mathematical Discussion 

 Session 1 Session 2 Session 3 Session 4 Session 5 Session 6 Session 7 
Complete Share  0 0 1 1 0 1 1 

Partial Share 1 1 4 4 6 5 3 
Nonverbal  0 3 0 2 0 0 1 

No Engagement 5 1 1 0 0 0 0 
 
Through close analysis of Inez’s strategies across the 7 sessions (one session was not video 

recorded), we saw evidence that Inez developed her understanding of arrays. While in the beginning 
she did not count squares by ones successfully (by counting boxes as 2s or 5s), she was able to do so 
by Session 5. She also developed an understanding of the connection between skip counting and 
multiplication by groups. Twice, Yola represented Inez’s skip counting numerically and connected 
that to the representation of the array. The first time Yola did so, Inez stopped, stared at the array and 
the skip counting represented next to it, and said, “What the heck?” The next session, Inez again 
counted an array by 2s, and then miscounted, getting an answer of 62 for 6 x 5. Yola listened to 
Inez’s strategy, and then remodeled it on the array keeping track of the numbers. Inez again appeared 
to be provoked into disequilibrium by the tutor’s representation of her strategy, saying, “I went really 
really far.” Connecting visual and numerical representations of her own strategy appeared to make 
Inez’s own thinking visible to her, thus allowing her to understand her own thinking as reflected by 
the tutor’s representations. 

While Yola seemed to make supportive moves to increase Inez’s participation, as well as to model 
her thinking to make it visible, Yola described having significant difficulty understanding and 
representing Inez’s strategies. While there were instances in which Yola pressed for explanation, 
there were more instances in which Inez shared an incorrect answer and Yola did not ask her to 
elaborate. In further analysis, we will determine which teacher moves within the number strings 
routine were most challenging for novices to enact. We suspect that pressing a student for further 
explanation when that student has a pattern of strategies that do not make sense to the teacher might 
be a particularly challenging teaching move to enact. 

Discussion 
Our intervention aims to increase the mathematics achievement of students with disabilities and 

students whose performance is significantly below grade level, but not with instructional practices 
that focus on memorization or procedural learning. Instead, we investigated the use of a number 
string to develop multiplication and division computation simultaneously with number sense. In this 
paper, we demonstrate how one student significantly below grade level in mathematics grew in her 
use of mathematical strategies and her engagement through participation in a number string routine. 
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Further analysis will include latent class modeling to determine growth patterns for particular 
subgroups of students. We also will document overall growth, using group averages as well as close 
qualitative analysis of strategy growth. Finally, we will analyze the teaching moves of the novice 
teachers to determine the effectiveness of the professional development we provided for tutors. We 
also plan to analyze how Inez’s emergent bilingual status could better have been leveraged in her 
learning. Most importantly, we seek to better understand how to provide mathematics intervention 
for students who need more support engaging in meaningful mathematics. 
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The building of a diverse and highly capable population of young people for careers in the science, 
engineering, technology, and mathematics (STEM) fields remains a critical issue in the United 
States. The researchers employed data from a nationally representative sample of high schoolers to 
better understand the relationships between students’ learning experiences, attitudes towards 
mathematics, and STEM major choice. The focus of this paper is on how these relationships differ for 
males and females. The findings suggest that the underrepresentation of female students in STEM 
majors can be partially explained by a tendency for females to have less positive attitudes towards 
mathematics as compared to their male counterparts. Mathematics identity may be the most 
important attitude explaining this difference. 

Keywords: STEM, Attitudes, Equity and Diversity, Gender 

This research is part of a larger project aimed at better understanding factors that motivate U.S. 
students’ decision to major in STEM fields and ultimately guiding efforts for broadening 
participation in STEM. The focus of this paper is on gender differences in attitudes towards 
mathematics and how these differences can help to explain why female students are underrepresented 
in STEM majors. Expectancy-value theory and data from the High School Longitudinal Study of 
2009 were employed. 

Theoretical Framework 
The expectancy-value model of motivated behavioral choice (Eccles, 2009) holds that students’ 

achievement-related choices (such as college major choices) are directly determined by the 
expectancy for success and the subjective value they attach to the tasks involved in those choices. 
Expectancy for success is similar to the notion of self-efficacy (Wigfield & Eccles, 1992). Subjective 
task values include the following three aspects: the relation of the task to one’s self-image (identity 
value); the anticipated enjoyment from engaging in the task (interest value); and the perceived 
usefulness of the task for fulfilling personal goals (utility value). Cost is a fourth aspect of value that 
will not be examined in this study. Expectancies and values themselves are determined by various 
factors, including personal background characteristics and past learning experiences (Eccles et al., 
1983). This model guides the research questions for the current study: (a) How are U.S. high school 
students’ prior educational experiences, mathematics expectancy-value attitudes, and STEM major 
choice related? (b) How do these relationships differ for males and females? 

Methodology 
To answer these questions the present study employed data from the High School Longitudinal 

Study of 2009 (HSLS:09; Ingles et al., 2011). HSLS:09 is the most recent in a series of surveys 
administered by the National Center for Education Statistics (NCES) that follow nationally 
representative samples of young people as they transition from high school to postsecondary years. 
The first wave of HSLS:09’s data collection began in the fall of 2009 with over 23,000 ninth-graders 
from 944 public and private schools throughout the United States. Sampling involved a complex, 
two-stage design in which eligible schools were first randomly selected and then students within 
those schools were randomly selected (Ingles et al., 2011). The students were followed up in the 
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spring of 2011, when most were in the eleventh grade (Ingles et al., 2014) and a third time in 2013, 
after most had completed high school (Ingles et al., 2015). 
Variables 

The present study utilized variables from the base-year, first follow-up, and 2013 update of 
HSLS:09’s public-use data file. Ninth-grade variables included mathematics achievement, STEM 
extracurriculars, and mathematics teacher support. Eleventh-grade variables included mathematics 
expectancy-value attitudes. The twelfth grade-variable was STEM major choice. 

STEM major choice. STEM major choice was measured with a dichotomous variable indicating 
whether the student was planning to major in a STEM field at a postsecondary institution (reported in 
2013 college update). Majors considered STEM included computer, physical, and natural sciences; 
engineering; mathematics and statistics; and military and science technologies/technicians. 

Mathematics self-efficacy. Four items were used to measure students’ confidence in their 
mathematics ability, including the degree to which they were confident that they can do an excellent 
job on tests and assignments; understand the most difficult material presented in the textbook; and 
master skills in their first follow-up mathematics course. All mathematics attitudes were standardized 
(mean = 0, SD = 1). 

Mathematics identity. Two items were used to measure students’ mathematics identity value, 
including the degree to which they agreed that they were a math person and other people saw them as 
a math person. 

Mathematics interest. Five items were used to measure students’ mathematics interest value, 
including the degree to which they agreed that their first follow-up mathematics course was 
enjoyable, a waste of time (reverse coded), and boring (reverse coded); that they were taking the 
classes because they enjoy math; and whether math was their favorite school subject. 

Mathematics utility. Three items were used to measure student’s mathematics utility value, 
including the degree to which they agreed that what they were learning in their mathematics course 
would be useful for everyday life, college, and a future career. 

Mathematics achievement. Prior achievement in mathematics was measured using the ninth-grade 
algebraic reasoning assessment score. The assessment was developed by NCES using an item-
response theory (IRT) design and standardized (mean = 0, SD = 1). 

STEM extracurriculars. Extracurricular participating in STEM-related activities were measured 
by the number of mathematics or science related activities (clubs, summer camps, competitions, 
study groups) the student reported participated in from the base-year to the first follow-up. 

Mathematics teacher support. Nine items were used to measure students’ perceived support from 
their ninth-grade mathematics teacher. Some example items include the degree to which the student 
agreed that their teacher values and listens to students’ ideas; thinks every student can be successful; 
and makes math interesting. This scale was also standardized. 

Covariates. Covariates included student’s gender (1 = female, 0 = male), race/ethnicity (1 = 
underrepresented minority [URM], 0 = white or Asian), and socioeconomic status. 
Missing Data 

Missing data were handled using multiple imputation. In total, five datasets were imputed for the 
analysis using Blimp 1.1 (Keller & Enders, 2018). The five datasets were analyzed and then the 
estimates and standard errors were averaged into a single set of results (Rubin, 1987). Multiple 
imputation has been shown to be robust against departures from normality and to provide unbiased 
results even for high rates of missing data (Enders, Keller, & Levy, 2018). 



Gender differences in attitudes towards mathematics and STEM major choice: The importance of mathematics 
identity 

	 1392	

Analytic Plan 
To analyze the relationship between the variables, the researchers used structural equation modeling 

(SEM; Byrne, 2011). The analysis was conducted in Mplus 8.2 with robust maximum likelihood 
(MLR) estimator and logit link. (Muthén & Muthén, 1998-2017). Figure 1 displays the path model. 
To asses model fit, the chi-square statistic (χ^2), comparative fit index (CFI), Tucker–Lewis index 
(TLI), and the root mean square error of approximation (RMSEA) were used. SEM literature 
typically considers CFI and TLI values greater than .95 and .90 to indicate excellent and acceptable 
fits, respectively. For RMSEA, values less than .05 and .08 are considered excellent and acceptable 
fits, respectively (Byrne, 2011). Design effect adjusted weights were applied to account for the 
nested structure of the survey (Hahs-Vaughn, 2005). As per Ingles et al. (2015), the raw weight 
adjusted was W3W1W2STU. 

Results 
The sample was comprised of 50.4 percent male and 49.6 percent female. The proportion of 

students who pursued STEM was 14.7 percent. Males chose STEM at a 19.4 percent rate compared 
to 9.9 percent for females. Whites and Asians chose STEM at a 17.5 percent rate compared to 11.2 
percent for URMs. The (unweighted) sample size was N = 15,860 consisting of students who 
participated in the base-year, first follow-up, and 2013 update. 

The SEM analysis began by testing the measurement model. The CFA indicated excellent fit of the 
measurement model: χ2(217) = 2,898.685, CFI = .958, TLI = .951, RMSEA = .023. The CFA 
estimated that all four of the mathematics attitudes were significantly pairwise correlated (p < .001). 
However, examining variance inflation factors (VIFs) did not provide evidence of significant 
multicollinearity (VIF < 5). Next, the SEM model from personal background and educational 
experiences to mathematics attitudes was tested. This model also had adequate fit: χ2(312) = 
3,820.444, CFI = .951, TLI = .942, RMSEA = .022. Lastly, the full SEM model was tested. The 
above fit statistics are not available for models with categorical outcomes (Muthén & Muthén, 1998-
2017). The pseudo R2 for the logistic regression on STEM was .267. 

Table 1 contains the estimates for the direct effects of personal background and prior educational 
experiences on mathematics attitudes. Table 2 contains the estimates for the direct, indirect, and total 
effects for the full path model, including the odds ratios (OR) for the direct effects on STEM major 
choice. 

 
Table 1: Direct Effects for Paths from Educational Experiences to Mathematics Attitudes 

 On Math Attitudes 
Predictor and Covariate Self-Efficacy Identity Interest Utility 

Educational Experiences     
     Math achievement  .23***  .39***  .24***  .11*** 
     STEM extracurriculars  .14***  .14***  .15***  .10*** 
     Math teacher support  .09***  .05***  .08***  .10*** 
Personal Background     
     Female -.25*** -.21*** -.11*** -.09*** 
     URM -.09***  .07*** -.02*** -.11*** 
     SES  .33*** -.03***  .30*** -.11*** 

 
Table 2: Direct, Indirect, and Total Effects for Paths from Educational Experiences to Mathematics 

Attitudes and STEM Major Choice 
 On STEM Major Choice 

Predictor and Covariate Direct [Odds Ratio] Indirect Total 
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Educational Experiences    
     Math achievement  .58*** [1.79]  .16***  .74*** 
     STEM extracurriculars  .16*** [1.17]  .08***  .24*** 
     Math teacher support -.03*** [0.97]  .04***  .01*** 
Mathematics Attitudes    
     Math self-efficacy  .11*** [1.12] — — 
     Math identity  .31*** [1.36] — — 
     Math interest -.01*** [1.00] — — 
     Math utility  .16*** [1.18] — — 
Personal Background    
     Female -.77*** [0.46] -.11*** -.88*** 
     URM -.09*** [0.92]  .07*** -.02*** 
     SES  .33*** [1.39] -.03***  .30*** 

 
Focusing on the first research question, Table 1 shows that the analysis found that higher 

mathematics achievement in ninth, participation in a greater number of STEM extracurriculars, and 
greater teacher support early in high school predicted more positive attitudes towards mathematics 
later in high school (p < .001 for all paths expect math teacher support on math identity which had p 
< .01). In turn, higher mathematics identity and utility predicted greater odds of majoring in STEM 
(OR = 1.36, p < .001 and OR = 1.18, p < .01 respectively). 

For the second research question, Table 2 shows that after accounting for race/ethnicity, SES, prior 
educational experiences, and attitudes towards mathematics, females’ odds of choosing a STEM 
major where half that of males (OR = 0.49, p < .001). From Table 1, the effect of female was 
negative on each mathematics attitude (p < .001 for all four), with the largest magnitudes on self-
efficacy and identity. Thus, after accounting for personal background and prior educational 
experiences, female students tended to have less positive attitudes towards mathematics. 

Discussion 
This study provides evidence representative at the national scale for the expectancy-value model: 

higher mathematics achievement, greater participation in STEM-related extracurriculars, and more 
supportive mathematics teachers early in high school predict more positive attitudes towards 
mathematics later in high school, which in turn predict greater odds of majoring in STEM. The 
findings suggest that the underrepresentation of females in STEM in the U.S. can be partially 
explained by less positive attitudes towards mathematics with a sense of identity as a math person 
having the largest gender disparity. Given that mathematics identity was also the attitude most 
predictive of STEM major choice, this study supports the growing focus on identity in mathematics 
education research (see Graven & Heyd-Metzuyanim, 2019). Future work for this project is planned 
to better understand why female students’ attitudes towards mathematics tended to be lower than that 
of males. Existing literature suggests that negative stereotypes about STEM professionals are 
partially responsible, including unattractive appearances and socially awkward personalities, which 
are typically at odds with female gender identity and cultural expectations (Eccles & Wang, 2016; 
Starr, 2018). 
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College Algebra students who struggle to pass the course could face delayed graduation or fail to 
obtain their degree. A key part to academic performance is self-regulated learning which includes 
self-efficacy and test anxiety as parts of motivation, as well as learning strategies. This study aims to 
investigate the change in motivation and learning strategies over the course of a semester and the 
relationship of this change to performance in College Algebra, as measured by final course grade. 
Test anxiety and self-efficacy were measured at the beginning and end of the semester using the 
Motivated Strategies for Learning Questionnaire. During the semester, self-efficacy decreased, and 
test anxiety increased. Moreover, the increase in test anxiety predicted performance. An important 
finding from the study was that the students who experience more stress on exams are the ones whose 
grades suffer the most. 

Keywords: Affect, Emotion, Beliefs, and Attitudes; Post-Secondary Education 

Introduction 
A large number of students take College Algebra each year in the United States. Generally, College 

Algebra fulfills a graduation requirement for non-math intensive majors and has historically been 
structured to prepare students for calculus (Gordon, 2008). While required for many students, only 
about 50% of students earn an A, B, or C in the course (Ganter & Haver, 2011). This could result in a 
graduation delay or failure to obtain a degree. With so many students unable to pass College Algebra, 
research is needed to investigate what occurs over the course of a semester to impact student 
performance. 

A key aspect of academic performance is self-regulated learning (Berger & Karabenick, 2011; 
Pintrich & De Groot, 1990; VanderStoep, Pintrich, & Fagerlin, 1996). Students who are self-
regulated learners utilize cognitive and metacognitive strategies to be successful in their learning. 
However, the knowledge of strategies is not enough; a student must also have the motivation to use 
them (Pintrich & De Groot, 1990; VanderStoep et al., 1996). Therefore, both motivation and learning 
strategies could be crucial to improving achievement in College Algebra. 

This study aims to investigate the self-regulated learning of College Algebra students and answer 
the following research questions:  

• What are the changes in College Algebra students’ motivation and learning strategies over the 
course of a semester? And are the changes the same for all students? 

• What is the relationship between the changes in motivation and learning strategies and 
performance in College Algebra? 

While motivation and learning strategies are both important components of self-regulated learning, 
this paper focuses on two motivation components: self-efficacy and test anxiety. This controlled 
focus is due to test anxiety being a significant finding for both research questions, and self-efficacy is 
prevalent in the literature. 
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Literature Review 
Over the last few decades, self-efficacy and test anxiety have been studied extensively. Self-efficacy 

is a key component in social cognitive theory and refers to “beliefs in one’s capabilities to organize 
and execute the courses of action required to produce given attainments” (Bandura, 1997). Test 
anxiety is a multi-dimensional construct defined by Zeidner (1998) as “the set of phenomenological, 
physiological, and behavioral responses that accompany concern about possible negative 
consequences or failure on an exam or similar evaluative situation” (p. 17). 

At the college level, many studies have examined how self-efficacy or test anxiety change over time 
but with mixed results. For two online courses, no statistically significant changes in self-efficacy 
(Hodges & Kim, 2010) and test anxiety (Chapman, 2013) were detected during the semester. Others 
found decreases in self-efficacy (DiBenedetto & Bembenutty, 2013) and test anxiety (Fournier, 
Couret, Ramsay, & Caulkins, 2017) in science courses. Some reported increases in self-efficacy in 
biology (Ainscough et al., 2016) and test anxiety for medical students (Kim & Jang, 2015) over the 
course of a semester. 

Self-efficacy and test anxiety have also been studied in relation to academic performance at the 
college-level. Several studies found self-efficacy (Hodges & Kim, 2010; Roick & Ringeisen, 2018) 
and test anxiety (Gibbens, 2019; Hieb, Lyle, Ralston, & Chariker, 2015) to be statistically significant 
predictors of performance. However, these studies measured self-efficacy and test anxiety at a single 
time point, and change over time was not used as a predictor of performance. 

Only two studies were found to look at change over time as a predictor of performance. Fournier et 
al. (2017) found a decrease in test anxiety was not a statistically significant predictor of performance, 
and DiBenedetto and Bembenutty (2013) found that the decrease in self-efficacy was negatively 
correlated with final course grade. In light of these mixed results and other studies, this paper sought 
to examine the change in self-efficacy and test anxiety for College Algebra students over the course 
of a semester, and if the observed changes impact the final course grade. 

Methodology 
This study was conducted at a public university in the northeast region of the United States. During 

the spring semester of 2017, six sections of College Algebra were included in the study with 166 out 
of 227 students (73%) consenting to participate. To measure the changes in students’ motivation and 
learning strategies, the Motivated Strategies for Learning Questionnaire (MSLQ) was used; an 
instrument considered to be both valid and reliable for this population of undergraduate students 
(Duncan & McKeachie, 2005). The MSLQ consists of two sections, motivation and learning 
strategies, with 15 scales total. These scales can be used together or individually for a total of 81 
survey items, each with a Likert-scale from 1 to 7.  

The students were asked to complete the MSLQ during the third week of the semester (T1) and 
again on the last day of classes (T2). Students’ final course grade was also collected. Changes in all 
15 MSLQ scales were considered by final course grades using a MANOVA with the paired 
differences (T1 – T2) as a response variable and final letter grade as the factor. In order to investigate 
how these changes in motivation and learning strategies relate to the students’ final course grade, 
multiple linear regression was performed using changes in MSLQ scales over time and final 
numerical course grade. Statistical analysis was conducted using the R software package. Familywise 
false coverage probabilities and error rates were controlled using an adjustment based on the 
multivariate t-distribution that is implemented in the emmeans (Lenth, 2019) and glht (Hothorn, 
Bretz, & Westfall, 2008) R packages. 
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Results 
The MANOVA results indicate that final letter grade in College Algebra is statistically significant 

(Pillai Test Statistic = .888 and p-value < .0001).  Post-hoc comparisons using a 95% familywise 
confidence level indicate that students who earn a final course grade of “D” or “F” are the only ones 
to experience statistically significant changes in the MSLQ scales. Students who earn a “D” in 
College Algebra on-average experience a decline in self-efficacy between 0.59 and 1.79 points. 
Students who earn an “F” in College Algebra experience a decrease in self-efficacy between 0.78 and 
2.07 points on-average, and an increase in test anxiety by 0.67 and 2.25 points on-average. When 
controlling for familywise error rate, multiple linear regression analysis showed that test anxiety is 
the only statistically significant predictor of final course grade at the 5% significance level.  For 
students that experienced a one-point increase in test anxiety during the semester, it is expected their 
mean final course grade in College Algebra will decrease by between 0.21 and 6.81 percentage 
points. 

Discussion 
The present paper examined the changes in motivation and learning strategies for College Algebra 

students over the course of a semester, and if the observed changes impacted the final course grade. 
During the semester, self-efficacy decreased while test anxiety increased; findings that are consistent 
existing research (DiBenedetto & Bembenutty, 2013; Kim & Jang, 2015). However, not all students 
experienced these changes. Students who earned a “D” or an “F” in College Algebra felt less capable 
of being successful in the course as the semester went on, similar to findings by VanderStoep et al. 
(1996). Additionally, the students who earned an “F” experienced increased worry and had a 
preoccupation with performance over the course of the semester, consistent with Fournier et al. 
(2017). This is an interesting result as the students who need the most support were the ones to 
experience negative changes in their motivation during a semester of College Algebra. 

For this study, there was a relationship between the changes in motivation and learning strategies 
and performance for College Algebra students. As a semester goes on, the students who experience 
more and more stress on exams are the ones whose grades suffer the most. This is in contrast to work 
by Fournier et al. (2017) and DiBenedetto and Bembenutty (2013). Paired with the other results, 
students who end up earning an “F” in course experience increases levels of test anxiety along with 
decreased self-efficacy; this increase in test anxiety has a direct, negative effect on their course grade. 

While there is ample research on both self-efficacy and test anxiety, the findings are not always 
consistent and vary from subject to subject. This highlights a need for continuing research on both 
motivation components. To improve the passing rates of College Algebra, additional research is 
needed to investigate how to improve self-efficacy and decrease test anxiety, especially for the 
students likely to earn a non-passing grade. With the key finding that test anxiety increases over the 
semester and significantly predicts performance, future studies could attempt interventions 
throughout the semester to curb anxiety. 
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The rapid growth of multilingual mathematics learners in the US creates an urgent need for 
researchers and teachers to pay close attention to the complex social negotiation of resources in 
their classroom because these students are some of the most vulnerable to continual dehumanizing 
practices. Researchers and teachers need to understand how multilingual learns access resources 
but also how they manage the social risk of incompetence ascribed to students utilizing these 
resources. The current work presents an interaction as a case of the negotiation of resources, access, 
and competence during of a breakdown in the expectations of whom is allowed to make meaning of 
mathematics. Through the analysis, we see both how multilingual students are othered and excluded 
from mathematical discussion and how these students can reconstruct themselves as competent. 

Keywords: Classroom Discourse, Marginalized Communities, Embodiment and Gesture, Learning 
Theory 

Introduction 
The rapid growth of multilingual mathematics learners in the US creates an urgent need for 

researchers and teachers to pay close attention to the complex social negotiation of resources in the 
classroom (Barwell, Chapsam, Nkambule, & Phakeng, 2016). Multilingual students are some of the 
most vulnerable to continual dehumanizing practices (Gutiérrez, 2018). Furthermore, their 
competence is constantly in question around both their mathematical conceptual knowledge and their 
language communications (Moschkovich, 2002), yet competence is a co-constructed phenomenon 
within classrooms (Gresalfi, Martin, Hand, & Greeno, 2009) meaning all students’ power and 
identity play a major role in the formation of competence and incompetence of multilingual learners. 
In order to design and facilitate educational spaces that support multilingual learners, teachers and 
researchers need to understand how students manage both their access to resources but also the social 
risk of incompetence if/when resources are needed (c.f. Gibbons, 2003). As multiple students balance 
these two factors within the classroom system, they socially negotiate the resources present to assert 
power and reify their mathematical identity. The current work unpacks this negotiation by presenting 
a case where meaning-making resources are managed, and language incompetence is used to bar 
access. Within the case, I seek to answer the research questions: What role does language 
competence play in student-student negotiations of resources? and How are these negotiations 
embodied in students’ social formations? My analysis breaks down how a dyad of 7th-grade students 
competes for resources, including the attention of a researcher-teacher, and negotiates each other’s 
and their own competence around an educational digital narrative environment designed for single 
player. I discuss the implications of this type of negotiation in undermining educators’ efforts to 
support all learners to make meaning of mathematics. 

Literature and Conceptual Framework 
Across a diverse array of approaches to research in mathematics learning, researchers increasingly 

recognize the themes of identity and power as urgent, especially where equity is foregrounded (e.g. 
Aguirre, Mayfield-Ingram, & Martin, 2013; Boaler & Greeno, 2000). These constructs are especially 
important as global immigration and language diversity in classrooms grow (Barwell et al., 2016). 
Mathematics plays a politically significant role in our society both as a gatekeeper to educational 
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success and in our culture overall (Gutiérrez, 2013), so the imprints left on students’ mathematical 
identities, self-efficacy, and confidence from negotiations of power in math class greatly impact their 
lives. Multilingual learners must balance their need to draw on language resources with others’ 
perceptions of their incompetence. This tension permeates their experiences of mathematics and 
school in general through discourse, both at the interactional level and through larger Discourses 
(Gee, 2004). Greater understanding of how narratives of incompetence are perpetuated and used to 
further alienate these students is a vital component of efforts to support teacher noticing of the power 
dynamics at work in their classroom and then to disrupt microagressions within those dynamics. 

To unpack these dynamics, I present a conceptual framework of discourse understood as layers of 
the semiotic field that can be ‘read’ by participants in the class which are laminated together in 
interaction (c.f. Goodwin, 2017). I parse these layers into three forms of discourse to better 
understand student-student negotiations of resources and how they make use of different aspects of 
the semiotic field in those negotiations. The first form is the active communication, both verbal and 
nonverbal, among people within the classroom. In many ways, the active communication between 
the teacher and the students and amongst the students is the most important form of discourse 
because it encompasses all the in-the-moment teacher moves to scaffold student thinking (Cazden, 
1988). Yet, another form of discourse exists, the historically situated narratives around the discipline, 
the classroom/school, the students, and the teacher, conceptualized as Discourses (Gee, 2004). These 
narratives permeate the classroom, framing interactions and relational identities as they are invoked, 
enacted, and inscribed. These two forms of discourse make up most discourse analysis approaches, 
but I argue for considering the institutional infrastructure in place around the classroom as an 
additional form of discourse. Key aspects of infrastructure are its seeming invisibility and also its 
deep relation to ongoing practiced (Star & Ruhleder, 1996). Together, these aspects of infrastructure 
generate a form of discourse which communicates what is normal and what isn’t, what is allowable 
and what isn’t, what is supported and what isn’t. Each form of discourse plays a distinct role in the 
classroom, and understanding their relation allows us to understand the complexities of students’ 
social negotiation and formation and the impacts of these on student learning and identity. 

To understand each form of discourse, I build on different constructs within discourse analysis. I 
used two constructs to analyze in-the-moment, dynamic communication among individuals: footing 
(Goffman, 1981) and formations (Kendon, 1990). Footing provides a space to deeply examine roles 
of speaker and listener. Specifically, I employ Goffman’s distinction between ratified and unratified 
participants. Ratified participants are those with the access and opportunity to fully engage in the 
social dynamics and enact any of the three roles of the speaker (animator, author, and principal). 
Unratified participants are persons present but expected not to engage directly with ratified 
participants. I use this distinction with Kendon’s conceptualization of formations to analyze the 
embodied practices at work and the relational configurations of bodies, resources, and gaze. 
Formations are flexible patterns of physical arrangements of bodies during interaction that can be 
categorized, and F-formations, or formations where participants are facing each other, are a common 
one. By combining the principles of footing and formations, I present representations of bodies, 
people and objects, to understand and convey the direct communication and relational dynamics of 
social negotiation moment to moment. 

Gee’s Discourses (2004) provides a framework to understand the larger social, political, and 
historical contexts of the classroom within which interactions occur. Discourses are constantly at 
work in and through direct discourse where they are used and operated on to exercise power and 
manipulate positionality. By unpacking how students apply, perpetuate, or challenge different 
Discourses meaningful to the situation, my analysis in sensitive to Discourses role in social resource 
negotiation, specifically the Discourse of incompetence of (some) multilingual learners. 
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Finally to understand the role of infrastructure and its impacts on classroom interactions and social 
negotiations, I draw on conceptualizations of infrastructure as temporal and enacted through local 
practice (Star & Ruhleder, 1996). Star and Ruhleder (1996) characterize infrastructure with eight 
properties, two of which are especially significant in educational contexts. First, infrastructure 
becomes most visible upon breakdown, when the system does not function as it normally does. This 
property is especially important upon disruptions of the (classroom) system when new elements like 
digital games are introduced (c.f. Barab, Gresalfi, & Ingram-Goble, 2010). Another key feature is 
how infrastructure embodies standards which perpetuates what is ‘expected’ and what is ‘normal.’ In 
many ways, multilingual learners continuously grapple with both of these features of the 
infrastructure of ‘normal school’ in their daily lived experience. Unlike Discourses and moment-to-
moment communication, infrastructure is an expression of the embedded norms within and 
assumptions of the classroom system. Important to note, both technological formations or socio-
cultural formations play the role of infrastructure, and considering this social infrastructure is 
especially important in math classrooms (c.f. Yackel & Cobb, 1996) and multilingual learners (c.f. 
Langer-Osuna, Moschkovich, Norén, Powell, & Vazquez, 2016). 

Data and Methods 
The data for the current paper came from a multi-year design-based research study of how 

educational story games support students’ mathematical engagement (XXX, 2017; XXX, 2016). The 
classroom of focus was within an ethnically diverse school serving a primarily low-income 
community (92% free and reduced lunch) and many multilingual learners (30% of the school 
population) located in a medium-sized city in the Southeastern United States. The classroom teacher, 
Ms. Lynn (pseudonym), was a seventh-grade mathematics teacher having seven years of teaching 
experience at the time of the study and in her second year of participation with the research team. 
The current work focuses on a class of thirty-two students, Ms. Lynn, and two to four researcher-
facilitators in the room (including the author). The role of the researcher-facilitators was to support 
the teacher by assisting with both technical concerns and students’ conceptual questions. Ms. Lynn 
implemented the game in a four-day unit on rates, ratios, and proportional thinking. I focus on a dyad 
of two students, X and LM. X was a female Latinx multilingual learner with Spanish as a first 
language and seemed socially active with other Spanish speakers but rarely in whole class 
discussions. LM was a female black student active in the class and seemed to have a positive 
relationship with Ms. Lynn and other students, including A, another multilingual learner. 

While data collected for the larger project encompassed much for each of the four days, I focus on 
data of a focal dyad working on a single computer. I use video data collected from three sources. 
First, a standalone camera captured the table at which students were working. Second, a camera 
embedded in the computer provides a view from the computer’s perspective to give both an 
additional angle and to show who is framed in front of the computer. Finally, a screen capture 
software records students’ digital actions on the game. Audio is provided from both the computer 
microphone and a table microphone, but because of the proximity of another group, not all speech is 
captured, especially simultaneous utterances. Coordinating these different sources allows for a bird’s 
eye view representation of the dyad’s dynamic. 

To analyze the interactions of this dyad, I first watched their complete progress through the four 
days selecting the focal case of social negotiation. I chose this interaction because it captured a 
breakdown in interaction when X attempts to participate and this creates an activation of a social 
infrastructure of other multilingual learners to “help” X. After bounding the focal interaction, I 
transcribed intelligible talk and noted the occurrence of any unintelligible talk and (when possible) 
the speaker. Next, I transcribed each participant’s body language and then coordinated these 
multimodal transcripts in a single transcript. By coordinating this transcript with the video, I 
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generated a series of bird’s eye views of the relevant space using representations similar to those 
employed by Kendon (1990). These temporally discrete snapshots were created at significant 
changes in the dyad’s formations during the interaction. Lastly, I analyzed these representations with 
both the video and transcript to contextualize the formation changes, document salient Discourses, 
and understand the enacted infrastructure. 

Analysis 
Overview 

Evident from the first day and throughout the implementation, LM and X appear to be working 
together as a dyad against their wishes (at least in part). As directed by the teacher on the first day of 
gameplay, students choose partners to work on the game together with the condition that at least one 
person in the dyad reads English, the exclusive language within the game. LM and X seem to have 
been joined largely based on this latter requirement. Two other individuals are also the main actors 
within the interaction of focus, A and F. A is a female Latinx multilingual learner positioned as 
bilingual and a translator for multilingual learners, including X, within the class. A and three other 
multilingual learners sit at a table group, referred to here as G1, directly at the back of LM and X. F 
entered the classroom for the first time only a days prior and is a female Thai research assistant 
working in the class as a researcher-facilitator.  

The scene starts with LM communicating frustration with a specific part of the game where students 
are pushed to solve unit rate calculations using a double numberline tool before moving on. LM 
attempts to engage both the teacher, Ms. Lynn, and G1 to little effect. F approaches and offers to help 
LM and X. LM expresses her confusion with this part of the game, and F provides scaffolds via 
clarifying and probing questions. Throughout this first part of the exchange, X seems to follow the 
interaction and, in a lull, makes a bid to participate in F and LM’s meaning-making around the 
problem and the tool. Upon X’s attempt (and the ending of segment 1), LM draws on A in G1 to aid 
in the interaction by translating. The start of the final segment is the inclusion of A. LM continues to 
engage directly with F to solve the problem and move forward in the game while X and A converse 
inaudibly in Spanish. As A finishes translating and returns to G1, LM figures out the answer to the 
problem and inputs it into the computer. F asks the question “Does 8 [the answer] make sense to 
you?” and as LM responds with “Yes,” X points to the computer bidding for participation once again 
but this time to close the interaction. 

 
 
During this time, LM is acting as both a pivot point for the formation and the arbiter for whom can 

join in it while X remains slouched toward computer gazing downward. F, a somewhat new resource 
to the environment, offers to aid the pair, and she and LM solidify the formation into an F-formation 
to include the three individuals (LM, F, and X) and the computer. F positions herself as a ratified 
listener and lets LM take up the role of ratified speaker. At the same time F is joining the dyad, X 
engages in sideplay (Goffman, 1981) with members of G1 from between F and LM. 

As LM talks with F (the third picture of Figure 1), F constricts the F-formation around the 
computer, and this constriction seems to draw X into the interaction. She begins to follow the 
interaction between F and LM, and as LM pauses to think of an answer to F’s main question, X 
makes a bid to participate by offering an alternative answer and looking to LM as a meaning making 
partner. X’s attempt to connect with LM as partner is in stark contrast to the behavior of LM, who 
has yet to even look at X, let alone make eye contact. This difference is further expressed in the 
subsequent segment when LM reacts to this bid as a disruption and a violation. 
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This moment holds a lot of tension for the group, which can be seen in the contortion of their 

formation, and for the individuals, which can be seen in the LM’s twisted body. Furthermore, 
highlighting these contortions helps us to see the breakdown of ‘normal’ within the scene which 
reveals the social infrastructure to ‘support’ multilingual learners. LM enacts this social 
responsibility for A to leave her formation and mathematics learning in G1 and ‘deal’ with X’s 
constructed incompetence. Unpacking this further, X’s constructed incompetence is twofold, 
combining both language incompetence and social incompetence, because she did not activate the 
infrastructure of G1 and A in the first place (unlike during the sideplay of segment 1). Following this 
fraught moment, LM turns her body back towards the remnants of the previous formation and makes 
a slight, but distinct, motion with her posture and elbow between X and F. In this microaggression, 
LM simultaneously recovers the formation with F capturing her attention, absolves F of 
responsibility to engage with X, and further positions X as a non-member of the formation and an 
unratified speaker. 

 
 
An analytic finding problematizes Kendon’s F-formations. Kendon defines F-formations as semi-

static spaces of interaction where each participant has equal access to the resources within the 
formation. Presumably, unratified participants could not be included in F-formations because they 
would not have equal access. Yet in this instance, we see just that, an F-formation where an 
unratified participant attempts to contribute and is re-positioned out of the formation. In the final 
picture of Figure 1, the closeness of F, X, and LM seems to show resoundingly that they form a 
single formation, at least as how F and X enacts it. Yet in segment 2, LM’s surprise at X’s bid 
implies LM’s enactment of the formation rendered X as virtually invisible, merely meant to engage 
in sideplay and animate others authorings. Such a finding pushes on Kendon’s F-formation definition 
and brings up the question of whose formation is being described. 

 
..      = short pause, 2-4 secs 
…      = long pause, more than 4 secs 
()       = inaudible 
(words?)    = sounds like “words” 
((actions))     = Speaker is performing “actions” 
[ ]       = Simultaneous speakers, always comes in sets of at least, but not limited 

to, 2 
-       = Latched talk (see Dressler and Kreuz’s “=”) 
?       = Rising intonation 
.       = falling intonation 
 
Thick Dotted line     = formation 
Solid line       = F-formation 
Thin Dotted line     = gaze 
-People- 
Complete white center   = unratified participate not included in formation (i.e. bystander) 
Gradient with white center  = unratified participate in formation 
Gradient with black center  = ratified participant in formation 
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How past research considers the influence of parents on their children’s mathematical 
understanding does not often focus on the experience and intent of the parents themselves. In a cross-
case analysis, I address how two mothers’ experience shapes their mathematical positioning and the 
resulting interactions with their children in the subject. The attention on parents in mathematics 
takes on particular gendered roles, which is not often considered in research. There are more 
complex factors that shape how parents see and interact with mathematics. This study begins to show 
what alternative possibilities exist for engagement by U.S. parents in the content that still positively 
support children’s early learning. 

Keywords: Informal Education; Gender and Sexuality; Affect, Emotion, Beliefs, And Attitude 

Objectives 
Mathematics is taught and learned across a wide array of environments and situations, certainly not 

limited to the school classroom. Parents are often involved in early childhood mathematics learning 
through authentic engagement in everyday activities. However, across studies on parental influence 
on children’s learning is the assumption of mother as a proxy for parent (Posey-Maddox, 2017). In 
research and media, mothers are frequently assumed to be doing the work of parenting. Maloney and 
colleagues (2015) claim that “parents are their children’s first and most sustained teachers” (p. 1480). 
This statement coupled with the assumption of mothers doing the work of parenting implies that 
mothers are these first teachers. What is missing across literature on parents involved in mathematics 
learning is a focus of perspective on the parents and exploration of the parental (or specifically 
maternal) intentions.  

The connections between parenting and mothering create additional tensions within the often-
masculinized environment of mathematics. Mathematics is often framed as being for men and 
unwelcoming to women (e.g., Connell, 2010; Hottinger, 2016). Given the parallels between women 
and mothers (Arendell, 2000), potentially negative assumptions are made about mothers engaging 
with their children in mathematics. I explore the following questions: How does past experience in 
mathematics impact mothers’ interactions with their child’s early learning? What does this say about 
a mother’s intent to support mathematical learning? Exploring the factors that direct mothers’ action 
in mathematics provides a richer context for researchers in understanding parents’ action in 
mathematical learning.  

Background Literature 
To understand how experience impacts mothers’ interactions in mathematics requires an exploration 

of the larger context of motherhood expectations, parents’ experience in mathematics, and the types 
of alternative activities parents can use to engage their children in early mathematical learning. The 
expectations within motherhood show what societal factors function to direct a mothers’ actions in 
mathematical engagement. For example, adults in the United States believe that the more time 
women spend with their children, specifically giving their time to their children’s development, the 
better mothers they are (Dillaway & Pare, 2008; Gorman & Fritzsche, 2002). These beliefs frame a 
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societal expectation that mothers should be caring for and teaching their children, which mothers 
may identify as an obligation in their role as mothers. 

Previous research that has studied parents’ experience in mathematics has focused on the activities 
parents might do at home (e.g. Elliott & Bachman, 2018; LeFevre, Skwarchuk, Smith-Chant, Fast, 
Jamawar, & Bisanz, 2009) or the transfer of parental anxiety, affecting performance (e.g. Maloney et 
al., 2015). Research indicates a focus on authentic problem-solving (Pattison, Rubin, & Wright, 
2016) and hands-on activities (Elliott & Bachman, 2018) in everyday tasks are common strategies for 
effectively engaging children in mathematical learning. While mathematical activity at home can be 
enriching for children, many parents do not recognize these problem-solving tasks as forms of 
mathematics (Goldman, 2005). Rich mathematics learning can happen at home, but much research 
on parents in mathematics is centered around how their anxiety impacts children’s performance, 
often focused on mothers (e.g. Else-Quest, Hyde, & Hejmadi, 2008; Soni & Kumari, 2017). What is 
missing from this body of work is analysis from the perspective of mothers, to understand what has 
shaped their (gendered) experience and how they use it to create the best experiences for their 
children.  

Theoretical Framework 
I use positioning theory to frame mothers’ experience in mathematics and how they represent 

themselves today in actions with their children. This theory uses experience and broader context to 
position people or be positioned as mathematical or not. Positioning theory thus becomes a way to 
understand the influences across cultural norms, history, experiences, and interactions with others 
(Harré & Van Langenhove, 1999). How mothers are positioned and position others will speak to a 
larger context of expectations for mothers in mathematics and what they do to still support their 
children in learning. Positioning oneself as mathematically able or not is frequently paralleled with 
concepts of power and agency (e.g. Kotsopoulos, 2014; Langer-Osuna, 2017). Using these themes of 
agency in positioning in mathematics education can support the agency mothers may have in 
positioning themselves to teach their children.  

Methods 
I use life history to capture the experience of my participants as a means to express the complexity 

of their experiences, informing their actions. Life history, an analysis of life stories, provides context 
to the situation and factors that make up the decisions of someone’s life. “Life stories express our 
sense of self: who we are and how we got that way” (Linde, 1993, p. 3). This methodology supports a 
more intentional exploration of mothers and the reasons behind their mathematical interactions, 
which is frequently missing in mathematics education literature. Additionally, life stories can be 
characterized “as relational, as both personal and social, and as grounded in places” (Steeves, 
Clandinin, & Caine; 2013, p. 225). Life history offers a way to examine the connections to social and 
personal expectations more explicitly.  

Two white, middle-class mothers, Ella and Corinne (names have been changed), who are roughly 
the same age, have young children, and spouses working in similar jobs, are the participants for this 
study. Their current life situations are similar, but their past mathematical experience and current 
interactions with their children differ in interesting ways. A comparison of their positioning in 
relation to their experiences demonstrates how mothers in different situations use available resources 
to provide the best mathematical opportunities they can for their children. Both participants were 
interviewed, with a focus on stories about their past mathematics experience and the current 
mathematical interactions they have with their children. Particular attention is given to the context of 
their stories, relating to feelings, relationships, and reflection. Interviews were audio-recorded and 
transcribed. A final meeting with each participant was made to go over their stories from the 
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transcription, in order to confirm the stories best represented their experience. Interviews were then 
coded for themes around their positioning as mathematical thinkers, gendered roles as women and 
mothers, and the resultant activity they had with their children in mathematics. 

Results 
The difference in past experience and positioning of each mother frames how they see themselves 

today and ultimately engage with mathematics learning for their young children. While the specific 
activity differs, both mothers demonstrate attempts for positive and authentic engagement in activity. 
Ella came from a larger Midwest town, with an interest in reading and sports. The stories Ella shared 
continually related to her lack of confidence in her mathematical ability and in activity with 
mathematics today. In many stories related to her schooling, Ella described how teachers would put 
her on the spot to solve problems and she could not keep up with other students, never seeing herself 
as the smart one in class. Gendered roles from her past show how mathematics was understood and 
supported by her father, but not by her mother: 

My mom’s like me, she was, my mom was probably fine with elementary school but when I 
got past that she was like “you have to ask your dad.” And my dad, he’s an engineer, so he’s 
got a great math brain. 

Ella frequently connected to her mother and her lack of fluency in mathematics problem solving. 
Her experience with her parents in gendered roles of mathematics support extended to how she 
expected her and her husband to divide work in supporting their children’s learning, saying “I feel 
like when we got married it just like, we fall into certain roles.” She claimed it was more likely that 
her husband would help their children with math and she could assist them in other learning. 

The interactions Ella currently has with her daughter in mathematics are focused primarily on 
counting activities. She explained how her daughter learned to count higher than expected by stating, 
“we count a lot, at home. Like, she learned to count to 13 because every time we'd go up and down 
the stairs we would count the stairs.” Ella’s experience working directly with mathematics and her 
daughter is based on activities that have an authentic connection to their everyday lives. In moments 
where Ella wants more mathematical exposure for her daughter, she relies on resources in other 
areas, such as math-focused games from the library, and specific initiatives directed to her husband 
about helping in mathematics.  

Corinne grew up in a small Midwest town, with a love of mathematics and learning, encouraged by 
her parents and supported by teachers. The stories Corinne shared related to her interest in math and 
dedication to engage her children in math at every available opportunity. Similar to Ella’s 
experience, Corinne’s parents had an influence on her mathematical positioning, but it was her 
mother who associated with mathematics and her father who was hesitant: “My mom was an 
accountant. So we already had like the math background and she pushed school, like school was a 
pretty high priority in my house. Like math just came very easy to me.” The gendered roles of her 
parents’ connection to mathematics, coupled with the positive positioning of Corinne as 
mathematical, supported Corinne’s current activity with mathematics and her children. She is 
engaged often with her children in mathematical tasks and sees that as an important feature for 
parents who know math, connecting to a shared future role in teaching for her and her husband, 
where they both have mathematical backgrounds. 

The activities Corinne uses to engage her children in mathematics have similar authentic 
connections to everyday life. However, Corinne feels comfortable asking her children questions in 
the moment and engaging in mathematics across any activity where a mathematical opportunity may 
present itself. She shared the following story about her youngest daughter: 
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I was cutting up a banana for her and counting as I did it and I would pause and she would 
sometimes fill in the next number and I was like oh, okay you know way more than I thought 
you did, you can just count things.  

Corinne’s comfort in asking her children mathematics questions allows for opportunities to push for 
deeper connections in authentic settings, extending from counting to arithmetic and geometric 
reasoning. 

Discussion and Implications 
The experience and action of both Ella and Corinne demonstrate the impact of family and teacher 

positioning on a person’s association with mathematics. Ella’s association with her mother, who did 
not connect with math, and repeated interactions with teachers and peers that she was not learning 
math quickly enough have shaped how Ella characterizes herself today as uncomfortable with the 
subject. Corrine’s past connections with her mother, who did connect with math, and the repeated 
affirmations by teachers of her success have shaped Corinne’s continued positive associations with 
the subject. Literature on mathematical development in children often stresses the influence parents 
and teachers can have (e.g. Maloney et al., 2015; Pea & Martin, 2010). While this influence is 
apparent in how Ella and Corinne position themselves today, it also informs the influence of their 
mathematical activity with children. In this sense, mathematics interaction by parents can have a 
generational impact. 

How Ella and Corinne interact with mathematics and their children today has marked differences, 
and reflects on their prior experience in the subject. Ella relies on outside or common resources, such 
as directives for her spouse or everyday tasks, to support engagement in mathematics for her 
daughter. She uses these elements as a way to counteract her positioning of uncertainty and 
discomfort with the subject. Corinne relies on authentic moments in everyday tasks to ask more 
math-specific questions of her children, divided equally with her mathematically-capable spouse. Her 
actions reflect similar exposure to the subject she received from her mother and repeated positioning 
by parents and teachers as mathematically capable. While there are variations in the kinds of 
activities Ella and Corinne choose, both reflect positive forms of mathematical engagement. 

Ella and Corinne’s interactions with children are based on authentic activity. As Pattison and 
colleagues (2016) suggest, this attention to authentic, at-home mathematics learning in diverse 
settings effectively supports mathematical reasoning. In both cases, the mothers are seeking out 
positive forms of mathematical engagement with their available  resources and reflective of the 
positioning that they have. These interactions may have elements of difference, but they both rely on 
the use of everyday activity and are done with the best of intentions for their children. The cases of 
Ella and Corinne demonstrate alternative understanding of mothers’ engagement with mathematics 
and recognition of context informing their interactions. 

While there are limitations in the current study due to a lack of diversity in the participants, this 
study acts as a gateway to further exploration of parents (not just mothers) and their mathematical 
interactions. Literature that addresses Black mothers’ perspectives in engagement to promote 
academic success for their older children (e.g. Jackson & Remillard, 2005; McGee & Beale Spencer, 
2015) offer further validation to the possibilities of mothers’ positive interactions in mathematics. 
Future work can strengthen connections between school and early childhood mathematics while 
alleviating the assumptions about mothers negatively impacting their children. Additional attention is 
needed to understand the complexity of experience and the factors that shape parents’ positioning 
and resultant interaction with mathematics. 
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The security and doubt about mathematical facts (F) that a high school student experiences are 
examined. Rigo-Lemini (2009; 2013) has called those states 'epistemic states of conviction' (ESC) 
around F. It is argued that: i) the ESCs fulfill a didactic purpose, related to the satisfaction of certain 
epistemic needs and that ii) those ESC function as an alarm system that informs the person about the 
status of those needs and as a system that prepares the person to act accordingly. 

Key words: Affect, Emotion, Beliefs; Research Methodologies; Cognition. 

Background, Problem and Research Questions 
The study focuses on phenomena related to security and doubt in mathematical contents F (eg, 

results of mathematical tasks or operations, solving tasks’ strategies). Rigo-Lemini (2013) calls these 
states “epistemic states of conviction around F’s”, denoted as “ESC”. Researchers have provided 
evidence that security and doubts about some F are present in school mathematics (Fischbein, 1987; 
Segal, 2000). Likewise, experts have suggested that, in certain cases, these ESCs adequately guide 
mathematical work, promoting advances in learning. However, in other cases, ESCs come to have 
unfavorable effects on the student's decisions and actions: for example, if a student doubts a 
mathematical concept or rule, it is very likely that he will not use it in a problem-solving activity ( 
Fischbein, 1987; Foster, 2016). It would be highly desirable to understand the conditions under 
which the phenomena described above occur. However, experts acknowledge that the phenomena of 
conviction around F’s have been little studied in the field of mathematics education (Fischbein, 1987; 
Foster, 2016; Inglis, Mejia-Ramos and Simpson, 2007; Segal 2000). So, to make didactic 
interventions focused on the ESCs, and well-founded, it is necessary to expand the current 
knowledge on this topic. In order to increase these understandings about ESCs in the field of 
mathematics education, this manuscript answers the following two research questions: What are the 
didactic purposes of the ESCs that a student experienced during the resolution of a mathematical 
task? And what functions did those ESCs perform? 

Methods and Methodology 
The research adheres to the guidelines of the Grounded Theory (GT), in the version by Corbin & 

Strauss (2015). GT is a form of qualitative research that offers tools to build theoretical categories, 
based on empirical data, in order to develop explanations about the phenomena under study. For this 
reason, the GT does not start from a theoretical framework; it is about developing one. To elaborate 
these theoretical explanations, Corbin & Strauss (2015) suggest going to what they call context 
analysis (CA). In CA it is assumed that when people act or have some internal experience they are 
seeking to respond to events that are significant to them, in order to cover some unmet need or to 
maintain circumstances to preserve satisfied needs; these events are called conditions. From the 
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conditions and from the actions or experiences that they promote, some result is usually derived, 
called consequences. In GT, explanations are constructed by applying the categories developed in the 
research and following the principles of CA. One of the objectives of the present investigation is to 
transcend the description to construct theoretical explanations; it was for this reason that GT was 
chosen. In addition to CA and other analytical techniques, microanalysis was applied, a tool that 
seeks to explore in depth the meaning of some pieces of data and that is usually used in early 
exploration stages. 

What is reported in this manuscript is focused on a case study, about Hannia. She, like the five 
classmates who participated in the research (between 14 and 15 years old), were in third grade. The 
choice of subjects was made by the math teacher, who was asked to choose students with academic 
excellence. Empirical data was retrieved through a questionnaire, applied individually, that included 
6 problems of missing value, 5 of them about proportional reasoning. At the end of each item 
students were asked to report the ESC they experienced (on a scale that included secure, partially 
secure, and totally unsecure) with respect to the answer given, and to explain in what reasons they 
based their level of secure. After the questionnaire, an unstructured interview was applied 
individually. Hannia was chosen because her questionnaire resolutions and her interview 
pronouncements and testimony provided valuable information on the nodal concepts examined in 
this investigation. In the following the case of Hannia is exposed; the data from the case is taken 
from the resolution that she offered to one of the tasks proposed in the questionnaire (the task of the 
skeins), as well as from her interventions in the interview. 

Description of Security and Doubt Experiences around F’s. Case Report 
The researchers proposed Hannia the following task: Three skeins of wool weigh 200 grams. It 

takes 8 to make a sweater. How much does the sweater weigh? Three elements can be distinguished 
in Hannia's production: strategy approach (a), the operations carried out (b) and the resolution 
reached (c). 

 

 
Figure 1. Hannia’s resolution 

 
Although the strategy approach is not orthodox and despite omitting the reference to the quantities 

involved in each measurement space, Hannia's resolution is correct. Its resolution consists of two 
steps. In the first one, the unit value is calculated using the proportionality factor. In the second, she 
applied the external factor to the unit value (Cf. Vergnaud, 1985). The analysis of the episode, which 
is set out below, has been divided into three segments. 
First Segment: Security in Strategy 

In the questionnaire, Hannia explicitly stated her security in the strategy (See Figure 1). In the 
interview, when the researchers asked her "(. . .) What is your security about?" (311), she confirmed 
that security and expressed what it was linked to: "(. . .) I know that the procedure [strategy] that I 
carried out to solve it, I know it was correct ..., so that is what my security is based on" (312). By 
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reporting that her security in the procedure is based on the fact that she "knows that it is correct", she 
reveals what she needs to experience that security: she needs to know that she did the right thing. She 
did not base her security only on supposing that her procedure was correct, or on believing, intuiting, 
or imagining it (Cfr. Villoro, 2002); to be sure, she demands to know that she acted properly. 

But how did Hannia know that her procedure was correct? What reasons did she rely on? Although 
the guarantees on which she based her knowledge does not make them explicit, in the interview she 
hinted at some clues about what it means for her to trust. When the researchers asked her: "Hey, for 
you, what is it to be sure?” (317), she responds: “(. . .) Trusting what you did or what you said or 
what you do… that you do not regret what you have already done, you have to be focused” (318), “(. 
. .) be ... like ... zero nerves, relaxed, as sure haha with what you did, that you feel satisfied "(320); to 
this, the researchers ask: “Satisfied with what? (321) and she responds: "(. . .) satisfied with what you 
achieve or what you already did" (322). She immediately takes up the topic: “(. . .) Of what I have 
already done, [that I did] what they asked me to do, [and] what I did was good and therefore I am 
relaxed” (324), and then she assures: “(. . .) [when] (. . .) I don’t follow a procedure that was taught to 
me, I feel more unsure of the result I obtained ”(340). From this, it is plausible to suppose that 'doing 
what they asked' (324) or 'applying a procedure they taught' (340) are the reasons on which Hannia 
possibly based her 'knowing' that her strategy was correct. 
Second Segment: Insecurity in Operations (carried out on a first attempt) 

Following the chosen strategy, Hannia carried out the corresponding operations (See Figure 1). In 
the interview, she also outsourced the ESCs that she experienced during the execution of those 
operations and clarified what she based those ESCs on. Hannia comments that her security is based 
on the procedure performed, "(. . .) I know that the procedure I carried out to solve it, I know that the 
calculations I made were correct or well done, so my security is based on that" (312) and when asked 
her about how she knows that her calculations are correct, she expresses: “(. . .) I rectified them 
several times when I had already obtained the final result and I was able to make my conclusions and 
that's it” (314). By the type of response, it was considered important to ask if this is something that 
she usually does, to which she replied: "yes, when I don't feel very sure, or things like that (. . .) 
sometimes I do rectify my operations" (316 ). 

As in the case of strategy, in the case of operations Hannia clarifies that she needed to know that 
they were correct in order to experience security, imposing on herself the epistemic need to know the 
correctness of the calculations to experience confidence. But, unlike the first, in this segment the 
student did specify the reasons on which her knowledge rested: in the verification of operations. In 
the interview, Hannia reveals that if she does not verify the calculations, she cannot know that they 
are correct and therefore she experiences insecurity around them. So, regarding her resolution of the 
task of the skeins, it is possible to suppose that in the first attempt, that is, in this second segment, 
Hannia felt insecure of her operations, because as she clarified, she verified them to be sure of the 
final result (314). 
Third segment: Security in operations (performed on a second attempt) and security in the 
final result 

Both in its production and in the interview, Hannia left no evidence of the rectification of 
operations. We assume that work was done mentally. Upon achieving the goal of 'rectifying the 
operations multiple times', she knew they were correct (met her epistemic need to know) and felt a 
security experience reporting in 312: “I know (. . .) That my calculations are correct, in that is based 
on my security”. Supported by that security, she was already able to make her conclusions (314), that 
is, she was able to propose with confidence her final result, ‘without regret’ (318), concluding the 
exercise. 
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Theoretical Empirical Findings: Explanations on the Didactic Purposes and Functions of 
Security and Doubt about H’s 

From the above, it can be said that the overlapping of conditions that generated security (eg, about 
the strategy, or the operations) in Hannia included having achieved some objectives (eg, verifying 
operations, applying what they taught her), which it allowed her to satisfy her epistemic need to 
know that (her work was correct). As a consequence, security led her to accept the results that are the 
object of her security and to continue with the mathematical work in accordance with this acceptance 
trend. A consideration, in a sense symmetrical to the previous one, can be made regarding the 
insecurity that Hannia felt during her productions. The overlapping of conditions that generated 
insecurity (e. g, in operations) includes (among other factors) not having reached certain objectives 
(e. g, to verify), which prevented her from meeting her epistemic need to know that (her work it was 
well done). As a consequence, insecurity led Hannia to distance herself from the object of her doubt 
and led her to carry out certain mathematical works (in order to achieve her goals and satisfy her 
epistemic need to know). The categories corresponding to the conditions and those corresponding to 
the consequences that have been introduced in the framework of the investigation whose partial 
results are presented here have been highlighted with italics. 

In accordance with this approach, the ESCs function as signals that inform the student whether or 
not an epistemic need is met. The study also reveals the effects of ESCs: when Hannia experiences 
security (epistemic need fulfilled), she generates a certain commitment to F and specifically directs 
her mathematical work towards F accordingly. When she builds an experience of doubt, in the face 
of unmet epistemic needs, she generates a distance or reluctance towards F and specifically guides 
her mathematical works in accordance with this trend. 

We are then able to answer the first question, about the aims of ESCs in Hannia, or about the kinds 
of situations that her ESCs experiences allowed Hannia to face and resolve. A remarkable purpose of 
the ESCs in Hannia is that they allowed her to face and solve situations where epistemic needs are 
involved: when they are fulfilled, to preserve them and when they are not, to settle them. 

And it is also possible to answer the second: What didactic functions did her ESCs play in solving 
these events? Her ESCs allowed Hannia to identify if her epistemic needs were met or not, 
functioning as an alarm system that keeps her informed about the status of those epistemic needs. 
Additionally, her ESCs also functioned as a system, coordinated with the previous one, that prepares 
her for action, that is, that drives her to carry out the corresponding mathematical works. 

Final thoughts 
Research based on GT methodology is not intended to establish generalizations; however, GT 

allows generating understandings that can be generalized, under certain restrictions, to similar cases 
that adjust to conditions analogous to those studied under GT (Corbin & Strauss, 2015; Reichertz, 
2007). So, it is feasible to suppose that the explanations given here can be applied to cases analogous 
to those of Hannia. These explanations are novel and pertinent for research in mathematics education 
and for its teaching and may represent the basis for the gradual theoretical construction of a 
compendium of understandings on the phenomenon, empirically based, that allow, in the medium 
term, to make didactic interventions focused on the ESCs, well oriented and ethically responsible. 
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Se examina la seguridad y la duda en torno a hechos de las matemáticas (H) que experimenta una 
estudiante de secundaria. A esos estados Rigo-Lemini (2009; 2013) los ha denominado ‘estados 
epistémicos de convencimiento’ (EEC) en torno a H. Se argumenta que: i) los EEC cumplen una 
finalidad didáctica, relacionadas con la satisfacción de ciertas necesidades epistémicas y que ii) 
esos EEC funcionan como un sistema de alarma que informa a la persona sobre el estatus de esas 
necesidades y como un sistema que prepara a la persona para actuar en consecuencia.  

Palabras clave: Afecto, Emoción, Creencias; Metodologías de Investigación; Cognición. 

Antecedentes, Problema y Preguntas de Investigación  
El estudio se centra en fenómenos relacionados con la seguridad y la duda en hechos de las 

matemáticas H (e. g., resultados de tareas matemáticas o de operaciones; estrategias de resolución de 
tareas). A esos estados Rigo-Lemini (2013) los denomina estados epistémicos de convencimiento en 
torno a H’s’, denotados como EEC. Investigadores han aportado evidencias de que la seguridad y las 
dudas en torno a algún H están presentes en la matemática escolar (Fischbein, 1987; Segal, 2000). 
Asimismo, los expertos han sugerido que, en ciertos casos, esos EEC orientan adecuadamente el 
trabajo matemático, promoviendo avances en los aprendizajes. Sin embargo, en otros casos los EEC 
llegan a tener efectos desfavorables en las decisiones y acciones del alumno: por ejemplo, si un 
estudiante duda de un concepto o regla matemática, es muy probable que no la utilice en una 
actividad de resolución de problemas (Fischbein, 1987; Foster, 2016). Sería del todo deseable 
comprender las condiciones en las que se dan los fenómenos antes descritos. No obstante, los 
expertos reconocen que los fenómenos de convencimiento en torno a H’s han sido muy poco 
estudiados en el ámbito de la educación matemática (Fischbein, 1987; Foster, 2016; Inglis, Mejia-



Fines y funciones didácticas de la seguridad y la duda en contenidos matemáticos 

	 1415	

Ramos y Simpson, 2007; Segal 2000). De modo que, para hacer intervenciones didácticas centradas 
en los EEC, y bien fundamentadas, resulta necesario ampliar el actual conocimiento sobre ese tema. 
Con el fin de incrementar esas comprensiones en torno a los EEC en el ámbito de la educación 
matemática, en este manuscrito se responde a las siguientes dos preguntas de investigación: ¿Cuáles 
son los fines didácticos de los EEC que experimentó una estudiante durante la resolución de una 
tarea matemática? Y ¿Qué funciones desempeñaron esos EEC?  

Métodos y Metodología 
La investigación se apega a los lineamientos de la Teoría Fundamentada (TF), en la versión de 

Corbin & Strauss (2015). La TF es una forma de investigación cualitativa que ofrece herramientas 
para construir categorías teóricas, fundadas en datos empíricos, con el fin de construir explicaciones 
sobre los fenómenos bajo estudio. Por eso, en la TF no se parte de un marco teórico; se trata de 
desarrollar uno. Para elaborar esas explicaciones teóricas, Corbin & Strauss (2015) sugieren acudir a 
lo que ellos llaman análisis de contexto (AC). En el AC se supone que cuando las personas actúan o 
tienen alguna experiencia interna están buscando dar respuesta, a sucesos o eventos que son 
significativos para ellas, con el fin de cubrir alguna necesidad no satisfecha o de mantener 
circunstancias para preservar necesidades satisfechas; a esos eventos se les denominan condiciones. 
De las condiciones y de las acciones o experiencias internas que propician, se suele desprender algún 
resultado, denominado consecuencias. En la TF, las explicaciones se construyen aplicando las 
categorías desarrolladas en la investigación y siguiendo los principios del AC. Uno de los objetivos 
de la presente investigación es trascender la descripción para construir explicaciones teóricas; fue por 
ello que se eligió la TF. Además del AC y de otras técnicas analíticas, se aplicó el microanálisis, 
herramienta en la que se busca explorar en profundidad, el significado de algunas piezas de datos y 
que se suele utilizar en estadios de exploración temprana.  

Lo que se reporta en este manuscrito está centrado en un estudio de caso, el de Hannia. Ella, al igual 
que los cinco compañeros que participaron en la investigación (de entre 14 y 15 años), cursaban 
tercero de secundaria. La elección de los sujetos la realizó la maestra de matemáticas, a quien se le 
solicitó que fueran estudiantes con excelencia académica. Se recuperaron datos empíricos a través de 
un cuestionario, aplicado de manera individual, que incluía 6 problemas de valor faltante; 5 de ellos 
eran de proporcionalidad. Al final de cada reactivo se les pidió a los alumnos que reportaran el EEC 
que experimentaron (en una escala que incluía seguro, parcialmente seguro y totalmente inseguro) 
con respecto a la respuesta dada, y que explicaran en qué basaban su nivel de seguridad. Después del 
cuestionario se aplicó, de manera individual, una entrevista no estructurada. Se eligió a Hannia 
porque sus resoluciones al cuestionario y sus declaraciones en la entrevista brindaron información 
valiosa sobre los conceptos centrales que se examinan en esta investigación. En lo que sigue se 
expone el caso de Hannia; los datos del caso se toman de la resolución que ella ofreció a una de las 
tareas propuestas en el cuestionario (la tarea de las madejas), así como de sus intervenciones en la 
entrevista. 

Descripción de Experiencias de Seguridad y Duda en torno a H’s. Relato de un Caso 
Las investigadoras le propusieron a Hannia la siguiente tarea: Tres madejas de lana pesan 200 

gramos. Se necesitan 8 para hacer un suéter ¿Cuánto pesa el suéter? En la producción de Hannia se 
pueden distinguir tres elementos: el planteamiento de su estrategia (a), las operaciones realizadas (b) 
y la resolución a la que llegó (c). 
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Figura 1. Producción Hannia 

 
Aunque el planteamiento de la estrategia no es ortodoxo y a pesar de que omite la referencia a las 

cantidades involucradas en cada espacio de medida, la resolución de Hannia es correcta. Su 
resolución consta de dos pasos. En el primero calcula, mediante el factor de proporcionalidad, el 
valor unitario. En el segundo aplica el factor externo al valor unitario (Cf. Vergnaud, 1985). El 
análisis del episodio, que se expone en lo que sigue, se ha dividido en tres segmentos.  
Primer Segmento: Seguridad en la Estrategia  

En el cuestionario Hannia manifestó de manera explícita su seguridad en la estrategia (V. Figura 1). 
En la entrevista, cuando las investigadoras le preguntaron “(. . .) ¿A qué se debe tu seguridad?” 
(311), ella confirmó esa seguridad y expresó a qué estaba ligada: “(…) sé que el procedimiento 
[estrategia] que realicé para solucionarlo, sé qué pues fue correcto…, entonces en eso se basa mi 
seguridad” (312). Al reportar que su seguridad en el procedimiento está basada en que ella ‘sabe que 
es correcto´, deja ver lo que necesita para experimentar esa seguridad: ella necesita saber que 
procedió de manera acertada. Ella no basó su seguridad sólo en suponer que su procedimiento fue 
correcto, o en creerlo, intuirlo o imaginarlo (Cfr. Villoro, 2002); para estar segura, ella se exige saber 
que actuó adecuadamente.     

Pero ¿Cómo supo Hannia que su procedimiento era correcto? ¿En qué razones se apoyó? Aunque 
las garantías en las que sustentó su saber no las explicita, en la entrevista insinuó algunas pistas sobre 
lo que para ella significa confiar. Al preguntarle: “Oye y para ti ¿Qué es estar segura?” (317), ella 
responde: “(. . .) confiada de lo que tú hiciste o lo que dijiste o lo que haces… que no te arrepientas 
de lo que ya hiciste, tienes que estar como centrada” (318), “(. . .) estar… como que… cero nervios, 
relajada, como segura jaja con lo que tú realizaste, que te sientas satisfecha” (320); a esto se le 
pregunta: “¿Satisfecha de qué? (321) y ella responde: “(. . .) como de lo que logras o lo que ya 
hiciste” (322). En seguida retoma: “(. . .) de lo que ya hice, [que hice] lo que me pidieron, [y] lo que 
hice estuvo bien y por ello estoy relajada” (324), y después asegura: “(. . .) [cuando] no (. . .) sigo un 
procedimiento que me enseñaron sí me siento más insegura del resultado que obtuve” (340). De esto, 
es plausible suponer que el ‘hacer lo que le pidieron’ (324) o el ‘aplicar un procedimiento que le 
enseñaron’ (340) son las razones en las que posiblemente Hannia basó su ‘saber’ que su estrategia 
era correcta. 
Segundo Segmento: Inseguridad en las Operaciones (realizadas en un primer intento)  

Siguiendo la estrategia elegida, Hannia realizó las operaciones correspondientes (V. Figura 1). En la 
entrevista ella también externalizó los EEC que experimentó durante la ejecución de esas 
operaciones, y aclaró en qué basaba esos EEC. Hannia comenta que su seguridad la basa en el 
procedimiento realizado, “(. . .) sé que el procedimiento que realicé para solucionarlo, sé que pues 
fue correcto, o estuvo bien los cálculos que yo hice, entonces en eso se basa mi seguridad” (312) y al 
preguntarle sobre cómo sabe que sus cálculos están bien, ella expresa: “(. . .) los rectifiqué varias 
veces cuando ya había obtenido el resultado final y ya fue que pude hacer mis conclusiones y ya” 
(314). Por la respuesta, se consideró importante preguntar si eso es algo que ella suele hacer, a lo que 
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ella respondió: “sí, cuando no me siento muy segura, o cosas así (. . .) a veces sí rectifico mis 
operaciones” (316).  

Al igual que en el caso de la estrategia, en el de las operaciones Hannia aclara que necesitaba saber 
que eran correctas para poder experimentar seguridad, imponiéndose la necesidad epistémica de 
saber de la corrección de los cálculos para experimentar confianza. Pero, a diferencia del primero, en 
este segmento la alumna sí especificó las razones en las que descansó su saber: en la verificación de 
operaciones. En la entrevista, Hannia revela que, si ella no verifica los cálculos, no puede saber que 
son correctos y por tanto ella experimenta inseguridad en torno a ellos. Así que, respecto a su 
resolución de la tarea de las madejas, es posible suponer que en el primer intento, es decir, en este 
segundo segmento, Hannia se sintió insegura de sus operaciones, pues como ella aclaró, las verificó 
para estar segura del resultado final (314). 
Tercer segmento: Seguridad en las operaciones (realizadas en un segundo intento) y 
seguridad en el resultado final 

Tanto en su producción como en la entrevista, Hannia no dejó evidencia de la rectificación de 
operaciones. Suponemos que ese trabajo fue hecho de manera mental. Al lograr el objetivo de 
‘rectificar varias veces’ las operaciones, supo que eran correctas (satisfizo su necesidad epistémica de 
saber) y sintió una experiencia de seguridad que reporta en 312: “sé (. . .) que mis cálculos son 
correctos, en eso se basa mi seguridad”. Pertrechada en esa seguridad, ya pudo hacer sus 
conclusiones y ya (314), es decir, pudo proponer con toda confianza su resultado final, ‘sin 
arrepentirse’ (318), dando por terminado el ejercicio.  

Hallazgos Teórico Empíricos: Explicaciones sobre los Fines y las Funciones Didácticas de la 
Seguridad y la Duda en torno a H’s  

De lo antes expuesto se puede decir que el imbricado de condiciones que generaron seguridad (e.g., 
sobre la estrategia, o las operaciones) en Hannia incluyó el haber alcanzado algún objetivo (e.g., 
verificar operaciones, aplicar lo que le enseñaron), lo cual le permitió satisfacer su necesidad 
epistémica de saber que (su trabajo era correcto). Como consecuencia, la seguridad la llevó a aceptar 
los resultados objeto de su seguridad y a continuar con el trabajo matemático en concordancia con 
esa tendencia de aceptación. Una consideración, en cierto sentido simétrica a la anterior, se puede 
hacer con respecto a la inseguridad que Hannia sintió durante sus producciones. El imbricado de 
condiciones que en ella generaron inseguridad (e.g., en las operaciones) incluye (entre otros factores) 
el no haber alcanzado ciertos objetivos (e.g., el de verificar), lo que le impidió cubrir su necesidad 
epistémica de saber que (su trabajo estaba bien hecho). Como consecuencia, la inseguridad llevó a 
Hannia a tomar distancia del objeto de su duda y la llevó a realizar ciertos trabajos matemáticos 
(con el fin de alcanzar sus objetivos y satisfacer su necesidad epistémica de saber). Se han resaltado 
con letras itálicas las categorías correspondientes a las condiciones y las correspondientes a las 
consecuencias que se han introducido en el marco de la investigación cuyos resultados parciales aquí 
se exponen. 

De acuerdo con este planteamiento, los EEC funcionan como señales que le informan a la estudiante 
si una necesidad epistémica está o no solventada. El estudio también deja ver los efectos de los EEC: 
cuando Hannia experimenta seguridad (necesidad epistémica cumplida) genera un cierto compromiso 
con H y orienta específicamente sus trabajos matemáticos hacia H conforme a ello. Cuando 
construye una experiencia de duda, ante necesidades epistémicas insatisfechas, genera una distancia 
o reticencia hacia H y orienta específicamente sus trabajos matemáticos de acuerdo con esa 
tendencia.  

Se está entonces en condiciones de responder a la primera pregunta, sobre los fines de los EEC en 
Hannia, o sobre el tipo de situaciones que sus experiencias de EEC le permitieron a Hannia afrontar y 
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resolver. Un propósito destacable de los EEC en Hannia, es que le permitieron enfrentar y solventar 
situaciones donde están involucradas necesidades epistémicas: cuando están cumplidas, para 
preservarlas y cuando no lo están, para saldarlas.  

Y también es posible responder a la segunda: ¿Qué funciones didácticas desempeñaron sus EEC en 
la resolución de esas incidencias? Sus EEC le permitieron identificar a la estudiante si sus 
necesidades epistémicas estaban satisfechas o no, funcionando como un sistema de alarma que la 
mantiene informada sobre el estatus de esas necesidades epistémicas. Adicionalmente, sus EEC 
funcionaron también como un sistema, coordinado con el previo, que la prepara para la acción, esto 
es, que la impulsa a la ejecución de los trabajos matemáticos correspondientes.  

Consideraciones finales 
Las investigaciones basadas en la metodología de la TF, no tienen la finalidad de establecer 

generalizaciones; no obstante, la TF permite generar comprensiones que se pueden generalizar, bajo 
determinadas restricciones - a casos semejantes que se ajusten a condiciones análogas a los 
estudiados bajo la TF (Corbin & Strauss, 2015; Reichertz, 2007). De modo que es viable suponer que 
las explicaciones aquí dadas se pueden aplicar a casos análogos a los de Hannia. Esas explicaciones 
resultan novedosas y pertinentes para la investigación en educación matemática y para su enseñanza 
y pueden representar la base para la paulatina construcción teórica de un compendio de 
comprensiones sobre el fenómeno, fundamentadas empíricamente, que permitan, a mediano plazo, 
hacer intervenciones didácticas centradas en los EEC, bien orientadas y éticamente responsables.  
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This research focuses on the importance of attending to transfer students in mathematics 
departments at research universities. This study explores the development of professional vision 
among mathematics transfer students, through examining community, “student” skills, and students’ 
future career aspirations. A bundle of three transitional mathematics course for transfer students 
offered concurrently at a four-year research university provided the setting, and we compared 
transfer students enrolled in bundle, non-bundle transfer students, and non-transfer students. 
Overall, students identified differences in their mathematical communities, their development as 
mathematics students, and their resources for career pathways. 

Keywords: University mathematics; Affect, emotion, beliefs, and attitudes 

The recent increase of transfer student enrollment mandated by many universities drives a need to 
understand how we can better prepare faculty to support this growing population of students. There is 
currently little research about how to support mathematics majors as they make the transition from 
two-year institutions to four-year institutions of higher education, even though there is general 
scholarship about transfer students (e.g., Melguizo et al., 2011). Understanding mathematics transfer 
students is important for three key reasons. First, the mathematics transfer population includes large 
numbers of underrepresented minorities, low-income, and first- generation college students (>50%), 
who start their college education at a community college—students who are often left out of the 
STEM pipeline (Carnevale et al., 2011). Second, we have seen a high level of attrition of transfer 
students from the mathematics major at our university, with just over half completing the major. It is 
important to understand whether retaining students in the major with the proposed intervention, a 
bundle of course to support transfer students helps. Third, transferring and adjusting to a four-year 
institution can be a complex process for students, requiring adjustments on many different levels 
(Laanan, 2001). In addition to a drop in GPA, transfer students often report feelings of alienation and 
isolation at their new institution (Laanan, 2001), with women and minorities majoring in STEM more 
likely to face this particular struggle (Espinosa, 2011). For these reasons, we studied how transfer 
mathematics students compared to non-transfer mathematics students enrolled in the aforementioned 
bundle of courses designed to support transfer students. 

Framing 
We use Lave and Wenger’s (1991) legitimate peripheral participation and Goodwin’s (1994) 

professional vision as a conceptual framework to consider mathematics transfer students’ 
development along a novice to expert continuum of professional vision. In particular, our research 
question was: How do community college transfer students differ from non-transfer students enrolled 
in a bundle of support courses for transfer students in a mathematics department in terms of: (a) 
feeling that they are part of a community; (b) learning to be a college mathematics student; and (c) 
preparing for a future mathematics career?  
Legitimate Peripheral Participation 

We drew on Lave and Wenger’s (1991) ideas of legitimate peripheral participation, as related to 
apprenticeships, and active participation in a community of knowledge. In particular, we were 
interested in how individuals engaged with one another to feel like they were part of a community. 
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Students learned content not simply by receiving factual knowledge, but within and engaged as part 
of a community of learners, developing facility with content and community (Lave & Wenger, 1991). 
As students learned to be college students and prepared for their future careers, they engaged in 
peripheral participation, which was full participation in the community of practice (Lave & Wenger, 
1991). This allowed four-year mathematics students to engage in novice-expert relationships, being 
apprenticed into new skills and knowledge of expertise, such as becoming four-year university 
college students or mathematics professionals.  
Professional Vision 

Such novice-expert interactions as those previously described were organized for the development 
of professional vision (Goodwin, 1994).  We drew on Goodwin’s professional vision to understand 
the development of the professional vision needed for being a four-year student and a future 
mathematics professional, which he defined using three characteristics: 1) being perspectival; 2) 
being situated; and 3) being learned, because it was situated.  

Research Methodology 
This research took place in the context of a research university mathematics department and 

involved students engaged with at least one “bundle” course. Three mathematics courses made up the 
bundle: (1) special topics in mathematics (a course to develop problem solving and the expectations 
for upper level mathematics courses)—Course A, (2) group studies in mathematics (an academic and 
career advising course)—Course B, and (3) transition to higher mathematics—Course C. This third 
course served as a comparison course across all three groups of participants in the study, as it was a 
prerequisite for many mathematics courses that followed. Course C was an introduction to the 
elements of propositional logic, techniques of mathematical proof, and fundamental mathematical 
structures, including sets, functions, relations, and other topics. This was the second year of this 
study. In the first year of our study (Roberts et al., 2019), the mathematics department selected 
students into the bundle and placed all students into the same section of Course C. During the second 
year, reported here, students voluntarily selected into the bundle, and the mathematics department 
placed students into two separate sections of Course C. 

Three groups of students participated in this study: transfer students who voluntarily chose to take 
the “bundle” courses (concurrently); transfer students who took only Course C; and non-transfer 
students who took only Course C. This allowed for comparative groups to understand how groups of 
students engaged with the content in the bundle courses. 

We conducted and audio-recorded semi-structured focus groups (Yin, 2016; 40-60 minutes) and 
individual interviews (25-35 minutes) to understand how participants developed professional vision 
around being a mathematics major and mathematics professional. The interview covered the 
following: background information, three-course bundle, being a mathematics student, ways of 
thinking and doing mathematics, and preparation for a career in mathematics.  

We used focused coding (Maxwell, 2005), applying three themes: community, being a student, and 
future as a mathematician, to code the interviews and focus groups. We then looked within and 
across each set of coded data and research question, looking for consistencies and inconsistencies. 
We also drew on data from our Year 1 data from the 2018-2019 school year, which was coded 
similarly and used the same conceptual framework but only examined bundle transfer student (See 
Roberts et al., 2019, for more information), to make longitudinal comparisons, to triangulate, and to 
look for further consistencies and inconsistencies. 
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Findings 
We found that there were differences between bundle students, transfer students, and non-transfer 

students across the students we interviewed. We describe key differences in ways transfer and non-
transfer students viewed community, office hours, and their future career opportunities. 
Role of Community 

There was a difference in the way that transfer students discussed the role of community compared 
the non-transfer students, especially those students who were enrolled in the bundle courses. This 
resonated with our Year 1 findings, where we found that students were very connected with other 
students in the bundle course. In our Year 2 findings, students in the bundle noted the role of the 
community. For instance, Megan shared, “[So,] the community I feel, like, it kind of empowered me 
a bit” (p. 6), when she was asked about the benefits of taking the bundle courses. Similarly, Talia, 
also from the bundle, explained, “[T]o reiterate, the community…I feel like I can always text 
someone, even if they’re not in the same class. I can always message and be like, ‘Does anyone, you 
know, wanna help?’ Or whatever” (p. 21). These students felt like there was a strong sense of 
community in the bundle, where they could go to other students for help and draw on the collective 
wisdom of other students—there was collective professional vision situated in their bundle 
(Goodwin, 1994). However, Caleb, a bundle student, also mentioned that he had community through 
another outlet, a club sport, and did not need to draw on the community from other transfer students 
and the bundle. Therefore, this was not consistent with all bundle students. Additionally, not all 
transfer students mentioned that they felt that they were part of this community. For example, a non-
bundle transfer student, Madison, explained, “I agree that there was community, but I also felt very 
excluded from it, so I didn’t feel like I was part of that community. I did see that there was a 
community” (p. 17). For this student, there was an issue with being excluded from the community. 

The non-transfer students also mentioned community, but this community did not appear to 
emanate from the courses, like it did with the bundle courses. Instead this community was from 
friends made externally from the courses or friends made within the courses but not with the help of 
the courses. In the bundle courses, the community appeared to be built from within the course—with 
the instructors helped to develop that community, as described below. Non-transfer student, Esther, 
described a group of friends she with whom had taken earlier mathematics classes and with whom 
she had studied previously. However, those students were not in Course C, so there was not a feeling 
of community, because she did not have interactions with any of those same students any longer. 
Bundle courses, in contrast, forced students to work together, which likely allowed most students to 
develop community. 
Being a Student 

Approaching faculty for support was the key component of being a student we explored in this 
study. Transfer students were the only students who mentioned visiting professors’ office hours. 
Bundle students were the only ones who discussed their visits in detail. Others noted that these were 
resources for help in their mathematics course, but none of the other students we interviewed, besides 
the bundle students, discussed, in detail, attending office hours. Non-transfer students even went so 
far as to mention not going to office hours or not even interacting with faculty. This is notable, 
because office hours can be a useful tool for students to learn how to ask for help, especially for 
transfer students, who are more likely to change majors and leave universities. As we noted in our 
Year 1 paper, Course B required students to attend office hours. Talia, from the bundle, shared, “I 
think the first time I went to office hours last quarter, I was so terrified, but it kind of made me 
realize…how approachable people are” (p. 7). Even though going to visit professors was difficult at 
first, students found this valuable. As Talia explained, “And, so, now, I have no problem going to 
office hours if I need to” (p. 7). This was consistent with our Year 1 findings, where those students 
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who were “forced” to go to office hours in the bundle were thankful for developing familiarity with 
the process and with getting to know faculty and TAs. 
Future Career Opportunities 

The Course B instructor, who was also a mathematics department advisor, was highlighted as key in 
sending out information to all student participants about future mathematics career opportunities. 
There was a key difference between transfer students and non-transfer students in their 
considerations about their future careers and what they had accomplished toward those careers by the 
time we had met for our interviews. Second year non-transfer students had already applied for 
internships, were participating in research on campus, had attended mathematics conferences off-
campus, had secured funding, and had other such opportunities. Additionally, they seemed to feel 
like they had plenty of time to figure out their future plans. In contrast, transfer students were just 
beginning to learn about these opportunities, but they also felt the pressure to figure out their future 
more quickly as third-year students. Bundle students had, as part of their Course B coursework, 
weekly panels on graduate school, jobs in industry, and other opportunities, whereas, non-bundle 
transfer students were dependent upon weekly department emails, clubs, and reaching out for 
individual emails. Even so, bundle students asked for more, such as how to write in LaTeX, what K-
12 careers might entail, and how to write cover letters for research internships (which those non-
transfer students had already secured). We noted in our Year 1 findings that bundle students were 
similarly reaching out for more internship opportunities. The fact that non-transfer students had 
already applied for these placements supports this finding that more needs to be done to work with 
transfer students to level the playing field for future opportunities. Finally, because not all students 
had access to the bundle, we see that transfer students are missing out on Course B and this future 
career advising. 

Discussion and Conclusions 
There were three key differences between transfer students and non-transfer students in the bundle 

and non-bundle courses. First, the bundle course provided a community for transfer students to 
develop a mathematics community. Second, those transfer students in the bundle were more likely to 
attend office hours, which meant they were more likely to reach out for support in their coursework. 
Third, transfer students were more likely to be behind non-transfer students in their future 
mathematics plans; however, bundle students were more likely to have had exposure to more future 
possibilities. This bundle of courses offered transfer students with connections that helped them 
adjust to life as a mathematics student, as well as professional vision for their future mathematics 
careers.  
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Research studies support caregiver’s involvement in their child’s mathematical journey as 
foundational to their cognitive development and academic success as mathematical learners (e.g., 
Sheldon & Epstein, 2005). The purpose of this intrinsic case study was to understand how a 
caregiver initiated and/or continually engaged their child in spontaneous mathematical moments 
during the engineering design process. Through the analysis of approximately 13.5 hours of video 
data, we noted several ways in which Tonya guided, supported, and challenged Cindy through a 
shared endeavor of designing a remote-controlled delivery robot – questioning that promoted 
reflection and advanced Cindy’s mathematical understanding, affording Cindy opportunities for 
decision making, and providing Cindy with the mathematical language to describe her approaches 
within the engineering design process. 

Keywords: Caregiver as Educator, Informal Education, Mathematical Moments 

Objective 
Previous research suggests that interest and engagement in science, technology, engineering, and 

mathematics (STEM) can be triggered at a young age, and caregivers are considered to be one of the 
most significant influences in this development (e.g., Maltese & Tai, 2011). Additionally, the 
benefits of out-of-school learning experiences for youth is well documented and include positive 
dispositions toward STEM, greater likelihood of pursuing a STEM-degree and career, and 
development of interest and confidence in STEM (e.g., Bell et al., 2009; Denson et al., 2015). 
Engaging in teaching and learning of mathematics within home environments and other out-of-
school contexts are framed as shared family experiences and tend to include budgeting, home 
improvement projects, games, proportions of ingredients when using recipes, and verbal exchanges 
during mealtime (e.g., Esmonde et al., 2012; Pea & Martin, 2010). As such, caregivers, regardless of 
their own experiences, are able to act as mathematics educators in engaging their child(ren) in 
mathematical moments (Sheldon & Epstein, 2005). In this study, these mathematical moments are 
defined as a spontaneous experience to engage with and/or explore mathematical ideas and concepts 
(Cunningham, 2015), and situated within a project aimed at developing, implementing, and refining a 
program for integrating engineering design practices with an emphasis on emerging technologies 
(i.e., making, DIY electronics) into home environments of families. Research has shown that 
participating in engineering design principles support students’ application of mathematical concepts 
(e.g., Berland et al., 2014). Yet, we know very little of how such mathematical moments in the 
engineering design process arise in out-of-school learning contexts between caregiver and child. We 
address this gap in the literature by addressing the following research question – How does a 
caregiver initiate and/or continually engage their child in spontaneous mathematical moments during 
the engineering design process? We contend that caregivers and other family members should be 
recognized for their ability to enhance school mathematics within out-of-school learning contexts. 

Perspective 
In this study, we utilized a socio-cultural perspective, which views learning as active participation 

and engagement in cultural and social activities (Rogoff et al., 1993). More specifically, we 
employed Rogoff and colleagues’ (1993) guided participation in which participation is guided, 
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supported, and challenged from another in a shared endeavor; in this study, this other referred to the 
caregiver and the shared endeavor is the development of a robot (see below). As such, Rogoff (2008) 
defined participation as an interpersonal process in which individuals are actively observing and/or 
communicating with their words and hands. It builds upon the notion of zone or proximal 
development as it involves “not only the face-to-face interaction, which has been the subject of much 
research, but also the side-by-side, joint participation that is frequent in everyday life” (Rogoff, 2008, 
p. 60). Similar to Vedder-Wiess (2017), we contend that the caregiver’s role within in the process of 
guided participation is through modeling and engaging in spontaneous mathematical moments with 
their child. Collectively, the caregiver and child are employing their knowledge and understanding of 
mathematics. 

Methods 
The larger research project was conducted between January to May. We met with caregiver-child 

dyads once a month for approximately 3 hours in length. This particular study is an intrinsic case 
study of a caregiver-child dyad (Tanya and Cindy) engaging in mathematical moments during an 
engineering design project developed and designed by the dyad (Stake, 1995). As stated by Cindy, 
“My project is a remote-controlled delivery robot to help people who can’t get out of bed or are 
sick…I was thinking about someone in a nursing home.” At the time of the study, Cindy was a third-
grade student who aspired to be an artist. 
Data Collection 

The main source of data was video recordings of each monthly session and home video recordings 
of Tonya and Cindy working alongside a member of the team. Cameras were stationed as to capture 
the interactions between Tonya and Cindy, as well as interactions with facilitators and engineers who 
volunteered their time to assist the dyad. This amounted to approximately 11 hours of video data 
from the monthly sessions and approximately 2.5 hours of video data from the home visits. 
Data Analysis 

The analysis was conducted in two phases. During the first phase, both authors watched all the 
videos, individually looking for mathematical moments. We each noted the time range and provided 
a brief overview of the interaction in terms of engagement with mathematical ideas and/or concepts. 
Our goal was not to establish inter-rater reliability, but to capture identifiable mathematical moments, 
or ethnographic chunks, for further analysis (Jordan & Henderson, 1995). We met five times to 
discuss our observations as we acknowledged these identifiable moments to be influenced by our 
cultural understandings of and experiences with mathematics as a mathematics teacher educator and 
STEM education researcher, and science education doctoral student respectively. The final meeting 
focused on identifying specific moments that addressed the research question, which were 
transcribed verbatim and included non-verbal acts of communication. During the second phase, we 
individually read through the transcripts and noted the ways Tonya initiated and continually engaged 
Cindy in spontaneous mathematical moments. When we met to discuss, we were similar in our 
understanding of these spontaneous moments such as the manner in which Tonya posed questions to 
both initiate and advance Cindy’s engagement as a mathematician. We also developed a shared 
language (i.e., agency). 

Findings 
We present two specific instances in which Tonya initiated and/or continually guided Cindy in 

spontaneous mathematical moments during the engineering design process. Both examples occurred 
during the last workshop when Tonya and Cindy are brainstorming how to construct the tray with the 
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materials on hand. The first transcript begins as they are discussing the appropriate height for the tray 
once mounted on top of the rumba, which served as the base of the robot. 

T:  Okay. And so you were talking about the height of your stands and what you, you had said that- 
oh, well maybe you’ll do it a certain way. 

C:  Yeah, in the middle of the three beds. 
T:  Okay. So what would that measurement be here? How would you figure out that measurement? 
C: That would, wait…it would be all the beds to get all of it? No, it’d be the biggest height and then 

split that in half. So 32 in half is… 
T:  Are you trying to find the average? 
C:  Yeah. 
T:  So if you are going to take an average, you would take the three numbers. You would add them 

together and then you would divide them by three, if you’re trying to get the average. Is that what 
you want? Or are you trying to do it one particular height to get to the person that…it’s kind of 
your choice here. 

C: No. I want it to be the average. So then it could get to anything. And it would either be a little too 
tall or a little too short. They [people in bed] would have to reach down a little bit or reach up, or 
like sit up. 

T:  Okay. So you think we should do the measurement or do you want to figure out the actual height? 
C:  I want to figure out the average. 

The transcript highlights several things. One, Tonya provided Cindy with an opportunity to decide 
whether the average of the height of the three beds or the height of one bed was preferred (e.g., “It’s 
kind of your choice here.”). While Tonya more than likely knew the most appropriate approach 
within this context, she allowed Cindy to make her own decision (i.e., agency; Norén, 2015). Further, 
Cindy revealed her reasoning of why the average was appropriate in that the person in bed would 
have to reach down or up to gain access to food on the tray. Two, Tonya provided Cindy with the 
definition and language to describe the approach, which Cindy adopted as part of her language 
throughout the transcript (e.g., last line). Three, this example illustrates how Tonya was “with” Cindy 
in these moments as she gathered evidence of Cindy’s thinking and made in-the-moment and 
intentional decisions regarding the project and Cindy’s process and progress. This was often done 
through questioning. 

 In the next transcript, Tonya encouraged Cindy to find an alternative to converting inches to 
centimeters, which would be needed for her code. 

C:  (Speaking into a tablet.) Centimeters to inches. 
T:  (Reaches across the table to grab a tape measure.) Instead of using that, there’s a way that you 

can figure it out using this. What do you think it is?  
C:  (Grabs tape measure and pulls the tape from the housing. Smiles.)  
T:  Yeah, you don’t always need that. You can figure it out without just trying to get the quick 

answer. 
C:  Eight and a half. (Let’s go of the end of the tape and it retracts.) I mean, no. (Pulls the tape out 

again and seems to examine.) 
T:  Yeah, that doesn’t… Does that make sense to you? [Asking - How can 27 inches equal 8 

centimeters?] 
C:  It said eight. (Continues looking at the tape.) Oh no, I get it. I get it. Sixty…sixty…sixty-eight and 

a half.  
T:  (Takes the tape measure.) These are decimals, so it actually would be 68 and six-tenths. When 

you’re doing measurements, sometimes that tenth of a centimeter is going to make a big 
difference. 
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This mathematical moment was sparked through Tonya’s question that pushed Cindy to think of 
another conversion strategy, namely, reading the tape measure. We also observed Tonya questioning 
the reasonableness of Cindy’s first response of eight, indicating that 27 inches was the same as 8 
centimeters. This question, as noted in the previous example, was intentional; it served a purpose as 
Cindy was encouraged to reflect upon her response (NCTM, 2014). Lastly, Tonya explained to Cindy 
the importance of accuracy and precision appropriate to this particular context (i.e., Mathematical 
Practice 6; CCSO, 2010). 

Significance 
The two examples presented here illustrated how one caregiver initiated and engaged their child in 

mathematical ideas and concepts that spontaneously arose within and throughout a self-identified 
engineering design problem. Tonya guided, supported, and challenged Cindy through a shared 
endeavor, designing a remote-controlled delivery robot (Rogoff, 1993). These spontaneous 
mathematical moments afforded authentic sense making between caregiver and child, which may be 
harder to attain in structured learning environments and other out-of-school contexts such as STEM-
focused afterschool programs and summer camps (e.g., Vedder-Weis, 2017). For example, Cindy 
gained a different perspective and strategy of how to convert centimeters to inches; a strategy that 
was authentic and spontaneous to the design of the tray in this instance. Such mathematical moments 
were often initiated through questions for Cindy to explore within the design of the robot. These 
questions were not always answered orally, but addressed through physically engaging in 
mathematical ideas and concepts. Tonya further provided Cindy with a sense of agency in that Cindy 
was allowed to make mathematical decisions regarding the project. As such, we contend that this 
case highlighted how children can engage in mathematics in out-of-school learning contexts through 
the support and encouragement of caregivers. As a field, we should continue to think about ways to 
engage caregivers as mathematical partners, both within mathematics and STEM fields more broadly 
(e.g., engineering projects). As mathematical partners, researchers and educators should consider 
what is required for caregivers to actively and productively engage their children in spontaneous 
mathematical moments. Archer and colleagues (2015) made a similar argument in respects to science 
capital or the “level of scientific literacy and access to plentiful, high quality science-related cultural 
and social resources” (p. 15). 
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The purpose of this investigation was to examine connections between noticing and bias with a 
particular focus on how perceptions of race and gender may influence such noticing. Our primary 
research question was: How and to what extent does bias emerge within preservice teachers’ 
professional noticing of children’s mathematical thinking of differing races and genders? Results 
from this study indicate that bias most frequently occurs within the interpreting component of 
professional noticing, and that manipulating visual stimuli, such as adding a photo to a professional 
noticing vignette, influences manifestations of bias across race and gender. 

Keywords: Teacher Education-Preservice, Equity and Diversity.  

Equity concerns in mathematics have been of interest to researchers for a considerable period of time (Breshlich, 
1941, DiME, 2007; NCTM, 2014). More recently, though, there has been renewal of interest regarding the 
support and flourishing of students from diverse backgrounds within mathematical contexts (Aguirre et al., 
2017; Gutierrez & Dixon-Roman, 2011), and such differences in experiences are especially evident in STEM 
disciplines where students from non-dominant groups have received implicit and explicit messaging regarding 
their inclusion (or lack thereof) within such disciplinary settings (Goffney, Gutierrez, & Boston, 2018; Museus, 
Palmer, Davis, & Maramba, 2011). In some instances, inequities arise due to reduced expectations or lack of 
cultural considerations (Savage, Hindle, Meyer, Hynds, Penetito, & Sleeter, 2011; Zavala, 2014).  We aimed to 
investigate how and to what extent does bias emerge within pre-service teachers’ professional noticing of 
children’s mathematical thinking with respect to differing perceived races and genders? 

Conceptual Framework 
Professional Noticing  

Professional noticing (of children’s mathematical thinking) (PN) has been of interest to mathematics 
educators for some time (Schack, Fisher, & Wilhelm, 2017; Sherin, Jacobs, & Philipp, 2011). The 
professional noticing framework incorporates three interrelated components, attending, interpreting 
and deciding (Jacobs, Lamb, & Phillip, 2010).  Although the relationship and temporal ordering 
among these components is still being explored (Castro-Superfine, Fisher, Bragelman, & Amador, 
2017), there appears to be some stability within the literature regarding the general nature of these 
components (Thomas, 2017).  Specifically, Attending refers to the attention given to observable 
aspects of a mathematical context, Interpreting refers to the internal mediating and sense-making of 
that which is attended and Deciding refers to an intended response which is informed by some 
interpretation of a mathematical context. 
Equity and Professional Noticing 

There is emerging interest in connecting and studying aspects of equity in conjunction with PN 
(Jong, 2017). PN, as a practice situated within classroom contexts, is inherently braided with equity 
constructs and frameworks, and study thereof is appropriate and necessary. Jackson, Taylor, and 
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Buchheister (2018) synthesized professional noticing with four dimensions of equity (i.e., access, 
achievement, identity, power) put forth by Gutierrez (2009; 2013) resulting in a framework for 
intersections between noticing and equity. Louie (2018), investigating relationships between equity 
concerns and noticing, makes a case that strict cognitive orientations of professional noticing (Schack 
et al., 2013) may overlook significant cultural dimensions of a mathematical moment. For example, 
PN may be focused upon equitable concerns such as power distribution and student positioning 
(Louie, 2018). Such practices are consistent with asset-oriented perspectives where students’ 
backgrounds and their contributions are valued. Further, in the area of asset/deficit perspectives, 
Harper (2010) presents an anti-deficit framework of research on students of color in STEM by 
shifting questions to focus on assets. While subtle, the reframing of questions to be anti-deficit can 
empower how students of color are studied.  These findings suggest that biases influence, to some 
extent, the manner in which teachers enact PN in the mathematics classroom.  Thus, investigations of 
the nature and thresholds of such biases are necessary.  

Methods 
Measures  

To examine emergence of bias (i.e., asset/deficit perspectives), an electronic survey was 
constructed. The primary element of this survey was an adaptation of a video-based professional 
noticing measure used by Schack et al. (2013) in their study of preservice teachers’ professional 
noticing capabilities. Rather than using a video clip of a teacher asking a student to solve a story 
problem as the anchor for professional noticing enactment, we substituted a transcription of the 
video. Similar to Schack et al., preservice teachers (PSTs) were asked to respond to three prompts, 
except in this study, the picture was also visible – each aligned with a particular component skill of 
professional noticing: 1) “Please describe in detail what [Student Name] did in response to the 
problem” (attending), 2) “Please explain what you learned about [Student Name]’s understanding of 
mathematics” (interpreting), and 3) “Pretend that you are [Student Name]’s teacher. What problems 
or questions might you pose next? Provide a rationale for your answer” (deciding). Further, PSTs 
were prompted to provide some basic demographic data (i.e., gender, ethnicity, age, home state) as 
well as their familiarity with professional noticing. The transcript case names were Margaret 
(perceived white female), William (perceived white male), Shaquan (perceived African American 
male), and Miguel (perceived Latino male) (see Figure 1). We limited ourselves to these four cases as 
we wanted to maximize opportunities to examine differences across gender (i.e., male/female – 
William/Margaret) and race (i.e., African American/Latino/white – Shaquan/Miguel/William). While 
more cases would have allowed for additional comparisons (e.g., Latino Female/Latino Male), they 
would also have necessitated a much larger data set to ensure that each case had an adequate number 
of survey respondents.  Note, a prior study was scored using the same asset/deficit scale, without a 
picture of a child that matches the perceived ethnicity and gender of the name, showed that bias tends 
to manifest significantly in only the interpreting stage of professional noticing (Thomas et al., 2019). 

 
Figure 1: Case visuals 
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Participants 
The electronic survey was fielded in teacher education programs across 18 states. Target 

respondents were PSTs who were in various stages of their respective teacher education programs. 
315 PSTs initiated the survey, and incomplete surveys were discarded resulting in 170 completed 
responses with distribution across cases as follows: Margaret (n=44), Miguel (n=39), Shaquan 
(n=45), William (n=42). We used an electronic apportioning tool to ensure an approximately 
equivalent distribution of cases across respondents. Among the 170 participants, as one might expect 
of a preservice teacher sample, the largest gender and racial demographic was 18-24-year-old white 
females (59% of respondents) 
Analysis 

The asset/deficit perspective of the participant responses to the three questions were evaluated using 
a flow-process tool (AMSE, 1947) to determine the presence or absence of asset-oriented or deficit-
oriented language describing the child’s mathematical strategy. Each response was ascribed one of 
four different codes – asset, deficit, both [asset and deficit], and neutral. A previous study measuring 
equity in professional noticing, scored using the same asset/deficit scale, without a picture of a child 
(Thomas et al., 2019).  Note, neutral responses contained no asset/deficit-oriented descriptions of the 
child’s thinking/activity. Two raters used the flow process tool to calibrate with sample data, from a 
previous data set, until an 80% interrater reliability was achieved. The data from the current study 
were then blinded and combined into one list and scored independently by the two raters. Per 
previous studies of PN, rating differenes were resolved via discussion (Jacobs et al., 2010; Krupa, 
Huey, Lessieg, Casey, & Monson, 2017). 

Findings 
Adding the feature of a picture of a child produced similar results. The percentage of responses 

across perspectives with and without picture can be found in Table 1. 
 

Table 1. Percentage of Responses Across Perspectives 
  % With Picture % Without Picture 

Attending Asset 19 6 
Deficit 4 5 
Neutral 75 87 
Both 2 2 

Interpreting Asset 38 31 
Deficit 13 27 
Neutral 24 12 
Both 25 30 

Deciding Asset 2 1 
Deficit 2 3 
Neutral 96 95 
Both 0 1 

 
Delving more deeply into these data, we conducted chi-square tests to determine whether there are 

any relationships between case, survey type (picture, no picture), and bias categorizations (asset, 
deficit, neutral, both) (see Tables 3 and 4). Specifically, for each of the four cases, chi-square tests of 
independence were performed to test whether the different survey types were associated with a 
different distribution of attending, interpreting, or deciding bias categories. Furthermore, for each of 
the two survey types, chi-square tests of independence were performed for each noticing facet 
(attending, interpreting, deciding) to test whether each case was associated with bias categorization.  
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Table 2. Chi-square independence for each survey type between case and noticing component 

Survey Type Case vs. Attending  Case vs. Interpreting  Case vs. Deciding 
No Picture 13.508 (9) 8.061 (9) 7.628 (9) 

Picture 7.890 (9) 20.575 (9)* 5.719 (6) 
Note. * p < .05, ** p < .01. Results are reported as χ2 (df). 

 
Table 3. Chi-square independence for each case between survey type and noticing component 

Case 
Survey Type vs. 

Attending 
Survey Type vs. 

Interpreting 
Survey Type vs. 

Deciding 
Margaret 7.168 (2)* 9.025 (3)* 3.606 (3) 

Miguel 0.935 (3) 4.826 (3) 0.781 (2) 
Shaquan 2.430 (3) 1.204 (3) 1.506 (3) 
William 7.294 (3) 14.629 (3)** N/A 

Note. * p < .05, ** p < .01. Results are reported as χ2 (df).  
 
A test of independence could not be calculated for the William case in the deciding component 

because all responses for this condition were categorized as “neutral”. From these results, for picture 
survey, we see a significant association between case (Margaret, William, Shaquan, Miguel) and bias 
categorization within the professional noticing component of interpreting. Further, the Margaret case 
showed significant association between survey type and the attending bias categorization, and both 
the Margaret and William cases showed significant association between survey type and the 
interpreting bias categorization.  

 

Discussion 
The mere changing of names (e.g., Shaquan, William, Margaret, Miguel) does not appear to 

provoke the directly negative biases observed in other studies (Bertrand & Mullainathan, 2004; 
Hanson, Hawley, Martin, & Liu, 2016). Looking toward the relationship between bias and action, 
Rudman (2004) describes the relationship between individuals’ implicit and explicit biases as 
connected but somewhat distant.  As one’s explicit biases exist consciously downstream of one’s 
implicit biases, they are inherently more malleable by the individual. With respect to teacher 
noticing, implicit biases may (and likely do) influence teacher decision-making (i.e., deciding) and 
the situating of such biases appears to be within the interpreting component. 
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This study examined the spatial-scientific understandings of students from Kentucky (6th graders) and 
Nevada (8th graders). Quantitative data consisted of students completing a content survey as well as 
two spatial assessments at the conclusion of Earth-space instruction. Qualitative data involved 
student interviews concerning 2D Earth/Moon/Sun modeling. Findings showed Kentucky and Nevada 
students shared similar misconceptions regarding geometric motions, configurations, and spatial 
awareness to explain the physical phenomenon of lunar phases. Post data revealed significant 
differences in favor of Kentucky on lunar phases understanding related to the spatial domain of 
spatial projection (ability to visualize the Moon from multiple Earthly locations). Significant 
differences were also found in favor of Kentucky on the Geometric Spatial Assessment. No significant 
differences were found between students on mental rotation ability.  

Keywords: Geometrical Spatial Thinking, STEM 

Objectives 
This research with middle level students from Kentucky (N=238) and Nevada (N=138) explored 

how well students from two geographically different locations understood lunar-related spatial-
scientific content. The Next Generation Science Standards (NGSS Lead States, 2013) and Common 
Core State Standards-Math (National Governors Association, 2010) iterate the importance of student 
understandings related to spatial-scientific learning (i.e. scale, patterns, and geometric modeling). 
Previous research (Plummer et al., 2014, Black 2005) has linked increased spatial ability with an 
increased understanding of lunar phases. This study examined students’ geometric spatial ability and 
how students developed and contextually applied this ability to their understandings concerning the 
phenomenon of lunar phases. The research question was: What geometric spatial factors might 
hinder or facilitate moon phase understanding?  Factors could include students’ understanding of 
scale of the Earth/Moon/Sun system, students’ geographic perspective as they observe the moon, 
students’ ability to recognize patterns, and students’ aptitude to visualize in both 2D and 3D spaces. 

Perspective: Spatial Reasoning and Scientific Performance 
Students with high spatial reasoning tend to perform better on science assessments than students 

with low spatial ability; this has been found true on science assessments concerning chemistry, 
geoscience, physics, astronomy, calculus, and anatomy (Cole, Cohen, Wilhelm, & Lindell, 2018; 
Wilhelm, Toland, & Cole, 2017; Sorby, Casey, Veurink, & Dulaney, 2013). Wilhelm, Cole, Cohen, 
and Lindell (2018) argued that when spatial reasoning ability is advanced via an intervention or 
spatial experiences within a particular discipline, this spatial development should lead to improved 
understanding in other scientific disciplines. For example, in the Sorby et al. (2013) study, freshmen 
engineering students were separated into two groups (an intervention group and a comparison group) 
based on results of a mental rotation (MR) test. Students who scored low on the MR test were 
assigned to a spatial intervention course and those who scored above a passing cutoff grade were 
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assigned to a comparison group. Sorby et al.’s findings showed the treatment group’s scores 
increased after the intervention as shown on a post MR test, and even more interesting, treatment 
students displayed transfer effects as displayed in increased calculus performance. 

Other studies have shown correlations between spatial reasoning and science performance as well as 
gender differences on spatial reasoning assessments. Guillot et al. (2006) researched the relationship 
between visuo-spatial representation, MR, and functional anatomy examination results. Guillot et al. 
(2006) measured visuo-spatial skills using the Group Embedded Figures Test (GEFT; Demick, 2014) 
which contains 18 complex figures. The test taker must identify a simple form by tracing the simple 
form within the complex form. MR was measured using the PSVT-Rot (Bodner & Guay, 1997). 
Guillot et al. found that males scored better than women in GEFT and the MR test; however, this 
“gender effect was limited to the interaction with MRT ability in the anatomy learning process. The 
correlations found between visual spatial and MR abilities and anatomy examination results 
underscore the advantage of students with high spatial abilities” (p. 504). 
Spatial Thinking in an Astronomical Context 

People interact with many aspects of astronomy on a daily basis, often without noticing them. They 
develop their own ways of knowing and explaining astronomical phenomena from their conscious 
and unconscious daily glances at the Moon and sky. In reality, these ideas are more complex than 
most people realize. In order to understand many aspects of astronomy, developed spatial thinking 
ability is required. The necessary spatial thinking skills vary by astronomy topic, but studies show 
that spatial reasoning ability contribute to understanding of astronomy (Wilhelm, et al., 2018). 
Spatial reasoning ability, as stated earlier, has been linked to performance in both mathematics and 
science (Black, 2005; Lord & Rupert, 1995; Wilhelm, 2009; Wilhelm, Jackson, Sullivan, & R. 
Wilhelm, 2013). In terms of lunar phases, spatial thinking ability in the domain of mental rotation is 
particularly important (Wilhelm et al., 2018). Historically, males have shown an advantage in spatial 
thinking, particularly in the area of mental rotation. “Countering this view is substantial evidence that 
environmental influences, in the form of experience in spatial activities from an early age and 
explicit training can eliminate sex differences on spatial tasks” (Linn & Petersen, 1985; Casey et al., 
1999). Thus, it is important that spatially rich curricular experiences be examined to better 
understand how we can foster the development of factors that encourage students’ geometric spatial 
understanding of scientific phenomena such as lunar phases. 

Methods 
Study Design 

In order to determine what geometric spatial factors hinder or facilitate middle level students’ lunar 
phases understanding, we utilized a mixed methods design. Students were purposefully selected from 
two different geographic locations so that we might be able to determine if sky viewing in a 
mountainous terrain would affect students’ ability to accurately note Moon motion, Moon rise/set 
times, and visualization of relative positions of the Earth, Moon, and Sun as compared to Kentucky 
students in comparatively flat terrain. Quantitative data included the Lunar Phases Concept Inventory 
(LPCI; Lindell & Olsen, 2002), the Geometric Spatial Assessment (GSA; Wilhelm et al., 2007), and 
the Purdue Spatial Visualization Test-Rotations (PSVT-R; Bodner & Guay, 1997). The LPCI is a 20 
question multiple choice test that assessed eight science domains as well as four spatial domains. The 
PSVT-Rot was a 20-item multiple choice survey that assessed the level of mental rotation reasoning. 
The GSA was a 16-item multiple choice test that assessed the same spatial domains addressed by the 
LPCI, but outside of a lunar context. The qualitative data included semi-structured interviews, where 
four students were chosen by each teacher for the interviews. Teachers were asked to select the girl 
and boy with the highest and lowest spatial ability in their classes. 
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Participants 
Participants were from two states, Kentucky and Nevada. Subjects were drawn from one public 

school in Kentucky with three 6th-grade teachers and their students (N=238). The teaching experience 
of the Kentucky teachers ranged from 6 to 16 years. The Kentucky teachers’ Earth-space curricular 
unit is outlined in Table 1. Three 8th-grade teachers in a public school in Nevada participated along 
with their students (N=138). Their teaching experience ranged from 3 to 14 years. Nevada teachers 
taught their Earth-space curricular unit as shown in Table 1. Grade years were chosen based on the 
grade lunar phases content was required to be taught in each state (6th grade for Kentucky and 8th 
grade for Nevada). Both Kentucky and Nevada teachers implemented their units in approximately 5 
weeks and both curricula asked students to keep a Moon journal. The main difference in the two 
curricula was Nevada’s emphasis on eclipses which was embedded within lessons on phases and 
scaling. Kentucky lessons incorporated Stellarium (software) to examine views and motions from 
both Northern and Southern hemispheres. 

 
Table 1: Kentucky and Nevada Curricular Units 

Results 
Although both Kentucky (KY) and Nevada (NV) teachers asked their students to keep Moon 

journals for at least 4 weeks, a large portion of students in both locations failed to do so. As noted in 
Table 1, Nevada teachers placed a heavier emphasis on eclipses and taught this concept within 
lessons on phases and scaling. Qualitative interviews with high and low spatial ability NV and KY 
students showed similar ideas regarding geometric positioning of the Earth, Moon, and Sun for 
various lunar phases as well as how the Moon orbits the Earth. Table 2 illustrates representative 
samples of NV and KY high and low spatial ability students’ geometric orientations and motions of 
the Earth/Moon/Sun system. Table 2 shows a High Nevada student modeling correctly the Moon’s 
orbit around the Earth and the Earth’s orbit around the Sun, and a High Kentucky student illustrating 
correctly the Earth/Moon/Sun geometry for New Moon and Waxing Crescent phase (although, 
neither representation is to scale). A Low Nevada student shows an incorrect understanding of the 
geometric configuration of a Waxing Crescent phase by demonstrating either an Earth blocking 
notion or an Earth’s shadow misconception, and a Low Kentucky student revealed similar ideas to 
the Low Nevada student. 
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Table 2: Students’ Geometric Spatial Orientations for Various Lunar Phases 
High Nevada High Kentucky 

  
Low Nevada Low Kentucky 

 
 

Quantitative KY and NV survey results are shown in Figure 1 for the LPCI and the LPCI spatial 
domains: Geometric Spatial Visualization (GSV), Periodic Patterns (PP), Cardinal Directions (CD), 
and Spatial Projection (SP). Other results shown in Figure 1 are the PSVT-Rot test and the Geometric 
Spatial Assessment (GSA). Kentucky 6th grade students scored significantly higher on the SP domain 
items of the LPCI test and significantly higher on the GSA test than the 8th grade Nevada students. 
Test results showed KY and NV students had similar percentages of students holding classic 
misconceptions regarding cause of lunar phases explanations (object blocking (~10%), Sun’s shadow 
(~25%), and Earth’s shadow (~42%)).  

 
Figure 1: NV and KY students post scores on the LPCI by domain, PSVT, and GSA (*p < 0.05) 

Discussion and Conclusion 
Regardless of geographic region, students held similar misconceptions concerning the causes of the 

lunar phases (i.e. object blocking, Sun’s shadow, and Earth’s Shadow); however, KY students scored 
significantly higher on the SP domain that concerns visualizing how the Moon appears from various 
Earthly perspectives on same day. KY students also scored significantly higher on the Geometric 
Spatial Assessment. The GSA is not in a lunar context and assesses all four spatial domains (PP, 
GSV, CD, and SP). Possible explanations for the differences could be due to the heavy emphasis on 
eclipses in the NV curriculum which could have confused students since they were also trying to 
comprehend/visualize cause of lunar phases. 

LPCI	 GSV	(7)	 PP	(5)	 CD	(5)	 SP	(4)*	 PSVT	 GSA*	
KY	(N=238)	 36.97	 46.22	 42.77	 22.44	 49.37	 39.68	 43.88	
NV	(N=138)	 36.45	 41.51	 47.1	 21.3	 41.12	 42.71	 40.13	
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Beginning to understand children’s mathematical dispositions during the preschool years may be 
beneficial as early childhood experiences can predict student’s achievement in subsequent 
educational settings (Fleer & Raben, 2005). Findings suggest that mathematical dispositions can be 
related to academic success in mathematics (Beyers, 2011a, 2012; Kusmaryono, Suyitno, Dwijanto, 
& Dwidayati, 2019; O’Dell, 2017). However, there are relatively few studies examining 
mathematical dispositions among preschool-aged children. However, it is critical to explore the 
nature of these dispositions and corresponding behaviors at this stage of development, because these 
behaviors may be directly related to mathematical gains in subsequent educational settings (Hofer, 
Farran, & Cummings, 2013). The current study aims to address the question of whether preschool-
aged children demonstrate observable mathematical dispositions in a pre-kindergarten school 
environment. 

The authors draw on a conceptual framework which includes three primary areas of mathematical 
dispositions: cognitive, affective, and conative dispositional functions (Beyers, 2001a). Within those 
three areas of dispositional functions reside 10 total dispositional functions1, such as attitudes, 
beliefs, argumentation (Beyers, 2011b). The authors developed an observation rubric based on 
construct definitions and examples of dispositional functions in previous work. For example, within 
the affective dispositional function attitude, a child who has a positive attitude about mathematics 
may gesture gleefully or offer relevant verbal excitement when engaged in or about to engage in 
mathematical activity, when he or she had just previously not been excited. Conversely, a student’s 
behavior might shift from excitement to a more apathetic state when a mathematical task or 
discussion is introduced.  

The second author was a teaching assistant in an early childhood center. Math activities were done 
informally as part of games and more formally as part of instruction. The teaching assistant took 
copious field notes annotating her observations throughout the day. Any activity directly or indirectly 
involving mathematical content was highlighted in her field notes. Both authors then reviewed and 
coded a portion of the field notes together, and then the remainder independently. Evidence could 
have been of a verbal or non-verbal nature. Evidence was coded to reflect whether evidence of a 
dispositional function was present, and which dispositional function was observed. The authors 
achieved interrater reliability over .80.  

The data show that some dispositions with respect to mathematics are present among preschool-
aged children. There is evidence of dispositional functions from each of the three primary areas of 
dispositional functioning: cognitive, affective, and conative, but not all 10 dispositional functions 
within those three areas. Data include examples of the cognitive function argumentation, the affective 
function attitude, and the conative function persistence. Evidence for other dispositional functions, 
such as making connections, or beliefs about the nature of mathematics were not observed. It is 
possible that other functions were not observed because opportunities to engage or demonstrate those 
dispositional functions did not present themselves or those dispositional functions are not yet 
emergent. Further examination is warranted.  
                                                             
1 For a complete discussion of the 10 dispositional functions (e.g., while engaging in mathematical activity, 
demonstrating a tendency to: make connections, make mathematical arguments, hold certain attitude or beliefs, 
etc…) please refer to Beyers, 2011b. 
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Students commonly question teachers about the usefulness of mathematics, and the Common Core 
State Standards in Mathematics encourages teachers to help students “see mathematics as…useful” 
(National Governors Association Center for Best Practices, 2010). In fact, perceiving a subject as 
useful can have numerous positive benefits for students including enhanced interest in a subject and 
improved course performance (Hulleman et al., 2010; Hulleman & Harackiewicz, 2009). However, 
adolescents use a range of criteria to evaluate whether something is useful (Dobie, 2019), and little is 
known about when or why these various criteria are employed. This research explores the question, 
What factors influence the decisions adolescents make about what is or is not useful in the context of 
school mathematics?   

Expectancy-value theory highlights that one’s goals and self-schemata influence perceptions of 
usefulness (Eccles & Wigfield, 2002), yet a black box remains regarding the mechanisms that 
mediate this relationship. The current research begins to build theory around influences on 
adolescents’ perceptions of usefulness by drawing on data from interviews with 11-14-year-old 
students in two large cities in the United States. In particular, adolescents responded to card-sorting 
tasks depicting images of students engaging with varied mathematics content in a range of ways and 
described whether or not the mathematics seemed useful and why. Those responses were used to 
identify criteria adolescents used to make judgments about usefulness, and additional questions 
probed into the factors that influenced the criteria students applied. 

Figure 1 illustrates a preliminary model unpacking the relationship between one’s goals and self-
schemata, and perceptions of usefulness. Emergent influences include whether usefulness was 
considered at the level of the subject (mathematics), specific topic (e.g., linear equations), or 
particular task (e.g., worksheet). Additionally, some adolescents attended to the form of engagement 
(e.g., individual vs. collaborative). Others considered the novelty of what they were learning, the 
usefulness of a specific practice (e.g., justifying thinking) or strategy (e.g., making graphs to 
represent data), or how engaging with the mathematics made them feel. These features attended to in 
turn influenced the specific criteria used to make judgments about usefulness, such as whether the 
mathematics applies to everyday life or enhances one’s understanding of mathematics. Individual 
cases of students will be shared along with quotes to illustrate each factor in action. Future work will 
explore how different features influence the criteria applied, as well as the outcomes afforded by 
different pathways to perceiving mathematics as useful. 

 
 
 
 
 
 

Figure 1: Influences on Adolescents’ Perceptions of Usefulness 
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Betz (1978) proposed that 68% of students in mathematics classes experience high levels of math 
anxiety. This is most unfortunate as it is a well-established fact that math anxiety is negatively 
correlated with mathematics performance (Ashcraft & Kirk, 2001; Ashcraft & Moore, 2009; Foley et 
al., 2017). This does not necessarily imply that math anxiety is an indicator of lower potential to 
succeed in mathematics. Arnsten (2009) and Diamond et al. (2007) have shown that moderate levels 
of anxiety can help focus attention and enhance working memory which is known to be a major 
factor in math competence. It has also been shown that the negative correlation between math anxiety 
and math performance is stronger for those with high working memory capacity (Foley et al., 2017). 
Though there has been much research on working memory and situational factors associated with 
math anxiety, there is not much research which synthesizes the data on working memory with 
classroom experiences relating to math anxiety. Furthermore, few studies on math anxiety include 
participants with a broad range of math anxiety levels.  

In this study, we sample students in a year-long calculus course. We dig deeper into how students 
experience math anxiety and how they interpret past classroom experiences. The study utilizes tests 
for both math anxiety and general anxiety. Interviews are conducted in order to examine past 
classroom experiences and how these experiences helped to shape the students’ belief of math 
anxiety. We use the interpretation framework developed by Ramirez et al. (2018) to explore the 
impact of classroom experiences on the development of math anxiety. Under this framework, we 
hope to discover ways in which the instructor can construct rigorous and engaging classroom 
activities which would ultimately fashion a favorable impression upon the student. 

We also use the disruption account framework proposed by Ashcraft & Kirk (2001) to interpret the 
role in which working memory affects math anxiety and math performance. The interviews include 
various working memory tests along with written mathematical procedures. We hope to synthesize 
the information we gain from these activities with the data we collected for math anxiety and 
experiences in order to gain deeper insight into how we understand math anxiety.  
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Problem posing (Brown & Walter, 2005) can improve problem-solving (e.g., English, 1998), 
expand mathematical creativity (e.g, Voica & Singer, 2012), and provide instructors with valuable 
insight into student understanding (e.g, Silver, 1994). Problem posing can also give students 
ownership in learning and provide students with authentic modelling processes (Hanson & Hana, 
2015). We aim to investigate problem posing with partitive and quotitive models of division. In 
quotitive division, the divisor is the number in each group. In partitive, the divisor is the number of 
groups (Neuman, 1999). Asking students to make the distinction between the two models of division 
has been shown to help students better understand place value (Bicknell, Young-Loveridge & 
Simpson, 2017), division with decimals (Okazaki & Koyama, 2005), division with remainder 
(Lamberg & Wiest, 2012), and the division algorithm (Silver, 1987). 

Methods 
In a 100-level math course at a private liberal arts university, which incorporated various problem 

posing tasks, students (n=38) were given the task “For 14÷2=7, write (a) one word problem that 
demonstrates a partitive model and (b) one that demonstrates a quotitive model.” Students were then 
asked to create children’s books that contained both models of division, to be donated to the Girls & 
Boys Club as a local outreach project. We seek to address: how do students respond when asked to 
pose problems demonstrating the two models of division? 

Results 
In the written task, 14 (36.8%) correctly demonstrated both models of division. We observed gaps 

in understanding and nuanced misconceptions, which inform teacher education. For example, 
students commonly provided partitive when asked for a quotitive model, provided problems not 
solved by 14÷2=7, and struggled with the concept that word problems from both partitive and 
quotitive models can correspond to the same equation. 

 
Table 1: Summary of Student Response Themes 

 Incorrect Model Used Own 
Numbers 

Rearranged 
Given Equation 

Phrased as 
Statement 

Part (a) [Partitive] 4 (10.5%) 5 (13.6%) 1 (2.6%) 15 (39.5%) 
Part (b) [Quotitive] 14 (36.8%) 6 (15.8%) 10 (26.3%) 16 (42.5%) 

 
Furthermore, we observed that all (14 of 14) students who drew an image with their response on 

part (a) provided a correct model. The analysis of the children's book task, which revealed what 
contexts the students chose, yielded themes of real-world relevance, fairness, and novelty. Future 
research includes exploring the impact of problem posing on problem solving in division and student 
perceptions of a course that utilizes problem posing tasks. 
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Despite numerous studies pointing to the delay in mathematical achievement of deaf and hard-of-
hearing (DHH) students as compared to their hearing peers (e.g., Traxler, 2000; Pagliaro & Kritzer, 
2013), only little is known about the peculiarities of mathematical learning processes of DHH 
learners. At the same time, studies both in psycholinguistics and mathematics education portray sign 
language (SL) as playing a key role in their individual and social processes of concept formation 
(e.g., Kurz & Pagliaro, 2020; Krause, 2019). 

From both embodied and semiotic perspectives, the iconicity of SL signs may be relevant for 
mathematical thinking and learning: emerging from action, some signs carry and sustain enactive 
and/or depictive features of source sensorimotor forms, thus spontaneously schematizing individuals’ 
situated enacted experience. As this, it becomes part of the modal hybrid of gestures and signs in 
signed discourse and thereby shapes the development of socially negotiated mathematical meaning. 
At the same time, the gestural expression develops from idiosyncratic gestures towards locally 
conventionalized signs that refer to the situated mathematical meaning. What is first action then 
influences a gestural representation of the action in a new mathematical context and eventually a 
gestural representation for a developing mathematical idea. Signed discourse thus facilitates modal 
continuity in the gestural modality from individual manual action to expression in social interaction, 
vice versa feeding into the individual’s situated understanding. How modal continuity affects 
mathematical thinking and learning, we submit, is important for the theory and practice of 
mathematics education, both for DHH and for hearing learners. More broadly, theorizing modal 
continuity could illuminate the relationships between embodiment, representations, and language in 
processes of teaching and learning mathematics. 

The poster reports on an ongoing design-based research project in which we develop a mathematical 
learning opportunity that considers sign language as a resource for learning mathematics. More 
concretely, we adapt a well-established embodied design—the Mathematical Imagery Trainer for 
Proportions (Abrahamson & Trninc, 2015)—with an eye on emerging manual movement patterns 
that foster a common ground for mathematical discourse in a way that is conducive to linguistic 
accuracy of (American) SL. In a two-step design, students first each develop sensorimotor schemes 
through solving a dynamic interaction problem, then explore in pairs a related mathematical problem, 
negotiating mathematical meaning in signed discourse. The poster will expand on the design’s 
rationale and elaborate on the theoretical construct of modal continuity in light of data collected with 
Deaf and hearing students. 
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Identity can be conceptualized as a function of participation in the various activities of communities 
of practice (CoPs), which are defined by mutual engagement, a joint enterprise, and a shared 
repertoire amongst its members (Wenger, 1998). An individual’s mathematics identity development, 
then, is inextricably linked to their participation in the CoPs associated with the contexts in which 
they learn mathematics (Boaler & Greeno, 2000).  

One such context is a Math Circle, a type of out-of-school mathematics program in which 
adolescents, guided by “mathematically sophisticated leaders, […] work on interesting problems or 
topics in mathematics […] through problem-solving and interactive exploration” (What is a math 
circle?, n.d.). The participants’ participation in the Math Circle CoP is mediated through their 
participation in various activities of the CoP, where activity is defined as “a socially recognized and 
institutionally or culturally supported endeavor that usually involves sequencing or combining 
actions in certain specified ways” (Gee, 2014, p. 95). Therefore, identifying the Math Circle CoP 
activities is key to understanding (1) how these adolescents participate in the CoP and (2) how their 
participation affects the development of their mathematics identities.  

I interviewed three City Math Circle (CMC) participants who had completed at least three years in 
CMC programs by Spring 2020. The interview addressed their current and past participation in CMC 
programs, what occurs in a typical CMC session, and their relationships with mathematics in 
different environments. I analyzed the transcripts using Gee’s (1991; 2014) narrative structure, 
identified CMC CoP activities and the adolescents’ participation therein using social practice 
analysis (van Leeuwen, 2008), and analyzed their participation in these activities using Wenger’s 
(1998) modes of belonging.  

The adolescents’ descriptions of the CMC CoP activities were consistent with each other, and most 
activities involved both mathematical and social interactional components (i.e. program participants 
gave each other feedback [social interactional] on their problem solutions [mathematical] as part of 
the “sharing solutions” activity). Participation in such activities tended to be inversely related to how 
the adolescents participated in the mathematical and social interactional components of activities in 
other mathematics learning environments. For example, one adolescent who felt that “school 
mathematics” did not allow for collaboration with peers described the social interactional 
components of the CMC CoP activities in more depth than the mathematical components, where 
another who did not feel challenged by “school mathematics” described the mathematical 
components of the CMC CoP activities in more depth than the social interactional components.  

These findings suggest that the development of these adolescents’ mathematics identities due to 
their participation in City Math Circles programs is complementary to the development of their 
mathematics identities due to participation in other mathematics learning contexts. That is, through 
their voluntary participation in City Math Circles, an out-of-school mathematics program, these 
adolescents are developing their (mathematics) identities with agency they are not typically allowed 
in more institutionalized mathematics learning environments such as school. 
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The aim of this research is to investigate how College Algebra students utilize a peer-staffed tutoring 
lab during a spring semester. Records of students’ ID cards swipes as they enter the lab were 
analyzed to explore trends in attendance. In addition, the relationship between final course grades 
and the time spent studying math content using Assessment and LEarning Knowledge Spaces 
(ALEKS), a web-based, adaptive learning system, was explored. The results found 79% of the 
students who used the tutoring lab made a D or better, a passing grade, versus 48% of the students 
who did not visit the lab. Also, for every 100-minute increase in time spent in ALEKS, a student’s 
final course grade increased on average by 1%. 
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While a large number of students take College Algebra each year, only 50% earn a C or higher 
(Ganter & Haver, 2011). Research shows that peer-tutoring has a positive impact on student 
performance in College Algebra (Xu, Hartman, Uribe, & Mencke, 2001), and time spent on 
homework out-of-class has a substantial effect on grades (Keith, Diamond-Hallam, & Fine, 2004). 
Based on this existing literature, this study aims to investigate 1) student attendance in a peer-staffed 
tutoring lab, 2) lab attendance’s impact on final course grade, and 3) the relationship between time 
spent studying in ALEKS and final course grade. 

During a spring semester, six College Algebra classes were included in the study. The students were 
expected to spend three hours each week completing homework assignments in ALEKS (with one-
hour goals staggered throughout the week). The students could complete the time requirement from 
anywhere but were encouraged to attend a peer-staffed tutoring lab to work on homework. Lab 
attendance was incentivized by earning extra credit on the exams if a certain amount of time was met 
before each exam. Overall, students were encouraged to increase the time spent on studying math 
content in the lab and stagger that time throughout the week. 

Lab attendance was collected through swipe-card access using students’ university ID cards when 
students entered the lab. Total time spent working in ALEKS and final course grades were also 
collected for each student. The statistical software R was used for linear regression to model the 
relationship between final course grade and time spent working in ALEKS. 

Among the 166 research participants, 57% attended the tutoring lab at some point during the 
semester. Half of the students who attended the lab came only once or twice during the semester with 
very few students coming on a weekly basis. During the week of exams, there were small peaks in 
lab attendance. Five to eight more students came during exam weeks, and there were 10 to 16 more 
swipes. Of the students who came to the lab, 79% made a D or better, a passing grade for the course. 
For the students who did not attend the lab, only 48% made a D or better. There was a positive 
relationship (𝑟 = 0.639) between final course grade and time spent studying in ALEKS. The r-
squared value was 0.4083, so about 41% of the variance can be explained by the model. For every 
100-minute increase in time spent in ALEKS, a student’s grade will increase by about 1%.  The 
preliminary results of this study point to the peer-tutoring lab having a positive impact on students’ 
College Algebra course grades. 
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What impact, if any, do interesting lessons have on the types of questions students ask? To explore 
this question, we used lesson observations of six teachers from three high schools in the Northeast 
who were part of a larger study. Lessons come from a range of courses, spanning Algebra through 
Calculus. After each lesson, students reported interest on a Likert scale via lesson experience surveys 
(Riling et al., 2019). The average interest measures were then used to identify each teachers’ highest 
and lowest rated interest lessons. The two lessons per teacher allows us to compare across the same 
set of students per teacher. 

We compiled 145 student questions and identified whether questions were asked within a group 
work setting or part of a whole class discussion. Two coders coded 10% of data to improve the rubric 
for type of students’ questions (what, why, how, and if) and perceived intent (factual, procedural, 
reasoning, and exploratory). Factual questions asked for definitions or explicit answers. Procedural 
questions were raised when students looked for algorithms or a solving process. Reasoning questions 
asked why procedures worked, or if facts were true. Exploratory questions expanded beyond the 
topic of focus, such as asking about changing the parameters to make sense of a problem. The 
remaining 90% of data were coded independently to determine interrater reliability (see Landis & 
Koch, 1977). A Cohen’s Kappa statistic (K=0.87, p<0.001) indicates excellent reliability. Both 
coders then reconciled codes before continuing with data analysis. 

Initial results showed differences between high- and low-interest lessons. Although students raised 
fewer mathematical questions in high-interest lessons (59) when compared with low-interest lessons 
(86), high-interest lessons contained more “exploratory” questions (10 versus 6). A chi-square test of 
independence shows a significant difference, χ2 (3, N = 145) = 12.99, p = .005 for types of students’ 
questions asked in high- and low-interest lessons. The high-interest lessons had more student 
questions arise during whole class discussions, whereas low-interest lessons had more student 
questions during group work. By partitioning each lesson into acts at points where the mathematical 
content shifted, we were able to examine through how many acts questions remained open. The 
average number of acts the students’ questions remained unanswered for high-interest lessons (2.66) 
was higher than that of low-interest lessons (1.68). Paired samples t-tests suggest that this difference 
is significant t(5)=2.58, p = 0.049.  

Therefore, student interest in the lesson did appear to impact the type of questions students ask. One 
possible reason for the differences in student questions is the nature of the lessons students found 
interesting, which may allow for student freedom to wonder and chase their mathematical ideas. 
There may be more overall student questions in low-interest lessons because of confusion, but more 
research is needed to unpack the reasoning behind student questions. 
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Even as the mathematics education field has highlighted the importance of community-based 
resources, most of the attention has focused on local knowledges and practices. There has been 
comparably less attention paid to community-based dispositions. In ethnographic fieldwork in rural 
communities, we identified 5 community-based problem solving dispositions. 

Keywords: Culturally Relevant Pedagogy, Rural Education 

The mathematics education field has shown much interest in community-based, “everyday” 
practices (e.g., Civil, 2016). Research has documented the rich and varied ways that people 
understand and participate in the world (Lave, 1988). The field has also been interested in 
understanding disciplinary dispositions and advancing the notion that developing particular 
dispositions ought to be one goal of schooling (Gresalfi & Cobb, 2006). We bring these lines of 
inquiry together by sharing 5 community-based problem solving dispositions we found via 
ethnographic fieldwork in rural communities in the Rocky Mountain West.  

Findings 
We documented 5 CPSDs which were durable across data sources and communities:  

(1) Self-reliance: Community members were inclined to “do it themselves” or learn how to do it 
themselves. (2) Resourcefulness: Even as community members were disposed towards self-reliance, 
they were also inclined to seek out and use material and social resources to help them solve 
problems. (3) Care/Helpfulness: We found that community members were inclined to care for one 
another and accept care from others when faced with problems. (4) Try something and iterate: 
Community members were inclined to dive right in and “try” something. The notion of trying 
captures the willingness to attempt a particular approach, without full confidence that it will work. 
(5) Practical wisdom: Community member were inclined to use knowledge developed through 
experience, or which circulated and was taken for granted in the community.  

Implications 
We agree with scholars who argue that schools should not seek to replace community-based 

resources but rather should seek to build with and strengthen them. Our work has implications for 
this effort. For example, many classrooms are organized to purposefully restrict access to resources, 
especially during consequential activities such as testing. This seems to work against a community-
based disposition of resourcefulness. Our work prompts us to wonder how schools might be 
reorganized to build with and strengthen this and other community-based dispositions. 
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Worked examples consist of step-by-step derivations of problems, and are often provided to 
students as a way to learn the procedures for solving problems. An extensive body of literature has 
shown that worked examples can help students learn mathematics (e.g., Atkinson, Derry, Renkl, & 
Worham, 2000; Booth, Lange, Koedinger, & Newton, 2013; Sweller, 2006) but how the presentation 
of worked examples influence student learning remains unclear. For instance, new educational 
technology tools that demonstrate the dynamic process of solving algebraic equations (e.g., dragging 
4 across the equal sign to initiate the inverse operations and divide both sides by 4 in 4x = 6) may 
provide the opportunity to explore the potential benefits of dynamic worked examples.  

To study how variations in worked example presentations influence learning, we varied the format 
of worked example presentations of algebraic equations in an online platform. Specifically, we 
compare the impact of viewing worked examples in animated dynamic presentations, traditional 
static presentations, and sequential line-by-line presentations. Within these variations, we also 
compare concise worked examples (e.g., Rittle-Johnson & Star, 2007), which display only the 
important steps of solving algebra problems, and extended versions, which display all steps in a 
derivation.  

Our research questions are as follows: 1) Do concise or extended worked examples lead to larger 
gains from pretest to posttest? 2) Do students show differential gains from viewing dynamic, static, 
or sequential worked examples? 3) If dynamic worked examples lead to higher learning gains, which 
form of dynamic worked examples are best for learning? Currently twelve middle school teachers 
with a total of 146 students have completed this study and data collection is ongoing. Students 
complete a pretest on algebraic equation solving, six worked example-practice problem pairs, and a 
mirrored posttest in a 45-minute session. Our estimated sample of over 400 affords at least 80% 
power to detect small to medium effects of worked example length (f = 0.13) and presentation (f = 

0.15).  
Data analysis for this study will be conducted once all participants have completed the study in Fall 

2020. To explore our research questions, a 2 (pretest vs. posttest) ⨯ 2 (concise vs. extended) 
ANOVA will be conducted to test the effects of work example length, and a 2 (pretest vs. posttest) ⨯ 
3 (static, sequential vs. dynamic) ANOVA, and a 2 (pretest vs. posttest) ⨯ 2 (dynamic concise vs. 
dynamic extended) ANOVA will be conducted to test the effect of each worked example format on 
learning gains.  

We expect that the results from this study will help the field better understand the best way to 
present worked examples. Results and implications will be presented at the PME-NA conference. 
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Prospective elementary mathematics teachers (PTs) were asked to analyze 28 videos of cognitive 
interviews. The purpose of this study was to determine if experiences analyzing videos would lead to 
improvements in PTs’ professional noticing skills. Using a coding schema that reflected three levels 
of understanding (periphery, transitional, and accomplished), a frequency table was constructed that 
allowed PTs’ use and understanding of a noticing framework to be analyzed. Findings indicate that 
experiences analyzing videos leads to improvements in PTs’ professional noticing skills. 

Keywords: Teacher Education - Preservice, Instructional activities and practices, Mathematical 
Knowledge for Teaching 

Professional noticing, the skill of making complex, in-the-moment decisions regarding children’s 
mathematical thinking has been introduced as a means to improve overall mathematics thinking and 
instruction (Jacobs, Lamb & Philipp, 2010). The research reported in this paper analyzed prospective 
elementary mathematics teachers’ (PTs) use of the noticing framework, while promoting the 
exchange and enrichment of mathematics education research across learning environments. The 
research team consisted of three mathematics teacher educators (MTEs) who work at three different 
institutions, one in the south, one in the southeast, and one in the western part of the United States. 
Each MTE’s unique experiences and perspectives enhanced the research study.   

Theoretical Framework 
Despite the fact that many teacher preparation programs require PTs to spend a significant amount 

of time observing classroom teaching and learning, researchers cannot make specific claims about 
what they learn as a result of these observations (Brophy 2004). Conducting observations may not 
benefit PTs, because they may not know what key features to focus on while conducting their 
observations. MTEs, using video recordings of teaching may provide an opportunity for PTs to 
develop their noticing skills (Berliner et al. 1988). 

According to Barnhart and van Es (2015), without structured support, PTs’ analyses of student 
knowledge typically focus on aspects of the classroom related to management rather than on 
students’ mastery of the content. It is critical that mathematics teacher educators guide PTs in making 
instructional decisions that align with student understanding (Darling- Hammond & Bransford, 2005; 
Davis, Petish & Smithey, 2006; Zeichner & Liston, 1996). A body of research has found that PTs can 
learn to attend to, interpret, and make decisions on the basis of student thinking, skills related to 
analyzing teaching (Jacobs, Lamb, & Philipp, 2010; Mitchell & Marin, 2014; Santagata, 2011).  

MTEs may use video to provide PTs with the knowledge and skills they will need to be effective 
mathematics teachers. Using videos as a teaching tool saves time, money, and provides PTs the 
opportunity to learn new skills and to craft their practice without placing real students at risk during 
the learning process. Star & Strickland (2008) found that viewing videos led to significant increases 
in PTs’ observation skills, particularly in teachers’ ability to notice features of the classroom 
environment, mathematical content of a lesson, and teacher and student communication during a 
lesson. This study aimed to explore the following question: In the context of a four-week online 
mathematics course for pre-service elementary teachers, does the experience of analyzing videos of 
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students’ discussing their mathematical thinking lead to improvements in PTs’ professional noticing 
skills?    

The Instructional Activity 
In an attempt to answer the research questions, a MTE at a regional public university located in 

southeastern United States used videos as an instructional strategy to study PTs’ noticing skills.  
Fifteen female PTs in their second to fourth year of their studies to become elementary school 
teachers were a part of the study. Eleven of the PTs were White, three were Black, and one was 
Hispanic. Thirteen of the PTs were 20-25 years old, one was 42 years old, and one was 53 years old. 
PTs previously took between one and two math pedagogical content courses. PTs previous classroom 
experience includes 30 hours of focused observations in the areas of diversity, classroom 
management, and teaching strategies in a Survey of Education with Field Experiences course. They 
also have completed 10 hours of focused observations in diverse classroom settings related to 
classroom management along with small group teaching assignments in a Classroom Management 
course.  

PTs were enrolled in an online course, Math Through Problem Solving. The study took place during 
Summer Session II. Therefore, the content of the course, which is typically taught over the course of 
a 15-week semester, was compressed into four weeks. The course focused on the following units: 
Number Theory, Fractions, Decimals, and Integers. One week was spent on each unit. In each unit, 
the first assignment was for the PTs to read the sections in the unit. The information from the book 
was also summarized in power points on a Supplemental Resources Page. PTs were required to take 
a Readiness Assurance Test (RAT) focused on the reading. Subsequently, PTs completed the unit 
homework assignments. Then, PTs took the unit test, there was a practice test to help them prepare 
for the test. Throughout the week PTs were asked to work on their cognitive interview video analysis 
assignment worth 10% of PTs’ final grade. This sequence of assignments was repeated by PTs in 
each of the four units. Before the end of the course PTs were required to “pass”, 80% or better, a 
Rational Numbers proficiency test that they have up to three attempts to pass. At the end of Unit 4, 
the PTs took a final exam.  

The MTE developed the Cognitive Interview Video Analysis assignment to capture PTs’ 
professional noticing skills. Over the course of the class the PTs were asked to watch and analyze 28 
videos of cognitive interviews. The videos were focused on Number Theory (five videos), Fractions 
(eleven videos), Decimals (six videos), and Integers (five videos). The research team decided to 
focus their study on PTs’ analysis of three videos, all focused on the concept of ordering, but 
completed across the span of the course. More specifically, the first video was focused on ordering 
fractions, the second video on ordering decimals, and the third video on ordering integers.  

Before engaging in professional noticing, the PTs read the article A New Lens on Teaching: 
Learning to Notice (Sherin & van Es, 2003). In this article, the authors provide examples of how in-
service teachers reflect on their teaching through noticing. Reading this article helps the PTs realize 
that noticing will help them make in-the-moment decisions and that there are a variety of ways to use 
noticing in their future classrooms. 

The prompts that the interviewer asked the children in these three videos can be found in Figure 1. 
For each video, the assignment directions were: 

Post one (1) initial post where you answer each question below. Grading is based on effort 
(thoughtful and thoroughly explained answers) not accuracy. You are encouraged to read 
your peers' posts (you must make your initial post before being able to read others' posts) and 
post replies based on your reactions. Embedded in the book you will find the following video 
(there is a movie icon in the reading). Watch the video and then respond to each of the 
following prompts.  
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Attending:  
• What did the student do?  
• What strategies did the student use? 
• Interpreting:  
• What does this mean about the student’s understandings or misconceptions of the 

mathematics? 
• Deciding:  
• Based on what you attended to and interpreted, what are the best steps to take next with this 

student?  
• What questions would you ask this student? 

 
The MTE structured the assignment as a discussion for three main reasons. For one, since the course 

was an online class, there are no opportunities to discuss the videos face to face. Secondly, the 
instructor wanted to be able to provide PTs with feedback about the expectations of the assignment 
as well as feedback and guidance for meeting those expectations. Finally, the MTE believed that PTs 
could benefit from seeing each others’ responses and the MTE’s feedback on their responses. 

 

 
Figure 1: Image of the Tasks Presented to Students 

Methodology 
This paper reports on the integrated findings of an exploratory sequential mixed methods research 

design (Figure 2). In sequential exploratory design, qualitative data is first collected and analyzed, 
and themes are used to drive the development of a quantitative instrument to further explore the 
research problem (Creswell & Plano Clark, 2011). As a result of this design, three stages of analyses 
were conducted: after the initial qualitative phase, after the secondary quantitative phase, and at the 
integration phase that connects the two strands of data and extends the initial qualitative exploratory 
findings (Creswell & Plano Clark, 2011). In this paper the authors share the results of final 
integration phase of the research. 

 
Figure 2: Exploratory Sequential Design (Creswell & Plano Clark, 2011) 

The first goal of the coding process was to establish a standard exemplar response to the assignment 
for each video. To accomplish this goal, we, the team of three MTEs, each completed the Cognitive 
Interview Analysis assignment individually. Next, we met to discuss any discrepancies in the 
exemplar responses. We resolved any differences that existed and merged responses to create a 
standard exemplar response for each video. This task provided us with a standard exemplar to 
reference during coding. It also provided us with a thorough understanding of the content of the 
videos.  
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Next, we decided to use the coding scheme developed by Author (2019). The coding scheme is 
described in Figure 3. To analyze PSTs’ responses, we used open coding (Corbin & Strauss, 2014) to 
determine the noticing level for each attending, interpreting, and deciding prompt in the Cognitive 
Interview Analysis assignment. 

 

 
Figure 3: Coding Scheme for Professional Noticing 

Prior to coding, all PTs names were removed and the responses were randomized in the spreadsheet 
to avoid any potential coding biases. The research team calibrated coding by discussing our 
inferences and interpretations of one PT’s responses to each of the five items. Subsequently, each 
MTE independently double-coded all PTs’ responses for two of the three videos, in a blinded format, 
to ensure the data from each video was analyzed by two MTEs. The percent agreement for the two 
raters across all items was 75%, suggesting substantial inter-rater agreement. Having computed a 
satisfactory percent agreement, we reconciled our coding through discussion of the data and the 
professional noticing framework coding scheme (Figure 3).   

Findings 
Through the lens of the noticing framework (Attending, Interpreting, and Deciding), the results of 

the study show patterns of growth related to the noticing levels of periphery, transitional, and 
accomplished. Once PTs’ responses were coded using the scheme (Figure 3), the results of the 
noticing levels were analyzed for each of the three noticing assignments in the given semester 
(Comparing Fractions, Comparing Decimal Numbers, and Ordering Integers). The bar graph in 
Figure 4 shows the overall frequency of each response coded as periphery, transitional, and 
accomplished within each noticing assignment.  
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Figure 4: Overall Frequency of Periphery, Transitional, and Accomplished on each Assignment 

Table 1 provides overall percentages of responses coded as periphery, transitional, and 
accomplished within each noticing assignment. 

Table 1: Overall Percentages of Periphery, Transitional, and Accomplished 
Assignment Periphery Transitional Accomplished 

 6.1C: Comparing Fractions 0.83 0.15 0.015 

  7.1A: Comparing Decimal 0.66 0.29 0.046 

8.2A: Ordering Integers 0.69 0.2 0.107 

 
The percentage of responses coded as “periphery” decreased from 83% to 69%, whereas 

“transitional” increased from 15% to 20% “accomplished” increased from 1.5% to 10.7%, indicating 
that as the semester progressed, PTs’ responses moved toward a transitional and accomplished level 
of interpreting student thinking. As seen in Figure 4, 54 of the PTs’ responses were at a “periphery” 
level on the first assignment (Comparing Fractions) and only 1 PT response was at the 
“accomplished level on the first assignment. However, 45 PT responses were at the “periphery” level 
on the last assignment (Ordering Integers) and 7 PT responses were at the “accomplished” level on 
the last assignment. 

These results indicate that the PTs have little experience with examining student mathematical 
thinking as seen on videos at the onset of this course. But, with practice, PTs’ abilities to 
professionally notice improved as the course progressed. Based on experience and coursework, this 
seems to be a natural consequence of interacting with the ideas related to the framework. As shown 
in Figure 5, there is an overall increase of transitional responses in two of the three categories when 
considering Activity 7.1A. The attending percentage remained constant between Activity 6.1C and 
7.1A. There is a slight decrease in transitional responses related to activity 8.2A but it is still down 
trending related to the introductory activity.  

For example, one PT’s response to the deciding piece of the framework changed over time. In the 
first assignment, the student offered the following suggestion, “And for both students I would ask the 
same questions the instructor did, and I would ask for more examples and review questions”. Then, 
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on a later video, the PT’s level of sophistication changed and their response became, "What strategies 
are you using?", "How did you come up with that strategy?", "How did you figure out the answer?".  
As you can see, the later response is focused on conceptual understanding and is student-centered.  

 

 
Figure 5. Percent Periphery, Transitional, Accomplished by Video 

Three of the fifteen PTs did not complete all three assignments (chapters 6, 7, and 8). Therefore, 
their data were removed from the participant level analyses, resulting in n = 12. At the participant 
level, we (the MTEs) counted how many of the questions (out of the five questions) each PT 
answered at each noticing level for the three (comparing fractions, decimals, and integers) 
assignments. Next, we calculated the frequency and percent changes in the number of questions each 
PT answered at each noticing level from the first to the second, second to third, and first to third 
assignments. Finally, we found the average frequency and percent changes for all PTs.  

We found a decrease in PTs’ performance at the peripheral level during the course. All twelve PTs 
answered 49 questions at the peripheral level on the chapter 6 assignment. On the chapter 7 
assignment all twelve PTs answered 43 questions at the peripheral level. All twelve PTs answered 40 
questions at the transitional level on the chapter 8 assignment. The average number of questions that 
PTs answered at the peripheral level decreased by a frequency of 0.5, 0.25, and 0.75 from the first to 
the second assignment, second to the third, and the first to the third assignments, respectively. The 
average number of questions that PTs answered at the peripheral level decreased by 13.19, 0.69, and 
19.44 percent from the first to the second assignment, second to the third, and the first to the third 
assignments, respectively 

We found an increase in PTs’ performance at the transitional level from beginning to middle and 
beginning to end of the course, but a slight decrease at the transitional level from the middle to the 
end of the course. Nine of the twelve PTs answered ten questions at the transitional level on the 
chapter 6 assignment. On the second assignment eight PTs answered fifteen questions at the 
transitional level. Seven PTs answered fourteen questions at the transitional level on the third 
assignment. The average number of questions that PTs answered at the transitional level changed by 
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a frequency of 0.41, -0.17, and 0.25 from the first to the second assignment, second to the third, and 
the first to the third assignments, respectively. The average number of questions that PTs answered at 
the transitional level changed by 22.73, -2.27, and 4.55 percent from the first to the second 
assignment, second to the third, and the first to the third assignments, respectively.  

We found an increase in PTs’ performance at the accomplished level during the course. Only one 
PT answered one question at the accomplished level on the first assignment. On the second 
assignment two PTs each answered one question at the accomplished level. Five PTs answered six 
questions at the accomplished level on the third assignment. The average number of questions that 
PTs answered at the accomplished level increased by a frequency of 0.08, 0.33, and 0.42 from the 
first to the second assignment, second to the third, and the first to the third assignments, respectively. 
In most cases, the percent change could not be calculated because zero PTs initially answered at the 
accomplished level (causing a dividing by zero error in the percent change calculations).  

Conclusion and Implications 
This study, framed by research on noticing, the Coding Scheme for Professional Noticing (adapted 

from Van Es, 2011) was used to assess the development of PTs’ use and understanding of noticing. 
Since PTs’ noticing skills as they participated in the instructional activity was the focus of the study, 
the results are promising that the use of video to support PTs’ understanding of student thinking may 
be a viable strategy for supporting growth. Preliminary findings indicate that through a deliberate 
scaffolding of course activities and projects, MTEs can help PTs develop their noticing skills.  

Although many PTs’ professional noticing skills improved, some PTs’ skills did not show an 
overall increase, and few PTs reached the accomplished level. More research is needed to determine 
how to scaffold all PTs’ skill development to the accomplished level. Analysis of the instructional 
activity indicates that prior to this course PTs have had little experience describing students’ work, 
interpreting students’ understandings, and then deciding how to proceed. PTs’ initial interpretations 
seemed to rely on their own content understanding related to the task and limited the PTs in their 
ability to apply appropriate strategies to promote conceptual understanding for students. These results 
indicate the need for MTEs to spend more time reflecting on and discussing implications for 
teaching. Engagement in this work allowed us to see the PTs’ reasoning so that we, mathematics 
educators, can improve our practice and our PTs’ professional noticing skills. 
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Master narratives exist in many forms within mathematics education. Preservice elementary teachers 
often are seen as having high levels of math anxiety while students in developmental mathematics are 
seen as being deficit in their mathematical understanding. This study uses counterstories to 
understand the experiences of two women of color, who are enrolled in math content courses for 
preservice elementary teachers. Students share strategies that they learned from one math content 
course in order to succeed in their math course sequence. 
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Master narratives about preservice elementary teachers’ (hereon labeled as PSTs) relationship with 
mathematics often paints a story that PSTs have high levels of math anxiety both during their teacher 
preparation program and also beyond as in-service teachers (Gresham, 2007). In particular, of all 
college majors, female elementary PSTs show the highest levels of mathematics anxiety (Beilock et 
al., 2010). Math anxiety can often be debilitating, leading to feelings of helplessness, tension, or 
panic, and can affect PSTs’ experiences and success in their math content courses. “Mathematics 
anxiety affects learning and causes individuals to perform at lower levels than their capabilities” 
(Brown, Westenskow, & Moyer-Packenham, 2012, p. 366). It has been recommended that 
mathematics teacher educators incorporate strategies in the PSTs’ math content classes that can help 
students alleviate their anxieties and to help PSTs succeed in their future courses and ultimately in 
their careers (Vinson, 2001). In fact, Johnson & vanderSandt (2011) showed that taking a math 
content course in the freshman year of college can contribute to reducing math anxiety in PSTs.  

Another master narrative that can apply to PSTs is the deficit perspective that often comes with 
being required to complete developmental math courses. Developmental mathematics courses "target 
underprepared students with the purpose of improving their abilities to handle college-level material 
and succeed in college” (Bettinger, Boatman, & Long, 2013, p. 94). Oftentimes these courses focus 
on what students do not know and attempt to remediate topics in arithmetic and algebra. According 
to Sitomer (2014), a deficit view of students in such courses is problematic because it does not 
distinguish between different ways of knowing mathematics, seeks to blame instead of finding 
solutions, and does not acknowledge that the mathematical experiences of students might differ in 
significant ways from the mathematical experience of those who “define” the content of mathematics 
courses. Valencia (2015) argues that many remedial programs fail because they are quick fixes based 
on a deficit view, placing the burden of acquiring the needed knowledge on marginalized students 
and their families without much support for accomplishing learning. Oftentimes the coursework does 
not align with future courses that specific majors, like liberal studies majors, will need to take. 
Gutiérrez (2008) contends that in order to move away from the negative view of student achievement 
gap, more research should be done to investigate effective teaching and learning environments for 
marginalized students. 

These master narratives are important to dismantle. Larnell (2011) defines identity infiltration 
where students who often continue to hear the master narrative can begin to replace their experience 
with that of the master narrative. This can be troublesome for PSTs. If a PST believes that math 
anxiety is a fixed feature of being an elementary teacher or believes that they are deficit in their 
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mathematical knowledge, this can be transferred onto their future students (Vinson, 2001). Therefore, 
we need to understand strategies that help students to succeed. The research questions that this paper 
addresses are: 1) What are the counterstories of two PSTs who enrolled in a support course? 2) What 
strategies do PSTs utilize to succeed in their math content course sequence? 3) How does a 
mathematics support course support students to forge new mathematical identities? 

Theoretical Framework 
This study uses a Critical Race methodology (Solórzano & Yosso, 2002) to understand the ways 

that two students experienced their math content courses as part of their teacher preparation. We 
chose this methodology because it focuses on the stories and experiences of marginalized students, 
viewing these experiences as sources of strength. Solórzano and Villalpando (1988) define those who 
are marginalized as having “less access to opportunities and resources [and] experience different 
barriers, obstacles or other forms of individual and societal oppression than those at the center” (p. 
212).  

PSTs who are also placed into developmental mathematics face more obstacles than those students 
who are placed in a traditional, introductory mathematics course. First, PSTs are expected to deeply 
understand, engage with, and convey deeper conceptual understandings of mathematics than a 
student taking, say, a pre-calculus course. Elementary teachers must balance the challenges of not 
only understanding mathematical content, but they must have a level of specialized content 
knowledge (mathematical knowledge that may not be familiar to mathematicians), paired with 
pedagogical content knowledge (knowledge of how the content interacts with students and within 
teaching) (Ball, Thames & Phelps, 2008). Second, more underrepresented minority students are 
placed in developmental mathematics courses (Bahr, 2010) which is problematic because such 
remediation often places barriers to access to higher levels of education (e.g., receipt of financial aid, 
extended time to degree), which effectively places many underrepresented students on the periphery 
of educational opportunities and advancement (Valencia, 2015). 

In this study we specifically focus on counternarratives of the second and third authors. 
Counterstories “serve as a method of telling the stories of those people whose experiences are not 
often told” (Solórzano & Yosso, 2002, p. 32) and can be seen as a tool to challenge the dominant 
stories of marginalization. “Storytelling has been used to provide a venue for the marginalized to 
voice their knowledge and lived experiences” (Rodriguez, 2010, p. 493). Solórzano and Yosso 
(2002) argue that stories can build a sense of community among marginalized populations, giving 
voices to those who may be overshadowed by the dominant stories within education. Because 
schooling privileges some students and not others, understanding a student’s narrative can aid in 
understanding the way that those students who are under-supported within our educational system 
experience mathematics and also find ways to support their learning and success. As scholars, we 
need to understand how students who may be marginalized in our educational system “make sense of 
their own experiences and how they feel empowered to act to learn mathematics” (Zavala, 2014, p. 
62). 

Methods 
This study took place at California State Polytechnic University, Pomona, a large public university 

on the West Coast of the United States. The second (Hazar) and third (Samantha) authors enrolled as 
freshmen in Math 1900 (described in the next section) at the university Fall 2018. Both students 
enrolled as Liberal Studies majors, preparing themselves to complete a Bachelor’s degree supporting 
elementary school teaching. Hazar is in the fourth and final course of the mathematics content 
sequence while Samantha is enrolled the third course. Students who are deemed as needing extra 
support enroll in Math 1900 and then move onto the three-course math sequence. Students that do not 
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need extra support enroll directly into the three-course math sequence which covers numbers and 
operations, algebra, statistics, and geometry. Hazar identifies as a first-generation, Lebanese-
American woman. She is the first in her family to attend public schooling in the United States. She is 
20 years old and plans to finish her multiple subject credential with the goal to ultimately get a 
masters degree. Samantha is a 19-year-old woman who identifies as a Hispanic woman with Native 
American heritage, focusing on early childhood education. She would like to one day open a pre-
school. 
The Quantitative Reasoning Course 

Based on a statewide change in the California State University (CSU) system in Fall 2018, 
developmental mathematics coursework could no longer be offered, and instead general education 
courses needed to be modified to provide support for students who would have been placed in 
developmental mathematics courses. Because research has shown developmental mathematics 
courses hinder student graduation, this change was implemented to help students complete general 
education mathematics in their first year, shortening their time to degree completion and to lower 
dropout rates. When a student enrolls at a CSU, they are suggested to take specific courses that 
provide the right level of support. Through an algorithm that utilizes multiple measures, such as high 
school GPA, cumulative high school math GPA, SAT score, and whether or not students took math 
their senior year, students are placed into their math courses.  

Math 1900 was a newly designed course, developed by author one, to fulfill the CSU mandate. As a 
credit-bearing course, the quantitative reasoning course was specifically designed to support students 
who are enrolled in the liberal studies sequence aiming to become elementary teachers. Previously, 
these students would have been asked to enroll in two developmental mathematics courses focusing 
on algebraic skills before starting the liberal studies course sequence. The course was structured 
around three factors designed to: 1) help students alleviate their mathematics anxiety by focusing on 
course reflections, strategies, and growth mindset, 2) provide students with opportunities to have 
authority in their learning and self-regulation of their ideas, and 3) engage students in the eight 
standards for mathematical practice. 
Analysis 

This study focuses on the storytelling of these two students during their fourth semester in the 
liberal studies program. Both students responded to reflection questions asking them to relate their 
experiences in the math content courses they have taken. In particular, they were asked to reflect on 
their relationship with math coming in as a freshmen, their perspectives on teaching mathematics, 
how they attempt new problems or content areas, strategies they have developed along the way to 
support their success, and their sense of belonging in the liberal studies program. Through constant 
comparative methods, we pulled the following themes from the narratives: minoritized experiences in 
mathematics, change in relationship with math, relying on peers for deeper learning, and looking to 
oneself for validation. 

This study, like all, has its limitations. First, the second and third authors, the participants of this 
study, were students in the first author’s course. This may lead to some bias in the responses of the 
students. However, these students discuss their experiences after taking several math courses in the 
liberal studies math sequence, reflecting back on their overall experience. Second, the course has 
only run for two years, and therefore, much is to be learned, yet about its long-term implications for 
other students. However, it is worthwhile to gain an understanding of how it is addressing PSTs’ 
needs in the moment. 
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Findings 
Through their reflections, Hazar and Samantha related their experiences in the content sequence for 

liberal studies. In particular, the two students described how being in Math 1900, specifically, helped 
them to feel confident in their math abilities and to persevere in the subsequent course sequence. 
Both students indicated that their peers who did not start in Math 1900 struggled in their coursework 
when placed in the next class. From their narratives, both students discussed how they felt 
minoritized in previous math experiences, strategies that they have used to be successful, which 
include discussing their past and current relationship with mathematics and teaching mathematics, 
relying on peers for deeper learning opportunities, and relying on themselves to validate their work. 
Minoritized Experiences in Math 

Both women described being minoritized racially or because of their gender in their high school 
educational experiences, while Hazar also felt minoritized because of her learning disabilities. Both 
Hazar and Samantha went to schools that had a high proportion of Asian students. Samantha 
indicated that she was a Hispanic female attending school with a predominantly Korean population 
of students. She felt that because she was Hispanic, her peers automatically thought that she would 
not perform well in mathematics. Hazar attended nine different elementary schools, and felt that this 
caused gaps in her education. When she attended high school, she had a similar experience to 
Samantha:  

As a middle eastern woman I had less in common with my peers. Our school had a 
reputation of being academically advanced…Students felt the need to be competitive, and 
outperform one another instead of lift each other. I felt a need to prove my abilities, not only 
to my peers, but also my teachers. I did not feel as comfortable raising my hand, and asking 
questions. I had the fear of being thought of as stupid, or unintelligent. I wouldn’t have the 
confidence to raise my hand or ask the teacher to slow down. On the first day of classes, I 
felt the need to stay after class and explain I had ADHD, and admitting that I may need extra 
guidance to perform at the same levels of my peers. 

Hazar felt the pressure to perform at her high school, and felt that her lack of consistent learning in 
elementary school paired with her learning disability contributed to how people thought of her. 
Samantha described how in high school, she was told that because she was female, she was not good 
at mathematics. “I had always been told that my brain simply did not function in a mathematical 
standpoint…I was told that because I am a woman, I would not be as good at math as a male. I 
noticed that many times, the teachers would pair us with a male partner.” 

In contrast, both students described how they did not feel this way in their Math 1900 course. For 
example, Hazar reflected on how she felt when she walked into the class for the first time. 

When I walked into Math 1900, I was taken back to how female dominant the class was. I 
was heard, and felt that people cared about what I had to say…I was surrounded by a group 
of diverse and powerful women (and men) who had similar high school experiences to me. I 
thrived in Math 1900. It was the first time I felt my mental disability was not a crutch. I was 
able to embrace my differences, and got to be up and moving, and talking. I was no longer 
subjected to sitting down and lectured at. I am the first generation within my family to be 
born and raised in the United States. I have had to navigate the education system, which is 
very different than education in Lebanon. When coming to Cal Poly, specifically Math 1900, 
I was surrounded by a group that shared the same experiences I have had. 

Samantha also indicated that her experience in college was different than in high school, “we were 
embraced for our differences and told that we were capable regardless of race or ethnicity.” 
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Changes in Relationship with Math 
Hazar and Samantha had relationships with math prior to starting college. Samantha particularly had 

a high level of anxiety when it came to her relationship with math.  
I did not believe that I would be able to pass a college level math class nor understand it. I 
was most likely one of the most pessimistic human beings ever when it revolved around 
math. Throughout my pre-college years, math was truly one of my biggest 
struggles…although I was excited to finally learn math in which I would be passionate 
about, I could feel my heart beating out of my chest as I entered into my first ever college 
class. 

Samantha was very insecure about her ability to perform in the set of courses she was expected to 
pursue as a liberal studies major. She realized that her biggest fear was that she felt that if she could 
not comprehend the basics of mathematics, how would she be able to teach children? Before college, 
Hazar felt that mathematics gave her “a lot of anxiety and stress”. While she enjoyed math in her 
early years, she felt that she started to fall behind in high school because she lacked the basic 
understanding of concepts. She feels that mathematics is important and is something that is used 
regularly in everyday life, however, she felt a lot of pressure to perform prior to starting college. 

Both students described ways that their relationship with math changed after starting the liberal 
studies program. Samantha described learning about growth mindset in Math 1900 and decided that it 
might be worth it to change her perspective of mathematics and her ability to learn.  

I began to learn and grow faster than I could have ever imagined. Astonishingly, I finally 
understood math to the point where I could educate my peers during study review. Never 
have I walked out of a class with such confidence…Now, I am able to use critical thinking to 
attempt to comprehend [math] rather than [searching] the internet immediately…[the class] 
offered me multiple strategies of comprehending different forms of math.  

Her relationship with mathematics started to change and her confidence grew. Hazar also indicated 
seeing similar changes.  

I relearned foundations of math that helped me to understand it better. I was no longer 
blindly doing problems and hoping I was doing it right. I understand what I am doing, and 
why I am doing math the way I am. And the moment I don’t understand a topic, I’ve gained 
the confidence to raise my hand and ask for clarification. I had many misconceptions about 
math, I thought it was independent, and all memorization…I genuinely want to know and 
learn more. It has increased my appreciation for teaching…As cliché as it sounds, math is 
really fun and I want my students to get the appreciation of it earlier than I did. 

Both women found a way to relate to mathematics again. Samantha found that changing her mindset 
provided her the opportunity to engage in mathematics more than she did in high school. She 
recognized that now she was learning mathematics in order to teach, and therefore found joy when 
she was able to explain to others. Hazar recognized that with support to understand basic foundations 
of mathematics, she was able to understand and gain more confidence. She reflected on a moment 
when she was selected to present her explanation for how to add two fractions:  
Peer Interactions 

Samantha and Hazar distinguished that interacting with peers was an essential strategy that they 
learned from Math 1900 that helped them succeed and persevere in the subsequent math sequence. 
As noted above, Hazar had always been in classes where she sat in rows, faced forward, and was 
lectured at. Both students indicated that because group work was a daily routine in Math 1900 and 
that they were expected to change group members regularly, they were able to create a bond with 
their peers. Samantha and Hazar found it extremely rewarding to be able to help their peers. Hazar 
stated  



Counterstories of preservice elementary teachers: strategies for successful completion of their math content 
sequence 

	 1474	

More than anything, I learned how to think critically, which is very important as a Liberal 
Studies major. I even took a different approach to how I help my peers. I wanted to create an 
encouraging and positive setting, but I couldn’t do that by saying “no that’s wrong”. Just 
changing my verbiage ended up being a learning curve, and I have gone a long way. I now 
see dozens of students and tutor them at my school's Learning Resource Center…It gave me 
confidence I didn’t know I had. 

At the end of her first year, Hazar had gained so much confidence through working with others, that 
she decided to apply for a position as a tutor for the first two math courses in the sequence. She has 
now been tutoring for almost a year, and finds the experience very rewarding.   

Both Hazar and Samantha started group study sessions outside of class. They found that by being 
able to practice teaching concepts in front of one another, they were able to clarify their language and 
understanding of the material. For example, Samantha indicated that by becoming close with her 
classmates through groupwork in class, she was able to develop closer bonds with her peers and feel 
comfortable meeting outside of class to study and develop their mathematical understanding. “We 
were able to…develop the proper communication skills and be able to know the process to overall 
work through problems with one another…[which I used] not only my math courses, but my other 
courses in general.”  

In particular, Hazar indicated that because of her widespread interactions with peers in Math 1900, 
she felt she finally found her calling. 

I knew I was meant to be a teacher because I have never bonded so instantly with any group 
in my life. We are like-minded and have similar goals. I’ve met some of the most 
encouraging and uplifting people I will ever meet. I made a mistake on a worksheet and I 
said “I’m stupid” and the whole table responded “No you’re not” so instantly. Teaching is 
exactly what I want to do, and I've never been so excited to start my future. 

While both students indicated that the type of group work they experienced in Math 1900 was not 
the same in the subsequent math courses, they decided to carry on the tradition. For both students, 
their interactions with peers was a strategy that they took into their future math classes. For example, 
Hazar mentioned how she volunteers and shares her work with her peers, even though her instructor 
had not expected her to, because she understood the value of learning from peers. Samantha 
continues to meet with peers outside of class, even if they are not in the same course section, “with 
the community [from Math 1900], we still have study sessions, coffee dates, a hand to hold onto, and 
overall encouragement when we are feeling down.” 
Validating their Own Work 

Hazar and Samantha both indicated the value of struggle in their Math 1900 course. Hazar described 
scenarios when in Math 1900, the instructor never explicitly answered her questions and instead 
would ask her to think through her reasoning.   

I found it important to have a professor that allows you to struggle and make mistakes. [My 
professor] was patient, she didn’t give us all the answers right away. She gave a lot of time to 
communicate and troubleshoot within our groups. If I asked for help she would ask me to go 
through the work I had out loud, and upon doing so I would naturally answer my own 
question. 

Hazar indicated that this strategy of asking “why?”, “what?”, or “how?” helped her immensely in 
her subsequent math courses. She does so for questions like: “Why did I convert fractions to decimal 
in this word problem? Why are we using base 5? In ⅚ why, is 5 part of the 6? What does the 3 
represent in 532, and what is its relation to the other numbers? 

Samantha described a similar takeaway from that course. She recalled that for the first time she was 
genuinely asked to explain her reasoning behind how she did specific problems.  
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[My professor] instigated the challenge of questions such as “why do we do this that way?” 
or “how did you get that outcome?” This ultimately helped me to find the deeper meaning to 
why or how I got an answer which is an important aspect to becoming an educator. 

Samantha recalled a moment when she was presenting at the board and when she was asked by her 
professor how she arrived at her answer, she “[stared] at the numbers scribbled all over the board for 
what seemed to be hours, I finally…said ‘I do not know.’ This taught me that children will ask why 
and how, and an answer is a necessity.” Samantha understood that in future courses and her transition 
to becoming a teacher, she needed to rely on herself to validate her own work. 

Discussion 
In this study, we discussed the counterstories of two women enrolled in their math sequence for 

future elementary teachers. Both women described how their previous high school experiences 
positioned them as inferior to their peers in their mathematics courses. Their experience in Math 
1900 was transformational to these experiences; they were able to create and utilize strategies in their 
subsequent math courses that promoted their success while also creating more positive mathematical 
identities. The master narratives that PSTs struggle with high anxiety and also that developmental 
math students are deficient in math understanding are being challenged through their experiences. An 
essential take-away from the findings is that the two students felt a sense of community in their Math 
1900 class (e.g., did not feel minoritized, felt like they were part of a team). On the first day of class, 
all students in the course contributed towards a classroom set of norms, which were followed all 
semester. Part of the list was that students were expected to hold authority of their learning, to give 
respect to others, and to provide positive feedback to others. This could also contribute to why both 
women experienced a change in their relationship with mathematics and the joy they found working 
with others. Students were expected to be creative and to work on problems together, requiring them 
to only ask questions once the entire group needed help. Positive experiences for PSTs can contribute 
to positive attitudes towards mathematics (Kalder & Lesik, 2011). Part of the design of the course 
was to be transparent in the rationale for why the instructor did what she did, revealing underlying 
reasons to classroom decision making of the content and the mathematical practices.  

Hazar and Samantha may have found purpose and utility in the mathematics they were learning 
because it was the first time they saw how it could be connected to their field. Anderson (2007) 
argues that an important feature of mathematics identity is to be able to imagine how mathematics 
fits into a student’s broader life. Students in developmental mathematics courses often find that the 
math they learn is not connected to their career goals or futures and therefore do not feel motivated to 
learn the material (Cawley, 2018). Hazar and Samantha found a transformative change to enjoying 
mathematics and wanted to better understand it once they saw its purpose: to teach future children. 
Because the class was built around the standards for mathematical practice, students were constantly 
asked to make sense of problems and persevere in solving them while also constructing viable 
arguments for the conclusions they reached in problems and to critique the reasoning of others in 
their group. Both women found the strategy of asking themselves how and why they chose certain 
ways to work on problems to be a positive learning strategy that they carried forward. They also 
found that asking for help from others supported their learning. These strategies appeared to increase 
their confidence to engage with and present their mathematical work.  

It is important to provide the supports early on for students in order to help them succeed.  Different 
from developmental math, this course was grounded in math content that was purposeful for future 
teachers, intentional in the design, provided an early intervention for students to build confidence, 
connected to mathematical practices, and created positive learning experiences for students to have 
continued success. 
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Reasoning about fraction magnitude is an important topic in elementary mathematics because it lays 
the foundations for meaningful reasoning about fraction operations. Much of the research literature 
has reported deficits in preservice elementary teachers’ (PSTs) knowledge of fractions and has given 
little attention to the productive resources that PSTs bring to teacher education. We surveyed 26 
PSTs using a set of 9 fraction-comparison tasks. We report the frequency of complete strategy-
arguments and the perspectives (ways of reasoning) used for each item. We further examine 
incomplete strategy-arguments, noting substantial evidence for productive seeds of reasoning. Using 
data from interviews with 10 of these PSTs, we identify evidence suggesting these seeds are, in fact, 
productive in that they provide foundations for further development. We argue that this type of 
research is needed in order to further mathematics teacher education. 

Keywords: Number Concepts and Operations, Rational Numbers, Teacher Education-Preservice 

The mathematics education research community is concerned with the mathematics content 
knowledge of preservice elementary teachers (PSTs; Thanheiser et al., 2014). The research literature 
has tended to characterize PSTs’ mathematics content knowledge as poor (Graeber, Tirosh, & 
Glover, 1989; Green, Piel, & Flowers, 2008; Putt, 1995; Tsao, 2005; Thipkong & Davis, 1991; 
Widjaja, Stacey, & Steinle, 2011; Yang, 2007). A synthesis of the literature reveals that there is 
insufficient research that seeks to make sense of PSTs’ conceptions, or that views their conceptions 
as resources for further learning (Thanheiser et al., 2014; Whitacre, 2013). The literature on PSTs’ 
knowledge of fractions is a prime example of such characterizations (Olanoff et al., 2014). 
Researchers have found PSTs to be inflexible in their reasoning about fractions, relying heavily on 
standard procedures, while at the same time having difficulty justifying such procedures and 
difficulty relating fraction operations to contexts (Olanoff et al., 2014). 

Preservice elementary teachers may not typically reason flexibly about fractions when they come to 
teacher education (Ball, 1990; Yang et al., 2009), but how far are they from doing so? We operate 
from the assumption that PSTs possess fundamental mathematical resources with which to reason 
productively about fraction magnitude, but they may not have had sufficient opportunities to exercise 
such reasoning. In that vein, we analyzed 26 PSTs’ responses to fraction-comparison tasks in order to 
identify the variety of ways of reasoning that they might bring to such tasks. In keeping with our 
perspective, we went beyond tabulating correct responses and coding for strategies. We also 
examined how PSTs reasoned through comparisons that they ultimately answered incorrectly or 
incompletely. Even in these cases, we find evidence of PSTs reasoning about fractions in productive 
ways. In interviews with 10 of the PSTs, in which we provided low-level support and 
encouragement, we investigated which strategy-arguments for comparing fractions were readily 
learnable depending on their current knowledge.  

This research highlights the valuable prior knowledge and the potential for growth in PSTs’ 
knowledge of fractions. We believe our findings offer a fresh perspective that contrasts with the vast 
majority of literature on this topic by highlighting the strengths of PSTs that can be leveraged into 
effective reasoning strategies for fraction-comparison tasks. 
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Background 
Knowledge Framework 

We have found Smith’s (1995) framework useful for categorizing PSTs’ ways of reasoning about 
fraction magnitude (Whitacre & Nickerson, 2016). It consists of four perspectives, which are 
categories of comparison strategies: Transform, Parts, Reference Point, and Components. Below, we 
briefly describe each perspective.  

The Transform perspective involves use of procedures such as converting to a common 
denominator or converting to a decimal. These strategies involve transforming one or both fractions 
in some way in order to facilitate the comparison (e.g., comparing 6/7 and 7/8 by converting to a 
common denominator and then recognizing that 49/56 is greater than 48/56). 

The Parts perspective involves interpreting fractions in terms of parts of a whole. This approach 
works especially well in certain cases, such as when comparing fractions that have the same 
numerator or same denominator. For example, 3/4 is greater than 3/5 because 1/4 of a whole is larger 
than 1/5 of the same-sized whole. Thus, three larger parts are greater than three smaller parts.  

The Reference Point perspective involves reasoning about the magnitudes of fractions on the basis 
of their distance from reference points, or benchmarks (Parker & Leinhardt, 1995). In particular, 
Reference Point strategies relates to the number line. For example, to compare 7/8 and 6/7, a student 
may notice that 7/8 is 1/8 away from 1, whereas 6/7 is 1/7 away from 1. Since a distance of 1/8 is 
less than a distance of 1/7, 7/8 is closer to 1, and therefore larger. 

The Components perspective involves noticing additive or multiplicative relationships in the 
numerators and denominators of the given fractions. For example, in order to compare 13/60 and 
3/16, a student may notice that 13 x 5 = 65 > 60, whereas 3 x 5 = 15 < 16. Thus, 13/60 is greater 
because the numerator is larger relative to the denominator.  

Our coding scheme for fraction-comparison strategy-arguments represents a revised version of that 
of Smith (1995). Length limits prevent us from providing operational definitions for each strategy-
argument here. See Whitacre and Nickerson (2016) for a similar coding scheme.  
Previous Research 

We note three points that concern us about the state of the literature regarding PSTs’ mathematical 
knowledge: (1) The body of literature tends to emphasize deficiencies, rather than to regard PSTs’ 
prior knowledge as a productive resource (Thanheiser et al., 2014; Whitacre, 2013). This emphasis 
runs the risk of promoting low expectations of PSTs’ abilities to learn. (2) There are few articles that 
provide specific, qualitative descriptions of PSTs’ mathematical thinking that could provide useful 
information from which to design instruction. The work of Thanheiser (2009) is a notable exception. 
(3) There is a tendency to overgeneralize about the mathematical thinking of PSTs, rather than to 
recognize the variety in their thinking. 

We view PSTs as sense-makers who are ready and able to improve their mathematical knowledge. 
Unfortunately, there is scant literature that helps the field to understand how PSTs’ knowledge of 
fractions can be improved (Olanoff et al., 2014). Thanheiser et al. (2014) assert that the field of 
mathematics teacher education needs studies that document successful approaches to improving 
PSTs’ content knowledge and that illuminate the processes by which such changes can occur. We 
agree. In particular, the field needs studies that find value in PSTs’ prior knowledge and that 
demonstrate how PSTs can and do use that knowledge as they learn, because “The key to turning 
even poorly prepared prospective elementary teachers into mathematical thinkers is to work from 
what they do know” (Conference Board of the Mathematical Sciences [CBMS], 2001, p. 17). In the 
literature on K-12 students’ mathematical thinking and learning, much attention has been given to 
students’ mathematical conceptions and to the productive ways in which they make use of their prior 
knowledge as they learn new mathematics (e.g., Carpenter et al., 2015; Clements & Sarama; 2014; 
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Fuson et al., 1997). Unfortunately, such a perspective has rarely been applied in the literature 
concerning PSTs’ mathematical thinking and learning (Thanheiser et al., 2014; Whitacre, 2013). In 
this study, focusing on the challenging topic of fraction magnitude, we examined how PSTs made 
use of their prior knowledge, including to develop new strategies, when comparing fractions. 
Theoretical Framework 

This study is informed by the notion of the zone of potential construction (ZPC) (Norton & 
D’Ambrosio, 2008; Steffe, 1991). The ZPC refers to the range “determined by the modifications of a 
concept a student might make in, or as a result of, interactive communication in a mathematical 
environment” (Steffe, 1991, p. 193). In the case of our work, to say that a strategy for comparing 
fractions is in a learner’s ZPC is to say that the learner can hypothetically extend or reorganize her 
current schemes or mental operations to compare fractions in this new way. 

Informed by the above literature, together with our previous experience, we expected PSTs to 
approach the fraction-comparison tasks primarily by drawing upon Parts and Transform reasoning. In 
particular, we expected them to be able to apply Parts reasoning to compare fractions in cases of a 
common denominator or common numerator. We did not expect many PSTs to compare 
complements initially, but we conjectured that doing so might be within their ZPCs. We expected 
many PSTs to default to Transform procedures, such as converting to a common denominator, in 
cases in which there was not a common numerator or common denominator in the given fractions.  

Method 
The research questions that we address are the following: (1) How do elementary PSTs reason about 

a set of fraction-comparison tasks? (2) What productive seeds of reasoning are evident in their 
responses? (3) Given the opportunity to explore a set of fraction-comparison tasks in an interview 
setting, which strategy-arguments are PSTs able to construct, and how do these relate to their current 
ways of reasoning? 

This study took place at a large, public university in the Southeastern United States. The 
participants were a cohort of 26 PSTs in an elementary mathematics methods course. They were 
senior-level Elementary Education majors enrolled in a credential program.  
Collection of Survey Data 

Participants were given a fraction-comparison survey early in the semester (prior to instruction 
related to fractions). The cover page had nine pairs of fractions and asked the PSTs to mentally 
decide which fraction in the pair was greater or whether the two fractions were equal. The subsequent 
pages revisited each of these nine comparisons, asking participants for a “Description of Method” 
and a “Justification” for each comparison. We chose this format in order to encourage the 
participants to exercise their number sense, although they were free to approach the tasks in any way 
that they chose. 

The same survey was administered at the end of the fraction unit. In both cases, time to complete 
the survey was limited to 25 minutes. We note that some participants left items toward the end of the 
survey blank. It is possible that more attempts would have appeared on later items if there had not 
been a time limit, or if participants had been given significantly more time. 
Analysis of Survey Data 

Note: We do not assume that the participants performed all of their work mentally and then reported 
that work in writing. In fact, some participants explicitly noted that they changed some answers. 
Whenever a participant gave one answer on the cover page but gave a different answer when 
describing or justifying their method, we regarded the latter response as the final answer. 

Whitacre and Nickerson (2016) used a modified version of Smith’s (1995) framework to code 
fraction-comparison strategies. In this study, we further developed that coding scheme to capture the 
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wider variety of strategies that we observed. Two authors separately coded every response for 
perspective and strategy. The data were coded in batches (e.g., data from 8 participants) and inter-
rater reliability was checked after each batch. By coding in batches, we were able to make revisions 
and additions to the coding scheme along the way and to code each subsequent batch with an updated 
scheme. This approach also enabled us to identify any interrater reliability issues early and to clarify 
our interpretations. Overall, the authors initially agreed on the perspective for 91% of the 
participants’ responses and agreed on the specific strategy for 89% of the responses. Consensus was 
reached through further discussion of the disagreements until the authors were satisfied with the final 
coding decision.  

In addition to coding for a perspective and specific strategy-argument, we also focused on 
comparisons that fell short of being complete strategy-arguments, yet demonstrated what we judged 
to be productive seeds of reasoning. Thus, all comparisons were coded into one of five categories: (a) 
complete strategy-argument and correct solution, (b) complete strategy-argument with minor errors, 
(c) incomplete strategy-argument with productive seeds, (d) incomplete strategy-argument with no 
apparent productive seeds, and (e) no strategy-argument evident. Incomplete strategy-arguments 
were given credit for productive seeds if the characteristics of the work, together with the 
perspective, were consistent with a complete strategy-argument (i.e., the participants’ reasoning was 
headed down a productive path but stopped short of the complete argument). We believe that this 
approach to the study of PSTs’ mathematical thinking provides a more comprehensive picture than 
that which has typically been reported in the literature. 
Collection of Interview Data 

Prior to the fraction unit in class, PSTs were invited to participate in one-on-one interviews. In 
contrast to the typical interview style in which the interviewer refrains from providing any form of 
support, these interviews were designed to allow for minimal support. The purpose of the interview 
design was to investigate which strategy-arguments were in participants’ ZPCs. Thus, we specified in 
the interview protocol allowable types and levels of intervention. The intervention strategies that 
interviewers used included emotional encouragement, requests to solve a comparison task in a 
different way, requests or encouragement to continue down a path of reasoning, and offering counter 
arguments or pointing out evidence that was relevant to determining whether a solution was correct 
or incorrect. Ten of the 26 PSTs participated in these video-recorded interviews. The first and second 
author each interviewed five of the participants. In these interviews, PSTs were given nine fraction-
comparison tasks that each mapped closely to the nine comparisons on the survey, but with different 
components (see Table 1).  
Analysis of Interview Data 

To analyze the interview videos, we targeted comparisons in which participants activated a 
productive seed in their work. We first identified comparisons from the videos that demonstrated use 
of productive seeds, we then wrote short narratives on what transpired in each case, and finally chose 
representative cases that highlight successful progressions in reasoning from productive seeds with 
low-level support. In our analysis, we applied three criteria as evidence that a strategy-argument was 
within a participant’s ZPC: (1) the PST had not previously used that strategy-argument, as 
determined from pre-assessment and interview data; (2) the PST produced the strategy-argument 
during the interview with no more than minimal intervention from the interviewer; (3) the PST later 
used the same strategy-argument independently. 

 
Table 1: Fraction-comparison Tasks from the Survey and Interview 

Item Survey Comparisons Interview Comparisons 
1 2/8 vs. 3/8 4/6 vs. 5/6 
2 3/4 vs. 3/5 5/8 vs. 5/9 



Productive seeds in preservice teachers’ reasoning about fraction comparisons 

	 1481	

3 6/7 vs. 7/8 7/8 vs. 8/9 
4 14/13 vs. 13/12 11/10 vs. 12/11 
5 8/24 vs. 13/39 6/24 vs. 13/52 
6 13/60 vs. 3/16 17/42 vs. 8/23 
7 7/28 vs. 13/50 4/20 vs. 11/56 
8 2/7 vs. 12/43 5/12 vs. 30/71 
9 35/832 vs. 37/834 25/287 vs. 28/290 

Results 
Survey Results 

We summarize the survey results in terms of three themes: (a) PSTs know what they were expected 
to learn in school, (b) when encouraged to do so, PSTs explore different perspectives and strategies, 
and (c) PSTs exhibit productive seeds for reasoning about fraction comparisons. 

First, unsurprisingly, we find that the participants tended to use Parts and Transform strategies. As 
expected, those two perspectives are most familiar to PSTs, and they were the perspectives most 
commonly used. Figure 1 tabulates the number of instances of strategy-arguments for each 
perspective, broken down by item. Parts was a common perspective across items involving smaller, 
easier fraction comparisons. Transform was also a common strategy perspective across most of the 
items, with many PSTs frequently converting both fractions to a common denominator explicitly or 
using cross multiplication. Components strategies occasionally appeared on the later items, but were 
predominant on the last item with many PSTs noting the common difference of two in that 
comparison. Reference Point strategies were rare. Strategy arguments coded as “Other” were not 
developed enough to code, and comparisons coded as “None” had no work shown (either a simple 
answer or completely blank).  

 
Figure 1: Perspectives used by comparison item 

Second, in contrast to descriptions in the literature, the participating PSTs did exhibit flexibility in 
their reasoning about fraction magnitude. Recall that the instructions for the survey asked 
participants to first make comparisons mentally and that the numbers chosen for the comparison 
items lent themselves to different strategies. Nonetheless, the participants could have defaulted to 
converting to a common denominator for every task. They did not. Instead, PSTs used an average of 
5.5 distinct strategies across the 9 tasks, and they averaged 3.73 distinct strategies that were 
accompanied by complete arguments. Of the 26 participants, 20 used five or more distinct strategies. 
All of the participants used at least three distinct strategies.  
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Third, we see substantial evidence of productive seeds of reasoning. The comparisons items ranged 
from easy to difficult for the participants, especially given that they were instructed to make their 
judgments mentally and that the survey was administered under time constraints. Each participant 
was given a correctness score for each item: correct answers scored 1 point, and incorrect answered 
scored 0 points. The mean total score was 5.96 (of a maximum of 9 points) with a standard deviation 
of 1.66. The average number of correct answers accompanied by complete arguments was 4.38 with 
a standard deviation of 2.17. Thus, the participants answered most items correctly, but there was 
substantial room for improvement in correctness and especially in producing complete arguments. 

Candidate responses to be coded for productive seeds were those that did not constitute complete 
arguments. Of the 87 incomplete arguments, 39 (approximately 45%) included evidence of 
productive seeds. (There were another 6 responses with no written work provided, and there were 17 
items left blank, which may have been due to time constraints.) Thus, even in cases of incomplete 
arguments, the participants often reasoned about fraction comparisons in productive ways. This result 
indicated the potential for the interview participants to construct new strategy-arguments with 
minimal intervention during the interviews. 
Interview Results 

Due to length constraints, we focus here on the interview participants’ responses to the third 
comparison item, 7/8 vs. 8/9. This item was intended to invite PSTs to consider the complements of 
the given fractions (i.e., 1/8 vs. 1/9) and to construct a strategy-argument based on comparing 
complements (e.g., 1/9 is smaller than 1/8, so 8/9 is larger than 7/8 because it is closer to whole). 
Indeed, 8 of the 10 interview participants were able to construct a complete argument that involved 
comparing the complements and reasoning from a Parts perspective. Most participants did not 
compare complements initially. Instead, they began with a more familiar strategy such as converting 
to a common denominator. They then compared complements in response to an interviewer’s 
request, such as to try to find a “different way” of making the comparison. Alternatively, the 
interviewer followed up on something that the participant had mentioned (e.g., the possibility of 
thinking in terms of “parts” or “pies”). Given such requests and encouragement, 80% of the 
participants constructed a complete Comparing Complements strategy-argument, supporting the 
correct conclusion that 8/9 was greater than 7/8. By contrast, only 1 of the 10 participants had 
compared complements for the corresponding item (6/7 vs. 7/8) on the pre-survey. On the post-
survey—without assistance and free to choose any strategy they wished—7 of the 10 interview 
participants used comparing complements for 6/7 vs. 7/8. 

Thus, we see evidence that the strategy of comparing complements was in the ZPCs of the majority 
of the interview participants. This was especially the case for those who took the size of the parts into 
account in comparisons involving a common numerator (5/8 vs. 5/9 in the interview). Those who 
explained that 5/8 was greater than 5/9 because eighths are larger than ninths (using Parts: 
Denominator Principle) appeared to be ready to reason in terms of complements for 7/8 vs. 8/9, even 
if doing so was novel and somewhat challenging. For example, Jane used the Denominator Principle 
to correctly compare 5/8 and 5/9. When she was posed 7/8 and 8/9, she noted that “the numerators 
are each one less than the denominator” and that eighths were larger than ninths. However, she was 
not immediately sure what conclusion to draw. She made rectangular area drawings of 7/8 and 8/9. 
Her drawings were sloppy and actually made 7/8 appear to be greater. However, despite her drawing, 
Jane reasoned that the missing piece from 8/9 must be smaller than the missing piece from 7/8, and 
therefore 8/9 was greater. Even after constructing a complete strategy-argument, Jane expressed 
doubt, so the interviewer invited her to explore the idea further. She created her own example, using 
1/2 and 2/3, which bolstered her confidence in this new way of comparing fractions. 

The two participants who did not construct a complete strategy-argument involving complements 
during the interview conspicuously ignored piece size in their reasoning. Both focused on the number 
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of parts, rather than their size, when thinking in terms of Parts (and otherwise relied on converting to 
decimals). For example, Kimmy described 5/8 as missing 3 pieces and 5/9 as missing 4 pieces, 
without making any mention of the size of said pieces. As best we can tell from the data, even with 
interviewer probing, the size of the pieces did not enter into her reasoning. Like Jane, she noticed that 
both 7/8 and 8/9 were “missing one piece,” but unlike Jane, she was unable to arrive at a complete 
strategy-argument using complements. 

Discussion 
We have begun the fine-grained work of identifying strategy-arguments for comparing fractions that 

are within the ZPCs of some PSTs, depending on their current ways of reasoning about fractions and 
given low levels of intervention. This finding is encouraging. Our work also reveals substantial 
diversity in PSTs’ reasoning about fraction comparisons—a theme that is underemphasized in the 
literature. In the absence of documented distinctions, the literature might encourage mathematics 
teacher educators to treat all PSTs as if they think similarly. 

We have shown that certain, nonstandard strategy-arguments, such as Comparing Complements are 
readily learnable by some PSTs, given their current ways of reasoning. Note that we are not 
distinguishing PSTs based on supposed ability. Our data do not speak to their mathematical abilities 
in general, and we do not claim that some of our interviewees were more mathematical capable than 
others. Instead, we are concerned with how they were thinking about fractions at the beginning of the 
course, in relation to the progress that they were able to make during the interview. Those PSTs who 
took the size of the parts into account when reasoning in terms of Parts were able to compare 
complements with lows levels of interviewer intervention. Those PSTs who consistently ignored the 
size of the parts did not appear to be readily able to construct Comparing Complements on the day of 
the interview. However, later on, having first constructed Parts: Denominator Principle, they may 
have become able to do so. Thus, in making claims about PSTs’ ZPCs, these are limited to what was 
readily learnable during the interview. 
Conclusion 

In our review of the research literature concerning PSTs’ knowledge of fractions, we pointed our 
three problems with the emphasis on negative generalizations. We frame our contributions in 
response to these problems: (1) Whereas the emphasis on deficiencies runs the risk of promoting low 
expectations of PSTs’ abilities to learn, our approach is concerned with documenting learning and 
identifying the conditions under which it is readily achievable. (2) Whereas literature that emphasizes 
deficiencies fails to provide useful information from which to design instruction, our approach 
identifies PSTs’ particular conceptions (in the form of strategy-arguments, in this case) and charts the 
terrain of viable reorganizations. (3) Whereas generalizations about deficiencies in PSTs’ content 
knowledge fail to distinguish PSTs from one another, our approach focuses on the diversity of 
reasoning that can be found among PSTs. This research has illuminated our own understanding of 
PSTs’ reasoning about fraction comparisons and has helped to inform instruction in the courses that 
we teach. 

This line of research values PSTs’ prior knowledge and identifies desirable mathematical 
understandings that are readily learnable, given favorable conditions. In this way, we identify PSTs’ 
particular conceptions and chart the terrain of viable reorganizations. Once they move beyond default 
approaches like converting to a common denominator, we find considerable diversity in the 
mathematical thinking of PSTs, and we discover what they are ready to learn. 
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In this paper we describe an educational proposal for prospective secondary school mathematics 
teachers in Mexico, whose aim was to contribute to the development of their didactic-mathematical 
knowledge about linear variation through mathematical tasks, the development of the competence of 
identifying primary mathematical objects and the reflection on hypothetical cases of teaching. The 
proposal is supported within both the Onto-semiotic Approach (EOS) and the Mathematics Teacher's 
Didactic-Mathematical Knowledge and Competence model. The proposal follows a design research 
methodology based on EOS. The results show the complexity related to the development of the 
competence of identifying primary mathematical objects, they also highlight the influence that 
competence has on the development of the epistemic and cognitive facets of prospective teachers’ 
didactic-mathematical knowledge on linear variation.  

Keywords: Teacher Education - Preservice; Mathematical Knowledge for Teaching; Middle School 
Education; Precalculus. 

Introduction 
Linear variation is an important mathematical topic that goes transversely trough the mathematics 

curriculum in Mexico, it is taught from the fifth year of primary education, becomes a central topic in 
secondary school (SEP, 2017), and its teaching continues in the upper secondary and higher 
educational levels. 

The teaching of variation is essential because variation is a fundamental notion for the study of 
physical phenomena that can be observed in nature and found in people's daily experiences. These 
phenomena have the characteristic of being dynamic, that is, they involve processes that are 
constantly changing. Therefore, the teaching of variation should support students to make 
estimations, comparisons, and models that allow to explain the phenomena of change and solve 
problems demanded by their milieu (García & Ledezma, S / F; Caballero & Cantoral, 2015). 

Despite the importance of teaching variation, particularly linear variation, the mathematics 
curriculum often promotes a static and limited teaching of this mathematical content in secondary 
school. In this regard, authors such as Bojórquez, Castillo, and Jiménez (2016), Panorkou, Maloney, 
and Confrey (2016), Thompson and Carlson (2017), and Vasco (2006) highlight that the variational 
thinking of students is not explicitly considered in the curriculum of mathematics in the elementary 
and secondary school. Also, they declare that mathematics textbooks are not formulated from a 
variational point of view and point out the notion of variable magnitude is missing in teaching of 
mathematics, despite the fact that they constitute a necessary basis for the learning of calculus at later 
educational levels. Instead, a static teaching of function as a correspondence rule is fostered, without 
any connection to variation. 

Since curricula and textbooks are the primary materials available to secondary school mathematics 
teachers, and considering these documents foster a limited approach to the teaching of linear 
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variation, it becomes highly important that Mathematics Education provide concrete guidelines to 
support teachers to broaden their perspective about teaching linear variation. 

It is particularly important that, in an early stage, teachers incorporate to their professional practice 
more enriched strategies for teaching linear variation than the ones suggested in mathematics 
curriculum. Consequently, it is pertinent to intervene in the initial teacher education, as Godino, 
Giacomone, Batanero and Font (2017) argue: “mathematics teacher education […] demands attention 
from the Mathematics Education, since the development of students' basic thinking and mathematical 
skills depend essentially on this education"(p. 91). 

It is noteworthy that there is little research that provides specific orientations on how to strengthen 
didactic and mathematical teachers knowledge on linear variation in teacher training programs, 
despite the fact that different researchers have reported difficulties of mathematics teachers and 
prospective teachers in relation to notions closely linked to linear variation, such as function 
(Wilhelmi, Godino & Lasa, 2014, Amaya, Pino-fan & Medina, 2016) and proportionality (Balderas, 
Block & Guerra, 2014). 

To address this problem, we designed, implemented, and evaluated a didactic proposal for the 
teaching of linear variation. We called it formative proposal because it is aimed at prospective 
mathematics teachers. The main goal was to enrich didactic-mathematical knowledge of prospective 
teachers on linear variation and to initiate them in the development of their competence for 
identifying primary mathematical objects related to this mathematical notion. The proposal was 
theoretically supported on both the Onto-semiotic Approach (EOS) and the Mathematics Teacher's 
Didactic-Mathematical Knowledge and Competence model (DMKC). It was followed a qualitative 
design research methodology that integrates some of the EOS theoretical tools. The formative 
proposal included the design of a sequence of didactic activities which included mathematics tasks 
and several questions and situations to prompt didactical reflections. To design the formative 
proposal we took into consideration the work of Herrera-Garcia (2020), who characterized several 
meanings of linear variation pertinent for teaching in secondary school (as a visual representation on 
the number line, as a graphical representation on the Cartesian plane, numerically as proportional 
variations of corresponding magnitudes, and as an algebraic formula). 

This paper we describe both the stages of the methodology followed to design the formative 
proposal and the structure of the didactic sequence designed. In addition, we discuss some of the 
results obtained by its experimentation with prospective secondary school mathematics teachers. We 
also present part of the analysis of some of the prospective teachers 'productions corresponding to the 
second activity of the sequence, which allowed us to establish important relationships between the 
development of the teachers' competence of identification of primary mathematical objects and the 
development of their didactic-mathematical knowledge. 

Theoretical Frame 
We support the formative proposal on theoretical tools from the Onto-Semiotic Approach (OSA) to 

mathematical knowledge and instruction (Godino, Batanero & Font, 2007), as it provides important 
elements to elaborate an instructional design and methodological tools that allow guide its 
development and evaluating its implementation. To design the proposal, we used two fundamental 
theoretical notions (Godino, Batanero & Font, 2008): institutional meaning of a mathematical object 
(the system of mathematical practices shared into an institution to solve a same type of problems) 
and the typology of primary mathematical objects: situations (problems, exercises, etc.), concepts 
(given by definitions or descriptions), languages (terms, algebraic expressions, graphs, ...), 
procedures (techniques, algorithms, operations), arguments (statements to validate or explain) and 
Propositions ( statements about concepts). 
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Mathematics Teacher's Didactic-Mathematical Knowledge and Competence model 
(DMKC) 

Given the need for theoretical tools to characterize and evaluate the teacher's didactic-mathematical 
knowledge and skills, the Mathematics Teacher's Didactic-Mathematical Knowledge and 
Competence model (DMKC) has recently been developed within the EOS (Godino, Giacomone, Font 
and Pino-fan, 2018). This model emerged as an extension of the Mathematics Teacher's Didactic-
Mathematical Knowledge (DMK) model (Godino, 2009) and has been enriched by Godino and 
collaborators  based on the EOS theoretical tools in several investigations (Pino-Fan & Godino, 
2015; Pino-Fan, Godino & Font , 2015). In this model, it is considered that the mathematics teacher 
must have knowledge conserning of mathematical notions they teach (Pino- Fan & Godino, 2015). In 
addition, the teacher must have a didactic-mathematical (or specialized) knowledge of the different 
facets or dimensions that intervene in instructional processes: epistemic, ecological, cognitive, 
affective, mediational, and interactional. In this work, we consider only two facets: epistemic 
(didactic-mathematical knowledge about mathematics itself) and cognitive (knowledge about how 
students learn mathematics) (Godino, Giacomone, et al., 2017). 

In addition to this, the DMKC model states that the prospective teacher must also develop a series 
of didactic-mathematical competences that allow him to face the problems of teaching mathematics. 
In particular, in this work we were interested in the competence of ontosemiotic analysis of 
mathematical practices, which, according to Godino, Giacomone, Batanero and Font (2017) consists 
in the identification of the network of primary mathematical objects and processes involved in 
mathematical practices, which allows the teacher to understand the progression of learning, manage 
the processes of institutionalization and evaluate the mathematical skills of their students. It is 
important to declare that we considered necessary, among all the elements contemplated in the 
competence mentioned above, the identification of primary mathematical objects in the mathematical 
practices carried out when addressing the didactic sequence, therefore, we call it in this paper 
competence of identifying primary mathematical objects.  

Method 
Methodological approach 

We followed the methodology for design research proposed by Godino, Rivas, Arteaga, Lasa and 
Wilhelmi (2014), which integrates elements of both the design-based research methodology and 
Didactic Engineering within the theoretical tools of EOS. The methodology consisted of four stages; 
preliminary study (stablishing the institutional meaning of reference on linear variation), design of 
the didactic trajectory (elaborating didactic sequence by designing mathematical tasks using the 
primary mathematical objects related to the meanings of linear variation, the creation of GeoGebra 
applications and the design of tasks to prompt didactic-mathematical reflections), implementation of 
the didactic trajectory (implementation of the didactic sequence) and retrospective evaluation or 
analysis (the development of the above described competence and the epistemic and cognitive facets 
of the  DMKC model). 
Context and participants  

The formative proposal was implemented with nine prospective mathematics secondary school 
teachers, who were in the eighth semester of Bachelor in a public institution in Mexico that provides 
programs for secondary school teachers initial education. The experimentatio was carried out in four 
sessions with a total duration of 15 hours. The designer of the formative proposal also served as the 
instructor. 
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Data Collection Instrument 
The main instrument to collect the information was the sequence of didactic activities, which is 

made of five didactic activities with specific tasks for prospective teachers, supported by digital 
applications with GeoGebra according to the content of each activity. The activities started with a 
situation of variation in extra-mathematical context, some situations corresponded to linear variation 
and others did not, in order to help prospective teachers to distinguish when a situation corresponds 
or not to a case of linear variation. The didactic activities were printed on paper and given to each 
participant, who were designed with the letter "E" and a number from 1 to 9. The participants were 
asked to write their answers with different colored pen according to the working modality: black for 
individual work, red for teamwork and blue for group work. 
Structure of the didactic sequence 

Each of the activities is organized in three parts, addressing the following aspects: mathematical 
knowledge, didactic-mathematical knowledge, and the competence of identifying primary 
mathematical objects. In each of these three parts of the didactic activities different work modalities 
were considered: individual, team of three people and group discussion. 

Part I: Mathematical work. This part of the sequence is intended for solving mathematical tasks 
aimed at enriching the meaning of linear variation of future teachers. For this, situations of linear 
variation and non-linear variation were proposed in various contexts, such as the relationship 
between the biological age of a dog and the years lived by him; the relationship between a person's 
weight (kg) and its height; filling and emptying of cylindrical containers. In these contexts, it was 
sought that future teachers manage to characterize linear variation based on the proportional 
relationship between the corresponding variations of two variable magnitudes in different forms of 
language: dynamic number lines in GeoGebra, Cartesian graphs, tables of values and algebraic 
expressions. 

Part II: Identification of the primary mathematical objects involved in the mathematical practices 
developed in Part I. In the first didactic activity, it was sought that the future teachers express what 
they understood by three of the primary mathematical objects. To do this, they were asked the 
following questions: What is a mathematical concept for you?, What is a procedure for you?, What is 
a property / proposition for you?, adapted from the work of Giacomone (2018). It is important to 
mention that future teachers were not instructed in the use of EOS, but through group discussions 
they were guided so that, in a consensual way, they characterized those mathematical objects based 
on their initial ideas. Having established what is meant by that three mathematical objects, they were 
asked to identify those used in solving the mathematical tasks of Part I in each of the activities. 

Part III: Analysis of the answers given by hypothetical high school students. This last part consists 
of the analysis of answers supposedly provided by students when addressing linear variation 
problems, with the aim that the prospective teacher analyzed the student's mathematical practice, 
determined whether or not it is correct and created strategies to guide and provide feedback to the 
student.  

Data analysis and discussion 
After the implementation of the five activities that integrated the didactic sequence, we carried out 

the analysis and interpretation of the answers provided by the prospective teachers. Below, we 
present some answers corresponding to the first two didactic activities of the sequence, which we 
interpreted from the perspective given by the theoretical referents chosen.  
Identification of primary mathematical objects in the mathematical practices  

An essential part for developing the competence of identifying primary mathematical objects both 
in their own and in their students' mathematical practices, is to have a wide perspective about the 



Didatic-mathematical knowledge and competence of prospective secondary school mathematics teachers on linear 
variation 

	 1489	

diversity of mathematical aspects involved in solving a mathematical task, that is, to understand each 
of the six primary mathematical objects. In this work, due to time constraints, we decided to limit the 
competence of identifying primary objects to the following three objects: procedures, concepts, and 
properties. 

In the first didactic activity, the future teachers carried out the mathematical tasks of Part I, aimed at 
expanding their mathematical knowledge on linear variation. Then, in Part II, where future teachers 
were to explain what a concept, property, and procedure is, the following was found. The future 
teachers had no problem explaining what a procedure is to them and it was relatively easy to identify 
procedures such as the calculation of basic operations (addition, subtraction, multiplication, and 
division) in their practices. In the group discussion, the instructor asked questions in order to guide 
future teachers to recognize other types of procedures, so it is important to highlight that group 
interaction was essential for the identification of a wider variety of procedures, such as the “rule of 
three”, the clearances of a variable, and the calculation the proportionality constant. 

The mathematical object concept was a little more difficult to characterize by some teachers. For 
example, E8 expressed that a mathematical concept "is the problem with which we are working to 
find a solution", this suggests that for him a concept is the problem to be solved. Furthermore, E8 
failed to use the notion he expressed to identify concepts in his own mathematical practices. On the 
other hand, the future professor E7, defined a concept as: "the meaning of a word" and identified 
term, equation, and magnitude as concepts in the work carried out in part I. Some of the concepts 
identified by future teachers individually are slope, proportionality, line, terms, proportionality 
constant, algebraic expression, and magnitude. 

In contrast to the above, it was more difficult for future teachers to explain what a property is. For 
example, E5 expressed that a property "is a mathematical axiom" and E4 wrote that "it is an already 
established rule that is always functional". Both provided the algebraic expressions “𝑦 = 𝑚𝑥 + 𝑏” y 
“𝐾 = ∆𝑦/∆𝑥” as examples of properties involved in part I of mathematical work, which might 
suggest that for them the properties have to be expressed algebraically. Other future teachers failed to 
provide examples of properties. On the other hand, E8 did not explain what a property was, but did 
mention addition and subtraction as examples. It is important to highlight the enrichment in the 
answers during the group discussion (this corresponds to the epistemic facet of didactic-mathematical 
knowledge). In the bottom of the right column (Figure 1), in blue, it can be seen that E8 takes up the 
ideas of its peers and adds some examples of properties, such as: "The quotient of the magnitudes' 
increases is constant." This highlights the importance of interactions during mathematical instruction 
processes. 

 
Figure 1. Enrichment of E8 answer after group discussion 
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Explaining what a concept and a property is was a difficult task for future teachers, as has already 
been reported by other researchers such as Giacomone (2018), Giacomone, Godino, Wilhelmi and 
Blanco (2018), Burgos, Giacomone, Beltrán-Pellicer and Godino (2017), Burgos, Godino, 
Giacomone and Beltrán-Pellicer (2018b) and Burgos, Beltrán-Pellicer, Giacomone and Godino 
(2018a). The recognition of these objects in mathematical practices is a competence that needs time 
to be developed, partly due to the difficulty of understanding what these primary mathematical 
objects are. However, the tasks proposed in the didactic sequence were motivating elements to 
initiate them in the development of that competence.  

 Gradually, in subsequent activities, future teachers were able to more consistently identify 
concepts, procedures, and properties in the mathematical practices carried out in the mathematical 
tasks about linear variation, which also highlights the development of the epistemic facet of their 
didactic-mathematical knowledge. In Activity 2, which dealt with the relationship between the 
weight and height of a person, expressed in a numerical table, prospective teachers identified new 
concepts and new properties of linear variation when creating a Cartesian graph and reflect on some 
the points obteinded from the table. For example, E5 said: “The slope of two pairs of different points 
must have the same value for linear variation. The union of the points should form a straight line” 
(Figure 2). 

 
Figure 2. E5 and E1 answer during teamwork 

 
Furthermore, prospective teachers showed changes in the type of guidance they would give to 

students in the hypothetical teaching situations. Initially, their orientations were limited to and 
inclined towards manipulating algebraic expressions. After the mathematical work and the tasks 
aimed to identifying primary mathematical objects in Activity 2, they analyzed in more detail the 
hypothetical answer of a high school student (part III), who made a graph (Figure 3) with data on 
weight and height provided by the Mexican Social Security Institute, and stated the situation 
corresponded to a linear variation situation.  

 
Figure 3. Graph drawn by a hypothetical high school student  

Regarding the student's answer, the future teachers were asked: a) Do you agree with the student's 
answer?, B) What arguments would you give to reinforce your point of view and give feed back to 
the student?, And c) How Would GeoGebra help you to provide feedback to the student? In 
evaluating the student's answer, the future teachers used the primary mathematical objects identified 
in their own mathematical practices (Figure 2). For example, E1 (Figure 4) analyzed the graphical 
representation through the properties of linear variation that emerged in part I of this activity. He 
states that "the graphic is not a line because there is no proportionality between the magnitudes, nor 
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between the magnitudes' increases". E1 evaluated the student's answer and concluded it is not 
correct; being able to make this assessment corresponds to the epistemic facet of didactic-
mathematical knowledge. 

 
Figure 4. The future teacher E1 argues using properties of linear variation 

We can find another example of the enrichement of future teachers didactic-mathematical 
knowledge in the answer of E9 (Figure 4) to the same situation, who first expresses that “visually the 
graph is not a line”. Then, to provide feedback to the student, he proposes to choose pairs of points 
and identify that there is no constant variation. In addition, he states that GeoGebra would help the 
student by creating a line that would show that it does not cross all the points. These reflections of E9 
on how it would orient a student, show the enrichment of the cognitive facet of its didactic-
mathematical knowledge. 

 
Figure 5. Prospective teacher E9 provides feedback to the student using GeoGebra  

In the examples shown above, it can be identified that future teachers progressed in their 
professional knowledge, both mathematical and didactic-mathematical, since they provide arguments 
and orientations (in some cases using GeoGebra) based on different procedures, and properties of 
linear variation, which allowed them to assess whether or not the situations posed to them and to the 
hypothetical students correspond to situations of linear variation in different forms of language 
(algebraic, graphic, numerical and verbal). That is, the formative proposal allowed future teachers to 
enrich their specialized knowledge of mathematics, since they could identify in their own 
mathematical practices primary objects related to linear variation, and then, based on them, they 
could argue why some hypothetical responses of students were incorrect and propose feedback 
strategies for the student regarding the study of linear variation. 

Conclusions 
After analyzing the answers of future teachers, we concluded that the competence of identifying 

primary mathematical objects was a challenging task for them, as documented in studies such as that 
of Burgos et al. 2017. On the other hand, their answers suggests that they were able to gradually 
carry out more detailed analyzes of both their  mathematical practices and the mathematical practices 
of the hypothetical students, since they showed a greater diversity of primary mathematical objects in 
the reflection tasks (parts II and III of the activities). 
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In the implementation of the activities, time was devoted to the discussion of ideas and the 
comparison of the answers given, this generated a very rich moment of exchange opinions and 
allowed prospective teachers to reflect on other mathematical objects that they had not identified by 
their own, so group discussions allowed them to enrich their initial answers.  

A very important aspect that must be highlighted is that, initially, the didactic-mathematical 
reflections that the prospective teachers generated regarding the tasks set out, used to be very limited 
and lacking arguments. Subsequently, by working on the activities and the tasks set out to initiate 
them to develop the competence of identifying primary mathematical objects, they generated more 
detailed responses, which included the use of primary mathematical objects. This helped them to 
propose more detailed strategies to guide the students based on argumentation related to properties 
and procedures of linear variation previously identified in the part I (mathematical work). This 
highlights the importance of the development of this competence for their teaching practice, since it 
prompts prospective teachers carry out analysis of mathematical practices that take into account the 
diversity of primary mathematical objects related to the teaching and learning of a specific 
mathematical content. 
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Se describe una propuesta formativa para futuros profesores de secundaria en México, cuyo objetivo 
fue enriquecer sus conocimientos didáctico-matemáticos sobre variación lineal a través de tareas 
matemáticas, del desarrollo de la competencia de identificación de objetos matemáticos primarios y 
de la reflexión sobre casos hipotéticos de enseñanza. La propuesta se enmarca en el Enfoque 
Ontosemiótico (EOS) y en el modelo de Conocimientos y Competencias Didáctico-Matemáticos del 
profesor de matemáticas; además, sigue una metodología de investigación de diseño fundamentada 
en el EOS. El análisis de los resultados muestra la complejidad inherente al desarrollo de la 
competencia de identificación de objetos matemáticos primarios, pero resalta su impacto en el 
desarrollo de las facetas epistémica y cognitiva del conocimiento didáctico-matemático sobre 
variación lineal de los futuros profesores. 

Palabras clave: Preparación de Maestros en Formación; Conocimiento matemático para la enseñanza; 
Educación secundaria; Pre-Cálculo. 

Introducción y problemática 
El estudio de la variación lineal abarca transversalmente el currículo de matemáticas en México; 

inicia en quinto año de educación primaria, se vuelve central en la escuela secundaria (SEP, 2017) y 
está presente en los niveles educativos medio superior y superior.  

La enseñanza de la variación es importante porque ésta es una noción fundamental para el estudio 
de fenómenos físicos que se pueden observar en la naturaleza y que se encuentran en las vivencias 
cotidianas de las personas. Dichos fenómenos tienen la característica principal de ser dinámicos, es 
decir, involucran procesos que están en constante cambio. En este sentido, la enseñanza de la 
variación debe favorecer que los sujetos realicen estimaciones, comparaciones y construyan modelos 
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que permitan explicar fenómenos de cambio y resolver situaciones que demande su entorno (García 
& Ledezma, S/F; Caballero & Cantoral, 2015).  

A pesar de la importancia que tiene la enseñanza de la variación, particularmente la variación lineal, 
el currículo de matemáticas suele promover un estudio estático y limitado de este contenido 
matemático en la escuela secundaria. Al respecto, autores como Bojórquez, Castillo y Jiménez 
(2016), Panorkou, Maloney y Confrey (2016), Thompson y Carlson (2017) y Vasco (2006) destacan 
que el pensamiento variacional de los estudiantes no se desarrolla explícitamente en los planes de 
estudio de educación básica y que los libros de texto de matemáticas no están formulados desde un 
punto de vista variacional. Además, argumentan que no se promueve el estudio de magnitudes 
variables, a pesar de que constituyen una base necesaria para el estudio del cálculo en niveles 
educativos posteriores; en su lugar, se realiza un estudio estático de la función como regla de 
correspondencia, sin relación con la variación. 

Dado que los planes de estudio y los libros de texto son los materiales principales que tienen a su 
disposición los profesores de matemáticas de secundaria, y en estos documentos es limitado el 
tratamiento propuesto para la variación lineal, es pertinente apoyar a los docentes en el desarrollo de 
una perspectiva más amplia de la variación lineal que oriente su práctica en el aula, de manera que la 
enseñanza de este tema no quede restringida a un enfoque estático y algebraico.  

Particularmente, es importante fomentar de manera temprana que los profesores incorporen a su 
práctica docente tratamientos didácticos más enriquecidos para la variación lineal que aquellos 
planteados en el currículo. En este sentido, es pertinente intervenir en la etapa formativa de los 
profesores de matemáticas, como afirman Godino, Giacomone, Batanero y Font (2017), “la 
formación didáctica de los profesores […] reclama atención por parte de la Didáctica de la 
matemática, pues el desarrollo del pensamiento y de las competencias matemáticas básicas de los 
alumnos depende, de manera esencial, de dicha formación.” (p. 91).  

Es importante resaltar que son pocas las investigaciones que orientan de forma concreta sobre cómo 
fortalecer el conocimiento matemático y didáctico sobre variación lineal en programas de formación 
de profesores, a pesar de que diferentes investigaciones han reportado dificultades en los profesores o 
futuros profesores de matemáticas con relación a dos nociones estrechamente vinculadas a la 
variación lineal, la función (Wilhelmi, Godino & Lasa, 2014, Amaya, Pino-fan & Medina, 2016) y la 
proporcionalidad (Balderas, Block & Guerra, 2014). 

Para atender esta problemática, se diseñó, implementó y evaluó una propuesta didáctica para el 
estudio de la variación lineal, a la que denominó propuesta formativa por estar orientada a futuros 
profesores de matemáticas. El objetivo de dicha propuesta fue enriquecer conocimientos didáctico-
matemáticos de los futuros profesores sobre variación lineal e iniciarlos el desarrollo de la 
competencia de identificación de objetos matemáticos primarios relacionados con dicha noción 
matemática. La propuesta se fundamentó teóricamente en el Enfoque Ontosemiótico (EOS) y en el 
modelo de Conocimientos y Competencias Didáctico-Matemáticos del profesor de matemáticas 
(CCDM), y siguió una metodología cualitativa de investigación de diseño que integra las 
herramientas teóricas del EOS. La propuesta formativa incluyó el diseño de una secuencia de 
actividades con tareas matemáticas y de reflexión didáctica, para lo cual se caracterizaron diferentes 
significados de la variación lineal (como representación gráfica en rectas numéricas, como 
representación gráfica en el plano cartesiano, como representación tabular con variaciones 
proporcionales y como representación analítica) pertinentes para la educación secundaria. Tales 
significados se detallan ampliamente en Herrera-Garcia (2020) y ponen de manifiesto la diversidad 
de propiedades, procedimientos, representaciones, etc., que se pueden estudiar sobre la variación 
lineal desde un punto de vista variacional, y que es esencial que los profesores de secundaria 
conozcan para que puedan favorecerlos en el aula. 
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En este escrito se describirán a grandes rasgos las etapas de la metodología seguida para el diseño 
de la propuesta formativa y la estructura de la secuencia didáctica diseñada. Además, se discutirán 
algunos de los resultados obtenidos al implementar la secuencia didáctica con futuros profesores de 
matemáticas de secundaria, ilustrando con el análisis de las respuestas correspondientes a la segunda 
actividad de la secuencia, las cuales permiten establecer relaciones importantes entre el desarrollo de 
la competencia de identificación de objetos matemáticos primarios y el desarrollo de conocimientos 
didáctico-matemáticos de los futuros profesores. 

Referentes teóricos 
Para formular, implementar y valorar la propuesta formativa se tomó como referente teórico el 

Enfoque Ontosemiótico del Conocimiento y la Instrucción Matemáticos, EOS (Godino, Batanero & 
Font, 2007), pues aporta elementos significativos para elaborar un diseño instruccional y 
herramientas metodológicas que permiten estructurar su desarrollo y valorar su implementación. 
Fueron centrales para el desarrollo de la propuesta, por un lado, la noción de significado institucional 
de un objeto matemático, que se entiende como el sistema de prácticas matemáticas compartidas en 
una institución para resolver un tipo de situaciones problema y, por otro lado, la tipología de objetos 
matemáticos primarios que componen el significado de un objeto matemático (Godino, Batanero & 
Font, 2008): situaciones problema (problemas, ejercicios, tareas, etc.), conceptos-definiciones 
(introducidos mediante definiciones o descripciones), lenguajes (notaciones, expresiones, gráficos, 
etc., representados de manera escrita, oral, gestual, gráfica, tabular…), procedimientos (técnicas, 
algoritmos, operaciones), argumentos (enunciados para validar o explicar) y proposiciones 
(enunciados sobre conceptos).  
Modelo de Conocimientos y Competencias Didáctico-Matemáticas del profesor (CCDM) 

Ante la necesidad de contar con herramientas teóricas que permitan caracterizar y evaluar los 
conocimientos y competencias didáctico-matemáticos del profesor, se ha desarrollado recientemente 
al seno del EOS el Modelo de Conocimientos y Competencias Didáctico-Matemáticos del profesor 
de matemáticas (CCDM) (Godino, Giacomone, Font y Pino-fan, 2018). Este modelo surge como una 
ampliación del modelo de Conocimientos Didáctico-Matemáticos del profesor de matemáticas 
(CDM) (Godino, 2009) y ha sido enriquecido por Godino y colaboradores en diversas 
investigaciones (Pino-Fan & Godino, 2015; Pino-Fan, Godino y Font, 2015) con base en las 
herramientas teóricas del EOS. En este modelo se considera que el profesor de matemáticas debe 
tener conocimiento común y ampliado del contenido, es decir, conocimientos sobre las nociones 
matemáticas que se estudian en el nivel donde se desempeña y sobre contenidos correspondientes a 
los niveles posteriores (Pino-Fan & Godino, 2015). Además, el profesor debe tener un conocimiento 
didáctico-matemático, o especializado, de las distintas facetas o dimensiones que intervienen en el 
proceso educativo: epistémica, ecológica, cognitiva, afectiva, mediacional e interaccional. En este 
trabajo se consideraron únicamente las facetas epistémica (conocimiento didáctico-matemático sobre 
las matemáticas mismas) y cognitiva (conocimiento sobre la manera como los estudiantes aprenden 
las matemáticas) (Godino, Giacomone, et al., 2017).  

Aunado a esto, el modelo CCDM plantea que el futuro profesor también debe desarrollar una serie 
de competencias didáctico-matemáticas que le permitan hacer frente a los problemas de enseñanza 
de las matemáticas. En particular, en este trabajo se puso el interés en la competencia de análisis 
ontosemiótico de prácticas matemáticas, que, según Godino, Giacomone, Batanero y Font (2017) 
consiste en la identificación de la red de objetos matemáticos primarios y procesos intervinientes en 
las practicas matemáticas, que permite al profesor comprender la progresión de los aprendizajes, 
gestionar los procesos de institucionalización y evaluar las competencias matemáticas de sus 
alumnos. Es importante declarar que en este trabajo se consideró únicamente, de entre todos los 
elementos contemplados en esta competencia, la identificación de objetos matemáticos primarios 
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puestos en juego en las prácticas matemáticas realizadas al abordar la secuencia didáctica diseñada, 
por ello, se hará referencia en este trabajo a la competencia de identificación de objetos matemáticos 
primarios.  

Consideraciones metodológicas 
Se siguió la metodología para investigaciones de diseño propuesta por Godino, Rivas, Arteaga, Lasa 

y Wilhelmi (2014), que retoma elementos de la investigación basada en el diseño y de la Ingeniería 
Didáctica y los articula con las herramientas teóricas del EOS. La metodología consistió de cuatro 
etapas; estudio preliminar (determinar el significado institucional de referencia sobre variación 
lineal), diseño de la trayectoria didáctica (diseño de tareas matemáticas a partir de la elección de 
objetos matemáticos propios del significado de variación lineal, la creación de aplicaciones de 
GeoGebra y el diseño de tareas de reflexión didáctico-matemática que integraron en la secuencia 
didáctica), implementación de la trayectoria didáctica (implementación de la secuencia didáctica) y 
evaluación o análisis retrospectivo (del desarrollo de la competencia descrita y las facetas epistémica 
y cognitiva del modelo CCDM).  
Contexto y participantes  

La propuesta formativa se implementó con nueve futuros profesores de octavo semestre de 
Licenciatura en Educación secundaria con Especialidad en Matemáticas de una institución formadora 
de profesores en México. Se realizaron cuatro sesiones de trabajo con una duración total aproximada 
de 15 horas. La diseñadora de la propuesta formativa fungió como instructora. 
Instrumento recolección de información 

El instrumento principal para recopilar la información fue la secuencia de actividades didácticas, la 
cual se conformó por cinco actividades didácticas con tareas específicas para los futuros profesores, 
apoyadas en aplicaciones digitales diseñadas con GeoGebra acordes al contenido de cada actividad. 
Las actividades iniciaban con una situación problema de variación de contexto extramatemático, 
algunas eran de variación lineal y otras no, con el propósito de ayudar a los futuros profesores a 
identificar cuándo una situación problema corresponde o no a un caso de variación lineal. Las 
actividades didácticas fueron impresas en papel y entregadas a cada participante, a quiénes se 
designó con la letra “E” y un número del 1 al 9. Se dio la instrucción de escribir las respuestas con 
pluma de diferente color según la modalidad de trabajo: negro para el trabajo individual, rojo para el 
trabajo en equipo y azul para el trabajo grupal.  
Estructura de las actividades de la secuencia didáctica 

Cada una de las actividades se organizó en tres partes, atendiendo los siguientes aspectos: el 
conocimiento matemático, el conocimiento didáctico-matemático y la competencia de identificación 
de objetos matemáticos primarios. En cada una de estas tres partes de las actividades didácticas se 
consideraron diferentes modalidades de trabajo: individual, en equipo de tres personas y discusión 
grupal. 
Parte I: Trabajo matemático. Esta parte de la secuencia se destinó a la resolución de tareas 
matemáticas orientadas al enriquecimiento del significado de variación lineal de los futuros 
profesores. Para ello, se propusieron situaciones de variación lineal y de variación no lineal en 
diversos contextos, como la relación entre la edad biológica de un perro y los años vividos; la 
relación entre el peso (kg) de una persona y su estatura; el llenado y vaciado de recipientes 
cilíndricos. En estos contextos se buscó que los futuros profesores lograran caracterizar la variación 
lineal a partir de la relación de proporcionalidad entre las variaciones correspondientes de dos 
magnitudes variables en diferentes formas de lenguaje: rectas numéricas dinámicas en GeoGebra, 
gráficas cartesianas, tablas de valores y expresiones algebraicas. 
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 Parte II: Identificación de los objetos matemáticos primarios involucrados en las prácticas 
matemáticas desarrolladas en la parte I. En la primera actividad didáctica se buscó que los futuros 
profesores expresaran qué entendían por tres de los objetos matemáticos primarios. Para ello, se les 
plantearon las preguntas siguientes: ¿Qué es para ti un concepto matemático?, ¿qué es para ti un 
procedimiento?, ¿qué es para ti una propiedad/proposición?, adaptadas del trabajo de Giacomone 
(2018). Es importante mencionar que a los futuros profesores no se les instruyó en el uso del EOS, 
sino que a través de discusiones grupales se les guio para que, de manera consensuada, se 
caracterizaran dichos objetos matemáticos a partir de sus ideas iniciales. Una vez establecido qué se 
entendería por los tres objetos matemáticos mencionados, se les pidió que identificaran aquellos que 
intervinieron en la resolución de las tareas matemáticas de la Parte I en cada una de las actividades. 
Parte III: Análisis de respuestas dadas por estudiantes hipotéticos de secundaria. Esta última parte 
consistió en el análisis de respuestas supuestamente proporcionadas por estudiantes al abordar 
situaciones problema de variación lineal, con el objetivo de que el futuro profesor analizara la 
práctica matemática del estudiante, determinara si era o no correcta y creara estrategias para orientar 
y retroalimentar al estudiante.  

Análisis de datos y discusión de resultados 
Tras realizar la implementación de las cinco actividades que conformaron la secuencia didáctica, se 

realizó el análisis e interpretación de las respuestas obtenidas. A continuación, se presentan algunas 
respuestas correspondientes a las primeras dos actividades didácticas de la secuencia, las cuales son 
interpretadas desde los referentes teóricos elegidos.  
Identificación de objetos matemáticos primarios en sus prácticas matemáticas  

Una parte esencial para el desarrollo de la competencia de identificación de objetos matemáticos 
primarios en las prácticas matemáticas propias o de los estudiantes es tener claridad sobre la 
diversidad de aspectos matemáticos involucrados al resolver una tarea matemática, es decir, 
comprender cada uno de los seis objetos matemáticos primarios. En este trabajo, por limitaciones de 
tiempo, se decidió delimitar la competencia de identificación de objetos primarios a los tres 
siguientes: procedimientos, conceptos y propiedades.  

En la primera actividad didáctica, los futuros profesores realizaron las tareas matemáticas de la 
Parte I, orientadas a ampliar sus conocimientos matemáticos sobre variación lineal. Luego, en la 
parte II, donde los futuros profesores debían explicar qué es un concepto, una propiedad y un 
procedimiento, se encontró lo siguiente. Los futuros profesores no tuvieron problemas para explicar 
qué es para ellos un procedimiento y fue relativamente sencillo identificar en sus prácticas 
procedimientos como el cálculo de operaciones básicas (suma, resta, multiplicación y división). En la 
discusión grupal, la instructora realizó preguntas que guiaran a los futuros profesores al 
reconocimiento de otros tipos de procedimientos, por lo cual es importante resaltar que la interacción 
grupal fue fundamental para la identificación de una variedad más amplia de procedimientos, como 
la regla de tres, los despejes, y el cálculo la constante de proporcionalidad. 

El objeto matemático concepto fue un poco más difícil de caracterizar por algunos profesores. Por 
ejemplo, E8 expresó que un concepto matemático “es el problema con el que se está trabajando para 
darle una solución”, lo cual sugiere que para él un concepto es el problema por resolver. Además, E8 
no logró emplear la noción expresada para identificar conceptos en sus prácticas matemáticas. Por 
otro lado, el futuro profesor E7, definió un concepto como: “el significado de una palabra” e 
identificó término, ecuación y magnitud como conceptos en el trabajo realizado en la parte I. Entre 
los conceptos identificados por los futuros profesores de manera individual se encuentran: pendiente, 
proporcionalidad, rectas, términos, constante de proporcionalidad, expresión algebraica y magnitud. 
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En contraste con lo anterior, para los futuros profesores resultó más complicado explicar qué es una 
propiedad. Por ejemplo, E5 expresó que una propiedad “es un axioma matemático” y E4 escribió que 
“es una regla ya establecida que es funcional siempre”. Ambos proporcionaron las expresiones 
algebraicas “𝑦 = 𝑚𝑥 + 𝑏” y “𝐾 = ∆𝑦/∆𝑥” como ejemplos de propiedades intervinientes en la parte 
I de trabajo matemático, lo cual podría sugerir que para ellos las propiedades se expresan de manera 
algebraica. Otros futuros profesores no lograron proporcionar ejemplos de propiedades. Por otro 
lado, E8 no explicó que era una propiedad, pero mencionó a la suma y la resta como ejemplos. Es 
importante resaltar el enriquecimiento que se generó en las respuestas durante la discusión grupal de 
las respuestas (faceta epistémica del conocimiento didáctico-matemático). En la columna de la 
derecha (Figura 1), en color azul se puede observar que E8 retoma las ideas de sus compañeros y 
agrega algunos ejemplos de propiedades, como: “El cociente de los incrementos de las magnitudes es 
constante”. Esto pone de manifiesto la importancia de las interacciones durante los procesos de 
instrucción matemática. 

 
Figura 1. Enriquecimiento de la respuesta de E8 tras la discusión grupal 

 
Explicar qué es un concepto y una propiedad fue una tarea difícil para los futuros profesores, como 

ya ha sido reportado por otros investigadores como Giacomone (2018), Giacomone, Godino, 
Wilhelmi y Blanco (2018), Burgos, Giacomone, Beltrán-Pellicer y Godino (2017), Burgos, Godino, 
Giacomone y Beltrán-Pellicer (2018b) y Burgos, Beltrán-Pellicer, Giacomone y Godino (2018a). El 
reconocimiento de estos objetos en las prácticas matemáticas es una competencia que necesita tiempo 
para ser desarrollada, en parte por la dificultad de comprender qué son estos objetos. Sin embargo, 
las tareas propuestas en la secuencia didáctica fueron elementos motivantes para iniciarlos en el 
desarrollo de su competencia.  

 Gradualmente, en las actividades posteriores, los futuros profesores lograron identificar de manera 
más consistente conceptos, procedimientos y propiedades en las prácticas matemáticas realizadas en 
torno al estudio del tema variación lineal, lo cual pone de manifiesto también el desarrollo de la 
faceta epistémica de su conocimiento didáctico-matemático. Por ejemplo, en la actividad 2, que 
trataba sobre la relación entre el peso y la estatura de una persona expresada en una tabla numérica, 
al crear una gráfica cartesiana los futuros profesores identificaron en sus prácticas matemáticas 
nuevos conceptos y nuevas propiedades de la variación lineal como las siguientes: “La pendiente de 
dos pares de puntos distintos debe tener el mismo valor para que haya variación lineal. La unión de 
los puntos debe formar una línea recta” (Figura 2). 
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Figura 2. Respuestas de E5 y E1 durante el trabajo en equipo 

 
Además, los futuros profesores mostraron cambios en el tipo de orientaciones que darían a los 

estudiantes. Inicialmente, sus orientaciones eran limitadas y se inclinaban a la manipulación de 
expresiones algebraicas. Después del trabajo matemático y las tareas de identificación de objetos 
matemáticos primarios en la actividad 2, analizaron de manera más detallada la respuesta hipotética 
de un estudiante de secundaria (parte III), quien elaboró una gráfica (Figura 3) con datos del peso y la 
estatura propuestos por el Instituto Mexicano del Seguro Social, y afirmó que se tenía una situación 
de variación lineal.  

 
Figura 3. Gráfica trazada por un estudiante hipotético de secundaria  

 
Se les preguntó a los futuros profesores: a) ¿Estás de acuerdo con la respuesta del estudiante?, b) 

¿Qué argumentos le darías para reforzar tu punto de vista y retroalimentar al estudiante?, y c) ¿Cómo 
te ayudaría GeoGebra para retroalimentar al estudiante? Al valorar la respuesta del estudiante, los 
futuros profesores pusieron en juego los objetos matemáticos primarios identificados en sus prácticas 
(Figura 2). En la respuesta de E1 (Figura 4) se puede observar fue de su interés analizar la 
representación gráfica, pues afirma que “no hay proporcionalidad entre las magnitudes, ni entre los 
incrementos de las magnitudes”, lo cual fue trabajado en la parte I de la actividad. A partir de ese 
análisis concluye que la respuesta del estudiante no es correcta (hacer esta valoración corresponde a 
la faceta epistémica del conocimiento didáctico-matemático). 

 
Figura 4. El futuro profesor E1 argumenta usando propiedades de la variación lineal 

 
Otro ejemplo es el de E9 (Figura 4), quien primero expresa que “visualmente la gráfica no es una 

recta”. Luego, para retroalimentar al estudiante, propone elegir pares de puntos e identificar que no 
hay una variación constante. Además, expresa que GeoGebra ayudaría al estudiante mediante la 
creación de una recta que mostraría que no ésta no cruza por todos los puntos. Estas reflexiones de 
E9 sobre cómo orientaría a un estudiante, ponen de manifiesto el enriquecimiento de la faceta 
cognitiva de su conocimiento didáctico-matemático. 
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Figura 5. Respuesta de E9 

 
En los ejemplos mostrados se puede identificar que los futuros profesores progresaron en sus 

conocimientos profesionales, tanto matemáticos como didáctico-matemáticos, pues muestran 
argumentaciones y orientaciones basadas en procedimientos diversos, y propiedades de la variación 
lineal en diferentes formas de lenguaje, que les permitieron valorar si las situaciones planteadas a 
ellos y a los estudiantes hipotéticos, corresponden o no a situaciones de variación lineal, en algunos 
casos utilizando GeoGebra. Es decir, la propuesta formativa permitió que los futuros profesores 
enriquecieran su conocimiento especializado del contenido de matemáticas, pues podían identificar 
en sus respuestas objetos primarios propios de la variación lineal, y después, con base a ellos, 
pudieron argumentar porqué algunas respuestas hipotéticas de los estudiantes estaban incorrectas y 
proponer estrategias de retroalimentación para el alumno en relación con el estudio de la variación 
lineal. 

Conclusiones 
Tras el análisis de las respuestas de los futuros profesores se concluye que la competencia de 

identificación de objetos matemáticos primarios fue una tarea desafiante para ellos, como se había 
documentado en trabajos como el de Burgos et al. 2017. Por otro lado, el análisis de sus respuestas 
sugiere que lograron realizar análisis más finos de sus prácticas matemáticas y de las prácticas 
matemáticas de los estudiantes hipotéticos, ya que fueron manifestando mayor diversidad de objetos 
matemáticos primarios en las tareas de reflexión (partes II y III de las actividades). 
En la implementación de las actividades se dedicó tiempo a la discusión de ideas y a la comparación 
de las respuestas dadas, esto generó un momento muy rico de intercambio de opiniones y permitió 
que los futuros profesores reflexionaran y comentaran sobre otros objetos matemáticos que no habían 
identificado, pero que con la discusión grupal lograron identificar, lo que permitió enriquecer sus 
respuestas.  

Un aspecto muy importante y que es necesario destacar es que se observó que en un inicio las 
reflexiones didáctico-matemáticas que generaban respecto a las tareas planteadas, solían ser 
reflexiones muy limitadas y carentes de argumentos. Posteriormente con el desarrollo de las 
actividades y con las tareas planteadas para iniciarlos al desarrollo de la competencia de 
identificación de objetos matemáticos primarios, generaban respuestas más detalladas, que incluían el 
uso de los objetos matemáticos primarios, esto ayudaba a que las estrategias que proponían para 
orientar a los estudiantes tuvieran mayor peso en la argumentación basada en el uso de propiedades y 
procedimientos, identificados previamente en la resolución de las situaciones problema planteados en 
el diseño de las actividades (trabajo de la parte matemática).  
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Esto resalta la importancia del desarrollo de esta competencia para su práctica docente, pues genera 
en los futuros profesores un análisis que toma en cuenta el tipo de objetos matemáticos primarios 
propios del estudio de algún tema en específico, es decir, funcionó como una herramienta que les 
permitió observar más que simple detalles, aspectos importantes que consideraron para la enseñanza 
de la variación lineal.  
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A review of the literature underpinning mathematics education illustrates that in order to achieve an 
equitable mathematics education, we must consider other methods of preparing mathematics 
teachers—methods that encourage identity development, specifically cultural awareness and open-
mindedness as two key facets of this construct. This study describes and interprets a preservice 
mathematics teacher’s identity development during a semester-long mathematics-focused education 
abroad program. Findings suggest that we can foster alternative visions of identity—ones that have a 
better understanding of culture and a greater sense of open-mindedness—through participation in 
such culturally-rich international programs. 
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Purpose 
A review of the literature underpinning mathematics education illustrates that in order to achieve an 

equitable mathematics education, one that is free of systemic forms of inequality, we must consider 
other methods of preparing mathematics teachers—methods that encourage identity development, 
specifically cultural awareness and open-mindedness as two key facets of this construct. For 
example, the National Council of Supervisors of Mathematics (NCSM) and TODOS: Mathematics 
for ALL (TODOS) have suggested that mathematics teachers must take a stance that “interrogates 
and challenges the roles power, privilege, and oppression play in the current unjust system of 
mathematics education—and in society as a whole” (2016, para.1). In addition, the National Council 
of Teachers of Mathematics (NCTM) has suggested that in order to promote a culture of access and 
equity within mathematics education, teachers should be “responsive to students’ backgrounds, 
experiences, cultural perspectives, traditions, and knowledge” (2014, pg. 1). Furthermore, others 
have noted preservice or in-service mathematics teachers initially dismiss the idea of teaching social 
justice, believing that it does not belong in mathematics (de Freitas, 2008; Ahlquist, 2001; 
Weissglass, 2000). As De Freitas has said, “Those frequently heard comments—‘I’m just a math 
guy,’ ‘I’m one of those people who likes math for the sake of the math only,’ ‘I’m not one for social 
justice’—share a particular vision of identity as being a fixed, unmovable, and irresolvable entity” 
(2008, p. 50), and unfortunately that is a mindset we often see in mathematics. 

So, what kind of preparation program do preservice mathematics teachers need? Weissglass has said 
“any serious attempt to achieve equity in mathematics education must be rooted in an ongoing 
process of increasing our understanding of how individual prejudices, unaware biases, and systemic 
societal discrimination affect teaching and learning” (2000, p. 10). Gutstein has asserted that more 
work needs to be done to alter teachers’ personal belief systems built on deficit thinking, specifically 
when working with diverse children (2000). De Freitas has suggested, “Alternative visions of identity 
are required” in order to change the fixed, closed mindsets of mathematics teachers and begin to 
develop a critical mathematics education (2008, p. 49). As Neumayer-Depiper has said, it is not 
enough to simply develop a set of effective mathematics teaching practices (2009). We must consider 
other methods of preparing mathematics teachers, methods that encourage identity development. 
Rather than having a fixed, closed mindset as De Freitas describes, we want preservice mathematics 
teachers to develop an identity that is more open-minded. We also want our preservice mathematics 
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teachers to have a developed sense of their own cultural identity and, as Weissglass says, an 
increased understanding of how their individual prejudices and unaware biases affect teaching and 
learning.  

Participation in an education abroad program can address these needs and help foster mathematics 
teachers that are open-minded and have an established sense of their cultural identity. As such, the 
purpose of this study is to examine how education abroad influences the identities of preservice 
mathematics teachers in ways that they become more culturally aware and open-minded. 

Theoretical Framework 
Research has indicated that throughout an education abroad experience, students “challenge their 

beliefs about the world and its people, develop empathy for and trust in others, learn a significant 
amount about at least one other culture, and often to their surprise, learn quite a lot about their own 
culture” (Cushner, 2009, p. 160). Much of this learning comes from being immersed in another 
culture and having the experience of feeling like a cultural outsider. Merryfield (2000) found that 
those who left the US and experienced living in another culture “came to understand temporarily 
what it feels like to live outside of the mainstream…. They became conscious of what happens to 
identity when people know they don't belong” (p. 439). This reality of feeling like a cultural outsider 
is a feeling that many mainstream teachers in the US have never experienced, and it leads to a 
personal understanding of what it is like to be marginalized and stereotyped. This is an impactful 
experience that facilitates teachers “to become more ethnorelative in their understanding of others, 
more skilled at crossing cultures, and committed to bringing about change through their work” 
(Cushner, 2009, p. 165).   

Beyond impacting students in these ways, education abroad also has the potential to impact identity 
on a deeper level. Teacher professional identity is a core aspect of the teaching profession (Sachs, 
2005). “It provides a framework for teachers to construct their own ideas of ‘how to be’, ‘how to act’ 
and ‘how to understand’ their work and their place in society” (p. 15). The development of teacher 
professional identity is an ongoing process (Beijaard, Meijer & Verloop, 2004) that cannot be forced. 
Instead, “it is negotiated through experience and the sense that is made of that experience (Sachs, 
2005, p. 15). Participation in an education abroad program can impact the identities of preservice 
mathematics teachers in ways that they become more open-minded and culturally aware, ultimately 
inspiring a more updated and progressive vision of teaching mathematics. However, little is known 
regarding the impact of education abroad programs on the identity development of preservice 
mathematics teachers—specifically their intercultural competencies and open-mindedness as two key 
facets of this construct. This research explores this timely area of inquiry. 

Methods and Data Sources 
This is a qualitative case-study of one preservice mathematics teacher’s identity development 

throughout a semester-long education abroad program in England. This program was meant 
specifically for preservice mathematics teachers (elementary and secondary). Students work at a 
mathematics education research center, intern in schools, and take mathematics education classes at a 
university.   

This study began the summer prior to their semester abroad and ended shortly after their return to 
the United States. Three main data collection methods were used: semi-structured interviews, in-
country participant observation, and document review. Documents such as student journals, 
coursework, and the Intercultural Development Inventory (IDI) were used within this study. 

The IDI (Hammer, Bennet & Wiseman, 2003) was administered to participants prior to their 
departure and again upon return to the United States. This assessment places participants on a 
continuum ranging from “ethnocentric” to “ethnorelative.” Ethnocentrism is defined as “the 
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experience of one’s own culture as ‘central to reality’”, in which “the beliefs and behaviors that 
people receive in their primary socialization are unquestioned: they are experienced as ‘just the way 
things are,’” (Bennett, 2004, p. 62). Ethnorelativism is “the experience of one’s own beliefs and 
behaviors as just one organization of reality among many viable possibilities” (Bennett, 2004, p. 62). 
There are there categories related to ethnocentrism: Denial, Polarization, and Minimization, and two 
categories related to ethnorelativism: Acceptance and Adaptation. Teachers with an ethnorelative 
mindset would be more inclined to engage with students in ways that respect their cultures, 
backgrounds, and experiences, ultimately meeting NCTM’s (2014) call for a responsive mathematics 
education. 

The interviews and in-country observations provided insight into their experiences and day-to-day 
activities within the program and enabled me to explore and uncover in what ways participants’ 
thinking about culture, mathematics teaching, and open-mindedness evolved throughout the program.   

Results 
The case presented in this study, whom I will refer to as Ben, showed growth in both cultural 

awareness and open-mindedness. Ben is a white male who turned 22 years old while participating in 
this program. Prior to departure, Ben fell in the “ethnocentric” category of the IDI, specifically 
within minimization (see figure 1). A person within minimization is typically color-blind, “focusing 
on commonalities and universal values, emphasizing similarities, and holding the belief that all 
people are fundamentally the same” (Cushner, 2009, p. 156).   

 

 
Figure 1: Ben’s IDI score at the start of the program 

This aligns with some of Ben’s comments from the start of the program in which he expressed that 
he avoided seeing culture because it would prevent him from understanding the individual person at 
hand. Ben described that he preferred to pay attention to individual (not cultural) differences, saying, 
“Generalizing cultures, in my opinion, is a bad thing as it takes away the ability for the individual to 
be themselves.”  

Ben also had trouble describing his own culture. In our first interview, he described himself as 
“Caucasian,” “Polish,” and “Italian,” but indicated these weren’t identities that he felt connected to. 
Rather, he said “culturally, it would be more accurate to say my family is a family of helpers over 
any specific background” because his mom was an occupational therapist and his dad taught in an 
elementary school. He described that his family was privileged in the sense that they didn’t need to 
identity with “race,” or “culture,” and that they could identify with something else entirely, like being 
“helpers.”  

To Ben, America was too multifaceted to generalize, and he had trouble articulating what it meant 
to be American. He discussed that there may be “things [people] in the US share, but a majority of 
those people have vast differences… The culture of the US is close to not being generalizable at all.”  
He was also tentative to label himself as American:  

I guess I consider myself American in the sense that I was raised in America, but I feel like 
America is too broad of a thing for me to consider myself as…. So, I would say in a manner 
of speaking, I identify as American because I grew up in America. But I don’t really identify 
with anything that I know could be a generalization of Americans, that I’m aware of.  
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Throughout the program, Ben wrote journals documenting his beliefs of what qualifies as good 
mathematics teaching. At the beginning of the program, Ben had little awareness of his own culture, 
his students’ cultures, and how these identities would influence his classroom. When reflecting on 
what qualifies as good mathematics teaching, Ben spoke of his own views of the subject and what he 
deems important, saying, for example, that he values conceptual understanding of the subject and 
views procedures as “tedious,” and “a mindless waste of time.” However, he never mentioned his 
students or the experiences and perspectives they may bring to the classroom.   

Once Ben arrived in England, he began to notice surface-level cultural differences like driving on 
the other side of the road, but throughout the program, he began to notice deeper cultural differences 
such as how the concept of time was viewed in England versus the United States along with contrasts 
in professional communication styles. He discussed the experience of feeling like an American, a 
concept he had never thought about previous to this education abroad experience, as he said, “once 
you open your mouth, people already have all these views of you.” He also discussed how he was 
constantly asked to speak for all of America: “Right off the bat, people were asking me about Trump, 
school shootings, and violence in America. It was weird being the spokesperson for that.” These 
experiences forced Ben to consider his culture, and he began to notice differences across cultures.   

Throughout the program, Ben also began to recognize aspects of American culture. He discussed 
how America was founded on “sticking it to the man,” and “standing up for itself at a time where 
they felt taken advantage of.” He acknowledged that there is a spirit of rebellion in England, saying 
“there is plenty of public protesting” relating to Brexit, but that he sees this value as being more 
prevalent in American society. He wrote, “In England, being rebellious is not seen as something 
valuable,” giving as examples, “Students wear uniforms to class, rather than getting to express 
themselves in different ways,” and “They have a formal relationship with their teachers that revolves 
around the teacher being the head of the classroom.” He also described how there was no desire to 
own a weapon in England, but that America was “founded on the ability to rise up against oppression 
and rebel,” and that “We have a right to bear arms in America so that if we are oppressed, we can 
take appropriate measures to challenge what is there.” He went on to say, “I would argue that the 
times have changed and we need to reconsider this value,” but at the end of the day, the right to bear 
arms comes from “the spirit of rebellion, a crucial piece of our founding virtues.” These types of 
reflections about cultural differences occurred throughout the entire program.   

By the end of the program, Ben’s IDI report demonstrated growth (see figure 2). While he still fell 
within the category of minimization, he was approaching acceptance, an orientation the reflects a 
recognition and appreciation of cultural differences. 

 

 
Figure 2: Ben’s IDI score at conclusion of the program 

 
Ben also expressed that he was now more interested in culture and that he “keeps cultural and 

identity in mind, rather than solely the individual.” Additionally, he expressed a new understanding 
of himself and his students, saying:  

I can say my time in Europe has changed what I enjoy about math. I still believe in what I 
said previously, that the best piece for me is problem solving and the conceptual. I also think 
that’s the most important piece of math. But I think that I’ve missed something crucial about 
math. Reflecting on different cultures and understanding of the world has helped me 
understand some of the disconnect between my students and I back when I was student 
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teaching. The truth is, they valued getting a correct answer. They didn’t care how. It was the 
beauty and relief of finishing a problem with a tool they had that pushed them forward. It 
wasn’t their skill, but their ability to use a tool that connected them to the mathematics. Up 
until studying here and thinking deeply about cultural differences I failed to see some people 
fundamentally don’t feel the way I do. 

Throughout the program, Ben began to notice and appreciate cultural difference, ultimately saying:  
Looking at what my students’ value, how my students view math, how my students view 
education, and applying it to my own understanding to grow and change my teaching style 
overtime is going to be fundamental to my practice…. I will be careful to not push my own 
view of the mathematics on the students, rather I will shape my strategies and methods to 
what they enjoy, value, and believe. Over time, after gaining my students trust, I will offer 
different options to pieces already in place…. Careful reflection on my students and their 
situations and their founding principles will lead me to become a better, more effective, 
efficient teacher that can reach out to students in many different ways rather than simply 
through the mathematics. 

By the end of the program, Ben expressed a deeper understanding of his culture and a greater need 
to pay attention to his students’ cultural identities. His descriptions of teaching mathematics had 
evolved to more closely align with NCTM’s call for mathematics teachers that are “responsive to 
students’ backgrounds, experiences, cultural perspectives, traditions, and knowledge” (NCTM, 2014, 
pg. 1).  

Conclusions 
Ben’s journey throughout this program suggests that through participation in education abroad 

programming, preservice teachers can become more culturally aware and open-minded. At the start 
of the program, Ben had little understanding of his own cultural identity, and he avoided noticing 
cultural difference. His orientation towards cultural difference fell within the category of 
minimization, reflecting “a tendency to highlight commonalities across cultures that can mask 
important cultural differences in values, perceptions, and behaviors,” (Ben’s IDI profile, pg. 6). In 
addition, when Ben would reflect on his beliefs of what qualifies as good mathematics teaching, he 
never mentioned his students or the importance of including their perspectives, experiences, and 
backgrounds into his classroom. Proponents of culturally responsive teaching argue that “Explicit 
knowledge about cultural diversity is imperative” (Gay, 2002, p. 107) to meet the needs of the 
diverse student population. As such, Ben was far from achieving this.   

However, by the end of the program, he was recognizing that culture influences the experiences, 
values, beliefs, and perspectives that people have, and he was aware that his students’ culture, 
specifically their experiences and values, were different from his own. He indicated that he now 
believed his, and his students’, cultural identities would influence their experiences in the classroom, 
and he discussed a desire to incorporate his students’ perspectives and values into his teaching. He 
said that within his teaching, he would take “it slow and not make assumptions” about his students 
based on his prior experiences, and that he would instead consider his students’ prior experiences.    

Ben’s orientation of minimization is a reflection of the orientations of many teachers across the 
country. For example, Mahon (2003) studied 155 teachers in the midwestern US, and found that 
100% of them fell at minimization or below. This is problematic on many levels. When we avoid 
noticing culture, it’s the dominant culture that is assumed to be “the” culture, and any other cultures 
may be ignored, or even worse, shut down or demonized. Furthermore, a minimization mindset 
would limit our ability to create an equitable mathematics education for all students. In order to 
address issues of racial, cultural, and socioeconomic inequity, we need to see race, culture, and 
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socioeconomic status. Rather than ignoring culture, we want our teachers to acknowledge and 
include various cultural perspectives within the classroom.   

Given Ben’s evolution throughout this program, there appears to be potential for shifting the ways 
in which we prepare mathematics teachers. If we look to NCTM, NCSM, TODOS, and others, we 
can see calls for addressing issues of equity, access, and social justice in mathematics education. 
NCTM (2014) has articulated that teachers should be responsive to students’ cultures, experiences, 
and backgrounds. NCSM and TODOS (2016) have suggested that mathematics teachers interrogate 
the roles of power, privilege, and oppression within mathematics education. At the beginning of this 
study, Ben was ignoring culture—not recognizing his own culture or the culture of others—making it 
nearly impossible to achieve the calls from NCTM, NCSM, and TODOS. This study highlights that 
we can foster alternative visions of identity—ones that have a better understanding of culture and a 
greater sense of open-mindedness—through participation in such culturally-rich international 
programs. 
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This paper presents an analysis of the classroom events that a group of future teachers of Secondary 
Education mathematics identified from their own experience when using GeoGebra to solve 
problems. The data analyzed are from the written materials by twelve mathematics majors who were 
studying the Mathematics for Teaching course. The students, in pairs, solved three problems using 
GeoGebra. They were then asked to posit three events that could arise if their students were to use 
GeoGebra to solve problems. After analyzing the events presented, they were classified in terms of 
mathematical reasoning, mathematical creation and techno-mathematical ability. 

Key words: Teacher training, problem solving, technology, classroom situations.  

Introduction 
Teacher training is a complex field of study that ranges from identifying the knowledge required to 

teach a discipline, to proposing strategies for developing that knowledge. The incorporation of 
technology into the process of teaching and learning mathematics poses new challenges in teacher 
training, particularly when defining training programs. What kinds of activities should be conducted 
during the training period of a mathematics teacher? What technological tools should be used? How 
should they be used? How does the use of technology influence their initial training?  

On the one hand, the appearance of a certain type of technology has expanded the set of tools 
available to teachers to respond to events or contingencies that occur in the classroom. For example, 
Rowland and Zazkis (2013) analyze possible actions in response to a hypothetical answer from a 
student who is asked to provide a fraction between ½ and ¾. The student answers 2/3, stating that for 
the numerator she chose 2 because it is between 1 and 3, and for the denominator she chose 3 
because it is between 2 and 4. One of the options, presented by the authors, for incorporating the 
student's idea into the classroom proposes representing, with the aid of technology, a geometric 
situation that can intuitively provide an answer. This would be done by representing the fractions as 
the slopes of lines that pass through the origin and through a coordinate point (n, d), where n is the 
numerator and d the denominator of each fraction.  

On the other hand, the use of technological tools in the classroom gives rise to certain types of 
situations that would not appear in another context. Wasserman, Zazkis, Baldinger, Marmur, & 
Murray (2019) provide an example in which a group of students used a MAPLE command to 
confirm that a number is prime. When an operation was entered as the input argument (14:2), 
MAPLE indicated that it was not a prime. This would not have happened if the input had been a 
number (7). The authors note that this contingency could be exploited to interact with students and 
discuss the importance of differentiating number sets and conceptualizing multiplication with rational 
numbers. Hernández, Perdomo-Díaz and Camacho-Machín (2018) present an analogous situation, in 
this case by using GeoGebra. This program does not provide an answer when the Tangents tool is 
used, entering as input values two points, one outside the circle and the other on the circumference. 
This situation offers the opportunity to discuss, with students, questions such as: Why is nothing 
happening? What important properties related to lines tangent to a circle do these values not 
consider? That is, the contingency could be leveraged to have a discussion with students on the 
properties of lines tangent to a circle and how GeoGebra processes them when plotting these lines. 
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GeoGebra is one of the most widely used technological tools for teaching and learning mathematics. 
Its greatest potential lies in the fact that it is a dynamic geometry software (DGS) package that is 
dynamic enough to analyze questions, conjectures, discover mathematical properties and establish 
connections between known properties (Jacinto & Carreira, 2017; Sánchez-Muñoz, 2011; Santos-
Trigo & Camacho-Machín, 2013). Given this context, teachers must be familiar with the program 
and have experience using it so as to take advantage of the opportunities that technology offers to 
gain mathematical knowledge (Camacho-Machín & Santos-Trigo, 2016). Teachers must also possess 
a certain ability and expertise to deal with the mathematical questions, doubts, and interpretations 
that arise every day in classrooms (Conner, Wilson, & Kim, 2011). When an event occurs in the 
classroom, the teacher must decide whether to ignore it, set the issue aside after considering it or try 
to incorporate it into the class, which in many cases has a certain improvisational component 
(Rowland & Zazkis, 2013). For Conner, Wilson and Blume (2011), making a good decision requires 
a certain type of knowledge and skill. It takes “a particular kind of expertise which includes a deep 
mathematical knowledge that allows them to recognize the opportunity, weigh its merits, and 
skillfully pursue or dismiss the opportunity” (p. 979). 

An analysis of the problem-solving process with GeoGebra that an individual employ can be used to 
identify interesting situations to propose as activities for training teachers (Camacho-Machín, 
Perdomo-Díaz, & Hernández, 2019). But it is also interesting to see what situations future teachers 
imagine could occur when they ask their students to use GeoGebra to solve problems. Anticipating 
possible events or contingencies that could come up in class is one way to develop teaching skills 
(Carrillo, 2015). Consequently, analyzing contingencies and anticipating exercises can provide a 
connection between the training of future mathematics instructors and teaching in Secondary 
Education. This leads to the question that prompted this research: What kind of classroom situations 
do future secondary education mathematics teachers anticipate from their own experience using 
GeoGebra to solve problems?  

The work presented here consists of an exploratory study that addresses this question. The research 
was conducted with a group of mathematics majors who were taking the “Mathematics for Teaching” 
course. One part of this course consisted of analyzing classroom situations proposed by Heid, 
Wilson, & Blume (2015), and another part of the course involved doing a Problem-Solving 
Workshop using GeoGebra. As part of the final activity in this workshop, the students were asked to 
identify situations that might arise in a secondary education math class in which GeoGebra is utilized 
to solve problems. The goal of this research is to analyze classroom situations involving the use of 
GeoGebra to solve problems anticipated by the participants. 

Conceptual Framework 
The reference for this research is a framework developed from real and hypothetical situations 

involving secondary education mathematics classes known as Mathematical Understanding for 
Secondary Teaching (MUST) (Heid, Wilson, & Blume, 2015). This framework considers that the 
mathematical understanding that an individual need to teach the discipline in high school can be 
described from three different, closely interrelated, perspectives: mathematical proficiency, 
mathematical activity and mathematical context. The first perspective focuses on “knowing” 
mathematics, the second on “being able to do” mathematics, and the third on the ability to “adjust” 
that knowledge and know-how to secondary education students (Kilpatrick et al., 2015). As these 
authors point out, this particular understanding of mathematics, typical of a teacher’s endeavor, has a 
dynamic character, since it starts to take shape based on the understanding that a teacher would have 
as a student, before developing and transforming during the teacher’s training and subsequent career. 

When analyzing mathematical understanding for teaching from the perspective of mathematical 
proficiency, the focus is on mastering the content being taught and the ability to make connections 
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between the concepts to be taught and other mathematical content. This perspective thus includes 
components such as conceptual understanding, proficiency with procedures, strategic competence 
and flexible reasoning (Kilpatrick, 2015). For Camacho-Machín and Santos-Trigo (2015), the 
development of these four components is essential for learning that is characterized by constant 
questioning and problem solving. 

From the perspective of mathematical activity, mathematical understanding for teaching comprises 
the set of specific mathematical actions that an instructor performs while teaching. Zbiek and Heid 
(2018) advocate for a teaching practice in which the mathematical activity is made explicit, such that 
the discipline can be extended beyond the content of the subject, consisting of procedures and 
concepts. The MUST model defines this perspective from three interrelated components (Kilpatrick 
et al., 2015):  

• Mathematical perception: Groups the actions of recognizing and identifying the mathematical 
characteristics specific to the different structures, the different notations or symbolic forms, as 
well as the ability to ascertain when a mathematical argument, whether expressed simply or 
rigorously, is valid, and the ability to connect mathematical ideas with each other (representing 
ideas in different structures and connecting various concepts) and with the real world 
(explaining physical problems through mathematics).  

• Mathematical reasoning: Groups the observe, conjecture and justify or prove activities by 
using deductive logic, mathematical properties, regularities and patterns, generalizations of 
specific cases, restricting properties and extensions to other structures.  

• Mathematical creation: Implies the ability to find new paths to express mathematical objects, 
generate new ones and transform their representation. This is related to choosing 
representations of objects that highlight their structure, restrictions or properties, when new 
objects are defined and when they are manipulated by changing their form, but not their 
representation. 

Finally, the mathematical context perspective includes aspects of mathematical understanding that 
come into play exclusively in the teaching profession, such as recognizing the mathematical nature of 
students’ questions and errors, or recognizing when an argument or solution provided by a student is 
incomplete or satisfies the conditions of a problem (Kilpatrick, et al., 2015). Among its components, 
the authors include: synthesizing mathematical ideas, interacting and understanding students’ 
mathematical thinking, knowing and using the curriculum, evaluating students’ mathematical 
knowledge, and reflecting on the mathematics employed in the classroom. 

This research combines the mathematical context and mathematical activity perspectives. The 
former was taken into account in the design of the tasks proposed for the students; specifically, the 
last component was emphasized by reflecting on the mathematics employed in the classroom, asking 
students to anticipate Situations that could arise in a Secondary Education class where GeoGebra is 
used to solve problems. For MUST framework, a Situation is “a way of capturing classroom practice 
[…] portrays an incident that occurred in the context of teaching secondary mathematics in which 
some mathematical point is at issue” (p. 4). In each Situation a Prompt and a set of Mathematical 
Foci can be distinguished. A Prompt is something that has occurred or may occur in the context of 
teaching mathematics, such as a student’ question, or a mathematical fact that a student has identify. 
The Prompts proposed by participants were analyzed from the mathematical activity perspective, 
using their three components as the basis for classifying them. 

Methodology 
The participants in this research were the students in the “Mathematics for Teaching” course, which 

is offered as an elective for senior-year mathematics majors at the University of La Laguna (Spain). 
The main goal of this course is to develop the students’ theoretical, practical and instrumental skills 
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associated with the activity of teaching mathematics at the high school and university levels. This 
includes knowing and using heuristic strategies for solving math problems, as well as technological 
tools for teaching and learning mathematics.  

The data were collected in the 2017-2018 school year over the course of four weeks, in which the 
students devoted half the class time to analyzing classroom situations designed under the MUST 
framework (Heid, Wilson & Blume, 2015), and the other half to participating in a GeoGebra Problem 
Solving Workshop. The workshop consisted of eight, two-hour sessions. In the first five, the students 
solved the following three problems: 

Equal chords. Given two circles with centers M and N, lines are drawn from the center of each that 
are tangent to the other. The points where the tangents lines intersect the circumferences define two 
chords, EF and GH. Prove that the length of the chords is the same. 

 

 
 
45º angle. Given a square ABCD, draw a 45º angle inside the square, with its vertex at A. This 

yields two rays that cut the sides opposite A at points E and F (see drawing). Study the relationship 
between the two parts when triangle AEF is divided by the diagonal BD. 

 

 
 

Connect Islands. We want to connect three islands (A, B, and C) with a fiber optic network in a 
way that uses the least amount of cable. The distances between the islands are 79,322 m (A-B), 
64,514 m (A-C) and 95,932 m (B-C). Where should the connection point be located to minimize the 
amount of cable needed? 

In the last three sessions, students focused on identifying and analyzing Situations, in the sense of 
MUST framework, that could happen in a high school mathematics class in which GeoGebra is used 
to solve the above problems. The data analyzed in this paper are from the report that the students had 
to submit as a product of those last sessions. The instructions given to the students were: 

• Write Situations resulting from the use of technology in solving workshop problems. 
• In each Situation indicate at least three Prompts, using GeoGebra to show how they arise. 
• Select a Prompt for each problem and identify a set of mathematical foci relevant to the 

prompt. 
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This activity was intended for students to establish connections between the problem solving 
activities with GeoGebra that they had carried out in the workshop and the analysis of classroom 
situations that they had done in the parallel sessions. In this way, the participants moved from a role 
as students to a role as teachers, taking their own experience using GeoGebra to solve problems as a 
reference point to reflect on possible situations that may occur in a mathematics classroom where this 
type of didactic resources.  

The course was taken by 18 students, who worked in pairs. For this paper, only the reports from six 
of the student pairs were selected. The selection criterion was that the students must have handed in 
all the tasks from the workshop and the study correctly and on time. 

The analysis process consisted of identifying what role GeoGebra played in each of the Prompts 
indicated by the participants, and what components of mathematical understanding for teaching that 
MUST proposes from the perspectives of mathematical activity underlies those prompts. From there, 
types of class situations were defined that future teachers anticipate from their own experience using 
GeoGebra to solve problems. 

Data analysis 
An analysis of the content of the reports prepared by the six students pairs allowed us to identify 

three types of Prompts:  
Type 1: The focus is on giving a mathematical explanation to the operation of a GeoGebra tool. 

These Prompts have to do with the development of techno-mathematical ability (Jacinto and 
Carreira, 2017). 

Type 2: Prompts that involve justifying or demonstrating a mathematical property that has been 
observed when making a dynamic construction with GeoGebra.  

Type 3: Prompts where a conjecture is formulated and GeoGebra is used to build new elements that 
allow it to be proven or rejected.  

The last two types of Prompts are closely related to mathematical reasoning and mathematical 
creation, which are components of mathematical understanding for teaching from the perspective of 
mathematical activity (Kilpatrick, et al., 2015). 

Type 1: The Prompts in this category arise directly from the use of tools implemented in GeoGebra 
and from an understanding of the mathematics on which it is based. Four of the student pairs 
identified Prompts of this type (Table 1). Three of them (P1, P3 and P5) proposed an event related to 
the use of the Tangents tool that yields an answer they understand; however, it could lead to a 
classroom situation where a student asks about the steps GeoGebra performed to give that answer. 
Pair P8 identified an event in which students would question an answer provided by the DGS.  

 
Table 1: Prompts related to the mathematical meaning of actions in GeoGebra 

Problem Topic Summary of the Prompt P1 P2 P3 P5 P7 P8 
Equal 
chords 

Tangent 
lines 

Can a tangent line to a circle be drawn from an outside point 
without using the Tangents tool? ■ - ■ ■ - - 

Equal 
chords 

Tangent 
lines 

Using the Line tool, a line tangent to a circle is constructed from 
an outside point. Why does it seem to satisfy the tangency property 

when it actually does not? 
- - - - - ■ 

 
Type 2: This category includes Prompts that relate to the need to prove or demonstrate 

mathematical conjectures arising from the use of GeoGebra. These hypothetical events related to the 
action of seeking a justification, whether formal or not, describe a classroom situation in which a 
secondary education student discovers a property while solving a problem with GeoGebra and asks 
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the teacher about its veracity or gives an argument that requires formalization. This is the category 
into which most of the Prompts were classified, a total of 10 (Table 2), although all were proposed 
by three of the student pairs (P1, P3 and P5).  

 
Table 2: Conjectures from Prompts related with mathematical reasoning 

Problem Topic Summary of the conjecture P1 P2 P3 P5 P7 P8 
Equal 
chords 

Tangent 
lines 

A line tangent to a circle forms an angle of 90° with the radius 
that connects the center to the point of tangency. - - ■ - - - 

Equal 
chords Bisector The two triangles that are formed by a chord, the two radii it 

connects and the bisector of these radii are congruent. ■ - - ■ - - 

Equal 
chords Bisector The bisector of the two lines tangent to a circle from an outside 

point passes through the center of the circle. ■ - ■ - - - 

Equal 
chords Similarity Two overlapping triangles (with a common angle) are similar, 

although they are not in the Thales position. - - - ■ - - 

45° angle Invariant 

Given a family of triangles AEF, where angle A measures 45°, 
and inscribed in a square ABCD with side l, such that A is on a 

vertex and E is on side BC, then the height from A of any 
triangle in the family is constant and measures l. 

- - ■ ■ - - 

45° angle Diagonal of 
the square 

Given a point P on the diagonal that joins two vertices of a 
square, draw two segments to the other two vertices. This yields 

four triangles. The heights of the triangles from P match 
pairwise. 

■ - - ■ - - 

Connect 
islands 

The Fermat 
point 

The Fermat point is the point of intersection of the three circles 
in which the equilateral triangles used to build it are inscribed. - - - ■ - - 

Connect 
islands 

The Fermat 
point 

The Fermat point, along with three vertices of one of the 
equilateral triangles used to construct it, form a cyclic 

quadrilateral. 
- - ■ ■ - - 

Connect 
islands 

The Fermat 
point 

The three segments that connect the Fermat point of a triangle 
with the vertices of the equilateral triangles used to construct it 

form angles of 120° with one another. 
- - ■ - - - 

Connect 
islands Rotations 

Given two points A and B, the triangle formed by A, B and the 
point resulting from rotating B 60° with respect to A is 

equilateral. 
- - ■ - - - 

 
Type 3: This last category includes the Prompts submitted by the student pairs who propose using 

GeoGebra as a resource to check a previous mathematical idea. Eight Prompts of this type were 
identified (Table 3), presented by four of the pairs (P1, P2, P7 and P8). Unlike the previous category, 
the formula to describe the Prompt starts from a situation in which the high school students have an 
idea, and then resort to technology to test it. This approach induces a change in the follow-up actions. 
An existing mathematical idea has to be transferred to a dynamic construction such that the 
mathematical property to be verified is represented and emphasized. This type of proposal would 
provide a starting point to develop mathematical creation. 

 
Table 3: Properties from Prompts related to mathematical creation 

Problem Topic Summary of the mathematical property P1 P2 P3 P5 P7 P8 
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Equal 
chords Tangent lines 

Given two circles and the lines tangent to them from the 
centers of the other, the chords formed by the tangency points 
are equal, as are the lines formed by the points of intersection 

with the secant lines.  

- ■ - - - - 

Equal 
chords Bisector The bisector of an angle divides any triangle limited by the rays 

into two congruent triangles. - - - - ■ - 

45° angle Invariant The area of a family of polygons inscribed in a triangle is 
constant. ■ - - - - - 

45° angle Diagonal of 
the square 

Given two similar triangles, there is a proportionality ratio 
between their areas. - ■ - - - - 

45° angle Invariant 

Given a rectangle, draw a 45° angle at one of its vertices so as 
to make a triangle with the points of intersection on the non-
contiguous sides. The diagonal of the rectangle divides the 

triangle into two surfaces with the same area. 

- - - - ■ ■ 

Connect 
islands 

The Fermat 
point 

The Fermat point minimizes the sum of the distances to the 
vertices for any triangle. ■ - - - ■ - 

Connect 
islands 

The Fermat 
point 

The three segments that join the Fermat point of a triangle with 
the vertices of the equilateral triangles used to construct it have 

the same length. 
- ■ - - - - 

Connect 
islands 

Significant 
points 

In any triangle, the sum of the distances from the vertices to the 
circumcenter is the minimum possible. (Idem with barycenter, 

orthocenter, incenter) 
- - - - - ■ 

 
This type of Prompt includes minor questions that extend or stray from the solution to the original 

problem. In general, delving into these questions could be useful to segue or connect to other 
mathematical results. A relevant exercise to prepare for future contingencies is knowing the various 
branches that originate from a problem and reflecting on potential connections to mathematics. From 
the point of view of Mathematical Context, the participants showed an ability to reflect on the 
mathematics of teaching practices, a necessary skill in the classroom (Heid, Wilson, & Blume, 2015). 

Final discussion 
The main objective of the reflection task proposed to the students in the “Mathematics for 

Teaching” course was to place them in the teacher’s role after having solved a set of problems using 
GeoGebra. This activity was proposed as a way to anticipate potential contingencies that they would 
have to deal with in a classroom where GeoGebra is used to solve problems. The goal was to develop 
their mathematical understanding for teaching from the perspective of the Mathematical Context of 
Teaching, a component of which is reflecting on the mathematics of teaching practices (Heid, 
Wilson, & Blume, 2015).  

All the student pairs proposed at least one event involving the use of technology for each of the 
problems. This shows that the participants, in this initial stage of their training as teachers, developed 
to a certain degree their ability to reflect on the mathematics of teaching practices (Kilpatrick, et al., 
2015). However, there are some differences between the pairs. Just P1 has indicated Prompts of all 
three types; two couples indicated just type 1 and type 2 Prompts (P3, and P5); one pair gave types 1 
and 3 Prompts (P8); the other two students pairs’ report just include type 3 Prompts (P2, and P7). 
Since all three types of events are situations that can occur in a math class using Geogebra to solve 
problems, it would be desirable for future teachers to be able to identify, anticipate, and analyze 
them. The previous results show that this is not something that always happens, which points to the 
need for training that offers opportunities to reflect and deepen this type of analysis. 
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The group of proposals categorized as Type 1 included Prompts that have to do with classroom 
contingencies that could be used to interact with students and discuss mathematical meanings of 
technological facts (Wasserman, et al., 2019). The didactic steps to answer the questions that are 
proposed as a starting point of the Prompts would be the same in a university course as in a 
Secondary Education classroom.  

As concerns the other two types of Prompts in our categorization (Types 2 and 3), we observed that 
the proposals included here were the most numerous. This could be related to the types of situations 
that each pair encountered while they were solving the problems themselves, during the first three 
tasks of the GeoGebra Problem-Solving Workshop, which would underscore the close relationship 
that exists between the different perspectives of Mathematical Understanding (Kilpatrick, et al., 
2015).  

The inclusion of technology as a tool for mathematical work in the classroom entails a change in the 
types of situations that a teacher must face in the classroom. This must be accompanied by a change 
in the types of training activities offered to future teachers of mathematics. The analysis conducted as 
part of this research shows how tasks involving reflection on one’s own experience contribute to the 
development of mathematical understanding for teaching the discipline, particularly in Secondary 
Education.  
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Mathematics teaching is an inherently social activity, highly dependent on the lived experiences of its 
members. Drawing on sociocultural perspectives, we explore the mathematical lives of Latinx 
paraeducators to better understand the ways in which their backgrounds might influence their 
attitudes toward mathematics and mathematics teaching. Eleven paraeducators participated in the 
study that used interviews, artifacts, and informal observations to document their lived experiences, 
particularly in regard to mathematics. The evidence suggests that aspects of their personal 
narratives, particularly family, home culture, and personal hobbies and interests, had important 
influences on many of the participants. Implications on the social aspects of mathematics teaching 
and the need for relevance are provided. 

Keywords: Teacher Education – Preservice; Equity and Diversity; Teacher Beliefs; Culturally 
Relevant Pedagogy 

Throughout this century, the percentage of teachers in the United States classified as white has held 
steady at about 80%, while the percentage of Latinx teachers remains below 10% (Taie & Goldring, 
2019). Further, it is projected that by 2026 white students will make up less than half of the U.S. 
public school student population, with Latinx students nearing 30% (de Brey & colleagues, 2019). 
Why should this matter, particularly in regard to the teaching and learning of elementary 
mathematics? 

One reason for considering the implications of these changing demographics is the role that 
teachers’ backgrounds have on students and teaching (Glock & Kleen, 2019). For example, Copur-
Gencturk, Cimpian, Lubienski, and Thacker (2020) found that teachers displayed the largest negative 
biases in regard to mathematical ability toward Black and Latinx girls. While explicit biases are more 
easily seen and measured, implicit biases are less visible but perhaps more harmful to those they 
marginalize (Greenwald & Banaji, 1995; Harber & colleagues, 2012). Implicit negative biases 
towards students, in regard to both academic and behavioral factors, tend to exist in teachers that 
come from differing backgrounds, cultures, and/or races (Glock & Kleen, 2019; Redding, 2019). 

A second reason for considering the implications of the above changing demographics involves the 
role that dialogic interaction plays in mathematics teaching and learning (National Council of 
Teachers of Mathematics, 2000; National Governors Association, 2010). Mathematics teachers are 
participants in a dialogic process so, as in any such activity, draw on their personal backgrounds and 
resources when engaging students in active mathematics learning. It is important to understand the 
diverse perspectives that can be generated through lived experiences, and how this might impact the 
ways in which teachers view and approach mathematics instruction. 

Frameworks 
We view teaching as a social activity grounded in the perspectives and backgrounds of those 

involved (Vygotsky, 1978; Bruner, 1990). There are numerous perspectives on teaching that build on 
this idea and attend specifically to issues of equity, race, and power. This study draws from key 
precepts of culturally responsive/sustaining pedagogy (Ladson-Billings, 1995) and the funds of 
knowledge framework (Moll et al, 2005).  
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Culturally responsive/sustaining pedagogy is a strength-based perspective that celebrates students’ 
home languages and cultures, but also emphasizes active learning and critical, reasoned challenges to 
the status quo (Ladson-Billings, 1995). While complex in nature, a central instructional premise of 
culturally responsive pedagogy is to find topics and contexts that are meaningful to a group of 
learners, and then create learning experiences that bridge these learners’ cultural and linguistic 
heritages with more formal academic knowledge. Establishing meaningful connections to students is 
a key aspect of effective mathematics instruction, and teacher backgrounds play a significant role in 
this process (Boaler & Staples, 2008; Gholson & Martin, 2014; Téllez, Moschkovich, & Civil, 2011). 

Funds of knowledge refers to an individual’s historically accumulated set of abilities, strategies, or 
bodies of knowledge (Gonzalez et al. 2005; Vélez-Ibáñez and Greenberg 1992). These funds can be 
recognized by observing “the wider set of activities requiring specific strategic bodies of essential 
information that households need to maintain their well-being” (Vélez-Ibáñez & Greenberg, 1992, p. 
314). In the context of this discussion, we employ the concept of funds of knowledge to encompass 
both academic and personal background knowledge, accumulated life experiences, skills used to 
navigate everyday social contexts, and world view(s) structured by broader historically situated 
sociocultural forces. Just as educators need to recognize the funds of knowledge that K-12 students 
bring to the school, teacher educator programs need to recognize, and tap into, the diverse social, 
linguistic, and cultural strengths and assets that teacher candidates bring to their programs. 

 Each of these theories is premised on building upon students’ and families’ linguistic and cultural 
resources and accumulated knowledge. This can support schools and teachers in sustaining students’ 
linguistic and cultural identities and foster a more humanizing perspective of the learning process, 
including mathematics learning. 

Methods 
Context 

The 11 participants in this study come from various linguistic, cultural, ethnic, and national 
backgrounds, including Panama, El Salvador, Guatemala, Cuba, Mexico, and the United States. Over 
half are fully bilingual English and Spanish. All earned a BA in Elementary Education, K-8 state 
teaching certification, and a K-12 ELL endorsement. In addition, eight pursued a K-12 bilingual 
endorsement (see Table 1 for more detail).  

The participants completed their elementary education certification program while working 30 
hours per week in one partnering district in the Pacific Northwest. Participants were selected due to 
experience and dedication as paraprofessionals working with English learners. Ten are female, over 
half are first generation college students, nine are Latinx (age range: 23-53), and three have 
foreign/domestic postsecondary degrees (e.g., dentistry, Spanish, journalism). Each participant also 
completed numerous requirements for acceptance into their elementary teacher education program at 
a Research 1 institution.  

This preservice program was offered in two locations and served paraeducators located in seven 
school districts with large English language learning school populations (15%-95%). However, for 
this study, we focus on one program working in one school district that serves a diverse student 
population including Spanish speakers (40%), Russian and Ukranian speakers (33%), and smaller 
percentages of Vietnamese, Hmong, and Tagalog speakers, among others. The elementary and 
middle schools where the 11 paraeducators worked are located in urban and semi-urban settings. 
Most teacher education classes were offered face-to-face at the school district location. One course 
was conducted via videoconferencing and several courses were provided using a hybrid model (a 
combination of traditional face-to-face and online learning activities). In addition, through the Prior 
Learning Assessment process, many of the participants earned additional course credits by 
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demonstrating work that matched specific competencies listed in the state standards for new teachers 
(Morrison & Lightner, 2017).  

 
Table 1: Personal and professional backgrounds of participants 

Participant Languages Spoken  Ethnicity/Race  Origin  Years as a    
Paraeducator  

Meredith Spanish/English  Latinx  U.S.  1  
Janice Spanish/English  White  U.S.  2.5  
Magdalena Spanish/English  Latinx  Cuba  4  
Inez Spanish/English  Latinx  Panama  14  
Javier Spanish/English  Latinx  Mexico  2.5  
Gabriela Spanish/English  Latinx  Honduras  1.5  
Maribel Spanish/English  Latinx  U.S.  2  
Evelyn Spanish/English  Latinx  U.S.  1  
Magda Spanish/English  Latinx  U.S.  4  
Sabrina Spanish/English  White  U.S.  1  
Irene Spanish/English  Latinx  U.S.  8  

 
Data collection and analysis 

Mathematical autobiographies of all 11 participants represent the primary data set. The written 
stories of the participants’ mathematical lives were part of the elementary mathematics methods 
course taken towards the end of their teacher education program. The evening course was conducted 
in an abbreviated five-week session while the participants were working in schools as 
paraprofessionals during the day. The stated purpose of the assignment was for the participants to 
“become conscious of your mathematical beliefs and the events that may have contributed to their 
creation.” The four specific components of the mathematical autobiography were: 1) self-perceptions 
about your mathematical abilities and understandings, 2) feelings and attitudes toward mathematics, 
3) important events in your mathematical life (in and out of school, with preference given to out-of-
school experiences), and 4) where you are now in regard to both mathematics and mathematics 
teaching. The participants shared their autobiography in oral presentations throughout the semester. 

Open, emic coding (Miles, Huberman, & Saldaña, 2015) was conducted on each of the participants’ 
written stories in order to find salient features as identified by the participants. First-cycle codes 
provided broad categorizations of the kinds of stories being told. Specific codes included age 
(childhood/adolescence/adult), setting (school/home/community), and location (U.S., home country, 
other). Second-cycle codes began to delineate the salient features of the stories and included 
mathematical beliefs/attitudes, mathematical activities (e.g., budgeting), mathematical topics (e.g., 
numbers, measurement), role of language, and implications on teaching. This thematic analysis led to 
conclusions about the participants’ feelings and attitudes toward mathematics, the role of 
mathematics in the participants’ lives, and how these aspects of the participants’ backgrounds were 
brought to bear on their perspectives on mathematics teaching and learning. 

Results 
Participants’ lived experiences 

The narratives of this group of mostly Latinx paraeducators emerged through oral and written 
reflections of personal language as they practiced culturally responsive teaching and engaged with 
their students’ families and communities, all while enrolled in the elementary mathematics methods 
course. Recognition of the sociohistorical and political contexts of their own lives, along with the 



Latinx paraeducators lived mathematical experiences 

	 1522	

lives of their students, is an important aspect of enacting culturally responsive teaching (Ladson-
Billings, 1995). Through their stories, these paraeducators demonstrate great courage and resilience. 
In many cases, their professional journeys include adapting to a new country or cultural context, 
learning a new language, facing immigration threats, and resisting pervasive local and national 
monolingual/monocultural ideologies. Their stories and reflections reveal the importance of listening 
to students' stories and building on their experiences and trajectories. 

Therefore, we focus on the lived experiences of these emerging teachers from their childhood 
through their adult and professional life. We provide the above overview as background to the salient 
mathematical features of their lived experiences that constitute the focus of this particular study. The 
data below build on the above narrative, but provide a much deeper view of the role of mathematics 
in the life trajectories and eventual professional work of the participants. 
Feelings and attitudes toward mathematics 

The students exhibited a variety of feelings towards mathematics, including “love,” “love-hate,” 
“useful,” “neutral,” and “negative.” Many of these feelings stemmed from experiences as a child. For 
example, while speaking fondly of her times tending to farm animals and baking with her mother, 
Maribel also recalled several negative school mathematics experiences that framed her overall self-
perception: 

I was usually one of those students that would take longer to find solutions to problems. One 
reason was because I would process what teachers were telling me in English and try to 
translate it into Spanish in order to understand it. Another reason is because I like to think 
about the process when trying to find solutions to a problem . . . I don’t remember ever being 
asked to find more than one solution to a problem by a teacher, or to find different ways to 
show my thinking. There was only one way, and if it was not how my teacher taught me it 
was wrong. I believe that this is when my fear of math, and answering questions in front of 
the class, started. 

Many students also reflected on their adult experiences as helping to frame their views of 
mathematics. Magdalena described her mathematical experiences while making and selling cakes 
and bocaditos (snacks), and Gabriela spoke of her work in the dental field.  

Overall, the participants relayed a variety of attitudes toward and self-perceptions of mathematics in 
their personal narratives. Many of these attitudes and self-perceptions were connected by the 
participants to particular events in their lived experiences, both as a child and adult. The next section 
provides more examples of these lived experiences and their importance in shaping their personal 
and professional lives. 
Mathematics in the participants’ lives 

The collection of mathematical autobiographies represents a rich set of examples of how personal, 
family, and cultural background impact the mathematical development of individuals. Javier related 
numerous examples of this from both his boyhood and adult life. Reflecting on his family heritage 
and youth, he stated: 

I come from a family of farmers who valued an education. I am the second of nine children 
and the second to go to college. My family always wanted us to get an education so that as 
we grew older, we would be able to know how to negotiate prices and know their value. My 
father sometimes bought and sold cattle and knew the importance of being able to calculate 
the weight of animals without weighting them and know their worth. As a result, he always 
encouraged me to study hard and do well in school so that in real life, I would be able to 
know what something was worth and others would not take advantage of me. When I was 
around 11 years old, my mom would often send me to buy a few grocery items and even 
medicine from the pharmacy. It was then that I started applying my math knowledge to buy 
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and pay for items. I also started working selling jelly, popsicles, and ice-cream . . . I 
remember that Sundays were my best days because I would go to the football (soccer) games 
to sell popsicles and ice-cream. Most Sundays, I would sell around 300 pesos ($13) worth of 
popsicles and ice-cream. I usually made around 105 pesos ($4.5) from 8:00 am to 3:00 pm. 

Javier related additional stories as an adult that involved woodworking, choosing phone plans, and 
making predictions. All were detailed and grounded in his personal story. Javier’s stories reflect a use 
of mathematics that was grounded in his parents’ desire for him to succeed, and in the life activities 
that dominated his early and adult life. Javier developed an applied view of mathematics throughout 
his life that, as an educator, translated into an instructional perspective in which mathematics is best 
learned through the use of applied contexts. 

Maribel also had numerous reflections on the importance of her family, setting, and upbringing: 
I was born in a small farm town. Growing up every morning before school my brother and I 
would feed our farm animals, and make sure they had water for the day . . . Each animal 
needed a different amount of water in their tanks so the amount of buckets varied depending 
on the size of the tank, and the animal. Without knowing, I was figuring out volume, by 
figuring out how many smaller units would be needed to fill a larger unit. This is something 
that I remembered and used when I started learning about volume in school. I always thought 
of them as tanks being filled by little buckets.  

Maribel’s personal relationship with her mother also played a significant role and had an impact on 
her understanding of fractions: 

My mom would ask me to put ¼ cup of sugar into a mix, or ½ cup of flour into something 
before stirring. At the time fractions for me were just lines on a cup. As I continued to help 
my mother I started noticing how each measurement had a relation with the other. For 
example, if I filled the cup to ½ and then filled the other ½ I would have 1 cup. Or if I was to 
fill the cup with water to the ¼ line and then add ¼ more the water would add up to the ½ 
line. This led me to realize that I needed four ¼’s to fill 1 cup. I was around 2nd grade when I 
started making these relationships with fractions. When I got to 4th grade and started learning 
about fractions, the numbers looked familiar.  

As in the case of Javier, Maribel’s hands-on experiences with mathematics have translated into a 
desire to use both visual and hands-on representations when working with mathematics learners.  

Evelyn described her parents as “from Mexico and have elementary and middle school level 
education. My father was always the one to work as my mother chose to stay home.” Evelyn felt a 
power in mathematics at an early age: 

When it was time for me to start school, I entered Kindergarten with not being able to speak, 
write or understand English as only Spanish was spoken at home; however, I was able to 
count to 100 at the end of Kindergarten, and by first grade I was able to add and subtract. 

Unfortunately, mathematics became an increasing challenge for Evelyn. In her view, this was 
because of a lack of support from both teachers and her own parents. These experiences brought on 
serious professional doubts: 

The things we were learning were beyond me. So since math was too hard for me, there was 
no way I could become a teacher. 

Over time, Evelyn worked to overcome these doubts and recognized several positive mathematical 
traits in her current life. Her attitude towards mathematics instruction is promising: 

I am working on being more positive with math and am a little nervous about creating a 
lesson on it, but with supportive educators by my side, I think I will be okay! 
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Perspectives on mathematics teaching and learning 
Despite the variety of personal stories and self-perceptions of mathematics, there was near 

consensus in regard to perspectives on teaching mathematics. All but one participant talked about 
allowing students to develop their own ways of thinking and solving problems and to develop 
understandings through the use of visual and hands-on representations. A variety of reasons were 
cited, including their own experiences, university mathematics and methods courses, and experiences 
working with students as paraeducators.  

The above examples of Javier and Maribel provide details on two specific ways in which the 
participants’ life stories had direct impact on both their views of mathematics and instructional 
perspective. Meredith used artistic representations to support the personal narrative of her lived 
mathematical experiences. As a young girl, she had difficulty engaging in the mathematics learning 
experiences that were devoid of context or lacked personal meaning. Her self-portrait during this 
time is quite telling: 

 

 
Figure 1: Image of Meredith as a young girl in a mathematics class. 

Meredith learned to overcome these challenges, eventually making meaning of complex 
mathematical ideas in calculus. Her personal goal is to utilize students’ home languages and cultures 
in the core of her mathematics teaching, and to work consistently on making mathematics relevant 
and personal to her students.  

Conclusions 
Our study is limited in that it considers only 11 participants who worked as paraeducators and 

achieved their elementary teacher certification in the same school district. We acknowledge this 
limitation, but argue that a similar study that would seek to decontextualize either the context or the 
participants’ backgrounds would have other, and perhaps more alarming, methodological issues. The 
study also draws primarily from one data source when analyzing the participants’ attitudes towards 
mathematics and mathematics instruction, though a secondary and much larger body of data was 
used to describe the broader socio-cultural backgrounds of the participants. Finally, while we 
document the participants’ views of both mathematics and mathematics teaching, this paper does not 
address actual classroom practice. Future studies are ongoing to determine the degree to which the 
participants’ views of mathematics instruction are being enacted in their own classrooms. 

Our analysis of the stories of these paraprofessionals’ lived experiences with mathematics provides 
a lens into key interactions with their families and other contexts that contributed to their 
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mathematical and professional development as teachers of mathematics. While their views of 
mathematics differed markedly, nearly all shared the view of teaching mathematics that seeks to 
generate active learners through the use of contexts, language, and other representations meaningful 
to students, and that preferably utilize the lived experiences and backgrounds of their students. Each 
of these principles are consistent with both culturally relevant/sustaining pedagogy as well as funds 
of knowledge perspectives. Given the changing demographics and anticipated increase in the number 
of Latinx students over the next ten years, and the importance of caring educators who share 
students’ backgrounds, interests, language, and culture, we hope that more Latinx teachers can enter 
the teaching profession and develop mathematical perspectives similar to those of the participants in 
this study. 
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“The main focus of the day was the “If the World Were a Village” activity/book. I thought it 
was a really good way to open one’s perspective. As an American, I tend to be a bit focused 

on the US, so to see how much [or how little] of the world is actually represented in my 
perspective was enlightening.” 

“Living in the United States … I was surprised that only 5% [of the world population] were 
from North America” 

Increasingly, mathematics is being positioned as a tool to support students’ understandings of social 
(in)justice and their own unique social positioning in the world. To this end, this study analyzes the 
impact of curricular reform efforts in an elementary mathematics content course. The course focused 
on fractions and statistics, and the course content was taught through tasks designed to support 
prospective teachers in understanding and critiquing the world. The authors found that through the 
course, prospective teachers’ content knowledge increased and their knowledge of the world’s 
demographics and social inequities increased. 

Keywords: Teacher Education Pre-service, Modelling, Social Justice 

Objectives or purposes of the study 
The National Council of Mathematics’ (NCTM) Catalyzing Change (NCTM, 2018) states that 

“each and every student should learn the Essential Concepts in order to expand professional 
opportunities, understand and critique the world, and experience the joy, wonder, and beauty of 
mathematics.” (emphasis added, p. 2). If we want students to “function as numerate, critical citizens 
who are able to use their knowledge in social and political realms, for the betterment of both 
themselves and society as a whole” (Ernest, 2000, p. 46), we need to teach these students how to 
understand and critique the world. Some school districts in the United States (for example Seattle 
Public Schools) are actively working on understanding and critiquing the world in their mathematics 
classes (Gewertz, 2020). 

However, teaching mathematics in a way that enables students to understand and critique the world 
is challenging. Part of the challenge is due to the tension between focusing on the classical/dominant 
mathematics goals and on understanding and critiquing the world (Brantlinger, 2013; Gutstein, 2006; 
Yeh & Otis, 2019). Integrating real-world phenomena into the classroom requires questioning the 
status quo so as to not reinforce stereotypes (Esmonde, 2014) which may take time away from 
focusing on the dominant mathematics. This, in turn, may negatively impact student achievement on 
standardized assessments (Brantlinger, 2013; Chubbuck & Zembylas, 2008). 

To address this tension, we selected real-world contexts that would allow both, learning 
mathematics as well as learning about the world we live in. We situated the mathematics learning in 
the context of shrinking the population of the world to either 100 people (Smith, 2011) or shrinking 
the US population down to the size of the class. Our research questions were: 
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1. What mathematics do students learn when they engage in mathematics tasks based on 
shrinking populations to 100 or to class size? 

2. What do students learn about the world when they engage in mathematics tasks based on 
shrinking populations to 100 or to class size? 

3. How does working on such tasks affect the students’ views of mathematics? 

Perspective(s) or theoretical framework 
In a teaching mathematics for social justice framework (TMfSJ), a primary goal is for students to 

become critical members of society who know how to use mathematics to make sense of and 
possibly change their world  (Gutstein, 2003; Raygoza, 2016). TMfSJ tasks involve engaging 
students in thinking about both the mathematics concepts and social issues relevant to their lives and 
experiences (Frankenstein, 1983; Gutstein, 2006; Skovsmose, 1994). Therefore, another goal of 
incorporating social issues into mathematics is for students to both understand mathematics as well 
as understand and create a more just world (Frankenstein, 2009). To understand and critique the 
world students often begin by learning about how their own experiences relate to others’ experiences 
in the world in order to understand privilege and injustice. Many prospective teachers (PTs) enter 
their coursework believing that mathematics is neutral or universal (Greer et al., 2007; Keitel & 
Vithal, 2008). Mathematics teacher educators need to address the fact that mathematics can never be 
neutral and no classroom is a neutral space (Frankenstein, 1983; Gutiérrez, 2013; Yeh & Otis, 2019). 
TMfSJ tasks can be a means of engaging teachers in building their sociopolitical consciousness about 
the political implications of mathematics, and how math can be leveraged to read and write the world 
(Gutstein & Peterson, 2005). Gutstein (2003), building on Paulo Freire’s (1970) work, distinguishes 
between reading the world (supporting students in learning about inequities in the world and their 
own positioning within those inequities) and writing the world (supporting students in developing 
their own agency to address inequities). 

Yet, most PTs have little experience with TMfSJ tasks during their K-12 schooling; therefore, it is 
important to integrate such tasks into their teacher education courses so they can explore how they 
may be able to enact TMfSJ tasks in their future K-12 classrooms. This is especially true for content 
courses so elementary PTs can experience such tasks from a learner’s perspective and thus learn to 
read and write the world (Gutstein. 2006).  

In some cases mathematics teacher educators (MTEs) have met resistance from PTs when 
integrating social justice issues into the mathematics curriculum (Aguirre, 2009; Ensign, 2005; 
Felton-Koestler et al., 2017; Rodríguez & Kitchen, 2004). However, MTEs have also found that they 
are able to broaden PTs’ perspectives about mathematics and mathematics teaching to include the 
idea that mathematics could be a tool for social analysis that supports students in understanding the 
sociopolitical world better (Bartell, 2013; Ensign, 2005; Felton & Koestler, 2015; Felton-Koestler & 
Koestler, 2017; Leonard & Moore, 2014; Mistele & Spielman, 2009). This aligns with Gutstein’s 
(2003) goal of supporting students in developing their sociopolitical consciousness, and possibly a 
stronger sense of agency and identity. 

Finally, TMfSJ tasks can be designed towards teaching math about, with, and for social justice 
(Stinson & Wager, 2012). Stinson and Wager define teaching mathematics about social justice as 
focusing on reading the world. They define teaching mathematics with social justice as enacting 
equitable pedagogical practices. Finally, they define teaching mathematics for social justice as 
focusing on both reading and writing the world. Students benefit from all three forms of teaching 
mathematics about/with/for social justice. Benefits include a view of mathematics as useful and 
relevant  and can potentially develop agency (Gutstein, 2006). 
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Methods or modes of inquiry: 
The study took place in two mathematics content courses for prospective elementary school 

teachers in the United States, one in 2018 and one in 2019. Content courses are typically taken as 
prerequisites before students enter their teacher education program. The mathematical content of 
these courses focused on fractions and statistics.  

The 2018 course had 26 PTs and the 2019 course had 7 PTs. The task described below was piloted 
in the 2018 course and spanned one homework assignment and one class day (2 hours). The task was 
then refined and implemented in the 2019 course across over two days of instruction (2 hours each). 
The first part of the task comprised (1) examining www.worldodometers.info and noting how many 
people are on earth and how some resources are distributed. (2) Shrinking the world population down 
to 100 people using the book If the World Were a Village (Smith, 2011), the movie 
https://www.youtube.com/watch?v=QrcOdLYBIw0, as well as the website 
https://www.100people.org/statistics_detailed_statistics.php?section=statistics to make observations 
about the distribution of the population and resources. (3) Creating of a poster focusing on one or two 
elements discussed in the book/movie. Students were given private think time, discussion time, and 
time to make the poster which was to include the following representations: a table, a hundred chart, 
a number line, and unifix cubes. Students were asked to connect these various representations to 
support their understanding of the relationships between fractions, decimals and percent. Sample 
posters can be seen in Figure 1. After the posters were displayed time was spent to discuss the 
mathematics (connecting decimals, fractions, and percent) as well as what we learned about the 
context. 

In 2018 parts (1) and (2) were assigned as a homework assignment before the first class session, in 
2019 they were done in class. In 2019 PTs were asked to estimate percentages for the village such as 
population, language, age, etc. For example, they were asked “If the world were a village of 100 
people, how many would come from North America?” and “would speak English?” In both years 
part (3) was done in class and in both years, students responded to online survey questions after those 
three parts: 

Online Survey Questions: 
• What observations did you make when looking over this website 

http://www.worldometers.info/? 
• What observations did you make when you watched the YouTube video "If the world were a 

village"? 
• What observations did you make when you read the book "if the world were a village"? 
• [2018] Please reflect on this homework assignment: What did you learn? 
• [2019] What did you learn from today's lesson? 
• [2019] What did you learn from today's lesson with respect to mathematics? 
• [2019] What did you learn from today's lesson with respect to your understanding of the 

world? 
• How can breaking the population down into 100 people help us better understand the 

information? 
• What math do you think could be addressed with this book in a K-5 classroom? 

At the end of the term PTs in each class were asked to respond to the prompt “I used to think math 
is … now I think math is …” 

In 2019 a second day focused on PTs researching information about their hometown and creating a 
second poster for their hometown and then comparing across the two posters. Data collected included 
PTs responses to online surveys as well as detailed field notes of all class sessions and copies of all 
student work. Data analysis began by filling in the field notes with artefacts from class, and reading 
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through survey responses to establish initial themes. Two researchers independently read survey 
responses and identified themes. The researchers then met to discuss and refine themes in order to 
create a final codebook of themes, and all data was coded with this codebook. Any disagreements 
were resolved through discussion. After all survey data was coded, similar themes were collapsed to 
make larger themes. Themes were collected across all questions rather than analyzing individual 
questions. These can be seen in Table 1. 

Results 
With regard to Research Question 1: What mathematics do students learn when they 
engage in mathematics tasks based on shrinking populations to 100 or to class size? 

One major mathematical focus of the task was to make sense of the meaning of percent and connect 
percent, fractions and decimals. Several PTs commented that before this day they did not realize that 
percent refers to “per one hundred”. Ellie, for example, stated, “I thought it [percent] was just a 
word,” and Amanda wrote in her notes for the day, “Eva explained that percent actually means per 
hundred, which I never knew.”  Candy stated that she learned “that if the world was broken down 
into 100 people, each person would represent a percent. This allows us to conceptualize the 
population while understanding the real percentages (which can be translated into the actual 
population).” In addition, PTs connected decimals to fractions with base ten denominators. This is 
evidenced by Christa’s response that “I learned how fractions, decimals and percentages relate to 
each other and that they all show representations of part of a whole.” One way PTs made sense of 
percent and made connections was by using color purposefully. As shown in the posters below 
(Figure 1), PTs used colors to connect across representations. Sabine pointed out how the colors 
helped her: “It was very helpful for me to see with color and the number 100.” Jamie reflected on her 
homework “OMG. As I was completing the homework I realized that a flat partitioned into 100-sized 
pieces is the same as a hundred chart!!!!! This was a very helpful connection for me.” 

 
Figure 1: Three posters illustrating connections across representations 



Modeling to understand the world around us and our place in it: If the world were a village 

	 1531	

In addition to developing meaning for percent, fractions and decimals, scaling the size of the 
world’s population helped the students make sense of the size of our world and the distribution of the 
world’s population. For example, 76% of PTs reported that scaling down the population to 100 
helped then understand the world better (see Table 1 for all survey themes). One way this supported 
their understanding of the world was the ease of visualizing a certain number of people out of 100 
rather than billions of people. For example, Walter conveyed that “when numbers are so large the 
impact is usually lost. The number can be overwhelming and doesn't necessarily relate to us 
personally. Yet when we break it down to 100 we have a better visualization of what the population 
would look like. We can visualize 60 people out of 100 or 10 people out of 100.  Compare that to 
billions of people... That is much more difficult to grasp.” In this way, PTs were able to make sense 
of the world by considering a total population of 100 people, which provided a relatable scale. 
With regard to Research Question 2: What do students learn about the world when they 
engage in mathematics tasks based on shrinking populations to 100 or to class size? 

Another major focus of the task was to create a space for students to realize that the world is much 
more complex than they had originally thought, and that the US is not the center (or most of) the 
world. Seventy percent of the students stated this in the survey. For example, Aimee expressed 
feeling surprised "to see that a majority of the population came from Asia and not the United States,” 
and Sophie also voiced, “I was surprised to learn about the abundance of other cultures. I think in 
America the media tends to be very self-centered and produce that as the norm, when in reality 
looking at the world we are a small fraction of diversity in the world.” Additionally, Amanda 
reflected in her notes that “some of the results were surprising such as that 60% of the population is 
from Asia and only 5% is from North America.” 

 
Table 1: Themes, larger themes bolded, sub-themes not bolded 

Theme 2018 N=26 2019 N=7 2018 and 
2019 N=33 

The world population is large and rising (at a 
scary rate) 18 (69%) 7 (100%) 25 (76%) 

The use of smaller numbers (100 people in the 
village) was helpful to make the quantities easier 

to visualize/data easier to visualize 21 (81%) 4 (57%) 25 (76%) 
Inequity is larger than I thought 22 (84%) 6 (85%) 31 (85%) 

Inequity/inequality is larger than I thought 16 (62%) 3 (43%) 19 (58%) 
Food insecurity is much higher than I thought 14 (54%) 5 (71%) 19 (58%) 

Education levels are lower than I thought 8 (31%) 3 (43%) 11 (33%) 
The world is more complicated/goes beyond 

the US   17 (65%) 6 (85%) 13 (70%) 
World is complicated/diverse 13 (50%) 3 (43%) 16 (48%) 

US is not the center of the world 5 (19%) 1 (14%) 6 (18%) 
I am a small piece in the world/surprised by the 

small % of people from NA 2 (8%) 3 (43%) 5 (15%) 
I am a small piece in the world/There are so 

many people in the world 1 (4%) 0 (0%) 1 (3%) 
I am/was America centric/ gained perspective 2 (8%) 4 (57%) 6 (18%) 

This activity was 
SHOCKING/jarring/terrifying 6 (23%) 1 (14%) 7 (21%) 

Need for action/improving the world 10 (38%) 3 (43%) 13 (40%) 
This activity made me realize the need for action 6 (23%) 3 (43%) 9 (27%) 
found it helpful to quantify social issues/we can 6 (23%) 0 (0%) 6 (18%) 
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use number to improve the world 
This activity would be good for elementary 

students 8 (31%) 1 (14%) 9 (27%) 
 
Thus, scaling the size of the world also helped PTs recognize their inaccurate perceptions of the 

distribution of people and languages in the world. In 2019 when PTs were asked to make predictions 
all 7 PTs overestimated how many people would come from North America. While the actual value 
is around 5, PTs’ estimates ranged from 7 to 50 with the mean response being 18. All 7 PTs also 
overestimated the number of people who speak English. Their estimates ranged from 20 to 80 with a 
mean of 42 and a median of 40. The actual value is 5 (first language) and 20 (first and second 
language). Thus, all PTs seemed to overestimate the population of North America as well as the 
number of English speakers. This activity helped PTs adjust their understanding; Candy, for example 
stated in her class notes that “learning the proper answer resulted in new understanding of the world. 
This activity helped me realize that the US isn’t the center of the world. Life is very different for 
people in other countries.” 

This task helped PTs to grasp the significance of our worlds’ population and the current distribution 
of resources in our world. One of the major themes PTs mentioned across both years was that they 
learned that the world population is large and rising at an alarming rate (all survey themes are shown 
in Table 1). Seventy-six percent of all PTs mentioned this theme. Elsie for example stated “There are 
a lot more people living than I thought,” and Sophie stated “The population to me was shocking. 
When I think about this small realm of people I interact with every day, it blows my mind to picture 
the world population, let alone this constant rapid increase.” 

Additionally, almost all PTs (84%) stated that they learned that the inequities are larger than they 
thought either in general (58%) or by mentioning a specific area such as food insecurity (58%) or 
education (55%). To give an example, Autumn mentioned general inequities: “I observed a lot of 
inequalities amongst all the topics explored.” Additionally, Christa noticed that “food insecurity was 
a way larger number than I thought. It is almost half the world's population which is startling to me,” 
and Sabine mentioned both food and education: “The number of people that always have food to eat 
is very low. I didn't expect it to be that low, it really surprised me. Also, that there are students that 
don't get an education. It is very sad that they don't get that opportunity.” 

For some PTs, their new understanding motivated a sense of urgency for action. Even though taking 
action was not yet an explicit goal of the course, 40% of the PTs mentioned the need to take action or 
need for improving the world. For example, Marcel stated “It is …  important to realize that as 
Americans, everything is not as we assume it is. We just expect to turn on the faucet and have clean 
water poured out of it. We pay for tuition and we expect qualified professors. As Americans we must 
recognize our privilege and use it to help others as much as we can.” Gertie said “I learned that there 
are a lot of things in the world that need our help and attention, and there is a lot of miss-distribution 
of wealth, food, and resources, and we need to be doing a better job of creating a more sustainable 
and equitable world.  
With regard to Research Question 3: How does working on such tasks affect the students’ 
views of mathematics? 

At the end of the term PTs in each class were asked to respond to the prompt “I used to think math 
is … now I think math is ….” Four themes emerged: (a) a shift from math as politically neutral to 
math as a place for the integration of social issues/social justice [8 PTs in 2018, 2 PTs in 2019], (b) a 
shift from rom math as boring/uninteresting, to math as interesting/useful [8 PTs in 2018, 4 PTs in 
2019], (c) a shift form math as rules and procedures to math as sense-making [12 PTs in 2018, 3 PTs 
in 2019], and (d) shift from difficult to possible [7 PTs in 2018, 0 PTs in 2019]. Some PTs mentioned 
more than one theme [9 in 2018, 1 PT in 2019]. Ellie illustrated theme (a) in her response “I used to 
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think math is the most politically neutral subject taught in school. Now I think math is a great place 
to bring up the issues that are going on in our world while developing a better understanding of the 
material because of the connections that students can make to their own lives.” 

Discussion and/or conclusions 
Reflecting on the data analyzed for this study with respect to content it seems like PTs learned about 

the meaning of percent as well as the connection between fractions, decimals, and percent. 
Reflecting on the data analyzed for this study with respect to the world, it seems the PTs learned 

about social justice (reading the world) but not quite yet for social justice (writing the world). PTs 
seemed to have a better understanding about various characteristics of the world as a whole, which is 
important for future elementary school teachers because these future teachers need to understand 
characteristics of the world themselves before they can enact TMfSJ tasks in their own future 
teaching. Additionally, being aware of their own unique social positions may support more reflective 
practice with elementary students who differ from them in social position. 

The PTs also learned how to use math to make sense of the world. Moving forward, the authors 
intend to modify the tasks to move more towards learning for social justice.  In 2019 the PTs 
compared what they learned about the world to what they learned about their own local city which 
allowed them to (a) learn about their local place and compare it to the world, and (b) refine their 
understanding of how they are situated in the world. Christa, for example, stated “My topic was 
shelter and that was an underestimate of one in 20 people are homeless [in local city]. … we 
obviously have issues in [local city]. But then comparing it to the real world numbers. It's still a very 
privileged place to live. So I think that's important to recognize.” The act of comparing their new 
understandings of the world to the makeup of their local city appeared to make inequity more 
pressing for PTs. In the future, the authors will continue to develop ways to connect TMfSJ tasks to 
PTs local reality, e.g., local issues of homelessness, gentrification, in an effort to prompt PTs toward 
taking action and learning mathematics for social justice. 

Reflecting on the data analyzed for this study with respect to the students’ views of mathematics we 
reported on students' views at the end of the term, thus this tasks may only have played part of the 
reason for shifts, however, all students mentioned shifts in how they viewed math as either not 
neutral anymore, or more interesting, engaging, focused on sense making, and doable. 

References 
Aguirre, J. M. (2009). Privileging mathematics and equity in teacher education: Framework, counter-resistance 

strategies and reflections from a latina mathematics educator.  
Bartell, T. G. (2013). Learning to teach mathematics for social justice: Negotiating social justice and mathematical 

goals. Journal for Research in Mathematics Education, 44(1), 129-163.  
Brantlinger, A. (2013). Between politics and equations: Teaching critical mathematics in a remedial secondary 

classroom. American Educational Research Journal, 50(5), 1050–1080. 
https://doi.org/10.3102/0002831213487195  

Chubbuck, S. M., & Zembylas, M. (2008). The emotional ambivalence of socially just teaching: A case study of a 
novice urban schoolteacher. American Educational Research Journal, 45(2), 274–318. 
https://doi.org/10.3102/0002831207311586  

Ensign, J. (2005). Helping teachers use students’ home cultures in mathematics lessons: Developmental stages of 
becoming effective teachers of diverse students. In A. J. Rodriguez & R. S. Kitchen (Eds.), Preparing 
mathematics science teachers for diverse classrooms: Promising strategies for transformative pedagogy (pp. 
225-242). Lawrence Erlbaum Associates.  

Ernest, P. (2000). Why teach mathematics. Why learn maths, 1-14.  
Esmonde, I. (2014). “Nobody’s rich and nobody’s poor ... It sounds good, but it’s actually not”: Affluent students 

learning mathematics and social justice. Journal of the Learning Sciences, 23(3), 348–391. 
https://doi.org/10.1080/10508406.2013.847371  



Modeling to understand the world around us and our place in it: If the world were a village 

	 1534	

Felton, M. D., & Koestler, C. (2015). “Math is all around us and… we can use it to help us”: Teacher agency in 
mathematics education through critical reflection. The New Educator, 11(4), 260-276.  

Felton-Koestler, M. D., & Koestler, C. (2017). Should mathematics teacher education be politically neutral? 
Mathematics Teacher Educator, 6(1), 67-72. https://doi.org/10.5951/mathteaceduc.6.1.0067  

Felton-Koestler, M. D., Simic-Muller, K., & Menendez, J. M. (2017). Reflecting the world: A guide to incorporating 
equity in mathematics teacher education.  

Frankenstein, M. (1983). Critical mathematics education: An application of paulo freire's epistemology. Journal of 
Education, 315-339.  

Frankenstein, M. (2009). Developing critical mathematical numeracy through real real-life word problems. In L. 
Verschaffel, B. Greer, W. Van Dooren, & Mukhopadhyay (Eds.), Words and worlds: Modeling verbal 
descriptions of situations (pp. 111-130). Sense Publishers.  

Freire, P. (1970). Pedagogy of the oppressed (mb ramos. Trans. 30th anniversary.  
Gewertz, C. (2020). Seattle schools lead controversial push to 'rehumanize' math. Education Week.  
Greer, B., Verschaffel, L., & Mukhopadhyay, S. (2007). Modelling for life: Mathematics and children’s experience. 

In Modelling and applications in mathematics education (pp. 89-98). Springer.  
Gutiérrez, R. (2013). The sociopolitical turn in mathematics education. Journal for Research in Mathematics 

Education, 44(1), 37-68.  
Gutstein, E. (2003). Teaching and learning mathematics for social justice in an urban, latino school. Journal for 

Research in Mathematics Education, 34(1), 37–73. https://doi.org/10.2307/30034699  
Gutstein, E. (2006). Reading and writing the world with mathematics: Toward a pedagogy for social justice. Taylor 

& Francis.  
Gutstein, E., & Peterson, B. (2005). Rethinking mathematics: Teaching social justice by the numbers. Rethinking 

Schools.  
Keitel, C., & Vithal, R. (2008). Mathematical power as political power–the politics of mathematics education. In 

Critical issues in mathematics education (pp. 167-188). Springer.  
Leonard, J., & Moore, C. M. (2014). Learning to enact social justice pedagogy in mathematics classrooms. Action in 

Teacher Education, 36(1), 76-95.  
Mistele, J. M., & Spielman, L. J. (2009). Engaging preservice teachers in mathematics: Social analysis in the 

mathematics classroom. Democracy Education, 18(3), 64-67.  
National Council of Teachers of Mathematics. (2018). Catalyzing change in high school mathematics. National 

Council of Teachers of Mathematics.  
Raygoza, M. C. (2016). Striving toward transformational resistance: Youth participatory action research in the 

mathematics classroom. Journal of Urban Mathematics Education, 9(2), 122-152.  
Rodríguez, A. J., & Kitchen, R. S. (2004). Preparing mathematics and science teachers for diverse classrooms: 

Promising strategies for transformative pedagogy. Routledge.  
Skovsmose, O. (1994). Towards a critical mathematics education. Educational studies in mathematics, 27(1), 35-57.  
Smith, D. J. (2011). If the world were a village-: A book about the world's people. Kids Can Press Ltd. 
Stinson, D. W., & Wager, A. (2012). A sojourn into the empowering uncertainties of teaching and learning 

mathematics for social change. Teaching mathematics for social justice: Conversations with educators, 3-18.  
Yeh, C., & Otis, B. M. (2019). Mathematics for whom: Reframing and humanizing mathematics. Occasional Paper 

Series, 2019(41), 8. 



Teacher Education (Pre-service) 

In: Sacristán, A.I., Cortés-Zavala, J.C. & Ruiz-Arias, P.M. (Eds.). (2020). Mathematics Education Across Cultures: 
Proceedings of the 42nd Meeting of the North American Chapter of the International Group for the Psychology of 
Mathematics Education, Mexico. Cinvestav / AMIUTEM / PME-NA. https:/doi.org/10.51272/pmena.42.2020 

1535	

INVESTIGATING ELEMENTARY PRE-SERVICE TEACHERS’ CONCEPTIONS OF 
MATHEMATICAL CREATIVITY 

Anne N. Waswa 
University of Georgia 
anw04326@uga.edu 

Kevin C. Moore 
University of Georgia 
kvcmoore@uga.edu 

Research in mathematics education has overlooked creativity in mathematics, partially because of a 
lack of an accepted definition of mathematical creativity. The present study investigates elementary 
pre-service teachers’ (PSTs’) conceptions of creativity in teaching and learning mathematics. Data 
were collected using observations and semi-structured interviews with nine PSTs and analyzed using 
thematic analysis. PSTs’ conceptions of mathematical creativity included using multiple approaches 
to solve problems, designing mathematical tasks from scratch, making learning challenging but not 
impossible, and exercising independence in learning. Implications of these results are applicable to 
teacher preparation programs, and they suggest a need for more research on the nature of 
experience(s) that shapes PSTs’ conceptions of mathematical creativity and how to develop it. 

Keywords: Instructional activities and practices, Affect, Emotion, Beliefs, and Attitudes. 

Mathematics educators have argued that “mathematics is a creative, everyday human activity that 
cannot be built exclusively on rules and routines” (Schram, 1988, p. 8). Yet, according to Silver 
(1997), cited in Lithner (2008), “students hardly experience mathematics as the highly creative 
domain it is” (p. 7). If we intend to support students to discover and grow their mathematical talent, a 
change in broader classroom practices and curriculum materials is necessary, and in order to yield 
results from this change, creativity in mathematics should be part of educational experience (Mann, 
2006). This educational experience should not be limited to students but should be made accessible 
to teachers who play a critical role in shaping the educational experience of students. Creative 
teachers are crucial to the development of mathematical creativity in each student through school 
mathematics education (Lev-Zamir & Leikin, 2011). 

For us to nurture teaching with and for creativity by teachers, we must understand their conceptions 
of creativity (Lev-Zamir & Leikin, 2011). We address this need in the present study by investigating 
elementary pre-service teachers’ (PSTs’) conceptions of mathematical creativity. The purpose of the 
study was to understand how PSTs conceive creativity in the teaching and learning of mathematics. 
In the following sections, we review related literature and discuss a theoretical perspective that 
guided the study. We then describe the research methods, results and implications of the findings. 

Literature Review 
Research in mathematics education has overlooked creativity in mathematics (Haavold, 2018; 

Haylock, 1987; Leikin, 2009, 2011), partially because of a lack of an accepted definition of 
mathematical creativity (Mann, 2006). Among the researchers who have studied teachers’ conception 
of creativity specific to mathematics, Bolden, Harries, and Newton’s (2010) characterized elementary 
PSTs as holding a narrow conception of creativity in mathematics. The PSTs’ conceptions were 
largely associated with the use of resources and technology and was bound up with the idea of 
teaching creatively instead of teaching for creativity. The National Advisory Committee on Creative 
and Cultural Education (NACCCE) (1999) defined teaching creatively as “teachers using imaginative 
approaches to make learning more interesting, exciting and effective” (p. 102), and they defined 
teaching for creativity as teaching that is aimed at developing students’ creative thinking and 
behavior. The former emphasizes creativity in terms of teacher actions, while the latter emphasizes 
creativity in terms of student reasoning. Bolden et al. (2010) cited literature which indicated that 
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teachers of younger children believe that mathematics is creative but a closer investigation into their 
beliefs showed that creativity was viewed less in terms of the mathematics itself and more in terms of 
the creative activities such as construction, art, songs and rhyme, which are availed by mathematics 
sessions. Complicating the matter, Beghetto’s (2007) study with middle and secondary PSTs 
identified that these teachers can view unique student responses as a potential distraction to 
classroom teaching, while PSTs from other subjects viewed such responses as worth pursuing. The 
potential effect of dismissing unique responses by students was that it can hinder the development of 
creative thinking, even if the teacher is using techniques associated with teaching creatively.  

With respect to research investigating PSTs and their awareness of mathematical creativity, Shriki 
(2010) described the experiences of PSTs in a methods course focused on middle-school geometry 
where they engaged in activities aimed at cultivating their awareness of mathematical creativity and 
the complexity of the nature of creativity. She examined creativity by focusing on the value of the 
process or the product with citations from other researchers. As a process, creativity refers to 
cognitive abilities, conceptual thinking that involve flexibility, fluency, and originality, and non-
algorithmic thinking. As a product, creativity is defined in terms of the novelty or uniqueness of a 
solution to a problem. Shriki argued that the learning environment and the nature of the assignments 
were relevant in aiding and growing PSTs’ awareness of mathematical creativity and its multifaceted 
nature. She specifically illustrated that the learning environment provided PSTs with the freedom to 
work and design their own problems without having to follow certain rules or algorithms, and 
without fear of having a right or wrong answer. This, in turn, led to PSTs’ development of intrinsic 
motivation, interest and curiosity. PSTs were also encouraged to be reflective about their insights and 
determine possibilities of generalizing the ideas, which in the end enhanced their mathematical 
knowledge. 

Theoretical Perspectives 
Researchers have approached creativity from different perspectives, and there is no general 

accepted definition of creativity (Haylock, 1987; Mann 2006; Sriraman; 2005). However, most 
researchers (Haylock, 1987; Lev-Zamir & Leikin, 2011; Leikin, Subotnik, Pitta-Pantazi, Singer & 
Pelczer, 2013) have adopted Guilford’s (1967) characterization of the nature of creative thinking. 
The common features include fluency, flexibility, and elaboration, all of which fall within the 
divergent production ability of creative thinking. Fluency pertains to “a matter of retrieval of 
information from one’s memory store,” flexibility is “a matter of transformations of information,” 
and elaboration is “a matter of producing implications” (Guilford, 1967, p. 11). Originality is another 
component of general creativity which Lev-Zamir and Leikin, (2011) defined as characterized by a 
unique way of thinking and unique products of a mental or artistic activity” (p. 19). These 
characteristics are mutually related, but they are not required to be present at the same time in order 
to claim the occurrence of creativity (Lev-Zamir & Leikin, 2011). 

At a finer level, some differences exist in researchers’ approaches to creativity. Piirto (1999), cited 
in Lev-Zamir and Leikin, (2011), distinguished between general and specific creativity. He identified 
general creativity with the application of problem-solving skills used in one field to solve problems 
in another field, and he connected specific creativity to the logical deductive nature of a particular 
field. Our study focused on mathematical creativity, which is a specific type of creativity that focuses 
on mathematics. 

To label a behavior as mathematically creative, Haylock (1987) argued that both mathematics and 
creativity must be clearly present. This implies that for any process or product to be labeled as 
mathematically creative, it should be valid to the mathematics that was involved in that specific 
context. Lev-Zamir and Leikin’s (2011) later added that defining mathematical creativity in the 
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context of teaching should allude to mathematics, teaching, learning and creativity. An understanding 
of mathematical creativity was therefore important in this study. 

For the present study, we adopt a model for creativity designed by Lev-Zamir and Leikin (2011) to 
characterize teachers’ conceptions of creativity in teaching mathematics. In the model, teacher 
conceptions are explained in terms of teachers’ mathematical content conceptions, which are how 
teachers view creative mathematical content, and teachers’ pedagogical conceptions, which are “their 
awareness of didactic and psychological aspects of creativity in teaching and learning mathematics” 
(p. 19). Of the four characteristics of general creativity mentioned previously, their model focuses on 
flexibility, originality and elaboration because these three are unique to creative teaching. With 
respect to fluency, the authors consider it a primary indicator of how a teacher is qualified in terms of 
knowledge and proficiency, rendering it trivial in this model. 

In Lev-Zamir and Leikin’s model, teacher conceptions of creativity in teaching mathematics are 
further subcategorized as teacher-directed and student-directed under each of the three components: 
flexibility, originality and elaboration. Teacher-directed conceptions of creativity are actions by 
teachers that make them creative and these can be of a mathematical or pedagogical kind. Student-
directed conceptions of creativity entail “connecting creativity in teaching mathematics with 
opportunities provided for the development of students’ creativity” (p. 28). 

Methods 
Context and Participants 

The study took place at a university in the southern United States. We recruited nine female pre-
service elementary teachers from the early childhood education program, and their participation was 
voluntary. At the time of study, they were taking a mathematics methods course from either of the 
two sections taught by two different professors. One of the authors acted as a teacher assistant in both 
sections. The course was accompanied by a field experience component and it was the first of two 
courses that students take in the program. 

We chose to focus on PSTs at the elementary level because this a critical stage of a child’s 
mathematical development and how teachers are prepared to support them in this development is 
important. Mathematical concepts are interconnected and having a strong foundation for basic 
concepts in mathematics is likely to enhance understanding and creativity in learning as students 
progress to higher levels. We chose this specific course because of the nature of questions that PSTs 
explored throughout the course. PSTs were expected to reflect more on what mathematics is and 
what it means to know and do mathematics. These reflections can influence PSTs’ beliefs about 
mathematics, which they are likely to carry on into their teaching together with the experiences they 
get from the methods course, ultimately impacting how they teach by shaping the approach and 
attitude of students in mathematics. 

The nine participants came from different backgrounds in terms of race which in turn implies 
different cultures. Three out of the nine participants were PSTs of color and six were white. Of the 
three PSTs of color, two were born outside the US and moved into the US in their early age. The 
other was born and raised in the US. It was important to mention this variation in participants as their 
experiences are likely to inform their conception of mathematical creativity. Moreover, Leikin et al. 
(2013) indicated that some variables concerned with mathematical creativity depend on culture while 
other variables are intercultural. 
Data Collection 

We conducted two observations, one in each of the course sections for a duration of approximately 
1.25 hours each. “A major purpose of observation is to see firsthand what is going on rather than 
simply assume we know” (Patton, 2015, p. 331). Having been familiar with the site, this was a 
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statement that guided our observation in order to avoid uninformed conclusions. Given one of the 
authors’ role in the classroom as a teacher assistant, it was her intention to avoid as much interaction 
as possible in order to capture majority of the events of the lessons and we therefore assumed the role 
of an onlooker (Patton, 2015) for the most part of the observations. 

We also conducted one individual semi-structured interview (Roulston, 2010) with the nine 
participants. The semi-structured nature of the interview allowed us to deviate from the order of 
interview questions, because our interviewees’ responses informed the choice and order of questions. 
For example, we did not have to ask all questions that we had in our protocol when an interviewee 
responded by also answering a follow-up question(s). We also used probing questions to follow-up 
on our interviewee’s responses and yield more detail and explanations about what our interviewees 
had said (Roulston, 2010). While probing, in most cases, we used our interviewees’ own words to 
formulate questions. The interview focused on PSTs conceptions of what it means to teach 
mathematics creatively followed by their conceptions of what it means to learn mathematics 
creatively.  
Data Analysis 

To analyze data, we used thematic analysis (Braun & Clarke, 2006) which is a “method for 
identifying, analyzing, and reporting patterns (themes) within data” (p. 79) or a process that involves 
looking for patterns within the data and categorizing those patterns according to themes (Fereday & 
Muir-Cochrane, 2006) cited in Bowen (2009). Thematic analysis uses coding as a strategy 
(deMarrais & Lapan, 2003). The themes were mainly from the aforementioned framework of Lev-
Zamir and Leikin (2011). We analyzed our participants’ responses to interview questions and 
occurrences from the classroom observations in light of flexibility, originality and elaboration. From 
these categories, we further grouped our findings into the subgroups of teacher-directed and student-
directed conceptions of mathematical creativity. Data in the flexibility group included statements 
about different types of transformation of information in teaching and learning mathematics and 
varied solution paths to problems that could result from the teacher and/or the student. Data in the 
originality group entailed PSTs’ statements about novel ways of thinking while teaching and 
learning. Novelty in this case referred to uniqueness from the usual accepted norms and conventions 
of problem solving in the process of teaching and learning.  Data in the elaboration group constituted 
PSTs’ statements about advancing thinking to higher and related levels. 

Results 
The data presented in this report are from three (Nelly, Paula, and Laura – pseudonyms) out of the 

nine PSTs. We chose to focus on these three participants here because they provided concise but 
representative data of the nine participants. We categorized the findings in terms of teacher-directed 
conceptions of creativity and student-directed conceptions of creativity as explained in the theoretical 
perspective. 
Teacher-Directed Conceptions of Mathematical Creativity 

This form of creativity included PSTs’ views and actions, both mathematical and pedagogical, that 
enhance their teaching of mathematics creatively. The different views of PSTs’ teacher-directed 
conceptions of creativity included using multiple approaches to solve problems, designing 
mathematical tasks from scratch, and making learning challenging but not impossible. Table 1 
represents a summary of these conceptions, their description, and their perceived enactment, or the 
actions that teachers envision to ordain the conceptions. 
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Table 1: PSTs’ Conceptions of Mathematical Creativity in Teaching 
Teacher-Directed Conceptions of Mathematical Creativity 

Conception Description Perceived Enactment 
Use multiple 

approaches to solve 
problems 

Finding the solution to a 
mathematical problem 

using varied solution paths. 

Provide support for students, both pedagogical and 
mathematical to help them think of and use various 

perspectives when solving problems. This support can be in 
terms of using supporting and extending moves, and 

purposeful questioning. 
Design 

mathematical tasks 
from scratch 

Exercise teachers’ 
independence and 

creativity in determining 
content and context that 

will be accessible to 
students. 

Devise contextual problems, use manipulatives, hands-on 
activities, and games that are appropriate to the goals of the 
lesson to engage students in thinking about mathematical 

concepts creatively.  
Integrate other subjects e.g. English and Science in 

mathematics lessons. 
Make learning 

challenging but not 
impossible 

Providing challenging 
problems and situations 
that will build students’ 
intellectual curiosity and 
challenge them to think 

deeply about the problem 
and its solution.  

Teach concepts to enhance sense making by students by not 
dwelling on algorithms. 

Extend students’ thinking through questioning. 
Use purposeful questioning to elicit ideas that will help 

students think for themselves with less input from the teacher. 
Encourage productive struggle. 

Student-Directed Conceptions of Mathematical Creativity 
Exercise 

independence in 
learning 

Students’ ability to develop 
their own perspective into 

learning and reasoning 
independently. 

Students solving problems in their own way without being 
directed on how to do everything. 

Students putting new perspectives in problem solving. 

 
Use Multiple Approaches to Solve Problems. This conception involved a teacher believing 

mathematical creativity as teachers’ ability to provide support for students, both pedagogical and 
mathematical, to help them consider multiple perspectives when solving problems. Example quotes 
from the participants are: 

Paula: I think it is super important that kids have different tools coz I don’t think people my age and 
adults were really given anything other than the standard algorithm to solve a problem. 

Laura: I think the biggest thing is learning all these different kinds of strategies and knowing that 
you should encourage it for kids because I feel like usually teachers just want you to stick to a 
specific strategy. 

Both Paula and Laura identified the relationship between a variety of strategies, knowing and 
flexibility. They emphasized the need to incorporate different approaches to solving problems and 
making them accessible to students by not restricting them to a specific approach. More generally, 
their idea fits under the flexibility component of mathematical creativity because shifting 
perspectives in problem-solving can be considered as a form of transformation of information, say 
for instance, multiple representations (e.g. visual, symbolic) of a solution. 

Design Mathematical Tasks from Scratch. At the time of study, PSTs were working with 
elementary students once a week during which they designed activities and problems to be worked 
on by their students, an exercise that they deemed as involving mathematical creativity. Example 
quotes from the participants are: 

Nelly: Making up problems and, like the literature assignment, I felt like that was really creative… 
We pretend to be elementary schoolers a lot. And so we had to put ourselves in their mindset…. 
But including games that kids have to problem solve, like problem solving, I think is more, like 
introduces more creativity into math.” 
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Laura: So I think we should make math more creative for them (students). So they can still be 
learning something while, doing a fun activity. Maybe being able to work in groups or making 
games out of the math,… 

Nelly and Laura viewed mathematical creativity as generating tasks that encourage activity while 
learning. Specifically, they mentioned the need to incorporate games in activities. Creating such 
activities required them to position themselves like students in order to ensure accessibility of the 
materials that they would generate. 

During classroom observations, PSTs were challenged to make in the moment decisions on how 
they would support their students’ thinking in their placement. Their professors brought up 
hypothetical scenarios, for example, on student misconceptions and asked PSTs to think of how they 
would support and/or extend their students’ thinking. During our interactions with the PSTs, they 
also identified the need to integrate science and English in their lesson, what Nelly explained as talk 
about math not in a math class as being mathematically creative. Generally, we categorized this 
conception under originality trait of mathematical creativity because the process included considering 
student’s level of understanding and designing tasks that would be accessible to them in terms of 
context and content, hence requiring specificity and novelty in thinking about the nature of the 
activities. 

Make Learning Challenging but not Impossible. PSTs explained that it is important to put less 
pressure on students but at the same time maintain their interest and engagement in learning. The 
following example quotes supported this finding: 

Nelly: creative learning should feel more fun and more challenging but not impossible… teachers 
should let them (students) figure out things for themselves, instead of just telling.” 

Laura: But I can see like, why it's better to be more creative because you can put in a whole lot of 
different perspectives into it. And it doesn't have to be so straightforward. 

Nelly emphasized the need for teachers to allow students to make sense of mathematical ideas on 
their own and Laura also supported this idea by emphasizing the idea of not being straight forward 
and having students develop their own perspectives into learning. We categorized this conception 
under the originality component because we portrayed making sense of mathematical concept with 
less scaffolding as requiring a higher personal cognitive input.  
Student-Directed Conceptions of Creativity 

PSTs’ student-directed conceptions of creativity were closely aligned with their teacher-directed 
conceptions of creativity. They included students generating their own solutions to mathematical 
tasks, which we termed as exercising independence in learning. 

Exercising Independence in Learning. PSTs viewed students’ ability to generate their own and 
varied solutions and explain their thinking as an indication of mathematical creativity. Example 
quotes include: 

Nelly: students should be able to do it (math) their own way and not being told exactly how to do 
everything. 

Paula: I would say like being able to come up with like, explain it back to me verbally,… 

Both Nelly and Paula address the need for students to own their learning with less input from the 
teacher and by describing their reasoning. They are allowed the freedom to bring their own 
perspective into learning and make sense in a manner that best suits their way of making sense. We 
situate this conception under originality because doing it in your own way and explaining it verbally 
foster uniqueness in individual thought processes. 
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Discussion and Conclusion 
Findings of the present study indicate that PSTs conceive teaching mathematics creatively as 

supporting students to use various strategies to solve problems when teaching, developing 
appropriate mathematical tasks to enhance student activity and engagement while learning, and 
providing challenging but accessible learning opportunities for students. PSTs conceived learning 
mathematics creatively as students being independent in learning. These conceptions, teacher-
directed and student-directed are intertwined in that, perceived enactments of teacher-directed 
conceptions of mathematical creativity enhance student-directed conceptions of creativity. For 
example, when teachers use purposeful questioning to elicit ideas that will help students to think 
independently and when they support students to use multiple problem solving approaches, teachers 
can enhance student independence in learning by challenging them to think and bring in self-
generated and new perspectives. This observation is partly in line with Lev-Zamir and Leikin’s 
(2011) assertion that defining mathematical creativity in the context of teaching should allude to 
mathematics, teaching, learning and creativity. Our reason for using partly in line with is because we 
observed that PSTs commented on, for example, using games and manipulatives to make the learning 
of mathematics fun, and as an avenue to teaching mathematics creatively. However, the math behind 
or within the “fun” was not given keen attention. PSTs tended to overlook creativity and 
mathematics, which was emphasized by Haylock (1987) and Lev-Zamir and Leikin (2011) and 
attended more to teaching and learning in their descriptions of their conceptions of mathematical 
creativity. Care should therefore be taken to differentiate between teaching creatively and teaching 
for creativity (NACCCE, 1999) to ensure that students do not just have fun in class while engaging in 
games but that they also understand the math behind or within the fun and develop their own 
creativity. 

Connecting to research, results of this study are not unique to mathematical creativity, and thus tie 
closely to other findings and recommendations from researchers whose focus is not necessarily on 
mathematical creativity. To begin with, encouraging students to use different approaches to solving 
problems does not occur naturally if a teacher has not anticipated some of the strategies that students 
are likely to use. Anticipating student strategies is a key practice for successful orchestration of 
classroom discussions. Discussions stimulate interaction, an important catalyst to creativity, as the 
teacher responds to students using assessing and advancing questions, and notices important aspects 
of student thinking during instruction (Smith & Sherin, 2019). Second, teachers who are open to 
designing tasks from scratch are likely to demand of the same from their students, by not just 
providing students with problems to work on, but also challenging them to generate problems that 
address specific mathematical concepts. This practice demands high cognition and is at the level of 
doing mathematics (Smith & Stein, 1998). It discourages algorithmic thinking, requires students to 
comprehend mathematical concepts, processes, and relationships, and demands self-monitoring, only 
to mention but a few, according to Smith and Stein (1998). These conditions are equally important to 
cultivating mathematical creativity for both teachers and students. Third, providing students with 
challenging but not impossible questions has a potential to stimulate students’ intellectual curiosity 
and hence develop their creativity. The points we raise in this discussion do not mean that we should 
not pay close attention to creativity in mathematics in the field of mathematics education, but rather 
consider investing in its research as it is a potential contributor to the growth and improvement of 
teaching and learning of mathematics. 

We note that the findings of this study are not a complete representation of what conceptions of 
mathematical creativity are. Conceptions are informed not just by educational experiences, but by 
culture and beliefs and therefore this area of research is open to more studies, particularly with a 
focus on specific types of experiences that shape these conceptions. This will be important in shaping 
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our teacher preparation programs to provide PSTs with those experiences necessary to support their 
understanding and development of mathematical creativity and that of their students. 

We close with noting that a major observation from our literature review was that research in 
mathematics education has overlooked mathematical creativity due to lack of an accepted definition 
of mathematical creativity. We argue that we cannot overlook mathematical creativity simply 
because of lack of coherence in existing definitions of what mathematical creativity is, but we can 
instead focus on specific conceptions of it and develop its understanding because by doing this, we 
will not only be focusing on what it is, but also on what it could be, which is not always done in other 
fields of research with agreed definition of constructs. By doing that we won’t limit our 
understanding on what it is but can explore the what it could be and find connections that will expand 
our horizon in understanding of the concepts, and possibly impact the field of mathematics 
education. 

References 
Beghetto, R. A. (2007). Does creativity have a place in classroom discussions? Prospective teachers’ response 

preferences. Thinking Skills and Creativity, 2(1), 1-9. 
Beghetto, R. A., & Kaufman, J. C. (2009). Do we all have multicreative potential?. ZDM, 41(1-2), 39-44. 
Bolden, D. S., Harries, T. V., & Newton, D. P. (2010). Pre-service primary teachers’ conceptions of creativity in 

mathematics. Educational Studies in Mathematics, 73(2), 143-157. 
Bowen, G. A. (2009). Document analysis as a qualitative research method. Qualitative Research Journal, 9(2), 27-

40.  
Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 

77-101. 
deMarrais, K. B., & Lapan, S. D. (2003). Qualitative interview studies: Learning through experience. In Foundations 

for research (pp. 67-84). Routledge. 
Guilford, J. P. (1967). Creativity: Yesterday, today and tomorrow. The Journal of Creative Behavior, 1(1), 3-14. 
Haavold, P. Ø. (2018). An empirical investigation of a theoretical model for mathematical creativity. The Journal of 

Creative Behavior, 52(3), 226-239. 
Haylock, D. W. (1987). A framework for assessing mathematical creativity in school chilren. Educational Studies in 

Mathematics, 18(1), 59-74. 
Leikin, R. (2009). Exploring mathematical creativity using multiple solution tasks. In R. Leikin, A. Berman, & B. 

Koichu (Eds.), Creativity in mathematics and the education of gifted students (pp. 129–145). Rotterdam: Sense 
Publishers. 

Leikin, R. (2011). The education of mathematically gifted students: On some complexities and questions. Montana 
Mathematical Enthusiast Journal, 8(1), 167–188. 

Leikin, R., Subotnik, R., Pitta-Pantazi, D., Singer, F. M., & Pelczer, I. (2013). Teachers’ views on creativity in 
mathematics education: An international survey. ZDM, 45(2), 309-324. 

Lev-Zamir, H., & Leikin, R. (2011). Creative mathematics teaching in the eye of the beholder: focusing on teachers' 
conceptions. Research in Mathematics Education, 13(1), 17-32. 

Lithner, J. (2008). A research framework for creative and imitative reasoning. Educational Studies in Mathematics, 
67(3), 255-276. 

Mann, E. L. (2006). Creativity: The essence of mathematics. Journal for the Education of the Gifted, 30(2), 236–
260. 

NACCCE (National Advisory Committee on Creative and Cultural Education). (1999). All our futures: Creativity, 
culture and education. London: DfEE.  

Patton, M.Q. (2015). Qualitative research and evaluation methods. (4th ed.). Thousand Oaks,CA: Sage. 
Roulston, K. (2010). Reflective interviewing: A guide to theory & practice. Thousand Oaks, CA: Sage Publications. 
Schram, P. (1988). Changing mathematical conceptions of preservice teachers: A content and pedagogical 

intervention. Retrieved from: https://www.psychologistworld.com/cognitive/approach 
Smith, M., & Sherin, M. G. (2019). The 5 Practices in Practice: Successfully Orchestrating Mathematical Discussion 

in Your Middle School Classroom. National Council of Teachers of Mathematics. 1906 Association Drive, 
Reston, VA 20191. 



Investigating elementary pre-service teachers’ conceptions of mathematical creativity 

	 1543	

Smith, M. S., & Stein, M. K. (1998). Selecting and creating mathematical tasks: From research to practice. 
Mathematics Teaching in the Middle School, 3(5), 344-50. 

Shriki, A. (2010). Working like real mathematicians: Developing prospective teachers’ awareness of mathematical 
creativity through generating new concepts. Educational Studies in Mathematics, 73(2), 159-179. 

Sriraman, B. (2005). Are giftedness and creativity synonyms in mathematics? Journal of  
Secondary Gifted Education, 17(1), 20-36. 
 



Teacher Education (Pre-service) 

In: Sacristán, A.I., Cortés-Zavala, J.C. & Ruiz-Arias, P.M. (Eds.). (2020). Mathematics Education Across Cultures: 
Proceedings of the 42nd Meeting of the North American Chapter of the International Group for the Psychology of 
Mathematics Education, Mexico. Cinvestav / AMIUTEM / PME-NA. https:/doi.org/10.51272/pmena.42.2020 

1544	

TEACHER	EDUCATION	(PRE-SERVICE)	
	

BRIEF	RESEARCH	REPORTS	

 
 



Teacher Education (Pre-service) 

In: Sacristán, A.I., Cortés-Zavala, J.C. & Ruiz-Arias, P.M. (Eds.). (2020). Mathematics Education Across Cultures: 
Proceedings of the 42nd Meeting of the North American Chapter of the International Group for the Psychology of 
Mathematics Education, Mexico. Cinvestav / AMIUTEM / PME-NA. https:/doi.org/10.51272/pmena.42.2020 

1545	

THE USE OF MIXED-REALITY SIMULATIONS AS A TOOL FOR PREPARATING PRE-
SERVICE TEACHERS AND THEIR PERCEPTIONS AND OPINIONS 

USO DE SIMULACION DE REALIDAD-MIXTA COMO HERRAMIENTA EN LA FORMACIÓN DE MAESTROS: 
PERCEPCIONES Y OPINIONES 

Jair J. Aguilar 
The University of Texas Rio Grande Valley 

jair.aguilar@utrgv.edu 

James A. Telese 
The University of Texas Rio Grande Valley 

james.telese@utrgv.edu 

Exposure to technologies such as mixed-reality simulations (MRS) can influence the opinions of pre-
service elementary teachers (PSET), as well as the way they see and perceive MRSs as a useful 
experience in their preparation. Particularly, in the implementation high-leverage practices. The 
study presented here was carried out in a course of mathematical methods for elementary. The 
research questions are: What are the PSETs perceptions of the use of MRS as part of their teaching 
preparation? What are the views of PSET on MRSs as a tool to improve their teaching skills? Results 
indicate that PSET perceive MRSs as a highly positive, relevant and meaningful tool that supports 
their learning, as well as a way to improve their high-leverage skills. 

Key Words: Technology, Teachers belief, Pre-service teacher preparation. 

Introduction 
The perception, views, and opinions of pre-service elementary teachers (PSET) regarding their 

acquisition of teaching skills can be influenced by the integration of technology in their teacher 
preparation program. Perceptions change when these technologies are linked to practice and are 
recognized as having several benefits (Gordon, Brayshaw and Gray, 2015; Russell, Bebell, O'Dwyer 
& O'Connor, 2003). Specifically, we refer to the use of emerging technologies such as Mixed-Reality 
Simulations (MRS), which are tools intended –but not limited– to provide simulated experiences to 
pre-service teachers. Engaging with mixed-reality simulations take place in a controlled and safe 
environment, which has the potential to improve and strengthen teaching skills (Hixon & So, 2009). 

This report presents the perceptions, opinions, and points of view of Pre-service Elementary 
Teachers regarding the utility, benefits, and challenges of using mixed-reality simulations, as part of 
the teacher training program. Pre-service elementary teachers were exposed to the use of MRSs in an 
elementary mathematics methods course. The use of MRSs with PSETs was intended to foster high-
leverage practices (Ball & Forzani, 2011) such as productive mathematics talk moves (Chapin, 
O'Connor & Anderson, 2009; Moyer & Milewicz, 2002; Ginsburg, 1997).  These productive teaching 
moves include eliciting, evaluating, and questioning elementary students as they share and explain 
their solutions to problem solving activities in mathematics. To this end, the following research 
questions are addressed: What are the perceptions and ideas of pre-service elementary teachers 
regarding the use of mixed-reality simulations as part of the teacher preparation program? What are 
the opinions of pre-service elementary teachers on mixed-reality simulations as a tool used to 
improve their teaching skills, particularly those related to productive mathematical talk move? 

Theoretical Perspectives 
Insights on The Use of Technology 

In order for pre-service teachers have the theoretical understanding of the benefits of being exposed 
to the use of technologies such as mixed-reality simulations, their perceptions and opinions regarding 
the usefulness of this must be framed in what Venkatesh, Morris, Davis and Davis (2003) have called 
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the theory of acceptance and perception of the use and exposure to technology. According to 
Venkatesh et al., the perception that PSETs have about the benefits and utility of the use of 
technologies can be influenced by their experiences with it in their preparation programs. Venkatesh 
et al. adopted Davis’s (1989) definition of utility as the measure by which an individual believes or 
perceives that the use of a particular technology (e.g., Mixed-Reality Simulations) improves the work 
being done, in which case, for the PSETs and the purpose of this study, would be the learning process 
and the teaching skills fostered through high-leverages practices such as productive mathematics talk 
moves in problem solving where one seek to elicit and understand a student’s thought. 
Mixed-Reality Simulations and Teaching Strategies  

Mixed-Reality simulations were implemented in the context of a course on mathematics methods 
for elementary school. High-leverage strategies were integrated into this course (Ball and Forzani, 
2011). According to Ball and Forzani, these strategies, are pedagogical skills that directly impact the 
student's academic performance and that can be implemented at various school levels in a high 
number of subjects or context. Some of these pedagogical strategies include how to promote an 
active participation from students, provide positive feedback, how to reveal, understand, and interpret 
the students' thoughts and ideas through productive mathematical talk moves (Chapin, O'Connor & 
Anderson, 2009), among others. According to Chapin, O'Connor & Anderson, productive 
mathematical talk moves (PMTM) refer to all those actions that teachers must carry out during 
teaching (including moments of group discussion or during an exchange of ideas between a teacher 
and a student) to better understand the ideas and understandings of the students. Some PMTMs, for 
example, include asking a student to repeat another student's idea in their own words, or asking a 
student to go deeper in their explanations, or simply remaining silent to listen to what a student is 
saying. During mixed-reality simulation sessions, the pre-service teacher practiced how to implement 
the pedagogical strategies mentioned above. Similarly, Pre-service teachers were able to experience 
what they could potentially expect when interacting with real students.  
What are Mixed-Reality Simulations? 

New technologies in education are now implemented to improve the process of teaching and 
learning. However, little has been done to integrate and expose Pre-service elementary teachers to 
emerging technologies such as Mursion, which are simulation technologies that allow a pre-service 
teachers to have "repeated practices involving high-risk situations without necessarily risking the loss 
of valuable resources" (Dieker et al., 2014, p.22). 

Mursion is a mixed-reality simulation software where students are avatars and a virtual classroom is 
simulated. The pre-service elementary teacher has the opportunity to experience situations related to 
teaching. During a simulation session, a pre-service elementary teacher sees students or avatars in a 
classroom through a computer–or device– screen. The pre-service elementary teacher initiates the 
interaction with these avatars in the same way as it would in a classroom. In MRSs, the avatars are 
controlled by an educational trained specialist. The pre-service teachers are actually in a semi-
controlled, structured, and prepared interaction with a specialist. The specialist controls the avatar, 
and not a computer program as in virtual reality, which allows for greater flexibility to offer the 
various classroom situations, both expected and unexpected similar to those that occur in a real 
classroom with a sense of reality in which there is a "real presence", defined by Dieker et al. (2015) 
as the perception that something real is happening. 

Methods 
Approximately 166 pre-service elementary teachers have taken the mathematics methods course 

since fall 2018, of which 92% were women and 8% men. Participants were in their first or second 
year of the preparation program. All pre-service elementary teachers were required to conduct an 
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interview with an elementary student and assess their understanding when solving a series of 
mathematics problems. To this end, pre-service elementary teachers were exposed to theories on 
problem solving.  During the course, the PSETs were prepared by analyzing teaching videos, 
rehearsing play roles as student/teacher, and experiencing three MRS sessions. Each MRS session 
lasted between 7 and 12 minutes and were video recorded. Each session required the PSETs to 
implement a different problem. The problems were selected by the researchers following the 
theoretical framework of cognitive guided instruction problems (Carpenter, Fennema, Franke, Levi 
& Empson, 2014). MRSs sessions were scheduled three times during the semester to ensure that the 
theoretical and pedagogical concepts discussed in class were acquired.  At the end of the semester, 
pre-service teachers were asked to complete a survey to measure their perceptions, views, and 
opinions about the use of mixed-reality simulations.  
Instrument 

The instrument was developed using items from Hudson, Voytecki and Zhang, (2018), Bousfield, 
(2017) and Rasimah, Ahmad and Zaman (2011), and adapted for the purposes of the research. The 
survey consisted of 27 questions with a scale ranging from 1 to 5, where one means completely 
agree, to a five strongly disagree (see appendix A). Additionally, 4 open-ended questions were 
included to capture the opinions of the PSETs on what was most positive or negative about the 
experience with MRSs, the challenges they had while rehearsing with MRSs, and their perceptions of 
the benefits of being able to be prepared with the use of mixed reality simulations. 

Results and Discussion 
The implementation of MRSs allows pre-service teachers to participate in virtual classroom 

environments that simulate real classrooms. In this sense, 94% of participants agree or totally agree 
that the MRSs simulated a very similar and real experience as classroom, and 97% expressed that 
they see the practices with the MRS as a very positive experience. For example, participants 
mentioned that MRSs "provides unexpected experiences that I had to deal with, and help me feel 
better prepared for the real-world "; "How the avatar speaks and acts, seems like a real children, 
especially with their responses"; "I liked being able to practice as if it were a real classroom"; "I was 
able to practice as if I was really in front of the classroom with real students." 

The use of MRSs in a teacher preparation program is not intended to displace the actual experience, 
but rather to enhance the preparation experiences (Peterson-Ahmad, 2018), in a protected, semi-
controlled and safe environment (Hatton, Birchfield and Megowan-Romanowicz, 2008). Participants 
in the study acknowledge the above, for which 97% agree or fully agree that the use of MRSs is an 
effective way to practice new skills in the classroom, particularly in mathematics, of which 94 and 
97%, respectively, expressed feeling more confident and better prepared to teach mathematics 
effectively or to engage their students in topics that involve discussions of problem solving activities, 
as they mentioned: "What I liked about the MRSs is that I was able to practice math problems as if I 
was really teaching it to real students." In this same sense, 88% of the pre-service elementary 
teachers agree or totally agree that after having been exposed and practiced with MRSs, they feel 
better prepared to carry out an interview with an elementary student on mathematics topics, where 
they should evaluate and verify the ideas, thoughts, and understandings using PMTMs. 

Pre-service elementary teachers recognized the benefits of been exposed to a cutting-edge 
technology that is used as an educational tool to improve, enhance, and facilitate the acquisition of 
educational practices such as high-leverage practices. Several participants mentioned that the 
experience with MRS “allowed [them] to get the necessary practice before finishing the program and 
teach real students." Finally, one of the most received opinions by the participants, was that they 
wish they had the opportunity to have more time to interact with MRSs. 
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Conclusions 
The way in which teachers are prepared is significant, since it is during these times when they 

acquire the skills and knowledge necessary for their future work as teachers (Vagi, Pivovarova and 
Miedel Barnard, 2019). Then, its relevant to report the findings of this study, so that other teacher 
preparation programs know the benefits and potential of integrating emerging technologies such as 
Mixed-Reality Simulation in their courses and improve the teaching skills of their teachers, since the 
first day of the program. As shown in the previous section, the perceptions and opinions of the pre-
service elementary teacher on the usefulness of MRS are very positive, which would facilitate their 
integration. Similarly, when the integration of MRSs is seen as positive, efforts and resources 
allocated to implement simulations would be justified. The use of MRSs in a teacher preparation 
program, particularly in a math method course, as it was done here, is an innovative way to improve 
the acquisition of teaching skills by pre-service elementary teachers. During this first phase of the 
study, it is shown that participants perceive MRS as a useful tool, that helped them improve their 
teaching skills –– particularly with regard to eliciting and questioning students in a classroom or as a 
teacher-student interview. The well-structured, guided, and planned use of MRSs technologies 
(Venkatesh et al., 2003) helped the pre-service elementary teacher perceive MRS as a tool intended 
to improve their pedagogical teaching skills (Ball & Forzani, 2011), and not to replace the real 
experience, which is a common limitation during the first years in preparation programs. 

The results presented here are only the first phase of a larger study that involves analyzing the 
transcripts of the pre-service elementary teacher after they have interviewed an elementary school 
student. The results of this study will be analyzed, contrasted and presented in another report in this 
same forum, meanwhile, more data will continue to be collected on the perceptions, points of view 
and opinions on the use of mixed-reality simulations in a teacher preparation program. 
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APPENDIX A  
1. I like to experience with new technologies. 
2. I enjoy rehearsing with Mixed-Reality Simulations. 
3. I was unhappy when the Mixed-Reality Simulations sessions were over. 
4. I would like to repeat the same experience using Mixed-Reality Simulations. 
5. I feel that using Mixed-Reality Simulations enhanced my learning experience. 
6. I feel better prepared to teach after my Mixed-Reality Simulation session. 
7. Using the Mixed-Reality Simulation is an effective way to practice new classroom skills. 
8. My Mixed-Reality Simulation session seemed like a real classroom experience. 
9. The Mixed-Reality Simulation's students seemed like real elementary students. 
10. After practicing my teaching methods using Mixed-Reality Simulations, I am more confident that I can 

effectively teach mathematics concepts. 
11. After the MRS, I feel prepared to conduct a clinical interview to assess and elicit students thoughts and 

understanding using mathematics productive talk moves. 
12. After my Mixed-Reality Simulation sessions, I have more confidence that I can engage students in a 

discourse about problem-solving activities. 
13. I was able to effectively manage the interview during my Mixed-Reality Simulation sessions. 



Uso de simulacion de realidad-mixta como herramienta en la formación de maestros: percepciones y opiniones 

	 1550	

14. After the Mixed-Reality Simulation rehearsal, I feel prepared to orchestrate a group discussion in a 
classroom to assess understanding using mathematics productive talk moves. 

15. After Rehearsing with the Mixed-Reality Simulations, I felt my Clinical interview with an elementary 
student was conducted effectively. 

16. After the Mixed-Reality Simulation sessions, I have more confidence in my ability to manage undesired 
behaviors in  group discussion. 

17. After my Mixed-Reality Simulation sessions, I am better prepared to teach lessons involving problem 
solving. 

18. I felt the Mixed-Reality Simulation's interviews were conducted effectively. 
19. I felt like I was in a real classroom during the sessions. 
20. The Mixed-Reality Simulation sessions prepared me to conduct the clinical interview. 
21. The Mixed-Reality Simulation rehearsals helped me to create a plan for the clinical interview with an 

elementary student. 
22. My experience with Mixed-Reality Simulations prepared me to teach. 
23. I would like to use Mixed-Reality Simulation to develop my teaching skills in other courses. 
24. Reflecting after each Mixed-Reality Simulation helped me to be better prepared for the next rehearsal. 
25. Receiving peer feedback after each Mixed-Reality Simulation helped me to reflect on my strengths and 

weakness in assessing a students' understanding. 
26. Receiving peer feedback after each Mixed-Reality Simulation helped me to reflect on my strengths and 

weakness in conducting a clinical interview. 
27. Providing feedback to my peers after each Mixed-Reality Simulation helped me to reflect in my own 

teaching skills. 

Open-Ended questions 
1. What did you like the most about the Mixed-Reality Simulation?  
2. What did you dislike the most about Mixed-Reality Simulation?  
3. What do you consider was the most challenging aspect of interacting in with Mixed-Reality Simulations?  
4. Do you believe using Mixed-Reality Simulation was beneficial for your Teacher-Preparation? If yes, why? 

if not, why? 
 

USO DE SIMULACION DE REALIDAD-MIXTA COMO HERRAMIENTA EN LA 
FORMACIÓN DE MAESTROS: PERCEPCIONES Y OPINIONES 

THE USE OF MIXED-REALITY SIMULATIONS AS A TOOL FOR PREPARATING PRE-SERVICE TEACHERS 
AND THEIR PERCEPTIONS AND OPINIONS 

Jair J. Aguilar 
The University of Texas Rio Grande Valley 

jair.aguilar@utrgv.edu 

James A. Telese 
The University of Texas Rio Grande Valley 

james.telese@utrgv.edu 

La exposición a tecnologías como simulaciones de realidad mixta (SRM) puede influenciar las 
opiniones de los maestros de primaria en formación (MPF), así como la manera en la estos ven y 
perciben las SRM como un instrumento útil en su preparación docente. Particularmente, en la 
implementación de estrategias pedagógicas de enseñanza de alto apoyo académico (EPEAA). El 
estudio aquí presentado se llevo a cabo en un curso de métodos matemáticos para primaria. Las 
preguntas de investigación son: ¿Cuáles son las percepciones de los MPF sobre el uso de las SRM 
como parte de su preparación docente? ¿Cuáles son las opiniones de los MPF sobre las MRS como 
herramienta para mejorar sus habilidades de enseñanza? Resultados señalan que los MPF perciben 
las SRM como una herramienta altamente positiva, relevante y significativa que respalda sus 
aprendizajes, así como una forma de mejorar sus habilidades de EPEAA. 

Palabras clave: Tecnología, Creencias de los docentes, Preparación de Maestros en Formación. 
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Introducción 
La percepción, puntos de vista, y opiniones de los maestros de primaria en formación (MPF) sobre 

cómo la tecnología puede ayudarlos a adquirir nuevos conocimientos y habilidades de enseñanza, 
pueden verse influenciadas si estas tecnologías se integran como parte de sus programas de 
preparación.  Especialmente, si estas tecnologías están vinculadas a la práctica y se presentan como 
un instrumento con múltiples beneficios (Gordon, Brayshaw y Gray, 2015; Russell, Bebell, O'Dwyer 
y O'Connor, 2003). De forma específica, nos referimos al uso de tecnologías emergentes como las 
simulaciones de realidad mixta (Mixed-Reality Simulations en inglés).  Los softwares de simulación 
de realidad mixta (SRM), son herramientas destinadas a proporcionar a los maestros de primaria en 
formación experiencias simuladas. Estas experiencias ocurren en un ambiente controlado y seguro, 
que busca mejorar y fortalecer las habilidades de enseñanza (Hixon & So, 2009).  

El reporte que se presenta en esta propuesta muestra cuáles son las percepciones, opiniones y puntos 
de vista de los maestros de primaria en formación con respecto a la utilidad, beneficios y retos de 
utilizar simulaciones de realidad mixta, como parte del programa de formación docente. El uso de 
SRM con los maestros de primaria en formación tuvo la intención de fomentar estrategias 
pedagógicas de enseñanza de alto apoyo académico (Ball y Forzani, 2011) como los movimientos 
productivos de conversación matemática (Chapin, O'Connor y Anderson, 2009; Moyer y Milewicz, 
2002; Ginsburg, 1997) para obtener, evaluar y cuestionar a los estudiantes mientras comparten y 
explican sus soluciones a actividades de resolución de problemas en matemáticas. Con este fin, se 
buscaron responder las siguientes preguntas de investigación: ¿Cuáles son las percepciones e ideas de 
los MPF sobre el uso de las simulaciones de realidad mixta como parte del programa de formación 
docente? ¿Cuáles son las opiniones de los MPF sobre las simulaciones de realidad mixta como una 
herramienta utilizada para mejorar sus habilidades de enseñanza, particularmente las relacionadas a 
los movimientos productivos de conversación matemática? 

Marco Teórico 
Perspectivas sobre el uso de la tecnología 

Hoy en día, para que los MPF realmente tengan una comprensión teórica de los beneficios de ser 
expuestos al uso de tecnologías como las simulaciones de realidad mixta, sus percepciones y 
opiniones con respecto a la utilidad de esta se deben enmarcar en lo que Venkatesh, Morris, Davis y 
Davis (2003) han llamado la teoría de la aceptación y percepción del uso y la exposición a la 
tecnología. Según Venkatesh et al., la percepción que tienen los maestros en formación sobre los 
beneficios y la utilidad del uso de tecnologías pueden mejorarse significativamente cuando se 
abordan adecuadamente en los programas de preparación. Venkatesh et al. adoptó la definición de 
utilidad (Davis, 1989) como la medida por la cual un individuo cree o percibe que el uso de una 
tecnología en particular (p. ej., Simulaciones de Realidad Mixta) mejora el trabajo que se realiza, en 
cuyo caso –– para los maestros de primaria en formación y el propósito de este estudio, sería el 
proceso de aprendizaje y las habilidades de enseñanza fomentadas a través de estrategias pedagógicas 
de enseñanza de alto apoyo académico como los movimientos productivos de conversación 
matemática (MPCM) en la resolución de problemas donde se busque entender y comprender el 
pensamiento del estudiante.  
Estrategias de enseñanza y su relación con las Simulaciones de Realidad Mixta 

Las SRM se implementaron en el contexto de un curso de métodos matemáticos para MPF. En este 
curso se integraron estrategias pedagógicas de enseñanza de alto apoyo académico (Ball y Forzani, 
2011).  Según Ball y Forzani, estas estrategias, mejor conocidas en inglés como High-Leverage 
Practices, son habilidades pedagógicas que impactan directamente el rendimiento académico del 
estudiante y que pueden ser implementadas en diversos niveles escolares en un alto número de 
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materias o contenidos. Así mismo, son estrategias que se aprenden a través de la práctica docente y la 
retroalimentación oportuna y precisa. Algunas de estas estrategias pedagógicas incluyen el cómo 
tener una participación activa de los estudiantes, dar una retroalimentación positiva, como revelar, 
comprender e interpretar el pensamiento e ideas de los estudiantes a través de movimientos 
productivos de conversación matemática, entre otros.  Los movimientos productivos de conversación 
matemática se refieren a todas aquellas acciones que debe llevar a cabo el maestro durante la 
enseñanza (incluyendo momentos de discusión grupal o durante un intercambio de ideas entre un 
maestro y un estudiante) para comprender mejor las ideas y entendimientos de los estudiantes acerca 
del tema que se está enseñando. Algunos MPCM, por ejemplo, incluyen pedir a un estudiante que 
repita la idea de otro compañero con sus propias palabras, o pedir a un estudiante que profundice en 
sus explicaciones, o simplemente guardar silencio para escuchar lo que está diciendo un 
estudiante.Durante las sesiones de SRM, los MPF practicaron como implementar las estrategias 
pedagógicas mencionadas anteriormente. 
Simulaciones de Realidad Mixta 

Hoy en día se implementan nuevas tecnologías en educación para mejorar el proceso de enseñanza 
y aprendizaje. Sin embargo, poco se ha hecho para integrar y exponer a los MPF a tecnologías 
emergentes como Mursion, que son tecnologías de simulaciones que permiten a los maestros en 
formación tener "prácticas repetidas que involucran situaciones de alto riesgo sin necesariamente 
arriesgar la pérdida de recursos valiosos" (Dieker et al., 2014, p.22). Mursion es un software de SRM 
en donde se simula que los estudiantes (comúnmente conocidos como avatar) están en un aula 
virtual.  El MPF, consecuentemente, tiene la oportunidad de experimentar situaciones relacionadas 
con la enseñanza en un entorno simulado y seguro.  Durante una sesión de simulación, los MPF ven a 
través de la pantalla de una computadora a los estudiantes o avatar en un salón de clases. El MPF 
inicia su interacción con estos avatars de la misma manera que lo haría en un salón de clases. De 
forma tal que lo que parece, a vista del MPF, una interacción con un avatar de computadora, es 
realmente una interacción semi-controlada, estructurada y preparada con un especialista.  El hecho de 
que sea un especialista el que controla los avatar y no un programa de computación para realidad 
virtual, da la flexibilidad de poder ofrecer al MPF un infinito número de posibilidades de 
preparación, en situaciones tan inesperadas, como podría ocurrir en un salón de clases real. Algo 
importante, es que estos entornos proporcionan al MPF un sentido de la realidad en el que hay un 
"presente real", definido por Dieker et al. (2015) como la percepción de que algo real está 
sucediendo. 

Métodos 
Desde el otoño de 2018 hasta el otoño de 2019, 166 MPF que han tomado el curso de métodos 

matemáticos para primaria han participado en el estudio, de los cuales 92% han sido mujeres y 8% 
hombres. Todos los participantes se encontraban en su primer o segundo año del programa de 
preparación docente. Como parte de los requerimientos del curso, todos MPF debían realizar una 
entrevista con un estudiante de primaria y evaluar la comprensión de este al resolver una serie 
problemas de matemáticas.  Así, durante el curso MPF fueron expuestos a las teorías de resolución 
de problemas, y de aprendizaje y enseñanza de métodos matemáticos para primaria, se analizaron 
videos, se hicieron prácticas y ensayos en clases y se les pidió que tuvieran 3 sesiones de simulación 
con realidad mixta. Las SRM duraron entre 7 y 12 minutos y fueron video grabadas, y en cada una se 
usó un problema diferente. Los problemas siguieron el marco teórico de problemas de instrucción 
cognitiva guiada o mejor conocido en inglés como “Cognitive Guided Intruction” de Carpenter, 
Fennema, Franke, Levi y Empson, (2014).  Las sesiones de SRM se distribuyeron durante el semestre 
para garantizar que los MPF asimilaran los conceptos teóricos y pedagógicos discutidos en clase.  
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Instrumento 
Se usó una encuesta adaptada de Hudson, Voytecki y Zhang, (2018), Bousfield, (2017) y Rasimah, 

Ahmad y Zaman, (2011). La encuesta comprende 27 preguntas en una escala de 1 a 5 que va desde 
completamente de acuerdo, a completamente en desacuerdo (ver apéndice A). Además, se incluyeron 
4 preguntas abiertas para capturar las opiniones de los MPF sobre lo más positivo o negativo de la 
experiencia con SRM, los desafíos que tuvieron al ser preparados en su formación a través del SRM 
y las percepciones de los beneficios de la formación con SRM. 

Resultados y Discusión 
La implementación de simulaciones de realidad mixta permite a los MPF en formación participar en 

entornos de aula virtual que simulan aulas reales. En este sentido, el 94% de los maestros en 
formación están de acuerdo o totalmente de acuerdo en que las sesiones de SRM simulaban una 
experiencia muy parecida y real a la del aula, y 97% expresaron que ven las prácticas con los SRM 
como una experiencia muy positiva. Por ejemplo, algunos participantes dijeron:"[Las simulaciones 
con SRM] proporciona experiencias inesperadas que tuve que solucionar, y me ayudo a sentirme 
mejor preparado para el mundo real"; "Cómo hablan y actúan los avatar, parecen como niños reales, 
especialmente con sus respuestas"; “Me gustó poder practicar como si fuera un aula real”; "Pude 
practicar como si realmente estuviera delante de la salón de clase con estudiantes reales". El uso de 
SRM en un programa de preparación docente no pretende desplazar la experiencia real, sino más 
bien mejorar la experiencia de formación de los MPF  (Peterson-Ahmad, 2018), en un entorno 
protegido, semi-controlado y seguro (Hatton, Birchfield y Megowan-Romanowicz, 2008). Los MPF 
en el estudio reconocen lo anterior, por lo que el 97% están de acuerdo o totalmente de acuerdo en 
que el uso de SRM es una forma efectiva de practicar nuevas habilidades en el aula, particularmente 
en matemáticas, de los cuales el 94 y el 97%, respectivamente, expresaron sentirse ahora con más 
confianza y mejor preparados para enseñar matemáticas de manera efectiva o para involucrar a sus 
estudiantes en temas que involucren discusiones sobre actividades de resolución de problemas. Por 
ejemplo, un MPF resaltó lo siguiente: "Lo que me gustó de la SRM es que pude practicar problemas 
de matemáticas como si realmente lo estuviera enseñando a estudiantes reales". Así, el 88% de los 
MPF están de acuerdo o totalmente de acuerdo con que después de haber estado expuestos y 
practicado con SRM, se sienten mejor preparados para llevar a cabo entrevista con un estudiante 
sobre temas matemáticos donde ellos deban evaluar y verificar las ideas, pensamientos, y 
comprensiones de sus estudiantes, utilizando MPCM.  Otro MPF expreso su opinión en este sentido: 
“[Usar SRM] fue divertido y atractivo ... las simulaciones me ayudaron a fortalecer mi comprensión 
sobre los temas que se enseñan en clase, en particular mis habilidades para hablar e interactuar con 
los estudiantes en clases [es decir, los MPCM] ”. 

Por último, los maestros de primaria en formación reconocieron los beneficios de haber estado 
expuestos a una tecnología de vanguardia que se utiliza como una herramienta educativa para 
mejorar, acrecentar, y facilitar la adquisición de prácticas educativas como las estrategias 
pedagógicas de enseñanza de alto apoyo académico, por lo que los MPF mencionan que desearían 
tener más tiempo para interactuar en con las simulaciones de realidad mixta. 

Conclusiones 
La forma en que los maestros son preparados es muy relevante, ya que es durante este tiempo 

cuando adquieren las habilidades y los conocimientos necesarios para su futuro trabajo como 
docentes (Vagi, Pivovarova y Miedel Barnard, 2019). Así, resulta relevante reportar los hallazgos de 
este estudio, para que otros programas de preparación de maestros conozcan los beneficios y el 
potencial de integrar tecnologías emergentes como las simulaciones de realidad mita en sus cursos y 
mejoren las habilidades de enseñanza de sus maestros de primaria en formación, desde el primer día 
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del de clases. Como se muestra en la sección anterior, las percepciones y opiniones de los MPF sobre 
la utilidad de las SRM son muy positivas, lo que facilitaría su integración. De igual manera, al ser 
vista como positiva la integración de SRM, el tiempo, esfuerzo y recursos destinados a implementar 
las simulaciones estarían acertadamente justificadas. El uso de SRM en un programa de preparación 
docente, particularmente en un curso de método matemático, es una forma innovadora de mejorar la 
adquisición de habilidades de enseñanza de los MPF. El uso bien estructurado, guiado, y planificado 
de la tecnología (Venkatesh et al., 2003) –– como se implementan las SRM en este estudio–– ayudó a 
los MPF a percibir a las SRM como una herramienta destinada a mejorar sus habilidades pedagógicas 
de enseñanza de alto apoyo académico (Ball & Forzani, 2011), y no para sustituir la experiencia real, 
que es una limitación común durante los primeros años en el que los maestros reciben su formación. 

Los resultados presentados aquí son sólo la primera fase de un estudio más amplio que involucra el 
análisis de las transcripciones de los maestros de primaria en formación una vez que han realizado la 
entrevista con estudiantes de primaria. Los resultados de este estudio serán analizados, contrastados y 
presentados en otro informe en este mismo foro, mientras tanto, se seguirán recopilando más datos 
sobre las percepciones, puntos de vista y opiniones de los MPF sobre el uso de simulaciones de 
realidad mixta como parte de la preparación de maestros. 
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This research uses a framing perspective to examine how pre-service teachers (PSTs) conceptualize 
cognitive demand when selecting tasks. Our results show that PSTs’ operationalizations of cognitive 
demand are context dependent. Within their methods class, PSTs largely think of cognitive demand in 
terms of how it promotes understanding of mathematics. When PSTs interact with students, they tend 
to operationalize cognitive demand as a way to support perceived student disposition and ability, or 
as a way to determine problem difficulty. 

Keywords: Cognition, Learning Theory, Teacher Education – Preservice, Teacher Knowledge  

Introduction 
Selecting tasks that promote reasoning and problem solving is an important part of mathematics 

teaching (CAEP Standards, 2020). Research shows that selecting such tasks can be difficult for pre-
service teachers (PSTs), but interventions in university methods classes can improve PSTs’ ability to 
choose mathematically rich tasks (Crespo, 2003; Crespo & Sinclair, 2008; Leavy & Hourigan, 2019). 
Attending to the cognitive demand of tasks is one way to focus PSTs’ attention on the mathematical 
features of tasks (Stein et al., 1996; Stein, Smith, Henningsen & Silver, 2000). Cognitive demand 
(CD) refers “to the kinds of thinking needed to solve tasks” (Stein et al., 2000, p. 3). Low-level tasks 
rely on applying memorized facts or procedures, requiring little understanding of the underlying 
mathematical concepts. In contrast, high-level tasks provide for multiple entry points and solution 
paths, requiring students to engage in meaningful inquiry and problem solving. While tasks of each 
level of CD support different learning goals, high-level CD tasks are linked to the greatest gains in 
student learning (Stein et al., 2000). Therefore, it is important that teachers be able to select high CD 
tasks for instruction. 

As teacher educators, we are interested in how PSTs think about task selection in relation to CD as 
they move from a methods class to their internships. We ask, how do PSTs operationalize cognitive 
demand in task selection across contexts? For the purposes of this study, we consider two contexts: 
(1) reflecting on CD as students in a methods course that emphasizes rigorous mathematical tasks, 
and (2) applying CD when teaching middle grades students. Our study adds to the literature of task 
selection because it considers how PSTs reason about the CD of tasks, which impacts their task 
selection. 

Theoretical Framework 
We use the lens of framing to explain PSTs’ changes in conception of CD across contexts. Framing 

has been used in science education research to describe how teachers and students understand 
particular educational contexts, and how that understanding impacts their ideas about knowledge, 
along with their actions and interactions with others (e.g., Hammer, Elby, Scherr, & Redish, 2005; 
Elby & Hammer, 2010; Richards et al., 2020). From this perspective, people learn by activating 
resources, which are “fine-grained knowledge elements” (Elby & Hammer, 2010, p. 410) based on 
factors such as lived experiences, social interactions, and beliefs. When resources are repeatedly 
activated together, they form “locally coherent sets” (Elby & Hammer, 2010, p. 413) called frames. 
In the classroom, these frames give a teacher or a student a sense of “what is going on here” 
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(Hammer et al., 2005), which impacts how they interact with others and the content. A critical 
feature of this framework is that context determines the resources that people activate. Thus, framing 
allows for individuals to hold multiple beliefs or perceptions, while identifying which resources are 
foregrounded during a given activity. 

Methods 
This brief research report is a secondary analysis relying on a subset of data from a larger study that 

investigates middle grade mathematics and sciences PSTs’ lesson planning behaviors throughout 
their early field experiences. 
Middle grades mathematics methods course 

The participants are 10 undergraduate PSTs in a middle grades mathematics and science dual 
certification program who completed a mediated field experience mathematics methods course, 
taught by the first author. The field experience component of the course took place at a local middle 
school, where PSTs selected and implemented tasks with small groups of students. The CD of 
mathematical tasks was explicitly and regularly addressed in the methods course. 
Data sources 

The data sources for this brief research report include PSTs’ final course papers and the transcripts 
from two individual semi-structured interviews, conducted by the first author. The final course 
assignment (Fall 2018) asked PSTs to reflect on how the methods course supported their growth as a 
learner and doer of mathematics. The first interview was conducted the semester following the 
methods course (Spring 2019). PSTs were asked to reflect on their process for selecting tasks and 
preparing lesson plans for the after-school enrichment program. PSTs were probed for whether the 
CD of tasks played a role in their decision-making. The second interview was conducted a year after 
the methods course (Fall 2019). PSTs were asked about their teaching internship and to analyze tasks 
from the casebook authored by Stein, Smith, Henningsen, and Silver (2000). 
Analysis 

Our research builds on the work of Elby and colleagues (2020) who demonstrated how analysis of 
written reflections can provide teacher educators with insight on PSTs’ framing of classroom activity 
in a more timely manner than the interaction-analysis techniques traditionally employed with a 
framing perspective. The authors describe this type of analysis as “framing lite.” The data sources 
were initially coded by the first author for references to CD. Next, we independently looked for 
trends in PSTs’ statements about CD both when they discussed selecting tasks in the abstract and 
when thinking about task selection in relation to their internships. We then discussed our observed 
trends and developed a codebook. Each transcript was randomly assigned to two authors who then 
completed independent coding. After independent coding, we met to examine discrepancies in codes. 
Once in agreement, we combined the codes into broader categories of the ways that PSTs’ discussed 
CD. We found these categories clustered together based on context and we discussed what PST 
experiences (e.g. activities in the methods class or interactions with students) might be contributing 
to these clusters. These clusters became the general “lite” frames that describe PSTs’ application of 
CD. 

Findings 
We found that PSTs operationalize CD as related to task selection differently depending on context. 

In situations devoid of K-12 students, like reflecting on their methods class, PSTs largely described 
CD in terms of math content and student understanding. In this instance, PSTs seemed to frame CD 
as a feature of mathematical tasks. In contrast, when reflecting on their experiences with real 
students, PSTs seemed to frame CD as a mediator of perceived student need. PSTs’ discussion of CD 
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in relation to task selection shifted toward cultivating student dispositions, attending to perceived 
student ability, and describing problem difficulty. 
Cognitive demand as a feature of mathematical tasks  

In their final papers, 7 of 10 PSTs wrote about CD as a significant element of the methods course. 
PSTs primarily wrote about CD in two ways, (1) a way to categorize tasks and (2) as a way to 
support students’ mathematics learning. PSTs primarily focused on contrasting the features of low 
and high CD tasks. For example, when reflecting on how to select tasks based on cognitive demand, 
Briley wrote, “We determined that the former had lower cognitive demand because it only required 
the memorization of the formula for area, whereas the latter required the application of area and 
perimeter and an explanation or argument for their thinking.” Briley’s explanation of CD is 
congruent with the descriptions provided by Smith and Stein (1998). 

When analyzing tasks during the second interview, half of the PSTs linked procedural thinking and 
application of well-rehearsed algorithms with lower levels of CD. Carson highlighted the difference 
between students applying a rote procedure and conceptual understanding. He said, “[if] there’s a 
specific way to do it, I don’t think that’s cognitively high. But when you have to know the whole 
process and what that process means, then I think that’s when it’s a cognitively high demanding 
problem.” Mary Jane agreed with Carson, stating that “the fact that you need to sit and think about it, 
and discuss with others about it shows that there’s more cognitive demand that’s needed”. Both Mary 
Jane’s and Carson’s focus is on the mathematical understanding required to solve a high cognitive 
demand problem. 
Cognitive demand as a mediator of perceived student need 

 When talking about their placements, PSTs still connected CD to task selection in terms of student 
understanding of mathematics, but it ceased to be their primary focus. Instead, PSTs largely attended 
to perceived (1) student dispositions, (2) student ability, and (3) task difficulty. For the purposes of 
this report, we will focus on (1) and (2). 

Eight of the ten PSTs linked student disposition to the CD of tasks. According to PSTs, CD impacts 
students’ interest in and willingness to complete the tasks. When reflecting on her field placement, 
Claire articulated the connection between motivation and tasks. She stated, “I think [cognitive 
demand] really surfaces, and I think it really ties well into motivation too. Because if you like, if you 
do get something too easy, like they lose motivation, like in my mentor’s class and if you give them 
something too hard, then they just like, give up because they don't have it.” Jessica talked about 
students’ self-efficacy and confidence as considerations for selecting tasks. She stated that selecting 
high CD tasks “not only promotes a growth mindset, but also lets students know that you believe 
they can succeed at higher-level tasks.” 

PSTs addressed their perception of students’ ability through task selection and providing 
instructional supports. Participants discussed the need to find tasks that were not too easy or too hard. 
In terms of CD, Elizabeth described a task that was the right-fit as “It was the high end where they 
were challenged, but it was still low enough that they could do it.” Every PST made a comment 
about selecting tasks that were the “right fit” for students. PSTs also discussed providing scaffolds to 
make tasks more accessible for students. For example, some PSTs articulated the difference between 
language supports for English language learners and providing mathematical supports. When 
selecting the right-fit the level of tasks, PSTs also wanted to prevent unproductive struggle, as 
opposed to looking to create productive struggle. For instance, Grace says, “Or sometimes if it is too 
cognitively demanding and they're getting frustrated and too flustered I think sometimes it'd be like, 
helpful to take a break and be like, ‘okay, so maybe like, what do you guys remember about this?’” 
In this case, Grace thought about possible actions if students’ struggle became unproductive. 
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Discussion 
The purpose of this study is to understand how PSTs operationalize the concept of CD as they move 

from university coursework to working with students. Our results show that PSTs apply their 
conceptions of CD in context dependent ways, which is consistent with a framing perspective (e.g., 
Elby & Hammer, 2010; Hammer, et al., 2005). Specifically, PSTs’ variance in how they 
operationalize CD across contexts can be understood as the activation of different resources, and 
subsequently different frames, as they shift from learning formally about CD to applying CD when 
working with students. We describe PSTs’ different frames as: (1) CD as a feature of mathematical 
tasks and (2) CD as a mediator of perceived student need. 

The frame CD as a feature of mathematical tasks seems to be activated when PSTs discuss tasks 
abstractly. PSTs perceive “what is going here” as an assessment of their knowledge of the different 
levels of CD. Within this frame, activated resources could include PSTs’ understanding of course 
readings and their experiences with selecting and completing tasks in the methods course. In contrast, 
the frame of CD as a mediator of perceived student need is activated in the context of their ongoing 
work with students. When this frame is activated, PSTs rely more heavily on their experiences with 
students, rather than the formal definition of CD. Frames are a helpful way of thinking about how 
PST knowledge builds across contexts, rather than attributing changes in PST behavior to a “washing 
out” of the teacher preparation program (Richards et al., 2020). We propose that PSTs retained the 
formal definitions of CD but in practice their framing focused on the perceived needs and 
dispositions of students. 

As teacher educators, we posit that examining PSTs’ framing of concepts, even rough frames, can 
be helpful in supporting PSTs to build new resources and shift their framing (Elby et al., 2020). For 
example, the framing CD as a mediator of perceived student need was supported by PSTs’ beliefs 
that the CD of tasks should be matched to student disposition or perceived student ability. This 
framing could lead to PSTs choosing tasks of low CD or lowering the CD of tasks during 
implementation (Stein et al., 2000). PSTs also expressed concern for supporting linguistically and 
culturally diverse learners’ access to high CD tasks. Thus, another implication of this frame is that 
PSTs’ perceived support of students’ needs may limit opportunities for students to engage with high 
CD tasks (de Araujo, 2017). Teacher educators could support PSTs’ development of resources and 
shifts in framing by revisiting the formal definitions of CD and explicitly linking them to 
instructional practices beyond the initial selection of the task. For example, teacher educators should 
explicitly model for PSTs how to support students in meeting language objectives without lowering 
the CD of the mathematics. When linked to student learning and dispositions, these additional 
experiences may become resources in PSTs’ framing of CD as it relates to students’ needs. 
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This paper reports that the reflective conversation allows the development of professional knowledge 
in future mathematics teachers on the basis of questions about the nature and processes of 
construction of mathematical concepts, from both a mathematical and pedagogical point of view. The 
teacher of a didactics of mathematics course and ten future teachers participated in this study. The 
conversations held by them during three sixty-minute sessions were analyzed; the duration of these 
sessions was determined by the time it took to have the discussion of a question about even numbers 
and generalization. The type of knowledge developed consisted of recognizing the concept of even 
numbers as a process of mathematical generalization, andas an ability to be developed in elementary 
school students. 

Keywords: Teacher Knowledge, Teacher Education. 

This paper analyzes how reflective conversation helps to develop the knowledge for teaching the 
concept of mathematical generalization in future teachers. This interest is based on the fact that 
reflection and integration of content, and pedagogy are two central aspects of this development 
(Ponte & Chapman, 2016) equally, as is the collective (Arcavi, 2016; Chamoso, Cáceres & Azcárate, 
2012; Horn & Little, 2010; Jaworski, 2006; Krainer & Llinares, 2010; Ponte, 2012; Preciado-Babb et 
al., 2015; Rasmussen, 2016; Rowland & Ruthven 2011; Santagata & Guarino, 2011). 

It is now recognized that learning to teach requires the development of different types of knowledge 
in the teacher. In this sense, the problematization of the mathematical knowledge of the teacher has 
been the focus in several proposals in mathematics education in order to characterize and model it 
(e.g. Ball, Thames & Phelps, 2008; Carrillo-Yañez et al., 2018; Krauss, Neubrand, Blum, & 
Baumert, 2008; Kunter, et al., 2013; Pino-Fan, Godino, & Font, 2018; Shoenfeld, 2011; Llinares, 
2012). In fact, a key question is “whether mathematical knowledge in teaching is located ‘in the 
head’ of the individual teacher or is somehow a social asset, meaningful only in the context of its 
application” (Rowland & Ruthven, 2011, p. 3). 

On the other hand, little is known about the development of knowledge in future teachers 
(Thanheiser et al., 2014); in this regard it is stated that “it is important for programs to engage 
prospective teachers in learning opportunities that enable them to reconstruct their initial knowledge 
and understanding of mathematics teaching. This requires awareness and scrutiny of this prior 
knowledge. Reflection is a key process for achieving this” (Ponte & Chapman, 2016, p. 283). In this 
sense, we examine how knowledge of future teachers is developed in context of social interaction in 
the classroom, because it is a place that offers opportunities to teach, to learn from conversation and 
to reflect on their own knowledge and experiences (Horn & Little 2010; Kaminski, 2003; Toom, 
Husu, & Patrikainen, 2015). 

One type of knowledge for teaching mathematics is generalization (Demonty, Vlassis, & Fagnant, 
2018). Its importance can be seen mainly in two ways: as a way to teach for developing mathematical 
concepts (Davydov, 1990; Dörfler, 1991) and as an activity for the development of algebraic thinking 
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in the study of patterns (Radford, 2014; Warren, Trigueros, & Ursini, 2016; Zazkis & Liljedahl; 
2002). Therefore, mathematical generalization was the subject of conversation and reflection. 

Conceptual Framework 
The ideas of conversational learning of Pask (1976) and Kolb and Kolb (2017) were used and 

integrated to study how professional knowledge associated with mathematical generalization is 
developed, as shown in Figure 1. For these authors, learning comes from conversations on a topic 
that leads to the construction of new meanings and transforms collective experiences into knowledge. 

 

 
Figure 1: Reflective conversation and Learning based on Pask (1976) and Kolb and Kolb (2017) 

 
We understand  knowledge to be what is internalized in conversational interactions and it is relevant 

to those who share and participate in it (Gee, 2011). In this case, we refer to the specific knowledge 
of mathematics teachers with a clear orientation to the practical activity of teaching mathematics 
(Ponte, 2012). 

Developing this knowledge from an RC implies the willingness to engage in a dialogue to negotiate 
meanings, accept questions and discuss the shared ideas of mathematics, its teaching and its learning 
(Earles, Parrott, & Knight, 2016). The knowledge of future teachers must be associated with their 
conversational context in such a way that the conversation establishes a space of participation to 
make explicit their ideas and knowledge related to a topic, making possible the emergence of 
meaningful relationships. Therefore, conversation allows the expression of thoughts in an open way, 
and by doing so, it gives way to a reflexive process that influences the meanings, thoughts, and 
actions of others; that is, it influences the development of knowledge. 

Method 
The development of knowledge of future teachers in the context of an RC was analyzed with a 

qualitative-interpretative methodology (Corbin & Strauss, 2008) considering interactions as the focus 
of the analysis (Kilpatrick, 1988). The analysis was carried out by organizing the data in (i) speaking 
shifts, and (ii) organizational sequence (Mazeland, 2006). 

Seven women (W) and three men (M) from a training program for secondary and high school 
mathematics teachers at a public university in Mexico participated in this study. They were attending 
a didactic of mathematics course in their senior year. The participation of the teachers  and the 
students was by invitation. 

An open question was posed as a topic of discussion, since learning based on conversations can 
begin with questions associated to a topic (Pask, 1976) and the demands for solving a problem are a 
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guiding factor for reflection (Dewey, 1938). The question was associated with the property of integer 
numbers and designed in such away that it could be answered by using the knowledge of arithmetic 
and of basic algebra and it allowed for the discussion of the idea of generalization, its teaching and its 
learning. The question was: What can be said about the result of the multiplication of any two 
consecutive integer numbers? 

The analysis used the model shown in Figure 1 in the following way: First, the transition between 
the learning modes of the RC was analyzed based on the identification of the level of conversational 
interaction (procedural or conceptual levels). In the procedural level, it was considered that 
conversations are characterized by discussions focused on the construction or use of mathematical 
procedures, while the focus of the conceptual level is the use of conceptual ideas or theories that 
answer the posed question. Then, the experiences, reflections, thoughts and acts of the participants 
during their conversations were analyzed to characterize how it contributes to the development of 
their knowledge. 

Results And Conclusions 
Results show that the knowledge developed consisted in conceiving generalization as an important 

process to explore, explain and validate mathematical results and in recognizing its importance as a 
necessary mathematical ability to favor the teaching of arithmetic and basic algebra. Furthermore, the 
participants became aware that many mathematical concepts come from generalizations and raised 
the idea of the importance of using several representations (arithmetic, algebraic and geometric) to 
discover and test mathematical results, as happened in this case with the concept of even numbers: 

M1: (…) I considered generalization as something of algebraic thinking, and the recognition of 
patterns and relationships between quantities proper of arithmetic. In this case, we can see a 
relationship between the quantities that increase from 2 to 4, then to 6, and 2 more units each 
time. It would be concluded that multiplying two consecutive numbers results in an even number, 
which is generalizing! 

W4: I thought that there could be no generalization in arithmetic (...) but, after reflecting on what we 
understood as a generalization, as has been in this case: multiplying consecutive integer numbers 
results in an even number is a generalization; therefore, generalization can be made in arithmetic 
and algebra. In the sequence [2, 6, 12, 20, 30, …], number four is missing between 2 and 6, and 
the generalization that comes is that there are multiples of two. This is, an even number of the 
form 2𝑘. 

RC fostered the development of knowledge to the extent that questions about the nature and 
construction of the concept of even numbers were made, from both a mathematical and a pedagogical 
point of view; it also promoted the free and open expression of ideas, answers and counter proposals 
associated with the initial question. This enhanced the transition between the four learning modes 
indicated in Figure 1. For example, participants moved from the concrete experience mode (CE) to 
the reflective observation (RO) mode by questioning and associating numerical relationships between 
algebraic structures. And they move from abstract conceptualization (AC) to the active 
experimentation (AE) mode by questioning meanings and looking for explanations and validations of 
their procedures. In this way, they managed to establish patterns and conceptualize an even number 
as a mathematical generalization (figure 2): 

W2: How can I interpret the expression 2𝑘 in arithmetic and in algebra? I think that 2𝑘 can be seen as 
a whole area or it can represent an even number in arithmetic; in contrast, it may represent a 
quantity that is changing to double in algebra (...). 

M1: Yes, let's say that by constructing a meaning for even numbers (…) 
M2: (…) and considering it as the starting point for teaching even numbers. 
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Figure 2: Consecutive multiplication, generalization and even number 

 
We consider that the development of professional knowledge about mathematical generalization 

from an RC demands an exchange and articulation of ideas based on questioning the mathematical 
knowledge, its use and the argumentation of procedures and concepts used in the solution of 
problems, as well as the negotiation of meanings associated with them because this is what allowed 
the emergence of common understandings about the meaning of generalization and the cognitive 
demands for its teaching and learning. 

These results are consistent with those reported by Demissie (2015), Jaworski (2006), Chamoso, 
Cáceres and Azcárate (2012) who found that participating in processes of collective inquiry promotes 
reflective thinking among peers. This study also confirms the results reported by Simoncini, Lasen 
and Rocco (2014) that a guided dialogue makes it possible for future teachers to obtain better 
perspectives of their teaching practices, including their thoughts and actions. 

We plan to delve into how to incorporate RC in teacher training programs so that it can be a means 
to develop professional learning, promote reflections in relation to the professional practice, and 
encourage a shared vision of it (Preciado-Babb et al., 2015; Toom, Husu, & Patrikainen, 2015). 
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We examined the coaching practices of three mathematics teacher educators as they engaged in real-
time coaching with secondary mathematics preservice teachers. Situated in a novel early field 
experience and under close supervision, preservice teachers instructed undergraduate students in an 
introductory mathematics course; teacher educators coached in real time during these teaching 
episodes. Forty-four preservice teachers participated in this study, resulting in a data corpus of 44 
videos of their teaching. Findings indicate that direct coaching was used more than indirect 
coaching, and pacing was the most prevalent focus of direct coaching. 

Keywords: Teacher Education – Preservice; Teacher Educators 

Early development of preservice teachers’ (PSTs’) knowledge and practice for teaching 
mathematics typically occurs during a methods course and is often accompanied by school-based 
field experiences. One vexing challenge for the field is a disconnect between what PSTs see and 
experience in K-12 classrooms and what they learn about effective teaching in on-campus methods 
courses (Allsopp et al., 2006; Zeichner, 2010). Yet, teacher educators argue that teaching is best 
learned within, and from, practice (Ball & Cohen, 1999; Zeichner, 2010).  

Over the last two years, we have engaged in a project designed to mitigate this challenge - a novel 
early field experience (EFE) for secondary mathematics PSTs called the University Teaching 
Experience (UTE; Bieda et al., 2020; Cirillo et al., 2020). In this model, PSTs, while enrolled in a 
concurrent mathematics methods course, engage in an EFE that takes place in a college-level 
introductory mathematics course, taught from a problems-based perspective, and under the close 
supervision of MTE(s). The PSTs work with small groups of students during problem-solving 
sessions and teach as pairs twice during the semester in a safe, collaborative, and highly mentored 
context. The MTE coaches the teaching PSTs in real-time, providing immediate feedback to the 
PSTs while in the act of teaching.   

Coaching in the UTE resembles coaching that occurs during methods course rehearsals, where the 
mathematics teacher educator (MTE) can provide feedback in real time, pause the rehearsal for 
discussion, and/or model certain teaching moves for the PSTs to imitate (Arbaugh et al., 2019; 
Baldinger, Selling, & Virmani, 2016; Lampert et al., 2013). Although the field is beginning to 
understand coaching practices during rehearsals (e.g., Lambert et al., 2013), we know little about 
coaching practices in more authentic approximations of practice (Grossman et al., 2009) like the 
UTE. Our real-time coaching (RTC) also resembles a model used by Stahl et al. (2018), who 
investigated the effects of RTC with prospective English teachers through the use of “bud-in-the-ear” 
technology while PSTs engaged in micro-teaching with peers (although we did not use this 
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technology). Stahl and colleagues found several positive benefits of RTC, including increased 
confidence in PSTs’ knowledge, skills, and capabilities as a teacher, accelerated development of 
practical skills, and an increasingly discerning and critical position toward professional practice. 
Hence, RTC appears to be a productive method for MTEs to help PSTs improve their teaching 
practices and worthy of study. Akin to Lampert et al. (2014), our study was guided by this research 
question: What was the structure and substance of real-time coaching (RTC) as enacted in the UTE at 
three sites? 

Methods 
Data Collection: Participants, Context, and the UTE Teaching Episodes 

To address our research question, we analyzed three MTEs’ RTC practices at three different 
university sites. At one site, the UTE took place in Fall 2018; at the other two sites, the UTE took 
place in Spring 2019. A total of 44 PSTs participated in the UTEs across the three sites, resulting in 
44 video recordings of their UTEs. These video recordings captured the interactions between the 
MTEs and PSTs as they taught in pairs, with each pair teaching twice in a semester.  
Data Analysis 

We began analysis by identifying RTC episodes in the UTE video recordings. Round one of open-
coding (Miles, Huberman, & Saldaña, 2014) RTC episodes identified the structure of our RTC (see 
Table 1). Next, focusing only on the coaching episodes where direct coaching occurred, a list of 
substance codes was generated (see Table 2). The total number of coaching episodes for this study 
was 258; the number of direct coaching episodes was 227.  

 
Table 1: Structure Codes 

Structure Code Description 
Direct Coaching MTE provides feedback directly to PST. Either MTE or PST may initiate 

this exchange.  
Indirect Coaching MTE enters the lesson as the teacher and directly addresses mathematics 

students for the purpose of modeling an instructional move for the PSTs.  
 

Table 2: Direct Coaching Substance Codes 
Substance Codes; Description 

Alerting PST to Notice 
Students 

MTE interrupts or alerts the PST to notice a student who is confused or a 
student with their hand raised, whom the PST otherwise would not have 
noticed.  

Asking for Volunteers MTE advises PST on (a) how to ask for volunteers, or (b) who to ask to 
share an answer to the problem. 

Asking PST to Expand on 
Mathematics 

MTE requests that PST provides more information on mathematical 
concepts or examples. 

Assisting with Classroom 
Technology 

MTE assists PST with understanding how to use the technology they are 
attempting to use for their instruction. 

Attending to Mathematical 
Precision 

MTE attends to PST’s written/oral language/notation, such as 
terminology, labeling, and mathematical symbols. This is an error in 
PST’s communication, rather than a mathematical error. 

Correcting a Mathematical 
Error 

MTE requests that PST corrects a mathematical error. This is a 
mathematical error, rather than an error in communication.  

Getting Math Students’ 
Attention 

MTE requests that PST refrains from giving instruction and first gains 
students’ attention.   
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Getting Students to Write 
Notes 

MTE requests that PST encourages math students to write notes.  

Helping PST Understand 
Mathematics 

MTE helps PST better understand a mathematical concept.  

Helping PST Understand 
Student Thinking 

MTE helps PST better understand a student’s comment, answer, or 
question.  

Making a Pedagogical 
Suggestion 

MTE makes suggestions to PST regarding next steps for monitoring, 
whole class discussion, or other instructional moves.  

Pacing MTE coaches about speeding up or slowing down the lesson.  
Providing Positive Feedback MTE praises a PST’s action. 

Raising Voice MTE asks the PST to speak louder. 
Redirecting Instructional 

Move 
PST uses a pedagogical move and the MTE redirects the PST to use a 
different pedagogical move.  

Rephrasing PST’s Language MTE provides a rephrased question or statement for the PST to repeat to 
students.  

Requesting Visual Display – 
Logistics 

MTE requests that PST creates a visual display or makes the display 
clearer for students (emphasis on logistics; e.g., writing bigger).  

Requesting Visual Display - 
Mathematics 

MTE asks that PST adds further information to a visual display of 
mathematics.  

Requesting Visual 
Representation or Verbal 

Communication 

MTE requests that PST provides a visual representation of spoken 
mathematics, or to explain verbally an idea that is written. 

Findings 
The MTEs engaged in about seven times more direct coaching than indirect coaching (88% vs. 12% 

respectively), indicating that the MTEs made a large majority of their coaching comments directly to 
the PSTs as opposed to stepping in to teach the mathematics students and modeling teaching 
practices for PSTs. Examining the substance of direct coaching more closely (see Figure 1), pacing 
was the most prevalent focus of direct coaching, occurring in 24.23% of the direct coaching episodes. 
MTEs provided feedback to PSTs about both speeding up the lesson and slowing down the lesson. 
The second most prevalent type of direct coaching was making a pedagogical suggestion, occurring 
in 23.35% of the direct coaching episodes. Making a pedagogical suggestion covered a wide range of 
coaching moves. In general, these were instances where the MTE noticed something in the way 
mathematics students were interacting or reacting to instruction and had a suggestion for the PST that 
helped the PST navigate an issue. In contrast, assisting with classroom technology and getting 
students to write notes occurred in less than 2% of the direct teaching episodes. 
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Figure 1: Percentage of Substance of Direct Coaching Episodes (Note: because some episodes were 

assigned multiple codes, percentages do not total 100%) 

Discussion 
The findings of this study extend those of Lampert et al. (2013) by providing additional ways that 

PSTs can be coached during instruction. Further, because PSTs in this study were teaching 
mathematics students (rather than their methods course peers), this study identified a new structure of 
coaching: indirect coaching. It is interesting to us that in the authentic context of PSTs teaching 
mathematics to students, the MTEs in this study coached about pacing more than any other focus. 
This stands in contrast to Lampert et al.’s finding that the MTEs in their study focused on managing 
time in only 4.3% of interactions between MTE and PST. Another difference between these two 
studies is in the area of the mathematics as a focus. In Lampert et al.’s study, the MTEs focused on 
mathematics in 11.94% of MTE/PST interactions, with mathematics being defined as “working on 
and understanding the mathematical content” (p. 233). In our study, while the MTEs focused on 
helping PSTs understand mathematics in 5.25% of coaching episodes, they also coached PSTs in the 
areas of attending to mathematical precision (11.38%), visual display of mathematics (5.28%), and 
asking PST to expand on mathematics (4.47%). Our findings show that RTC can occur while PSTs 
are teaching mathematics students in an authentic context, extending Stahl et al.’s (2019) work. We 
are left with questions about the impact of real-time coaching on PSTs’ growth as mathematics 
teachers.  
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Eliciting student thinking and using what is learned of student understanding to inform instruction is 
critical to effective mathematics teaching. Professional noticing skills assist teachers in identifying, 
interpreting and responding appropriately to student thinking. Therefore, the development of 
professional noticing skills in teacher candidates has become a goal of some mathematics teacher 
education programs. For the purpose of determining whether instruction is assisting in the 
development of these skills, it is necessary to have a way to measure these skills. This paper is a brief 
review of how professional noticing has been operationalized in mathematics teacher education 
research. A search of the ERIC data bases resulted in 405 studies, 89 of which met the criteria for 
the review. The following results contain a representative subsample of the 89 studies due to space 
limitations. 
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In recent years, there has been an increased focus on using evidence of student thinking to inform 
and support instruction. In fact, the 2014 National Council of Teachers of Mathematics (NCTM) 
publication “Principles to Action: Ensuring Mathematical Success for All,” recommended “eliciting 
and using evidence of student thinking” as a mathematics teaching practices to support student 
learning (NCTM, 2014). As the focus of professional noticing, in general, is to recognize, interpret, 
and respond to student thinking, noticing aligns well with the aforementioned NCTM mathematics 
teaching practice. Therefore, the development of professional noticing skills in teachers support 
student thinking, learning and understanding. 

Theoretical Framework 
Within recent research, there are three commonly cited definitions of professional noticing. First, 

van Es and Sherin (2002) define noticing as consisting of “three components: identifying what is 
important in a teaching situation; making connections between specific events and broader principles 
of teaching and learning; and using what one knows about the context to reason about a situation”. 
Second, Jacobs, Lamb and Philipp (2010) define noticing as consisting of “three interrelated skills: 
attending to children’s strategies, interpreting children’s understandings, and deciding how to 
respond on the basis of children’s understandings”. Finally, Mason (2002) describes the “discipline 
of noticing” as consisting of the following techniques: keeping and using a record; developing 
sensitivities; recognizing choices; preparing to notice at the right moment; and validating with others. 

Professional noticing, or simply noticing, has been the focus of much research in the past two 
decades. Berliner (2001) found well developed noticing skills to be a feature of an expert teacher. 
Researchers have also stated, novice teachers do not naturally notice important events in a classroom 
(Jacobs et. al, 2010; van Es and Sherin, 2002; Star and Strickland, 2008). However, research had 
found noticing skills can be learned (Jacobs et. al, 2010; van Es and Sherin, 2002; Star and 
Strickland, 2008). There is also evidence to support the development of noticing skills has improved 
field experiences (Star and Strickland, 2008; Stockero, Rupnow, and Pascoe, 2017). 

Structures (e.g. frameworks, scaffolds) can support teachers in the development of noticing skills. 
The purpose of this paper is to examine noticing frameworks used in mathematics education research 
to support and measure teacher noticing. The research questions which guided the analysis are: What 
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type of frameworks exist to measure professional noticing skills in mathematics teacher education 
research? How are these frameworks applied (e.g. for measurement, instruction, or both) in 
mathematics teacher education research? 

Methods 
I searched ERIC data bases using the search criterion of (notic* AND mathematics) OR 

(‘professional vision’ AND mathematics) yielding 405 results. Titles, keywords, and abstracts of the 
resulting articles were scanned and excluded using the following exclusion criteria (EC). EC 1: The 
focus of the article was not mathematics. EC 2: The article was not research concerning professional 
noticing. EC 3: The article was not published in a research journal. EC 4: The article was not 
regarding K-12 teacher education. EC 5: The article was not a research study. EC 6: The framework 
in the article was too specific (e.g. Fernandez et. al., 2011 framework for noticing a students’ 
additive/multiplicative thinking in proportional reasoning). Although articles with a specific noticing 
purpose are important to developing noticing skills in specific instructional areas, these articles were 
excluded from this paper in the interest of space. 

Results 
After review, 89 articles were included for analysis. Thirty-two were excluded due to a focus other 

than mathematics, 224 of the remaining articles were not on professional noticing, 29 were excluded 
because the article was not published in a research journal, 6 were not K-12 education, 4 articles 
were not experimental studies, and 21 were excluded for having too specific a focus.  

Many researchers use, or adapt, an existing framework to fit their research purposes, although some 
developed independent frameworks. Researchers used these frameworks in a variety of methods (e.g. 
to provide to candidates for instructions; to inform the creation of pre and post assessments; to create 
a coding scheme for qualitative data). Frameworks were used for either instruction, measurement, or 
both. If a researcher used a framework for both instruction and measurement, sometimes the same 
framework, occasionally different frameworks. Due to limited space, the following is an abbreviated 
representative sample of the 89 articles reviewed. 
Frameworks 

Leatham, Peterson, Stockero and Van Zoest (2015) describes the development of Mathematically 
Significant Pedagogical Opportunities to Build on Student Thinking (MOST) Framework. MOST is a 
linear framework developed through an iterative process in mathematics teacher education courses 
over a four-year period. The framework was developed to identify MOSTs in video captured lessons 
for analysis. Researchers found the framework to be applicable for instruction and measurement as 
well. The framework begins with Student Mathematical Thinking: can student mathematics be 
identified, if so, is there a mathematical point? The second part of the framework involves 
Mathematical Significance: is the mathematics appropriate, if so, is it central? The final part of the 
framework is Pedagogical Opportunity: opening, timing? (Leatham et. al., 2015; Stockero et. al., 
2014; Stockero et. al., 2017). If the answer to each of the six questions is yes, the interaction is a 
MOST. 

Star and Strickland (2008) developed the 5 Category Observation Framework to identify what 
teacher candidates noticed from watching a classroom lesson. Star and Strickland created a pre/post 
assessment consisting of questions related to items and actions in a video the teacher candidates 
watched. The pre/post assessment was designed to represent each of the five categories and question 
types evenly. The five categories of the framework include: classroom environment, classroom 
management, tasks, mathematical content, and communication. The researchers were able to show 
significant gains in all areas, with the exception of classroom management (which was higher on the 
pre assessment). 
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Santagata and colleagues (2007, 2010, 2016) developed and used the Lesson Analysis Framework 
(LAF). One version of the LAF consisted of three parts: goals/parts of the lesson, student learning, 
and teaching alternatives; another version of the LAF consisted of four parts: learning goals, analysis 
of student thinking, effects of teaching, and propose improvements in teaching (Santagata and Yeh, 
2016). Researchers use the framework to guide teacher candidate analysis of video. 

van Es (2011) introduced the Learning to Notice Framework. The framework consisted of two 
categories: what teachers notice and how teachers notice. Data in each of these categories are then 
assigned one of four levels: baseline, mixed, focused, and extended. Statements made concerning 
some overall aspect of the classroom aspects or interactions, and are evaluative in nature, represent 
baseline level statements. Mixed level statements are primarily focused on the teacher but begin to 
mention student thinking and start showing some interpretive qualities. Focused statements primarily 
concern specific instances of student thinking and began to predict student actions. Finally, the 
extended level statements began to make connections between teacher response and student thinking. 

Sherin and van Es (2009) introduced the Professional Vision Coding Scheme based on their 
definition of professional vision. The coding scheme consisted of two components: selective 
attention and knowledge-based reasoning. Selective attention consisted of two dimensions of 
analysis: actor (student, teacher, other) and topic (management, climate, pedagogy, mathematical 
thinking). Knowledge-based Reasoning also has two dimensions of analysis: stance (describe, 
evaluate, interpret) and strategy (restate student ideas, investigate meaning of student idea, generalize 
and synthesize across student ideas). 

Mitchell and Marin (2015) introduced the Structured Analysis Framework based on Mathematical 
Quality Instruction (MQI). A subset of MQI codes relevant to noticing were chosen to create the 
framework. Five areas of codes were chosen: lesson or segment structure; teacher mathematical error 
or imprecision, use of mathematics with students, cognitive demand of task, and student work with 
mathematics. 
Applications of Noticing Frameworks 

Noticing frameworks are applied within mathematics teacher education research in a variety of 
ways. Frameworks are applied in the areas of instruction, measurement, or both. In addition, 
researchers may use one existing framework for the purpose of instructions and another for 
measurement. The following are examples of each of these applications of noticing frameworks in 
mathematics teacher education research. 

Instruction. Definitions of noticing (Mason, 2002; Jacobs et. al., 2010; van Es & Sherin, 2002) 
were the most common influence for instructional design. In fact, Fisher and colleagues (2019) 
provide an overview of their 3 meeting instructional model which shows alignment with the Jacobs 
and colleagues (2010) definition of noticing. 

Measuring noticing. Jacobs and colleagues (2010) described three skills necessary for the 
“expertise” of professional noticing: attending to children’s strategies, interpreting children’s 
understanding, and responding on the basis of children’s understanding. In their research, Jacobs and 
colleagues developed a coding structure for each of these skills: attending (1) evidence (0) lack of 
evidence; interpreting and responding (2) robust evidence (1) limited evidence (0) lack of evidence 
(Jacobs et. al., 2010). This coding structure was then used in their research to code writing prompts to 
compare the noticing skills of teachers at various levels in their careers (prospective teachers, initial 
participants, advancing participants and emerging teacher leaders). Many other researchers have 
adopted this method of measuring noticing skills in their own research (e.g. La Rochelle, Nickerson, 
and Lamb (2019); Fisher, Thomas, Schack and colleagues (2013, 2018, 2019)). 

Another framework found often in mathematics teacher education research on noticing was the 
learning to notice framework (van Es, 2011). As previously described, the learning to notice 
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framework consists of two categories, with four levels to each category. In the van Es, 2011 study, 
the researcher employed the framework to measure video club discussions, as a whole, and provide 
one level for each meeting. It was found the progression through the levels was not linear, especially 
in levels 2 and 3: meeting 3 was at level 2, meeting 4 was at level 3, meeting 5 was back at 2, 
meetings 6 and 7 were back at 3, and meeting 8 was back at 2 before jumping to level 4 in meetings 9 
and 10. Amador and colleagues (2015, 2016, 2018) modified the learning to notice framework and 
used it extensively in their work. 

Applying multiple frameworks. Amador, Carter and Hudson (2016) is an example applying 
multiple frameworks. Both Jacobs et. al. (2010) and van Es (2011) are applied in their noticing 
research. The learning to noticing framework was expanded to include a total of 9 levels: 2 sublevels 
for each level 1, 2, and 4; and 3 sublevels for level 3. In addition, researchers created a 9 level 
learning trajectory based on the Jacobs et. al. (2010) definition of noticing: 2 codes for attending, 5 
codes for interpreting, and 2 codes for responding. This expansion of their coding scheme also shows 
influences of the Sherin and van Es (2009) professional vision framework. 

Discussion 
This paper reported on a small representative subset of the 89 results of a systematic review of the 

literature regarding operationalizing noticing. As can be seen from the results, the majority of the 
research on operationalizing professional noticing focuses on measuring noticing employing the 
Jacobs and colleagues (2010) definition or the van Es (2011) learning to notice framework. In 
addition, researchers are able to modify these frameworks to suit their research needs. 

Of course, whenever a review of the literature is conducted, there are limitations. It is difficult to 
know, using the search criteria previously mentioned, whether all studies were identified. In addition, 
due to space limitations, it was not possible to include all studies. For example, in this review studies 
with specific foci were not included (e. g. curricular noticing). 

The main purpose of the paper was to provide researchers and mathematics teacher educators with a 
summary of frameworks employed to inform instruction and the measurement of noticing. The goal 
was to assist in mathematics teacher researchers and educators who would like to begin research in 
professional noticing or developing an instructional unit on professional noticing with a list of 
common ways to operationalize noticing. Further research to summarize the theory which informed 
the development of these frameworks is still necessary. 
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This study investigates the extent to which pre-service elementary teachers (PETs) use their 
contextual knowledge to model and solve eight problems for which the result of the arithmetic 
operation is problematic, if one takes into consideration the reality of the context. A paper-and-
pencil test was administered to 621 PETs enrolled in mathematics content courses. The test included 
eight experimental items and four buffer items. The findings for a sample of 97 PETs are not very 
encouraging. The total number of realistic responses varied from 5 to 80 (out of 97 possible for each 
problem). Overall, the percentage of realistic responses on the eight problematic items was only 
about 31%. 

Arithmetic word problems play an important role in learning mathematics at the elementary school 
level. There are several practical and theoretical reasons of the inclusion of arithmetic word problems 
in the elementary curriculum. First, they provide contexts in which students can use their 
mathematical knowledge so they can develop their problem-solving abilities, an important goal of 
learning mathematics. Second, word problems provide practice so students can develop their abilities 
to use their knowledge in real-life situations. Third, word problems serve as motivators so students 
can see the relevance of the procedures and algorithms learned in school. Fourth, word problems 
have the potential to provide students with rich contexts and realistic activities in which to ground 
mathematical concepts and, thus, facilitate the learning of more complex concepts. Finally, word 
problems provide students with experiences to learn how to use mathematical tools to model aspects 
of reality, that is, to describe, analyze, and predict the behavior of systems in the real world 
(Burkhardt, 1994; De Corte, Greer, & Verschaffel, 1996; Verschaffel, Greer, & De Corte, 2000; 
Verschaffel & De Corte, 1997). 

Some critiques (e.g., Gerofsky, 1996; Lave, 1992; Nesher, 1980) argue, however, that the 
mathematics curriculum fails to achieve these lofty goals because traditional instructional tasks tend 
to focus on a straightforward application of procedures and computations to solve artificial problems 
unrelated to the real world. As a result, students tend to approach word problems, more often than 
desirable, in a superficial and mindless way with little, if any, disposition, to modeling and realistic 
interpretation.  Several pieces of research provide empirical evidence to these claims (Davis, 1989; 
De Corte & Verschaffel, 1989; Greer, 1993, 1997; Reusser, 1988; Reusser & Stebler, 1997; 
Schoenfeld, 1991; Silver, Shapiro, & Deutsch, 1993; Verschaffel, 1999; Verschaffel & De Corte, 
1997; Verschaffel, De Corte, & Lasure, 1994).  

Purpose of the Study 
The purpose of the study was to examine prospective elementary teachers’ (PETs) reactions and 

responses to problematic arithmetic word problems for which the solution is not the result of 
application of the most obvious arithmetic operation suggested by the two numbers given in the 
problem statement. 

As suggested by the research literature, elementary school children tend to ignore the realistic 
constrains of the context embedded in the statement of the problem, a phenomenon that Schoenfeld 
(1991) coined “suspension of sense-making.” Several critics and researchers argue that children’ 
suspension of sense-making is the result of school practices (Davis, 1989; Greer, 1993; Nesher, 1980; 
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Schoenfeld, 1991; Silver, Shapiro, & Deutsch, 1993). To develop children’ disposition to realistic 
modeling, we must change curriculum and instructional tasks.  Since the teacher has an important 
role in the construction or selection of learning tasks and opportunities, one may argue that 
researchers and curriculum developers need to understand teachers’ reactions and responses to 
problematic problems. 

Theoretical and Empirical Background 
Mathematical modeling is the process of representing aspects of reality by mathematical means. In 

particular, the solution of some physical or real-world problems requires some form of 
mathematization. That is, the construction of a mathematical model. The complexity of the process of 
mathematization depends, of course, on the nature of the problem. There are several proposed models 
of representing reality by mathematical means (e.g., Silver, Shapiro, & Deutsch, 1993; Verschaffel, 
Greer, & De Corte, 2000), but Silver et al’s model (Fig. 1) suffices for our purposes. 

According to Silver, Shapiro, and Deutsch’s model, a simplified version of the process of 
mathematical modeling consists of four different stages: understanding of the problem, construction 
of a model or selection of a mathematical procedure, the execution of the procedure, and the 
interpretation or evaluation of the outcomes of the procedure.  

 

 
Figure 1: Silver et al.’s (1993) Referential-and-Semantic-Processing Model for Successful Solutions 

The first stage of the process of mathematical modeling involves understanding the problem 
situation embedded in the story text. That is, we need to understand the given or known facts, the 
unknown information, the superfluous data, and missing information. The second phase involves the 
construction of a mathematical model or selection of a suitable procedure, operation, or algorithm 
whose outcome will lead us to the solution of the problem. To perform the second stage of the 
modeling process successfully, we must understand the mathematical structure of the problem. That 
is, we must understand the interconnections or relationships among the different types of information 
related to the solution of the word problem. The third stage of the problem involves mainly 
performing the computation, procedure, or algorithm either with paper and pencil or using a 
computational device. Finally, we should interpret and assess the outcome of the mathematical 
procedure in terms of the realistic context embedded in the story text of the word problem or in terms 
of the real-world story situation. It is during this step that we need to focus on the meaning of the 
result of the mathematical model so we can establish the connection between the outcome of the 
computation and the solution to the real-world story problem. It is during this stage that we need to 
assess whether our modeling assumptions are realistic or reasonable. 

Story text Story situation

Mathematical model

Computation
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Silver, Shapiro, and Deutsch’s model implies that there are three main potential sources of error 
when solving word problems: lack of understanding of the mathematical structure of the problem, 
which leads students to select an inappropriate procedure, executing the procedure incorrectly, and 
failing to interpret or assess the result of the procedure in terms of contextual or everyday-life 
knowledge. Silver, Shapiro, and Deutsch (1993) examined 195 middle grade students’ solution 
processes and their interpretation of solutions to the following problem: 

The Clearview Little League is going to a Pirates game. There are 540 people, including 
players, coaches, and parents. They will travel by bus, and each bus holds 40 people. How 
many buses will they need to get to the game? 

Their analysis revealed that 91% of the students selected an appropriate procedure (e.g., long 
division, repeated multiples, repeated additions, etc.), but only 61% of these students performed it 
flawlessly (about 56% of the total number of students). Overall, the researchers found that only 43% 
of the total number of students gave the correct answer (14) to the problem. However, some of these 
students provided inappropriate interpretations or justifications. For example, one student wrote “14 
buses because there's leftover people and if you add a zero you will get 130 buses so you sort of had 
to estimate. Are we allowed to add zeros?" (p. 124-125). The researchers also reported that about 
55% of the students did not get the correct answer because either they did not properly interpret the 
outcome of the computation or executed incorrectly the procedure. These computational mistakes 
could have been prevented if students had interpreted their solutions appropriately. Silver, Shapiro, 
and Deutsch proposed the model displayed in Figure 2 as a graphical representation of unsuccessful 
solutions that are due to a failure to connect the outcome of the procedure to the real-world context 
embedded in the story problem. 

 

 
Figure 2: Silver et al.'s (1993) Referential-and-Semantic-Processing Model for Unsuccessful 

Solutions 

Other pieces of research have amply documented elementary school children’ improper modeling 
assumptions when solving problematic arithmetic word problems. Some further examples of the 
word problems that students have been asked to solve are the following:  

1. What will be the temperature of water in a container if you pour 1 liter of water at 80° and 1 
liter of water of 40° into it? (Nesher, 1980) 

2. John's best time to run 100 m is 17 sec. How long will it take to run 1 km? (Greer, 1993) 
3. Lida is making muffins that require 3/8 of a cup of flour each. If she has 10 cups of flour, 

how many muffins can Lida make? (Contreras & Martínez-Cruz, 2001) 
4. In September 1995 the city's youth orchestra had its first concert. In what year will the 

orchestra have its fifth concert if it holds one concert every year? (Verschaffel, De Corte, & 
Vierstraete, 1999) 

Computation

Mathematical model

Story situationStory text
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In their study with 75 fifth graders in Flanders, Verschaffel, De Corte, and Lasure (1994) reported 
that only seven (9%) students provided a realistic and correct response to the temperature problem. 
Similarly, in the same study, these researchers found that only two (3%) responses included realistic 
answers or reactions to the running problem. In another study, Contreras and Martínez-Cruz (2001) 
focused on prospective elementary teachers’ solution processes and realistic reactions to the third 
problem. Their analysis revealed that only 19 (28%) of the participants’ responses contained a 
realistic solution to the problem, but none of the participants made any comments about the 
problematic nature of the problem.  

Verschaffel, De Corte, and Vierstraete (1999) addressed upper elementary school children’ 
difficulties in modeling and solving nonstandard additive word problems involving ordinal numbers. 
The participants were administered a paper-and-pencil test consisting of 17 word problems, nine of 
which were experimental items and eight buffer items. The result of the straightforward arithmetic 
operation yields the correct answer for three of the nine experimental items. An example of such a 
problem is “In January 1995 a youth orchestra was set up in our city. In what year will the orchestra 
have its fifth anniversary? However, the solution of the remaining six experimental items is either 1 
more or 1 less that the result of the straightforward arithmetic operation of the two given numbers. 
An example of such a problem is problem 4 stated above. Overall, the researchers found that the 
percentage of correct responses for each of the six problematic items was less that 25%. An error 
analysis revealed that 83% of the errors made on these problems were ± errors. In other words, most 
of the children’ errors were due to their interpretation that the result of the addition or subtraction of 
the two given numbers yielded the correct answer.  

Although research has convincingly documented elementary school children’ strong tendency to 
model problematic problem unrealistically, the generalizability of the findings to more mature 
students, such as prospective elementary teachers, has not been sufficiently investigated. On one 
hand, since PETs have had even more experiences with traditional school problems, we may argue 
that there is no reason to expect that prospective elementary teachers would use their contextual 
knowledge and realistic considerations in their solution processes of problematic word problems. On 
the other hand, we may claim that PETs may have faced real-world problem situations outside school 
more often than young children and, having a more developed mathematical knowledge, have a 
stronger disposition to activate their contextual knowledge when confronted with problematic 
problems whose realistic solutions require taking into consideration contextual knowledge. 

In their 1997 study, Verschaffel, De Corte, and Borghart examined future teachers’ responses to 
seven problematic word problems. The problems were problematic in the sense that they cannot be 
appropriately modeled and solved by the straightforward application of the suggested arithmetic 
operation with the two numbers given in the problem statement. The researchers found that the future 
teachers had a strong tendency to ignore contextual knowledge and realistic considerations when 
modeling and solving the problematic word problems. In fact, the researchers reported that only 48% 
of all the responses to the problematic problems could be rated as realistic. 

Even thought Verschaffel, De Corte, and Borghart’s findings provide some insights into prospective 
teachers’ use of realistic considerations when confronted with problematic word problems, more 
research is needed to provide a more complete picture about this research area, particularly across 
different cultures. In the present study, I focus on the extent to which the findings from previous 
research with pupils and future teachers are generalizable to prospective elementary teachers in the 
USA. 

Methods and Sources of Evidence 
The total sample of participants consists of 621 PETs enrolled in different sections of mathematics 

content courses for elementary teachers at two State Universities in the United States. The present 
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paper reports the results of three groups (97 PETs) for which the analysis has been completed. The 
PETs had not been previously engaged in any intentional or systematic modeling activities or tasks. 

A paper-and-pencil test consisting of eight experimental items and four buffer items was 
administered to the PETs during regular class instruction. The eight experimental items (Table 1) 
were problematic in the sense that the outcomes of the arithmetic operations performed with the 
given numbers in the problem story does not provide the answer to the problem, if one takes into 
consideration the real-world situation embedded in the contextual problem story. The buffer items, 
on the other hand, were standard routine problems whose solution is the straightforward result of the 
operation performed with the given numbers. The experimental items were adapted from Verschaffel 
and De Corte’s (1997) study. An example of a buffer item is “Joel is building a collection of 175 
different stamps. He has already collected 107 different stamps. How many more stamps does he 
need to complete the collection?” 

 
Table 1: The Eight Experimental Items 

1. 1175 supporters must be bused to the soccer stadium. Each bus can hold 40 supporters. How many buses are 
needed? (Carpenter, Lindquist, Matthews & Silver, 1983).  
2. 228 tourists want to enjoy a panoramic view from the top of a high building that can be accessed by elevator only. 
The building has only one elevator with a maximum capacity of 16 persons. How many times must the elevator 
ascend to get all the tourists on the top of the building? Verschaffel, 1995) 
3. At the end of the school year, 50 elementary school children try to obtain their athletics diploma. To receive the 
athletic diploma they have to succeed in two tests: running 400 m in less than 2 minutes and jumping 0.5 m high. All 
the children participated in both tests. Nine children failed the running test and 12 failed the jumping test. How 
many children did not receive their diplomas? (Verschaffel, 1995) 
4. Carl and George are classmates. Carl has 9 friends that he wants to invite to his birthday party. On the other side, 
George has 12 friends that he wants to invite to his birthday party. Since Carl and George have the same birthday, 
they decide to give a party together. They invite all of their friends. All their friends come to the party. How many 
friends are there at the party? (Nelissen, 1987)  
5. A man wants to have a rope long enough to stretch between two poles 12 m apart, but he has only pieces of rope 
1.5 m long. How many of these pieces would he need to tie together to stretch between the poles? (Greer, 1993) 
6. Steve has bought 12 planks of 2.5m each. How many 1 m planks can he saw out of these planks? (Kaalen, 1992)  
7. Sven's best time to swim the 50 m breaststroke is 54 seconds. How long will it take him to swim the 200 m 
breaststroke? (Greer, 1993)   
8. The flask is being filled from a tap at a constant rate. If the water is 4 cm deep after 10 seconds, how deep will it 
be after 30 seconds? (This problem was accompanied by a picture of a cone-shaped flask) (Greer, 1993)  
After each problem, I have indicated its original source; however, in some cases the numbers were replaced by 
others.  

 
Students’ written responses to the problems were the source of data. Written directions asked 

students to show all their work to support each of their answers and to write down any questions or 
concerns they may have about each problem. I recognize that written responses have some intrinsic 
limitations when compared to verbal protocols. However, written protocols allow researchers to 
collect data from large samples. Moreover, some researchers (Hall, Kibler, Wenger, & Truxaw, 
1989) have validated the use of written responses to infer cognitive processes. 

Analysis and Results 
Each response to problems 1 and 2 was coded as correct or incorrect. Each response to problems 3-8 

was coded as correct, partially correct, or incorrect. Two raters judged every response. A response 
was judged as correct if it included a realistic numerical answer that estimated or indicated the range 
of possible solutions and took into account the contextual restraints of the real-world problem 
situation. A response was judged partially correct if it was incomplete or wrong but included a 
realistic comment suggesting that the student displayed awareness of the contextual restraints of the 
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real-world problem situation. A response was judged incorrect when it did not suggest any awareness 
of the contextual restraints of the real-world problem situation. The inter-rater agreement was 99.7%. 
Table 2 summarizes the results of the analysis. 

 
Table 2: The Number and Percentage of Correct, Partially Correct, and Correct Responses for the 

8 Experimental Items 
Problem Number and percent of 

correct responses 
Number and percent of 

partially correct responses 
Number and percent of 

incorrect responses 
1 76 (78.5%) 0 (0%) 21 (21.5%) 
2 80 (82.5%) 0 (0%) 17 (17.5%) 
3 3 (3%) 16 (16.5%) 78 (80.5%) 
4 3 (3% 17 (17.5%) 77 (79.5%) 
5 2 (2%) 4 (4%) 91 (94%) 
6 24 (24.5%) 1 (1%) 72 (74%) 
7 1 (1%) 4 (4%) 92 (95%) 
8 0 (0%) 6 (6%) 91 (94%) 

Total  189 (24.5%)  48 (6%) 539 (69.5%) 
Subtotal 33 (5.5%) 48 (8%)  501 (86%) 

 
As shown in Table 2, PETs’ performance on most items was alarmingly poor: The percentage of 

incorrect responses ranged from a high 95% for item 7 to 17.5% for item 2. Overall, the percentage 
of realistic responses (correct responses and partially correct responses) on the eight problematic 
items was only about 30.5%. We should notice, however, that the number of realistic responses was 
considerable greater for the division problems involving remainders, problems 1 and 2. If we exclude 
these two problems from the analysis, then the percentage of realistic responses for the remaining six 
problems is only about 14%.  

Discussion and Conclusion 
The purpose of the present study was to collect systematically empirical data about the extent to 

which prospective elementary teachers in the USA activate their contextual knowledge when solving 
problems whose solution in not the direct result of an arithmetic operation. Using similar problems 
and methodology as previous studies (e.g., Verschaffel & De Corte, 1997; Verschaffel, De Corte, & 
Lasure, 1994), a test consisting of eight problematic items and four standard problems was 
administered to a sample of 621 PETs. The analysis has been completed for 97 PETs (three groups) 
and it is reported in the present article. 

Although previous studies have convincingly demonstrated children’ strong tendency to ignore the 
contextual realities embedded in the story of the problem situation, I was hoping that the findings 
with prospective elementary teachers would be much more encouraging. After all, prospective 
elementary teachers are part of a more mature and experienced population and it is reasonable to 
assume that they have an understanding of the contextual knowledge needed to realistically solve the 
problems. Therefore, the question of PETs’ failure to activate this contextual knowledge needs to be 
further discussed and investigated. I offer several tentative hypotheses to explain PETs’ lack of 
disposition to model contextual word problems realistically. 

First, children and PETs’ lack of activation of their contextual knowledge may be due to their 
constant exposure to traditional and stereotypical school word problems. If this is the case, then this 
tendency may remain constant or get stronger with additional years of immersion in the mathematical 
culture of traditional classrooms. Future research is needed to better understand the effects of 
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traditional learning environments on students’, including PETs, failure to activate their contextual 
knowledge to solve problematic problems. 

A second possible explanation to understand PETs’ tendency to ignore the contextual realities of the 
situation embedded in the problem story is that they lack enough real-world knowledge of the 
situational context of the problematic problems. Even though this seems unlikely, follow-up studies 
should provide empirical data to confirm or refute this hypothesis. 

A third explanation may be that PETs approached the problematic problems in an automatic way 
thinking that they were standard mathematical problems without reflecting on the contextual realities 
of the problem. Further research is needed to better understand PETs’ suspension of sense-making 
when solving these types of problems. 

In conclusion, this study provides, at the very least, some empirical evidence that PETs in the USA 
lack an initial disposition or reaction to consider the contextual restraints of problems grounded in the 
real world. Further research is needed to better understand PETs’ apparent suspension of sense-
making when engaged in solving problems that require realistic interpretations. 
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In this report, I describe how prospective middle school teachers created strip diagrams to solve 
fraction multiplication problems. I analyzed classroom videos from a year-long content course in 
order to determine what how teachers drew the diagrams and found four critical features of the 
drawings. I explore how they used the features as they drew and explained their thinking. 

Keywords: Teacher Education–Preservice, Rational Numbers, Representations and Visualization 

In North America, representations are a critical component in school mathematics (La Secretaría de 
Educación Pública, 2011; Ontario Ministry of Education, 2005; National Governors Association 
Center for Best Practices & Council of Chief State School Officers, 2010). Researchers have also 
emphasized the importance of representations in mathematical thinking (Cuoco, 2001; Janvier, 
1987). Both teachers and students use representations to help them solve and make sense of problems 
(e.g., Lobato et al., 2014), communicate their ideas (Roth & McGinn, 1998), and participate in 
mathematical activity especially if their language is not the privileged language in the classroom 
(Turner et al., 2013) However, there are some roadblocks presented in the research on teacher 
knowledge about representations. Researchers have produced little evidence that teacher preparation 
programs (both for practicing and prospective teachers) prepare them to successfully integrate 
representations in the classroom (Stylianou, 2010). In this study, I provide a case demonstrating 
prospective teachers can sensibly engage in mathematics with representations. In particular, I ask the 
following questions: How do prospective teachers draw strip diagrams to solve fraction 
multiplication problems in class? How do they use the strip diagrams to solve fraction multiplication 
problems? 

Theoretical Framework 
Researchers who have studied representation use in class (Izsák, 2003; Saxe, 2012) have generally 

agreed to distinguish what is being represented and what is “doing” the representing (cf. von 
Glasersfeld, 1987). In this study, I refer to representations as observable geometric inscriptions that 
can be referred or pointed to as the object of discussion (Goldin, 2002). It is this indexical and 
communicative nature of representations allowing students to explain their thinking and for others to 
engage in another’s way of reasoning. When students create a display to represent their thinking, they 
also communicate with them. In other words, they tailor their display with an audience in mind 
(Saxe, 2012) and thus students select salient features to highlight and point when creating and talking 
with representations. Additionally, I frame representations as culturally and historically rooted. A 
representation’s cultural and historical meaning stems from how communities interact with an 
inscription over time (Blumer, 1986). For example, a class can ascribe the meaning to the inscription 
“=” as “execute the arithmetic to the left” if they are continually asked to solve result-unknown 
problems over time. 

Data and Analysis 
I analyzed four weeks of instruction from a sequence of two mathematics content courses for 

prospective middle school teachers (PSMTs) enrolled in a teacher education program. The same 
instructor taught both courses. The objective of the course was to strengthen the students’ 
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mathematical understanding of middle school topics. The 13 PSMTs enrolled in the course were 
predominantly white women. The students were expected to use a multiplicand-multiplier definition 
for multiplication, notated by equation N · M = P (Beckmann & Izsák, 2015). In this equation, N 
denotes the number of base units in one group (the multiplicand), M denotes the number of groups 
(the multiplier), and P denotes the total number of base units in M groups. The class also defined the 
fraction a/b as the quantity formed by a parts of size 1/b. They were also expected to explain with 
drawings rather than memorized algorithms or symbol pushing.  

The main data corpus for this study was video and audio-recorded lessons from class. The primary 
analytical techniques I used were modified from Saxe et al., (2015) and focused on identifying forms 
and functions of the representations. In this report, I focus on how “coarse forms” were drawn. A 
coarse form is a set of inscriptions used sequentially. When listening to explanations during 
discussions, I segmented the drawings based on how the PSMT described the sequence of drawings 
as indicated by utterances such as “I did this…and then drew this…” (Fig. 1). I then found coarse 
forms that were similar across all the drawings. 

 
Figure 1: An example of distilling coarse forms 

Results 
I summarize the four main coarse forms I characterized in Table 1.  I then describe how they were 

used for multiplication problems and illustrating it with student work. 
 

Table 1: Coarse forms characterizing strip diagrams for fraction multiplication 
Form Partitioned Parts Dual Function of a Strip 

Schematic 
  

Description Equi-partitioned rectangle with each 
part partitioned further  

A strip, rectangle 

Function(s) Create a particular number of parts Represent two different quantities where the 
amount of one quantity is one 

 Dual Function of a Part Phantom Parts 

Schematic 

  
Description One part of an equi-partitioned 

rectangle 
Equi-partitioned rectangle then more parts 
are added 

Function(s) 
Part represents an amount of a 
quantity and another amount of 
another quantity 

Determine the size of a part or partitioned 
part 
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Explicitly describing two quantities. As PSMTs drew strip diagrams, they described both the full 
strip and parts with respect to two quantities, the multiplier and multiplicand. Analytically, I found 
the Dual Function of a Strip and a Part present in all the strip diagrams. At the beginning of the 
sequence of lessons, the instructor formally introduced the multiplier-multiplicand definition of 
multiplication. Throughout the period, the instructor constituted the norm of identifying the group 
and units in the PSMTs diagrams. 

 
Figure 2: Hannah’s diagram for the Bat Milk Cheese problem 

 
Hannah demonstrated working with two different quantities while solving the Halloween-themed 

problem, “You had 1/4 of a serving of bat milk cheese. One serving of bat milk cheese is 8/3 ounces. 
How many ounces of cheese do you have?” She began her drawing by showing one whole serving or 
one group and showing the size of the group. She wrote out the definition “8 parts each size 1/3 of an 
ounce.” She then realized she wanted to show eight parts in the strip and noticed she already had four 
parts. She partitioned each part into two smaller parts to show eight parts. She ended by saying there 
are two-thirds ounces in one-fourth of a part because there are two parts, each one-third of an ounce 
in the yellow part indicating one-fourth of a serving. 

Determining the number of parts needed. The PSMTs wrestled with the appropriate number of 
parts required to solve the problems. They thought through the number of parts they created from the 
multiplicand when it was not divisible by the number of parts they needed. 

 
Figure 3: Elizabeth and Jack’s diagram for the Blank Multiplication problem 

 
For instance, Elizabeth and Jack were thinking about the number of parts while working on a 

multiplication problem, “One serving of ___ is 3/4 ___. You had 2/5 of a serving. How many ___ of 
____ did you have?” In this blank problem, the PSMTs were invited to provide their own quantities. 
During small group discussion, Elizabeth explained that they started with a strip representing one 
gram partitioned into four and shaded three parts representing three-fourths of a gram or one serving. 
She wanted to find two-fifths of three-fourths. She partitioned each fourth part five parts then Jack 
suggested she should “get” two partitioned parts from each parts to get two-fifths of the serving, she 
highlighted two of the three one-fourth serving partitions. Partitioning of the parts was prevalent in 
almost all the diagrams created. 



Using strip diagrams to support prospective middle school teachers’ explanations for fraction multiplication 

	 1588	

Determining the size of a part. The last form, Phantom Parts, emerged towards the end of the 
sequence of lessons. PSMTs began with a strip representing one group and representing an amount of 
base units as indicated by the multiplicand. When the multiplier was less than one, the PSMTs they 
needed to add “Phantom” parts in order to determine the size of the parts. They drew out additional 
parts to describe the product with respect to the base unit, thus they had to draw a whole base unit to 
describe the size of the product in terms of base units.  

 

 
Figure 4: Elizabeth’s diagram for the Goblin Goo problem 

 
Consider Elizabeth working on the problem “You had 2/3 of a serving of goblin goo. One serving 

of goblin goo is 4/5 liters. How many liters of goblin goo do you have?” First, she drew a strip 
representing both one serving and four-fifths of a liter, similar to Hannah’s use of the Dual Function 
of a Strip in the previous problem. She highlighted four parts to show four-fifths of a liter or one 
serving as seen in Figure 3. Upon partitioning each fifth into three, she labelled and described each 
partitioned part as one-fifteenth of a liter. She finally highlighted two-thirds of a serving by 
highlighting two columns of the partitioned serving to show two-thirds of a serving as eight-
fifteenths. While she did not express any reason for changing her diagram from Phantom part to 
incorporating the Phantom part in the initial strip, the next day while talking to one of the graduate 
students about this problem, she said, “I think it helps understand how many parts there are of a liter. 
‘Coz that’s why it was confusing to me was putting in in twelfths because that’s not twelfths of a 
liter… You can do much less work if you just understand that there’s a pretend liter… just go with 
liters the whole time. Don’t change your wholes last minute.” 

Discussion and Conclusion 
The results of this study provide a characterization of how representations evolve over time. In this 

case, the forms of strip diagrams evolved. The PSMTs’ explanations for multiplication were rooted 
in two practices—using strip diagrams and a definition of multiplication. Strip diagrams evolved 
over time to address certain features of both the problem and diagram. By using a quantitative 
definition for multiplication, they were able to describe parts of the diagram (strips and partitions) 
with respect to two quantities. Some future steps for both researchers and teachers can be drawn from 
this report. When analyzing inscriptions, researchers must attend and be explicit about the grain size 
of the inscription. I have shown how describing coarse forms enabled me to describe continuities and 
discontinuities between points in time in order to characterize how representations change and 
potentially teaching opportunities for new forms and functions to emerge. However, although this 
was helpful for me analytically, such an analysis emerged from the data I had i.e., how these 
particular PSMTs talked.  
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This study documented changes in the types of questions posed by pre-service teachers (PSTs) who 
participated in a semester-long professional development (PD) program focused on questioning in 
algebra. PSTs who participated in the PD—who were conducting 1-1 tutoring for students with 
learning disabilities during the same time—showed positive changes in the types of questions they 
posed. PSTs reduced their frequency of closed, leading questions to lead students through solution 
methods, and they increased their frequency of questions to probe students’ thinking, to focus 
attention on important mathematical ideas, and to establish mathematical relationships. 

Keywords: Algebra and Algebraic Thinking, Teacher Education – Preservice, Classroom Discourse, 
Special Education 

The development of positive, productive classroom discourse practices is a challenging component 
of learning to teach mathematics. Posing questions is one way for teachers to scaffold students’ 
mathematical learning, giving a teacher insight into students’ thinking while promoting student 
autonomy and sense making (Anghileri, 2006). However, posing questions is a complex skill 
(Hufferd-Ackles et al., 2004; Imm & Stylianou, 2012; Kazemi & Stipek, 2001). For pre-service 
teachers (PSTs) to pose questions that probe students’ thinking, help students focus on important 
mathematical ideas, and make necessary connections, they likely need consistent, ongoing 
professional development (PD) and opportunities for reflection. This is especially important for 
future special educators who may have less training in mathematics content and discipline-specific 
practices for teaching math. 

The purpose of this study was to document changes in the types of questions posed by PSTs who 
participated in a semester-long PD program focused on questioning in algebra. We worked with four 
PSTs who were special education majors with a content emphasis in mathematics. We facilitated 
weekly training sessions, concurrently with which the PSTs tutored students with LD in 1-1 settings. 
We found that the PSTs became better throughout the PD at asking questions to probe students’ 
thinking and make mathematical ideas explicit. 

Research Perspectives 
Teacher questioning is one aspect of classroom mathematical activity, and it is difficult to isolate 

teacher questioning from other aspects of teaching and learning. However, characterizations of the 
different types of questions that teachers pose—for example, leading (closed) questions, probing 
questions, or (open) questions to extend students’ thinking—have been useful to document features 
of existing classroom practice (Boaler & Brodie, 2004; Hufferd-Ackles et al., 2004; Moyer & 
Milewicz, 2002) and to support teachers in improving their questioning practices (Aydogan et al., 
2018; Di Teodoro et al., 2012; Piccolo et al., 2008). Boaler and Brodie (2004), for example, 
established a set of nine categories of teacher questions that shares features with other frameworks. 
The types of questions that mathematics teachers pose include categories like “leading students 
through a method,” “exploring mathematical meanings,” and “orienting and focusing.”  

Research has shown across multiple contexts that PSTs across grade levels especially struggle with 
questioning, primarily posing lower-order questions focused on the recall of facts or the steps of a 
procedure (Diaz et al., 2013; Kaya & Ceviz, 2017; Purdum-Cassidy et al., 2015). It can be difficult 
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for PSTs to anticipate how they might pursue extended sequences of questions to probe student 
thinking (Kilic, 2018; Weston et al., 2018). However, there is some evidence that sustained and 
supported reflection on the part of PSTs can support improvement in questioning practices, in 
particular when PSTs work in 1-1 settings with students, and when attention to questioning is 
integrated with the development of content knowledge and professional noticing (van den Kieboom 
et al., 2014; Weiland et al., 2014). Thus, it is reasonable to expect that PSTs can benefit from 
sustained PD in the area of questioning and consistent opportunities to practice questioning in 
controlled settings. 

Data and Methods 
Participants 

Four PSTs participated in this project for three semesters during a teacher preparation program at a 
large university. Although the PSTs were special education majors, they had all selected math as 
their area of focus and were recruited from a mathematics methods course based on their 
achievement and engagement in the course. In the first year of the project, the PSTs met with the two 
authors on approximately a weekly basis, for a total of 15 sessions. Most of the time in our sessions 
was spent developing the PSTs’ algebra content knowledge and questioning. Concurrently with our 
tutor training, PSTs tutored on a weekly basis. The students they tutored were all identified as having 
LD, and they were enrolled in the first year of a 2-year remedial algebra sequence at a large suburban 
high school. 
Tutor PD 

The math content of our PD sessions with the PSTs was primarily related to linear functions and 
solving systems of equations, because this was the content covered in the associated algebra course 
for most of the year. Our discussions of questioning proceeded along a trajectory: 

• Distinctions between funneling sequences (i.e., a sequence of closed questions to lead students 
towards a solution) and focusing sequence (questions that build upon students’ contributions 
and help to focus on key mathematical ideas) (Herbel-Eisenmann & Breyfogle, 2005; Wood, 
1998). 

• “Buying time” questions, intended for PSTs to slow the pace of conversation and have time to 
react to student thinking. 

• The use of probing questions and how teachers have used probing questions to help students 
generate correct explanations (e.g., Franke et al., 2009). 

• Distinctions between asking and telling, and considerations of when “telling” might be a more 
appropriate practice than asking closed questions (Baxter & Williams, 2010). 

Data Collection and Analysis 
In addition to the PD, PSTs provided 1-1 tutoring weekly for approximately 45 minutes per session. 

Each tutoring session was recorded using a document camera that captured the conversations as any 
written work produced on the table. We selected three sessions from each tutor to focus our analysis: 
one session each from the beginning and end of the first year, and one session from the second year 
of tutoring. For consistency in our sample of data, we selected sessions in which linear functions 
were the main topic of focus of students’ work. 

A research assistant transcribed the selected sessions, and we adapted Boaler and Brodie’s (2004) 
categories of questions to code the PSTs’ questions across the sessions (Table 1). First, both authors 
as well as the research assistant coded two transcripts and compared our initial coding. This allowed 
us to clarify coding criteria. At this stage we also shared our initial coding with an external advisor to 
get feedback on our coding criteria and improve the validity of our codes. After clarifying our 
definitions and distinctions between the question types, we each coded two more transcripts to test 
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our reliability. Having achieved sufficient reliability, we divided the remaining transcripts to code. In 
this final phase, we each highlighted sections that seemed to be edge cases so that we could resolve 
such cases via discussion and consensus.  

 
Table 1: Types of Teacher Questions, Adapted from Boaler and Brodie (2004) 
Question Type Description 

Leading Through a Solution Questions requiring short answers on the part of the student, 
generally focused on the steps of a solution. 

Exploring Mathematical Meanings Questions requiring students to establish connections 
between mathematical ideas.  

Probing Questions that ask students to explain why a particular 
solution was valid or reasonable. 

Orienting and Focusing Questions that ask students about important elements of a 
task, to help focus students’ attention. 

Connecting to Context Questions about a real-world context, either the given 
context of a task or introducing a new context. 

Results 
Table 2 summarizes the PSTs’ questions in semester 1 of year 1 in semester 2 of year 1. These two 

sessions occurred near the very beginning and, respectively, near the very end of our tutor training. 
(Results from year 2, during which PSTs continued tutoring but no longer received training, will be 
added prior to PMENA 2020.) Several outcomes are notable in Table 2. First, and most importantly, 
PSTs substantially reduced their use of “leading” questions with students from the beginning to the 
end of the tutor training program. Leading questions are those that roughly correspond to initiation 
(I) questions in an IRE sequence and are generally defined by the fact that they require very short (1-
3 word) answers to move a student through a solution procedure. 

 
Table 2: Changes in Tutors’ Questions Over Time 

 Year 1  
Semester 1 

Year 1  
Semester 2 

Leading Through a Solution 86% 68% 
Exploring Mathematical Meanings 7% 8% 

Probing 4% 15% 
Orienting and Focusing 4% 6% 
Connecting to Context 0% 2% 

 
With the reduction in “leading” questions, PSTs asked many more questions to explore 

mathematical meanings, to probe students’ thinking, and to focus students on important mathematical 
ideas. It is notable that, even by the end of the 15-week PD, over two-thirds of PSTs’ questions were 
still leading questions. This is partly explained by the fact that leading questions—by their very 
definition—typically come in condensed sequences, for example with a tutor posing 3-4 such 
questions to lead a student through one task or part of a task. Other types of questions are less 
predictable in nature and create more opportunity for students to direct the discussion. 
An Example of PST Questioning 

We share one example, from a conversation between Linda (a PST) and a student, Mia, to illustrate 
the use of questions that went beyond leading questions. This example came from a year 1 semester 2 
session. Linda and Mia were together looking at a “worked example,” a task in which two linear 
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functions had been graphed (incorrectly) to identify a point of intersection, and Mia needed to 
determine whether the solution was correct. 

Linda:   Okay, so did the student graph these correctly? (leading through a solution) 
Mia:  No.  
Linda:  What did they do wrong? (probing) 
Mia:  For the blue one they went up, well like they went up the y-axis correctly, but they went 

up-right instead of up-left when they graphed the -3. 
Linda:  Oh okay so, what did they do with the 3, like what did they do wrong with the 3? 

(probing) 
Mia:  They went to the right instead of to the left. 
Linda:  What does it mean when they go to the right? (exploring mathematical meanings) 
Mia:  It is a negative slope. 
Linda:  When they go to the right? (leading through a solution) 
Mia:  Oh wait no, it’s a positive slope when you go to the right. 
Linda:  Oh okay, so they just forgot the negative. 

One phenomenon that is illustrated in this conversation between Linda and Mia was the way in 
which different questioning types seemed to have a snowball effect. By posing two probing 
questions, Linda was able to draw enough information out of Mia that she could then use that 
information to establish more general connections. Just as “leading” questions tend to reproduce 
themselves, more open-ended questions also beget further open-ended discussion. 

Discussion and Conclusion 
Prior research has shown how challenging it can be for PSTs to develop productive questioning 

practices. This work has shown that pre-service special educators can learn to pose more questions 
that probe and extend the mathematical thinking of students with LD. Even so, leading questions may 
continue to serve a purpose in 1-1 tutoring sessions as a form of emotional scaffolding (Hord et al., 
2018) to maintain students’ engagement in their work. While there is not clearly an ideal ratio for the 
different types of questions tutors should pose during 1-1 work with students, it is promising to see 
tutors expand their range of questioning in ways that give students opportunities to engage in deep 
mathematical discussions. 
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This study uses hypothetical teaching scenarios as a methodology to explore pre-service teachers’ 
reflective practices about social dynamics in elementary classrooms. Here we unpack tensions that 
emerged for pre-service teachers as they explored the role of the teacher in responding to a scenario 
involving third-grade students navigating ideas of mathematical equivalence. In particular, we 
contrast approaches focused on teacher control with approaches focused on student ownership, 
attending also to pre-service teachers’ emphasis on the individual versus the group. Finally, we 
share design and methodological implications for the development and use of hypothetical teaching 
scenarios in teacher education. 

Keywords: Teacher Education - Preservice, Elementary School Education, Classroom Discourse, 
Equity and Diversity 

Background and Goals 
This research explores how hypothetical teaching scenarios (or “case-based scenarios”) as a 

methodology can foster pre-service teachers’ reflective practices about social dynamics in 
classrooms. This paper sits at the intersection of literature on teachers’ reflective practices (e.g., 
Zeichner & Liston, 1996) and case-based scenarios as a research tool for providing authentic 
windows into the teaching profession (e.g., Sykes & Bird, 1992). Here we explore how scenarios can 
elicit tensions among pre-service teachers (PSTs) about their views on teaching. One such tension, 
which has been highlighted in existing literature, centers on classroom approaches focused on teacher 
control versus student ownership (Stefanou et al., 2004). This tension is knowingly important as new 
teachers tend to teach in ways similar to how they were taught (Buchmann, 1989), yet mathematics 
reforms have encouraged a shift toward more student-driven mathematics engagement (National 
Council of Teachers of Mathematics, 2014). By identifying nuances in this tension through 
unpacking PSTs’ responses to one scenario, we can learn more about how hypothetical teaching 
scenarios can foster reflective practices in this important area. 

A body of work has documented the value of teachers developing reflective practices (Zeichner & 
Liston, 1996), or skills that enable teachers to observe and notice students’ social interactions and 
ideas about content in a classroom. While these skills are important for responding to and building on 
students’ thinking in the moment (Barnhart & van Es, 2015; Jacobs et al., 2010; Stockero, Rupnow, 
& Pascoe, 2017), learning to notice can be difficult (Jacobs, Lamb, & Philipp, 2010; van Es & 
Sherin, 2002), and teachers sometimes focus on their own behaviors at the expense of student 
thinking (Star & Strickland, 2008). While many approaches exist with related goals (e.g., Nichols, 
Tippins, & Wieseman, 1997; Rich & Hannafin, 2009), here we explore hypothetical teaching 
scenarios as a mechanism for supporting PSTs’ development of reflective practices, particularly 
related to classroom social dynamics. 
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In this work we use one hypothetical teaching scenario to examine PST perspectives on the role of 
the teacher in addressing issues related to social dynamics in the elementary classroom. Specifically, 
we explore the tension between traditional approaches in which the teacher maintains control and 
student-centered approaches in which students drive much of the decision-making and social work of 
learning (Stefanou, Perencevich, DiCintio, & Turner, 2004). The following two-part research 
question guides our work: How do PSTs respond to a hypothetical teaching scenario about social 
dynamics and mathematical equivalence in an elementary classroom? More specifically, what 
tensions emerge as elementary PSTs engage in reflective practices about mathematics teaching and 
learning through discussion of the scenario? 

Methodology 
Case Design 

This study builds on the long history of using case-teaching in teacher education (Sykes & Bird, 
1992) as a method for supporting teacher candidates in learning a variety of necessary teaching skills 
and practices for engaging in what Shulman (1992) called “the messy world of practice” (p. xiv). 
Here we continue the trend of using such cases to capture teaching dilemmas with no clear resolution 
(Carter, 1999) and to analyze these cases through open-ended qualitative coding of teacher 
candidates’ discussions (Southerland & Gess-Newsome, 1999). In particular, we explore PST 
discussions that emerged in response to a particular scenario involving three third-grade students 
working to solve an equivalence problem (8 + 5 + 4 = 4 + ___). The teacher overhears their 
conversation (Figure 1), in which a hypothetical student (“Pat”) tries to get his peers to attend to the 
location of the equal sign. After reading the scenario, PSTs were prompted to discuss the dynamic 
among the students: “How do you think the dynamic came about?” and “If you were the teacher, 
when would you intervene? How? What would you do?”  

 

Rebecca: 
Pat: 
Rebecca: 
Gabe: 
 
Rebecca: 
Pat: 
Gabe: 
Rebecca: 
Pat: 
Gabe: 

I’m not sure what to do. I’m confused. Do I fill in the blank? 
This is so easy guys! The answer is just 13. 
I don’t think it’s easy. That was rude Pat. 
Plus, I don’t think you did it right Pat. I think the answer is 17. Cause 8 plus 5 plus 
4 is 17. 
Yeah. That seems smart. 
You guys are so dumb. You have to pay attention to the equal sign... 
Don’t act like the boss of us. You always act bossy. 
I think it’s 21. Cause I added it all up. 
If you guys would just listen I could teach you how to do it. 
We can figure it out ourselves. Thanks anyway. 

Figure 1: Student Dialogue in “Mathematical Equivalence” Teaching Scenario  
 

The dialogue in Figure 1 was adapted from Heyd-Metzuyanim & Sfard (2012) and Langer-Osuna 
(2011), with a focus on issues of gender in math class interactions. Additionally, the mathematical 
content for this scenario (equivalence) connects with standards 1.OA.6 and 1.OA.7 in the Common 
Core State Standards for Mathematics (National Governors Association Center for Best Practices & 
Council of Chief State School Officers, 2010), as well as literature that highlights how noticing the 
location of the equal sign impacts strategy use and learning outcomes (Alibali, Crooks & McNeil, 
2018; Gutiérrez et al., 2018). Further details about the design of this scenario, including the racialized 
and gendered aspects are discussed in Gutiérrez et al. (2019). 
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Data Collection and Analysis 
Forty-eight elementary PSTs (Mean age = 23.9, SD = 4.1) who engaged with the “Mathematical 

Equivalence” scenario in a math content course for elementary teachers consented to participate. 
Thirty-three identified as female, two identified as male, and the rest did not report gender 
identification. The PSTs were randomly assigned to small groups (N=14; 2-4 per group), with 10 
minutes to read and discuss the scenario. All discussions were audio recorded and transcribed, and 
analysis began with an initial process of open coding and data reduction (Saldaña, 2015). The 
complexity emerging in PSTs’ responses related to the role of the teacher in the scenario then led us 
to identify tensions that emerged around how to address issues related to social dynamics, which we 
present here along with illustrative examples. Our goal here is to offer interpretations of the tensions 
we observed and capture the complexity of PSTs’ perspectives (Stake, 1995), rather than attempt to 
systematically characterize all instances of PSTs’ reflective practices in the data corpus. By offering 
rich examples, we aim to demonstrate how this particular hypothetical teaching scenario elicited and 
promoted critical reflection around crucial topics such as classroom power dynamics. 

Findings 
Here we examine tensions related to social dynamics that emerged as elementary PSTs discussed 

the scenario. While some PSTs groups directly grappled with the tensions identified, weighing the 
benefits and drawbacks of different approaches, other groups explored only one possible pathway. 
The presence of such wide-ranging approaches across conversations suggests affordances of bringing 
these approaches into conversation with each other, an implication we take up in our discussion 
section. 

In their conversations, PSTs explored the tension between teacher-led and student-led approaches to 
addressing issues of power in the mathematics classroom. For example, Group 12 discussed when – 
and whether – the teacher should intervene in group dynamics. To begin, one PST commented, “I 
feel like really if I were listening when Rebecca’s like that was rude Pat, I feel like I would have been 
like, Rebecca’s right—that is rude, Pat! That’s not really like a thing to do because then they’re just 
gonna be wanting to be calling each other out.” A second PST noted that “then Rebecca might feel 
that like you’re on her side, like you’re picking sides” and questioned, “Or do you kind of just like let 
them figure it out on their own?” After a brief discussion about lessons learned in another course, the 
first PST then noted that the latter approach aligns more closely with what the PSTs were taught: “I 
feel like there’s—I mean—you’re supposed to encourage them to talk it out.” The second teacher 
concurred and added benefits, saying, “That’s what I was thinking. Like let them learn more social 
skills and stuff.”  

In this discussion, the PSTs questioned whether they should jump in to let Pat know that his 
behavior was unacceptable, or whether they should let the students “talk it out” themselves. The 
PSTs also briefly attended to the goals a teacher might have related to avoiding choosing sides and 
helping students to learn social skills. This discussion exemplifies the tension between approaches 
that emphasize teacher control versus student ownership.  

A PST in a different group encapsulated this struggle between wanting to take action and letting the 
students try to handle the situation on their own: “The initial reaction is to, as soon as you hear that 
negativity, step in. But, sometimes it's better to let that negativity keep going so that they work it out 
and then you approach at the end and say, ‘Okay, how could we have done that better?’” (Group 11) 
After more discussion, the same PST then elaborated on one challenge of trying to refrain from 
intervening as a teacher: “It's also hard because in real time, you don't know what comes after each 
sentence. So you're like, do I stay and wait for this? Do I intervene now? Do I check out another 
group? I don't know.” (Group 11) In both groups, the PSTs acknowledged benefits of letting students 
“work it out” or “talk it out” and “learn...social skills”; here, however, the PST identified a challenge 



Pre-service elementary teachers navigating tensions related to classroom social dynamics through hypothetical 
teaching scenarios 

	 1598	

related to that approach --  that the situation might get worse without teacher intervention (“you don’t 
know what comes [next]”) -- identifying one source of tension related to determining the teacher’s 
response. 

Within discussions about how to navigate student social dynamics, another issue emerged for PSTs 
– whether intervention should occur at the individual or group level. In Group 7, a PST started by 
suggesting that the teacher talk to Pat and “maybe say like, ‘Just cause something's easy for you 
doesn't mean it's easy for everyone else….Can you help explain it to Rebecca?’” Then one of the 
other PSTs chimed in to suggest, “I think it'd be better to recognize [the] group. You know, I don't 
think anybody wants to be pulled aside individually.” While many other PST groups did not 
explicitly debate these approaches, disparate ideas were offered ranging from “talk to Pat 
beforehand” to “go over group work rules [with] the whole class.”    

Here we see multiple dimensions of how the tension related to the teacher’s role in addressing 
classroom power dynamics played out in PSTs’ discussions. PSTs struggled through the issue of 
when (and if) to jump into conversations and whether intervention should occur at the individual or 
group level. In both instances they reflected on power dynamics while trying to work out the 
teacher’s role in these interactions.  

Discussion  
Hypothetical teaching scenarios offer a productive avenue for eliciting tensions experienced by pre-

service teachers. We argue that discussion of such scenarios serves multiple purposes: First, the 
scenarios serve as stimuli that allow PSTs to engage in and build their capacity for reflective practice 
in which they consider differing approaches to the teacher’s role in responding to issues related to 
social dynamics. Second, hypothetical teaching scenarios can be used as research tools to understand 
PSTs’ perspectives and struggles and to identify points of tension that are ripe for future 
investigation. Third, these scenarios can serve as teaching tools to elicit different PST viewpoints and 
then put contrasting perspectives in conversation with each other. While some PST groups in our 
data corpus explicitly discussed pros and cons of contrasting approaches in a given area, others 
primarily focused on one potential approach, suggesting benefits of facilitating discussion across 
groups, an approach we will take in future research. As teacher learning communities often avoid 
explicit disagreement and discussion of contrasting perspectives (Dobie & Anderson, 2015; 
Grossman, Wineburg, & Woolworth, 2001), we argue that hypothetical teaching scenarios can serve 
as a productive resource in teacher education for elevating issues with which PSTs grapple. 
Furthermore, engaging with such scenarios can help to create a culture of rich discussion around 
tensions of teaching and learning while also fostering PSTs’ reflective practices in ways that can 
provide opportunities for future learning. 
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National and state standards in the US have emphasized the importance of solving and posing word 
problems in students’ mathematics learning for decades. Therefore, it is essential for prospective 
teachers (PTs) to have the mathematical knowledge necessary to teach these skills to their future 
students. Unfortunately, little research has investigated how PTs develop problem-posing skills. This 
study investigated PTs’ abilities to pose two-step addition and subtraction word problems in the 
context of a collegiate teacher education course. The researchers analyzed incorrect problems to 
identify error patterns among the mistakes made by PTs. By employing thematic qualitative text 
analysis, the researchers identified eight distinct common error categories. These results can be used 
to inform teacher education and to adapt tasks and instructional strategies for more effectively 
helping PTs develop their problem posing abilities.  

Keywords: Teacher Education - Preservice, Mathematical Knowledge for Teaching, Instructional 
Activities and Practices, Number Concepts and Operations  

Introduction 
The Standards for Preparing Teachers of Mathematics put forth by the Association of Mathematics 

Teacher Educators (AMTE, 2017) call for beginning teachers of mathematics to “regard doing 
mathematics as a sense-making activity that promotes perseverance, problem posing, and problem 
solving. In short, they exemplify the mathematical thinking that will be expected of their students,” 
(p. 9). The standards further indicate that effective mathematics education programs “develop 
positive dispositions toward mathematics, including persistence and a desire to engage in posing and 
solving problems,” (p. 70). As such, helping prospective teachers (PTs) learn how to pose 
mathematics word problems should be a goal of teacher preparation programs. Towards this goal, the 
researchers investigated two research questions:  

1. With what frequency are PTs able to write correct, two-step addition and subtraction word 
problems?  

2. What patterns emerge in the errors that arise when PTs write two-step addition and 
subtraction word problems? 

The researchers of this study evaluated addition and subtraction word problems posed by K-8 PTs 
enrolled in an undergraduate mathematics problem-solving course with the intent of identifying 
emergent trends of conceptual difficulties. The results of this study can inform mathematics teacher 
educators (MTEs) in developing targeted and meaningful activities to address PTs’ difficulties and 
support their learning to pose multi-step word problems. 

Literature Review  
Even though problem posing has been discussed in mathematics education since the 1980s (Brown 

& Walter, 1983; Kilpatrick, 1987; NCTM, 1989), little has been done to investigate or ensure that 
teachers are prepared to pose problems to their students. Researchers have dug deeply into the role 
problem-posing can play in students’ mathematical development (Akay & Boz, 2009; Alibali et al., 
2009; Sharp & Welder, 2014; Bonotto, 2013; Silver & Cai, 1996; Ticha & Hospesova, 2013), and 
this work has found that problem-solving skills do not necessarily equate to problem-posing skills. 
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Furthermore, Alibali and colleagues found that having students write original multiplication word 
problems “revealed difficulty with the underlying meaning of multiplication” (p. 257). Similarly, 
Sharp and Welder (2014) found that asking seventh graders to write a division of fractions story 
problem exposed multiple “areas of limited conceptions that may not have been identified through 
traditional algorithm-driven assessments” (p. 546). 

Since problem posing is an instructional activity that has been shown to benefit student learning by 
providing instructors insight into students’ conceptions, teachers should be prepared to incorporate 
such activities in their future classrooms. However, to do so, they must first learn how to pose 
problems themselves. Therefore, it is important that PTs be given opportunities to develop problem-
posing skills during their mathematics education preparation. 

As MTEs, our attention then turns to how we can efficiently prepare PTs to pose a variety of word 
problems. The National Research Council tells us that “addition and subtraction are used to relate 
amounts before and after combining or taking away, to relate amounts in parts and totals, or to say 
precisely how two amounts compare” (2009, p. 32). Their work and the Common Core State 
Standards Initiative (NGA & CCSSO, 2010) have highlighted the multiple situations in which 
addition and subtraction occur by developing a framework for word problems that can be used to 
categorize them according to their structural differences. This framework produced 14 clearly 
distinguished categories, which give way to instructional strategies that MTEs can use for guiding 
PTs in developing problem-posing skills. 

Methods 
At a tier one research institution in the southern United States, the researchers collected data from 

PTs enrolled in an undergraduate mathematics problem-solving course that focuses on teaching 
mathematics through problem solving (Alwarsh, 2018; Bostic et al., 2016; Chapman, 2017; Fi & 
Denger, 2012). Instructors of this problem-solving course have incorporated a variety of instructional 
activities and strategies to support PTs in their learning to create original one- and multi-step addition 
and subtraction word problems that utilize a variety of problem structures. One such task asked PTs 
to pose four 2-step addition and subtraction problems to match four sets of specified structures (e.g., 
change – add to – change unknown and part-part-whole – part unknown). The data analyzed in this 
report includes problems posed by PTs in one instructor’s course across two semesters. Thirty-seven 
PTs were enrolled in each semester of the class for a total of 74 PTs. All PTs were enrolled in 
programs leading to teacher certification in the areas of EC-6 (Generalist) or grades 4-8 mathematics 
and science, English, or history. 

Throughout their coursework, PTs were introduced to the taxonomy of common addition and 
subtraction situations as identified by the Common Core State Standards (NGA & CCSSO, 2010) as 
a basis for discussing structural differences between addition and subtraction word problems. After 
categorizing and solving a variety of one-step word problems, the PTs posed one-step word problems 
to match each of the 14 possible problem structures. PTs received feedback on the one-step problems 
they wrote, which were mostly correct. Afterwards, class activities focused on categorizing and 
solving two-step addition and subtraction word problems. Lastly, PTs were given the aforementioned 
assignment in which they were instructed to pose four two-step word problems to match given pairs 
of addition and subtraction problem structures. This assignment resulted in 282 PT-posed, two-step 
word problems (n=282). 

To analyze the 282 word problems, the researchers used thematic qualitative text analysis. First the 
problems were coded as being correct (n=124) or incorrect (n=158). Next, categories of error patterns 
identified in the 158 incorrect problems were created both deductively and inductively (Kuckartz, 
2014), first at a macro and then micro levels. A temporary category was created based on the number 
of steps required to solve each incorrect problem, followed by whether the structures of the posed 
problem matched the assigned structures. As the researchers continued their analyses, they 
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determined whether each new incorrect problem matched an existing category or if a new category 
was necessary. To test the validity of the devised coding scheme, the researchers re-coded all 282 
word problems independently according to their correctness and the categories of error patterns that 
had emerged. After discussion, agreement was reached for 100% of the analyzed word problems. 
Lastly, the categories of error patterns were analyzed by the frequency at which they were exhibited 
by the PTs. 

Results 
As mentioned, 124 of the 282 word problems correctly provided a scenario that included two 

situations that matched both of the assigned structures and asked a question that required a two-step 
calculation utilizing the unknowns from each situation. Fifty-six of the remaining 158 problems 
correctly posed a valid two-step addition/subtraction question and were only deemed incorrect in this 
analysis because they simply did not meet the structural criteria of the prompts.  

The remaining 102 PT-submitted problems were deemed as having one or more structural errors. 
The analysis of these errors led to the identification of eight distinct categories of error patterns, 
dependent upon the number of steps required to solve the problem, the appropriateness of the 
question(s) asked, and the use of the assigned structures. Due to space restrictions in this report, we 
will explicate only the most-frequent category of error pattern, problems that only required one step 
(n=68), and provide examples of the ways in which one-step errors occurred as found in PTs’ work. 
Of the remaining 34 problems, 12 required more than two steps, three required zero steps (as the 
solutions had been provided within the context of the problems), four required algebra in their 
solutions, and 15 could not be solved with the given information. 
One-step Problems (n=68) 

The most common error resulted from PTs who were able to build up two addition/ subtraction 
structural situations but did not properly utilize the unknown information from the first scenario to 
form a question that required a two-step calculation (n=68). Sixty-three of these one-step problems 
posed a single question, but the question still failed to connect the two unknowns. These 63 one-step 
– one question problems were further categorized according to whether the PTs used the assigned 
structures or not. The remaining five one-step problems resulted in the posing of two separate 
questions. Examples of each type are provided below. 

One-step – one question – two correct structures (n=31). Thirty-one of the 63 one-step, one-
question problems built contextual scenarios that correctly matched both of the requested problem 
structures. However, due to a lack of connection between the two scenarios, the question posed only 
required one calculation to be solved. For example, one PT submitted the following problem, 
exhibiting this common error, in response to the second prompt (change – add to – start unknown; 
compare – more – bigger unknown): 

Sarah had some pieces of candy. Four more pieces were given to her, so she had ten pieces 
of candy total. Amanda had five more pieces of candy than the amount of candy Sarah was 
given. How many pieces of candy does Amanda have?  

This PT provided a scenario that matched the two assigned structures but did not pose a question 
that would require the solver to utilize the unknown information from the first step as known 
information in the second step. Specifically, in this example, the unknown information in the first 
scenario is the number of pieces of candy Sarah starts with, but the second scenario connects the 
second unknown to the number of pieces Sarah was given. Since this information was provided 
(“Four more pieces were given to her”), the only required step to answer the question is adding four 
and five to get nine pieces of candy. 
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One-step – one question – incorrect structure(s) (n=32). The remaining 32 of the 63 one-step, 
one-question problems exhibited the same error as above but were further flawed in the sense that the 
scenarios posed did not fully match the requested structures. For example, for prompt 3 (part-part-
whole – addend unknown; compare – more – difference unknown), one PT submitted the problem:  

Sarah has four red shirts and some green shirts. Sarah has two more red shirts than green 
shirts. How many green shirts does she have?  

Again, in this problem, only one calculation is necessary to answer the question posed: four (red 
shirts) minus two (more red shirts than green shirts) equals two (green shirts), making it a one-step 
problem. However, this problem also exhibits structural issues. The first scenario (part-part-whole – 
part unknown) was not fully developed, as the whole amount was never provided (leaving two pieces 
of unknown information: the number of green shirts and the total number of shirts). Furthermore, the 
second scenario created a compare – more – smaller unknown situation (when the prompt specified 
difference unknown). 

One-step – two questions (n=5). A small subgroup of these one-step problems (n=5) contained two 
independent scenarios and asked two separate questions in an effort to satisfy the two-step prompts. 
Four of these problems included the correct assigned structures, one did not. The PTs who wrote 
these problems knew that two steps were necessary to satisfy the given task but showed difficulty in 
connecting their unknowns into a single question. For example, one PT-submitted the following 
problem to the third prompt (part-part-whole – addend unknown; compare – more – difference 
unknown): 

Maria has 4 apples and some cherry pies. She has a total of 7 pies. Kara has more pies than 
Maria. They together have a total of 15 pies. How many cherry pies does Maria have, and 
how many pies does Kara have?  

Discussion 
The skill analyzed in this study was the ability of PTs to write addition and subtraction word 

problems that utilized one unknown in a second scenario to create a two-step problem. The level of 
difficulty of these problems for solving purposes is quite low, but the necessary skill to create such 
problems proved quite high with only 44% of the PTs able to correctly formulate a two-step word 
problem as requested. Alarmingly, a large proportion of the 56% of PTs who were unable to create 
two-step problems tended toward writing one-step problems with disconnected or incorrectly 
connected scenarios.  

Teachers at every level need to be prepared to create original word problems and support their 
students in developing problem-posing skills. Our findings are especially concerning given that the 
participants in this study were being trained to teach mathematics in elementary classrooms yet 
displayed great difficulty in formulating elementary-level word problems. As we, the researchers, 
apply the findings to our mathematics problem-solving course, we are using the error pattern 
framework developed here to facilitate targeted discussions of common errors in the classroom. The 
findings of this study will inform our development of a task designed to confront common errors 
head on so that PTs will be more cognizant of effective and ineffective problem-posing strategies. 
Future research will study the effects of this task. 
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This paper shows a study of the transition from procedural to conceptual learning from a 
conversational learning approach evidenced by students of pre-service teachers in mathematics in 
the context of the solution and discussion of a geometrical task. The study was conducted with a 
group of twelve future teachers and their instructor from a public university. Results found that 
students are able to move from procedural to conceptual learning when the procedures and 
understandings of the concepts involved in the task are confronted during the conversation, allowing 
them to move from the use of the formula of the area to the significance of geometric figures by 
establishing relationships between their dimensions. 

Keywords: Instructional activities and practices, Teacher Education - Preservice, Teacher 
Knowledge. 

In the social construction of knowledge, conversation has an important role in learning since it 
allows the negotiation of meanings and the emergence of common understandings (Baker, Jensen & 
Kolb, 2005; Scott, Mortimer & Aguiar, 2006), so learning is conceived as the result of conversations 
and experiences associated with a topic (Pask, 1976; Vygotsky, 1986; Kolb & Kolb, 2017). 

This study is found in the previous approach because it is considered that the promotion of the 
transition between procedural and conceptual learning in pre-service mathematics teachers is possible 
through conversation. We are particularly interested in analyzing how to support the transition from 
procedural to conceptual learning when an instructor speaks with their students about the resolution 
of a geometrical task. 

Authors such as Calcagni and Lago (2018) emphasize the relationship between learning and 
conversation in classroom interactions and their relationship with educational quality. They point out 
how the manners of speech in the classroom have implications for the quality of learning of students 
and propose breaking the typical sequence of conversations in the classroom starting with dialogical 
conversations. The field of professional development of mathematics teachers also delves into these 
ideas by exploring the type of learning opportunities that will help to achieve multifaceted and 
comprehensive conceptualizations in teachers and future teachers (Newton & Poon, 2015; Nagle et 
al., 2013), as well as the role of dialogue and reflection to generate learning that benefits the 
transformation of the teaching practice (Aparicio, Sosa, Cabañas & Gómez, 2020; Jaworski, 2006; 
Saylor & Johnson, 2014). 

Procedural and conceptual learning in pre-service teachers in mathematics  
Concept and procedure are considered to complement one another in mathematics because their 

interrelationships transform and expand knowledge (Star, 2005, 2007; Baroody, Feil & Johnson, 
2007). Ramsden (1992) proposes that understanding the learning process requires understanding how 
procedural and conceptual learning lives in the classroom, that is, how a student organizes, proceeds 
and structures the learning experience and how the student manages to give meaning. 
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The proposal is to analyze the transition between “know how” (procedural learning) and “know 
what” (conceptual learning) in pre-service teachers based on the former ideas and the assumption that 
conversation can be a window for understanding. Understanding such a transition process would 
shed light on the type of professional learning opportunities that can be achieved by future teachers 
during conversations among them. 

Procedural and Conceptual Learning from the Theory of Conversation 
This study is supported by an integrated model between the learning proposal based on the theory of 

conversation of Pask (1976) and the experiential learning cycle of Kolb and Kolb (2017), as shown in 
Figure 1. It is recognized that conversational learning transits from a procedural level, characterized 
by questions and answers focused on how an actual experience is lived (1) and how it is extrapolated 
(4), to a conceptual level, characterized by questions and answers about the reflection of the 
experience (2) and its abstraction (3). An initial study reported in Aparicio et al. (2020) shows how 
conversation and reflection provide opportunities for the development of mathematical and 
pedagogical knowledge in future teachers when they move between the modes of learning in Figure 
1, supported by questioning, exchange and articulation of their procedures and concepts. 

 
Figure 1: Conversational learning based on the models of Pask (1976) and Kolb and Kolb (2017) 

[Aparicio et al., 2020] 

Method and Analysis 
Twelve pre-service mathematics teachers participated in the study when they were taking a course 

in Didactics of Mathematics in their final year of university training. Two sessions of 90 minutes 
each were analyzed. During the sessions, the instructor and the students talked about the performance 
of a geometrical task (see figure 2) which was designed to promote reflection and discussion among 
the interlocutors about the forms used to solve the task and their arguments. The role of the instructor 
was to help the students to speak about the “how” and “why” of their procedures and concepts. The 
sessions were audio taped and transcribed for their analysis, the work done by the students with paper 
and pencil, and the group conversations conducted with the use of the blackboard were also 
documented. 

 
Figure 2: Instrument for data collection 
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The conversational analysis was carried out in two moments. The first moment examined how the 
discourse of the instructor and her underlying intent were externalized based on its form and content. 
The second moment related both aspects of the discourse with the procedural and conceptual learning 
of the students. The analysis focuses on the identification of references in the statements to 
techniques, methods, and procedures or to meanings, conceptualizations, and properties of the 
concepts. 

Results 
The transition from procedural to conceptual learning was evidenced; however, due to the limited 

space, this paper only reports the modes of learning through experimentation (1) and learning 
through reflection (2). Table 1 describes the transition. 

 
Table 1: Relationship between the teaching discourse and conversational learning 

  Discourse of the instructor Learning modes 
CE (1) 

Learning by 
experimentation 

Mode The way to proceed with the task is 
questioned. 

Procedural: The spatial 
reconfiguration is proposed as a 
technique to solve the task. 
Procedural: The use of the 
formula of the area is proposed as 
part of the procedure 

Content Awareness of how the experience was 
lived and the selection of the 
procedure. 

RO (2) 
Learning through 

reflection 

Mode a) The geometric content required to 
solve the task is questioned. 
b) The reason to use the formula of 
the area is questioned.  

Conceptual: The geometrical 
transformation and the formula of 
the area are proposed as concepts 
that allow the task to be solved.  
Conceptual: It is recognized that 
the use of the formula is not 
enough; it is necessary to signify 
the geometrical figures by means 
of the relation between their 
dimensions. 

Content a) Awareness of how to posit the way 
in which to proceed with the use of 
the formula. 
b) Understandings of the area of the 
formula of a rectangle are confronted 
to explain their use in the task. 

 
The transition from procedural to conceptual learning during the conversation of the task has the 

following sequence. Procedural learning begins with explanations on the technique of spatial 
reconfiguration which is used to obtain equivalent rectangular forms; subsequently, the formula of 
the area of a rectangle is used to guarantee the equivalence in the areas of the figures, provided that 
their base and height measurements are equivalent. This results in a conceptual learning by 
recognizing and proposing geometric concepts that are the basis for resolving the task; for example, 
the geometric transformation and the formula of the area. However, the conversation was led to the 
discussion of the relationships underlying the formula, discussing how to qualify the two-
dimensional forms. Therefore, it was recognized that the first thing to do to give meaning to the task 
and use of the formula during the conversation is to signify the geometric figures by means of the 
relationship with their dimensions. 

The first thing found with regard to the form and content of the conversation that favored such 
transition was the encouragement to explore ways of proceeding with the tasks. Secondly, opinions 
are sought on the geometric contents considered essential to its solution. This makes it possible to 
compare whether the presented concepts give an answer to the task, and finally discuss the 
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understandings of the formula of the area and its contribution to the conceptualization of the area as a 
quality of flat figures. 

Discussion and Conclusion 
A contribution of this study is the approach towards a characterization of conversation in the 

transition between procedural and conceptual learning in pre-service teacher in mathematics. 
Conversation is characterized, first, by questioning and confronting procedures and concepts used in 
the resolution of the task. In the second instance, a discussion is held focused on the analysis of the 
geometric contents that should be moved to solve it, and finally, conversation is led to how to give 
meaning to the task. The latter opens up a process of negotiation of the proposed ideas and meanings; 
for example, questions such as: Why is the formula of the area expressed in that way and not in 
another way? How does it work and what information does it provide on the area concept and its 
measurement? Why and how is the geometric transformation important for the resolution of the task?  

Results found that the characteristics of the conversation allow the participant to freely share their 
ideas, procedures and understandings of the task and its solution, as well as the contents of area, 
figure, and measurement, among others. The role of the instructor was as a guide to the reflections on 
the geometric contents. The conversation is much more reflective when the meanings are shared after 
being asked for explanations about the reasons why a procedure works and emphasizing the need to 
consider the meaning of what is done and why it is done. 

This type of conversational analysis in the classrooms for training future teachers are necessary to 
understand with greater precision the limitations and potentialities of conversation in the integration 
of procedural and conceptual aspects of professional learning. 
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Se presenta, desde una perspectiva del aprendizaje conversacional, un estudio sobre el tránsito de 
aprendizajes procedimentales a conceptuales que evidencian profesores de matemáticas en 
formación al resolver y conversar sobre una tarea geométrica. El estudio se realizó con un grupo de 
12 futuros profesores y su instructora de una universidad pública. Se encontró que los estudiantes 
logran transitar de aprendizajes procedimentales a conceptuales cuando durante la conversación se 
confrontan procedimientos y entendimientos de los conceptos implicados en la tarea, permitiéndoles 
pasar del uso de la fórmula del área a la significación de figuras geométricas a partir de establecer 
relaciones entre sus dimensiones.   

Palabras clave: Actividades y Prácticas De Enseñanza, Preparación de Maestros en Formación, 
Conocimiento del Profesor. 

En la construcción social del conocimiento, la conversación tiene un papel importante en los 
aprendizajes toda vez que permite negociar significados y generar entendimientos comunes (Baker, 
Jensen y Kolb, 2005; Scott, Mortimer y Aguiar, 2006), de modo que el aprendizaje se concibe como 
resultado de conversaciones y experiencias relativas a un tópico (Pask, 1976; Vygotsky, 1986; Kolb 
& Kolb, 2017). 

Este estudio se ubica en el enfoque anterior al considerarse que mediante una conversación es 
posible favorecer la transición entre aprendizajes procedimentales y conceptuales entre futuros 
profesores de matemáticas. En particular nos interesa analizar cómo apoyar el tránsito del 
aprendizaje procedimental al conceptual cuando una instructora conversa con sus estudiantes sobre la 
resolución de una tarea geométrica. 

Autores como Calcagni y Lago (2018) destacan la relación entre aprendizaje y conversación en las 
interacciones del aula y su relación con la calidad educativa. Señalan cómo las formas de hablar en el 
aula tienen implicaciones en la calidad de aprendizaje de los estudiantes y plantean romper con la 
secuencia típica de las conversaciones en el aula a partir de conversaciones dialógicas. Estas ideas 
también se están explorando en el campo del desarrollo profesional del profesor de matemáticas, al 
indagar sobre el tipo de oportunidades de aprendizaje que ayude a alcanzar conceptualizaciones 
multifacéticas e integrales en profesores y futuros profesores (Newton & Poon, 2015; Nagle et al., 
2013), así como el papel del diálogo y reflexión para generar aprendizajes que beneficien la 
transformación de la práctica docente (Aparicio, Sosa, Cabañas y Gómez, 2020; Jaworski, 2006; 
Saylor y Johnson, 2014). 
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Aprendizaje Procedimental y Conceptual en profesores de Matemáticas en formación 
En matemáticas, el concepto y procedimiento son considerados complementarios ya que por medio 

de sus interrelaciones se logra transformar y ampliar el conocimiento (Star, 2005, 2007; Baroody, 
Feil & Johnson, 2007). Ramsden (1992) plantea que entender el proceso de aprendizaje requiere 
entender cómo viven en el aula el aprendizaje procedimental, es decir, cómo el alumno organiza, 
procede y estructura la experiencia de aprendizaje; y el aprendizaje conceptual, aquello que el 
alumno logra significar.  

De estas ideas y la asunción de que la conversación puede ser una ventana al entendimiento, se 
propone analizar el tránsito entre el “saber cómo” (aprendizaje procedimental) y el “saber qué” 
(aprendizaje conceptual) en estudiantes para profesores. Entender tal proceso de transición permitiría 
esclarecer el tipo de oportunidades de aprendizaje profesional que se pueden lograr en futuros 
profesores al conversar de una u otra forma con ellos. 

Aprendizaje Procedimental y Conceptual desde la Teoría de la Conversación 
El estudio se sustenta en un modelo integrado entre la propuesta de aprendizaje basado en la 

conversación de Pask (1976) y el ciclo de aprendizaje experiencial de Kolb y Kolb (2017), como se 
muestra en la Figura 1. Se reconoce que el aprendizaje conversacional transita de un nivel 
procedimental caracterizado por preguntas y respuestas centradas en el cómo se vive una experiencia 
concreta (1) y cómo se extrapola (4), hacia un nivel conceptual caracterizado por preguntas y 
respuestas sobre la reflexión de la experiencia (2) y su abstracción (3). Un estudio inicial reportado 
en Aparicio et al. (2020) se muestra que la conversación y reflexión brindan oportunidades para el 
desarrollo de conocimiento matemático y pedagógico en futuros profesores si estos transitan entre los 
modos de aprendizaje de la figura 1, apoyados en el cuestionamiento, intercambio y articulación de 
sus procedimientos y conceptos. 

 
Figura 1: Aprendizaje conversacional basado en los modelos de Pask (1976) y Kolb y Kolb (2017) 

[Aparicio et al., 2020] 

Método y Análisis 
Participaron doce futuros profesores de matemáticas que al momento estaban llevando un curso de 

Didáctica de las Matemáticas en su último año de formación universitaria. Se analizaron dos sesiones 
de 90 minutos cada una, en las que instructora y estudiantes conversaron sobre la realización de una 
tarea geométrica (ver figura 2) cuyo diseño buscaba suscitar reflexión y debate entre los 
interlocutores sobre las formas de resolverla y argumentarla. El papel de la instructora fue apoyar que 
los estudiantes externaran el “cómo” y “por qué” de sus procedimientos y conceptos. Las sesiones 
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fueron grabadas en audio y transcritas para su análisis, asimismo, se documentó lo realizado por los 
estudiantes en lápiz y papel y las conversaciones grupales promovidas con el uso de la pizarra.  

 
Figura 2: Instrumento para la recolección de datos 

 
El análisis conversacional se realizó en dos momentos. En el primero se examinó la manera en que 

se externalizó el discurso de la instructora, y su intencionalidad subyacente a partir de la forma y el 
contenido de este. En el segundo, se relacionó ambos aspectos del discurso con el aprendizaje 
procedimental y conceptual de los estudiantes. Se analizó si lo enunciado aludía a técnicas, métodos, 
procedimientos, o bien, a significados, conceptualizaciones, propiedades de los conceptos. 

Resultados 
Se evidenció la transición del aprendizaje procedimental al conceptual, sin embargo, por límite de 

espacio se reporta lo correspondiente al modo de aprender experimentando (1) y aprender 
reflexionando (2). En la Tabla 1 se describe la transición.  

 
Tabla 1: Relación entre el discurso instruccional y los aprendizajes conversacionales 
  Discurso de la Instructora Tipos de Aprendizaje 

CE (1) 
Aprender 

Experimentando 

Forma Se cuestiona la manera de proceder 
ante la tarea. 

Procedimental: Se propone la 
reconfiguración espacial como 
técnica para resolver la tarea. 
Procedimental: Se plantea la 
aplicación de la fórmula de área 
como parte del procedimiento. 

Fondo Se concientiza sobre cómo se vivió la 
experiencia y la selección del 
procedimiento. 

RO (2) 
Aprender 

Reflexionando 

Forma a) Se cuestiona el contenido 
geométrico que se requiere para 
resolver la tarea. 
b) Se cuestiona la razón del empleo 
de la fórmula de área.  

Conceptual: Se plantea a la 
transformación geométrica y a la 
fórmula de área como conceptos 
que permiten dar respuesta a la 
tarea. 
Conceptual: Se reconoce que no es 
suficiente sólo aplicar la fórmula, 
sino que se requiere significar las 
figuras geométricas por medio de 
la relación entre sus dimensiones. 

Fondo a) Se concientiza sobre cómo 
argumentan su forma de proceder con 
el uso de la fórmula. 
b) Se confrontan entendimientos de la 
fórmula de área de un rectángulo para 
explicar su empleo en la tarea. 

 
El tránsito del aprendizaje procedimental al conceptual durante la conversación de la tarea tiene la 

secuencia siguiente. En lo procedimental se inicia con explicaciones sobre la técnica de 
reconfiguración espacial con la cual se obtienen formas rectangulares equivalentes en área. 
Posteriormente se emplea la fórmula del cálculo de área de un rectángulo para asegurar la 
equivalencia en medidas de área entre ellas, siempre y cuando sus medidas de base y altura sean 
equivalentes. Lo anterior deriva en aprendizaje conceptual al reconocerse y proponerse conceptos 
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geométricos que son base para dar respuesta a la tarea, por ejemplo, la transformación geométrica y 
fórmulas de cálculo de área; sin embargo, la conversación fue conducida hacia el debate de las 
relaciones que subyacen a la fórmula, discutiéndose la forma de cualificar las formas 
bidimensionales. Debido a ello, se reconoce que, para dar sentido a la tarea y empleo de la fórmula 
durante la conversación, primeramente, se requiere significar a las figuras geométricas por medio de 
la relación con sus dimensiones.  

Sobre la forma y contenido de la conversación que favorecieron dicho tránsito se detectó que, en 
primer lugar, se propicia la exploración de las maneras de proceder en la tarea, en segundo lugar, se 
solicitan opiniones sobre los contenidos geométricos que se consideran esenciales para resolverla. Lo 
anterior permite confrontar si los conceptos expuestos dan respuesta a la tarea y finalmente, debatir 
los entendimientos de la fórmula de área y su aporte a la conceptualización del área como una 
cualidad de las figuras planas.  

Discusión y Conclusión 
El presente estudio aporta hacia una caracterización de la conversación en el tránsito del aprendizaje 

procedimental y conceptual de futuros profesores de matemáticas. La conversación se caracteriza, 
primeramente, por cuestionar y confrontar procedimientos y conceptos usados en la resolución de 
una tarea. En segunda instancia, se sostiene una discusión centrada en el análisis de los contenidos 
geométricos que se requieren mover para resolverla y finalmente, la conversación se dirige hacia 
cómo dotar de sentido a la tarea, en esto último, se abre un proceso de negociación de las ideas y 
significados propuestos para ello, por ejemplo, se cuestiona ¿Por qué la fórmula del cálculo de área 
es de esa manera y no de otra?, ¿Cómo funciona y qué información proporciona sobre el concepto 
área y su medida?, ¿Por qué y cómo la transformación geométrica es importante para la resolución de 
la tarea? 

Se reconoce que las características de la conversación permiten a los participantes compartir 
libremente sus ideas, procedimientos y entendimientos de la tarea y su resolución, así como de los 
contenidos de área, figura, medidas, entre otros. La instructora asume un rol de guía para las 
reflexiones sobre los contenidos geométricos. La conversación es mucho más reflexiva cuando se 
confrontan significados a partir de solicitarse explicaciones sobre el porqué funciona un 
procedimiento y se enfatiza la necesidad de considerar el sentido de lo que se hace y porqué se hace.  

Continuar este tipo de análisis conversacionales en las aulas de formación de futuros profesores, se 
considera necesario para entender con mayor precisión, las limitaciones y potencialidades de la 
conversación en la integración de lo procedimental y conceptual del aprendizaje profesional.  
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Angle measure is pervasive within mathematics curricula from elementary school through higher 
education. Yet, there is evidence that students and teachers alike experience challenges in 
quantifying angularity. To promote critical thinking about tools for measuring angles in our 
geometry courses for prospective elementary and middle-grades teachers, we designed non-standard 
tools and asked prospective teachers whether these tools would be valid for measuring angles. We 
present these tasks and our analysis of prospective teachers’ justifications regarding the validity of 
these non-standard tools. 
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Measurement is a critical domain of mathematics for students, as well as for prospective teachers 
(PTs) enrolled in teacher education programs (AMTE, 2017.) Within this domain, angle measure is 
pervasive within mathematics curricula from elementary school through higher education. Yet, we 
know from research and teaching that students, as well as prospective and practicing teachers, tend to 
experience challenges in quantifying angularity (Smith & Barrett, 2017). As mathematics teacher 
educators, we wanted to help PTs develop productive conceptions of angle measure, so we designed 
tasks for occasioning conversations about what it means to measure an angle to use in our geometry 
content courses. In particular, we asked PTs to determine whether several non-standard protractors 
were valid tools for measuring angles and to provide a justification for their decision. We focused on 
protractors because, (a) well-prepared beginning teachers are expected to “use measurement 
tools…[and] are skilled in describing how to select appropriate tools” (AMTE, 2017, p. 78), and (b) 
U.S. curricula and pedagogy have been critiqued for relying heavily on protractors without 
sufficiently emphasizing the underlying processes by which a protractor is used to measure angles 
(Moore, 2012). In this brief report, we present some of these tasks, summarize our analysis of PTs’ 
ways of reasoning about them, and consider implications of these results. 

Tasks and Methods 
To promote critical thinking about tools for measuring angles in our geometry courses for PTs, we 

designed a set of five non-standard tools that might be used for measuring angles. Our intention was 
to design tasks with the potential for encouraging PTs to think about what marks on a protractor 
might mean and how a tool for measuring angles might be created in the first place, rather than 
simply taking conventional protractors and the marks upon them as givens. We refer to the tools we 
created as funky protractors (Hardison & Lee, 2020); these tools are the angular analogue of the 
“strange” and “broken” ruler tasks others have used to occasion reflection on measuring lengths (e.g., 
Smith, Males, Dietiker, Lee, & Mosier, 2013; Dietiker, Gonulates, & Smith, 2011). For each funky 
protractor we designed, we altered one or more features to differentiate a conventional protractor 
from a funky one (e.g., unequally spaced linear or angular intervals between markings, non-standard 
shape, etc.). We intentionally designed some funky protractors to be valid tools for measuring angles 
and some to be problematic for measuring angles (from our perspective). Each funky protractor 
featured points along the boundary numerically labeled in 10° increments as well as one larger point 
suggesting a position for placing the vertex of an angle to be measured. Here, we focus on two funky 
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protractors, which are both valid tools for measuring angles (Figure 1), and our analysis of 
prospective teachers’ responses to these tasks. In this study we address the following research 
questions: (1) What decisions do prospective teachers make regarding the validity of potential 
angular measurement tools? (2) What strategies do PTs use to justify these decisions at the beginning 
and end of the course? 

 
Figure 1: Two Valid Funky Protractors 

 
Participants and Implementation 

We implemented the funky protractors tasks with PTs enrolled in three sections of a geometry 
content course at a large public university; each section was taught by one of the authors. In the 
second week of the semester, 45 of the PTs evaluated the validity of four funky protractors, including 
Protractor A (Figure 1), as part of a written homework assignment following a lesson on angle 
measurement informed by the first author’s prior research (Hardison, 2018) and principles of 
quantitative reasoning (Thompson, 2011). For further details regarding this lesson, see Hardison & 
Lee (2019). In addition to evaluating the validity of each funky protractor, we asked PTs to explain in 
writing why each funky protractor was, or was not, a valid tool for measuring angles. After collecting 
the written responses, we had a whole-class discussion in which PTs discussed their strategies for 
evaluating the validity of the funky protractors. Fourteen weeks later, 47 of the PTs evaluated the 
validity of Protractor E (Figure 1) and provided a written justification for their decision as part of 
their final written exam for the course. We analyzed responses from both the Week 2 homework 
assignment and final exam.  
Analysis 

We coded PTs’ written responses for each protractor along two dimensions: validity and 
justification. We first coded whether PTs determined each protractor to be valid, invalid, or if they 
failed to make a determination of validity (noncommittal). Then the first author used open coding 
(Strauss & Corbin, 1998) to establish a set of justification codes for characterizing the rationales PTs 
wrote to support their decisions. When a stable set of codes was established via iterative analyses, all 
responses were coded independently by both authors and compared; discrepancies were discussed 
until consensus was reached. A single validity code was assigned to each response; responses could 
receive multiple justification codes. Descriptions of the justification codes are provided in the 
findings section below. 

Findings 
Regarding the validity of protractors, on the Week 2 homework assignment, only two of the 45 PTs 

(4%) identified Protractor A as a valid protractor; the remaining 43 PTs (96%) concluded Protractor 
A was invalid. In contrast, on the final exam 77% of PTs identified Protractor E as valid, and 21% of 
PTs deemed Protractor E invalid (see Table 1).  

 



Prospective teachers’ strategies for evaluating non-standard angular measurement tools 

	 1617	

Table 1: Prevalence of Validity Codes for Protractors A and E 
Protractor (Week) # Valid (%) # Invalid (%) # Noncommittal (%) 
A (Week 2; n=45) 2 (4%) 43 (96%) 0 (0%) 
E (Week 16; n=47) 36 (77%) 10 (21%) 1 (2%) 

 
To support their decisions regarding validity, PTs provided a variety of justifications, from which 

we abstracted six broad categorizations: attending to measurable attributes, attending to particular 
angles, attending to shape features, attending to location, using a standard protractor, and other. We 
assigned attending to measurable attributes to justifications indicating attention to extents of 
successive instantiations of an attribute; for example, justifications reliant upon checking whether the 
tool indicated a consistent unit received this code. Furthermore, we established subcodes denoting the 
quantity indicated: angularity, distance between marks, and radial distance to marks. A response 
received the angularity subcode if the PT attended to angular units (e.g., Figure 2, left) and the 
distance between marks subcode if the PT attended to the distance between marks on the boundary 
(e.g., Figure 2, right). The radial distance to marks subcode was assigned when justifications 
indicated a PT was considering whether marks along the boundary were equidistant from the 
suggested vertex position. Although this is equivalent to checking whether the boundary formed a 
circular arc, PTs were not necessarily aware of this. When the particular quantity could not be 
inferred, we assigned a fourth subcode: ambiguous quantity; for example, this subcode was assigned 
when justifications referred to “even spacing” without further elaboration or annotations. From our 
perspective, an appropriate justification involves attending to whether the protractor can be used for 
counting successive angular units of a specified size (i.e., subcode angularity). 

 
Figure 2: Justifications Coded as Attending to Measurable Attributes: Angularity (Left) and 

Distance Between Marks (Right) 

We assigned attending to particular angles if a PT’s justification was rooted in the measurements of 
one or more specified angles. For example, some PTs argued that Protractor E was valid because it 
was appropriate for measuring right and straight angles without indicating whether the protractor 
would be appropriate for measuring other, arbitrary angles. Justifications were coded as attending to 
shape features when PTs claimed that protractors were valid or invalid based on the shape of the 
protractor’s boundary or the symmetry of the protractor. Justifications referencing position or 
location were coded as attending to location. For example, some PTs argued Protractor E was invalid 
because the suggested vertex position was not located on the midpoint of the protractor’s straight 
side. Using a standard protractor was assigned to responses indicating that a PT physically 
superimposed a standard protractor atop a funky protractor to evaluate its validity. Finally, 
justifications that were unclear or did not fit into any of the aforementioned categories were coded as 
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other. Codes for PTs’ justifications for each protractor are summarized in Table 2; percentages do 
not sum to 100% because some responses received multiple justification codes. 

 
Table 2: Prevalence of Justification Codes 

Protractor 
(Week) 

Measurable 
Attributes 

Particular 
Angles 

Shape 
Features 

Location Standard 
Protractor 

Other 

A (Week 2; 
n=45) 

24 (53%) 6 (13%) 23 (51%) 4 (9%) 1 (2%) 6 (13%) 

E (Week 16; 
n=47) 

30 (64%) 9 (19%) 2 (4%) 4 (9%) 4 (9%) 11 (23%) 

 
Table 3: Prevalence of Measurable Attribute Subcodes 

Protractor (Week) Angularity Between 
Marks 

Radial 
Distance 

Ambiguous 
Attribute 

A (Week 2; n=45) 1 (2%) 19 (42%) 1 (2%) 4 (9%) 
E (Week 16; n=47) 11 (23%) 9 (19%) 0 (0%) 10 (21%) 

 
As shown in Table 2, the majority of PTs (53%) attended to measurable attributes in their 

justifications for Protractor A. However, as indicated in Table 3, distance between marks along the 
boundary was the most prevalent attribute indicated in justifications for Protractor A; only one of 45 
responses received the attending to angularity subcode for Protractor A. The majority of PTs (51%) 
also attended to shape features, which are irrelevant from our perspective, when evaluating the 
validity of Protractor A. In contrast, when evaluating Protractor E on the final exam only 4% of PTs 
attended to shape features. The percentage of justifications coded as attending to measurable 
attributes increased to 64% for Protractor E with 23% of all responses indicating attending to 
angularity; additionally, a lower percentage of responses (19%) indicated attending to distance 
between marks along Protractor E’s boundary. 

Concluding Remarks 
In closing, we are encouraged by the increase in the percentages of PTs giving appropriate validity 

determinations and attending to angularity over the course of the study, as well as the decrease in the 
percentage of PTs attending to shape features; however, differences in the design of Protractors A 
and E merit cautious interpretation regarding these tasks’ impact on PTs’ content knowledge. More 
research is needed to understand how to better support PTs’ in developing productive quantifications 
of angularity. From our perspective, the funky protractors activity and the accompanying classroom 
discussion afforded opportunities for PTs to think critically about the essential features of valid 
angular measurement tools. It also afforded opportunities for us as instructors to gain insights into 
PTs’ thinking about measuring angles via the features to which they attended in their justifications. 
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This study describes the knowledge and skills pre-service teachers (PSTs) identify as important for 
teaching secondary mathematics to ELLs before and after their credential program. Preliminary 
results show that most of the PST’s (73%) initially described knowledge and skills globally with few 
specifics on implementation. During follow-up nearly half (45%) of the PSTs described more 
organized and specific ways to support learning for ELLs. Secondary analysis reveals various 
approaches to supporting ELLs, including 1) making mathematics accessible, 2) treating everyday 
language and experiences as resources, and 3) “engag[ing] students in mathematical practice” 
(Moschkovich, 2013, p. 49). 

Keywords: Teacher Education-Preservice, Teaching Tools and Resources, Equity and Diversity  

This study is part of a larger research project, Science and Mathematics Teacher Research Initiative 
(SMTRI), which seeks to explore novice secondary school teachers’ beliefs, knowledge, and skills to 
provide effective mathematics instruction to culturally and linguistically diverse students.  
Participants in SMTRI are graduates of the Cal Teach program representing five UC campuses.  This 
study is concerned with a subset of data from one campus.  Previous research has documented that 
many teachers feel underprepared to teach mathematics to English language learners (ELLs) (de 
Araujo, Roberts, Willey, & Zahner, 2018). Therefore, this study identifies the ways pre-service 
teachers (PSTs) take up and develop ideas and practices for supporting ELLs in secondary 
mathematics classes.  This study explores the research question: in a credential program that 
emphasizes the integration of content and language instruction, do PSTs ideas about knowledge and 
skills related to teaching ELLs change? If so, how? 

Conceptual Framework 
Research-based guidelines for equitable mathematics teaching practices for English Language 

Learners (Moschkovich, 2013) framed the analysis of the interviews. In particular, we considered the 
following guidelines because of their alignment with aspects of the SMTRI intervention: Engage 
students in the eight CCSS for mathematical practice, Keep tasks focused on high cognitive demand, 
conceptual understanding, and connecting multiple representations, Facilitate students’ production of 
different kinds of reasoning, and Focus on language as a resource for reasoning, sense-making, and 
communicating with different audiences for different purposes (Moschkovich, 2013). 

The study framed the development of teaching practices with a teacher development learning 
progression that describes a trajectory through four stages and considers the integration of English 
language development alongside content learning: 0 = Not Present (Rule-based or inflexible view of 
teaching practices), 1 = Introducing (global approach to teaching practices), 2 = Implementing 
(organized, planned approach to teaching practices, which includes probing, scaffolding, or 
connections to students’ experience), and 3 = Elaborating (teaching practices are flexible and 
responsive to context) (Adapted from Stoddart, Pinal, Latzke, & Canaday, 2002). 

Methods 
Participants in this study include 11 PSTs from two cohorts in a single-subject master-credential 

program for mathematics from one of the five UC campuses. Each participant was interviewed at the 
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beginning and end of their credential program. For this study, the authors solely focused on the 
sections and questions that were specifically related to ELLs. 

Interviews were initially coded using a rubric adapted from the Math Classroom Observation Rubric 
(MCOR) (see Stoddart, Pinal, Latzke, & Canaday, 2002). The MCOR was developed to characterize 
mathematics teacher instruction in alignment with the Common Core State Standards. The MCOR 
characterizes four aspects of teacher practice and pedagogy: 1) mathematics sense-making through 
applied math/engineering practices, 2) mathematics discourse, 3) English language and literacy 
development, and 4) contextualized mathematics activity. For each of these categories, the interviews 
were coded on a scale of 0-3. Differences in scores on pre- and post-interviews were then evaluated 
to determine changes in participants’ responses.  Interviews were coded by both authors and scores 
were calibrated to reach 100% inter-rater agreement. Secondary analysis of the interviews included 
purposeful selection of four PSTs within three categories: 1) highest overall scores, 2) most improved 
scores, and 3) scores that decreased.  The interviews from these four PSTs served as case studies for 
more in-depth analysis. 

Results 
Increased Implementation 

During the initial interview, most of the PST’s (73%) described knowledge and skills globally with 
little to no specifics on implementation. For instance, 7 out of 11 PSTs identified using “multiple 
representations” to support ELLs yet did not explain how or why they would use multiple 
representations. One PST said, “I think multiple means of representation and having multiple points 
of access of information at the same time.” Another PST similarly explained, 

It's kind of the same supports that you use working with all types of students with IEPs is or just 
different learning types or abilities. It's the UDL lesson plan with the multiple modes of 
representation and engagement and expression. You're just trying as many different things as 
possible to try to activate learning and understanding within all your students. (Transcript, 2020) 

During the follow-up, nearly half (45%) of the PSTs described more organized and specific ways to 
support mathematics learning for ELLs. Out of the eight participants who scored a “1” during their 
initial interview, two participants increased their scores by one point and two participants increased 
their scores by two. One participant scored a “2” on their initial interview and improved by one point. 
One participant’s score decreased by one point. 

Among participants who described more organized and specific plans for supporting ELLs, general 
ideas that were discussed initially became more organized and flexible.  Illustrating this, one PST 
mentioned giving students time to practice language during mathematics instruction: “I think group 
work and discussing among peers is important as well because I think another important part of 
language development comes from talking and listening [...] so they all have to have that practice of 
using that academic language.” In the follow-up interview, the same PST elaborated upon this idea of 
“practice” through their descriptions of having ELLs practice in a “safe way” and giving students 
opportunities to practice discourse in a “low-stakes environment” by using think-pair-shares and 
reflections. This PST then described, “in a math classroom you are trying to get the math across and 
not be so worried about that their response isn’t in perfect English to you, but that they understand 
the mathematical concepts that are happening.” Other PSTs discussed similar ideas across their pre- 
and post-interviews (e.g. multiple representations, getting to know the students, supporting practice 
with math and language, etc.) and the description of these descriptions often became more specific 
and organized during the follow-up. 
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Various Approaches to Supporting ELLs 
Secondary analysis of PSTs with the most improvement and the highest overall score reveals 

various approaches to supporting ELLs.  Approaches that emerged across the focal cases include 1) 
making mathematics accessible, 2) treating everyday language and experiences as resources, and 3) 
“engage students in mathematical practice” (Moschkovich, 2013, p. 49). 

Making mathematics accessible. Across the three focal cases, each PST identified ways of making 
mathematics accessible. Case Study 1 (CS1) discussed getting to know where students came from 
including their “culture” and “home language” with the rationale that knowing this information 
supports “students [to] see themselves being involved in the curriculum and being involved in the 
classroom and that their language is validated and their culture is validated.” Other ways CS1 
discussed making mathematics accessible included using “discovery learning”, supporting “students’ 
understanding of a concept before introducing the term”, using a familiar “context”, and drawing on 
“peers” as resources to support learning. Similarly, Case Study 2 (CS2) discussed the idea of 
facilitating “practice” with mathematics and language. Initially CS2 described “practice” in terms of 
“talking and listening” and reasoned that students need “to practice their language skills.” During the 
follow-up, CS2 discussed “practice” with more organization and flexibility. CS2 discussed the 
importance of practicing mathematics and language in a “low stakes environment” with peers and 
with the guidance of other instructional supports such as “think-pair-shares” and “personal 
reflection.” CS2 stressed the idea that mathematics should be the focus, not correctness of 
vocabulary, as students are making meaning for concepts.  Moreover, CS2 acknowledged that 
students need time “to process and think.” 

Treating everyday language and experiences as resources. An approach that consistently 
emerged across the focal cases included treating everyday language and students’ experiences as 
resources for learning.  Illustrating this, Case Study 3 (CS3) described drawing on various 
perspectives, bringing in context from students’ “home lives that relate[s] to the subject matter,” and 
being “flexible” with instruction.  Further, CS3 discussed giving students various opportunities to 
draw on familiar context and their linguistic resources to develop conceptual understanding while 
supporting increased precision with ideas and terminology. CS3 mentioned, “If students are able to 
informally talk to each other about concepts and their initial ideas, then they can get more and more 
precise [...with] explaining, justifying their ideas.” CS3 focused on ideas related to contextualizing 
mathematics activities in a way that reflects the lives and resources that ELLs bring with them to the 
classroom. Similarly, CS1 elaborated upon the idea that students should use be able to use their home 
language to support understanding when they described, 

Because mathematics requires students to explain one’s thinking a lot of the times, if 
students bring to the class more proficiency in another language, then using that language to 
explain mathematical thinking and to process and to think is a really, really great way for 
them to build conceptual understanding. (Transcript, 2020) 

In line with an elaborated view of instructional practices, the focal cases explicitly discussed 
connections to students’ lives and activities and discussed language as a resource. 

“Engage students in mathematical practice” (Moschkovich, 2013, p. 49). Two of the three focal 
cases identified teaching techniques that made explicit connections to supporting students’ 
engagement in mathematical practices. Such techniques included attending to reasoning, eliciting 
justification and explanations, supporting negotiating, and supporting precision.  CS3 described their 
approach to teaching as trying to uncover the “thinking behind it” as they talked about engaging with 
ELLs. Specifically, CS3 discussed giving assessments to ELLs where students could “come in and 
just talk to me and explain verbally or, you know, with a sketch.” CS3 talked about creating a 
classroom culture where students “informally talk to each other about concepts and their initial ideas, 
then they can get more and more precise.” These ideas reflected attending to the reasoning, not the 
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correctness of vocabulary, while supporting students to gradually move towards precision of ideas 
and vocabulary. In a similar fashion, CS1 described modeling justifications and explanations and 
supporting students in this practice. As they explained, “you’re constructing viable arguments that 
enforces a lot of communication and when you’re communicating about your ideas and when you’re 
defending your answers and you can explain something, that’s when you really get a strong grasp on 
understanding the concept behind things.” These two PST discussed instructional strategies that 
reflect an understanding of the mathematical practices as well as concrete ways of supporting 
engagement with the practices specific for ELLs. 

Discussion 
Specific approaches to mathematics instruction for ELLs emerged as a part of the secondary 

analysis of the focal cases.  These approaches include: 1) making mathematics accessible, 2) treating 
everyday language and experiences as resources, and 3) “engage students in mathematical practice” 
(Moschkovich, 2013). These approaches align with other works looking at mathematics teaching and 
ELLs (e.g. Bunch, 2014; Moschkovich, 2013) that can be enacted by monolingual and multilingual 
teachers.  Moschkovich (2013) highlights the importance of supporting mathematical reasoning, 
conceptual understanding, and discourse and broadening participation for ELLs in mathematics 
classes.  Further, “to support mathematical reasoning, conceptual understanding, and discourse, 
classroom practices need to provide all students with opportunities to participate in mathematical 
activities that use multiple resources to do and learn mathematics” (Moschkovich, 2013, p. 46).  The 
approaches that were discussed by the focal cases in this study reflect alignment with these.  The 
consistency of these practices and explicit references to classes and professors throughout the 
interviews suggest that these PST are taking up and developing the ideas that were presented to them 
during their credential program. Since improvement was not consistent across PSTs, and one PST 
scored lower on the follow-up interview, this work also shows that other factors (beyond the scope of 
this study) may contribute to the ideas PST have about mathematics instruction with ELLs. This has 
implications for PST education that future teachers may need additional support, outside of the 
classes they are taking, to fully develop strategies for supporting ELLs in secondary mathematics. 
PSTs in secondary mathematics would benefit from additional efforts by Cal Teach and credential 
programs to examine the role of language when learning mathematics and reflect on beliefs about 
ELs (NASEM, 2018).  This study is limited by small sample size and limits inherent to interview 
data. 
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Developing communally agreed-on criteria for proof in a mathematics classroom has been found to 
empower pre-service secondary mathematics teachers’ (PSMTs’) learning of proof. To date, we do 
not know how creating class-based criteria for proof throughout a semester-long course with a focus 
on secondary school mathematics can promote PSMTs’ understanding of proof. In this paper, we 
reported PSMTs’ evolution of what constitutes proof by comparing their initial and revised class-
based criteria for proof and investigating their videotaped lessons and video transcripts. Results 
indicated that PSMTs perceived mathematical values and norms of what counts as proof in their 
mathematics classroom community as the semester progressed.  
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Despite the importance of proof in school mathematics, pre-service secondary mathematics 
teachers’ difficulties with proof are well-documented (e.g., Ko & Knuth, 2013; Yee, Boyle, Ko, 
Bleiler-Baxter, 2018). One of the primary challenges pre-secondary school mathematics teachers 
(PSMTs) face in understanding proof is that they might not perceive or accept mathematical values 
and norms with respect to learning proof in their classroom community (Dawkins & Weber, 2017). 
To address this challenge, an emphasis on teaching and learning proof as a social, negotiated, and 
sense-making process has been found to promote PSMTs’ understanding of what constitutes proof 
and to enhance their ability to evaluate and construct proofs (e.g., Yee et al., 2018). To date, we have 
only found that Bleiler, Ko, Yee, and Boyle (2015) explicitly shared how undergraduate students in a 
transition-to-proof course developed, revised, and polished their communal criteria for proof 
throughout the entire semester. Given that mathematics teachers’ knowledge for teaching proof has 
an impact on their instructional practices (e.g., Bieda, 2010; Stylianou, Blanton, & Knuth, 2009), 
there is a need to provide insight into how PSMTs’ communal criteria for writing mathematical 
proofs is evolved throughout the semester-long course with an emphasis on secondary school 
mathematics. More specifically, this study investigated what PSMTs’ initial communally agreed-on 
criteria for proof were and how they evolved throughout the semester. 

Theoretical Framework  
In the mathematics community, mathematicians actively engage in social practices to negotiate their 

agreement on the validity of acceptable proofs in the mathematics community (Harel & Sowder 
2007). Along with this view, Stylianides’s (2007) definition of proof incorporates a focus on the set 
of statements (i.e., definitions, theorems), the appropriate forms of argumentations, and 
representations accepted and understood within a particular mathematical community, which shows 
the general case will be always true without exception. However, research has not adequately 
investigated how engaging in this type of mathematics classroom community can facilitate evolution 
of PSMTs’ understanding of proof in a course with a focus on secondary school mathematics. To 
address this research gap, attention must be paid to PSMTs’ communally agreed-on criteria for proof 
in such courses throughout the entire semester.  
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Methodology 
This study was conducted in an elective course focused on proof in secondary school mathematics 

at a Midwest University in the United States. The instructor (first author) selected, modified, or 
developed mathematical tasks in the domains of algebra, geometry, and number theory for the 
course. These three content domains are all vital to and pervasive in secondary school mathematics. 
In order for PSMTs to take ownership of their communally agreed-on criteria for proof and promote 
their self-regulation in learning proof throughout the semester, the instructor designed the course 
following the principle of the before-during-after (BDA) proof instructional sequence (see Ko, Yee, 
Bleiler, & Boyle, 2016 for detailed information about this three-part proof lesson plan and 
implementation). There were nine undergraduate students enrolled in the course, and only one 
PSMT, who transferred from another four-year college, had not taken any of the required proof-
intensives courses for his major. The primary sources of data for this paper were the PSMTs’ class-
developed lists of writing good proofs, as well as the video recordings and their transcripts. The 
videotaped sections were transcribed by a research assistant and were validated for their accuracy by 
either the second or the third author.  

 

 
Figure 1: Two Sample Arguments for the Regina’s Logo Problem 

Results 
Followed by the BDA instructional sequence, the PSMTs were asked to evaluate the validity of 

instructor-selected arguments (see the sample arguments of the Regina’s Logo problem adopted from 
Seago, Mumme, and Branca, (2004) depicted in Figure 1). Also, the instructor served as the 
representative of the mathematics community to ensure the PSMTs’ proposed characteristics for 
proof were acceptable. Then the whole class determined and ordered that generalization, logical 
order, correct terminology, clear and precise explanations, and identify given are the five most 
crucial characteristics of writing good proofs. The PSMTs then discussed their descriptions for each 
proof criterion as a whole class and came up with an initial list of writing proofs (see Figure 2).  

Throughout the entire semester, the PSMTs had two opportunities to modify the initial list of 
writing good proofs. The first revision happened during the third week of the semester when the 
whole class did not come to a consensus on the validity of one instructor-chosen argument of the 
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Sticky Gum problem (Fendel, Resek, Alper, & Fraser, 1996) shown in Figure 3 according to their 
original proof writing rubrics. For example, Renee suggested that “we need to add something like 
correct and enough explanations for each step.” For instance, Vivian said, “I was thinking maybe 
under [the] identifying the given [category].” Then the whole class agreed to change the description 
of the “Identify Given” category as “writing all given information that is pertinent to the proof.” 
During the same time, some PSMTs also suggested that variables and symbols should be added to the 
“Correct Terminology” category (see Figure 2).  

 

 
Figure 2. Initial and Evolution of the Communal Criteria for Proof. 

 

 
Figure 3: A Debated Argument for the Sticky Gum Problem. 

As the semester progressed, PSMTs had another opportunity to revisit and modify the proof rubrics. 
When negotiating the validity of the sample arguments for the statements, “Suppose m, n, and p are 
positive integers. If m is a factor of n, and m is a factor of p, then m is a factor of n + p,” some 
PSMTs pointed out that one of the biggest problems of the first revised proof criteria is clear and 
logical explanations. Given that not all the PSMTs in this class had completed the required proof-
intensive courses for their major, they discussed how much information they should include in each 
argument to be considered as a proof based on their class rubrics. For example, Ethan explained that 
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their group added the assumption of knowledge category because we “can’t just assume that people 
know things that could have been learned in other classes or in other settings.”  

After the whole class discussion, all the PSMTs decided to keep the top four and the last 
characteristics of writing proofs and to combine the other two categories, “Logical Order” and “Clear 
and Precise Explanations,” into one criterion. They also added the fourth criterion pointing out the 
importance of writing proofs that only used definitions, theorems, or principles that had learned, 
accepted, and discussed in this class (see Figure 1). The second revised list served as the final version 
of writing proofs, because all the PSMTs felt that this checklist was sufficient for them to construct 
and evaluate proofs for the rest of the semester. 

Discussion  
Throughout the semester the PSMTs did not make a major change on their initial list as seen in 

Figure 1, concurring with Bleiler et al.’s (2015) finding that instructor-selected sample arguments 
served as good foundations for students to consider the important characteristics of writing proofs. 
Another feature of the results is that the PSMTs’ communal criteria for proof are consistent with 
mathematics professors’ characteristics of a well-written proof, including logical correctness, clarity, 
and fluency (Moore, 2016). In addition, the PSMTs recognized that their written proofs should be 
readable and understood by audiences in their mathematics classroom community as the semester 
progressed. These two findings reveal that the PSMTs perceived mathematical values and norms of 
learning proof in their mathematics classroom community through constructing, evaluating, 
negotiating, and making sense of arguments, which more closely aligns with the practice of 
mathematicians (Harel & Sowder 2007). Even though PSMTs developed the initial list of writing 
good proofs and revisited it as the semester progressed, they still negotiated their evaluations for 
some of the instructor-selected arguments to be considered as proofs or not. Given that PSMTs’ 
communal understanding of what counts as a proof is affected by their instructor of a proof course, 
comparing how PSMTs and their instructor use their class-developed criteria for proof to evaluate the 
same arguments can provide more insight into their individual interpretations of each proof criterion 
within their mathematics classroom community.  
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An important challenge in math teacher education is helping prospective teachers (PTs) develop 
mathematical beliefs that support effective mathematics teaching. A growing body of research has 
established the potential efficacy of strategies that incorporate reflection with collaborative 
mathematical problem-solving. However, previous studies tended to collect data only at an 
individual level and analyze change at an aggregate, whole-class level. This brief research report 
uses frame analysis of individual, written reflections and small-group and whole-class reflection 
conversations to provide insight into the reciprocal relationships between individual PT beliefs, 
small-group interactions, and the whole-class classroom culture in a math content course designed 
to support PTs in developing productive beliefs about mathematics. 

Keywords: Teacher Beliefs, Teacher Education – Preservice, Classroom Discourse 

Teachers’ beliefs about mathematics teaching and learning can influence their instruction and either 
support or undermine student opportunities to learn (Conference Board of Mathematical Sciences, 
2012; Wilhelm et al., 2017). As a result, mathematics teacher education programs have a long history 
of trying to develop more productive mathematical beliefs in prospective teachers (PTs) before they 
begin teaching (Schram et al., 1988). This work remains an ongoing challenge, however, because PT 
beliefs about mathematics are multi-faceted and based on years of emotionally-charged experiences 
(Ambrose, 2004; Holm, 2019) and are therefore often resistant to change (Grootenboer, 2008). 
Shilling-Traina and Stylianides (2013) suggested, therefore, that “it is important that beliefs be 
explicitly addressed not only in methods courses, but in mathematics courses as well” (p. 404). This 
report focuses on a content course that was designed to initiate the process of supporting PT belief 
change with an emphasis on collaborative, small-group problem solving—small groups were 
consistently identified as important aspects of successful belief interventions (Shilling-Traina & 
Stylianides, 2013; Szydlik et al., 2003). Based on open-ended reflections, PTs identified groupwork 
as central to their learning in the course, so it seems likely that group interactions influenced their 
experience of the class and therefore its effects on their beliefs. This report uses frame analysis to 
begin to explore the relationships between PTs’ small-group interactions and their understanding of 
mathematics learning in a course designed to influence their beliefs about mathematics. 

Literature 
Many PTs enter their teaching programs with beliefs that are likely to hinder effective mathematics 

instruction (Grootenboer, 2008). They tend to hold procedural views of mathematics (Shilling-Traina 
& Stylianides, 2013) and to be skeptical of the possibility of solving novel problems (Szydlik et al., 
2003), though there is significant variation within the PT population, and many PTs hold a mix of 
beliefs that may align with both more traditional and reform instruction (Ambrose, 2002). Ambrose 
(2004) identified a number of criteria that could potentially stimulate belief changes in PTs, including 
emotionally-resonant experiences, chances to reflect on their beliefs and experiences, and 
participating in a community that embraces such beliefs. Similarly, Szydlik and colleagues (2003) 
were able to support PT belief change by creating a classroom community that facilitated active 
problem solving and PT autonomy. The course that is the subject of this brief report followed similar 
design criteria. 
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One challenge in researching change in PT beliefs, however, is that beliefs can be difficult to 
measure directly. Survey items may be misinterpreted by PTs (Szydlik et al., 2003), and when 
students are asked directly about their beliefs they may say what they think their instructor wants to 
hear without truly examining their beliefs or modifying their work with students (Grootenboer, 
2008). Surveys and interviews also tend to focus analysis at the level of the individual and fail to 
address the importance of reciprocal relationships between classroom culture, individual beliefs, and 
group interactions in the classroom (Cobb, 2000). This brief research report uses frame analysis to 
begin to examine beliefs at the individual, small-group, and whole-class levels. Frames are the 
underlying, often implicit, structures of expectations that organize how people understand and react 
to events, and frame analysis investigates how groups come to a common understanding of a frame 
or frames that invite a particular type of action or change (Benford & Snow, 2000). Frame analysis 
can be particularly appropriate for attending to the roles that power and authority play in frame 
negotiations (Hand et al., 2012), which in the context of collaborative mathematics work often 
manifests as differences in status—perceived competence, levels of participation, and influence—
between group members (Nasir et al., 2014). Frame analysis has been used to explore how particular 
frames became prevalent in a school community initiating instructional change (Coburn, 2006) and 
to examine collective belief change about mathematics learning in a collaborative group of teachers 
(Bannister, 2015). The analysis in this report will focus on identifying frame resonance (Benford & 
Snow, 2000; Coburn, 2006), which occurs when a frame that one individual offers is taken up and 
reinforced by others in a group. In particular, this report will investigate the following research 
question: What relationships can be seen between the frames that resonate in small-group and whole-
class reflection conversations, and the frames that PTs use in their individual reflection responses 
across multiple time periods? 

Methods 
Context and Participants 

The data analyzed in this paper were collected as part of a larger project analyzing PT beliefs about 
mathematical ability and learning—what Boaler (2016) labeled mathematical mindsets—in a 
required math content course for PTs in a large, urban, public university in the United States. 
Aligning with current recommendations to use active learning in content courses for PTs (Litster et 
al., 2020), the course used “group-worthy problems” to support students in developing their 
mathematical knowledge and productive beliefs about mathematics and mathematical learning (Nasir 
et al., 2014). The participants in the current study were drawn from two concurrently offered sections 
of the course—referred to as Class A and Class B. The author of this report was the instructor of 
Class B and planned collaboratively with the other instructor so that students in both sections had the 
same assignments and assessments. There were 65 PTs enrolled between the two sections, and 57 
consented to have their classwork analyzed for research purposes. 
Data Sources and Analyses 

The data used in the current analyses were drawn from reflections that PTs completed in class 
during weeks 6, 12, and 15 of a semester course—T1, T2, and T3 respectively. The dates aligned 
with the two midterm exams and the last class session before the final exam for the course. The 
reflection prompts asked PTs to do the following: 

1. Describe a significant or “Aha!” moment from class and explain why it was significant 
2. Reflect on their work/participation in the class so far 
3. Make or update a goal for themselves 
4. Create a plan to move towards their goal 
5. Reflect on how their learning in this class might apply to future teaching (only in T3) 
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PTs responded to the prompts individually and then discussed their memorable moments and goals 
in small groups. One PT from each group shared their response as part of a whole-class discussion. 
The small-group and whole-class discussions were audio-recorded. The written, individual 
reflections were entered into NVivo 12 and group reflections were imported into InqScribe. 
Individual and whole-class data were analyzed for all consenting participants from both sections, but 
the small-group analyses focus on the 29 participating students from Class B because a larger 
proportion of PTs in that class consented to the analysis of their audio data and because their groups 
for the group reflections were more consistent across timepoints. 

The individual reflections were coded for whether they framed important mathematical learning as 
active, interactive, passive, or unclear. Responses were coded as using an “active” learning frame if 
the PT described learning through individual problem solving—either in a significant past experience 
or as part of their goal moving forward. Responses were coded as using a “passive” learning frame if 
they described learning from listening to an explanation, practicing rote memorization, or taking or 
reviewing notes. They were coded as using an “interactive” learning frame if the PT framed 
interaction with others as central to learning, describing a combination of listening, questioning, and 
problem solving or describing the actions of the group as a whole rather than their actions as an 
individual. Finally, responses were coded as “unclear” if there was not enough information to tell 
how the PT was framing learning. Each PT’s response included multiple frames, so a given PT could 
be coded as using multiple types of frames in a given response. Responses were also coded to 
identify the most common categories of learning goal, which included some goals that were 
implicitly aligned with active, passive, or interactive frames for mathematical learning. For example, 
goals focused on participation in class tended to align with an active frame for learning, while goals 
focused on asking questions or going to office hours tended to imply a passive frame that assumed 
that the best solution to a challenge is for someone to provide an explanation. (In practice, 
interactions during office hours were supportive of active learning, but most of the PTs who made 
office hours attendance their goal did not actually attend them.) The audio-recorded small group 
reflections were analyzed to identify examples of frame resonance—interactions in which one PT 
presented a particular frame and other PTs or an instructor endorsed and reaffirmed the frame. These 
examples of resonant frames were then compared to the data from the individual reflections to look 
for patterns. 

Findings and Implications 
Preliminary analyses of these data found that the two classes and the small groups in Class B 

showed different frequencies and trajectories of particular frames in the individual responses, and 
many of those differences aligned with examples of frame resonance from the small-group and 
whole-class discussions from the preceding time periods, especially when those frames were 
endorsed by high-status individuals. For example, while both classes showed similar distributions of 
active frames over time, Class A showed a gradual increase in interactive frames, while Class B 
showed a gradual decrease. Class B’s decrease could be traced to some groups having a particularly 
high frequency in T1 (100% of PTs in Group 3 used an interactive frame in T1) and to other groups 
(Groups 5 and 6) showing a marked decrease in interactive frames combined with an increase in 
passive frames. An initial review of those groups’ discussions shows that a binary frame of correct 
versus incorrect strategies resonated particularly strongly in Groups 5 and 6—in contradiction with 
the course’s goal of framing diversity of strategies as desirable, which appeared to resonate with the 
majority of PTs in both classes. 

Another difference between classes was that Class A showed an increase in identifying participation 
as a focal goal, while in Class B that goal decreased to become almost nonexistent. The contrast may 
be related to the fact that in Class B’s whole-class discussion one of the PTs shared participation as 
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their goal and received minimal acknowledgement from the instructor (the author of this report), in 
contrast with more enthusiastic responses to other shared goals. While the lack of reinforcement was 
not intended as a value judgement, the instructor’s position of authority within the classroom may 
have given it unanticipated weight. Frame resonance may have also played a counter-balancing role 
at the group level: in the two groups in which some PTs did create participation goals in T2 and T3 
the conversations in T1 showed strong resonance for that goal. For example, in Group 3 two PTs 
shared that their goal was to participate more. A high-status PT affirmed the goal as “smart to do” 
and credited her own understanding of class material as “because I’ve participated and, like, gone up 
to the board.” She then suggested that her groupmates share in the whole-group discussion to act on 
their goal.  

Finally, both Class A and Class B had relatively low frequencies of goals that focused on grades 
and passing the class, and Class B’s frequency decreased over time, but Group 2’s frequency started 
at roughly twice the class average and stayed roughly constant over time. There are multiple 
examples in Group 2’s discussions that show how strongly a focus on grades resonated with the 
group members, especially with the PT who seemed to have the highest social and mathematical 
status within the group. In the group’s T1 conversation they encouraged one another to aim for As 
and Bs rather than just passing the class, which illustrated how the goal became associated with the 
supportive social relationships within the group. Their T3 conversation also highlighted the ways that 
larger school frames about the evaluative function of finals week and exams could overshadow the 
frames and experiences that our course tried to cultivate. In the words of the high-status PT: “So far 
I’m doing pretty well, but, you know, after this [final] that’s probably not the case anymore…It’s 
always the final that’s going to break you down, so I’m going to let that go ahead and just be it. So, 
we’re going to pray.”  

While these analyses are only preliminary, there are some potential implications. The examples all 
reinforce how important it is for instructors to pay attention to the implications of status during 
small-group and whole-class discussions, even when the topic is self-reflection rather than 
mathematical problem-solving (Cobb, 2000; Nasir et al., 2014). Group 2’s T3 conversation illustrates 
why it is so important that PTs are exposed to multiple courses and experiences that support positive 
belief change over time rather than a single course. It also serves as a reminder that the pressure and 
structure of finals may make it so that studies that only take measures at the end of courses may 
underestimate the changes that PTs experience during the courses. Future studies could examine 
whether this regression is localized to the time around exams or persists after them. Researchers 
could also examine how the frames around goals and active/autonomous learning that are the focus 
of this study relate to other PT beliefs about mathematical ability (Boaler, 2016) and math instruction 
(Ambrose, 2004). 
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The research focuses on the analysis of confidence and doubt in mathematical statements. Based on 
the Grounded Theory, and on the analysis of a historical case, that of non-Euclidean geometries, and 
especially on the figure of Saccheri, the question in this document is answered. It is argued that 
confidence in the truth of Euclidean geometry had as an effect the attribution of qualities to said 
geometry and to the problems identified in that work. Also, expectations about the solution to those 
problems and logical, ontological and epistemological commitments were made explicit. It seems 
that handling these effects of confidence with biases and exaggerations can be negative for the 
development of mathematical work. 

Keyword: Affect, Emotion, Beliefs, and Attitudes; Geometry and Geometrical and Spatial Thinking 

Background, objective, and research question 
This research focuses on the analysis of states such as the confidence or doubt that people 

experience around the veracity of mathematical statements (such as postulates, theorems, or results of 
school assignments, which will be denoted hereinafter as “H”). Rigo (2013) calls these states as 
“epistemic states of convincement” and represents them as “ESC”. Various studies have shown the 
presence of these states in all kinds of mathematical practice, both those carried out in school 
contexts and in professional mathematics (Fischbein, 1982; Harel and Sowder, 1998; Hersh, 1993; 
Segal, 2000).  

In some cases, the security in certain H’s adequately guides the mathematical work, which leads to 
advances in learning. For example, Inglis, Mejia-Ramos and Simpson (2007) affirm that a 
considerable reduction in uncertainty allows us to determine when we already have enough tools to 
carry out a test; the reduction of doubt, works in this case as a force that encourages mathematical 
activity. In other cases, security can have detrimental effects on the advancement of mathematics 
learning. For example, in the context of mathematical proofs, Inglis, Mejia-Ramos and Simpson 
(2007) observed that when a student confidently associated an affirmation based on inductive 
warrants, he did not have the need later to construct a proof that supported this affirmation. 

So, experts have warned that security in mathematical statements can sometimes positively 
influence the development of learning or disciplinary knowledge, but sometimes that influence can 
be negative. However, in mathematical education literature -and in that of other disciplinary areas- 
no systematic conceptual development has been found on the characteristics of this confidence in 
mathematical statements that account for co-related phenomena, nor, in particular, have they 
constructed theoretical explanations that allow identifying and understanding the conditions under 
which the ESC act favorably or unfavorably, at a didactic level. It is considered that it would be 
necessary to know these conditions in depth, to recreate or inhibit them in school contexts. 

To meet these needs, this document suggests a first and provisional answer, based on theoretical 
explanations, to the question: Why does confidence in mathematical statementsnegatively influence 
the advancement of the discipline? 
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Methodology and methods 
The research question posed in the writing demands theoretical explanations associated with the 

phenomenon of convincement, which go beyond specific descriptions with little clarifying power. 
However, as already stated, no theories have been constructed that offer such explanations. For this 
reason, this document does not start from a theoretical framework (it simply does not exist) and its 
objective is to initiate the development of one. To develop this theory, the qualitative research 
perspective offered by the Grounded Theory was chosen (GT, Corbin & Strauss, 2015). An analytical 
tool of GT is “context analysis” (CA). In CA, it is considered that when people act or have some 
internal experience, they are responding to significant events. Those events are called “conditions”. 
From a fusion of conditions, and from the internal actions or experiences that they promote, results 
usually emerge. In CA these results are called “consequences”. Those consequences can stimulate 
more actions or change their course. The theory thus consists of a set of explanations on how certain 
actions or internal experiences can be given under a combination of certain conditions, and how 
certain consequences can arise from these conditions and actions or internal experiences.  

This manuscript provides some explanations regarding the ESC phenomena that people experience 
when doing mathematical work. For this, following the GT, the CA will be used. But here the focus 
is only on the analysis of the consequences that these ESC have on mathematical work. For this 
analysis, historical data can be used, which is taken as empirical data (cf. Corbin & Strauss, 2015). 
This paper analyzes Saccheri's role in the development of non-Euclidean geometries - who is sadly 
famous for “being a victim of the preconceived notion of his time, that the only possible geometry 
was Euclidean” (Heath, 1956, p. 211) -, because it illustrates the phenomenon under study. In 
particular, parts of Saccheri's preface to his work Euclid vindicated from every blemish (Saccheri, 
2014) are analyzed, because there he explains his ESC and suggest how these ESC negatively 
influenced his mathematical work. Following the CA, in the analysis the ESC are considered as 
internal experiences and the consequences of those ESC are identified. Subsequently, these 
consequences are denoted with concepts and, in the end, those concepts are used to explain how the 
ESC influenced (at the beginning) the mathematical work of Saccheri. 

Report of results: certainty as an obstacle to the advancement of knowledge 
Saccheri begins the preface to his work Euclid vindicated from every blemish with the following: 

Of all who have learned mathematics, none can fail to know how great is the excellence and 
worth of Euclid’s Elements. As erudite witnesses here I summon Archimedes, Apollonius, 
Theodosius, and others almost innumerable, writers on mathematics even to our times, who 
use Euclid’s Elements as foundation long established and wholly unshaken. (Saccheri, 2014, 
p. 62) 

There, the mathematician begins by attributing to Euclid's Elements a positive quality (of 
"excellence") magnified (with the word "great"). Later, he supports the attribution of that quality in 
the ESC of "wholly unshaken" that various mathematical authorities attributed to the work over a 
long time. Saccheri (2014) thus continues: 

But this so great celebrity has not prevented many, ancients as well as moderns, and among 
them distinguished geometers, maintaining they had found certain blemishes in these most 
beauteous nor ever sufficiently praised Elements. Three such flecks they designate. (p. 62) 

The attribution of magnified positive qualities to the Euclidean work, according to Saccheri, did not 
prevent mathematicians from identifying blemishes in it. However, the mathematician appealed to 
these magnified positive qualities, to interpret these imperfections as minimal negative qualities of 
the work (i.e. flecks). What consequences arose from this attribution of qualities to the Euclidean 
work and its imperfections? Saccheri continues: 
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The first (fleck) pertains to the definition of parallels and with it the Axiom which in Clavius 
is the thirteenth of the First Book of the Elements, where Euclid says: If a straight line falling 
on two straight lines, lying in the same plane, make with them two internal angles toward the 
same parts less than two right angles, these two straight lines infinitely produced toward 
those parts will meet each other. No one doubts the truth of this Assertion; but solely they 
accuse Euclid as to it, because he has used for it the name Axiom, as if obviously from the 
right understanding of its terms alone came conviction. (Saccheri, 2014, p. 62) 

There, Saccheri begins by announcing that an imperfection (described by him as "fleck") of the 
Euclidean work is related to the V Postulate. Then he states that postulate and connects it with an 
ESC: “No one doubts the truth of this Assertion”. So, for Saccheri, the Fifth Postulate's high degree 
of commitment to truth value was never questioned. For him, the imperfection was that this statement 
was given the status of axiom. That is, what he questioned was the strategy used to grant the truth 
value to the V Postulate. In sum, a first consequence of having attributed magnified positive qualities 
to the Euclidean work and of having interpreted its imperfections as minimal negative qualities was 
that, despite finding difficulties in one of its affirmations (the V Postulate), the truth of this 
affirmation was sustained with a high degree of commitment and only the strategy on which that 
truth value was based was questioned. Other consequences are disclosed below: 

For some, and these surely the keenest, endeavor to demonstrate the existence of parallel 
straight lines as so defined, whence they go up to the proof of the debated Assertion as stated 
in Euclid’s terms, upon which truly from that Elements (with some very few exceptions) all 
geometry rests. But others (not without gross sin against rigorous logic) assume such parallel 
straight lines, forsooth equidistant, as if given, that thence they may go up to what remains to 
be proved. (p. 62) 

In criticizing the attempts of others to solve the problem of the V Postulate, Saccheri explains his 
commitment to the Euclidean definition of parallel lines, with the role of the V Postulate as “support 
of all geometry” or with “rigorous logic”. That Saccheri has made explicit those commitments 
around the Elements is consistent with the magnified positive qualities that he attributed to the work. 
Then he announces that he will divide his book into two parts: 

In the First Part will imitate the antique geometers, and … merely undertake without any 
petitio principii clearly to demonstrate the disputed Euclidean Axiom. (p. 65) 

There, Saccheri (2014) indicates that the solution to the problem of the V Postulate would be 
"simple" and that "it would imitate the antique geometers". As a strategy to support the truth of the V 
Postulate, he intends to demonstrate it without incurring a petitio principii. 

According to all the aforementioned, how can it be explained that Saccheri ‘reduced’ the problem of 
the V Postulate to demonstrate its veracity? As it was seen, in his preface he started from an ESC of 
“wholly unshaken” associated with the Euclidean work. One consequence of this ESC was to 
magnify the positive qualities of that work and minimize its imperfections or possible pitfalls. 
Consistent with these attributions and with the very charge of empirical truth that the V postulate had 
(in finite space), Saccheri maintained his truth and only questioned the strategy on which that truth 
value was based. In line with this, he raised expectations that the solution to the problem would be 
“simple” and it would suffice to "imitate" the antique geometers. This guided Saccheri's 
mathematical work, when he proposed as a solution to the problem to support the truth of the V in 
the strategy of “demonstrating"”(without petitio principii). Furthermore, that resolution respects 
Saccheri's commitments, such as following rigorous logic. This set of values, expectations, 
commitments of all kinds, beliefs, and intentions that are linked to the ESC here is called the ESC 
interpretive framework (IF). 

To explain why Saccheri ‘minimized’ the problem of the V Postulate, we analyze how he handled 
that MI. In the first place, Saccheri accompanied this IF with a magnification of the positive qualities 
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that he attributed to the Elements (with words like "great"), a minimization of its imperfections (with 
words like "fleck") and a simplification of the solution to those imperfections (with " I just commit"). 
This way of handling IF can be called exaggeration. Secondly, the solution to “demonstrate” that 
Saccheri proposed to solve the problem of the V Postulate, is totally consistent with the IF. It seems 
that the IF was considered as “rules that should be followed”. Under those rules, other options for 
solving the problem would be discarded. For example, the option of questioning the Fifth Postulate 
as the only possibility would be ruled out, because it would go against the slogan of  “imitating the 
antique geometers”. Thus, the IF acted as a bias that guided Saccheri's strategy. According to what 
was said before, handling the IF with exaggerations and biases may explain why the mathematician 
trivialized the problem of the V Postulate. And why did Saccheri consider that IF as “rules that 
should be followed”? Saccheri asserts that the ESC of “wholly unshaken” in the Elements was long 
held by many mathematicians. Thus, questioning what emerged from that ESC would imply 
questioning centuries of tradition and great authorities, and it seems that neither Saccheri nor any 
mathematician of his time were willing to face that. Thus, social consensus may also explain why 
Saccheri appears to have “attenuated” the problem of the V Postulate. 

Final remarks 
We are now in a position to answer the research question, why does confidence in mathematical 

statements negatively influence the advancement of the discipline? Here it is argued that ESC have 
effects on mathematical work and decisions. Specifically, evidence has been provided here that ESC 
can give rise to the attribution of qualities to mathematical works and problems, to expectations on 
how to solve those problems, to logical, ontological and epistemological commitments, and in short, 
to an IF. From this IF, the person can guide his mathematical decisions and his disciplinary work, 
such as, for example, devising a strategy to solve a mathematical problem. It is necessary to clarify 
that the ESC are not, in essence, favorable or unfavorable for the advancement of mathematical 
knowledge. What the study shows is that, under certain conditions, they can be harmful. Some of 
these conditions have to do with how a person handles IF, particularly if it is accompanied by 
exaggerations, biases, and taking social consensus uncritically. 
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La investigación se centra en el análisis de la confianza o la duda en afirmaciones matemáticas. Con 
base en la Teoría Fundamentada, y en el análisis de un caso histórico, el de las geometrías no 
euclidianas, y en especial en la figura de Saccheri, se responde a la pregunta que precede a este 
documento. Se argumenta que la confianza en la verdad de la geometría euclidiana tuvo como 
efectos la atribución de cualidades a dicha geometría y a los problemas identificados en esa obra, 
expectativas sobre la solución a esos problemas y la explicitación de compromisos lógicos, 
ontológicos y epistemológicos. Parece que, manejar con sesgos y exageraciones esos efectos de la 
confianza, puede resultar negativo para el desarrollo de trabajo matemático. 

Palabras clave: Afecto, emoción, creencias y actitudes; Geometría. 

Antecedentes, objetivo y pregunta de investigación 
La investigación se centra en el análisis de estados como la confianza o la duda que las personas 

experimentan alrededor de la veracidad de afirmaciones matemáticas (como postulados, teoremas o 
resultados de tareas escolares, las que en lo sucesivo se denotarán como ‘H’). A esos estados Rigo 
(2013) los llama estados epistémicos de convencimiento en torno a H y los representa como “eec”. 
Diversas investigaciones han dado cuenta de la presencia de esos estados en todo tipo de práctica 
matemática, tanto las que se llevan en contextos escolares como en las de la matemática profesional 
(Fischbein, 1982; Harel y Sowder, 1998; Hersh, 1993; Segal, 2000).  

En algunos casos, la seguridad en ciertos H’s orienta adecuadamente el trabajo matemático, de lo 
que se desprenden avances en los aprendizajes. Por ejemplo, Inglis, Mejia-Ramos y Simpson (2007) 
afirman que una considerable reducción de la incertidumbre permite determinar el momento en el 
que ya se tienen herramientas suficientes para realizar una prueba; la reducción de la duda, funciona 
en este caso como una fuerza que incita la actividad matemática. En otros casos, la seguridad puede 
tener efectos nocivos en el avance de los aprendizajes de las matemáticas. Por ejemplo, en contextos 
de prueba matemática, Inglis, Mejia-Ramos y Simpson (2007)  observaron que cuando un alumno 
asoció confianza a una afirmación basada en garantías inductivas, no tuvo después necesidad de 
construir una prueba que soportara dicha afirmación.  

Así que los expertos han advertido que la seguridad en afirmaciones matemáticas a veces puede 
influir positivamente en el desarrollo de los aprendizajes o de los conocimientos disciplinares, pero 
en ocasiones esa influencia puede ser negativa. Sin embargo, en la literatura de educación 
matemática -y en la de otras áreas disciplinares- no se ha encontrado un desarrollo conceptual 
sistemático sobre las características de esa seguridad en afirmaciones matemáticas que dé cuenta de 
sus orígenes y sus efectos ni, en particular, se han construido explicaciones teóricas que permitan 
identificar y comprender las condiciones bajo las cuales los eec actúan favorable o 
desfavorablemente, a nivel didáctico. Se considera que sería necesario conocer a fondo esas 
condiciones, con el objeto de recrearlas o de inhibirlas en los contextos escolares.  
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Con el fin de atender a esas necesidades, en este documento se sugiere una primera y provisional 
respuesta, con base en explicaciones teóricas, a la pregunta ¿Por qué la confianza en afirmaciones 
matemáticas puede llegar a influir negativamente en el avance de la disciplina?  

Metodología y métodos  
La pregunta de investigación planteada en el escrito demanda explicaciones teóricas asociadas con 

el fenómeno del convencimiento, que vayan más allá de descripciones puntuales con escaso poder 
clarificador. Sin embargo, como ya se dijo, no se han construido teorías que ofrezcan esas 
explicaciones. Es por esto que en el presente documento no se parte de un marco teórico 
(simplemente, no existe) y se plantea justo como objetivo iniciar el desarrollo de uno. Para 
desarrollar esa teoría, se eligió la perspectiva de investigación cualitativa que ofrece la Teoría 
Fundamentada (TF, Corbin & Strauss, 2015). Una herramienta analítica de la TF es el ‘análisis de 
contexto’ (AC). En el AC se considera que cuando las personas actúan o tienen alguna experiencia 
interna están dando respuesta a sucesos significativos para ellas. Esos eventos se llaman 
‘condiciones’. De una fusión de condiciones, y de las acciones o experiencias internas que propician, 
se suelen desprender resultados. En el AC a esos resultados se les llama ‘consecuencias’. Esas 
consecuencias pueden estimular más acciones o cambiar su rumbo. La teoría consiste así en un 
conjunto de explicaciones sobre cómo ciertas acciones o experiencias internas se pueden dar bajo una 
combinación de ciertas condiciones, y de cómo a partir de esas condiciones y acciones o experiencias 
internas, se pueden suscitar ciertas consecuencias.  

En este manuscrito se ofrecen algunas explicaciones relativas a los fenómenos de los eec que 
experimentan las personas cuando realizan trabajo matemático. Para eso, siguiendo la TF, se 
recurrirá al AC. Pero aquí se centra la atención únicamente en el análisis de las consecuencias que 
esos eec tienen sobre el trabajo matemático. Para ese análisis, se puede recurrir a datos históricos, 
que se toman como datos empíricos (cf. Corbin & Strauss, 2015). En este escrito se analiza el papel 
de Saccheri en el desarrollo de las geometrías no euclidianas -quien es tristemente célebre por “ser 
víctima de la noción preconcebida de su tiempo, de que la única geometría posible era la euclidiana” 
(Heath, 1956, p. 211)-, porque ilustra el fenómeno bajo estudio. En particular, se analizan partes del 
prefacio de Saccheri a su obra Euclides reivindicado de todo defecto (Saccheri, 2014), porque ahí él 
explicita sus eec y deja ver cómo esos eec influyeron negativamente en su trabajo matemático. 
Siguiendo el AC, en el análisis se consideran a los eec como las experiencias internas y se identifican 
las consecuencias de esos eec. Posteriormente, esas consecuencias se denotan con conceptos y, al 
final, se utilizan esos conceptos para explicar cómo los eec influyeron (al inicio) en el trabajo 
matemático de Saccheri.  

Reporte de resultados: la certeza como obstáculo para el avance de conocimientos  
Saccheri inicia el prefacio a su obra Euclides reivindicado de todo defecto con lo siguiente: 

De todos los que han aprendido matemáticas, ninguno ha dejado de saber cuán grande es la 
excelencia y el valor de Los Elementos de Euclides. Como testigos eruditos aquí, convoco a 
Arquímedes, Apolonio, Teodosio y otros, casi innumerables, profesionales de matemáticas, 
incluso de nuestros tiempos, que usan a Los Elementos de Euclides como fundamento 
totalmente incontrovertible establecido desde hace mucho tiempo. (Saccheri, 2014, p. 62)  

Ahí, el matemático comienza por atribuir a Los Elementos de Euclides una cualidad positiva (de 
“excelencia”) magnificada (con la palabra “grande”). Luego, él soporta la atribución de esa cualidad 
en el eec de “totalmente incontrovertible” que varias autoridades matemáticas atribuyeron a la obra a 
lo largo de mucho tiempo. Saccheri (2014) así continúa: 
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Pero esta gran celebridad no ha impedido a muchos, tanto antiguos como modernos, y entre 
ellos distinguidos geómetras, sostener que habían encontrado ciertas imperfecciones en estos 
Elementos tan bellos y suficientemente elogiados. Ellos designan tres de esos lunares. (p. 62) 

La atribución de cualidades positivas magnificadas a la obra euclidiana, según Saccheri, no impidió 
que los matemáticos identificaran imperfecciones en ella. Sin embargo, el matemático apeló a esas 
cualidades positivas magnificadas, para interpretar dichas imperfecciones como cualidades negativas 
mínimas de la obra (i.e. ‘lunares’). ¿Qué consecuencias se desprendieron de esa atribución de 
cualidades a la obra euclidiana y a sus imperfecciones? Saccheri continúa:  

La primera (‘mota’) se refiere a la definición de paralelas y con ella el Axioma que en 
Clavius es el decimotercero del Primer Libro de Los Elementos, donde Euclides dice: “Si una 
línea recta que cae sobre otras dos líneas rectas, que yacen en el mismo plano, hace con ellas 
dos ángulos interiores sobre el mismo lado menores que dos ángulos rectos, estas dos líneas 
rectas producidas infinitamente hacia esas partes se encontrarán entre sí”. Nadie duda de la 
verdad de esta afirmación; pero únicamente acusan a Euclides en cuanto a ella, porque él ha 
usado para esa afirmación el nombre de Axioma, como si obviamente solo por la correcta 
comprensión de sus términos se llegara a la convicción. (Saccheri, 2014, p. 62) 

Ahí, Saccheri (2014) comienza por anunciar que una imperfección (calificada por él como “lunar”) 
de la obra euclidiana se relaciona con el V Postulado. Luego, él enuncia ese postulado y conecta con 
un eec: “Nadie duda de la verdad de esta afirmación”. De modo que, para Saccheri, nunca se puso en 
entredicho el alto grado de compromiso con el valor de verdad del V Postulado. Para él, la 
imperfección consistía en que a esa afirmación se le dio el estatus de axioma. Es decir, lo que 
cuestionó, fue la estrategia utilizada para otorgar el valor de verdad al V Postulado. En suma, una 
primera consecuencia de haber atribuido cualidades positivas magnificadas a la obra euclidiana y de 
haber interpretado sus imperfecciones como cualidades negativas mínimas fue que, a pesar de hallar 
dificultades en una de sus afirmaciones (el V Postulado), la verdad de dicha afirmación se sostuvo 
con un alto grado de compromiso y únicamente se cuestionó la estrategia en la que se basó ese valor 
de verdad. Otras consecuencias se desvelan a continuación:  

Algunos, y estos seguramente los más entusiastas, se esfuerzan por demostrar la existencia 
de líneas rectas paralelas, como se definen en Los Elementos, de donde salen a la prueba de 
la afirmación debatida, como se indica en Euclides, y sobre la cual verdaderamente 
descansan esos Elementos (con algunas muy pocas excepciones) y toda la geometría. Pero 
otros (no sin un gran pecado contra una lógica rigurosa) asumen tales líneas rectas paralelas, 
como equidistantes, como si de allí pudieran llegar a lo que queda por demostrar. (p. 62) 

Al criticar los intentos de otros para resolver el problema del V Postulado, Saccheri explicita su 
compromiso con la definición euclidiana de rectas paralelas, con el papel del V Postulado como 
“soporte de toda la geometría” o con la “lógica rigurosa”. La explicitación de esos compromisos en 
torno a los Elementos es congruente con las cualidades positivas magnificadas que Saccheri atribuyó 
a la obra. Luego, él anuncia que dividirá su libro en dos partes: 

En la primera parte imitaré a los geómetras antiguos, y… simplemente me comprometo sin 
ningún petitio principii a demostrar claramente el disputado Axioma Euclidiano. (p. 65)  

Ahí, Saccheri (2014) indica que la solución al problema del V Postulado sería “simple” y que 
“imitaría a los geómetras antiguos”. Como estrategia para sustentar la verdad del V Postulado, él se 
propone demostrarlo sin incurrir en una petición de principio.  

De acuerdo a todo lo antes dicho ¿Cómo se puede explicar que Saccheri ‘redujera’ la problemática 
del V Postulado a demostrar su veracidad? Como se vio, en su prefacio él partió de un eec de 
incontrovertible asociado a la obra euclidiana. Una consecuencia de ese eec fue magnificar las 
cualidades positivas de esa obra y minimizar sus imperfecciones o los posibles escollos. De forma 
congruente con esas atribuciones y, hay que decirlo, con la propia carga de veracidad empírica que 
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tenía el V postulado, Saccheri sostuvo su verdad y solo cuestionó la estrategia en la que se basaba ese 
valor de verdad. En línea con esto, él se planteó expectativas de que la solución al problema sería 
“simple” y bastaría con “imitar” a los geómetras antiguos. Lo anterior orientó el trabajo matemático 
de Saccheri, cuando planteó como solución al problema desprender la verdad del V por medio de la 
estrategia de “demostrar” (sin petición de principio). Además, esa resolución respeta compromisos 
adquiridos por Saccheri, como seguir la lógica rigurosa. A ese conjunto de valores, expectativas, 
compromisos de todo tipo, planes, creencias e intenciones que se coligan con los eec aquí se llama 
marco interpretativo de los eec (MI).  

Para explicar por qué Saccheri ‘minimizó’ la problemática del V Postulado, a continuación se 
analiza cómo él manejó ese MI. En primer lugar, Saccheri acompañó dicho MI de una magnificación 
de las cualidades positivas que él atribuyo a Los Elementos (con palabras como “grande”), de una 
minimización de sus imperfecciones (con palabras como “lunar”) y de una simplificación de la 
solución a esas imperfecciones (con “simplemente me comprometo”). A esa forma de manejar el MI 
se le puede llamar exageración. En segundo lugar, la solución de “demostrar” que Saccheri se 
planteó para resolver el problema del V Postulado, es totalmente congruente con el MI. Pareciera que 
el MI se consideró como “reglas que deberían seguirse”. Bajo esas reglas, otras opciones para 
resolver el problema quedarían descartadas. Quedaría descartada, por ejemplo, la opción de 
cuestionar al V Postulado como la única posibilidad, porque iría en contra de la consigna  de “imitar 
a los geómetras antiguos”. Así, el MI actuó como un sesgo que orientó la estrategia de Saccheri. De 
acuerdo a lo antes dicho, manejar el MI con exageraciones y sesgos puede explicar por qué el 
matemático trivializó el problema del V Postulado. ¿Y por qué Saccheri consideró a ese MI como 
“reglas que deberían seguirse”? Saccheri afirma que el eec de incontrovertible en los Elementos lo 
sostuvieron prolongadamente muchos matemáticos. Así, cuestionar aquello que se desprendía de ese 
eec implicaría cuestionar siglos de tradición y a grandes autoridades, y parece que ni Saccheri ni 
ningún matemático de su época estaban dispuestos a enfrentar eso. De modo que, el consenso social 
también puede explicar por qué Saccheri parece haber ‘atenuado’ el problema del V Postulado.  

Consideraciones finales 
Se está ahora en condiciones de responder a la pregunta de investigación ¿por qué la confianza en 

afirmaciones matemáticas puede influir negativamente en el avance de la disciplina? Aquí se 
argumenta que los eec tienen efectos sobre las decisiones y los trabajos matemáticos. 
Específicamente, aquí se han aportado evidencias de que los eec pueden dar lugar a la atribución de 
cualidades a obras y problemas matemáticos, a expectativas sobre cómo resolver esos problemas, a 
compromisos lógicos, ontológicos y epistemológicos, y en suma, a un MI. A partir de ese MI, la 
persona puede orientar sus decisiones matemáticas y su trabajo disciplinar como, por ejemplo, 
plantear una estrategia para resolver un problema matemático. Es necesario aclarar que los eec no 
son, en esencia, favorables o desfavorables para el avance del conocimiento matemático. Lo que 
muestra el estudio es que, bajo ciertas condiciones, pueden resultar perjudiciales. Algunas de esas 
condiciones tienen que ver con cómo una persona maneja el MI, en particular si lo acompaña con 
exageraciones, sesgos y tomando el consenso social de manera acrítica.  
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A group of preservice mathematics teachers participated in a course on history and technology in 
mathematics which includes a study of the historical development of mathematical concepts. This 
study examined the effect of the course on their critique of teaching materials using history. Results 
show that the participants developed more insightful critiques of teaching materials that integrated 
history poorly into the development of mathematical concepts. 
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Introduction 
Using the history of mathematics as a way of learning mathematics itself is a well-established part 

of many mathematics curricula and teacher preparation programs. There are many arguments 
supporting the place of history of mathematics from enhancing learners’ cultural sophistication to 
helping learner’s understanding of concepts. The purpose of this study is to examine changes in pre-
service teachers’ analysis of mathematics lessons purporting to integrate history into teaching 
mathematics after they engage in a semester-long course focussed on deploying history as a driver of 
development of mathematical concepts. 

Literature review and relationship to research 
The use of history as a lever for teaching mathematics in middle and high school is often relegated 

to the realm of footnotes and passing mentions of historical facts in textbooks adding historical 
context to some content (Smestad. Jankvist & Clark, 2014) or use of biography, sometimes in the 
form of student projects on individual figures, to add historical and/or cultural context to the study of 
mathematics (see e.g. Tzanakis et al., 2002). Jankvist (2009) referred to this kind of approach as 
using history as "a motivating factor for students in their learning and study of mathematics" (p. 237) 
but argued that history can also be used to "support the actual learning of mathematics" (p. 238). 
Indeed, Siu and Tzanakis (2004) argued for thinking in terms of “integrating history of mathematics” 
rather than “using history of mathematics.” 

In the realm of teacher preparation programs Furinghetti’s (2007) analysis of the literature identified 
the following approaches to history of mathematics in teacher preparation programs: (i) “delivering a 
course in the history of mathematics with the aim of giving a historical background to teachers’ 
mathematics knowledge” (p. 132); (ii) “packages of historical materials focused on mathematical 
concepts difficult to teach were used to deepen teachers’ pedagogical reflection on these concepts” 
(p. 132); and (iii) attention to the link between history and mathematics teachers’ beliefs and attitudes 
about mathematics. The first of these aligns closely with the use of history noted by Smestad et al. 
(2014) and Tzanakis et al. (2002). Furinghetti herself adopts a different approach in her program: to 
use the history of mathematics “as a mediator of knowledge for teaching. The aim was to make the 
participants reflect on the meaning of mathematical objects through experiencing historical moments 
of their construction.” (p. 133) 

The goal of the course in which this study takes place, aligning with Furinghetti, was to provide 
students with examples of the historical necessity for the development of select concepts on 
mathematics so that participants would gain a deeper understanding of those topics. The goal of this 
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study is to examine the effect of participating in that course on pre-service mathematics teachers’ 
critique of teaching materials deploying the history of mathematics. 

Methods and Methodologies 
Setting and Participants 

Participants (n = 20) in the study were prospective middle school teachers in a course on history and 
technology in mathematics which includes a study of the historical development of mathematical 
concepts. The central assignment for the course was for students to produce a classroom-ready lesson 
that infuses mathematics history and technology into instruction. 
Data Collections Methods 

In order to assess the trajectory of the participants’ growth in infusing history into lessons in a 
meaningful way, they were asked to analyze/critique sample teaching materials that were designed to 
be poor examples of using history of mathematics for concept development. 

The first lesson (Open University, 1988) involved students exploring the Fibonacci sequence. They 
are told at the end that “the sequence discovered by Leonardo of Pisa in 1202 in connection with the 
breeding of rabbits!” This was intended as a poor example of infusing history into mathematics 
lessons in a meaningful way in that there are simply a few historical notes added to the lesson and the 
history is not integral to the development of the concept. 

In the second lesson (Penn Museum, n.d.) students are shown pictures of several famous domes and 
given the vocabulary apex, oculus, diameter, radius, circumference, and area. Students are then given 
the formulae for calculating diameter, radius, circumference, and area and, given one or two of those 
values asked to find the others. This was also intended as a poor example of infusing history into 
mathematics lessons in a meaningful way in the sense of there being a very low cognitive demand 
with students simply required to plug numbers into formulae with no emphasis on how concepts were 
developed historically. 

Students were asked to respond to the following prompt: “Comment on the quality of these teaching 
materials in terms of their capacity to engage middle grades students in the history of mathematics. 
Identify several strengths and several weaknesses of each resource.” In addition, participants 
submitted a brief biography of their experiences with the use of history in teaching mathematics from 
their own school and college classes.  

During the semester participants worked through a series of activities in which the historical 
necessity of a mathematics concept is demonstrated i.e. exemplar lessons in which history is 
integrated into mathematics content. These included John Graunt’s development of data analysis and 
the introduction of Rene Descartes coordinate system. In addition, the students worked on developing 
their own teaching materials that integrate history in mathematics teaching. 

 At the end of the semester the participants were asked to reread their original critique/analysis of 
the “bad” lesson plans and respond to the following prompt: “Describe your reaction to your earlier 
writing. Specifically: How has that reaction been informed by your experiences of the course? Be 
specific about how the experiences in the course have either reinforced your opinions about the 
sample lessons or changed your opinion about the sample lessons.” 
Data Analysis 

The participants’ original critiques were analysed using the constant comparative method (Glaser & 
Strauss, 1967) to establish trends in the data and to develop a code book. The code book was then 
applied to the critiques at the end of the semester with a focus on any changes asserted and the 
reasons for those changes. In addition, data analysis focused on whether students spoke about a 
motivation approach or a concept development approach to using history. 
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Results 
Initial analyses/critiques 

Of the 20 participants 19 said they would use the domes worksheet (with three saying they would 
need to add to the worksheet). In contrast, 13 out of 20 said they would use the Fibonacci worksheet 
with 7 of the 13 saying they would need to add to/modify the worksheet.  

The codes associated with the positive aspects noted by the participants were: Integrating history & 
mathematics (INT), relating to “Real Life” (RL), engaging visual learners (VIS), and crossing 
disciplines beyond history & mathematics (CD) 

Domes worksheet The historical context of the Domes was assessed positively by 13 of the 20 
participants for relating the mathematics to “Real Life” (RL). For example, Participant 5 (P5) said 
“My favorite part of the math domes worksheet is its link to the past through real life examples.” 
P7’s view was that the lesson was positive “making the historical knowledge relevant to the student 
by describing Domes that exist with these measurements all across the world.”  

The Domes lesson was assessed by 7 participants as being a positive example of integrating 
mathematics and history (INT) e.g. “I feel like I am walking in a mathematics museum, each page 
helps me have the connection between the mathematics history” (P6) and “I thought it succeeded in 
giving a balanced math-history knowledge to the student” (P7). 

Other notable positives in the participants critiques were the use of visuals (VIS), mentioned by 6 
participants and crossing disciplines (CD) beyond history and mathematics mentioned by 3 
participants. It is noteworthy that the positive aspects reported by the participants were always 
consonant with Jankvist’s (2009) category of using history as motivation. 

Fibonacci worksheet The Fibonacci worksheet was assessed less positively by the participants. 
Only one participant assessed the Fibonacci lesson positively for relating to “real life.” (RL): “Also, 
the lesson outline offered great background on Fibonacci, allowing the students to see a real-life 
relationship and reason for creating such an idea” (P10). 

There was an interesting dichotomy in responses coded with INT+/- (Integrating history & 
mathematics). Several students remarked that the history portion of this lesson was a little “tacked 
on.” For example, “There was only a small short paragraph on the mathematician who created the 
“Golden Sequence” . . . which in my opinion added no value to the material.” (P14) and “The 
worksheet focused a lot on the mathematics part and less on the history.” (P15). However, several 
participants viewed the lesson positively on the INT code. For example, “It also makes a good 
connection between the history of the math and the math itself” (P20) and “It allows students to 
understand how the history relates to the topic that they are learning.” (P11) 

Use of history to develop mathematical concepts The critiques were also coded, owing to the 
focus of the activities in the course, for attention to using history to develop mathematical concepts, 
either providing evidence from the lessons or noting its absence (DEV+/-). 

In coding the participants’ initial critiques the code DEV was used 6 times. 5 of those were positive 
assessments of the Fibonacci lesson as using history as a tool for developing concepts. Examples of 
the positive assessments were “It gave relevance to why the Fibonacci sequence was created by 
mentioning it was done in connection to rabbits” (P10) and “Understanding . . . where a math 
equation or concept comes from can be great for student learning. History gives a better 
understanding when students wonder how a concept was discovered.” (P15) 

In summary, the participants were positively disposed towards the “bad” lessons. They mostly said 
they would use the lessons albeit with some modifications. In addition, they tended to note 
connections to real life as the main positive factor for using history in teaching mathematics. 
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End of semester analyses/critiques 
At the end of the semester the participants were asked to read their critiques of the lesson plans from 

the beginning of the semester and to react to what they wrote at that time. Analysis of the responses 
focussed on whether they had changed their mind about the quality of the lessons and what values the 
participants espoused regarding the use of history in mathematics teaching. 

Overall, the participants were better able to recognise the deficiencies of the sample lessons after the 
course although they mostly continued to say that they would use the materials in their own 
classrooms. Changes to the participants’ thinking were mostly centred on the idea that the use of 
history, particularly in the Fibonacci lesson, was an add-on and did not contribute to the development 
of mathematical concepts (DEV). In contrast to the initial critiques where 5 of the 6 uses of the DEV 
code were positive attributions to the Fibonacci lesson, all 8 uses of the DEV code in the final 
critiques were negative. For example, one participant noted “the history of the Fibonacci Sequence . . 
.was added on at the very end . . . This is more of a short “fact,” rather than integrated math.” (P8) 
and another noted that “it adds very little to the lesson and would be easy for a teacher to skip over.” 
(P4). 

The participants continued to consider relating to “real life” (RL) as an important aspect of 
mathematics lessons involving the history of mathematics. For example, Participant 5 argued that 
“students should be able to find domes in their community and complete the new math concept with 
things in the world around them.” Thinking about the class in general as well as the sample lessons 
one participant remarked “This class helped show me how important it is for math to have real world 
applications and connect with history.” (P2) 

One final theme that emerged in the post analysis was the idea of history “humanising” mathematics 
i.e. making the idea that actual people were involved in the making of mathematics clear. Participant 
4 noted that “teaching math history also helps students to see that normal people like them can make 
big discoveries that change the world” (P4) and Participant 8 noted that “I learned so much about 
mathematicians. I think this is important to have in our class because students can learn where the 
math they are learning comes from.” (P8). The participants’ interest in this was presented more in the 
sense of motivation for learning rather than for the development of mathematical concepts. 

In summary, the participants, while continuing to see positive aspects of the lessons were much 
more sensitive to the deficiencies of the lessons in terms of the use of history for the development of 
mathematical concepts. 

Conclusion 
The use of history in teaching mathematics is commonplace in the preservice teacher mathematics 

programs. Preservice teachers’ prior experiences, and often their experiences in programs, with 
history tend towards a focus on biography and the use of history as a provider of context and 
motivation. This study shows the potential for preservice mathematics teachers to begin to view the 
use of history as a lever in the development of mathematical concepts. This is an important idea for 
use of history in pre-service mathematics preparation programs. Through participation in a course 
with exemplars of such mathematical development, the preservice teachers made more insightful 
critiques of teaching materials that were deficient in this aspect. They continued to consider 
connections to real life and to mathematicians as an important positive aspect of mathematics lessons 
using history for its potential to motivate students. 
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This study examines preservice teachers’ perceptions about a microteaching lesson study (MLS) that 
integrated multicultural literature to elicit culturally responsive mathematics teaching (CRMT) 
during a mathematics methods course. Participation in the MLS’ iterative cycle of plan-teach-revise 
encouraged preservice teachers to develop their pedagogical knowledge, make cultural connections 
from texts to mathematical concepts, and engage in productive reflection. The MLS also provided 
preservice teachers with a supportive peer learning community that fostered collaborative learning 
to improve professional practice around CRMT. Suggestions are shared for how similar practice-
based experiences can be used to enhance teacher education with focused practice addressing 
mathematical thinking, language, culture, and social justice.  

Keywords: Teacher Education-Preservice, Instructional Activities and Practices, Teacher 
Knowledge, Culturally Relevant Pedagogy 

Mathematics teachers committed to humanizing pedagogy recognize schools as cultural spaces that 
draw on students’ identities and experiences to leverage mathematical competencies (Yeh & Otis, 
2019). When students explore mathematics from global perspectives (e.g., non-Western, indigenous) 
and applications, they can engage in enriched, meaningful learning that promotes empathy for 
diverse cultures and fosters problem-solving that transcends borders. One way for students to 
develop cultural awareness is through reading multicultural literature, which can serve as a mirror to 
reflect on one’s own culture and a window to gain perspective into other’s values, beliefs, and 
traditions. While multicultural literature naturally fits in literacy studies, it can also be used to study 
mathematics in culturally relevant contexts (Chappell & Thompson, 2000; Leonard, Moore, & 
Brooks, 2014). Those who wish to bridge multicultural literature into the mathematics classroom 
must recognize mathematics as a cultural construct and have the opportunity to plan, teach, and 
reflect on lessons with such texts (Iliev & D’Angelo, 2014; Sletter, 1997). This study reports on 
preservice teachers in a mathematics methods course who participated in a microteaching lesson 
study that integrated multicultural literature to make social justice and cultural connections to 
elementary school mathematics content. The following research question served as motivation for 
this study: What are preservice teachers’ perceptions about a microteaching lesson study using 
multicultural literature to elicit culturally responsive mathematics teaching during a mathematics 
methods course? 

Theoretical Framework 
Reform efforts in teacher education recommend preservice teachers have opportunities to teach 

mathematics through practice-based experiences that develop pedagogical knowledge and encourage 
reflective practice (AMTE, 2017). A microteaching lesson study is an example of a practice-based 
experience that utilizes a simulated teaching environment to reduce teaching complexities, develop 
pedagogical content knowledge, and elicit reflection from peer and self-assessment. Preservice 
teachers engaged in a microteaching lesson study benefit from collaborative participation in the 
iterative cycle of plan-teach-revise in a modified format (see Figure 1) that promotes connections 
between theory and practice in mathematics education (Fernández, 2005). This study builds on the 



Preservice teachers’ perceptions of a lesson study connecting multicultural literature with culturally responsive 
mathematics teaching 

	 1649	

research of microteaching lesson studies and examines how preservice teachers can develop 
consciousness of culturally responsive mathematics teaching (CRMT) with multicultural literature. 

 

 
 

Figure 1: Lesson Study Model of the Iterative Cycle of Plan-Teach-Revise 
 

CRMT can be used to privilege students’ cultural and linguistic funds of knowledge, foster 
meaningful connections to students’ prior experiences, and value students’ strengths and 
performance styles to make learning relevant and effective (Gay, 2009). This research used the 
framework for CRMT coupled with Aguirre and Zavala’s (2013) CRMT Lesson Analysis Tool to 
examine explicit characteristics of CRMT: mathematical thinking, language, culture, and social 
justice. Framing the inquiry in terms of CRMT aided with organizing the synthesis and examining 
where efforts were made by preservice teachers to use multicultural literature to elicit CRMT in a 
simulated teaching environment. 

Research Methods 
A qualitative case study design was used with multiple data sources. Participants included 16 

preservice teachers (14 females and 2 males) enrolled in an elementary mathematics methods course 
at an urban university in the northeastern United States. In the course, the preservice teachers were 
introduced to CRMT as the notion of contextualizing mathematics teaching and learning to students’ 
lives (Gay, 2002; Ladson-Billings, 1995a, 1995b). After the preservice teachers familiarized 
themselves with CRMT with the aid of course readings and a discussion-based review of a sample 
lesson that was critiqued using Aguirre and Zavala’s (2013) CRMT Lesson Analysis Tool, the 
preservice teachers were assigned a microteaching lesson study that required them to plan, teach, and 
revise an elementary mathematics lesson with reference to a multicultural text of their choosing. 

To help guide the text selection and the design of the activity, the preservice teachers reflected on 
the ways the text and the lesson: (a) portrayed cultural authenticity, (b) depicted cultural diversity as 
an asset, and (c) promoted culturally relevant mathematical connections (Harding, Hbaci, Loyd, & 
Hamilton, 2017). Next, the lessons were critiqued for components of mathematical thinking, 
language, culture, and social justice as noted in the CRMT Lesson Analysis Tool. Each group was 
asked to submit their analysis and make any necessary modifications to strengthen the lesson prior to 
beginning the next phase of the practice-based experience.  

After submitting their lessons and planning reflections, the preservice teachers were videotaped 
teaching their lessons twice to their peers. In round one, two group members taught the lesson while 
their other two group members and peers observed. Next, the group members reflected on their 
instruction and revised their lesson. In round two, the group members switched roles, reflected on 
their instruction, and submitted their final revised lesson. Peers gave constructive feedback 
throughout the rounds and assessed how the overall experience influenced their perspective of 
CRMT and their future use of multicultural literature in elementary mathematics instruction. The 
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lessons, videos, reflections, and peer feedback were coded for themes of CRMT using in vivo and 
descriptive coding techniques (Saldaña, 2016). 

Results 
Findings revealed that the preservice teachers’ perceptions of participating in the microteaching 

lesson study’s iterative cycle of plan-teach-revise encouraged them to develop their pedagogical 
knowledge, make cultural connections from texts to mathematical concepts, and engage in 
productive reflection. Overall, the preservice teachers expressed positive experiences engaging in the 
microteaching lesson study and shared that this particular focus on lesson design with multicultural 
literature helped them to engage and be reflective in CRMT. They also shared how the practice-based 
experience provided them with a supportive peer learning community that fostered collaborative 
learning to improve their professional practice around ways to make social justice and cultural 
connections to mathematical concepts.  

Through strategic lesson design with multicultural literature, the preservice teachers were 
successfully able to engage their peers in mathematical thinking of various concepts (e.g., 
measurement, counting, addition, geometry) through the elicitation of meaningful mathematics 
discussions related to cultural connections. Several preservice teachers used the stories found in the 
texts to set a context for learning a mathematical concept. For example, one group selected a text 
about a girl named Sadako and her paper cranes. The story provided a context for students to explore 
adding paper cranes using various addition strategies (e.g., counting all/on, making tens, friendly 
numbers, compensation, adding up in chunks). Another group referenced a book about quilt making 
and created a lesson about how the arrangement of patches on a quilt could generate different 
dimensions (e.g., 1 x 24, 2 x 12, 3 x 8, 4 x 6). The lesson addressed various mathematical concepts 
(e.g., rectangular arrays, factors, area, perimeter) and provided opportunities for participants to create 
their own quilt patch that honors their cultural heritage to add to the classroom quilt. Through the 
lessons, the preservice teachers were able to elicit ways for participants to self-identify with the 
mathematics and see themselves as doers of mathematics. A preservice teacher summarizes this 
nicely in her statement: “In this experience, I was given the opportunity to think outside the box 
when it came to thinking of different ideas that would interest my students where they would have 
some ownership over the activity and feel included.” 

 The practice of using multicultural literature to facilitate cultural connections also influenced the 
preservice teachers’ awareness of and confidence in using cultural practices to address issues of 
social justice and exercise mathematics as an analytical tool to critique societal norms. For example, 
a preservice teacher shared, “I plan to use multicultural literature in my classroom to help students 
identify cultural assets and challenge/remove potential barriers.” Additionally, several preservice 
teachers reflected on how they plan to use such texts to advocate for exploring new mathematical 
concepts (e.g., numerical representations, computations) that may not be present in the dominant 
mathematics studied. This is evident in a preservice teacher’s reflection that said: “I have newfound 
confidence to incorporate other texts than what may appear in the curriculum to provide alternative 
perspectives and purposefully incorporate students’ native languages in the teaching of mathematical 
concepts.”  

The preservice teachers also reflected on their own professional growth to enhance their 
pedagogical practice given the collaborative nature of the microteaching lesson study. Several 
preservice teachers noted the amount of effort that goes into planning meaningful lessons. For 
example, a preservice teacher said: “I now realize that a lot of planning and preparation is required to 
really give students the best possible mathematics lessons. I now have new tools to help me prepare 
the best lessons I can for my students.” Other preservice teachers reflected on their newfound 
realization about culture in the classroom. For instance, a preservice teacher said: “Not only did this 
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experience teach me how to create a lesson plan and be aware of the academic needs of my students 
(or peers), but it also taught me how to be aware of their backgrounds and how culture plays a huge 
role in all subjects.” Similarly, another preservice teacher commented on how her appreciation has 
grown for using literature to shed light on how people engage with mathematics outside of the 
mainstream, Westernized perspective. She stated: “By incorporating multicultural literature, 
mathematics can become relatable and mathematics can create bridges that connect cultures and 
people. I now realize how much it can elevate a lesson.” A comparable statement made by another 
preservice teacher noted: “Previously, I had not considered how to integrate multicultural content 
into mathematics instruction. Yet, incorporating multicultural mathematics literature into instruction 
can foster greater acknowledgement and appreciation of students’ cultural identities, which facilitates 
better learning environments in our classrooms and schools.” 

Discussion 
The significance of this work is to build on the research of microteaching lesson studies and 

examine how preservice teachers’ perceptions engaging in such a practice-based experience provides 
insight into how preservice teachers develop pedagogical knowledge and benefit from reflective 
practice. This study was unique in that the microteaching lesson study connected multicultural 
literacy with CRMT. Participation in this experience benefited the preservice teachers in that they 
were able to collaborate with one another and use constructive peer feedback to guide improvements 
in the planning, implementation, and reflection of their lessons. The preservice teachers were tasked 
with creating a learning environment that empowered students to see and engage with mathematics 
across cultures. Multicultural literature can serve as a conversation starter to introduce new 
mathematical ideas and widen students’ horizons. The findings from this work signify that efforts 
must be made in teacher preparation to implement innovative practices (e.g., microteaching lesson 
studies, multicultural literature) that elicit CRMT to improve the quality of mathematics instruction 
for all students. 
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In this article we analyze the results of a study focused on promoting the development of conceptual 
systems of teachers, associated with the teaching and learning of the exponential function when 
implementing Model-Eliciting Activities [MEA] in the classroom. For the theoretical framework we 
used the models and modeling perspective [MMP]. The methodology was qualitative, and a 
multilevel approach (researcher, teacher, and students) was used. The results show how the 
conceptual system of a teacher was modified, extended, and refined. First, the teacher focused on the 
instructional dimension, then he expanded, and refined to include the mathematical and historical 
content dimensions. 

Keywords: Preparation of teachers in training, Mathematical Knowledge for Teaching, Modeling, 
Pre-calculation. 

There is a need to carry out research related to the professional development of mathematics 
teachers (Doerr, 2004; Kieran, 2007; Jung, 2013; Sevinc & Lesh, 2018). According to Clark and 
Lesh (2003), Doerr and Lesh (2003), Sevinc and Lesh (2018) the MMP allows the description of the 
teachers' conceptual system related to the teaching and learning of mathematics and how this system 
evolves. The research question discussed in this article is: How does the teachers’ conceptual system 
–related to the process of teaching and learning of the exponential function– evolve as they design, 
implement and evaluate MEAs?  

Theoretical Framework 
The Models and Modeling Perspective mentions that learning is a process of developing conceptual 

systems, which continually change, modify, extend, and refine during the student's interactions with 
their environment (teachers and peers) and when solving problems (Lesh, 2010). The theoretical 
framework used in this document is the MMP (Doerr, 2016; Lesh, 2010; Lesh & Doerr, 2003), which 
suggests the use of multi-level methodologies to support the development of teacher training 
programs. The MMP makes it possible to provide a context for students to develop models when 
carrying out the MEAs; at the same time, teachers are immersed in environments where the 
development of models is encouraged by interpreting, explaining, and predicting student behavior 
when modelling MEAs (Sevinc & Lesh, 2018). The interaction among students, teachers, and 
researchers is considered important to promote the development of knowledge, and to understand the 
evolution of teachers' knowledge based on the interpretation they make about how individuals reveal, 
test, refine, and review their knowledge and skills (Clark & Lesh, 2003). In other words, the teacher 
influences the construction of knowledge by students and vice versa. Something similar occurs with 
researchers; they influence teachers and, at the same time, are affected by them.  

Doerr and Lesh (2003) propose to design didactic sequences (model development sequences) to 
support the development of conceptual systems. Sequences include Model Eliciting Activities 
[MEA], Model Exploration Activities [MXA], and Model Adaptation Activities [MAA] to promote 
the student to manipulate, share, modify, and reuse models to build, describe, explain, manipulate, 
predict or control mathematically significant systems (Lesh, Cramer, Doerr, Post, & Zawojewski, 
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2003). Helping teachers understand the MMP and how to use it to promote mathematics learning is 
an interesting and complex task.  

Clark and Lesh (2003) point out that knowing the nature of teacher understanding involves 
understanding at least three dimensions such as: “psychological connections, instructional 
connections, and historical connections" (p. 159). That is, how ideas develop in the minds of children 
and adults, how the development of ideas can be supported by the use of available curriculum 
materials, and the circumstances under which students develop an idea in a historical way. Therefore, 
the description of the teacher's conceptual system can be done through the use of dimensions such as: 
the teacher's mathematical knowledge dimension [DM], the instructional dimension [DI] and the 
historical dimension of the students’ development of knowledge [DH] (Clark & Lesh, 2003). These 
dimensions are used to describe the teacher's conceptual system about teaching and learning of the 
exponential function and its evolution, or modification, extension and refinement during the process 
of designing, implementing, and evaluating a didactic sequence based on the MMP. 

Methodology 
The methodology was qualitative. The “teacher training under the models and modeling 

perspective” scheme was developed over 18 months, under a multilevel perspective (researcher, 
teacher and students) (Doerr & Lesh, 2003). The participants in this study were two teachers, but the 
process will only be exemplified with one of them. The data sources were: activities designed by the 
teacher, students’ documents, audios of the interactions –student-student, teacher-student, researcher-
teacher– and the students’ interpretations of the created models when carrying out activities. Three 
stages are described, each characterized by: design, implementation and evaluation of a didactic 
sequence (MEA-MXA-MAA). The evolution of the teachers' conceptual system related to the 
teaching and learning of the exponential function is interpreted through the dimensions observed by 
Clark and Lesh (2003): a) DI, b) DM, and c) DH. 

Results and Discussion 
First stage (MEA Design-Implementation-Evaluation Cycle) 

i) MEA design (researcher-teacher). The researcher encouraged the teacher to reflect on the 
following dimensions. a) DM: analysis of the concept of exponential function; b) DI: revision of 
textbooks, bibliography of the MMP, and use of technology. The teacher built an MEA in the 
population growth context. The underlying knowledge was the exponential function. Previously, the 
teacher participated as an observer in the implementation of an MEA. 

ii) First implementation (teacher-students). Five students participated, which were grouped into 
two teams. a) DM: One of the teams included tabular, graphic, and verbal representations in their 
models. The other team included only tabular and verbal representations. The teacher and the 
students, during the group discussion, wrote the algebraic function 𝑃 𝑡 = 𝑃! 1 + 𝑟 ! associated with 
the situation. b) DI: The design and implementation of the MEA enabled students to use calculators 
and spreadsheets to solve the problem situation. c) DH: The teacher focused on the students' interest 
generated by the activity and on the final representations they presented. He did not observe the 
process of building the model. 

iii) Evaluation of the first implementation (researcher-teacher). The interaction between the 
teacher and the researcher allowed the interpretation and analysis of how the concept of exponential 
function was constructed, modified, extended and refined (DM) by the students, when carrying out 
the MEA (DH). Based on the review of audios, the letters of the students, and the six design 
principles of the MEAs, the teacher analyzed the activity (Vargas-Alejo & Montero-Moguel, 2019). 
The support that the researcher provided to the teacher was essential to modify the MEA before the 
next implementation, as well as the role of the teacher in the classroom (DI). 
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Second stage (Design-Implementation-Evaluation Cycle of MEA-MXA) 
i) Design of MEA and MXA (researcher-teacher). The teacher's conceptual system evolved in the 

three dimensions. a) DM: The teacher proposed that students should perform an MXA to deepen the 
mathematical concepts of variation, covariation, base, exponent, ordered to the origin, growth rate, 
graph translation, increasing and decreasing function that emerged when carrying out the MEA. b) 
DI: The researcher proposed to include NetLogo –multi-agent programmable modeling 
environment– in the MXA. The teacher, supported by an expert researcher, modified one of the 
activities of the software library; he also included a GeoGebra applet in the sequence. c) DH: The 
modifications made by the teacher were based on the analysis of how the students created, modified, 
and expanded their conceptual system in the first implementation. 

ii) Second implementation (teacher-students). Ten students were grouped into four teams a) DM: 
the four teams included tabular, graphical, algebraic and verbal representations in the models. The 
teacher validated all the representations, but observed that some teams did not differentiate constant 
growth from exponential growth, therefore, during the group discussion, he intervened through 
questions to clarify the difference. b) DI: The activity with NetLogo and the GeoGebra applet 
allowed the students to dive deeper into the concepts associated with the exponential function. c) 
DH: The teacher extended his interpretation and explained, in a more detailed way, the process of 
model construction by the students. 

iii) Interaction of the researcher and the teacher after the second implementation 
(Researcher-Teacher). The teacher described how the students went through different cycles when 
they carried out the MEA. Then, he pointed out how in each cycle the students expanded and refined 
their knowledge of the linear function and, later, the exponential function. Finally, he mentioned how 
the MXA made it possible to go deeper into the mathematical concepts immersed in the models, even 
when it was necessary to institutionalize them (DM and DH). Based on the review of "the MEA 
quality assessment guide" (Lesh, 2010, p. 32) the teacher analyzed the audios and letters of the 
students. He characterized the models constructed by the students, with or without technology (DI) 
and distinguished between models that require direction, models that require extension or refinement, 
situated models, and comparable and reusable models. 
Third stage (Design-Implementation-Evaluation Cycle of MEA-MXA-MAA) 

i) Design of MAA (researcher-teacher). a) DM: The teacher, supported by the researcher, 
designed the MAA in the context of energy saving and investments where the concepts of linear 
function and exponential function are underlying. He gave meaning to the design of a model 
development sequence composed of MEA, MXA and MAA, to promote the development of the 
exponential function concept. b) DI: He designed the sequence based on Lesh et al. (2003). c) DH: 
The teacher enabled the transition through different modeling cycles, and encouraged students to 
review, deepen and expand their mathematical knowledge related to the exponential function. 

ii) Third implementation (teacher-students). Ten students participated and were divided into four 
teams a) DM: All students construct models that include: the linear function to describe the savings 
situation, the exponential function to analyze investments, and a diversity of verbal, tabular, 
graphical and algebraic representations. b) DI: The models created to solve the problem situation 
included in the MAA were based on the knowledge developed using NetLogo and GeoGebra 
(MXA). c) DH: The teacher explained how the knowledge about the exponential function learned by 
the students when carrying out the MEA allowed them to carry out the MAA. The models were 
characterized as shareable and reusable. 

iii) Interaction of the researcher and the teacher after the third implementation (researcher-
teacher). The teacher described the different modeling cycles developed by the students when 
solving the model development sequence and analyzed how they evolved during the realization of 
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the MEA, MXA and MAA (DH). He used the levels of covariation (Carlson, Jacobs, Coe, Larsen, & 
Hsu, 2002) and "the MEA quality assessment guide" (Lesh, 2010, p. 32) to generate a classification 
of the models built, in terms of the use of linear and exponential relationships (DM); the 
understanding of the exponential function and differentiation of the linear function; as well as the use 
given to the functions to interpret and predict the situation. 

Conclusions 
How does the teachers’ conceptual system –related to the process of teaching and learning of the 

exponential function– evolve as they design, implement and evaluate MEAs? The evolution of the 
conceptual system was as follows: the emphasis was placed first on DI, then on DM, and finally, the 
three dimensions, DI, DM and DH, became relevant. In the first stage, the teacher focused on the 
description of representations created with and without the support of technology. He described 
whether or not the students proposed the exponential function in its algebraic form. He emphasized 
the final product and not the process of construction of the exponential function concept, which he 
did in the second stage. In the third stage, the teacher was able to describe how the students 
developed mathematical ideas, modified them, adapted them and refined them throughout the process 
of carrying out the sequence. This allowed him to realize that in the process of learning the 
exponential function, students can first use the linear function by assuming a constant variation and 
then build knowledge about the exponential function. 

The MXA allowed the students to go deeper into concepts. This was observed when they carried out 
the MAA, as students were able to use the concepts of exponential and linear function to solve a 
different activity, in a different context. They learned to differentiate and use both functions to 
describe the MAA. The multilevel interaction between students, teacher and researcher, during each 
phase of the different stages was fundamental for the evolution of the conceptual system of the 
teacher related to the process of teaching and learning of the exponential function. Although it is true 
that there is no linearity in the development of conceptual systems,  this study identified that the 
design, implementation and analysis of each activity contributed to the modification, expansion and 
refinement of the teacher's conceptual system. 
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En este artículo se analizan resultados de una investigación centrada en promover el desarrollo de 
sistemas conceptuales de los profesores, asociados a la enseñanza y aprendizaje de la función 
exponencial al implementar Actividades Provocadoras de Modelos (MEAs por sus siglas en inglés: 
Model-Eliciting Activities) en el aula. El marco teórico fue la perspectiva de modelos y modelación 
[PMM]. La metodología fue cualitativa, se usó un enfoque multinivel (investigador, profesor y 
estudiantes). A partir de los resultados, se observó cómo el sistema conceptual se modificó, amplió y 
refinó. Primero se centró en la dimensión instruccional, enseguida se amplió y refinó para incluir la 
dimensión de contenido matemático y dimensión histórica. 

Palabras Clave: Preparación de maestros en formación, Conocimiento Matemático para la 
Enseñanza, Modelación, Pre-cálculo.  

Existe necesidad por realizar investigaciones relacionadas con el desarrollo profesional de los 
docentes de matemáticas (Doerr, 2004; Kieran, 2007; Jung, 2013; Sevinc & Lesh, 2018). De acuerdo 
con Clark y Lesh (2003), Doerr y Lesh (2003), Sevinc y Lesh (2018) la PMM permite describir el 
sistema conceptual de los profesores sobre la enseñanza y aprendizaje de las matemáticas y cómo 
este sistema evoluciona. La pregunta de investigación que se discute en este artículo es: ¿Cómo 
evoluciona el sistema conceptual de los docentes sobre la enseñanza y aprendizaje de la función 
exponencial al diseñar, implementar y evaluar MEAs?  
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Marco Teórico  
En la PMM se menciona que aprender matemáticas es un proceso de desarrollo de sistemas 

conceptuales, que cambian de manera continua, se modifican, extienden o amplían y refinan a partir 
de las interacciones del estudiante con su entorno (los profesores y compañeros) y al resolver 
problemas (Lesh, 2010). El marco teórico utilizado en este documento es la PMM (Doerr, 2016; 
Lesh, 2010; Lesh & Doerr, 2003), la cual sugiere el uso de metodologías multinivel para apoyar el 
desarrollo de programas de formación docente. Este enfoque posibilita proveer un contexto para que 
los estudiantes desarrollen modelos al resolver MEAs; de manera simultánea, los profesores se ven 
inmersos en ambientes donde se propicia el desarrollo de modelos al interpretar, explicar y predecir 
el comportamiento de los estudiantes al modelar las MEAs (Sevinc & Lesh, 2018). Se considera 
importante la interacción entre estudiantes, profesores e investigadores para propiciar el desarrollo de 
conocimiento, además permite entender la evolución del conocimiento de los profesores a partir de la 
interpretación que hacen acerca de cómo los individuos revelan, prueban, refinan y revisan sus 
conocimientos y habilidades (Clark & Lesh, 2003). Es decir, el profesor influye en la construcción de 
conocimiento por los estudiantes y viceversa. Lo mismo ocurre con los investigadores, quienes 
influyen en los docentes y se ven afectados por los mismos.  

Doerr y Lesh (2003) proponen la estructuración de secuencias didácticas para apoyar el desarrollo 
de sistemas conceptuales. Las secuencias incluyen Actividades Provocadoras de Modelos [MEA], 
Actividades de Exploración de Modelos [MXA] y Actividades de Adaptación de Modelos [MAA] 
para promover que el alumno manipule, comparta, modifique y reutilice modelos, para construir, 
describir, explicar, manipular, predecir o controlar sistemas matemáticamente significativos (Lesh, 
Cramer, Doerr, Post, & Zawojewski, 2003). Apoyar que los profesores comprendan la PMM y la 
utilicen para propiciar el aprendizaje de las matemáticas es una tarea interesante y compleja.  

Clark y Lesh (2003) señalan que conocer la naturaleza de la comprensión del profesor implica 
entender al menos ciertas dimensiones, como: “conexiones psicológicas, instruccionales e históricas” 
(p. 159); es decir, cómo se desarrollan las ideas en la mente de los niños y adultos, cómo puede 
apoyarse el desarrollo de ideas mediante el uso de materiales curriculares disponibles, y las 
circunstancias bajo las cuales se desarrolló una idea en los estudiantes, de manera histórica. Por lo 
tanto, la descripción del sistema conceptual de los docentes se puede hacer mediante el uso de 
dimensiones tales como: dimensión de conocimiento matemático del docente [DM], dimensión 
instruccional [DI] y dimensión histórica, sobre el desarrollo de conocimiento por los estudiantes 
[DH] (Clark & Lesh, 2003). Con estas dimensiones, se describe en este documento el sistema 
conceptual de un profesor sobre la enseñanza y aprendizaje de la función exponencial y su evolución 
o bien modificación, ampliación y refinamiento durante el proceso de diseño, implementación y 
evaluación de una secuencia didáctica fundamentada en la PMM. 

Metodología 
La metodología fue cualitativa. El esquema de formación de docentes bajo la PMM se desarrolló a 

lo largo de 18 meses, bajo una perspectiva multinivel (investigador, profesor y alumnos) (Doerr & 
Lesh, 2003). Los participantes en este estudio fueron dos docentes, pero sólo se ejemplificará el 
proceso con uno de ellos. Las fuentes de datos fueron: actividades diseñadas por los docentes, 
documentos de los estudiantes, audios de las interacciones estudiantes-estudiantes, docente-
estudiantes e investigador-docente y los reportes de las interpretaciones a los modelos construidos 
por los estudiantes al realizar actividades. Se describen tres etapas, cada una caracterizada por: 
diseño, implementación y evaluación de una secuencia didáctica (MEA-MXA-MAA). La evolución 
del sistema conceptual de los docentes sobre la enseñanza y aprendizaje de la función exponencial se 
describe a través de las dimensiones observadas por Clark y Lesh (2003): a) DI, b) DM y c) DH.  
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Resultados y Análisis de Resultados 
Primera etapa (Ciclo Diseño-Implementación-Evaluación de MEA) 

i) Diseño de MEA (investigador- profesor). El investigador propició reflexión del docente en las 
dimensiones: a) DM: análisis del concepto de función exponencial; b) DI: revisión de libros de texto, 
de bibliografía de la PMM y uso de tecnología en la MEA. El docente construyó una MEA en el 
contexto de crecimiento poblacional. El conocimiento subyacente fue la función exponencial. 
Previamente, participó como observador en la implementación de una MEA. 

ii) Primera implementación (profesor- alumnos). Participaron cinco alumnos, agrupados en dos 
equipos. a) DM: Uno de los equipos incluyó en sus modelos representaciones tabular, gráfica y 
verbal y el otro equipo, sólo tabular y verbal. El docente y los alumnos, durante la discusión grupal, 
construyeron la función algebraica 𝑃 𝑡 = 𝑃! 1 + 𝑟 !asociada a la situación. Se basaron en los 
modelos desarrollados en la clase. b) DI: El diseño e implementación de la MEA, contempló que los 
alumnos pudieran utilizar calculadoras y hojas de cálculo de Excel para que resolvieran la situación 
problema. c) DH: El profesor centró su atención en el interés de los alumnos generado al realizar la 
actividad y en las representaciones finales presentadas por los alumnos. No observó cómo fue el 
proceso de construcción del modelo. 

iii) Evaluación de la primera implementación (investigador- profesor). La interacción entre el 
docente y el investigador permitió interpretar y analizar la forma como el concepto función 
exponencial fue construido, modificado, ampliado y refinado (DM) por los estudiantes, al realizar la 
actividad (DH). Con base en los seis principios de diseño de las MEAs, la revisión de audios y las 
cartas de los estudiantes, el docente analizó la actividad, publicada por Vargas-Alejo & Montero-
Moguel (2019). El apoyo del investigador fue fundamental para modificar la MEA antes de una 
siguiente implementación, así como las estrategias instruccionales (DI). 
Segunda etapa (Ciclo Diseño-Implementación-Evaluación de MEA-MXA) 

i) Diseño de MEA y MXA (investigador- profesor). El sistema conceptual del docente evolucionó 
en las tres dimensiones. a) DM: El docente propuso que los alumnos deberían realizar una MXA para 
profundizar en los conceptos matemáticos –variación, covariación, base, exponente, ordenada al 
origen, tasa de crecimiento, traslación de gráficas, función creciente y decreciente– que emergieron al 
realizar la MEA. b) DI: El investigador propuso incluir NetLogo –el entorno de modelación 
programable multi-agente– en la MXA. El docente apoyado por un investigador experto modificó 
una de las actividades de la biblioteca del software; incluyó, además, en su secuencia un applet con 
GeoGebra. c) DH: Las modificaciones que realizó el docente se fundamentaron en el análisis de 
cómo los estudiantes habían construido, modificado y ampliado su sistema conceptual en la primera 
implementación.  

ii) Segunda implementación (Profesor- Alumnos). Diez estudiantes fueron agrupados en cuatro 
equipos. a) DM: los cuatro equipos incluyeron representaciones tabulares, gráficas, algebraicas y 
verbales en los modelos. El docente validó todas las representaciones, pero observó que algunos 
equipos no diferenciaban el crecimiento constante de un crecimiento exponencial, por lo tanto, 
durante la discusión grupal, intervino mediante preguntas para que se aclarara la diferencia. b) DI: La 
actividad con NetLogo y el applet de GeoGebra permitieron que los estudiantes pudieran profundizar 
en los conceptos asociados a la función exponencial. c) DH: El profesor extendió su interpretación y 
explicó, de una manera más detallada, el proceso de construcción de modelos por los estudiantes. 

iii) Interacción del investigador y el docente después de la segunda implementación 
(Investigador- Profesor). El docente describió cómo los alumnos transitaron por diferentes ciclos 
cuando realizaron la MEA, señaló cómo en cada ciclo los alumnos ampliaron y refinaron su 
conocimiento sobre la función lineal y, posteriormente, la función exponencial. Finalmente, 
mencionó cómo la MXA posibilitó la profundización en los conceptos matemáticos inmersos en los 
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modelos, aún cuando se requirió institucionalizarlos (DM y DH). Con base en la revisión de “la guía 
de evaluación de calidad de MEA” (Lesh, 2010, p. 32) el docente analizó los audios y las cartas de 
los estudiantes. Caracterizó los modelos construidos por los estudiantes, con o sin tecnología (DI) 
para distinguir entre los modelos que requieren dirección, modelos que requieren extensión o 
refinamiento, modelos situados, y modelos compartibles y reutilizables. 
Tercera etapa (Ciclo Diseño-Implementación-Evaluación de MEA-MXA-MAA) 

i) Diseño de MAA (investigador- profesor). a) DM: El docente, apoyado por el investigador, 
diseñó la MAA en el contexto de ahorro de energía e inversiones donde subyacen los conceptos de 
función lineal y función exponencial. Dio significado al diseño de una secuencia de desarrollo de 
modelos compuesta por MEA, MXA y MAA, para propiciar el desarrollo del concepto de función 
exponencial. b) DI: Él diseñó la secuencia con base en Lesh et al. (2003). c) DH: El docente 
posibilitó la transición por diferentes ciclos de modelación, y fomentó que los alumnos revisaran, 
profundizaran y ampliaran su conocimiento matemático relacionado con la función exponencial. 

ii) Tercera implementación (Profesor- Alumnos). Participaron diez alumnos agrupados en cuatro 
equipos a) DM: Todos los alumnos construyeron modelos que incluyeron: la función lineal para 
describir la situación del ahorro, la función exponencial para analizar las inversiones, y una 
diversidad de representaciones verbal, tabular, gráfica y algebraica . b) DI: Los modelos creados para 
resolver la situación problema incluida en la MAA, se basaron en el conocimiento desarrollado al 
usar NetLogo y GeoGebra (MXA). c) DH: El profesor explicó cómo el conocimiento sobre la 
función exponencial, aprendido por los estudiantes al realizar la MEA, les permitió realizar la MAA. 
Los modelos fueron caracterizados como compartibles y reutilizables. 

iii) Interacción del investigador y el docente después de la tercera implementación 
(Investigador- Profesor). El docente describió los diferentes ciclos de modelación desarrollados por 
los alumnos al resolver la secuencia de desarrollo de modelos y analizó cómo ellos evolucionaron 
durante la realización de la MEA, MXA y MAA (DH). Utilizó los niveles de covariación (Carlson, 
Jacobs, Coe, Larsen, & Hsu, 2002) y “la guía de evaluación de calidad de MEA” (Lesh, 2010, p. 32) 
para generar una clasificación de los modelos construidos, en términos del uso de relaciones lineales 
y exponenciales (DM); de la comprensión de la función exponencial y diferenciación de la función 
lineal; así como del uso que se les dio a las funciones para interpretar y predecir la situación (MAA). 

Conclusiones 
¿Cómo evoluciona el sistema conceptual sobre el proceso de enseñanza y aprendizaje de la función 

exponencial de los docentes al diseñar, implementar y evaluar MEAs? El mayor énfasis se puso 
primero en la DI, enseguida en la DM, y finalmente, las tres dimensiones, DI, DM y DH, tomaron 
relevancia.  

En la primera etapa el docente se concentró en describir las representaciones construidas con o sin 
el apoyo de la tecnología. Describió si los alumnos propusieron o no la función exponencial en su 
forma algebraica en su modelo. Puso énfasis en el producto final y no en el proceso de construcción 
del concepto de función exponencial, lo cual hizo en la segunda etapa. En la tercera etapa, el docente 
logró describir cómo los estudiantes desarrollaron ideas matemáticas, las modificaron, adaptaron y 
refinaron durante todo el proceso de realización de la secuencia. Ello le permitió concluir que, en el 
proceso de aprendizaje de la función exponencial, los estudiantes podrían usar primero la función 
lineal al suponer una variación constante y, posteriormente, construir la función exponencial.  

La MXA permitió que los estudiantes lograran profundizar en conceptos matemáticos relacionados 
con la función exponencial. Esto se vio reflejado al realizar la MAA, ya que los estudiantes pudieron 
usar los conceptos sobre función exponencial y lineal para realizar una actividad distinta, en diferente 
contexto. Aprendieron a diferenciar y utilizar ambas funciones para describir la MAA. La interacción 
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multinivel entre los estudiantes, profesor e investigador, durante cada una de las fases de las distintas 
etapas fue fundamental para que evolucionara el sistema conceptual del docente relacionado con el 
proceso de enseñanza y aprendizaje de la función exponencial. Si bien es cierto que no existe 
linealidad en el desarrollo de sistemas conceptuales, en este estudio se identificó que el diseño, 
implementación y análisis de cada actividad contribuyó para que el sistema conceptual del docente se 
modificara, ampliara y refinara. 
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After an explicit unit of core activities on questioning, preservice teachers (PTs) completed an 
assignment to select a problem-solving task, anticipate student solutions, and plan probing questions. 
After analyzing PTs’ work, we discovered that, although most PTs planned probing questions, many 
also planned questions focused on information or procedures. Next steps include exposing PTs to 
probing questions focused on meanings, context, or representations. 

Keywords: Instructional activities and practices, Teacher Education- Preservice 

According to National Council of Teachers of Mathematics (NCTM, 2014), effective teaching of 
mathematics requires asking “purposeful questions to assess and advance students’ reasoning and 
sense making about important mathematical ideas and relationships” (p. 35). Although teacher 
questioning has long been viewed as a critical component of mathematics teaching, rigorous and 
challenging mathematics standards (Common Core State Standards for Mathematics [CCSSM], 
2010) and NCTM’s (2014) release of effective mathematics teaching practices brought attention back 
to teacher questioning in the U.S. Especially, given that teachers in the U.S. ask fewer probing 
questions that support the deep levels of student understanding than teachers in other high-achieving 
countries (Stigler & Hiebert, 2009a,b), it is critically important to put emphasis on the practice of 
asking purposeful questions in teacher preparation programs. The main reasons for asking purposeful 
questions are to surface the student’s understanding and reasoning, to probe student thinking, and to 
gather more information related to the student’s understanding of their problem-solving strategies, 
key mathematical ideas, and meaning inherent in representations (Huinker & Bill, 2017). In an 
attempt to foster preservice teachers’ (PTs) ability to use such purposeful probing questions, we 
contemplated that an explicit teaching of questioning was needed, and we planned and implemented 
a series of core activities in a methods course for teaching mathematics in the elementary and middle 
grades. After PTs were explicitly taught questioning through the series of core activities, they 
completed an assignment in which they selected a problem-solving task, generated different 
anticipated student solutions to the task, and planned probing thinking questions for each of their 
anticipated student solutions. We analyzed PTs’ planned questions in the assignment, in order to 
determine how our explicit teaching of questioning through a series of core activities helped them 
cultivate good questioning skills, and to identify next steps that we would either begin to address or 
continue to implement in our methods courses. The guiding question for this study is: What types of 
questions do elementary PTs propose in order to probe the thinking of their students? 

Theoretical Framework 
Teacher questioning in mathematics has been investigated in many studies with a focus on inservice 

teachers (e.g., Boaler & Brodie, 2004; Franke et al., 2009; Kawanaka & Stigler, 1999; Martino & 
Maher, 1999; Myhill & Dunkin, 2005; Shahrill, 2013; Sahin & Kulm, 2008; Wimer, et al., 2001); 
however, fewer studies have focused on PTs’ questioning (e.g., Akkoç, 2015; Cakmak, 2009; 
Hähkiöniemi, 2017; Hollebrands & Lee, 2016; Moyer & Milewicz, 2002; Weiland, et al., 2014). 
Akkoc, Hollebrands and Lee, and Hähkiöniemi investigated PTs’ questioning in relation to 
technology, in computerized environments, or with the use of dynamic software. Moyer and 
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Milewicz observed PTs’ assessment interviews with students, and found that they often asked 
questions with single answers in rapid succession, rather than probing for student thinking. Weiland 
et al.’s case study observed two PTs’ assessment interviews in their field study; found an increase in 
their competent follow-up questions; and suggest that PTs can develop their questioning skills 
through rich field experiences. Cakmak reported that PTs often view the role of questioning as 
simply a way to motivate students or get their attention. 

Many of the studies have produced classifications for probing questions in mathematics. Sahin and 
Kulm classified teacher probing questions as ask students to (1) explain/elaborate their thinking, (2) 
use prior knowledge/apply, (3) justify/prove. Kawanaka and Stigler classified questions as requesting 
(1) analysis/synthesis/conjecture/evaluation, (2) how to proceed in solving a problem, (3) the 
methods that were used to solve a problem, (4) the reasons why something is true/why something 
works/why something is done, and (5) other information. Boaler and Brodie’s classification was: (1) 
exploring mathematical meanings and/or relationships, (2) probing, getting students to explain their 
thinking, and (3) extending thinking. Moyer and Milewicz categorized PTs’ questioning strategies as 
questioning of (1) only incorrect responses, (2) non-specific questioning that did not acknowledge an 
individual child’s responses, and (3) competent questioning that attended to a child’s responses and 
probed for more information. Hähkiöniemi (2017) divided PTs probing questions into categories as 
probing method, reasoning, cause, meaning, argument, extension, and unfocused probing.  

In this study, we aim to explore the nature of elementary PTs’ probing questions as a result of 
explicit teaching of questioning skills through a series of core activities, and in relation to 
implementing problem-solving tasks. Rather than using an existing classification, we explored the 
question types that emerged from our PTs, which would complement the previous studies, help us 
better understand the ways our elementary PTs attempt to ask probing questions, and aid us in 
redesigning our explicit teaching of questioning module based on the emerging types. 

Methods 
The sample consisted of 115 PTs in five sections of an elementary/middle math methods course for 

a mix of elementary and special education majors. In an attempt to foster PTs’ ability to use 
purposeful probing questions, we designed and implemented an explicit questioning module 
involving a series of core activities, as recommended by Morrissey, et al. (2019). 

First, PTs studied the four types of questions as gathering information, probing thinking, making the 
math visible, encouraging reflection and justification (NCTM, 2014), and the idea of assessing and 
advancing questions (Huinker & Bill, 2017) through descriptions, examples, and discussion. Then, 
they watched and analyzed classroom teaching episodes that demonstrate the teacher’s use of 
purposeful questions, and examined excerpts from lesson transcripts for the types of questions posed 
by the teachers. They categorized teacher’s questions by four types and also identified whether each 
question was assessing or advancing. Next, they examined lesson plans that include planned 
purposeful questions during implementation of problem-solving tasks. These lesson plans included 
teacher’s planned questions for a variety of anticipated student solutions to a mathematical problem 
involving various degrees of mathematical sophistication and understanding. Last, they studied four 
different student works to a given problem-solving task, and created three (two assessing and one 
advancing type) purposeful probing questions for each of the four student work samples. Finally, 
they completed an assignment in which they selected a problem-solving task, generated a number of 
different anticipated student solutions to the task, and planned probing thinking questions for each of 
their anticipated student solutions. The assignment prompted PTs to ask questions about the 
anticipated student work in order to help students deepen their understanding, to probe into their 
reasoning, and/or to have them evaluate and judge their own work. We analyzed PTs’ planned 
questions in order to explore PTs’ competency in asking probing questions, as a result of explicit 
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teaching of questioning through a series of core activities. We used an open coding strategy (Strauss 
& Corbin, 1990) to categorize PTs’ probing questions. One researcher analyzed the questions, and 
proposed initial categories with descriptions. Two other researchers reviewed a subgroup of the data, 
and agreed with the categories, and suggested revisions for the descriptions. Then, the three 
researchers, in collaboration, revised the descriptions to make them more subtle and accurate. After 
finalizing the categories and descriptions, one researcher coded the data; another researcher reviewed 
the codes and indicated their disagreements with the coding. The discrepancies were discussed, and 
the codes were revised, repeatedly, until 100% agreement was achieved.  

Six categories of questions emerged: (1) focusing on information and/or procedures, which ask 
students to identify numbers, shapes, key words, and/or procedures to use to solve a problem; (2) 
focusing on context, which ask students to identify information given in a problem, think in the 
context of the problem, or connect their solution back to problem context; (3) focusing on meanings, 
which ask students to explain why something was done, interpret the meaning of given information, 
explain their reasoning, or interpret the meaning of the answer in terms of the context; (4) focusing 
on representations, which ask students to use different ways to represent a problem situation, such as 
draw a picture, write an equation, use manipulatives, etc., ask students about their current 
representation, or ask students to justify their representations; (5) general questions with no focus, 
which ask students to explain how they approached solving a problem with no reference to the 
context of a problem, or ask students general questions about the concepts involved in a problem - 
overall, this type of question can be used with any other problem students are asked to solve; and (6) 
other, in which the PT will show, explain, talk through, remind, give an alternative problem –in 
general, questions are not directed at students. The emerging categories showed that PTs were able to 
ask probing questions that focus on context, meanings, or representations. Yet, some question types 
that focus solely on information and procedures, and do not probe into student thinking also emerged, 
along with general questions and other comments/questions unrelated to students’ current work and 
understanding.  

Results and Discussion 
All but eight PTs proposed more than one type of question. The assignment required PTs to only 

ask questions that probe into student reasoning in their current solution, and that help them deepen 
their understanding. However, 88% of the PTs asked at least one question related to information and 
procedures, which do not consider the underlying conceptual understanding of the student, and do 
not probe into student thinking as required. It is worrisome that the majority of the PTs believed that 
questions related to information and procedures are probing thinking questions. For example, “Why 
did you solve for the smaller numbers instead of doing it as a large number?” is a question that is not 
linked to underlying meanings, problem context, or meanings inherent to representations. Frequently, 
the questions in this category focused on numbers, procedures, or notations, as in “Why did you use 
an equal sign instead of any other sign?” and “Could you use any other number and get the same 
result?” 

 Most (72%) of the PTs asked questions that focus on the meanings. This is an important component 
of questioning, as requiring students to explain the meaning of their solutions serves to reveal 
underlying gaps in students’ conceptual understanding. Sample questions coded in this category are 
when PTs asked questions about the meanings of the numbers or operations involved in the solution, 
such as “What does 159 represent [in your solution]?” “Why do we add 1 to Fred’s equation?” “Why 
did you use multiplication?” and “What does the graph tell you?”   

About 35% of the PTs asked questions that focus on the representations, which also require students 
to explain their reasoning as they justify their representations. These types of questions provide the 
strong base of conceptual understanding that is necessary for building procedural fluency (NCTM, 
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2014). Sample questions coded in this category are: “How did you show in your picture that Johnny 
gave away to Tina?” “How could you represent this with pictures?” “What if they added two more 
bow colors, how would your drawing and equation change?” and “How could you show your circles 
using a number sentence?” 

Although making connections between the solution and the problem context is also an important 
part of mathematics proficiency, as recommended in the CCSSM, only 14% of the PTs planned 
questions asking students to relate their solution to the problem context. For example: “What does 
your equation have to do with the lights Garrett wants to buy?” and “What relationship does doubling 
the savings have to do with the price of the shirts [in the problem]?” 

Thirty-four percent of the PTs planned general questions with no relationship to the context of the 
problem, which did not assist students in evaluating their solutions and moving forward in solving a 
problem. For example, “How did you get your answer?” or “What strategy did you use to solve this 
problem?” were coded as general questions, because they are not specific to the student’s current 
understanding, and can be asked for any type of student work. When PTs ask how students got their 
answers, students in most cases would simply go through the steps of their solutions. Another most 
frequent general question was, “Have you thought of another way this could be done?” which is not 
related to a student’s work and understanding. Other general questions asked about general facts 
without connection to a student’s work or problem, such as “How many minutes are there in an 
hour?” “What is the formula for area?” etc.  

In a few cases, PTs either planned to show, explain, or talk through the problem and solution, 
instead of asking probing questions, or planned to tell students to check their work. Further analyses 
of question types in the future will consider variability across content and grade level. 

Implications 
The high percentage of PTs who planned to ask probing questions indicated that explicit teaching of 

questioning through core activities helped cultivate PTs questioning skills. Nevertheless, the low 
percentage of PTs who proposed questions relating student solutions to problem context will be 
addressed in future methods courses, as authors focus specifically on planning questions that move 
students forward and are related to meaning, representations, and context of solutions rather than 
general or procedural questions. The emerged categories of probing questions, as focusing on 
meanings, context, or representations, will be used as a guide for potential types of probing questions 
that can be asked specifically to probe into students’ conceptual understanding. PTs will be asked to 
analyze teaching episodes and lesson plans in relation to these three probing question categories and 
create assessing questions focusing on meanings, context, and representations. The other two 
categories, general questions or focus on information/procedures, will be used as non-examples of 
probing thinking questions. PTs will also be asked to analyze teaching episodes and lesson transcripts 
to look for these two categories. The five categories of PTs’ questions, and three categories of PTs’ 
probing questions, complement the existing question classifications in the reviewed literature. In 
particular, the emerged categories provided subcategories for a combination of Boaler and Brodie’s 
and Moyer and Milewicz’s classifications.  
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This brief report describes the initial results of The Fractions as Measures for Prospective 
Elementary School Teachers (PTs) Study. Research shows that PTs’ conceptions of fractions on a 
part-whole understanding may be problematic when teaching children about improper fractions. We 
created an instructional lesson sequence for PTs focused on using unitizing, iterating, and 
partitioning to think of fractions as measures in multiple situations. Initial results from this ongoing 
study indicate that PTs’ manipulations of unpartitioned rod manipulatives supported both their 
construction of more powerful fractions schemes and their ability to verbally justify their reasoning. 

Keywords: Teacher Education-Preservice, Instructional Activities and Practices, Rational Numbers 

The Standards for Preparing Teachers of Mathematics state that beginning elementary school 
teachers should have a strong foundation in fractions, including the idea that “fractions have multiple 
interpretations, including part-whole relationships, measures, quotients, ratios, and operators” 
(AMTE, 2017). Although the conception of a fraction as a measure (Kieren, 1980; Lamon, 2007) is 
emphasized early in the Common Core State Standards for Mathematics (NGA/CCSSO, 2010), many 
students and prospective teachers (PTs) remain focused on part-whole meanings of fractions 
(DeWolf & Vosniadou, 2015; Newton, 2008; Norton & Wilkins, 2010; Olanoff, Lo, & Tobias, 
2014). In this paper, we present an instructional sequence in an online mathematics methods course 
for supporting PTs’ construction of conceptions of fractions as measures. Our aim of this study is to 
describe how PTs reason with fractions in this online environment, with the goal of informing design 
modifications to support measurement conceptions. 

Theoretical Framework 
We adopt a constructivist epistemology in thinking about PTs’ fractions meanings as the product of 

their organizing mental structures (schemes) to fit their experiences (von Glasersfeld, 1995). The 
construct of scheme refers to the way researchers model how individuals operate mentally in service 
of a goal. A scheme consists of three parts – recognition of a situation, operations (mental actions), 
and an expected outcome. Individuals’ schemes become established as they become refined and 
generalized through their use, via processes of assimilation and accommodation (Piaget, 1970). 
When a scheme is interiorized, the situation, operations, and anticipated result are experienced 
altogether as a unified and connected structure (a concept) that can itself be operated upon 
(Hackenberg, 2010; Piaget, 1970).  

We focus on four specific schemes pertaining to fractions – the part-whole scheme (PWS), the 
measurement scheme for unit fraction (MSUF), the measurement scheme for proper fractions 
(MSPF), and the generalized measurement scheme for fractions (GMSF) (Steffe & Olive, 2010; 
Wilkins & Norton, 2018). The PWS involves partitioning a whole into discrete pieces that can be 
disembedded (removed from the whole without modifying the whole) and double-counted to form a 
numerosity of part(s) within a numerosity of a whole. The distinction between the PWS and the 
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measurement fractions schemes is the individual's ability to iterate fractional units (which is absent 
from PWS). The MSUF builds upon the PWS as the individual conceives of the size of a 
disembedded unit fraction and its relation to the size of the unpartitioned whole (i.e., that 
equipartitioning an amount of 1 into n parts and iterating that amount n times results in the size of 1). 
The MSPF extends this notion to the size of a composite (but proper) fraction. An individual with a 
GMSF understands the size of an (im)proper fraction (m/n) as the result of coordinating mental 
operations to include partitioning the size of ‘1’, disembedding a unit fractional size (1/n), and 
iterating the disembedded fractional unit m times.  

In order for an individual’s fraction scheme to become interiorized as a fraction concept, his or her 
fraction scheme must be reversible. For instance, an individual with a reversible GMSF could reverse 
his or her ways of operating to determine the size of ‘1’ from a given improper fraction size. 
Reversing the MSPF involves forming the size of ‘1’ from a given (composite) proper fraction size, 
and reversing the MSUF involves forming the size of ‘1’ from a given unit fraction size. Reversing 
the PWS involves forming the numerosity of the whole from a given proper fraction (e.g., reasoning 
that if three parts represents the fraction 3/7, then the whole must be 7 parts). Wilkins and Norton 
(2018) explain PWS requires partitioning and disembedding, whereas MSUF also requires iterating. 
By engaging in both partitioning and iterating, individuals are constructing actions with inverse 
relationships between each, which also promote reversibility (e.g., partitioning undoes iterating and 
vice versa when these actions are composed). 

Methods 
Participants, Context, and Instructional Sequence 

We began with a pilot of six PTs enrolled in a face-to-face mathematics methods course to 
investigate PTs’ understandings of linear fraction tasks (Boyce & Moss, 2017). We provided the PTs 
with unpartitioned rods to help them carry out iterating and partitioning operations for different tasks 
with fractions. PTs video recorded themselves discussing how to solve particular tasks and showed 
how they used the rods to help them make sense of each task.  

The positive results from the pilot study encouraged us to create an instructional lesson sequence for 
unitizing, iterating, and partitioning in the linear representation of fractions and expand data 
collection to an online, asynchronous, undergraduate mathematics methods course for elementary 
school teachers (n=80). This methods course is delivered 100% online for 15 weeks. PTs are 
typically enrolled in their junior year and one year from a student teaching experience. They 
complete readings, watch lectures and supplemental videos of whole class instruction, participate in a 
group discussion, and take a quiz each week. The course content is teaching and learning rational 
numbers and proportional reasoning.  

We designed and implemented the instructional lesson sequence for PTs. The lessons begin with 
reading the first two chapters of Fractions into Practice: Grades 3-5 (Chval, Lannin, & Jones, 2013). 
Chapter 1 provides examples of children’s work with analyses of children’s understanding of 
partitioning, fair shares, and the meaning of fractions. Chapter 2 provides an overview of developing 
children’s understanding of the meaning of the unit in a fraction. PTs engage in an activity in which 
they use various pattern blocks to think about partitioning into equal parts. Then, we introduce 
fractions as measures and the roles of unitizing, iterating, and partitioning in forming sizes consistent 
with standard and discretized representations (i.e., linear). PTs also engage in thinking about why it is 
essential for students to identify the unit and recognize its connection with a fractional part. This is 
accessible to PTs who have not yet constructed fractions as measures. We then foster reflection on 
iterating and partitioning by asking PTs to complete a series of activities using rods that increase in 
sophistication and difficulty in terms of thinking of fractions as measures (Baroody, Baroody, & 
Coslick, 1998, p. 9-16). These tasks encourage use of partitioning, iterating, and unitizing with 
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fractions in order to arrive at an accurate answer. The tasks from the culminating activity, which, use 
similar wording and form of items from Norton and Wilkins (2010), are listed below: 

• If the red rod is 1/5, what rod represents 1/2? 
• If the light-green rod is 1/4, what rod represents 1/2? 
• If the purple rod is 2/3, what rod represents 1/2? 
• If the purple rod is 2/3, what rod represents 7/6? 
• If the light-green rod is 1/2, what rod represents 9/6? 

We conjectured that PTs might describe reasoning with a MSUF scheme to solve tasks 1 and 2, a 
MSPF scheme to solve task 3, and a GMSF scheme to solve task 5. We randomly assigned PTs in 
discussion forums to one of the five aforementioned tasks and asked them to  make a video showing 
their solution(s). PTs posted the video to a discussion forum and discussed the different ways of 
making sense of their group’s assigned task. 
Data Collection and Analysis 

The design research approach (Cobb, Confrey, diSessa, Lehrere, & Schauble, 2003; Collins, Joseph, 
& Bielzaczyc, 2004; Kelly, 2003) was used to investigate how PTs reasoned in an online setting and 
employed to study and understand the means of supporting and organizing student learning of 
fraction tasks presented in the online course. The framework of design research allowed us to 
engineer the learning environment, systematically study what takes place, and make adjustments to 
the curriculum (Cobb et al. 2003; Collins et al., 2004; Kelly, 2003). 

 
Figure 1: Iterative Phases of Data Collection and Analysis 

The data consisted of videos of PTs verbally reflecting on how they solved fraction tasks using rods 
and PTs’ online discussions contrasting their reasoning and their peers’ reasoning on these tasks. 
First, a graduate assistant blinded and renamed the video files and blinded the online discussions so 
that the five raters could not identify PTs’ names. Two researchers identified repeating themes in 
PTs’ videos, while acknowledging unique instances (Corbin & Strauss, 2014). Themes were 
organized according to “the unit and the whole”, “reasoning with arithmetic operations, “alternative 
methods”, and “orientation of the video”. The two researchers created a list of twenty questions 
based on the themes and six researchers quantitatively coded (1: evidenced, 0: not evidenced) in 
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pairs. Following the coding, pairs compared codes to determine inter-rater reliability. Using what we 
learned from the data analysis, we refined the pedagogy of the online course as well as the content. 
Figure 1 outlines the phases of our data collection and analysis.  
Results 

The videos showed that the unpartitioned rods helped PTs verbalize their constructed unit and show 
how their partitioning and iterating relates to particular fraction reasoning. As PTs began working 
with concrete manipulative rods, we found that they were able to develop physical actions that were 
both reversible and composible (e.g. iterating and partitioning). By acting on length models in this 
way, PTs had to iterate and partition. Before this, many PTs commented that they had used linear 
representations, but usually in the form of a number line. Thus, conceptualizing fractions with bars 
using rods was new to them.  

Conclusion and Significance to the Field 
Results from the study showed that tasks similar to those in the sequence tested provide 

opportunities for PTs to progress from PWS toward measurement fraction scheme development. By 
anticipating their own strategies and solutions with (im)proper fractions, PTs will better be able to 
consider their own students’ reasoning strategies more systematically and critically determine 
(in)effective instructional moves when teaching fractions. By providing PTs means to visualize the 
unit and engage in reversible actions, and verbally reflect on their thinking (with their video 
explanations) we posit they might interiorize measurement schemes and be able to anticipate 
solutions more fluently. Findings from this study could inform (1) (in)effective instructional 
sequences and progressions that PTs experience when constructing fractions as measures, and (2) 
affordances and constraints of online asynchronous learning environments for the development of 
these instructional sequences.  

We are currently in Phase 2 of Data Collection and are including new data in the form of drawings, 
paired with the videos in online and face-to-face mathematics methods courses. We are refining the 
list of questions based on the themes used to analyze the videos so that other instructors that collect 
similar data can use the protocol to determine fraction schemes. 
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This study examines how preservice teachers (PSTs) plan for and enact questions that elicit student 
thinking during an early field experience. We analyzed teaching videos and their corresponding 
lesson plans from 17 PSTs over 34 lessons in a field experience in a freshman-level university 
mathematics class. Our findings show PSTs tended to use three types of questioning sequences when 
teaching, with the quality of questioning in those sequences linked to the quality of planned 
questions. Findings described here discuss the implications for supporting PSTs’ lesson planning 
during early field experiences.  

Keywords: Teacher Education – Preservice; Teacher Educators; Classroom Discourse  

Being able to elicit and respond to student thinking is a core practice of ambitious teaching 
(Gotwals & Birmingham, 2016). In order to elicit student thinking, teachers need to: (1) select a task 
that affords opportunities for eliciting, (2) anticipate student thinking, (3) know the learning goal and 
assess students’ proximity to the goal, and (4) plan questions to deepen student understanding (Boerst 
et al., 2011; Orr et al., 2020; Shaughnessy et al., 2019; Sleep & Boerst, 2012; TeachingWorks 
Resource Library, 2020).  Each of these components of eliciting student thinking is complex. The 
complexity of this practice makes it difficult for novice teachers, whether being utilized through 
simulations or in face to face interactions with students (Shaughnessy & Boerst, 2018). One-way 
math teacher educators (MTEs) help preservice teachers (PSTs) prepare for this complex practice is 
through lesson planning. In this brief research report, we share findings from a project that explored 
the following questions: During the UTE, to what extent did PSTs enact questions as planned? How 
did the quality of planned questions correspond to the quality of questions as enacted? 

Methods 
 This project analyzed data collected for a larger project studying the effects of the University 

Teaching Experience (UTE) model for secondary mathematics PST learning across three different 
teacher preparation programs1. In the UTE, PSTs teach an entry-level undergraduate mathematics 
course while taking their first methods course (Bieda et al., 2019). PSTs plan, enact, and reflect on a 
series of lessons while being supported by MTEs. The MTEs support the PSTs through providing 
feedback on lesson plans, in-the-moment coaching and leading post-lesson debriefs. In addition to 
the support of their MTEs, the PSTs are also supported by a mentor teacher who is the course 
instructor for the mathematics course. Throughout the course of the UTE semester, PSTs teach at 
least two lessons and observe other PSTs teach while working with mathematics students in groups. 
In this brief report, we will only present findings from data collected at our university site.  
Data Collection 

 During the implementation of the UTE in fall 2018, there were 17 PSTs. The PSTs planned and 
taught lessons in pairs, resulting in seven pairs and one group of three. The PSTs taught two lessons 
over the course of the semester in a college algebra course. The first lesson was roughly half the class 
period (~40 minutes). The second lesson was the entire class period (~ 80 minutes). Lesson 
enactments were captured using Swivl robot video-recording (www.swivl.com) and audio from the 
class sessions was later transcribed. PSTs completed lesson plans for each session following a 
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modified version of the Think Through a Lesson Protocol (TTLP) (Smith et al., 2008) and shared 
with MTEs for feedback through Google Docs.  
Data Analysis 

In order to understand the relationship between the quality of questions enacted as compared to the 
quality of questions planned, all the questions in the lesson plans and the transcribed enacted lessons 
were coded based on the Instructional Quality Assessment Academic Rigor (AR) for Teachers’ 
Questions rubric (Boston, 2012). This tool was selected because reliability and validity has been 
established (Boston & Wolf, 2006). For any question written in the plan or asked of students during 
the lesson, it was assigned one of 6 question types: probing, exploring mathematical meaning and 
relationships, generating discussion, procedural or factual, other mathematical, and nonmathematical 
(Boston, 2012). Examples of each type from our data are represented in Table 1. 
 

Question Type Example  
Probing Why does this work? 
Exploring mathematical 
meaning and relationships 

Why do you think that would work, to switch P and M, given 
what we’ve been doing with the other inverses? 

Generating Discussion Looking at these examples here, take a second, look at them, and 
think, which of these relations or graphs are functions? 

Procedural or Factual Is it invertible? 
Other Mathematical Any questions on how we did those few steps? 
Nonmathematical  Why would technology affect the prison rate? 

Table 1: Examples of Question Types 
 

For the enacted lessons, we narrowed the data to examine only situations where PSTs engaged in 
sequences (sustained questioning) involving AR questions, thus excluding any questions that were 
primarily procedural or factual, other mathematical, and non-mathematical. We segmented lesson 
transcripts into questioning sequences by determining when the PST asked the initial question to 
elicit student thinking around a specific question. Then, we identified a sequence end when the PSTs 
moved to another topic. We analyzed these sequences and generated three categories to describe the 
patterns of questioning in these sequences. Afterwards, we compared the enacted sequences to the 
portion of the lesson plan with corresponding content. We looked for patterns in how the questioning 
sequences evolved depending upon whether PSTs had asked questions that were planned or 
unplanned. In the section below, we share our findings about the patterns that surfaced related to 
describing relationships between planned and enacted questions. 

Findings 
We discovered that PSTs utilize three distinct questioning sequences when they asked questions 

involving Academic Rigor (AR). In the first type, PSTs maintained AR throughout the sequence. In 
this type, PSTs began with an AR question, the students responded, and the PSTs continued to ask 
AR questions throughout the sequence. The second type of questioning sequences involved PSTs 
reducing the AR. In this type, the PSTs started with an AR question, the students did not respond, 
and the PSTs lowered the AR of the questions for the remainder of the sequence. The third type –the 
“hook” method – emerged when PSTs began with a non-AR question, which “hooked” the students 
to respond, and then the PSTs raised the AR of the questions for the remainder of the sequence.  

Given our research focus, we wanted to explore the relationship between questions as planned and 
the emergence of these different types of questioning sequences. When looking at the total amount of 
enacted questions, as sorted by questioning sequence, we found the most common questioning 
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sequence was the “hook” method followed by the scenario where the AR is maintained. In further 
analysis of mapping enacted questions on to the lesson plan, we found PSTs enactment involved 
more planned questions for sequences where the AR is maintained when compared to the other two 
questioning sequences (see Figure 1). 

 
Figure 1: Planned vs Unplanned Questions in Enactment 

 
Note in Figure 1 that situations where PSTs lowered the academic rigor involved the fewest number 

of planned questions. To investigate whether planning high-quality questions correlated with a 
greater number of AR questions in enactment, we also investigated the quality of enacted questions 
during parts of the lesson where AR questions had been planned (but not enacted). We hypothesized 
that planning AR questions would ultimately support higher-quality questioning sequences during the 
parts of the lesson the questions were being employed, even though the planned questions were not 
asked. Our findings are represented in Figure 2.  

 
Figure 2: Planned & Unenacted Questions vs Enacted Questions  
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Through this investigation we found, in situations where AR is maintained, PSTs not only asked the 
most planned questions, but they also had the most planned and unenacted questions for these 
sequences. We also found the reverse was true. In situations where the AR was lowered, PSTs not 
only asked the least amount of planned questions, but they also had the least amount of planned and 
unenacted questions (fewer questions overall) suggesting that less attention to those situations in 
planning affected the quality of their eliciting of student thinking during enactment  

Discussion and Conclusion 
Through engaging in the UTE experience, PSTs are given opportunities to plan for and elicit student 

thinking through questioning while being supported by MTEs. These findings suggest that even with 
support, PSTs find themselves in classroom situations they had not anticipated and are unsure of how 
to respond. The situations tend to arise when students have gaps in prior knowledge or engage in the 
task in an unanticipated way. This is to be expected, as PSTs classroom inexperience often means 
that they face difficulties with anticipating students’ responses (Arbaugh et al., 2019; Taylan, 2018). 
Improving the quality of PSTs’ questioning must involve not only helping them to anticipate student 
responses, which typically improves with more classroom experience, but also how to draw on high 
AR questioning when the situation does not unfold as planned. MTEs can provide this support 
through encouraging PSTs to consider follow up questions, as well as, how the questions align with 
the learning goals. Giving additional attention to the alignment between the questions and learning 
goals may result in (the inevitable) unplanned questioning sequences that more likely maintain AR.  
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Calls for teaching school mathematics with a focus on mathematical reasoning (MR) are included in 
curricular documents across the world, but little is known how prospective teachers (PSTs) 
understand MR. In this paper, we report on a study in which we engaged 24 PSTs preparing to teach 
grades 1-8 in analyzing a series of student-generated arguments for evidence of student reasoning 
with a focus on student-provided justifications. We examined PSTs’ interpretations of MR prior to 
and after instruction. Our results showed that PSTs interpreted MR broadly in terms of student 
thinking, validating thinking, problem-solving, connecting ideas, or sense-making. Some PSTs also 
interpreted MR as evidence of student understanding or described MR in terms of strategies teachers 
use to support students’ reasoning skills. We discuss changes in PSTs’ interpretations of MR after 
instruction.  

Keywords: Teacher Beliefs, Reasoning and Proof, Teacher Education - Preservice  

Framing of the Study 
Developing students’ mathematical reasoning (MR) skills is the desired goal of school mathematics 

education (Australian Curriculum, Assessment and Reporting Authority, 2015; Department for 
Education, 2014; National Council of Teachers of Mathematics [NCTM], 2000, 2009; National 
Governors Association Center for Best Practices, & Council of Chief State School Officers, 2010). 
However, little is known about how teachers, including prospective teachers’ (PSTs’), interpret MR. 
To date, only a handful of studies documented how practicing and PSTs make sense of and 
understand MR (Clarke et al., 2012; Herbert et al., 2015). Herbert et al. (2015) shared that Australian 
and Canadian elementary practicing teachers have broad and ambiguous perceptions of MR. As such, 
they interpreted MR as thinking, communicating thinking, problem-solving, validating thinking, 
forming conjectures, using logical arguments to validate conjectures or connecting aspects of 
mathematics. 

In this paper, we describe instructional intervention designed to heighten elementary PSTs’ 
attention to students’ reasoning in the context of generating mathematical arguments. Our study 
draws on the variation theory of learning (Lo, 2012), which highlights the importance of providing 
learners with multiple experiences with a given phenomenon, to generate a wide range of 
opportunities that help learners attend to and make sense of different features of that phenomenon. In 
our work with PSTs, we draw on the variation theory to purposefully bring PSTs’ attention to 
elementary students’ MR, particularly different ways in which students might reason to justify while 
generating mathematical arguments. Our goal was to answer the following research questions: (1) 
How do PSTs interpret MR in the context of elementary school mathematics classrooms? And, (2) 
How does engaging PSTs in analyzing elementary students’ arguments for evidence of MR impacts 
PSTs’ views on MR?  

Method 
Participants and Study Context 

Participants were 24 PSTs enrolled in a semester-long mathematics content course for elementary 
and middle grades education majors, Algebra and Geometry for Teachers. The course was designed 
to support PSTs’ conceptual understanding of mathematical ideas essential to elementary and middle 
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school mathematics curriculum. Instructional emphasis was placed on understanding, interpreting, 
and assessing students’ MR about fundamental mathematics concepts in the K-8 school mathematics. 

Drawing on descriptions of elementary students’ reasoning provided by the NRICH team at the 
University of Cambridge (see https://nrich.maths.org/11336) and the variation theory of learning, we 
designed the Student Reasoning Assessment Tool (SRAT) (see Table 1) to bring PSTs’ attention to 
different justifying actions in the context of student-generated arguments and to help PSTs develop 
reasoning assessment skills. Along with the SRAT, we also created a set of class activities that we 
used to engage PSTs in analyzing MR evident in elementary students’ written arguments.  

 
Table 1: Student Reasoning Assessment Tool (SRAT) 

Levels Descriptions of elementary students’ reasoning levels 

L0 Student tells what he or she did 
L1 Student attempts to provide some reasoning (not necessarily relevant, 

complete, or valid) for what he or she did 
L2 Student provides a chain of reasoning, which is incomplete, insufficient, or 

invalid, to support the assertation 
L3 Student provides a chain of acceptable valid reasoning in support of the 

assertion; the argument is at best partial 
L4 Student provides an exhaustive acceptable chain of valid reasoning in support 

of the assertion; the argument can be accepted as proof 
 

Prior to class intervention, we asked PSTs to share in writing their own interpretations of MR. They 
were also given a set of student-generated arguments and asked to analyze these arguments for 
evidence of student reasoning with attention to student-provided justifications. During the 
intervention, using the SRAT, individually and in small groups, PSTs examined a wide collection of 
sample arguments for evidence of student reasoning. They were also asked to anticipate how 
elementary students could reason and communicate their mathematical reasoning in different 
problem contexts. After the intervention, we asked PSTs to revisit their initial descriptions of MR.  
Data and Data Analysis 

 We analyzed PSTs’ written responses to two journals, which each PST completed at the beginning 
and end of the semester and in which they reflected on the meaning of MR. The journal prompts 
were intentionally open-ended to avoid leading PSTs in any specific direction that could suggest 
interpretations of MR. The prompts were as follows: 

• Journal 1: Think about yourself as a mathematics teacher. When you hear the term 
mathematical reasoning, what does it mean to you? In the best possible way, describe your 
understanding of this term. Explain how mathematical reasoning might look.  

• Journal 2: Building on your learning in this class, define mathematical reasoning. Did your 
understanding of mathematical reasoning change when comparing to how you interpreted it at 
the beginning of the semester? If yes, explain why. If no, explain why not.  

We first coded the data with analytic codes derived from the existing literature on teachers’ 
perceptions of MR (e.g., Davis & Osler, 2013; Herbert et al., 2015). We then conducted the inductive 
analysis to identify any additional themes within our PSTs’ responses. We continued comparing and 
contrasting the identified themes until we established final definitions of codes, which then were 
applied to our data. Finally, we tabulated code frequencies to identify any patterns in our PSTs’ 
interpretations of MR. 
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Results 
PSTs’ Interpretations of MR 

Our PSTs interpreted MR in multiple ways, and that overall, they used two lenses while discussing 
the term MR. Most frequently, PSTs interpreted MR from the perspective of a learner (see Table 2). 
Some PSTs also viewed MR from the perspective of a teacher. PSTs with the learner perspective saw 
MR as the process that describes how students think, validate (justify), make sense, solve problems, 
or connect mathematical ideas. PSTs with the teacher’s perspective viewed MR as data (products) 
that give teachers evidence of students’ understanding of mathematical concepts, or as strategies with 
which teachers engage students in MR in the mathematics classroom. 

 
Table 2: PSTs’ Views of MR  

View Interpretation of MR The number of PSTs* with the 
view (n, %) 

Semester 
beginning 

Semester end 

Student-Centered Thinking 6 (25%) 10 (42%) 
 Validating thinking 18 (75%) 22 (92%) 
 Sense-making 13 (54%) 17 (71%) 
 Problem-solving 8 (33%) 9 (38%) 
 Connecting mathematical ideas 9 (38%) 14 (58%) 
Teacher-Centered Evidence of students’ understanding 2 (8%) 7 (29%) 
 Teacher support for students’ reasoning 3 (13%) 3 (13%) 
Note. The total number of participants, n = 24. The categories are not mutually exclusive. Most PSTs shared 
multiple views. 

 
Student-centered Views of MR 

With a focus on an individual student, PSTs most frequently viewed MR as validating thinking. 
They emphasized justifying actions as representative of MR. PSTs also discussed modes of 
representations (e.g., verbal, written, or pictorial forms) that students might use to validate or explain 
their reasoning. They focused on the role that reasoning plays in supporting the growth of one’s 
mathematical understanding by describing that while students reason about mathematics, they learn 
and develop a deeper understanding of mathematical concepts or problem-solving strategies. PSTs 
also viewed MR as specific aspects of the problem-solving process, the entire process of problem-
solving, or decision-making in problem-solving situations. Some PSTs described MR as one’s 
thinking about mathematics, mathematical problems, or specific problem-solving strategies. 
Teacher-centered Views of MR 

 PSTs interpreted MR as evidence of student learning and articulated that teachers use students’ 
reasoning as a resource for making instructional decisions. PSTs also described that by paying 
attention to students’ reasoning, teachers identify the needs of students with diverse mathematical 
abilities or levels of understanding. 
Changes in PSTs’ Interpretations after Class Intervention 

We observed two changes in PSTs’ interpretations of MR while comparing their views from the 
beginning to the end of the semester. (1) Change in the breadth of interpretations (17 PSTs, 70%). 
After the class intervention, many of the PSTs augmented their initial interpretations and included 
additional perspectives on the meaning of MR, which they did not initially consider. On average, 
after the intervention, most PSTs gained awareness of one to three additional interpretations of MR. 
(2) Change in the depth of interpretations (14 PSTs, 58%). PSTs’ views of MR after the class 
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intervention remained largely consistent with their initial views. However, their interpretations of 
MR were more nuanced and included more precise descriptions of reasoning actions. While 
describing justifying prior to the class intervention, for example, many of the PSTs interpreted 
justifying broadly as explaining why. After the class intervention, PSTs discussed justifying with 
attention to specific attributes of justifications such as logic, generality, or modes of representations 
that a student might use to justify a mathematical statement.  

Conclusion and Discussion 
In our work with PSTs, we positioned them to analyze students’ MR as future mathematics teachers 

(see presented earlier journal prompts). Our data revealed two perspectives that PSTs used as their 
lenses while describing MR: student-centered and teacher-centered. With a focus on each of these 
perspectives, PSTs interpreted MR in a broad sense. Within their student-centered interpretations, 
PSTs described MR as thinking, validating thinking, sense-making, problem-solving, or connecting 
mathematical ideas. Within their teacher-centered interpretations, PSTs interpreted MR as evidence 
of student learning that helps teachers make instructional decisions or as a pedagogical practice that 
teachers use to engage students in reasoning and encourage their mathematical thinking. PSTs’ broad 
interpretations of MR might not be surprising since reasoning, problem-solving, sense-making, 
mathematical thinking are all intertwined and often viewed as interconnected practices that support 
one another (NCTM, 2009; Kilpatrick et al., 2001). 

Our results also revealed that classroom activities that exposed PSTs to a large sample of students’ 
work with a focus on student reasoning about justifications increased PSTs’ awareness of specific 
justifying actions. While sharing their views of MR, PSTs have begun to provide more nuanced and 
precise descriptions of reasoning actions related to justifying. Supporting PSTs in building a 
comprehensive vision of MR should include efforts of helping them make a shift from a broad 
understanding of MR as thinking, sense-making, problem-solving, or connecting mathematical ideas 
to seeing these aspects of reasoning in terms of more specific and tangible reasoning actions. Loong 
and colleagues (2013) argued that teachers who do not have a strong understanding of specific 
reasoning actions might likely be ineffective in promoting MR in their classrooms. 
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This study examines a professional development (PD) program, set in a summer mathematics 
program for middle grades students with a research-based curriculum, where preservice and 
inservice teachers collaborated in interpreting and responding to student thinking. We investigated 
the resources that participants contributed to this collaboration, and the opportunities the non-
traditional PD setting afforded for the sharing of these resources. Our embedded case study 
consisted of two classes, where participants taught and then engaged in video-recorded debriefing 
sessions each day. Their discussions focused on what they noticed in class and how they responded 
in the moment or anticipated responding in future lessons. We find that participants’ observations 
from class catalyzed the sharing of resources, both from the program and from outside experiences, 
that contributed to the analysis of student thinking. 

Keywords: Teacher Knowledge; Instructional Activities and Practices  

Professional development (PD) focused on practice offers prospective and practicing teachers 
opportunities to learn and examine the real work of teaching (Ball & Forzani, 2009; Grossman et al., 
2009a). Representations of practice (Grossman et al., 2009) captured in video episodes, student work, 
transcripts, and narratives are often used by researchers as effective tools to help unpack and 
decompose practice (e.g. Sherin & van Es, 2005; Kazemi & Franke, 2004; Silver et al., 2007; 
Oslund, 2016). Lacking in these studies, however, are opportunities to interact or be present within 
the dynamics of the context. Experiences such as lesson study (Lewis, Perry, & Hurd, 2009) provide 
direct access to the classroom with demonstration lessons that serve as representations of practice, 
followed by debrief opportunities for the decomposition of practice.  

Little (2003) posits that improvement of teaching and learning is strengthened when teachers 
collaboratively engage in analysis of teaching practice. When representations of practice (Grossman 
et al., 2009a) are contextualized in a common work environment, they become resources for teacher 
learning. Researchers have noted differences in what expert, beginning, and novice teachers perceive 
and understand of classroom events (Berliner, 2001). This skill of professional noticing is an 
important component of decomposing core practices of teaching (Jacobs, Lamb, & Philipp, 2010). 
Our work examines a PD where preservice and inservice teachers taught together in an informal 
summer mathematics program and engaged in discussion sessions about the student thinking and 
teaching practices they noticed. We hypothesize that a “neutral” setting provides a productive space 
for negotiation of norms and practices across distinct cultures in which these groups are immersed: 
the preparation programs of preservice teachers, and inservice teachers’ schools. Additionally, the 
program uses a research-based curriculum in which students construct understandings of pre-algebra 
concepts while using representations to explore problems and communicate their reasoning. We 
hypothesize that this curriculum creates opportunities for the analysis of students’ mathematical 
thinking. 

In this study we focus on two research questions: 
1. What resources do preservice and inservice teachers contribute when discussing how to 

respond to students’ mathematical thinking in a non-traditional setting? 
2. What opportunities for the analysis of student thinking and the decomposition of teaching 

practice does a non-traditional collaborative teaching setting afford? 
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Methodology and Theoretical Framework 
Our study is an embedded case study (Yin, 2009) that took place in an informal summer 

mathematics program for students in grades 3-8 in the United States. In the two-week program, 
students took courses that explored pre-algebra concepts. Each class was taught by a “master 
teacher” (MT), an inservice teacher with multiple years of experience in the program, and assisted by 
inservice teachers seeking professional development (PDT), undergraduate preservice teachers 
(PST), and undergraduate “fellows” (F). The focus of our study is on the “teachers” at this summer 
program. The cases consisted of two classes collectively taught by two master teachers, three 
inservice PD teachers, six preservice teachers, and two undergraduate fellows. 

During the program, inservice teachers and undergraduates taught together each morning, then 
convened after class in small groups, with each group consisting of the teacher and assistants for one 
class. In the meetings, participants responded individually to written reflection prompts, then 
engaged in videotaped group discussions about what they had observed in the day’s class. We 
transcribed these discussions and divided the transcripts into conversational “episodes,” with each 
episode focused on a unified theme or observation. We coded an episode as a rich episode if it 
included sustained discussion of students’ observed mathematical thinking. 

To address the first research question, we analyzed these episodes and identified how participants 
interpreted or suggested responding to student thinking. We also identified resources that various 
participants contributed to the discussion in each episode. In conceptualizing resources we use 
mathematical knowledge for teaching (MKT, see for example Ball, Thames, & Phelps, 2008) as an 
organizing framework. MKT consists of mathematical and pedagogical knowledge used in the work 
of teaching, comprised of components such as specialized content knowledge, knowledge of content 
and students, and knowledge of content and curriculum. Rather than attempt to sort resources into 
discrete MKT domains, we use these domains to orient our awareness of intellectual resources 
(Little, 2003) that participants use to make sense of student thinking, weigh possible responses, and 
understand the curricular context in which this thinking takes place. We take a grounded approach 
(Strauss & Corbin, 1997) in our analysis of resources, identifying and categorizing instances in 
which participants share knowledge and experience. 

To address the second research question, we coded for instances in which participants made 
reference to features of the non-traditional context of the collaboration, either comparing this context 
with other mathematics teaching settings, or describing affordances or challenges of the context itself 
(such as opportunities for students to develop ideas prior to the presentation of formal procedures, or 
the fact that the program is not bound by the school calendar). We analyzed these instances for 
evidence that the non-traditional teaching context afforded opportunities for participants to make 
explicit their beliefs and dispositions about mathematics teaching (whether in their current non-
traditional setting or in other more conventional settings) or their reasoning in interpreting or 
choosing how to respond to student thinking. 

Results 
In this section we describe some preliminary results of our analysis of the resources that teacher 

participants in the program offered in their discussions, and of the opportunities that the shared 
teaching context afforded for the collaborative analysis of student thinking. 
Types of Resources Offered by Teacher Participants 

In addressing the first research question, we offer three examples of categories of resources that 
have emerged from our data. 

Awareness of alternative algorithms: a resource offered by PSTs. In Episode 3X_ 505, a 
group consisting of one MT, two PDTs, two PSTs, and two Fs discussed a fellow’s observation of a 
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student who lacked access to an activity on the Pythagorean theorem because he did not know how to 
multiply numbers by hand. The group discussed different resources that might help the student. A 
PDT mentioned two students who had shared their own algorithms for multiplication to the whole 
class. Two PSTs indicated that they had learned about alternative algorithms, and the pedagogical 
value of these, in a content course for elementary teachers. Even though neither PST described any 
algorithms for multiplication other than those described from class, their awareness of the existence 
and value of multiple algorithms helped to frame the discussion of students’ knowledge and use of 
non-standard algorithms in an asset-oriented way. 

Knowledge of models and metaphors for operations: a resource offered by PDTs. In Episode 
1Y_506, one MT, two PDTs, and one F brainstormed strategies for helping students understand 
integer subtraction; the fellow had observed some difficulty with the idea of subtracting an integer by 
adding its opposite. The participants launched into a discussion of possible ways to make the 
connection between subtraction and addition concrete for students: 

PDT.155: You can think like banking terms I owe you an orange. 
F.145: I think they kind of understood that a little bit when that was brought up … 
MT.152: Yeah, and what if someone owes you, like we talked about bigger numbers, let’s say that 

you have $25.00 … your brother had borrowed 20 of your dollars … Well, what if he paid you 
back – well, that’s not subtracting … 

PDT.180: Because we’re subtracting –  
MT.152: Do you see what I’m wanting? I want to subtract a negative to make it – I mean it is 

going back … Well, subtracting 20 – oh, I don’t know. Okay, so I don’t know. Anyway, think 
about that. 

PDT.810: And he already owes you money. It would be like you’re subtracting from his deficit, 
right? 

The PDTs’ contributions, rooted in pedagogical knowledge of common metaphors for the concept 
of integer subtraction (Quigley, 2011), added to the group’s opportunities to develop a coherent 
explanation for why subtracting an integer is equivalent to adding its opposite. 

Knowledge of the program curriculum: a resource offered by MTs. In Episode 1Y_203, one 
MT, one PDT, and one F discussed students’ efforts to determine distances between numbers on the 
number line prior to the introduction of any formal procedure for integer subtraction. All three 
participants (MT, PDT, and F) commented that one student had shown evidence of beginning to 
realize that the distance from a negative integer to a positive integer could be found by adding the 
absolute values of the two numbers, but that she did not apply this principle consistently. The MT 
commented, “She doesn’t have the rules down yet, which we’re not even to yet … so, it’s pretty cool 
that she’s already getting it.” The MT’s comment referenced her curricular knowledge that formal 
procedures for subtracting integers and solving distance problems would come later in the summer 
course. This allowed her to frame the student’s developing fluency as a stage of mathematical 
discovery rather than as a deficit.  
Affordances of the Non-Traditional Teaching Context 

Our analysis suggests that the shared context affords at least two distinct types of opportunities for 
in-depth analysis of students’ mathematical thinking and of teaching practice. 

The first type of opportunity emerges from the curricular context for the shared representation of 
practice. The program curriculum provides students with opportunities to use visual and tactile 
representations to explore problems, and postpones the introduction of formal procedures. As a 
result, teacher participants sometimes have opportunities to describe students’ conceptual thinking 
about pre-algebra ideas without the backdrop of a normative procedure against which student 
performance might be compared. We see this in the example of Episode 1Y_203, in which the 
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absence of a formal procedure for finding distances on the number line afforded an opportunity for 
teacher participants to notice students’ improvised methods for calculating distance, such as counting 
unit intervals on the number line and adding absolute values in the case in which the two endpoints 
are on opposite sides of the origin. 

The second type of opportunity emerges from the contrast between the participants’ shared teaching 
context and other contexts in which these participants had been mathematics teachers or learners. We 
find that the contrast among these teaching settings can provide the stimulus for a participant to make 
explicit their beliefs about mathematics teaching and learning. For example, in Episode 3X_505, in 
which teacher participants discussed a student who had difficulty with multiplication, several 
undergraduate students (PST and F) expressed surprise that such a student had been placed in an 
upper-level course in the summer program. They noted that the MT of their morning class (not 
present in the discussion) helped the student access the activity by providing a multiplication chart, 
but also stated that if they encountered such a student in a traditional setting, they would want to 
divert the student to remedial instruction. This afforded the MT an opportunity to provide a 
counterpoint for this deficit framing of the student, asserting that the activity’s aim was to lead 
students to discover the Pythagorean theorem, not to assess multiplication, and that such an 
accommodation did not significantly undercut the mathematics. 

Discussion and Next Steps 
Our initial findings suggest that instances of non-standard student thinking serve to activate the 

unique knowledge resources of preservice and inservice teachers and offer opportunities for 
negotiations of teaching beliefs and norms across teaching cultures. Because the non-traditional 
structure and curriculum of the shared teaching context creates disequilibrium with the course-based 
preparation of PSTs and the more traditional teaching experiences of inservice teachers, participants 
from both constituencies are encouraged to make explicit their own initial conceptions of students’ 
thinking, mathematical dispositions, and attitudes (Figure 1).  

 
Figure 1: Model for the role of a shared non-traditional teaching context in PD. 

 
Next steps for our study include a more thorough synthesis of the types of knowledge resources that 

participants contribute to the collaborative analysis of student thinking, along with an analysis of the 
degree to which these resources are differentiated by participant type (MT, PDT, PST, F). We also 
plan to develop a more robust coding scheme for assessing the role of the non-traditional setting in 
activating (or muting) the external resources, such as preservice teacher experiences and knowledge 
of traditional curricula, that participants bring into the program. 
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Research suggests that robust mathematical knowledge for teaching is essential for high quality 
instruction and learning, and yet studies also reveal that prospective teachers (PTs) may not have 
had sufficient opportunities to develop this knowledge. Decimal understanding is one particular area 
of difficulty for elementary students and PTs alike, but few studies have focused on characterizing 
PTs’ decimal understanding. In this study we examine 28 PTs’ ability to create and explain models 
for comparing decimals, following instruction on this topic. We find that participants are able to 
effectively use models to identify and reason about the larger of two decimals, but that they struggle 
to articulate underlying mathematical ideas such as the role of place value in decimal magnitude or 
connections among decimal models. 

Keywords: Teacher Education – Preservice, Mathematical Knowledge for Teaching, Rational 
Numbers 

Research suggests that teachers of mathematics must have substantial knowledge of the content that 
they will teach and of appropriate ways to do so; these together are known as mathematical 
knowledge for teaching (MKT; Ball, Thames, & Phelps, 2008). Unfortunately, some studies also 
suggest that prospective elementary teachers’ (PTs’) MKT is still developing; areas for growth span 
topics such as fractions (e.g., Van Steenbrugge et al., 2014), geometry (e.g., Aslan-Tutak & Adams, 
2015), decimals (e.g., Stacey et al., 2001; Widjaja et al., 2008) and more (Hill, 2010). Although 
decimal concepts have been shown to be difficult for learners, fewer studies focus on PTs’ 
knowledge of decimals (Kastberg & Morton, 2014) than fractions (Olanoff et al., 2014) or whole 
numbers and operations (Thanheiser et al., 2014). This study attempts to contribute to and update the 
small body of literature on PTs’ knowledge of decimal magnitude and place value. Based on PTs’ 
responses to two open-ended tasks, we describe the models and strategies they use to make sense of 
and compare two decimal quantities. Further, we analyze PTs’ written explanations of their models 
and strategies, and the underlying mathematical ideas that they identify as important. 

Background & Theory 
Here, we introduce some recommendations for supporting PTs’ MKT and studies which give 

images of it, then highlight a gap in this literature. We describe how the MKT framework bounds our 
study by defining what is visible in the data, and discuss conceptual understanding and how this 
strand of mathematical proficiency figures in our analysis. 
Decimals in Elementary Mathematics and Teacher Preparation 

Elementary mathematics standards span many topics, including number concepts. Number concepts 
pertain to the structure of the base ten system and its extension to decimal quantities. Number 
concepts are important because of the ways in which they undergird foundational elementary 
mathematics such as counting and operations (Association of Mathematics Teacher Educators, 2017; 
Conference Board of the Mathematical Sciences (CBMS), 2012). Knowledge of decimals, 
specifically, is also expected of students. In grades 4 and 5 alone, the Common Core State Standards 
call for students to order, compare, and model decimals (National Governors Association Center for 
Best Practices, Council of Chief State School Officers, 2010).  
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Because of their presence in elementary school mathematics, policy documents call for coursework 
for PTs to also focus on number concepts, including decimals (CBMS, 2012). This call is amplified 
by empirical research suggesting that children and PTs alike struggle with decimal understanding 
(e.g., Muir & Livy, 2012, Steinle & Stacey, 1998). Stacey and colleagues (2001) found that some 
overgeneralizations common among children are much rarer among PTs, but that other 
misconceptions persist from childhood through to adult populations. Despite knowledge that sense-
making around decimals is challenging for PTs, few studies have characterized their understanding. 
In Kastberg and Morton’s (2014) literature review, they identified just three studies since 1998 which 
attended specifically to PTs’ decimal understanding. Broader inclusion criteria uncover a few 
additional studies with relevant findings, but PTs’ decimal understanding and learning processes 
remain under-researched. The literature does not effectively characterize PTs’ understanding of the 
magnitudes of decimal quantities or explore their reasoning related to comparing decimals. 

It is concerning that research on PTs’ decimal MKT is so scarce. Without robust images of PT 
knowledge, mathematics teacher educators may be without the information needed to support PTs’ 
growth. PTs must have deep understanding of decimal concepts and procedures, since this topic is 
prevalent in upper elementary curriculum, and since their MKT is known to contribute significantly 
to quality teaching and learning (Hill et al., 2005, 2008). We turn our focus to a brief elaboration on 
the construct of MKT generally, and a look at how it informs this study. 
Mathematical Knowledge for Teaching 

MKT includes subject matter knowledge and pedagogical content knowledge (Ball, Thames, & 
Phelps, 2008). The former is knowledge which a teacher must have about the mathematics itself, 
including knowledge which is common among adults, as well as specialized knowledge, needed 
primarily or exclusively by teachers. Pedagogical content knowledge focuses on the teaching of 
mathematics. Our participants had the opportunity to demonstrate understanding of the relative sizes 
of two decimals, and knowledge of how tools for modeling decimals relate to concepts about decimal 
place value. These are examples of subject matter knowledge; PTs in this study did not have the 
opportunity to display pedagogical content knowledge. 
Conceptual Understanding as Part of Mathematical Proficiency 

Given the importance of teachers having robust MKT, policy documents recommend that 
prospective elementary teachers engage in substantial coursework focusing specifically on 
elementary mathematics (CBMS, 2012). Studying these concepts at an appropriately deep level for 
adults who are future educators involves a higher level of connection-making between mathematical 
ideas than would be expected of elementary students, in part because robust MKT includes 
knowledge of the connectedness of mathematical ideas within and across grade levels. Furthermore, 
this connection-making is important because it is characteristic of conceptual understanding, one of 
the five “Strands of Mathematical Proficiency” outlined by the National Research Council (2001). 
Mathematical proficiency requires learners to have well-connected knowledge of concepts within a 
larger body of mathematical knowledge. This conceptual knowledge is, by nature, “rich in 
relationships” (Hiebert & Lefevre, 1986, p. 3). In our study, we attend to the mathematical 
connections that participants in our data set do or do not make. 

Research Questions 
In this study, we pose two main research questions. Following instruction on elementary decimal 

concepts, (1) what models and other strategies do PTs use to compare two decimal quantities, and to 
what extent do they use these models appropriately and successfully? (2) What is the nature and 
quality of PTs’ understanding of decimal place value and magnitude, as evidenced by their writing 
about comparing two decimal quantities? 
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Methods 
Data for this study was collected in the context of the Elementary Mathematics Project (EMP), an 

NSF-funded project which designs and conducts research surrounding curriculum for use in content 
courses for prospective elementary teachers. One of EMP’s seven instructional units is Number 
Concepts, which focuses on the consistencies of place value structure from large to small (decimal) 
numbers, as well as on modeling numbers. Regarding decimals, PTs using this curriculum have the 
opportunity to learn about decimal place value; area, linear, and other models; comparing decimals 
by place value or by looking at same-sized pieces; and more. 

Participants in this pilot study are 28 PTs from two different institutions. Site A was a public 
community college in the Northwest of the United States. The course instructor at Site A has a 
doctorate in math education, but her appointment is in the mathematics department; she taught 17 of 
the 28 participants. Site B was a private four-year college in the Midwest. The instructor has a 
master’s degree in math education but is also housed in a mathematics department. Socio-
demographic data was not collected from participants, however, the student body of undergraduate 
teacher education programs tends to be primarily female, and roughly 19-22 years of age. All 
participants used the EMP Number Concepts unit, then completed an eight-item, open-ended post-
test, designed by the EMP team. We analyzed this item:  

As a future teacher, you may encounter a student who is having difficulty determining which 
of two decimal values is greater. For example, 0.4 and 0.32. 

a) Provide a model that would help a student to think about the sizes of 0.4 and 0.32. 
b) Explain how your model would help a student compare these two quantities and which 

important mathematical ideas it addresses. 
We analyzed responses by first open coding all elements of PTs’ drawings, writing, and symbols. 

We did this by examining whether the participant explicitly and correctly identified the larger value, 
what model they provided and how it was labeled, and what they wrote about. This resulted in 32 
codes which together captured PTs’ choices of model and the content of their explanations. 100% 
consensus was achieved between two coders, after discussion. 

Preliminary Results 
Promising findings from our preliminary analysis include the fact that the majority of PTs explicitly 

identified the correct quantity as larger (n=20, 71%) and were able to provide one or more models 
that was accurate and useful for comparing (n=25, 89%). Seven responses were unclear as to whether 
0.4 or 0.32 was larger, but only one was explicitly incorrect. Ten PTs provided decimal squares only 
as a model for comparison, nine provided number lines only, and six gave both. (It is unsurprising 
that these models were most common, in that these were two of the most prominent models in the 
EMP curriculum.) Two of the three PTs remaining used place value charts. This reveals that, 
generally, PTs are able to compare decimals, and to create and interpret models to aid in comparison, 
following instruction. 

Data from this study also uncovered three primary challenges and areas for growth for PTs. First, 
we found that it seems to be more difficult to use a number line than decimal squares for the purposes 
of understanding decimal magnitude and relative magnitude. Most decimal squares were proportional 
and well-labelled, showing the size of each of the two decimal values, relative to a whole, and to 
each other. PTs’ number lines were also generally proportional (80% of 15 number lines) and 
showed how hundredths could be created by partitioning tenths into tenths (67%). However, many 
number lines were truncated (67%), often beginning at 0.3, which limited their ability to 
communicate the magnitude of each of the individual decimal quantities. Furthermore, two of the 15 
number lines were partitioned into elevenths instead of tenths, and two were drawn or interpreted 
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“backwards” (smaller numbers to the right); comparable challenges did not emerge for decimal 
squares. Finally, explicit interpretation of the number lines was rare, just 27% described how their 
number line should be read and understood, while 63% of PTs who drew decimal squares explained 
how to interpret their model. 

Second, we found that PTs’ explanations did not always attend to relevant connections or reasoning, 
specifically surrounding the representation of 0.4 as 0.40. Of the 28 responses, 11 PTs stated or 
showed that 0.4 is equivalent to 0.40, or that it is appropriate to “add a zero” to the end of a decimal 
number. However, only five of these 11 PTs explained why this is true or useful. Though several PTs 
highlighted this equivalence or stated this “trick” for re-representing the quantity, less than half of 
those who did so attempted to justify the equivalence, or explain why a learner might find it easier to 
think of four tenths as forty hundredths. This leaves us uncertain as to the depth of understanding 
achieved by some of these PTs. 

Finally, we found that references to the importance of place value were conspicuously rare. 
Although PTs had been asked to “Explain how your model would help a student compare these two 
quantities and which important mathematical ideas it addresses,” less than half of the participants 
mentioned place value as one of these important mathematical ideas. This was highly surprising to 
us, as we conceive of place value as the most important mathematical idea undergirding these models 
and comparisons. 

Discussion 
Above, we highlighted the importance of well-connected conceptual understanding for both 

students and teachers. Our findings suggest that, while PTs have notable strengths for completing 
decimal tasks and using relevant tools to do so, they are less likely to articulate underlying 
mathematical connections. For example, few PTs in our study connected their models to decimal 
place value concepts, or their strategies for comparison to reasoning and justification for those 
strategies. This calls into question whether they have sufficient conceptual understanding to 
contribute to robust MKT. 

A clear vision of PTs’ skills and knowledge related to decimal concepts and procedures is useful 
and necessary for mathematics teacher educators, as they are charged with developing curriculum for 
use in teacher preparation coursework. We suggest that characterizations such as we have provided 
here may support these teacher educators in understanding PTs’ strengths and needs, a first step in 
making changes to improve teacher preparation courses. 

Next steps for this study include continuing analysis of a larger set of tests from the corpus of EMP 
data. The 28 tests in this study were selected as a pilot sample, but represent only about 10% of the 
PT participants who took the EMP unit test during this phase of data collection. We also hope to 
analyze corresponding pre-tests, to better understand the growth which may have happened as a 
result of engagement with instruction around decimal concepts. In addition to going broader, we also 
hope to go deeper by re-examining the types of claims that PTs made about place value in particular 
and exploring possible connections between these claims and PTs’ chosen models. This will 
empower us to create more robust characterizations of PTs’ knowledge of decimal place value 
concepts and examine the ways in which models may facilitate or demonstrate knowledge 
development. 
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In this multiple-case study, we track the diverging paths of two teacher candidates enrolled in an 
undergraduate elementary mathematics methods course as they developed their understanding of 
equitable teaching practices that were central to their course learning objectives. The cases were 
purposefully selected based upon our previous finding that, by the end of the course, Mary and Rose 
were extreme opposites in terms of their implementation of equitable mathematics teaching practices 
they attributed to the course. Teacher preparation programs are designed to help beginning teachers 
develop the skills to teach content equitably to diverse learners. Thus, methods instructors must 
consider the ways that teacher candidates use their knowledge and skills in their teaching. 

Keywords: Instructional activities/practices, equity and diversity, teacher education, pre-service 
teachers, mathematics education 

Amid the complex debates about the nature and purposes of teacher preparation, a critical question 
pervades: How do we prepare mathematics teachers to enact equitable teaching practices? The 
authors seek to understand their elementary mathematics methods teacher candidates’ understanding 
and implementation of equitable mathematics teaching practices that are centered in their elementary 
mathematics methods course by looking deeply at two cases over the course of the semester. One 
teacher candidate, Mary (pseudonym), implemented equitable mathematics teaching practices that 
she attributed to learning in the course (via her end of course survey) with 100% fidelity for extended 
periods of time in her final project video. Another teacher candidate, Rose (pseudonym), 
implemented a few of the practices. The differences observed in Mary and Rose’s final course 
project videos led us to wonder how two students in the same course and section could finish with 
such dramatic differences in their level of understanding and implementation of equitable teaching 
practices. 

Related Literature and Framework 
This study is rooted in socio-cultural theories that argue that: knowledge is developed and 

transmitted through social contexts, culture plays a fundamental role in cognition, and knowledge is 
dependent upon human interactions with each other and the world around us (Crotty, 1998). 

Individuals bring their culture to the learning environment, and their culture and knowledge are 
constructed and reconstructed in the moment-to-moment interactions in the learning environment. 
With this perspective, classroom contexts provide a space where culture is produced and possibly 
changed (Nasir & Hand, 2006). 

Although our definition of equity and equitable mathematics teaching continues to evolve, in 
principle it focuses on deliberate efforts to interrupt systems of oppression, harm, racism, and 
violence as they show up in schools, classrooms, and teaching practices particularly in ways that 
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ensure students have access to learning ambitious mathematics content and learn mathematics in 
empowering environments that support their development of a positive mathematics identity. 
Course Description and Design1 

The mathematics methods course which catalyzed this study is designed to equip teacher candidates 
with the instructional skills to develop classroom cultures that enable students from diverse 
backgrounds to fully participate and learn using a practice-based model2. Course resources, targeted 
reading assignments, and focused class sessions exposed teacher candidates (TCs) to issues of status, 
equity issues that arise in mathematics classrooms, and effective teaching practices that help mitigate 
them for diverse learners, including Native American, Latinx and, Black boys. 

To understand equity issues affecting Native American, Latinx and, Black boys in mathematics 
classrooms, our teacher candidates reviewed frameworks and publications by the Smithsonian 
National Museum (2019) and the National Indian Education Association (2019) to explore local 
Native American communities, artifacts, and curricular resources; they learned about emergent 
bilingual Latinx (EBL) supports including allowing students to use their first language, incorporating 
sentence starters and sentence frames within anchor documents, and attending to the language 
demands of mathematics lessons (Aguirre et al., 2012; Ahn et al., 2011; Bresser, 2003; Khisty, 2002; 
Torres-Velasquez & Lobo, 2005, & the Board of Regents of the University of Wisconsin System’s 
WIDA English Development Standards, 2020); and they incorporated supports for mathematics 
learning and identity development for Black boys (Berry, 2004; Jett et al., 2015). 

Methods 
This multiple case, follow up study is designed to expand our knowledge of factors that might have 

influenced Mary and Rose’s alignment to and/or divergence from the equitable mathematics teaching 
practices centrally featured in our elementary mathematics methods course (Seawright & Gerring, 
2008). The following research questions guided our study: 

1. In what ways do Mary and Rose’s elementary mathematics coursework demonstrate their 
alignment with or divergence from the equitable mathematics teaching practices that were 
explicitly taught in their elementary mathematics methods course? 

2. How does the work produced by Mary and Rose compare to each other, as students enrolled 
in the same course section who were both placed in internship classrooms with culturally and 
linguistically diverse students? 

3. What might explain this alignment and/or divergence? 
Study Participants 
This study took place at a large, predominantly white, research-intensive, 4-year university. The two 
cases were a subset from teacher candidates enrolled in one of three elementary mathematics 
methods courses during the fall semester of their senior year (n=55). Our prior study incorporated a 
funneling sampling sequence (Erikson, 1986) where nine cases (two of which were Mary and Rose, 
who are both white and female) were selected for further examination of equitable teaching practices. 
In that study, Mary had the highest degree of implementation fidelity over an extended period of 
time, and Rose had the lowest. Thus, we selected these two divergent cases for our current study. 

                                                             
1 Some of the work and ideas represented in this course, including the title and structure of the major projects are 
drawn from Math Methods Planning Group at the University of Michigan (under the direction of Dr. Deborah Ball 
(https://deborahloewenbergball.com). 
2 This course was developed by Dr. Imani Goffney as a part of her NSF grant, Mathematical Knowledge for 
Equitable Teaching, Award No. 1725551. 
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Data Sources and Equitable Mathematics Practices 
Written materials submitted by Mary and Rose for 3 course projects, assigned at the beginning, 
middle, and end of the course, provided opportunities to demonstrate their understanding of equitable 
mathematics teaching practices in their internships and are the primary data sources for this study. 
The first project was the Student Thinking Project (STP). TCs prepared 2- 3 grade appropriate 
mathematics tasks and a series of probing questions to elicit student thinking with 2 students selected 
from their internship. TCs analyzed their own video recordings to explain student selection, and 
useful strategies in raising and equalizing their students’ status. The second project was the 
Circulating and End of Class Check Project (EOCC). TCs video recorded themselves circulating 
while students worked independently. They practiced observing, responding to questions, and 
probing and intervening when appropriate. The final project was Leading a Whole Class Discussion 
Project (WCD). For this project, TCs video-recorded themselves teaching a mathematics lesson that 
incorporated a whole class discussion and an end of class check. For their analysis, they identified a 
3-5-minute video segment highlighting one equitable mathematics practice covered in the course.  
They explained their practice selection and identified areas for improvement. 
Analytical Techniques 
Our qualitative data analysis (Saldaña, 2015) began with deductive coding of Mary and Rose’s 
written projects to identify evidence of equitable teaching practices that were the central focus of the 
course. Two members of the research team independently coded each of the participants’ written 
submissions for all three projects. Codes were labeled and mapped to the course. Then, the five 
members of the research team met to review initial codes for each case to ensure inter-rater reliability 
and to confer on preliminary findings. Next, we drafted analytical memos for each participant. In the 
second phase of analysis, we independently examined our coded data to identify evidence of each 
participant’s alignment with, or divergence from, the equitable mathematics teaching practices that 
were the focus of the course. We also examined the relationship between the participants’ degree of 
alignment with course goals across the term. Coded phrases, such as “repositioning a low status 
student,” were secondarily assigned one of two codes: “aligned,” as in this teaching practice or 
description was similar to the equitable teaching practices featured in the course, or “divergent,” not 
aligned with the equitable teaching practices featured in the course. Secondary codes were examined 
by two members of the research team to ensure at least 80% inter-rater reliability. Once at least 80% 
inter-rater reliability was confirmed, secondary codes were integrated with our analytical memos to 
develop the participants’ case narratives. Our findings are described in the following section. 

Findings and Summary 
Mary and Rose began the course with differing levels of understanding of equitable mathematics 
teaching. Both Rose and Mary’s STPs incorporated asset-based language to describe their students 
and both cases discussed their desire to learn more about their students’ thinking through this project. 
However, 95% of Mary’s STP was aligned with the equitable teaching practices taught in the course, 
while only 61% of Rose’s STP was aligned, indicating that she grappled with implementing equitable 
teaching practices. The most compelling data was the EOCC data. Mary’s EOCC and WCD data was 
100% aligned with equitable teaching course goals. Rose’s EOCC data showed a decrease in 
alignment with course goals (50%) and a movement toward procedural mathematics instruction. 
Rose’s divergent trend increased on her WCD. She described supporting her students’ “math smarts” 
by acknowledging their correct solutions. Differences in their understanding and implementation of 
equitable teaching were evident from the first project (STP) to the EOCC. 
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Tables 1-3: Percentage of Alignment with Course Goals by Participant and Course Project 
 Table 1: Student Thinking Project 

Rose: I think that in order to equalize status issues in the classroom, it is important that students work in a 
61% variety of groups. It is important that students are in groups with students as the same abilities as them, 
aligne but it also equally as important that they work with a variety of students. This way, students are learning 
d from their peers and they are all seen as equals. If students are always in the same group they may realize 

 they are grouped by ability. However, if every once in a while students are working and sharing with a 
 variety of people in the classroom, they will also benefit from others that are on a different level. 

Mary To neutralize the status of the groups, I would ask the children to stay within their table groups when 
95% 
aligne 
d 

discussing answers so one child doesn’t always go up to the same person for discussions. Additionally, I 
would ask students to help their peers by teaching them a skill, not doing it for them. I would want to 
emphasize group success and the idea that unless everyone is successful, then no one in the group is fully 
successful. I would set roles within the group so that the children could each have a task to perform. 

 Table 2: Circulating & EOCC Project 
Rose: 
50% 

aligne 
d 

Exit ticket: Does the problem 6789+987 require regrouping? How do you know? 
I hope to learn if students know when it is appropriate to regroup, and if they can explain what 

regrouping is. 

Mary: 
100% 

aligne 
d 

Exit ticket: Miss Smith is preparing materials for the table groups. She puts 4 worksheets in each table 
group bin. There are 5 table groups. Write an equation or draw a picture to illustrate this problem. 

By giving this prompt, I hope to develop a deeper understanding of the students’ skills at drawing 
arrays. The children have been working on this skill for 2 days. However, through completing this 
project, I noticed that the children still have some confusion about arrays and while they may get the 
problems correct, they might not always be confident about their answers. This leads me to believe that 
there could be some confusion about the concept, and I would like to learn more about where this 
confusion comes 

from so that I can re-teach the confusing parts. 
 Table 3: Leading a Whole Class Discussion 

Rose: 
6% 

aligned 

I chose the first aspect, purposefully using questions to elicit, probe, and connect students’ 
mathematical ideas. I did this during the lesson when I was doing the first problem with my class. After 
they decided what the single digit number was, and they decided what number was in the ones place, 
they knew they had to multiply. The numbers were 5 times 2, and with the traditional algorithm this 
requires regrouping. However, I asked the students “If I wrote the number 10 down instead of 
regrouping, what method would I be doing?” Students responded by saying that that method is partial 
products. In this 

lesson, I also addressed students’ math smarts by reaffirming them when they solved problems correctly 
Mary: 
100% 

aligned 

The reason why I chose this skill is because it is important for students to be able to participate in 
whole class discussions. First, it minimizes status issues because if all students are able to participate in 
a respectful class discussion, each child’s affective filter will naturally be lowered to (hopefully) a level 
where they are able to participate in the class activity since there will be an environment of respect in 
the classroom. I chose to practice this skill on this particular day because money is something that 
almost every child has seen before, but many children don’t understand the value of it. So, everyone will 
be able to contribute to the conversation and it will be engaging because it is a topic that they are 

probably curious about. 
 

Discussion and Conclusion 
How can two teacher candidates who receive the same content in the same class, with the same 

instructor, have dramatically different outcomes? One explanation may be mentoring. In her final 
course project, Mary describes classroom norms like using a positive behavior intervention system, 
and she reflects on failing to implement two talk moves due to minimal modeling from her mentor. 
However, Rose does not reflect on existing classroom norms or practices. Therefore, we wonder 
whether her mentor modeled equitable mathematics instruction and whether Rose may have been 
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constrained by structures in her internship. Another possible explanation is that Rose’s personal 
experiences or beliefs may have prevented her from implementing equitable teaching strategies. We 
know that our experiences shape our beliefs, biases, and identities. It is possible that Rose’s personal 
beliefs and identities did not align with our course teachings. We know that changes in beliefs occur 
if equity is deliberately and explicitly implemented throughout teacher preparation. These cases 
suggest that teacher preparation programs should develop interventions to help TCs demonstrate 
proficiency for teaching mathematics in equitable ways. Finally, this tells us that novice teachers, 
even graduates from the same program, will have a wide range of understanding and skills relating to 
equitable mathematics teaching, so it is essential for school districts to provide induction support. 
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In this report, we present results from semi-structured clinical interviews with a preservice 
secondary teacher which were conducted prior to and after a teaching experiment intended to 
support the student in developing emergent graphical thinking. We illustrate how the student 
engaged in static shape thinking in the pre-clinical interview to describe relationships represented 
graphically. In the post-clinical interview, the student used both static and emergent reasoning to 
describe relationships. Hence, we provide an empirical example of a student developing more 
sophisticated graphing meanings while underscoring the importance of probing students’ shape-
based thinking.  

Keywords: Algebra and Algebraic Thinking, Preservice Teacher Education 

Researchers have shown that graphs represent information and relationships in ways that are 
difficult to express in other forms (e.g., Arcavi, 2003) and provide insights into students’ thinking 
and learning (e.g., Moore et al., 2014). However, students and teachers experience persistent 
difficulties creating and interpreting graphs (e.g., Clement, 1989; Leinhardt et al., 1990). For 
instance, students often treat graphs as literal representations of a situation (e.g., interpreting a time-
speed graph of a biker as the bikers’ traveled path). The research examining students’ graphing 
meanings indicates common instructional approaches do not provide students sustained opportunities 
to develop meaningful ways of representing relationships between covarying quantities. These 
failings may stem from the fact that covariational reasoning is generally absent in U.S. school 
curricula (Thompson & Carlson, 2017). Hence, in this paper we leverage Moore and Thompson’s 
(2015) construct of graphical shape thinking to explore the research question: Can (and if so how 
can) a student whose meanings for interpreting graphs are constrained to shape-based thinking 
reorganize her meanings to include emergent thinking?   

Methods, Participants, and Analysis 
This report is situated in a larger teacher experiment (Steffe & Thompson, 2000) that sought to 

examine two preservice teachers (hereafter students) developing meanings for quadratic and 
exponential relationships via their covariational reasoning. Here we focus on one student, Josie 
(pseudonym). Josie was enrolled in a secondary mathematics teacher education program at a large 
university in the northeast U.S. and had completed a calculus sequence. We present data collected 
during the clinical interviews prior to and after the teaching experiment to provide insights into 
Josie’s mathematics at the outset of the study and to explore shifts in her meanings at the end of the 
study. Two members of the research team were present at each interview and each session was video 
and audio recorded. In order to analyze the data, we used generative and convergent approach 
(Clement, 2000) in combination with conceptual analysis (Thompson, 2008). With the goal of 
characterizing Josie’s meanings, we used an iterative approach to construct viable models of her 
meanings and ways of reasoning. During retrospective analysis, we re-watched all interview and 
teaching sessions to identify instances that provided insights into Josie’s static and emergent shape 
thinking, which we used to develop initial models of Josie’s mathematics. We compared these 
models to researcher notes taken during on-going analysis. When evidence contradicted our initial 
models, we made new conjectures, including the possibility of shifts in Josie’s meanings, and refined 
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our models with the new conjectures in mind. This process resulted in viable characterizations of 
Josie’s mathematics. 

Theoretical Perspective: Graphical Shape Thinking 
Extending previous characterizations of students’ quantitative and covariational reasoning (see 

Thompson & Carlson, 2017), Moore and colleagues (Moore & Thompson, 2015; Moore, 2016) 
described two types of graphical shape thinking students leverage when constructing or interpreting 
graphs. Moore and Thompson (2015) characterized static graphical shape thinking as entailing 
“actions based on perceptual cues and the perceptual shape of a graph” (p. 784). Static shape thinking 
may include associations between the shape of the graph, function name, and analytic rules. For 
example, a student may associate a parabolic graph (or “U-shape”) with the term “quadratic” and a 
rule of the form “y = ax2 + bx + c”. While such associations likely have been productive for a student 
as she addressed tasks in school mathematics (e.g., shifting ‘parent’ functions), these associations 
may not support students when addressing a novel task (e.g., determining a relationship from a data 
set) or representation (e.g., the polar coordinate system).  

Whereas, static shape thinking involves treating a graph as an object, Moore and Thompson (2015) 
described emergent thinking as a student conceptualizing “a graph simultaneously as what is made (a 
trace) and how it is made (covariation)” (p.784). A student thinking emergently conceives a graph as 
an in-progress trace representing two covarying quantities magnitudes or values. For example, 
consider the Growing Triangle Task which shows a scalene growing triangle 
(https://bit.ly/2BjdEKZ). Students are asked to represent the relationship between the triangle’s base 
(in pink) and area (in green). To reason emergently, the student must first construct a coordinate 
system that represents each quantity on an axis and understand a point in this coordinate system as 
simultaneously representing both quantities’ magnitudes (Figure 4a). The student can then imagine 
how this point will move in the coordinate system as the triangle’s area and side length vary; 
reasoning emergently entails understanding the graph of the relationship as being produced by the 
trace of this point as the quantities covary (Figure 1b/c).  

 

   
(a)          (b)                  (c) 

Figure 4. The Growing Triangle Task  

Results 
In both clinical interviews, we provided Josie two graphs representing quadratic and exponential 

relationships and asked her to identify the relationship represented by each graph (Figure 5a/b). We 
hoped to gain insight into Josie’s meanings for graphs and her ways of identifying relationships. We 
also provided tables (e.g., Figure 2c) of values representing quadratic and exponential relationships 
to explore the connections between Josie’s meanings for these relationships in different 
representations. We note during the teaching episodes, we engaged the students in tasks designed to 
support their reasoning covariationally and emergently (e.g., the Ferris Wheel Task as described by 
Carlson & Moore, 2012; Moore, 2014). While Josie’s activities addressing these tasks was critical to 
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her reorganizing her graphing meanings, we focus on data from the pre- and post-clinical interviews 
to highlight shifts in her graphical shape thinking for brevity’s sake. 
Pre-Clinical Interview 

When asked to identify the relationship represented by the graph in Figure 5a, Josie claimed: 
It looks like half a parabola, I would say x2… but I would have to see the other half, 
definitely to clarify. But it looks like it is going to come back up (motions as if making a 
curve to the left of the graph with her hands)...yeah...It [the graph] doesn't look like, it’s, 
it’s… to me if it [the graph] is exponential, they start close to kind of here (showing the 
intersection of the axes), they are closer to zero and shoot up ....so, to me it’s [the graph in 
Figure 2a] half a parabola. 

For the graph in Figure 5b, Josie explained, “this one looks like an exponential growth… it started 
from something very close to zero and then increases very fast. Yeah, that’s what I am thinking, it’s 
an exponential growth.” We infer Josie leveraged static shape thinking as she determined the 
relationship represented by each graph. Specifically, she focused on the shape of the graph (e.g. “half 
a parabola”, “started… close to zero and then increases very fast”) which she associated with a 
functional class and analytic rules (e.g. x2, “exponential growth”).  

 

    
(a) (b) (c) (d) 

Figure 5: A graph representing (a) quadratic and (b) exponential relationship, (c) Table of values 
representing quadratic relationship, (d) a recreation of Josie’s explanation 

 
Although Josie’s meanings grounded in static shape thinking supported her in correctly describing 

that Figure 2a and b represented a quadratic and exponential relationship, respectively, her meanings 
did not entail a way to describe the same types of relationships represented in a table. For example, 
after determining several consecutive slopes to determine the relationship in Figure 5c was non-
linear, Josie noted “All the y’s are multiples of three and it is rapidly increasing, maybe it could be an 
exponential growth.” We infer that Josie’s meanings for determining a relationship from a table only 
supported her in determining if a relationship was linear or non-linear; one possible explanation for 
this is that her meanings for non-linear relationships (e.g., quadratic, exponential) entailed mostly 
shape-based associations. 
Post-Clinical Interview  

After having multiple opportunities to construct and graphically represent covariational 
relationships in the teaching experiment, we engaged Josie in the post-clinical interview 6 weeks 
after the last teaching episode. Addressing the same problems in Figure 2, she initially engaged in 
static shape thinking as she relied on visual properties of the curve. However, in this case Josie was 
able to unpack her thinking via her covariational and emergent reasoning to make claims about the 
relationships represented by each graph and table. For example, for Figure 5a, Josie first responded, 
“[the graph] looks quadratic… it is increasing and something like that is either exponential or 
quadratic or cubic.” She further described, “it looks like half a parabola” and making hand motions 
as if drawing a parabolic curve to the left of the vertical axis explained, “then it would be a parabola 
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and it would be a quadratic.” However, Josie then claimed, “let’s see if the amounts of amounts of 
change are the same” and determined two points, (1,2) and (3,8), on the curve, and calculated the 
differences in the y-coordinates as 6. She said, “if I knew the next one point, I could check if the 
amounts of amounts of change are same and it would be quadratic” and concluded, “but it looks like 
a quadratic and I am going to say quadratic.” Hence, Josie’s meanings now entailed that a graph 
represents quadratic change if the amounts of change of amounts of change are constant, a defining 
characteristic of quadratic change. 

As a second example of Josie unpacking her static shape thinking, consider her response when 
determining the relationship represented by the graph in Figure 5b. She first claimed the relationship 
as exponential because the graph “is starting off slow and then shoots up.” After this, she imagined 
points on the horizontal axis and motioned as if drawing vertical distances from these points to the 
graph (see Figure 5d for a recreation of her hand motions) and described, “for equal changes in the 
x’s”, and motioning her fingers on imaginary segments as seen in Figure 5d  “like from 1 to 2 we are 
not increasing... maybe a half, but 2 to 3 we are increasing maybe by a one, 3 to 4 we are increasing 
by a two maybe, that is a little more and so on and so forth, and then it increases by more. So, 
definitely I am going to say it is exponential.” In each case, rather than being constrained by making 
shape-based associations, Josie’s meanings for interpreting graphs (and tables, like Figure 5c) now 
included being able to unpack a graph in terms of the relationship between covarying quantities (e.g., 
constant second differences for quadratic, increasing by amounts that themselves increase by a factor 
of two for exponential).  

Discussion 
In this report, we characterize a student’s static and emergent shape thinking before and after a 

teaching experiment designed to support her in developing meanings for graphs as emergent traces. 
Addressing our research question, the student was able to reorganize her shape-based meanings for 
interpreting graphs to meanings that entailed interpreting graphs according to the underlying 
covariational relationships they represented. We conjecture the numerous opportunities Josie had to 
reason about and represent relationships between covarying quantities in the teaching experiment 
supported her in moving beyond static shape thinking. 

Second, and addressing the “and if so how” part of the research question, we note how Josie’s 
meanings for interpreting graphs included elements that appeared static in the post-interview. For 
instance, she continued to use shape-based associations, which is not surprising as these associations 
can still be useful in determining the relationship represented by a graph. However, as she justified 
her choice, Josie was able to unpack the graph in terms of the relationship represented by the 
covarying quantities, which is indicative of her emergent shape thinking. Hence, Josie’s activity 
highlights how a student may still use shape-based meanings while being able to unpack these 
meanings in terms of the underlying relationship. This underscores the importance of researchers 
carefully attending to students’ graphing meanings. A student engaging in shape-based activity does 
not mean they are constrained to such reasoning; it is important to examine if the student can unpack 
their thinking further.  
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Teachers’ pedagogical content knowledge (PCK) influences their instruction and, by consequence, 
their children’s opportunities to learn better. Within the domain of fractions, items assessing PCK 
are nested within larger assessments, with little explicit focus on the PCK domain. We report on the 
development and initial validity argument for a PCK for Fractions assessment that assesses 
preservice teachers’ (PSTs’) knowledge of students’ fractional reasoning. Results suggest the 
assessment can differentiate between PSTs of different levels in their teacher education program, and 
that items appear to assess the intended construct. Implications for future study, and for how PCK 
may develop among PSTs is discussed. 

Keywords: Teacher Knowledge; Number Concepts and Operations 

Teachers’ professional knowledge influences their instruction and, as a result, their students’ 
mathematical learning (Hill et al., 2008a; Hill et al., 2008b). Within mathematics education, such 
professional knowledge is described by Ball et al. (2008) as Mathematical Knowledge for Teaching 
(MKT), with a pragmatic distinction between content knowledge (CK) and pedagogical content 
knowledge (PCK). Although both domains are considered essential, there are relatively few measures 
of teachers’ PCK (Copur-Gencturk et al., 2019; Hill et al., 2008a). Copur-Gencturk et al. (2019) note 
that many items designed to assess PCK may be better described as CK items both at a theoretical 
and statistical level. We conjecture that one potential reason for such misalignment of PCK items is 
due to the nature of the overarching assessments themselves. Rather, by designing an MKT 
assessment that measures both CK and PCK, there is a risk of unintentionally overemphasizing 
elements of CK and underrepresenting elements of PCK (Copur-Gencturk et al., 2019).  

In the current paper, we report on efforts to design and pilot an assessment of preservice teachers’ 
(PSTs) PCK for teaching fractions in grades 3-5. Current measures of PCK for fractions tend to 
situate such items as part of an overarching MKT assessment (Depaepe et al., 2015; Kazemi & 
Rafiepour, 2018). Such assessments tend to distinguish CK and PCK items and may align certain 
items with key elements of PCK. However, many designed PCK items are open responses, which are 
time-consuming to code. Our own efforts focus on designing closed-response items to allow for less 
time-consuming coding for practitioners who may use the assessment. Additionally, we chose to 
initially focus on one element of PCK, knowledge of students’ conceptions, and reasonings about 
fractions. Our intentional narrowed focus allows for a more concerted effort to examine the nature of 
this subconstruct, as well as aspects of item design that may inform development of measures for 
additional aspects of PCK. Thus, the purpose of this study is to construct an initial validity argument 
for a measure of PSTs’ PCK for elementary children’s reasoning about fractions. 

Theoretical Framework 
Developing professional knowledge is an essential component of teacher education programs 

(AMTE, 2017). Such knowledge is distinct from content knowledge and general pedagogical 
knowledge and it is called pedagogical content knowledge (PCK) (Shulman, 1986). PCK represents 
essential knowledge for teaching to facilitate student learning of the subject matter. Ball, Hill, and 
colleagues extended Shulman’s work to articulate a framework for Mathematical Knowledge for 



Exploring preservice teachers’ pedagogical content knowledge of teaching fractions 

	 1704	

Teaching (MKT) (Hill et al., 2008b). Extending Ball et al.’s (2008) framework, different scholars 
have examined teachers CK and PCK on various grounds. Herbst and Kosko (2014) developed an 
instrument to assess high school teachers’ mathematical knowledge for teaching geometry (MKT-G). 
Khakasa & Berger (2016) applied six domains of MKT to categorize secondary school teachers’ 
mathematical knowledge based on their interpretations of open-ended tasks. They found both the 
amount of experience and quality of experiences affect teachers’ MKT (Herbst & Kosko, 2014; 
Khakasa & Berger, 2016).  

Of particular interest in the present study are those analyses of teachers’ MKT for fractions. 
Depaepe and colleagues (2015) compared CK and PCK on rational numbers among secondary and 
elementary preservice teachers. They found that CK items are generally easier for PSTs to answer 
correctly than PCK items. Additionally, PSTs’ CK scores were considered low, despite taking a 
course related to teaching rational numbers. Although secondary PSTs significantly outperformed 
elementary PSTs on CK for rational numbers, there was no observable difference in how both groups 
scored on PCK for rational numbers. This is an interesting finding, considering that PSTs’ CK and 
PCK scores are positively correlated (Depaepe et al., 2015; Kazemi & Raflepour, 2018). A common 
assumption in the literature on teacher knowledge is that strong CK is required to have strong PCK 
(Izsák et al., 2019; Shulman, 1986).  However, in comparing professional development approaches 
for elementary PSTs, Trobst et al. (2018) found that focusing on enhancing CK of PSTs was less 
effective than focusing specifically on PCK. Collectively, these findings suggest that teachers’ PCK 
for fractions is related to CK for fractions, but growth in PCK stems from a focus on contexts related 
to the teaching and learning of fractions.  

Method 
Sample & Measure 

Participants included 58 preservice teachers enrolled in a teacher education program in a 
Midwestern U.S. university. Participants included 47 early childhood education majors (grades 
Preschool to 3rd, with optional 4th & 5th grade endorsement) and 11 middle childhood education 
majors (grades 4-9). Each licensure program includes two mathematics methods course and 
participants were solicited from each course across both programs (31 juniors; 27 seniors).  

An initial version of the PCK assessment included 20 questions, which were subjected to cognitive 
interviews with two experienced elementary math coaches (Karabenick et al., 2007). In the cognitive 
interviews, we asked two expert teachers to interpret each item and explain their rationale for their 
responses. Following cognitive interviews, we analyzed responses related to each item. Some items 
were interpreted as intended and remained unchanged, while others were revised or removed based 
on participants' responses. The revised PCK assessment included 15 questions; 9 multiple-choice, 5 
multiple-response. Figure 1 illustrates an example question including four items (where an item is 
counted as a singular response, a question may group one or more items). The question was inspired 
by literature describing children’s fraction learning progressions (Battista, 2012; Hackenberg et al., 
2016). Each image represents a specific task of teaching that illustrates a scenario in the form of 
student work (assessing the reasoning of students’ shading 2/3 of 12). Items in the assessment 
followed a similar structure of assessing children’s reasoning based on descriptions from the research 
literature. 
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Figure 1: The Example of Item for Measuring PCK-Fractions  

 
Analysis and Results 

Analysis of data followed recommendations from the Standards for Educational and Psychological 
Testing (AERA et al., 2014), which states that survey/assessment development should integrate 
various sources of evidence across multiple studies to construct a validity argument. We collected 
validity evidence for response processes and test content. Validity evidence of response processes 
focuses on whether participants’ responses to our items aligns with the intended theoretical design of 
the item. In this paper, we conducted a classical item analysis to examine the internal reliability of 
both the assessment and the items. We also used cognitive interview data to inform decisions on 
whether certain items should be retained or removed when conducting the item analysis. Evidence 
for test content focuses on how an assessment represents the content and whether scores can be 
interpreted as intended (AERA et al., 2014). Since our PCK assessment seeks to measure the effect 
of teacher education initiatives or interventions, we used an independent t-test to compare PCK 
scores of juniors and seniors as one example of such evidence (considering progress in a teacher 
education program as the intervention).  

The initial item analysis of 30 items resulted in a Cronbach’s alpha coefficient of .284. Although the 
customary threshold for Cronbach’s alpha for piloted assessments is typically at or near .70 
(Nunnally & Bernstein, 1994), many pilots of successfully validated PCK assessments have tended to 
report initial Cronbach’s alpha coefficients above .60, but somewhat below .70 (e.g., Depaepe et al., 
2015; Herbst & Kosko, 2012). Nevertheless, the initial model’s reported alpha coefficient was below 
accepted norms. For each item, we examined point-biserial correlations as an indicator for potential 
removal. Point-biserial coefficients correlate an item’s score (0 or 1) with the total score of the 
assessment, providing an index of potential fit for the assessment (Crocker & Algina, 2006). It is 
customary to identify items with point-biserial coefficients below the accepted norm of .30, and 
consider any interview data, aspects of face validity, etc. before determining whether an item should 
be removed. Items are removed one-at-a-time and the Cronbach’s alpha and point-biserial 
coefficients are recalculated again. 

Our final item analysis model yielded a Cronbach’s alpha coefficient of .640. While the majority of 
remaining items had point-biserial coefficients at or near .30, we chose to retain a subset of items that 
had lower coefficients (~.20). We retained these items for several key reasons. First, initial pilots of 
assessments often include smaller samples and may not represent the variance in responses of 
participants from a larger, more representative sample. As our assessment included PSTs from a 
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single university and no inservice teachers, we believe our sample is unlikely to be representative. 
Second, although point-biserial and Cronbach’s alpha coefficients are useful psychometric indicators, 
they are but one part of the validity argument for developed measures (Wolf & Smith, 2007). 
Cognitive interview data for these particular items indicated that they were both interpreted in the 
manner they were intended and that both responding math coaches considered such content as 
normative (i.e., these were demonstrated student actions they had seen or seen something similar). 
Thus, the resulting PCK assessment includes 17 items nested in 7 questions (M=9.48, SD=3.04; 
Range = 4 to 15). Item difficulty ranged from .28 (28% of items answered correctly) to .93 (93% 
answered correctly), suggesting a wide range in difficulty. 

Next, we used an independent samples t-test to compare PCK scores of juniors and seniors in our 
sample. Results were statistically significant (t = 2.23, df = 56, p = .03), suggesting that PSTs in the 
sample who were enrolled in their second mathematics methods course had higher scores (M=10.34) 
than their counterparts enrolled in the first mathematics methods course (M=8.62). This result was 
still statistically significant for early childhood majors when middle childhood majors were removed 
from the sample (t = 1.97, df = 45, p = .05), with a similar difference in scores between juniors 
(M=8.31) and seniors (M=10.00). These results suggest that the PCK assessment distinguishes 
between PSTs who are earlier and later in their teacher education program.  

Discussion  
Prior scholars’ efforts to construct items assessing PCK are typically open-response and part of 

MKT measures covering both CK and PCK domains (Depaepe et al., 2015; Kazemi & Rafiepour, 
2018; Trobst et al., 2018). Contrasting prior approaches, we sought to develop items exclusively 
focused on the PCK domain, with particular attention to the knowledge of students’ conceptions and 
reasoning about fractions. The purpose of this study was to construct an initial validity argument for 
an assessment of PSTs’ PCK. Thus, we reported results of a pilot on our assessment that included 
items on knowledge of students’ conceptions and reasonings about fractions, with validity evidence 
supporting test content and response processes. Results from psychometric analysis, as well as 
evidence from previously conducted cognitive interviews, supports the claim that our assessment 
measures teachers’ PCK for fractions. Findings from the independent t-test support the claim that our 
assessment can measure growth due to teacher education initiatives. Although preliminary, the 
evidence presented in this paper provides a useful baseline for an initial validity argument. Future 
study is needed to both verify these preliminary findings and to examine other features of validity for 
such assessments.  
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This qualitative research had the purpose of identifying the crossroads between the school cultures 
of secondary school and teacher training institutions in their training practicum.  With the teacher’s 
specialized Theory of Knowledge, geometry activities were analyzed. We conclude that geometry in 
secondary school is linked to shape and measure, while teachers in training struggle to access 
deductive reasoning. However, the crossroad between geometric reasoning and secondary school is 
weak, because the mathematical knowledge of the content is not robust. 

Keywords: School culture, geometry teaching, cognition, teacher training 

Crossroads Between Mathematical Cultures  
Basic education schools and teacher training institutions have their own mathematical cultures. In 

the case of geometry, is the formation of knowledge about its teaching achieved at the crossroad of 
mathematical cultures? 

The phenomenon of crossroads had already been addressed by Engeström, Engeström and 
Kärkäinen (1995), in order to explain institutional cognition and the construction of symbolic 
ceilings in cultural communities. For the analysis of the empirical data recovered from the 
observation of the practicum of future secondary school mathematics teachers, this research uses the 
Mathematics Teacher’s Specialized Knowledge (MTSK) (Carrillo et al., 2018), as it addresses an 
analytical model of the teacher’s knowledge in an integral way for all its dimensions. Furthermore, it 
is a methodological tool that helps analyze the practices and knowledge of future mathematics 
teachers, and identifies the construction at the crossroad. 

Conclusion: crossroads as a condition of teacher training  
The professional practice of the future teacher goes beyond the classroom, as it is a favorable 

context for the exploration of specialized knowledge. In addition, it allows for the prominence of the 
figure of the student as a knowing subject to decrease, which gives way for the process of learning 
itself to rise as the protagonist of a teaching activity. 

The analysis of the initial training context in which this research was developed allowed us to 
observe important aspects about the future teacher’s knowledge linked directly to the transmission 
process of mathematical knowledge. This allowed us to recognize knowledge within the practice of 
the future teacher, which was reflected in practical aspects such as the design of tasks. However, the 
crossroad between such reasoning and secondary school is not consistent, because the mathematical 
knowledge of the content is weak. 
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Esta investigación de corte cualitativo tuvo el propósito de identificar el cruce de fronteras entre las 
culturas escolares de la escuela secundaria y de la institución formadora de docentes, en el 
prácticum de la formación. Con la Teoría del Conocimiento especializado del profesor, se 
analizaron actividades de geometría. Se concluye que la geometría en la secundaria está ligada a la 
figura y la medida, en tanto que los estudiantes para maestro luchan por acceder al razonamiento 
deductivo. Pero el cruce de frontera del razonamiento geométrico a la escuela secundaria es débil, 
porque el conocimiento matemático del contenido no es robusto.  

Palabras clave: Culturas escolares, enseñanza de la geometría, cognición, formación docente 

Los cruces de fronteras entre culturas matemáticas 
 La escuela de educación básica y la institución formadora de docentes tienen sus propias culturas 

matemáticas. En el caso de la geometría ¿La conformación de conocimientos sobre su enseñanza se 
logra en el cruce de fronteras de las culturas de las matemáticas? 

El fenómeno de cruce de fronteras ya había sido abordado por Engeström, Engeström  Y Kärkäinen 
(1995), para explicar la cognición institucional y la construcción de techos simbólicos en 
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comunidades culturales.  Para el análisis del referente empírico recuperado de la observación del 
prácticum de futuros maestros de matemáticas de secundaria, esta investigación apunta al 
Conocimiento Especializado del Profesor de Matemáticas (MTSK) (Carrillo et al., 2018), pues 
aborda un modelo analítico del conocimiento del profesor de manera integral en todas sus 
dimensiones, y es una herramienta metodológica para analizar las prácticas y el conocimiento del 
futuro profesor de matemáticas,  e identificar la construcción en el cruce de fronteras. 

Conclusión: el cruce de fronteras como condición de la formación docente 
La práctica profesional del futuro profesor es una actividad que va más allá del aula, es un buen 

contexto para la exploración del conocimiento especializado, además de perseguir la idea de mostrar 
menos protagonismo a la figura del estudiante como sujeto cognoscente y más al propio proceso de 
aprendizaje como protagonista de una actividad docente.  

El análisis del contexto de formación inicial en la que se desarrolló esta investigación nos permitió 
observar aspectos importantes acerca de los conocimientos del futuro profesor ligados directamente a 
los procesos de transmisión de conocimiento matemático; nos permitió reconocer conocimientos 
dentro de la práctica del futuro docente, que se reflejaron en aspectos prácticos como el diseño de 
tareas. Pero el cruce de frontera de dicho razonamiento a la escuela secundaria no es consistente, 
porque el conocimiento matemático del contenido es débil. 
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Representational fluency, the ability to make “connections among mathematical representations to 
deepen understanding of mathematics concepts and procedures” is an important aspect of building 
problem-solving skills (NCTM, 2014, p.10). From our experience teaching mathematics content 
courses for prospective elementary teachers (PTs), we have found that PTs often struggle to make 
connections between different models of multiplication, which is supported by prior research (Lo, et 
al., 2008). To attend to this issue, we designed a series of multiplication tasks (see, Olanoff et al. 
2018). In this poster we present findings from our second round of implementation with the goal of 
deepening PTs’ specialized content knowledge of multiplication by fostering representational fluency 
and connecting representations to sense-making procedures.  

Our sequence of tasks started with presenting PTs with an 29 x 23 array grid, followed by 
subsequent tasks. Our goals for these tasks were for PTs to 1) Utilize the array model to understand 
that a product can be found by decomposing the array into different regions and combining those 
regions, 2) Use the strategies of summing and combining in this model to develop the partial 
products algorithm, 3) Understand the connection between the standard US multiplication algorithm 
as related to the array model, and (4) Recognize the distributive property as a driving force behind 
the partial products algorithm. Our analysis showed that we were successful at achieving some of our 
goals, but that the tasks would require modifications in order to meet others. For example, we found 
that PTs were successful with breaking the array into different amounts and summing them, but 
many used chunking that was inefficient, as they did not actually make multiplication easier. In 
subsequent tasks the PTs were also found to focus on the total number of squares (as 667) in a base-
10 representation of the array rather than the connection to the original 29 x 23 grid. In addition, the 
majority of PTs were unable to create symbolic notations that matched with the way they used the 
base-10 blocks, indicating that in spite of success with prior tasks they struggled to make the 
connection between the array model and the standard or partial products algorithms.  

Overall, through reflecting on our implementation we learned that we needed to re-consider ways to 
help PTs focus more explicitly on the two numbers being multiplied in an array, rather than only the 
total number of units. Additionally, we needed to identify ways to better support them in relating 
symbolic representations of multiplication to array models, specifically to understand how the 
distributive property manifests itself in the symbolic algorithms (both US standard and partial 
products) and in the array representations. In our poster, we will share our task sequence, show 
sample PT strategies and examples that indicated a success in representational fluency and places 
where PTs struggled. 
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This study honors the premise that teaching mathematics meaningfully for diverse learners includes 
developing dispositions and practices that draw on children’s “cultural, linguistic, and community-
based knowledge” (Turner, Drake, McDuffie, Aguirre, Bartell, & Foote, 2012; p. 68). We propose 
that supporting practicing and prospective K-6 mathematics teachers (PMTs) as learners who utilize 
their own “cultural, linguistic, and community-based knowledge” can authenticate the potential of 
such opportunities in PMTs’ future work with students. In our poster, we describe such a learning 
experience for Maya (a practicing, pre-school teacher) and Zoe (a poster author, preservice 
mathematics teacher, and project researcher), two PMTs in a graduate mathematics education course 
who were tasked with 3D designing and printing a manipulative that would be used with a child in a 
problem-solving interview. 

We utilize funds of knowledge to capture the value of “historically accumulated and culturally 
developed bodies of knowledge and skills” that are deemed essential for human functioning and 
well-being (Moll, Amanti, Neff, & Gonzalez, 1992; p. 132). Noddings (2010) illuminates how a 
relational sense of caring that is “receptive” to “what the cared-for is feeling” (p. 2) can create an 
authentic space for sharing funds of knowledge during learning, which occurred when Zoe embraced 
Maya’s experiences growing up in the Dominican Republic (DR). 

This case is part of a larger teacher education study to help understand PMTs’ knowledge 
development as they Make manipulatives (blinded). Data includes videos from design sessions and 
written assignments, and the tools, because a manipulative’s design reflects the intentions and 
understandings of the Maker(s) (Pratt & Noss, 2010). Purposeful sampling (Patton, 2002) for an 
exploratory case study (Yin, 2009) helped us analyze how funds of knowledge connected to the 
design and use of Maya and Zoe’s tool, called No Más Caídas (No More Spills). 

Maya and Zoe hoped No Más Caídas would make counting playful—a trait they viewed as fading 
from K-6 activities. As Maya articulated anxieties over the intricacies of the design process, Zoe 
invited her to share her experiences learning mathematics as a child in the DR. At first, Maya was 
reluctant, deeming her lived experiences as irrelevant, but as the PMTs engaged in and out of class, a 
confianza (mutual trust) (González, Moll, & Amanti, 2005) developed that informed the design of 
their tool and their learning. For example, they opted for marbles as their counting objects, to connect 
to the everyday objects children use to count in the DR (like beans and rocks). Also, Maya invited 
her pre-school age daughter for the final interview with their tool, integrating the funds-of-
knowledge focus on family (Moll, et al., 1992). To her delight, Maya discovered her daughter’s 
mathematical capabilities with the tool exceeded her expectations, writing “trabajando con números 
más grande a los que ella estaba acostumbrada, más su alegría y dedicación al usar nuestra 
herramienta favorecio nuestra entrevista.” 

Providing PMTs funds-of-knowledge learning opportunities can offer a transitioning vehicle 
between the teacher education setting and the PMTs’ own classrooms. In our poster, we share these 
and additional funds of knowledge from Maya and Zoe’s experiences, relaying their power in the 
PMTs’ learning, and promoting PME-NA’s goal to support the “ample diversity of ways of teaching 
and learning mathematics” (PME-NA, 2020). 
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Educational policy and national reform movements in mathematics education emphasize the 
importance of drawing on students’ resources, fostering students’ identities, and attending to power 
dynamics during instruction (Nasir & de Royston, 2013; NCTM, 2008). This poster shares initial 
findings from a cross-institutional study of 223 prospective teachers (PTs) enrolled in elementary 
mathematics methods courses with a focus on how to see students’ strengths. 

The research question was: What affordances and challenges arose for PTs as they reflected upon 
and attempted implementation of pedagogical strategies focused on seeing students’ strengths? 
Across seven institutions, mathematics teacher educators (MTEs) chose Skinner and colleagues’ 
(2019) Learning to See Students’ Mathematical Strengths as a common text for their courses because 
it highlights strengths-based teaching and offers five strategies PTs could enact in their varied PreK-6 
field experiences. The text’s strategies are (1) trusting students with complex tasks, (2) randomly 
grouping students, (3) having conversations about smartness in math, (4) noticing power and 
privilege, and (5) using critical friends to challenge and support you. The strategies were used as a 
framework to examine specific ways PTs consider and build upon students’ mathematical strengths.  

Data sources included PTs’ written responses to (a) pre-reading questions, (b) post-reading 
reflection prompts, and (c) reflective questions at the end of the semester. Post-reading prompts 
included questions that asked PTs to identify which strategy seemed easiest to implement in practice 
and which might be most difficult. While PTs were not required to implement any of the strategies in 
their field experiences, at semester end they were asked to specify if they had attempted any 
strategies and why, and to identify which strategy they might focus on next and why. Data was 
examined by the MTEs across student, across prompt, and across course, and then cross-intuitionally 
for prominent themes in PTs’ responses. 

Initial findings across institutions indicate that trusting students with challenging tasks was 
perceived as the second-most difficult strategy for PTs to implement yet was also the most attempted 
strategy during field experiences. Noticing power and privilege had the lowest occurrence of all the 
strategies, and examination of corresponding qualitative data revealed that PTs may not feel ready or 
equipped to do this work. Of note is that only one of the 223 PTs responded that they would not 
consider using any of these strategies in their future practice. The poster explores how PTs discussed 
each of these strategies, and potential pathways to leverage the affordances of a common text across 
institutions to support PTs’ seeing strengths. 
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Study Overview and Methods 
The UTE model affords secondary mathematics PSTs with the chance to combine their first 

methods course with an early field experience in a first-year undergraduate mathematics course, 
learning about teaching strategies while attempting to implement them in the classroom (Author et 
al., 2019). During the UTE, PSTs plan, execute, and receive feedback as they teach a series of 
lessons in the undergraduate mathematics course while being supported by mentor teacher educators. 
PSTs participated in pre- and post-UTE interviews that followed Munter’s (2014) protocol for 
assessing PST’s vision for high-quality mathematics instruction (VHQMI). These interviews allow 
for insights into the experience of these PSTs and reveal evolutions in their shifting beliefs about the 
role of the teacher in the classroom, the use of mathematical tasks, the nature of classroom discourse, 
and the level of student engagement. All interviews were transcribed and then analyzed using 
Munter’s (2014) rubric as a guide. 

Results 
While findings across all four VHQMI categories have been noteworthy, of particular interest to 

this study has been PST responses that fall into Munter’s ‘student engagement’ category. Codes in 
this category refer to “non-content-specific characterizations of student behavior”, making this 
category a way to capture PST thoughts that describe a generic vision for the classroom that lack 
sufficient specificity regarding the role of the teacher, the nature of classroom discourse, or the use of 
mathematical tasks. Tracking the presence or absence of these generic responses has been helpful in 
revealing the places where PST visions gain specificity, shifting from the ambiguous to the explicit, 
from broad sweeping claims to detailed articulations of classroom practice. For example, consider the 
comparison of a PST’s pre-interview answer: “If [the students] are engaged in instruction, I think is a 
big indicator if they are actually grasping the concept” to the same PST’s post-interview answer: “I 
would pay attention to the types of questions [the teachers] are asking students and how that’s 
eliciting responses.” This shift in thinking may suggest an early field experience can promote high-
leverage teacher questions as a concrete, specific means of enacting a previously generic vision for 
student engagement. This study tracks these movements from the generic to the specific, looking for 
insights into the development of PST thought that might inform our understanding of teacher 
preparation. 
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Teacher candidates (TCs) can learn how to teach complex skills when teacher education programs 
(namely methods courses and field experiences) provide clear and purposeful experiences (Grossman 
et al., 2009). The following poster describes one such innovation, a complementary field experience 
called SEE Math (Support and Enrichment Experiences in Math) that is paired with a mathematics 
methods course.  SEE Math aims to support TCs as they learn to teach mathematics through problem 
solving while promoting equity over multiple iterations with a single child.  

The SEE Math program is an extension of the TEACH Math module called “Learning Case Study 
Module” (Drake et al., 2015; Turner et al., 2012). In the TEACH Math module, TCs conduct a series 
of interviews with a child about their funds of knowledge and mathematical knowledge through a 
series of Cognitively Guided Instruction (Carpenter et al., 1999; Carpenter et al., 2015) tasks. The 
Learning Case Study module is one way in which TC can learn how to elicit children’s thinking and 
make small adjustments to existing curricula in ways that are relevant to children and their lives.  

During our eight-week program of SEE Math, TCs are also paired with an elementary-aged student 
in a case-study setting. TCs learn to craft and implement tasks that promote problem-solving in the 
context of a case study of a child’s thinking while they collect and analyze student data to inform 
future instructional moves. For example, the TCs conduct a Getting to Know You Interview (as is 
outlined in the TEACH Math module) and create a Venn Diagram about the connections and 
individual interests of the TC and the child. The bulk of the SEE Math activities support TCs to 
leverage existing curricula (such as the book by Kazemi & Hintz, 2014) to adapt tasks and create 
new tasks in ways that is relevant to their child based on the first interview.  

There are multiple culminating outcomes of the program. For the children, SEE Math culminates in 
a final experience where children and TCs engineer a tower or a catapult out of normal materials 
found in a home. For the TCs, their experience with SEE Math Program culminates in a mock parent-
teacher conference that they conduct with their elementary mathematics teacher at the conclusion of 
the semester.  Examples of student work in the poster will show how SEE Math builds on the 
TEACH Math module and offers TCs an opportunity to focus on the nuances of children’s strengths 
rather than traditional measure of achievement and skill. In addition to the theoretical foundations of 
SEE Math, we also intend to include examples of work from the TCs’ case studies and experiences 
from TCs, students, and parents who participated in the program.  
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Creating, connecting, and translating multiple representation are “important cognitive processes that 
lead students to develop robust mathematical understandings” (Huntley, Marcus, Kahan, & Miller, 
2007, p. 117). These cognitive processes are also considered to be crucial elements of preservice 
teachers’ (PSTs’) pedagogical content knowledge (Dreher, Kuntze, & Lerman, 2016).  

In order to investigate PSTs’ cognitive processes regarding multiple representations, we collected 
data from 73 PSTs, who enrolled in a mathematics content course for elementary education majors in 
Spring 2019. We analyzed PSTs’ solutions to an assessment task following seven weeks of 
instruction related to the use of strip diagrams, double number lines, and algebraic equations to solve 
problems involving ratio and proportional relationships and word problems (Beckmann, 2014). The 
PSTs were asked to determine the total number of cookies Bonnie baked when given information 
about the cookie types (e.g., 1/3 of the cookies were chocolate chip, 1/6 were peanut butter, 1/6 were 
oatmeal raisin, and 24 were cinnamon) in two ways: using a strip diagram and writing and solving an 
algebraic equation. We used an error analysis technique (Radatz, 1979) to sort and interpret the 
responses based on fluency with strip diagram and algebraic solutions. The PSTs who exhibited 
complete reasoning were able to use both representations and the PSTs who exhibited incomplete 
reasoning were unable to use at least one of the representations. The preliminary analysis of solutions 
revealed the following themes in the PSTs’ strategies (Table 1). 

 
Table 1: PSTs’ Strategies for Solving the Cookie Problem 

 Complete Reasoning Incomplete Reasoning 

Strip 
Diagram 

Partitioned a single bar based and 
labeled parts based on cookie type 
and fractional amount or quantity  

-Drew multiple bars to represent each fractional 
amount 
-Did not consider fractional amounts as parts of 
the same unit 
-Misinterpreted the unit of fraction 

Algebraic 
Solution 

Defined variable as total amount of 
cookies wrote expressions based on 
type of cookie in terms of the fraction 
of the whole 

Assumed sum of given amounts equaled the 
number stated in the problem 
Considered fractional amounts as numbers rather 
than representing parts of the unit  

 
Students’ identification of the unit of a fraction is related to unitizing mental process (Lamon, 

2012). The findings of our analysis indicate that PSTs’ unitizing mental processes is a determining 
factor in their use of representations to solve word problems. No matter which representation the 
PSTs used, the way they considered the unit or sub-unit amount was the foundational step in their 
solutions. These results suggest that further studies investigating PSTs’ understanding of unitizing 
related processes within representations can help us prepare instruction that aligns with their 
understanding path for the mathematical concepts. 
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The current moment of practice-based teacher education (PBTE) has set out to develop a shared 
language in the field (Grossman & McDonald, 2008), disrupt the assumption that learning to teach 
does not require sustained learning (Ball & Cohen, 1999), establish teacher education as an “agent of 
professional countersocialization” (Ball & Cohen, 1999, p. 6), restructure teacher education’s 
organizational dichotomy between theory and practice (Grossman, Hammerness, & McDonald, 
2009), and to do so by learning in, from, and through practice (Ball & Cohen, 1999).  

Since the initial call for a turn toward PBTE (Ball & Cohen, 1999), much of the scholarly attention 
has been on the development of and research on various pedagogies of practice (Grossman et al., 
2009) – the vehicles by which practice-based actually becomes practice-based. Reflective of and 
responding to Grossman, Compton, and colleagues’ (2009) finding of the lack of approximations of 
practice within teacher education, contemporary PBTE researchers and teacher educators intensely 
focus on the design, facilitation, and outcome of approximations. 

Despite this focus, little attention has been paid to the nature of the simplification (Grossman & 
McDonald, 2008) within approximations of practice. Critiques of the current moment of PBTE have 
included these simplifications and their ties to a technocratic view of teaching and teacher 
preparation (Zeichner, 2012). While it may be necessary for these pedagogies to expose TCs to 
context less complex and authentic than a classroom, what have we lost in the process? Have we 
compromised preparing teacher candidates to respond to students in adaptive (Hatano & Inagaki, 
1986) and culturally responsive ways (Gay, 2002)? Have we marginalized the “social, cultural, 
political, and situated dimensions of teachers’ practices” (Philip et al., 2018, p. 9) and inadvertently 
worked against education’s ultimate goals of equity and justice?  

In order to turn the gaze of PBTE toward goals of equity and justice, PBTE must (re)evaluate the 
structures we have built, with pedagogies of practice being a main focus. Some PBTE scholars 
(Dutro & Cartun, 2016; Kavanagh, 2017; Kavanagh & Danielson, 2020) have begun to explore the 
ways in which core practices can become social justice oriented, possible theoretical considerations 
for such endeavors, and the design and facilitation of pedagogies of practice to serve social justice 
purposes. Despite these efforts, must is left to accomplish in developing critical practice-based 
teacher education pedagogies.  

In order to further establish a framework of critical PBTE, this poster presentation will provide an 
initial proposal in the design of various pedagogies of practice through the representation, 
decomposition, and approximation of discretionary spaces (Ball, 2018). Through discretionary 
spaces, teacher educators and teacher candidates will investigate moments where teachers have the 
“discretion either to reproduce unjust and inequitable social patterns or to interrupt those patterns 
through their embodied activity in the classroom” (Kavanagh & Danielson, 2020, p. 71). These 
spaces are inherently tied to systems of oppression and inquiry such as race, class, gender, and 
language. Calling upon these spaces centers the design and investigation of pedagogies at the 
intersection of the relationship between practice and improvisation and the social, historical, and 
cultural complexities of teaching. 
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While orchestrating a whole-class discussion, a teacher draws upon a variety of “moves” (Boerst et 
al., 2011) to maintain the structure and goals of the discussion. In this paper, we focus on the 
orienting move of asking students to restate what a peer has said as a means to have an idea made 
public and mark it as a worthwhile part of the discussion (Chapin et al., 2013. We follow Ghousseini 
and colleagues (2015) by conceptualizing such moves as enactment tools, which “translate abstract 
conceptual tasks into more concrete steps and objectives” (p. 462), and considering the context, 
steps, and goals surrounding the move. To facilitate and document the development of adaptive 
expertise (Hatano & Inagaki, 1986), researchers have centered the use of enactment tools in coached 
rehearsals (e.g., Ghousseini et al., 2015), leaving more to know about how tool use transitions into 
more complex settings, such as student teaching. In this work, we address the following research 
questions: In what ways has a teacher candidate’s (TC’s) use of the restating tool evolved over time? 
In what ways has the purpose and goals associated with the restating tool changed?  

We focus on one TC (“Diana”) who regularly and explicitly “took up” this move in a secondary 
mathematics methods course and in her student teaching. She used the restating tool in coached 
rehearsals (e.g., Campbell et al., 2020), scripting tasks (e.g., Baldinger et al., 2018; Campbell et al., 
2019), classroom videos from student teaching, and reflected on her use of the tool in interviews. To 
focus on Diana’s evolving use of the restating tool, instances of the tool’s use were identified in the 
data and paired with rationale and contextualization Diana provided for using the tool. Instances 
underwent open coding and analytic memo writing (Miles et al., 2014), which focused on: (1) the 
sequence of how the dialogue unfolded, (2) consistencies and changes in the restating tool, and (3) 
the purposes and goals associated with the tool’s use.  

Initial findings illustrate Diana’s adaptive use of the enactment tool, as well as the purposes 
associated with its use. Over the course of a year and across contexts, Diana adapted the tool and her 
enacted sequence based on contextual, mathematical, and social purposes. These purposes included 
highlighting an important mathematical idea, orienting students to an idea, and positioning students 
productively in the classroom. Contextual and situational factors across contexts and time also 
contributed to nuances in the tool’s use and purposes in enactment.  

We found that TCs can develop adaptive expertise through opportunities to be responsive to 
students’ social and mathematical needs. Such development can be documented by attending to 
changes in enactment tools—specifically how changes in the sequence and associated goals relate to 
contextual factors. These findings have implications for the contextualization and authenticity of the 
design of approximations of practice (Grossman et al., 2009) in teacher education and in research on 
TC development.  
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Mathematics has a privileged place in the school curricula. One of the primary concerns of teacher 
education institutions is to prepare future teachers to take a leadership role in school mathematics 
education. Wahyu, Mahmudi, and Murdanu (2018) argued that pre-service teachers should have 
sufficient knowledge of both mathematics and pedagogy to be successful in their teaching career. 
However, Bowie, Venkat, and Askew (2019) indicated a need for student teachers to revisit primary 
school mathematics that provides a deep understanding of key mathematical concepts in order to be 
better prepared for future teaching careers. This poster draws from our 2-year Consecutive B.Ed. 
program in which students are required to complete an online elevatemymath (EMM) before their 
mathematics methods course. The EMM was designed as self-paced modules where pre-service 
teachers first complete a pretest, followed by modules and the post-test. This software solution was 
implemented in response to elementary pre-service teachers’ perceptions about their level of 
mathematical preparedness and challenge of split attention in attempting to (re)learn elementary 
mathematics content alongside learning the specific mathematical (pedagogical) knowledge and 
classroom practices for effective teaching. 

We were interested in the perceived value of the online refresher course in pre-service elementary 
teachers' perceptions of their mathematical preparedness and competence for their methods course in 
the program. We asked: How do pre-service teachers perceive the value of a software solution for 
refreshing their mathematics content knowledge? In what ways the software solution was helpful in 
engaging pre-service teachers in the methods course? and, to what extent was the software solution 
beneficial for the pre-service teachers in preparing them to teach elementary mathematics? Data was 
collected using an online questionnaire focusing on the perceived value of the EMM refresher course, 
pre-service teachers' perception of preparedness for engagement in the methods course, and their 
perception of preparedness to teach mathematics in the first year. The questions were a mix of 
quantitative and qualitative open text responses.  

Data were analyzed based on emergent themes related to perceived value and perception of 
preparedness and the percentages of responses. The numerical and free-response (qualitative) data 
(anonymous) from online surveys (n = 204) over a 2-year period shows a variation in pre-service 
teachers’ perceived value of EMM refresher course and perception of preparedness to teach 
elementary mathematics. Findings indicate that there was a considerable increase in the depth of 
knowledge and degree of connectedness of elementary school mathematical concepts after the 
refresher course. More than 50% of the pre-service teachers felt that the refresher course contributed 
to positive growth and better prepared them with planning and assessing a mathematics class. Some 
of the pre-service teachers did express that having a refresher course helped them to some extent 
during their first teaching practice and the refresher course was a good value for money. For 
example, one pre-service teacher expressed that “the refresher course helped in revising some 
concepts, recognizing some areas that needs improvement. Knowing my strengths helped me in 
moving forward.”  
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There is growing evidence to suggest that construction of knowledge is an embodied activity 
(Alibali & Nathan, 2012; Barsalou, 1999; Gallese & Lakoff, 2005). We conjecture that embodied 
cognition is a useful theoretical lens for explaining teachers’ professional noticing. Evidence from 
eye-tracking studies suggest that experienced secondary teachers process visual events in a recorded 
classroom more quickly, while preservice teachers (PSTs) scan the room more frequently and with 
fewer fixations on particular students or events (van den Bogert et al., 2014). More recently, Kosko 
et al. (2019) observed that differences in where PSTs attended when watching a 360 video of an 
elementary math lesson coincided with differences in written descriptions of their noticing. 360 video 
records in a spherical direction, and PSTs can move their head to determine where in the classroom 
they attend. Given such evidence, we sought to examine further examine the relationship between 
where PSTs attend in watching 360 video and what they describe in written noticings. To this end, 
the purpose of this study is to report preliminary evidence supporting a theory of professional 
noticing as embodied activity.   

Participants in this study included four elementary preservice teachers (PSTs) at the beginning of 
their teacher education coursework (sophomores). Using Oculus Go headsets to record their viewing 
session, participants watched a 360 video of third-grade students informally explored the 
Commutative Property. After viewing the video, PSTs wrote what they noticed to be significant 
moments for the teaching or learning of mathematics. We used Systemic Functional Linguistics 
(SFL) to examine PSTs’ written noticings. SFL examines how grammar functions to convey meaning 
(Eggins, 2004). In this analysis, we examined how transitive processes conveyed experiential 
meaning of referents in the grammar. We then examined how this experiential meaning was related 
to recordings of where PSTs attended in the video. One PST wrote “The teacher was moving all 
around the classroom and he [teacher] was asking students to work together…” The first bolded 
words signify material processes, which corresponded to the PST moving their head to attend to the 
teacher walking around the classroom at various points. The second bolded words signify a verbal 
process. Interestingly, the PST did not always visually track the teacher when he was asking 
questions. Contrasting this example, a second PST, who consistently used material processes but no 
verbal processes in their written noticings, always looked at the teacher when the teacher was talking. 
Analysis of these patterns is ongoing, but initial findings suggest PSTs’ attending manifests in both 
auditory and visual means, which are represented in how meaning is conveyed in their written 
noticings.  
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As mathematics teacher educators (MTEs), we design methods courses to “provide candidates with 
tools and frameworks to support a more asset- and resource-based instructional approach focused on 
students’ strengths in learning” (AMTE, 2019, p. 35). Through an asset-based orientation, MTEs can 
foster preservice teachers (PSTs) ability to view every student as a doer of mathematics, thereby 
recognizing that all students have mathematical strengths (Bannister et al., 2018; Featherstone et al, 
2011; Jilk, 2016). PSTs who develop more robust orientations about what it means to do mathematics 
and by whom, are more likely to question and disrupt any socially-learned deficit orientations they 
may have about diverse learners (see Celedón-Pattichis et al., 2018). Countering and replacing these 
orientations among PSTs with cultural and mathematical asset-based orientations will require MTEs 
to better understand how PSTs understand and notice mathematical strengths. 

Complex Instruction (CI, Cohen & Lotan, 1997) is an asset-based pedagogical framework, 
grounded in the recognition that each and every student brings varied and different mathematical 
strengths and statuses to the classroom. The framework recognizes that during group work, peer’s 
assign competences to one another, impacting who contributes to the groups’ thinking and who 
learns mathematics. Often, the mathematical strengths of a “low-status” student may be ignored or 
dismissed. CI defines techniques for teachers to disrupt these socially-influenced biases. To enact 
these techniques, however, PSTs must believe and be able to recognize mathematical strengths in 
every student.  

Our work seeks to answer the following research question, What distinctions in the quality of 
mathematical strengths do PSTs notice during a group-worthy task? To do so, we draw upon the 
research on teacher noticing aligned with Sherin’s (2001) notion of professional vision as the ability 
to notice and interpret significant features of classroom interactions. Four cohorts of PSTs enrolled in 
our different teacher preparation programs during their junior or senior methods course engaged in 
three key activities to learn to consider students’ mathematical strengths: (1) read and respond to a CI 
paper; (2) name strengths in peers after completing a group-worthy task together; and (3) implement 
the same task with a group of 4–6 middle school students to identify mathematical strengths for 
every student. Data from PSTs’ class artifacts, group recordings, reflection papers across the two 
sites were analyzed using both holistic and descriptive coding (Saldaña, 2016).  

Results indicated that PSTs welcomed the invitation to learn about students’ mathematical strengths 
and were able to identify them in most middle schoolers. Yet, PSTs’ noticed qualitatively different 
types of mathematical and behavioral strengths. In this poster, we present the distinct types of 
strength-noticing patterns among the PSTs, and their movement towards asset-orientations. Results 
will be useful for MTEs and further analyses of PSTs’ dispositions. 
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Mathematics traditionally has been taught as a discrete set of content areas related to numbers and 
operations, algebra, geometry, measurement, and data analysis and probability. And, while the 
National Council of Teachers of Mathematics [NCTM] (2000) has stressed the need for students to 
make connections between these mathematical content areas, to other disciplines, and to the real 
world, these connections have been weak. These weak connections are consequential. When students 
of mathematics do not make these connections, they are limited in their development of mathematical 
thinking. They may be able to attain procedural fluency, but they are unable to continuously develop 
conceptual understanding, necessary for the understanding of more abstract mathematical concepts. 
Without such connections, they do not develop the strategic competence and adaptive reasoning 
necessary to problem solve successfully. Too, these weak connections perpetuate long-standing 
cultural beliefs that mathematics is irrelevant to other content areas and/or to the real world.  

Within teacher-preparation programs, instruction is frequently given in a discrete fashion in which 
pre-service teachers [PSTs] receive mathematics instruction from one professor in one class, social-
studies instruction from one professor in another class, and so on. This lack of integration among 
disciplinary methods reinforces the lack of connection that is encouraged in the NCTM and Common 
Core [CC] process standards for children to become fully proficient in their mathematical thinking. 
While structurally this discrete division of content appears overt, my suspicion was that most of the 
non-mathematics-education professors were integrating mathematical practices in their instruction. 
This assumption guided the study and was confirmed in the triangulated analysis of a three-part, 
data-collection process of (1) 180 PSTs’ alignment of the CC Standards of Mathematical Practices 
[MSPs] with instructional examples from their non-mathematics education courses (Spring ’14 to 
Spring ‘18); (2) 19 non-mathematics-teacher educators’ survey data on how they use the MSPs in 
their instruction; and (3) 11 full-class, video-taped observations of two social-studies, two science, 
two English-and-language-arts, one creative-arts, and one physical-education/health teacher 
educators who were surveyed (Spring 2018). While PSTs and their non-mathematics education 
professors initially held exclusive views of their definitions of mathematics and mathematical 
thinking, project results reveal that even in non-mathematics-focused courses, most of the MSPs are 
being reinforced.   

Overall, the objective of this project is to provide evidence that mathematical thinking occurs 
everywhere, despite beliefs about its discrete nature. Educators, no matter their disciplinary expertise, 
can strengthen students' mathematical thinking in meaningful ways. Through a more united front in 
helping students develop their mathematical thinking, we can strengthen the connections students 
make between mathematical content areas, other disciplines, and the real world. Only in making 
these connections will students be able to attain all five strands of mathematical proficiency: 
conceptual understanding, procedural fluency, strategic competence, adaptive reasoning, and 
productive dispositions (NRC, 2001). 
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Our research focused on developing a profound understanding of fundamental mathematics (PUFM; 
Ma, 1999) for Preservice Secondary Mathematics Teachers (PSTs). We considered content and 
reasoning ability. Our research questions were: (a) To what extent does working on a quadratic 
exploration task engage preservice secondary mathematics students in components of creative 
mathematical reasoning (CMR; Lithner, 2008)? (b) Which mathematics concepts do preservice 
secondary mathematics students draw upon while engaged in the task? 

Theoretical Perspectives 
We used Lithner’s (2008) classification of CMR and imitative reasoning (IR) to describe student 

reasoning. CMR includes a novel reasoning sequence, makes use of plausible strategies, and has a 
mathematical foundation. Lithner described IR as the “opposite” (p. 256) of CMR.   

Methods 
In a mathematics content course for third- and fourth-year PSTs focused on the roles of technology 

in the teaching and learning of mathematics (Cullen, Hertel, & Nickels, 2020), we asked students to 
explore the effects on the path of the vertex as each parameter in the quadratic standard form, y = ax2 
+ bx + c, was varied. We video recorded class sessions, coded for CMR and IR (Lithner, 2008), and 
identification of secondary mathematics curricular concepts.  

Results 
Throughout the exploration we identified students engaged in CMR with concepts from secondary 

mathematics. For example, Jared reasoned about the concept of slope and linearity while reasoning 
about the path traced by the vertex as b was varied. Jared’s reasoning was novel because he asked 
himself why the path was linear. Jared’s strategy—to purposefully adjust parameter sliders, one at a 
time—was plausible because it allowed him to draw conclusions about the effects of those 
parameters. Jared’s conclusion that the slope depended on b was based on a mathematical foundation 
of what is meant by dependent. Thus, we concluded that Jared’s reasoning was an example of CMR 
that involved consideration of secondary-level mathematical content (e.g., linearity, quadratics, rate 
of change, loci of points) at a profound level. 

Discussion and Conclusions 
As we reflect on our PSTs’ engagement with the Exploring Quadratics task (Cullen, Hertel, & 

Nickels, 2020), we learned that the task kept PSTs engaged in CMR (Lithner, 2008) throughout the 
multi-day exploration. Likewise, the content areas which they drew upon were pertinent to their 
developing subject matter knowledge (Shulman, 1986) and, because concepts were debated in a way 
that focused on meaning, rather than from an algorithmic approach, the activity seemed to be 
supporting the development of PSTs’ PUFM (Ma, 1999). As a result, we suggest that analyzing tasks 
for PST populations looking for CMR as well as in-depth engagement with mathematical content 
linked to future teaching assignments may serve as a framework for identifying appropriate tasks. 
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Researchers have suggested that one way to motivate and support prospective elementary teachers’ 
(PTs) mathematical understanding is through the use of authentic examples of children’s 
mathematical thinking (e.g., Circles of Caring, Philipp, 2008). Philipp notes that some PTs may care 
more about children as whole beings than they care about mathematics. Therefore, integrating how 
the content directly relates to the teaching and learning of children can offer a way to leverage the 
care PTs have for children to motivate PTs to care about the mathematics.  

Ball and her colleagues (2008) have identified the ability to analyze children’s mathematical 
thinking as a valuable component of Specialized Content Knowledge (SCK), or knowledge unique to 
teachers of mathematics. However, Max and Amstutz (2019) found that activities related to the 
content domains of Geometry and Measurement & Data (Conference Board of Mathematical 
Sciences, 2012) provided fewer opportunities for PTs to develop their SCK.  

Therefore, the goal of this study is to investigate the intersection of the Geometry and Measurement 
& Data content domains with examples of children’s mathematical thinking in textbooks currently 
used in content courses for PTs. For this investigation we focused our analysis on the top three 
textbooks that US mathematics teacher educators recently reported using (Max & Newton, 2017): 
Beckmann (2018), Sowder et al. (2017), and Billstein et al. (2020). This poster will report findings 
and provide examples of children’s thinking being utilized in the study of two-dimensional geometric 
concepts (e.g., shapes, polygons, angles) and measurement (e.g., length, angle size, area). Initial 
textbook analysis involved identifying instances relating content to the teaching and learning of 
children and noting the ways in which these instances were being used to support PTs’ development 
of SCK. For example, some samples illustrated children’s work in which they had applied a non-
traditional method and asked PTs to analyze the validity of the child’s thinking.  

All three textbooks included practice exercises at the end of some sections that attached names to 
sample thinking, at times referencing the names as students or by grade level. However, Beckmann 
(2018) and Sowder et al. (2017) actively used examples of children’s thinking throughout their 
lessons to support PTs’ development of content knowledge, specifically SCK. Additional references 
to children were found in mentions of elementary concepts, content standards, and research 
conducted with children, prompting consideration of whether these types of connections to the 
teaching and learning of children might also serve as motivation for PTs.  

Future analysis will continue to investigate the ways textbooks used in content courses for PTs 
reference children and their mathematical thinking as well as the potential impact of these instances 
on motivating PTs’ development of SCK. By revealing and highlighting the integration of 
connections to the teaching and learning of children in content courses designed for PTs, we hope to 
support mathematics teacher educators in creating classroom cultures that can leverage the care PTs 
have for children to motivate PTs to deepen their mathematical understanding in ways that will 
support the learning of their future students. 
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This study explored influential factors that affect pre-service teachers’ (PSTs) persistence in 
mathematics learning during professional development (PD). As a part of a larger study, this study 
was guided by concepts of persistence and mindset - “the core beliefs students have about learning 
and the change that learners may or may not be conscious of.” (Dweck, 2006; p.6) Persistence is an 
action when students continue to engage in a mathematical task despite facing challenges (Boaler & 
Staples, 2008). Studies on persistence have focused on students’ traits (Cobb, Gresalfi, & Hodge, 
2009; Grant & Sonnentag, 2010; Rayneri, Gerber, and Wiley, 2006), while factors that affect 
students’ development of such traits have not been studied.  

In mindset interventions, MS has been used as a problem-solving approach, but few have studied 
how MS fosters a growth mindset (Lynch & Star, 2014). Lynch and Star developed instructions to 
encourage MS in the student-teacher dialogue. Multiple Strategies (MS) intervention encourages 
students to use more than one method to solve a math task (Silver, Ghousseini, Gosen, 
Charalambous, & Strawhun, 2005). This includes teachers’ ability to assess which solutions that 
students came up with should be discussed to encourage students for further inquiry (Stein, Engle, 
Smith, & Hughes, 2008). However, if teachers are not careful, the instructional can become a “show-
and-tell” (Ball, Lubienski, & Mewborn, 2001), and subsequently hinder students’ persistence. This 
led to the research questions of the study: How do PSTs choose to persist when problem-solving with 
challenging tasks? How MS-based PD impacts PSTs’ persistence in challenging mathematics tasks? 

The study participants are a convenient sample of pre-service K-12 teachers who attended the PD, 
delivering the MS intervention, an opportunity offered by the College of Education at a large mid-
western university. Surveys were used to measure PSTs’ to measure mindset (Levy, Stroessner, & 
Dweck, 1998), and persistence (Duckworth, Peterson, Matthews & Kelly, 2007). Among the PD 
attendees, PSTs attended at least four sessions out of five total PD sessions. 12 PSTs met this 
requirement Further qualitative analysis was done among the 12 and six PSTs agreed to participate in 
follow-up PD interviews. 

Analyses of PSTs’ cases helped understand PSTs persistence views on the task can be affected by 
knowing the instructional practice of MS was available through working with peers in a collaborative 
learning environment. PSTs also appreciated the opportunity to work on challenging tasks with a 
reminder of the availability of MS during the PD. It was challenging to understand the relationship 
between PSTs’ persistence levels and their views on success or failure, as all demonstrated a high 
persistence level. Further studies with PSTs with varied persistence will reveal this relationship. 
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Recent reform in teacher education looks to understand and support equity initiatives in 
mathematics education (AMTE, 2017; NCTM, 2000, 2014). These efforts encourage preservice 
teachers (PTs) to engage in authentic classroom situations that explore equity-based practices by 
connecting theory and practice (Chao, Murray, & Gutiérrez, 2014; Ching, 2014). PTs can use case 
studies to reflect on their own teaching experiences and position themselves in scenarios in which 
they may not be familiar (Redman & Redman, 2007). This study reports on PTs in mathematics 
methods courses participating in a series of case study dilemmas designed by the researchers to elicit 
conversations of equity in mathematics education. We examined the following research question: 
How do PTs engage with case study dilemmas in mathematics methods courses to advance their 
understanding of equity in teaching mathematics? 

We conducted a qualitative case study design that used multiple data sources and referenced 
Gutiérrez’s (2007) equity framework that describes equity as a complex notion in terms of access, 
achievement, identity, and power. Participants included 43 PTs enrolled in three mathematics 
methods courses across two universities in the United States. Both courses were structured to 
introduce equity on the first day of class and address equity-based teaching practices throughout the 
semester with course readings, activities, and discussions. In planning for the methods courses, we 
created two case study dilemmas to facilitate equity discussions focused on identifying and 
challenging assumptions, biases, and stereotypes as well as exploring equity through a lens of 
fairness. The first dilemma prompted the PTs to examine equity in terms of access and identity by 
exploring a teacher’s response to receiving a new student in her classroom that did not look like her 
or the rest of her students. The second dilemma, focused on access and achievement, analyzed a 
teacher’s intent to have equitable expectations in the context of a zero-tolerance homework policy. 
Pre- and post-surveys were collected from the PTs to gain insight into their changed perspectives on 
equity. The surveys and transcripts of the recorded discussions were coded using in vivo and 
descriptive coding techniques (Saldaña, 2016). 

Participation in the case study dilemmas encouraged the PTs to reflect on their understanding of 
equity and develop their pedagogical knowledge of equity-based teaching practices. The first 
dilemma prompted the PTs to examine a teacher’s assumptions toward a student. The PTs identified 
how the assumptions invited marginality and reaffirmed mathematics identity. They also discussed 
how the assumptions impacted the student’s opportunity to learn ambitious mathematics and 
strategized ways teachers can be proactive in learning students’ needs and cultural backgrounds. In 
the second dilemma, PTs debated what it means to have equitable expectations and how teachers can 
leverage multiple mathematical competencies using a variety of resources and assessments. Overall, 
the PTs commented on how they benefited from using the case study dilemmas to make them more 
aware of their biases and better understand what equity looks like in the mathematics classroom. 
Recommendations will be shared for using similar instructional activities to equip PTs with the 
knowledge and skills needed to embed equity-based practices in their professional practice.   
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Conceptual Perspective and Research Questions 
Mason and Spence (1999) state that “awareness of knowing and of not knowing is crucial to 

successful mathematical thinking” (p. 147). Synthesizing few studies on the topic of not knowing, 
one may conclude that not knowing is a step to understanding, carrying an important value in 
learning because from it knowing can follow. In our previous study, we found that students have 
difficulty externalizing not knowing while solving reasoning tasks (Author, 2019). Taking it further, 
in this study we are examining the following research questions: does the complexity of task relate to 
students’ externalization of not knowing? to what extent students’ not knowing is associated with 
successful problem solving?  

Methodology  
This study employed quantitative methodology. Pre-service secondary mathematics teachers 

(N=116) enrolled in a math methods course were selected for the study. The problem solving 
protocol was used to collect student written work while solving connected algebraic reasoning tasks. 
The protocol consisted of two instructions: a) solve the given task, and b) describe what you are not-
knowing while solving the task. The tasks were designed based on the same concept of weighted 
average in numerical (task 1), semi-abstract (task 2), and abstract (task 3) contexts. Students’ 
demographics data was also collected including grade point averages in discipline-specific 
coursework (M-GPA) as well as in pedagogy-related coursework (P-GPA). Each task was graded 
using the following levels: 1) no solution provided, 2) incorrect solution, 3) partially correct solution, 
and 4) correct solution. Along with this, students’ externalization of not knowing while solving each 
task was rated using the following levels: 1) ignorance, 2) deflection, 3) non-relational not knowing, 
and 4) relational not knowing. The data was analyzed using descriptive statistics. 

Results  
In response to the research question 1, we found that complexity of the task relates to the level of 

students’ externalization of not knowing. More specifically, if the task is too easy (task 1), the 
correlation between correctness of task and externalization of not knowing is negative r=-.01 
(p>.05). As complexity of the task rises from numerical to semi-abstract level (task 2), the 
correlation becomes practically significant (r=.16, p<.10). However, as the task becomes more 
complex (task 3) the correlation coefficient decreases in value and significance (r=.03, p>.05).  
Another observation revealed significant correlation between students’ externalization of not 
knowing for tasks 2 and 3 (r=.53, p<.01). In response to the research question 2, the study findings 
showed significant correlation between students’ overall successful problem solving on all three 
tasks and not knowing expressed while solving the tasks (r=.37, p<.01). Moreover, students’ 
discipline specific M-GPA was significantly related to their overall problem solving performance 
(r=.35, p<.01) whereas the pedagogy-related P-GPA was significantly associated with students’ 
externalization of not knowing (r=.28, p<.01). 

The study results might serve as a stepping-stone to further research not knowing, as it may directly 
link to more effective and efficient student learning. 
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Spatial reasoning has been identified as a key element not only for learning mathematics, but also 
other fields related to science, engineering and technology (Gold, et al. 2018; Julià & Antolì, 20016, 
2018). Research in this venue has identified some issues, including gender disparities in spatial 
reasoning abilities and their impact on the gender gap in STEM achievement (Lauer et al., 2019). 
These differences, however, can be reduced with targeted training (De Castell et al., 2019; Laurer et 
al., 2019). Such training can start at early years through robotics tasks (Francis et al., 2016; Francis et 
al., 2017). Teacher education program can be informed by such research results, increasing their 
focus on spatial reasoning and robotics. 

Since 2014, the University of Calgary required all student teachers to complete the course STEM 
Education which has an emphasis on innovation and transdisciplinary (Preciado et al., 2016). The 
course involves robotics through exploration and design using Lego EV3 and WeDo kits. We 
conducted a preliminary study analyzing 20 student teachers’ narratives, corresponding to a 
component of the course, with the purpose of identifying the elements of spatial reasoning involved 
in the task through the lens of the students.  

The literature on spatial reasoning encompasses diverse perspectives including definitions of spatial 
reasoning (Davis et al., 2015; Ramful, et al. 2016; Zwartjes et al, 2019), spatial skills and spatial 
habits of mind (Kim & Bednarz, 2013), as well as the framework provided by Francis et al. (2017), 
developed from utterances of 19 experts in different fields on spatial thinking. We considered this 
variety of perspectives on spatial reasoning to conduct a deductive thematic analysis (Braun & 
Clarke, 2006) on the narratives from students’ Mars Challenge robotic task (Francis et al., 2019) 
which requires students to work as a team to build and program a robot that moves different objects 
to designated areas. 

Findings and discussion 
From the students’ narration on the Mar Challenge regarding the robotics tasks, seven significant 

aspects of spatial reasoning were identified: Visualization, 2D-3D reasoning, construction process, 
pattern recognitions, transformation (rotation), scaling, and the design process involved imagining. 
From this analysis, we can conclude that the task has potential to develop spatial reasoning skills for 
student teachers, with a potential impact on their future students. Such approach has also the potential 
to both reduce the gender disparities regarding spatial reasoning through the engagement in robotics 
tasks and address the need for more people to consider STEM career paths. 

The narratives evidenced some impact of the course on student teachers’ spatial reasoning in the 
Mars Robotics task. However, the sample size does not allow a generalization of the results to other 
students in the program. Therefore, there is a need for the development of a research design that 
addresses these limitations to explore the impact of the course on students’ spatial abilities and 
describe their learning processes.  
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In this paper a didactic proposal is presented which consists of a methodology aimed at secondary 
level mathematics teachers, the aim of this proposal is to provide the teacher with a tool to design 
teaching sequences in order to take them to the classroom; These designs have the particularity of 
incorporating digital technology for the development of the sequence and its implementation. The 
methodology was developed based on the articulation of: the didactic structure of Díaz-Barriga, the 
teaching method ACODESA of Hitt and the curricular developments of Taba. The methodology has 
been tested with a group of 11 teachers in a course-workshop of 40 hours, the results obtained were 
three didactic sequences elaborated by three teams of teachers in a technological context (using 
Geogebra), where it is perceived that it is possible to design using this methodological proposal, 
however, teachers presented some difficulties during the process of articulation with technology.  

Keywords: Teaching activities and practices, Secondary education, Technology, Teacher training 

Introduction  
The curriculum of basic education in Mexico points out the importance of teachers being involved 

in the design of activities or didactic sequences, as part of their practice; however, this task can be 
complicated for teachers, since their working conditions and prevailing teaching practices have 
limited their practice to the reproduction of textbook activities, away from the design and planning of 
teaching.  

Careful analysis shows that curricula and study guides do not provide sufficient guidance in order 
for teachers to design teaching activities. This explains the low production of didactic sequences 
designed by teachers. Taking into account the absence of specific methodological recommendations 
for the design of didactic mathematical sequences, the following question arose: how do you 
structure and evaluate a methodological proposal for the design of didactic sequences of the subject 
of mathematics from a problem situation with the support of Geogebra software aimed at secondary 
school teachers? The following specific objectives were derived from this: 

1. Establish a didactic structure for the design of sequences. 
2. Characterize the type of problem situations, which will be the starting point for each 

sequence. 
3. Determine the role that Geogebra will play in the design of didactic sequences. 
4. Develop the methodology and experiment with it by designing didactic sequences. 
5. Structure a course-workshop for mathematics teachers to evaluate the methodology. 

Theoretical References  
1. Elements to structure a didactic sequence  

Within our work, the didactic structure of Díaz-Barriga (2013) is used, since it is an appropriate way 
to organize activities. Also, it rescues some interesting points that should be incorporated in the 
design. However, the aspects considered by Díaz-Barriga have been modified within this 
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methodological proposal due to the fact that they were adapted to the needs of the mathematical 
discipline. 
2. Teaching method ACODESA 

ACODESA was used for the purpose of organizing classroom management and mathematical 
knowledge. This teaching method proposed by Hitt and Cortés (2009) is divided into 5 stages that 
take into consideration individual work, teamwork, classroom debate, self-reflection and 
institutionalization. This method proposes a specific way of carrying out the teaching process and the 
learning process, highlighting the role that the student should play within the classroom and that the 
teacher should play through the use of problem situations, where the pupil’s task is specified in each 
of its stages, paying special attention to the representations that are generated during the development 
of mathematical activity. 
3. Methodology to plan a learning unit  

Taba (1962) proposes a set of four stages to elaborate what she calls a "teaching-learning unit", of 
which we have only taken and adapted the stage of generalization, which is considered a crucial stage 
in the mathematical discipline. This stage is not reflected in other proposals, but here it has been 
considered important in order to involve the student in activities that allow him to generalize the 
mathematical concepts discussed in a sequence. 
Articulation of the theoretical references used 

Figure 1: Diagram of the theoretical articulation. Source: own elaboration 

Methodological actions  
The methodology is qualitative and consists of the following actions. 

 
Phases Methodological actions 

1.- Actions related to 
specific objective 1 

Research of the contributions towards the design of didactic 
sequences.  
Characterization of the didactic structure in which the sequence 
will be broken down, based on the analysis of several didactic 
structures.  
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2.- Actions related to 
specific objective 2 

Characterization and elaboration of the problem situations, based 
on the revision of books, articles and scientific journals related to 
mathematics. 

3. Actions related to 
specific objective 3 

Establishment of the use of Geogebra for the didactic sequence, 
starting from the review of contributions where technology is used 
as an educational resource. 

4. Actions related to 
specific objective 4 

Elaboration of the design methodology for didactic sequences, 
based on the articulation of the theoretical references used.  
Design of didactic sequences based on the methodology developed.  
Analysis of the didactic sequences designed, taking as reference the 
characteristics presented by the methodology and analyzing its 
correspondence with it.  

5. Actions related to 
specific objective 5 

Elaboration of the didactic-mathematical reflections, with the 
purpose of identifying the characteristics that describe the design 
methodology.  
Structuring of a course-workshop aimed at mathematics teachers to 
test the methodology and designs of didactic sequences elaborated.  
Evaluation of the design methodology, based on the analysis of the 
products produced in the workshop implemented. 

6. Actions related to 
the general objective 

Evaluation of the design methodology based on the general 
analysis of the workshop. 

Table 1: Methodological actions. Source: own elaboration 
 
Characteristics of the methodological proposal 

Once the theoretical references were articulated, a methodological proposal was defined with the 
following characteristics: it is based on a problem situation that does not allude to the mathematics 
that will be used, contextualized to show the application, meaning and utility of mathematics. 

The methodology specifies the objective of each of the elements of the didactic structure (opening, 
development and closing); the activities and questions in the opening stage are oriented towards the 
understanding of the problem situation. The development stage involves the mathematical procedures 
necessary for the resolution of the problem situation. Where it is considered relevant, a stage of 
generalization is started, with the purpose of extending the applications of mathematical concepts at 
the development stage. Finally, at the closing stage, the mathematical concepts that have emerged 
during the resolution of the situation and during the generalization are institutionalized and 
formalized. 

The use of technology is incorporated into the methodology with the aim of linking various contents 
and putting into play the mathematical thought of the student. Geogebra software is considered to be 
a powerful tool to reach the proposed goal, since this technology offers the possibility to enrich the 
discussion on concepts, to diversify problems or exercises and to explore various solution strategies. 
It also allows the student to explore and visualize the meaning of the relationships between 
mathematical objects. 

The methodology includes specific recommendations for incorporating the use of digital 
technology, specifically Geogebra, for each stage of the teaching structure. In the opening stage 
Geogebra is used to build simulations of the problem situation, allowing the exploration of this 
situation qualitatively. At the stage of development and generalization Geogebra is used to model the 
problem situation without the context in which it was posed and also to model the generalizations 
arising during the process of resolution of the situation. 
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In the closing stage the software is used as a tool to justify the mathematical results arising during 
the development of the sequence or to propose different solutions strategies to those employed.  

The following is an outline of the characteristics described in this proposal: 

Figure 2: Outline of the methodological proposal developed. Source: own elaboration 

Design of didactic sequences using the methodological proposal  
Based on the elaborated methodological proposal, three designs of didactic sequences were made, 

with the intention of testing the methodology and applying them in a course-workshop for teachers. 
These designs were analyzed a priori to identify if the sequence was able to respond to the 
characteristics that were established in the methodological proposal elaborated. Once the design of 
the didactic sequences was completed, the program of a course-workshop for teachers was developed 
in which the designed sequences were analyzed as a starting point. 
Implementation of a course-workshop  

In order to involve teachers in the design of didactic sequences, a course-workshop was developed 
in which 11 mathematics teachers participated, with a duration of 40 hours. The purpose of the 
workshop was to analyze whether it was possible to design didactic sequences, which would present 
the characteristics that integrate this methodology. To carry out this workshop-course, three designs 
of didactic sequences were used, one of them is shown above this section and didactic-mathematical 
reflections were prepared with the intention that the teacher will identify and become familiar with 
the elements of the methodological proposal, through reflection on the work carried out in the 
resolution of the sequences. A bank of problem situations was prepared as well, with the aim of 
facilitating the task of the participants in the transformation of the situations for the purposes of the 
present study. 

The following activities were carried out: (a) Addressing and analyzing didactic sequences 
previously designed with the proposed methodology; b) analyzing the proposed methodology based 
on the didactic sequences discussed and c) designing didactic sequences based on the proposed 
methodology.  
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Analysis 
The analyses are described below. The tools to collect information were: paper productions of 

teachers, audio recordings of a work team, field diary (observations during sequence design), video 
recording of the presentations of the sequences designed and an evaluation format for participants. 
Analysis of didactic sequences designed by teachers 

The focus was on the products developed by the teachers, to evaluate how they take into account the 
characteristics of the proposed methodology in the designs built, as well as identifying the purposes 
they pursue in each of the activities, this with the aim of analyzing the correspondence between the 
design perspective that the teacher has and the ideas proposed by the instructors in the course-
workshop. 

A general analysis was made of the way in which the elements of the product are contrasted with 
the methodology, the coherence between the activities developed with the purposes of the didactic 
structure, the way in which they suggest organizing work in the classroom and the role of the student 
and teacher, the use teachers assign to technology in the sequence designed and the level of 
mathematics used in the product developed by the teacher. 

The following is an analysis of a didactic sequence designed by a team of teachers. 
 

Didactic sequence Product analysis 

Opening Stage 

 

 

The teacher selected a problem situation from 
the problem bank, however, they adapt the 
problem situation according to the content they 
want to promote. An ideal situation would be 
that the teacher would first be aware of a 
content and from there conceive a problem 
situation (Hitt and Quiroz, 2009; Soto, Hitt and 
Quiroz, 2019). 
Within the problem situation, the text is 
devoted to providing information about the 
image included in such a situation. However, 
no context is defined that would lead to the 
formulation of a problem. Motivation is one of 
the most important points in teaching 
mathematics (Gravemeijer and Doorman, 
1999). 
By not properly elaborating the problem 
situation, teachers do not analyze in greater 
depth what the present mathematics will be.  
They set out very general questions, rather than 
asking questions that need to be more in depth, 
leading to a specific mathematical theme. 
They requested technical and mathematical 
support from the instructors in order to carry 
out their construction, since they had the idea 
of how the construction should be, but they did 
not know how to make it in Geogebra.  
It was not clear to the teachers that the 
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construction of applet requires mathematical 
relationships in the software to be able to 
capture the intended idea in the activity 
(Rabardel, 1995).  
The applet succeeds in playing the role of 
simulator of the problem situation. 
The teacher needs to have a greater interaction 
with the use of software to develop their 
potential in mathematical tasks. The teacher 
would have to go through a process of 
"instrumental genesis" as authors (Rabardel, 
1995; Guin and Trouche, 1999) have pointed 
out. 

Stage of development 

 

 

The development stage rescues the purposes 
set out in the proposed methodology. The 
teachers managed to identify when to introduce 
the different working modalities with respect 
to the student’s learning purpose.  
The types of questions show an attempt to 
involve other mathematical content such as 
proportionality, but teachers rule out 
introducing this content and focus on the 
perimeter. 
They include teamwork as support to carry out 
complicated tasks of the didactic sequence, 
group dialogue to communicate the different 
representations of the strategies of each team, 
as well as self-reflection to reinforce what was 
learned individually from practice (Hitt, 
Saboya and Cortés, 2017).  
It does not describe the role that the teacher 
will have when carrying out these different 
working modalities in the classroom (Hitt, 
Saboya and Cortés, 2017). 
The design does not present an applet within 
the development stage, because the teachers 
presented difficulties in making it within the 
software due to their lack of knowledge about 
its use and how to represent the image of the 
track (Rabardel, 1995; Guin and Trouche, 
1999; Soto, Hitt and Quiroz 2019). 
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Closing Stage 

 

 

The use of manipulatives is promoted, which 
motivates the student to carry out the activity 
and allows for the activation of his imagination 
and his mathematical reasoning (according to 
the teaching method ACODESA). 
Generalization is promoted by establishing a 
formula for calculating the perimeter of the 
circle. The applet serves to show the results of 
the activity carried out with the manipulatives.  
The institutionalization process was a 
complicated task for teachers since the closure 
is limited to discovering geometric formulas 
rather than emphasizing the formalization of 
the mathematical concepts used (Hitt and 
Cortés, 2009). This gives us the indication that 
the teachers do not manage to abstract the 
mathematics that is broken down in the 
didactic sequence in order to formalize it. 

Table 2: Analysis of the sequence prepared by the team 1. Source: own elaboration. 
 
Analysis of the course-workshop taught  

Once the course-workshop was completed, the teachers' perceptions of the methodological 
elements, the correspondence between the product and the proposed methodology and the didactic 
sequences elaborated by the teachers were analyzed. From this analysis, he obtained a general idea of 
the aspects in which it was necessary to devote more time and why, and what the advantages and 
disadvantages were of having taught the workshop course to teachers in such conditions. 

Results and conclusions  
The teachers were able to adapt to the proposed methodology based on the experience they gained 

in dealing with and analyzing the didactic sequences by contrasting them with the methodology; the 
didactic-mathematical reflections on previously designed sequences allowed them to identify the 
characteristics of the methodology used for the design.  

The workshop course has shown that teachers can apply this methodology to design their own 
sequences when working in collaboration with other teachers. However, they faced difficulties in 
institutionalizing the mathematics involved in the sequence and in constructing the applets they 
proposed in Geogebra. 

The problem situations proved to be a challenge for the teacher, it is recommended in a second 
edition of the course, to open a wider space dedicated to the formulation of problem situations by the 
participants of the course, on the mathematical topics of their greatest interest.  

The methodology was structured by articulating theoretical elements. This was evaluated through 
the implementation of a course-workshop in which participants managed to design didactic 
sequences.  

The theoretical elements taken from Díaz-Barriga and Taba served as the basis for the design of the 
didactic structure, however, it was necessary to adapt them according to the specifications that the 
discipline calls for.  
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En este trabajo se presenta una propuesta didáctica la cual consiste en una metodología dirigida a 
docentes de matemáticas de nivel secundaria, el objetivo de dicha propuesta es brindarle al docente 
una herramienta para elaborar diseños de secuencias didácticas con el fin de llevarlos al aula de 
clase; estos diseños tienen la particularidad de incorporar tecnología digital para la elaboración de 
la secuencia y para la implementación de esta. La metodología fue elaborada con base en la 
articulación de: la estructura didáctica de Díaz- Barriga, el método de enseñanza ACODESA de Hitt 
y los desarrollos curriculares de Taba. La metodología se ha puesto a prueba con un grupo de 11 
docentes en un curso-taller de 40 horas, los resultados obtenidos fueron tres secuencias didácticas 
elaboradas por tres equipos de docentes en un contexto tecnológico (usando GeoGebra), donde se 
percibe que es posible realizar diseños aplicando esta propuesta metodológica, sin embargo, los 
docentes presentaron algunas dificultades durante el proceso de articulación con la tecnología. 
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Palabras clave: Actividades y prácticas de enseñanza, Educación Secundaria, Tecnología, 
Capacitación docente 

Introducción 
El currículo de educación básica en México señala la importancia de que el docente se involucre en 

el diseño de actividades o secuencias didácticas, como parte de su práctica, sin embargo, esta tarea 
puede resultar complicada para el docente, puesto que sus condiciones laborales y las practicas 
docentes predominantes han limitado su práctica a la reproducción de actividades de los libros de 
texto, alejándolos del diseño y la planeación de la enseñanza.  

Un análisis cuidadoso nos muestra que los planes y programas de estudio no proporcionan las 
orientaciones suficientes para que el docente pueda diseñar actividades de enseñanza. Se explica así 
la escasa producción de secuencias didácticas diseñadas por los docentes.  Tomando en cuenta la 
ausencia de recomendaciones metodológicas específicas para el diseño de secuencias didácticas 
matemáticas nuestro objetivo es estructurar y valorar una propuesta metodológica que permita a los 
docentes de matemáticas diseñar secuencias didácticas con apoyo del software GeoGebra, teniendo 
como objetivos específicos, los siguientes: 

1. Establecer una estructura didáctica para el diseño de las secuencias. 
2. Caracterizar el tipo de situaciones problema que serán el punto de partida para cada 

secuencia. 
3. Determinar el papel que jugará GeoGebra dentro del diseño de secuencias didácticas. 
4. Elaborar la metodología y experimentarla diseñando secuencias didácticas. 
5. Estructurar un curso-taller dirigido a docentes de matemáticas para valorar la metodología. 

Referentes teóricos  
1. Elementos para estructurar una secuencia didáctica  

Dentro de este trabajo se utiliza la estructura didáctica de (Díaz-Barriga, 2013), dado que es una 
forma apropiada para organizar las actividades y además rescata algunos puntos interesantes por 
incorporar en el diseño. Sin embargo, los aspectos que considera Díaz-Barriga se han modificado 
dentro de esta propuesta metodológica por el hecho de que se adaptaron a las necesidades de la 
disciplina matemática.  
2. Método de enseñanza ACODESA 

ACODESA se utilizó con el propósito de organizar la gestión dentro del aula y el conocimiento 
matemático. Este método de enseñanza propuesto por (Hitt y Cortés, 2009) se divide en 5 etapas que 
toman en consideración el trabajo individual, trabajo en equipo, debate en el aula, la auto-reflexión y 
la institucionalización. Este método propone una manera específica de cómo llevar a cabo el proceso 
de enseñanza y el de aprendizaje, resaltando el papel que el alumno debe jugar dentro del aula y el 
que debe realizar el docente mediante el uso de situaciones problema, donde la tarea del alumno es 
especifica en cada una de sus etapas, poniendo especial atención a las representaciones que se 
generan durante el desarrollo de la actividad matemática.  
3. Metodología para planificar una unidad de aprendizaje  

Taba (1962) propone un conjunto de cuatro etapas para elaborar lo que ella llama una “unidad de 
enseñanza-aprendizaje”, solamente hemos tomado y adaptado, la etapa de generalización, la cual se 
considera una etapa crucial en la disciplina matemática. Esta etapa no se ve reflejada en otras 
propuestas, pero aquí se ha considerado importante para involucrar al alumno en actividades que le 
permitan generalizar los conceptos matemáticos discutidos en una secuencia. 
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Articulación de los referentes teóricos utilizados 

 
Figura 1: Esquema de la articulación teórica. Fuente: elaboración propia 

Acciones metodológicas  
La metodología es de carácter cualitativo y está constituida por las siguientes acciones.  

 
Fases Acciones metodológicas 

1.- Acciones 
relacionadas con el 
objetivo específico 1 

Investigación de las aportaciones hacia el diseño de secuencias 
didácticas.  
Caracterización de la estructura didáctica en la que se desglosará la 
secuencia, a partir del análisis de varias estructuras didácticas.  

2.- Acciones 
relacionadas con el 
objetivo específico 2 

Caracterización y elaboración de las situaciones problema, a partir 
de la revisión de libros, artículos y revistas científicas relacionadas 
con la matemática. 

3. Acciones 
relacionadas con el 
objetivo específico 3 

Establecimiento del uso de GeoGebra para la secuencia didáctica, a 
partir de la revisión de aportaciones donde se utilice como recurso 
educativo la tecnología. 

4. Acciones 
relacionadas con el 
objetivo específico 4 

Elaboración de la metodología de diseño para secuencias 
didácticas, tomando como base la articulación de los referentes 
teóricos utilizados. 
Diseño de secuencias didácticas basándose en la metodología 
elaborada. 
Análisis de las secuencias didácticas diseñadas, tomando como 
referencia las características que presenta la metodología y 
analizando su correspondencia con esta.   

5. Acciones 
relacionadas con el 
objetivo específico 5 

Elaboración de las reflexiones didáctico – matemáticas, con el 
propósito de que el docente identifique las características que 
describe la metodología de diseño. 
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Estructuración de un curso-taller dirigido a profesores de 
matemáticas para probar la metodología y diseños de secuencias 
didácticas elaborados. 
Valoración de la metodología de diseño, a partir del análisis de los 
productos elaborados en el curso-taller implementado. 

6. Acciones 
relacionadas con el 
objetivo general 

Valoración de la metodología de diseño a partir del análisis general 
del curso-taller. 

Tabla 1: Acciones metodológicas. Fuente: elaboración propia 
 

Características de la propuesta metodológica elaborada  
Una vez realizada la articulación de los referentes teóricos, se ha dado forma a una propuesta 

metodológica que presenta las siguientes características: se parte de una situación problema que no 
hace alusión a la matemática que será utilizada, contextualizada en la medida de lo posible para 
mostrar la aplicación, significado y utilidad de la matemática.  

La metodología especifica el objetivo de cada uno de los elementos de la estructura didáctica 
(apertura, desarrollo y cierre); las actividades y preguntas en la apertura están orientadas hacia la 
comprensión de la situación problema, en el desarrollo se ponen en juego los procedimientos 
matemáticos necesarios para la resolución de la situación problema; cuando se considera pertinente 
se abre una etapa de generalización cuyo propósito es la ampliación de las aplicaciones de los 
conceptos matemáticos en la etapa de desarrollo y por último en el cierre se institucionalizan y 
formalizan los conceptos matemáticos que han emergido durante la resolución de la situación y 
durante la generalización. 

Se incorpora el uso de tecnología dentro de la metodología con el objetivo de vincular varios 
contenidos y poner en juego el pensamiento matemático del alumno. Se considera que el software 
GeoGebra es una herramienta potente para llegar al objetivo propuesto, ya que esta tecnología brinda 
la posibilidad de enriquecer la discusión sobre los conceptos, de diversificar los problemas o 
ejercicios y de explorar varias estrategias de solución. Permite además que el alumno explore y 
visualice el significado de las relaciones entre los objetos matemáticos. 

La metodología incluye recomendaciones específicas para incorporar el uso de tecnología digital, 
específicamente GeoGebra, para cada una de las etapas de la estructura didáctica. En la etapa de 
apertura GeoGebra se utiliza para construir simulaciones de la situación problema, que permitan 
explorar esta situación de manera cualitativa, en la etapa de desarrollo y generalización GeoGebra se 
usa para modelar la situación problema desprovista del contexto en el que se planteó y para modelar 
también las generalizaciones surgidas durante el proceso de resolución de la situación. En la etapa de 
cierre el software se usa como herramienta para justificar los resultados matemáticos surgidos 
durante el desarrollo de la secuencia o bien para plantear estrategias de solución diferentes a las 
empleadas. 

Diseño de secuencias didácticas aplicando la propuesta metodológica  
Con base en la propuesta metodológica elaborada se realizaron tres diseños de secuencias 

didácticas, con la intención de poner a prueba la metodología y aplicarlas en un curso-taller para 
docentes. Estos diseños fueron analizados a priori para identificar si la secuencia lograba responder a 
las características que se establecieron en la propuesta metodológica elaborada. Una vez concluido el 
diseño de las secuencias didácticas se elaboró el programa de un curso-taller para docentes en el cual 
las secuencias diseñadas se analizaron como punto de partida.  
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Implementación de un curso-taller 
Con el propósito de involucrar a los docentes en el diseño de secuencias didácticas, se elaboró un 

curso-taller en el cual participaron 11 docentes de matemáticas, con una duración de 40 horas. La 
finalidad del curso-taller fue analizar si era posible elaborar diseños de secuencias didácticas, los 
cuales presentaran las características que integran esta metodología. Para llevar a cabo este curso-
taller, se utilizaron tres diseños de secuencias didácticas, una de ellas se muestra arriba de este 
apartado y se elaboraron reflexiones didáctico – matemáticas con la intención de que el docente 
identificará y se familiarizará con los elementos de la propuesta metodológica, a través de la 
reflexión del trabajo realizado en la resolución de las secuencias.; así como también se elaboró un 
banco de situaciones problema, con el propósito de facilitar la tarea a los participantes en la 
transformación de las situaciones para los fines del presente estudio.  

Las actividades realizadas fueron las siguientes: a) Abordar y analizar secuencias didácticas 
previamente diseñadas con la metodología propuesta, b) analizar la metodología propuesta tomando 
como referencia las secuencias didácticas discutidas y c) diseñar secuencias didácticas a partir de la 
metodología propuesta.  

Análisis 
A continuación, se describen los análisis que se realizaron. Las herramientas para recolectar la 

información fueron: producciones en papel de los docentes, grabaciones de audio a un equipo de 
trabajo, diario de campo (observaciones durante el diseño de secuencias), grabación de video a las 
exposiciones de las secuencias diseñadas y un formato de evaluación para los participantes. 
Análisis de las secuencias didácticas diseñadas por los docentes  

Se tomaron como foco de atención los productos elaborados por los docentes, para evaluar la forma 
en que toman en cuenta las características de la metodología propuesta en los diseños construidos, así 
como también se identificaron los propósitos que persiguen en cada una de las actividades, esto con 
la finalidad de analizar la correspondencia entre la perspectiva de diseño que tiene el docente y las 
ideas propuestas por los instructores en el curso-taller. 

Se analizó de manera general la forma en que se contrastan los elementos del producto con la 
metodología, la coherencia entre las actividades elaboradas con los propósitos de la estructura 
didáctica, la forma en que sugieren organizar el trabajo en el aula y el papel que presenta el alumno y 
docente, el uso que le asignan los docentes a la tecnología en la secuencia diseñada y el nivel de 
matemática que se utiliza en el producto elaborado por el docente. 

A continuación, se muestra el análisis de una secuencia didáctica diseñada por un equipo de 
docentes. 
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Secuencia didáctica Análisis del producto 

Etapa de Apertura 

 

 

 

El docente seleccionó una situación problema 
del banco de situaciones problema, sin 
embargo, adaptan la situación problema acorde 
al contenido que desean promover. Una 
situación ideal sería que primero el docente 
fuera consciente de un contenido y a partir de 
ahí concebir una situación problema (Hitt y 
Quiroz, 2009; Soto, Hitt y Quiroz, 2019). 
Dentro de la situación problema, el texto se 
dedica a dar información acerca de la imagen 
incluida en tal situación. Sin embargo, no se 
define un contexto que dé pie a la formulación 
de un problema. La motivación es uno de los 
puntos más importantes en la enseñanza de las 
matemáticas (Gravemeijer y Doorman, 1999). 
Al no elaborar apropiadamente la situación 
problema, los docentes no analizan con mayor 
profundidad cuál será la matemática presente. 
Establecen preguntas muy generales, en lugar 
de plantear cuestionamientos que necesiten de 
mayor profundidad, que vayan conduciendo 
hacia una temática matemática específica.  
Solicitaron apoyo técnico y matemático de los 
instructores para realizar la construcción, dado 
que ellos tenían la idea de cómo podría ser la 
construcción, pero desconocían como 
elaborarla en GeoGebra. 
Los docentes no tenían claro que la 
construcción de un applet requiere establecer 
relaciones matemáticas en el software para 
poder plasmar la idea pretendida en la 
actividad (Rabardel, 1995). El applet logra 
cumplir con el papel de simulador de la 
situación problema.  
El docente necesita tener una mayor 
interacción con el uso de softwares para 
desarrollar su potencial en las tareas 
matemáticas. Precisamente el docente tendría 
que pasar por un proceso de “génesis 
instrumental” como lo han señalado autores 
como (Rabardel, 1995; Guin y Trouche, 1999). 
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Etapa de Desarrollo 

 

 

La etapa de desarrollo rescata los propósitos 
que se establecen en la metodología propuesta. 
Los docentes lograron identificar en qué 
momento introducir las diferentes modalidades 
de trabajo con respecto al propósito de 
aprendizaje del alumno. 
Los tipos de preguntas muestran un intento de 
involucrar otros contenidos matemáticos como 
la proporcionalidad, pero los docentes 
descartan introducir este contenido y se 
enfocan en el perímetro. 
Incluyen el trabajo en equipo como apoyo para 
llevar a cabo tareas complicadas de la 
secuencia didáctica, y al mismo tiempo el 
diálogo grupal para comunicar las diferentes 
representaciones de las estrategias de cada 
equipo, así como la autorreflexión para 
reforzar lo aprendido de manera individual a 
partir de la práctica (Hitt, Saboya y Cortés, 
2017). 
No se describe el papel que el docente tendrá 
al momento de llevar a cabo en el aula estas 
diferentes modalidades de trabajo (Hitt, 
Saboya y Cortés, 2017). 
El diseño no presenta un applet dentro de la 
etapa de desarrollo, dado que los docentes 
presentaron dificultades para poder realizarlo 
dentro del software por falta de conocimiento 
acerca de su uso y de cómo representar la 
imagen de la pista (Rabardel, 1995; Guin y 
Trouche, 1999; Soto, Hitt y Quiroz 2019). 

Etapa de Cierre 

 

Se promueve el uso de manipulatives, lo cual 
motiva al alumno a realizar la actividad y 
permite activar su imaginación y su 
razonamiento matemático (de acuerdo con el 
método de enseñanza ACODESA). 
Se promueve la generalización a partir del 
establecimiento de una fórmula que permita 
calcular el perímetro del círculo. El applet 
sirve para mostrar los resultados de la 
actividad realizada con los manipulatives. 
El proceso de institucionalización fue una tarea 
complicada para los docentes dado que el 
cierre se limita a descubrir fórmulas 
geométricas en lugar de enfatizar la 
formalización de los conceptos matemáticos 
utilizados (Hitt y Cortés, 2009). Esto nos 
indica que los docentes no logran abstraer la 
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matemática que se desglosa en la secuencia 
didáctica para formalizarla. 

Tabla 2: análisis de la secuencia elaborada por el equipo 1. Fuente: elaboración propia. 
 
Análisis del curso-taller impartido 

Una vez culminado el curso-taller, se analizaron las percepciones de los profesores sobre los 
elementos metodológicos, la correspondencia entre el producto y la metodología propuesta y las 
secuencias didácticas elaboradas por los profesores. A partir de este análisis obtuvo una idea general 
sobre cuáles fueron los aspectos en los cuales se requirió dedicarle más tiempo y por qué, y cuáles 
fueron las ventajas y desventajas de haber impartido en tales condiciones el curso-taller a los 
docentes.  

Resultados y conclusiones 
Los docentes lograron adaptarse a la metodología propuesta a partir de la experiencia que 

obtuvieron al abordar y analizar las secuencias didácticas contrastándolas con la metodología; las 
reflexiones didáctico-matemáticas sobre las secuencias previamente diseñadas les permitieron 
identificar las características de la metodología empleada para el diseño. 

El curso-taller ha puesto en evidencia que los docentes pueden aplicar esta metodología para diseñar 
sus propias secuencias cuando trabajan en colaboración con otros docentes, aunque han enfrentado 
dificultades principalmente a la hora de institucionalizar la matemática involucrada en la secuencia y 
al construir en GeoGebra los applets propuestos por ellos mismos.  

Las situaciones problema resultaron ser un reto para el docente, se recomienda en una segunda 
edición del curso, se abra un espacio más amplio dedicado a la formulación de situaciones problema 
por parte de los asistentes al curso, sobre los temas matemáticos de su mayor interés. 

La metodología se logró estructurar articulando elementos teóricos, esta fue valorada a través de la 
implementación de un curso – taller en el que los participantes lograron diseñar secuencias 
didácticas. 

Los elementos teóricos tomados de Díaz-Barriga y Taba sirvieron como base para el diseño de la 
estructura didáctica, sin embargo, fue necesario adaptarlos de acuerdo con las especificaciones que la 
disciplina necesita. 
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We share results of a study on the analytic stances of coaches’ and teachers’ as they annotated key 
moments from classroom video of the teacher’s lessons. In the analysis, emphasis was on the analytic 
stances of the coaches and how their annotations related to trends in teachers’ annotations. Findings 
indicate differences in how coaches and teachers noticed across the coaching cycles, suggesting the 
annotations were influenced by the interactions between the coaches and teachers and the teachers’ 
perceptions of coaching process. As a result of our analysis, we characterized one coach as having a 
high ratio of questions to suggestions, another as having annotations coded as interpretation,  
another as having more evaluations and suggestions,  and the fourth as having asked more questions.  
Some teachers mirrored the analytic stance of their coach over time and other teachers shifted their 
analytic stance in ways that suggest they were responsive to their coach’s analytic stance.   

Keywords: Middle School Education, Teacher Education, Technology, Annotation, Video 

Noticing is a crucial practice for teachers attempting to engage in responsive or ambitious teaching. 
Noticing is defined as attending to students’ thinking, interpreting that thinking, making decisions in 
response to what they have noticed, and making connections to broader principles of teaching and 
learning (Jacobs, Lamb, & Philipp, 2010; van Es & Sherin, 2008). Researchers have noticed 
differences in how novice and expert teachers notice students’ mathematical thinking; experts are 
more likely to notice relevant aspects of student thinking, while novices initially focus on superficial 
aspects of instruction (van Es & Sherin, 2008; Walkoe, 2015). However, novices improve their 
noticing as a result of interventions or training (e.g. Huang & Li, 2012; van Es & Sherin, 2008).  

Researchers have documented the impact of a number of interventions on teachers’ ability to notice 
student thinking, but coaching as an intervention to influence teacher noticing has not been 
adequately explored. Coaching is an emerging form of professional development;  researchers 
highlight the impact of coaching on teacher learning and students’ mathematical understanding 
(Gibbons & Cobb, 2017; Kraft, Blazar, & Hogan, 2018). Multiple models for coaching have been 
used in mathematics education, including instructional coaching (Knight, 2006), student-centered 
coaching (Sweeney, 2010) and content-focused coaching (West & Staub, 2003). Content-focused 
coaching emphasizes mathematics content learning goals as an outcome of coaching cycles. In a 
content-focused coaching model, teachers and coaches meet to plan lesson that is then 
collaboratively taught. Following the lesson, the coach and teacher meet to debrief the lesson, with 
attention to the mathematical learning goals of the lesson. Recently, we adapted the content-focused 
coaching model for an online context (see Author, 2019). We included an asynchronous annotation 
component in which the coach and teacher recorded written reflections tied to specific moments in 
the video of the teacher implementing the lesson. Engaging educators in annotating is not new in 
mathematics education, but annotating video through a coaching cycle is new.  

Non-coaching professional development contexts show how interventions influence annotations. 
Stockero, Rupnow, and Pascoe (2017) engaged secondary prospective teachers in field experience 
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interventions focused on noticing and analyzing video to mark moments that were mathematically 
important. Similarly, as part of a video club, Walkoe (2015) had teachers tag video where they 
noticed interesting student algebraic thinking. Findings showed evidence that the annotation process, 
as part of a larger professional development project, impacted teachers’ noticing of students’ 
algebraic thinking. Based on these findings, and our prior experience with annotations (Author, 
2019), we engaged coaches and teachers in the process of annotating as part of online content-
focused coaching cycles. We focused primarily on the analytic stances of the coaches’ annotations, 
with a secondary focus on the teachers’ noticing to illustrate the relationship between the frequency 
of particular analytic stances for coach-teacher pairs. Van Es and Sherin (2010) define analytic stance 
as an aspect of noticing to describe how noticing occurs. The analytic stance is the way one 
approaches and analyzes practice through noticing and the process through which they communicate 
noticing. We answered the following research questions: 1) What analytic stances do coaches assume 
as they annotate? 2) How do teachers’ analytic stances relate to coaches’ analytic stances across 
coaching cycles? 

Method 
Using a cohort model, we engaged nine coaches and twenty-eight teachers teachers in an intensive 

two-year professional development model that focused on supporting teachers to engage in 
ambitious, responsive instruction. For this study, we focus on four coaches and five teachers in the 
first cohort because they completed four coaching cycles. The four coaches all had experience with a 
variation of face-to-face content-focused coaching articulated by West and Staub (2003). We 
explored the analytic stances of the four coaches; we looked for variation in the coaches’ stances and 
the ways that variation had an impact on the nature and evolution of how the teachers reflected on 
their lessons. We also explored the analytic stances of the teachers in the annotation process to better 
understand the associative relationships between the annotations of the coaches and teachers.  
Participants  

Each coach (Alvarez, Lowrey, Bishop, Riess) was highly knowledgeable about mathematics 
education and mathematics teacher education, with extensive experiences leading professional 
development opportunities for mathematics teachers. Three of the coaches had more than a decade of 
mathematics coaching experience. Each coach was partnered with a middle grades mathematics 
teacher for up to four coaching cycles. Alvarez, Lowrey, and Riess all coached one teacher and 
Bishop coached two teachers.  
Data Collection 

Teachers in the project took part in a professional learning model that included three components: a 
course based on the 5 Practices for Orchestrating Mathematics Discussion, (Smith & Stein, 2011); 
demonstration lessons that we termed teaching labs (similar to studio model or lesson study, e.g. 
Fernandez & Yoshida, 2004; Higgins, 2013; TDG, 2010); and online content-focused coaching 
cycles. During the annotation process, the coach and teacher were each asked to annotate the lesson 
video of the teacher’s own implementation of the collaboratity planed lesson, with the teacher always 
annotating before the coach. The following prompt was provided to teachers:  

Add your comments, questions, and thoughts to the video segment in Swivl at any points  
in the video that might be interesting to discuss further. For example, were there any 
moments that surprised you? (i.e., misconceptions that emerged, strategies that you did not 
anticipate, struggles/challenges, or any “Ah-ha” moments) Were there particular instances 
that showed evidence of student thinking? Is there something that you see as you watch the 
lesson that relates to the goal you set for this coaching cycle? 
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The coaches were not given specific instructions for how to annotate the videos. The goal for this 
study was to understand what the teacher and coach noticed from the video, particularly because the 
video was the coaches’ first view of the lesson, as they were not present in person during the lesson. 
To enter the comments, the coach or teacher paused the video and typed their comments, which were 
then synced to the video with time-stamps. This allowed the teacher or coach to watch the video and 
comment on specific moments. The purpose of the coaches’ annotations were to spur dialogue for the 
lesson debrief meeting, so we note that some comments were intended as conversation catalysts and 
were influenced by what the coach wanted to discuss with the teacher. The unit of analysis for this 
study was the annotations from the coaches (n=328) and teachers (n=213) as they took part in 
coaching cycles across a two-year span. The coaches annotations accounted for 60.6% of the total 
annotations (n=541).  
Data Analysis 

We considered each annotation a separate data unit for analysis. Given the focus on understanding 
noticing, we created a codebook with four main categories: subject (who), specificity (general or 
specific; coded as specific if there is some connection in the annotation) analytic stance (how 
noticing was communicated), and content (see Figure 1). For the purposes of this paper, we focus on 
analytic stance. We based our articulation of analytic stance largely on the work of Sherin and van Es 
(2008) and van Es (2011). Their list of stances included tag, describe, evaluate, interpret, suggest, 
and question. Based on the literature, we considered the codes of tag and describe to reflect less 
advanced noticing and evaluate and interpret to reflect more advanced noticing because of the 
attempt to assign a value judgment (evaluate) or provide some meaning (interpret). The code of 
interpret was assigned when the annotation included an inference to make meaning (e.g. Sherin & 
van Es, 2009). We consider suggest and question to be less advanced forms of noticing than evaluate 
and interpret because the content of suggestions and questions do not necessarily center on 
something that happened or could be noticed. The code for tag was only used in the absence of any 
other code for analytic stance.  

To analyze the annotation data, three researchers met initially and coded a subset of the annotations, 
representing approximately 10% of the total data set. In this process, the codebook was refined to its 
current status (Figure 1). Following the finalization of the codebook, the three researchers analyzed 
another 10% of the data together to ensure consistency with coding. After several rounds of coding to 
ensure reliability, pair coding commenced with two researchers independently coding all annotations 
from a given coach-teacher coaching cycle. We calculated Kappa for each coaching pair and the two 
researchers met to reconcile differences in codes, resulting in final codes for each coach-teacher pair 
for each coaching cycle. Kappa ranged from 0.63 to 0.70, indicating good to excellent reliability 
(Landis & Koch, 1977). Following the assignment of codes, we conducted frequency counts related 
to all codes for the coaches and teachers across coaching cycles. We then conducted frequency 
counts for the coaches as a group.  
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Figure 1. Codebook for Subject, Specificity, Analytic Stance, and Content of annotations. 

Results 
The analytic stance varied across the coaches. Collectively, the coaches’ annotations were coded as 

evaluation 23.8% of the time, interpretation 21.3% of the time, suggestion 30.2% of the time, and 
question 42.4% of the time. Table 1 reports the percentages for each analytic stance code for each 
coach. The codes were not exclusive, as each annotation was coded with as many analytic stance 
codes as applied.  

Table 1. Analytic stance of coaches 
 Evaluate Interpret Suggest Question 

Alvarez 14.9% 7.5% 10.5% 49.3% 
Lowrey 17.6% 48.3% 22.0% 40.7% 
Bishop 39.0% 12.7% 46.6% 27.1% 
Riess 11.5% 11.5% 32.7% 71.2% 

 
Analysis across coaches reveals differences in the frequency with which we applied the codes of 

evaluation, interpretation, suggestions, and questions. Alvarez, Lowrey, and Riess were coded as 
evaluative in approximately 15% of the annotations. In contrast, Bishop was coded as evaluative in 
39% of the annotations. Coaches also varied the extent to which they were coded as interpretative. 
Lowrey was coded as interpretative in 48.3% of the annotations compared to 7.5%, 12.7% and 11.5% 
for Alvarez, Bishop, and Riess, respectively. There were also differences in the application of the 
suggestion code, with Alvarez’ annotations coded least frequently and Bishop most frequently.  
Riess’s annotations were coded as questions far more than the other coaches. Given the variation in 
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analytic stance across the coaches, we provide profiles of each of the four coaches to illustrate the 
differences in how coaches annotated, based on what they noticed. We then consider coaches’ 
analytic stances in relation to trends in the analytic stances of the teachers they coached.   
Alvarez: High Questioner to Suggestion Ratio 

Alvarez had the highest question to suggestion ratio of any of the coaches. By the third and fourth 
coaching cycles, Alvarez posed questions in nearly 70% of the annotations she wrote. As an 
example, in one annotation, she wrote: 

How did you decide who to call on? This question gets at the idea of always paying attention 
to the instructional strategies laid out in the 5 Practices. So even at a "micro share out level", 
how do you decide who to call on and why? (I think about this a lot in my own practice and 
there are a variety of answers! The key is to make those decisions as often as possible to 
support students' thinking and understanding!) 

In this example, Alvarez included both a question and a suggestion in the same annotation. She used 
questioning to prompt the teacher to consider certain aspects of practice and then suggested that the 
teacher be purposeful when deciding who to call on during discussions.  

Over the coaching cycles, the annotations of the teacher Alvarez worked with were increasingly 
coded as interpretation, although the interpretation code was still infrequently applied. During the 
first and second coaching cycle, the teacher did not make any interpretations; however, during the 
third and fourth coaching cycle, 13% of the teacher’s annotations included an interpretation. In the 
third coaching cycle, the teacher wrote, “Students were saying that the dependent variable is being 
multiplied every time, but they meant that the previous y-value is multiplied by the growth factor to 
get the next value.” In this example, the teacher interpreted by providing an explanation about what 
students were saying to make meaning from the experience. The data from the annotations matched 
data from our analysis of the pre- and post-lesson debrief meeting transcripts for conversations 
between the coach and teacher, in which Alvarez was more likely to elicit information from the 
teacher than other coaches (Authors, 2019). 
Lowrey: High Interpretive 

Lowrey’s annotations were coded as interpretation 48.3% of the time, a much higher frequency than 
other coaches. Lowrey also posed questions to the teacher in many of her annotations (40.7%). 
During the first coaching cycle, Lowrey annotations were coded as interpretation 60.4% of the time. 
As an example of an interpretation, Lowrey wrote, “How is the independent think time then moving 
into group talk working for your students? It seems natural for the students to work in this way and I 
was wondering your take on how it supports student learning.” The example was coded as 
interpretive because Lowrey referenced students having think time and then made meaning of the 
situation, noting that the process seemed “natural” for the students. In the interpretation, Lowrey 
described how she made sense of the teaching move with respect to the students. In addition to 
frequent interpretations, Lowrey asked questions, with the prevalence of questions increasing across 
the coaching cycles. She included questions such as, “Moving to the back of the room puts the focus 
on the problem rather than on you. Was this an intentional move? Is it a typical move for you?”  

The increased frequency of Lowrey asking questions across the coaching cycles coincided with a 
decrease in the frequency of annotations of the teacher with whom Lowrey worked. During the first 
coaching cycle, the teacher wrote 44 annotations. During the second coaching cycle, the teacher 
wrote three annotations. During this same coaching cycle, Lowrey there was an increase in the 
number of annotations coded as questions. This increase in asking questions, such as, “Do these 
partners see the connections between their ideas? Are they working independently or as a partner 
group?”  was evident in the third coaching cycle as well, when the teacher wrote only four 
annotations. The questions Lowrey wrote often asked about specific aspects of the lesson that may 
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not have been obvious from the lesson video. The increase in Lowrey posing questions suggests 
Lowrey may have been responding to the teacher’s lack of annotations. This raises further questions 
about the purpose behind Lowrey’s increase in questioning and the intentionality of Lowrey’s 
decisions in response to the teacher. Perhaps Lowrey posed questions to the teacher to encourage the 
teacher to increase the frequency of annotations. Lowrey and the teacher were not able to complete a 
fourth coaching cycle because of a lack of participation from the teacher.   
Bishop: High Evaluation and Suggestion 

Bishop’s annotations were more frequently coded as evaluations and suggestions. Bishop’s 
annotations were coded as evaluation 39% of the time. As an example, she made statements such as, 
“I like how you gave these students advance warning that they would be sharing with the whole 
class. This helps them prepare and feel more comfortable doing so.” In this example, Bishop 
evaluated the teacher’s decision to tell students they would be presenting to the whole class. She 
initiated the annotation with a statement of what she liked and followed up by including text about 
why that teaching move was important. In addition to including evaluative comments in the 
annotations, Bishop provided suggestions to the teachers much more often than the other coaches, 
with 46.6% of the annotations coded as suggestion. The following is a suggestion Bishop provided: 

 I noticed that earlier in the video, you read the problem to the class. I was wondering if you  
might consider using a literacy strategy to introduce the problem to the class. There is a lot of 
information to deal with in this problem. So, I was wondering if a literacy strategy designed 
to focus students on all the important information might result in more students (during the 
individual think time) incorporating the tax into their thinking. 

In this example, Bishop made the suggestion to use a literacy strategy to support students. In 
contrast to Alvarez and Lowrey, Bishop’s rate of asking questions was much lower. She asked 
questions in approximately one-quarter of the annotations.   

The annotations of the two teachers with whom Bishop worked both had high numbers of 
annotations coded as evaluation, with 23.8% of their combined annotations containing some type of 
evaluation across the four coaching cycles, as compared with approximately 10% of the annotations 
of the other teachers. At the end of the four coaching cycles, the annotations of both teachers were 
coded as evaluation at a similar frequency as Bishop, suggesting that the teachers may have followed 
Bishop’s lead to view the lesson videos with an evaluative perspective. Additionally, both teachers 
and Bishop evaluated the students as well as the teacher. As an example of one teacher providing and 
evaluation of herself, Parsons wrote, “That was a very thorough explanation!” Bishop regularly 
included evaluations of the teacher, such as, “Another great move! ‘What do you like about ___ 
answer?’ A great assessing question.”  In this example, Bishop evaluated the assessment question 
that Parsons included. Evaluations focused on students included text such as, “I loved how they got 
right into the discussion.” Across the four coaching cycles, evaluative comments were frequent for 
both Bishop and the teachers with whom she worked, which may suggest similarities in how the 
coach and teachers perceived the annotation process. Analysis of Bishop’s coaching debrief meetings 
show consistent patterns; there was a high percent of conversation dedicated to evaluative comments 
and direct suggestions for teachers.  
Riess: High Questioner 

Riess’s annotations were coded as questions at a much higher rate than any of the other coaches, 
more than 70%. Questions included “Do we know if they really understand what the words 
independent and dependent mean? How could you check for understanding here?” The frequent use 
of questions was evident across all of the coaching cycles. During the second coaching cycle, Riess 
included a question in every single annotation she wrote (n=10). The other coaching cycles included 
frequent questions as well. In addition to posing questions, Riess provided a suggestion to teachers in 
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32.7% of the annotations. This rate of providing suggestions was not all that different from other 
coaches, but was the second most common analytic stance associated with Riess’s annotations. The 
frequent use of questioning distinguished Riess from the other coaches.   

Interestingly, the two most notable trends across the coaching cycle for the teacher with whom 
Riess worked related to suggestions and questions. Across the coaching cycles, the teacher reduced 
the number of suggestions she provided for herself through the annotations and increased the 
frequency of questions she asked to Riess. Initially, the teacher included comments to suggest to 
herself what she should have done pedagogically, as compared to what actually transpired. In the first 
and second coaching cycle, she included suggestions 30.0% and 50.0% of the time. Suggestions 
included, “Missed connection about 13 and Baker's Dozen; could have asked more questions.” In this 
example, the teacher provided an evaluation and then suggested to herself that she should have made 
a connection for students and then asked for questions. By the fourth coaching cycle, the teacher did 
not include any suggestions to herself in the annotations. Instead, in the third and fourth coaching 
cycles, the frequency of posing questions increased. Questions were written directly to the coach, as 
a way to ask for input from the coach, most commonly about instructional moves. As an example, the 
teacher wrote, “When should I have gotten the students more involved? For them to ask clarifying 
questions or have them restate task expectations?” The teacher sought direct input from the coach on 
student participation. This type of interaction points to the function of the annotations as a way to 
initiate conversation prior to the debrief meetings that followed the annotation process. We 
conjecture that the teacher may have started to write questions to the coach that she wanted answered 
during the debrief meeting, when the two of them would discuss the lesson.    

Discussion and Implications 
Annotations were an intermediary for communication that occurred after the teacher’s lesson 

implementation and before the debrief meeting between the coach and teacher as part of online 
content-focused coaching cycles. Substantive differences existed in how coaches annotated aspects 
of instruction and learning, meaning how they approached and analyzed practice. Additionally, 
results show an associative relationship between the analytic stances of coaches and teachers. The 
analytic stances of the coaches and teachers illustrate aspects of the coach-teacher relationship. The 
following elaborates on the trends in noticing, with conjectures grounded in research literature to 
explain the results.   

First, the findings of this study highlight the perceived relationship between the coach and teacher, 
from the teacher perspective. Data from Alvarez and her teacher show stark differences in the 
analytic stance, with the coach having a high question to suggestion ratio and an absence of the 
teacher posing direct questions to the coach in any coaching cycle. We conjecture that the teacher 
had perceived roles for the participants in the coaching process (i.e. coach and teacher) and may have 
assumed it was the coach’s responsibility to pose questions to the teacher, not vice versa. As another 
example of a perceived relationship, we found evidence in other coaching interactions to suggest that 
teachers began to annotate in ways similar to coach, in a process similar to enculturation. The 
situated perspective of the teacher (e.g. Lave & Wenger, 1991), in relationship to the coaching 
cycles, appears to have influenced the analytic stance of the annotations.   

Second, we conjecture that over the coaching cycles, the shift in some teachers’ annotations may 
have been the result of thinking about how the annotation process coordinated with the coaching 
debrief meetings. Over time, the teacher working with Riess began to ask more questions, directly 
posed to the coach. It is possible that these questions were intended to be reminding prompts to 
support the synchronous debrief meeting that would follow the annotation process; over time, we 
believe the teachers may have recognized the relationship between the constituent parts of the 
content-focused coaching cycle (i.e. planning meeting, lesson implementation, annotations, debrief 
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meeting) in a way that supported increased integration (i.e. annotations were discussed during the 
debrief meeting). Further analysis of the coaching debriefing meetings, in coordination with the 
annotations will allow us to draw substantive claims about this interaction.  

Third, we conjecture that coaches used the annotations to be responsive to the teachers beyond the 
video lesson and debrief process. In the case of Lowrey, the teacher began to show signs of decreased 
participation in the online professional development project. In turn, Lowrey increased the number of 
questions she posed directly to the teacher, as a way to elicit reactions from the teacher. It is possible 
that Lowrey’s questions were intended to encourage increased the teacher’s participation in the 
coaching cycles. Interviewing the coaches about their rationales for their annotations will help us 
understand their annotations.  

The focus on analytic stance for both coaches and teachers is important to understand how 
individuals notice within the context of online coaching cycles. Researchers have emphasized the 
importance of noticing to enact ambitious instruction (Jacobs et al., 2010; van Es & Sherin, 2008). 
Many researchers have focused on the noticing of particular participant groups, such as prospective 
teachers (e.g. Roth McDuffie et al., 2014; Schack et al., 2013) or practicing teachers (e.g. van Es & 
Sherin, 2008), but few have focused on the noticing of individuals with different experience levels as 
they interact with the same representations of practice. Researchers have shown notable differences 
in expert and novice noticing (e.g. Huang & Li, 2012); we contend that our study provides data on 
the interactions of different participants in a way that highlights the importance of coaching to 
support teachers. Researches have shown that coaching impacts teacher practice (e.g. Gibbons & 
Cobb, 2017; Kraft et al., 2018; Sailors & Price, 2015), but knowing exactly how coaches approach 
noticing provides a clearer understanding of how to support both coaches and teachers. As evidenced 
in the data, the four coaches analytically approached their noticing in very different ways. These 
findings raise questions about the intentionality with which particular coaches are assigned to work 
with particular teachers. Perhaps some teachers would respond better to the practices of some 
coaches over others. Knowing these various trends in coaches’ analytic stances and knowing how the 
teachers interacted with the coaches provides increased understanding for professional developers as 
they consider coach-teacher pairs and how to support coaches. We encourage others to be aware of 
the differences in coaches’ noticing and recognize the associative relationship that may develop 
between a particular coach and teacher based on how the two analytically notice.         
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One of the most intransigent problems in mathematics education is the culturally-influenced divide 
between classroom practice and educational research. This paper describes our explicit attempt to 
bridge that divide by translating research on instructional practices linked to improving students’ 
mathematics achievement into a brief guide outlining constructs, features, strategies, routines, and 
tools for use in a teacher-researcher alliance. We outline the design and development process, share 
the guide itself, and summarize data addressing the utility of the guide for a research and 
professional development project in which 100 U.S. Grades 6-8 teachers are collaborating to 
improve middle grades modeling and problem solving achievement. 

Keywords: instructional activities and practices, teacher education - inservice / professional 
development, middle school education 

The persistent, culturally-situated divide between educational research and teaching practice in 
school mathematics is well documented (Cai et al., 2017). In addition to vastly different contexts and 
goals, one reason for the teacher-researcher divide arises from communication - researchers and 
teachers rarely interact as colleagues, researchers typically disseminate findings in ways that 
foreground abstractions of teaching and learning, and teachers often seek out specific, situated tools 
for their everyday practice (Labaree, 2003). One area of common ground centers around shared goals 
among teachers and researchers to generate information about “what works” in particular contexts in 
hopes they may inform educators in other contexts (Krainer, 2014). An emerging model for nurturing 
that common ground is to establish a Teacher-Researcher Alliance for Investigating Learning 
[TRAIL] (Koichu & Pinto, 2018). While the TRAIL format addresses many of the challenges of 
teacher-researcher collaboration, there are few examples in the literature, and none addressing 
research aimed at investigating instructional methods for improving student mathematics 
achievement. Recently, we have engaged in an intentional effort to build a U.S. teacher-researcher 
alliance centered around investigating and articulating effective instructional routines to promote 
modeling and problem solving achievement among Grades 6-8 students. One of the first efforts 
within our alliance has been to create a 2-page instructional practices guide that communicates 
findings from research in ways that support teachers’ translation into practice. 

The framework we have developed is organized around the constructs of Explicit Attention to 
Concepts (EAC) and Student Opportunities to Struggle (SOS) (Hiebert & Grouws, 2007). Hiebert 
and Grouws (2007) identified EAC and SOS as broad clusters of instructional methods which 
researchers have linked to increases in student achievement. In this paper, we describe efforts to form 
a teacher-researcher alliance to further articulate features, strategies, and routines for EAC and SOS 
instructional practices, with the specific aim of supporting teachers’ implementation of these 
constructs in their classrooms. We emphasize our methods for translating research findings into 
actionable practices, especially our engagement with 100 teachers as partners in investigations the 
effectiveness of the associated instructional routines for improving student achievement. 
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 Perspective(s) or Theoretical Framework 
The driving motivation for this research project is an optimistic belief in the capacity of teachers 

and researchers to collaborate for improving student achievement. Broadly, large-scale analyses 
suggest teacher factors account for about 30% of the variation in student’s mathematics performance, 
second only to student factors - which account for about 50% of variation - and exceeding all other 
remaining identified factors combined (Hattie, 2003). In addition, literature suggests mathematics 
teachers can (and do) serve as co-producers of relevant professional knowledge with researchers, 
while directly improving outcomes for their students and affecting positive changes in their local 
contexts (Kieran, Krainer, & Shaughnessy, 2012). Locally, our prior work with hundreds of teachers 
through a university-based professional development center has led our team of researchers to view 
mathematics teachers as having rich, varied expertise, with pragmatic insights from adapting and 
enacting curriculum in their schools. For this project, we leaned into that perspective by seeking a 
way to situate our research within a broader effort to bridge cultures through a mutually-valuable 
partnership centered around shared goals for improving student achievement. 
Teacher-Researcher Alliance 

Historically, relationships between university researchers and teachers have been asymmetrical; 
teachers are positioned as in need of the knowledge that researchers provide, with little 
acknowledgement of the value the experiential knowledge of teachers (Gore & Gitlin, 2004). 
Ironically, the knowledge produced by researchers often does not have the practical and contextual 
information that teachers find useful for their practice (Gore & Gitlin, 2004; Krainer, 2014). To 
bridge the cultures of teaching and research, we must recognize different ways of knowing and view 
relations as symmetries rather than hierarchies (Krainer, 2014). Central to this perspective is a view 
of teaching as an ongoing process of experimentation in which teachers naturally engage in regular 
testing of often informal hypotheses about student’s abilities, the effects of instructional activities, 
and learning outcomes (Cobb, 2000). Researchers can play a role in that experimentation, helping to 
coordinate activities, gather evidence for drawing inferences, and plan for implementation of teacher-
led interventions.  

In particular, we conceptualize this project through the five features in the Teacher-Researcher 
Alliance for Investigating Learning (TRAIL) theoretical framework for scalable partnerships 
between educational researchers and teachers (adapted from Koichu & Pinto, 2018): 

• Professional Growth - through participation, teachers enhance their educational research 
competencies, researchers build their knowledge and abilities to engage in classrooms. 

• Authenticity - teachers engage in substantive research around questions drawn from real 
problems of practice, researchers match methodology to existing school systems. 

• Shared Agency - mechanisms are established so teachers and researchers can each advance 
individual needs and goals, with room for personal expression and creativity. 

• Choice - the partnership includes a network of projects, run simultaneously, so that teachers 
can select from a menu of options for participation. 

• Creating and Using Knowledge - opportunities for determining “what works” flows from 
both teaching and research; practical knowledge is co-created. 

EAC & SOS Instructional Practices 
Nearly all mathematics professional development programs are designed to improve student 

learning by attempting to affect teachers’ knowledge, beliefs, and instructional practices. However, 
student achievement is a distal goal for programs primarily focused on teachers, and there is limited 
research demonstrating even modest effects of professional development programs on student 
achievement (Gersten et al., 2014; Kennedy, 2016). To design professional development with the 
greatest potential to positively impact instruction and student achievement, our project has focused 
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on instructional strategies identified in research literature as most likely to improve student learning. 
Hiebert & Grouws’ (2007) synthesis of research on instructional strategies with evidence for 
improving students’ mathematical learning has been our primary touchstone.  

Hiebert and Grouws identified two constructs underlying instructional practices supporting 
conceptual understanding (defined as “the mental connections among mathematical facts, 
procedures, and ideas”, p. 382) with research evidence indicating positive effects across study design, 
teaching formats, and contexts (p. 387): 

• Explicit attention to concepts (EAC) - Teachers and students explicitly discuss mathematical 
concepts and make connections among concepts, facts, and procedures through activities such 
as questioning, discussing, comparing, and relating. 

• Student opportunity to struggle (SOS) - Students engage in productive struggle with 
important mathematical ideas through sense-making around comprehensible problems that 
require them to“figure something out that is not immediately apparent”. 

EAC can be seen as a more externally mediated approach in which the teacher ensures concepts and 
connections are made public and clear to students. In contrast, SOS is focused on experiences that 
engage students in developing understandings through their own sense-making activity. Recently, 
Stein, Correnti, Moore, Russell, and Kelly (2017) found group means on achievement measures were 
significantly higher for students of teachers who self-reported a preference for, as well as 
demonstrated through video-recorded instruction, instructional practices centered around EAC and 
SOS. Students whose teachers aligned with EAC alone performed significantly better than students 
of teachers aligned with SOS alone, who in turn performed better than students of teachers aligned 
with neither element. Additionally, several studies have shown that SOS positively impacts student 
achievement, particularly when it precedes EAC practices (Kapur, 2014; Loehr, Fyfe, & Rittle-
Johnson, 2014; Schwartz, Chase, Oppezzo, & Chin, 2011). 

Methods 
The goal of this project was to establish a teacher-researcher alliance (with TRAIL features) in 

order to articulate instructional practices for the purposes of an extended research project in the 
context of professional development. To put the research in context, we next provide (a) a brief 
overview of the project, (b) a description of the project team members who developed the 
framework, (c) a summary of our process for developing a framework related to the EAC and SOS 
constructs, and (d) a brief description of the associated data collection and analysis.  
Project Overview 

The heart of this project is a group of 100 Grades 6-8 teachers across 45 schools and 23 districts 
working in an area spanning approximately 200 miles of a U.S. state with low population density and 
a strong tradition of local control in education. Funded by a multi-year federal research grant to 
investigate methods for improving middle grades mathematics achievement, the researchers recruited 
the teachers by obtaining approvals from their respective district administrators to invite Grades 6-8 
mathematics teachers to participate in a 3-year research-professional development partnership. The 
professional development (PD) involves (a) three module meetings (15 hours total) for collaborative 
development of the EAC and SOS framework with opportunities for classroom implementation 
between each session, followed by (b) three week-long summer institutes (one each summer) for 
planning teacher-led classroom studies of EAC and SOS instructional routines, and (c) embedded 
classroom support provided by an experienced, dedicated instructional support team (the PD Team). 

The PD Team plays a pivotal role in our teacher-researcher alliance by bringing together personnel 
to bridge the research-practice divide through developing and implementing PD to support teachers’ 
implementation of EAC and SOS instructional practices in their classrooms. The PD team includes a 
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math professor, a math education professor, three full-time mathematics instruction specialists 
(similar to coaches), a postdoctoral researcher, and a graduate student. The team has extensive 
expertise and knowledge in mathematics education and professional development. Four of the PD 
Team members have taught mathematics at the secondary level in the local area for between seven 
and 16 years, three PD Team members have worked as math coach/specialists for between five and 
eight years, and four PD Team members have masters or doctoral degrees in mathematics education. 
Development of an EAC-SOS Guide 

In collaboration with the researchers and teachers, the PD Team led the development of a 2-page 
EAC-SOS Guide. The PD Team met weekly for three months to expand and interpret the conceptual 
and research foundations of EAC and SOS instructional practices, with a primary purpose of 
communicating research findings in ways deemed relevant and useful among teacher participants. 
Using Hiebert & Grouws’ (2007) and Stein et al. (2017) as initial resources, the PD Team unpacked 
the research concepts and associated studies in the context of situated instructional practices. The 
central challenge of the development work was to communicate instructional routines under 
investigation by the researchers in ways that maintain fidelity to the research supporting EAC and 
SOS as effective for promoting students’ mathematics achievement while clarifying distinguishing 
features and levels of specificity that are necessary for teachers to translate the research to their day-
to-day instruction. Eventually, the EAC-SOS Guide came to include separate pages for EAC and 
SOS as constructs of instructional practices with robust research evidence supporting positive 
effects on development of mathematics students’ conceptual understanding. For each construct 
(identified by a distinguishing color and icon), the guide lists three features of mathematics 
instruction characterized by the respective constructs, as well as four strategies teachers can engage 
in during classroom instruction and two routines per strategy selected by the researchers to be 
further investigated through clinical cross-over trials in the teachers’ classrooms (see Figure 1 for the 
design template). Based on teachers’ feedback on early drafts, each strategy was supplemented by a 
short list of instructional tools which may be well-suited to implementation of the associated 
routines. 

 
Figure 1. Design Template for the EAC-SOS Guide, with features, strategies, routines, and tools. 
 

Data Sources 
We used the PD modules to evaluate and refine the articulation of instructional practices in the 

EAC-SOS Guide. Participating teachers completed a Teaching Context Survey (adapted from Stein 



Articulating effective middle grades instructional practices in a teacher-researcher alliance 

	 1778	

et al., 2017), addressing their beliefs and current practices surrounding EAC & SOS instruction, as 
well as curricular formats, school characteristics, instructional content, and related factors needed to 
estimate effects of instructional interventions on student achievement across teachers’ individual 
contexts. During the first PD module, teachers previewed the Guide, recommended changes to better 
support implementation, and rated their level of familiarity and experience with the 8 strategies listed 
in the guides. Teachers each also selected one of the 8 strategies they would like to try first in their 
classrooms, and completed a “Stop Light” reflection at the next professional development meeting to 
communicate the challenges they encountered (red light), ways in which the PD Team can support 
implementation (yellow light), and positive outcomes they saw in their classroom practice (green 
light). In the Results section below, we present the final EAC-SOS Guide and summarize the 
teachers’ strategy selections. 

Results 
The EAC-SOS Guide (see Figure 2, or http://bit.ly/eac-sos-guide) is the primary result of our 

collaboration among teachers and researchers to articulate instructional constructs, features, 
strategies, routines, and tools supporting research into the improvement of student mathematics 
achievement. Following the first PD Module, 94 teachers selected a routine to try in their classroom. 
More teachers selected an SOS routine (59%) instead of an EAC routine (41%). Teachers’ rationales 
for their choice of an SOS or EAC routine are summarized in Table 1. 

 
Table 1. Counts of rationale provided for teachers’ selected routines, by construct. 

 

 Supporting 
Student Thinking 

Fit with 
Curriculum 

Improving 
Teaching Skills 

Fit with  
Content 

Other 
(Collaboration, 
General 
Interest) 

Total 

EAC 15 10 2 9 3 39 
SOS 24 8 16 6 1 55 
Total 39 18 18 15 4 94 
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Figure 2. EAC-SOC Guide to Instructional Practices for Improving Math Achievement 

Table 2 shows the routines selected by teachers for initial testing, together with exemplar statements 
related to why that particular routine was selected. (The examples were selected based on a 
combination of frequency of occurrence of ‘why’ reasoning across multiple responses in conjunction 
with those that seem well tied to the routine itself.). 
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Table 2. Routines selected by participating teachers, with example rationales they provided.  

 

Discussion 
The primary outcome of this research is the EAC-SOS Guide. The time and resources supporting 

the design and development of the document - especially the associated efforts to situate the 
development within a teacher-researcher alliance - indicate great potential value in the document to 
support efforts to address the culturally-entrenched challenges of merging research and practice in 
the context of professional development aimed at improving mathematics achievements in the middle 
grades. In addition to the direct input teachers had in the development of the Guide itself, teachers’ 
initial selections of routines to try in their classrooms also provides positive indications that both 
EAC and SOS constructs are appealing to practicing teachers interested in better understanding and 
leveraging their students’ thinking, implementing their curriculum, improving their repertoire of 
teaching methods, adapting their instruction to the mathematical content, and collaborating with 
peers. 
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In addition to practical uses for the EAC-SOS Guide in professional development and research 
settings, we encourage colleagues to consider transferring our conceptual framework, especially the 
TRAIL model for collaboration between teachers and researchers and emphasis on articulating 
research findings in practical terms, to future projects. We view the results reported in this paper as 
provisional, and intend to further refine and articulate the constructs, features, strategies, routines, 
and tools by creating a modern website using similar development methods (e.g., selection 
preferences, challenges, affordances, supports, evidence for positive effects). In addition, we look 
forward to conducting classroom research with our teacher partners, and are hopeful the associated 
research findings will clarify the contexts under which the instructional routines are especially 
promising for classroom implementation. We welcome collaborators interested in extending that 
work. 
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We studied two iterations of an online course provided to rural mathematics teachers. The online 
courses, which involved primarily synchronous activity, emphasized high-leverage discourse 
practices. We applied a community of inquiry framework, which emphasizes deep intellectual work, 
and its three tenets: cognitive presence, social presence, and teaching presence. We adapted the 
framework by creating a category on content-related interactions and by using mediating processes 
from our conjecture maps (e.g., Sandoval, 2014) to characterize cognitive presence. The adapted 
framework allowed us to notice substantive differences between the course iterations, especially in 
relation to teaching presence and cognitive presence. The implications of the study are that the 
framework helps us gauge the efficacy of synchronous online interactions and to better gauge goals 
for future iterations of the course.   

Online platforms and learning environments are emerging as important contexts for teachers’ 
professional development (Johnson et al., 2018; Keengwe & Kang, 2012; Means et al., 2009), and 
thus as sites of research. The online context provides access to professional development to teachers 
who may be geographically distant from conventional professional development providers, such as 
institutions of higher education, and from critical masses of colleagues. Because this trend is likely to 
grow, it is important to conceptualize ways to research online professional development, specifically 
within mathematics education. Many online learning projects have asynchronous environments. We 
argue that online synchronous learning environments also have the potential to provide impactful 
professional learning experiences for teachers, as they incorporate features of face-to-face 
environments. However, there has been inadequate research on the efficacy of features within 
synchronous online environments. In this study, we explore one component of a three-part online 
professional development model for middle grades mathematics teachers in rural contexts. We apply 
a community of inquiry framework (Garrison, Anderson, & Archer, 2000) because of its assumptions 
about engaging participants in demanding intellectual work, and connect the framework to the design 
literature, specifically design conjectures (Sandoval, 2014).  The mediating process component of 
design conjectures provides a way to characterize and analyze the cognitive presence in a community 
of inquiry, which has been an outstanding methodological problem in studying online contexts 
(Akyol & Garrison, 2011).  

The purpose of this study is to examine the quality of the learning environment we created in a 
synchronous online course. The community of inquiry framework allowed us to examine the 
characteristics of the teaching, cognitive, and social presences. Prior research has shown that 
confirmed that online environments can establish social presence (e.g. Whiteside, Dikkers, & Swan, 
2017). However, it has been less clear how content-related features of online courses are evident, 
particularly interactivity related to subject matter, cognitive presence, and aspects of teaching 



Studying a synchronous online course using a community of inquiry framework 

	 1783	

presence. In this study, we use the community of inquiry framework to explore these features within 
and across two cohorts of teacher participants who took the same online course.  

Online Professional Development Course 
We designed a three-part online professional development model with the goal of providing rural 

mathematics teachers access to high quality professional development. We originally designed and 
implemented the three components in face-to-face formats, which we then iteratively transformed 
into fully online versions for the purposes of this project. Our project utilized a series of synchronous 
online experiences, which departs from the typical asynchronous nature of much of the current online 
professional development, educational coursework, and virtual teacher communities. The three parts 
of the model included online course modules, demonstration lessons, and online coaching. 

The online course modules emphasized discourse practices that orient teachers toward high-
leverage discourse practices to facilitate mathematically productive classroom discussions (Smith & 
Stein, 2011). These discourse practices are catalyzed by five practices emphasized in the course, 
entitled Orchestrating Mathematical Discussions (OMD), anticipating, monitoring, selecting, 
sequencing, and connecting. The modules also emphasize key aspects of lesson planning, such as 
goal-setting, in addition to having teachers solve and discuss high-cognitive demand tasks. The 
specific goals of the modules were to: develop awareness of specific teacher and student discourse 
moves that facilitate productive mathematical discussions; to understand the role of high cognitive 
demand tasks in eliciting a variety of approaches worthy of group discussions; and to further develop 
participants’ mathematical knowledge, particularly the rich connections around big mathematical 
ideas (Ball, 1991; Ma, 1999). The modules involved a combination of synchronous and 
asynchronous work to minimize the amount of time teachers met together virtually (Robinson, 
Kilgore, & Warren, 2017). This minimized logistical challenges and maintained a high degree of 
teacher effort and attention due to the shortened synchronous time. Hrastinski (2008) found that 
synchronous and asynchronous components complement each other. 

We conducted the OMD course in Zoom, a video conferencing platform, which allowed for 
synchronous whole class and small group interactions. In addition, we simultaneously used Google 
Docs and Google Draw, which allowed participants to collectively develop and share artifacts, 
including approaches to mathematical problems. The instructor presented challenging tasks to the 
participants, who then worked in virtual breakout rooms to create a document that they shared with 
the other groups. They talked to each other, worked simultaneously on the shared document, and 
used the chat window to communicate in the virtual space. The course instructor listened to and 
participated in these group discussions to facilitate the group work. 

Framework 
We draw primarily from the community of inquiry framework (Garrison et al., 2000), that identifies 

three components of online learning environments: cognitive presence, teaching presence, and social 
presence. Garrison and Cleveland-Innes (2005) define a community of inquiry in terms of deep 
learning that extends beyond simple interactions, stating that a community of inquiry is a place where 
“ideas can be explored and critiqued; and where the process of critical inquiry can be scaffolded and 
modeled” (p. 134). Below, we describe each of three components of online learning environments: 
teaching presence, cognitive presence, and social presence. 
Teaching Presence 

Teaching presence entails three aspects of teaching: interactive instruction, design, and direct 
instruction. We highlight the interactive aspects of teaching, following Garrison and Cleveland-Innes 
(2005), who state that “if students are to reach a high level of critical thinking and knowledge 
construction, the interaction or discourse must be structured and cohesive” (p. 134). Structuring 
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interaction in productive ways includes explicitly articulating the designed features of the learning 
environment and directing students via explanation, scaffolding, or evaluative feedback. Anderson, 
Rourke, Garrison, and Archer (2001) describe these three roles of the instructor as designer, 
facilitator, and subject matter expert. In our perspective, the most critical role of the instructor is to 
facilitate productive interactions with and between the participants, as this is most likely to elicit and 
advance thinking related to the goals of the course. This is different from the social interactions 
described below, which are not necessarily related to course goals but are productive for building 
community. Articulating the design of the learning environment creates expectations and 
opportunities for participants; however, as learners engage with design, the instructor must insert 
themselves into the online interactions (via feedback, explanation, and scaffolding) in order to 
support students understand expectations and develop their thinking. 
Cognitive Presence 

Garrison, Anderson, and Archer (2001) describe cognitive presence as “the extent to which learners 
are able to construct and confirm meaning through sustained reflection and discourse” (p. 11). 
Cognitive presence is synonymous with critical engagement with content; consequently, developing 
analytic tools to characterize cognitive presence must include the intellectual practices deemed 
essential to the learning goals. In past research, cognitive presence has been the least analytically 
developed dimension of community of inquiry (Akyol & Garrison, 2011), in part because processes 
and content that determine cognitive presence are specific to a given discipline and domain.  

In order to characterize cognitive presence, we turned to the design literature to identify the 
essential processes related to our learning goals. We utilized conjecture maps to operationalize 
cognitive presence analytically. According to Sandoval (2014), “conjecture mapping is a means of 
specifying theoretically salient features of a learning environment design and mapping out how they 
are predicted to work together to produce desired outcomes” (p. 19) and is intended to reify the 
conjectures regarding the learning environment and how they interact to promote learning. There are 
four main elements to a conjecture map. The first element involves high-level conjectures about how 
the learning context supports learning. Researchers then operationalize these conjectures in the 
embodiment of the learning design, the second element, by articulating tasks, participant structures, 
and so forth that provide opportunities for learners to engage with content. In the third element, 
researchers conjecture how the design of the learning environment (embodiment) generates 
mediating processes that produce desired outcomes. Mediating processes occur within the learning 
environment and potentially lead to the outcomes that may occur outside of the learning environment, 
such as enacting high-leverage discourse practices in mathematics classrooms.  To analyze cognitive 
presence, we turn to the third element, the mediating processes, as they were the intended targets of 
the designed learning environment.  

Designers of a learning environment articulate mediating processes to reflect the desired practices, 
and associated cognitive work, that should result from the design of the learning environment. Thus, 
observations of mediating processes focus on the interactions between learners and the learning 
environment. To articulate the mediating processes, the project team reflected on the goals of the 
project, the goals of the course, and specific aspects of the learning environment, to generate four 
mediating processes, described in the methods section. 
Social Presence 

Garrison et al. (2000) describe social presence as the ability for participants to project themselves 
and to establish personal and purposeful relationships. Rourke, Anderson, Garrison, and Archer 
(2001) state that the three main components of social presence are affective responses, interactive 
responses, and cohesive responses. As described in our analysis below, we separated out content-
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related interaction from the other two categories and primarily used affective and cohesive responses 
to define social presence.  

Research Focus 
We used the community of inquiry framework to focus on how the synchronous online environment 

affected the teaching presence and the opportunities for the teacher participants to engage with the 
content directly and with each other around the content. We studied two cohorts of teachers who 
participated in the same online course; this allowed us to compare the two course enactments to 
better characterize teaching and cognitive presence within and across cohorts. As noted above, the 
ability of designers to facilitate social presence is sufficiently documented, and we, too, found that 
the teacher participants engaged in friendly banter around their lives and jobs. We conjecture that this 
social presence facilitated interaction around content, but we do not explicitly explore that conjecture 
in this paper. Our research questions were: 

1. What aspects of teaching presence were evident in the two online courses, especially in terms 
of interactive teaching and direct instruction?  

2. How did this teaching presence differ across the two cohorts, and how were these differences 
related to teacher participation? 

3. To what extent did the participants in the two cohorts engage in mediating processes 
(evidence of cognitive presence)? 

4. To what extent did the participants in the two cohorts engage with each other around the 
content (level of content-related interactions)? 

Methods 
Data Collection 

We video recorded the OMD sessions, six for each cohort, twelve in total, using screen capture 
technology. For each session, we video recorded the host computer as well as each of the breakout 
rooms, creating three to five video files for each session. We used Panopto so that we could record 
the Zoom window and simultaneously the Google Docs the groups were creating. We transcribed all 
of the breakout rooms and the subsequent whole class discussions, omitting the introductory whole 
class segments in which the instructor outlined the task goals and expectations. This reduced the 
frequency of the design aspect of teaching, which was not emphasized for this study. Overall, there 
were 24 episodes for Cohort 1 and 45 for Cohort 2. These differences reflect data collection issues 
we encountered in Cohort 1 and less participation from Cohort 1 in the OMD course relative to 
Cohort 2. 
Data Analysis 

We coded the transcripts turn-by-turn, assigning as many codes as were relevant to a given turn 
across the three presences. After a few rounds of consensus coding, we independently coded 
transcripts, with pairwise kappas between 0.45 and 0.54, considered moderate agreement (Landis & 
Koch, 1977). Below, we provide more details related to the codes we applied for each of the 
presences. 

Cognitive presence. The coding team for cognitive presence included members of the project team 
who were most familiar with the course design, including two instructors and one designer, in 
addition to the two lead researchers. To analyze cognitive presence, we coded all turns for the 
presence of the following four mediating processes we had previously developed in the conjecture 
mapping process (Sandoval, 2014): 

• Explaining how features of a lesson/task design influence opportunity to engage in 
mathematical thinking; 
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• Explaining mathematics in the task in ways that make connections;  
• Explaining anticipated or observed strategies or misconceptions for a given task; and 
• Explaining how teaching moves impact access to mathematical thinking, participant 

frameworks, student authority, or formative assessment. 
Teaching presence. We coded for the three forms of teaching presence, though we minimized the 

emphasis on the design aspect of teaching. For interactive teaching, we adapted the facilitating 
discourse category from Anderson et al. (2001). Our codes included: identifies areas of agreement/ 
disagreement; seeks to reach consensus; encourages (acknowledges, reinforces); elicits 
contributions; presses or probes; and redirects discussion. For direct teaching, we adapted the direct 
instruction category and our codes included: explains content; focuses or funnels; summarizes or 
provides feedback; and responds to technical concerns. The coding team consisted of one of the two 
lead researchers and four doctoral students.  

Social presence. Adapting the work of Rourke et al. (2001), we used the three main categories of 
affective responses, content-related interaction, and cohesive responses, each of which had sub-
categories that we modified to take into account that we were working in a synchronous video-based 
environment. For example, in the content-related interaction category, we revised continuing a 
thread to building from or extending another participant’s response and we revised quoting from 
other messages to repeating or paraphrasing another participant’s response. The coding team was 
the same as for teaching presence.  

Second phase of analysis. In the second phase of our analysis, we reorganized and reduced the 
codes. We pulled out the two codes for content-related interaction - building from or extending 
another participant’s response and refers to or paraphrases another participant’s response – 
because we felt these codes involved interaction around content and were not purely social in nature. 
That left the affective and cohesive categories to represent social presence. We collapsed all codes in 
the cognitive presence category into one count, and did the same for social presence and for each of 
the three aspects of teaching presence – design, interactive teaching, and direct teaching. We also 
added a category for technical, which involved all turns related to resolving technical issues in the 
Zoom and Google environments. We then collected all the totals of the reorganized and collapsed 
categories across each cohort. 

Results 
We present the results initially by looking at cross-cohort comparisons, which allowed us to look at 

patterns within cohorts and then patterns within cohorts. The comparisons look at different 
distributions and rates within and across categories for both instructors and teacher participants. The 
purpose of presenting the cross-cohort comparisons is not to evaluate the instructors or teacher 
participants, but to highlight the ways the community of inquiry framework provides insights into the 
dynamics and efficacy of the online courses. We noticed three distinct trends. First, we noticed a 
much more prominent teacher presence in the Cohort 1 course. Second, we noticed that participants 
in Cohort 2 had much higher rates of cognitive and social presence, as well higher rates of turns 
involving technical issues. Third, we noticed that the teacher participant turns were more evenly 
distributed in Cohort 2 than Cohort 1. We discuss each of this in detail below. 
Teaching Presence  

The Cohort 1 instructors had six times as many turns coded as interaction (building from or 
referring to other participants’ contributions) and roughly three times as many turns coded as 
interactive and direct teaching, with similar rates of design codes (see Table 1). There are some 
possible reasons why these differences occurred. One reason is that the instructor with the most 
prominent presence in the Cohort 1 implementation had a different teaching style than the instructor 
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with the most prominent presence in Cohort 2. This is borne out in the analysis of the coaching 
cycles that were another component of the professional development project, in which the primary 
instructor in Cohort 1 had considerably higher rates of direct assistance (explanations, suggestions) 
than the other coaches. A second reason is that the number of participants in Cohort 2 was 50% 
higher per session (roughly three more participants per session in Cohort 2), perhaps allowing the 
instructor to offload some of the work onto the participants. For example, the interactive presence 
and interactive teaching categories for Cohort 1 indicate that the instructor was much more active in 
engaging participants with their contributions, and referring to and paraphrasing those contributions 
to make them objects of discussion. Perhaps this was because the participants did not engage each 
other with their ideas to the satisfaction of the instructor and she felt compelled to intervene. At any 
rate, these substantive differences likely had an impact on the learning opportunities for the 
participants.  
 

Table 1: Teaching Presence across Cohorts 
Instructors Interactive 

Response 
Interactive 
Teaching 

Design Direct Teaching 

Cohort 1 41 82 38 99 
Cohort 2 7 28 28 30 

 
Participant Rates across Categories 

The teacher-participants in Cohort 2 contributed nearly twice as many turns in three categories: 
cognitive presence; social presence; and technical concerns, with roughly equal numbers of turns 
coded as content-related interaction. This may have been in part because there were on average 50% 
more participants in each session relative to Cohort 1, but this does not account for all of the 
difference nor does it account for the fact that the content-related interaction was roughly equal. In 
the two sessions in which there were the most participants in Cohort 1 (8 of the 11), roughly 80% of 
the overall turns coded as interactive response and social presence occurred, and over 50% of the 
cognitive presence. This suggests that for this group, having more participants was associated with 
higher levels of interaction, both content-related and socially-related. Importantly, Cohort 2 
participants engaged in the mediating processes at much higher rates, which we hope eventually to 
tie to the project outcomes and other data sources in the project.  

Table 2: Participant Rates across Cohorts 
Teacher 
Participants 

Cognitive 
Presence 

Content-related 
interaction 

Social 
Presence 

Technical Concerns 

Cohort 1 101 104 185 77 
Cohort 2 189 108 406 194 

 
Distribution of Turns across Participants 

We noted that contributions from teacher participants were more equitably distributed in Cohort 2 
than Cohort 1 with respect to cognitive presence. The top four contributors in Cohort 1 accounted for 
61% of the cognitive presence codes, while the top four contributors in Cohort 2 accounted for 48% 
of the cognitive presence codes. Although this may be related to the fact that there were more 50% 
participants per session on average for Cohort 2, one of the participants in Cohort 1 who attended all 
of the sessions had very few turns coded as cognitive presence. This participant similarly had low 
levels of interaction with her coach in the coaching cycles, which suggests that she was having 
difficulties engaging with key processes emphasized in the project. Nevertheless, the distribution 
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indicates that learning opportunities, and evidence of potential learning, were not ideally distributed 
in Cohort 1.  

 
Two Cases of Participants 

We turn to two cases of teachers, one from Cohort 1 and one from Cohort 2 to provide nuance to 
our findings. The participant from Cohort 1, Dixon, had the second highest number of codes applied 
from his cohort (70), with the highest number of cognitive presence and social presence codes. Much 
of the turns coded as social presence were related to expressing vulnerabilities related to his teaching, 
while much of the turns coded as cognitive demand explained the impact of teachers’ actions, often 
including detailed examples from his class. The participant from Cohort 2, Fleming, had a below 
average number of contributions for that cohort (67), with above average for turns coded as cognitive 
presence (24) and content-related interactions (16), and below average for turns coded as social 
presence (20). Fleming’s contributions were mostly related to content, though she occasionally 
joined in the social banter. Most of her cognitive presence turns involved describing mathematical 
strategies. These two cases demonstrate differences in the content and nature of participation. Dixon 
was introspective with respect to his teaching, describing situations he faced, often in a self-
deprecating manner; however, he did not often describe or analyze mathematical strategies. Fleming, 
by contrast, talked more frequently about mathematical strategies, her own and those she anticipated 
seeing in students, and relatively less frequently engaged in social banter or talked about her 
teaching.  

Discussion 
A goal for this study was to explore how a synchronous online environment could engage 

mathematics teachers in demanding intellectual processes that could help them grow professionally.  
We employed a community of inquiry framework to research the social and intellectual vibrancy of 
the environment and the ability of instructors to productively structure interactions around the goals 
of the course. The framework allowed us to see substantive differences between instructors and 
between participation rates of two cohorts enrolled in the same online course. It also allowed us to 
conjecture about the relationship between the instructors’ actions and the ways the teacher 
participants interacted with each other and with the content. 

The results provide insights into how the online courses achieved content-related purposes related to 
interaction (recognizing and building from the contributions of others) and cognitive presence 
(engaging in the mediating processes). Participants in both cohorts engaged in forms of social and 
cognitive presence, albeit in ways that differed substantively. Notably, the instructors in Cohort 1 
were far more active in structuring and modeling content-related interaction, in explaining content, 
and in providing feedback to participants. Conversely, the participants in Cohort 2 contributed in 
considerably higher rates with respect to cognitive and social presence. We conjecture that these 
differences occurred because Cohort 2 had on average 50% higher attendance rates and because the 
most active instructor in Cohort 1 had a style oriented toward direct instruction, which was consistent 
with results related to her coaching style (Authors, date). We will attend to these patterns closely as 
we finalize our analysis for the same two cohorts in the second online course. We also note that the 
two cases of teacher-participants discussed above demonstrate how participants in the same learning 
environment engage differently with the content and with the social features of the environment. 
These results highlight the ability to research dynamics between instructors and participants in a 
synchronous online environment and to consider how differences in individuals contribute to those 
dynamics.  
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Implications 
We focus on three implications. First, we feel this study is a step toward formulating a version of 

the community of inquiry framework suited for synchronous online professional development in 
mathematics education. Three key adaptations we made to the framework reflect issues highlighted 
in the mathematics education literature: productive content-related interactions, characteristics of 
cognitive presence that reflect learning processes for mathematic teachers, and a stronger focus on 
non-design aspects of teaching. The category of content-related interactions is comprised of high-
leverage practices with respect to developing collective knowledge within a community. Related to 
the second adaptation, using mediating processes to characterize cognitive presence provided us 
meaningful ways to connect our conjectures about our learning environment and the practices we 
hoped they would facilitate. A third adaptation involved focusing on interactive teaching and direct 
instruction as the two teaching components of greatest interest to research a synchronous online 
environment. These two aspects of teaching account for the ways instructors intervene to structure 
interactions and to focus those interactions on content in synchronous moments. The online learning 
environment afforded us a comprehensive picture of these actions, as all teacher-participant 
interactions took place in an environment that was video-recoded. From this study, we can reach a 
tentative conclusion that online synchronous platforms can be sites of teacher learning and research. 
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Along with the rapid development of technology, videorecording teachers’ lessons for professional 
development or educational research have become commonplace. Although the benefits of the use of 
videorecording has been well documented, few studies have attended to teachers’ affective 
experiences in relation to videorecording. In this study, we examined teachers’ emotions to being 
videorecorded and watching their videos. We found that all teachers experienced negative emotions 
related to videorecording at the initial stage of the PD but these negative experiences faded over five 
coaching cycles. Despite the negative emotions all teachers found the use of video tremendously 
beneficial to their own professional development. 

Keywords: Emotions, Videorecording, Mathematical coaching, Professional development 

The Role of Video in Professional Development 
The value of videorecording in teacher education and professional development has been widely 

acknowledged (Gaudin & Chaliès, 2015; Marsh & Mitchell, 2014). Having access to video of one’s 
own instruction allows teachers to re-watch the teaching episodes and analyze the aspects of their 
teaching that go beyond just recall (Roller, 2016). By providing teachers with a clear picture of what 
their teaching looks like, videos provide essential information about their practices that allows 
teachers to craft a professional vision oriented towards developing necessary skills critical for 
appropriately noticing and attending to students’ academic needs (Sherin 2004; Sherin et al. 2011). 
Having continuous experience with watching videos enhances teachers’ abilities to observe, identify, 
and interpret classroom actions (Coffey, 2014; Krammer et al., 2006; Sherin & van Es, 2009; Star & 
Strickland, 2008).  Gaudin and Chaliès (2015) pointed out that, “viewing a classroom video engages 
[the] teacher in a complex activity that elicits cognitive, emotional, and motivational processes” (p. 
46). 

Chan et al., (2018) suggests that videos engage teachers in retrospection about their own practices, 
while minimizing the “cognitive and emotional involvement they experience while teaching” (Chan 
et al., 2018, p.193). However, others (e.g., Kleinknecht & Schneider, 2013) suggest that teachers’ do 
engage emotionally and motivationally when watching videos, but this engagement is higher while 
watching the videos of unknown teachers. Although having opportunities to watch and reflect on 
instruction is generally useful for teachers’ professional development, there is added value in 
engaging in this practice around one’s own teaching (Zhang et al., 2011). Gradual exposure to similar 
experiences helps teachers get accustomed to recognizing elements in their existing practices that 
need improvement (Borko et al., 2008). However, despite the benefit of reflecting on your own 
instructional video, researchers found that the teachers usually feel uncomfortable with being filmed 
or being watched by others (Borko et al., 2008; Lasagabaster & Sierra, 2011; Sherin & Han, 2004). 
Hence, public viewing of teachers’ videos requires building a safe and friendly community of 
support. As pointed out by Borko et al. (2008, p. 422), “to be willing to take such a risk, teachers 
must feel a part of a safe and supportive professional environment. They also should feel confident 
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that showing their videos will provide learning opportunities for themselves and their colleagues, and 
that the atmosphere will be one of productive discourse.” Although watching videos can elicit a 
range of negative emotions, they provide evidence of the complexity of classroom practice and make 
student thinking visible (Barnhart & van Es, 2015; Santagata & Yeh, 2013), thereby motivating 
teachers to continue with effective practices and innovative to address issue they observe that deter 
positive student outcomes (Siry & Martin, 2014; Sun & van Es, 2015).  

Teaching is emotional work (Hargreaves, 2000; Nias, 1996, Sutton & Wheatley, 2003). Studies of 
teachers’ emotions has increased in recent years because of their influence on teachers’ motivation 
and subsequently their behaviours (Mesquita et al., 1997). Teachers’ negative emotions (e.g., anger 
and frustration) (Emmer, 1994) have been found to negatively influence teachers’ focus and 
attention, thereby reducing their intrinsic motivation to teach (Ryan & Deci, 2000; Trigwell, 2002). 
On the other hand, emotions, like joy and satisfaction, assist in generating effective ideas and 
strategies (Sutton & Wheatley, 2003). As such, emotions are deeply connected to teachers’ cognitive 
and psychological processes which influences their instructional outcomes. In this regard, exploring 
teachers’ emotional experiences related to videorecording – including being videotaped and watching 
the videos – will provide insight into the range of emotions teachers’ experience in relation to 
videorecording and the reasons underlying these emotions.  A significant number of studies have 
documented the positive influences of video on teachers’ professional growth, however, these 
findings of this study will provide insight into the extent to which elementary teachers may 
experience negative emotions related to videorecording; the extent to which elementary teachers 
experience positive emotions related to videorecording; what triggers these emotions; and, whether 
or not, they may influence what and how a teacher instructs. We focus specifically on answering the 
following research questions: 

1. How do elementary teachers describe their emotions in relation to videorecording their 
instruction and watching their videos? How do they describe these emotions? 

2. What reasons do teachers describe for their emotions related to videorecording their 
mathematics instruction? 

Method 
Participants 

The participants included seven elementary (grades K-6) teachers working across three different 
schools within the same district. Table 1 shows demographic data on the teachers. 

 
Table 1. Demographic data on participants 

Teacher Position Gender Grade Level #of years of teaching 
Bill Special education teacher Male 3rd 5 

Sandra Special education teacher Female Kindergarten 6 
Laura Elementary grades teacher Female 4th 9 

Anthony 6th grade math teacher Male 6th 15 
Wilma Elementary grade teacher Female 2nd 10 
Katie Kindergarten teacher Female 1st 19 

Jessica Elementary grade teacher Female 2nd 5 
Holistic Individualized Coaching (HIC) 

This study was situated in a larger study that unfolded over a year.  Participants were involved in a 
year-long professional development (PD) program, that involved a coaching model called Holistic 
Individualized Coaching (HIC) (Author, 2019). Holistic Individualized Coaching (HIC) is a coaching 
model designed to attend to the multi-dimensional aspects of teaching with the goal of advancing 



“I must be a glutton for punishment”: Teachers’ emotions related to videorecording of mathematics instruction 

	 1793	

teachers’ instructional practices and overall professional well-being. For an academic year, the 
participants engaged in five cycles (5) of coaching that focused on enhancing their mathematical 
knowledge for teaching (MKT), shaping productive mathematics-specific beliefs, developing 
emotional regulation strategies, and promoting efficacy calibration. It involves five steps: (i) a pre-
coaching discussion of a lesson to be coached, (ii) development of a content-specific mini teacher 
profile, (iii) third, pre-lesson support, (iv) in-class coaching where the instruction is videotaped, and 
(v) the post-coaching conversation which focused on data from the videotaped lesson. The teacher 
and coach watched the videorecorded lesson before the post-coaching calls. Pre-coaching and post-
coaching conversations were audio-recorded. 
Data Sources 

Audio-recordings of post-coaching conversations. The post-coaching conversations provided data 
about participants’ mathematical knowledge for teaching, emotions, efficacy, and their teacher role 
during the lesson. Regarding emotions we specifically asked teachers to describe their emotions 
related to the video-recording. We also probed to determine the underlying reasons for the emotion. 
For this study we specifically focused on data related to the teachers’ emotions about videorecording. 
Each of seven teachers engaged in five coaching cycles that had one post coaching conversation 
where they talked about emotions related to videorecording. In total, there were 35 possible instances 
where teachers described their emotions and the reasons underlying these emotions. 

Analyses and Findings 
(1) What emotions do elementary teachers describe in relation to having their instruction 
videorecorded and watching their instructional videos? How do they describe these 
emotions? 

To answer this research question, we focused on the emotion they stated, in relation to being 
videotaped and watching their own instructional videos and used thematical analysis (Braun & 
Clarke, 2006) to determine their emotion categories. To value the participants experiences, we used 
their own words. In instances where the word or term used was not a documented emotion, we 
determined by the category of emotion by analyzing the context in which it was stated. Of the 35 
possible experiences (5 coaching cycles x 7 teachers), teachers reported emotions on 30 experiences. 
For five instances the teachers did not state an emotion related to videorecording. Figure 1 shows the 
words and phrases teachers used to describe their emotions related to videorecording – including 
being videotaped and watching their instructional videos. 
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Figure 1. Teachers’ descriptions of their emotions related to videorecording 

Very few of the emotions stated aligned with the discrete emotions described in the literature, such 
as enjoyment and anxiety (Barrett, Gendron & Huang, 2014; Frenzel, 2004). In particular, there was 
one instance of enjoyment (which was mixed); no instances of anger or excitement; and, no instances 
of pride, shame, or guilt. Teachers tended to describe their emotions in non-typical ways, such as (a) 
in reference to a previously felt emotion, “easier to watch” or “feeling better” and (b) using a 
negative emotion in a positive way, for example “not bothered” or “not anxious anymore”. We also 
observed that teachers talked about their experiences with multiple emotions. For example, when 
talking about the video-recording experience, Jessica described three emotions, “excited-anxious-
comfort”. We labeled teachers’ experience of multiple emotions as mixed emotions. Figure 2 shows 
the categorizations of the emotions. 

 
Figure 2. Teachers’ emotions about videorecording organized by category 
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We observed that when teachers experienced mixed emotions, they were a combination of both 

negative, positive and neutral emotions; for example, “anxiety-comfort-intimidating” [Jessica, 
coaching cycle 2]. This was in contrast to prior work on teachers’ emotional experiences related to 
teaching (e.g. Authors, under review) where teachers also experienced what we referred to as mixed-
positive, a combination of multiple positive emotions; and, mixed-negative, a combination of 
multiple negative emotions. Jessica’s videorecording experience during the second round of coaching 
provides an example of the mixed-complex emotional experience. She stated,  

…when it started, it was, you know, just videorecording myself, it was a little intimidating. And then 
having people watch it. You weren't-- you weren't sure, because it's like, OK. What are they 
going to think?... I believe in what you say, that you're not in here to judge what's kind of going 
on. You're in here to help with-- or, you know…. Because, I mean, I'm not saying I'm not a little 
self-conscious when somebody is in here watching and listening, but I-- it's helped me work 
through that, because I don't want to be. When somebody comes in my room, I don't want to have 
to change my way of teaching or be nervous or things like that. So, it's helped me in that aspect, 
also. [So I’m] a little bit more calm, less nervous, less anxious. 

In the excerpt Jessica described her initial feelings of intimidation about the videorecording, 
concerned about whether she would meet expectations. She talked about feeling a bit self-conscious 
about being watched but she felt comfortable knowing that the coach was in the classroom to provide 
support, not to judge. She had been actively working on regulating her emotions so she was relatively 
calmer and less nervous about being videotaped.  

Along with neutral emotions, mixed-complex were the most predominantly felt emotions related to 
videorecording stated by teachers in nine instances each. Teachers also experienced positive and 
negative emotions with similar frequency – six instances each. Teachers appeared to become more 
neutral or positive about videorecording over time or repeated exposure, although they didn’t end the 
year having positive emotions. This may be due to the reasons underlying the emotion – why they 
were feeling these emotions. We describe these reasons next. 
(2) What reasons do teachers describe for their emotions related to videorecording their 
mathematics instruction?  

To answer the second research question, we identified teachers’ responses related to their emotions 
about videorecording and the reasons underlying these emotions. We coded each of these reasons to 
reflect what elicited the emotion. We then looked across the codes and organized them in themes that 
captured the core aspects of teachers’ videorecording experiences including: (i) teacher self-related, 
(ii) student-related, (iii) teaching-related, (iv) coach-related, and (v) videorecording related. Table 2 
shows types of emotions (row) in relation to reasons (column). 

 
Table 2. Reasons Underlying Emotions 

Emotions 
Reasons 

Teacher (Self)-
related 

Student-
related 

Teaching-
related Coach-related Videorecording-

related 

Positive 

Knowing 
teacher self 
Appreciation of 
the entire 
process 

Opportunity to 
enhance 
learning 
opportunities 
for students 
 

Opportunity 
for reflecting 
on and 
improving 
instructional 
practices 
Objective 

Conversation 
    around the 
    video is     
    helpful 
 

Video captures 
crucial moments in 
teaching not 
accessible in 
memory 
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evaluation 
    of teaching 

Negative 

 
Discomfort 
with watching 
self on video 
(hearing voice 
and seeing self) 
 

Makes 
students’ 
thinking visible 

Unsatisfied 
    with lesson 
Discomfort 
    with 
watching 
    instruction  
    process 

Pressure to 
     perform for 
     coach 
Ensure they 
     meet 
coach’s 
     
expectations 

Video reveals 
      the unknown 
about students’ 
thinking, behavior 
and teaching 

Neutral 

 Objective 
    evaluation of 
teaching 
 

Provides 
window into 
students’ 
thinking 

Opportunity 
for reflecting 
on and 
improving 
instructional 
practices 
 

Will not be 
judged by 
coach 
Comfort with 
conversation 
around the 
video 

Comfort with video 
in the classroom 
over time 
Video does not 
record personal 
thoughts 

Mixed-
Complex Reasons including a combination of those described from each of the above categories 

 
Positive. Reasons for positive emotions were aligned with a mastery goal orientation perspective 

(Elliot, 2005) where teachers saw the videorecording experience as a way to learn more and improve 
their instruction in ways that would benefit students’ learning (Maher et al, 2014). Sandra and 
Anthony’s statements capture the teachers’ experiences well. 

Teachers don't get this. You do have to watch yourself when you were student teaching, but then you 
had no experience so you couldn't really use it very well. Whereas now I've been teaching only 
seven years, but it's nice to see myself and what I'm doing. I really enjoyed that part of it and it's 
great. There's nothing I don't like about it. Because you've [the coach] provided me with ideas and 
you also tell me some things I can work on or things that you like. Just the feedback is great. I 
really liked it. [Sandra, Coaching Cycle #2]  

I don't want to mess up the concept, as far as presenting it to the students. Number one, I don't want 
myself as a professional to look bad. And then, number two, I don't want the students to get the 
wrong information, or for me to tell students something that's inaccurate. And so the video 
documents that. If I said something that was inaccurate or if I taught the students something that 
was wrong, it's documented. [Anthony, Coaching Cycle #5] 

Teachers appreciated the videorecording as it allowed them to see who they were as teachers and 
how that was enacted in the classroom. They allowed the teachers to see critical moments in their 
teaching that were not accessible through memory and with enough detail that would be useful. 
Watching the videos also allowed for meaningful conversation around their teaching that was data-
driven. One central reason was that being able to watch their teaching themselves, teachers did not 
have to rely on the feedback of others, or interpretations from their own memory, but allowed for a 
more objective self-evaluation of their teaching.  

Negative. Teachers experienced a range of negative emotions related to videorecording including, 
“uncomfortable”, “a bit of anxiety”, “nervousness”, “frustration”, and “more comfortable”, in 
relation to being videotaped, the anticipation of watching the video, and watching the video. Most 
teachers experienced discomfort in seeing and hearing themselves on video and felt anxious thinking 
about what would possibly be revealed on the video that they did not observe during instruction. 
Sandra, for instance, reported her sense of discomfort to seeing herself teaching on the video:  
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Yeah, and then hearing your voice, maybe no one likes to hear their voices. I'm so high-pitched, I'm 
like really, no wonder they don't listen to me. I don't have that voice, down and deep [Sandra, 
Coaching Cycle #1] 

Wilma, Anthony, and Jessica also discussed the presence of the camera seemed to set both teachers 
and students in performance mode – making them more conscious of their actions and perhaps 
diminishing authenticity. Willa discussed her feeling to “perform” in front of camera: 

Instead of probably conducting my class in a way that maybe I typically would, it's like I got to speed 
this through to the end because by gosh, this is what she's [the coach] here to see... It's still--I'm 
getting more comfortable with having the camera there, but I still feel like I'm performing versus 
just teaching somewhat. [Wilma, Coaching Cycle #2] 

Neutral. Several teachers reported neutral emotions such as “calm”, “not bothered”, “not anxious”, 
and “comfortable”, as they did not feel they were being judged about their teaching (e.g., Katie). In 
recognizing that his calibration between his thoughts about the lesson and the actual lesson was 
misaligned, Bill had feelings of calm about the videotaping process. 

I was pretty calm today. Yeah, I think when I think the lesson goes terribly, I watch the video and go, 
oh, it wasn't as bad as I thought. And when I think the lesson goes really well, I watch the video, 
and I was like, oh, it wasn't as good as I thought either. It's always somewhere in the middle of 
what I actually perceived it to be. [Bill, Coaching cycle #4] 

I mean, does anybody really like the way they look on video? I don't know...Yeah. So I didn't even 
think about that. Yeah, I don't really mind being recorded because I don't think that anybody will 
ever see that in the way that they would judge me. Like only teachers or people involved in 
education would ever look at that-- which makes it way more comfortable [Katie, Coaching 
Cycle #5] 

Mixed-Complex. Mixed-complex emotions include a combination of positive, negative, and/or 
neutral emotions in relation to the videorecording experience. As shown in the quote below. Sandra 
felt initially nervous about watching herself on video but seeing her instruction made her feel great 
because it turned out well. She also expressed some generalized discomfort about watching herself 
on video. Sandra’s range of emotions reflects the complexity of calibration and evaluation processes 
before and during watching videos.  

 So I was nervous, and then so I was able to watch it by myself, which was great. but yeah, I was 
really nervous at first. And being that you never see me teach, you don't want to look like you 
don't know what you're doing. It turned out good. I personally like the whole process, because 
when you have a regular evaluation in the classroom-- well, you have lesson plans, and you turn 
it in, but you never really talk about it. you never know what day they are going to show up 
anyways. I guess I just felt like I was more prepared doing this this way, and it made me really 
think it through. Really doing it, like when you said, what activities will you have? What are you 
expecting from them? And then watching, which is just very uncomfortable, for anybody 
watching it, and seeing yourself in the video. [Sandra, Coaching Cycle #1] 

Emotions about Watching Video vs. being Videotaped. One interesting point to note is that five 
of the seven teachers distinguished their emotions about watching videos and being videotaped. They 
expressed 23 instances within three major types of emotions about being videotaped: positive 
emotions (6 instances, e.g.  “I think it's [videorecording] one of the best things going on” Anthony 
C4); neutral emotions (12 instances, e.g. “I was okay being videotaped…comfortable, Sandra C5); 
and negative emotions (5 instances, e.g., I feel like during my lesson especially when you guys are 
there, when it's being videotaped, I'm paying extremely close attention to things that, you know, 
every little detail that is going on, Jessica C4). Reasons underlying these negative emotions include 
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the first time of being videorecorded, perceiving videorecordings as performances, and the anxiety of 
meeting instructional expectation. These concerns and negative emotions were not reported in 
emotions related to watching videos.  

Discussion 
One key finding was that the emotions teachers described about videorecordings do not align with 

the kinds of discrete emotions described in the literature. Instead of using the emotion words such as 
“anger”, which is one of the most reported emotions in prior studies (e.g. Sutton & Wheatley, 2003), 
or “anxiety”, teachers used words and phrases like “avoided watching” or “intimidating” to explain 
the negative emotion they felt about videorecording. Moreover, teachers’ descriptions of their 
emotions about videorecording did not mirror the emotions related to teaching described in the 
literature. For example, the teachers used words such as “better, feel good, felt better” more in 
expressing their positive emotions around videorecording, while the most commonly used words for 
positive emotions found in the literature in relation to teaching are “enjoyment” and “pride” (Frenzel, 
2014). 

While there was greater consistency across teachers in moving towards neutral and positive after 
cycle 3, some of our teachers did not get “used to” the videorecording over 5 cycles even though they 
appreciated the benefits of it. Although they became more comfortable or positive over time, most of 
the teachers did not feel positive emotions by coaching cycle 5. For example, Bill expressed that he 
found watching the recordings of his instruction “easier to watch” meaning he still did not feel 
comfortable about watching the videorecordings. Borko and colleagues suggest that gradual exposure 
to similar experiences helps teachers to get accustomed with recognition of the elements in their 
existing practices that need improvement (Borko et al., 2008). This suggests some teachers need 
more experience with the videorecording so their respective emotions are neutral or positive. 

One important take-away for us as professional developers and researchers is that although teachers 
experienced negative emotions, they still found the experience valuable and they wanted to continue 
the program because of the perceived benefits. This implies that teachers have professional capacity 
to prioritize their learning and growth, even if it comes with negative emotions. Researchers and 
professional developers should pay close attention to teachers’ emotions when videorecording is 
utilized, so that teachers’ negative emotions are addressed in a way to maximize their learning. 
Another point to consider is the relative nature of emotions when multiple PD sessions are used over 
time. As shown in our data, teachers often reported their emotions in the current video recording in 
comparison to their earlier video-recordings. Thus, professional developers need to listen and attend 
to teachers’ emotions carefully from the onset of their collaborative work to create a rapport, 
engendering trust and showing genuine interest in supporting teachers in their work. In so doing, we 
can more effectively utilize available tools and resources, like videorecording, to foster teachers’ 
continued engagement in professional development. 
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Mathematics teachers develop understandings about instruction across multiple settings, such as 
classrooms, workshops, and professional learning communities. When teacher teams collaborate, 
their prior teaching and learning experiences meaningfully inform their sensemaking. However, 
current research does not explicitly link teacher conversations and these multiple settings for 
learning. In this study, we seek to understand secondary mathematics teachers’ collaborative 
learning in schools as part of broader teacher learning ecologies. Using discourse analysis and a 
comparative case study design, we examine how two teacher teams’ conversations recruit external 
conceptual resources to support the development of their collective pedagogical judgment. In 
particular, these external resources offered the teams rich representations of practice and productive 
framings of teaching problems. 
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In a recent review of research on teacher collaborative discourse, Lefstein and colleagues (2019) 
noted that researchers in this nascent field rarely attend to broader contexts of teacher conversations; 
“rather, they primarily focus on the immediate context of the setting or intervention” (p. 6). This 
stands in sharp contrast to calls to develop theory and methods to study teacher learning as 
distributed across contexts (e.g., Kazemi & Hubbard, 2008). For example, consider Borko’s (2004) 
AERA presidential address: 

For teachers, learning occurs in many different aspects of practice, including their 
classrooms, their school communities, and professional development courses or workshops. 
It can occur in a brief hallway conversation with a colleague, or after school when 
counseling a troubled child. To understand teacher learning, we must study it within these 
multiple contexts, taking into account both the individual teacher-learners and the social 
systems in which they are participants. (p. 4) 

Borko’s call resonates with the PME-NA Conference’s theme of “manifestations across different 
cultures, places and contexts," pointing to the need to develop tools to look across contexts for 
making sense of learning. It also aligns with our own experience as teacher educators (Buenrostro & 
Ehrenfeld, 2019; Marshall & Horn, under review) and our overall goal to develop better ways to 
design, facilitate, and analyze teacher collaboration toward improved mathematics instruction.  

For the past four years, we have been supporting teacher learning through conversations with 
mathematics teacher teams in their schools. In these conversations, we noticed that teachers often 
build their ideas on what we refer to as external conceptual resources. We define external conceptual 
resources as frameworks, tools, and concepts that transcend different teacher learning environments, 
which are external to the local school context and echo voices external to the local team. Examples of 
such resources include teaching practices from workshops, curricula from previous schools, or 
teaching strategies introduced at a conference.  
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We have multiple motivations for looking at mathematics teacher learning across contexts. First, 
calls to study teacher learning across multiple contexts (e.g., Borko, 2004; Kazemi & Hubbard, 2008; 
Lefstein et al., 2019) coincide with recent moves in the learning sciences away from seeing learning 
as tied to specific places to learning that is distributed across environments –– multiple settings for 
individuals’ sensemaking that are sometimes referred to as learning ecologies (Barron & Bell, 2016). 
When they are invoked, external conceptual resources often echo voices from these other contexts; 
by attending to them in our analysis, we offer a method to study teacher conversations as they are 
embedded in broader learning ecologies. Second, we think there is practical value in analyzing the 
particular role of external conceptual resources in mathematics teachers’ collaborative sensemaking; 
understanding how teachers recruit these resources in their sensemaking can illuminate productive 
ways to design things like professional development, curricular tools, and analytic frameworks for 
teaching with the goal of supporting their productive use in schools and classrooms. Thus, our main 
goal in this study is to better understand how external conceptual resources contribute to mathematics 
teacher collaborative sensemaking.  

Theoretical Framework: A Situative View on Teaching and Teacher-Learning 
We take a situative perspective on mathematics teachers’ learning which supports investigations 

into activity systems and contexts that shape meanings (Borko, 2004; Greeno, 1998; Horn & Kane, 
2015). Teachers constantly make sense of pedagogies and educational reforms in the context of their 
classrooms and amidst wider socio-historical forces (Coburn, 2001; Horn & Little, 2010). For 
example, Marshall & Horn (under review) found teachers’ uptake of learning from professional 
development (PD) workshops is largely influenced by the goals and demands in their local teaching 
situations. As mathematics teacher educators, we aim to design environments that present teachers 
with opportunities to learn (OTLs) which, in turn, will support their instruction.  

To study mathematics teachers’ OTLs in conversations about instruction, we follow Horn & Kane 
(2015) who emphasize how rich conceptual resources support rich OTLs. In previous analyses of 
conceptual resources in teacher conversations, researchers attend to teachers’ representations of 
practice and productive frames for problems of practice as being consequential in how teachers make 
sense of and improve instruction (Bannister, 2018; Brasel et al., 2016; Hall & Horn, 2012; Horn & 
Kane, 2015; Vedder-Weiss et al., 2018). Representational infrastructures are “technologies, ways of 
talking, and materials that support how people engage with conceptual practices in their activity” 
(Hall & Jurow, 2015, p. 174). Representations of practice are a part of these infrastructures that make 
different aspects of teaching more or less visible (Little, 2003), and they are critical for considering 
alternative ways of working in the future (Hall & Horn, 2012). Framing is a discursive process by 
which meanings are generated by participants to imply what are relevant and legitimate ways of 
understanding and discussing a situation (Goffman, 1974). Vedder-Weiss and colleagues (2018) 
argue that productive, collaborative framing of problems of practice links teaching, learning, and 
subject-matter, creates opportunities to rethink practices, and positions teachers as having the power, 
authority and responsibility to cope with the problem. Bannister (2018) underscores that looking at 
collaborative problem frames is a useful analytic tool both in identifying problems (diagnostic 
frames) of practice and in suggesting solutions (prognostic frames). In this study we contribute to the 
research of conceptual resources in mathematics teacher conversations by investigating how, through 
teachers’ references, external conceptual resources have the potential to support both rich 
representations and productive framing of practice, which in turn can provide the collaborative team 
with rich learning opportunities. 

In our analysis of teacher learning, we draw on Horn’s (2020) conception of teacher learning as the 
development of pedagogical judgment to inform our research question: How do external conceptual 
resources contribute to teachers’ pedagogical judgment? In our work, pedagogical judgment consists 
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of three interrelated but analytically distinct components: (1) pedagogical action: choices teachers 
make, intentional or not; (2) pedagogical reasoning: different interpretations and rationales 
supporting actions; and (3) pedagogical responsibility: teachers’ sense of ethical or situational 
obligations. In this analysis, we look for evidence of teachers’ efforts towards the alignment of these 
three components during their development of pedagogical judgement. 

Data and Methods 
Research Context and Data 

To investigate the role of external resources in mathematics teachers’ collaborative sensemaking, 
we use data from a larger research-practice partnership between our research team and a professional 
development organization (PDO) for secondary mathematics teachers, where we designed a system 
for video-based feedback on teachers’ instruction. We facilitated and filmed 33 cycles of classroom 
observations followed by a lesson-debrief conversations with teacher teams in their schools, 
organized around videos of teachers’ classrooms. The primary goal was to use the classroom video to 
elicit, engage, and develop secondary math teachers’ pedagogical judgment. 
Data Analysis 

Phase 1: Conceptualizing teacher conversations as part of a larger teacher learning ecology 
and selecting cases. During our analysis of the lesson-debrief conversations, we noticed that teachers 
often built their ideas on the external conceptual resources we defined earlier. Our primary units of 
analysis were episodes of pedagogical reasoning (EPRs), which are segments of conversation 
participants reason about an issue of instruction (Horn, 2007). We created an inventory of EPRs in 
which we noted what, when, where, and by whom such resources were referenced. In building this 
inventory of EPRs, we started to better understand how the debrief conversations are discursively 
connected to other settings in the larger teacher learning ecologies (see Figure 1). For this paper, we 
chose to analyze cases around two conceptual resources from contexts often mentioned in teacher 
conversations: experiences in previous schools and workshops. We selected these two cases from 
Noether High School and Rees Middle School (see Table 1, all names of schools and teachers are 
pseudonyms) because they provide exceptionally illuminating examples of ways teachers reason with 
and about external conceptual resources in their respective local contexts.  

 
Table 1: School Context Summary 

School Student Demographics Debrief Participants 
Noether High School 60% Latinx, 15% African/African 

American, 15% Asian/Asian American, 
10% White, 5% Filipinx 

Teachers: Brad (filmed), Marisa 
and Greg. Researchers: Lani and 

Nadav 
Rees Middle School 80% Latinx, 5% Asian, 5% White, 5% 

Filipinx, 5% African/African American 
Teachers: Ezio (filmed) and 

Veronica. Researchers: Patty, Lani 
and Nadav 

 
Phase 2: Analyzing the intersection of local contexts and external conceptual resources. Using 

interaction analysis methods (Jordan & Henderson, 1995), we looked closely at videos of each of the 
two debrief episodes. To pursue our overarching research question, we asked a number of sub 
questions that allowed us to understand the meanings the teachers were negotiating and 
(re)constructing; these questions included: How are the resources referenced in teachers’ 
conversations? How are they taken up (possibly with transformations) by other participants 
(Goodwin, 2018)? How do they support reasoning about teachers’ goals and responsibilities (Horn, 
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2020)? How do they offer (or not) adequate representations of practice (Hall & Horn, 2012; Little, 
2003) and productive problem framings (Bannister, 2018; Vedder-Weiss et al., 2018)? 

 

 
Figure 1: A Schematic Representation of Collective Sensemaking as Part of Teacher Learning 

Ecologies 

Findings: Honing Pedagogical Judgment by Reconciling Local Contexts and External 
Conceptual Resources  

In the focal debrief conversations, external conceptual resources supported the development of 
teachers’ pedagogical judgment by affording richer representational infrastructure and more 
productive problem frames, which in turn increased alignment among teachers’ pedagogical action, 
reasoning, and responsibility. We illustrate this process in the following cases, where teachers 
collectively reconciled local problems of practice by mobilizing external resources for their 
sensemaking. Table 2 summarizes the two cases. 

 
Table 2: Case Studies Summary 

External Conceptual 
Resource Recruited From... Local Context Afforded... 

College 
Preparatory Math 
(CPM) curriculum 

Marisa’s previous 
school 

Noether debrief 
conversation  

May 2018 
 
 

representation of teaching as 
establishing learning 

environment. 
 

framing of the problem of 
students’ mathematical agency 
around processes of building 

classroom culture. 
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Random Grouping and 
Purposeful Grouping as 
instructional practices 

Park City 
Mathematics 

Institute (PCMI) 
workshop and 
Kagan training   

Rees debrief 
conversation 

December 2017 

representation of teaching as 
entailing judgments between 

contrasting structures. 
  

framing the problem of labeling 
students by underscoring local 

school context and teacher 
agency. 

 
EPR 1: Representation and Framing of the Problem of Leveraging Students Agency 

The first case is of a debrief conversation at Noether High School. After filming Brad’s Algebra 1 
classroom, we returned to debrief the lesson with him and his school-based team consisting of Brad, 
Marisa, and Greg. We introduced clips from this lesson to discuss Brad’s topic of interest which was 
the way he provides feedback to students. The first clip featured Brad giving a group of students a 
strong cue about how to proceed with the problem. Following Brad’s comment “I wonder if there’s a 
better question that I could have asked” the research team and teachers in the debrief then suggested 
alternative interactions that would promote more independent student thinking. For example, Greg 
suggested “why do you think that?” and Marisa suggested “how did you figure that out?” as 
alternative responses. Important to our analysis is that at this point, the conversation was focused on 
illustrations of teacher-student interactions, and that the team was motivated by a shared 
responsibility to leverage students’ mathematical agency. 

Problem-based curriculum as an external resource. After some comments about the content of 
the task, Marisa referenced her experience of teaching a problem-based curriculum, College 
Preparatory Math (CPM), in her previous school: 

I'm looking forward to hmm possibly next year having a problem-based curric- well, I don't 
know if we're going to teach geometry- what we're going to teach, but if we do teach 
geometry, if we could possibly use the CPM curriculum because one of the reasons I like 
that particular curriculum is because it's in groups from day one. Every day students are 
working in groups. That's the culture of the classroom that's built up. So, they're creating the 
meaning from doing the problems and developing the mathematics by the problem solving 
that they're doing and the teacher’s kind of just there facilitating and you're walking around 
the whole time asking the questions and guiding if they need it, but it's all coming from the 
students all the time. 

Marisa describes her experience in a classroom where students have mathematical agency and see 
themselves and their peers as resources of mathematical knowledge. She attributes it to the problem-
based curriculum, but more specifically to the structures (such as working every day in groups) that 
contribute to a collaborative classroom culture. Marisa then contrasted this experience with their 
current classrooms’ situation, where they are “going kind of back and forth” between direct 
instruction and groupwork. She perceived that students in their current classrooms get frustrated 
when teachers don't hand over answers, as in her narration of students saying––“well, just tell me, 
just tell me what it is.” The episode ended with others acknowledging that the problem involves the 
disruption of traditional classroom norms, and that even with a problem-based curriculum, students 
are always “going to struggle the first time” (Greg).  

Representation and framing. In the Noether team’s debrief, the teachers discussed the focal 
teacher, Brad’s, groupwork facilitation and ways to leverage students’ agency and communication. 
The representation of teaching made visible in this episode began with a focus on teacher-student 
interactions. Then, Marisa shared her previous experience of teaching the CPM curriculum. Drawing 
on the external conceptual resource of CPM, Marisa supplemented this representation of teaching 
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with aspects of designing a learning environment and reframed the problem of practice from the 
particularities of the teaching interactions (micro) to the construction of a certain classroom culture 
(macro). We see the new frame as productive in that it moved the conversation away from the 
problem frame of leveraging students’ agency as transient and technical and yet still positioned the 
teachers as having the power to address it.  

Pedagogical judgment. Implicit in this reframing is Marisa’s reasoning that to leverage students’ 
mathematical agency, teachers’ differing responses is not enough; teachers need to engage in a more 
macro pedagogical action, in this case setting collaborative classroom norms from the first day. This 
frame offered the team images of new actions that support students’ mathematical agency. We argue 
that Marisa’s experience in her previous school with the CPM curriculum was a meaningful external 
resource for learning in this conversation; CPM was not used as a resource to reason about CPM. 
Teachers in conversation were not trying to teach CPM as a new curriculum; rather, they reasoned 
with CPM about groupwork facilitation, towards a better alignment of the team’s pedagogical actions 
with their pedagogical responsibilities.  
EPR 2: Representation and Framing of the Problem of Labeling Students  

The second case comes from a debrief conversation at Rees Middle School. We filmed Ezio’s 
classroom and returned after a few days to debrief the lesson with him and his colleague Veronica. 
We introduced clips from this lesson to discuss Ezio’s topic of interest which was group dynamics. 
Ezio’s lesson objective was to help students distinguish between linear and nonlinear equations, and 
he structured his 90 minutes lesson around two group tasks. Students were randomly assigned to 
groups of three. After listening to some student conversations in the debrief, Ezio became concerned 
that not all students were contributing to their group conversations, and we discussed whether 
providing more structure might have helped students work more productively together. For example, 
Ezio mentioned a structure where the student holding the marker can’t talk, and Veronica wondered 
if group roles would have been helpful.  

Random and purposeful grouping as external resources. At this point, a member of the research 
team (Patty) prompted the teachers to elaborate on their understanding of group dynamics. Ezio 
responded by initially distancing himself from the practice of random grouping used at PCMI: “at 
least in PCMI, I really did not agree with the random grouping.” Veronica pressed him on this, 
saying, “But you are doing random grouping.” He confirmed that he was: 

Ezio:  Yeah. I let the computer pick it out. I've been trying it out. We got Kagan training 
Patty:  mm-hmm 
Ezio:  a couple years ago and at least what they said made sense, where it's purposeful—  
Veronica: Purposeful grouping. 
Ezio:  Yeah, like a high low—  
Patty:  Yep. 
Ezio:  There was a structure to everything. and uh— 
Patty:  so you're wondering if—  
Ezio:  I was wondering, I didn't agree with PCMI but I wanted to try it out to see. 
Patty:   Okay 

Ezio repeated twice how he first did not agree with random grouping at PCMI. He contrasted 
random grouping with purposeful grouping, which was introduced to him a few years before and 
made sense to him. However, Ezio then narrated how random grouping became a resource for him to 
experiment with. He continued by connecting his experience to the local school context and to an 
institutional practice he saw as inequitable (tracking): 

Ezio:  I know where my bias is but— 
Patty:  Yeah. 



Reconciling local contexts and external conceptual resources in mathematics teachers’ collaborative sensemaking 

	 1806	

Ezio: Let's try it out. and I do— one thing I do fear... (1.5-second pause) so like what's bothering 
me in this school, we do— ok unofficially, unofficially we track kids. 

Patty:  Yeah. 
Veronica: Officially. 
Ezio:  No, unofficially.  
Patty:  Yeah, well, we talked about this, right? last time.  
Ezio: so I've had kids tell me, "Oh, we're in the dumb class." They know; they already have that 

label. 
Lani:  Is this one of the groups of kids that is in the “dumb class”? 
Ezio:  No, no. 
Veronica: No. 
Lani:  Okay.  
Veronica: ...like in a Kagan, when you purposefully group, the kids automatically know. 
Lani:  Yeah. 
Patty:  Yeah, which they do. 
Veronica: Whereas if you randomly group, they don't know. 
Lani:  Right. 
Ezio: Right, so I don't want to subconsciously be telling kids, "Oh, I think you're awesome." 
Patty:  Yeah, yeah. 
Ezio:  That's the one thing I did like about the random grouping. 

Ezio contrasted random and purposeful grouping twice: First, when introduced to them; while he 
did not agree with random grouping, purposeful grouping made sense to him. Second, when 
evaluating their contribution to his sense of pedagogical responsibility; even though purposeful 
grouping made sense to him, it functioned to reproduce what was “bothering in this school.” In 
contrast, even though he did not agree with random grouping for its lack of structure, the one thing 
that he did like about it was that it disrupted the institutional process of labeling kids. 

Representation and framing.  An aspect of teaching that becomes visible in Ezio’s representation 
of teaching is that teachers are constantly exposed to many different, sometimes even contrasting 
instructional practices that they need to compare, contrast, and reason about. This representation, 
supported by the reference of the two external conceptual resources of random and purposeful 
grouping, afforded a framing of the problem of labeling kids that (1) underscores the local school 
context as Ezio experiencing it; and (2) positions the teachers as having “the power, authority and 
responsibility to cope with the problem” (Vedder-Weiss et al., 2018).  

Pedagogical judgment. Ezio used the story of his engagement with random grouping, first at PCMI 
and then in the ongoing work of teaching, to reason about his pedagogical actions, and to stress their 
connection to his sense of responsibility to disrupt what he saw as unethical tracking in Rees Middle 
School. Specifically, random grouping could ensure that students did not perceive themselves to be 
“lower” or “higher” than others with regard to mathematical placement or ability. Puncturing the 
conversation at multiple points, random and purposeful grouping served as resources to support Ezio 
and Veronica’s reasoning about their instruction. Ezio described himself as a reluctant user of 
random grouping while carefully articulating the reasons to use the practice. By doing that, Ezio 
made visible pedagogical judgments as an ongoing aspect of his practice, and the team consolidated 
connections between their actions and their shared sense of responsibility. 

Discussion 
We presented cases of mathematics teachers collectively reconciling local contexts and external 

resources. Teachers are exposed to many different, sometimes even contrasting, conceptions of good 
teaching (Britzman, 2012) in their larger learning ecologies, and external resources often aid in their 
sensemaking with and about these conceptions. By attending to these external resources, we 
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underscore a unique role of collaborative sensemaking opportunities in the overall teacher learning 
ecologies. Specifically, we build on previous situated research of teacher conversations to offer a 
discursive mechanism by which external conceptual resources contribute to teachers’ pedagogical 
judgment: by affording richer representational infrastructure and more productive problem frames, 
teachers were able to bring their pedagogical responsibility, actions, and reasoning into closer 
alignment.  

As a field, we came to acknowledge the importance of what the PME-NA Conference theme 
describes as “manifestations across different cultures, places and contexts." We see this work on 
external conceptual resources as a step towards developing better ways to design, facilitate and 
analyze mathematics teacher learning across contexts. 
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In this methodology paper, we present a methodology for characterizing how teachers use coaches’ 
suggestions. We identified suggestions from planning conversations and explored the extent to which 
the teachers implemented the suggestions in enacted lessons. The planning conversations took place 
within online content-focused coaching cycles. A primary challenge confronting content-focused 
coaches when working one-on-one with teachers is finding a productive balance between giving 
suggestions and inquiring into teachers’ practices through reflective questioning. This paper 
articulates a process for identifying suggestions made by a coach during a planning conversation 
and an analytic process for examining how a teacher takes up the suggestion during lesson 
implementation. We discuss the methodological challenges we encountered and tradeoffs in our 
decisions related to low- and high-inference claims. 

Keywords: Inservice Teacher Education/Professional Development, Research Methods, Coaching 

Coaching as a form of professional development is a promising practice (Campbell & Griffin, 2017; 
Ellington, Whitenack, & Edwards, 2017). Within mathematics education, content-focused coaching 
(e.g. West & Cameron, 2013) is a common model. Content-focused coaching involves iterative 
cycles in which a coach works one-on-one with a teacher, with a focus on students’ mathematical 
learning goals. Each coaching cycle contains three sequential components: a pre-conference 
discussion to plan a lesson; a collaboratively taught lesson; and a post-conference discussion to 
debrief the lesson (Bengo, 2016; West & Staub, 2003). 

Research on coaching has highlighted two competing stances for how coaches talk with teachers: 
reflective or directive (Deussen, Coskie, Robinson, & Autio, 2007; Ippolito, 2010; Sailors & Price, 
2015). Coaches using a reflective stance emphasize collaborative inquiry in which the coach elicits 
ideas from the teacher; these ideas become the basis of the coach-teacher discussion (Ippolito, 2010). 
Coaching moves associated with a reflective stance include probing questions and low-inference, 
non-evaluative observations as means to catalyze teacher thinking (Costa & Garmston, 2016). In 
contrast, a directive coaching stance involves the use of suggestions and evaluative feedback 
(Ippolito, 2010). The challenge in content-focused coaching is to find the right balance between 
when to provide a teacher with direct assistance in the form of a suggestion and when to employ an 
inquiry stance (West & Staub, 2003). It is crucial for researchers within mathematics education to 
explore these stances and their impact on teacher learning and uptake of new practices.  

Despite the importance of mathematics coaches strategically choosing appropriate actions when 
working with teachers, little is known about how mathematics coaches using a content-focused 
coaching model interact with teachers (Gibbons & Cobb, 2016). Furthermore, little research exists on 
how direct assistance from a coach during a coaching cycle supports a teacher to implement a lesson. 
As a first step in addressing this gap, this paper outlines a methodology for analyzing how teachers 
take up a coach’s suggestions when planning and enacting lessons. Specifically, this study is guided 
by the question: How do we characterize the extent to which a teacher uses the suggestions of a 
coach during the implementation of a lesson? This methodology would help mathematics educators 
better understand the impact of a coach’s suggestions on the pedagogical actions of a teacher and 
serve as a first step towards the larger inquiry of how the discursive actions of a coach impact 
teachers’ practices. 
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Methodological Processes Applied to Coaching Conversations 
To identify the suggestions made by the coach during the collaborative planning conversations, we 

used results from a broader analysis of the coaching conversations. These results came from a 
broader study that analyzed planning and debriefing conversations within content-focused coaching 
cycles from four coaches paired with eight teachers over a period of two years. In that broader 
analysis, we focused on the discursive moves of mathematics coaches during coaching cycles. We 
developed a codebook to analyze the transcripts of planning and debriefing discussions between 
coaches and teachers; this codebook characterized the discursive moves of the coaches and teachers 
as well as the content of the conversations. The section of the codebook that focused on the 
discursive moves of the coach was comprised of five broad categories; including suggestions (see 
Figure 1). We defined a suggestion as a statement from the coach recommending an action for the 
teacher. 
 

 
Figure 1: Excerpt from the larger codebook focusing on coaching discursive moves 

 
We parsed the transcripts of the planning and debriefing conversations into stanzas, which included 

a coach’s statement and the participant’s response, as well as text needed for context (Saldaña, 2013). 
This broader data set included the analysis of n = 1719 stanzas from 41 transcripts of coaching 
conversations. We coded stanzas in pairwise teams after a lengthy calibration process that involved 
five researchers. We met via video conferencing software, Zoom, to reconcile disagreements. Kappas 
ranged from 0.39 to 0.65, considered moderate to strong reliability (Landis & Koch, 1977).  

The following is an excerpt from a coach’s comments that was coded as a suggestion:  
One of the really nice moves you can do if the group shares a thought about something, and 
it’s somewhat ambiguous, is you can turn to the class and say, “Can someone else use their 
own words to explain what Dave is saying?”  

In this comment, the coach recommended the teacher prompt students to paraphrase a peer’s 
explanation as a means to increase student participation in classroom discussions. 

Piloted Version of Data Analysis Process for Coaches’ Suggestions 
The purpose of this paper is to detail a methodological process for identifying suggestions made by 

coaches and characterizing how those suggestions were taken up by the teachers during lesson 
implementation. We wanted to understand how teachers incorporated the suggestions coaches 
provided during planning meetings into their teaching. We describe our current analytic attempts to 
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highlight the methodological affordances and challenges of the work and to gain insight from others 
in the mathematics education community. Knowing the extent to which teachers follow coaches’ 
suggestions in their teaching is important information for coaches as they plan to support teachers.  
Coding Suggestions from the Coaching Transcripts 

We collected all stanzas previously identified as involving a coach’s suggestion. If a stanza 
contained multiple distinct suggestions (i.e. more than one action was recommended by the coach), 
each suggestion was placed into a different row in the spreadsheet where we tracked the suggestions, 
with the goal of distilling a coach’s suggestions to the smallest granular size. This process converted 
the unit of analysis from a stanza to an individual suggestion. For example, a coach made the 
following statement to the teacher during a planning conversation:  

Whereas, if you really want them to be able to understand the formula, you’re going to be 
asking different questions about, where did this come from? What do we know about 
volume? What does volume mean? Those kinds of more probing questions as they’re 
working or as they’re thinking about it, and as you’re launching. Then, what I’m also 
thinking about is your ticket out the door idea. This idea of, do you want to do some 
checking in with students in terms of their understanding about volume related to the 
cylinder and the cone, either before they leave you Monday, or possibly Tuesday, so that you 
get a sense of, beyond just your questioning and asking each individual group, would you 
want to have—would it be helpful to have some kind of—some documentation to look back 
at in terms of students’ understanding? I’m just thinking of a little, mini half-sheet, or 
something, if it would be, again, helpful to figure out where kids are in their thinking. 

We coded this statement as two distinct suggestions. First, the coach suggested that the teacher ask 
different questions about the concept of volume. Then, the coach provided suggestions about the 
ticket out of the door. These two suggestions were listed separately.  

Next, two coders individually coded each of the coach’s suggestions for the content of the 
suggestion using the codebook (see Figure 2).  
 

 
Figure 2: Content codebook, with categories in purple and codes in yellow.  

 
Each coder created a concise statement capturing (a) the general nature of the suggestion and (b) 

the specific action in the suggestion recommended by the coach (see Figure 3). The coders then met 
to reconcile and reach consensus for their content codes and created statements. For example, during 
a planning conversation, a coach said: 

Kids are always surprised that getting one of each happens so much more often than getting 
two of the same. Your experimental data is definitely going to show that. What if you asked 
them, “If you toss a coin twice, what are the things that could happen?” You ask them that at 
the beginning, just to get an idea of where they are. 
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We applied the content codes of question/questioning, assessment, and introduction/launch because 
the coach recommended the teacher ask a question during the launch phase of the lesson to assess 
student thinking prior to beginning a task (see Figure 3). The general nature of the suggestion was 
written as: “Ask students questions during launch to assess their understanding.” The specific action 
suggested by the coach was captured by the coders through the statement, “Ask the question ‘If you 
toss a coin twice, what are the things that could happen?’ during the launch to assess student 
understanding.” 

 

Stanza Excerpt Content 
Codes 

General Nature 
of the 

Suggestion 

Specific Action in 
the Suggestion 

Kids are always surprised that getting one of 
each happens so much more often than getting 
two of the same. Your experimental data is 
definitely going to show that. What if you 
asked them if you toss a coin twice, what are 
the things that could happen? You ask them 
that at the beginning, just to get an idea of 
where they are. 

Assessment, 
Question/ 
Questioning, 
Introduction/ 
Launch 

Ask students 
questions 
during launch 
to assess their 
understanding 

Ask the question “If 
you toss a coin 
twice, what are the 
things that could 
happen?” during the 
launch to assess 
student 
understanding. 

Figure 3: Excerpt from the coding spreadsheet 
 
If there was not a specific action within the suggestion, the specific action in the suggestion column 

was left blank. Additionally, if the suggestion was deemed to not be observable within the lesson 
video, we coded the suggestion as not observable. For example, if the coach suggested an action for 
the teacher in future lessons beyond the current coaching cycle, the suggestion would be not 
observable during the lesson video. 
Coding Enactments of Suggestions 

The coders independently watched the video of the implemented lesson to identify how the teacher 
followed the general and specific suggestions from the coach. For each suggestion marked in the 
spreadsheet generated from analyzing the coaching transcripts, the coders worked on two levels. 
First, they considered if the general nature of the suggestion was present or not present in the lesson. 
Second, they considered the extent to which the specific action of the suggestion was taken up by the 
teacher. To code the specific action, they chose between the following codes that represented a 
continuum of uptake: not present, partially adhere, mostly adhere, or fully adhere (see Table 1). 
 

Table 1: Coding Scheme for a Teacher’s Enactment of a Specific Suggestion 
Code Description Example (connected to Figure 2) 

Not present The teacher did not enact any part of the 
coach’s suggestion during the lesson. 

The teacher did not ask any questions 
during the lesson launch. 

Partially present The teacher enacted only a single part of 
the coach’s suggestion during the lesson. 

The teacher asked a question during 
the lesson launch but the question does 
not relate to assessing understanding. 



Examining how teachers enact the suggestions of a coach: Critique of a methodology 

	 1813	

Mostly adhere The teacher enacted multiple, but not all, 
parts of the coach’s suggestion during 
the lesson. 

The teacher asked a question during 
the lesson launch to assess 
understanding but used a question 
worded differently the question 
suggested by the coach. 

Fully adhere The teacher enacted all parts of the 
coach’s suggestion during the lesson. 

The teacher asked the exact question 
suggested by the coach during the 
lesson launch. 

 
In cases where the teacher did not have the opportunity to enact a suggestion from the coach, the 

instance was coded as no opportunity. For example, if the coach suggested the use of a specific 
teacher talk move during a whole-class summary discussion of a task (e.g. Smith & Stein, 2011) but 
the class period ended before the teacher was able to begin the summary discussion, we coded that as 
the teacher not having the opportunity to enact the coach’s suggestion. The code no opportunity is 
different than not observable in that no opportunity was based on a suggestion that could be 
observable but was beyond the scope or inclusion of the implemented lesson due to constraints such 
as time or classroom happenings in the moment of the lesson. Figure 4 contains a flowchart 
summarizing this analysis process.  

 

 
Figure 4: Flowchart of analysis process 

Methodological Affordances and Challenges 
In this section we describe the methodological affordances of our analysis process as well as the 

challenges we encountered when: a) identifying suggestions given by the coach within conversation 
transcripts; b) categorizing a coach’s suggestions based on how the suggestion invited action from 
the teacher; and c) characterizing the extent to which teachers took up a suggestion when teaching a 
lesson. We discuss these affordances and challenges within each step of our analysis process to 
highlight methodological issues when characterizing direct assistance from coaches and the impact of 
that direct assistance on teachers’ instructional practices. 
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Identifying Suggestions 
The first challenge we encountered was establishing a reliable coding process for determining when 

coaches made suggestions. The coaches used a range of discursive moves when recommending an 
action to a teacher (Gillespie, Amador, & Choppin, 2019), making the identification of suggestions 
problematic. For example, a coach said:  

Another idea for your launch is, again, I don’t know how I feel about this, but is to give them 
a pool with side length five, and actually have them work on their—or do an independent 
time of—and explaining the tiling. You’ve got this patio going around the outside of the five 
by five square and how many tiles would it take for that patio. 

This statement was coded as a suggestion because the coach recommended a task and participation 
structure for the teacher to use during the introduction of a lesson. A similar call for action was also 
expressed by a coach through the question, “What if you did just one example, not of a one by one, 
but a five by five or something?” Even though this discursive move is a question, the 
recommendation of modifying an activity is embedded within the question. Thus, this statement was 
also coded as a suggestion. We coded discursive moves as suggestions if the move contained an 
explicit recommendation for action or a clear, implicit recommendation embedded within a 
conversational move. This decision allowed the coding process to capture a wider variety of 
suggestive moves from coaches. However, because this decision required the researchers to analyze 
conversational moves for the underlying intent, the coding entailed some inference of intent. Besides 
acknowledging the inferential nature of some of the coding, we have struggled with how to 
methodologically characterize the nature of our inferences. In summary, accurately identifying 
suggestions from a coach requires analyzing discourse for both explicit and implicit 
recommendations directed at the teacher; analyzing for implicit intent, however, causes the coding 
process to become increasingly inferential. 
Characterizing Suggestions 

The second challenge in developing the analytic process involved characterizing the actionable 
nature of the suggestions. Initially, we realized that many of the suggestions were broadly stated, 
providing considerable latitude in how teachers might interpret and use them. For example, during a 
planning conversation, a coach said, “You probably want to look for students that have done the 
different strategies so that you know who you want to share how they did it, how they organized it.” 
In this instance, the coach recommended the teacher monitor student thinking in order to select 
students to share different strategies during a summary discussion, but did not offer specific guidance 
as to which strategies to select. In the absence of a specific action, we coded the suggestion as a 
general suggestion and then coded for whether or not that general action was present or not present 
during the teaching of the lesson. However, the general nature of the suggestion made it more 
difficult to consider the tangible impact of the coach’s suggestions. We found other suggestions to be 
specific; these suggestions provided exact language describing an action a teacher should use during 
the lesson. For example, a coach said, “You could even ask a question about—there’s eight options 
there. ‘If you play it 40 times, how many times would you expect so-and-so to win, and how many 
times would you expect the other guy to win?’” In this example, the coach recommended the teacher 
ask questions and provided two specific questions for the teacher to use. Suggestions that were 
specific were easier to identify in the enacted lesson and code but also represented a more localized 
impact on practice. Our coding scheme allowed us to distinguish between general and specific 
suggestions, but we were able to make more definitive decisions for specific suggestions. This poses 
a dilemma: our coding of uptake may only capture highly tangible evidence of impact while missing 
potentially more powerful and broader impact from the more general suggestions. Our challenge can 
be summarized in the following way: general suggestions have the potential to convey broader 
pedagogical principles than more specific ones, but entail greater inference when coding.  
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Characterizing Take Up of Suggestions 
A third challenge was determining the extent to which a teacher enacted the precise details in a 

specific coach suggestion. We used a continuum to code the enactments. Coding along a continuum 
for the presence of specific details in a specific suggestion entailed qualitative characterization of the 
suggestion. Our continuum had these four characterizations, from low to high presence of a 
suggestion: a) no part of the suggestion, b) a single part of the suggestion, c) multiple parts of the 
suggestion, or d) the suggestion in its entirety. As a result, we created the codes not present, partially 
adhere, mostly adhere, or fully adhere to use when coding the teacher’s enactment of specific 
suggestions (i.e. Table 1). As an example of coding a teacher’s enactment of a suggestion using this 
continuum, during a planning conversation a coach said:  

They could even try tossing it three times. You could make it into a situation where a couple 
kids are playing a game. One kid wins if all three of the tosses match. One kid wins if only 
two of them match, and is it a fair game idea? 

This was coded as a specific suggestion because the coach recommended the teacher use an activity 
and provided specific context and questions to use in the activity. During the lesson, the teacher 
facilitated an activity in which students flipped three coins but did not frame the activity as a game 
that may or may not be fair. Because only a single part of the specific suggestion was enacted by the 
teacher, the suggestion was coded as partially present. This qualitative characterization allowed us to 
describe accurately the extent to which the teacher enacted the suggestion but posed challenges 
related to the reliability of our coding. 

To limit inference and potentially support more reliable coding, our coding continuum did not 
evaluate the effectiveness of the enacted suggestion; if a specific suggestion was evident in the 
lesson, we did not then consider whether or not the enactment was productive. So, while the teacher 
carried out the suggestion, the way that happened, and the implications of what happened 
subsequently in the lesson, may not have been aligned with the coach’s intent. Avoiding evaluating 
the productiveness of the enactment of a suggestion has implications for the ways we consider the 
impact of a coach’s suggestion on teacher practice, but using a low-inference coding scheme had its 
advantages. Although the process was anecdotally deemed reliable by coders during our first round 
of coding, additional calibration will be needed to reliably code the enactment of specific suggestions 
using the four leveled codes. In summary, characterizing the ways teachers enact a specific coach 
suggestion requires the use of a continuum, posing challenges for reliability. This challenge can be 
partially mitigated by limiting focus to the ways the teacher followed the explicit language of the 
coach’s instruction, not considering intent or effectiveness; yet this limits the extent to which the data 
can be used to make claims about the impact of the coach on productive practice. 

Discussion 
Coaching is an increasingly popular professional development practice in mathematics education; 

however, more needs to be known about how coaches interact with teachers (Gibbons & Cobb, 
2016). We presented the methodological challenges and opportunities in characterizing how the 
suggestions of a coach impact the practice of a teacher. Focusing on coaches’ suggestions is one start 
to more fully understanding how coaching influences teaching practice. Researchers should continue 
to examine how the actions of a coach impact the practice of a teacher. More specifically, because 
coaches use discourse as a primary tool to engage teachers (Costa & Garmston, 2016; Heineke, 
2013), we anticipate similar challenges exist in identifying coaching discursive moves beyond 
suggestions (e.g. invitational or evaluative). Knowing how discursive moves (i.e. Figure 1, Deussen, 
Coskie, Robinson, & Autio, 2007; Ippolito, 2010; Sailors & Price, 2015) impact the development of 
teachers would be beneficial for knowing how to support teachers through coaching. Thus, the 
specific challenges discussed within this paper relate to more global challenges that will be 
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encountered during any analysis of how the discursive actions of a coach impact the practice of a 
teacher.  

By illuminating the challenges and opportunities learned through our work, we aim to support 
future researchers by emphasizing the complexity of analyzing the relationship between the 
discursive moves of a coach and a teacher’s practice. For example, when identifying a coach’s 
suggestions within varied discursive moves in a full coaching conversation, we had to consider 
language that explicitly and implicitly communicated a recommendation to capture the nuanced ways 
the coach provided suggestions. Coding is this way required us to develop rules that reliably 
connected the language of a coach to their intent to provide a suggestion. These coding decisions 
introduced inference. However, not considering intent through implicit language would have 
constrained our ability to identify instances in which coaches leveraged their expertise to share 
actionable ideas with teachers for use in a lesson. We anticipate similar challenges will be 
encountered in identifying other discursive moves of coaches. 

The second challenge was characterizing the suggestions in ways that considered the implications 
on a teacher’s enactment of the suggestion. We created two classifications, general nature and 
specific action, but found general suggestions can promote broader pedagogical principles than more 
specific ones, but require greater inference when coding. We posit this challenge will also apply to 
coding schemes attempting to capture the impact of other coaching discursive moves. For example, a 
coach using broad or general invitational moves may provide the teacher with more latitude to 
reflect, but analysis may require higher levels of inference. 

Our third challenge was limiting inference when coding for the enactment of specific 
suggestions; accomplished in part by not considering the effectiveness of the enacted suggestion. 
Low-inference coding in this context has advantages but disregarding effective enactment 
prohibits the study from claims about how the actions of a coach connects to changes in the 
quality of a teacher’s practice. In other words, our current process will allow us to make low-
inference claims about how teachers used the suggestions of the coach but prevent us from 
making claims about how the suggestions influenced the quality of the lesson. Discussion of 
these challenges invites future mathematics education researchers to consider methods to 
overcome these obstacles.  
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Much of the research on the development of professional noticing expertise has focused on 
prospective teachers. We contend that we must investigate practicing teachers as well, and in 
particular practicing secondary teachers, because they bring with them years of teaching experience 
and are situated in unique contexts. Hence we studied the longitudinal growth of the professional-
noticing expertise of a group of practicing secondary teachers (N=10) as they progressed through a 
5-year professional development (PD) about being responsive to students’ mathematical thinking. 
Results indicated that the first half of the PD supported their interpreting and deciding-how-to-
respond skills, and the second half of the PD supported their attending skills, which were already 
strong even before the PD. We compare these results with the activities that occurred in the PD and 
discuss implications for future research and PD programs.  

Keywords: Teacher Education - Inservice / Professional Development, Algebra and Algebraic 
Thinking 

Introduction 
Professional noticing of students’ mathematical thinking is a specific type of teacher noticing 

expertise, and it occurs when the teacher notices a student’s mathematical strategy during instruction 
(Jacobs & Spangler, 2017). In that moment, the teacher (a) attends to the details of the student’s 
strategy, (b) interprets the student’s mathematical understanding, and (c) decides how to respond to 
the student on the basis of the student’s mathematical understandings (Jacobs, Lamb, & Philipp, 
2010). These three component-skills occur simultaneously, are interrelated, and are interdependent. 
Additionally, this noticing expertise distinguishes itself from other types of noticing expertise that 
only include the component-skills of attending and interpreting, or that focus on issues other than the 
student’s mathematical thinking (e.g. issues of equity, representations, or funds of knowledge; 
Dreher & Kuntze, 2015; Hand, 2012; McDuffie et al., 2014). It is important to understand the 
development of teachers’ professional noticing expertise because research has shown that teachers 
who attend to student thinking support student achievement (e.g. Boaler & Staples, 2008; Jacobs, 
Franke, Carpenter, Levi, & Battey, 2007) and learn from their practice (Sowder, 2007; Wilson & 
Berne, 1999).  

Teachers can differ in their noticing patterns depending on their experiences, backgrounds, and 
education (Santagata, Zannoni, & Stigler, 2007; Miller & Zhou, 2007). Professional development 
(PD) on noticing children's thinking can improve teacher noticing (Sherin & Han, 2004; van Es & 
Sherin, 2010) and has been shown to extend to the classroom (Sherin & van Es, 2009) and support 
teacher learning after the PD is complete (Franke, Carpenter, Levi, & Fennema, 2001). With respect 
to professional noticing of students’ mathematical thinking, much of the research has focused on 
prospective teachers’ development (e.g. Fernández, Llinarez, & Valls, 2012; Fisher, Thomas, Schack, 
Jong, & Tassel, 2018; Monson, Krupa, Lesseig, & Casey, 2018; Simpson & Haltiwanger, 2016; 
Tyminski, Land, Drake, Zambak, & Simpson, 2014). Few have analyzed the development of 
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professional noticing expertise among practicing teachers (e.g., Jacobs et al., 2010; LaRochelle, 
2018). Practicing teachers differ in important ways from prospective teachers because they bring 
with them years of teaching experience to PD activities and are situated in contexts that may or may 
not be conducive to what they learn in the PD (Levin, Hammer, & Coffey, 2009). Hence, it is 
important for the field to study the growth of this expertise in practicing teachers as well. 
Practicing Teachers’ Professional Noticing of Students’ Mathematical Thinking Expertise 

We found two studies that document the growth of professional noticing expertise among practicing 
teachers. Jacobs and her colleagues (2010) showed us that for practicing primary teachers, teaching 
experience alone may not adequately support robust professional noticing expertise, and that long-
term, sustained PD may be necessary to develop these skills. They found significant positive 
differences across all three groups of practicing teachers for each component-skill of professional 
noticing, with attending reaching a ceiling level after 2 years. Hence, for practicing primary teachers, 
there is a clear need for sustained PD in order to develop this important expertise. 

LaRochelle (2018) conducted an analysis similar to Jacobs et al. (2010), comparing the professional 
noticing expertise of prospective secondary teachers, experienced secondary teachers, and 
experienced secondary teachers who had completed 4 years of long-term, sustained PD about 
responding to students’ mathematical thinking. Secondary teachers differ in important ways from 
primary teachers because they experience different school structures (Blatchford, Bassett, & Brown, 
2011; Ferguson & Fraser, 1998) and exhibit different conceptions about mathematics, students, and 
teaching (Weinstein, 1989). However, LaRochelle’s findings did indicate that for many practicing 
secondary teachers, teaching experience may not adequately support this expertise. In particular, the 
experienced secondary teachers exhibited similar professional noticing skills to the prospective 
secondary teachers, whereas the experienced secondary teachers with four years of sustained PD 
exhibited stronger professional noticing skills than the experienced secondary teachers.  

However, it is unclear from LaRochelle’s (2018) study what trajectories of development might exist 
for practicing secondary teachers, and what activities might support this development. Hence, we 
build on his study by documenting the longitudinal growth of a group of practicing secondary 
teachers as they progressed through a 5-year PD program that focused on being responsive to 
students’ mathematical thinking. Specifically, we measure the growth that we saw in each 
component-skill of professional noticing at various points in time during the long-term PD. 
Consequently, we answer the following question: What changes in experienced secondary teachers’ 
professional noticing expertise can be seen across 5 years of sustained PD about being responsive to 
students’ mathematical thinking? Answers to this question allowed us to compare the growth we saw 
with the activities that occurred during the PD, and we share implications of these results in our 
discussion section. 

Methods 
Participants 

Initially, we selected a cohort of 32 master teachers (16 mathematics and 16 science) for a five-year 
fellowship through a highly competitive application process that included analyzing student work, 
video clips of teaching and an interview (Nickerson et al., 2018). In addition to evidence of student-
centered teaching, we sought teachers who had a disposition as a learner. When they began, the 16 
mathematics teachers (who are the focus of this paper) had 2 – 30 years of teaching experience, with 
an average of 13 years.  All teachers came from high-needs school districts in the south-western 
region of the United States. Due to attrition (e.g., moving, changing content areas, and the like), we 
have longitudinal data for 10 of the teachers.  
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Mathematics Teacher PD 
Here we describe the nature of the PD over the five years of the PD program. We shifted the PD 

activities over the five years, foregrounding some activities in the first few years and others in the 
subsequent two years. The focus of the PD in the first few years was on further development of 
content knowledge and pedagogy. In the latter years, the PD was more explicitly focused on 
developing teacher leaders. We describe the nature of these activities over time. 

In the first year, teachers watched and discussed videotapes of teaching and were introduced to the 
professional noticing skills of attending to, interpreting, and deciding how to respond to students’ 
mathematical thinking. The PD began with a teacher educator interviewing a student to illustrate the 
challenges and affordances inherent in one-on-one interviews. Teachers discussed how to conduct an 
interview, including the importance of wait time, questioning, and avoiding directing students to a 
particular strategy or answer; and what one might learn from an interview, such as how students 
approach problems, what one can learn from incorrect responses and how those are often steeped 
with kernels of understanding, students’ affect, and so on. The teachers, working in pairs, then 
interviewed secondary students.  

During subsequent PD sessions, the teachers engaged in many other activities that allowed them to 
discuss students’ content-specific ideas and how to build on those ideas. For example, in year 1 
teachers solved pattern-generalization problems in multiple ways and made connections among the 
solutions, and discussions of student thinking naturally occurred during these activities. Teachers 
also discussed interviews that they conducted with students at their schools and brought artifacts of 
student work across a variety of content areas to the PD sessions. 

In addition to activities that focused on individual students, teachers also learned about complex 
instruction (Cohen, 1994) and discussed issues related to facilitating group work. During the third 
year, teachers, accompanied by teacher educators, traveled to school sites to observe each other teach 
and then debrief and reflect on the experience. Teachers also coached each other in team-teaching a 
group of middle school students. Discussions of students’ ideas were always framed using the 
Professional Noticing Framework. 

Toward the end of year 3 and throughout year 4, we began a more explicit focus supporting teachers 
in learning how to lead PD. Activities included selecting artifacts and rehearsing situations they may 
face in their leadership practice. In year 5, they engaged in lesson study, and the lesson debriefs in 
the lesson study were explicitly structured to attend to and interpret student ideas before discussing 
how to modify the lesson.  

The PD activities described above align with what the literature has shown to be productive 
activities for supporting teachers’ professional noticing expertise (Fisher et al., 2018; Jacobs et al., 
2010; Monson et al., 2018). In general, these studies have shown that activities such as doing 
mathematics together, learning about students’ mathematical thinking through frameworks and 
research articles, decomposing (Grossman et al., 2009) the practice of professional noticing, and 
practicing the component-skills of professional noticing with written artifacts, video artifacts, and in 
one-on-one interviews with students can support teachers’ professional noticing skills. 
Data Collection 

In May, 2013, we collected (Y0) baseline data; we repeated data collection in year 3 (Y3) and again 
in Year 5 (Y5). As part of the data collection, participants analyzed and responded to prompts about 
the Pattern Generalization Video, a video-recording of a class of middle school students engaged in a 
figural pattern generalization task with beams and rods (National Center for Research in Mathematics 
and Science Education, 2003).  

Pattern Generalization Video. In the Pattern Generalization Video, students are considering a set 
of rods that are being connected in a way that creates a beam (see Figure 1). The rods are connected 
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to form triangles, and the length of the beam is the number of rods that form the bottom. Students 
begin by finding a recursive pattern based on beams of lengths 1, 2, 3, and 4. Then, students are 
challenged to find an explicit rule for finding the number of rods for a beam of any length. Near the 
end of the video, two groups of students share. The first group sees the number of rods that make up 
the top of the beam (L-1 rods), the number of rods that make up the middle of the beam (2L rods), 
and the number of rods that make up the bottom of the beam (L rods). They recognize that the total is 
the sum of these three sections, and write L + (L-1) + (2L) = total. The second group to present 
deconstructed the beam in a different way; instead, they see a set of 4 connected rods, a triangle with 
a rod on top, and they iterate this pattern from left to right until they reach the last set of 4 rods, 
where they have to erase the last rod on top, and write the equation, total = 4L - 1. Participants have 
opportunities to notice ideas such as quantitative reasoning, use of algebraic symbols, meanings for 
operations and symbols, and other generalization concepts (Jurdak & El Mouhayar, 2014; Lannin, 
Barker, & Townsend, 2006). 

 

 
Figure 1. A beam of length 4 has 15 rods. 

 
Prompts. After watching the video, the participants responded to the prompts listed below. The 

prompts were adapted from Jacobs and her colleagues (2010), and are related to the three 
professional noticing component-skills:  

1. (Attending) Describe in detail what the two groups of students who presented at the board did 
in response to the task.  

2. (Interpreting) What did you learn about these students’ mathematical understandings?  
3. (Deciding how to Respond) Pretend you are the teacher of these students. What problem(s) 

might you pose next, and why?  
Data Analysis 

Analysis procedures followed those of Jacobs et al. (2010). Three researchers independently coded 
the blinded responses for each of the component skills and then discussed codes to resolve any 
differences. For attending responses, researchers analyzed the extent to which participants attended 
to the details of the students’ strategies. This coding involved identifying the important details of 
each student’s strategy and counting the number of details each participant shared. For interpreting 
responses, researchers analyzed the extent to which participants interpreted the students’ 
understandings, which involved looking for evidence that participants interpreted specific and 
nuanced understandings that were consistent with the students’ work and with the research on 
students’ pattern generalization skills (e.g. Jurdak & El Mouhayar, 2014). For the deciding-how-to-
respond responses, researchers analyzed the extent to which participants based decisions on the 
students’ mathematical understandings. This analysis involved looking for evidence that participants 
connected their decisions to the students’ mathematical ideas, provided specific problems and/or 
number choices in the problems they selected, provided a rationale that was consistent with the 
student work and the research on students’ pattern generalization skills, and provided evidence of 
anticipating or building on the students’ thinking. Ultimately, each of these component skills was 
assigned a score of 0, 1, or 2. 
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Findings 
In Table 1, we provide the mean scores of the ten participants, at three time points, in response to 

the Pattern Generalization Task, described above. Attending scores started high, remained stable at 
Y3, and increased to a ceiling level in Y5. Interpreting scores were modest at Y0, grew in Y3, and 
then remained stable. Means for deciding how to respond started low (most participants provided 
lack of evidence for deciding how to respond on the basis of students’ mathematical ideas), then rose 
relatively dramatically by Y3, and remained stable.  

 
Table 1: Mean Scores in the three component skills for Y0, Y3, Y5 

 Attending Interpreting Deciding how to Respond 
Year Y0 Y3 Y5 Y0 Y3 Y5 Y0 Y3 Y5 
Mean 1.4 1.4 1.9 0.7 1.0 0.9 0.3 0.9 0.9 
 

Examples 
In this section, we share examples of two participants who exhibited significant improvements in 

scores on Attending to the details of students’ strategies and on Deciding How to Respond from Year 
0 to Year 5. 

Adam. In Year 0, Adam’s responses provide insight into both the relative importance of students’ 
ideas and the detail with which they were shared (see Table 2). For example, in Year 0, Adam 
recognized that both groups of students connected their formulas to the model, but did not provide 
details of the strategy. For example, beyond saying that each student used a formula, the actual 
formula and the students’ explanations were not shared. The descriptions were so general that one 
would be hard-pressed to be able to recreate the strategy, or be able to use what was shared to plan 
next steps for instruction. In contrast, in Year 5, Adam was able to share the specific formulas that 
each student used, and provide details about how students connected their formulas to their physical 
representation of the pattern. This response signifies a change in response from Years 0 to Year 5, 
not only in the number of details provided but, also implicitly, in the value that Adam placed on the 
students’ strategies. We conjecture that because Adam valued students’ ideas and had learned more 
about students’ thinking about pattern generalization, he paid close attention to them and was thus 
better able to recall those details.  

 
Table 2. Adam’s Responses to Attending to the Details, Year 0 to Year 5 

Year 0 Lack of  Evidence 
Student 1: I do not remember. I’m going to assume Tristan is the last girl who presented. The 
students presented their formula algebraically. Next, they connected the symbols with their 
model. The students who were part of the group were there for support. Before they presented, 
they were engaged in the discussion. 
Student 2: She also presented her formula and connected the symbols with the model they had 
built. 

Year 5 Robust Evidence 
Student 1: She explained her formula L+(L-1)+2L= total by connecting each part of the formula 
to the beam diagram. She explained the bottom of the beam was “L”, the top of the beam was 
the length of the bottom minus the one rod and the total middle rods was 2 times the length of 
the base of the beam. 
Student 2: She also explained her formula which was 4L-1. The teacher asked her to explain 
how [the formula] was connected to the diagrams. She pointed at the rods beam diagram 
showing how the rods enclose 4 complete triangles but at the end you are missing one rod to 
complete the figure. [draws two figures and notates each as follows: 4(1)-1 and 4(2)-1]. 
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Ella. We share the example of Ella to highlight changes from Year 0 to Year 5 in deciding how to 

respond (see Table 3). First, in Year 0, the problem Ella selected serves a funneling function toward a 
correct answer (Andrews & Bandemer, 2018) when Ella wanted her students to answer a question 
about whether the two formulas are, in Ella’s words, “the same.” Then, in the rationale, Ella appears 
to use directive language by sharing that she wanted students to see that the generalizations are 
equivalent, rather than, for example, explore whether the generalizations are equivalent. Her 
language “see that” speaks to funneling toward a correct answer rather than an openness to exploring 
and building on students’ ideas or anticipating other student responses. In contrast, in Year 5, Ella 
suggests four questions, two that are specific to Tristian’s and Beverly’s formulas, and two that 
reflect an openness to learning about students’ ideas. Two of the questions that Ella posed are 
specific and specifically related to the students’ previous approaches.  Further, her question, “What 
do your results tell you about both generalized formulas?” coupled with her rationale about 
questioning reflects a stance that values students’ ideas and provides students with opportunities to 
reflect on the connections between the two formulas, rather than funneling students toward a single 
response. These kinds of changes reflect the sorts of responses we would hope to see and that 
teachers can eventually enact with their students in the classroom. 

 
Table 3. Ella’s Responses in Deciding How to Respond, Year 0 to Year 5 

Year 0 Lack of  Evidence  
Problem or Problems: I may ask students if these 2 formulas are the same.  
Rationale: The purpose being for students to see that even though the problems were 
deconstructed and generalized differently that the end result, the generalizations are equal. 
[italics added] 

Year 5 Robust Evidence  
Problem or Problems: Can we use Tristan’s equation to find the number of rods in a beam of 
length 10? What about Beverly’s? How do the answers compare?  What do your results tell you 
about both generalized formulas? 
Rationale: This questioning would hopefully lead students to the idea that these 2 generalized 
expressions are equivalent.  

 
Change in Responses. Looking across both sets of responses provides the reader with the 

opportunity to see how responses for attending and deciding-how-to-respond changed over time. In 
both cases, the responses became more detailed and reflected a valuing of and curiosity about 
students’ ideas. This orientation is one that we know is generative. That is, teachers who are attuned 
to and curious about their students’ ideas continue to grow in their mathematics teaching practice 
long after PD has ended (Franke et al., 2001), and so improved professional noticing is an outcome 
we seek not only for the specific expertise that teachers develop, but also for their orientation toward 
students that continues to aid their own learning for years to come.  

Discussion: The Development of Practicing Secondary Teachers’ Professional Noticing 
Expertise and Related PD Activities 

In our study we found growth from Y0 to Y3 in the Interpreting and Deciding How to Respond 
component-skills. In the first three years, the teacher educators spent much time engaging teachers in 
activities and discussions around individual students’ ideas, including interviews, analyzing video 
and written artifacts, and observing each other teach with a protocol that focused on the students’ 
thinking. As other studies have shown (e.g. Jacobs et al., 2010; Monson et al., 2018), these 
experiences provided many of our teachers with opportunities to learn about and build on student 
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thinking in a rich way and supported them to develop a disposition to build on student thinking, both 
of which may have helped them to develop their interpreting and deciding-how-to-respond skills. We 
believe that the opportunities to consider the research on student thinking in pattern generalization 
and investigate a single student’s (or small group of students’) ways of reasoning allowed many of 
our teachers to develop their understanding of students’ learning trajectories within the domain of 
pattern generalizations, which we posit is an important component of developing one’s interpreting 
and deciding-how-to-respond skills (Nickerson, Lamb, & LaRochelle, 2017).  

However, our results indicate that many teachers’ interpreting and deciding skills had room for 
improvement. This differs from Jacobs et al.’s (2010) study of primary teachers, wherein most had 
demonstrated robust professional noticing skills after 4+ years of PD. As Nickerson et al. (2017) 
point out, there is a difference between the student thinking frameworks for secondary mathematics 
and for primary mathematics, in that the student thinking frameworks for primary mathematics are 
much more explicit and well-connected than those available for secondary mathematics. It is likely 
that well-connected and detailed learning trajectories at the secondary level could help teacher 
educators further support teachers’ professional noticing expertise. For example, we noticed that the 
video artifact we selected showed students constructing explicit symbolic generalizations that also 
made connections to the figure, which is a high level of sophistication of generalization skills (Jurdak 
& El Mouhayar, 2014; Lannin et al., 2006). During the PD activities, teachers talked about some of 
the earlier stages of students’ generalization skills, such as recursive thinking. However, what fruitful 
directions should teachers pursue after students demonstrate sophisticated generalization skills?  

With respect to the attending component-skill, we did not see growth from Y0 to Y3. This also 
differs from Jacobs et al.’s (2010) study of primary teachers, wherein the primary teachers reached a 
ceiling level of attending skills after 2 years. However, we noticed that many of the secondary 
teachers in our study exhibited strong attending skills prior to engaging in the PD. Our teachers were 
specially selected from a large pool of applications to participate in the 5-year PD program, which 
may have contributed to our results (Nickerson et al., 2018).  

From Y3 to Y5, we saw growth in teachers’ attending skills, but not their interpreting and deciding-
how-to-respond skills. During these years, teachers focused on issues of coaching and becoming 
leaders in their respective teaching communities. In year 5, they engaged in a year-long lesson study 
activity in which they collaboratively planned, taught, re-taught, and debriefed about a lesson. We 
hoped that lesson study would become a PD structure that they could bring to their respective 
teaching communities that focused other teachers’ attention on student thinking. During discussions 
about becoming a teacher-leader, we maintained a focus on being responsive to student thinking 
because instruction that attends to student thinking has many positive benefits for both students and 
teachers (e.g. Franke et al., 2001; Jacobs et al., 2007). Hence, student thinking was still an important 
component, but it may have been back-grounded by the other discussions regarding being a teacher-
leader. We wondered if the growth in attending may have resulted from the intense focus on 
attending to evidence of student thinking, in both the lesson study and the discussions of coaching. 
During lesson study, teachers were required to gather as much evidence of student thinking as 
possible for the debrief and lesson modification, which may have given them more opportunities to 
practice attending to student thinking and supported in them a belief that one should attend to student 
thinking. 

These results differ from studies of prospective teachers, which found significant improvements in 
all three component-skills in much shorter amounts of time (e.g. Fisher et al., 2018; Monson et al., 
2018). However, there are many factors that make comparing our results to the results reported in 
their studies tenuous. First, it is unclear to what extent the surrounding contexts support or constrain 
teachers’ professional noticing skills. Practicing teachers do not often have the luxury of attending a 
PD on a weekly basis (as do prospective teachers), and the classroom contexts in which they work 
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may or may not be conducive to supporting this expertise (Levin et al., 2009). We imagine that the 
competing obligations of practicing teachers (and especially our emerging teacher leaders) may have 
influenced the development of their professional noticing expertise. Second, it is unclear how the 
selections of artifacts influence the results of these studies. In particular, we wondered if we had 
overly challenged our teachers by selecting an artifact that exhibited sophisticated generalization 
skills (Nickerson et al., 2017). Third, we recognize that the field does not have an agreed-upon 
standard for high quality professional noticing skills. For example, while Monson et al. (2018) used 
the term “emerging ability” to represent the highest levels of noticing in their study, Fisher et al. 
(2018) and Jacobs et al. (2010) used the terms “robust evidence” to represent the highest levels of 
noticing. How do the responses that received the highest scores compare across each study? What we 
can say for certain is that significant growth was documented in each of these studies. However, 
comparing the amount of growth with other studies is less obvious.  

In this study, we documented the longitudinal changes of a group of practicing secondary teachers 
as they progressed through a long-term PD about being responsive to student thinking and becoming 
teacher-leaders. Our results indicated that different PD activities supported each component-skill 
differentially. Specifically, the activities in the first half of the PD that supported discussions about 
individual student thinking and how to build on student thinking seem to have supported our 
teachers’ interpreting and deciding-how-to-respond skills. In addition, the activities in the last half of 
the PD that supported discussions about coaching others and using evidence of student thinking seem 
to have supported our teachers’ already-strong attending skills. These results have implications for 
both researchers and teacher educators. In particular, our study can inform teacher educators about 
the nature of the activities that contribute to various components of professional noticing through 
explicit or implicit practice. Additionally, our study provides researchers with insight about (a) 
artifacts they might use to measure professional noticing and (b) rubrics for categorizing responses, 
as well as factors that may support or inhibit practicing secondary teachers’ development of 
professional noticing expertise. 
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School districts across the United States are turning to mathematics teacher leaders (MTLs) to 
support the teaching and learning of mathematics. And yet, what does research seem to say about 
MTLs?  In this paper, we report findings from an exploration of PME-NA proceedings between 1984 
and 2019 to examine the role of MTLs. In particular, we examine the following: historical MTL 
submission trends and the extent to which these trends are coupled with the implementation of 
national MTL events; broad methodological trends; as well as the ways in which MTLS are 
positioned. Our findings indicate that future research requires explicitly describing MTLs’ roles 
within systems of professional development to better understand their impact on practice and 
learning. 

Keywords: Teacher Education – Inservice/Professional Development, Instructional Leadership 

Introduction 
Mathematics reformers have long called for improved learning opportunities for all students across 

preK-12 classrooms in the United States. Although instruction that promotes mathematics as 
sensemaking and problem solving has been recommended (Cobb et al., 2018), this shift dramatically 
differs from the way many classroom teachers once learned and taught math (Hiebert, 1999). Thus, 
local school systems are left to determine how to create conditions that support changes in teachers’ 
instruction (Hopkins et al., 2013). To address this challenge, many schools are hiring mathematics 
coaches, or as we will refer to in this paper – mathematics teacher leaders (MTLs) – as they embody 
key features of effective professional development (Gibbons & Cobb, 2017). Indeed, MTLs have 
become a popular professional development fixture in United States schools (Fennell, 2017). 

Given the rapidity with which MTL positions have spread, there is an urgency which requires the 
field of mathematics education to better understand the research surrounding effective MTL 
implementation. The overarching aim of this paper, then, is to explore and examine the research 
related to MTLs in the North American Chapter of the International Group for the Psychology of 
Mathematics Education (PME-NA) proceedings between 1984 and 2019. In doing so, our purpose is 
to discover patterns, commonalities, and trends across the PME-NA proceedings that will inform 
future research directions, while simultaneously deepening our own understanding of how MTLs are 
positioned across varied contexts. We hope to illuminate this important work so that other 
mathematics education researchers can build upon and advance policy and practice surrounding 
MTLs as there are many schools without a formalized position. We note that the research presented 
within this paper is only a small slice of the work our team has initiated in which we are examining 
MTLs’ positionality within educational research studies as a whole. 
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Guiding Literature 
Roles and Responsibilities of MTLs 

Using knowledge of best practice regarding professional development, many school districts have 
created MTL positions to meet the demands of high stakes accountability and to support teachers in 
their work to provide quality mathematics instruction for each and every student (McGatha & 
Rogelman, 2017). MTLs are expected to provide professional development within the context of 
teaching and learning versus the traditional “sit and get” approach to professional development. 
AMTE provides a broad working definition of a MTL which identifies these individuals as 
“…teachers, teacher leaders, or coaches who are responsible for supporting effective mathematics 
instruction and student learning at the classroom, school, district, or state levels” (2013, p.1). To 
narrow the definition further, we define MTLs as a district- or school-based support person whose 
knowledge and expertise in mathematics content, pedagogy, and children’s learning trajectories 
assists teachers with their content, pedagogy, and understanding of children’s learning trajectories 
(Campbell & Malkus, 2013).  

Even with the definition, the roles and responsibilities of MTLs are complex and ever evolving. 
Because the term MTL has different and distinct interpretations depending on location, the work of a 
MTL is diverse and spans across contexts to include administrative tasks, instructional tasks, 
professional development tasks, and data analysis. To align with our definition, we focus on the type 
of support MTLs provide. Depending on location and need, there are different models of support that 
MTLs provide: individual or teacher pair (Barlow et al., 2014), working with teacher groups (Elliott 
et al., 2009; Lesseig et al., 2016), whole school-level (Campbell et al., 2013; Felux & Snowdy, 2006; 
McGatha & Rigelman, 2017). Individual and pair support activities could include observations with 
coaching cycles and modeling lessons. Small group support could include assisting with professional 
learning communities or team meetings. Whole school support could include trainings and 
professional development sessions. Additionally, some MTLs are expected to provide support in the 
form of student intervention; this type of support could model intervention instruction for teachers as 
a form of professional development. In order to provide this support, MTLs need the necessary 
expertise in mathematics content and pedagogy and must exhibit key leadership skills in working 
with adult learners (AMTE, 2013; NCTM, 2012). 
Key Historical Events 

The use of MTLs to support the teaching and learning of mathematics is not a new call to action. 
Drawing upon Fennell’s (2017) work discussing MTL policy recommendations from a historical 
perspective, we note key events that have influenced the development and use of MTLs across the 
United States. 

The 1970s saw the emergence of projects that focused on creating positions for MTLs (e.g., 
Developing Mathematics Enthusiasts project, Fennell, 1978). Across these projects, school-level 
MTLs were identified and employed as mentors to provide content-specific support to other teachers 
and school stakeholders. In the decade that followed, Fennell notes three key events which 
underscored the importance of these newly created school-based MTL positions: (1) the National 
Council of Teachers of Mathematics (NCTM) recommended state certification endorsement for 
elementary mathematics specialists, (2) John Dossey, the acting president of NCTM during this time 
frame, published a call for mathematics specialists (Dossey, 1984), and (3) the National Research 
Council’s (NRC) Everybody Counts (1989) report expressed the need for elementary mathematics 
specialists. The combination of these three national events within such a short timeframe highlights 
the urgency and significance of implementing highly competent and prepared MTLs within schools. 

The 1990s were marked by a lull in policy and events related to MTLs. However, this trend came to 
a halt in the early 2000s with a resurgence of MTL policies and events. Fennell (2017) highlights 
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nine key milestones (p. 6) during this time, including the NCTM’s Principles and Standards for 
School Mathematics (2000), the NRCs Adding it Up (2001), and the National Mathematics Advisory 
Panel (2008) documents all making recommendations related to the use of MTLs to support the 
teaching and learning of mathematics. Additionally, during this time, national legislation centering 
on No Child Left Behind (2001) and followed by the Every Student Succeeds Act (2015) prompted 
schools and districts to create MTL positions as a way to address the push for assessment and 
accountability in mathematics.  

Moving into the 2010s, the call for MTLs continued to advance. A major event in 2010 was the 
release of the Standards for Elementary Mathematics Specialists: A Reference for Teacher 
Credentials and Degree Programs from the Association of Mathematics Teacher Educators (AMTE; 
revised in 2013). In that same year, a joint position statement calling for all elementary schools to 
have access to mathematics specialists was released by AMTE, the Association of State Supervisors 
of Mathematics (ASSM), the National Council of Supervisors of Mathematics (NCSM), and NCTM.  
Building upon AMTE’s standards, NCTM/CAEP released the Elementary Mathematics Specialist 
Standards (NCTM, 2012), with both sets of standards used by many programs across the country. 

Policy recommendations and key events do not stop here. As we progress through the 2010s, we see 
MTLs referenced in Linda Gojak’s NCTM president message (2013), as well as an AMTE research 
conference focused on elementary mathematics specialists in 2015. When looked at as a whole, this 
timeline overview shows the call for MTLs has persisted for decades and continues to be at the 
forefront of research, policy, and organizational recommendations.  

Research Questions 
The overarching purpose of this paper is to explore PME-NA submissions 1  that center on 

mathematics teacher leaders (MTLs) during the years 1984-2019.  Specifically, we ask the following 
three research questions: 

1. What are the historical trends for PME-NA MTL submissions between the years of 1984 and 
2019 and to what extent do these trends align with the implementation of key MTL events 
and/or policies? 

2. What methodological trends are observed across PME-NA submissions between 1984 and 
2019? 

3. How are MTLs positioned across PME-NA submissions between 1984 and 2019? 

Method 
Below, we outline the procedure that was systematically used to integrate the research related to 

MTLs across PME-NA proceedings in years 1984-2019. Additionally, we describe the 
methodological parameters of our data identification and analysis. 
Data Identification 

We initiated our exploration by conducting a comprehensive search of PME-NA proceedings 
between 1984 and 2019. In targeting this date range, we drew upon the key MTL events as identified 
by Fennell (2017). The lower date range was identified due to the published call for elementary 
mathematics specialists (Dossey, 1984) mentioned in Fennell’s (2017) MTL milestones. The upper 
date range was identified as 2019 as this was the last year for which PME-NA proceedings were 
available. We note that the PME-NA proceedings provided us with a data source that was both 
entirely focused on mathematics and peer-reviewed. 
                                                             
1 When we use the word submission, we are referring to submissions that appear in published PME-NA proceedings, 
and may include any of the following: research reports, brief research reports, posters, working groups, and/or 
plenaries. 
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To ensure our search maintained high recall and precision (Sadelowski & Barroso, 2007), we used 
search terms beyond mathematics specialist, mathematics coach and mathematics teacher leader to 
capture the nuanced ways in which MTLs might be positioned in the proceedings. These terms 
included: interventionist, response to intervention specialist, resource teacher, instructional coach, 
Title I Step-Up Mathematics, mathematics lead, and mentor. Initially, we used the search function to 
apply each of these terms to each published PME-NA proceeding between 1984-20192.  In doing so, 
we noticed that our search brought up many submissions that were not directly related to our central 
research questions. Thus, we made the decision to only include submissions in which the search 
terms appeared in the title, abstract, and/or keywords3.  If the search terms appeared in the body of 
the submission, but did not appear in the title, abstract, and/or keywords, then that submission was 
excluded. To examine relevancy across all paper modalities, our collection included papers, research 
briefs, posters, working groups and plenaries. We also included all methodologies. Last, due to our 
interest in preK-12 education, we eliminated those entries that emphasized undergraduate 
mathematics education or faculty studies. Ultimately, our search resulted in 109 unique submissions. 
Data Analysis 

The submissions in this analysis were coded in several distinct ways. We first completed counts to 
determine the frequency of submissions for each year, and also looked at spikes and declines in year-
to-year submissions (Research Question 1). Next, during our analysis of the methods sections, we 
applied the following coding scheme for methodology (Research Question 2): qualitative (QUAL), 
quantitative (QUANT), mixed methods (MIXED), and other (OTHER4). Our last coding scheme was 
also applied while reading the methods section and centered on how the MTL was positioned within 
the submission (Research Question 3): School-Based Coach, Researcher, Pre-Service Teacher, Pre-
Service Teacher Mentor Teacher, Teacher Leader, Mentor Teacher, or Mentor of Students. All codes 
were mutually exclusive. 

Findings 
We now present the findings for each of our three research questions in the space that follows. 

Research Question 1: Overall Trends 
We first explore overall PME-NA MTL submission trends between the years of 1984-2019.  As 

illustrated in Figure 1 below, there are several trends we wish to highlight.  
 

                                                             
2 We were unable to include the years 1994, 1993, 1992, 1988, 1986, and 1984 because the search function on those 
proceedings did not work. 
3 For posters, we only searched for our terms in the titles and/or keywords because those submissions did not have 
abstracts.  
4 Submissions coded as Other included Plenaries and Working Groups as these submissions did not have a 
methodology. 
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Figure 1: Overall PME-NA MTL Submission Trends from 1984-2019 

Overall, there has been an increasing trend in PME-NA MTL submissions between 1984-2019.  
Starting in 1984, when Dossey published the call for elementary mathematics specialists, there were 
zero MTL submissions. In 2019, after the implementation of 22 different events for elementary 
mathematics specialists (Fennell, 2017), there were 18 MTL submissions.  This finding indicates the, 
overall, increased focus on research involving MTLs. 

An interesting trend is also noted when comparing year-to-year submission patterns with the key 
events identified by Fennell (2017).  That is, we see the largest spikes in MTL submissions between 
the years 2010-2011 (increase of 5 MTL submissions), 2013-2014 (increase of 5 MTL submissions), 
2015-2016 (increase of 7 MTL submissions), and 2018-2019 (increase of 9 MTL submissions), and 
these trends are tightly coupled with key MTL events outlined in Table 1. In other words, the largest 
MTL submission spikes appear to follow the implementation of key MTL national events. 
Furthermore, we see somewhat pronounced decreasing trends in MTL submissions between the years 
of 2011-2012 (decrease of 3 submissions), 2012-2013 (decrease of 3 submissions), and 2014-2015 
(decrease of 6 submissions). For the most part, these trends are coupled with the absence of key MTL 
national events. For example, the absence of key MTL events in 2011 and 2014 might help explain 
the decrease in MTL PME-NA submissions between the years 2011-2012 and 2014-2015. 
 

Table 1: Select MTL Events from Fennell (2017) 
Year Events 
2010 AMTE released Standards for Elementary Mathematics Specialists 
2013 NCTM President’s Message from Linda M. Gojak: It’s Elementary! Rethinking the Role 

of the Elementary Classroom Teacher 
2015 NCTM Research Brief The Impact of Mathematics Coaching on Teachers and Students 

(McGatha, Davis, Stokes) 
AMTE EMSs Research Conference 
Every Student Succeeds Act 

 
Research Question 2: Methodological Trends 

As previously mentioned, we read the methods section for each of the 109 MTL submissions to 
better understand broad methodological trends for PME-NA MTL submissions between 1984-2019.  
Overall, 68% (n = 67) of the MTL submissions were coded as QUAL, 23% (n = 22) were coded as 
MIXED, and 9% (n = 9) were coded as QUANT.  Hence, most submissions involved qualitative 
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investigations, while quantitative investigations surfaced less frequently.  Furthermore, preliminary 
analysis indicates variability in the quality and types of research questions posed, and further analysis 
is required within each methodological approach. 

 

 
Figure 2: Methodological PME-NA MTL Submission Trends from 1984-2019 

 
Research Question 3: Positioning of MTL 

We also analyzed the nuanced ways in which MTLs were positioned in PME-NA submissions from 
1984-2019.  Across our data set of 109 submissions, MTLs were positioned in seven different ways.  
In Table 2 below, we provide a description of each of the ways in which MTLs were positioned, as 
well as a count for each.  We note that, overall, MTLs were most frequently positioned as a School-
Based Coach (n=44), followed by Researcher (n=22), and then Pre-Service Teacher Mentor Teacher 
(n=16).  Other roles, such as Pre-Service Teacher (n=3) and Mentor of Students (n=2) less frequently 
emerged. 

 
Table 2: MTL Positioning in PME-NA Submissions from 1984-2019 

Positioning Count Description 
School-Based Coach 44 The MTL is released from their classroom teaching 

position and is charged with supporting teaching and 
learning across one or more schools. 

 
Researcher 22 The MTL is a university researcher, faculty member, 

and/or staff member who serves as a coach/mentor to 
others in various contexts.   

 
Pre-Service Mentor Teacher 16 The MTL is a classroom teacher that mentors or supervises 

pre-service teachers at a preK-12 school.  
 

Teacher Leader 12 The MTL is a classroom teacher who receives  professional 
development to become a teacher leader without mention 

of any supervisory role(s). 
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Mentor Teacher 5 The MTL is a classroom teacher who mentors their 
peers/colleagues/in-service teachers, and serves in a 

supervisory/mentoring role. 
 

Pre-Service Teacher 3 The MTL is a pre-service teacher who provides peer-
feedback to other pre-service teachers in the context of a 
methods course (e.g., rehearsals, reform-based lessons, 

etc.). 
 

Mentor of Students 2 The MTL is a classroom teacher who mentors preK-12 
students. 

 

Discussion and Implications 
The overarching purpose of this paper was to initiate the integration of research on MTLs across 

PME-NA proceedings in years 1984-2019. In the space that follows, we summarize the main 
findings for each of our three research questions, and also discuss implications.   

Overall, we observed an increasing trend in the number of PME-NA MTL submissions during our 
identified time frame. Furthermore, we observed coupling between year-to-year MTL submission 
spikes or declines and the presence or absence of national MTL events.  That is, large spikes in year-
to-year MTL submissions were coupled with the implementation of a national MTL event, while 
declines in year-to-year MTL submissions were coupled with the lack of national MTL event.  This 
seems to indicate that MTL policies and events at the national level are actively shaping MTL 
research agendas and publication.  That is, in the presence of national MTL policies and events, MTL 
research is occurring. Conversely, in the absence of national MTL policies and events, there is less 
attention to MTL research.  Whether related to national events or not, there is a general upward trend 
in MTL research and interest in the mathematics education community in this research. 

Regarding methodological trends, our analysis indicated that most of the MTL PME-NA 
submissions involved qualitative methods, while mixed and quantitative methods were less prevalent.  
We have several hypotheses to help explain this trend.  First, it is possible that researchers seem to be 
most interested in asking research questions about MTLs that can best be answered using qualitative 
methods. For example, early stage, qualitative studies are needed to understand MTLs’ work before 
implementation/impact studies at a large scale can evaluate roles related to variables like student 
achievement. However, this is – perhaps – too easy of an explanation, and there is likely more going 
on here.  Second, it is possible that the research community lacks quantitative measures and 
instruments that can validly and reliably be used to document the nuanced work of MTLs.  While 
there is some research that has begun to explore this hypothesis (Harbour, Livers, & Hjalmarson, 
2019), more is needed.  Third, and relatedly, impact and/or influence is so difficult to measure 
because there are many confounding variables and multiple levels to MTLs’ work.  Ultimately, this 
makes it rather challenging to tease apart MTLs’ unique impact.  Thus, future research should focus 
on MTLs as part of the system of professional development in the school/district to understand their 
impact on both teachers' practice and students' learning. 

Last, in exploring the ways in which MTLs are positioned across PME-NA proceedings, we 
identified seven different categories that ranged from MTL as School-Based Coach to MTL as Pre-
Service Teacher.  This speaks to the wide-spread variation in the ways in which researchers refer to 
individuals in this position.  Although prior research has already suggested that the field lacks a 
common definition for MTLs (Baker et al., 2017; National Mathematics Advisory Panel [NMAP], 
2008), our study adds further evidence in support of this trend.  Hence, future research should be 
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developed to explore the characterization of MTL work and practice in order to compare different 
implementation models, better describe MTL roles within schools/districts and their work with both 
teachers and students, and further develop MTL knowledge and skills to better support preparation 
programs and other ongoing professional learning experiences.  
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To ensure conceptual learning in mathematics, teachers must shift many aspects of their 
instructional practices. We report on a two-year endeavor using a collaborative and responsive 
professional development model to help elementary school teachers enact seven shifts in classroom 
practice. We share evidence of teachers addressing the instructional shifts and discuss the promise of 
the approach used for those interested in co-constructing collaborations between and among 
universities and school districts.  
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Purpose 
We report on a two-year professional development (PD) program designed to improve teachers’ 

knowledge of mathematics, strengthen their pedagogical skills, and foster collaboration to reflect on 
practice and improve teaching. Guided by the Leading for Mathematical Proficiency Framework 
(Bay-Williams et al., 2014), this PD supported teachers’ instructional shifts to better implement the 
Standards for Mathematical Practice (CCSSO, 2010). As part of the PD team, we (authors) 
implemented cycles of a “responsive and emergent” curriculum (Confrey & Lachance, 2000, p. 244) 
to ascertain teachers’ thinking and address their needs. We offered multiple, collaborative 
opportunities for participants to revisit and reflect upon their teaching practices, as they aimed to 
implement at least some of McGatha and Bay-William’s (2013) seven instructional shifts (see Table 
1). 

 
Figure 1: Shifts in Classroom Practice (Bay-Williams et al., 2014, p. 24) 

Shift 1 From same instruction toward differentiated instruction 
Shift 2 From students working individually toward community of learners 
Shift3 From mathematical authority coming from the teacher or textbook toward mathematical 

authority coming from sound student reasoning 
Shift 4 From teacher demonstrating ‘how to’ toward teacher communicating ‘expectations’ for 

learning 
Shift 5 From content taught in isolation toward content connected to prior knowledge 
Shift 6 From focus on correct answer toward focus on explanation and understanding 
Shift 7 From mathematics-made-easy for students toward engaging students in productive struggle 

 
These seven shifts support teachers in creating a classroom culture where students are active 

participants in the learning process, namely: differentiating instruction, having students work as a 
community of learners, affirming mathematical authority comes from sound student reasoning, 
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communicating clear expectations for learning, connecting content to students’ lived experiences and 
prior knowledge, focusing on explanation and understanding, and engaging students in productive 
struggle. Our research question was: In what ways has the collaborative and responsive professional 
development model impacted teachers’ shifts in classroom practice? 

Theoretical Underpinnings  
Change theory (Fullan, 2006) highlights the significance of stakeholders’ democratic participation 

in a continuous and deliberate process to support a shift from existing towards new practices. 
Underwood (2015) acknowledged the contribution of professional learning communities to 
encourage teachers to re-think, re-learn, and re-engage with others as they articulate and process the 
meaning(s) of new practices. The PD team also realized the importance of building trust, 
acknowledging teachers’ opinions and needs, and being willing to rethink our own practices. 
Therefore, we designed an iterative process, what we call the Collaborative and Responsive 
Professional Development (CRPD) model, to continuously and deliberately build trust, hear/see 
teachers’ ways of thinking and knowing, and utilize this information to design meaningful 
experiences for the teacher participants. 

Methods 
Participants and Setting  

The CRPD model emerged from a two-year partnership between a higher education institution and 
two school corporations. Participants were 60 elementary teachers (Grades K-6) from eight schools. 
The year-round PD support included: summer workshops, two full-day workshops (one in the Fall 
and one in the Spring), and four after-school workshops (two in the Fall and two in the Spring). 

In this partnership, the PD team included two mathematics educators, one mathematician, one math 
coach, and two mathematics education graduate students. The full-time math coach was an 
experienced master elementary and middle school mathematics teacher. This arrangement of the PD 
model bridged the gaps between the PD team and the teacher participants as the mathematics coach 
proactively brought the teachers’ voices to the planning sessions and helped to translate the projects’ 
goals into meaningful and relevant learning activities for the teachers.  

During PD sessions, the teachers were encouraged to work with others from the same grade level 
across schools and same-school participants from different grade levels so that they can benefit from 
the experiences of others and continue their interactions during the school year as a community of 
learners (Wenger, 1998, 2000). 
Data Sources and Analysis 

Data sources included an initial teacher inventory of classroom practices and teachers’ annual self-
reports on their instructional practices, self-assessed mathematics proficiency, and their experiences 
in professional development. The annual self-reports were a deliberate effort to understand the goals 
teachers had set for making shifts in their practice, capture their thinking about any shifts they had 
accomplished, and ascertain what shifts they still sought to make. The data comes from teachers’ 
responses to the prompt: ‘Have you noticed any changes in your math classroom, your students, or 
yourself? Could you describe them or share some specific examples?’ Analyzing cases for which we 
had all data for two consecutive years (N = 20). 

We used thematic coding analysis (Braun & Clarke, 2006) for coding the teachers’ written 
responses with the seven shifts as the main themes. First, two authors collaborated to code each 
teacher’s response according to whether and how it provided evidence of any of the seven shifts in 
classroom practice (Figure 1). To ensure a consistent understanding of the coding process, first, both 
coders worked together to code the first five cases from both years’ data. Then, once an established 
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coding system was developed each author separately coded the remaining teachers’ responses. Those 
two authors came back together to discuss their respective codes and reconcile any differences. 
Those reconciled codes were shared with the other two authors, any differences were discussed, and 
again, reconciled to get agreement on 100% of the cases. 

Results 
To capture a holistic picture of how the teachers claimed to have shifted their classroom practices, 

we examined the distribution of the percentage of teachers whose responses referred to a specific 
shift (Figure 2). 

 

 
Figure 2: Distribution of Teachers’ Self-Reported Shifts in 2017 and 2018 

Over the two years, this group of teachers had shifted their instruction in each of the seven ways 
described by McGatha and Bay-William’s (2013). However, two of the shifts (Shifts 2 and 6) stood 
out in our analysis, as they were mentioned substantially more often by the teachers. Shift 2, towards 
creating a community of learners, was mentioned by 50% of the teachers in year 1. Shift 6, towards a 
focus on explanation and understanding, was mentioned by 30% of the teachers in year 1 and 45% in 
year 2. 

Regarding Shift 2, one teacher mentioned, “My students love when it is math time and how they get 
to share what they did to solve the problem because more than likely it is different than their 
neighbor’s ideas!” (Teacher#6, 2017). Teachers’ responses reflected that being engaged in the 
activities around collaboration influenced their learners’ listening, comprehending, accepting, and 
critiquing multiple ways of mathematical reasoning and thinking. Regarding Shift 6 teachers 
reported, “Students are stating their claims as ‘I agree with…. because’ or ‘I disagree with …... 
because’ (Teacher#7, 2018), which illustrates students recognizing the significance of using reasons 
to validate mathematical arguments.  

Evidence for Shift 1, toward differentiated instruction, came from many teachers endorsing Math 
Workshop and Number Talks, as they realized that those instructional practices assisted them in 
recognizing specific strengths and gaps in their learners’ mathematical thinking and guided them in 
designing appropriate next step instructional activities. While in year1 none of the teachers 
mentioned Shift 3, toward mathematical authority coming from sound student reasoning, teachers 
realized that by sharing their mathematical authority with other collaborators in learning, they could 
positively contribute to their students’ learning. For example, one of the teachers stated: 

During math, the kids are the ones that do the teaching. I serve as a guide. Instead of me 
making sure everybody is doing everything absolutely correct, I am able to sit back and let 
the kids make mistakes and explore and that’s awesome (Teacher#18, 2018). 
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For Shift 4, toward teachers communicating expectations for learning, teachers started to see that 
transparency of the instructional objectives and flexibility in accepting various entry or exit points 
from the learners helped develop a sense of ownership in their students. One teacher mentioned, 
“mathematics is … more about the process and thinking rather than the right answer” (Teacher#2, 
2018). Only a small number of teachers referred to Shift 5, toward content connected to prior 
knowledge, which might suggest that any change in this shift requires a longer period of instruction 
and training. Regarding Shift 7, engaging students in productive struggle, teachers realized that 
changes in their teaching style could help their students’ perseverance. One of the teachers shared a 
success story of her student who did not like math in the early grades, however, made significant 
gains and contributed often to on-going mathematical class discussions (Teacher#21, 2018). 

When examining the distribution of the percentage of the teachers whose responses referred to a 
specific shift (Figure 2), we found that in general teachers’ reports of enacting a specific shift in 
teaching increased for five of the seven shifts. While there was a decrease in the number of reports of 
addressing Shift 2, we do not think this necessarily means that teachers were not giving attention to 
this shift as work on the other shifts implicitly shows they are giving attention to this one. A similar 
pattern was observed for Shift 5, content connected to prior knowledge. We assume that initially the 
teachers might have been focusing more on their pedagogical orientation rather than on curricular 
materials while employing new instructional techniques in their teaching. However, we believe that 
with the passage of time subtle differences in their content and curricular knowledge will also be 
visible.  

One limitation of this study is that the data sources are self-reports of teachers’ perceptions of 
change in their instructional practices. We tried to minimize the impact of using self-reports by 
corroborating classroom shifts with the mathematics coach’s observations in the teachers’ 
classrooms. 

Discussion and Implications 
Research has shown that many reform efforts result in existing classroom practices remaining 

unchanged because it is difficult to shift mathematics understandings, attitudes, and experiences 
(Ball, 1996; Tzur et al., 2001). Researchers also offer that “professional development that is 
embedded in daily classroom practices of teachers in which there is a continuous loop of observation, 
feedback, and discussion in order to sustain learning” (Underwood, 2015, p. 26) helps in developing 
new capacities to sustain changes in instruction gradually. We are encouraged by the fact that 
teachers in this PD created achievable learning targets for their students by attending to their needs, 
interpreting their understandings, and creating opportunities to develop as mathematical doers and 
thinkers. We think that the shifts reported by the teachers will gradually lead them towards 
implementing the mathematical practices in their classrooms (Kilpatrick et al., 2001; National 
Council of Teachers of Mathematics, 2000). 

We think this study provides some evidence of the feasibility of facilitating shifts in teachers’ 
practices when professional development is centered on teachers’ needs and engages the teachers in 
ways that we expect them to teach their students. The opportunities afforded by the processes of the 
Collaborative and Responsive Professional Development (CRPD) model show the potential of 
promoting teachers’ effective shifts in mathematics teaching. 
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In this study, when mathematics teachers were provided professional development pertaining to 
physics, their physics content knowledge improved, as did their self-efficacy in teaching mathematics 
through physics. This analysis reveals how these two improvements interacted and how that 
interaction changed over time. Also, this study examines what components of self-efficacy were 
influenced. These results have practical significance for STEM professional development design and 
implementation, while revealing theoretically significant nuances in the development of teacher 
knowledge. Intriguingly, self-efficacy gains were correlated with content knowledge gains, but only 
in the content knowledge that was retained over a longer period of time, suggesting that teachers’ 
content knowledge may have a kernel, or core, that is more correlated with affects and beliefs, such 
as self-efficacy. 

Keywords: Teacher Knowledge, Beliefs 

Studies suggest that integrated approaches to teaching STEM (Johnson, 2013; NRC 2002), weaving 
together science, technology, engineering, and/or mathematics, improves student achievement 
(Becker & Park, 2011), reflects the nature of STEM professions (Wang et al., 2011), enables deeper 
understanding (NRC, 2012), and highlights mathematical relevance (GAIMME, 2016). However, 
integration of insular disciplines brings new needs to teacher education because the diverse 
knowledge needed to teach integrated STEM is not prevalent in the teacher workforce (Roehrig et al, 
2012). Although both the American Academy of the Arts and Sciences (Pallas, Neumann, & 
Campbell, 2017), and the National Academy of Sciences (2012) recommend creating teaching 
resources for the integration of STEM disciplines, new resources are insufficient by themselves. 
Professional development (PD) providers should strive to equip practicing teachers with the content 
knowledge (CK) and self-efficacy (SE) to effectively teach integrated STEM content. 

Teachers’ SE (Bandura, 1997) has been shown to correlate with teachers’ CK (Swackhamer, 2009), 
but how might this correlation differ in an area outside a teacher’s specialization, such as physics CK 
with math teachers? In this study, we examine PD that supports physics-based and inquiry-based 
math teaching, by analyzing teachers’ CK and SE. Data from 20 in-service math teachers informs the 
following questions, for both “short term” (after a 1-week summer workshop) and “long term” (after 
4 monthly post-workshop meetings):  

1. Based on pre-post data, does inquiry-based PD influence CK about physics-based math, or 
SE for teaching math through physics, or components thereof? 

2. Do pre-post differences in these CK and SE variables correlate with each other? 

Theoretical Perspectives 
SE pertains to certainty about one's abilities (Bandura, 1997). While some studies have linked 

teachers' SE to students' achievement and motivation (Caprara, et al., 2006; Skaalvik & Skaalvik, 
2007), longitudinal studies have revealed that correlations between teaching SE and instructional 
quality are not purely causal or consequential (Holzburger, Philipp, & Kunter, 2013). Although some 
studies have found that continued and objective-focused PD improves SE (Brinkerhoff, 2006), little 
research has indicated how PD influences teachers' SE in a subject outside their expertise. Examining 
effectiveness of inquiry-based PD, prior research shows mixed results, sometimes improving and 
sometimes worsening SE for teaching science (Avery & Meyer, 2012). Few instruments measure SE 
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for teaching math and science in an integrated way. Mobley's (2015) SE for teaching integrated 
STEM uses a 3-factor model, with a social factor, including motivating students, a personal factor, 
including developing new knowledge, and a material factor relating to access to tools. 

With Common Core came an emphasis on mathematical modeling (CCSS, SMP). However, many 
practicing teachers had minimal training in mathematical modeling and in the sciences that utilize 
modeling. While many teacher training programs adapted to include more modeling coursework, PD 
remained essential for practicing teachers. This landscape accentuates the importance of studies such 
as this, in which math teachers are supported in the learning of physics or other STEM content. In 
this study, CK was measured by multiple-choice items similar to math questions found on a physics 
Advanced Placement test. We consider CK to be similar to Shulman’s (1986) subject matter content 
knowledge, and because of the interdisciplinary nature of this study, is related to Ball’s (1993) 
horizon knowledge, which implies awareness of how math content spans the curriculum. Considering 
subdomains of subject matter knowledge (Ball, Thames, & Phelps, 2008), we suspect these 
subdomains may interact differently with non-cognitive variables, such as affect and belief, and may 
persist differently over time. 

Methods 
Professional Development Workshop 

The grant-funded workshop, titled Let's Get Physical! Teaching Mathematics through the Lens of 
Physics, included 32.5 hours over 5 consecutive summer days, followed by 4 monthly 1-hour 
meetings during the following fall semester. The inquiry-based PD highlighted the themes: (a) 
integration of math and physics and (b) student motivation.  

The grant provided each teacher's school with physics lab equipment, including Vernier physics 
packages, Logger Pro software, spring kits, current probes, circuit boards, refraction blocks, lasers, 
track systems, and iPads. During days 1-4, the teachers completed 2-3 physics experiments each day 
and discussed pedagogical topics related to student motivation. On day 5, a mathematics and physics 
panel of faculty and graduate students made presentations about applied topics and current research. 
During the 4 follow-up meetings, conducted through video-conferencing, the participating teachers 
shared lesson ideas and experiences with one another. 

The physics labs in the workshop, available online (Author2 & Author1, 2017), were inquiry-based 
and aligned to standards in middle school math, Algebra I & II, and geometry. In one lab, teachers 
modeled the behavior of live insects to learn about displacement, velocity, and geometry. In another, 
teachers dropped coffee filters and modeled their fall to learn about drag, logarithms, and graphical 
methods. Other labs involved basketballs, toy cars, lasers, and circuits. 
Participants and Recruitment 

University faculty and administrators from local schools recruited applicants through meetings and 
emails. Teachers of middle school math, Algebra I & II, and geometry were encouraged to apply. 
Twenty math teachers, from 5 school systems, were selected. Most held bachelor's degrees in 
mathematics, 14 held graduate degrees in education, 2 held master's degrees in mathematics, and 2 
held master's degrees in physics. Six participants were male, and 14 were female. Because 
administrators participated in recruitment, more teachers with leadership qualities may have been 
more likely to apply. Because this workshop was marketed as Let's Get Physical! Teaching 
Mathematics through the Lens of Physics, teachers with more interest and knowledge in physics may 
have been more likely to apply.  
Data Collection and Analysis 

Using instruments described in Table 1, data was collected from 20 in-service teachers before and 
after the week-long summer workshop, and also after 4 monthly post-workshop meetings.  
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Table 1: Descriptions of Instruments 

Construct Length Scale Cronbach Alpha 
Self-Efficacy (SE) 8 items 0 = Certainly I am not capable. 

10 = Certainly I am capable. 
.96 

Content Knowledge (CK) 5 items 0 = incorrect, 1 = correct .59 
 
We framed the SE inventory using Mobley’s (2015) 3 factors - social, personal, and material. Per 

Bandura's (2006) advice for maintaining content validity, all items were phrased as capability 
statements, and caution was taken to avoid confusion with self-worth or locus of control. Also, to 
refine our instrument, we piloted it at a STEM education conference. 

Items for the social sub-scale of SE say, I am capable of… 
• leading my students in conducting physics labs in such an effective way that all of my students 

are motivated to learn math. 
•  anticipating and preventing likely student errors while conducting physics labs. 
• coordinating a superior cross-curricular math lesson with a science teacher at my school. 

Items for the personal sub-scale of SE say, I am capable of… 
• making meaningful connections between physics and mathematical concepts. 
• revising a physics lesson plan to make it appropriate for my mathematics classroom. 
• responding immediately if a student asks me how a math homework problem is related to 

physics. 
Items for the material sub-scale of SE say, I am capable of… 
• finding related physics-based examples, no matter what mathematical concept I am planning to 

teach. 
• teaching students to use technology and equipment to do physics labs, without technical 

difficulties. 
We used paired t-tests to detect significantly non-zero pre-to-post differences, and we used 

regression analysis to determine statistically significant correlations between those differences. 

Results 
CK in physics-based mathematics improved over the course of the 1-week workshop. Post-test CK 

scores (M=3.20, SD=1.28) exceeded pre-test scores (M=1.70, SD=1.30). However, some of this 
acquired CK was impermanent. Four months later, when re-tested, the gains in CK (M=2.37, 
SD=1.64) were no longer significantly different from pre-test scores. See Table 2. 

 
Table 2: Overview of Results 

Research Question After 1-Week Workshop After 4 Monthly Meetings 
Did the PD influence CK? t(19)=4.94* t(18)=1.79 
Did the PD influence SE? t(19)=6.10* t(18)=5.57* 

Did CK and SE gains correlate? r(18)=.022 r(17)=.515* 
*Significant at the .05 level  

 
Regarding SE, however, the benefits did not fade. The teachers showed significant improvement in 

SE, both in the short-term and in the long-term. Short-term (M=6.69, SD=1.79) and long-term 
(M=6.91, SD=2.00) post-workshop SE ratings significantly exceeded those pre-workshop (M=4.46, 
SD=2.06), and also significantly improved in each SE subscale.  
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Regression analysis was used to test if the gains in SE or its subscales significantly correlated with 
participants' content knowledge gains. In the short-term, gains in CK and SE were not significantly 
correlated, and none of the SE subscale gains significantly correlated with CK. However, in the long-
term, CK and SE gains did correlate, r(17)=.515. For 2 SE sub-scales, the correlation was significant 
as well. See Table 3. 

 
Table 3: Correlation Tests in Gains after 4 Monthly Post-Workshop Meetings 

  correlation with CK gains 
self-efficacy (SE) gains r(17)=.515* 
SE social subscale gains r(17)=.514* 

SE personal subscale gains  r(17)=.511* 
SE material subscale gains r(17)=.374 

*Correlation is significant at the .05 level.  

Discussion 
The Improving Teacher Quality (ITQ) grant program from the U.S. Department of Education, 

which provided the funding for this PD project, has been de-funded at the federal level. In the face of 
funding limitations, local and state education agencies are planning various strategies for supporting 
STEM education. With integrated STEM initiatives, teachers are more frequently expected to 
collaborate across disciplines and teach content peripheral to their areas of expertise. As math 
curricula adapt to ever-changing technology, the need for cross-disciplinary PD will increase, and 
integration of math with computer science, biology, engineering, and data science should be 
deliberately implemented, with effects on both short-term and long-term CK and SE gains examined. 
This study suggests that as future PD is provided, implementing an inquiry-based approach will 
improve the overall effectiveness of these supports. In addition, PD should attend to personal, 
material, and social concerns about teaching mathematics.  

When future studies examine correlations between CK gains and SE gains, the findings of this study 
should be considered in research design. Our results suggest that short-term studies may not reveal 
connections that would be apparent in longer-term studies. Future theoretical research about types of 
CK should also consider changes over time. Because our short-term CK and SE gains were not 
correlated, but our long-term gains were, we suspect that there was a kernel, or core, of CK that 
persisted longer, and that this CK kernel was more likely to have influenced teaching practice, since 
it was correlated to pedagogical SE. Also, one might suspect that teachers who chose to use certain 
physics-based lessons in their classes in the fall might have retained certain parts of CK, and thus, 
teaching practice might be influencing both SE and CK. Thus, instead of viewing CK as a substance 
that can be acquired and then retained, this study substantiates a more complex model of knowledge, 
one in which teachers participate in a process of using their content knowledge, reminiscent of 
Sfard’s (1998) participation-acquisition framework. Future studies should examine how teaching 
practice influences CK, and how teachers decide to use inquiry-based lessons in math classes. 
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Our study explores contributing factors informing secondary mathematics teachers’ professional 
identity. Data from five semi-structured interviews were evaluated using the provisional coding 
method. Results indicate mathematics identity, beliefs about teaching, and beliefs about mathematics 
all play an integral role in the ways teachers discuss their professional identity with some differences 
found between teachers’ level of experience. This work informs the field by expanding on an existing 
framework to deepen our understanding of professional identity. 

Keywords: Affect, Emotion, Beliefs, and Attitudes; Teacher Beliefs 

Research into teachers’ professional identity aims to understand the interplay between the social and 
individual perspectives to identify the thoughts, influences, and impacts they have on a teacher’s 
image of self (Beijaard et.al, 2004). A teachers’ professional identity can have a large impact on their 
persistence in their profession (Hong, 2010). Teachers’ view of themselves and their experiences act 
as motivators for their beliefs, actions, and future goals, which in turn affect their commitment, 
teaching quality and decision making (Hong et al., 2017). Exploring teacher professional identity has 
the potential to shed light on the high attrition rate of teachers in the field, factors that may support or 
inhibit teacher growth, and factors that may link to teacher practices and decisions related to their 
profession. 

This study draws on research identifying specific components as important to teachers’ professional 
identity. For example, Canrinus et al. (2012) asked teachers about their job satisfaction, self-efficacy, 
occupational commitment, and change in level of motivation as a way of exploring their professional 
identity. Further, we explored components discussed in prior research alongside teachers’ content 
specific identity (mathematics identity) to better understand how these identities may overlap and 
inform one another. The research question informing our study is: how do secondary mathematics 
teachers describe their professional teaching and mathematics identity through the lens of prior 
research? 

Methods 
Participants 

Table 1: Participant Information 
Participant 
Pseudonym 

Degree Years of 
Experience 

Position 

Lilly Bachelors 1 Primarily teaches grades 6-8 within an elementary school setting 
Mary Bachelors 1 Primarily teaches grades 7-8 within an elementary school setting 

Bailey Masters 5 Primarily teaches grades 9-12, focused on Algebra II, within an high 
school setting 

Eva Masters 16 Primarily teaches grades 6-8 within an elementary school setting, a 
Nationally Board Certified Teacher 
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Anisha Masters 15 Primarily teaches grades 9-12, focused on Algebra I, within a high 
school setting 

 
While this study included 36 secondary mathematics and science teachers, for the purpose of this 

paper, we included 5 secondary mathematics teachers. These teachers were in the first summer of 
their first year participating in a multi-district professional development grant and had varied levels 
of experience (see Table 1). These participants were all female and classified themselves as 
Caucasian, Non-Hispanic. 
Data Collection and Analysis 

Semi-structured interviews were conducted with each of the participants. In order to capture 
teachers’ professional identity, questions about their self-perceptions (e.g., how would you describe 
yourself as a math teacher), how others viewed them (e.g., how do you think your administrators 
view you as a math teacher), motivation for going into the profession (e.g., why did you become a 
teacher), and future self (e.g., if you exited the field of teaching today, how would people describe 
the legacy that you left behind) were asked.  

The provisional coding method was conducted to code interviews, which entails beginning with a 
set of a priori codes that draw from prior literature (Saldaña’s, 2015). The a priori codes we used 
were based on five constructs explored in Hong’s (2010) article: emotion, commitment, value, 
micropolitics, and self-efficacy. Hong (2010) included an additional a priori code, knowledge/beliefs, 
which we did not initially include as it was anticipated that mathematics identity would capture some 
of these ideas. However, we did end up including some additional codes related to beliefs during the 
coding process. In addition to these codes, we created a list of a priori codes based on four factors 
identified in prior research related to mathematics identity (Cribbs et al., 2015): interest, recognition, 
competence, and performance. After the initial round of coding, the additions to the original list were 
discussed and a consensus was met on a new list of codes. Further detail about these codes will be 
provided in the results. 

Results 
Four overarching themes emerged: professional identity, mathematics identity, beliefs about 

teaching, and beliefs about mathematics. Aspects of professional identity and other influential factors 
- taking into account the complexity of construct – will be discussed. 
Professional Identity 

There were initially five a priori codes (themes) used in exploring professional identity: emotion, 
commitment, value, micropolitics, and self-efficacy. These themes were further broken into sub-
themes, creating a set of 11 themes. 

Emotion. Out of the 5 participants, only one participant had evidence of the theme emotion, which 
connects specifically to stress, burnout, and well-being. Bailey described an incident that was “so 
rough that I almost decided not to continue teaching.” However, it was evident through this interview 
as well as the other interviews how interconnected many of the themes were. For example, when 
discussing her struggles with the profession, Bailey indicated that district expectations (micropolitics 
- structures and support) were a primary reason for the tension she was experiencing in her position. 
It was only when she moved to a different teaching position that these tensions resolved and her 
persistence in teaching (commitment) was evident.  

Commitment. Statements related to the theme commitment were evident in each of the participant 
interviews. For example, when responding to a question on how the profession was viewed by those 
outside of it, Lilly indicated that the perception of math being difficult “motivates” her. In all but one 
case, Bailey, commitment was discussed with reference to outside perceptions (community or 
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society) of the profession and in terms of countering perceptions or motivating a sense of 
commitment due to these perceptions.  

Value. Within the value theme, utility was evident in two of the interviews where teachers indicated 
a “calling” related to them pursuing the profession. Interest was evident in four out of the five 
interviews, with teachers indicating enjoyment in teaching and even connecting the “love” for 
teaching with caring about kids. Importance was only evident in two interviews with statements 
relating to making a “difference every day,” particularly for their students.   

Micropolitics. This theme was evident at a much higher frequency than the previous themes 
through the three sub-themes (decision making, status, and structures and supports). Decision making 
was only evident in two of the interviews with Bailey indicating a lack of autonomy as a professional 
due to requirements by the district (“they took away zoom math and that was something that the 
district pushed heavily for us to have students use which we didn’t always agree with…”). The other 
sub-themes were evident in all five interviews. With reference to status, both Lilly and Bailey 
positioned themselves as novice teachers. Other comments indicated differing levels of status within 
the larger community (others outside of school or society) such as teaching perceived as “not very 
good” by others or having an elevated status because “you know, just working with that level of 
students.” Finally, teachers had varied levels of support and structures in place as evident in their 
comments. However, comments seemed to indicate perceived support from administration across all 
interviews.  

Self-efficacy. Self-efficacy was the final theme evident under professional development and 
included four sub-themes. The first sub-theme was classroom management and was evident in all of 
the interviews. Comments by Eva and Anisha indicated a high level of efficacy at being a “good 
classroom manager” compared with the less experienced teachers who expressed comments such as 
“my classroom management is not the greatest right now.” This finding is not surprising given the 
varying levels of experience. Student engagement was evident in three of the five interviews, with 
two teachers noting struggles with engaging students with comments such as “I’m guilty of often 
times kind of being a boring teacher” but also indicating that they viewed engagement as important 
and necessary for effective teaching. Instructional strategies, much like engagement, focused on 
challenges and strengths of the teachers. Nearly every teacher mentioned struggling to connect the 
real world with the math content. Overall, strengths for strategies focused on collaborating and 
working with students. Finally, the general sub-theme for self-efficacy focused on statements about 
being effective with teaching, but often without enough specificity to know what that meant to the 
teacher.  
Mathematics Identity 

Mathematics identity included the sub-themes interest, performance, competence, and recognition. 
Interest. Three of the five teachers indicated interest and/or enjoyment of mathematics as a subject 

area. All  these comments related to why they decided to teach mathematics. For some of the 
teachers, interest in the content area seemed to connect to their teaching, but this was not the case for 
other teachers who either discussed these ideas separately or did not discuss interest in the content or 
interest in teaching.  

Recognition. Two of the teachers specifically discussed being recognized in mathematics. One 
teacher discussed this through teacher recognition when she was a student, and the other teacher 
discussed her role in helping others, being positioned/recognized as knowing mathematics. 

Competence. Three of the five teachers discussed experiences related to their competence with 
mathematics, with statements such as “it was something that I got.” As with interest, most of the 
comments related to reasons for why the teacher decided to teach mathematics. However, two 
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teachers indicated that students knowing that they [the teacher] understood the content was 
something they wanted their students to know or felt that they knew about them.  

Performance. Three of the five teachers also discussed performance with mathematics. All  these 
comments related directly to their rationale for choosing to teach mathematics.  
Beliefs about Teaching 

Beliefs about teaching was a theme that emerged in our second round of coding. Four of the five 
teacher interviews provided evidence of their teaching beliefs. Two of the teachers (Lilly and Bailey) 
seemed to be trying to reconcile what they thought effective teaching looked like or what they had 
hoped it would be like with their current practice. Other ideas such as being an enthusiastic teacher, 
learning through problem solving and different strategies, and students being actively engaged were 
discussed by the teachers.  
Beliefs about Mathematics 

Beliefs about mathematics was a theme that also emerged in our second round of coding for two of 
the four teachers. Lilly’s responses seemed to indicate a belief that mathematics is applicable to the 
real world and that all students have a capacity to learn mathematics. Conversely, Bailey’s comments 
seemed to indicate that students were either a “math person” or not a “math person”, such as stating 
that “he is not a math kid” and “you either love it [math] or you hate it [math].”  

Discussion 
Findings support the inclusion of the constructs explored in Hong’s (2010) study, but also support 

the inclusion of additional factors that seemed to play a role in teachers’ professional identity as 
evident in the interviews we conducted. Figure 2 provides an overview of themes by participant to 
help convey some of these patterns with the size of bubbles aligned with the frequency of the code. 

 

 

 

 

Lilly 
Mary 
Bailey 
Eva 
Anisha  

Figure 2: Trends Based on Frequency of Theme and Participant 
 
Although there is value in considering teachers’ professional identity individually, exploring the 

construct in relation to other factors helps to provide a more complete picture of how teachers may 
see themselves within the larger community of educators.  
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As the demand to challenge and attend to multilingual learners has increased, teachers have not 
received adequate professional development to combat biases and perceptions implicitly engrained 
throughout the education system, especially in mathematics classrooms. This study implemented a 
studio day professional development cycle with inservice teachers who worked with multilingual 
students in Math 1 classrooms. This study examined teachers’ initial perceptions of multilingual 
learners and their understanding how to prepare for, challenge, and support multilingual learners. 
Teachers reported that, while their previous learning experiences around multilingual learners and 
mathematics were limited, this professional development opportunity allowed them to extend beyond 
simply attending to vocabulary to consider how to access text in rich ways to engage their students in 
more meaningful learning. 
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Multilingual learners are among the fastest growing student populations in U.S. schools (National 
Clearinghouse for English Language Acquisition, 2009). The increase of multilingual learners is not 
an isolated phenomenon. Each state has experienced an increase in this population (Cheuk, 2016; Lee 
& Buxton, 2013), and it is expected that multilingual learners will make up 25% of the students in K-
12 settings by 2025 (National Education Association, 2005). Despite the current numbers and 
projections, problematic trends regarding teacher preparation and practices have persisted in relation 
to multilingual learners, including deficit-based thinking models among teachers (de Araujo et al., 
2016; McLeman & Fernandes, 2012; Pettit, 2011). In an attempt to address such deficit-based 
thinking, this study used a “studio days” model (Von Esch & Kavanagh, 2017) to introduce teachers 
to instructional mathematical routines that could engage multilingual learners in rich mathematics 
content (Kelemanik et al., 2016). This study sought to answer the following research question: How 
did mathematics teachers’ perceptions of multilingual learners and their understanding of how to 
challenge and support multilingual learners evolve as teachers engaged in professional development 
experiences? 

Theoretical Framework 
This study is organized around two complementary theoretical ideas—instructional mathematical 

routines and key principles of reform-based instruction for multilingual learners. Both are meant to 
help teachers think about ways to engage multilingual learners with content in meaningful ways. 
Instructional Mathematical Routines 

Instructional mathematical routines are intended to support students to engage productively with 
content, providing them with tools that they can grow familiar with and return to regularly so as to 
solve cognitively demanding mathematics tasks (Kelemanik et al., 2016). Routines allow students to 
focus on their learning, because they provide structured ways for students to make sense of rich, 
challenging mathematics; build important mathematical thinking habits; and provide more students 
with access to important mathematics. Zwiers et al. (2017) developed routines specifically for 
multilingual learners to help teachers amplify, assess, and develop these students’ language in 
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mathematics classrooms. As such, multilingual learner student engagement in these mathematical 
instructional routines can help them develop mathematics thinking and language simultaneously. 
Key Principles of Reform-Based Instruction for Multilingual Learners 

Five key principles of reform-based instructional practices for multilingual learners in mathematics 
classrooms also guided this work (Roberts & Bianchini, 2019). These principles grounded our work 
with teachers, the conversations we had with teacher participants about the teaching and learning of 
mathematics for multilingual learners, and the analysis of data collected. In this paper, we focus on 
our fourth principle, identifying academic language demands and supports for multilingual learners 
(Aguirre & Bunch, 2012; Lyon et al., 2016). This principle focuses on the language demands in the 
tasks teachers provide and asks teachers to implement appropriate supports so that all students can 
read disciplinary texts, share their ideas and reasons in whole class and small group discussions, and 
communicate mathematics information in writing. 

Methods 
Our study was situated in one school district in Central California that included a substantial 

number of multilingual students. Teachers participating in this ongoing study were engaged in a two-
year professional learning program organized around mathematics “studio days” for multilingual 
learners (Von Esch & Kavanagh, 2017), in which teachers developed and studied a single lesson 
focused around one instructional routine and one mathematics language principle during each cycle. 
The findings of this paper come from the first studio day cycle. Using Von Esch and Kavanagh’s 
professional development model of studio days, we created a cycle of three professional development 
meetings for our participants. The studio day cycle of interest paired the instructional mathematical 
routine “Three Reads” (Kelemanik et al., 2016), which provides students access to rich text, with the 
principle academic language demands and supports. 
Participants 

Nine mathematics teachers from three high schools and their district mathematics instructional 
leader (who helped facilitate the professional development) participated in this study, with four 
teachers serving as our focal teachers. Of the nine teacher participants, five were female and four 
were male. Seven were White/Caucasian, one was Latinx, and one was Asian American. One teacher 
was in her first year, three had 1-4 years of experience, and four had 10-19 years of experience. One 
teacher was bilingual (Polish), and the rest were monolingual English-speakers. At Ash High School, 
the percentage of multilingual learners was 4.5%; at Birch High School, 6.0%; and at Cedar High 
School, 9.4%. Teachers noted that they had both multilingual and reclassified students in their 
classes. 
Data Collection 

We conducted two individual semi-structured interviews (Glesne, 2011) with the four focal teacher 
participants and the district mathematics instructional leader to understand how teachers supported 
students, especially multilingual students, in accessing mathematical content. More specifically, the 
pre-interview explored teachers’ perceptions of multilingual learners, what they did to support 
multilingual learners in their classrooms, and their prior experience with preservice or professional 
development tailored towards challenging and supporting multilingual learners in mathematics. 
Following the first studio day cycle, in the post-interview, we asked participants about how they 
supported multilingual students to access text and to attend to academic language demands. We also 
asked about their experiences with the studio day cycle.  
Data Analysis 

We qualitatively analyzed both interviews across all five interviewed participants to identify key 
pieces of talk related to the following: (1) teacher preparation and professional development; and (2) 
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attitudes towards their preparedness for challenging and supporting multilingual learners. We 
compared participants’ responses across the two interviews. We drew on fieldnotes from studio days 
and classroom observations as ancillary data to triangulate our findings. Throughout the data 
collection and analytic process, we wrote analytic memos to develop our ideas, test our conjectures, 
and track our research processes (Yin, 2016). 

Findings 
Our first set of findings examines teachers’ baseline perceptions of multilingual learners and 

professional learning experiences related to multilingual learners. The second set focuses on 
teachers’ evolving perceptions related to multilingual learners and their preparedness in challenging 
and supporting multilingual learners in their mathematics classrooms following their participation in 
the studio day cycle. 
Multilingual Learners – Initial Perceptions 

All four teachers reported having large Spanish-speaking multilingual learner populations in their 
Math 1 classes. All four also used strategies in their classes to support their multilingual learners. 
Specifically, while many students were reclassified throughout the district, the teachers reported that 
they still implemented academic language support for these students in similar ways to students 
officially classified as “English learners.” For example, Ms. Lacrosse reported that over 50% of 
students in her typical classroom were classified officially as “English learners.” Her approach to 
supporting multilingual learners in communicating their reasoning was the following: “Even if they 
don’t have a lot of academic knowledge, they do have at least enough to be able to express it at the 
level they are at and be exposed to others who are richer [in linguistic ability].” One of Mr. Huerta’s 
supports was “rewr[iting] the text to make it simpler.” Ms. Parker went further, rewriting two to three 
of her lessons each week to adapt the text for multilingual learners.  
Professional Learning Experiences with Multilingual Learners – Initial Perceptions 

Of the four focal teachers participating in this study, three mentioned having extensive experience 
with multilingual learners through prior teaching assignments, one shared that this was their first 
school year working with multilingual learners on a full-time basis. Only one of the four focal 
teachers mentioned receiving any explicit training related to multilingual learners during their teacher 
education program. The other three focal teachers stated that their preservice teacher education did 
not include any class or support around multilingual learners in mathematics specifically. All four 
focal teachers discussed a lack of district-mandated professional learning experiences related to 
multilingual learners, including during the implementation of a new curriculum three years prior. 
While Mrs. Hope, the district mathematics instructional leader, did share that she provided 
supplemental support through her typical interactions and coaching time with the teachers, it 
appeared this was the only professional development experience regarding multilingual learners and 
mathematics the district provided.  
Perceptions of Multilingual Learners – Post Studio Day 1 Cycle 

Through their studio day cycle participation, focal teachers reported shifting their focus for 
multilingual learners from singular vocabulary words for a given lesson to allowing multilingual 
learners to access and participate more fully through the implementation of the “Three Reads” 
mathematics language routine. Ms. Lacrosse discussed that her perception of supports for 
multilingual learners changed from focusing solely on vocabulary or specific problems to providing 
access to key mathematical ideas: “It’s about reaching out and providing more support so that they 
can access the material, reading, writing.” Focal teachers also discussed that student engagement 
with the text, including for multilingual learners, increased through the use of the “Three Reads” 
mathematics language routine. Mr. Huerta brought up the importance the routine had in his class as it 
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was being implemented more frequently, signaling to the students that the process of engaging with 
the text was important. With multilingual learners engaging with the text at a higher frequency and at 
a higher cognitive and linguistic level, teacher perceptions of their multilingual learners appeared to 
be challenged. Still, Mrs. Hope, the district math instructional leader, reiterated the need for a future 
focus on communicating reasoning while using academic language. 
Professional Learning Experiences with Multilingual Learners – Post Studio Day 1 Cycle 

Teachers reported the studio day cycle was an effective opportunity to analyze the teaching 
practices they implemented as they related to academic language, especially with regards to 
multilingual learners. Ms. Lacrosse discussed both the benefit of having other teachers provide 
feedback on her teaching and the benefit of watching other teachers implement the same lesson. Mr. 
Huerta shared that, even though he and another teacher at his school site did not teach the same 
lesson during the studio day, he was still able to adapt his teaching practice after observing his 
colleague. All focal teachers explained that a key benefit was being able to interact with and work 
with other teachers at their school sites and within the district. Mr. Ming reflected on the value of 
building a community of critical educators on his campus through observing other teachers and 
reflecting on how those teachers may be working with multilingual learners: He found useful “the 
whole coming together, drafting of lessons together, then executing the lesson, and then debriefing 
on it.” Mr. Huerta echoed this sentiment, saying, “I would say the other beneficial thing… being able 
to see the math studio day happen at all three campuses together and having the collaboration of 
teachers that were in different schools within our district.” 

Discussion and Conclusions 
 We found that teachers’ perceptions of multilingual learners shifted from holding beliefs that 

multilingual students could not access text-heavy curriculum at the same level as non-multilingual 
learners to realizing that they could challenge and support multilingual learners using mathematics 
language routines. The mathematics language routine of focus, “Three Reads,” allowed teachers to 
engage their multilingual students in more rich content and language learning beyond simply 
reviewing math vocabulary terms. Teachers were able to provide their students with practice in 
accessing text and thus in reading, writing, and talking about math in richer ways. Teachers valued 
this professional learning opportunity and the chance to interact with fellow Math 1 teachers as a way 
to improve their mathematics teaching practices related to multilingual learners. Our work suggests 
the need for future professional development and research efforts to focus on other important aspects 
of academic language in mathematics, including communicating reasoning. 
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In this research report we discuss the development of a framework regarding the facilitation of 
online professional development geared at supporting instructional change at the undergraduate 
level. The research in undergraduate mathematics education includes various large-scale projects 
aimed to support individuals or departments in reforming their instruction to align with 
recommendations from professional organizations and existing mathematics education research 
standards. One area that needs attention is the use of online synchronous environments to match 
faculty across the world and form collaborations to support the inclusion of student-centered 
activities in their mathematics classrooms. This research report discusses the actions that facilitators 
take in these environments and lays the groundwork for the use of this framework in our and other 
contexts going forward. 

Keywords: Post-Secondary Education; Teacher Education – Inservice / Professional Development; 
Systemic Change 

Instructional shifts towards student-centered pedagogies are taking place throughout North America 
within mathematics departments. This change is oftentimes centered around individual faculty (e.g., 
Author, 2019; Speer & Wagner, 2009) but also from the perspective of larger groups of faculty (e.g., 
Author, under review; Hayward & Laursen, 2016) or even departments at-large (e.g., Apkarian & 
Reinholz, 2019; Laursen, 2016; Reinholz & Apkarian, 2018). Notably, professional communities 
also call for this instructional reform (Mathematical Association of America [MAA], 2015). The 
research in undergraduate mathematics education community has embarked upon numerous large-
scale research projects to investigate how to support instructional change (e.g., Author, under review; 
Kuster et al., 2016), namely to make instruction more student-centered. Additionally, this community 
has engaged in large scale projects to support departments in improving instruction and student 
outcomes (e.g., Association of Public & Land-Grant Universities [APLU], 2016). 

Our multi-institute collaborative grant, BLINDED, is one such project in which we aimed to not 
only support mathematicians in reforming their instruction with various support models but to 
research those support models’ impact on the mathematicians and their communities. Our support 
model consisted of instructional materials (both for the student and faculty), a summer workshop, 
and online professional development, which we classified as an online working group (OWG). The 
OWG offered an opportunity for faculty to collaborate on their instruction through a lesson study 
model (Demir et al. 2013) in online synchronous environments. In this OWG, participants engaged in 
lesson studies on multiple units of Inquiry-Oriented (IO) materials (Rasmussen & Kwon, 2007) by 
doing the mathematical tasks from those units, anticipating student thinking that could arise from 
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those units, filming and then subsequently bringing video clips from that instruction to the OWG to 
share and discuss. 

In previous research, we have discussed the development and usage of a framework to categorize 
and understand the conversation that occurs when OWGs are discussing the sharing of instructional 
video as a means to support their instructional change (Author, under review). However, the next 
step that emerged from that work was to analyze the role that the facilitator played in that OWG. 
Given the importance of the role of a facilitator in professional development settings (van Es et al. 
2014), our next research steps were to develop a framework to categorize and understand how 
facilitation occurs of these OWGs. In this endeavor, we sought to understand the facilitation of 
OWGs when facilitators initiate discussions about the mathematical content of novel IO curricular 
materials. We will discuss the development of a framework to understand the facilitation of these 
OWGs. The research question for this research report is: What actions do facilitators take within 
online working groups focused on doing and understanding the mathematical content of novel IO 
curricular materials? 

Methods 
Research Setting and Data Collection 

Data from this research report comes from a large NSF funded project, BLINDED. BLINDED 
recruited mathematicians in 2015-2017 who were interested in changing their instruction to be more 
student-centered and specifically use one of the IO curricula: differential equations, linear algebra, or 
abstract algebra. During the first year of the project, the three Principal Investigators led their 
respective OWG. In subsequent years, the project team was able to double the number of OWGs that 
could be facilitated by recruiting the previous year’s participants to lead their own OWG. 
Consequently, in 2016 and 2017, 4 facilitators, who were previously participants, each led their own 
OWG. The development of our framework comes from these 4 individuals’ OWGs. Each OWG was 
screen recorded using QuickTime and all OWGs were transcribed. Each of these OWGs consisted of 
3-4 participants. As this analysis focuses on when the facilitators were leading discussion on doing 
the mathematics from the novel IO curricula, this yielded 14 transcripts for analysis. 
Data Analysis 

The creation of the framework followed an iterative process of revision and refinement via 
individual open coding and comparison between the researchers (Creswell & Poth, 2017). 
Altogether, 14 transcriptions of videos were investigated, coded and compared by at least two 
researchers in each iteration. During the first iteration, we analyzed two video transcriptions and 
proposed descriptors for the action that the facilitator took. In crafting our descriptors, we consulted 
the work from van Es and colleagues (2014) to look for common threads. In their work they focused 
on developing a framework on how facilitators could use in-the-moment moves to support productive 
discussion while viewing video of instruction (van Es et al., 2014). We then convened and compared 
our suggestions for each of the corresponding facilitator’s actions, by grouping similar descriptions 
in one category and assigning that category a code. For instance, the expressions chose participant to 
start, called on participant and called on a participant to share their thoughts were grouped under 
asked participant to share their mathematical work and assigned the code SHARE; brought 
experience from the classroom to the conversation, related it back to what students would do and 
tried to make sense of why students have made mistakes in the past were coded as PAST to indicate 
that the facilitator reported on what students have done in the past. This process generated a first 
draft of the codebook.  

Following this step, the remaining twelve video transcriptions were assigned to two researchers 
each. Every pair individually coded their assigned portions and then came together to compare their 
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results and agree on one code per statement. Then, the three coders convened to discuss the overall 
results. We saw the need to distinguish between what the facilitator is claiming or asking, and how 
they were doing it. In particular, we focused on the type of statement that was being made 
(imperative, interrogative, exclamatory, and declarative).   

This led to the second iteration of coding for the same initial two transcripts, where each statement 
was assigned a what and how code. We subsequently reconvened to compare individual results. 
Additional codes were suggested, initial ones were redacted and eventually we noticed a 
commonality between some codes which allowed us to create the elements of the framework, the 
facilitation (how) and conversation (what) themes. Within the facilitation theme, we generated five 
categories and two actions that pertain to each category. Additionally, we realized that only 
imperative and interrogative statements were meaningful in certain actions that the facilitator made 
under the gathering and verifying categories. 

Results: Facilitation Framework 
Figure 1 is the framework for facilitation of online professional development. The framework 

contains two overarching elements: facilitation and conversation. Facilitation is the element of the 
framework that would transcend the context of the OWG. The conversation categories emerged from 
our previous research as well as this analysis and would be different if this framework was applied in 
different contexts. While we believe the conversation codes could serve as a starting point for other 
groups, the nature of the content under consideration will largely determine these categories. 

 

 
Figure 1: Framework for Facilitation on Online Professional Development 

Here, we focus on the categories within the facilitation element of the framework. There are five 
categories of actions that our facilitators did in online working groups. Namely, they Progressed the 
session, Gathered information, Verified information, Contributed their own thoughts to the session, 
or Supported the group. Each category yielded two actions, or codes. For example, under the 
Gathering category, we find two actions: Individual and Open. Individual was a code used to 
describe when the facilitator was asking a specific individual to share their thoughts whereas Open 
was used to code for when a facilitator asked for any volunteer to share their thoughts. While both 
actions concern gathering information, they are clearly two distinct actions a facilitator can take 
during an OWG. It is worth noting that Restate is an action under the Verifying and Contributing 
categories as a facilitator would Restate for different purposes. For example, a facilitator would 
Restate a participant claim with the (implied) intention being to inquire about a participant’s 
contribution. That is, the facilitator would Restate what the participant said for the purposes of 
having that participant expound on what they had just said. Whereas, a facilitator would also Restate 
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a contribution, potentially in paraphrased ways, as a means to contribute to the conversation with no 
(implied) intention of getting a response from the original commenter of that statement. 

Another important aspect of the framework to note is the inclusion of the subcodes for Gathering 
and Verifying. All four of the actions under those two categories are about the facilitator doing 
something that desired a response from someone, whether that be a specific Individual, Opening the 
floor to a question, asking for an Elaboration, or Restating for the purposes of further explanation. 
However, in our analyses, it became clear that there were always two different ways to achieve those 
goals. We used terms from the field of linguistics. Namely, imperative requests are ones in the form 
of a sort of command; whereas, interrogative requests are ones that ask for more information. For 
instance, a facilitator would call upon a specific Individual to share or contribute by making a request 
or giving an Imperative command (e.g., “Participant, tell me what you were thinking about.”) This 
would contrast with the same action, Individual, but could have been asked in the form of an 
Interrogative question: “Participant, what mathematical theorem led you to that conclusion?” We 
treated instances such as these as both falling under the action of asking a specific Individual to 
contribute, but the means the facilitator went about that were different. This was the case for the 
Gathering and Verifying codes so for all of those codes they received the subcode of either 
Imperative or Interrogative.  

Some coded examples of this are: 
Facilitator - Imperative: “So, keep going with that [line of thought] Participant.” 
Facilitator - Interrogative: “So, I, we are talking about … the Sudoku property and each symmetry 

appears at most once and each symmetry appears at least once. Is the hint here, so what are 
students going to approach and how are they gonna approach this question?” 

Conclusion 
Through our iterative coding process, we developed a framework that captures the actions 

facilitators take in overseeing online professional developments. These categories including 
Supporting the group, Progressing the session, Contributing to the discussion, Gathering information, 
and Verifying information. Part of our framework, within the Gathering and Verifying categories, 
also notes the different ways in which facilitators can gather or verify information. Namely, we 
differentiated between imperative requests (e.g., “participant, tell me what you think about that”) and 
interrogative ones (e.g., “participant, do you agree with the other participant’s claim?”). Our future 
work will consist of in-depth case studies of each facilitator to enhance this understanding. 
Importantly, as noted, the framework we developed shares many similarities to that of van Es and 
colleagues (2014). The implications from this are important. Characteristics and actions of 
facilitators are key to understanding how facilitation occurs and how facilitation techniques can be 
trained and learned, while the content may be salient. 
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This paper reports on a longitudinal study of mathematics teachers’ development of a vision of 
teaching with technology where we document professional events and activities that point to 
continued evolution and devolution of those beliefs. We extend earlier work and ask participants to 
reflect on the experiences they have had as early career teachers, and how they have influenced their 
beliefs since graduation. We find that there are significant opportunities for professional learning 
after graduation, and recommend continued development of graduate-level coursework that is 
technology-dependent. We also find that the use of Desmos is particularly influential in changing 
beliefs about the role of technology. 

Keywords: Instructional Vision; Technology; Teacher Beliefs; High School Education;  

Background 
Preservice secondary mathematics teachers (PSMTs) at Miami University take a required 

mathematics course, where they revisit their own learning of secondary mathematics and investigate 
concepts by way of problem solving with various technological tools. In previous work, we sought to 
understand the impact of this course on future teaching practices. We defined vision of teaching with 
technology as an imagined state wherein PSMTs are able to translate their technological beliefs into 
principles on which they will base future instructional decisions and practice (Cox & Harper, 2016). 
We found that as a result of participation in this course, PSMTs develop a vision of teaching with 
technology that is better aligned with that expressed in modern policy documents (e.g., NCTM, 2000, 
2014, 2016). We also found that PSMTs draw heavily on their index of personal experiences to 
illustrate their visions and that descriptions of curricular experiences were central of what PSMTs 
referred to as “responsible use of technology” (Cox & Harper, 2016). 

Drawing on the work of Phillip (2007) and Ertmer (2006), and Pajares (1992), we have delineated 
technological beliefs as separate from general pedagogical beliefs (Cox & Harper, 2016). We define 
teachers’ technological beliefs as understandings, premises or propositions about the role(s) 
technology plays in instruction. Thus, when we refer to technological beliefs, we mean those beliefs 
concerning the role technology plays in mathematics instruction.  

We know that inservice teachers seem more likely than PSMTs to perceive the cognitive benefits of 
technology beyond motivation and fun. Some teachers recognize its power to visualize difficult 
concepts or meet the needs of diverse learners (e.g., Wachira, Keengwe, & Onchwari, 2008), and 
inservice teachers seem more likely than PSMTs to believe technology has value beyond a 
computational device or answer checker (e.g., Wachira & Keengwe, 2011).  

Kagan (1992) noted that if a teacher education or professional development program is to be 
successful at promoting belief change among teachers, “it must require them to make their 
preexisting personal beliefs explicit; it must challenge the adequacy of those beliefs; and it must give 
novices extended opportunities to examine, elaborate, and integrate new information into their 
existing belief systems” (p.77). 

After making the PSMTs’ preexisting personal beliefs explicit in their vision of teaching with 
technology, we wanted to examine and document key professional events and activities that point to 
both continued evolution and devolution of their technology beliefs. This paper reports on a 
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longitudinal study of a mathematics teachers’ development of a vision of teaching with technology. 
Since beliefs and practice are dialectic (Thompson, 1992), it is likely that an individual’s vision has 
been impacted by their teaching and other experiences. Moreover, given the importance of indexing 
personal experiences when articulating a vision, we wanted to document professional events and 
activities that point to continued evolution and devolution of mathematics teachers’ vision of 
teaching with technology. We sought to answer the research question, what seminal teaching 
experiences impact an individual’s vision of teaching with technology? 

Methodology 
Participants in this study are recent graduates (2013-2017) of Miami University who have been 

teaching secondary (6-12) mathematics for at least two years. Supported by our alumni office and 
social media connections, we identified a pool of 80 possible alumni. Within that pool, 44 had 
participated in an earlier phase of this research (Cox & Harper, 2016). Those for whom we had 
collected earlier writing samples documenting their vision of teaching with technology were sent the 
Teaching with Technology–Longitudinal online survey. The Longitudinal survey was sent to 44 
individuals, of which 9 responded (response rate of 20.5%). One of the nine responded that they were 
not currently teaching mathematics. The remainder of the pool (n=36) were sent the Teaching with 
Technology online survey. Of the 36, thirteen responded (response rate of 36%), all of whom 
reported that they are currently teaching mathematics. 

In the first part of both surveys, we invited participants to narrate their experiences with teaching 
mathematics with technology. Rather than ask for the titles of specific courses that they recently 
taught, we asked them to imagine a recent course and then identify the mathematics taught within 
that course by broad discipline. For instance, a participant might report teaching a course that is 75% 
algebra, 10% statistics, and 15% trigonometry. Then, they are asked to report the types of technology 
they used. We chose not to list specific brands of technology, and instead asked for the technology 
genre. For instance, we asked about Dynamic Geometry Software (DGS), rather than specifying 
GeoGebra or Desmos. 

The Teaching with Technology–Longitudinal and the Teaching with Technology surveys were 
conducted digitally using Qualtrix software. Both versions of the survey include two lines of inquiry. 
First, we asked participants to describe their beliefs about the role technology plays in mathematics 
teaching. Participants in previous phases of research were familiar with this question having 
answered something similar at the conclusion of a required mathematics technology course in their 
undergraduate program. In those cases, we phrased the questions on the survey differently. We 
provided them with their original vision of teaching with technology statements written at the 
conclusion of the mathematics technology course, and invited them to identify passages that still 
represent their thinking, as well as passages about which they now think differently. Second, we 
asked participants to identify experiences such as graduate study, professional development, or 
classroom episodes; as well as the impact (or lack thereof) the experiences have had on their 
developing vision of teaching with technology.  

Results 
We hypothesized that there could be many potential influences on teachers’ vision for teaching with 

technology once they left their teacher preparation program. We chose to focus our questions on 
three: graduate education, professional development workshops and colleagues. Due to space 
restrictions, we will expand on only one of these, professional development. Then, we will take a 
longitudinal look at how these teachers’ beliefs have evolved. 
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Professional Development 
Of the 21 participants, fifteen did not report having participated in any professional development 

(PD) workshops related to the teaching of 6-12 mathematics with technology. Here, we focus on the 
six who did. Of those six, five were specific about the focus of the PD. Four of the six experienced 
math-specific professional development. This took two forms. Some of the math-specific technology 
PD described took the form of individual or department-based PD focused exclusively on Desmos. 
Other teachers experienced PD at state conferences where they attended sessions about incorporating 
technology into their classroom planning and teaching. One commented about the benefit of 
conference-based PD, “I was able to gain insight about other teachers’ experiences with new 
technology and collaborate with other math teachers to learn more about the availability and access 
of technology for students in other districts.” 

In addition to math-specific PD, two teachers received other technology-focused PD, but reported 
that it was oriented toward classroom management or non-mathematical applications such as Kahoot, 
Google Classroom, or other apps. 

Additionally, we asked participants to tell us whether this activity influenced their vision of 
teaching with technology, or impact how they incorporated technology into their teaching. All felt 
that they had felt influenced, however the way that they described the influence was different for 
those experiencing math-specific and non-math-specific professional development. For those who 
reported non-math specific PD, the influences they expressed were more oriented toward pedagogical 
shifts in assessment, differentiation, and project-based learning. Those who experienced math-
specific PD reported that they now incorporated specific technologies into lesson planning and 
teaching. These teachers were better at generating content using GeoGebra and Desmos, and felt 
more confident about how to incorporate it more regularly in their teaching. In all cases, the 
influences were most often described as improved technical knowledge and in no cases did the 
descriptions indicate a change in TPCK (Mishra & Koehler, 2006). 
A Longitudinal Look 

We now narrow our view to just those eight participants who were a part of our earlier study, where 
they wrote statements about their vision of teaching with technology. For these eight participants, we 
have additional data wherein they respond to these statements from their current perspective. We 
chose to categorize these responses as either renunciations or amplifications of their earlier beliefs. 
We asked participants to identify up to six passages in their original sample and describe why they 
either continued or stopped believing something specific and related to teaching mathematics with 
technology. Not all participants chose to either renounce or amplify a passage, and some teachers 
chose more than one passage to address. 

Renunciation. Three participants identified portions of their previous writing that they wanted to 
renounce. All three participants no longer believed that students would use technology as a distractor 
or to “goof off” during class, and came to see it as more valuable than before. “As a teacher I have 
found that sometimes this free exploration with technology allows for students to make deep 
connections and allows for them to think freely and oftentimes more critically.” One participant went 
further and renounced their earlier beliefs about technology as indiscriminately good. They wanted to 
make a more clear distinction between those technologies that simply make teaching easier and those 
that impact mathematical learning.  

Amplification. There were seven times that participants identified portions of their previous writing 
to amplify. From these passages, we find that early career experiences serve to amplify the need to 
incorporate digital technologies into education in general. Participants still believe that the 
educational needs of students change over time and reflects the increased presence of digital 
technologies in the workforce. As one participant noted, “this passage resonates with me, because I 
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know that I am in a profession where I will have to be continually changing the way I teach. ...our 
job is to prepare them, and technology allows us teachers to give our students more appropriate 
learning experiences. 

There were two participants who chose to amplify statements that were more specific to 
mathematics instruction. The first of these focused on the potential of technology to go beyond the 
application of learned procedure and address the fundamental “why” behind the algorithms. The 
other participant amplified the role of technology in helping students be more reflective learners of 
algebra when they use technology to get quick and early feedback.  

Discussion 
Looking across the three spheres of influence: Additional Coursework, Professional Development 

and Colleagues, it is clear to us that early career teachers continue to have opportunities to learn 
about technology for teaching. With more than half pursuing graduate degrees, it would be a good 
idea to continue to develop graduate-level content courses that incorporate technology for teaching 
mathematics. Similarly, it is clear that mathematics-specific professional development can influence 
teachers to utilize new technologies in lesson planning and instruction. Developing stand-alone 
experiences that can be enacted during department meetings or building-wide PD time might be 
another way to influence teacher beliefs about the role of technology in mathematics instruction. 

Based on specific responses, we recommend incorporating Desmos into professional experiences 
for early-career teachers. Whether in graduate classes, PD, or in conversations with colleagues, 
participants are talking about and learning about Desmos. Needing to learn about a technology that 
students will be using on standardized assessments seemed to be a strong motivator for individual 
learning, but also district-wide professional development planning. Further, when Desmos is used in 
graduate-level mathematics curriculum, teachers find that exposure useful and influential. 

Conclusion 
Our original findings indicated that our mathematics problem solving with technology course had a 

short-term impact on preservice teacher beliefs about teaching mathematics with technology. This 
study documents not only the longevity of that belief change, but also the identification of significant 
experiences in the lives of new teachers that either act to amplify or disrupt those changes over time. 
This study also positions new teachers as people from whom we can learn. We feel that studies that 
position mathematics teachers as knowledgeable professionals are especially needed at a time where 
teachers are often deprofessionalized and undervalued. 
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Mathematics specialists are sometimes known as math coaches, mathematics teacher leaders or 
other titles. The definition in this paper is a facilitator or leader of teachers focused on professional 
development in mathematics. The focus of this qualitative synthesis of the literature is to investigate 
how this role has been studied, defined, and investigated. This preliminary analysis has documented 
the research methods used in studies, examined the focus of studies, and raises questions about the 
different types of teacher leadership that may exist.  
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The term mathematics specialists were first introduced as a concept in an editorial in Teaching 
Children Mathematics (Dossey, 1984). However, research about mathematics specialists was 
dormant for a few decades following that call to action until the early 2000s. McGatha and Rigelman 
(2017) offer a framework that organizes terminology for the different roles that might fall under the 
umbrella term of mathematics specialist. One set of responsibilities involve the mathematics 
specialists as professional development facilitator or leader of teachers. A second set of 
responsibilities involves their work teaching mathematics to students either as a teacher whose 
primary content to teach is mathematics or as a teacher who might work with small groups of 
students who need focused instruction in mathematics. We frame these as “responsibilities” because 
many mathematics specialists have multiple types of responsibilities. For example, the mathematics 
resource teacher might work with small groups of students in need of extra mathematics support but 
could also be called on to facilitate lesson study with grade-level teams of teachers. The collection of 
roles and responsibilities is more like a terrain of options than a set of discrete categories. 

Recommendations for professional development for teachers consistently point to needing ongoing, 
school-based support for mathematics (Darling-Hammond, Hyler, & Gardner, 2017; Woulfin & 
Rigby, 2017). Models such as lesson study, professional learning communities (PLC), math labs or 
individual coaching often include a facilitator, coach or specialist at some stage. For instance, a math 
coach might be assigned at a school to work with all first-grade teachers in a PLC to provide 
additional knowledge and expertise in mathematics. Their role in that PLC might vary over time and 
the math coach may work with a different grade-level PLC the following year. However, that role is 
under-investigated in the research, but studies are emerging about the knowledge and skills required. 
As such, this paper presents early findings and a preliminary report to raise questions from existing 
research about mathematics specialists. 
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Purpose 
The purpose of our work is to synthesize existing research and develop understanding of the 

positioning of mathematics specialists and teacher leaders in the research. Our focus in this analysis 
is on the mathematics specialists as supporting teacher professional development and not on their 
work as teachers. We ground our definition in Campbell and Malkus (2013) in recognizing that a 
mathematics specialist is an on-site support person whose uses knowledge and expertise in 
mathematics content, pedagogy, and children’s learning trajectories to assist teachers with their 
content, pedagogy, and understanding of children’s learning trajectories. While many mathematics 
specialists are primarily teachers of mathematics, the role should be of interest to mathematics 
education because of its potential to provide school-based professional development. In this study, 
we seek to identify patterns and trends in research about mathematics specialists in schools. Our goal 
is to both create a framework for their roles and responsibilities and to describe how that research has 
been conducted to gather evidence regarding the complexity of the roles and responsibilities of 
mathematics specialists. Our purpose is to recommend future directions for research about 
mathematics specialists and to synthesize what is already known. 

Methodology 
We have begun working through the stages of qualitative synthesis suggested by Thunder and Berry 

(2016). The first step was to create criteria for the studies, identify the databases and develop a list of 
search terms. Each member of the team was responsible for selecting a database for the set of search 
terms. Then, we aggregated the list across those databases. Our first step was to eliminate pieces that 
were not articles (e.g., book reviews) and then to eliminate irrelevant articles (e.g., from fields 
outside education, focused on athletic coaching). For relevance, we included articles focused on 
mathematics and education. We coded articles that were clearly about mathematics specialists as 
MC, ADMIN for those regarding school leaders, PD for papers about professional development, and 
PST for articles about pre-service teachers; some articles were coded with multiple codes. In the 
portion of the review presented here, we have also pared down the list to identify those articles that 
mention math specialists (or related terms) in the title or the abstract, and thus coded MC. These 
articles have the greatest potential to provide insight about mathematics specialists. Later work may 
investigate how math specialists might appear in other parts of the publications. 

Results 
Overall, we can see that there has been an increasing trend in research that has been published about 

mathematics coaches and specialists between our target years of 1991-2018 (see Figure 1).  
Furthermore, we see the largest spikes in year-to-year publications between 2015-2016 (+7), 2002-
2003 (+5), 2009-2010 (+5), and 2016-2017 (+5).  Some of these spikes seem to be related to 
NCTM’s release of Research Briefs in 2009 and 2015. 

Wanting to better understand broad methodological trends for our 192 publications about 
mathematics coaches and specialists, we read through the abstracts and methods sections to identify 
the methods used in each study.  As illustrated in Table 1, 72 studies utilized qualitative methods, 48 
used mixed methods, and 23 employed quantitative methods.  Furthermore, we identified 34 articles 
that had been published in practitioner journals, and given that they did not have discernable 
methods, we did not code for methods in this group.  Last, we identified 14 items, including book 
chapters, editorials, and literature reviews that – similar to the practitioner pieces – did not have a 
discernible method.  Thus, we simply coded these as Other. At this point, we are still including them 
in our database because we are interested in portrayals of the role of the mathematics specialists and 
different perspectives on the topic. So, while they may not be empirical research, they may still have 
something to offer in learning more about the work in practice and how it has changed over time. 
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Figure 1. Overall Trends from 1991-2018 

Last, and as previously mentioned, we read through the abstracts and assigned at least one of the 
following codes based on what the article was about: MC (Mathematics Coach), PD (Professional 
Development), PST (Pre-service Teacher), ADMIN (Administrator).  Frequencies for each individual 
category and overlapping categories can be found above in Table 1.  

 
Table 1. Methodology and Abstract Topic Frequency 

Method Frequency 

Qualitative 72 

Mixed 48 

Practitioner 34 

Quantitative 23 

Other 14 

Combination of Codes Frequency 

MC (only) 95 

MC, PD 57 

MC, ADMIN 19 

MC, PD, ADMIN 8 

MC, PST 8 

MC, PD, PST 5 

MC, PD, ADMIN, PST 1 
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Discussion  
We are encouraged by the number of studies focused specifically on mathematics specialists and the 

increasing focus on their work, knowledge, and roles as distinct from other roles in schools. It is not 
surprising that research about them is likely intertwined with studies of teachers and administrators 
as their work is designed to include these groups. We are also encouraged to see the variety of 
methodological approaches that have been used as this will provide a richer and more nuanced 
understanding of the different types of work mathematics specialists do and its impacts on teaching 
and learning mathematics. 

In narrowing a list of thousands of articles down to a shorter list, we encountered questions about 
what to eliminate and what articles to keep for our review. Some eliminations were clear (e.g., when 
the study is in a different field than education), but some questions have been more complicated. 
Two groups of questions include:(a) determining what makes a study have enough mathematics 
education to warrant further investigation and (b) considering mentoring pre-service teachers. 

The first question we needed to consider was: What is enough mathematics for a study to be about 
mathematics teaching and learning? This may not seem like a complex question, but is complicated 
when attempting a large synthesis study. The first aspect is when mathematics achievement is used as 
a student outcome but the abstract does not include discussions of mathematics-focused 
interventions. Such studies may provide other academic supports for students, but are not focused on 
mathematics specifically. The second type of ambiguity is when it is not clear the professional 
development is focused on teaching in mathematics context. We felt only having a mathematics 
outcome variable was insufficient for inclusion when the intervention was focused on other aspects 
of teaching and learning. The second question we needed to consider was: How similar or different 
the role of mentor teacher is from the role of a math coach? A collection of studies that emerged 
focused on mentors of pre-service teachers. We have not yet answered the question posed. A math 
coach also does one-to-one work with teachers (e.g., co-planning lessons, observations, co-teaching), 
but mentoring a pre-service teacher may have different features. Both may fall under the broad 
category of mentoring, but we are not sure yet if mentoring pre-service teachers needs to be analyzed 
independently from other types of coaching or peer mentoring among teachers. 

In addition to the two questions, we also note considerations in regard to abstracts. The first 
consideration involves the term mathematics specialists being included in the abstract. We have 
narrowed our list of articles down to 192 that, based on the abstracts, are investigating some aspect of 
math coaching work. However, there are hundreds more that do not mention that role in the abstract. 
This supports our claim at this point that mathematics specialists continue to be “hidden players “ 
(Hjalmarson & Baker, 2020) in the research about mathematics specialists. “Hidden” in the present 
synthesis means that in studies of professional development, the role of the person who might be 
facilitating the professional development continues to be unmentioned or vague. The second 
consideration involves the need for more comprehensive, clear, or structured abstracts (Kelly & Yin, 
2007) that describe the major aspects of studies (e.g., questions, research design, participants). Some 
journals already require such abstracts (e.g., Journal of Engineering Education). In terms of 
stakeholders or participants in teacher professional development studies, abstracts could include 
more about the facilitators of such experiences. 
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In this report, the authors describe the creation of a learning community for mathematics teachers 
with the purpose to improve their knowledge about mathematics and its teaching. It also includes a 
description of how these teachers have structured reflection sessions on class planning, learning 
activity trials, analysis of teacher performances, and how to improve the design of the teaching 
sequence. An important result of the first ‘Teaching-Reflection Cycle’ carried out within the 
community is that learning about pedagogical content knowledge can be promoted. 

Keywords: Teacher’s knowledge, reflection on practice, teaching of functions. 

Shulman's influential framework (1986, 1987) on the components of effective teachers’ knowledge 
helped stimulate research to improve teaching in many subjects. In particular, for the teaching of 
mathematics, there are two key investigations. Ball, Thames, & Phelps (2008) extended Shulman’s 
categories for the teaching of mathematics and to build a framework of mathematical knowledge for 
teaching (MKT). Rowland, Huckstep, & Thwaites (2005) adopted another approach also based on 
Shulman's work, they built a framework known as The Knowledge Quartet (KQ) focusing on the 
teacher’s mathematics knowledge that emerges within the classroom. 

High school teachers frequently do not receive pre-service pedagogical training. In Mexico, teachers 
of this educational level, start teaching without any type of instruction. They get their pedagogical 
content knowledge in practice. Courses are often provided. However, the rationale of the lectures is 
not well planned and sometimes topics are disconnected from the curriculum that teachers follow in 
their schools (Sánchez & Huchim, 2015; Sosa & Ribeiro, 2014). 

Researchers have sustained that mathematical knowledge for teaching could improve the teaching 
of mathematics (Askew et al., 1997; Rowland et al., 2000). 

Considering the aforesaid situation, a group of mathematics teachers −from a Mexican high school− 
have decided to create a learning community with the aim to ameliorate their teaching by improving 
their knowledge for teaching mathematics.  

For the authors, the ‘Learning Community’ is a group with a shared identity, characteristics, or 
purposes. The learning is the objective that brings members together and gives meaning to the 
community for different purposes (Valdés, Pilz, Rivero, Machado & Walder, 2014, p. 56). A learning 
community provides: (1) a framework for teachers to learn and develop knowledge together, (2) 
opportunities to take advantage of teachers’ tacit knowledge and make it public to be shared and 
criticized, and (3) support to be more than technicians who implement others’ ideas to become 
thinkers, researchers and conceptualizers (Elbaz, 1983; Schön, 1983; Wood, 2007). 

The purpose of this report is to inform the process of the creation of a learning community; how 
teachers used reflection to design, apply, and discuss teaching activities and how evidence of 
teachers gaining knowledge emerges during this process. 
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Mathematics Teachers’ Learning Community 
A group of 12 mathematics teachers from a high school level, who works on the same educational 

center, participated in an academic call to improve their employment status. Aware that they lack the 
necessary knowledge for teaching, those teachers created a learning community as a means to 
increase their knowledge and to obtain a promotion. However, during the first period of activities 
carried out in this community, only 5 teachers continue working together. 

To structure the community, teachers used the method employed in the Keli Lesson Study, part of 
China's professional development program Xingdong Jiaoyu (Huang & Shimizu, 2016, p. 395). The 
program consists of two stages: practice and reflection. Like the Chinese approach, the community 
members also focus on professional development through reflective processes that center on how 
mathematical knowledge manifests itself in practice, and thus teachers gradually transform their 
practice. An important aspect of the learning community is that there is no institutional intervention, 
as it is a self-managed initiative of the teachers. 

Schön (1983) differentiates two types of reflection that can occur and determine professional 
knowledge of an individual: reflection in action and reflection on action. Reflection in action is the 
process of monitoring and adapting behavior in context, while reflection on action is the process of 
evaluating what has already been done. 

Community in Action  
The structure of the activities carried out within the community that will be referred to as 

‘Teaching-Reflection Cycle’ is composed of 4 stages: 
1. A teacher designs or proposes a Hypothetical Learning Trajectory (HLT) (Simon, 1995) to be 

revisited by the other members and to plan its trial in the classroom. 
2. A member of the community tries out the HLT, and another colleague video-records it. 
3. Community members analyze the video and reflect on the teaching activity carried out in the 

classroom by their colleagues. To think about the teaching process, the teachers use a 
protocol structured by the researcher (who is a member of the community). Teachers also 
make suggestions to modify the HLT to apply it later on. All the community sessions are 
recorded on video and the totality constitutes research data. 

4. A process of individual insight reflection is performed. 
Activities carried out in a Teaching-Reflection Cycle related to a minimum area problem 

1. During the first meeting for the aforementioned cycle, teachers agreed to apply an HLT based 
on the quadrilateral area problem (see Figure 1) proposed by Lola, a member of the 
community. She knew the problem from a master's course she took and has implemented it in 
her classroom several times. The members of the community agreed to deal with it in Mario 
and Tadeo’s groups, but they switch activities. Mario taught the HLT and Tadeo recorded the 
session in the video. 

2. In a second meeting, members of the community watched that video, analyzed and discussed 
Mario’s intervention, and reflected on the teaching and learning processes carried out. They 
also gave Tadeo’s ideas for the next trial.  

3. Tadeo taught the HLT in Mario’s classroom and Mario video-recorded the trial. 
4. In the course of the third meeting, teachers watched the second video, discussed and reflected 

on both interventions, and reached conclusions concerning how other teachers can use the 
HLT in their classrooms.  

5. Both teachers made an individual insight reflection about what the whole process contributed 
to their own teaching practices. 
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Stages 1) and 2) retrieving Schön (1983) are the moments of reflection in action in which teachers 
analyze and discuss the relevance of the HLT and its implementation. Stages 3) and 4) is the moment 
of reflection on action, in which teachers evaluate what has been done to make necessary changes 
considered for future applications. 

The Minimum Quadrilateral Area Problem 
The HLT of the quadrilateral area problem, included in Figure 1, was designed with the next 

characteristics: 

 
Figure 1: Problem: Compute the minimum area of a quadrilateral  

1. Learning goal: Solve the geometry problem by proposing a quadratic function model. In the 
solving process, students will observe tabular, graphic, and algebraic representations of the 
quadratic function and learn how to find its minimum. 

Learning activities will be applied in a two-hour session as follows: (1) Translate word problem to 
geometric language, (2) Area computation, (3) Tabulating task, (4) Graphing, (5) Generalization, (6) 
Identification of the minimum area value. 

2. The hypothesis of the learning process: At the end of the activities, students should learn 
three representations of the quadratic function that models the problem: tabular, graphical, 
and algebraic, and find the minimum area that solves the problem. 

Teachers’ Knowledge 
Members of the learning community ask themselves what they should know about knowledge for 

teaching mathematics to be effective teachers. For that purpose, a member of the community 
introduced the Knowledge Quartet (KQ) proposed by Rowland et al. (2005) as a theoretical 
framework for the analysis and reflection processes of their teaching activities. From the perspective 
of KQ, the knowledge and beliefs that are evidenced in the teaching of mathematics can be typified 
by means of four dimensions: (1) Foundation, (2) Transformation, (3) Connection, and (4) 
Contingency. 
Analysis of Activities within the Learning Community 

The KQ framework is also used as a tool for analyzing the 'Teaching-Reflection Cycle' related to 
the minimum quadrilateral area problem. For the coding of KQ dimensions, the analysis is based on 
Rowland, Turner & Thwaites (2014, pp. 319–320) where the contributing codes for each dimension 
are found. Five videos were analyzed using MAXQDA software to transcribe and for coding. 
KQ categories that emerge in an episode of the Teaching-Reflection Cycle 

The thoughts that appeared in the reflection process about how Mario taught the HLT were 
incorporated in Tadeo’s teaching. This can be seen as a way to build up practical knowledge for 
teaching quadratic functions. An example of this statement can be appreciated in the next episode. 
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In Mario’s class, a student passed to the blackboard to solve the problem, assuming that the points 
P, M, N, S were situated in the midpoint of each corresponding side of the rectangle ABCD. This is 
considered a situation of deviation from the agenda in the teaching process, an aspect that was not 
expected, so it is a Contingency (a dimension of the KQ framework). Mario dedicated a long period 
of time to make the students think about the data of the problem in a different way. 

A student in Tadeo´s class, while teaching the HLT makes the same interpretation regarding the 
midpoints, and drew a rhombus inscribed in the rectangle. Tadeo knew in advance that this could 
happen and manages to lead students to make the most general interpretation considering the 
problem’s conditions. 

Tadeo:  Well, but ... is everyone clear about what the problem asks you to calculate?  
Student 1:  The rhombus area. 
Tadeo:  Well, here I think, that in the wording there is a part that we are not considering because we 

put the points P, M, N, and S as he said (referring to student 1), you placed it in the midpoint–
[pointing P, M, N, and S for each side of the ABCD rectangle] – (See Figure 1). 

Student 1: Ah! M and S are not midpoints. 
Student 2: Because it had to be the same distance from A to P and from B to M. 
Tadeo: Exactly, you already saw that among the conditions of the problem there is a part that says 

that the distance from B to M, from C to N, from D to S is the same that from A to P. Did you 
consider that information?  

This is an example of the Foundation Dimension of the KQ Framework. The Contingency situation 
for Mario became a Foundation situation for Tadeo, due to the previous reflection on the first 
teaching trial within the community. 

Discussion 
This is the first ‘Teaching-Reflection Cycle’ of the community, of several more cycles which are 

being analyzed as part of a broader research work that aims to observe how these cycles can enrich 
the practical knowledge of the teacher. This methodology of data analysis supported by the KQ 
framework can be seen as an appropriate frame for analyzing what happens within the community to 
show how knowledge is produced. 
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Mathematical modeling is an important mathematical practice, yet it is a relatively new idea in 
school mathematics. Limited resources such as lack of teacher preparation have contributed to 
challenges of teaching modeling. Thus, professional development, such as lesson study, a continuous 
improvement approach to teaching, might support teachers in implementing modeling. For this 
study, three secondary teachers with varying levels of experience participated in two cycles of lesson 
study on mathematical modeling. The teachers were interviewed about their conceptions of teaching 
mathematical modeling before and after the lesson study. Analysis of the interview transcripts 
revealed that the teachers’ conceptions of teaching modeling evolved in ways that indicated the 
teachers learned pedagogical strategies, realized further benefits of teaching modeling, and refined 
their instructional focus for teaching mathematical modeling.   

Keywords: Modeling, Teacher Education – Inservice / Professional Development 

Policy documents have called for the incorporation of mathematical modeling into the curriculum 
(e.g., NCTM 2000, 1989; National Governors Association Center for Best Practices & Council of 
Chief State School Officers, 2010). Yet, research has indicated that teachers may have challenges 
with teaching this important mathematical process that is becoming increasingly more prominent in 
science, technology, engineering, and mathematics fields (Cirillo, Pelesko, Felton-Koestler, & Rubel, 
2016). The challenges of teaching modeling include limited experience, teachers’ dispositions and 
lack of resources (e.g., Meyer, 2015; Newton, Madea, Alexander, & Senk, 2014). These challenges 
are unfortunate because mathematical modeling can provide students with opportunities to engage in 
ill-structured problems about authentic real-world situations that are unlike typical textbook tasks. 
Thus, researchers have recommended that teachers receive professional development (PD), such as 
lesson study, on implementing mathematical modeling (Turner et al., 2014). 

In previous studies lesson study has supported teachers to improve their teaching (e.g., Lewis, 2016; 
Murata, Bofferding, Pothen, Taylor, & Wischnia, 2012). Lesson study is an iterative process that 
includes curriculum study, lesson planning, teaching and observing, and reflecting/debriefing. Lesson 
study could support the teaching of mathematical modeling because lesson study employs a variety 
of tools and resources that influence improvement of teaching (see e.g., Lewis, C., 2016; Takahashi 
& McDougal, 2016.) Hence, this study sought to understand: What are teachers’ conceptions of 
teaching mathematical modeling after participating in lesson study on mathematical modeling?  

What is Mathematical Modeling?  
There are many descriptions of mathematical modeling, but there is no agreed-upon definition. 

Hence, for the purpose of this study, a working definition of mathematical modeling is inspired by 
Cirillo, Pelesko, Felton-Koestler, and Rubel's (2016) description of the features of mathematical 
modeling: Mathematical modeling is an iterative process that authentically connects to the real 
world. It is used to explain phenomena in the real world and/or make predictions about the future 
behavior of a system in the real world. Mathematical modeling requires creativity and making 
choices, assumptions, and decisions, and can have multiple approaches and solutions.  
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Challenges of Teaching Mathematical Modeling 
A review of literature revealed multiple challenges for teaching mathematical modeling. For one, 

preservice and inservice secondary mathematics teachers reported a lack of self-efficacy with respect 
to pedagogical strategies for teaching mathematical modeling, specifically because of the ill-
structured nature of modeling activities (e.g., Kuntze, Siller, & Vogl, 2013; Chan, 2013). Other 
researchers observed that teachers have struggled with anticipating multiple student responses for 
mathematical modeling activities. This pedagogical challenge led to other obstacles with respect to 
classroom management, the handling of multiple student approaches, and the facilitation of whole-
class discussions (e.g., Pereira de Oliveria & Barbosa, 2013; Borromeo Ferri & Blum, 2013). These 
challenges indicate that teachers need further preparation to teach mathematical modeling.  

A need for teacher preparation is particularly true when considering the US context. Evidence of 
insufficient teacher preparation was revealed through a survey of education programs (n = 72). Of the 
respondents, only 15% of the programs required a mathematical modeling course for preservice 
secondary teachers (Newton, Madea, Alexander, & Senk, 2014). This finding could indicate that 
novice secondary teachers may not implement modeling as recommended (see e.g., CCSSM). Gould 
(2013) found, in a national survey of inservice teachers (n = 274) from 35 states that teachers held 
misconceptions about mathematical modeling. While Gould’s (2013) results indicate that teachers 
may lack content knowledge for teaching modeling, teachers may also hold beliefs that impact their 
willingness to teach mathematical modeling. As an example, Anhalt, Cortez, and Bennett (2018) 
found that after completing a modeling activity, preservice teachers acknowledged that implementing 
modeling could provide many opportunities for students to engage in rigorous mathematics, rich 
discussions, and develop multiple solution approaches. At the same time, those teachers were 
concerned that mathematical modeling activities would be too complex for most secondary students. 
These types of beliefs may hinder teachers from implementing modeling activities. Moreover, 
inservice teachers have reported limited resources, such as time and access to quality mathematical 
modeling curriculum materials prevented them from implementing mathematical modeling regularly, 
if at all (Gould, 2013; Huson, 2016). To address these challenges researchers have recommended 
lesson study as a means of professional development to support the teaching of mathematical 
modeling. 

Using Lesson Study to Address Challenges of Teaching Mathematical Modeling 
Through the process of lesson study, teachers have opportunities to learn from each other while 

collaboratively: planning, observing teaching, and debriefing to improve lesson plans (Lewis et al., 
2009). Previous studies have found that lesson study provides opportunities for teachers to improve 
content knowledge, learn pedagogical strategies, and focus on student thinking (e.g., Murata et al., 
2012; Lewis et al., 2009). This focus on student thinking can influence teacher learning (e.g., Suh & 
Seshaiyer, 2014). For instance, teachers observed by Inoue (2011) drew on anticipated student 
responses to facilitate discussions and support students’ engagement with mathematical reasoning. 
Additionally, Cajkler et al. (2015) observed how teachers’ beliefs changed after reflecting on their 
observations of student thinking for students who typically had minimal classroom participation. 
These aforementioned aspects of lesson study are likely to support teachers in the implementation of 
open-ended modeling activities.  

Methods 
Setting and Participants 

Three secondary teachers who were teaching in a diverse vocational high school in the mid-Atlantic 
region of the United States were recruited based on their interest in improving their teaching of 
mathematical modeling. Loren, a second-year teacher, earned her bachelor’s degree in secondary 
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mathematics education, and as part of her degree program, completed one course on mathematical 
modeling for secondary teachers. Anne, who had previously been an engineer, had six years of 
teaching experience. Anne held a bachelor’s degree in electrical engineering and a master’s degree in 
curriculum and instruction. Karen had 21 years of experience teaching and had earned a bachelor’s 
degree in computer information systems and a master’s degree in education. Karen had participated 
in professional development on mathematical modeling, and she had some experience teaching 
modeling. 

Lesson Study on Mathematical Modeling. The teachers participated in two lesson study cycles 
containing the following activities: curriculum study, lesson planning, teaching and observing, and 
debriefing. During the curriculum study, the researcher introduced mathematical modeling, and the 
teachers explored curriculum materials related to modeling. For instance, the teachers explored tasks 
such as those provided in the Mathematical Modeling Handbook (Gould, Murray, & Sanfratello, 
2012). Next, the researcher facilitated planning meetings and guided teachers in completing an 
annotated lesson plan, similar to a common format used in Japanese lesson study (e.g., Gorman et al., 
2010; Lewis & Hurd, 2011). The lesson plan template contained cells for learning goals, anticipated 
student responses, planned instructor actions, and rationale for tasks. To complete the lesson study 
cycles, each teacher enacted the lesson while the lesson study team observed. Then, the team met to 
debrief the lesson enactments after the first enactment (i.e., Loren’s) and the third enactment (i.e., 
Karen’s). During the debrief sessions, the researcher executed a debrief protocol to support revision 
of the lesson plan based on evidence of student thinking collected by the teachers while observing 
each other’s enactments.   
Interview Protocol 

Interviews were conducted before and after the lesson study, regarding the teachers’ conceptions of 
teaching mathematical modeling. The questions provided teachers with opportunities to share their 
conceptions of teaching mathematical modeling. For example, one of the questions was: “Are you 
currently teaching mathematical modeling, or have you ever taught mathematical modeling? 
Describe your teaching approach to mathematical modeling (e.g., frequency, resources for tasks, 
aspects of the modeling cycle addressed).” Then follow-up questions were asked about teaching 
approaches to modeling, including the benefits and challenges of teaching mathematical modeling. 
Prior to the lesson study, if the teacher was not currently teaching modeling, then the teacher was 
asked why modeling was not being taught, and to describe any hypothetical benefits and challenges 
of teaching modeling. 
Data Analysis 

Data for the study consisted of audio-recordings and transcripts of two interviews per teacher for a 
total of six interviews. Once the audio data were transcribed the transcripts were uploaded to 
Dedoose (2016), web-based qualitative data analysis software. The transcripts were analyzed using a 
constant comparative approach (e.g., Strauss, 1987; Hatch, 2002). Initial deductive codes were 
developed using themes that emerged in the literature with respect to the working definition of 
modeling as well as benefits and challenges of teaching modeling. Then the coding dictionary was 
revised further as inductive codes emerged from the data. Themes were organized into analytic 
memos to inform the findings. The analysis of the data revealed three cases about the teachers’ 
conceptions of teaching mathematical modeling: Loren learned pedagogical strategies for teaching 
mathematical modeling; Anne realized the benefits of teaching mathematical modeling; and Karen 
focused on shifting her classroom culture. 
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Findings 
Case 1 – Loren: Learned Pedagogical Strategies for Teaching Mathematical Modeling 

Before the Lesson Study. 
In the pre-lesson study interview, Loren shared that she had not taught authentic mathematical 

modeling yet, but she expressed several potential benefits and her concerns for challenges of teaching 
mathematical modeling. For example, she mentioned that teaching mathematical modeling “makes 
mathematical modeling more interesting to students” and that students could have opportunities to be 
creative and to see multiple approaches to a modeling activity. Although Loren acknowledged 
potential benefits of teaching modeling, she also mentioned that modeling activities could be 
“complicated” and that students could get “easily frustrated” while engaging in modeling. She 
seemed to think that the complexity of modeling activities could be an obstacle for students. Even 
though Loren had not been teaching modeling, she indicated that she attempted to provide 
opportunities to experience similar benefits through her teaching of word problems. 

As mentioned earlier, Loren had limited experience with teaching mathematical modeling. She 
described her approach to teaching modeling as implementing “word problems.” When reflecting on 
her experience teaching modeling she said:  

The only experience that I've really had, and I don't even know if you would classify it as modeling is 
just like drawing pictures and setting up scenarios with word problems…I'm thinking of when I 
student taught geometry, and we would do those drawings with the ladder leaning on the house, 
and I've taught students ways to show mathematical situations, but I don't know if it's truly 
modeling. 

Here, Loren acknowledged that her use of word problems was not quite modeling even though 
students had opportunities to apply multiple mathematical representations in their solutions. Loren 
also conveyed enthusiasm for participating in lesson study and improving her teaching of 
mathematical modeling so that she could genuinely engage her students in the benefits of teaching 
mathematical modeling.  

After the Lesson Study. After participating in lesson study, Loren’s observations of students in her 
classroom and her two colleagues’ classrooms influenced her conceptions of the benefits of teaching 
mathematical modeling. While she mentioned several benefits in her initial interview, Loren added 
that when the students engaged in modeling during the lesson study, she observed them engage in 
mathematics that was “valuable in the real world” and “really relevant.” She observed that teaching 
modeling was “a lot more rigorous for them than just teaching them how to do procedures.” Loren 
also recognized how the modeling tasks provided opportunities for students to collaborate with their 
classmates. Prior to the lesson study, Loren was concerned that mathematical modeling activities 
would be too complex. However, after focusing on student thinking during lesson study, she saw 
how students could persevere and collaborate to produce multiple solution pathways for 
mathematical modeling activities.  

Loren’s new experience with teaching mathematical modeling also exposed some worthwhile 
challenges of teaching modeling. Loren found it challenging to support students with “group roles” 
while they collaborated on the modeling tasks. She also worried about “tutoring [students] too 
much.” Thus, to avoid too much “telling,” Loren said she relied on the collaboratively planned lesson 
which was annotated with possible student responses and questions to ask students. This type of 
lesson planning seemed to influence Loren’s teaching approach to mathematical modeling as she 
indicated in the transcript below.  

It [lesson planning] really showed me how valuable that is, and I like so enjoyed like going into [the 
lesson] knowing, what I wanted to say, what I didn't want to say, and what I thought the students 
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would say. I planned timing and things like that, but the lesson plan that we did went in depth 
which was great. So, I think it'll change the way I teach. Not only teaching modeling but just 
teaching in general because it showed me the importance of lesson planning. 

As a new teacher, the lesson planning activities and focus on student thinking during lesson study 
influenced her approach to teaching mathematical modeling. While Loren expressed some concerns 
about the challenges of teaching mathematical modeling, she also seemed to indicate that her new 
knowledge of pedagogical strategies would continue to support her teaching.  
Case 2 – Anne: Realized the Benefits of Teaching Mathematical Modeling Before the 
Lesson Study. 

Similarly, to Loren, Anne mentioned that she had not quite taught mathematical modeling before, 
but she acknowledged potential benefits and challenges of teaching mathematical modeling. Anne, 
conveyed that mathematical modeling could advance students’ mathematical thinking and that 
teaching modeling was “teaching them more the approach to solving problems rather than just rote 
memorization of solving problems, different representations and ways to solve things, but mostly just 
to get them thinking more analytically rather than plugging things into a formula.” While Anne 
recognized that modeling could provide students opportunities to engage in complex mathematics, 
she also indicated that students could become frustrated with ill-structured modeling tasks. Anne 
noted that when she had implemented open-ended mathematical tasks her “biggest challenge” was 
“letting them [students] struggle.” She also mentioned that the students were uneasy with tasks that 
could have multiple student responses and not being “spoon-fed, step-by-step” instructions for 
solving the tasks. Anne seemed to think that struggling with mathematics would be beneficial for 
students, but she also mentioned her frustration with the lack of time for including open-ended tasks 
within her mandated curriculum when she said “It's just sometimes it's hard with so much to get 
through. There's definitely room for more.” 

After the Lesson Study. After the lesson study, Anne still maintained her perceived benefits of 
teaching mathematical modeling. She indicated that she saw students in her classroom, and her two 
colleagues’ classrooms “get better at problem solving.” She also thought those skills would translate 
to other areas outside of the math classroom. A new conception that Anne mentioned was based on 
her observations of students. She saw that engaging in mathematical modeling gives students 
opportunities to “collaborate with other students and things like that rather than just being instructed 
directly.” Anne’s evolved conceptions about her students were notable. After the lesson study and 
implementation of mathematical modeling, she discussed how the intentional focus on student 
thinking allowed her to observe “skills in students that [she] wouldn't have seen in a traditional way 
of teaching them.” More notably, she had the following to say about one of her students in particular:  

One of my students, like I got more out of him from this activity than I have the whole semester. I 
was able to see his thought process and things like that, that I had never seen before because I 
guess really, I'm always looking at a paper and what he's writing, and he's not a big sharer in 
class. So, it was really hard for me to see. But then when I saw what he was doing I was like, 
wow, he's really, really working on this. Like really his, the way his mind was working, was very 
much different than what I had thought. 

Anne’s discussion about her observations of this particular student indicated that her initial beliefs, 
regarding students’ abilities to engage with mathematical modeling, had evolved to see that students 
could persevere through modeling activities. As a result, Anne mentioned that she was including 
more modeling tasks and asking more open-ended questions throughout her lessons. Through her 
participation in the lesson study, Anne’s conceptions evolved so that she had a deeper realization of 
the benefits of teaching mathematical modeling.   



The evolution of teachers’ conceptions of teaching mathematical modeling through participation in lesson study 

	 1883	

Case 3 – Karen: Focused on Shifting Classroom Culture  
Before the Lesson Study. As the most experienced teacher, Karen, was well-aware of many 

benefits and challenges of teaching mathematical modeling prior to the lesson study. When 
describing the benefits of modeling, she conveyed her implementation of modeling had evolved. For 
instance, she mentioned how students struggled with the messiness of modeling tasks at first, but 
then “eventually they started to deeply think about it and contribute to each other's ideas and bounce 
ideas off of each other and reference each other's input as a class discussion.” Because of her 
previous experience with teaching modeling, unlike her two colleagues, she had a clear vision for 
implementing modeling. Although Karen recognized many benefits to teaching modeling, she also 
noted challenges with teaching modeling. Karen’s primary concerns about teaching mathematical 
modeling were with regard to her available resources. She indicated that when it comes to teaching 
mathematical modeling, “the primary constraint is the lack of great tasks and the lack of time.” Karen 
shared that she implemented a modeling activity within each of her units, but she was looking 
forward to the opportunity to collaborate with colleagues to further improve her teaching of 
modeling. Although Karen’s conceptions of teaching modeling did not evolve as drastically as her 
other two colleagues’ conceptions, she still found value in the lesson study and her conceptions of 
teaching modeling emerged to a different teaching focus.  

After the Lesson Study.  As hypothesized by the researcher, many of Karen’s conceptions about 
the benefits and challenges of teaching mathematical modeling did not change much after teaching 
the lesson study. Rather than observing noticeable changes in her conceptions, the researcher noted 
that Karen’s focus after the lesson study had moved to cultural aspects of teaching mathematical 
modeling. For example, Karen noted that she appreciated the level of student engagement she 
observed during the lesson enactments. She also spoke about her evolved focus on cultivating a 
classroom culture that would support the teaching of mathematical modeling. Specifically, she said 
she was challenged with: 

Creating that environment where they want to do this type of math is an ongoing challenge of 
mine…just getting [students] to be comfortable with being uncomfortable is what I try and get to 
tell them. I am becoming more and more aware of the importance of establishing appropriate 
culture, and it doesn't matter what the task is or how wonderful my task is. If I can't get the 
students to buy what I'm selling, it's not, it's just not going to have the impact that I wanted to 
have. I need to have these kids believing that they can model. 

It seemed as though Karen was less focused on her earlier challenges with limited resources for 
teaching modeling, and more focused on her teaching approach. She also noted other benefits of 
participating in the lesson study. 

During the post-lesson study interview, Karen expressed that she found the lesson study to be 
beneficial for multiple reasons. First of all, even though she was the most experienced teacher, she 
found that the collaborative nature of lesson study supported her to anticipate student thinking for the 
implemented lessons. Consequently, she communicated that she would like to continue to collaborate 
with teachers in her school to improve her teaching of mathematical modeling. More specifically, 
Karen said she appreciated the “ ability to plan with someone else and anticipate [student thinking], 
regardless if it's modeling or not modeling, but I wish I had that with my modeling tasks. I know my 
modeling tasks would be improved if I could do that.” Even though Karen was a veteran teacher, she 
indicated an aspiration to collaborate with her colleagues in the future to improve her teaching of 
mathematical modeling. 
Reflections Across the Cases 

Before the Lesson Study. Prior to the lesson study, all three of the teachers acknowledged that 
teaching mathematical modeling could have many benefits for students but also challenges for 
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students and teachers (see Table 1). Loren, who had engaged with modeling as a student, and Karen, 
who had been teaching modeling, both recognized that teaching mathematical modeling could appeal 
to student interest. Anne also indicated that engaging in modeling would provide more rigorous 
problem-solving opportunities than typical textbook texts usually provide. Yet, at the same time, 
Loren and Anne were concerned that the complexity of modeling could discourage some students. 
Notably, Karen did not focus on challenges for students, but she expressed challenges she faced as a 
teacher with finding authentic modeling tasks and time to plan and implement mathematical 
modeling. At the beginning of the study, as expected, the teachers were approaching the teaching of 
mathematical modeling in various ways, as Loren and Anne had not quite implemented open-ended 
modeling tasks. When considering, the teachers’ early conceptions of teaching modeling, their 
evolved conceptions after the lesson study suggested that the lesson study had a positive impact on 
their conceptions of teaching mathematical modeling. 

 
Table 1:Teachers’ Conceptions of Teaching Mathematical Modeling 

 Benefits Challenges Teaching Approach 

Loren 

Before 
• Student interest 
• Creativity 
• Multiple approaches 

• Complexity of modeling  • Word-Problems 

After 
• Relevant math 
• Rigorous math 
• Student collaboration 

• Time 
• Curriculum 

• Focus on Student 
Thinking 
• Group Roles 

Anne 

Before • Problem-solving • Complexity of modeling • Word-problems 

After 

• Student collaboration 
• Access for all students  
• Focus on student 
thinking 

• Culture Shift • Increased modeling 
tasks 
• Open-ended questions  

Karen 
Before • Student interest 

• Student collaboration  
• Time 
• Curriculum 

• Modeling in unit plans 
• Adapting tasks 

After • Rigor and relevancy  
• Student collaboration 

• Culture Shift • Collegial Collaboration  
• Culture Shift 

 
After the Lesson Study. After the lesson study, the teachers’ expressions conveyed evidence that 

indicated their conceptions of teaching mathematical modeling had evolved. As an example, Loren 
and Anne’s concerns about the complexity of modeling tasks being too challenging for students had 
shifted. Instead, they expressed how teaching modeling provided opportunities to focus on student 
thinking and observe how all of their students could engage in rigorous mathematics. Similar to 
Karen, before the lesson study, Loren now conveyed curriculum and time as being her main 
challenges to implementing modeling. Likewise, Anne’s new perceived challenges were aligned with 
Karen’s challenges of creating a classroom culture for teaching modeling. Additionally, Loren and 
Anne had other conceptions after the lesson study about the benefits of modeling that were similar to 
Karen’s conceptions before the study. For example, before the lesson study, Karen indicated that 
modeling could appeal to student interest and promote student collaboration; whereas, Loren and 
Anne did not mention those benefits until after the lesson study. When considering the cross-case 
findings, it is apparent that the evolution of the teachers’ conceptions about teaching mathematical 
modeling was supported by participating in the activities of lesson study. More importantly, one 
might hypothesize that Loren’s and Anne’s conceptions of teaching mathematical modeling 
progressed more expediently than if Loren and Anne had attempted to implement mathematical 
modeling on their own or through conventional PD. 
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Discussion and Conclusions 
The teachers’ conceptions about teaching mathematical modeling after participating in lesson study 

indicated that lesson study can, given the right conditions, support the teaching of mathematical 
modeling. For one, the teachers indicated that participating in lesson study provided opportunities to 
explore curricular resources and learn new pedagogical strategies. They also had time to collaborate 
with colleagues to improve mathematical modeling lessons. This finding is important as teachers in 
previous studies have indicated that they had limited resources for teaching mathematical modeling 
such as curriculum and time (Gould, 2013; Huson, 2016). The teachers in this study also focused on 
how their implementation of mathematical modeling provided multiple benefits for students. The 
teachers spoke about how the lesson study provided opportunities to engage with student thinking in 
ways that supported students’ engagement in the modeling process. This finding is contrary to 
previous studies where teachers struggled with pedagogical skills needed for teaching modeling such 
as facilitating multiple student responses (e.g., Kuntz, Siller & Vogl, 2013; Pereira de Oliveria & 
Barbosa, 2013; Borromeo Ferri & Blum, 2013). Another notable finding from this study was that the 
teachers observed how all students were capable of engaging in rigorous mathematics. In contrast, 
teachers in previous studies expressed concerns about students’ abilities to engage in complex 
mathematical modeling tasks (e.g., Anhalt, Cortez, & Bennet, 2018). These cases present compelling 
evidence for the use of lesson study on mathematical modeling to support teachers’ conceptions of 
teaching mathematical modeling. Further research is needed to understand how lesson study on 
mathematical modeling can be employed in different contexts to achieve improvements in teachers’ 
content and pedagogical knowledge with respect to modeling.  
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The objective of this study is to analyze the nature of feedback given among 58 middle school 
mathematics teachers participating in a targeted professional development program. As part of the 
professional development, teachers participated in instructional rounds in which they worked in 
groups of five or six to observe and give each other feedback on classroom visits. The feedback was 
written on forms during the observations and discussed during debrief meetings after the 
observations. This paper characterizes the feedback written by teachers as they observed their 
colleagues teaching. The preliminary results show that teachers’ written feedback was largely 
descriptive and focused on instructional, rather than mathematical, elements of the lesson.  

Keywords: Teacher Education – Inservice / Professional Development, Systemic Change, 
Instructional Vision, Middle School Education 

The purpose of this research is to characterize the feedback middle school mathematics teachers 
provide to their peers as part of Instructional Rounds (IR). Instructional Rounds have been proposed 
as an alternative to the periodic, short-term professional development (PD) workshops that are 
typically held for a few days during the school year or summer (e.g., Goodwin et al., 2015; Teitel, 
2015). They involve a collaborative effort among teachers as they observe each other in the 
classroom and learn from their collective expertise (City et al., 2009). Instructional Rounds 
exemplify other features of PD programs that have been shown to have an impact on teachers’ 
practice. For example, they take place in the context of schools (Mewborn & Huberty, 2004; Quick et 
al., 2009) and encourage teachers to collaborate and problem solve as they reflect upon their 
experiences of teaching (Hawley & Valli, 2000). Specifically, the research question guiding this 
research is: How can the feedback teachers give to one another as part of Instructional Rounds be 
characterized?  

Theoretical Framework 
This study is grounded in the premise that IRs are one way in which teachers can learn and improve 

their practice as they share their expertise and reflect on their own practice with their peers (Kennedy 
et al., 2011). However, there is a dearth of research on the types of feedback teachers provide to one 
another on classroom observations. Scheeler et al. (2004) conducted a meta-analysis of research 
feedback and found that of the 208 teachers included in the meta-analysis, only 9 teachers were 
inservice teachers. The nature of feedback university supervisors provide to preservice teachers has 
shown that immediate feedback following a teaching episode (Cornelius & Nagro, 2014) or using 
bug-in-ear technology during live teaching (Scheeler et al., 2006) can lead to change in practice.  

With respect to inservice teacher education, the recent emergence of video clubs for teachers has 
provided opportunities to study teachers’ observation (e.g., Star & Strickland, 2008) and noticing 
(e.g., Sherin & van Es, 2005) skills. These studies have described the results of the implementation of 
video clubs (e.g., Beiseigel, 2018; Wallin & Amador, 2018), or have analyzed teachers’ responses to 
viewing rich clips of classroom episodes (van Es & Sherin, 2008). However, more research is needed 
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to understand how teachers provide feedback to their peers and to categorize and describe the nature 
of their feedback.  

Methods 
Context 

The participants of this study were 58 middle school mathematics teachers from 7 local school 
districts. The teachers participated in a three-year PD program consisting of a two-week intensive 
Summer Institute, followed by four days of follow-up PD during the academic year. In the final year 
of the program teachers participated in IRs, starting with norms development and team-building 
during the Summer Institute, and involving peer classroom visits and feedback cycles during the 
school year. Teachers worked in teams of five or six throughout the IR process.  

During the PD teachers participated in targeted activities to help them understand the importance of 
using one another as instructional resources and to practice giving meaningful feedback. After 
reading an article on the teachers implementing IRs in schools (Troen & Boles, 2014) and discussing 
the differences in peer feedback and the standard evaluation measures, teachers practiced giving 
feedback on a classroom video of a teacher not in the program. Then, teachers gave a short model 
lesson and received feedback from their peers in the audience. In this way, they practiced giving and 
receiving feedback in a safe space with their teams.  

During the school year, every team traveled together to observe each of their teammates’ 
classrooms. The visits included a pre-observation meeting where the observed teacher described their 
mathematics and instructional goals for the lesson, a classroom observation, and a post-lesson debrief 
where the observers provided feedback to the teacher.  
Data Collection and Analysis 

The data for this study came from the observation forms teachers completed during their classroom 
visits. To record their thoughts for the debrief sessions, each observer was provided with a form with 
a section for “Mathematics Goal”, “Instructional Focus”, and “Other”. We collected 244 forms for 
the observed teachers. The observation forms were parsed into units of analysis that were feedback 
units distinguished from the next by turns in content. In sum, there were 3,595 feedback units in the 
teachers’ observations forms (µ=14.79).  

Based on Schwartz et al. (2018), pre-determined codes for the observation forms were used to code 
the feedback units. The first level codes determined whether a feedback unit was mathematical (M) 
or instructional (I) in focus. Feedback related to mathematical thinking, mathematics content, 
terminology, or notation, was coded as Mathematical (M). Comments related to instructional 
decisions that were not specific to mathematical content were coded as Instructional (I). The second 
level determined whether the comment was descriptive (D), suggestive (S), or complimentary 
(C). Descriptive refers to comments that summarize or describe a situation without any intended 
suggestion or judgement. Suggestive refers to comments that were meant to have the teacher consider 
alternatives or to question a move or explanation of content. A comment was coded as 
complimentary if it connoted a positive attribute of the lesson.  

If a feedback unit was coded as descriptive (MD or ID), no additional sub-codes were assigned. 
Each of the suggestive second-level code was coded as either consideration (C) or imperative (I). A 
suggestive, consideration comment indicates that the mathematical objective or instructional focus 
was not hindered and that the observer was merely giving the observed teacher a question or 
alternative to consider. An imperative suggestion includes comments that stood in the way of the 
mathematical objective of instructional focus being met. A feedback unit with a complimentary code 
(MC or IC), was either general (G) or specific (S). General compliments consisted of phrasings such 
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as “nice lesson”, whereas specific compliments referred to a particular instance during the 
lesson. Examples of each set of codes are provided in Table 1.  
 

Table 1: Coding Scheme with Examples 
Level 1 Code Level 2 Code Level 3 Code Examples 
Mathematical 

(M) 
 
 

Descriptive (M, 
D)  

 “Added all angles to make sure they were 
180” 

Suggestive 
(M,S)  

Consideration 
(M,S,C) 

“A ‘math talk’ anchor chart may help guide 
discussions” 

Imperative 
(M,S,I) 

“Never really answered the question 
(problem)” 

Complimentary 
(M,C) 

General 
(M,C,G)  

“Topic well covered” 

Specific 
(M,C,S) 

“Loved the calculator analogy—have to 
know to use the tool properly” 

Instructional (I) 
 

Descriptive 
(I,D) 

 “Had the kids organized before the lesson 
started” 

Suggestive (I,S) Consideration 
(I,S,C) 

“Students may be more willing to share 
ideas if they can formulate them first on 
paper” 

 Imperative 
(I,S,I) 

“Wait time—need more” 

Complimentary 
(I,C) 

General (I,C,G)  “Ms. K has a very approachable demeanor” 

 Specific (I,C,S) “These tips are a great foundation to 
encourage more group talk later on in the 
year” 

 
Reliability 

Each feedback unit was coded by two coders. After initial coding, any discrepancies were discussed 
until agreement was reached. Thus far, 338 feedback units from one team have been coded for this 
preliminary analysis. The initial agreement between the coders was 89% for Level I codes (M vs. I), 
86% for Level II codes (D/C/S), 82% for Level III codes (C/I or G/S). By October, all ten groups and 
3,595 feedback units will be coded and analyzed. Results from the first team, Teachers Being 
Outstanding (TBO) are presented below.  

Results 
The raw data for the 338 codes provided by the TBO team are provided in Table 2. The most 

frequent feedback was instructional descriptive (ID). Though the feedback units coded as 
mathematical were infrequent, when teachers provided feedback coded as mathematical, it was 
mostly descriptive in nature. Of the suggestive feedback, none were imperative and there were 
almost three times as many instructional suggestive consideration (ISC) feedback units than 
mathematical suggestive considerations (MSC).  
 

Table 2: Counts for Each Code Across TBO Team 
Code MD MSC MSI MCG MCS ID ISC ISI ICG ICS 
Count 56 13 0 1 25 144 34 0 13 52 
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An analysis of Level I codes shows that there were 95 feedback units coded as mathematical and 
243 codes as instructional. For the level two codes, there were 200 descriptive, 91 suggestive, and 47 
complimentary. At level three there were 47 feedback units coded as consideration and 0 imperative 
feedback units. There were 14 general level 3 codes and 77 specific, however twice as many 
feedback units, coded as specific, were instructional in nature.  

The percentage of each feedback unit code for the TBO group is provided in Table 3. The 
percentages represent the frequency of each code relative to the total number of feedback units given 
by the observer for all teachers observed. For each observer, the code that was most frequent is 
highlighted in gray. Across all six teachers, the most frequent codes were instructional in nature, with 
the instructional descriptive codes being the most common among the team of observers.  
 

Table 3: Percentages of Each Code by Observer 
 MD MSC MSI MCG MCS ID ISC ISI ICG ICS 

Ebony 18.87 1.89 0.00 0.00 0.00 58.49 7.55 0.00 5.66 7.55 
Condi 27.27 0.00 0.00 0.00 4.55 31.82 4.55 0.00 9.09 22.73 

Tammy 20.72 5.41 0.00 0.90 13.51 23.42 9.01 0.00 2.70 24.32 
Karmen 7.84 0.00 0.00 0.00 13.73 39.22 11.76 0.00 3.92 23.53 
Meegs 16.46 1.27 0.00 0.00 2.53 70.89 7.59 0.00 1.27 0.00 
Jameka 0.00 19.05 0.00 0.00 0.00 19.05 33.33 0.00 9.52 19.05 

 

Discussion and Conclusions 
These preliminary results show that teachers tend to focus on instructional aspects of mathematics 

lessons and that it is more common for them to provide descriptive comments than suggestive or 
complimentary, despite the emphasis on constructive and meaningful feedback during the PD 
sessions preceding the IRs. It is rare for teachers to provide mathematical or instructional suggestions 
that they believe are imperative in nature. It will be important to conduct this analysis across the 
other nine IR teams and to disaggregate the results by observer and by team to determine if there are 
any differences in feedback based on the structure of the teams.  

These results have implications for professional development and mathematics teacher leadership 
programs. Professional development and programs seeking to develop mathematics teacher leaders 
should consider developing activities to facilitate teachers’ observation skills to include a critical eye 
for providing feedback to their peers. Whole group discussions, interspersed with IR observations, 
that provide opportunities to review the feedback and consider ways to make it more meaningful 
would allow for this type of intervention. A study that describes teachers’ growth under this model 
would be illuminating.  

Creating a network of teachers that can provide critical, non-evaluative feedback to one another has 
the potential to make small incremental and sustainable improvements to teachers’ practice. The 
present study shows that teachers provide a range of different feedback types and also suggests that 
PD should focus on helping teachers provide more suggestive feedback.  
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Teachers’ diagnostic competence is essential for effective mathematics instruction. Prior studies 
have examined teachers’ diagnostic competence using various approaches, such as asking teachers 
to assess students’ erroneous work or anticipate potential learning difficulties. Few studies have 
examined how teachers interpret the significance of student errors, that is, to what extent the 
teachers think the flaws in students’ work indicate a serious conceptual error or a trivial mistake that 
can be easily remediated. In this paper, we investigated the diagnostic competence of 2527 
elementary in-service teachers by asking them to categorize errors in students' authentic place value 
errors in the context of decimal operations. Implications are discussed.  

Keywords: Diagnostic Competence, Mathematical Error, Misconceptions, Decimal, Place Value 

Perspectives  
Teaching effectively and efficiently requires teachers to recognize ‘what is’ and ‘how to’ respond to 

the students’ errors (Hill et al., 2008). Researchers (e.g., Artelt & Rausch, 2014; Schrader 2009; 
Südkamp et al., 2012) have defined diagnostic competence as the ability to anticipate or evaluate 
how well students perform on tasks. Diagnostic competence has been identified as a foundation of 
teaching expertise for decades (Weinert et al., 1990). Previous studies have worked on the 
conceptualization and measurement of teachers’ diagnostic competence (Klug et al., 2013) as well as 
exploring how it affects students’ learning (Guruzhapov et al., 2019; Helmke & Schrader, 1987). 
Researchers have assessed teachers’ diagnostic competence by examining teachers’ ability to analyze 
and identify errors in the students’ work, anticipate common errors, and estimate the difficulty level 
of given tasks in order (e.g., Ostermann et al., 2018).  

The present study is designed on the premise of defining teachers’ diagnostic competence as how 
they infer the significance in the student errors. Such competence is important as it bridges teachers’ 
diagnostic thinking of interpreting student work and making corresponding instructional decisions 
(Loibl et al., 2020). For example, while working on a multiplication problem such as 15 times 0.6, if 
a teacher considers a student response of 90 to be a minor error (e.g., a procedural error that misses 
the decimal point), he or she may respond by reminding students to add the decimal point after 
obtaining the solution of the mathematical operation. On the other hand, a teacher who regards this 
response as a major error (e.g., a conceptual error indicates a limited understanding of place value), 
might lead to a substantial intervention focused on the significance of the decimal point and place 
value. That is, perceiving an error as a major error more likely leads to conceptual instead of 
procedural remediation. This said we defined major and minor errors using the following text in the 
survey: “Major errors indicate a misunderstanding of key ideas that may persist even after sustained 
follow-up instruction; whereas Minor errors indicate a lack of awareness or inattention that can be 
addressed with brief follow-up instruction.”  

Markovits and Even (1999) reported a range of teachers’ diverse interpretations and responses to 
instructional situations involving a decimal point. The data helped us in gaining an initial 
understanding of teachers’ diagnostic competence on their knowledge related to decimal topics. To 
explore teachers' diagnoses of the significance of student errors more broadly, we focused on 
teachers’ views concerning typical errors related to arithmetic operation with decimal notation. This 
research study was narrowly focused to better understand one case of teachers’ diagnostic 
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competency by answering the following research question: How do in-service elementary teachers 
differ in their diagnosis of the significance of student errors with decimal place value? 

Method  
The data for this study is drawn from a large-scale assessment focusing on evaluating teachers’ 

knowledge for teaching rational numbers. For this paper, we included data from two items about 
teachers’ diagnostic competence on decimal topics (see Figure 1). Both items are related to fourth-
grade common core standards. Item 1 involves decimal subtraction (0.39 – 0.2 = 0.37) and Item 2 
involves multiplication of a decimal and a whole number (15 × 0.6 = 90). The errors in both the items 
relate to the placement of decimal points. This error can be understood from two perspectives. If the 
error is understood to be procedural, it reflects students’ missteps in completing an algorithm. In this 
case, the teacher may address the error by reminding the student about the correct steps of the 
algorithm. On the other hand, if the error is conceptual, it is reflective of students’ inadequate 
understanding of place value. A teacher who considers the error as evidence of a misunderstanding, 
she or he may respond with more extensive instruction that is aimed at developing student 
understanding.  

In this study, we tried to gain a better picture of how teachers interpret students’ erroneous work. 
We provided definitions for the examinees of the two categories described above as major and minor 
errors, respectively. We then asked teachers to select the best option to complete the statement about 
each sample of student work, “In this student work sample, error or imprecision is (a) major and 
related to this topic, (b) minor and related to this topic, (c) related to a different topic, or (d) not 
evident.” (Figure 1). Teachers who selected option (c) were asked to provide text to explain their 
reasoning. 

 
Item 1 
 

 
Considering the topic of place value, select the best 

option to complete the statement. 

Item 2 

 
Considering the topic of multiplying whole numbers 

and decimals, select the best option to complete the 
statement. 

Figure 1. Two Item Samples  
 
To answer the research question, we report the distribution of responses for all the options across 

2527 elementary in-service teachers. To further understand teachers’ reasoning on these questions, 
we analyzed all teachers’ textual responses to option (c) (For Item 1, 3 were blank, thus n = 42; for 
Item 2, 3 were blank, thus n=36; see Table 2 and 3) using open coding (Cresswell & Poth, 2017). The 
teachers’ exhibiting similar mathematical or pedagogical reasoning were grouped within one theme. 
For example, a teacher selected (c) related to a different topic and typed “Need to follow the same 
number value (tenth and hundredth)” for Item 1 which was categorized into the theme place value in 
Table 2. These themes and associated findings were discussed and reconciled during weekly group 
meetings. 
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Results  
Teachers’ Perspectives on the Significance of Student Errors 

 We found that teachers hold different perspectives on the importance of the same student errors. 
For the error in Item 1, 59% of the teachers interpreted it as a major error while 36% of them 
perceived it as a minor error. For the error in Item 2, 35% of participants indicated this error as a 
major error and 60% consider this is a minor and related error. A small percentage of teachers did not 
recognize the error in Item 1 (4%) or Item 2 (3%). For each item, around 2% of teachers thought the 
error was related to a different topic and reported their judgments on which topic was involved 
textually. 

 
Table 1: The Distribution of Teachers' Perceptions of the Two Tasks 

Option 
Item 1 Item 2 
N % N % 

Major and related to this topic 1482 59
% 878 35

% 

Minor and related to this topic 904 36
% 1521 60

% 
Related to a different topic 45 2% 39 2% 
Not evident  96 4% 68 3% 
      Missing data 0 0% 21 1% 

 
These data indicate that elementary teachers were more likely to classify the decimal notation error 

in the decimal subtraction problem as a conceptual error than they were the error in the decimal 
multiplication problem. From analyzing teachers' open-ended responses, we found more evidence to 
support this argument. We noticed that 42 teachers offered textual responses and 25 (60%) of them 
said the error was about place value (Table 2). We interpreted these responses as evidence that these 
teachers viewed the error as conceptual. Although these 25 teachers were able to identify this is a 
related error, they did not decide whether this was a major or a minor error, which may indicate the 
challenges of evaluating the importance of the error for these teachers. For example, one teacher 
responded "this is related to the topic, but the student could use interventions in decimal place value. 
This intervention could be beneficial to show him that .2 = .20 helping him to better line up his 
decimal number." The teacher has shown an understanding of the student's error and even offered 
intervention to remediate it, but she or he did not make a judgment about the importance of the error. 

 
Table 2: Themes from Open-ended Responses on Item 1 (Option (c)) 

Theme of Responses (n = 42) Number of Teachers (%) 
Place value 25 (60%) 
Computation/difference/algorithm/subtraction/operations 9 (21%) 
Decimal addition vs subtraction 5 (12%) 
Others  3 (7%) 

 
Nine participants thought the error in Item 1 is related to broader topics such as computation, 

difference/subtraction, algorithm, and operations, which suggests these teachers noticed the error but 
did not necessarily interpret it to be related to place value error (Table 2). Five teachers thought the 
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students should use addition instead of subtraction to solve the original word problem. In the 
“Others” category, one teacher thought students should use 0.02, one teacher suggested the student 
did not understand which number to subtract.  

The teachers who offer textual responses to Item 2 (n = 36) held a more diverse interpretation of the 
student’s decimal multiplication error. Contrary to Item 1, the teachers’ responses were less 
dominated with the place value for Item 2 (n = 10, 28%). Four participants attributed the error to a 
lack of number sense. A teacher wrote that “[the student] doesn't understand the concept of a decimal 
- if you start with 15 groups of a number less than 1, your answer can't be larger than 15”. Another 
teacher argued that the error related to “understanding the reasonableness of the answer due to 
values. For example, about 1/2 of 15 couldn't possibly be 60.” These teachers seemed to identify a 
conceptual reason for the error but did not identify and describe the student's specific error, which 
may inhibit students’ understanding of decimal (Markovits & Even, 1999). Nine teachers (25%) 
identified the error as procedural, relating to "carrying the decimal" or "placing the decimal point." 
Ten teachers (28%) thought the error was related to broad topics, such as "multiplying with 
decimals", "decimal", or "multiplication." Three teachers responded with something else such as 
"multiplying decimals is not a fourth-grade level math operation”, “6”, and “money”.  

 
Table 3: Themes from Open-ended Responses on Item 2 (Option C) 

Theme open responses (n = 36) Number 
(%) 

Place value 10 (28%) 
Number sense 4 (11%) 
Decimal point placement 9 (25%) 
Decimal multiplication or computation 10 (28%) 
Others (e.g., not a 4th grade topic) 3 (8%) 

 
In brief, from the teachers’ written responses, we gained confidence in the larger finding that more 

teachers tended to identify the error in Item 1 as a conceptual error while more teachers interpreted 
the error in Item 2 error as a procedural error.  

Discussion  
Through this study, we found that two errors involving decimal notation were viewed by teachers in 

substantially different ways, with far more teachers classifying an error in decimal subtraction as 
major than a related error in decimal multiplication. These findings suggest the need to explore 
teachers' diagnostic competence concerning students' errors, and in particular to see how teachers 
perceive the importance of the error in students' mathematical learning. Such exploration goes 
beyond simply noticing students' errors because it requires teachers to identify students' errors, locate 
the error within certain mathematical topics, and justify its significance while providing conceptual 
remediation. This aspect of teacher knowledge may be more predictive of teachers' instruction 
because it requires teachers to apply their knowledge of student thinking to instructional decisions. 

One limitation of this study is the possibility that some teachers held different interpretations of the 
terms major or minor error as these terms are not commonly used, which may affect the percentages 
of each option but may hardly affect teachers’ general perception of each item. Although we 
provided the definitions before each item, some teachers may not have understood them as we 
expected. Thus, this study calls for future qualitative exploration of how teachers understand the 
major and minor error, the rationale of their option selections, and how they normally deal with such 
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student errors through interviewing teachers and observing their teaching. How teachers interpret 
errors involving the decimal point in different mathematical contexts may deepen our understanding 
of teachers' knowledge for teaching decimals, an area in which little is presently known (Takker & 
Subramaniam, 2019). 
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It is important to design professional development (PD) around teachers’ professional thinking and 
needs. Researchers have explored how teachers center on and build upon students’ thinking in 
mathematics teaching, but few studies have investigated how to identify and be responsive to 
teachers’ ongoing needs while planning and enacting effective PD. As such, this study presents a 
Collaborative Responsive Professional Development (CRPD) model that arose from efforts to elicit 
and validate teachers’ voices to design PD experiences that were relevant and meaningful to them. 
We share the rationale of the model design, its implementation during a two-year PD project, and its 
impact on teachers’ instructional practice.  

Keywords: Teacher Education – Inservice / Professional Development; Teacher Educators 

Purpose 
Avalos (2011) defined PD as “teachers learning, learning to learn, and transforming their 

knowledge into practice for the benefit of their students’ growth” (p. 10). Putnam and Borko (1997) 
argued that teacher educators should engage mathematics teachers in PD in a way that is parallel to 
how we expect them to engage their students. Similarly, Spangler (2019) advocated that just as we 
are asking teachers to attend to their students’ mathematical thinking, “we as teacher educators need 
to demonstrate the curiosity and intellectual humility that allows us to understand how and why 
something a teacher did or said came from a place that made sense to them” (p. 2). Additionally, 
researchers have noted the importance of supporting the affective side of teachers’ professional 
growth throughout the PD process (Cross Francis, 2019, Cross Francis et al., 2019). The literature on 
effective PD indicates a necessary shift towards attending to teachers’ needs holistically. 

However, identifying and holistically responding to teachers' needs is a challenging task (Lee, 
2005). Such efforts require a systematically designed PD process that situates teachers’ thinking and 
voices as core components to all decision-making moves (Jez & Luneta, 2018; Lee, 2005). In this 
study, we share what we call a Collaborative Responsive Professional Development (CRPD) model 
(see Figure 1), aimed at systematically centering teachers’ voices and needs in an iterative process of 
designing, implementing, and assessing the effectiveness of our PD curriculum. Our research 
question was: To what extent was the implementation of the CRPD model effective for teachers’ 
professional development?  

The Design of the CRPD Model 
One core aim of the CRPD model is to ensure that teachers’ voices, especially regarding their 

professional thinking and needs, were collected in various ways, analyzed through multiple 
perspectives, and utilized to inform instructional decisions. We share three big ideas that undergird 
the CRPD Model: the research on effective PD with mathematics teachers; creating a structure for 
collaboration on the design of PD activities; and creating structures for systematically collecting and 
being responsive to teachers’ voices.   
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The Research on Effective PD with Mathematics Teachers 
We used three core features of effective PD as pillars upon which we built our CRPD model. The 

first feature is focusing on developing teachers’ content and pedagogical knowledge for teaching 
mathematics (Darling-Hammond et al., 2017; Garet et al., 2001). This focus is responsive to 
strengthening elementary teachers’ mathematical content knowledge and quality of mathematics 
instruction (Ma, 1999). The second feature is engaging teachers in active learning (Darling-
Hammond et al., 2017; Garet et al., 2001; Loucks-Harsley, 1996) to strengthen their pedagogical 
skills. Guided by the Leading for Mathematical Proficiency Framework (Bay-Williams & McGatha, 
2014), we aimed to support teachers’ shifts in classroom practice. The third feature is enabling and 
promoting collaboration among teachers, so they feel they belong to a supportive community 
(Darling-Hammond et al., 2017; Galindo et al., 2014; Garet et al., 2001; Loucks-Harsley et al., 
1996). Teachers built their professional learning communities in which they collaboratively reflected 
on and felt empowered and supported to make incremental, but powerful, shifts in their practice. 
Creating a Structure for Collaboration on the Design of PD Activities. 

University-school partnerships are a collaborative format for facilitating teachers’ professional 
growth widely used in the field of mathematics education (Avalos, 2011; Bartholomew & Sandholtz, 
2009). Our PD was designed as a two-year partnership between a higher education institution and 
elementary mathematics teachers from eight schools (Grades K-6) in two school corporations. There 
are challenges in building an efficient, effective partnership (Bartholomew & Sandholtz, 2009; 
Grossman, 1994; Winitzky et al., 1992). One way to strengthen the researcher-teacher (university-
school) partnership is to work collaboratively with a range of stakeholders to develop a shared vision 
and identifiable goals (Association of Mathematics Teacher Educators, 2017) and enable 
stakeholders, especially teachers, to democratically engage in decision-making via a continuous and 
deliberate process. 

 

 
Figure 1: Forming a Structure for Centering on Teachers’ Needs 

The CRPD collaborative structure included two major groups: The University Team (PD Team) and 
In-service Mathematics Teachers Team (Participants). The Participants included classroom teachers 
and a Lead Teacher from each school. The PD Team included two mathematics teacher educators 
(MTEs), one mathematician, one mathematics coach (an experienced upper elementary and middle 
school teacher), and two international mathematics education graduate students (Figure 1). We 
should note the PD Team involved people with, at times, divergent perspectives on what they 
considered to be the most effective content and pedagogy curriculum or learning activities for the PD 
workshops. 

One unique feature of this model is that the mathematics coach and lead teachers served as crucial 
conduits between the Participants and the PD Team. The lead teachers recognized the professional 
learning needs of the teachers at their schools from both practical and theoretical perspectives. 
Having lead teachers in the CRPD model helped create a sense of community among the participants 
as they felt safe sharing their concerns with someone they knew and trusted. One major role played 
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by the coach was to visit teachers' classrooms daily to get an insight into the content and pedagogical 
needs of the teachers (Darling-Hammond et al., 2017; Gibbons & Cobb, 2016). The coach and lead 
teachers were instrumental in building trusting relations between the two groups, the PD Team, and 
the Participants, so we could interact effectively and symbiotically. 
Creating Structures for Systematically Collecting Teachers’ Voices 

Teachers, as adult learners, do not enter any PD session as blank slates. Instead, they bring 
experiences, knowledge, skills, and dispositions which impact their PD engagement, contribution, 
and outcomes (Ball, 1996). For the PD sessions to be meaningful and relevant, we realized the need 
to create structures that would provide us with continuous feedback from teachers (Darling-
Hammond et al., 2017; Yoon et al., 2007). Thus, we employed survey tools to identify teachers’ PD 
goals, as well as their long-term and short-term needs.  

First, to identify specific PD goals, we conducted an Initial Survey that went out to all teachers 
during the PD planning stage. Second, to ascertain long-term needs, each teacher completed an 
Annual Reflection and Personal Growth Plan form, at the beginning of 2016, 2017, and 2018, where 
they described what they wanted to improve in their teaching practice and shared important 
takeaways from the PD project. Third, to ascertain short-term needs, we designed a Workshop 
Feedback form to collect teachers’ feedback, using both Likert-scale ratings and open-ended 
comments, on the quality and relevance of each learning activity in each PD session, as well as their 
needs and requests for future PD learning activities. In these three ways, the CRPD model design 
positioned teachers as active professional developers, having both a say about what professional 
growth they wanted and the means to attain their goals.  

The Implementation of the CRPD Model 
The project served 60 teachers from eight schools in two school corporations. Teachers' 

participation in the project included 80 hours per year, distributed among summer workshops (40 
hours), two full-day workshops during the school year (one in the Fall and one in the Spring), and 
four after school sessions throughout the school year. 
Adjusting Objectives for PD Workshops According to Teachers' Voice 

Based on the Initial Survey results, we specified the main goals for this PD. After each PD session, 
the PD Team analyzed the Workshop Feedback Form via four stages. First, immediately after the 
workshop, the PD team quickly read through and sorted the surveys to identify those with fairly high 
Likert-scale ratings and those with lower ratings. Second, shortly after the workshop, we scanned the 
sorted survey responses and emailed that file to the PD team, who read through and analyzed the 
teachers’ open-ended comments for themes. Third, email conversations took place about what 
themes we observed, and we brainstormed topics related to those themes that we might cover for the 
next PD. Finally, meetings were scheduled (in person and via Zoom) at which the PD Team worked 
together with the mathematics coach and the lead teachers to discuss our brainstorm ideas and to plan 
the agenda for the next PD based on the teachers’ feedback, the coach’s classroom observations, and 
the lead teachers’ suggestions. At the end of each PD year, we used a similar process to 
systematically examine teachers’ responses to the Annual Reflection and Personal Growth Plan 
form. This process systematically centered the teachers’ feedback so that we were able to be 
responsive to it. 

The Impact of the CRPD Model on Teachers’ Professional Growth 
Two foci of the PD were supporting teachers’ understanding and implementation of the Standards 

for Mathematical Practice (CCSSO, 2010) and developing teachers’ pedagogical content knowledge 
(Galindo et al., 2018). We examined the effectiveness of the CRPD model by analyzing teachers’ 
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statements about their major takeaways from the project and about shifts they had implemented in 
their instructional practice. Data sources included teachers’ responses to the Reflection and Personal 
Growth Plan from 2017 and 2018. 

From teachers’ reflections about their main takeaways from the project, we found that the teachers’ 
responses were largely centered on two process standards: 'Making sense of problems and persevere 
in solving them' (MPS1) and 'Constructing viable argument and critique the reasoning of others' 
(MPS3). Regarding MPS1, teachers acknowledged the significance of allowing students more time to 
explore problems to elicit multiple strategies and develop strong sense-making for the concepts. 
Teachers’ responses signified the importance of using challenging mathematics tasks that elicit 
students’ thinking and then assisting students in making sense of and persevering to solve the 
problem. For MPS3, the teachers initially expressed their inclination towards engaging students in 
discursive practices by promoting collaboration and communication. However, early on they were 
not reflecting on their role in establishing (or not) such a dialogic learning environment. Gradually, 
they realized that mathematical communication in their classrooms was too often teacher-dominated. 
One teacher wrote, “Teachers talk way too much and we all know it, we just can’t stop…. I now let 
them share so much more and I just listen, whether it’s right or wrong, I just listen. Then I ask a 
question, and I listen again. It is amazing the things our students can think of when we give them 
time to think and share.” This teacher realized her role is to intentionally utilize questioning and 
listening to create ample opportunities and space for students to share their ideas and critique others’ 
reasoning. These takeaways indicate the effectiveness of the PD project in promoting teachers’ 
understanding and implementation of the mathematical practices. 

In their reflections, teachers also wrote about their prior experiences as learners of mathematics and 
stated how experiences from this PD project changed their perceptions of mathematics and self as a 
mathematician. One teacher wrote, "I was not a confident math student during my school years and 
had a math phobia… I have learned so much from this experience. I even find myself using the 
strategies in my daily life. I am more confident in teaching math and helping my students. I actually 
love math now." Another teacher stated, "[As a learner] I memorized the algorithms we learned in 
school and didn't really ever question the why behind it. I feel that this training has helped deepen my 
understanding of math and math concepts." These statements point to the effectiveness of the PD 
project in positively impacting their relationship with mathematics as a subject. 

Discussion and Implication 
We sought to create a safe environment for the teachers to express their needs and provide honest 

feedback on PD learning activities, with an understanding that their voices would be heard, and the 
PD team would develop a responsive PD curriculum. We confirmed that cycles of emergent and 
responsive curriculum (Confrey & Lachance, 2000) development are a powerful tool for centering 
and addressing the needs of teachers. The CRPD model democratizes PD by sharing decision-making 
power among the Participants and the PD Team. Teachers are given an active voice in their learning, 
and the math coach and lead teachers serve as strong advocates for teacher participants. Being 
collaborative and responsive in curriculum design requires systematic and iterative cycles of 
planning, implementing, and reflecting during which teachers' voices are centered, valued, and 
utilized. 
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Following rehearsals of instructional practices, teacher educators often facilitate debrief discussions 
for participants to reflect on and make sense of their experience. This study explores the ways in 
which rehearsing and non-rehearsing teachers, who act as teachers and students respectively, make 
sense of that experience collectively and how their positions as teachers and students are reflected in 
their talk. Data from eight rehearsal debriefs conducted with in-service secondary mathematics 
teachers during practice-based professional development are examined. 
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Recent literature in mathematics teacher preparation focuses on how coached rehearsals can be used 
to support the learning of complex instructional practices (Ghousseini, 2017; Lampert et al., 2013). 
In these approximations of practice, one person typically takes on the role of teacher, while the rest 
of the group takes on the role of student. The rehearsal is facilitated by a teacher educator (TE) who 
takes on the role of coach (Kazemi et al., 2016). As these approximations of practice have gained 
prominence in both pre-service and in-service professional development, research has focused on the 
learning of participants who take on the role of teacher (Ghousseini, 2017; Lampert et al., 2013) and 
the structures used during the rehearsal to support the enactment of teaching practices (Kazemi et al., 
2016). However, we know less about the ways in which debrief discussions following the rehearsal, 
in which both the rehearsing teachers (RTs) and non-rehearsing teachers (NRTs) participate, support 
the sensemaking and learning of both. In this paper, we contrast the experiences of rehearsing and 
non-rehearsing secondary mathematics teachers following rehearsals during a summer professional 
development institute. In particular, we describe how both RTs and NRTs make sense of their 
experiences during the reflective debrief discussions that follow each rehearsal, and ask how their 
position as student or teacher in the rehearsal is reflected in their talk. 

Prior Literature 
Often, after a rehearsal, all participants (RTs, NRTs, and TEs) engage in a debrief discussion. This 

kind of reflective post-rehearsal discussion, facilitated by the TE, represents an opportunity for public 
sensemaking, or “collaborat[ing] on sensemaking as a shared group goal” (Ruef, 2016). Through 
public sensemaking, RTs, NRTs, and TEs all have a chance to learn from one another and reflect on 
the rehearsal experience. Public sensemaking is also valuable from an analytic perspective, because it 
gives insight into some (but not all) of participants’ sensemaking about a given experience. In this 
kind of reflective debrief structure, we wonder about what sensemaking RTs and NRTs share 
publicly and how they might collaborate to make sense. 

What teachers can and do say during debrief discussions is influenced by the role they played 
during the rehearsal. While all participants are intended to learn as teachers, only RTs participate in 
the rehearsal as teachers; NRTs spend rehearsals acting as students. In other words, NRTs are asked 
to change their position, moving from student in the rehearsal to teacher during the debrief. How a 
person positions themselves or is positioned in an interaction can influence the obligations they feel 
(Aaron & Herbst, 2012; Herbst & Chazan, 2012). In particular, being positioned as a teacher or as a 
student can change how people react to the same contexts (Baldinger & Lai, 2019). Position is thus 
an important consideration that might help explain how public sensemaking is constructed in 
rehearsal debriefs.  
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We explore public sensemaking analytically through the lens of professional noticing. When 
engaging in the work of noticing, teachers attend to interpret specific details, imbuing them with 
meaning (Mason, 2002; Sherin et al., 2008). In the context of a debrief discussion, teachers might 
attend to and interpret an event that occurred during the rehearsal, elevating that event for public 
consideration. Because teachers’ goals in participating in coached rehearsals are ultimately to inform 
and shape their teaching practice, teachers might also describe implications or connections that 
extend their thinking beyond the specific context of the rehearsal itself (Baldinger & Munson, 2020). 
This framework of noticing and implicating provides a lens through which we can describe the public 
contributions made during debrief discussions. Given this, we ask the following research questions: 
(1) How do RTs and NRTs use debrief discussions to publicly make sense of their experiences 
during rehearsals? (2) How is position reflected in RTs and NRTs sensemaking of the rehearsal 
during the debrief discussion? 

Methods 
Setting and Participants 

This study took place in the context of professional development program for early-career (2nd-7th 
year) secondary mathematics teachers serving lower-income schools. This two-year fellowship 
included two-week summer institutes and ongoing online coaching during both school years. Our 
research considers the second summer institute, which focused on facilitating collaborative group 
work. Participants included 22 high school mathematics teachers from comprehensive public, 
magnet, and charter schools across the US. 
Design 

The summer institute culminated in a full day during which all participants had the opportunity to 
rehearse leading collaborative group work. Rehearsing teachers focused on the practice of conferring 
(Munson, 2018) to support productive engagement in cognitively demand task and equitable 
participation within collaborative groups. Teachers were randomly assigned to one of two rehearsal 
rooms. Four rehearsals were conducted in each room (eight total rehearsals), so that each teacher had 
the opportunity to rehearse the focal practice once and participated as an NRT three times. Additional 
math teachers were recruited to participate as NRTs to increase the class size in each room. After 
each rehearsal, the TE prompted the group to discuss the experience, beginning by asking RTs to 
share “some of the things in your head right now” and then pose any questions they had for the 
NRTs. Debriefs then pivoted to NRTs addressing any RT reflection questions and segued into 
general reflection. All debriefs ended with “final thoughts” from the RTs. 
Data Sources and Analysis 

This study draws on audio and video recordings of the debrief discussions following each of the 
eight rehearsals. Debrief discussions ranged in length from 14 to 23 minutes. Each was 
professionally transcribed for qualitative analysis. Each talk turn (n = 961) was coded by participant 
(RT, NRT, TE). All RT and NRT talk turns were then segmented and coded based on the type of 
sensemaking represented in the speech, (i.e., attending, interpreting, implicating), where attending 
and interpreting were defined by prior research (Sherin et al., 2011) and implicating was defined as 
making connections beyond the rehearsal (e.g., to the speaker’s own classroom) or considering 
alternative pathways for the rehearsal. Any speech that did not fit these codes was not coded. Each 
talk turn segment was then coded for the position the speaker took (i.e., teacher, student). If an 
utterance took more than one position, it was further segmented such that each utterance could be 
given a single position and sensemaking code pair (n = 983). Code matrices were developed within 
and across the eight rehearsals to explore patterns of participation. 
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Findings 
While the TEs structured the debrief by inviting RTs and NRTs to reflect during different parts of 

the discussion, the ways they participated in sensemaking were strikingly similar. Of the coded talk 
turn segments, 29% of RT talk and 34% of NRT talk attended to observable details about the 
rehearsal, while 47% of RT talk and 46% of NRT talk interpreted the details of the rehearsal, 
indicating the meaning the speaker made of events (see Figure 1). Together, these acts of public 
noticing made up approximately the same proportion of speech, 75% of RT and 80% of NRT coded 
talk turn segments. The vast majority of all contributions in the rehearsal debrief focused on noticing 
the rehearsal, making specific details of events public and offering ways of understanding the 
meaning of those events. 

 

 
Figure 1: Attending, interpreting, and implicating talk turn segments for RTs and NRTs, by 

teacher (red) and student (blue) position of the speaker.  

For the balance of coded talk turn segments, RTs (25%) and NRTs (20%) made implications, 
moving beyond the rehearsal as it occurred to consider the meaning the events might have for 
teaching or alternative scenarios for the rehearsal. All the data generated through noticing the 
rehearsal fueled reasoning about teaching and learning when implicating. These overall patterns of 
talk were not substantively different across the two rooms or any of the eight rehearsals.  

While RTs and NRTs noticed and implicated in similar proportions, there were pronounced 
differences in the positions each assumed when speaking (see Figure 1). RTs overwhelmingly (98%) 
maintained their position as teacher when speaking, regardless of whether they were attending to or 
interpreting the rehearsal, or drawing implications beyond it. There was a coherence in their role 
throughout that is reflected in these data; as teacher-learners they were asked to act as teachers and 
learn from those acts as teachers. NRTs were asked to perform a more complex position move; as 
teacher-learners they were asked to act as students and learn from their experience as teachers. In 
contrast to RTs, NRTs overwhelmingly noticed the rehearsal from the position of student (92%). But 
when implicating beyond the rehearsal, NRTs took on a more complex stance, at times maintaining 
their rehearsal position of student (39%), but more often flipping to their learner position of teacher 
(61%). 

Notably, while RTs were largely fixed in their position as teachers, they actively sought the 
perspectives the NRTs gained from being students, data to which they would otherwise not have 
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access. These rhetorical moves from the RTs were striking in how they shaped the ongoing 
discussion in the debrief and contributed to the “expected” patterns described above. RTs asked 
pointed questions of their NRT colleagues to unearth how the teaching moves they used were 
experienced by the students in the rehearsal. They prompted NRTs with statements such as “I kinda 
want to know how it [the rehearsal] was from your [NRT] lens,” “I’m curious to get feedback on… 
the groupworthiness of the task,” and “Was there ever a moment when you [NRTs] wished we [RTs] 
had jumped in and we didn’t?” to elicit the student position experience.  

Conversely, when NRTs offered their own noticings, there is evidence in the data that these could 
fuel implications from RTs. For instance, after a string of 12 talk turns in when three NRTs attended 
to and interpreted a challenge they faced setting up graphical representations during the task, one RT 
made the following implication: 

What I’m hearing is, there’s the potential for this to hang up a group? … So maybe if I had 
caught onto the idea that you were really hung up here, if I had observed that…I might have 
like, nudged you forward. 

In this excerpt, the RT took up the NRTs’ noticings to consider what they could have done 
differently, particularly if the RT had noticed, in the moment, what the NRTs did, that their struggle 
was impeding their mathematical progress. When NRTs offered their noticings as students, they were 
simultaneously supporting their own sensemaking of the experience and providing insight to RTs 
who wanted to understand how students experienced their teaching. These results foreground the 
interactive nature of sensemaking among RTs and NRTs. 

Significance 
The similarities of the proportions of talk across participates’ roles, across both rehearsal rooms, and 

all eight rehearsals points toward the possibility that public sensemaking grounded in a shared 
experience like a rehearsal may more generally focus on noticing with a smaller portion of 
implicating beyond the experience. In previous work (Baldinger & Munson, 2020), we have 
suggested that debrief discussions may be venues for NRTs to develop adaptive expertise (Hatano & 
Inagaki, 1986) in the wake of rehearsal by promoting data-driven forward reasoning. This new 
analysis suggests that rehearsal debrief discussions may serve a similar function for RTs; future work 
could investigate whether the nature of what is noticed by RTs and NRTs and the types of 
implications they draw supports such a claim. 

Position played a critical role in the ways that RTs and NRTs publicly made sense of their 
experience together. Prior research is premised on the safe environment that rehearsing among 
colleagues can provide to teacher-learners (Lampert et al., 2013), but the current research indicates 
that the roles NRTs play can provide an additional advantage. The rehearsal experience and the 
debrief discussion that followed offered participants a window into the experiences of students, 
supporting NRTs in learning from a rehearsal in which they did not teach and RTs in learning about 
the ways in which their pedagogical choices impacted students. NRTs were then not just safe 
colleagues with whom to approximate practice, but safe students from whom to elicit feedback on 
instruction. Future research could investigate how the structure of the debrief discussion can support 
RTs in gaining access to the student experience data in ways that can inform their learning from the 
rehearsal experience. 
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The Kainai Board of Education, situated at the Kainai First Nations Reserve in Southern Alberta, 
Canada, initiated the Aisspommootsiio’pa project in 2017. The project intended to develop teacher 
leadership capacity aimed at improving mathematics teaching and learning at elementary and 
secondary levels. In this paper, we indicate the theoretical foundations for the project. We also 
report on its implementation during the first two years, which involved seventeen teachers, and offer 
suggestions for the extension of the project at a larger scale within the Kanai Nation. 
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The Aisspommootsiio’pa Project 
In 2017, the Kainai Board of Education (KBE) contacted the Werklund School of Education, 

University of Calgary, to initiate what was later called the Aisspommootsiio’pa project: Translated 
into English, Aisspommootsiio’pa means “supporting each other.” Since then, a group of teachers 
engaged in a professional learning series that included reflection on classroom observations. One 
specific purpose of the project was to identify and develop mentorship capacity within KBE for 
future, sustained support for other teachers within the school district, which comprises two 
elementary schools, one secondary school, and one high school. 

During the first year of implementation, a group of observers supported the project creating records 
of observed lessons for teachers to reflect on. Every observation included at least two observers who 
recorded images, notes, and events in a timeline, and who rated each lesson using an observation 
protocol based on a teaching model developed by the Math Minds Initiative (Preciado et al., 2019a). 
In the second year of the project, teachers also participated as observers and created the reports. 

The first two years of the project are considered a pilot in preparation for a future intervention at a 
larger scale at KBE. 

The RaPID Model 
The work with teachers in the Aisspommootsiio’pa project followed, and ultimately informed, the 

Mind Minds Initiative. Research results from this initiative include a sustained improvement in 
student performance, as measured by the Canadian Test for Basic Skills (Nelson, 1997). This 
initiative has developed the Raveling, Prompting, Interpreting, and Deciding (RaPID) model for 
teaching based on research  findings on classroom observation and student performance and 
engagement in mathematics for more than seven years (Preciado Babb et al. 2019a; 2019b). This 
empirically developed model is consistent with well-established theories of learning from the 
cognitive sciences, such as: embodied cognition (Varela et al., 1991); socio-cultural theory 
(Vygotsky, 1986); spatial reasoning (Davis, et al., 2015); conceptual metaphor theory (Lakoff & 
Johnson, 1999); and conceptual blending theory (Fauconnier & Turner, 2003). The model also draws 
from theories of influencing learning, such as: affordance theory (Gibson, 1979); variation theory 
(Marton, 2014); mastery learning (Bloom, 1968); meaningful learning (Novak, 2002); and expert–
novice research (Ericsson, et al., 2006).  
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Protocol for Classroom Observation 
The Math Minds Initiative developed a classroom observation protocol, which was used in the 

Aisspommootsiio’pa project. Table 1 summarizes Levels 1 and 4 of the protocol used for the project 
in 2018 and 2019. A refined version with details of the RaPID model was later elaborated on by 
Preciado Babb and colleagues (2019a). 

 
Table 1: Summary classroom observation protocol for Levels 4 and 1 

 Level 4 Level 1 
Connecting (a) 
(Raveling) 

Contrasting ideas build on prior 
contrasts and toward a generalized 
learning target. 

Contrasts do not build on prior contrasts. It 
is challenging to identify a learning target. 

Connecting (b) 
(Raveling) 

The known and unknown are 
systematically bridged; each new 
idea is anchored to prior 
understanding that has been 
effectively summarized to carry 
forward. 

There is little attempt to bridge known and 
unknown; new ideas are not anchored to 
prior understanding 

Prompting (a) The teacher separates and effectively 
draws attention to the key idea; 
contrasts are clearly juxtaposed, 
highlighted, and appropriately 
sequenced.  

Key critical features are overlooked. 
 

Prompting (b) Clear prompt [to each critical 
discernment] requires learners to 
make key distinctions. 

Multiple ideas are presented before students 
are offered an opportunity to engage; those 
who attempt to engage on their own may 
fall behind. 

Monitoring (a) 
(Interpreting) 

Quick/perceptible means of response 
that provides meaningful information 
re: student understanding.  
 

Students do not show evidence of 
understanding or are asked to indicate 
whether or not they understand: “What part 
don’t you understand?” “Thumbs up if that 
makes sense.” 

Monitoring (b) 
(Interpreting) 

All students checked. Few checked; e.g., individual students 
called on to respond (out loud or on the 
board). 

Adapting (a) 
(Deciding) 

Group response attends to diverse 
needs. 

Response limited to few learners; many 
waiting for help or extension; e.g., lengthy 
conversations with a single child. 

Adapting (b) 
(Deciding) 

The teacher clarifies contrasts and 
adjusts sequencing in ways that 
address all learners; e.g., clarifying a 
pattern of variation also allows 
extended consideration of the related 
variable(s). 

The teacher repeats strategies that didn’t 
work or are unnecessary; the repeated 
explanation is insufficient for those who 
didn’t get it the first time and redundant for 
those who did 

Engagement All students engage together in 
continuously extending 
understanding 

Many students do not participate. 
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The Aisspommootsiio’pa project included the adoption of resources developed by JUMP Math 
(https://jumpmath.org/) for teachers at the elementary level. JUMP Math is a member of Math Minds 
and the teaching resources have informed the development of the RaPID model. 

Methods 
In order to document the implementation of the Aisspommootsiio’pa project, a qualitative case 

study was conducted (Yin, 2018) to address the following questions: How do mathematics teaching 
practices and use of resources change when adopting the selected resource and participating in the 
learning series? What factors enabled or hampered the implementation of the RaPID model in the 
classroom? 

A thematic analysis was conducted on surveys administrated at the end of each professional 
learning session (four session each year). These data were contrasted to the classroom observation 
reports (five rounds of classroom observation each year), which included images, notes, and 
timelines generated using the LessonNote app. Figure 1 shows the timelines generated for two 
lessons. The image on the left corresponds to what is called a block lesson in the Math Minds 
initiative, while the image on the right corresponds to a ribbon lesson. The latter assumes cycles of 
prompting, interpreting, and deciding, consistent with the RaPID model, whereas the former reflects 
minimal instruction and support to student during class. 

 

 

Figure 1: Timelines of classroom observation for two lessons: block lesson in the left and ribbon 
lesson in the right 

Findings 
Results of this study are presented as follows in three emergent categories. 

Classroom Practices and Teachers’ Learning 
Teachers reported an appreciation of the RaPID model in the surveys administrated at the end of the 

professional learning sessions. Some teachers explicitly mentioned teaching practices related to the 
cycles of interpreting and deciding; this resulted in a more ribbon-like lesson, as shown in Figure 1. 
The survey entries also included learning about specific aspects of mathematics for teaching, such as 
different ways of understanding division (partitive vs. quotative). With respect to JUMP Math 
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resource, some teachers indicated that the resource helped them to teach in “small chunks” that 
focused on critical mathematical features (Marton, 2014) required for students to understand the 
targeted concepts. Some teachers also indicated that the RaPID model started to inform their teaching 
of other subjects, not only mathematics. 
Implementation Challenges 

Despite evidence from surveys of teachers’ learning and the impact of the implementation on their 
teaching practices, there was also indication of challenges for the implementation of the model. 
These challenges were confirmed by classroom observations and field notes. 

One of the challenges in the project related to the adoption of the JUMP Math student teaching and 
practice booklets. The resources arrived late in the first year of the project and not all the teachers 
were following the program consistently. In fact, one teacher confessed that she only used the 
resource for the class that was observed as part of the project. Other teachers in the second year 
identified the need to try the resource for some years in order to become familiar with it and to be 
more confident using it. 

Lack of time for debriefing and reflecting on observed lessons was also a challenge identified by 
some teachers. This challenge prompts to the need to allocate specific time for this purpose. 

Some teachers also acknowledged the need for more targeted professional learning regarding the 
mathematics concepts; this was required to better “unravel” the concepts for students, prompt to 
critical features, interpret students’ understanding, and make appropriate decisions. 
Mentorship and Capacity Building 

One of the observers in the project, also one of the authors of this report, provided feedback to 
teachers after classroom observation. These teachers emphasized in the surveys and with explicit 
comments in the professional learning sessions, the support they received from this other teacher, 
who holds a master’s degree in mathematics education. This information was new to the KBE and 
prompted the need to identify mentorship capacity at KBE. 

During the second year of the project, teachers reported being more comfortable having peers 
observing their class. They also indicated learning through classroom observation. This experience 
also helped to conceptualize mentorship as peer support in a horizontal fashion, as opposed to a 
vertical approach in which the mentor is regarded as an expert. 

It was also noticed that observers required time to learn to use both the LessonNote application as a 
tool and the observation protocol used to guide classroom observations.  

Discussion 
This case study shows evidence of the viability of extending the Aisspommootsiio’pa project to 

other teachers in the school district and of developing mentorship capacity. The findings in the study 
can be translated into specific suggestions for this purpose, namely: considering time for teachers to 
become familiar with the teaching resources; allocating time for classroom debriefing and teacher 
reflection; training teachers to implement classroom observations; building a trustful relationship 
between classroom observers and teachers; and embedding teacher professional learning for all 
teachers involved in the project. These suggestions could be followed with other means of data that 
could be used to assess the impact of the project on mathematics student learning at the Kainai 
Nation. 
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Language is a vital component in mathematics classrooms and researchers have thoroughly 
examined how language functions in instruction. However, less is known about how teachers think 
about language enacted in their own classrooms. In this report, we describe how a teacher, Olivia, 
explicitly attended to language, particularly with emergent bilinguals. We describe affordances and 
tensions as she thought through language in the context of a professional development and in video-
stimulated recall interviews. 

Keywords: Classroom Discourse, Elementary School Education, Teacher Education - Inservice / 
Professional Development 

There is a large amount of research on the role of language in mathematics classrooms. Scholars 
characterized language as a high need area for research given the growing diversity in the United 
States, diversity of language in the classroom and its impact on mathematics education (e.g., Barwell 
et al., 2017). Language supports constructing mathematical concepts, positioning of individuals and 
groups, developing mathematical argumentation, and shaping mathematical communities (Herbel-
Eisenmann et al., 2017). Even with such a rich connection between language and mathematics, there 
is little research on teachers’ thinking about language in their own instruction (Hajer & Norén, 2017). 
This dearth reflects how researchers’ voices and interpretations, not teachers, are elevated in the 
research on language in mathematics classrooms. In this report, we add to this work by conducting a 
case study on Olivia, a third-grade teacher, and how she made sense of language in her instruction. 
We ask: What are affordances and tensions Olivia perceived as she attended to mathematical 
language development? We describe how Olivia’s attention to both heritage (i.e., Spanish) and 
mathematical language was tied to mathematical development and participation and access, 
particularly for Latinx students.  

Theoretical Framework & Professional Development Model 
In order to explore how Olivia made sense of the language in her classroom through tensions and 

affordances, we frame our understanding of language and teacher knowledge. We view language 
similarly to how Gee (2005) described small-d and big-D discourse (which we will write as discourse 
and Discourse, respectively). First, he described discourse as “language-in-use” or the material of 
communication such as words and gestures in order to “design or build things.” In this report, we use 
“language” at times to describe mathematical language but also as heritage languages (e.g., Spanish, 
English). Second, Gee described Discourse as other “language stuff” that enact specific identities and 
activities such as ways of acting and believing. We see Discourse bearing on how Olivia thinks about 
her language use as a marker of not only doing mathematics but also enacting a particular identity. 

We view the nature of teacher knowledge as embedded in practice as opposed to an outside body of 
knowledge (e.g., contained within academia) that needs to be “learned” by teachers. Cochran-Smith 
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and Lytle (1999) described teaching as “an uncertain and spontaneous craft situated and constructed 
in response to the particularities of everyday life in schools and classrooms” (p. 262) and thus, 
teacher knowledge draws from “their own reasoning and decisions, and their own inventions of new 
knowledge to fit unique and shifting classroom situations” (p. 267). This knowledge is highly 
sensitive to time and space. Based on this view of teacher knowledge, we co-designed and facilitated 
a professional development environment for elementary teachers called Learning Labs (LLs) (see 
Kazemi et al., 2018 for an elaboration of the model) focused on developing practices of mathematical 
argumentation. Additionally, this model aligns with Cochran-Smith and Lytle’s (1999) description of 
teacher knowledge as generated by teachers and based on their own actions. 

Context, Data, and Analysis 
Lockwood Elementary is situated in an urban area in the United States Midwest. In 2018-2019, the 

school served 443 students including 40% Latinx students. We began our LLs in January of 2019, 
having completed 8 LLs to date. Olivia, a 14-year bilingual Latina teacher participating in the LLs, 
taught at Lockwood Elementary for eight years by the time of the LLs. She taught in a third-grade 
Dual Language Immersion program (DLI) where native Spanish and native English speakers were 
placed in the same class with instruction in both Spanish and English. We conducted a case study 
(Merriam, 1998) in order to “develop an intensive, holistic description and analysis of a single, 
bounded unit” (p. 232-233). Olivia’s central belief is supporting language and empowering students, 
making her participation an important case to study. We reviewed materials from 2 interviews, 
written artifacts and verbal contributions in the 8 LLs, and 2 video-stimulated recall interviews 
(VSRs) from filmed classroom lessons with Olivia. Because Olivia frequently made statements about 
mathematical language development across data sources, through analysis we used the sensitizing 
question, “When Olivia talks about mathematical language development, what does this allow her to 
know about her students and do as a teacher?” and, “When Olivia talks about language development, 
does she perceive an opposing concept?” to identify affordances and tensions, respectively. 

Results 
In this section, we describe the affordances and tensions Olivia experienced as she considered 

supporting her students’ language development. We provide examples from written work during the 
LLs and one VSR lesson, where Olivia facilitated a choral count by fourths. 
Affordances 

Mathematical connections. Olivia’s focus on precise language (i.e. discourse) afforded her to 
challenge students’ thinking and help foster connections. For instance, during the VSR, she wanted to 
know how students would describe the count after three-fourths. She wanted students to “verbalize 
specific fractions where we’ve specifically been talking about how to simplify and making 
connections to the wholes.” As she expected, students had varied responses after three-fourths 
including “four-fourths” and “one.” Olivia facilitated a conversation asking students to prove the 
connection between them with a drawing. Additionally, Olivia said the task “opened up another 
conversation and then they were making connections to money and then we ended it where we made 
a connection to the clock and looking at a quarter and how we say the time.” 

Engagement. Olivia predominantly focused on engaging with mathematics and participating in a 
classroom community (i.e. supporting Discourse) through language support. In LL4, Olivia recalled 
how conversation can have power and meaning, claiming it is about  

listening and trying to understand what someone else is saying. What someone is trying to 
restate… this goes back to the power piece, where we’d finished turn and talk and there was 
still [chatting] and [a student] said ‘no no no wait, I want to share something.’ He was trying 
to make a point. 
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In interviews, Olivia explained that through a language focus, she wanted more participation for 
emergent bilingual students (EBs). By trying a new instructional activity called choral counting, she 
noticed how it could engage EBs, such as her student, Esteban, and how he participated in the 
conversation about selecting “one” or “four-fourths.” She recounted asking Esteban “who was very, 
very emergent with his English” what the class should say, “and he raised his hand and very clearly 
he said four-fourths. So it was such a small moment, but I feel like it was so important for him 
because he was able to participate.” 
Tensions 

Content vs. language. In many instances, Olivia viewed developing language as separate from 
developing mathematical ideas. As Olivia worked to encourage students to have meaningful 
discussions, she struggled to find a balance between language socialization and mathematical content 
because she described these two in opposition. In LL6, Olivia reflected on students’ shared 
mathematical ideas, 

It’s been challenging rephrasing or paraphrasing [students’] ideas not because of the math 
but because of their language development. At the beginning I noticed many students were 
eager and talking around. But with their vocab and grammar it was really hard to understand 
the ideas they were trying to get across. 

In the VSR, Olivia talked about the same tension while watching a lesson she taught in Spanish. 
The VSR was also conducted in Spanish. She apologetically reflected,  

Yo admito que en la elección me alejé 
un poco del contenido de matemáticas 
porque quería enfocar más en 
aprovechando que los niños estaban 
tratando de explicar todo lo que 
podían… Es un proceso. Quizás alejé 
demasiado a las matemáticas, pero me 
hizo sentir y pensar que era obvio o es 
obvio de qué tanto, qué tanto tengo que 
regresar o repasar acerca de cómo 
compartir y cómo usar las palabras en 
matemáticas cuando estamos 
compartiendo. 

I admit my decision to move away 
from the math content because I 
wanted to focus more on taking 
advantage of the fact that the 
children were trying to explain 
everything they could… It is a 
process. Maybe I took math away 
too much, but it made me feel and 
think if it was obvious or how 
obvious how much I have to go back 
or review how to share and how to 
use words in math when we are 
sharing.  

Olivia recognized students need time to express their ideas but focusing on Spanish language 
development can take away from mathematical ideas. Although she saw the importance of language 
and mathematical content, she struggled with balancing the two. 

Speaking Spanish vs. Spanish speakers. Prominent in the interviews, Olivia described a 
disconnect between the language of instruction, Spanish, and students who spoke Spanish. Olivia felt 
speaking Spanish as something students do but also something empowering. She saw language as 
part of one’s identity. In the initial interview, Olivia reflected on the lives of Latinx students and if 
this has any bearing on their identity and how they participate in school,  

I feel is there more privilege, more access to resources outside of school that [White 
students] are able to partake in that my Latino students aren't able to… do my Latino 
students—do they feel empowered being native Spanish speakers and being in this program 
where there's this part where the Spanish, that's their language, that's them, their identity? 
And I do wonder how they feel as Latino students in [the DLI] program… the students don't 
want to use their Spanish and I see a lot of my Latino students that they start to because they 
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are hesitant in Spanish. And that, for me, part of that identity, it's like, ‘But this is you. This 
is your family.’  

After the first set of LLs, Olivia noted an improvement in the quality of student contributions in 
discussions. However, her Latinx students would still hesitate, “I see so many of my Latino students, 
even during Spanish when we're having conversations… this is their first language, and they're 
hiding in the conversations or they're not raising their hands.” Olivia wants “them to be proud of 
being able to participate in the conversation or even dominate the conversation the way native 
English speakers may be able to dominate more in English.” In the VSR, Olivia described, 

Había un grupo de niños acá, algunas 
niñas que siempre están 
compartiendo en español y son muy 
buenos modelos para el español y el 
lenguaje, que tenían mucha pena y 
tienen tanta confianza cuando están 
hablando en español, pero tienen 
menos confianza cuando se trata de 
matemáticas. 

There was a group of children here, 
some girls who are always sharing in 
Spanish and are very good models for 
Spanish and language, who get 
embarrassed but are confident when 
they are speaking in Spanish, but 
have less confidence when it comes 
to math. 

Such moments demonstrate a tension Olivia experienced between improving discourse (students 
speaking) and hesitant Discourse (confident participation). It functioned as an overarching goal of 
empowering students, particularly Latinx students, their language, and their culture.  

Discussion and Implications 
We highlighted tensions and affordances an elementary school teacher, Olivia, perceived as she 

attended to developing language in her mathematics class. Underlying all the affordances and 
tensions we described, a central belief guided Olivia’s sentiment, “This is you. This is your family.” 
For Olivia, the lines between discourse and Discourse are blurred. Developing ways of speaking and 
heritage languages is not just about engaging in mathematical discussions or using appropriate 
words. Her attention to language is rooted in empowering Latinx students. 

Olivia demonstrated attending to language is complex. Researchers have prescribed how teachers 
should think through and about language diversity in classrooms and confronting English dominance 
(e.g. Palmer, 2009). Working in a DLI setting affords Olivia to work on this confrontation but still 
handle tensions of balancing student empowerment, language development, and mathematical 
content. Due to space constraints, we could not further attend to how affordances and tensions of 
language impacted Olivia’s instructional considerations around attending to mathematical 
vocabulary, supporting students to engage in each other’s ideas, and building a math talk community. 
More work is needed to understand how teachers think through these ideas and how they learn to 
address this balance. Additionally, research on language should not just pay attention to language as 
it relates to status, power, or language resources (Barwell et al., 2017), but also how teachers make 
sense of these ideas inside instruction. 
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This communication is about the case of a secondary school teacher and forms part of an 
investigation carried out with teachers. The aim is to identify the mathematical knowledge of the 
teacher, who has a vast educational experience when designing and teaching multiplicative problems 
with fractions, as well as to associate her reflections on her practice when she teaches those 
mathematical contents in the classroom. The methodological instruments applied in the tracing of 
this case were a questionnaire and three individual interviews of a didactic nature with feedback. 
This paper integrates only the tasks designed by the teacher in third interview that allow to show 
relevant data of the teaching that the teacher proposed and her corresponding purposes.  

Keywords: Fractions, teacher’s knowledge, multiplicative problems  

Introduction  
The relevance of the study of fractions and their operations is that it provides a basis for subsequent 

algebraic relationships. The understanding of rational numbers is fundamental for the development 
and management of mathematical ideas. In this sense, the teacher can propitiate suitable situations 
for the learning of Mathematics and guides the student towards the critical aspects of rational or 
fractional number knowledge (Kieren, 1988). 

The knowledge that teacher owns for the teaching has been the subject of study for several decades. 
Researchers like Shulman (1986) suggest the importance of observing the transformation of the 
teacher’s knowledge content in the knowledge content of instruction on a given topic. In this sense, 
Ball (1990) is focused on how teachers think about their pedagogical and mathematical knowledge 
and reasoning. In this case, we consider that teachers with experience in the class of Mathematics, 
show wealth in the various strategies and forms of long-term representation through the teaching of 
multiplicative problems associated with fractions. Derived from the above, we consider the data 
provided in this report to be relevant because they reveal the commonly inaccessible aspect of a 
teacher’s thinking in usual practice, which allow us to interpret here the underlying thoughts that 
motivate their decisions; the reflections that arise from solving that tasks and if the awareness of this 
knowledge contributes to the educative improvement. 

The main objective of this research is to identify the mathematic knowledge of in-service teachers, 
with a vast experience in decision-making situations and tasks design for the teaching of contents 
related to multiplicative problems about fractions. The questions that guide this study are a) what is 
the teacher’s knowledge for the design and teaching of multiplicative problems linked to fractions? 
b) What knowledge rise during the thoughtful self-analysis of their teaching practice?  

Theoretical framework 
Some researchers (Ball, 2000, Ball & Bass, 2000, Ball, Thames & Phelps, 2008, & Smith, Bill, & 

Raith, 2018) link the relevance of the firm knowledge of the teacher about the subject matter she (he) 
teaches to the learning opportunities that he (she) can provide to students starting from the 
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understanding what the official curriculum mentions and to adapt the actions scheduled for teaching 
taking into account the needs of their students. 

Hart (1981); Jensen & Hohense (2016); Sharp & Welder (2014) and Tirosh (2000), among other 
researchers, have contributed to the teaching of fractional numbers and their operations. Their results 
indicate possible deficiencies in the teaching and students’ difficulties to solve this type of problems 
because operations such as multiplication and division with fractional numbers are based on the use 
of rules and algorithms, putting aside the ideas or multiplicative relationships to provide their 
explanations and also the students’ tendency to attribute the properties to the operations with natural 
numbers to the operations with fractional numbers. This is particularly important because we 
identified the last aspect in association with the designs and conceptions on the own teaching realized 
by the teacher of present research. 

The background of the teaching on fractional numbers leads to the first concepts that Kieren (1983) 
provided. Such researcher mentions that fractions are made up of subconstructs with four meanings: 
measure, quotient, reason, and multiplicative operator. These subconstructs are the basis for the 
knowledge of the rational numbers. 

Researchers like Behr, Lesh, Post, & Silver (1983) suggest the importance of representing 
geometrical regions, sets of discrete objects y numerical line as the most widely used models to 
represent fractions in the elemental education. 

Freudenthal (1983) identifies fraction as fracturer, comparator, and multiplicative operator. We can 
find fractions in an operator in three discernible modes: fracturing operator, ratio operator, and 
fraction operator. The fracturing operator is associated with situations where specific objects are 
acted upon, separating them in equivalent parts. Through the ratio operator, we place two a 
magnitudes in a ratio, a magnitude correlated to another one. The fraction operator is recognized only 
in the number domain where it satisfies the need for the inverse of multipliers. 

Vergnaud (1983) established conceptual fields and refers to them as problems and situations for the 
treatment of concepts, procedures, and representations of different types. Two of those conceptual 
fields that he established play an important role in the present research: additive and multiplication 
structures, in which the problems involve arithmetic operations. We will focus on the multiplicative 
structure that incorporates different semantic categories of verbal problems: isomorphism of 
measures and product of measures. 

Methodological Design 
This case study was carried out in a public secondary school under regulation of the Ministry of 

Education (Secretaría de Educación Pública, SEP) in Mexico City. The teacher who participated in 
our research has a Bachelor’s Degree in Mathematics Education. We selected this participant because 
of the data she provided, her vast didactic and mathematical procedures and concepts, and the great 
communication she produces through her didactic design. 

For data collection, we designed a questionnaire and an individual interview of didactic cut, with 
feedback supported by Valdemoros (2004) and Valdemoros, Ramírez, & Lamadrid (2015). The 
purpose of the questionnaire was to identify the knowledge and strategies of three Mathematics 
teachers when solving multiplicative problems linked to the use of fractional numbers. This 
instrument allowed us to choose the participant and some tasks of the interview. 

The didactic interview with feedback included tasks already solved in the questionnaire to make 
explicit the thoughts that arise during teaching. The interview was oriented to think about the 
decisions and cognitive processes linked to the teacher’s practice when she favors a strategy one 
another one; the representations she uses and how she link them to procedures to solve the related 
tasks with multiplication problems that involve fractional numbers. From this instrument, we took the 
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data to prepare the present communication (whose research process has taken more than a year); we 
collected it through the application of several didactic interviews with feedback. The validation of 
interviews results is given through the triangulations of the instruments since different data collection 
methods will be used to study the posed problem in this research (in a next phase we will incorporate 
the observation in class, sessions carried out in a brief empirical course with others in-service 
teachers and new didactic interview with feedback). 

Analysis of Results  
Next is the relevant data of a previous teaching practice in which the teacher expressed the teaching 

processes she had utilized in her experience over 20 years. That is, we attempted to identify her 
teaching knowledge and what emerged from the reflection of her educational practice. We chose a 
multiplication problem and a division task with fractional numbers. Some fragments of the individual 
interview are exposed here, which include two tasks previously solved in the questionnaire to 
feedback on what the teacher does at the time she solves them. For the analysis of data, we 
considered the contributions Behr et al. (1983); Freudenthal (1983), Kieren (1983, 1988), 
Valdemoros et al. (2015) and Vergnaud (1983), among other researchers. 
The multiplication problem 

A rectangular building is on the corner of two streets. One of its fronts occupies a third of a street 
and the other occupies two-fifths of the other street. How much of the block does the building 
occupy? This task was taken from Jiménez (2015). 

To solve the multiplication problem, the teacher used a pictorial representation (a rectangle); she 
partitioned it to represent the problem data and shaded it by saying “Let’s divide this front into thirds, 
we take the third part and from the other side of the fix we are going to divide it into fifth parts and 
we will take two of them.” We asked her why she used this type of representation and she emphasized 
that the region with double shading allowed her to represent the graphic solution to the problem and 
show the multiplication fractions to students. 

Subsequently, the teacher operated with the multiplication algorithm and associated the parts of the 
figure with the algorithmic answer, expressing: “the students are going to realize that the result from 
multiplying the numerators corresponds to the part with double shading and the denominator 
corresponds the total of parts. Perhaps the teacher used the pictorial representation to give sense to 
the operation; however, in this task she did not link the answer to the unit of reference. She focused 
on the main use of the algorithm, as reported researchers like Hart (1981); Kieren (1988), and 
Vergnaud (1983), among other researchers. 
The inverse of the multiplication problem  

A painter will paint a mural on a wall that has an area of 3 !
!
  m2; he knows the length is 2 !

!
  m. 

What is the length of the area of the fence?  
During third the interview, the teacher reaffirmed that the pictorial representation allowed her to 

make explicit to students the association of data of the figure with the formula: “We know how to 
obtain the area: by multiplying the base by height over two; students know that from elementary 
school”. Immediately after, she wrote the formula of the area and substituted the data of the problem 
represented in the rectangle. She emphasized this strategy to make easier the teaching of this type of 
situation and said: “we can find that value by substituting the formula of the area through an inverse 
operation; in this case is a division of fractions 3 !

!
÷ 2 !

!
 , which will allow us to know the missing 

value”. The teacher referred to the inverse operation although she expressed it ambiguously (the 
observer seemed to refer to the notational displacements occurred in an equation), and so she 
justified the division of fraction. 
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The knowledge that emerged during the interview refers to the predominant use of rules and 
algorithms over the meaning of operations according (Hart, 1981), geometric representations as 
teaching models as stated by Behr et al. (1983), and to link the data to the problem. We also 
identified the use of fractions in the sense of measure, quotient, and multiplicative operator indicated 
by Kieren (1983).  

The teacher suggested simplifying an equation to solve the problem of division; and so she 
vindicated the use of the rule to divide fractions, leaving aside the meaning of the inverse operation 
in multiplication as reported in the study by Valdemoros et al. (2015). 

Discussion of results 
From the data analysis, it is possible to infer that teacher’s thoughts and decisions were defined by 

her teaching experiences, which also permeated her strategies based on her students’ learning 
difficulties about the fractional numbers that she identified through her vast teaching experience. The 
teacher tried to solve this type of obstacle by embedding the teaching into a practice supported by the 
use of algorithms and rules that she considered students have strengthened since their passage 
through elementary school. 

The teacher favored the use of a pictorial representation highlighting the area model (associated 
with calculating the area of the rectangle), which allowed her to justify operations with fractional 
numbers and link the algorithm to what she represented graphically. However, these representations 
did not provide enough elements to illustrate the case of division because she only used the 
geometrical representation to associate the data of the problem with the formula and replace them. 
She did not justify the meaning of the inverse operation of multiplication. She was based on an 
equation, as has been previously reported by Valdemoros et al. (2015). She also favored the use of 
the algorithm over the comprehension of intuitive relationships in which the operating situation was 
immersed.  
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Esta comunicación sobre el caso de una maestra de secundaria se presenta en el marco de una 
investigación llevada a cabo con profesores. El propósito es identificar el conocimiento matemático 
de la maestra con amplia experiencia educativa, cuando realiza el diseño y la enseñanza de 
problemas multiplicativos ligados a las fracciones, así como vincular las reflexiones que realiza 
sobre su práctica cuando enseña esos contenidos matemáticos en el aula. Los instrumentos 
metodológicos aplicados en el seguimiento de este caso fueron un cuestionario y tres entrevistas 
didácticas individuales con retroalimentación. En el presente reporte se integran sólo tareas 
diseñadas por la maestra en la tercera entrevista que permiten mostrar datos relevantes de la 
enseñanza propuesta por la profesora y sus correspondientes propósitos.  

Palabras clave: Fracciones, conocimientos del profesor, problemas multiplicativos. 

Introducción  
La importancia del estudio de las fracciones y sus operaciones reside en que hay un fundamento 

para las relaciones algebraicas posteriores. La comprensión de los números racionales es básica para 
el desarrollo y control de las ideas matemáticas, en este sentido, el maestro puede crear situaciones 
favorecedoras para el aprendizaje de la matemática y orientar al estudiante hacia los aspectos críticos 
del conocimiento de número racional o fraccionario (Kieren, 1988). 

El conocimiento que posee un profesor para la enseñanza ha sido objeto de estudio desde hace 
varias décadas; investigadores como Shulman (1986) sugieren la importancia de observar la 
transformación del conocimiento del profesor en el conocimiento de la instrucción sobre un tema 
determinado, en este sentido Ball (1990) se enfoca en cómo piensan los maestros sobre su 
conocimiento y el razonamiento matemático y pedagógico. En este caso, consideramos que los 
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docentes con experiencia en la clase de Matemáticas, muestran riqueza en las diversas estrategias y 
formas de representación prolongadas a través de la enseñanza de problemas multiplicativos ligados 
a las fracciones. Derivado de lo anterior, consideramos relevantes los datos aportados en este reporte, 
porque muestran los aspectos comúnmente inaccessibles del pensamiento de un profesor en la 
práctica habitual, lo cual nos permite presentar aquí los pensamientos subyacentes que motivan sus 
decisiones, las reflexiones que surgen ante la resolución de dichas tareas y si la toma de conciencia 
de esos saberes coadyuva a la mejora educativa.   

     El objetivo general de la investigación es identificar los conocimientos matemáticos de 
profesores en ejercicio con amplia experiencia ante situaciones de toma de decisiones y diseño de 
tareas  para la enseñanza de contenidos relacionados a problemas multiplicativos acerca de las 
fracciones. Las preguntas que guían el presente estudio son: a) ¿Cuáles son los conocimientos que 
posee el profesor para el diseño y la enseñanza de problemas multiplicativos ligados a las 
fracciones?, b) ¿Qué conocimientos emergen durante el autoanálisis reflexivo de su propia práctica 
docente?  

Marco Teórico 
Algunos investigadores (Ball, 2000, Ball y Bass, 2000, Ball, Thames y Phelps, 2008 y Smith, Bill y 

Raith, 2018), vinculan la importancia de los conocimientos sólidos del profesor acerca de la materia 
que enseña y las oportunidades de aprendizaje que puede brindar a los estudiantes a partir de 
entender lo que menciona el curriculum oficial y hacer una adaptación de las acciones programadas 
para la enseñanza tomando como referente las necesidades de sus alumnos. 

    Investigadores como Hart (1981); Jensen y Hohense (2016); Sharp y Welder (2014), y Tirosh 
(2000), entre otros, han realizado aportaciones a la enseñanza de números fraccionarios y sus 
operaciones. Sus resultados apuntan a posibles carencias de la enseñanza y dificultades por parte de 
los estudiantes para resolver este tipo de problemas, debido a que operaciones como la multiplicación 
y división con números fraccionarios se sustentan con el uso de reglas y algoritmos, dejando de lado  
las ideas o relaciones multiplicativas para proporcionar sus explicaciones, tanto como la posible 
tendencia de los estudiantes a atribuir propiedades de operaciones de números naturales a las 
operaciones con números  fraccionarios. Esto es particularmente importante porque los últimos 
aspectos los identificamos en asociación con los diseños y las concepciones sobre la propia 
enseñanza realizada por la profesora participante en esta investigación.  

     La enseñanza de números fraccionarios tiene antecedentes en los primeros conceptos aportados 
por Kieren (1983). Dicho investigador menciona que las fracciones están constituidas por 
subconstructos con cuatro significados: medida, cociente, razón y operador multiplicativo, estos 
subconstructos forman las bases del conocimiento de número racional.  

     Investigadores como Behr, Lesh, Post y Silver (1983) sugieren la importancia de la 
representación de regiones geométricas, conjuntos de objetos discretos y la recta numérica como los 
modelos más utilizados para representar fracciones en la educación elemental. 

    Freudenthal (1983) identifica la fracción como fracturador, comparador y operador. La fracción 
en un operador que se encuentra en tres modalidades discernibles: operador fracturante, operador 
razón y operador fracción. El operador fracturante se asocia con situaciones en las que se actúa sobre 
objetos concretos, rompiéndolos en partes equivalentes; mediante el operador razón colocamos las 
magnitudes en una razón: una con respecto a otra; el operador fracción actúa sobre el puro dominio 
del número, donde satisface la necesidad de inverso de los multiplicadores. 

     Por otra parte, Vergnaud (1983) establece campos conceptuales y se refiere a ellos como los 
problemas y situaciones para el tratamiento de conceptos, procedimientos y representaciones de 
diferentes tipos. Establece dos campos conceptuales como principales para esta investigación, 
estructuras aditivas y multiplicativas, en donde los problemas involucran operaciones aritméticas. 
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Para el trabajo interesan las estructuras multiplicativas, las que integran distintas categorías 
semánticas de problemas verbales: isomorfismo de medidas y producto de medidas. 

Diseño Metodológico 
Este estudio de caso se realizó en una escuela secundaria que pertenece a la Secretaría de Educación 

Pública en la Ciudad de México, participó una profesora con una Licenciatura en Educación 
Matemática. Elegimos a esta participante debido a la relevancia de los datos que ella aporta, la 
amplia experiencia didáctica y matemática que posee y lo mucho que comunica en sus diseños 
didácticos.  

     Para la recopilación de datos, diseñamos un cuestionario y una entrevista individual de corte 
didáctico con retroalimentación sustendada por Valdemoros (2004) y Valdemoros, Ramírez y 
Lamadrid (2015). El propósito del cuestionario fue identificar los conocimientos y estrategias de tres 
profesores de Matemáticas al resolver problemas multiplicativos vinvulados al uso del número 
fraccionario, este instrumento nos permitió elegir a la profesora y de él derivamos algunas tareas a la 
entrevista.  

     La entrevista didáctica con retroalimentación incluyó tareas ya resueltas en el cuestionario con la 
finalidad de hacer explícitos los pensamientos que surgen durante la enseñanza. La entrevista estuvo 
orientada a reflexionar sobre las decisiones y procesos cognitivos vinculados  a la práctica de la 
maestra cuando privilegia una estrategia sobre otra; las representaciones que utiliza y cómo las 
vincula con los procedimientos para resolver tareas relacionadas con problemas multiplicativos 
donde involucra números fraccionarios. De este intrumento tomamos los datos para elaborar la 
presente comunicación (proceso de investigación que ha llevado más de un año); los recopilamos 
mediante la aplicación de varias entrevistas didácticas con retroalimentación. La validación de los 
resultados se da a través de la triangulación de los instrumentos ya que se van a utilizar diferentes 
métodos de recogida de datos para estudiar el problema planteado en esta investigación (en una etapa 
próxima agregaremos la observación de clase, sesiones en un breve curso empírico con profesores en 
servicio y una entrevista adicional con retroalimentación). 

Análisis de Resultados  
A continuación mostramos datos relevantes de la práctica docente precedente, donde la profesora 

manifiesta procesos de enseñanza ejercidos en su experiencia durante más de 20 años. Tratamos de 
identificar los conocimientos para la enseñanza que ella posee y lo que surge a partir de la reflexión 
de su práctica educativa. Hemos seleccionado para este reporte un problema de multiplicación y otro 
de división de números fraccionarios. Se presentan fragmentos de la entrevista individual, en donde 
se incluyen dos tareas ya resueltas con anterioridad en el cuestionario, con la finalidad de ir 
retroalimentando lo que la profesora hacía mientras las resolvía. Para el análisis de datos 
consideramos las aportaciones de Behr et al. (1983); Freudenthal (1983); Kieren (1983, 1988); 
Valdemoros et al. (2015) y Vergnaud (1983), entre otros investigadores. 
El problema de la multiplicación 

Un edificio de planta rectangular hace esquina con dos calles. Uno de sus frentes ocupa un tercio de 
una calle, y el otro frente ocupa dos quintos de la otra calle. ¿Qué parte de la manzana está ocupada 
por el edificio? Tarea tomada de Jiménez (2015). 

Para resolver el problema de multiplicación la profesora  utilizó una representación pictórica (el 
rectángulo), realizó particiones para representar los datos del problema y los sombreó   diciendo:“ 
vamos a dividir este frente en tercios, tomando una tercera parte y el otro lado del arreglo 
rectangular lo vamos a dividir en quintas partes de las cuales vamos a tomar dos”; cuestionamos la 
razón de ese tipo de representación,  ella hizo énfasis en que la región con doble sombreado le 
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permitía representar la solución gráfica del problema y mostrar a los estudiantes la multiplicación de 
fracciones.  

Posteriormente, la profesora realizó la operación con el algoritmo de multiplicación y relacionó las 
partes de la figura con la respuesta algorítmica expresando: “los estudiantes van a darse cuenta de 
que el resultado de multiplicar los numeradores es la parte con doble sombreado y el denominador 
corresponde al total de las partes”. Posiblemente, la profesora utilizó la representación pictórica 
para dar sentido a la operación, sin embargo, no relacionó la respuesta con la unidad de referencia, se 
enfocó en el uso preponderante del algoritmo, situación reportada por Hart (1981); Kieren (1988) y 
Vergnaud (1983), entre otros investigadores. 
Problemas del inverso de la multiplicación 

Un pintor va a realizar un mural en una pared que tiene un área de 3 !
!
  m2, sabe que de largo mide 

2 !
!
  m. ¿Cuánto mide la longitud que corresponde al ancho de la barda? 

     Durante la tercera entrevista, la profesora reiteró que la representación pictórica le permite 
explicitar a sus estudiantes la asociación de los datos de la figura con la fórmula: “sabemos que el 
área se obtiene multiplicando la base por la altura, eso lo saben desde la primaria”. Inmediatamente 
ella escribió la  fórmula del área, sustituyendo los datos del problema representados en la figura 
geométrica (rectángulo), hizo énfasis en  esta estrategia para facilitar la enseñanza de este tipo de 
situaciones y agregó: “podemos conocer ese valor en la sustitución de la fórmula del área a través 
de una operación inversa que en este caso es una división de fracciones 3 !

!
÷ 2 !

!
 , nos va a permitir 

conocer el valor que hace falta”, la maestra hizo referencia a tal operación inversa, aunque lo 
expresó de un modo ambiguo, ya que a los ojos de la observadora parecía referirse a los 
desplazamientos notacionales generados  en una ecuación, con esta acción justificó la división de 
fracciones. 

Los conocimientos presentes en la entrevista se refieren al uso preponderante de reglas y algoritmos 
sobre el sentido de las operaciones según Hart (1981), el uso de representaciones geométricas como 
modelos de enseñanza conforme a lo planteado por Behr et al. (1983), y para relacionar los datos del 
problema. Identificamos el uso de la fracción con el significado de medida, cociente y operador de 
acuerdo a Kieren (1983). 

Un pasaje importante de la entrevista es el momento en que la profesora sugiere el despeje de una 
ecuación para resolver el problema de división, con lo anterior la maestra justifica el uso de la regla 
para dividir fracciones, dejando de lado el significado de la operación inversa de la multiplicación 
como se ha reportado con anterioridad (Valdemoros et al., 2015) 

Discusión de resultados  
Con el análisis de datos, es posible suponer que los pensamientos y decisiones de la profesora 

estaban definidas por su experiencia de enseñanza que también impregnaron sus estrategias basadas 
en las dificultades de aprendizaje de sus estudiantes sobre los números fraccionarios identificados a 
través de su vasta  experiencia de enseñanza. La maestra trató de resolver este tipo de obstáculo 
integrando la enseñanza en una práctica respaldada por el uso de los algoritmos y reglas que a su 
consideración los estudiantes tenían afianzados desde su paso por la escuela primaria.  

     La profesora privilegió el uso de la representación pictórica destacando el modelo del área 
(asociado al cálculo del área del rectángulo), el cual le permitió justificar las operaciones con 
números fraccionarios y relacionar el algoritmo con lo que realizó gráficamente. Sin embargo, estas 
representaciones no aportaron los elementos suficientes para ilustrar el caso de la división, porque 
sólo utilizó la representación geométrica para asociar los datos del problema con la fórmula y 
sustituirlos, no justificó el significado de la operación inversa de la multiplicación, se apoyó en  
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despejar una ecuación, como se ha reportado con anterioridad Valdemoros et al. (2015). Asimismo, 
favoreció el uso del algoritmo sobre la comprensión de las relaciones intuitivas en la que estaba 
inmersa la situación operatoria. 
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To increase teachers’ use of virtual manipulatives and tasks within secondary mathematics 
classrooms and support changes to teachers’ instructional practice, this study investigated 
situational challenges influencing teachers’ implementation efforts during the course of a 
professional development (PD) opportunity. Identified situational challenges included: using 
Chromebooks, teachers’ curriculum resource package, student needs, instructional time/planning, 
and teachers’ collaborators. To promote the success of future PD opportunities, recommendations 
for acknowledging and embracing the situational challenges are provided. 

Keywords: Technology, Instructional Vision, Teacher Education – Inservice / Professional 
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Despite expectations for teachers to use technology to support students’ sense making and 
mathematical reasoning (AMTE, 2017), teachers claim that they are not prepared to use technology 
effectively in their instruction (Albion, Tondeur, Forkosh-Baruch, & Peeraer, 2015). Effectively 
teaching with technology describes teachers using technology to promote students’ development of 
understanding through communicating and reflecting on mathematics, as well as through using and 
connecting mathematical representations (Reiten, 2018b). Using an interactive whiteboard and a 
virtual manipulative (VM) to explore how changing the slope and y-intercept of a graph changes its 
equation is an example of teaching with technology. Students reflect and build on possible 
relationships shared by themselves and peers. Through the use of the VM, they dynamically see the 
resulting graphs when the equations are changed. A VM is “an interactive, technology-enabled visual 
representation of a dynamic mathematical object…that presents opportunities for constructing 
mathematical knowledge” (Moyer-Packenham & Bolyard, 2016, p. 13). Teaching near technology 
describes using technology in a manner that does not promote opportunities for students to 
communicate, reflect, or connect mathematical representations. Using technology merely as an 
attention grabber (an example of teaching near technology) is a misuse of technology (Suh, 2016).  

Though teachers have been encouraged to implement VMs for decades (e.g., NCTM, 2000), their 
use of VMs decrease as students get older (Moyer-Packenham & Westenskow, 2013). To increase 
teachers’ use of VMs and tasks within middle and high school mathematics classrooms and support 
changes to teachers’ instructional practice, this study investigated a targeted professional 
development (PD) opportunity aimed at supporting teacher learning (Driskell et al., 2016). To 
promote the success of future PD opportunities, this study investigated situational challenges teachers 
experienced (Yamagata-Lynch & Haudenschild, 2009) during the course of the PD opportunity that 
influenced their use of VMs and tasks. Which leads to the question at the core of this study, what 
challenges faced the teachers, participating in a targeted PD opportunity, as they transitioned from 
teaching near towards teaching with VMs?  

Methods 
Fourteen teachers participated in a year-long professional development (PD) opportunity aimed at 

supporting their use of VMs and tasks aligned with their curricular units (Reiten, 2018a, 2020). 
Grounded in activity theory (Engeström, 1987), this study investigated the teachers’ participation 
during a PD and their reported practices related to implementing VMs and tasks. Rather than 



Challenges influencing secondary mathematics teacher’s transition towards teaching with virtual manipulatives 

	 1927	

studying teachers’ practices in isolation, teachers’ reported practices were considered mediated by 
several factors (e.g., tools and mediating artifacts, community members, rules). Specifically, this 
study investigated the situational challenges the middle and high school (i.e., secondary) mathematics 
teachers faced as they transitioned from teaching near technology towards teaching with technology.  

Figure 1 is an example of an activity system in this study. Teachers’ conversations and reflections 
throughout the PD were used to investigate the situational challenges teachers experienced 
(Yamagata-Lynch & Haudenschild, 2008) as they began shifting their practices towards teaching 
with technology. Situational challenges or tensions (i.e., internal contradictions between and within 
components of an activity system) are opportunities for growth and learning (Engeström & Sannino, 
2010). Interviews with four volunteer teachers (two 6th grade, one 6th/7th intervention 
teacher/former 8th grade teacher, and one high school teacher) provided insight into teachers’ 
reactions to tools and VM tasks introduced during the PD, teachers’ practices (during the PD and 
their classroom practices related to implementing VM tasks), and teachers’ thoughts regarding what 
supported their implementation efforts. 

 

 
Figure 1: Example of an Activity System and Identified Challenges 

 
The constant comparative method (Glaser & Strauss, 1967) was used as it drew our attention to the 

situational challenges (tensions) teachers experienced through simultaneous coding and analysis. 
Transcripts were coded to identify challenges based on what teachers reported (e.g., time, limitations 
of tools) and contradictions the researcher identified in the data (e.g., use of time during PD). 
Challenges within the same category were compared and category definitions were refined based on 
the commonalities and themes between coded data excerpts within the tension category. Data 
excerpts contained at least a complete sentence, and often consisted of multiple sentences (or small 
paragraphs) focused on the same topic. The number of data excerpts is provided to give readers a 
descriptive understanding of the relevance of various tensions. 

Findings 
Drawing from the ways teachers described using technology in their classroom, findings indicate 

that at least 11 out of 14 teachers in the PD transitioned towards teaching with technology. Initially, 
teachers reported using technology due to district, parent, and student expectations or because they 
thought the students may enjoy a particular technology-based task or game. By the end of the PD, 
teachers were selecting VMs and tasks based on their potential for supporting student understanding 
(Reiten, 2020). However, as teachers made changes to their practice, they experienced challenges 
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within and between components of an activity system for the PD (e.g., see A, B, and C in Figure 1). 
Numbers in parentheses indicate the number of data excerpts for the identified challenge. The most 
common challenges related to: using Chromebooks (35), their curriculum package (26), student 
needs (24), use of worktime during the PD (25), and collaborators (22). It is posited that these 
challenges are relevant to other PD opportunities aimed at supporting teachers to teach with 
technology as the identified challenges extended beyond the particular technology tool to consider 
aspects of the teachers’ community (e.g., teachers with whom they taught as well as the students in 
their classroom) and structure of the PD opportunity. 

Figure 1 highlights three challenges confronting the eighth grade teachers (i.e., Erin, Mari, Pam, and 
Stan) in the PD that influenced their implementation of VMs and tasks. Occurring within and across 
components of an activity system for the PD, challenges teachers faced as they strove to teach with 
VMs and tasks included (A) limitations of the tools, (B) their curriculum resource package, and (C) 
their collaborators.  

During the November PD session, as the eighth grade teachers were critiquing a VM task, Stan, 
Mari, and Erin became frustrated. They wanted to either enter specific side lengths for right triangles 
or have the side lengths always be integers. Neither option was capable with this VM (see A in Figure 
1). Specifically, Stan said, “I wish that this would be whole numbers. I wish it would stick to whole 
numbers. ‘Cause the decimals, that doesn’t even register with ME, [Erin: Right] if those are equal.” 
Due to rounding errors, Stan and Erin thought that some of their students might struggle to identify 
the pattern in the table, thus feeling uncertain whether this VM would be worthwhile. Due to this 
challenge (located within the tools component), the teachers chose not to implement this particular 
VM with their students.  

The eighth grade team of teachers also found it challenging to integrate VMs and tasks within their 
instruction due to their curriculum investigations building on each other (see B in Figure 1). Mari 
wanted to use a VM to replace an investigation or as a pre-teaching tool with her “lowest students.” 
She was not able to do so because all 8th grade math teachers needed to implement the same thing. 
Replacing an investigation in one part of the unit with a VM could lead to investigations in the 
following lessons needing to be modified due to students not having the background information 
from previous investigations. Specifically, Stan stated, “[w]ith our curriculum, if you were going to 
use this (the VM), it would have to be in addition to or a summary. Or a reflection. Because 
otherwise, why do you do investigation one and two? … There’s no reason to use Section 3.1, if 
you’re not going to continue on.” This situational challenge existed between the rules and object 
components of the activity system depicted in Figure 1. Additionally, drawing from his experience 
with a previous K-12 math leader, Stan was adamant that VM tasks could not replace investigations. 
Rather they needed to “trust and stick to the curriculum” even when students struggled to understand 
the investigation (see C in Figure 1). This situational challenge existed between the community and 
object components of the activity system depicted in Figure 1. Meaning Mari’s instructional practices 
related to implementing a VM task were influenced by teachers in her community (e.g., Stan) beyond 
her control. Stan’s belief in the role of his curriculum resource package as well the curriculum itself 
influenced if and how he chose to implement a particular VM task. 

Discussion and Conclusion 
Despite the expectation for secondary mathematics teachers to use technology tools in an effective 

and innovative way, many teachers report that they are not prepared to do so (Albion et al., 2015). 
How teachers are supported to teach with technology as opposed to near technology is an important 
issue facing the field. Teachers do not work in isolation, rather a variety of components influence 
their practices related to teaching with technology. Ultimately, the situational challenges described 
earlier influenced teachers’ transition towards teaching with VMs and tasks. When acknowledged 
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and embraced, these challenges provide opportunities for teachers to grow in their understanding of 
how to teach with technology tools. When designing opportunities to support teachers to teach with 
technology, the challenges highlighted in this study are important to consider and address.  

The following recommendations highlight embracing challenges as opportunities to support 
teachers’ growth rather than as something to be ignored. Because teachers often do not teach in 
isolation, it is important to address the ways teachers’ peers support their integration efforts. When 
designing PD, intentionally integrating opportunities for collaborators to discuss and recognize 
personal beliefs related to the role of technology, curriculum, and so forth is important.  

To address challenges related to teachers’ curricula packages, consider supporting teachers in 
aligning specific VMs or tasks to their curricular units. Providing examples of VMs or tasks aligned 
to instructional units may initially support teachers in understanding the different ways tasks may be 
used in relation to their current curriculum (e.g., supplementing, replacing, or introducing their 
curricular investigations). Another way to start this process might be to have teachers observe other 
teachers teaching with technology while implementing the same curriculum. Debriefs after the 
observations provide additional opportunities to address challenges related to the role of the 
curriculum in deciding when, how, and why to add in specific technology based tasks. In the case of 
this PD, teachers were initially provided specific VM tasks aligned to their unit. As the PD 
progressed, teachers took on the responsibility for selecting VMs and tasks to explore that aligned to 
their learning goals.  

Rather than focusing only on positive aspects or benefits when using a specific technology tool, 
acknowledging the limitations of a particular tool and potential ways to address the limitations may 
support teachers’ comfortability with the tool. It is especially important to acknowledge how tool 
limitations may influence students’ engagement in the mathematics and strategies for addressing the 
limitations. In the case of the 8th grade teachers, they chose to not use a VM task due to concerns 
over whether students would recognize the intended pattern due to rounding errors. Potential 
strategies for addressing this concern include giving students dimensions of triangles to explore, 
reviewing with students the influence of rounding errors when squaring decimals, and looking for a 
new VM. Due to the cumbersome nature for creating triangles with given side lengths, the teachers 
chose not to use the initial VM and instead explored a different one that allowed students to enter 
measures of specific leg lengths.  

The aforementioned suggestions are in response to the challenges revealed in the examples with the 
eighth grade teachers. It is important to keep in mind, that teachers may experience the various 
situational challenges differently compared to their peers. Therefore, we recommend providing 
opportunities for teachers to see successful integration efforts and reflect on their practice. 
Furthermore, though the recommendations stem from working with teachers during a PD, we posit 
these recommendations are important to consider when preparing and supporting pre-service teachers 
to teach with technology. 
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The call to improve mathematics outcomes for children ages zero to eight requires the development 
of effective professional development approaches for early childhood mathematics educators. In this 
study, we looked at how six facilitators created workshops on spatial reasoning, mathematical play, 
number sense, and theories of learning for early childhood educators. Drawing on Desimone’s 
components of effective professional development, we interviewed these facilitators to understand 
how they defined a successful professional development and how these definitions aligned with the 
workshops they created. Interviews showed that all the facilitators in this study designed their 
workshops to be engaging and interactive for their participants while drawing on the components of 
coherence, collective participation, and duration. 

Keywords: Teacher Education - Inservice / Professional Development, Early Childhood 
Mathematics, Spatial Thinking, Teacher Knowledge 

Introduction and Purpose 
Scholars and educators have called for initiatives to improve mathematics outcomes for children 

ages zero to eight. This calls for effective professional development (PD) to be implemented on ways 
of thinking about early learning as multimodal, playful, and responsive to the varied sociocultural 
and linguistic contexts in diverse communities. As PD is crucial in supporting teachers’ knowledge 
and skills that lead to changes in classroom practice (Garet et al., 2001), it is necessary to understand 
how PD facilitators approach such a vital call. In this study, a nonprofit math and science education 
center aimed to engender ways of thinking about early math learning through an extensive initiative 
that partnered with roughly 100 early childhood educational leaders across a Western U.S. state. 
Central to this initiative were PD workshops led by mathematics coaches who focused on the areas of 
spatial reasoning, number sense, mathematical play, and theories of learning for children ages 0-8. 
As the National Council of Teacher of Mathematics (NCTM, 2014) acknowledges the critical role of 
mathematics coaches in enhancing teacher capacity and positively influencing teacher beliefs, this 
study aims to understand the goals of the PD workshops established by the mathematics coaches 
themselves. We asked the following research question: 

1. How do experienced facilitators use current research on successful PD to inform their own 
workshops? 

Conceptual Framework 
We drew on Desimone’s (2009) five dimensions for effective PD as a lens to understand how the 

PD facilitators structured their workshops. See Table 1 for descriptions of these dimensions. 
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Table 1: Components of Effective Professional Development 
Framework Component Definition 

Coherence Incorporating participants’ individual goals with that of the larger 
group (Gordon, 2004). 

Duration Follow-up activities and ongoing support in the form of coaching and 
interacting with colleagues (Ball, 1996). 

Content Focus Textbooks, kits, curriculum units, and other forms of content that 
focus not only on what the content is, but how it is learned by students 
(Garet et al., 2001). 

Collective Participation PD that is developed and administered for groups of teachers that 
come from the same school or department that allows teachers to work 
together to discuss content, skills, and problems that they experience 
in their teaching (Garet et al., 2001). 

Active Learning Providing first-hand experiences with the content where teachers can 
actively participate instead of passively learn through lecture-based 
sessions (Penuel et al., 2007). 

Methods 
Study Context and Participants 

This study is part of an ongoing project focused on providing and evaluating an early childhood 
mathematics professional development offered to approximately 100 participants representing 30 
educational agencies across a Western U.S. state. For this study, we focused on the workshops 
designed and facilitated by the PD mathematics coaches during the week-long PD held in July 2019. 
Participants attended 90-minute sessions about learning theories, culturally relevant pedagogy, 
spatial reasoning, number-sense tasks, and mathematical play, all centered around enhancing early 
childhood mathematics education.  
Data Collection and Analysis 

We conducted one-on-one interviews with each PD workshop facilitator (n=6) after their sessions. 
Facilitators were asked questions about the professional development workshops they designed for 
this session, including how they defined a successful PD, how they imagined their participants would 
implement the content and theory they presented, and what research they based their work on. Using 
emergent coding (Strauss & Corbin, 1994), we looked to see what themes arose when facilitators 
defined effective PD and described how they designed their workshops. In particular, we examined 
ways in which the facilitators’ descriptions of their workshops compared or comported with what 
they described as the components required for a successful PD. This analysis provided insight about 
the many different evidence-based approaches the facilitators took to create and implement their 
workshops.  

Results 
Below we address our findings for the workshops on Mathematical Play, Spatial Reasoning, 

Theories of Learning, and Number Sense.  
Mathematical Play  

Peter’s session engaged participants in a discussion about the various ways that they play in their 
own daily lives and asked participants to consider whether “learning” might also be a way to describe 
these activities. Peter challenged his participants to not think of play and learning as separate ideas, 
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but as potentially one and the same: “Children develop meaning by interacting with objects and 
posing problems through play.” After some time for group discussion about this idea, Peter presented 
information on the history of early childhood play. Next, participants were given time to play with 
non-traditional pattern blocks and reflect on what problems they posed during their play, what 
mathematics they drew on in their play, and how this playful experience impacted their identity as a 
mathematics learner. 

When asked about what defines a successful PD in his post-interview, Peter specifically mentioned 
all five components of Desimone’s (2009) framework. Peter explained the importance of creating PD 
that engages participants in the kinds of experiences they would do with their own learners. Drawing 
on Desimone’s framework for content-focused active learning, Peter anchored the workshop by 
drawing on participants’ experiences with play, which resonates with creating a coherent PD 
experience. Peter described a practice-focused approach to support participants in implementing 
strategies in their own contexts and highlighted the importance of treating participants as 
professionals, drawing on play as a way to enact a more equitable approach to PD. Lastly, Peter 
described learning math through play as a way to promote attitudes and dispositions toward 
mathematics that are playful and fun rather than intimidating or unapproachable. 
Spatial Reasoning 

At the beginning of their session on spatial reasoning, Shane and Ana encouraged participants to 
think about how they got from the parking lot to the room where the session was held. Then, 
participants created written instructions or a visual sketch for traveling the distance. Shane and Ana 
defined spatial reasoning as the concepts, tools, and processes involving the location and movement 
of objects and persons, either mentally or physically, in space; they also introduced Piaget’s three 
mountain task and the importance of spatial reasoning for mathematics learning. Next, participants 
engaged in nine different spatial reasoning activities, including Piaget’s three mountain task and 
water level task, mental rotation visualization tests, and mental folding. Participants engaged in a 
group discussion about the challenges they encountered when engaging in these activities and 
whether their view of the importance of spatial reasoning had changed. 

In their post-PD interview, Shane and Ana explained that they wanted participants to leave with an 
expanded understanding of spatial reasoning. Furthermore, Shane and Ana wanted to connect what 
they presented in the spatial reasoning session to other sessions that were offered at the week-long 
institute. In this way, Shane and Ana’s session aligned with Desimone’s components of content focus 
and active learning. Finally, Shane and Ana hoped that participants would provide similar learning 
experiences for the teachers they worked with. In order to encourage this post-PD implementation, 
Shane and Ana discussed the need to support their participants in applying what they learned in their 
own contexts, whether they worked with infants/toddlers or preschool-aged children. 
Theories of Learning  

Sam and Evelyn began their session by engaging participants in a discussion about what it feels like 
to be a learner, “to have the participants experience describing an object as a child would. We wanted 
the participants to put on the hat of a learner.” In order to mirror what it is like to develop a concept 
as a child, they introduced an unfamiliar word: “Tutusa”. Tutusa was a made-up concept the PD 
facilitators developed that represented objects that weighed the same but looked different. Sam and 
Evelyn gave a few visual examples and non-examples of Tutusa, then provided cubes of different 
sizes, color, and weight, as well as measurement scales so that participants could work in small 
groups to determine the meaning of Tutusa. At the end of the session, each group was asked to 
nonverbally share what they believed Tutusa meant. Nonverbal communication was an added 
challenge to engage participants in communicating meaning without words, through gesture or 
movement. 
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In their post-PD interview, Sam and Evelyn stressed the importance of creating an engaging and 
interactive activity by drawing on the backgrounds, knowledge, and needs of their participants. In 
this way, they placed an importance on coherence throughout their session. Sam and Evelyn also 
highlighted how a successful PD needs to include regular follow-up and ongoing support for all 
participants. As Evelyn explained, the follow-up is “just as significant as the institute itself, if not 
more.” These responses align directly with Desimone’s components that attend to duration, collective 
participation, and active learning.  
Number Sense 

Becky’s session on number sense engaged participants in recognizing developmental progressions 
for various number concepts, such as number word sequence, one-to-one correspondence, and 
strategic reasoning. Becky showed six different videos of preschool-aged children reciting number 
word sequences to twenty, for example, and asked participants to look for cues that could provide 
insight in the child’s counting processes. She then provided participants with concrete “what to do” 
strategies to support children in various stages of development. For example, for a child in an early 
stage, she highlighted how teachers could support children in developing one-to-one correspondence. 
Becky’s goals for the session included wanting to engage participants in thinking about how young 
children come to think about numbers and number concepts. Becky acknowledged that “counting is a 
complex learning experience,” so she wanted to support participants in thinking about how young 
children “make connections to place value” or other such concepts. 

In her post-PD interview, Becky positioned herself as a learner, taking a reflexive stance towards 
her own facilitation practices. She stated that she not only hoped participants learned from the 
session–ideally, she intended to learn from participants as well. She wanted to draw on the expertise 
in her audience to help everyone in the room “understand more deeply and connect to other learnings 
they have had.” In preparing her session, Becky explained, she developed an agenda but would likely 
end up changing her plan depending on the identities and experiences of her audience. In reference to 
Desimone’s framework, Becky’s responses align with both coherence and active learning; she 
activated participants’ prior experiences and leveraged these for learning in her session. 

Discussion and Conclusion 
Overall, participants stressed that a successful PD includes follow-up coaching and ongoing 

support, both of which are consistent with the importance of duration in effective PD. In addition, the 
PD facilitators created workshops that were engaging for their participants, drawing on the active 
learning component. We argue that the four sessions presented here are exemplary cases of rigorous 
and ambitious PD aligned with current research and grounded in the needs of the practitioners in the 
room. This report reveals important insights about how experienced PD facilitators approach their 
practice to provide a professional learning event that seeks to go beyond the week-long institute 
itself.  
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This study reports on efforts over several years to design and implement a yearlong intervention 
intended to support secondary mathematics teachers in their early years of teaching. The 
intervention is designed to support these teachers’ development of meaningful professional 
relationships with a school-based mentor and to create an online community of practice for support 
with other professionals. The intervention itself consists of early career teachers and their mentors 
participating in monthly professional development sessions such as online meetings, Zoom panels 
with experts, and collaboratively reading and discussing timely, purposeful, and relevant content. 
The intervention is designed to not over burden the participants and to be feasible for national 
implementation with little funding. The goal of the intervention is to try to retain secondary 
mathematics teachers in the profession by providing them with meaningful and targeted support. 

Keywords: Teacher Education - Inservice / Professional Development, Teaching Tools and 
Resources 

Purpose of Study 
Half of all teachers leave the profession within the first five years, and this rate is highest for 

mathematics positions in high poverty schools (Fantilli & McDougall, 2009; Goldring et al., 2014). 
Furthermore, half of all current teachers in the U.S. retiring in the next five years (Foster, 2010), 
enrollment in teacher preparation programs declining, and teacher turnover is costing America $7.3 
billion annually (National Math + Science Initiative, 2013), which represents a crisis for public 
education in the U.S. These conditions lead to classrooms staffed with underprepared/unqualified 
teachers, which profoundly affects the mathematical preparation of students in high school, college, 
and beyond. Experts agree that addressing the mathematics-teaching crisis meaningfully will require 
building a more cohesive system of teacher preparation, support, and development (Mehta, Theisen-
Homer, Braslow, & Lopatin 2015). The purpose of this study is to report on the design and 
implementation of a cost effective, easily replicable intervention for early career secondary 
mathematics teachers with the goal of positively impacting teacher retention. We also present lessons 
learned over two years of implementing the intervention and provide suggestions for future research. 



The design and implementation of an intervention to support and Retain early career mathematics teachers 

	 1937	

Background 
Transforming the preparation of secondary mathematics teachers across the U.S. is at the core of the 

Mathematics Teacher Education Partnership (MTE-P). Since its inception, this initiative has 
continued to improve mathematics teacher education across the nation (for more information about 
the partnership see (Martin et al., 2020). MTE-P has established guiding principles and five Research 
Action Clusters (RACs) to carry out these principles. The authors of this paper are members of the 
RAC guided by a focus on teacher retention and induction in line with standard P.5-Recruitment and 
Retention of Teacher candidates, which is included in the Standards for Preparing Teachers of 
Mathematics (AMTE, 2017).  

Novice teachers often feel isolated and those feelings of isolation are often associated with teachers 
leaving the field (Carroll & Fulton, 2004; Schlichte, Yssel, & Merbler, 2005). This RAC is grounded 
in the perspective that teacher retention would improve with the development of communities of 
practice to provide a support network to draw upon, including online communities (Wenger, 2011). 
Communities of practice are “groups of people who share a concern or a passion for something they 
do and learn how to do it better as they interact regularly” (Wenger, 2011, p.1). Wenger further 
shared three features that characterize communities of practice: a domain of interest, a community 
(members who participate in joint activities and discussions), and shared practice. For our work, our 
domain of interest is teaching high school mathematics during the early years of a teacher’s career. 
The community consists of early career teachers, mid-career mentoring teachers, curriculum 
specialists, and university program coordinators and mathematics teacher education faculty. The 
practice of focus is teaching mathematics. We recognize that the work of retaining teachers requires, 
in part, a focus on developing relationships within the educational community and promoting 
connectedness within the larger community (Minarik, Thornton, & Perreault, 2003).  

Past Work: Driving the Design 
To respond to the teacher retention crisis, the RAC created a survey as an initial step to study the 

current support systems of early career secondary mathematics teachers. One research question 
guiding this work was: What is the perceived scope, nature, and impact of professional support for 
early career mathematics teachers? This survey was created through an iterative design and vetting 
process that extended from the fall of 2014 to early 2016. The main goal of the survey was to better 
understand the degree to which early career mathematics teachers perceived various learning 
opportunities as influential to their interest in teaching mathematics. By better understanding current 
support systems, the RAC could develop interventions that would strengthen and replicate systems 
that were working and attempt to improve broken ones. The survey consisted of 25 questions asking 
respondents to report on their current support systems, job satisfaction, projected longevity in the 
field, and other related topics. The survey was given in November of 2016 and gleaned 141 
responses from teachers across the nation. Results from this study are presented in Amick et al. 
(2020).  

The vast majority of novice teachers had received mentoring or coaching from someone at their 
school site, and almost (89%) found that experience to be moderately or very influential to their 
enthusiasm for teaching mathematics. This finding is consistent with other research on induction 
programs (Ingersoll & Strong, 2011; Youngs et al., 2019). In their review, Ingersoll and Strong 
(2011) found that induction programs and especially teacher mentoring programs positively 
influenced novice teachers’ satisfaction, commitment, and/or retention. Further, Ingersoll (2012) 
found that retention was significantly impacted when a mentor and novice teacher taught in the same 
subject area and had a common planning time, as well. He also found that having multiple induction 
supports had a strong positive effect on retention.  Thus, the work of this RAC, to develop systems 



The design and implementation of an intervention to support and Retain early career mathematics teachers 

	 1938	

that can effectively support early career teachers with the overarching goal to increase their job 
satisfaction and longevity in the field, was built upon past research, as well as the survey results.  

Methods 
Our overall methodology for this work has been a design experiment approach (Cobb et al., 2003), 

focusing on a problem in practice and pragmatically designing an intervention to impact that problem 
with multiple iterations of implementation and (re)design. We used constant comparative analysis to 
modify the intervention and methods as the investigation evolves based on new findings from 
analyzing the data collected. 
Design  

Due to both current research in the field and the RAC’s survey results pointing towards mentoring 
as an extremely impactful induction experience, our group focused on the mentoring relationship as 
the basis for the first year of implementation of our intervention. The first year intervention was 
implemented throughout the 2018-2019 academic year. The intervention was designed to provide 
targeted support to first-year teachers by: (1) strengthening the mentor/mentee relationship through 
monthly communications; (2) suggesting targeted discussion topics between the mentor/mentee 
teachers; (3) and providing synchronous online meetings to build a professional community. In 
keeping with a design experiment approach, the intervention was modified over the course of the 
year, based on continuous analyses, in an effort to improve the intervention. After the first year of 
implementation the team went through a (re)design process during the summer of 2019 to prepare for 
the second year of implementation.  

In order to avoid overburdening early career teachers, the intervention was designed to include only 
one hour of active participation each month. Furthermore, the intervention was designed to engage 
the early career teachers with their mentors to allow them to take part in an online community such 
that each pair had opportunities to engage in learning about research-based teaching practices 
together. Including mentor teachers in the study, was meant to provide a supported space for mentor 
teachers and first-year teachers to build positive relationships. 

The monthly engagement activities were selected/designed by the research team to be timely, and 
several of the selected topics are also aligned to the Common Core Standards of Mathematical 
Practice and NCTM’s Effective Mathematics Teaching Practices. For example, in September an 
email was sent with several self-care resources and asked the participants to peruse and discuss with 
their mentor teachers. In October, a Zoom panel was put together where participants have a sounding 
board to vent frustrations, ask questions, and seek advice. The panelists included teachers who are 
past their first few years of teaching, but who are still in their early years of their careers as to be 
relatable to the participants. We ended each year with an anonymous feedback form for the early 
career teachers to complete. One addition we made during the second intervention year was the 
creation of a Facebook group for participants to engage. We posted resources frequently (at least 
once a week) on the group feed to attempt to create an online space for dialogue and further support 
online community development.     
Participants 

To recruit early career teachers, the researchers on this project extended email invitations to recent 
graduates of their teacher preparation programs. For our first year of implementation, we only invited 
teachers in their first year of teaching. Participants were asked to commit one hour a month to the 
study, and to recruit a mentor teacher if they did not have one assigned to them. We strongly 
suggested that mentor teachers also teach math. The participants for both years of implementation 
included a diverse group that taught a variety of courses and grade levels (6-12), and have settings 
that range from large urban districts to small rural schools. During year 1, we had seven teachers 
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volunteer to participate and during year 2 we improved our recruitment of early career teachers and 
had 15 teachers register. 
Data Sources 

The main data sources of this study consist of feedback from the participants over the course of the 
year via email, and a mid-year and end-of-year survey for each intervention year. The end-of-year 
survey is used to collect information on how useful the new teachers found each of the monthly 
interventions to be in supporting them and what supports they still wish they had. There are also 
questions for the new teachers asking specifically if the support received had an impact on whether 
or not they intend to continue in the profession in the future. 

Results 
We recently completed our second year of implementation and thus far, the results have been mixed 

as to the usefulness of the intervention. For those participants who remain engaged with the group we 
have received overwhelmingly good feedback as to the usefulness of the Zoom teacher panels. The 
participants report it being helpful to connect and talk to others that are and have been in similar 
situations. They also greatly appreciated the very practical advice. Unfortunately, the attendance for 
the Zoom teacher panels has been low with only 2-5 early career teachers participating. In addition, 
though we have encouraged the engagement of mentor teachers we have so far not had any join our 
conversations. Many of our participating teachers also reported that they had very little interaction 
with their mentor teachers. The teachers we have received feedback from often report feeling 
overwhelmed, primarily with issues of student engagement and planning. We have had little success 
with engaging early career teachers with Facebook in spite of many attempts to try to draw them into 
the conversation. Overall, we have struggled to keep teachers involved and engaged in the 
intervention beyond the first few months, which has led us to begin to rethink our approach. 

Discussion/Summary 
Similar to the results that we have seen, Youngs et al. (2019) in their synthesis of research on 

teacher induction programs that lead to retention of STEM teachers found that interventions with first 
year teachers seem to have little effect, which they attribute to teachers likely being overwhelmed. 
We are now considering focusing on teachers in their second and third years of teaching and would 
recommend that focus for future research. Another consideration is to focus on mentors or teacher 
leaders for the intervention and how to help them support groups of mentees. This would be a 
significant shift in focus for our interventions and recruitment of participants but might help to 
develop strong mentorship teams focused on a mentor. We have also considered taking a school team 
approach and involving an administrator as past research has shown the value of perceived 
administrator support (Youngs et al., 2019). We propose one approach could be to have school-based 
teams including all early career teachers, 1-2 mentor teachers, and an administrator and focusing on 
how to develop relationships and build community in the teams. We continue to look for impactful 
ways of supporting and retaining early career teachers and we believe the lessons we have learned 
will be useful to others in mathematics teacher education.  
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Online learning communities are an increasingly prevalent informal learning site for teachers. These 
sites offer an emotionally and philosophically supportive space for teachers who advocate for 
change. In this study, our analysis of the interactions transpiring within one mathematics education 
Facebook group illuminates a critical conversation taking place, instruction based on students’ 
perceived abilities. Teachers discuss systems level tracking and classroom level ability grouping to 
catalyze change and subvert the structures that produce tracking in schools. This collaborative 
environment both informed and empowered teachers to make educative decisions about inclusive 
strategies that built heterogeneous groups of learners. 

Keywords: affect, emotion, beliefs, and attitudes; equity and diversity; informal education; 
technology 

The negative effects of tracking are clearly articulated within the National Council of Teachers of 
Mathematics’ publications Principles to Action (2014) and Catalyst for Change (2018), yet this 
practice continues to dominate K-12 classrooms. Choices made based on ill-informed assumptions 
about students’ academic ability (Ladson-Billings, 1997) have led school systems to track students 
into mathematics classrooms that often do not prepare students for futures in STEM fields (Oakes, 
1990). Course sequencing and perceived ability grouping continue to have negative effects on 
students such as: the continuation of social reproduction (Reichelt, Collischon, & Eberl, 2019), lack 
of student motivation (Lessard, Larose, & Duchesne, 2018), and lower beliefs about one’s 
mathematical ability (Mijs, 2016). 

Teachers are becoming more aware of the effects of tracking and some are attempting to change the 
oppressive system from within their schools and classrooms. The purpose of this study is to highlight 
the voice of teachers engaged in a social media network seeking support on how to make a change in 
their schools. In what follows, we begin by situating our work within social learning perspectives and 
previous research on the negative effects of tracking. We then outline our findings and discuss how a 
social media space can emotionally and philosophically support teachers as they advocate for change. 

Framing 
Teacher Learning 

Grounding our work within the context of social learning, “communities of practice” offer a lens to 
examine the dynamic interactions that occur within an informal learning environment. Wenger 
(2006) defines communities of practice as “groups of people who share a concern or passion for 
something they do and learn how to do it better as they interact regularly” (p. 1). Communities of 
practice foster a sense of belonging where members share a common goal. Teachers’ participation 
and interaction within these spaces allow them to develop shared knowledge, learn together, and 
support one another in their practice (Wenger, 1998). 

Teachers’ beliefs about teaching and learning play a significant role in shaping their instructional 
practice (Schoen & LaVenia, 2019). Kyndt and colleagues (2016) utilized the results of their meta-
analysis on informal teacher learning to identity three key learning outcomes that resulted from 
participation in these learning communities: (1) improved content knowledge, (2) stronger 
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pedagogical knowledge and skills, and (3) a change in attitudes and identities. Macia and Garcia 
(2016) further explored the nuances of informal learning spaces and found that teachers often entered 
into these spaces to support the context-specific needs of their classroom. For example, one 
contextual demand teachers frequently sought advice on was how to best group students for 
mathematics instruction. These findings suggest that an informal learning community can serve as a 
source of instructional support for mathematics teachers.  
Ability Grouping 

In mathematics instruction, ability grouping is a teaching practice implemented by many teachers 
(Anthony & Hunter, 2017). Ability grouping refers to students that have been grouped based on their 
perceived academic ability, which is often determined by their performance on an assessment. While 
teachers identify the use of ability grouping as a way to cater to their students’ diverse learning needs 
and raise student performance (Hunter, Hunter, & Anthony, 2019), these practices continue to fuel 
the inequities in our education system. In the era of No Child Left Behind, categorizing students 
based on their performance with particular labels has contributed to the specific language that 
teachers use when talking about students (Datnow et al., 2018). For instance, using words such as 
“high” or “low” communicates the belief that students have fixed mathematical abilities. In order to 
help teachers shift their beliefs about students’ abilities and vision of equitable mathematics 
instruction, opportunities for professional learning and growth within a supportive environment are 
needed. 

These opportunities expand beyond traditional face-to-face learning environments as the demands 
placed on teachers continue to grow. For this reason, informal learning communities have become 
particularly appealing. These communities offer a flexible space for teachers to collaborate, advocate, 
learn from one another, share ideas or resources, seek information or support, and reflect on one’s 
own knowledge or practice with other teachers from around the world (Macia & Garcia, 2016). In 
this study, we examine one Facebook group where teachers network together to build a learning 
community focused on mathematics education. 

Methodology 
In this qualitative study, a grounded theory approach (Charmaz, 1983) was employed to 

conceptualize the nature of the interactions taking place in a mathematics education Facebook group. 
The group was created by a university-based mathematics education research group and had 14,943 
members at the time of data collection. In this space, members can pose questions, celebrate 
successes, share struggles, elicit support, and share resources. On average, the group generates seven 
original posts per day, and 95 comments on existing posts. In this study, data gathered from this 
Facebook group includes 2,600 original posts with comments. 

The constant comparative elements of grounded theory (Charmaz, 1983) warrant the use of an 
inductive content analysis (Roller & Lavrakas, 2015) to identify themes and patterns within the data. 
The coding process took place across three phases. In phase one, the research team open-coded a 
subset of the data to form emergent themes (Creswell & Poth, 2018) and generated an initial 
codebook. The research team met to discuss the 49 initial codes and collapsed them into 15 
overarching themes. In phase two, the research team drew on these 15 themes to analyze a different 
subset of data. Additional codes emerged and two themes were added, yielding a total of 17 
overarching themes. To establish intercoder agreement (Creswell & Poth, 2018), the research team 
analyzed a final subset of data and achieved an 84% agreement score. In phase three, the entire data 
set was hand-coded using the 17 themes. 

For the purposes of identifying conversations around tracking, only posts coded for the following 
three themes were included: (1) beliefs about teaching and learning mathematics, (2) challenges 
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experienced by teachers and students when teaching and learning mathematics, and (3) any mention 
of students’ experiences learning mathematics. A total of 147 posts were included and analyzed. 

Results 
In what follows, we report on one prevailing topic, tracking, that emerged as teachers discussed 

their experiences in this informal learning community. Our analysis suggests that members often 
come to this community to share their frustration and solicit help to become change agents - teachers 
actively trying to address inequitable practices within their schools. Teachers appear to recognize the 
negative impact tracking can have on students at a classroom and systems level; however, there is a 
disconnect between what they believe and the pressure they receive from colleagues, administration, 
parents, and district leaders to enact ineffective grouping practices. We draw upon two illustrative 
posts that represent our findings around how this online learning community discusses systems level 
tracking and classroom level ability grouping to catalyze change and undo, or subvert, the structures 
that produce tracking within today’s schools. 
System Level 

In one interaction, a teacher described the negative impact tracking has had on her high school 
students. She wrote, “I have been teaching the ‘lower’ track now for 4 years and most of my students 
tell me they feel stupid for being in my track. Kids make fun of them and feel like they are better 
than them because of what track they got placed in.” At a staff meeting, this teacher advocated 
against the use of tracking in mathematics but was met with opposition. “I guess, I was surprised of 
[sic] the resistance.” 

In her post, she continued by asking, “Was wondering if anyone has had any success in convincing 
change at their schools?” The post generated 54 replies, which led to a critical conversation around 
this type of practice. Many of these replies created a feeling of connectedness among the group 
members that engaged in the conversation. That is, they seemed to share similar beliefs about 
tracking. Some replies built a bond through words of encouragement, such as, “You have planted the 
seed! You are right - all kids DO deserve better.” Other members of the group shared similar 
experiences where they too were met with resistance and unsuccessful in their own attempts to lead 
change. In another reply, a teacher wrote, “I have had absolutely no luck at all. My school is very 
set...and I can’t see anything changing not even in the medium-term future.” 

This post demonstrates a desire to make a change at a systemic level. These teachers seem to think 
beyond their own instruction and consider the changes needed to transform education on a larger 
scale. While teachers may recognize the need for a systemic change in education, they also seem 
aware of the impeding barriers and obstacles. To mitigate the impact of system level choices, many 
group members that replied to the post suggested that the original poster take on the issues within her 
own classroom and mitigate the negative effects through practices she could control immediately. 
Classroom Level 

One reply encouraged the original poster to address systemic issues of tracking within her own 
classroom, “You should just go all ‘Stand and Deliver’ on them and teach the ‘lower’ track so well 
that they surpass the other track!” Similarly, another teacher wrote, “Keep your mouth shut and prove 
them wrong! Do solid teaching with your ‘low’ kids and let them prove that your methods work on 
the lowest kids. I love proving people wrong with data.” Both of these replies called for the teacher 
to subvert the systemic level practice of tracking by using good teaching practices, which are less 
likely used in lower tracks (Mijs, 2016), to create noticeable change through student performance. 

Members of the Facebook group discussed their experiences and struggles with ability grouping 
within their individual classrooms and the impact this has had on their students. One teacher shared 
how his colleague is “stuck on grouping.” As this teacher described his colleague’s students, he used 
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language such as, “fast kids” and “slower kids,” though he indicated he did not care for those terms. 
This teacher described the tension between promoting heterogeneous grouping practices and the 
pressure of time constraints and curriculum expectations. To help his colleague shift away from these 
harmful teaching practices, he posed the following question to the group, “How can I help her 
[colleague] with this transition without homogenous grouping and/or what recommendations do you 
have to help get her students to being able to work together and help each other?” Interestingly, this 
post did not evoke the same level of engagement. While the previous post generated rich dialogue 
among members, replies to this post were limited. These replies guided the original poster, and the 
readers of the interaction, towards inclusive strategies that built heterogeneous groups of learners. 

Discussion 
Educators have leveraged the use of social media, such as Facebook, as a platform for informal 

learning. Given its flexibility and appeal, teachers gravitate towards these spaces to improve their 
knowledge and practice (Anderson, 2019). In our analysis of one Facebook group, we found teachers 
engaged in critical conversations to catalyze change and undo the structures that produce tracking 
within today’s schools. Research has consistently found that ability grouping fails to benefit the 
student and further exacerbates the inequities in our school systems; however, conversations within 
this online community suggest that these practices continue to prevail. Our findings suggest that 
membership in this type of learning community provides individuals affective resources (Brodie, 
2020) through emotional support, which is often overlooked in these spaces. This group also 
provides emotional support through confirming other members' feelings of frustration, while 
encouraging them to continue to fight for change at their schools.  

While some teachers in this Facebook group recognize the impact of ability grouping and hope to 
dismantle these practices on a systems level, others navigate these waters within their own 
classroom. As members from the group share their subversive practices and call for others to “prove 
them wrong”, they are advocating for Creative Insubordination practices such as, “using the master’s 
tools” and “flying under the radar” (Gutiérrez, 2016, p. 54). These practices encourage teachers to 
work within the system and use required tools, such as student assessment and imposed ability 
groups, to produce outcomes contrary to those often expected. Using Creative Insubordination 
practices allow teachers to be instigators of change while still working within the confines of a 
deeply flawed system that continues to impose tracking.  

Online learning communities, such as this Facebook group, provide technologically-enhanced ways 
for teachers to build their understanding of how mathematics is taught and learned. Further research 
within social media facilitated learning communities should investigate how these spaces are 
changing the field’s perception of collaborative learning within a community of practice. These 
online spaces are critically important to some educators and will continue to serve as a professional 
learning site for teachers. 
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Twenty-seven percent of American public-school teachers are located in rural areas of the country 
(National Center for Education Statistics, 2012), yet their professional learning needs and 
experiences are under-studied. Limited research has highlighted some of the particular challenges of 
being a rural teacher of mathematics: geographic isolation, professional isolation, and insufficient 
opportunities for high-quality professional learning (Royster as cited in Cady & Rearden, 2009). One 
strategy used to address these issues has been to form inter-district networks of faculty for purposes 
of professional learning, but this has been met with uneven success (Howley & Howley, 2005). 

This study considers a model of teacher professional learning within a rural inter-district learning 
cooperative situated within economically disadvantaged Appalachia. The model utilized invites 
teachers to direct their own learning, by first identifying their learning needs and then requesting 
financial grants of up to $1,000 from the cooperative in order to realize them. Similar to Slavit and 
McDuffie (2013), we draw on adult learning theory to explore the individualized and self-directed 
nature of the participating rural teachers’ professional learning experiences and examine the 
following research question: How do rural mathematics teachers describe their motivation, needs, 
and learning within self-directed professional learning experiences? 

The authors analyzed videos of the final summative presentation from eight teachers receiving the 
cooperative grant. For these analyses, three broad codes from Knowles (1975) were utilized: (1) 
identify areas of growth (why participate), (2) finding people and resources to learn from (what is 
needed), and 3) evaluate the learning that they have experienced (lessons learned). Analytic memos 
were created for each of the three broad themes. 

The reasons for participation teachers identified often reflected the situation of their practice in a 
rural, socio-economically disadvantaged region and/or the needs of their students as a whole. Two 
teachers considered the economic outlook of the region, choosing to supplement their current 
practice with skills that might support their students in creating or capitalizing upon emerging 
economic opportunities. These teachers worked to incorporate computer programming and making 
skills into their mathematics classrooms. The resources teachers utilized to realize their goals were 
largely unsurprising. Grant monies were used to purchase tools for makerspaces, laboratory materials 
for cross-curricular STEM units, computer science applications, and pieces of technological 
equipment. All teachers reported successful learning experiences. While some teachers shared 
unexpected learnings, such as re-imaging the use and application of educational technology, others 
reported constraints on learning often associated with technology adoption.  

Findings from this study suggest that when rural teachers are supported in designing and self-
directing their own learning, their motivation for doing so is often grounded in the needs of their 
students and the needs of the local community. Most of the resources purchased with the mini-grants 
were typical educational supplies, but some also reflected the cultural heritage of the region. While 
material resources were procured with relative ease, expertise was not. This was evidenced both 
within the constraints of technology implementation and teachers’ first-time attempts to design cross-
curricular content. Future research should consider the ways in which rural teachers can access and 
draw upon others’ expertise to inform their self-directed professional learning experiences. 
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Coaching has become a common practice to support teachers (Coburn & Russell, 2008; Foltos, 
2014; Knight, 2007). While much of the coaching research has focused on the roles and 
responsibilities of coaches (Gibbons & Cobb, 2017; Mudzimiri et al., 2014) there is a lack of 
empirical research on what occurs in the interactions between a coach and teacher and the 
mechanisms by which these interactions support teacher learning. This study aims to understand both 
how and why coaches engaged in specific coaching practices. 

We analyzed interviews with four mathematics coaches in which they reflected on the purposes, 
goals, and practices they perceived as critical for supporting teachers in a fully online coaching 
model. For three years, these coaches had used an online content-focused coaching model with rural 
middle school mathematics teachers. The online coaching model was an adaptation of West and 
Staub’s (2003) content-focused coaching, which prioritizes focusing on mathematical content 
knowledge and student thinking. In this study, the coach and teacher co-planned a lesson via Zoom, 
the teacher enacted the lesson and recorded with a Swivl robot and iPad, and the coach and teacher 
debriefed the lesson via Zoom. The lesson video was uploaded automatically to a shared library, 
through which the coach and teacher viewed and annotated the lesson video prior to the post-lesson 
conference. 

Analysis and Findings 
We used Barlow et al.’s (2014) dimensions of coaching purposes: interacting with teachers about 

mathematics content, promoting teacher reflection, and negotiating professional relationships 
between coach and teacher. This framework helped us to identify specific coaching practices and 
connect the coaches’ rationale to how these practices supported teacher learning. For example, 
coaches described doing the mathematics of the lesson with the teacher in the planning meeting 
because it afforded richer discussions of how students learn the mathematical content and how 
instructional decisions would influence whether they met the goals of the lesson.  Coaches also 
reported that doing the mathematics together provided opportunities for the coach to deepen the 
teacher’s mathematical content knowledge.  

Additionally, several coaching practices were indicated as being critical to prompting teacher 
reflection and negotiating professional relationships: annotating the lesson video, making 
suggestions, and discussing evidence from the video related to the learning goals of the lesson and 
instructional practices goals of the teacher.  The coaches indicated these practices led to collaborative 
and more reflective relationship with a teacher.  

The results of these analyses provide examples of how and why specific coaching practices can 
support the development of teachers’ instructional practices.  We believe this study will support the 
coaching research community.  
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Teachers in the elementary grades often teach all subjects and are expected to have appropriate 
content knowledge of a wide range of disciplines. Current recommendations suggest teachers should 
integrate multiple disciplines into the same lesson, for instance, when teaching integrated STEM 
lessons. Although there are many similarities between STEM fields, there are also epistemological 
differences to be understood by students and teachers (see, e.g., Conner & Kittleson, 2009). How to 
teach STEM lessons without ignoring the unique characteristics, depth, and rigor of each discipline is 
an open question (Kertil & Gurel, 2016). This study investigated teachers’ beliefs about teaching 
mathematics and science using argumentation and the epistemological and contextual factors that 
may have influenced these beliefs. 

This qualitative study was conducted in a professional development course designed for elementary 
teachers. Participants in this study included 14 teachers from a rural school district in the 
southeastern United States. Data sources include video recordings and transcripts from one in-class 
meeting of the course and two semi-structured interviews with each participant.  

The majority of elementary teachers in this study believed argumentation was an important part of 
teaching all subjects. Their beliefs about argumentation in science suggest that they see 
argumentation as inherent in the learning of science: “Scientific inquiry is very similar to 
argumentation” (Gloria, Int. 2). Teachers’ statements about argumentation in mathematics, on the 
other hand, suggest that students need to know the mathematical content prior to engaging in 
argumentation. For instance, “I didn’t [engage them in argumentation] because of understanding 
…they were not intellectually ready for that concept” (Bill, Int. 2).  

Teachers’ beliefs about different epistemological underpinnings of mathematics and science, along 
with contextual constraints, led to different beliefs and intentions for practice with respect to 
argumentation in these disciplines. The contextual constraint of testing and the amount of curriculum 
the teachers perceived as essential focused more attention on the teaching of mathematics, which 
could be seen as benefiting student learning of mathematics. On the other hand, the perception of 
science as involving wonder, curiosity, and inherently positive and interesting ideas may lead to the 
creation of a more positive learning environment for the teaching of science. These questions remain 
open and need to be studied further: What are the consequences of perceiving argumentation in 
mathematics as limited to concepts already well-understood? Can integrating the teaching of 
mathematics and science lead to more exploratory and inquiry-based teaching of mathematical ideas 
alongside scientific ones?  
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Gallimore (1996) claims that changes in teaching and learning practices are challenging. He 
ascribes this resistance to change to the fact that “we are dealing with cultural matters”, and not just 
psychological and pedagogical issues (ibid., p. 230). Cultural aspects have therefore become one of 
the focus of research attention in Mathematics Education in the last twenty years (Bartolini Bussi & 
Martignone, 2013). How cultural and social aspects affect teacher critical reflection during 
professional development experiences of in-service and prospective mathematics teachers? I address 
the issue of how to deepen culturally sensitive understandings of such processes. I am inspired by 
Lotman’s concept of Semiosphere (Lotman, 1990) that I identify and use to read the processes of 
teachers’ professional development experiences. Strengthened by the tradition of the Italian school in 
Research in Mathematics Education and rooted in it, which grants considerable importance to 
semiotic studies (Arzarello, 2006; Bartolini Bussi, 1996), I propose the Semiosphere as a theoretical 
lens that attempts to react to Skott and Møller’s call (2020) to look at the issues of policies and 
culture in the teachers’ local professional development setting, and to react to the need underlined by 
Yves Chevallard (1981) to take into account the codetermination of the various knowledge signs into 
the Noosphere. 

In Italy, as a foreign cultural element, Lesson Study (LS) has been implemented in order to allow 
mathematics teachers and researchers to reflect on and thus to question their own didactic practices 
and intentionality (Bartolini Bussi & Ramploud, 2018; Mellone, Ramploud, Martignone & Di Paola, 
2019). Designing, implementing and observing, and afterwards reviewing a one-hour lesson have 
been uncommon spaces for collaborative reflection of Italian mathematics teachers, because of their 
cultural tradition. Even critical reflection therefore becomes a cultural activity and, as such, pervasive 
and not easy to study. We need a culturally sensitive lens that can help us to identify and study 
reflection practices. Through the qualitative analysis of a LS experience, looking at the dialogues 
between teachers and their practices of shared critical reflection, I can state that the Semiosphere 
highlights the asymmetries between the systems of signs that exist in a culture, in a practice, in a 
methodology, in a professional development path, or in a lesson planning. It is in this space that the 
process of cultural transposition takes place. In fact, as pointed out by Vygotsky (1999) signs do not 
appear as mediators of activity, as is the case in other sociocultural approaches, but as an integral 
part of human thinking and human activity. The Semiosphere allows to keep identifying the 
constituent elements of a reality even from the identification of elements external to it. In fact, 
precisely because of its asymmetric and non-homogeneous character, based on dialogue, the 
Semiosphere creates not only its own internal organization, but also its own type of external 
disorganization. It defines what is not itself. The LS teachers’ meetings can be pictured as a 
multidimensional dialogue in the Semiosphere during which each choice of teaching/learning, in 
contact with another, can become “more aware” (Jullien, 2005). Here the critical dialogue and 
reflection of the teachers, if read from the point of view of the Semiosphere, do not lose contact with 
the reality in which they are born. So, the problem of possible integration between Lotman and 
Chevallard lenses according to the Networking of Theories approach (Radford, 2008) arises 
spontaneously. The analysis of the institutional aspects and the levels of co-determination seems 
enriched by a dynamic interchange perspective, and vice versa this can be integrated with the aspects 
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of power and the institutional constraints typical of a school system governed by laws. Future studies 
could tell us about the connection of the two theories as lenses for professional development 
practices. 
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Collective Argumentation Learning and Coding (CALC) is a project focused on providing teachers 
with strategies to engage students in collective argumentation in mathematics, science, and coding. 
Collective argumentation can be characterized by any instance where multiple people (teachers and 
students) work together to establish a claim and provide evidence to support it (Conner et al., 2014b). 
Collective argumentation is an effective approach for promoting critical and higher order thinking 
and supporting students’ ability to articulate and justify claims (Nussbaum, 2008). The goal of the 
CALC project is to help elementary school teachers extend the use of collective argumentation from 
teaching mathematics and science to teaching coding. Doing so increases the probability that teachers 
will integrate coding in regular classroom instruction, making it accessible to all students.  

A total of 32 elementary school teachers participated in the CALC project, which included 
a semester long course focused on coding content and strategies to implement collective 
argumentation in the classroom. Teachers were interviewed before and after the course. Ten teachers 
were selected to participate in the enactment phase, in which classroom observations and stimulated 
recall interviews were conducted. All class meetings, observations, and interviews were audio- and 
video-recorded. Data were analyzed using previously established analysis methods for beliefs and 
argumentation (Conner et al., 2014a; Conner et al., 2011; Kim et al., 2013). We highlight Gloria 
(pseudonym), a fourth-grade teacher from Cohort 1 because of the extent to which she went from 
fear of coding to fluent implementation. 

Initially Gloria was comfortable engaging her students in argumentation, explaining they already 
used it in mathematics with Cognitively Guided Instruction (CGI). However, she was “terrified” (Int 
2) about learning to code because she didn’t view herself as proficient with technology. She was 
willing to overcome her fear of coding because she saw the value in providing her students with 
coding experiences that would help them develop necessary skills for our increasingly technological 
society. Gloria saw coding fitting naturally into mathematics, but she asked for ideas on how to 
integrate coding into other subjects: “Yeah, I can do shapes. What else can I do that's beyond that? 
What's something I can push the limit on?” (Int 2).  

In our first observation, Gloria requested not to wear a microphone and asked members of the 
CALC project to co-teach with her. In this lesson, her students engaged in argumentation while 
coding prebuilt robots to travel around a rectangle with a specified perimeter. In our final 
observation, Gloria successfully implemented a lesson that included students programming more 
complex robots to travel a map of the Oregon Trail. Reflecting on this lesson, Gloria was “proud” 
that her support moves had become less leading, allowing for more student discovery and 
argumentation (Post-obs Int 2). In the course of three months, Gloria’s instruction progressed from 
using simple coding activities to more sophisticated coding platforms. This progression in her coding 
instruction paralleled the change in her personal feelings about coding as she moved from “terrified” 
to “comfortable with it” (Post-obs Int 2).  
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Mathematics coaches are called upon to provide productive, job-embedded professional 
development for teachers (Gibbons & Cobb, 2017), but their capacity to do so hinges on gaining 
access to classrooms. Even in schools or districts where coaching is pervasive, teachers are under no 
obligation to participating in coaching and often have autonomy about whether, when, and for what 
they invite coaches into their classrooms to do joint work (Saclarides & Lubienski, 2020).  Much of 
what we know about access comes from skilled practitioners (Killion, 2008, Knight, 2017) and a 
modest body of empirical research (Hartmann, 2013; Mangin, 2005), both of which point to the 
challenges and importance of gaining access. This study asks: What strategies to elementary 
mathematics coaches draw upon and enact when negotiating access to teachers’ classrooms? What 
relationships exist between these strategies? 

Eleven full-time, school-based elementary mathematics coaches in a public school district located in 
a southeastern, metropolitan area of the United States were interviewed using a semi-structured 
protocol. All interviews were audio recorded and transcribed. All statements that described strategies, 
or action the coach took to gain access to classrooms, were identified and inductively coded to 
describe the nature of the strategy. Strategies were counted for each coach as either present or absent 
and then clustered into larger categories based on related functions through an iterative process. Last, 
statements in which multiple strategies were discussed in tandem were used to create a model for 
how coaches coordinated strategies to gain access.  

Mathematics coaches reported 33 distinct strategies for gaining access to classrooms, with each 
coach reporting 10 – 20 strategies (median=13). These strategies spanned two related tiers. In the 
first tier, all coaches engaged in relational and structural strategies to position themselves and their 
coaching work as embedded in school routines, creating conditions to move into classrooms. In the 
second tier, coaches drew from four strategy types (pitching in, cloaked coaching strategies, indirect 
strategies, direct offers) to gain physical access to classrooms. The strategies in this second tier 
varied in their directness. While direct offers were open invitations to coaching, other types offered 
non-coaching assistance in the classroom, engaged teachers in coaching while avoiding directly 
describing the coach’s intent, or created opportunities for teachers to approach coaches. These less 
direct strategies enabled access when coaches perceived that direct offers would be rejected. Coaches 
deliberately selected the types of strategies they used with different teachers, based on their 
perceptions of teachers’ dispositions and experience. 

Gaining access was found to be complex work for all coaches interviewed, requiring a suite of well-
coordinated strategies. Future research might investigate whether and how gaining access for 
mathematics coaching, particularly in the elementary grades studied here, might require different 
types of strategies from coaching in other disciplines.  
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There have been many efforts to move mathematics teaching towards student-centered instruction 
based in problem solving and reasoning. Despite these efforts, Cohen and Mehta (2017) found that 
U.S. mathematics classrooms remain mostly teacher-centered and instruction remains procedural. 
Kennedy (2005) explains the ideals are “barely visible in the complex landscape of competing 
intentions and the multiple areas of concerns that are important to teachers” (p. 61). Currently the 
field recognizes that professional change occurs through intensive, prolonged, and focused models. 
One promising model is coteaching, where two teachers work collaboratively, which provides 
“immediacy of the relationship between thought and action” (Roth, 2002, p. 59) and allows for risk-
taking and moving away from ‘conservative pedagogies’ (Gallo-Fox, 2010). Coteaching, without a 
hyphen, is defined as “a commitment to coplanning, copractice, and coreflection” (Murphy & Martin, 
2015, p. 277). These three stages can provide mutual understanding and subsequent learning through 
zones of proximal development (ZPD). ZPD can then be used as a lens to capture professional 
growth where interpersonal interactions are transformed to the intrapersonal plane and integrated into 
each teacher’s practice. Murphy, Scantlebury, and Milne (2015) connected six elements in their ZPD 
framework for coteaching, which will be discussed in the findings below to address the research 
question: How can secondary mathematics teachers in a coteaching partnership serve as resources 
for each other’s professional growth towards reform-oriented standards? 

This study analyzes a single, holistic case study (Yin, 2018) of two secondary mathematics teachers 
striving to accomplish progressive standards in their coteaching of four Algebra 1 sections. The 
design of the study emerged as part of the researcher’s teaching practice, resulting in a naturalistic 
inquiry of an authentic situation. Sources of data include audio recordings of researcher-participant 
coplanning and coreflection meetings, some of which developed into responsive interviews, 
coenactment of lessons, and teaching material artifacts. Qualitative thematic analysis was done in 
relation to the six elements of coteaching. As an example, in one of the first lessons that altered the 
coteacher’s typical lesson structure, she was challenged to consider how non-direct instruction opens 
up unpredictable situations. She states: “I just have to think these things out in my head like you 
know what if it's not working out the way I want it to work out? This is, this is different.” This ‘bud 
of development’ (Vygotsky, 1978) represents the coteacher’s hesitant but promising transition 
towards enacting student-centered lessons.  

Through partnering with another, issues in the classroom can be explicitly recognized and 
alternatives can be reflected upon and enacted. Furthermore, joint reflection of enacted lessons 
“provides the opportunity for the deconstruction of those experiences and the reconstruction of a 
shared meaning in a way that transforms understandings and changes practice” (Crow & Smith, 
2005, p. 491). Implicit beliefs about teaching and learning can be critically analyzed, conflicts may 
be resolved, and sensitivity can increase. The complex landscape of teacher beliefs, dispositions, 
experiences, and knowledge can be influenced through the coteaching model. 
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Engaging students in collective mathematical argumentation is a practice leading to authentic 
learning in mathematics classrooms (see, e.g., Krummheuer, 1995). Researchers have reported 
multiple cases of expert teachers supporting collective argumentation and described student learning 
in these cases (e.g., Krummheuer, 2007). However, little is known about how novice teachers learn to 
support their students in making mathematical arguments. Our goals of professional development 
(PD) with beginning teachers included stimulating learning through reflection and documenting the 
learning as evidenced by both practice and conversations about practice. The following research 
question guided our study: How did the ways in which a beginning mathematics teacher used 
repeating to support collective argumentation change and mature over time while participating in 
professional development activities? For this study, we focus on the PD activities in which a 
secondary mathematics teacher, Jill (a pseudonym), participated during her first 3 years of teaching. 
During the PD activities, we engaged Jill in identifying and diagramming arguments from her 
teaching using Toulmin’s (2003) diagram, and in analyzing and reflecting upon her own practices 
with respect to supporting argumentation using Conner et al.’s (2014) Teacher Support for Collective 
Argumentation framework. To encourage and facilitate Jill’s learning to support argumentation, a 
mathematics teacher educator-researcher (MTE-R) asked questions and provided feedback and 
assistance to her during 14 one-on-one PD meetings, structured similarly to stimulated recall 
interviews. We video-recorded all the meetings. To answer our research question, we focused on 
instances in which Jill identified, analyzed, and critiqued her repeating actions, such as restating and 
displaying. We wrote memos describing changes in Jill’s use of repeating over time. The analysis is 
in the initial stage and is ongoing. In year 1 PD, we see Jill enacting one of two repeating actions 
rather naturally in her practice as she restated student contributions to the collective. Through 
focused reflections on her practice with the guidance of the MTE-R, Jill learned more about how she 
could use both restating and displaying actions to support collective argumentation. As we followed 
Jill’s learning into year 3 PD, we found that Jill used both repeating actions in purposeful ways. She 
also used these actions in strategic ways to support her students in taking a more active role in the 
classroom discourse and argumentation. Jill serves as a case to demonstrate how a novice teacher 
learned to support argumentation through stimulated recall interviews of practice. 
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Mathematical argumentation is an important feature in the development of conceptual 
understanding for students (Osborne et al., 2019; Staples & Newton, 2016). Research has generally 
focused on how argumentation plays out in the classroom, with little focus on how teachers learn this 
complex work. This study explores teacher’s understanding in facilitating argumentation and its 
implementation over time in the context of a professional development initiative. We address the 
following questions: How do teachers understand argumentation as a practice? How do teachers 
implement argumentation in their classrooms as they participate in the professional development? 
Our work is framed around an understanding that teacher learning is contexual, with a focus on 
interactions in the content (Greeno & Engeström 2014) and built off of teachers’ practices (Kazemi 
and Hubbard, 2008). We consider argumentation as reasoning about a claim to build agreement 
across a community, as established by Knudsen et al. (2018). 

Eight elementary teachers participated in Learning Labs (Gibbons et al., 2017), a series of monthly 
professional development sessions with interim support by coaches on implementing the practices. 
Each Learning Lab consisted of a cycle of new learning, planning a lesson using mathematical 
argumentation, enacting the lesson, and a debrief of the experience. Data included field notes from 
each Learning Lab, teachers’ written reflections, and pre- and post-interviews for each teacher. We 
conducted cross-data analysis, with the sensitizing question of how do teachers understand 

argumentation and how do they make plans to facilitate argumentation in their classrooms? We 
analyzed perceptions and actions involving argumentation over the series of Learning Labs to 
understand moments of teacher insight and change regarding argumentation. 

Findings show a change over time in teachers’ understanding and facilitation of argumentation in 
practice. Early understandings focused on argumentation as explaining one’s thinking. Teachers 
grappled with the distinction between explaining and justifying and with how to implement 
argumentation in the classroom (see Ghousseini et al., 2019). Over time, teachers developed more 
nuanced ideas of what counts as argumentation (making claims, providing evidence). Their new 
understandings helped them generate supports for students to participation in argumentation, ranging 
from claim comparisons to creating rough drafts of ideas. For example, one teacher worked to 
provide a set of claims for students to promote discussion that focused on justifying support or 
disagreement with each. Another teacher worked on language supports for argumentation and forms 
of modeling justification to move beyond students simply explaining a strategy. While the growth 
shown in teachers shows a more complex and practice-oriented understanding of argumentation, the 
differences across individual teachers represent the unique ways they connected to the professional 
development experiences. These findings show the effectiveness and significance of explicit and 
practice-oriented professional development for teachers’ understanding of mathematical 
argumentation. 
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Although the field has recognized the importance of early mathematics education for young 
children, many early childhood educators do not have access to high-quality, engaging professional 
development in math or science (McClure et al., 2017). In particular, educators in rural communities 
lack opportunities to grow professionally due to geographical isolation or under-resourced programs. 
In addition, many professional development opportunities offer prescribed programs that do not 
encourage active participation and are not connected to teachers’ existing practices or approaches 
(Kennedy, 2016). 

Building on frameworks for effective professional development (Fishman, Davis, & Chan, 2014) 
and embodied design (Abrahamson & Lindgren, 2014), we used video conferencing technology 
paired with tangible materials to engage a cohort of remote online early childhood educators in four 
sessions of professional development in early mathematics education. Each session was one hour in 
length and included opportunities for online teacher learners to engage with tangible materials (e.g., 
Froebel gifts, triangle construction materials) to explore mathematical concepts central to early 
childhood development. Our approach was designed to 1) engage teachers as learners with carefully 
designed materials to develop their own understanding, and 2) open pathways for mediated 
participation through the sharing of physical constructions via video conferencing. In this poster, we 
focus on the following research question: How do participants’ material constructions and 
interactions act as mediating resources in their participation in remote online professional learning? 

We video recorded two of the professional learning sessions, surveyed participants, and interviewed 
a sample of participants about their experiences in the professional learning. Our findings suggest 
that tangible materials allowed for common sense-making and active participation throughout the 
sessions. Furthermore, tangible materials served as resources for mathematical engagement and 
dialogue in spite of educators’ remote participation. This poster will highlight the professional 
development approach and suggest several implications for the use of tangible materials to enhance 
online professional development engagement. 
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Mathematics coaching is deeply complex work that requires coaches to develop and draw upon 
multiple forms of expertise related to mathematics, mathematics teaching, and mathematics coaching 
(Polly, Mraz, & Algozzine, 2013). Yet, few studies have explored how professional learning 
experiences for mathematics coaches might support their development of these forms of expertise 
(Jackson et al., 2015). Through an analysis of a representative instance in which elementary 
mathematics coaches participated in a professional development activity called doing the math 
(Loucks-Horsley et al., 2010), we aim to contribute to the growing body of research focused on how 
coaches’ own professional learning opportunities might be structured.  

Our study took place in Hamilton School District, which is a public school district located in a 
metropolitan area in the southeastern United States. We partnered with one district administrator and 
12 elementary mathematics coaches. Eight of the coaches were entering their fifth year as coaches, 
while three were in their first or second year. Data sources included video data of these professional 
development sessions (n=6) as well as interview data (n=15) in which participants described their 
own learning.  All data were professionally transcribed. 

To understand what opportunities for professional learning were opened up or closed down, we first 
coded for representations of practice and epistemic claims in the doing the math transcript segments. 
Next, we addressed whether a representation of practice or an epistemic claim was centered on 
students, mathematics, mathematics teaching, and/or mathematics coaching. To understand our 
participants’ perspectives on the benefits and drawbacks of participating in doing the math, we 
engaged in an open coding process using interview transcripts (Creswell, 2013). 

Our analysis showed that as the coaches engaged in doing the math together, opportunities were 
opened up for them to discuss students’ and their own mathematical thinking, the mathematical 
concepts and disciplinary practices included in the task, how those concepts and practices were 
related to grade level expectations, how tasks could be put to practical use by teachers, and the ways 
in which teachers can enhance mathematical access for all students. Yet, our analysis also showed 
that through doing the math, explicit conversations about mathematics coaching were not typically 
available for discussion. Our participants discussed four benefits of engaging in doing the math: 
being placed in the seat of a learner, deepening their own understanding of the mathematics 
standards, deepening their understanding of how to support students’ access to mathematical tasks, 
and sharing the task as a resource with teachers. They also cited two drawbacks to consider when 
implementing doing the math as a professional development activity, including a lack of time and 
teacher resistance. 

Our study adds much needed research describing how coaches’ professional learning might be 
structured. Future research might consider exploring how to interweave explicit conversations about 
coaching into coaches’ professional learning opportunities. 
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This study is an effort to address the challenge of supporting the enhancement of teaching practice. 
Our model situates professional development (PD) in mathematics instruction occurring in a summer 
program for fifth grade students. This PD model has two parts. First, participants engage in 
“legitimate peripheral participation” (Lave & Wenger, 1991) in teaching in this fifth grade classroom 
through structured conversations about the lesson plans, close observation of teaching, and analysis 
of student tasks. Second, participants engage in focused learning on leading mathematics discussions 
through simulations and rehearsals. Two groups of teachers participated, one onsite with a facilitator, 
and the second at a remote site with an in-person facilitator who delivered the leading mathematics 
discussion professional development. We study the impact of our PD model. Specifically, we ask: 
Does teachers’ participation impact their own teaching practice, and if so, in what ways?  

Twenty-one teachers participated across the two groups. We collected and analyzed a set of pre- and 
post-videos of classroom discussions. Participants were asked to record three mathematics 
discussions two months before the PD occurred and three such lessons two months after 
participation. A tool that captured techniques named in our decomposition of discussion (Selling et 
al., 2015), including advanced techniques utilized by experienced teachers, was applied to all videos 
by two research team members. 

Prior to the intervention, the means of technique usage of the remote participants were higher than 
those of the onsite group on almost every dimension (p < .05). Thus, we share the findings for the 
two groups separately. The onsite group (lower pre-intervention mean) did not appear to be leading 
discussions before the intervention. They showed slight increases in both orienting students to the 
thinking of others and concluding discussions. Since the intervention was focused on orienting 
students, likely an unfamiliar area of work, we hypothesize that this was the focus of their practice 
post-intervention. Conversely, the remote group (higher pre-intervention mean), who appeared to be 
leading discussions before the intervention, decreased on several categories and showed near 
significant growth on connecting and extending student thinking. One possible explanation for these 
decreases is the timing of the post-data collection at the beginning of the year when they may have 
been explicitly teaching their students how to engage in discussion, leading to fewer instances of 
particular discussion-leading moves. The increase in connecting and extending may have been due to 
readiness to take on this difficult work.  
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Although research uncovered some factors that inform mathematics teachers’ curricular decisions, it 
is less clear how they make such decisions. I used the practical knowledge framework to explore the 
construct of image with a veteran eighth-grade mathematics teacher. Images are teachers’ 
perceptions of teaching that involve emotionality, morality, and are intimately connected to personal 
and professional narratives. Data consisted of transcripts of conversations, weekly journals, and 
student-written work. The analysis uncovered two images: 1) Bringing the outside in, and 2) Reading 
students and moments. Both images express how the teacher made curricular decisions: Using 
lessons that brought the outside in and following her students. This study expands research on 
curriculum by illuminating how teachers make curricular decisions and therefore revealing teachers’ 
practical knowledge in practice. 

Keywords: curriculum development, narrative inquiry, mathematics teachers  

Research has identified diversity in teacher curricular decisions (Heaton, 2000; Lampert, 1985; 
Remillard & Bryans, 2004; Remillard et al., 2009; Sztajn, 2003). Curricular decisions are those 
involving selection of tasks as well as pedagogical approaches taken to teach such tasks. Although 
Remillard et al. (2009) identified factors interacting in teachers’ curricular decisions, they called for 
exploring the nature and decision-making process.  

Practical Knowledge Framework and the Image Construct  
Teachers’ practical knowledge ([PK], Elbaz, 1983) framed this study. Teachers face various 

situations and “draw on a variety of sources of knowledge to help them to deal with these” (Elbaz, 
1983, p. 47). Rather than describing knowledge in the form of cognitive structures, Elbaz (1981, 
1983) described teachers’ knowledge as situated in experience. Image is a construct derived from PK 
and refers to teachers’ perceptions of their teaching that involve emotionality, morality, and 
connections to personal and professional narratives (Clandinin, 1985; Elbaz, 1983). I explored: How 
does an eighth-grade mathematics teacher make curricular decisions? 

Methodology and Methods 
Building from a collaborative relationship (Suazo-Flores, 2016), Elizabeth, the author, narratively 

inquired (Clandinin & Connelly, 2000) into Lisa’s curricular decisions while both planned and taught 
a lesson over three months. Lisa was an eighth-grade mathematics teacher. Elizabeth conducted 
narrative analysis (Polkinghorne, 1995) to transcripts of conversations (Clandinin & Connelly, 1994), 
students’ written work, and Elizabeth’s personal weekly journal.  

Findings and Conclusion 
Two images convey how the teacher made curricular decisions: Bringing the outside in and Reading 

students and moments. Lisa enjoyed teaching lessons that would take students on field trips and 
embedded in real-world contexts. Lisa also paid attention to what students were doing and saying to 
decide her next teaching step. This study contributes to existing studies in curriculum-development 
by illuminating how teachers make curricular decisions and therefore revealing teachers’ PK. 
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We suggest five PD participant portraits to initiate a discussion on how best to support and facilitate 
PD with a wide range of participants. Our preliminary findings include five teacher portraits. We 
discuss how facilitators were responsive to all teachers’ needs. 

Keywords: Teacher Education – Inservice / Professional Development 

Professional developments (PD) play a central role in efforts to improve teachers’ mathematical 
content knowledge, pedagogical content knowledge, and beliefs about what it means to ‘do 
mathematics’ (Ball, 1990; Hill, 2007). Creating Algebra Teaching Communities for Hoosiers was the 
result of a Math-Science Partnership grant from Indiana’s Department of Education in 2015. The 
study involved 15 middle and high school urban teachers, with a focus on enriching teachers’ 
knowledge and skills for teaching algebra. This study examines: How do teacher portraits help 
facilitate the activities in the PD experience?  

This study focuses on exploring how PD facilitators used facilitation techniques to support 
participants based on character portraits (Sztajn, Borko, & Smith (2017), and contributes to an area 
of research needed on skillful facilitation techniques (e.g., Bobis, 2011; van es, 2014) to prepare and 
support PD facilitators. Findings culminated in five teacher portraits.  

Highly Skeptical Teacher (HST) is an experienced teacher but is uncomfortable being observed by 
colleagues. HST doubts students can be successful with the PD tasks. Others followed the skepticism 
because of HST’s experience in the classroom. Facilitators probed questions to interrupt 
preconceived perceptions of students. Cautiously Receptive Teacher (CRT) is eager to apply the 
theories into practice but struggles to bring ideas into reality in the classroom. CRT is hesitant to try 
new things, but gradually over time buys into the vision of the PD. Trying out activities with students 
was the best technique to convince CRT of novel teaching practices. Highly Receptive Teacher 
(HRT) is highly reflective and collaborative. HRT sees the potential of all students to be 
mathematical learners and makes connections between teaching, the PD, and everyday life 
experiences. PD facilitators would ask HRT to point out students’ mathematical thinking. Box-
Checker Teacher (BCT) is extremely organized, thrives on explicit directions and timeline, and 
most comfortable with direct instruction. BCT’s intense focus on clear tasks and schedules, and high 
anxiety made the group dynamics tense. PD facilitators solicited input from BCT on the clarity of 
expectations. Lopsided Engager Teacher (LET) has great relationships with all students, even the 
most disruptive, and is deeply troubled when other teachers do not believe that all students can learn 
mathematics. LET displays turns of both low engagement and intense engagement. PD facilitators 
stoked this passion to engage in rich discussions, and showed empathy to situations where 
relationships take priority over learning.  

This study begins a conversation about mathematics teaching facilitation and how best to support 
and facilitate with a wide range of participants.  
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By applying a conversation analytic approach to analyze the fine-grained manifestation of authority 
in classroom interaction, we examine the interaction between a teacher and a student while the 
student presented a solution at the whiteboard. This case highlights the complexity of shared 
authority and the ways that authority is construed by discourse practices and negotiations over the 
ownership of knowledge. We offer a nuanced interpretation of how the teacher and student shared 
epistemic authority through their joint activity. Further, we argue for the importance of 
distinguishing teachers’ epistemic authority and deontic authority to further our understanding of 
how a teacher can share authority with students during instruction. 

Keywords: Classroom Discourse, Authority, Student Demonstration, Conversation Analysis 

The flow and concentration of authority in mathematics classrooms can impact students’ identities 
as knowers and doers of mathematics (Boaler & Greeno, 2000; Esmonde & Langer-Osuna, 2013, 
Langer-Osuna, 2017). In our view, authority is not static but rather is relational (e.g., a teacher is 
presumed to have more authority than a student) and interactional (e.g., a student sharing a solution 
may imbue the student with authority). Moreover, our analysis focuses on the relative nature of 
authority, meaning participants may have greater or less authority, but this may shift over the course 
of interaction. In this paper, we explore a case of one mathematics teacher’s attempts to share 
authority when a student (i.e., a demonstrator) shared a solution at the front of the room. This case 
study of a teacher negotiating authority with students during a common classroom activity (i.e., 
presenting a solution at the board) offers an opportunity to examine the complexity of shared 
authority in mathematics classrooms. Our analysis highlights the ways that authority is construed by 
discourse practices and negotiations over the ownership of knowledge. 

This paper uses data from a partnership with mathematics teachers designed to support teachers to 
do action research on their discourse practices. Here, we build on that research using a conversation 
analytic (CA) approach to foreground the role of language and knowledge in the sharing of authority 
in mathematics classrooms. We approach our analysis under the assumption that knowledge is public 
and interactionally managed and occurs within and is constituted as a situated discursive practice 
(Barwell, 2013; Edwards, 1993). By attending to how teachers and students perform knowledge 
rather than what knowledge they have (Byun, 2019), our analysis centers the knowledge displays and 
negotiation that are an integral part of the process of sharing authority in classroom interactions. In 
this paper, we argue that the physical arrangement and position of a student alone—such as the 
physical location of a student at the front of the room—may not be enough to account for how 
authority is shared in the classroom. Instead, authority can be shared through discursive moves that 
orient classroom members to the knowledge domains in which one or more students are the primary 
authorities. 

Authority in Mathematics Classrooms 
Teachers exercise tremendous authority in their classrooms (Amit & Fried, 2005; Oyler, 1996; 

Wagner & Herbel-Eisenmann, 2014b). In mathematics classrooms, teacher authority is also 
influenced by the institution of schools and common discourses of mathematics. As a student in an 
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interview stated, “[mathematics] is not like literature where someone can say this way, and someone 
can say this way" (Amit & Fried, 2005, p. 158). This commonly held belief reflects the common 
practice of mathematics teachers determining what is correct or incorrect as arbiters of truth. As 
mathematics educators try to move from teacher-centered to student-centered ways of teaching, 
sharing authority has been a central theme in the discussion (e.g., Ball, 1993; Cobb, Wood, Yackel, 
& McNeal, 1992; Cohen, 1990; Hamm & Perry, 2002; Lampert, 1990). 

Scholars have examined authority and authority relations in mathematics classrooms from multiple 
perspectives. Amit and Fried (2005) found that students portray parents, teachers, and peers as 
authority figures while placing teachers at the center of authority. Wagner and Herbel-Eisenmann 
(2014b) found that teachers attributed authority to not only people but also institutions (e.g., school 
board) and tools and artifacts (e.g., textbooks, manipulatives). Authority in mathematics classrooms 
thus has complex origins and relations that manifest in overt and covert ways (Wagner & Herbel-
Eisenmann, 2014a). 

Authority can also have different discursive functions in unfolding classroom interactions. Oyler 
(1996) distinguished two dimensions of teacher authority: teacher being an authority and being in 
authority. These two kinds of authority, respectively, represent a content dimension of mathematical 
knowledge and a process dimension of organizing and orchestrating learning activities. Similarly, 
Langer-Osuna (2016) examined both intellectual authority and directive authority in student-to-
student interactions. Although these two kinds of authority are interdependent (Langer-Osuna, 2016), 
it is important not to conflate these two. As we argue in this paper, process authority can be a 
resource for teachers to share content authority in the unfolding classroom interactions. To further 
examine teacher authority in the context of classroom interaction, we draw on two major discussions 
on authority in social interaction: epistemic authority and deontic authority. 

Epistemic and Deontic Authority: A Conversation Analytic View 
CA scholars found that participants orient to relative authority in two broad ways during 

interactions. First, epistemic authority concerns the relative difference in participants' depth of 
knowledge at hand. To be clear, the concern is not with the depth of knowledge in participants' 
minds, but rather how the participants treat themselves and others as more or less knowledgeable in 
the interaction. As we discussed earlier, institutional roles such as being a teacher or a student, in 
part, shape the epistemic authority. CA approaches can uncover how such authority manifests in a 
local, interactional context. For instance, Heritage and Raymond (2005) illustrated how, when a 
person assesses and describes something before others share, they are often ascribed with more 
epistemic authority than doing so after someone else. They observed when a participant with less 
authority makes a claim first, the participant mitigates the associated epistemic authority by 
downgrading their assertion (e.g., pre-facing with "I think," adding a tag question, seeking 
confirmation). Thus, epistemic authority can originate from not only being a teacher but also from a 
local, interactional role such as being a teller of news or teller of trouble. In our case, a student being 
someone who shares a solution at the board afforded her with epistemic authority, though limited. 

Second, deontic authority concerns someone’s "right to determine others’ future actions" 
(Stevanovic & Peräkylä, 2012, p. 298). Although epistemic authority is about "description," deontic 
authority is about "prescription" (p. 298). In a classroom setting, process-authority aligns with 
deontic authority, with which a teacher directs the future actions of the class, such as selecting who 
will speak next and choosing a topic for the class to discuss (Mehan, 1979). Directives and proposals 
are often associated with deontic authority, but the recipients of these actions may resist the speaker’s 
deontic authority by refusing to comply or framing their compliance as their autonomous action 
(Kent, 2012). As Steveanoci and Peräkylä (2012) stated, "[d]eontic authority is an interactional 
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achievement, claimed, displayed, and negotiated at the level of the turn-by-turn sequential unfolding 
of the interaction" (p. 315). 

A CA approach fits our investigation on teacher authority in classroom interactions for at least two 
reasons. First, teacher authority is "created and maintained through interactions" (Oyler, 1996, p. 23). 
A CA approach brings our attention to teacher authority situated in interactions, thereby allowing us 
to see how authority is instantiated and shifts as the interaction unfolds. Second, a CA approach 
offers a systematic way to formulate empirically grounded interpretations of authority in social 
interaction. Based on its root in ethnomethodology, a CA approach attends to how participants orient 
to authority based on the subtle details of moment-to-moment interactions. Based on this theoretical 
grounding, we investigated the following research question: How do epistemic and deontic authority 
instantiate and interact with each other when a student is a demonstrator? 

Data and Methods 
This study was part of a larger partnership focused on supporting secondary mathematics teachers 

to use action research to examine their classroom discourse by focusing on, for example,  issues of 
status, and positioning in mathematics classrooms. Data came from classroom videos of participating 
teachers that they collected to examine changes in their discourse patterns. Among multiple cases of 
student demonstrations, this case of Ms. Reed was selected for this report because on the surface, her 
case illustrated evidence of overt teacher authority. She regularly used directives (e.g., “stop,” 
“continue,” “ask”), and the length of the student demonstration was approximately 13 minutes, which 
was longer than many of the other observed student demonstrations. This was intriguing for us 
because we anticipated that the greater the authority that a teacher exercises, the less knowledge can 
be shared from demonstrating students, thus resulting in a shorter demonstration length. This led to a 
more fine-grained analysis of this selected case to understand how teacher authority manifested 
during this relatively longer student demonstration. 

Following the tradition of conversation analysis, we adopted the Jefferson Transcription System 
(Jefferson, 2004) to capture a range of speech features (e.g., delays in response, elongated 
pronunciation, intonation changes) that may be significant to examine authority in interaction. Here, 
we only report the following features: silence in 1/10 sec, (.x); silence shorter than 0.3 sec, (.); 
overlapping talk, [ ]; vowel elongation, : ; emphasis, _ ; unrecoverable speech, ( ), as we referred to 
them in our findings section. By examining both what the teacher does and how students respond, we 
examined how the teacher and students are orienting to both epistemic and deontic authority. Based 
on the participants' orientation, we made an empirically grounded interpretation of authority. 

Findings 
In this section, we analyze transcript extracts from a demonstration by Anika, an 8th grade student. 

Before the demonstration, students were engaged in two warm-up problems, each of which asked 
them to create an equation of a line passing through two given points. After the students solved the 
problems individually, Ms. Reed called on students to share their answers. Anika volunteered to 
share her solution. Ms. Reed asked Anika to share her method at the front of the room on a digital 
interactive whiteboard. Our analysis highlights the nuanced ways that authority was shared through 
the joint discursive activity of members in the class. This analysis also points to the importance of 
distinguishing teachers’ deontic and epistemic authority.  
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Exclusive Deontic Authority 
Extract 1: Use of Directives 

 
 

Throughout the demonstration, Ms. Reed acts with deontic authority in at least two ways. First, she 
stops the speaker to direct the class to another activity (line 87). Ms. Reed’s falling intonation when 
she says “question.” indicates that this is a directive rather than seeking a question. Second, Ms. Reed 
selects the next speaker (line 89). Note that John starts his speech with “um” (line 88) occupying the 
conversational floor with his speech and vying for his right to speak. As soon as Ms. Reed names 
John as the next speaker, John starts his question. In both accounts, students orient to Ms. Reed’s 
deontic authority with immediate compliance. That is, Anika stops her demonstration and John 
initiates and begins his question with full compliance with Ms. Reed’s directives.  
Sharing Epistemic Authority 

Contrary to Ms. Reed’s deontic authority, we found that Ms. Reed orients to Anika’s epistemic 
authority, thereby sharing epistemic authority with Anika. Ms. Reed does so with particular kinds of 
actions (e.g., highlighting Anika’s epistemic access, seeking confirmation). Some of these actions 
occur even before Anika walks to the front of the room. We illustrate this pre-work with Extract 2 
below. 

Extract 2: Constructing Anika as an Expert 

 
After Anika described her approach to the problem, Ms. Reed says “we are gonna look at your 

method” (line 25). With her lexical choice of the possessive pronoun, “your”, Ms. Reed orients to 
Anika’s ownership of the method. This lexical pattern continues. As Ms. Reed asks Tanner to 
compare his ideas with Anika’s (lines 27-28), she indicates that the method originated from Anika by 
pre-facing her clauses with “she said” and “she did” (line 30). 

Another salient point in this extract is the way Ms. Reed makes Anika’s exclusive epistemic access 
public by asking Anika about the source of her method (line 36). Although what Anika names as the 
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source of knowledge is unrecoverable for the analysis (line 38), we can see, in contrast to deontic 
authority, Anika takes up her epistemic authority. Anika expands her turn by adding “during the 
summer” (line 40) despite Ms. Reed’s earlier acknowledgment token, “okay” (line 39). Anika’s 
expansion of her turn shows Anika’s orientation to her exclusive epistemic access to the method 
since “the summer” refers to a time beyond the school year, which lies outside of the class’s shared 
experience. 

In these interactions Anika is constructed as a person with knowledge that the rest of class may not 
have. In the following extracts, we discuss instantiations of Ms. Reed’s orientation to Anika’s 
epistemic authority. Notably, some of the orientation is displayed with Ms. Reed’s deontic authority. 

Extract 3: Treating Anika with Epistemic Authority 

 
 
When Ms. Reed has students ask questions, John poses a question (line 88). Anika, thus not Ms. 

Reed, answers John’s question. The source of knowledge is Anika in this question and answer 
sequence. This contrasts with the deontic authority that Ms. Reed exercises by selecting John as the 
next speaker, as discussed earlier. Ms. Reed exercises her deontic authority to coordinate the activity 
of others and get the work of teaching done (Oyler, 1996). However, Ms. Reed tacitly acknowledges 
that Anika is the person from whom the flow of knowledge originates. For instance, Ms. Reed 
downgrades her epistemic stance as she explains Anika’s method. In line 97, she pre-faces her 
statement with “I think” and finishes her turn with a rising intonation (noted as “?”) despite her 
statement’s declarative syntax.  

Most notably, after revoicing Anika’s method (lines 100-104), Ms. Reed seeks Anika’s 
confirmation (line 106), to which Anika responds with a positive confirmation, “yeah” (line 107). 
This interaction marks a significant shift in how Ms. Reed overtly shares authority with Anika. By 
seeking confirmation, Ms. Reed once again downgrades her epistemic stance and signals to the class 
that she is not the expert over the information being clarified. With both Ms. Reed’s confirmation-
seeking and Anika’s response, both of them treat Anika with epistemic authority. 

Extract 4: Centering on What Anika Does 
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Ms. Reed continues to exercise deontic authority throughout the student demonstration. Once again, 

Ms. Reed uses a directive, “ask” (line 165). Prior to this, Molly poses a question (line 164). From the 
extract, it is not clear who the recipient of the question is. Nonetheless, Ms. Reed treats Molly's 
question as not directed to Anika, and she uses a directive to direct her question toward Anika (line 
165). Molly, in turn, starts to repeat the same question (line 166), but Anika answers Molly's question 
even before Molly finishes her repetition (line 167). In other words, Anika projects Molly’s question 
to be identical to the question Molly asked earlier, and she acts as if the recipient of the original 
question was herself. This is another illustration of how Ms. Reed’s deontic authority manifests 
overtly. Ms. Reeds suspends the ongoing questioning and answering activity and makes the recipient 
of the question relevant to the degree that the identical question has to be repeated. 

Although Ms. Reed’s use of deontic authority may seem pedantic, it plays an important role in the 
lens of epistemic authority. By having Molly direct her question to Anika, Ms. Reed orients to Anika 
with epistemic authority over the information being presented (i.e., Anika’s method). In a similar 
vein, Ms. Reed stops Anika’s demonstration and prompts the class to ask questions (line 154). 
Because no student responds (line 155), Ms. Reed asks, “what is she doing?” (line 156). Note Ms. 
Reed’s use of the pronoun “she”, which indicates Anika as the agent of the activity. This utterance 
implicitly orients to Anika’s epistemic authority since Anika has the primary right to describe what 
she is doing. 

Ms. Reed then selects Azad as the next speaker. The interesting feature of this question and answer 
sequence is the absence of evaluation or feedback after Azad’s response. This contrasts with the 
common Initiate-Response-Evaluate (IRE) pattern (Mehan, 1969) and reinforces how Ms. Reed is 
sharing epistemic authority with Anika because Ms. Reed is tacitly deferring her epistemic authority 
that otherwise would have been used to confirm the correctness of Azad’s response.  

We initially hypothesized Ms. Reed’s exclusive deontic authority and her deferring epistemic 
authority throughout Anika’s demonstration. Our fine-grained examination, however, revealed 
deviant cases of such a claim (i.e., moments of Ms. Reed’s asserting epistemic authority). In 
ethnomethodological studies, considering deviant cases is crucial to develop a more nuanced 
interpretation of the phenomena (Heritage, 1984). In the following, we present one of these deviant 
cases and further explore how Ms. Reed does, and does not, share epistemic authority. 
Deviant Case: Not Sharing Epistemic Authority 

Extract 5: Choral Chant  
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Ms. Reed facilitates choral chants through which she rhetorically constructs common knowledge 

within the classroom (Edwards & Mercer, 1987). The choral chant occurs after a student asks a 
question relating to the equivalence of the fractions (-2)/5, -(2/5), and 2/(-5). In contrast to Extract 4, 
in which Ms. Reed did not evaluate Azad’s response, Ms. Reed confirms each response during the 
choral chant with her repetition (lines 239, 243, and 247 through 249). This indicates that Ms. Reed, 
not Anika, had epistemic authority during this interaction despite the fact that Anika is still at the 
front of the room. Further, in these IRE sequences, Ms. Reed justifies each response as indicated by 
her use of “because” (lines 239, 243, and 249). Her consistent justifications can be explained as her 
efforts to orient to the authority of mathematics as a discipline; yet, Ms. Reed remains to be the 
person who confirms the correctness. 

Although we do not include the corresponding transcripts here, we also note other moments when 
Ms. Reed asserted her epistemic authority during Anika’s demonstration. For instance, when one 
student asked if Anika’s method is similar to what they have learned before, Ms. Reed offered 
confirmation, “exactly what it is,” again with her account of how Anika’s method relates to their 
prior learning. These deviant cases lead to a more nuanced understanding of how epistemic authority 
was shared during Anika’s demonstration. Within the knowledge domain of Anika’s method, Ms. 
Reed orients to Anika’s epistemic authority. However, when the topic of discussion deviates from 
Anika’s method (e.g., how her method connects to the class’s prior learning, equivalence of 
fractions), Ms. Reed retains her epistemic authority to confirm the necessary knowledge for students 
to meaningfully engage with Anika’s method. 

Discussions and Implications 
The push to develop student-centered classrooms should not imply the abdication of teacher 

authority (Oyler, 1996). This case demonstrates that teachers’ deontic authority can aid in 
designating students’ epistemic authority. Discussions about student-centered classrooms that 
misconstrue the role of teacher authority can paralyze teachers’ efforts to facilitate productive 
mathematical discussions. Rather, there is a need to further examine how teachers can utilize deontic 
authority to share epistemic authority with students so that students can share and co-construct 
knowledge productively against a backdrop of institutional constraints such as curricular 
requirements and time limits. In professional development settings, this distinction can be helpful in 
designing a range of teacher moves that can be used to share epistemic authority (Herbel-Eisenmann 
et al., 2017).  
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This case also highlights the importance of how mathematics knowledge is introduced and framed 
by the teacher. Anika’s method is quite conventional and is based on procedures that are often 
introduced in textbooks. However, Ms. Reed and the class treated her method as novel and, more 
interestingly, as a knowledge domain over which Anika had primary authority. This shows the 
situated nature of mathematical knowledge within a community in terms of authority. Although Ms. 
Reed might have known the conventional nature of Anika’s method, Ms. Reed performed knowledge 
in ways that imbued Anika with primary epistemic authority. This had the effect of reconfiguring 
Anika’s knowledge, converting it from a conventional method learned during the summer into an 
owned resource lying within Anika’s epistemic domain. This was made possible through Ms. Reed’s 
deontic authority, the exercise of which enabled her to demarcate lines along a terrain of 
mathematical knowledge. By setting boundaries around who owns what knowledge, Ms. Reed was 
able to portray Anika as someone who was not merely repeating a textbook method. 

We also see potential for this study to contribute to discussions of equity in mathematics education 
research. As Byun (2019) discussed, teachers need authority to control the topic of classroom 
discussion so that students are steered toward different knowledge domains that can position 
minoritized students in more powerful positions. Without this deliberate reshaping of the epistemic 
terrain, participation patterns would likely continue to marginalize groups of students with particular 
social markers (e.g., race or gender). Although we did not attend to the racialized and gendered 
aspects of authority in classroom interactions in this study, we suggest further investigating the 
question of who teachers share epistemic authority with and its consequences for equity in 
mathematics classrooms. For instance, this case could be seen as an example of a female student of 
color who re-authors a conventional mathematical method through joint activity with her teacher, 
thereby challenging dominant conceptions about the authorship of mathematical ideas. Further work 
along these lines may offer valuable insights into equity issues in mathematics classrooms. 
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The purpose of this research study is to characterize secondary teachers’ orientations toward 
mathematics engagement. Results indicated that these 16 high school mathematics teachers tended to 
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In this study, we describe how high school mathematics teachers think about mathematics 
engagement. Teachers’ efforts to engage students during their instruction are likely to be informed by 
their thinking about mathematics engagement. Understanding mathematics teachers’ orientations 
toward engagement at the secondary level is particularly important because students’ motivation and 
engagement has been found to decline over time as students move through levels of education. For 
instance, Chouinard and Roy (2008) found that students’ self-efficacy, enjoyment, and sense of the 
utility of mathematics decreased as they move through middle school and into high school, and 
students became more disengaged over time in high school.  

Students’ motivation and engagement is malleable, socially situated, and influenced by teachers’ 
instructional practices in the moment and by the classroom climate (Anderson, Hamilton, & Hattie, 
2004). Teachers’ instructional practices can impact students’ motivation and engagement, and 
engagement is an important step on students’ path toward learning mathematics. We conjecture that 
understanding high school teachers’ orientations toward engagement is essential for supporting 
teachers to create secondary mathematics classrooms that disrupt declines in students’ motivation 
and engagement.  

Mathematics Engagement 
Engagement in school manifests as students’ expression of affect, beliefs about themselves, sense of 

belonging, and observable behaviors in the school setting (Jimerson, Campos, & Greif, 2003). 
Engagement is thus a complex meta-construct that simultaneously accounts for cognitive, affective, 
and behavioral dimensions (Fredricks, Blumenfeld, & Paris, 2004). Middleton, Jansen, & Goldin 
(2017) extended these dimensions to add a fourth with respect to mathematics learning: social 
engagement. Mathematics engagement is an interactive relationship between students and the subject 
matter, and it is manifested in the moment through expressions of behavior and experiences of 
emotion and cognitive activity; engagement is constructed through opportunities to do mathematics, 
as situated in both current and past experiences (c.f., Middleton, Jansen, & Goldin, 2017). 

For students to learn mathematics, they must be engaged with experiences that support learning. In 
a study of almost 4,000 middle school and high school students in Western Pennsylvania, researchers 
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found that higher levels of cognitive, behavioral, emotional, and social engagement predicted 
students’ course grades in mathematics (Wang, Fredricks, Yea, Hofkens, & Linn, 2016). According 
to Greene (2015), it is well-established in prior research that motivation constructs such as students’ 
self-efficacy support students’ engagement in ways that lead to learning. However, it is possible that 
some teachers might speak about engagement in ways that are not always connected to learning, 
instead more connected to students’ behaviors. 

Teachers’ thinking about students’ mathematics engagement 
Very few prior research studies have been conducted on secondary teachers’ thinking about 

mathematics engagement, but some relatively recent research from Australia provides insights. 
Skilling, Bobis, Martin, Anderson, and Way (2016) conducted interviews with 31 secondary 
mathematics teachers from ten schools. Their results indicated that teachers in their study tended to 
describe students’ engagement in terms of students’ behavioral, affective, or emotional engagement; 
they spoke less often and less extensively about students’ cognitive engagement. About one-third of 
these teachers reported an instrumental orientation, such that they strove to provide students with 
examples of how mathematics was a part of their lives outside of school. Some of these teachers also 
emphasized a relatedness dimension of engagement as they reported making efforts to build 
relationships with students to promote engagement. Their stance, which we also adopt, was that 
multi-dimensional orientations toward engagement would be more productive for teachers to hold. 

Bobis, Way, Anderson, and Martin (2016) investigated changes in teachers’ thinking about 
engagement, particularly among teachers who initially thought about engagement in terms of 
students’ behavior primarily. After professional development, these teachers began to view 
engagement as more multi-faceted, beyond behavior management, and more than whether students 
were on-task. For the purposes of this study, we view behavioral engagement as the least productive 
dimension of engagement, because students could be on-task but not intellectually connecting with 
mathematics. We view cognitive engagement a potentially productive dimension, as it focuses is on 
students’ mathematical thinking and learning. 

Teachers’ orientations 
The term “orientation” is usually not defined explicitly in research literature on teaching and teacher 

education. Researchers’ use of the term seems to imply that an orientation is a constellation of beliefs 
(e.g., Ambrose, 2004) or a set of perspectives and dispositions (Remillard & Bryans, 2004). It is 
particularly compelling to consider the root idea of “orienting,” as these ways of thinking about 
teaching and learning can provide a direction for teachers’ decision making. In this study, we define 
teachers’ orientations toward mathematics engagement to be the set of teachers’ beliefs about what it 
means for students to interact with mathematical tasks and each other productively during 
mathematics class, and together this set of beliefs provides direction for how teachers would enact 
instruction to engage their students. 

By “beliefs,” we mean what a teacher holds to be true. Beliefs are different from knowledge in that 
they are personal truths (Rokeach, 1968), and they have stronger, more affective components than 
knowledge (Nespor, 1987). Beliefs must be inferred by what a person says or does; they cannot be 
directly observed (Pajares, 1992). According to Rokeach (1968), ‘‘All beliefs are predispositions to 
action’’ (p. 113). Similarly, Aguirre and Speer (1999) explain that beliefs are “conceptions, personal 
ideologies, world views and values that shape practice and orient knowledge” (p. 328). Following 
Leatham (2006), we assume that teachers’ beliefs are sensible to them, so we do not attempt to 
investigate whether teachers’ actions appear consistent with their beliefs from a researchers’ 
perspective. 
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Our stance toward teachers’ orientations reflects that beliefs can cluster together within a system of 
beliefs. Green (1971) writes of beliefs having varying levels of psychological strength, some beliefs 
in a cluster are more central and others are more peripheral. Our investigation of teachers’ 
orientations toward engagement targets the cluster of beliefs about the meaning of mathematics 
engagement, identifying which are more central in their belief clusters. 

This study was guided by the following research question: What are secondary teachers’ 
orientations toward mathematics engagement? We investigated dimensions of engagement that 
teachers reported when talking about engagement in interviews about their teaching practice. 

Methods 
This exploratory study was conducted during the second year of a three-year NSF-funded project 

designed to investigate engagement in high school mathematics classrooms. In Fall 2018 and Spring 
2019, project team members interviewed 16 teachers in two states (one in the Southwestern region of 
the United States and one in the Mid-Atlantic region). Schools in these areas of the country use 
different curricular approaches: integrated mathematics in the Mid-Atlantic and topics-based courses 
in the Southwest. The three Mid-Atlantic schools implemented a block schedule with approximately 
90-minute class periods. In the Southwest, the class periods were approximately 50 minutes long.  

We gathered data from six schools (three from each state). In the Mid-Atlantic, the schools’ 
demographics ranged from 9-30% low income, 24-57% white, 27-46% Black, 7-24% Latinx, and 5% 
or less Asian-American, Native American, or mixed-race students. In the Southwest, the schools’ 
demographics ranged from 85-94% low income, 2-5% white, 1-15% Black, 74-96% Latinx, and 5% 
or less Asian-American, Native American, or mixed-race students. 

Teachers were recruited for this study by soliciting nominations from district curriculum 
supervisors and mathematics coaches. The 16 participating teachers averaged 10.8 years of teaching 
experience, ranging from 1 to 27 years. Twelve teachers had earned a Master’s degree. They self-
identified their races as follows: 14 white, one Asian-American, one Hispanic/Latinx. They self-
identified their genders as eleven female and five male. 
Data Collection 

Each teacher completed a baseline survey online at the start of each course. Survey items were 
open-ended, such as: In your own words, what does “engaging students with mathematics” mean? 
Interviews took place at the end of the semester in the Mid-Atlantic region, where schools had block 
scheduling, and it was at the end of the academic year in the Southwestern region. Interviews lasted 
from 35 minutes to about an hour and 15 minutes. Prior to the interviews, we video recorded 
classroom observations between two and four times per class period; observations targeted a lesson 
activity that the teacher conjectured would be likely to engage students. Interview questions 
included: What are some of your favorite strategies you use to engage students? Why do you use 
these? and Can you tell me about a time when you have successfully engaged students with 
mathematics? During the interview, we also asked teachers to elaborate on their definition for 
engagement on their baseline survey. Additionally, the interviews incorporated a video viewing 
session protocol; we showed teachers a video clip of their lesson, and we asked them to reflect on 
their students’ engagement and their approaches to engaging them. 
Data Analysis 

The goal of our analysis was to describe the orientations each teacher used to conceptualize 
students’ mathematics engagement. We compared descriptions of orientations to map a framework of 
ways in which mathematics teachers think about engagement along six dimensions identified in the 
engagement literature. Any of these dimensions could be either central or peripheral in a teacher’s 
orientation, or in the constellation of beliefs the teacher held about mathematics engagement. 
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Each interview transcript had three sections, and we applied four levels of analysis to the 
transcripts. The interview’s three sections were: (a) teachers’ definitions for mathematics 
engagement, (b) teachers’ strategies for engaging students, and (c) teachers’ reflections on students’ 
engagement during a classroom video episode. Interviews were transcribed prior to analysis. Each 
interview was coded independently by two researchers. All disagreements were resolved. 

We operationally defined a teacher’s orientation to be composed of dimensions of engagement that 
they reported in the three sections of the interview. Each transcript was analyzed at four levels: (1) 
we applied descriptive coding techniques (Saldaña, 2013) to identify the dimension(s) of 
mathematics engagement to which each teacher was oriented [see Table 1].  

 
Table 1: Indicators for Dimensions of Mathematics Engagement 

Dimension of 
Engagement 

Indicators of Engagement that Teachers Described 

Affective Students’ emotional responses, interest, attitudes, and expressions of values. 
Cognitive The process of students coming to understand, learn, and make sense of 

mathematics.  
Social Students interact with one another for the purpose of learning mathematics.  
Behavioral Observable actions of students, including whether or not they were on task. 
Relatedness Enactments of interpersonal care or personal connections between the teacher 

and students and among students. 
Instrumentality Students see mathematics as useful and relevant to their lives. 
 
(2) We analytically identified the centrality of the dimensions in each interview section based on the 

teacher’s use of repetition, level of detail, and emphasis terms. Central dimensions had two of these 
three features (repetition, detail, or emphasis). Peripheral dimensions did not. (3) We analytically 
determined the degree to which a dimension was central to a teacher’s orientation by identifying 
whether the dimension was central to the teacher across more than one section of the interview. (4) 
Finally, we applied axial coding across each teacher’s interview (Saldaña, 2013) and compared 
teachers’ central dimensions to identify categories of orientations. 

Results 
In Table 2, we summarize the central and peripheral dimensions of mathematics engagement 

reported by these teachers at the case-level, or across the interview for each teacher. Central 
dimensions are labeled with a shaded 1 and peripheral with an unshaded 2. Zero indicates no 
evidence of this dimension in teachers’ responses. 

 
Table 2: Teachers’ Orientations toward Mathematics Engagement 

Teacher Cognitive Affect Social Behavioral Instrumentality Relatedness 

Elise 1 1 1 1 0 0 

Ken 1 1 1 2 2 1 

Chloe 1 1 2 1 2 0 

Addie 1 1 2 2 2 0 

Jessica 1 1 2 2 0 0 
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Nancy 1 1 0 2 1 1 

Jimena 1 2 1 2 2 2 

Julie 1 2 1 2 0 2 

Nicole 1 2 2 1 2 2 

Peter 1 2 2 1 0 0 

Colton 1 2 2 2 1 2 

Tori 1 2 2 2 1 0 

James 1 2 2 2 0 2 

Rachel 1 2 2 2 0 0 

Anne 2 1 2 2 1 2 

Craig 2 2 0 1 2 0 

 
All of these secondary mathematics teachers expressed a multi-faceted orientation toward 

mathematics engagement--they all spoke about engagement with at least four dimensions, either at 
the central or peripheral level. Table 3 (below) shows four prevalent orientations that teachers 
reported. 

 
Table 3: Four Prevalent Orientations Toward Mathematics Engagement among Secondary 

Teachers 
Orientations toward 

mathematics engagement 
Summary of each orientation 

Cognitive-Affective Support students’ learning of mathematics while cultivating 
enjoyment, interest, and a desire to learn mathematics. 

Cognitive-Social Learning mathematics is a process of coming to know 
mathematics through discourse. 

Cognitive-Behavioral For students to be actively involved in mathematics learning, 
teachers must manage students’ behavior. 

Cognitive-Instrumental Opportunities to learn are enhanced by connections between 
school mathematics and students’ lives. 

 
All but two of these teachers (87.5%) reported a central cognitive dimension in their orientation 

such that engagement involves students thinking mathematically or making sense of mathematics. 
This is important because previous research indicates that mathematics teachers tend to think about 
engagement in terms of its behavioral dimension primarily, unless they had had support from 
professional development (e.g., Bobis, Way, Anderson, & Martin, 2016; Skilling, Bobis, Martin, 
Anderson, & Way, 2016). Our findings illustrate counter evidence, indicating that secondary teachers 
can strongly consider learning processes when they talk about mathematics engagement. 

Teachers consistently paired statements about cognitive engagement with statements about one or 
more other dimension. Affective, social, and behavioral engagement, and instrumentality were 
viewed as critical contributors to students’ efforts to grapple with and understand important 
mathematical concepts and procedures. Rather than speaking about goals for cognitive engagement 
and then speaking about other facets separately, teachers’ responses concurrently emphasized the role 
of affect, social or behavioral dimensions in supporting cognitive engagement. In particular, when 
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speaking about strategies and practices that contribute to students’ math engagement, these facets 
were reasoned as important for helping students engage in learning the mathematics productively. 

Relatedness and instrumentality were the dimensions reported least by these teachers, but these 
dimensions were still a part of most of these teachers’ orientations. At least half of the studied 
teachers mentioned relatedness and instrumentality in at least one of the sections of the interview at 
some level (either central or peripheral). It is interesting to note that these dimensions displayed the 
most variability in teachers’ responses. Half of the teachers in the sample did not mention relatedness 
as somewhat central to their conceptions of engagement, and six did not mention instrumentality. 
Cognitive-Affective Orientation toward Mathematics Engagement 

Six secondary teachers reported a cognitive-affective orientation toward mathematics engagement 
(Jessica, Addie, Chloe, Elise, Ken, Nancy). They said that students are engaged when they invest 
their thinking in order to learn (cognitive) and their investment will increase if they enjoy the 
experience and feel a desire to learn (affective). Addie wrote that engagement is “Where students are 
excited to learn the beautiful world of mathematics.” (baseline survey) “I think it’s taking where 
students are at, because that’s where they’re comfortable, and then expanding their knowledge in 
different ways that aren’t necessarily lecture based in order to get students really interested in 
mathematics.” (22-25, interview). When Addie spoke about engagement in terms of learning 
(cognitive), she also wrote about affective experiences of excitement, beauty, comfort, and interest. 
Nancy said, “I feel like engagement is having them be actually, like, cognitively thinking about the 
mathematics that are happening and not just copying down the notes… it’s about having them 
actually think about it… having, like, some sort of level of fascination or even just curiosity, or 
seeing a goal with it. Just, kind of, finding a purpose in it.” (39-46, interview). Nancy valued 
fostering curiosity (affective) so that students engage in deep mathematical thinking (cognitive). The 
teachers spoke about productive opportunities for students to understand mathematics in ways that 
also provided powerful opportunities for students to develop strong relationships with the discipline 
of mathematics. 
Cognitive-Social Orientation toward Student Engagement 

Four teachers (Julie, Jimena, Elise, and Ken) reported a cognitive-social orientation toward 
engagement. They described engagement as investing thinking in order to learn (cognitive) through a 
process of coming to understand mathematics through discourse (social). (We note that some 
teachers, such as Elise and Ken, were examples of more than one of these four orientations, because 
their orientations contained more than two dimensions.) 

Julie’s baseline assessment provided a concise example of a cognitive-social orientation. She wrote, 
“Engaging students with mathematics means finding ways for students to think about and discuss 
mathematics in a way that deepens their understanding.” Thinking (cognitive) and discussing (social) 
were integral to Julie’s view of engagement. 

These teachers tended to characterize cognitive engagement as a process of grappling with 
mathematics. For instance, Elise said, “I want them to say, ‘What am I doing that’s not making 
sense?’ Or, ‘What pieces could I be missing that are not connecting?’ I want them to ... if they find 
an answer, interpret that answer. Is it a useful answer? Does it answer the problem you’re trying to 
figure out? Does the answer make sense?” Similarly, Julie said, “So I like to ... from time to time, 
after we’ve done a concept, to kind of pose a question that forces them to really, first of all, think on 
their own. Can they generate their own thought? But then to have those discussions with their peers 
to see, ‘Well, what do you think about that? I didn’t think about it. How can we maybe expand on 
each other’s ideas to see different ways of viewing the same kind of problem?’ ” (27 – 39, interview) 
These teachers talked about learning and understanding in ways that involve making sense, 
interpreting their work, and wrestling with concepts as they talk them through with peers. 
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Cognitive-Behavioral Orientation to Students’ Engagement 
A cognitive-behavioral orientation toward mathematics manifested in four teachers’ talk (Nicole, 

Peter, Chloe, and Elise). They reported that they wanted students to be actively involved in the 
learning process (cognitive), but they also reported having to manage behavior so this would happen 
(behavioral). On his baseline survey, Peter wrote, “Engaging students means that all students are 
working on what are supposed to. All students are actively participating in their own learning, with 
no exceptions. Engaged means ‘doing.’” Elise spoke about engagement challenges as being about the 
range of ways students engage behaviorally and cognitively. 

You have different levels of engagement. You have the kid that hasn’t even attempted to 
pick up a pencil… the kid that looks like he’s listening or she’s listening, but hasn’t even 
read the question or hasn’t tried to understand the directions and the task. And then you have 
the kids like, ‘Oh, I got an answer. I’m done.’ … It’s such a big spectrum of engagement and 
lack of engagement that you try to address every day.  (50-59, interview) 

Engaging their students cognitively and behaviorally was reported by these teachers as something 
they constantly worked to accomplish. For instance, Nicole talked about cold calling (behavior 
management) as a way to engage students to think about mathematics (cognitive engagement), as she 
said, 

I kind of force them to be a little bit more engaged for the Popsicle sticks. And then also, if 
they didn’t know the answer, they had to listen to somebody else, and then they had to repeat 
it back. Like, [student] didn’t know what to do, so somebody else gave the answer. And then, 
I made [student] repeat it so that he was listening, at least. I don’t know if that’s considered 
engagement, because to me, he’s just listening, and he’s just repeating. But, at least it’s 
trying to get them to think. If I could see the rest of the class, I believe most of them ... No, 
probably 50% of them were actually engaged, because I’m hearing talking in the 
background. I don’t know where that came from. (370-380, interview) 

The teachers who intertwined behavioral engagement with cognitive engagement spoke about using 
classroom management practices to bring about productive behavior in hopes that it would lead to 
stronger intellectual investment among students.  

These teachers spoke about the cognitive dimension of learning in ways that appeared to be more 
closely aligned with procedural fluency than conceptual understanding. When teachers articulated a 
cognitive-behavioral orientation, there was a focus on getting answers over sense making, modeling 
procedures through lecture, and guided practice of steps to solve a task. This perspective on cognitive 
engagement contrasted with teachers who reported a cognitive-affective, cognitive-social, or 
cognitive-instrumental orientation, which illustrated a focus on interpreting and understanding 
mathematics. 
Cognitive-Instrumental 

A cognitive-instrumental orientation toward engagement was illustrated by three teachers (Tori, 
Colton, and Nancy) who talked about opportunities to understand (cognitive) being enhanced by 
connections between school mathematics and students’ lives (instrumental). Tori reported the 
following on her baseline assessment: “For me, engaging students with mathematics means using the 
real-world information to understand the concepts in mathematics, and hopefully apply what the 
students have learned to their personal lives and become lifelong learners of mathematics.” Colton 
described engagement on his baseline survey as “Giving them something more to connect with.” 
Nancy reported the power of connecting mathematics and students’ lives. When discussing 
functional relationships, such as whether the relationship between time and location is a function, she 
said, “I think that part of the reason why it was so engaging is because some of those things allow 
them to challenge math. … I think it’s cool when they can make that, like, real-world connection.” 



High school mathematics teachers’ orientations toward engagement 

	 1991	

These teachers could leverage opportunities to connect with mathematics (instrumental) in ways that 
enhanced students’ opportunities to understand mathematics (cognitive). 

Discussion 
We conjecture that quality mathematics instruction can be best supported when teachers go beyond 

a focus on behavioral engagement in their orientations. The secondary teachers in our study 
emphasized cognitive engagement primarily, with other dimensions serving as supports and 
influential catalysts for helping students engage cognitively. If teachers tend to prioritize cognitive 
engagement in their orientations, and if they hold multiple dimensions of engagement in their 
orientations, they are likely to have productive resources and strategies they can call upon to support 
their students. 

Future research could investigate whether teachers’ instructional practice varies depending on their 
orientations toward mathematics engagement. It is possible that a teacher who holds multiple 
dimensions toward mathematics engagement in their orientations is more flexible in their approach to 
engaging students. Alternatively, it may also be possible that teachers who hold only two dimensions 
– such as cognitive-affective, cognitive-social, or cognitive-instrumental – could effectively engage 
their students in mathematics learning. The necessary and sufficient conditions for improving student 
cognitive engagement through integration of two or more dimensions is an open question.  

To support teachers in developing their orientations, we propose two goals for teachers’ learning 
about mathematics engagement: (1) Teachers can strive to more fully enact their orientations toward 
mathematics engagement in their teaching practice; and (2) Teachers can work to enhance additional 
dimensions toward mathematics engagement in their orientations. Teachers’ orientations reveal some 
insight about their instructional vision for engaging students with mathematics (Munter, 2014). With 
appropriate coaching support or collaborative inquiry with teachers who hold similar orientations, 
teachers may be able to approach enacting teaching in ways that more closely align with their 
orientations. Alternatively, teachers could learn to take up instructional strategies aligned with 
additional dimensions of engagement to further develop their practice.  
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We describe an instructional intervention designed to help teachers engage English learner (EL) 
students in mathematical problem solving and learn the mathematics register. The “Discursive 
Assessment Protocol” (DAP) integrates Pólya’s classic problem solving framework with research-
based instructional strategies that benefit EL students. The research-based instructional strategies 
are grounded in theories of academic language development. A sample problem-solving episode is 
provided that demonstrates how an EL student wrote a “multiplication story” involving fractions and 
what we learned from using the DAP to support him and other EL students develop the mathematics 
register in English. Among the implications of this study is the value of selecting tasks that are not 
only worthwhile mathematically, but worthwhile in that they have potential to develop students’ 
mathematics register. 

Keywords: Equity and Diversity, Marginalized communities, Problem Solving. 

Schools are struggling to meet the needs of English Learners (ELs) in the United States (Borjian, 
2008; Valenzuela, 2005). ELs largely enter U.S. schools performing below English Proficient (EP) 
students in core academic subjects (Abedi & Gándara, 2006) and dropout rates for ELs are 
considerably higher than EP students (Borjian, 2008; Kanno & Cromley, 2013). Schools 
experiencing an influx of EL students must adjust to meet these students’ educational needs (Barrio, 
2017; Irizarry, 2011). In this paper, we describe an instructional intervention designed to help 
teachers support the mathematical learning of their EL students and how it informed instruction 
during a problem-solving episode. The “Discursive Assessment Protocol” (DAP) integrates Pólya’s 
(1945/1986) classic problem solving framework with research-based instructional strategies that 
benefit ELs. The research-based instructional strategies are grounded in theories of academic 
language development that afford EL students repeated and consistent opportunities to express their 
mathematical ideas and negotiate meaning with others (Moschkovich, 2013; 2015). The integrated 
design of the DAP is intended to guide teachers to provide their students with needed supports to 
learn and use the mathematics register during problem solving episodes. 

Since the fall of 2019, we have been working with “Ms. Ware,” a 5th grade teacher in an urban 
school district. A goal of this work has been to examine the DAP as an instructional intervention in 
Ms. Ware’s mathematics classes to understand how effectively it guides her to elicit students’ 
mathematical reasoning and develop their use of the mathematics register in English during problem-
solving episodes. In all of her classes, Ms. Ware teaches a high percentage of ELs. She is fluent in 
Spanish and is devoted to providing her EL students with a high quality education in mathematics. 
The research question we explore here is: How does the DAP used during problem-solving episodes 
inform how to support EL students to develop the mathematics register in English? 
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Background on the Discursive Assessment Protocol 
Early iterations of the DAP built upon and were an extension of a clinical interview protocol (see 

Kitchen & Wilson, 2004; Kulm, Wilson, & Kitchen, 2005). The DAP was designed for use with 
individual ELs or groups of EL students during mathematics problem-solving episodes, but can also 
be used with the general student population. During piloting of the DAP with middle school students 
over the course of two years (2007-09), the DAP guided teachers to provide students with 
opportunities to ask questions, to be creative, to test and revise their solution strategies, and to 
explore mathematical ideas deeply (see Kitchen, Burr, & Castellón, 2010; Castellón, Burr, & 
Kitchen, 2011). Such instruction is a clear departure from instruction historically found in schools 
that serve high percentages of low-income EL students in which the memorization of math facts, 
algorithms, vocabulary, and procedures are the focal point of instruction (Kitchen, DePree, Celedón-
Pattichis, & Brinkerhoff, 2007; Moschkovich, 2013). Moreover, the DAP is intended to help teachers 
provide students with opportunities to make sense of the language demands of mathematical 
problems as well as to provide scaffolded supports for EL students to engage in mathematical 
discourse to explain their ideas and to listen to and make sense of the ideas of others. As students 
engage in mathematical discourse, they build on their prior experiences and knowledge to achieve 
more advanced understandings of mathematical concepts (Ryve, 2011). 

Incorporating Pólya’s (1945/1986) four-stage problem solving framework, the DAP is designed to 
be administered during problem-solving episodes involving worthwhile mathematics tasks, ensuring 
that students have something to talk about (Silver & Smith, 1996). In the example that we provide 
here, we used a performance assessment task (referred to simply as “task” throughout) that is 
publicly accessible for free through the Illustrative Mathematics (IM) project. Rich tasks such as 
performance assessment tasks “engage students in thinking and reasoning about important 
mathematical ideas” (Franke, Kazemi, & Battey, 2007, p. 234). Though the use of such tasks does 
not guarantee high-level student responses, cognitively demanding tasks provide the means for 
teachers to engage students in mathematical discourse in which students are actively sharing their 
thinking, comparing their solution strategies, making conjectures, and generalizing (Silver & Smith, 
1996). 

An important goal of instruction for EL students should be amplifying rather than complexifying 
English language speech or text (Zwiers et al., 2017). This entails providing students with multiple 
opportunities to understand mathematical ideas and terms by providing support for learning with 
concrete materials such as manipulatives and mathematical models, engaging students in think-
alouds, and using culturally relevant and authentic contexts. ELs need repeated opportunities to 
understand the problem at hand, not only because English is a second language, but because the 
learning of mathematics is embedded within the linguistic patterns of academic language 
development. Academic language has been defined as the linguistic expectations of students to learn, 
speak, read and write about academic subjects such as mathematics (Schleppegrell, 2004). 
Discipline-specific registers can further refine academic language. Described as words, expressions, 
and meanings specific to mathematics (Secada, 1992), the mathematics register is the disciplinary-
specific reading, writing, listening and speaking norms of content teaching and learning that is more 
complex than everyday English. It is helpful to think of the academic register as a series of resources 
that promote meaning making, or a set of linguistic features, such as words, symbols, and forms 
(Schleppegrell, 2004). A unique feature of the DAP is that instructional strategies designed to 
support the development of EL students’ mathematics register, also referred to as English as a 
Second Language (ESL) instructional strategies, are incorporated throughout its four stages, such as 
acknowledging and using gestures, integrating cognates, revoicing, and incorporating graphic 
organizers (see Figure 1 below). 
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1. Understand the problem 
Check for understanding - Students underline important information in problem 

- Teachers ask: “What is the problem asking you to do? 
What do you know that can help you figure this out?” 
- Students define new words and begin using them in 
sentences. 

Teacher deliberately incorporates ESL 
strategies 

- Students use a picture, diagram, or some type of 
mathematical representation to concretely model problem. 

Teacher maintains high expectations 
and recognizes students’ intellectual 
assets 

- Teachers look for opportunities to highlight students’ 
mathematical ideas with other students. 

2. Create a plan to solve the problem 
Students create plan to solve problem - Teachers ask: “What strategy, representation or tool will 

work best to solve the problem?” 
- Teachers assess student understanding of their plan. 

Teacher deliberately incorporates ESL 
strategies 

- Teachers integrate graphic organizers and mathematical 
models during small group instruction and discourse. 

3. Carry out the plan to solve the problem 
Teacher engages students in 
mathematical discourse and meaning 
making 

- Teachers engage whole class in mathematical discourse 
and asks questions while highlighting student work. 
- Teachers integrate the mathematics register in discourse 
and instruction. 

Teacher continues to use deliberate ESL 
strategies 

- Teachers use gestures, cognates, revoicing, graphic 
organizers and mathematical models. 

Students refine and revise their 
solutions 

- Teachers do not need to be overly concerned in this stage 
about students’ production of “correct” English.  
4. Looking back 

Students reflect on their solutions - Teachers ask: “Does your solution make sense? How do 
you know? What questions do you still have at this point?” 

Teacher works to help students use the 
formalized mathematics register 

- Students write up their final solution to the problem using 
the mathematics register. 

Figure 1: The Discursive Assessment Protocol (DAP) 
 

The first stage of the DAP involves understanding the task/problem (Pólya, 1945/1986). In this 
stage, Pólya advocates that students consider a picture, diagram, or some type of mathematical model 
that could be helpful for solving the problem. Modeling helps EL students learn the mathematics 
register by touching the objects that represent mathematical ideas and repeatedly hearing and then 
repeating the words represented by these objects (Garrison & Mora, 2005). After developing a 
mathematical model to make sense of the problem, students share their ideas with peers to solicit 
feedback and modify their models. To ensure ELs have repeated opportunities to understand the 
problem at hand, teachers ask questions during this stage such as “What is the problem asking you to 
do?” and “How are you going to figure this out?” In this stage, teachers need to define words used in 
the problem under consideration. In the second stage, students devise a plan to solve the problem 
(Pólya, 1945/1986). Working in small groups, students share their ideas with peers and their teacher 
to get feedback on their solution strategies. This process ensures that students have opportunities to 
reflect upon their problem-solving strategy to determine whether the strategy makes sense. Students 
need support in this stage to develop self-regulation strategies such as devoting significant time to 
analyze and plan how to attack the problem similar to accomplished problem solvers (Schoenfeld, 
1985).  
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In the third stage, students carry out their plan to solve the problem (Pólya, 1945/1986). Students 
have opportunities to share their mathematical thinking with peers and their teacher through 
mathematical discourse. When possible, the teacher seeks to integrate the mathematics register in 
discourse and instruction, though does not need to be overly concerned with students using “correct” 
English. A key in this stage is that the teacher asks meaningful questions and actively works to 
highlight and build on students’ ideas to support students reflecting on their mathematical thinking 
and errors (Schoenfeld 1985). Instruction should leverage ELs’ knowledge in their first language as a 
means to help them comprehend a second language (Cummins, 2000). To support ELs in particular, 
the teacher “re-voices” students’ explanations, references students’ mathematical ideas, and asks 
clarifying questions. In this manner, the DAP functions as a formative assessment tool, supporting 
teachers to examine, understand, and leverage students’ mathematical ideas and thinking as a means 
to inform their instruction (Kitchen, 2014). In the fourth stage, students look back at their solutions 
and check their results (Pólya, 1945/1986). In this stage, the teacher asks: “Does your solution make 
sense? How do you know? What questions do you still have at this point?” In addition to reviewing 
and checking their answers, ELs need opportunities to explain their ideas using the mathematics 
register. In this stage, students explain their problem solutions in writing with the expectation that 
they will include the mathematics register in their write ups. Having had time to think about, solve 
and revise their solutions also means students’ anxiety level, the affective filter (Krashen, 2009), has 
been lowered and ELs may have more confidence explaining their ideas in writing.  

Research Methodology 
Starting in the fall of 2019, our research team (Richard, Libni and Karla) has been collaborating 

with Ms. Ware to implement the DAP during problem-solving episodes with her two 5th grade 
mathematics classes. Both of these classes have a high percentage of ELs (20% or more). To date, we 
have co-taught with Ms. Ware during problem-solving episodes on four occasions. We employed a 
team teaching approach to co-teach in which instruction was divided up among the four of us (Cook 
& Friend, 1995; Sileo & van Garderen, 2010). Each problem-solving episode typically lasted 
between 40 and 60 minutes and involved students solving a performance assessment task. During 
each episode, we worked to follow the four stages of the DAP as students solved a given task. 
Primarily in the second and third stages of DAP implementation, all three members of the research 
team circulated throughout the classroom with Ms. Ware, asking individual and groups of students 
questions engaging in discourse. Prior to each problem-solving episode, we planned how we hoped 
to co-teach during the episode, identified questions to ask, and discussed English words and phrases 
that we hoped to develop during instruction to support EL students’ emerging mathematics register. 
During the problem-solving episodes, we videotaped Ms. Ware and students who had provided 
consent. At the conclusion of these episodes, we collected all the work students had created. 

To illuminate how the DAP informs instruction, a sample student solution to a performance 
assessment task is provided. Specifically, we highlight how one EL student, “Fernando,” solved a 
given task and how his solution informed us vis-à-vis how to support Fernando and other EL students 
to more fluently construct English sentences in the “multiplication stories” that they devised. The 
data used in the example provided came from copies of collected student work samples and from 
videotapes made during the problem-solving episode. Student work samples and videotapes were 
interpreted using interpretative methods (Creswell, 2014). The student work samples were initially 
read or viewed as a whole, followed by a period of open coding to reflect upon and clarify how 
students were solving a given task and how they used the mathematics register to express their 
solutions. An iterative process of coding, reflecting upon, and then clarifying what we learned from 
reviewing student work samples then took place (Miles, Huberman & Saldana, 2013). This process 
went through multiple revisions as the data were repeatedly read and reviewed to check the 
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consistency of findings. This process continued until either no new categories were developed or 
consistency was achieved. After we established how to characterize students’ solutions to tasks 
posed, we searched for commonalities and differences across these solutions to further examine how 
the DAP could be used to inform instruction intended to support the development of EL students’ 
mathematics register. We went through a similar process when reviewing videotapes of problem-
solving episodes. 

Research Findings 
We now offer an example of how through the use of the DAP, we gained insight into how to 

support the development of an EL student’s mathematics register in English during a problem-
solving episode. Immediately prior to the problem-solving episode, Karla and Libni led a brief lesson 
on fractions to Ms. Ware’s students. They had students identify unit fractions in both columns and 
rows of a rectangular whole similar to the rectangular whole displayed in Figure 2. In several 
exercises, students identified equivalent fractions in diagrams given to them such as 1/5 and 2/10. 
Karla and Libni also had students identify the fraction created when two of these fractions 
overlapped, something Ms. Ware had been doing with her students for at least a week prior to this 
lesson. In addition, students began identifying an equation that could be derived through fraction 
multiplication. The purpose was to emphasize the meaning of fractions as operator (e.g., 1/4 of 1/3). 
Following this brief lesson, the four stages of the DAP were administered during implementation of 
the following IM task shown in Figure 2. 

 
The diagram below represents one whole. 

 

Problem: Write a multiplication story that could be 
solved using this diagram with its two types of 
shading. Explain how your story context relates to 
the diagram provided 
(http://tasks.illustrativemathematics.org/content-
standards/5/NF/B/4/tasks/2075). 

Figure 2: Task Implemented with the DAP 
 

Ms. Ware introduced the task by asking three different students to read the problem out loud to the 
whole class and give brief explanations about what the problem was asking as a means to check for 
understanding (first stage of the DAP: Understand the problem). In addition, as planned prior to the 
lesson, Ms. Ware began asking questions we had collaboratively identified such as What is the 
problem asking you to do? What is the whole? What is a multiplication story? She also checked for 
understanding of the terms “two types of shading” and “relates.” Once Ms. Ware was satisfied that 
her students, for the most part, understood the task because a number of them could express what the 
task was asking of them, she moved on to the second stage of the DAP. 

Initially working alone, students started devising a plan to solve the task (second stage of the DAP: 
Create a plan to solve the problem). It was in this stage that Fernando devised a multiplication story 
involving videogames. In his written solution, he started by making sense of the diagram given in 
Figure 2; he identified the whole, circling the entire diagram and writing “The Whole.” He also 
identified both of the fractions represented in the diagram (3/4 and 1/5). Lastly, Fernando wrote the 
following expression that he believed was represented in the diagram: 3/4 x 1/5. 

In his write-up (stage 3 of DAP, Carry out plan), Fernando created a story that was mathematically 
sophisticated involving videogames:  
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“Sam got to play videogames 1/5 of an hour. After he did his homework he got to play 3/4 of 
the 1/5 that he played. How much does he play after homework?” 

During the third stage of the DAP, teachers engage the whole class in mathematical discourse and 
ask questions while highlighting student work. Fernando shared his story in his small group. At one 
point, he also responded to another student’s story during a whole class discussion that took place. 
The language that he used in the context of his story is specific to the operator concept of fraction 
(e.g., “he got to play 3/4 of the 1/5”). The operator subconstruct has two different interpretations, as 
stretcher/shrinker and as a duplicator/partition-reducer. The difference between the two is that with 
stretcher/shrinker, the transformation of the fraction results in the same number of units of different 
size (e.g. 3/4 should be interpreted as 3 x [1/4 of a unit]), and with the duplicator/partition-reducer 
the fraction result elicits a different number of units of the same size (e.g. 1/4 x [3 units]) 
(Charalambous & PittaPantazi, 2007). The operator subconstruct can also be considered a function, a 
set of operations that need to be done to get a result (Lamon, 2007). In this case, Fernando used the 
duplicator/partition-reducer interpretation. 

While Fernando’s story is mathematically sophisticated, the clarity of the story could be improved 
in at least two ways. First, he could modify the second sentence to read, “After he did his homework, 
he got to play 3/4 of the 1/5 of an hour that he had already played.” The inclusion of the phrase “of 
an hour” in Fernando’s sentence clarifies the amount of time that he originally played videogames. 
Another option is to modify the sentence to read, “After he did his homework, he got to play 3/4 of 
the amount of time he had already played.” Secondly, in“How much does he play after homework?,” 
it is unclear whether Fernando is asking for a unit of time (e.g., hours, minutes) or possibly some 
number of videogames. To clarify, the question posed could be modified to reference a unit of time. 
For example, the question could be “How much time does he play after homework?” or “How many 
hours does he play after homework?” These potential modifications are examples of sentence frames 
(Wisconsin Center for Education Research (WCER) (2014). Fernando’s story informed us about how 
sentence frames such as “How __ of __ of an hour” or “How many hours” could have helped him 
and other students to tell their stories using fluent sentences that included details (Coleman & 
Goldenberg, 2009). As we progressed through the four stages of the DAP, we came to recognize the 
complex language needed to develop a multiplication story. Rather than simply devising questions 
and addressing keywords in this problem-solving episode, Fernando and other EL students would 
have benefitted from being given sentence frames that they could have applied directly in their 
stories.   

Discussion and Implications 
In this paper, we described what we learned from using the DAP during a problem-solving episode 

to support Fernando and other EL students to develop their use of the mathematics register in 
English. Fernando created a multiplication story in response to a task that demonstrates his 
mathematical understanding of the part-whole notion of fractions as well as the concept of fraction as 
operator (Charalambous & Pitta-Pantazi, 2007; Lamon, 2007). While Fernando’s story is 
mathematically sophisticated, it was also the case that the story could be improved with the addition 
of a few key phrases. We observed this during the third stage of the DAP when students were 
presenting their stories to peers and the entire class. 

This example demonstrates how the DAP can be a helpful tool to inform instruction about how to 
support EL students with the linguistic expectations associated with writing mathematics related 
stories. Specifically, in this case, how the introduction of words and expressions through the use of 
sentence frames could support the development of students’ English language fluency in the domain 
of mathematics. Undoubtedly, the demands of writing a multiplication story are linguistically 
complex (Martiniello, 2008). To address this complexity, an implication for instruction is how 
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through the explicit use of sentence frames (WCER, 2014), we could have helped EL students such 
as Fernando address this complexity by providing them at the initiation of the problem-solving 
episode with expressions such as “how much time” and “how many hours” that they could have used 
in their stories. 

After observing Fernando’s response and other students’ responses to the task, we noted the 
importance of not only identifying potential questions and key phrases and words needed to support 
EL students during task implementation, but the value as well of identifying potential language 
supports for students such as sentence frames that students could have used in their stories. The use 
of the DAP helped us gain this insight. In addition to providing guidance on how to integrate ESL 
strategies as students worked through Pólya’s (1945/1986) four stages of problem solving, the use of 
the DAP informed us about how to support students’ burgeoning mathematics register to construct 
fluent and detailed sentences involving time. 
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The study presented here utilized a cross case comparison of three different professional 
development programs to examine the contextual factors associated with uptake related to what 
teachers learned related to content, pedagogy and the resources used in their professional 
development (PD) workshops. From a theoretical perspective this study draws on a situative 
perspective to guide our analyses on how uptake across different PD projects impacted teacher 
learning. Findings indicate that teachers’ perceptions of learning may be associated with explicit 
goals and intentions of the PD program, their perceptions of community and the relevance of the 
content, pedagogy and resources provided to their everyday work in mathematics classrooms. 
Differences were found to be related to where they fell on the adaptive-specified continuum. 

Keywords: Research Methods, Professional Development, Teacher Knowledge, Teaching Tools And 
Resources 

One central challenge for the field of teacher professional development (PD) is how to design 
interventions that target teacher knowledge, while also maintaining a focus on instructional practice 
and student learning (Jacobs, Koellner, Seago, Garnier & Wang, 2020). A number of researchers 
have worked to address this challenge and there is now a strong research base delineating critical 
design features of effective PD (e.g., Borko, Jacobs & Koellner, 2010). The consensus in the current 
PD discourse about features of effective PD include a focus on mathematics content, student learning 
of content, active learning opportunities for teachers, coherence, duration, and collective participation 
(Sztajn, Borko, & Smith, 2017).  Although some PD programs that adhere to design 
recommendations by the literature have produced encouraging results (e.g. Franke, Carpenter, Levi 
& Fennema, 2001), others have proven much less successful (e.g. Jacob, Hill & Corey, 2017). We 
believe that context, as well as the nature of the PD on the adaptive-specified continuum, might be 
key to helping us understand and uncover impact aspects related to how teachers perceive their 
learning of content and pedagogy as well as their use of resources.  

At present, very little is known about the degree to which context impacts teachers’ learning from 
PD. The one area that researchers have focused on and have found some evidence of how context 
plays a role in teacher learning is social and political contexts of schools and their impact on the 
implementation and effectiveness of mathematics of PD. 

The study reported here goes beyond social and political aspects that impact PD and includes 
multiple contextual factors related to what teachers take up and implement after participating in a 
particular PD. The study uses comparative case study analysis to examine three different and distinct 
professional development programs that are geographically situated across the US, focused on 
different mathematical content, and different PD structures. We aim to disentangle the role that 
context plays in uptake of PD content, pedagogy and resources of these three ambitious PD projects 
by analyzing teachers’ perceived uptake in these areas.  

Theoretical Frameworks  
Situative theorists define learning as changes in participation in socially organized activity (Greeno, 

Collins, & Resnick, 1996). They consider the acquisition and use of knowledge as aspects of an 
individual’s participation in social practices. With respect to professional learning, situative theorists 
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focus on the importance of creating opportunities for teachers to work together on improving their 
practice and locating these learning opportunities in the everyday practice of teaching (Ball & Cohen, 
1999).  All three PDs were designed around this premise. A situative perspective suggests that groups 
of teachers who take part in different PD workshops using different materials, with different 
facilitators, and are situated within different educational contexts (e.g., different geographical 
locations within the United States) might have very different learning opportunities and experiences 
impacted by the role of context. 
PD Model Continuum: Adaptive Through Specified 

PD models fall on a continuum from adaptive to specified (Borko, Koellner, Jacobs & Seago, 
2011). On one end of the continuum are adaptive models, in which the learning goals and resources 
are derived from the local context and shared artefacts are generally from the classrooms of the 
participating teachers. In these models, the artefact is selected and sequenced by the facilitator and/or 
the participating teachers, and the related activities are based on general guidelines that take into 
account the perceived needs and interests of the group. On the other end of the continuum, specified 
models of PD typically incorporate published materials that specify in advance teacher learning 
goals. In video-based specified PD, the video clips are typically pre-selected and come from other 
teachers’ classrooms. 

The nature of what teachers take up and use across the continuum has the potential to shed light on 
factors that are associated with the teacher learning related to content and pedagogy. This study 
examines three professional developments that fall on different parts of the continuum.  The goal is 
not to determine which types of PD are “best” because each has its affordances and challenges, but 
rather to better understand the variance of teacher uptake and use within and across these PD 
experiences. Understanding and deeply analyzing and unpacking variance among and between types 
of PD offers the potential to identify the factors that impact uptake and use from PD.  This paper 
examines how teachers’ self-reported uptake differs across PDs located at different points on the 
adaptive-specified continuum. Specifically, one is highly adaptive, one is highly specified, and one 
lands in the middle. We believe conducting a cross case comparison will aid in helping us understand 
the factors associated with uptake related to content, pedagogy and resources. 

Oerview of TaDD Project  
This three-year impact study, Taking a Deep Dive (TaDD) is collecting qualitative data from three 

large U.S. National Science Foundation PD projects in order to use case studies and cross case 
analysis to further inform what teachers take up and use in different PDs in different contexts and 
why some teachers appear to take up and use more than others and why some PDs have better results 
than others. This paper uses a comparative case analysis and focuses on the portion of the TaDD 
study that investigates self-reported learning related to pedagogy, content and resources taken up and 
used from the following three NSF PD projects one to two years after the project and funding ended. 
In the next section, we briefly describe the three different PD projects.  
Learning and Teaching Geometry (LTG) 

The first NSF project, LTG, an efficacy study of the learning and teaching geometry professional 
development materials: Examining impact and context-based adaptations, sought to improve 
teacher’s own knowledge and instructional strategies in transformations-based geometry. This PD 
consists of 54 hours of highly specified video-based PD that is grounded in modules of dynamic 
transformations-based geometry which is aligned with the Common Core State Standards in 
mathematics (CCSSM). Through video analysis, teachers work together to solve problems and 
further their knowledge in mathematics teaching in the domain of geometry. The PD allows teachers 
to better support students in their attempt to gain a deeper understanding of transformations-based 
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geometry through activities like rate of change on a graph, scaling activities, and similarity tools. The 
material strongly connects to other critical domains including similarity, proportional reasoning, 
slope, and linear functions.  LTG is a specified PD as the content and pedagogical goals of the PD are 
clearly articulated for each workshop in the packaged materials. 
Lesson Study (LS) 

The second NSF project, Collaborative research: TRUmath and Lesson Study: Supporting 
fundamental and sustainable improvement in high school mathematics teaching (LS), aimed to 
engage in design research to develop and implement a replicable model for a coherent, department-
wide approach to professional learning focused on creating classroom environments that produce 
students that can be powerful mathematical thinkers. In the PD, teachers work to create lesson plans 
that are focused and coherent and allow for a deeper and richer understanding of mathematics and the 
ability to make connections and implement curriculum more effectively. In this project, teachers 
were taught the TruMath framework. This is an observation instrument that can be used to analyze 
classroom interaction across different dimensions.  Teacher teams engaged in LS as a way to work on 
specific shifts in teaching practice that aligned with the TRU dimensions. LS is an adaptive form of 
PD that utilized the TRU framework but allowed for teachers’ ideas to guide the workshops. 
Visual Access to Mathematics (VAM) 

The third NSF project, Visual access to mathematics: Professional development for teachers of 
English learners (VAM), aimed to build skills in mathematical problem solving and communication 
through the use of visual representations. This PD consisted of face-to-face PD as well as online 
workshops where teachers implemented problems from the PD and shared their student work to 
discuss access for English Learner’s (EL’s) and all students. The project investigated the 
instructional strategies and supports that teachers of EL’s need to provide access to mathematical 
learning while advancing academic language development. The approach was grounded in the use of 
visual representations, such as diagrams and geometric drawings, for mathematical problem-solving 
with integrated language support strategies. The intended goals of VAM were to help teachers to 
properly select appropriate visual representations for the use of different rational number task types 
and communication tools to show and explain mathematical thinking. VAM fell in the middle of the 
adaptive-specified framework as the face-to-face workshops had specified and intentional goals and 
the online professional learning meetings were guided by the teachers and used artefacts of practice, 
mainly lesson plans, to guide their discussions. 

Methodology 
Sixty-six participants from the three NSF projects took a 32-question survey LTG had 28 

participants, VAM had 25 and Lesson Study had 13). This survey included questions that asked 
participants to reflect back on their PD experience and characterize their past and/or current use of 
the PD content, pedagogy and materials.  The survey included seven Likert scale questions, where 
participants responded to statements on a scale of 1-10, as well as eighteen follow up questions that 
allowed the participants to explain and provide more details about their numeric response. To analyze 
the data, we used descriptive statistics and ANOVAs to understand the differences and similarities 
between uptake by project (LTG, VAM, Lesson Study) with ANOVAs followed by pairwise 
comparisons. Given the small sample sizes in this study, we report significance levels at the p<.10 
level as well as the typical p<.05 level.  

Qualitative responses were coded to move deeper into the data and unpack the quantitative results. 
Three project researchers coded the qualitative responses to better understand teachers’ perceptions 
of uptake after participating in professional development. The seven Likert scale questions were used 
as the baseline and the coded eighteen qualitative questions were used to analyze participants 
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perception and vision of uptake from their learning experiences in PD. Finally, we compared the 
differences among and between programs and present case studies of each project.  

Results 
We examined one-way differences by project by finding averages of the seven Likert scale 

questions on the survey.  Likert survey questions ranged from 1 (not at all) to 10 (a lot). In comparing 
the three projects, VAM participants had consistently higher average ratings than LTG and Lesson 
Study.  We found 6 areas that were significant at p<.05 and one at p<.10.  While all three projects 
reported a high degree of established community within their respective PD experiences, VAM 
participants reported a stronger (p<.10) sense of community than Lesson Study participants.  
Furthermore, VAM participants reported greater (p<.10) use of materials and resources than Lesson 
Study.  Other significant differences include VAM participants reporting higher levels of district 
support than both Lesson Study and LTG (p<.05).   Reports of content and pedagogy use, as well as 
how well the facilitator met the goals of the participants, were significantly higher (p<.05) for VAM 
than LTG. 

 
Table 1: Average teacher survey descriptions of PD uptake and use, by group: means and standard 

deviations (N=66) 
 
Likert Scale Survey Question: Codes for Likert Scale Survey 
Questions ranged from 1 (not at all) to 10 (a lot) 

LTG 
(n=28) 

VAM 
(n=25) 

LS 
(n=13) 

p-
value 

  To what degree, was the community established in your PD?1 8.46 
(2.12) 

9.24 
(1.01) 

8.00 
(1.41) 

p<.10 

How much did your district support your attendance and 
implementation of the PD in your classroom?2,3 

5.21 
(3.34) 

7.44 
(2.62) 

4.77 
(3.32) 

p<.05 

How much of the content from your project do you use in 
your classroom? 3 

5.29 
(3.10) 

7.24 
(2.28) 

5.54 
(2.67) 

p<.05 

How much of the pedagogy from your project do you use in 
your classroom? 3 

5.54 
(3.12) 

7.56 
(1.92) 

6.62 
(2.90) 

p<.05 

How much of the resources/materials from your project do 
you use in your classroom? 1 
 

4.57 
(3.34) 

6.16 
(2.76) 

3.69 
(2.72) 

p<.05 

To what degree was the facilitator focused on the intended 
goals of the PD from your own perspective? 3 

7.57 
(2.67) 

9.16 
(1.38) 

7.69 
(2.53) 

p<.05 

To what degree was the facilitator meeting the needs of the 
participating teachers?4 

6.54 
(2.72) 

8.84 
(1.34) 

6.46 
(2.33) 

p<.001 

 
Of the three studies, teachers in the VAM project had higher self-report data on several dimensions 

related to the uptake of content, pedagogy and resources.  In order to better understand specific 
                                                             
1 VAM > Lesson Study, p<.10. 
2VAM > Lesson Study, p<.05. 
3VAM > LTG, p<.05. 
4VAM > Lesson Study and LTG, p<.01. 
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uptake, we analyzed the qualitative data using a coding manual consisting of 33 codes that span 
content, pedagogy and resources in general, as well as specific areas such as representations, 
technology, principal and coach support, facilitator impact and theoretical alignment. Three project 
staff initially coded three surveys from each project and compared their results, discussed 
discrepancies and resolved differences by refining and agreeing upon codes. 
VAM 

Almost all of the VAM participants were able to identify representations from the PD that they used 
to teach relevant content including ratio, proportion, percent, dilation, and scaling. Additionally, 
approximately 50% of participants mentioned specific pedagogical strategies such as the Three Read 
Strategy that they learned in the PD. Participants were also able to describe how they used resources 
such as specific tasks, applets, and computer-based activities from the PD in their classroom practice. 
Only two participants didn’t respond or identify any specific uptake from the PD. The majority 
(92%) of the participants responded with an abundance of uptake. One participant explained, “I use 
the number line as often as I can. I try to help students see that it can be used with multiple patterns 
as an underlying skill for the double number line.” Some participants took up general strategies that 
could be used across mathematics lessons and others in other content areas. For instance, one person 
explained,  

“Generally, I’ve found that using visuals to access mathematics and the conceptual 
understanding in math has greatly benefited my students. The teaching strategies around 
using visuals to support understanding is something I use regularly.”  

In regard to principal and district support, the majority of VAM participants reported high levels of 
support. Others reported support related to release time. In general, no one reported anything 
negative related to support. Participants also reported that principals were generally supportive.  In 
terms of community, VAM participants reflected on the collaborative nature of both the on-line and 
in-person sessions. One participant noted,  

“I felt part of the community at the PD, my voice was heard and mattered.  The small zoom 
sessions were also helpful and supportive.  Getting to know and ask questions to a smaller 
cohort was less intimidating and educational. The moderators were so supportive and helpful 
and always followed through with any issues that needed follow-up or extra clarification.”  

Participants also felt they benefited from working on problems together as learners, “As we 
explored activities and experienced them as learners ourselves, we really opened up to one another 
and got to know one another.”  
LTG 

Participants reported lower levels of uptake for LTG than VAM. About 50% of participants 
responded “none” or “nothing” in terms of content they currently use in their classroom. Several 
noted that this was because they were not currently teaching geometry. The participants who did 
report content uptake mentioned specific transformation-based content from the PD.  For example, 
one participant noted, “Rotations, translations and dilations are helpful for students to see and 
visualize different possibilities for real world problems they are interested in solving.”  In terms of 
pedagogy, LTG teachers talked about using dynamic strategies that were closely related to the 
transformation-based geometry content, including the use of manipulatives and representations. 
Other teachers mentioned more general pedagogical strategies that were modelled by the facilitator 
of the PD, such as strategies for facilitating discussions, incorporating vocabulary and helping 
students develop explanations. As one participant noted, “I learned how to let students have a 
discussion to sort out their own ideas and practice defending their answers.  In terms of resources, 
75% of participants described how they currently used specific resources, such as patty paper or tasks 
and activities from the binder they were given at the PD.   However, 25% of participants reported 
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that they did not use any resources from the PD.  As described by this participant, this may be due to 
the content or grade level the teacher is currently teaching: “I do not use any of the paper materials 
that we were given in the binder because it does not apply to 6th grade or is very introductory for 7th 
grade.” In terms of district and principal support, teachers generally responded neutrally, and many 
stated that the district was not involved and sometimes not aware of the PD. Principal support varied 
greatly between school sites. Several reported that the principal was very supportive whereas other 
teachers reported lack of support.  In terms of community, most teachers noted that they felt part of 
the community and enjoyed working on problems and discussing strategies together.  For example, 
one participant noted that there were, “lots of discussion and opportunities to share.  All opinions and 
strategies and thoughts were valued.” Another added, “We worked during PD hours together and 
discussed our shared teaching experiences at other times.  The PD leaders made sure everyone felt 
engaged and included.” 
LS 

The LS project also had much lower responses than VAM when looking at the quantitative findings 
for each category. LS participants did not perceive that they took up any content. Not one of the 
respondents referred to specific mathematics content in their responses. Most responded that they 
didn’t have anything to report or that it was not applicable. On the other hand, when responding to 
pedagogical uptake, many responded positively and focused on different aspects of pedagogy that 
they took up and new instructional strategies that they were continuing to try to use.  Three 
participants mentioned the TRU framework that was used to analyze lessons related to effective 
instruction throughout their PD.  Other than two respondents that said the pedagogy was not 
applicable, the positive respondents shared different strategies they took away from the PD. One 
participant commented,  

“I engage in much more formative assessment with students and I constantly try to elicit 
more student thinking to determine how students are thinking through problems and then 
tailoring my instruction to meet students’ needs for understanding in real-time. I also think 
that I am much more focused on the central mathematics and big ideas of a unit or a lesson. 
This has allowed me to tweak my lessons, so I can make better decisions about which 
content is ancillary, extension or extraneous.”  

The other three responses were focused on assessment and questioning. Other LS teachers focused 
on questioning. For instance, one teacher reported that she has changed, “questioning strategies 
during a lesson to cultivate student’s critical thinking.” It is not clear why four out of 13 teachers in 
the LS program had very targeted pedagogical uptake related to assessment, questioning, and 
meeting students’ needs whereas the rest of the participants found little to respond to related to 
content, pedagogy and resources. One participant did note, “Developing a focus for the work that 
applied to all teachers concerns proved to be difficult.” In terms of resources, none of the LS teachers 
reported acquiring or using any resources from the PD. Three reported using some strategies with 
other teachers in planning lessons. In regard to principal and district support teachers reported a 
range of feelings from negative to positive but as a whole appeared to fall somewhat in the middle. 
One teacher might sum this up the best when explaining, “Somewhat? The district didn’t play an 
active role in either supporting us or hindering us.”  In terms of community, most reported they felt 
part of the community and several highlighted the importance of the community builders that were 
done at the beginning and end of each session.  However, one reported mixed feelings about their 
colleagues and community, “There were moments of brilliance during these sessions. Unfortunately, 
the department, in general, always leaves a bad taste in my mouth because we have a lot of dead 
weight in our department. It makes everything more difficult”  
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Discussion and Implications  
Teachers perceptions of uptake differed across the three sites.  It appeared that where a PD falls on 

the continuum may have impacted self-report data.  VAM, which falls in the middle of the 
continuum, had the highest self-report data among teachers. The more specified the goals, the clearer 
teachers were able to indicate whether the PD was useful to the types of mathematics classes they 
were currently teaching. On the other hand, if the PD was more adaptive and the nature of the goals 
and intentions were evolving, teachers appeared to indicate quite different aspects of the PD that 
were relevant to their planning and teaching. If a PD was both adaptive and specified at times, more 
teachers had positive and similar experiences associated with uptake. 

For instance, the VAM PD was specified enough to allow participants to recall and identify specific 
resources or pedagogical tools (such as double number lines or the Three Reads Strategy) that they 
could use in their classrooms.  It was also adaptive enough that participants had time to think about 
how to modify the tools and resources that they learned about during the PD.  On the other hand, the 
adaptive nature of LS might have made it difficult for participants to report how they were using the 
skills they learned because some of the goals and intentions of the program were not articulated 
during the PD. The goals were evolving simultaneously during the PD as teachers were engaging in 
developing one lesson plan per cycle for one specific classroom.  In addition, teachers may have had 
a harder time generalizing the relevance from a particular lesson study cycle to their specific 
classrooms and contexts. The adaptive nature of the LS PD has many more complexities than the 
other two.  For example, the goals and intentions are continually evolving and therefore teachers may 
take up very different aspects of the PD that are relevant to their teaching. This is unique to adaptive 
PD because it has the potential to meet teachers where they are at. On the other hand, the specified 
nature of LTG might have impacted self-report in that if teachers were not teaching transformations-
based geometry, they may not have been able to explicitly identify content, pedagogy or resources 
when they were teaching other content, even if there were underlying connections that could have 
been made. Many of the LTG teachers were able to identify tasks and tools when asked but at the 
same time may or may not have found the narrowly focused and specified content relevant to their 
current teaching. However, the teachers who were currently teaching geometry reported positive 
levels of uptake because they highly motivated to use and then teach the LTG content with their 
students. 

The nature of the PDs and the ways in which participants felt as if they were members of the 
community may also influence uptake.  The LS PD was the only one of the three where teachers 
visited each other’s classrooms.  The impact of visiting classrooms on community needs to be 
explored as we hypothesize that this may make teachers more vulnerable and may influence their 
perceptions of their learning. On the other hand, VAM was the only PD that had both an online and 
in-person community as part of the professional development.  This role of this on teacher learning 
also needs to be explored further.  We argue that this self-report data does not indicate whether 
classroom practice or student learning was impacted. More research is needed on the impact of 
context on classroom uptake. Case study classroom videotape data and interviews will provide us 
more information on the classroom uptake of participants in these three studies and will help us 
investigate the ways in which the three different types of PD have different affordances and 
constraints on teacher uptake. 

References 
Ball, D. L., & Cohen, D. K. (1999). Developing practice, developing practitioners: Toward a practice-based theory 

of professional education. Teaching as the learning profession: Handbook of policy and practice, 1, 3-22. 
Borko, H., Jacobs, J., & Koellner, K. (2010). Contemporary approaches to teacher professional development. 

International encyclopedia of education, 7(2), 548-556. 



Disentangling the role of context and community in teacher professional development uptake 

	 2008	

Borko, H., Koellner, K., Jacobs, J., & Seago, N. (2011). Using video representations of teaching in practice-based 
professional development programs. ZDM, 43(1), 175-187. 

Franke, M. L., Carpenter, T. P., Levi, L., & Fennema, E. (2001). Capturing teachers’ generative change: A follow-
up study of professional development in mathematics. American educational research journal, 38(3), 653-689. 

Greeno, J. G., Collins, A., & Resnick, L. B. (1996). Cognition and Learning. In DC Berliner & RC Calfee (Eds.), 
Handbook of educational psychology. 

Jacob, R., Hill, H., & Corey, D. (2017). The impact of a professional development program on teachers' 
mathematical knowledge for teaching, instruction, and student achievement. Journal of Research on 
Educational Effectiveness, 10(2), 379-407. 

Jacob, R., Hill, H., & Corey, D. (2017). The impact of a professional development program on teachers' 
mathematical knowledge for teaching, instruction, and student achievement. Journal of Research on 
Educational Effectiveness, 10(2), 379-407. 

Jacobs, J.K., Koellner, K., Seago, N., Garnier, H. & Wang, C. (2020). Professional Development to Support the 
Learning and Teaching of Geometry. The Language of Mathematics: How the Teacher's Knowledge of 
Mathematics Affects Instruction, 143. 

Sztajn, P., Borko, H., & Smith, T. (2017). Research on mathematics professional development. Compendium for 
research in mathematics education, 793-823. 

 



Teaching and Classroom Practice 

In: Sacristán, A.I., Cortés-Zavala, J.C. & Ruiz-Arias, P.M. (Eds.). (2020). Mathematics Education Across Cultures: 
Proceedings of the 42nd Meeting of the North American Chapter of the International Group for the Psychology of 
Mathematics Education, Mexico. Cinvestav / AMIUTEM / PME-NA. https:/doi.org/10.51272/pmena.42.2020 

2009	

SUPPORTING INCLUSION OF STUDENTS THAT TYPICALLY STRUGGLE WITH 
MATHEMATICS IN COGNITIVELY DEMANDING SMALL-GROUP DISCOURSE 

Dr. Kristy Litster 
Valdosta State University 

klitster@valdosta.edu 

This study examined how two small-group discourse types (Reflective and Exploratory) supported 
the inclusion and enacted levels of cognitive demand of students who typically struggle with 
mathematics in real-world, task-based assessment activities. The study focused on 11 fifth-grade 
students within a larger study involving 97 fifth-grade students engaging with 24 mathematics task-
based assessment activities. Results showed that students that typically struggle with mathematics 
were more likely to participate in group discourse during reflective discourse. Additionally, 
discourse contributions by these students were more likely to be high cognitive demand during 
reflective discourse. Reflective discourse provided students with time to think through and write 
down their own strategies which may have increased student confidence and willingness to engage in 
explaining and justifying their thinking. 

Keywords: Cognition; Classroom Discourse; Elementary School Education; Equity and Diversity 

Task-based assessments provide educators with an understanding of students’ ability to apply their 
mathematics understanding to real-world situations. Mathematics discourse can also provide a 
formative assessment of students’ cognitive understandings and misconceptions. Research on 
mathematics discourse is divided on timing - after (Reflective) or during (Exploratory) student 
engagement with mathematical tasks –to best support the inclusion of all students’ ideas. Thus, the 
purpose of this study was to examine how these two discourse types supported the inclusion and 
enacted levels of cognitive demand (CD) for students in four Grade 5 classrooms who typically 
struggle with mathematics, when engaging with 24 task-based assessment activities. 

Theoretical Perspective 
Cognitive demand is the number and strength of the connections within and between mental 

networks, or schema, to solve a specific task (Webb, 1997). High student-enacted levels of cognitive 
demand (HCD) are defined as students’ mental actions that require two or more schema connections 
to make inferences or connections between mathematical ideas or contexts.  HCD can promote 
deeper student understanding of mathematics properties and procedures, increase students’ ability to 
solve related mathematics problems, and reinforce mathematics connections (Stein, Grover, & 
Henningsen, 1996). This is especially important for students that typically struggle with mathematics. 

Multiple factors can influence student-enacted CD when engaging with mathematics tasks. The 
Discourse and Interpretation Influences on Cognitive Demand Framework in Figure 1 illustrates a 
few of these factors. The intended CD, the number of connections anticipated for a student to 
complete a task (e.g., the designed tasks at specific DOK levels in this study), as well as the 
implemented CD, teacher actions that encourage different student physical and mental actions (e.g., 
using recall or reasoning), can influence what and how a task is presented to the students (Webb, 
1999; Boston & Smith, 2009).  However, research shows that students’ interpretation of a task 
primarily influences their enacted CD (e.g., Otten, 2012). Students may enact multiple elements of 
HCD or low cognitive demand (LCD) in response to a single task (e.g., using recall of facts to 
support counter-argument). 
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Figure 1. Discourse and Interpretation Influences on Cognitive Demand 

 
As seen in Figure 1, mathematics discourse can influence students’ interpretation of mathematics 

tasks. Mathematics discourse has the potential to increase student-enacted CD by eliciting student 
participation in HCD actions such as evaluating and reasoning about mathematical properties or 
procedures (Charalambous & Litke, 2018; NCTM, 2014).  

Placement of discourse may also influence verbal and written student-enacted CD. Reflective 
Discourse takes place after students have engaged with the tasks independently, while Exploratory 
Discourse takes place while students are engaging with the task. Students’ internal discourse and 
written CD after engaging with Reflective Discourse can influence their verbal contributions towards 
the social mathematics discourse. Group reflection on differences between verbal contributions, may 
prompt a change in students’ interpretation of the task to develop a more advanced conception of the 
mathematics task (e.g., Silverman & Thompson, 2008) and may even prompt a change in student-
enacted CD. Students’ interpretations of mathematics tasks will also influence their verbal 
contributions towards exploratory discourse as students’ personal understandings are negotiated to 
form a group understanding of the problem (Bruner, 1986; Clements & Battista, 2009; Forman, 
2003) and the written CD for the task. 

Researchers are conflicted on which placement of discourse is the best. Walter (2018) explains that 
delaying discourse until students have sufficient time to process the mathematics or write down their 
own ideas can promote the inclusion of students who might otherwise be ignored, such as typically 
struggling students. Rojas-Drummond and Mercer (2003) contest that waiting to engage in discourse 
until after the task is complete results in LCD cumulative talk where students, such as those that 
struggle with mathematics, simply agree with one dominant idea. Instead, they recommend 
Exploratory Discourse, which allows students to inclusively discuss relevant information in a timely 
manner. 
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Methods 
This study utilized a mixed methods research design (Tashakkori & Teddlie, 2010) to answer the 

research question: How do two types of small group discourse (exploratory and reflective) support 
the inclusion and enacted levels of cognitive demand (CD) of students that typically struggle with 
mathematics during real-world tasks? 
Participants 

This paper focused on 11 of 97 fifth-grade students from a larger study (Litster, 2019). Focus 
students were identified as typically struggling with mathematics based on self-identification (N=7) 
during group discourse (e.g., I’m usually wrong/I just don’t really get how to do math) or identified 
with a mathematics IEP (N=4). Six students were identified as English Learners (ELs).  
Procedures 

Students in four fifth-grade classrooms completed two real-world, task-based assessment activities 
(12 tasks per set), in groups of two or three. Typically struggling students were in different groups 
during the study. Students worked collaboratively with a small group on one set, engaging in 
Exploratory Discourse of solutions and strategies; and individually on a second set, followed by 
Reflective Discourse of solutions and strategies. Using a crossover design (Shadish, Cook, & 
Campell, 2002), two classes completed Set-1 with Exploratory Discourse and Set-2 with Reflective 
Discourse, while the other two classes completed Set-1 with Reflective Discourse and Set-2 with 
Exploratory Discourse. 
Data Sources and Analysis 

There were two main data sources in this study: students’ written work relating to the mathematics 
tasks and video/audio recordings of students’ interactions and discourse while engaging with the 
tasks. 

The researcher used qualitative magnitude coding to identify and “quantitize” (Saldaña, 2015, p. 86) 
the enacted levels of CD in students’ verbal responses to the mathematics tasks as high cognitive 
demand (HCD) or low cognitive demand (LCD). Twelve percent of the data were double coded with 
a relatively high inter-coder reliability (α=0.9212)  (Hayes & Krippendorff, 2007).  The researcher 
created frequency tables to compare quantitative results relating to enacted CD. Timestamps from the 
video data were used to identify time engaged in active mathematics discourse. 

The researcher qualitatively coded students’ verbal responses using pattern and structural coding to 
identify patterns in students’ actions that seemed to increase or decrease typically struggling 
students’ participation in the small group mathematics discourse 

Results 
Results found that overall, Reflective Discourse was more likely to support higher levels of 

cognitive demand in discourse contributions by typically struggling students than Exploratory 
Discourse. Table 1 shows a comparison of the cognitive demand in student’s discourse contributions, 
based on ability and discourse type. 

 
Table 1: CD of Mathematics Discourse Contributions by Ability and Discourse Type 

Mathematics Ability Reflective Discourse  Exploratory Discourse 
 LCD HCD  LCD HCD 
Typically Struggling 37.71% 62.29%  50.72% 49.28% 
Everyone Else 32.46% 67.54%  29.92% 70.08% 
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As seen in Table 1, students that typically struggled with mathematics were engaged in HCD 
discourse for a larger percentage of time during reflective discourse than exploratory discourse. 
Additionally, there was a smaller difference between ability groups in the percentage of time students 
engaged in HCD discourse during reflective discourse (5.25%) than exploratory discourse (20.8%). 

Reflective Discourse was also more likely to support the inclusion of typically struggling students 
than Exploratory Discourse. Most groups of students engaged in active mathematics discourse for 
about 12 minutes per task-set, with an average difference of less than one across the discourse types. 
However, not every student participated in the discussion for all 12 tasks in each task-set. Table 2 
shows the count and average number of tasks where a student remained silent and did not participate 
in the discussion for an entire task, based on ability and discourse type. 

 
Table 2: Count of Tasks Where a Student Remained Silent 

Discourse 
Struggling Students 
                   (n=11) 

Everyone Else  
(n=86) 

Reflective 11 (1.00 per student) 45 (0.52 per student) 
Exploratory 57 (5.18 per student) 21 (0.24 per student) 

 
As seen in Table 2, students that typically struggle with mathematics were more likely to remain 

silent during the discussion of tasks during Exploratory Discourse than during Reflective Discourse. 
Additionally, there was a larger discrepancy between ability groups in the average number of tasks 
where a student remained silent for exploratory discourse (5 tasks) than for reflective discourse (<1 
task). 

Qualitative analyses supported the quantitative results. During Exploratory Discourse, the typically 
struggling students often said little to nothing during the entire set and were often ignored by their 
group. For example, the only phrase one student with an IEP, Penny, said while completing a set 
using Exploratory Discourse was, “You are going too fast.” After this comment, her group told her 
the answers and what to write on her paper after they solved each task. Other struggling students 
often went without speaking for three or four tasks in a row. Most students who were silent during 
exploratory discourse appeared to be engaged in active listening (e.g., looking at other students in 
group and writing on paper in response to other students’ comments). However, students who 
struggled with the mathematics were more likely to disengaged with the tasks completely (e.g., 
playing with paperclips in their desk). 

In contrast, during Reflective Discourse, the typically struggling students were more likely to ask 
for help. For example, Penny, who talked once during Exploratory Discourse, contributed 19 
different times during Reflective Discourse. Most of Penny’s contributions confirmed shared answers 
(e.g., “Yeah, I got that too”); however, occasionally she would ask her group for help or contribute 
new ideas. An example of this is found in the excerpt below where the group is engaging in reflective 
discourse after trying tasks 1-3 from Task-Set 1 on their own. In these tasks, students are calculating 
revenue from movie sales [T1], book sales [T2], and comparisons between the two [T3] for Harry 
Potter and the Half-Blood Prince. 

Wendy: What did you get down here [pointing to T2] cause I didn’t finish. 
Penny: I am pretty slow writer and thinker so I did not make it down there. But show me what you 

did. 
Wendy: I did .5 million times 12.99. [points to work for 500,000 times 12.99 that is half finished] 
Penny: It says round. $12.99 is like $13 so can you just do 13 times 5? 
Xander: So I did that and I got 65.  
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Wendy: So on this one [points to T3], I am pretty sure this is the movie [points to T1] and this is the 
books [points to T2] 

Penny: Paperbacks means books 
Wendy: So yea, so up here [T1] is 247.24 million and the highest one here [T2] was just 65 million 

so I think down here people saw the movie more. 
Penny: Yea, I think they saw the movie more. That’s [pointing to 247.24 on her page] way bigger 

than that [pointing to 65 on Xander’s paper]. 
Xander: The price [on the books] was bigger than $7 [price of movie ticket] and the price was bigger 

but it is a smaller number [total book revenue]. 
Penny: Yea and I think people don't really like reading any more. 
[Video 210H1, 0:31-2:35] 

In this excerpt, we can see that, not only is Penny asking for help, her group is willing to explain 
their answers rather than just asking her to copy them. Additionally, Penny was able to add ideas and 
strategies to the discussion, such as rounding 12.99 to 13 for an easier computation problem, a 
comparison to justify an agreement, and a possible context for the lower book revenue. Although no 
one in the group caught the mathematical error for multiplying 13 x 5 instead of 13 x .5, there was 
evidence of high verbal CD by all three students: Penny’s counterexample for rounding $12.99 to 
$13, Wendy’s justification of why people saw the movie more, and Xander’s comparison of the 
inverse relationship between T1 and T2. 

One factor that may help explain the increased discourse and HCD contributions by typically 
struggling students is that groups engaged in reflective discourse often had one student (not typically 
struggling) who started the discussion by asking about a task they struggled with. For example, in 
this excerpt Wendy moved the discussion directly to Task 2 because she struggled to complete her 
very large (and unnecessary, though mathematically accurate) calculation. Seeing other students 
struggle may have helped students who typically struggle feel more comfortable asking for help or 
offering ideas. It also may have helped the other students in the group feel more patient with their 
explanations because they could point to their work during their explanation or compare their work to 
the struggling student’s work to find where their calculations diverged. 

Qualitative analyses also noted a pattern in validation of student ideas. During exploratory 
discourse, struggling students’ ideas were often devalued by other members of their group. However, 
this was not the case during Reflective Discourse.  The following excerpts from the group working 
with Miguel, a Latino EL student with a Math IEP, provide examples of this behavioral pattern. In 
this first excerpt, Miguel, Tara, and Ryan are engaging in exploratory discourse to solve task 5 in 
Task-Set 1. In this task, students are comparing different sources of online movie ratings for Harry 
Potter and the Half-Blood Prince. 

Ryan: So Amazon is 3 3/4, minus iTunes, which is 4. 
[Ryan and Tara start to subtract the fractions] 
Miguel: It's 1/4 
Tara: You have to show your work 
Miguel: I just know it 
Tara: Then how did you do it in your head? Cause you can't minus that. That would equal 1 ¾ so 

how did you do that in your head? 
Miguel: It's just like . . . [pointing to line plot] . 
Tara: [interrupting] If you can't say it then you need to do it.  
Miguel: Maybe if you do 4 minus 3 and you get 1 . . . and then minus ¾ 
Tara: You can't do that or you would get negative. You have to change this to improper fraction and 

that makes 4/1 and this [points to 3 ¾] makes 9/4 and you have to make a common denominator 
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so this is 16/4 and then you subtract so it’s 7/4 and then you have to change it to a mixed number 
so the answer is 1 ¾. 

Miguel: Yours is probably correct. 
[Video 460H2, 11:30-13:20] 

In this excerpt, we can see that even though Miguel had the correct answer and what appeared to be 
a valid strategy to get to the answer, Tara’s interruption did not give him the time to fully work out 
his reasoning to support his answer. In the end, Miguel conceded that Tara was probably correct, 
even though her calculations were incorrect. This pattern of concession was similar among other 
typically struggling students whose divergent answers or strategies were not valued or explored (e.g., 
“Okay, you’re the smart one, so what’s the answer;” or “You are probably right cause you are usually 
right.”). 

In this second excerpt, Miguel, Tara, and Ryan each completed Tasks 6-10 in Task-Set 2 on their 
own and came together during Reflective Discourse to discuss their answers and strategies. In these 
tasks, students are calculating and comparing production and retail costs for the Diary of a Wimpy 
Kid book series. In the excerpt from Task 7 below, they are discussing their calculations for possible 
fractional discounts [e.g. ½] off the rounded retail price [$60]. 

Tara: So on this one I multiplied and ½ times 60 is 30. 
Miguel: I divided. 
Tara: No, so you have to multiply. You change this to an improper fraction so 60 is on top of 1 and 

then 60 times 1 is 60 and . . . 
Miguel: [interrupts] But it’s the same answer [points to paper]. 
Ryan: Me too. So 1/3 of 60 is like 20. 
Tara: Yep and 1/4 times 60 is 40.  
Miguel: It's 15. Cause 40 + 40 + 40 + 40 is more than 60. 
Ryan: So 1/5 of 60 is 12. 
Miguel: And 60 divided by 10 is 6. 
Tara: So 1/7 times 60 is . . . 49? 
Miguel: [Shows Tara his division] so it rounds to 8. 
Tara: Ok [revises her answer] 
[Video 460D2, 2:51-3:54] 

In this excerpt, Miguel had a chance to try out his strategies before comparing answers with Ryan 
and Tara, which may explain why he appears more confident in his answers and in his strategies than 
he was in the exploratory excerpt. During Reflective Discourse, Miguel was able to show Tara that 
his strategy produced the same answer as hers on the first few calculations. This may have helped 
Tara to accept his strategies and answers on the later calculations that did not match her answers. 
One reason Reflective Discourse was more likely to support the inclusion of typically struggling 
students may be that it provided students time to think through their own strategies. Miguel was able 
to conceptualize a unit-fraction discount as a whole number division problem, a strategy that was 
only used by one other person in the entire study. 

One exception to these patterns was Summer, a Native American EL student with an IEP. 
Summer’s group was very patient with her and never took over her work. For example, if Summer 
said, “I need help,” her group would ask, “Which part,” or “Would you like to try . . . [specific 
strategy from class].” Additionally, Summer’s group would use questioning techniques such as “Do 
you remember how [teacher’s name] taught us last week?” or “Okay, so what do you need next to be 
able to do that?” at least three times before offering a specific suggestion for the next step. During 
both exploratory discourse and reflective discourse, Summer’s group waited to continue until 
Summer was confident in her work. Group support and validation may have provided Summer with 



Supporting inclusion of students that typically struggle with mathematics in cognitively demanding small-group 
discourse 

	 2015	

the support to ask questions, request more time to complete a task, and offer the occasional strategy 
to complete a task, regardless of discourse type. 

Conclusions 
In conclusion, both discourse types elicited HCD discussions such as evaluating and reasoning 

about mathematical properties or procedures, similar to other research results (e.g., Charalambous & 
Litke, 2018; NCTM, 2014). However, Reflective Discourse practices were more likely to support the 
inclusion and HCD discourse contributions of students that typically struggle with mathematics, 
during the real-world tasks in this study. These results are similar to other research on reflective 
discourse practices such as Kalamar (2018) who found that by the end of her three-week 
intervention, 100% of minority and typically struggling students in an intervention class were 
participating during Reflective Discourse.  

Similar to Walter’s (2018) findings, wait time may play an important role in increased participation 
of typically struggling students. Reflective discourse practices allow students time to think through 
and try out their strategies prior to the discussion. Having a clear train of thought, as well as a 
tangible artifact to refer to, may have increased student confidence and willingness to participate in 
the discussion.  In this study, students who do not typically struggle with mathematics were more 
likely to admit when they were struggling with a problem or answer during reflective discourse than 
during exploratory discourse.  This may have also contributed to an environment where the typically 
struggling students were more willing to ask questions or propose their own ideas. 

Finally, the results relating to Summer and her group bring forward the need for future studies 
relating to group norms, such as those used by Summer’s small group, that may support the inclusion 
of students who are traditionally excluded from small group discourse, regardless of discourse type. 
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As the field draws to greater consensus around components of productive mathematics classrooms, 
the need increases to answer questions about how we operationalize and measure these components 
and how we can actualize such practice in classrooms. This research report shares an analysis from 
a larger project aimed at describing and quantifying student and teacher components of productive 
classrooms at a fine-grain level. We share results from this analysis of 39 mathematics lessons with a 
focus on teacher moves and catalytic teaching habits that characterize these lessons. A cluster 
analysis identified four profiles of lessons differentiated by the existence of these catalytic teaching 
habits and subsequent work with student ideas. Further, these clusters appeared to account for 
differences in student contributions in lessons. 

Keywords: Instructional activities and practices 

There is general consensus that productive mathematics classrooms are ones where student thinking 
is integral and student discussion permeates (Jacobs & Spangler, 2017). A mathematics classroom 
can be conceptualized in terms of the interrelations between student(s), teachers, and content, often 
deemed the instructional triangle (e.g., Hawkins, 2002). The relationships between these areas can 
serve to position students towards engagement in meaningful mathematics. In this work, we share an 
analysis of residue from the instructional triangle measured via the Math Habits Tool (MHT; 
Melhuish, et al., 2020). The MHT was developed to capture mathematically productive components 
of classrooms in terms of both what teachers and students do in-the-moment. We conjectured that we 
could categorize different types of mathematics classrooms based on the existence of, and patterns 
within, habits of mind/interaction (student engagement in mathematics and with each other), catalytic 
teaching habits (teaching moves to engender student engagement with the content), and teaching 
routines (teaching structures that position and encourage students as contributors to mathematics).  

In order to begin this discussion, we share results from an analysis of 39 lessons spanning grades 4-
8. These results illustrate a partition of lessons into four clusters differentiated based on how student 
ideas were prompted/treated: student ideas are not prevalent and teacher-prompts are limited as well 
as unvaried (cluster 1); student ideas are in discourse, prompts are more prominent yet unvaried 
(cluster 2); student ideas are in discourse with varied prompts for student ideas with a focus on 
expanding ideas (cluster 3); student ideas are in discourse with varied prompts for student ideas with 
a focus on students engaging with each others’ ideas (cluster 4).  

Literature Background 
Researchers and policy documents alike have identified attention to student mathematical thinking 

as a key component of mathematically productive classrooms (Jacobs & Spangler, 2017; National 
Council of Teachers of Mathematics, 2014). In Jacobs and Spangler’s (2017) overview of the 
literature on teaching, they have unpacked this attention into two core teaching practices: noticing 
students thinking and orchestrating classroom discussion. Classrooms that incorporate these practices 
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provide settings where student ideas serve as the grounds for moving the mathematics forward. 
Teachers research student ideas, provide space for student ideas to become part of the classroom 
discourse, and develop a shared community in which students take ownership of mathematics. 

These core teaching practices have one commonality: teaching centered on students’ mathematical 
ideas. We have identified four essential purposes for teacher moves related to students’ mathematical 
ideas: engaging students in idea generation, researching student ideas, engaging students in 
expanding their ideas, and orienting students to each other’s ideas. Productive idea generation can be 
supported through mechanisms such as allowing for private reasoning time (e.g., Kelemanik, et al., 
2016) and providing and maintaining high cognitive demand tasks (e.g., Stein, et al., 1996). 
Researching student thinking occurs when teachers press for sharing reasoning and meaning behind 
student ideas to allow teachers to attend to, interpret, and decide how to respond to student thinking 
(e.g., Jacobs, et al., 2010). Expanding ideas then includes prompts for students to justify their 
responses (e.g., Boaler & Staples, 2008) or reflect on their thinking (e.g., Schneider & Artelt, 2010). 
The last essential component to a student idea-driven classroom is orienting students’ to each other’s 
ideas. This involves bringing student ideas into the public discourse to establish common ground 
(e.g., Staples, 2007), and asking students to interpret and compare each other’s ideas (e.g., Stein, et 
al., 2008). 

Theoretical Orientation and Analytic Framework 
The theory underlying our work is that of the instructional triangle (Hawkins, 2002). Hawkins 

posited that instruction can be viewed through the relationships between teachers, students, and 
content. Lampert (2001) expanded on this work in analyzing her own practice, noting how 
instruction occurs through the arrows and introduced that the teacher plays a mediating role on the 
arrow reflecting the relationship between student and content. Further, Cohen et al. (2003) brought 
attention to not just “student” but the additional layers of interactions between students within a 
classroom. 

 
Figure 1: Instructional Triangle and the MHT Framework 

 
In our operationalization of this triangle, we focus on key relationships within those triangles: 

productive ways students engage in mathematics (habits of mind), with each other around 
mathematics (habits of interaction), productive teaching structures (teaching routines), and individual 
teaching moves that can serve to catalyze student productive engagement with mathematics (catalytic 
teaching habits.) In this report, we focus on the category of catalytic teaching habits (CTHs) as they 
are both highly observable and play a key role in mediating the relationship between students and 
content. Recall, CTHs are prompts by the teacher to bring about students’ engagement within the 
lesson and are represented in the instructional triangle by the line, added by Lampert, originating 
from the Teacher to the line connecting Students to Content. The CTHs can be found in Figure 2 in 
the Results section. We will also briefly analyze students’ habits of interation (HoIs) which relate to 
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communicating mathematical ideas primarly mapped to the Student-to-Student interactions within 
the instructional triangle. Examples of HoIs include explaining mathematical ideas, critiquing and 
debating, comparing ideas, exploring multiple pathways, and asking genuine questions. 

Methods 
For the scope of this project, we are analyzing lessons from two school districts: elementary schools 

(grades 4-5) from a large urban district and middle schools (grades 6-8) from a mid-size urban 
district, both in the United States. We are analyzing a lesson at the end of the year from all of the 
teachers from the middle school group, and a stratified random sample, according to Mathematical 
Quality of Instruction (Hill, 2014) scores, from the larger set of elementary teachers. Currently, we 
have coded 39 lessons (19 from 4-5 and 20 from 6-8).  

Two trained coders independently watched each video-recorded lesson and qualitatively coded the 
classroom interaction by interpreting teacher moves and student contributions using the MHT 
codebook as a guide. The unit of analysis was at the contribution level so a student (or group of 
students) explaining one idea would be a single unit. Each substantive mathematical contribution 
from a student(s) would have a single HoI code. Similarly, a teacher press would be a unit. During 
this process, coders took detailed notes to keep a record of their rationale for assigning particular 
codes. Then, the two coders met to discuss and reconcile their individual interpretations until 
agreement was reached. In addition to student and teacher interaction, coders also noted portions of 
class time spent on whole class discussion (or teacher lecture), small group work, and individual 
work as well as rated each lesson holistically across a number of categories including overall teacher 
and overall student. Each lesson was rated a 1, 2, 3 or 4 within each holistic coding category where 1 
represents the lowest rating and 4 represents the highest rating. The overall teaching captures the 
degree to which teacher moves reflect catalytic teaching habits, teaching structures including 
productive routines (such as selecting and sequencing), and ultimately if teachers prompted students 
towards justifying or generalizing (a requirement for a score of 4). Similarly, the overall student code 
captured whether students were engaged in math habits of mind and interaction with a scores ranging 
from no engagement (1), some engagement (2), engagement in many habits (3) and engagement with 
many habits including justifying or generalizing (4). We calculated Krippendorff (2004)’s alpha for 
overall student at 0.679 and overall teacher 0.764, both meeting the acceptable cutoff for reliability. 

At the current stage, we focus our detailed analysis on the CTHs. To simplify this analysis, we 
considered a binary variable for each CTH on each lesson (occurred or did not occur.) We then 
conducted a two-step cluster analysis using a log-likelihood distance in order to cluster together 
lessons that were similar in terms of CTH profiles. Four clusters provided a fair classification with 
each cluster containing at least eight lessons. We further situate these clusters in relation to the 
summary variables: overall student and overall teacher scores. 
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Results 
An Overview of CTHs in Lessons 

 
Figure 2: Boxplots Reflecting Frequency of CTHs Per Lesson 

 
An overview of the frequency of various CTHs can be found in Figure 2. This figure contains box 

plots along with data points (each dot is one lesson) representing the range in frequency for each 
class. Notice that prompts to share why are most common, with well over half of the lessons 
including multiple occurrences. In contrast, the majority of lessons had zero prompts for students to 
analyze ideas (see the density of dots at 0 frequency). 

 
Profiling Lessons Based on Types of CTHs Present 

 
Catalytic Teaching Habit Cluster 1 

(14 lessons) 
Cluster 2 

(8 lessons) 
Cluster 3 

(8 lessons) 
Cluster 4 

(9 lessons) 
Prompt for Private Reasoning 0% 0% 100% 77.8% 
Prompt to Share Thinking 14.3% 25% 87.5% 44.4% 
Prompt to Share Meaning 35.7% 0% 75% 44.4% 
Prompt to Share Why 57.1% 100% 100% 100% 
Prompt to Notice/Conjecture 28.6% 12.5% 25% 44.4% 
Prompt to Explore Contradiction/Error 7.1% 62.5% 12.5% 44.4% 
Prompt to Reflect 0% 12.5% 37.5% 55.6% 
Revoices Student Idea 14.3% 87.5% 87.5% 55.6% 
Prompt to Revoice Student Idea 0% 12.5% 0% 88.9% 
Prompt to Analyze a Student Idea 0% 12.5% 25% 66.7% 
Prompt to Compare Student Ideas 0% 0% 0% 88.9% 

Table 1: Percentage of Lessons in Each Cluster with Relevant CTH Occurrence 
 

Table 1 contains the cluster analysis results where the percentages in each cell indicate what 
percentage of lessons in that cluster contain the given CTH (e.g. 14.3% of lessons in cluster 1 contain 
a prompt to share thinking). The coloring reflects the density of lessons in that cluster containing that 
CTH (red: less than or equal to 25% of lessons, yellow: between 25% and 75%, green: 75% or more 
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of lessons). Lessons in cluster 1 tended to have few CTHs with no or few variations in prompts 
related to students contributing ideas. Lessons in cluster 2 all included at least a basic prompt for a 
student to share their idea, and most included a teacher revoicing a student idea, pushing student 
ideas into the classroom public space. Cluster 3 reflected a greater variation in CTHs with the 
majority containing not just explain why prompts, but also general prompts to share thinking and 
share understanding of a mathematical idea. However, like cluster 2, student ideas were revoiced by 
the teacher. Cluster 4 reflected less variation in initial idea sharing mechanisms, but substantial 
prompts for students to engage in each other’s ideas. Notice the extremely high proportion of lessons 
in cluster 4 that contained prompt to revoice student idea, prompt to analyze a student idea, and 
prompt to compare student ideas. These moves shift the intellectual responsibility back to the 
students to make sense and engage with one another’s ideas. 
Examples of CTHs and Corresponding Student Contributions By Cluster 

In order to further situate these clusters, we share a representative exchange from a classroom in 
each cluster.   

Cluster 1, Minimal Use of Student Ideas. The following exchange comes from a 7th grade 
classroom where students were guided by the teacher during a lesson about demonstrating the 
Pythagorean theorem using pictorial models. While displaying a visual of a right triangle, and 
pointing to the right angle, the teacher asked: 

Teacher: What are we claiming that we have here? [pointing to right angle] 
Students: Right Angle 

The teacher endorsed the response, by repeating it, and continued with their explanation which 
included prompts for students to give short answers to teacher questions. This exchange was of a 
unidirectional nature (Brendefur & Frykholm, 2000) in which the teacher directed the instruction, 
and students were asked closed questions. Such exchanges typified lessons in cluster 1 in which few, 
if any, CTHs occurred. Note, an exchange such as this, with short “fill in the blank” style answers, 
were not categorized as any of the Share codes (2nd, 3rd, 4th in Table 1). The MHT codes require a 
request for more substantive student contributions before such thresholds are reached. 

Cluster 2, Some Use of Student Ideas. In cluster 2, the lessons were characterized by share why 
CTHs and teacher revoicing of student ideas. For example, consider the following exchange from an 
8th grade classroom that focused on converting between scientific and standard notation: 

Teacher: It’s in the tens place, but why I’m [sic] adding a zero? (CTH: Share why) 
Student: In the tens, the power says two numbers. (HoI: Explain) 
Teacher: Oh, very good, it says that there are two numbers. (CTH: Teacher revoice) 

In this exchange, the teacher prompted the students to explain why a zero was added into the tens 
place based on the power. The student provided a short explanation, and then the teacher revoiced the 
explanation. This interaction was typical within the entirety of the lesson in which the teacher guided 
the exploration, but requested contributions beyond short answers from students that were then 
acknowledged/evaluated and revoiced. 

Cluster 3, Use and Press for Expansion of Student Ideas. This next exchange comes from a 4th 
grade classroom during a lesson centered on understanding the definition of a pyramid. A student 
volunteered the definition as a solid with a polygon base. The teacher began working with this idea: 

Teacher: Hmmm, what is a polygon. A square is a polygon. Triangle is a polygon. What makes those 
polygons? (CTH: Prompt to Share Meaning) 

Student: They are closed shapes that have a straight line. (HoI: Explain) 
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At this point, the teacher prompted the student to repeat the idea, then the teacher revoiced the idea, 
“straight lines, closed shapes.” The teacher then continued to prompt students to add onto this 
definition. In contrast to the prior example, the teacher prompt was more than just a prompt to share 
reasoning, but to connect a student idea to mathematical meaning. 

Cluster 4, Presses for Engagement with (and Uses) Student Ideas. The subsequent exchange 
comes from a lesson about volumes of rectangular prisms in a 5th grade classroom. A student was 
presenting their solution to a problem that asked them to find volume, and the teacher asked this 
student to compare their contribution to a previously discussed student strategy:  

Teacher: [Student A], how could you tell [Student B] that he actually did something similar, what did 
he actually use? (CTH: Prompt to Compare Student Ideas) 

Student A: Well, he used addition... and it’s basically the same thing because with this like the 3 is 
kind of like right here and then it would be like 7 times the width like that. (HoI: Compare) 

The teacher followed up by restating Student A’s multiplication strategy to explicitly connect to the 
addition strategy offered by Student B. Having students explain and compare each other’s ideas 
distinguished cluster 4 from the other clusters. 
Situating the CTH Profiles in Terms of Student Contributions 

 
Figure 3: Scatterplot Representing Lessons on Overall Student and Overall Teaching Scores by 

Cluster. Note: the dots are jittered to be visible. 
In order to further situate these results within the whole lesson overall, we explored how these 

clusters related to overall student and overall teacher scores (see Figure 3). First, we note that there 
is a substantial positive relationship between overall teaching and overall student scores as measured 
via the MHT. An increase in overall teaching score was associated with an increase in the odds of 
higher overall student score, with an odds ratio of 2.494 (95% CI, 1.410 to 3.579), Wald χ2(1) = 
20.314, p < .001. If we then look at our lesson clusters we can discern that cluster 1 tends to have low 
ratings for both teacher and student. Cluster 2 includes both low and middling scores on both, and 
lessons in clusters 3 and 4 tend to have higher overall teaching and overall student scores.  
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Figure 4: Boxplots of Frequencies of Student Contributions by Cluster (as reflected by Habit of 

Interaction occurrences) 
 

Further analysis examines whether these CTH prompts for more student-to-student engagement (as 
evidenced in cluster 4) actually relates to increased amounts of such interactions by students. A 
glance at student contributions paints a similar picture (see Figure 4). When comparing the number 
of occurrences of habits of interaction (HoI; a proxy for student math idea contribution), a one-way 
ANOVA identified significant differences between clusters (F(3)=11.1215, p<.001). The average 
number of student HoI in a cluster 1 lesson was 3.00 (sd=2.386), cluster 2—8.25 (sd=8.892), cluster 
3 – 19.875 (sd=10.789), and cluster 4 – 28.889 (sd=19.915). A Tukey HSD post hoc test identified 
significant differences between cluster 1 and 3, 1 and 4, and 2 and 4. This reflects that variation in 
catalytic teaching habits seems to correspond to the number of math contributions from students.  

Discussion and Future Research Plans 
This analysis serves as an initial view into profiles of different mathematics classrooms. In nearly 

all of our analyzed lessons, teachers pressed for students to contribute to the lesson. However, the 
nature of these presses and how teachers worked with student ideas varied. We identified two types 
of lessons that were not characterized by rich use of student ideas: lessons with minimal prompting 
for mathematical reasoning and lessons in which student ideas were asked for and revoiced by the 
teacher. We also identified two distinct, productive types of lessons: those focused on generating and 
expanding mathematical ideas and those focused on engaging students with each other’s 
mathematical ideas. We conjecture that both types of lessons are essential for students to engage 
richly with mathematics. 

The aim of the MHT is to complement existing analyses of classrooms including: qualitatively 
robust analyses of classrooms (e.g., Stein, et al., 2008; Staples, 2007), and quantitative analysis based 
on a set of overall scores (e.g., Lynch, Chin, & Blazar, 2017). This existing research base has 
established the productivity of particular teaching moves in case studies, and that measures of overall 
quality of instruction can be linked to student achievement. Our work acts as a bridge between the 
detail of qualitatively analyzing lessons and the power of quantitative analysis of many lessons. By 
identifying (literature-based productive) teacher moves and student contributions in-the-moment 
across many lessons, we are able to profile various types of lessons. In this phase, we are creating 
profiles via the types of CTHs occurring. This is paired with an initial analysis of student 
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contributions that reflect a high degree of relationships between CTH lesson profile and student 
contributions. 

Through the course of this project, we plan to enrich and expand these initial profiles by including 
more than twice the number of lessons presented here and incorporating further information about 
student discourse. For example, this initial analysis reveals that the presence of CTHs can statistically 
cluster lesson types; that these lesson types are related to correlations between higher overall teacher 
scores and higher overall student scores. For example, lessons in cluster 4 are associated with high 
overall student scores as well as included more CTHs prompting student-to-student interaction, and 
nearly 10 times as many student HoI codes when compared to cluster 1 lessons. Furthermore, the 
student codes for habits of mind (HoMs), of particular interest to many educators, could be further 
linked to specific CTHs as well as to larger teaching routines. Focusing primarily on HoIs, we have 
not discussed HoMs in detail in this report. Where HoIs focus on the existence of student 
contributions and interaction, HoMs focus on the mathematical practices embedded within those 
interactions. For example, a student can share their thinking (an HoI) and within that exchange can 
make reference to a graphical representation as well as generate a conjecture (HoMs). The skeleton 
of such a relationship is building—CTHs are denser and more varied within clusters 3 and 4 and 
lessons in those clusters are largely associated with high student overall codes. Furthermore, clusters 
3 and 4 also reveal far greater frequencies of student HoI codes. 

In our next phase of analysis, we plan to expand out the components in the cluster analysis, move 
towards a distance metric that is non-binary to account for frequency, and begin cluster analysis 
leveraging the timing of the teacher and student contributions. We look forward to further 
exploration of the mechanisms that may promote more student interactions and deeper student 
engagement with mathematics. 
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This qualitative study used Yinger’s (1980) process model to investigate mathematical modeling 
facilitators’ planning practices. Four university-based facilitators planned and implemented 
mathematical modeling tasks during a summer camp for middle and high school youth. Analysis of 
interviews and planning documents revealed that in the problem-finding phase, facilitators engaged 
in joint work (brainstorming) and used necessary resources (social, material, and conceptual) and 
prepared lesson plans. In the second phase, facilitators elaborate on the instructional ideas they had 
generated at the problem-finding stage. Finally, in the third phase, they categorize their solutions as 
successful or not and could either add to their repertoire of knowledge (routinization) or go through 
the process all over to come up with a refined solution. Strategies employed by participants in this 
study extend our knowledge regarding the facilitators' practices at the planning phase of modeling 
activities 

Keywords: Modeling; Instructional Leadership; Teaching Tools and Resources; Instructional 
Activities and Practices; Informal Education 

Introduction and Background 
Mathematical modeling, an emerging branch of K-12 mathematics learning, is a process by which 

mathematicians develop and use mathematical tools to represent, understand, and solve real-world 
problems (Lesh and Doerr 2003; Ang, 2004). Students do not always see connections between life 
and mathematics and miss opportunities to apply what they learn in mathematics to the situations 
around them (Tran & Dougherty, 2014; Verschaffel, De Corte, & Vierstraete, 1999). Mathematics 
teachers play a significant role in making students see the relationship between mathematics and the 
real-world through effective teaching.  

Effective teaching is a product of a well-planned instructional process. Efficient planning is 
essential in teaching mathematical modeling because of its demanding nature for teachers during its 
implementation. This demanding nature occurs because teaching is more open and less predictable in 
modeling situations (Carlson, in press; Cai, et al., 2014). During planning, teachers anticipate and 
prepare to respond to students' mathematical ideas, questions, and challenges. They consider 
strategies students are likely to use, develop responses to them, as well as strategies that might be 
productive to highlight during the lesson (Smith & Stein, 2012).  

Purpose of the Study 
This study describes the planning practices of four facilitators (faculty members) of modeling 

activities during a summer camp for middle and high school youth. This study will provide insights 
for researchers who are working to understand how facilitators plan and implement mathematical 
modeling activities, especially in an informal setting. In this study, an informal setting refers to the 
modeling environment where activities are independent of the class curriculum, age, or grade. 
Research questions investigated are: What problem-finding strategies do facilitators exhibit when 
planning modeling activities? How do facilitators elaborate, investigate, and adapt these strategies in 
their planning of modeling activities? How do facilitators evaluate these strategies? 
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Conceptual Framework 
Yinger (1980) identified three stages of planning: the problem-finding, problem 

formulation/solution design, and implementation, evaluation, & routinization. He theorized that the 
problem-finding step is the discovery of a potential instructional idea that requires further elaboration 
at the problem formulation stage. At the formulation stage, the dilemmas from the problem-finding 
stage are continually expounded and verified mentally until a desirable solution is obtained through 
elaboration, investigation, and adaptation. The planner relies on their repertoire of methods for 
solving problems during elaboration and investigation phases. Yinger viewed the implementation, 
evaluation, and routinization phase as part of teacher planning, and this is where the formulated 
solutions are tried out and assessed. Whatever the outcome is at this stage, successful or not, it forms 
a basis for knowledge and experience for future planning.  

Methodology 
Setting and Participants 

This study is a part of a larger project focused on rural youth learning to use mathematical modeling 
to investigate issues in their home communities. Twenty-nine youth and nine adult mentors from six 
rural communities participated in a summer camp where they worked on modeling activities. The 
facilitators were the participants for this study, and they are all university mathematics teacher 
educators and researchers on the larger project. 
Data Collection 

Data sources included planning documents of modeling activities during camp and semi-structured 
interviews with the four participants. See modeling activities in Table 1. 

 
Table 1: Description of modeling activities at the summer camp 

Task Description  Purpose 
Cookie Task This activity allows youths to decide what 

chocolate chip cookie is “best." The 
problem springs from a real-world 
situation, and its solution allows 
approaches from many perspectives.  

• To use qualitative attributes in a 
mathematical model - How do we deal 
with a primarily qualitative question like 
“best” in mathematical modeling. 

Agent-Based 
Modeling 

This activity models some complex 
systems in the world. For instance, 
modeling a population involving healthy 
and sick people and how the system 
evolves with time.  

• To learn how a technology-based 
approach could be used to model a real-
life scenario—for instance, using 
NetLogo to model sick and healthy 
people. 

Mapping 
Activity 

Activity that enables modelers to create 
representations of their lived experiences 
in map format.  

• To know the importance of maps and 
realize how values effect info stored on 
maps. 

 
The planning documents for these activities were studied and used to develop an interview protocol 

that served as the primary data source. I conducted an average of 60 minutes of semi-structured 
interviews with each participant roughly 18weeks after the camp. I coded the transcripts, organized 
the codes into themes, and then organized the themes around phases of the process model. 
Data Analysis 

I commenced the analysis by looking at lesson plans facilitators prepared for camp activities. 
Essential keywords that captured the initial analysis of facilitators' intentions formed the basis for the 
interview protocol developed for the interview. These keywords include activity goals - modeling 
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goals, mathematics goals, & statistical goals; resources for facilitation; modeling practices; 
anticipated challenges and strategies to respond; and modelers' exploration. I organized raw data 
from participants' interviews to make sense of the contents and then conducted open and axial coding 
(Corbin and Strauss, 2007). Then I looked for connections that linked categories of codes to the three 
phases of process model: problem-finding, problem formulation; Implementation, evaluation, and 
routinization. 

Results 
I organized the findings of this study by the three stages of the process model to provide a holistic 

understanding of the data collected. 
Problem-finding 

When planning modeling tasks, facilitators engaged in joint work (brainstorming). They used social, 
material, and conceptual resources, prepared lesson plans and relied on teaching experiences. They 
also embraced multiple perspectives, constructed questions to launch the activity, guessed modelers’ 
ability, and considered the interest of modelers. Sally, in her words, said: “Theresa and I met and 
kind of just worked through it. Furthermore, during the prep week, actually doing it and getting 
feedback from there helped us figure out more details of how we are going to facilitate it." 
Facilitators also conducted ethnographic research about modelers' environment and their interest in 
understanding youth characteristics. About the Agent-Based Model, Edward said: 

One of the groups talked a lot, during our ethnographic research in their community, about 
physically closing off some lanes of traffic and one of the ways that you can understand or 
make predictions about that is through an agent-based model. 

Knowledge and past experiences of facilitators interrelate with teaching goals and materials 
(resources) when finding instructional ideas for a new modeling task. Edward described how his 
previous experience with Agent-based Modeling directed him to locate the right human resource who 
helped out in his planning. 

I have some familiarity with the Agent-Based Modeling from doing it in some of my classes 
as a graduate student. Nevertheless, it was not really on my radar. Here is what happened, 
Kelvin, who was sort of founding participant in this project, is vast into technology. One of 
the technologies that he was thinking about was agent-based modeling, which made sense to 
me because I had experience with it. 

When giving an account on how her background knowledge with modeling interrelates with the 
teaching goals when preparing for the cookie task, Isabella, said the following: 

Thus, the cookie task – we thought of a few reasons for choosing it. One is that we thought it 
was something that would be fun and low stakes for the first night of camp. We thought that 
it would be something that all students know something about it. Moreover, we also thought 
that it was an activity that would facilitate work through a lot of the modeling cycle. 

These scenarios show how facilitators discover potential instructional ideas for efficient planning. 
These ideas are then elaborated at the problem-formulation stage of their plan. 
Problem formulation 

At the problem formulation stage, knowledge and experiences of facilitators played essential roles. 
Their past experiences enabled them to anticipate what modelers might do on the tasks. To do this 
efficiently, they needed to elaborate on the instructional ideas they had generated at the problem-
finding stage. At this stage, elaboration means creating a suitable response to the ideas discovered in 
the problem-finding phase. Isabella described doing this via deep thought: "As a team, we thought 
deeply about kind of different knowledge bases they might bring to bear on problems, especially 
their local problem-solving practices." 
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When elaborating, facilitators perceived their roles like that of a "coach" who gives support Theresa 
recounted that her role is to set modelers up to interpret the real-world to their mathematical world 
with little or no help from the facilitator. To achieve this, facilitators needed to anticipate modelers' 
behavior during Implementation. They narrated that modelers bring different initiatives to modeling 
space, a situation that facilitators must speculate when planning. 
Implementation, evaluation, and routinization 

Implementation, evaluation, and routinization is the last phase in the instructional planning process. 
In this phase, facilitators try out solutions developed at the problem-solving stage. Facilitators in this 
study did this through the preparation week preceding the camp week for evaluation. Sally gave the 
following response to a prompt: “And during the prep week, actually doing it and getting feedback 
from there helped us to figure out more details of how we are gonna facilitate it.” At this stage, 
facilitators considered solutions to be successful or not. If successful, they would add the solutions to 
their repertoire of knowledge (routinization). Otherwise, they would iterate the process for a refined 
solution. 

Discussion and Conclusion 
This study sought to document facilitators' planning practices of modeling activities. From the 

results and analysis, I found some practices to be general to facilitators in this study. These results 
suggest that facilitators build on their previous facilitating knowledge to anticipate what modelers 
would do. The facilitators paid attention to modelers' interests and what they care about when 
engaging in problem-solving. Facilitators also considered how modelers would engage with the task 
and think about multiple perspectives modelers would bring into the modeling space. Facilitators 
anticipate what modelers will do and will not do on a task and identify where and when modelers 
might deviate from a better approach to solving a task.  

For this reason, facilitators thought about modelers' possible approaches to solving modeling tasks. 
Facilitators considered necessary resources to accomplish tasks and considered multiple perspectives 
in their approaches by brainstorming with colleagues to anticipate what modelers would do in 
various dimensions. Finally, they thought about questions modelers could ask and then prepare some 
canned responses. This study agrees with Munthe & Conway (2017) on how planning involves 
shared knowledge construction and professional learning. This study also finds that planning is a 
process of preparing a framework guiding teachers' actions. As Young (1998) found what teachers do 
at planning to include identifying content, developing a timeline, identifying goals, skills, and 
objectives, deciding on instructional materials and so on, this study finds that facilitators of modeling 
identified settings, resources, and teaching goals as necessary when planning modeling tasks. As this 
study took place in an informal setting, findings herein may not necessarily be generalizable to a 
curriculum-based classroom but can be helpful. For future work, researchers may consider 
investigating facilitators' planning practices in a formal setting. The findings from this study are 
productive strategies that could be reproduced by researchers, especially in an informal setting. 
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Research in mathematics education over the recent decades has resulted in a large number of 
definitions, conceptual framings, and operationalizations of what it means to do equitable teaching. 
An exploration of the activity system of equitable mathematics teaching is necessary to synthesize 
current literature and to work from teachers’ current understandings of equity in education. A 
systems-approach to exploring equitable mathematics teaching is necessary to capture how 
individuals navigate structures of culture, power, and privilege to engage in equity work. We must 
re-center the voices of teachers to understand how they construct notions of equity in mathematics 
education. The object-constructions held by teachers inform their goals for instruction, which then 
influence the types of instruction enacted in classrooms.  

Keywords: Equity and Diversity; Instructional Activities and Practices; Instructional Vision; 
Systemic Change 

Equity research in mathematics education has only grown in the last few decades, resulting in a 
variety of perspectives on and definitions of equitable mathematics teaching and learning. The PME-
NA Equity Statement captures a broad swath of framings: “include ideas ranging from access to 
educational resources, to positioning students as capable and humans as valid sources of knowledge, 
to questioning the curriculum and high stakes assessment practices, to promoting critical social 
justice perspectives of mathematics as sociopolitical.” These variations in definitions and resultant 
frameworks guiding practice exist for researchers as well as practitioners. It is critical to clarify how 
teachers define equity, for this “directly relates to how we seek to both measure and achieve it in our 
schools” (Gutiérrez, 2002, p. 152). Teachers work within classrooms, school departments and 
districts, and broadly as part of the professional community, to achieve equitable mathematics 
teaching. Explicating how teachers construct their understandings of equity and social justice 
provides context for unpacking the goals they hold for instruction. 

Researchers have explored teacher identities in the classroom and how that impacts attention 
towards equity and social justice in schools, broadly, or pedagogy, locally (Wager, & Foote, 2012). 
Others attend to what teachers are disposed to notice in classroom interactions (Edwards, 2011; 
Hand, 2012) or the orientations that drive decision-making in instructional moments (Schoenfeld, 
2010). One’s personal experiences, values, and beliefs influence the ways teachers engage in the 
profession, especially around equity work (Gutierrez, 2002; Wager & Foote, 2012). Commentaries 
on the roles power structures, in the form of culture (Louie, 2017, 2018), race (Martin, 2009), class, 
and whiteness, among other social identifiers the perpetuate hierarchies of inequity, explore how the 
teaching and learning of mathematics is inherently situated within systems that privilege certain 
perspectives of the discipline (Rubel, 2017). Although there is a rich body of research on equity in 
mathematics education that focuses on teacher conceptions and identity, and a separate but equally 
fertile body of literature on equity in mathematics education that addresses issues of power and 
oppression, literature that attends to both is still emerging. Reed & Oppong (2005) worked with 
teachers on their definitions of equity, noting how race and class influence how equity is carried out 
in practice. Bartell (2013) explored how teachers’ goals for instruction may align with goals for 
social justice. While these arguments are critical, we must consider how systems interrelate with 
activity on an empirical scale to understand how these relationships play out within instructional 
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settings, departments and districts, as well as interactions among members of the profession. A 
common implication for future scholarship across these studies explicates this need: a call for 
systems-focused research on equitable mathematics teaching that investigates how structures of 
power and culture interact with teachers’ goals for instruction and their resultant practice (Louie, 
2018). 

Systems-focused research would target the integration of micro-, meso-, and macro-environments 
that influence how teachers make sense of and work towards more equitable forms mathematics 
teaching and learning. Bronfenbrenner states, “studies of learning should take into account the social 
ecology that forms the context for human activity. An ecological approach considers the 
development of an individual in relation to the “immediate environment, and the way in which this 
relation is mediated by forces emanating from more remote regions in the larger physical and social 
milieu” (1979, p. 13). Teachers’ commitments to equity may draw upon their personal experiences in 
and outside of the classroom environment, as well policies or practices held as normative within their 
school organization, understandings of the field of mathematics educators interested in social justice 
work, and  broader understandings of the ways societal hierarchies of power and privilege shape 
teaching and learning for individuals. An ecological approach frames ones’ experiences within the 
cultural and historical milieu that make meaning through personal and professional commitments to 
equity and how one acts in service of those commitments. 

Theoretical Framework 
I leverage Engeström’s (1987) Cultural-Historical Activity Theory (CHAT) as a way to capture how 

teachers navigate interlocking systems to engage in the activity of equitable math teaching. Activity 
“involves people operating jointly in a persistent system of relations with other people and 
institutions,” asking us to conceptualize equitable mathematics teaching as something which is 
constantly developing through the joint work of teachers with others in the community (Foot, 2014, 
p.9). Communities are not defined by proximity, but span place and space in pursuit of some shared 
values or goal (Wenger, 1998). Members of an activity system identify a specific need, or an object, 
that drives collective action. In this instance, we consider the collective of teachers across the 
profession actively oriented towards the object of equity in mathematics education.  
Objects and Object Construction  

The motivating need, or object, of an activity system is a complex idea that cannot be explicitly 
identified or captured, but rather, shifts and expands as actors within the system work to achieve it. 
An object is worked-towards on an individual level, by subjects setting and achieving goals through 
actions. Individuals within the activity systems may hold varying constructions of the object under 
focus that shape the goals they set (Engeström, 1987). For example, some teachers may consider 
equity in mathematics education as the equitable distribution of opportunities to learn, while others 
may prioritize curriculum that are relevant to students’ lives (Bartell, et al., 2008). Engeström (1990) 
notes that the historical development of object-constructions - in this case, what equity in 
mathematics education has looked like and meant throughout time - affords and constrains how 
teachers perceive of and engage in it, including the resources and conceptual tools they take up to 
guide their work. It is also important to note the teacher’s personal experience can include their 
learning journey, professional experience, their positions within power structures, and environmental 
characteristics of their classroom, school, and surrounding contexts (Foot, 2014). 

A teacher’s object-construction of equity in mathematics education informs their goals for 
instruction. Goals may directly or indirectly relate to the object-conception held by the subject; for 
example, a teacher whose object-conception of equitable mathematics teaching is that of Teaching 
Mathematics for Social Justice (TMfSJ) (Gutstein, 2006), which includes the use of socio-political 
mathematical tasks in the classroom as a key component, their goal might be the implementation of a 
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particular curriculum across the year. Another goal for that teacher may be incorporating reflective 
questions and discourse into their mathematics tasks so that students can engage actively in reading 
the world using mathematics. Both of these goals are tangible, actionable steps the teacher can work 
to achieve that serve the object-conception of engaging in TMSJ. The object as each individual has 
constructed it will lead to different actions within the activity system. Unpacking the ways teachers 
construct equity and social justice in relation to mathematics teaching and learning provides 
opportunities to clarify how they move towards instructional goals that align or contradict those 
intentions (Bartell, 2013). 

The research question explored in this presentation is part of a larger study that attempts to explicate 
the activity system of equitable mathematics teaching. Foot (2014) comments that “understanding an 
activity system requires understanding its object” (p. 10); thus, to understand the object of equity in 
mathematics teaching, we must first explore how teachers involved in the activity system construct 
their object-conception and related goals for teaching. Thus, this session explores how teachers 
committed to equity and social justice construct the object of equity in mathematics education. 
Further, how do teachers draw upon micro-, meso-, and macro-levels of educational systems in their 
constructions and resultant goals for instruction? 

Methodology 
This study collaborates with secondary math teachers committed to equitable mathematics teaching 

to understand how they construct the object of equity in math education. Participants are mathematics 
educators at a non-profit educational organization for rising middle school students in the Bay Area. 
This program’s mission is explicitly oriented towards creating equitable educational spaces for 
students, and this mission is a key factor in hiring. Educators in this organization have made an 
explicit commitment to equitable teaching through their employment status and program-offered 
professional development opportunities to reflect on their teaching and inequities in education. All 
participants are licensed educators, yet their experiences teaching in a non-traditional learning 
environment offer considerations for disrupting existing educational systems and transforming spaces 
for learning towards more equitable ends (Freire, 2000; hooks, 1994; Martin, 2009). 

The participants engaged with questionnaires and follow up interviews to explore their 
commitments to equity in teaching mathematics. The questionnaires provided a baseline 
operationalization for how each teacher constructs equity in mathematics education and how they see 
it play out in an ideal classroom setting. A series of three interviews following the questionnaire 
allowed opportunities to probe for more detail and to have participants explain their experiences and 
perspectives that inform their object-construction. Each interview, and subsequent analysis, attended 
to a different layer of micro-, meso-, and macro-level ecological systems. Analysis of the data 
included iterations of structural coding and inductive thematic coding (Auerbach & Silverstein, 
2003). First, data from both sources was linked for participants and segmented by topic, which 
provided context for codable instances and captured detail on the ways teachers saw equity issues in 
their practice. Next, I applied structural codes, noting when teachers drew upon micro- (such as 
classroom tools or norms), meso- (like site or program policies for mathematics teaching), and 
macro-systems (for example, the resources available in the broader professional community for 
TMfSJ or ideological systems like racism or whiteness) as they construct and work towards goals for 
equitable mathematics teaching and learning. I coded all teacher responses, allowing their language 
to drive the creation of themes for how teachers in the activity system of equitable mathematics 
teaching construct the object of equity. Across these codes, trends emerged that outline the landscape 
for how teachers make sense of equity in their practice. Throughout this process, I continuously 
engaged in member-checking with participants to accurately amplify their voices and regularly 
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constructed memos to process my positionality and understandings of participant experiences 
(Auerbach & Silverstein, 2003). 

Findings and Discussion 
The study is ongoing, and thus, there are no clear themes to report as of yet. However, the 

expectation is that teachers generally conceptualize equity in ways that have been previously 
discussed in the field, though not consistently explicitly linking to the frameworks with which their 
constructions of equity are aligned. Teachers describe aspects of equity in mathematics to 
contextualize how these constructions are worked upon in practice, connecting to their goals for 
mathematics teaching and learning. These goals will provide nuance to aid in explicating how 
equitable mathematics teaching is understood and taken up by committed practitioners, including 
understanding the tangible goals for instruction each is oriented towards. Finally, these responses 
illuminate how teachers recognize, draw upon, and negotiate concentric systems of education. For 
example, how might one teacher’s construction of equity in mathematics education as a status 
concern between students, drawing on the work of Complex Instruction (Cohen & Lotan, 1995) 
(macro-) align or contradict with departmental expectations for tracking students into courses (meso-
) or their instructional strategies for inviting classroom discourse (micro-level). 

This session contributes to the field of research on equity in mathematics education by centering 
teachers’ constructions of equity and attending to how these constructions shape and are shaped by 
their goals for instruction. The lens of Engeström’s (1987) CHAT provides opportunity to highlight 
ecological systems teachers work within as they negotiate their practice. I draw explicitly on notions 
of objects and object-constructions to understand how teachers committed to equity in mathematics 
education makes sense of this driving object and how their constructions are both similar and 
different. Further, I consider the link between one’s construction of equity in math education and the 
goals they hold for instruction to understand how teachers are acting towards their object-
conceptions. These results provide a more nuanced understanding of how teachers take up the work 
of equitable mathematics teaching within their educational contexts.  

This research is part of a larger study that aims to articulate the activity system of equitable 
mathematics teaching. As objects are one of the centering tenets of an activity system, it is 
paramount we begin describing the activity system with the collective themes for how teachers 
construct equity in mathematics education. Future goals of this research include understanding how 
teachers committed to equity work towards their goals for instruction, employing equitable 
mathematics teaching practices and navigating systems in their disruptive action. This study will 
support grounding research on equitable mathematics teaching in the lives and work of teachers 
committed to equity. I also claim that the systems-level approach will bring light to the 
contradictions and tensions across everyday professional practice, which in turn opens space for 
professional development, restructuring of school policies, and future research on equitable 
mathematics teaching to explicate and reduce these challenges so that the field can more successfully 
move towards our object of equity in mathematics education.  
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This study investigates the extent to which the introduction of enduring individual characteristics of 
students and teachers in depictions of teaching practice produces systematically different responses 
from preservice teachers. Enduring individual characteristics include characters’ skin tones, names, 
and descriptions of the school and school community. Fifty-six preservice teachers were randomly 
assigned to one of two survey depiction formats: one including enduring individual characteristics of 
students and teachers. Teacher practices and student problem solving were held constant across both 
formats. Results indicate that, for several survey items, participants responded differently depending 
on the survey depiction format they were assigned. Interpretations of results suggest that enduring 
individual differences may be of critical importance to include in rich media resources utilized in 
mathematics teacher education. 

Keywords: Teacher Beliefs, Teaching Tools and Resources, Teacher Education - Preservice 

Purpose of the Study & Guiding Framework 
Online, rich media platforms are transforming the ways individuals across a range of professions are 

prepared and practice. One such platform, LessonSketch1, allows mathematics teacher educators and 
preservice teachers to develop and engage with materials where users can create, share, and discuss 
scenarios that represent classroom interaction (Herbst & Chieu, 2011). Initial uses of LessonSketch 
deliberately provided depictions of teaching practices absent of individual characteristics. As Herbst 
et al. (2017) describe in prior work, LessonSketch characters were nondescript characters whose role 
was to depict practice rather than individuals. However, later updates to the platform began to 
incorporate contextual markers in teaching classrooms, such as skin tone, hairstyles, and body size. 
Furthermore, Herbst et al. (2017) describe the differences between the original, generalized 
depictions in earlier versions of LessonSketch as enacted individual differences (e.g. facial 
expressions, body orientation), and the updated contextual markers as enduring individual differences 
(e.g. body size, race, gender, or class).  

The introduction of the option of incorporating enduring individual differences in depictions of 
instructional practice allows for the opportunity to explore the complex nature of the role of enduring 
individual differences in preservice teachers’ perceptions of classroom interactions.  While teachers 
may outwardly and consciously hold beliefs that all children can learn mathematics, a life immersed 
in the social discourse of gender, racial, and wealth hierarchies may lead them to rely on enduring 
individual differences in their interactions with students in ways that teachers may not be aware 
(Clark, Whitney, & Chazan, 2009). This study aims to explore the instability of the relationship 
between teacher resources, instructional practice, and student learning due to a host of normative, 
instrumental, and situational factors that influence a teacher’s affective and cognitive resources in 
                                                             
1 LessonSketch is designed and developed by Pat Herbst, Dan Chazan, and Vu-Minh Chieu with the GRIP lab, 
School of Education, University of Michigan. The development of this environment has been supported with funds 
from National Science Foundation grants ESI-0353285, DRL-0918425, DRL-1316241, and DRL-1420102. The 
graphics used in the creation of these storyboards are © 2015 The Regents of the University of Michigan, all rights 
reserved. Used with permission. 
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varied and specific racial contexts and at particular moments in time (Chazan, Herbst, & Clark, 
2016).  Our research question for this exploratory study is: Do preservice teachers systematically 
respond differently to rich media depictions of mathematics classrooms when enduring individual 
differences are introduced? 

Methods 
Our research question has important sub-questions. As we seek to investigate whether the 

introduction of enduring individual differences produces systematically different responses to 
depictions of teaching practice we also want to know, if so, where? And, which teacher practices 
produce different results? Further, we contend that enduring individual differences such as skin tone 
may contribute to systematic differences due to implicit bias (Greenwald & Krieger, 2006). It should 
be noted that this study is an exploratory one; the broader research questions we provide cannot be 
answered substantially through this study alone. Further work and refinement are necessary. 

Participants were presented with scenarios of mathematics classroom interactions. The design of 
scenarios and survey questions was guided by several frameworks utilized in teacher education, 
mathematics teacher education, and mathematics education research (Hiebert, 1986; Martin, 2000; 
McKown & Weinstein, 2008; National Governors Association, 2010; TeachingWorks, 2020).  
Participants then answered 120 questions related to the scenarios. Participants were randomly 
assigned to view and respond to a format of the scenarios with one of  two different degrees of 
individuality: enacted only individual (henceforth enacted) difference and enacted and enduring 
(henceforth enduring) individual difference. Enacted individual difference depictions (Figure 1) do 
not contain any visual or descriptive markers such as skin tone of students and teachers; enduring 
individual difference depictions (Figure 2) contain such markers. The depicted students’ 
mathematical thinking and students’ mathematical practices are held constant across both formats. 
The depicted teacher’s instructional practices are also held constant across both formats. Twenty-
eight preservice teachers responded to the enacted individual difference survey format and 28 
preservice teachers responded to the enduring individual difference survey format. 

                               
Figure 1. Enacted Individual Difference      Figure 2. Enduring Individual Difference 

 
The survey consisted of three sections: a division scenario, a multiplication scenario, and questions 

related to school and classroom context. The majority of survey questions were measured on a 6-
point Likert scale (from strongly disagree to strongly agree). 

Results 
Results are indicated in the tables below. The items contained in the tables refer to items where 

preservice teachers assigned to the enacted difference form responded significantly differently to the 
preservice teachers assigned to the enduring difference. In Tables 1 and 2, items are grouped by the 
extent to which they focus on teacher practice or student thinking. 
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Table 1. Division Scenario 
Scenario 1: Students are placed in pairs and assigned division problems.  Student A uses a non-traditional 
algorithm and Student B is confused.  The teacher interacts with the pair of students and encourages them to 
practice the traditional algorithm.  Student B raises questions suggesting that he has some conceptual 
understanding of the nontraditional division algorithm. 

Survey Format Enacted difference 
(Blue skin tones) 

Enduring difference 
(Brown skin tones) 

Mann- 
Whitney U 

Perceptions of Teacher Practice Mdn. Mean Mdn. Mean Sig. 

Q20 The teacher is effectively setting up and 
managing small group work. 3 2.75 2 2.18 0.038 

Q30 The teacher is effectively checking for student 
A’s procedural understanding of division. 3 3.04 2 2.25 0.015 

Q31 The teacher is effectively checking for student 
B’s conceptual understanding of division. 2 2.46 2 1.71 0.007 

Q32 The teacher is effectively checking for student 
B’s procedural understanding of division. 2 2.39 1 1.57 0.001 

Perceptions of Student Thinking/Cognition Mdn. Mean Mdn. Mean Sig. 

Q26 Student B is likely to do well on the division 
problems on the chapter test. 2 2 3 2.82 0.003 

Q41 
For each student, indicate if they are most 
likely above level, on level, or below level-- 
Student B* 

0 0.18 0.5 0.54 0.011 

 * Q41 was measured on a 3-point scale, from below-level (0) to above-level (2) 

 
Table 2. Multiplication Scenario 

Scenario 2: Students are placed in pairs and assigned multiplication problems.  Student D uses the traditional 
algorithm.  Student C computes answers through use of the partial product method.  The teacher acknowledges 
that partial product method but encourages both students to use the traditional algorithm for efficiency and 
accuracy on the test. 

Survey Format Enacted difference 
(Blue skin tones) 

Enduring 
difference (Brown 

skin tones) 

Mann- 
Whitney U 

Perceptions of Teacher Practice Mdn. Mean Mdn. Mean Sig. 

Q53 The teacher is effectively managing small 
group work 3 3.29 2 2.68 0.030 

Q70 
The teacher should review the traditional 
algorithm to multiplication with all 
students. 

5 4.71 4 4.21 0.036 

Perceptions of Student Thinking/Cognition Mdn. Mean Mdn. Mean Sig. 

Q76 Student C was likely assigned as the helper 
in the group. 2 2.21 2.5 3 0.036 
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Table 3. School and Classroom Context 
School and classroom context: Participants are asked to respond to questions related to how they perceive aspects 
of the school and classroom. 

Survey Format Enacted Difference 
(Blue skin tones) 

Enduring Difference 
(Brown skin tones) 

Mann- 
Whitney U 

  Mdn. Mean Mdn. Mean Sig. 

Q86 Do you think this is most likely a 3rd, 4th, 
5th, or 6th grade class?* 4 3.75 4 4.11 0.014 

Q88 I would feel comfortable teaching this class. 5 4.71 4 4 0.003 

Q89 I would feel comfortable teaching at this 
school. 5 4.54 4 3.64 0.001 

Q90 I would want access to instructional support 
if I were teaching this class. 5 4.64 4 3.86 0.006 

Q91 I would want access to instructional support 
if I were teaching at this school 5 4.75 4 3.79 0.000 

 *Q86 was measured on a 4-point scale, from 3rd grade (3) to 6th grade (6).  

Discussion 
The results of this study suggest that, for several survey items, preservice teachers’ perceptions of 

depictions differ when the depiction formats vary by the inclusion or exclusion of enduring 
individual differences of depiction characters. In particular, preservice teachers perceived that 
teachers’ practices associated with the management of small group work and checking for student 
understanding was less effective when brown skin color tones of characters were introduced to the 
depiction. Furthermore, preservice teachers were more likely to assign a higher grade level to 
characters with brown skin tones.  Lastly, preservice teachers reported that they would be less 
comfortable teaching the class or in the school when brown skin tones were introduced. Overall, 
findings suggest that further exploration is needed to better understand if preservice teachers’ 
perceptions are influenced by the introduction of enduring individual characteristics, and, further, if 
influenced by the introduction of specific racialized enduring individual characteristics such as 
brown skin tones. 
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This study engaged HS geometry students in the reasoning-and-proving process through the use of 
novel tasks aligned with Standard for Mathematical Practice (SMP3) (construct viable arguments 
and critique the reasoning of others). The tasks facilitated opportunities for students to engage in 
SMP3 by (a) proposing a conjecture; (b) drafting an argument for their conjecture; (c) critiquing 
each other’s arguments; and (d) revising their arguments based on peer feedback. In this study, we 
describe the instructional tensions that surfaced during the implementation of the tasks and the way 
the teacher addressed those tensions in her class (Berry, 2007). The two most common tensions were 
between action and intent when launching the tasks and between telling and growth during the draft 
and critique phases. Findings raised important questions of how to support students in learning what 
counts as a mathematical conjecture or critique. 

Keywords: Instructional activities and practices, Reasoning and Proof, Instructional Vision 

Introduction and Purpose 
The Standards for Mathematical Practice (SMP) articulate eight domains of mathematical thinking 

students should gain expertise in across K-12 grades (National Governors Association [NGA] Center 
for Best Practices & Council of Chief State School Officers [CCSSO], 2010). Specifically, SMP 3 
states that students should “construct viable arguments and critique the reasoning of others.” 
Historically, constructing formal deductive arguments (proofs) has been restricted to high school 
geometry courses (Herbst, 2002). Proof tasks in commonly used U.S. Geometry textbooks provide 
opportunities for students to engage in some aspects of SMP3, such as posing a conjecture, 
constructing a proof, investigating a statement, and developing a rationale (justification) for 
mathematical claims with varying degrees of frequency across categories (Otten, Gilbertson, Males, 
& Clark, 2014). In contrast, the textbooks analyzed provided relatively few opportunities for students 
to find a counterexample and did not explicitly ask students to respond to the reasoning of others or 
construct arguments with the goal of communicating to their peers. Although Otten and colleagues 
(2014) did not report the percentage of textbook exercises where students were asked to engage in 
multiple forms of reasoning-and-proving activity within the same task, the differences between 
categories suggests that students are not consistently engaging in the multifaceted process described 
in SMP 3.  

The purpose of this study was to implement a series of novel tasks designed to engage high school 
geometry students in the reasoning-and-proving process (Stylianides, 2007) in alignment with the 
multifaceted approach described in SMP 3. Specifically, the tasks were novel in that students were 
asked to (a) propose and investigate their own conjecture instead of one provided for them; (b) 
critique each other’s arguments; and (c) revise their argument based on peer feedback instead of 
teacher feedback. In this preliminary study, we analyze the instructional tensions (Berry, 2007) that 
arose when implementing the tasks. In doing so, we contribute greater insights into challenges that 
classroom teachers might face when navigating across classroom cultures, towards one that is 
centered around students’ mathematical ideas instead of one based on ideas presented by the teacher 
or textbook. 
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Theoretical Framework 
Teacher’s instructional decisions are shaped by their personal knowledge and beliefs as well as their 

obligations to a variety of stakeholders, including the mathematics discipline, individual students, 
interpersonal dynamics in the classroom, and their broader institutional context (Herbst & Balacheff, 
2009; Herbst & Chazan, 2003). Tensional dilemmas, or tensions, surface when there is a 
contradiction between their beliefs, knowledge, and obligations such that there is no clear decision 
that adequately addresses all of their concerns (Lampert, 1985). Some teachers choose to prioritize 
one obligation over another, while other teachers, such as Lampert (1985), instead try to manage the 
tensions through instructional decisions that reduce the dilemma without completely resolving it. For 
example, Berry (2007) described six instructional tensions she experienced in her role as a teacher-
educator: telling and growth; confidence and uncertainty; action and intent; safety and challenge; 
valuing and reconstructing experience; and planning and being responsive. Although instructional 
tensions have been described across multiple contexts (e.g., Berry, 2007; Herbst, 2003; Rouleau & 
Liljedahl, 2017, Webel & Platt, 2015), more research is needed with respect to teachers’ experiences 
when enacting the Standards for Mathematical Practice (SMPs). 

Methods 
Instructional Sequence 

The tasks used in this study were developed with the goal of engaging students in multiple facets of 
SMP3. Two of the tasks had been previously implemented with secondary students (Conner, 2018); the 
remaining three tasks were constructed using similar design principles. Each task allowed students to 

develop a conjecture about a geometric relationship involving an infinite class of objects. The diagonals 
of a parallelogram and classes of similar polygon tasks also allowed for students to pose and investigate 

multiple correct conjectures (see Figure 1). 
 

Angle Bisectors of Linear Pair 

 
Given: !" bisects ∡!"#;  !" bisects ∡!"# 

Exterior Angle Theorem 

 
Diagonals of 

Parallelograms 
 

Draw a few parallelograms 
on your paper. Draw in the 
diagonals. Make a 
conjecture about the 
diagonals of all 
parallelograms. 

Midpoints of a Rectangle 

 
What quadrilateral is formed when you 
connect the midpoints of a rectangle?  

Classes of Similar Polygons 
 

After describing what it 
meant for all quadrilaterals to 
be similar, students were 
asked to conjecture which 
classes of polygons (e.g., 
squares) were all similar to 
one another.  

Figure 1: SMP3 Tasks 
 

The teacher launched each task by posing a scenario for students to consider through the use of a 
verbal description or a computer-generated representation. Students then formed an initial conjecture 
about the generalization of the relationship. Next, the teacher either discussed the individual/group 
conjectures with the class and had all students prove the same conjecture or students proved their 
own conjecture without a whole-class discussion. For example, students wrote a proof for their own 
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conjectures about the diagonals of a parallelogram. Their conjectures included: diagonals are 
congruent, diagonals are perpendicular, diagonals create two pairs of congruent triangles across from 
one another, and diagonal intersect at each other’s midpoint. Students worked individually or in 
small groups to develop a draft argument proving or disproving their conjecture. Once draft 
arguments were completed, students exchanged papers and provided feedback to one another. 
Students then drew on their initial arguments and peer feedback to complete a final draft of their 
argument. The task concluded with a whole-class discussion around how to prove one of the 
conjectures, which drew on ideas from students’ written work. In instances where there were 
multiple student-conjectures, the remaining ones were discussed in class but not proven.  
Context 

The study took place in three geometry classes, all taught by the second author, located in a rural 
high school in the Midwest region of the United States. Proof-writing was a regular part of 
instruction, with proofs written weekly in class and, less frequently, assigned as homework. Each 
task was completed in 1 – 1.5 class periods (roughly 60 - 90 minutes).  
Data and Analysis 

Data for this study consists of a HS geometry teacher’s oral reflections after each of the five tasks 
(see Figure 1). During the reflection process, the first author asked open-ended questions, such as 
“How do you think the task went?” and “What issues arose during the lesson?” Since the classes 
were not video recorded, the teacher consulted students’ written work and was read portions of the 
researcher’s field notes to help recall what happened.  

Using Berry’s (2007) framework, the researcher coded the teacher’s reflections after each task for 
the instructional tensions that surfaced and then looked for themes across tasks. Next, the researcher 
qualitatively coded the reflections for instances where the teacher described how she navigated the 
identified tension during the lesson. In order to establish trustworthiness and reliability, the 
researcher and teacher conducted a member check on the themes and how she addressed the 
identified tensions in her teaching (Lincoln & Guba, 1985). 

Findings 
Action versus Intent  

The teacher’s goals (intent) was to provide students with opportunities to engage in different facets 
of SMP3 and improve their proof writing skills. Her goal for students to pose and investigate their 
own conjectures resulted in tensions regarding how to introduce the tasks in a way that did not 
undermine this goal. For instance, after noticing that students had relied on examples during a 
previous task, she described questioning how to introduce the diagonals of the parallelogram task in a 
way that would encourage students to generalize past specific examples. 

I was so hesitant. I didn’t want to label the angles. And I didn’t do one [diagram] as a class 
collectively. Trying to get them again to generalize past the examples, cause now that I had 
that experience with, ‘oh, they just draw in examples’… how to word my language to try to 
get them to move that way initially, and not waiting until the revisement [discussion] period. 

In this task, the teacher’s actions at the beginning of the task did not undermine her goal to have 
students form conjectures. Instead, having students construct multiple examples and discuss their 
conjectures in small groups resulted in them realizing on their own when a conjecture was false. 

During the exterior angle theorem, the teacher ultimately launched the task in a way that guided 
students towards the specific angle relationship, despite her goal of having students pose their own 
conjecture. The teacher initially told students to “make a conjecture about the exterior angle of a 
triangle and its interior angles”. This resulted in the student conjecture that !∡!"#  and 
!∡!"# added to 180°. Recognizing that their conjecture would not result in meaningful reasoning-
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and-proving activity, the teacher and researcher decided to guide students towards the anticipated 
angle relationship using a series of questions about what the students noticed in the diagram. “We 
had a purpose, so at that moment it was less about individual student and more about whole class so 
we could move forward” (Teacher).This tension between focusing on the intended mathematical 
content and allowing students to engage in the SMP3 process using their own conjectures was 
present throughout the lessons. 
Telling versus Growth 

Throughout the draft and critique phases of the lessons, the teacher experienced tensions between 
giving students direct feedback or guidance and allowing them to discover and improve their 
arguments on their own. For example, when a group’s draft argument did not match their conjecture, 
the teacher struggled to make sure she was not saying “too much to them,” hoping      other groups 
would notice and provide that feedback. When a student asked if they could create a drawing to 
prove their conjecture, the teacher struggled to respond while also being “very conscientious of not 
saying that they were right or wrong.” During the critique phase, the teacher felt like she had to 
encourage students to write down their questions and comments and “give them permission to be 
critical” when providing feedback to their peers.   

The teacher used the whole class summary as a way of resolving prior tensions to directly address 
issues in students’ work related to their justifications, precision in language, and generality of their 
arguments. She drew on students’ ideas throughout the proof construction process to show she valued 
the thinking they did in the previous lesson phases.  

I remember trying to think of how to tie in what they were doing to what I was saying. So 
you guys used examples and this is how we go further. […] I remember trying to draw on 
what they did, so that it didn't seem like a waste of time. 

Across the lessons, the teacher prioritized students’ growth and voice during the beginning parts of 
the lesson. During the summary, she built on students’ comments while also making sure the 
argument encompassed all cases and used mathematically precise language.   

Implications 
Teachers, often implicitly, navigate tensions throughout their lessons as a result of competing 

obligations that surface (e.g., Cohen, 1990; Herbst, 2003). In this study, the specific tensions surfaced 
in part due to a desire for students to have ownership in all stages of the tasks. When preparing 
teachers to incorporate SMP3 into their practice, it can be helpful to acknowledge these potential 
tensions and support teachers in reflecting on how they might navigate them in their class. Although 
the tensions experienced were not specific to the novel task used (see e.g., Rouleau & Liljedahl, 
2017), the focus on SMP3 surfaced additional questions around how to support students in 
developing understanding of what counts as a mathematical conjecture or useful critique. 
Specifically, to what extent should teachers intervene when students pose conjectures that will limit 
their reasoning-and-proving opportunities (e.g., a conjecture that is a direct application of a 
definition)? What are ways teachers can support students in providing meaningful critiques? How 
can teachers balance the tension between developing students’ understanding of proof and providing 
opportunities to engage in the different facets of SMP3? 
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In our project, we develop curricular materials to support prospective secondary teachers’ 
development of MKT and provide professional development (PD) opportunities for instructors who 
will teach with these materials. In this paper, we examine the ways in which mathematics faculty 
engage in the teaching rehearsal debriefs included in the PD to answer the question: To what 
instructional interactions do instructors of mathematics content courses attend during rehearsal 
debriefs enacted in PD? Findings show that mathematics instructors attend to all types of 
interactions but attention is influenced by instructors’ mathematical knowledge.  

Keywords: Mathematical Knowledge for Teaching, Teacher Education – Preservice 

Purpose of the Study 
The preparation of secondary mathematics teachers spans content and pedagogy, and includes 

development of mathematical knowledge for teaching (MKT; Ball et al., 2008; CBMS, 2012; AMTE, 
2017). However, teachers perceive a disconnect between tertiary mathematics experiences and 
secondary teaching practice (Goulding et al., 2003; Ticknor, 2012; Wasserman et al., 2018; Zazkis & 
Leikin, 2010). To address this disconnect, the MODULE(S2) Project (Lischka et al.,  2020) has 
designed educative curricular materials (Davis & Krajcik, 2005) to be implemented in undergraduate 
mathematics content courses, including those often taught by mathematicians (Murray & Star, 2013), 
that situate mathematical content in pedagogical settings and utilize high-leverage teaching practices 
(e.g., Ball et al., 2009). To provide support for instructors implementing the materials, the project 
organizes professional development (PD) opportunities in which instructors receive support in 
enacting elements of the materials with which they may be unfamiliar. One tool used in the 
MODULE(S2) Project PD is teaching rehearsals with group debriefs (Ghousseini, 2017).  

Although there is much literature regarding PD with K-12 mathematics teachers (e.g., Farmer et al., 
2003; Loucks-Horsley et al., 2010), there is less known about how tertiary instructors interact with 
and take up PD. The purpose of this paper is to draw on the experiences of the MODULE(S2) Project 
PD in an exploratory case study (Yin, 2014) to develop more understanding of PD with tertiary 
instructors. We address the following research question: To what instructional interactions do 
instructors of mathematics content courses attend during rehearsal debriefs enacted in PD?  

Theoretical Perspective and Framework 
We define instruction to be the “interactions among teachers and students around content, in 

environments” over time (Cohen, et al., 2003, p.122). Calling upon Lampert (2001) and Cohen and 
colleagues (2003), these interactions can be modeled by an instructional triangle (see Figure 1), 
which demonstrates the interactions between teachers, students, and content.  
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Figure 1: The instructional triangle 

 
Approximations of practice (Grossman, et al., 2009) are useful in supporting teachers to gain 

experience with and knowledge of the various interactions demonstrated in the instructional triangle. 
One such approximation is a teaching rehearsal in which novice instructors are engaged in the 
“deliberate practice of well-specified instructional activities” with support from knowledgeable 
others (Ghousseini, 2017, p. 191). Teaching rehearsals provide instructors the opportunity to engage 
in approximations of future instruction supplemented by knowledgeable feedback. Ghousseni 
concluded that the structure of these rehearsals provided prospective secondary teachers the 
opportunity to “improve their performance in response to feedback that drew on mathematics and 
student learning of mathematics” (p. 198), bringing together the development of teaching practice 
and understanding of content knowledge. We build on Ghousseini’s work with rehearsals and guided 
debriefs in the context of PD with tertiary instructors and assert that teaching rehearsals and debriefs 
may similarly provide opportunities for mathematics instructors to develop teaching practice and 
content knowledge needed for the preparation of prospective secondary teachers. 

Methods and Modes of Inquiry 
Contexts, Participants, and Data Sources 

The participants in this study were three mathematics faculty from different undergraduate 
institutions who were engaged in PD for the implementation of MODULE(S2) Project materials for 
an algebra content course. Henceforth these mathematics faculty will be referred to as participants. 
Data collected for this study includes video recording of the three teaching rehearsals, video 
recording of the respective three debriefs, artifacts from the rehearsal lessons, and reflections from 
the participants. 

During a teaching rehearsal, one participant takes on the role of acting instructor and the remaining 
participants take on the role of acting students (i.e. the prospective teachers in the undergraduate 
courses in which materials will be implemented). During a teaching rehearsal, the acting instructor 
prepares a lesson from the MODULE(S2) materials and teaches for approximately 10 minutes. These 
ten minutes of rehearsal are video recorded, then immediately played back to all participants. 
Following the viewing of the recorded rehearsal, a facilitator from the MODULE(S2) project 
conducts a debrief in which participants discuss what occurred in the recorded lesson. For this report, 
we focus on the videos of these debriefs. 

Three teaching rehearsals occurred during the PD, giving each participant the opportunity to serve 
as an acting instructor once and as an acting student in the other two rehearsals. The lessons chosen 
for the three rehearsals were respectively on the concepts of inverse functions, the covariational view 
of functions, and relations. The general goal of the rehearsals and debriefs was to develop instructors’ 
skills in enacting the high-leverage practices embedded within the curriculum materials. Thus, our 
goal was for instructors to focus on interaction C in Figure 1. 
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Analysis 
Two researchers separately coded each debrief video using a priori codes based on the instructional 

triangle framework and then came together to reconcile their coding. We categorized every statement 
made by participants during the debrief as referencing interaction A, B, C, D, or E as labeled in 
Figure 1. To clarify the coding, consider the following vignette from the debrief of the rehearsal on 
the topic of covariational and correspondence view of a function: 

During a discussion regarding the clarity of a hypothetical secondary student’s quote in the 
lesson materials, the acting instructor comments that they did not realize that the quote could 
be misleading until one of the acting students pointed out its obscurity. In reaction to this 
comment, an acting student stated a way in which they had misinterpreted the quote during 
the rehearsal lesson. A second acting student followed this with an insight into this 
misleading quote that they discussed with a fellow acting student during the rehearsal. 

Using the categories of interactions indicated in Figure 1, the acting instructor’s statement would be 
coded as referencing a category C interaction, the first acting student’s statement as referencing a 
category D interaction, and the second acting student’s statement as referencing a category B 
interaction. We describe the trends that emerged in codes across the three debriefs to reveal evidence 
of participants’ attention to aspects of instruction during the debrief discussions.  

Results 
During Debrief 1, participants discussed a rehearsal in which the acting instructor taught a lesson on 

the topic of relations and their inverses. The debrief began with an acting student commenting on 
how the acting teacher’s use of precise mathematical language when discussing the definitions of 
range and codomain could, “promote students’ mathematical precision.” A second acting student 
shifted the conversation toward how the acting instructor used both table and ordered pair 
representations of relations during their lesson. The acting instructor replied, “our goal [in the 
rehearsals] is to have multiple representations.” The same acting student continued by asking if the 
discussion of defining the domain and codomain sets “had emerged as a consequence of [their] 
discussion” during the rehearsal. “Yes...this comes up all the time when I talk about functions and 
relations...I think that it is really important” replied the acting instructor. Participants continued the 
discussion of leveraging student reasoning by pointing out that the acting instructor had written a 
suggested incorrect answer on the board. “Was the teacher giving enough space?” the acting 
instructor asked the group, wondering if students had enough individual thinking time during the 
rehearsal, as the debrief concluded.  

In Debrief 2, participants discussed a rehearsal in which the acting instructor taught a lesson on how 
a secondary student may think about the topic of correspondence and covariational views of 
functions. “I really liked how the instructor asked ‘why, as a teacher, would it be important to figure 
out their reasoning?’” an acting student commented to begin the debrief. “The teacher kept a 
complete poker face and let us go with that,” a second acting student pointed out when the acting 
students incorrectly categorized the hypothetical student’s view of a function. Some confusion as to 
whether this categorization was actually incorrect arose from this statement. For the remainder of the 
debrief, the participants discussed the acting instructor’s and acting students’ conceptualizations of 
the difference between a correspondence and covariational view of a function. “I guess the ‘co’ in 
covariation and correspondence means that you have to look at both variables,” the acting instructor 
responds to an acting student claiming that correspondence only requires reasoning with one 
variable. 

In the final debrief (3), participants discussed a rehearsal in which the acting instructor taught a 
lesson on the topic of graphs of relations. “I liked...having the chance to have individual 
thought...before getting into groups,” an acting student began the debrief. They then pointed out a 
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moment in which the acting instructor admitted to the acting students that they were unsure 
themselves of the answer to these questions. The acting instructor responded that they wanted to 
explore the questions with a “level of authenticity.” During the rehearsal, the acting instructor posed 
a question that encouraged the acting students to think about the differences between the definitions 
of a graphs of a relation and of an equation, which acting students said “seemed open ended.” “You 
said ‘let’s look at an example’,” an acting student pointed out an instructional decision to move the 
lesson forward. The acting instructor then stated that they aimed to collect “helpful student comments 
or quotes that [the instructor] can then revisit.” From this, the participants discussed how they know 
when it is appropriate to use different teaching strategies. Table 1 displays how our coding reflected 
the discussions in these three debriefs. 

 
Table 1: Instructional Triangle Coding Counts for the Debriefs 

 A B C D E Content 
Debrief 1 4 0 11 3 6 0 
Debrief 2 1 2 21 7 2 13 
Debrief 3 4 0 12 0 5 1 

Total 9 2 43 10 13 14 

Discussion 
This study aimed to build knowledge concerning the aspects of instruction to which tertiary 

instructors attend during debriefs of teaching rehearsals enacted in PD. Our data shows that 
instructors participating in debrief discussions attended to each component of the instructional 
triangle, with the majority of the discussions attending to interaction C (how the instructor interacts 
with students and content together), which was the goal of the PD. However, in one debrief (Debrief 
2), the instructors lack of comfort with the mathematical content superseded the ability to focus on 
student thinking. Instead, attention focused on the content itself. These results show that if the 
participating instructors are developing necessary content knowledge, this may influence the focus of 
attention during the debrief.  

This work demonstrates that teaching rehearsals are a useful tool to engage tertiary instructors in 
discussions of student thinking. Further, these results point to the need to structure PD in a way that 
first supports participants content knowledge development prior to requesting participants to focus on 
student thinking. Similar research in other content areas is needed to identify concepts for which a 
focus on student thinking will be best supported by first supporting instructors’ content knowledge.  
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Teachers often find it hard to balance between justice to the students’ input and leading the class 
towards the decided goal. We focus on how the teacher orchestrates the balance between whole class 
student authority and accountability to the discipline. In the case a student presents the result from 
group work but at some point needs help. The teacher de-personalises the discussion and directs the 
class’ attention to the subject and not to individual students. Thereby, the class is treated as a 
community with a shared authority. By the end, collective learning has taken place. 

Keywords: Classroom discourse, Communication, High school education, Reasoning and proof 

Introduction 
The teacher’s responsibility is to lead classroom discussions that build on student thinking and 

guides the class to “strike an appropriate balance between giving students authority over their 
mathematical work and ensuring that the work is held accountable to the discipline” (Stein et al., 
2008, p. 332). Teacher-class discussions were analysed as acquisition of mathematical knowledge 
(Prediger et al., 2015). Less attention has been paid to how teachers manage situations where 
students’ presentations fail to present the group’s end result or provide understandable explanations. 
How can the teacher respond without simply taking over the explanation? This paper focuses on a 
case where the teacher intervenes during a student’s presentation and manages to give clear 
responses without “outshining” the students. 

Theoretical framework 
Participation 

The participationist perspective denotes all approaches where learning is conceptualized as 
participation in classroom discourses and collectively implemented activities (Sfard, 2008). Learning 
mathematics is a process of enculturation into mathematical practices including discursive practices 
and how they are interactively established in classroom micro-cultures. Mathematical practices 
capture collective mathematical development and describe interactively established ways of joint 
action in mathematics classrooms. The participation perspective intertwines discursive participation, 
taking part in discourse practices according to discursive norms and epistemic participation, taking 
part in the joint epistemic processes of knowledge constitution (Erath et al., 2018).  
Discursive approach and collective learning 

Cobb et al. (2011) write about the collective learning of the classroom community as the evolution 
of classroom mathematical practices. In line with this, Lerman (2002) outlines the principles of a 
cultural, discursive psychology, where learning is an initiation into the practices of school 
mathematics including learning to speak mathematically. The teacher has a vital role in showing 
what is approved within the discourse, i.e. the accountability to the discipline. Furthermore: 
“interactions should not be seen as windows on the mind but as discursive contributions that may 
pull others forward into their increasing participation in mathematical speaking/thinking” (Lerman, 
2002, p. 89), which is in line with Sfard’s (2008) view of learning as a combination of acquisition 
and participation.  
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Gravemeijer (2004, p. 126) points to “the proactive role of the teacher in establishing an appropriate 
classroom culture, in choosing and introducing instructional tasks, organising group work, framing 
topics for discussion, and orchestrating discussion”. In line with this, Stein et al. (2008, p. 320) 
emphasise the importance of “whole-class discussions in which the teacher actively shapes the ideas 
that students produce to lead them to more powerful, efficient, and accurate mathematical thinking.” 
In the Discursive Approach by Sierpinska (2005), the teachers’ role in classroom conversations is 
similarly characterised by an obligation to lead the discussion in the direction of relevant 
mathematical ideas and themes. In line with this, we introduced the term captivating dialogue 
(Andresen & Dahl, 2018) to situations where students are progressively initiated into the practices of 
school mathematics through a whole class discussion. 
Research question 

How can a teacher’s orchestrate a balance between student authority and accountability to the 
discipline while guiding the presentation of students’ group work? 

Methodology 
The data consisted of video recordings (30 hours) of teaching during the autumn of 2013 in eight 

Norwegian upper secondary classrooms as part of the EU research project KeyCoMath about 
students’ strategies for creative problem-solving (Andresen, 2015, 2018). The aim of the project was 
to develop and study teaching that encourages students’ inquiry, and intellectual autonomy. The 
teachers were experienced teacher who volunteered to develop exploratory mathematics tasks to their 
own classes with the purpose of stimulating student inquiry. This paper focuses on one sequence (6 
minutes, 28 seconds, translated to English) and discusses the interactions between the student at the 
blackboard, the rest of the students, and the teacher. The utterances are not analysed as isolated 
events but as they occur in a context of sequential utterances and the analysis does not evaluate each 
utterances in terms of whether or not they are evidence of learning, as we perceive learning as a 
result of a combination of a series of events.  

Data and analysis 
Tina teaches a mathematics class of 24 students from a larger town. The excerpt is from the final 

lesson of a ‘Mathematics Day’ where the students worked in groups with tasks from ‘Proofs without 
words’ (Nelsen, 1993). Each task asks for an explanation of the connection between its figure and its 
formula. This type of tasks was novel to the students. The excerpt shows a student (Ingvild) who 
volunteered to demonstrate her group’s solution to the task in Figure 1. 

    
Figure 1: Task as shown on the blackboard (left), student work from book (right) 

 
Ingvild appears calm and relaxed. The task and a drawing of the square is seen on both the 

blackboard and the book (see Figure 1, left & right & Figure 2, left side of the left equation). 

Ingvild:   We are supposed to deduct something, right? 
Ingvild: But okay. I was thinking ... it was ... [looks at Tina] 
Tina:    They [the class] are the ones you are supposed to explain it to 
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Ingvild: Okay [smiling]. It is (a + b)2 because ehh we have a times a here [points to the smaller 
square inside the bigger square and writes a2 on this square] and ehh no [looks at Tina and 
appears doubtful] 

Tina:    Help [aimed at the class] 
Tina:  There is a lot of help [several hands have been raised] 

After 41 seconds Ingvild hesitates and looks appealing at Tina who stands next to the blackboard. 
Two points of interest: i) Tina gives the authority to Ingvild to explain something to the whole class 
and not only to Tina. Here, Tina emphasizes the class’ understanding rather than checking the 
correctness of the result or Ingvild’s understanding. ii) Ingvild gets stuck almost immediately, but 
Tina does not take over the explanation but directs Ingvild’s attention to the class and requires 
Ingvild to get help from the class (“There is a lot of help”). By that, Tina assigns the authority to the 
class and encourages interaction between Ingvild and the class. 

Next, different students in the class contribute to the task’s solution, and one student says: “On the 
one side it is a + b and the same down. Therefore, in a way it becomes a + b times a + b and we can 
write this as (a + b)2 …”. To which Ingvild responds: “But where does a2 come from [points at a2 in 
the square]”. Several students then start to explain at the same time. After 1 minute and 18 seconds 
Tina interrupts and says: “Someone needs to come up [to the blackboard] and explain it”. No one 
volunteers but several students provide explanations from their seat. Ingvild frequently replies 
“Hmm”, nods and points at the mentioned places on the figure. In our interpretation, the class accepts 
the authority given by Tina and willingly participates in explaining. Ingvild can follow the 
suggestions and although she failed to explain the task on her own, she does not appear timid by the 
situation and her peers do not appear to ridicule her. 

After 2 minutes and 20 seconds, Ingvild takes over again and draws the second square with side 
length a - b (see Figure 2, left) and explains: 

Ingvild:  And it becomes a - b and a - b [points to each side and then looks at Tina] 
Tina:  Hm-hm [accepting sound] 

This time, Tina does not ask the class for help, but indicates that Ingvild is on track, which we 
interpret as Tina showing accountability to the discipline by focusing on mathematical content. Until 
4 minutes and 48 seconds into the recording, Ingvild draws the rest of the figures seen in Figure 2 
while she and some students are discussing what to do. Next, Ingvild hands out the chalk with a 
happy smile, as if she thinks she has finished. But Tina intervenes: 

Tina:  I do not quite understand it all. [Tina points to a2 and b2]. But these ones? [pointing at the two 
strips on the left side of the right equality while turning towards the class] 

Until 6 minutes and 17 seconds into the recording, Tina exchanges with different students, 
including Ingvild. The intriguing part of the reasoning, illustrated in Figure 2 (right side), appears to 
be that the dark rectangles (a times b) ‘overlap’ in the second square on the left side, and, therefore, 
must be added (as b times b) to the last square on the right side. Tina asks questions like: “How big is 
this piece?” to make sure that all the areas in the squares on the left side of the equality sign are 
represented at the right side of the equality sign. Then Tina asks: “Is it correct?” and concludes by 
saying: “So based on this where we have drawn – thank you [to Ingvild] – two squares”. At this point 
the class apparently impulsively applauses while Ingvild returns to her seat. Visible signs of 
agreement are students’ nodding and confirming answers, and nobody asks more questions although 
the atmosphere is forthcoming.  
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Figure 2: Figures from the task (left), figures from the blackboard (right) 

Discussion 
Accountability and authority 

In our interpretation, Tina shows accountability to the discipline by spending almost one fourth of 
the sequence’s time (towards the end) to make sure that all figures to the right have been covered by 
the figures to the left. The accountability is balanced with student authority as Tina directs focus of 
attention to the interaction between the whole class and the subject on the blackboard rather than 
focusing on the interaction between Ingvild and herself. Further, Tina gives the authority to the 
community of students when she requests help. We also see that teacher authority is not the same as 
teacher monologue, Tina orchestrates is in complete control even though she is at the background 
most of the time. 
Classroom culture, participation and collective learning 

Ingvild had volunteered and does not exhibit discomfort when she gets stuck. Tina thanks Ingvild 
during the conclusion of the sequence, and the class applauds even though it was not a brilliant 
presentation. This shows a classroom culture with ample space for student authority and for 
discussion. We also see that Tina does not only focus on student authority. Stein et al. (2008) 
describes that sometimes a focus on student thinking is perceived to imply that the teacher “must 
avoid providing any substantive guidance at all” (p. 316). In Tina’s case, providing substantive 
guidance is not in itself a contradiction to a student-centred classroom culture. Tina manages the 
balance and establishes a classroom culture in which the students through discursive participation 
create the basis for collective learning. By the end of the sequence, collective learning (Cobb et al., 
2011) has taken place and the class knows the solution. Tina ensures that the class is on the path 
which is in line with Sierpinska’s (2005) views of the role of the teacher as someone who has the 
responsibility of leading a class in a relevant direction.  

Conclusions 
In this paper we address how a teacher orchestrates the balance between accountability to the 

discipline and authority to the students. We focus on students in the classroom as a group and analyse 
a sequence from a lesson where a student presents the result of group work. The teacher avoids the 
face-to-face communication with the presenting student, which could otherwise have been the 
teacher’s choice of action when a student gets stuck in the explanation. Thereby the teacher manages 
to insist on the inclusion of the whole class into the discussion. Furthermore, the teacher avoids 
taking over from the student and giving the explanations using her authority. Rather, the teacher 
encourages and supports the rest of the class to develop the appropriate explanations. In our 
interpretation, the students’ authority therefore remains acknowledged together with relevant 
mathematics that is held accountable to the discipline.  
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Flipped instruction is often viewed in relation to what is done outside of class (e.g., watching 
instructional videos) but it is also important to attend to what happens in class.  Flipped instruction 
also has similarities to inverted or blended learning, but “flipping” terminology has garnered 
enough traction in practice and research as a contemporary phenomenon that it is worthwhile 
examining it on its own terms. In this research brief, we presented an overview of some initial 
findings from an ongoing meta-analysis of literature on flipped mathematics instruction. 
Understanding the research methods previously used to study flipped instruction and the contexts in 
which those methods were used, will provide future researchers and practitioners with a greater 
understanding of the impact of flipped instruction on the teaching and learning of mathematics at all 
levels. 

Keywords: Technology; Instructional Activities and Practices; Curriculum Enactment; Research 
Methods. 

Introduction 
With the rise of YouTube and other video platforms, flipped instruction—also called “flipped 

learning” or “flipped classrooms,” defined by videos or other multimedia assigned as homework 
rather than skill practice or problem set homework—has become more prevalent over the past decade 
(Smith, 2014; Talbert,2018). It has been implemented most often in mathematics and science, 
especially at the post-secondary levels (Uzunboylu & Karagozlu, 2015). But even in K12 schools, 
more than 10% of teachers report flipping mathematics lessons at least once a week (Banilower et al., 
2018). 

As an innovation, flipped mathematics instruction has been predominantly teacher driven, with 
individual teachers deciding to try it as a way to, for example, accommodate students who miss class 
or have difficulty following a live lecture and to free up more time in class for active student work 
(de Araujo, Otten, & Birichi, 2017). Practical implementations, therefore, were outpacing research 
until recently when a surge of empirical studies on flipped instruction began (Talbert, 2018). The 
emerging literature, however, encompasses studies with different foci in terms of the outcomes of 
interest, from student attendance (Asarta & Schmidt, 2015) to their attitude and engagement (Clark, 
2015) to measures of content learning (Ichinose & Clinkenbeard, 2017). Even studies that focus on 
similar outcomes have produced potentially conflicting results. For example, Clark (2015) had 
positive findings in favor of flipped mathematics instruction but De Santis and colleagues (2015) had 
neutral-to-negative findings. 

Because of the wide range of contexts and foci for research on flipped instruction, and because of 
the contradictions in preliminary findings, it is important to systematically review the literature. The 
specific question guiding this review was, In what ways and to what extent has prior research 
examined flipped mathematics instruction? This literature review study complements existing 
reviews such as that of DeLozier and Rhodes (2017) that examined instructional activities that are 
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included in studies of flipped instruction and Zainuddin and colleagues (2019) who, like us, 
examined methodological approaches and overarching results but which looked across multiple 
subject areas over a short period of time (2017-2018). Our study will focus on flipped mathematics 
instruction, specifically, and will include a broader timespan. 

Framing Flipped Instruction 
Flipped instruction is often viewed in relation to what is done outside of class (e.g., watching 

instructional videos) but it is also important to attend to what happens in class. Bergman and Sams 
(2012), for example, wrote about flipped instruction but focused largely on ways of using newly-
available in-class time. de Araujo et al., (2017) have also pointed out the importance of planning for 
in-class activities, which is what separates flipped instruction from fully-online instruction. Flipped 
instruction, because of the possibility of content delivery occurring at home, also has similarities to 
inverted (e.g., Strayer, 2012) or blended (e.g., Graham, Woodfield, & Harrison, 2013) learning, but 
“flipping” terminology has garnered enough traction in practice and research as a contemporary 
phenomenon that it is worthwhile examining it on its own terms. 

Method 
For this qualitative meta-analysis of the literature on flipped instruction in mathematics classroom, 

the authors identified the publications through searches on multiple databases and individual 
journals, excluded the relevant publications using criteria (e.g., empirical, mathematics focused), and 
screened and recorded each article’s details (e.g., definition of flipped instruction, methodology, 
findings). The details of each phase will be unpacked in the following sections. 
Article Identification 

To identify the publications relevant to this qualitative meta-analysis, we conducted our initial 
search in the ERIC database. Using the search terms “flip*” and “flipp*,” our search focused on 
titles, abstracts, and keywords. Our search was restricted to peer-reviewed empirical articles (means 
have some forms of research questions, methods, and findings in them) published and available as of 
August 2018. During our initial search, we realized that some scholarly journals in mathematics 
education (e.g., ESM, SSM) or computer journals (e.g., EJMSTE) were not listed in the index on the 
ERIC database, we expanded our searches to the individual journals listed in top 7 mathematics 
education journals, as defined by William and Leatham (2017), or appeared within top 10 
mathematics education either Scopus or Google Scholar Metrics. We did the same to the computer 
journals ranked within top 10 on either Google Scholar Metrics, Scopus, or Web of Science. For 
these individual journals, we searched peer-reviewed empirical articles using the search terms 
focusing on titles, abstracts, and keywords on their website or through ProQuest. If the individual 
journals did not allow us to search using either of titles, abstracts, and keywords, then we expanded 
our searches to full text if the option was available. If the individual journals did not have a 
searchable engine on their website, then we used Google Scholar and searched the full text using the 
same search terms.  
Article Inclusion and Exclusion 

Overall, as of August 2018, after further removing duplicates, we retrieved 1148 entries (822 from 
the ERIC database and 326 from the individual journals). For the 1148 publications, we read through 
their abstracts to check whether each article focuses on flipped instruction for teaching and learning 
mathematics (e.g., geometry, college algebra, statistics). Thus, we used the following criteria of 
inclusion: peer-reviewed empirical article, flipped instruction, and content area. Two raters 
individually read through the abstract and individually examined each criterion as “Yes,” “Maybe,” 
or “No.” If the examination of each article was not matched, the raters discussed until they agreed 
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with one or another. Also, if the abstract is not available, the raters skimmed through the full article 
and examined the criteria. After the first round of coding, there were 105 Yes’s, 851 No’s, and 192 
Maybe’s. For the Maybe’s, both raters skimmed through the full article and examined the criteria, 
and it turned out that there were 12 Yes’s and 180 No’s. Consequently, we identified 117 Yes’s and 
1031 No’s after the initial round of coding. 
Coding the Literature 

Both the screening and coding of the studies were conducted by the authors. To ensure the quality 
of these as key steps in our qualitative meta-analysis, we utilized a spreadsheet to organize and 
record the details of each study. The authors developed an initial coding scheme and recorded each 
article’s definition of flipped instruction, research questions, overall methodology, details of 
methodology and data sources, participant information, mathematics content of focus, measured 
outcomes, and findings. Using the initial coding scheme, the authors coded two articles together in 
order to get familiar with the coding scheme and to test how the coding scheme works. Then, the 
research team deviated the articles and coded independently, and then met to discuss any issues or 
concerns that emerged while coding the articles. After discussing the issues that arose during the 
coding process, the team decided to add two more dimensions—length of study and details of the 
flipped classroom and comparison classroom (if applicable)—to the coding scheme. 

Findings 
We conducted a synthesis of literature within each category using an inductive and iterative process. 

As of February 2020, 97 of the 117 articles selected for inclusion in this qualitative meta-analysis 
were coded.  The findings presented in this paper represent a brief overview of the methodology, 
geographic location, mathematics course, participant grade band, and findings in favor, against, or 
mixed of flipped instruction from the 97 coded articles. Coding of remaining articles is ongoing.  
Findings resulting from ongoing synthesis of literature involving the theoretical frameworks and 
definitions of flipped instruction guiding each study, instruments and measures, specific mathematics 
content, and activities used within each study, if provided, will be presented in future manuscripts. 
Methodology and Context of Included Studies 

The methodology used by the researchers and contexts of the included studies provided a picture of 
how and where flipped instruction was being studied.  Of the 97 coded articles, we found that nearly 
49% of the studies used quantitative research methods, 12% used qualitative research methods, and 
39% used both qualitative and quantitative methods.  Study participants included elementary, 
secondary, and post-secondary students in the United States, Canada, Europe, Asia, Africa, and 
Australia.  Our synthesis of the literature revealed that an overwhelming majority of the studies were 
conducted within post-secondary institutions in the United States (n = 71); and very few studies were 
conducted in elementary classrooms (n = 3) (see Table 1). 

 
Table 1: Geographic Location and Grade Band of Participants 

Grade Band Total *Geographic Location 
  United States Canada Europe Asia Australia 

Elementary K - 5 3 3 0 0 0 0 
Secondary 6 - 12 22 15 1 1 2 0 
Post Secondary  71 52 2 2 3 2 

TOTAL 97 70 4 3 5 2 
*if specified 

 
The mathematics content studied ranged from fourth-grade mathematics content through graduate 

level mathematics courses.  Post-secondary mathematics course content represented nearly 70% of 
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mathematics content in classrooms using flipped instruction, with statistics (21.5%) and calculus 
(15.2%) courses being the majority (see Figure 1). Few studies included elementary mathematics 
content. Of the 7 studies that included elementary mathematics content, participants in 4 of those 
studies were undergraduate students majoring in elementary education.  

 

 
Figure 1: Mathematics Content 

 
Findings in Favor, Against, or Neutral of Flipped Instruction 

Findings from included studies revealed numerous positive findings in favor of flipped instruction 
in mathematics classrooms.  Of the 57 included studies (from the 97 coded studies) that measured 
mathematics achievement of students in classrooms with flipped and non-flipped instruction, 53 of 
those studies reported at least one statistically significant result in favor of flipped instruction. Fifteen 
studies reported at least one result that did not show a statistically significant difference in student 
achievement; and, 3 studies reported at least one statistically significant result in favor of non-flipped 
instruction.  Additional reported findings included both positive and negative reports of participants’ 
perceived impact of flipped instruction on mathematics achievement, level of anxiety, class 
attendance, motivation, and study habits.   

Conclusion 
In this research brief, we presented an overview of some initial findings from an ongoing meta-

analysis of literature on flipped mathematics instruction. Understanding the research methods 
previously used to study flipped instruction and the contexts in which those methods were used, will 
provide future researchers and practitioners with a greater understanding of the impact of flipped 
instruction on the teaching and learning of mathematics at all levels. As coding and synthesis of the 
studies included in our meta-analysis continues, the findings presented in this research brief are 
expected to change.   
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This study extends our understanding of teachers’ use of gestures during mathematics instruction. In 
particular, I examined the relation between teachers’ gesture and the kind of mathematical 
connection verbally identified during whole-class discussions. Analysis of video-recordings of two 
teachers implementing a common unit of instruction revealed, in general, the teachers were more 
likely to use pointing and writing gestures rather than depictive gestures to make mathematical 
connections or support connection-making. However, the teachers used gestures differently during 
discussions based on the kind of mathematical connections discussed. These differences included the 
use of more than one type of gesture for an entity in a connection and whether both entities of a 
connection co-occurred in speech and gesture.  

Keywords: Communication; embodiment and gesture; instructional activities and practices 

In their review of research on learning and teaching with understanding, Hiebert and Carpenter 
(1992) found that explicit attention to mathematical connections during instruction was generative 
for students’ learning, promoted recall, and supported students to develop a positive disposition 
toward mathematics. Unfortunately, The Third International Mathematics and Science Study 
(TIMSS) 1999 Video Study revealed there were few opportunities for and practically no discussions 
of mathematical connections in US mathematics classrooms (Hiebert et al., 2003). Interestingly, 
teachers in higher, achieving countries, such as Japan, were more likely to not only discuss 
connections but also to use gesture while doing so (Richland, 2015). While there is a growing body 
of evidence that gestures are beneficial for student comprehension (c.f., Hostetter, 2011) and support 
students’ contributions during a discussion (Alibali et al., 2019), it is unclear if there is any 
relationship between teachers’ gestures and the specific kind of mathematical connections made 
during instruction beyond connecting representations. This paper describes how two teachers’ 
gestures varied in relation to the kind of mathematical connection being discussed during whole-class 
instruction. 

Theoretical Foundation and Constructs 
Embodiment and Situative Perspectives on Gestures 

Broadly defined, gestures are movements of the body, usually of the hands and arms, for the 
purpose of communicating, and they sometimes accompany speech (McNeill, 1992). To understand 
how and why teachers gesture during instruction, I draw on the theoretical perspectives from 
embodied and situated cognition. From an embodied perspective, gestures emerge from simulated 
actions or perceptual states (Hostetter & Alibali, 2019). For example, asking an individual to think 
about a cup is also likely to activate the mental actions needed to hold a cup and so the individual 
may produce a “cupping gesture” with one hand. However, individuals may produce gestures that do 
not have roots in simulated actions or perceptual states. For example, a teacher may point at a 
mathematical object so that students may follow the referent of her speech (e.g., Is this [points at an 
expression] the same as this [points to a second expression]?). From a situated perspective, gestures 
are a semiotic resource that support interaction by developing, refining, or clarifying ideas (Goodwin, 
2000). For example, Keene, Rasmussen, and Stephan (2012) argued that a sequence of gestures 
between an instructor and students over a series of lesson supported students’ understanding of 
equilibrium solutions.  
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In this study, I followed Alibali et al. (2014) in distinguishing between depictive, pointing, and 
writing gestures. Depictive gestures are “gestures that portray aspects of semantic content directly, 
via hand shape or motion trajectory, either literally or metaphorically” (Alibali et al., 2014, p. 76). 
Depictive gestures align with an embodied perspective of gestures. Pointing gestures are “gestures 
that indicate objects, locations, or inscriptions, usually with an extended finger or hand” (Alibali et 
al., 2014, p. 76). Writing gestures are “writing or drawing actions that were integrated with speech in 
the way that hand gestures are typically integrated with speech but that were produced while holding 
a writing instrument (usually chalk or marker) and that involved writing to indicate or illustrate the 
content of the accompanying speech” (Alibali et al., 2014, p. 76). Pointing and writing gestures align 
with a situative perspective of gestures.  
Mathematical Connections 

Mathematical connections are the discursive ways in which an individual or community makes or 
describes a relationship between two or more mathematical entities. Entity is meant to encompass 
ideas, concepts, objects, representations, procedures, or methods. An individual or community may 
make a mathematical connection in variety of ways such as connecting through comparison (e.g., 
!! + !! is the same as !! + !!), connecting through logical implication (e.g., If two distinct lines 

have the same slope, then the lines are parallel), connecting methods (e.g., Using the Pythagorean 
theorem or the distance formula can be used to find the distance between two points), or connecting 
specifics to generalities (e.g. A 6-8-10 triangle is an example of a Pythagorean triple; Singletary, 
2012). 

Methods 
Participants and Data Collection 

Melissa and Robin (pseudonyms) were selected to be part of this study from a larger research 
project that followed a cohort of secondary mathematics teachers in their teacher preparation 
program. Melissa and Robin were white females in their early twenties. They co-planned and co-
taught an advanced 9th grade coordinate algebra course together during their student-teaching. Course 
goals included leveraging algebra to deepen and extend students’ understanding of geometry. The 
data included lesson materials from one unit of instruction and video-recordings of the enactment of 
those lessons in two different class periods. This included 8 instructional days with Melissa as the 
focus teacher and 6 instructional days with Robin as the focus teacher. Each lesson recording was 
approximately 70 minutes in duration.  
Data Analysis 

First, I transcribed all video recordings of the lessons and included screen captures of the teachers’ 
gestures with a short description. Then, I reduced the data to episodes of whole-class discussions 
about content-related activity (e.g., discussing the solution to a mathematical task) and not the day-
to-day operation of school (e.g., checking attendance). From the reduced data, I then coded for 
connecting-periods (i.e., moments in whole-class discussions when a student or teacher made a 
mathematical connection). I will call connecting-periods just periods for simplicity. I excluded any 
periods if the mathematical connection in the period had already been discussed previously. This 
exclusion was done because Alibali et al. (2014) found that teachers were more likely to use gestures 
when the connection was novel to students. Next, using the Mathematical Connections Framework 
(Singletary, 2012), I coded the kind of mathematical connection expressed in the period. Finally, I 
coded and described the modalities (speech and/or gesture) used by the teacher for each entity in the 
connection. 
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Results 
Across the lessons, there was a total of 60 periods. The teachers generally used at least one gesture 

(e.g., depicting, pointing, or writing) during a period (45 of 60). In about one-third of the periods, the 
teachers used two or more gestures to accompany speech about a mathematical connection (21 of 
60). There were 13 periods when the teachers did not use any gestures and 2 periods where I was 
unable to determine if a teacher used a gesture due to the position of the camera (e.g., a teacher 
walked off camera).  

The teachers’ gestures differed depending on the kind of connection. For instance, they were more 
likely to use two or more types of gestures with speech to support discussions when connecting 
through comparison (13 of 23) or connecting methods (8 of 11). In contrast, there were few instances 
of a teacher gesturing with two or more types when connecting specifics to generalities (3 of 14). 
There were no instances of a teacher supporting discussions of connecting through logical 
implications using two or more types of gestures (0 of 11). In fact, it was somewhat common for 
connections through logical implication and connections of specifics to generalities to be 
unaccompanied by teachers’ gestures (7 of 12 and 5 of 14, respectively).  

 
Table 1. Modalities across kinds of connections 

 Kind of mathematical connection 
 Comparison Logical 

implication 
Methods Specifics to 

generalities 
     

Two or more gestures 
with speech  

13 0 8 3 

At least one gesture 
with speech 

21 4 11 9 

Unable to determine 1 1 0 0 
No gesture 1 7 0 5 

Total  23 12 11 14 
 

Furthermore, the teachers generally expressed both entities of a mathematical connection with 
gestures when connecting through comparison (14 of 23) and connecting methods (9 of 11) during 
instruction. In contrast, the teachers seldom expressed both entities when connecting through logical 
implication (2 of 12) and connecting specifics to generalities (3 of 14).  

 
Table 2: Gesture use for entities within each kind of connection 

 Kind of mathematical connection 
 Comparison Logical 

implication 
Methods Specifics to 

generalities 
     

One entity 7 2 2 6 
Both entities  14 2 9 3 
Neither entity 1 7 0 5 
Unable to 
determine 

1 1 0 0 

Total 23 12 11 14 
 

Lastly, for all kinds of connections, teachers often used pointing and writing gestures with speech 
over depictive gestures in relation to a single entity of a mathematical connection. This finding is in 
agreement with what Alibali et al. (2014) found. Therefore, there was no relation between the kind of 
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mathematical connection and the type of gesture. Table 3 outlines the type of gesture for at least one 
entity of a mathematical connection in relation to the kind of mathematical connection. Note that the 
sum for each kind of mathematical connection is different in Table 3 than the other tables because 
one entity of a mathematical connection could have been expressed multimodally (e.g., with a 
pointing and writing gesture).  

 
Table 3. Type of gesture and kind of mathematical connection 

Type of gesture (for at least 
one entity) 

Kind of mathematical connection 

 Comparison Logical 
implication 

Methods Specifics to 
generalities 

Depictive 4 1 5 1 
Pointing 16 1 8 4 
Writing 14 3 7 8 

Discussion 
Novice teachers do gesture when discussing mathematical connections or supporting students’ 

connection-making during instruction. This outcome is a distinctive shift from the TIMSS 1999 
Video Study results and most likely reflects the recent emphasis on facilitating student-centered 
mathematical discussions in mathematics teacher education in the US. Novice teachers’ use of 
gestures during discussions is also important because teachers’ use of gestures has been found to lead 
to greater student comprehension (c.f., Hostetter, 2011) and promote students’ contributions during a 
discussion (Alibali et al., 2019). Further, these novice teachers seldom used gestures when 
connecting through logical implication and connecting specifics to generalities. This is noteworthy 
because gestures are a semiotic resource for students’ meaning making and a teacher’s gestures may 
be a resource for moving students to a more productive meanings of logical implications (Hoyles & 
Küchemann, 2002) or to more sophisticated generalizations (Ellis, 2007). However, I do not argue 
that all the connections were productive for students or that gestures alone always lead students to 
develop productive meanings of connections. For example, Lobato et al. (2003) described how a 
teacher’s use of ambiguous language of “goes up by” when describing the slope of a line along with 
her use of a sweeping gestures along one column in a table of values may have contributed to 
students’ overgeneralization of slope as a difference rather than a ratio. One productive direction for 
future research is to determine if teachers are able to notice whether and how their own gestures are 
(not) productive for students’ mathematical connection-making. 
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The use of questioning is an effective strategy for orchestrating collective argumentation. However, 
teachers with minimal experience facilitating argumentation may conceive of effective support as 
providing little to no verbal input in the argumentation. In this study, we analyzed one teacher’s 
analysis and critique of her support for collective argumentation during her first three years of 
teaching. We argue that learning to analyze her support for collective argumentation enriched the 
teacher’s understanding of questioning. More specifically, by explicitly identifying how her questions 
elicited components of arguments from students, the teacher re-evaluated her questions, focusing on 
purpose rather than form. Implications from this study draw connections between learning to 
facilitate argumentation and the dilemma of telling that teachers encounter when trying to teach 
mathematics in ways that honor students’ thinking and sense-making. 

Keywords: Classroom discourse, High school education, Instructional activities and practices 

Teachers have a pivotal role in orchestrating argumentation. Teacher moves such as revoicing and 
establishing social and sociomathematical norms are supportive of mathematical argumentation 
(Forman et al., 1998; Yackel, 2002). Further, researchers (e.g., Hunter, 2007; Martino & Maher, 
1999) have recognized that teacher questioning is a key factor in supporting mathematical 
argumentation. For instance, Martino and Maher suggested that a sequence of questions that offer an 
opportunity for generalization help students to build mathematical arguments. However, teachers 
have difficulties incorporating questioning strategies in their classroom teaching, even when 
supported by curricular materials (e.g., Sahin & Kulm, 2008). Furthermore, some researchers argued 
that teachers may not have a clear understanding of what effective questioning strategies are or how 
to implement them in order to support argumentative discourse (e.g., Kosko et al., 2014; Zhuang & 
Conner, 2018). In particular, Kosko et al. (2014) found that some teachers envision mathematical 
argumentation being left to the responsibility of students with relatively limited input from the 
teacher. The purpose of this paper is to demonstrate how a teacher learned to analyze her support for 
argumentation while also co-developing an understanding of her role in supporting argumentation 
with a special focus on questioning as a strategy for supporting argumentation.  

Theoretical Perspective and Conceptual Framework 
Drawing from a situative perspective, we conceptualize learning as socially constructed; it takes 

place through interaction with other human beings, within a specific context, and through active 
engagement and participation in meaningful practices (Lave & Wenger, 1991). In this study, the 
situative perspective led us to attend to a teacher’s participation and use of analytic tools when 
discussing selected video representations of her teaching. As the teacher examined, commented on, 
and critiqued her support of argumentation with another more experienced other (i.e., the 
mathematics teacher educator-researcher, MTE-R), they built and negotiated the meaning of the 
practice of supporting argumentation in school mathematics. 
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Following Toulmin’s (1958/2003) model of argumentation, an argument consists of at minimum a 
claim (statement whose validity is being established), data (support provided for the claim), and 
warrant (statement that connect data with claims). In this paper, we focus on collective 
argumentation (i.e., individuals working together to determine the validity of a claim). According to 
the Teacher Support for Collective Argumentation (TSCA) framework (Conner et al., 2014), teachers 
can support collective argumentation in three ways: directly contributing to the argument (e.g., 
providing a claim), asking a question (e.g., requesting an action or information from students), or 
using other supportive actions (e.g., repeating a student’s claim to the class). For the purpose of this 
paper, we focus on the teacher’s questions and her critique of those questions. 

Methods 
Participant and Data 

Jill (a pseudonym) was a participant in a 6-year longitudinal study focused on understanding how 
beginning teachers learn to facilitate collective argumentation. Jill agreed to participate in the final 
phase of the study, which was to follow her into her first three years of high school teaching. For this 
paper, we analyzed data from the first and third years of Jill’s teaching because we noticed a 
significant shift in Jill’s participation in analyzing her support for collective argumentation between 
those two time points and that this contrast provided insights into her understanding of questioning to 
support argumentation. Data includes 6 classroom observations in her first year and 9 classroom 
observations during her third year. The research team video-recorded each lesson observation, 
collected lesson artifacts (e.g., worksheets), and made field notes. After each lesson observation, the 
team identified episodes of argumentation in the video-recordings and referred to lesson artifacts and 
field notes as needed to make sense of what happened in the video-recordings. In post-lesson 
interviews (Interview 6 through Interview 19), the third author interviewed Jill to discuss her 
supportive actions with respect to collective argumentation by having her analyze selected 
argumentation episodes from the lesson’s video-recordings. The focus of these interviews was to 
assist Jill in analyzing her support for argumentation, understand Jill’s goals for the lesson, and gain 
insights into Jill’s perspective of the school context in which she worked. All post-lesson interviews 
and video clips were transcribed as data sources. 
Data Analysis 

At the first stage of analysis, the research team diagrammed episodes of argumentation identified in 
Jill’s lessons using a revised Toulmin’s (1958/2003) model (as described in Conner, 2008). The team 
classified all of Jill’s supportive actions for argumentation using the TSCA framework, including 
Jill’s direct contributions to arguments, questions, and other supportive actions. In the second stage, 
the team developed a codebook to identify moments when Jill analyzed her support for 
argumentation. The subset of the codes included identifies argument (i.e., teacher identifies an 
argument or episode of argumentation), identifies component (i.e., teacher identifies data, claim, or 
warrant of an argument), identifies support (i.e., teacher identifies a question or other supportive 
action), teacher critique of support (i.e., teacher’s evaluation of her own support or observation about 
the presence of support or lack thereof), and teacher analysis of support (i.e., teacher categories or 
otherwise gives ideas about what kinds of support she provided). After coding all the post-lesson 
interviews from Jill’s first and third year, the team generated reports of all the instances of these 
codes in the data. The team used these reports to compare Jill’s analysis of her questioning over time. 
This analysis is ongoing; initial results are presented in this paper. 
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Results 
Year one: “Very leading on my part, I think” 

During her first year of teaching, Jill did not perceive a teacher’s questioning as essential support 
for students to make arguments. For example, Jill asked the MTE-R at the end of the first post-lesson 
interview, “How [do I] get them (students) to actually form arguments themselves without me having 
to do it for them? Like without me having to say ‘Well, why do you think that?’ You know, dictating 
every little step of it.” (Interview 6). Typically, when the MTE-R asked Jill to describe what she 
noticed after watching video clips of her first year of teaching, Jill described her questioning as 
leading. For example, “I said, ‘Well, what are the slopes of the two lines?’ and then she [the student] 
said, ‘Well, they’re opposite reciprocals’...So it was very, very leading on my part, I think.” 
(Interview 8). We interpreted Jill’s description of leading similarly to how she described her 
questioning in the first interview as “dictating every little step.” In other words, a question was 
leading to Jill if it resulted in the claim or warrant that she was expecting students to make in the 
argument.  

In an attempt for Jill to see her questioning as supportive of argumentation, the MTE-R asked Jill in 
the last interview during her first year of teaching to provide examples of leading questions that she 
used during an episode of argumentation. As Jill went through the transcript, she began to re-evaluate 
some of her questioning. For example, Jill stated, “I think, where I say, ‘Wait, what else do we 
know?’ that was not a leading question. That was very open" (Interview 8). This question had the 
potential to elicit an unexpected claim from students, and she evaluated it as not leading, which 
supports our interpretation of her meaning for “leading.” The MTE-R next assisted Jill in identifying 
how her questioning supported students in contributing claims or warrants (Interview 8):  

MTE-R: You say, “How do we know these are right angles?” So, you’re emphasizing, okay, the 
claim here that we’re looking at. It is these are right angles, right? 

Jill: These are right angles (nodding). 
MTE-R: And so, then a student says, “Because of the slope.” So, you are then saying, ‘Okay, let’s go 

with that. Because of the slope, what do we need to know about the slope essentially?’ Right? 

Jill often described her questioning in her first year of teaching as leading, but she seldom 
considered how her questions supported students to make contributions to the argument, such as 
providing a claim or warrant. We argue that having Jill examine her questioning in relation to 
supporting students to contribute claims or reasoning for the claims assisted her to reconsider the 
purpose of her questioning and how it was a useful strategy to support collective argumentation. The 
MTE-R provided these opportunities to Jill over the course of her second and third years of teaching. 
Jill identified argument components (e.g., claims or warrants) and her supportive actions, such as 
questioning, in relation to students’ contribution of those components. 
Year three: “But that’s different than leading” 

At the end of her third year of teaching, Jill was provided with an episode of argumentation from 
her class and asked to identify what she did to support students to contribute components of the 
argument. Jill pointed out several questions she used to support students’ contribution of claims or 
warrants. For example, Jill stated, “Okay so… ‘Why does 6 not work?’ would be [what] got her to 
say that [warrant] but it goes to [give reason for] that [claim]. So that [question] was my support for 
that part of this little [warrant]” (Interview 17). Jill even identified claims or warrants that were 
unprompted by her: “And then...so her friend said that [claim]. I don’t think I said anything really” 
(Interview 17). After identifying all of her supportive actions (questioning and other supportive 
actions), Jill reflected on her questioning without any prompting. 

Jill: So, really, I think I didn’t, I didn’t say too many leading things here. 
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MTE-R: Huh-uh (affirmative). 
Jill: Which is probably what made this argument good. Because I didn’t say anything. 
MTE-R: No, you said things. 
Jill: Well I just, I gave her… 
MTE-R: You said appropriate things. 
Jill: Slight direction. Nothing leading. 
MTE-R: True, true. 
Jill: But slight direction I think sometimes is necessary because they’re still new with things. 
MTE-R: Oh yeah. Mm-hmm (affirmative). 
Jill: But that’s different than leading them. (Interview 17) 

This was a shift in Jill’s analysis of her questioning in relation to her observations from her first-
year interview. Recall, Jill initially asked the MTE-R how to get students to make arguments without 
her having to “dictate every little step.” By her third year of analyzing her questioning, Jill described 
her questioning as supportive of getting students to contribute to the argument and reflected that 
asking those questions “sometimes is necessary.”  

Discussion 
Kosko et al. (2014) hypothesized two reasons for why teachers envisioned providing minimal 

scaffolds, such as questions, during argumentation: lack of teaching experience with argumentative 
discourse or falling victim to the conception of “not telling” (Lobato et al., 2005). This study 
provides support for the latter hypothesis. Early in Jill’s analysis of her support, she critiqued her 
questions as “too leading” based on their form (i.e., a question that does not allow for multiple 
contributions from students) rather than their function (i.e., getting students to make claims or 
provide explicit warrants). Reformulation of telling in terms of function rather than form was an 
important consideration to make explicit for Jill when first learning to analyze her support of 
mathematical arguments. Jill’s analysis of her questioning with assistance from the MTE-R and the 
TSCA framework (Conner et al., 2014) supported her to reformulate the purpose of her questioning. 
Lobato et al. (2005) also argued for the reformulation of telling in terms of conceptual rather than 
procedural content of the new information and the relationship of the “telling” action to other teacher 
actions. While Jill initially focused on the form, rather than the function, of her questions to support 
argumentation, it is reasonable that these other reformulations may need to be explicitly addressed 
with teachers as they learn to facilitate argumentation. Nonetheless, this study provides evidence for 
the interaction between a teacher’s learning to facilitate argumentation and the dilemma of telling 
regarding the form and function of her questions when trying to honor students’ mathematical 
thinking. 
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Effective instruction is enabled by an instructor’s attention to student thinking and their ability to 
respond. Further, instruction that is student-thinking-centered can lead to increased conceptual 
understandings and improved learning experiences for students. Despite this evidence, there is 
limited research about college instructors’ noticing of student thinking. The purpose of this study is 
to better understand what college STEM faculty notice, and how this enables or constrains their 
ability to respond to student thinking. STEM faculty, who taught introductory courses, were filmed 
and interviewed using a semi-structured stimulated recall protocol. Transcripts were analyzed using 
open coding and thematic analysis. Initial results highlight differences in how faculty elicit student 
thinking, what is noticed about student understanding, and how this impacts the degree to which 
faculty can be responsive to student thinking.    

Keywords: Instructional activities and practices, Post-secondary education, STEM 

There have been calls for increased attention to the teaching of introductory undergraduate science, 
technology, engineering, and mathematics (STEM) courses and professional development (PD) for 
those who teach these courses, in an effort to improve enrollment and retention rates in STEM 
disciplines (Bok, 2013; Holdren & Lander, 2012). Effective instruction is enabled by an instructor’s 
attention to student thinking (e.g., Erickson, 2011). Further, instruction that leverages student 
thinking can lead to increased conceptual understanding and more positive learning experiences for 
students (Carpenter et al., 1989; Thornton, 2006). The purpose of this study is to investigate what 
college STEM instructors notice about student thinking, and the ways in which instructors respond as 
they make instructional decisions. 

Research on Professional Noticing 
The noticing required for effective teaching is specialized and goes beyond simply being observant 

(Ball, 2011). Most scholars agree that it consists of attending to and making sense of particular 
events during instruction (Sherin, Jacobs, & Philipp, 2011). Jacobs, Lamb, and Philipp (2010) narrow 
this scope and describe professional noticing as three interrelated skills: attending, interpreting, and 
deciding how to respond to students’ mathematical strategies. 

Despite the growing amount of research investigating teacher noticing at the K-12 level, there is 
little known about what this construct looks like at the college level. Amador’s (2014) work 
investigating future mathematics teacher educators’ noticing, one of the few studies at the post-
secondary level, found no significant changes in participants’ noticing over the short term of the 
study, but suggested that teachers continued engagement with noticing and reflecting could promote 
professional growth in this area. This is also supported by evidence that instructors can develop their 
ability to notice through PD (e.g., van Es & Sherin, 2002). 

In order to support college STEM instructors’ ability to notice and respond to student thinking, it is 
first essential to gain a better understanding of what instructors notice, and how they respond through 
instructional decisions that leverage student thinking. In this paper, I investigate the following 
research questions: (1) What do college STEM instructors notice about their students’ 
understanding? (2) In what ways are college STEM instructors responsive to their students’ 
understanding (i.e. use student thinking to inform instructional decisions)? 
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I focus this study broadly on college STEM instructors since little is known about what instructors 
notice at the post-secondary level, and how this interacts with how they respond to student thinking. 
It is worth noting that when investigating teacher noticing at the K-12 level, it is common for both 
science and mathematics education researchers to draw on literature from both disciplines, which 
points to the similarity and translatability of this work across disciplines. For example, there is 
evidence at the K-12 level that both science and mathematics instructors attend to students process 
skills or errors as novices and can develop skills for noticing the disciplinary substance of student 
thinking (e.g., Stockero, 2014; Barnhart & van Es, 2014). Focusing on STEM more broadly will also 
afford the opportunity to consider disciplinary differences that may arise and would be beneficial to 
consider in designing and implementing PD to support instructor noticing and responding at the 
college level. 

Methodology 
Faculty from various STEM departments, including Math, Biology, Physics, and Chemistry, who 

were recognized by their colleagues as individuals who made thoughtful decisions about their 
teaching were invited and agreed to participate (N=8). Participants were experienced instructors who 
regularly taught introductory STEM courses. For this proposal, I focus on two participants, Dr. Bio 
(full professor in Biology) and Dr. Chem (career-line instructor in Chemistry) who taught large 
enrollment (70 and 270, respectively) introductory STEM courses.  

Participants were interviewed before and after a class period which they selected to have filmed (the 
target class). The pre-observation interview was a semi-structured interview designed to elicit the 
instructors’ goals for class, knowledge of student understanding regarding the topic to be covered, 
and how this knowledge impacted their planning for class. Clips from the target class (2-5 clips) were 
selected using selection criteria, and included moments where student thinking was illuminated. 
These clips were used in the semi-structure post-observation interview to prompt discussion about 
student thinking and instructional decisions. Interviews were transcribed and analyzed using open 
coding and thematic analysis to identify emergent themes related to the ways in which instructors 
notice and respond to student thinking.  

STEM Instructors Eliciting, Noticing, and Responding to Student Thinking 
The thematic analysis illustrated similarities and differences between how participants gained 

insight into student understanding by eliciting student thinking, what was noticed about students’ 
understanding, and then how this enabled or constrained their ability to respond.  
Eliciting Student Thinking 

Dr. Bio and Dr. Chem both created opportunities in class for students to share their thinking, though 
they differed in what their eliciting allowed them to learn about their students’ thinking. Dr. Chem 
strategically designed free response clicker questions to draw out connections and common student 
errors. She anticipated where students would struggle and leveraged that as an opportunity to engage 
students. Dr. Chem stated, “I know where they're going to get hung up. So, I purposely designed 
questions to get them hung up, because I think that if you do it wrong it helps you remember how to 
do it right.” Additionally, before class, Dr. Chem worked through the clicker questions, anticipating 
common student mistakes, so that she could address these errors in class. She said, 

I calculated the wrong answer beforehand … [because] when the results come in for the 
question, I look at how many people answered it wrong, and there’s more than one wrong 
way to do it, and I look at the most common ways and address it. 

When using clicker questions, Dr. Bio created multiple-choice questions that would set students up 
to answer incorrectly. He said, “I'm able to set up what I think is a logical straw man for them. They 
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almost always go for [it].” This type of question does not create an opportunity to elicit student 
thinking and to gauge how students are thinking about the content. 
Noticing Student Thinking 

Dr. Bio and Dr. Chem noticed different things about student thinking. Dr. Bio noticed that students 
did not always take away the main points that he was trying to communicate, saying: 

Because obviously, I'm focused on them getting this one point. And then somebody is telling 
me, ‘Oh, what about this?’ And I was like, that's sort of in there, but that's not where I was 
going. And sometimes I realize … that where I'm going is not where the class is going.  

Dr. Bio did not regularly gauge where students were at with their understanding. Thus, he was 
limited in what he could notice about student thinking, and did not have an opportunity to understand 
what constrained students’ ability to make the connections he desired. Dr. Bio relied on end of 
semester surveys for feedback on areas that students felt were challenging; he said, 

[I think about the] student comments from the end of the semester, about their perception of 
the course being disorganized. So, I have, over the years, taken that to heart as constructive 
criticism and try to make the connections more apparent and meaningful to them.  

This comment highlights that he responds to student confusion by working to improve his course 
from semester to semester, but he is not equipped with the knowledge or tools to assess how 
impactful these changes are on student learning.  

Dr. Chem notices when students are stuck by their facial expressions, understands what students are 
likely struggling with, and anticipates how she might respond. She said, 

I put the question up, and then I anticipate they're going to read the question, they're going to 
start working, and then they're going to look at me really perplexed. I wait until I get the 
look, and then I ask them if they're stuck and they are. So, I will say, ‘do you remember this 
… from earlier this semester?’ And then they go, ‘Oh’, and then they start working again.  

Additionally, Dr. Chem used a variety of approaches (including clicker questions, whole class 
discussions, eavesdropping, facial expressions, interactions in office hours) to gauge where students 
were at with their understanding, and thus could adjust her plans for class accordingly. 
Responding to Student Thinking 

Dr. Bio and Dr. Chem responded differently based on what they noticed about student thinking. Dr. 
Bio made changes each semester, but rarely made changes during class or between classes, saying, “I 
don't always incorporate [it] right on the fly. And sometimes it's a year delay between when I got that 
question [and] when I can actually address it in class”. Since Dr. Bio did not create opportunities to 
elicit and notice the substance of student thinking, he was constrained in his ability to make changes 
that were rooted in students’ understanding. He discussed putting himself “in the mindset of the 
student” when bridging parts of class that were disjoint, saying, 

[I am] going through those notes sections [of the slides] and making sure that they are 
written in such a way that a student looking at that slide, if she's confused by it, should be 
able to read those notes and come away saying, ‘Oh, now I see what this slide is about.’ 

Although Dr. Bio provided opportunities for students to ask and answer questions during class, if 
the students’ contribution was not what he had thought about prior to the lesson he tended to redirect 
back to his prescribed plan for the class. For example, Dr. Bio said, 

I figured that kind of response was kind of off base. I mean ... it just kind of threw me. And 
so that's probably why I immediately, before I lost the thought of - what do I really want to 
accomplish with this - I just went ahead and told them. 

Dr. Bio’s vision of what he wanted to accomplish in this class period, and his struggle to connect 
the students’ thinking with his goal, constrained his ability to notice how this student was 
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understanding the content and the connections that the student was trying to make. Dr. Bio cared 
about student learning and wanted to improve semester to semester as an instructor, but he did not 
have the knowledge or the tools to effectively engage with and respond to student thinking. 

Dr. Chem regularly made changes from one class to the next, and made changes each semester. 
Specifically, Dr. Chem planned for instruction based on students’ current understanding of the 
material, stating, “I won't move forward if they're not getting it. There's no reason to. I actually 
wanted to get farther on Tuesday then I did, but the class wasn't ready to go farther.” Dr. Chem also 
discussed adding clicker questions for the next class to provide students more opportunities to engage 
with key concepts. Dr. Chem made the following comment after discussing a topic her students were 
currently struggling with: “I have a new question that will address it. … I've posted the annotated 
slides so they can see how to do it, but … we're going to do another question that's similar to that [in 
class].” This comment highlights that Dr. Chem provided her students with the resources to revisit 
what they were struggling with in addition to creating an additional opportunity to revisit the 
material. Dr. Chem also discussed making changes from semester to semester, saying, 

I'll take notes of like - ‘I'll need to spend more time on this’, or ‘[students] really struggled 
with this’. Then when I get ready for class the next semester, I go back to that and that's what 
prompts me to make new slides. 

Discussion 
Both Dr. Bio and Dr. Chem were experienced instructors, but they noticed different things about 

their students’ thinking, which then enabled or constrained their ability to leverage and respond to 
student understanding. Specifically, Dr. Bio noticed that students were struggling to make 
connections, and did not understand what was underlying these difficulties. Consequently, he was 
limited in what he could respond to. Dr. Chem noticed specific student struggles and built on her 
existing knowledge of student thinking. Her awareness of students’ understanding enabled her to 
respond both during in-the-moment instruction and in her planning. 

Dr. Bio’s goal for instruction was to help students appreciate the connections between the 
seemingly disconnected content through the sharing of his knowledge. Dr. Chem, on the other hand, 
viewed her course as an opportunity to challenge common student errors and to support students in 
developing a more complete and correct way of thinking about the content. Consequently, it seems as 
if Dr. Bio and Dr. Chem had differing dispositions towards student thinking, which impacted their 
approach to instruction and the opportunities that they created to notice and leverage student 
thinking. This highlights that it could be important to foster a responsive disposition that values 
student thinking when developing PD to support faculty in their ability to elicit, notice, and respond 
to student thinking. 
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An exploratory study of the impact on transforming mathematics teaching and learning practices into 
the classroom is presented by means of introducing a hybrid learning environment, in this case, 
designed to address the topic of functions in the first year of finance at college. This topic is normally 
covered in two weeks in the classroom. In this exploration, the students worked independently on the 
topic using materials or resources available in a digital teaching platform throughout the first week. 
In addition, the topic was addressed in the classroom under the teacher's guidance during the second 
week. The results show collaboration between students to refine or validate their conceptions, which 
also could support connectivist hypothesis of distributed knowledge. 

Key words: Teaching tools and resources, distance education, post-secondary education, 
communication 

Introduction 
According to Heffernan et al. (2012, p.101), if school practices must change in order to keep pace 

with the development of new technologies and to meet students' expectations regarding their use, 
then the efforts on teacher’s education and in-service teacher development must be altered, there 
must be a greater number of interactive educational technologies developed in the cloud and 
implemented in the classroom.  

In the exploratory study we are presenting here, we worked on the design and set up of a hybrid 
scenario of learning. Participant students worked autonomously during one week of the first semester 
of finance at college. In the following week, teaching and learning were continued now into the 
classroom under the teacher's guidance. The usage of this hybrid scenario of teaching and learning, in 
this case on functions, allowed us to investigate possible productive collaborations between students 
as a consequence of their autonomous work within the activities in the digital platform. Here we 
report what was done by the students, it suggests a significative transformation of usual teaching and 
learning of mathematics in the classroom, and also allow us to advance connectivist learning 
hypotheses. 

Theoretical Frame and Methodology 
It is noteworthy that the work of Sutherland and Balacheff (1999) early on announced the 

possibility, now already materialized, of online courses or digital devices for teaching freed from 
tutoring by the teacher, accessible outside of school and operated via digital media, such as the 
Internet. By means of online materials or devices, in this case, like videos or forums as digital tools, 
students are left with the responsibility of unchain their own forms of appropriation of knowledge, 
and it is mainly through the exchange of opinions between peers that are attained possible advances 
in one subject's learning. (Downes, 2009). 

One of important theories underlying the design and implementation of online and hybrid learning 
environments is connectivism, mainly developed by Siemens (2006) and Downes (2009). 
Connectivism is a theory of learning that emerged linked mainly to the use of the Internet, as well as 
virtual education. Many researchers still question what this theory explains, provides or suggests, for 
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example, regarding the incorporation of technology in the classroom (see, for example, Kop & Hill, 
2008). Whether it could do this regardless of previous theories or as an extension of some of them, or 
of theoretical models that have so far been applied to study the integration of technology in school (to 
see some of these models, see Zbieck & Hollebrands, 2008; Olive et al., 2010; Ruthven, 2014). 
However, according to Downes (2009), what connectivism has to exhibit is to what extent is an 
emerging theory, and empirically proving in what sense is a new paradigm that would specifically 
explain the case of network learning and collective distributed knowledge. 

Finally, it is also important to highlight that student productions become registered data when 
working within a digital teaching platform, and availability of all these records in order to classify 
and analyze them is one of the advantages of using and designing digital teaching platforms (Dedé & 
Richards, 2012 ), since in this way teachers in charge of conducting courses in the classroom can 
then have in advance these type of records and use them as a diagnosis of difficulties or opportunities 
for points to be addressed in their classroom. 

Thus, for the concentration and interrelation of the students' productions, in this exploratory study 
an Excel sheet was used and the SOLO taxonomy of Biggs and Collis (1982) was applied. SOLO 
taxonomy is an analysis tool for a structured classification into four levels of development or 
evolution of student knowledge around a concept. In general, according to these authors, the four 
possible levels of classification, starting from the simplest to the most complex, are the following: 
pre-structural, uni-structural, multi-structural and relational. This taxonomy allowed to identify the 
refinement and validation of the students' conceptions, formulated through their communication 
exchanges in the forums on the subject. 

Having at hand all these data allowed us the identification of student communication exchanges for 
productive collaboration. It should be noticed that here the term productive collaboration between 
students refers precisely to the refinement or validation of conceptions between the students carrying 
out productive collaboration or critical communication exchange. 

Next, in Figure 1, a small part of the concentrate and classification of the students' productions is 
presented. 

Analysis and Results 
As previously mentioned, this exploratory study sought to identify cases of collaboration or 

productive interrelation between students. Below it is shown an image of the classification we 
accomplished of the different levels of development of the students' conceptions on the subject, 
extracted from our analysis or classification of their participation in the forums. Likewise, a 
paradigmatic example of student productive collaboration is also presented. 
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Figure 1. Synthesis of the students' productions, according to the SOLO taxonomy, in search of 

identifying critical communication exchanges or productive collaboration. 
 

Examples of student production at different levels of development according to the SOLO 
Taxonomy 

Pre-structural level 
Student MAA: "A clear example of everyday life is the consumption of a product, an example is the 

purchase of phones, there are different phones: price levels, with x = the phone and y = the price 
depending on which phone you would like, the price increases, but all phones have the same 
function: communicating. [Another] excellent example [in the one given by CS], it was very clear 
to me how we apply linear functions in daily life. [It is also] an excellent example [the one of AS] 
because it helps you understand what a linear function is, very simple, with an example from 
daily life.” 

Uni-structural level 
Student ALA: "When throwing a ball, it first goes up and forward, then falls while continuing to 

advance, thus forming a path shaped like an inverted parabola." 

Multi-structural level 
Student YAS: “Very good example [the one given by BA] related to a physical phenomenon that is 

the trajectory and free fall. [Another] example of a fairly common linear function in our day to 
day is the speed that any object can have, that is, the distance it travels in a given time. Speaking 
a little more specifically, assuming that a car on a flat road tends to travel 20 km in 5 minutes, 
with a linear function, the distance it will travel in 25 minutes could be determined. The algebraic 
expression, in this example, could be f (x) = 4x. Where x represents the minutes’ time you want 
to calculate to see the distance traveled.” 

Relational level 
Student MAA: “The example [by student JL] of the footprints is very clear, only one pattern 

corresponds, [because] there is no other person with your footprints” 
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Student LMC: “Another example of a linear function in daily life is as follows. Let us suppose an 
electricity charge whose fixed amount is for 100 pesos. Our consumer in question has had a 
consumption of x watts amount and each watt price is 2 pesos. The function would be expressed 
in the following way: f (x) = 2x + 100. Thus 2 is our value in a, and 100 is the constant that we 
add. [Also] a very good example [the one of AS] about something that has an application in daily 
life, although it should be mentioned that this is only valid for uniform movements (where speed 
is constant). [In addition, I also] understand the example [the one given by CF] and it seems valid 
to me, but I consider that because having two antecedents for the same image (this does not meet 
the definition of function) we would need just one person wanting two things at the same time 
and not that two people are the same since x1 could be equal to x2 without this affecting the 
function as long as f (x1) is equal to f(x2). [Finally, also] I agree with another example [the one 
from MAA], two phones can have the same price, therefore, the same image can have two 
antecedents, but a singular phone would not have two prices (obviously if we only talk from a 
provider) so an antecedent could not have two images.”  

From the examples and classification presented here, it is clear, according to Heffernan et al. (2012, 
p. 92), that the materials and activities developed on a digital teaching platform can be used in a 
multiplicity of ways, among others, so that students receive feedback from their classmates on their 
actions, which can later be capitalized on reviewing the topic in class or solving questions associated 
with feedback on the exam. Furthermore, according to data issued from our exploration, these 
devices also could serve to unchain refinement or validation of students' conceptions of the subject to 
be learned, as it will be shown by the following paradigmatic example of this type of interrelation or 
student productive collaboration. 
Productive collaboration between students: A paradigmatic example 

An example of feedback, or productive collaboration between students, which from our point of 
view shows the refinement or validation of the concepts at stake on the subject, is shown below. 

JL: "Hello ..... my example is fingerprints. There is only one pattern for each person. ” 
... 
RO: "An example of a function in soccer could be a free kick to the goal because it starts from a zero 

point, rises and falls again." 
JL: "Hello RO, I agree with your example, as long as it is specified that the function is the position of 

the ball in a certain time when making the free kick." 

It is clear, in the case of the communication exchange between JL and RO (given by means of a 
forum), that the feedback that JL provides to RO is crucial to validate his function’s example, which 
was formulated in a so schematic way. Practically, it is JL contribution that rescues the visualization 
of the phenomenon provided by RO’s example, in fact, completes and reformulates it. It is to say that 
JL filters, refines, and produces a formulation of a function that underlies in the visualization of the 
phenomenon initially provided by RO. 

In summary, the knowledge or formulation of the function at stake did not reside in a single location 
but rather through a reformulation of a confluence of information originated, in this case, by the 
exchange of critical information or productive collaboration between two individuals who sought to 
investigate mathematical functions, a common subject of interest, that finally produced feedback to 
each other, what is consistent with connectivist learning or distributed knowledge as pointed out by 
Downes (2009). 
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Proof plays significant roles in the context of school mathematics and is a tool for enhancing 
student’s understanding of mathematics. Lack of opportunities for proving in textbook has been 
documented. This study was conducted to consider an instructional way to make proving as everyday 
lesson by formulating more opportunities than did textbooks. The guiding assumption of this study is 
that conjectures which students come up with can be initiatives for learning how to prove. This 
preliminary study will show that problem posing is a strategic tool with potential to bridge everyday 
instruction and the practice of proving so as to teach how to prove more meaningfully and 
authentically.  

Keywords: Reasoning and Proof, Instructional Activities and Practices, Classroom Discourse 

Proof and proving have been considered as central in the context of school mathematics with its 
roles (Knuth, 2002a) which are “inseparable in doing, communicating, and recording mathematics” 
(Schoenfeld, 1994). In Principles and Standards for School Mathematics (NCTM, 2000), authors 
argue that “Mathematical reasoning and proof offer powerful ways of developing and expressing 
insights about a wide range of phenomena.” (p. 59). However, it yields difficulty for students to 
understand it and for teachers to teach it (Stylianides, Stylianides, & Weber, 2010). The disagreement 
of its centrality for all in secondary school mathematics exists among in-service teachers (Knuth, 
2002a). Even worse, there are not many opportunities available for students to engage in reasoning 
and proving in textbooks (Bieda et al., 2014; Thompson, Senk, & Johnson, 2005). Thus, to cultivate a 
context where students are introduced to proving, engage in the practice, and, ultimately, recognize 
proving as fundamental in learning of mathematics, need to authentically formulate opportunities 
beyond those available in textbook should be met. That way, with opportunities to engage in proving 
in a mathematically meaningful way rather than to take part in a mere ritual as spectators⎯such as 
reading and understanding proofs given in textbook without formulating or exploring conjectures, 
both students and teachers can be more fluent in proving. In this report, a-year-long study of 
problem-posing activity with particular interest in proving and teacher’s instructional interventions 
which foster student’s reasoning and developing proof will be analyzed.  

Literature Review 
Proof and Reasoning in School Mathematics 

Proof and reasoning are neither mere content to be learned with chosen topics nor reserved for 
certain grade levels. NCTM (2000) states “Reasoning and proof should be a consistent part of 
students’ mathematical experience in prekindergarten through grade 12. Reasoning mathematically is 
a habit of mind, and like all habits, it must be developed through consistent use in many contexts.” (p. 
56, italics added). In the context of secondary school mathematics, the only place in which proof is 
substantially treated is geometry (Knuth, 2002b). The proofs in the subject and do not show the 
variety of ways of proving (e.g., proof by contrapositive, reductio ad absurdum). As Thompson, 
Senk, & Johnson (2005) argued “Because many research studies have shown that writing proofs is 
difficult for students at all levels, it seems to us that students need more opportunities to engage in 
varied aspects of proof-related reasoning in order to become more fluent in reasoning and 
proving.”(p. 286) Furthermore, there are not many opportunities for students to engage in reasoning 
and proving tasks across textbooks which are considered to be primary sources of teaching and 
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learning mathematics (Bieda et al., 2014; Thompson, Senk, & Johnson, 2012). Mathematics teachers 
need to take on an active role in teaching reasoning and proving beyond what is available in textbook 
and have strategic knowledge of instructional practice and its relation to student’s learning of proof 
(Stylianides & Ball, 2008) and how it can be more impactful.  

In Proofs and Refutations, Lakatos (1976) exemplified use of examples when exploring, 
formulating, qualifying a conjecture, developing a proof and making revisions when encountered 
with counter examples⎯either global or local. Although there exists heterogeneity in appearance 
among them, mathematically similar objects enable observers to notice regularity between them and 
the regularity becomes a mathematical conjecture⎯possibly to be proven true thus to be a theorem. 
For teacher’s specific interest and intent to teach certain theorems, some may argue that designed 
examples can be given to students as resources to experience transition from empirical arguments to 
formal proofs. However, the main focus of this study is not on teacher’s designing or displaying 
examples as intended for teaching specific content but on teaching how to strategically generate 
examples with same constraints in order for students to look for examples (or counter examples) not 
restricted to those within their reach.  

What is problem posing? Silver (1994) defines the term as “both the generation of new problems 
and the re-formulation, of given problems.” (p. 19). According to the author, problem posing can also 
offer insight into solution of a problem: when developing a proof, posing problems can be a pathway 
to gain insight into proof. As a way of posing problems, Brown & Walter (1983) suggested “What-If-
not?” strategy which new problems can be generated by varying some of the given conditions of a 
problem. For example, after solving a problem that a sum of two even numbers is even or odd, one 
can pose a new problem with a question “what would it be if I add two odd numbers?”. Lockwood et 
al. (2013) studied how a mathematician uses examples when proving and disproving. By referring 
back and forth to examples of relevance to a conjecture, the mathematician gained insight of proof by 
leveraging idea of one insightful example. In the same line with what Balacheff (1988) called a 
generic example, a representative example of the domain of a conjecture suffices to be developed to a 
proof by syntactic proof production (Weber & Alcock, 2004) or transformation of images (Harel & 
Sowder, 1998). However, unlike teachers and mathematicians, this may be improbable for students to 
do as such.  

Methods 
Participants 

Geographically located at the vertical center of the Korean peninsula, the school where was the 
locus of this study is a high school with male students only and located in an urban area. Nearly all 
students intended to enroll the school to prepare for their admission to college.  

As a high school mathematics teacher and the researcher in this project, I had taught junior high 
students for 3 years and started to teach high school students for the first time by the time this study 
began. The guiding assumption was that every student is a theory builder (Carey, 1985) who can 
come up with a conjecture or a plausible argument which makes the most sense to them based on 
their observations and that most of students are able to develop and write proofs by themselves or 
with a little help offered by a teacher or a more capable peer (Vygotsky, 1978).  
Data Collection 

The data collected for the study include student’s written assignments, teacher’s verbal and written 
communication with individual students, and two video-taped lessons of which duration is roughly 
50 minutes. Based on “What-If-Not?” (Walter & Brown, 1983), for consistency in structure and 
organization of the assignment, it was structured in a worksheet. Before administering the work sheet 
weekly, the instructor demonstrated how to use it and explained what is expected as the end result in 
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each step. Until everyone reached understanding of the activity, there had been discussions and 
negotiations of what it means to be true, valid, and appropriate (Stylianides, 2007; Stylianides et al., 
2016) when evaluating validity of a proof.  
Data Analysis 

Since it may be premature to present a framework which will be used in the later analysis, I shall 
present the working framework in the process of conducting an initial analysis through the general 
inductive approach (Thomas, 2006) to highlight themes of relevance to the purpose of this study. 

Preliminary Results and Discussions 
“What-If-Not” strategy has a potential to offer a strategic way for students to better identify and 

understand what assumptions are given and conclusions they should prove. For example, one of 
students in the class was attempting to solve a problem: find the maximum area of a rectangle 
inscribed in a given isosceles triangle. The student reached at a solution which was not the solution 
of the problem since he solved a problem without taking the condition “isosceles” into account. 
Then, after some conversation with him, it came into his attention that he left the condition out. As 
described in this instance, the student was able to take all the conditions into account after discourse 
with the teacher. Then, the teacher posed a question as an extension of the problem: “what if the 
triangle is a right triangle? Or what if the triangle is an acute triangle?” Even though it took a few 
days for the student to figure out how to solve it, the student reported the teacher that this extended 
discourse with him led the student to use the strategy in evaluating his understanding of problems by 
manipulating the given.  

Problem posing can offer a strategic way for students to generate examples beyond the individual 
potential example space (Watson & Mason, 2005) and gain insight into how proof looks like. As it 
enhances student’s understanding of what constraints are given and should be verified by making 
negation or eliminating and reinstating some of the given and the to-be-verified, it can scaffold 
student’s generation of examples under the conditions met by examples or counter examples. There 
was a student had issues with qualifying examples and non-examples based on the given constraints. 
He often said that it is difficult to come up with a counterexample when attempting to disprove a 
conjecture. The teacher asked the student to think of examples meeting the least (i.e. the maximum 
number of the given conditions as many as he can consider simultaneously into account) subset of 
the given. Then the teacher demonstrated how to add the rest of the given one by one and accordingly 
prompted the student to list a number of examples each time. The teacher demonstrated how to 
qualify examples by adding an additional constraint and left the student doing the rest to reach at 
being able to generate examples or counterexamples thereafter. The student soon became capable 
with manipulating the constraints by leaving out and reinstating some of them. This student seemed 
to show the potential of “what-if-not” strategy as a way of generating examples (or counterexamples) 
beyond his reach in that he did not try to recall the examples from his experience but qualify 
examples by adding the given condition into his consideration and narrowing them down to the 
domain of the argument of his interest. This is not meant to argue that the strategy itself suffices to 
extend the example space but that it has potential to do as such only with teacher’s careful 
consideration and helpful prompts rather than simply offering the caveat. The kinds of prompts 
which are crucial in teaching and learning of proof will be identified and discussed in what follows 
next. 

Teacher’s role is crucial and critical in the success of teaching and learning of proof. As 
documented in Stylianou & Blanton (2011), teacher’s role becomes of more importance in the 
teaching proof. In this study, it was the teacher who extended the discourse with individual student to 
offer an opportunity to engage in exploring and revising conjectures, developing a proof, and 
prompting student to revise the proof for the greater proximity to the degree of formal proofs. This 
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study will identify three types of prompts by what the teacher intended to elicit from students at a 
given time: those for justification, elaboration, and generalization. The instructional intent of 
prompts was to extend and structure discussions and to attend to what can improve student’s proof in 
terms of precision (in use of mathematical terms, expressions, or representations), clarity (in use of 
language), and generality (of the proof). The working definitions of the prompts are as follows: 

1. prompts for justification are meant to point out unexplained parts and request to fill logical 
gaps or challenge truth of conjectures assumed to be true or referred to in student’s argument; 

2. prompts for elaboration are meant to call attention to what requires clarification or 
discrepancy between what is intended by student and understood by others; and 

3. prompts for generalization are meant to pose questions which possibly lead to generalization 
of part of student’s reasoning or examples. 

 

 
Figure 1. Examples of Elaboration 

 
Figure 2. Examples of Generalization 

 
There are a few limitations in this study that should be examined through research involving 

different individual participants, classroom culture, and society. As Cobb & Yackel (1996) pointed 
out, the results of a well-designed (or well-controlled) research can hardly argue that the study is 
conducted independently of any aspect of the context of the socio-cultural or individual (or 
psychological) peculiarity of the participants, the classroom, and the society involved. I acknowledge 
that this study is not the case that the results are drawn independently of the individuals, the 
classroom culture, and the society. Future research in the similar perspective toward problem posing 
and instruction of proof taken in this study will let light be on the unpaved paths I have not taken in 
this study and nourish the literature. 

References 
Balacheff, N. (1988). Aspects of proof in pupils’ practice of school mathematics. In D. En Pimm (Ed.), 

Mathematics, teachers and children (pp. 216–235). Hodder & Stoughton. 
Bieda, K. N. (2010). Enacting Proof-Related Tasks in Middle School Mathematics: Challenge and Opportunities. 

Journal of Research in Mathematics Education, 41(4), 351-382. 
Bieda, K. N., Ji, X., Drwencke, J., & Picard, A. (2014). Reasoning-and-proving opportunities in elementary 

mathematics textbooks. International Journal of Educational Research, 64, 71–80.  
Brown, S. I., & Walter, M. I. (1983). The art of problem posing. Philadelphia, PA: Franklin Institute Press. 
Carey, S. (1985). Conceptual change in childhood. Cambridge, MA: MIT Press.  
Cobb, P. & Yackel, E. (1996). Constructivist, emergent, and sociocultural perspectives in the context of 

developmental research. Educational Psychologist, 31:3-4, 175-190. 
Ellis, A. B., Lockwood, E., Dogan, M., Williams, C., & Knuth, E. J. (2013). CHOOSING AND USING 

EXAMPLES: HOW EXAMPLE ACTIVITY CAN SUPPORT PROOF INSIGHT. In A. M. Lindmeier & A. 
Heinze (Eds.), Proceedings of the 37th Conference of the International 2—265 Group for the Psychology of 
Mathematics Education (Vol 2, pp. 265-272). Kiel, Germany: PME. 



Embracing proving into everyday lesson by problem posing 

	 2086	

Hanna, G. (1995). Challenge to the importance of proof. For the Learning of Mathematics, 15(3), 42-49. 
Harel, G. & Sowder, L. (1998) Students’ Proof Schemes: Results from Exploratory studies. Research in Collegiate 

Mathematics III, 7, 234-282. 
Knuth, E. J. (2002a). Teachers’ Conceptions of Proof in the Context of Secondary School Mathematics. Journal of 

Mathematics Teacher Education, 5, 61–88. 
Knuth, E. J. (2002b). Proof as a Tool for Learning Mathematics. Mathematics Teacher, 95(7), 486-490. 
Lakatos, I. (1976). Proofs and Refutations: The Logic of Mathematical Discovery. Cambridge University Press. 
Lockwood, E., Ellis, A. B., & Knuth, E. (2013). MATHEMATICIANS’ EXAMPLE-RELATED ACTIVITY 

WHEN PROVING CONJECTURES. In Proceedings of the 16th annual conference on research in 
undergraduate mathematics education (p. 16). 

Lockwood, E., Ellis, A., Knuth, E., Dogan, M. F., & Williams, C. (2013). STRATEGICALLY CHOSEN 
EXAMPLES LEADING TO PROOF INSIGHT: A CASE STUDY OF A MATHEMATICIAN’S PROVING 
PROCESS. In Martinez, M. & Castro Superfine, A (Eds.). Proceedings of the 35th annual meeting of the North 
American Chapter of the International Group for the Psychology of Mathematics Education (pp. 245-252). 
Chicago, IL: University of Illinois at Chicago.  

Maher, C. A., & Martino, A. M. (1996). The development of the idea of mathematical proof: A 5-year case study. 
Journal for Research in Mathematics Education, 27(2), 194–214. 

National Council of Teachers of Mathematics (Ed.). (2000). Principles and standards for school mathematics. 
National Council of Teachers of Mathematics. 

Schoenfeld, A. (1994). What do we know about mathematics curricula? Journal of Mathematical Behavior, 13(1), 
55–80. 

Silver, E. A. (1994). On Mathematical Problem Posing. For the Learning of Mathematics, 14(1), 19-28. 
Stylianides, A. J. (2007). Proof and Proving in School Mathematics. Journal for Research in Mathematics 

Education, 38(3), 289–321. 
Stylianides, A. J., & Ball, D. L. (2008). Understanding and describing mathematical knowledge for teaching: 

Knowledge about proof for engaging students in the activity of proving. Journal of Mathematics Teacher 
Education, 11(4), 307–332. 

Stylianides, G. J., & Stylianides, A. J. (2009). Facilitating the Transition from Empirical Arguments to Proof. 
Journal for Research in Mathematics Education, 40(3), 314–352. 

Stylianides, G. J., Stylianides, A. J., & Weber, K. (2016). Research on the teaching and learning of proof: Taking 
stock and moving forward. In Cai, J. (2017). In Cai, J. (Ed). Compendium for Research in Mathematics 
Education (pp. 237–266). Reston, VA: NCTM. 

Stylianou, D. & Blanton, M. (2011). Developing Students’ Capacity for Constructing Proofs through Discourse. The 
Mathematics Teacher, 105(2), 140-145.  

Thomas, D. R. (2006). A general inductive approach for analyzing qualitative evaluation data. American journal of 
evaluation, 27(2), 237-246. 

Thompson, Senk, & Johnson (2012). Opportunities to Learn Reasoning and Proof in High School Mathematics 
Textbooks. Journal for Research in Mathematics Education, 43(3), 253-295. 

Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Harvard university 
press. 

Watson, A., Mason, J. (2005). Mathematics as a Constructive Activity: Learners Generating Examples. United 
Kingdom: Lawrence Erlbaum Associates. 

Weber, K. & Alcock, L. (2004). Semantic and Syntactic Proof Productions. Educational Studies in Mathematics, 
56(3), 209-234. 

 



Teaching and Classroom Practice 

In: Sacristán, A.I., Cortés-Zavala, J.C. & Ruiz-Arias, P.M. (Eds.). (2020). Mathematics Education Across Cultures: 
Proceedings of the 42nd Meeting of the North American Chapter of the International Group for the Psychology of 
Mathematics Education, Mexico. Cinvestav / AMIUTEM / PME-NA. https:/doi.org/10.51272/pmena.42.2020 

2087	

PROFILING THE USE OF PUBLIC RECORDS OF STUDENTS’ MATHEMATICAL 
THINKING IN 4TH-8TH MATHEMATICS CLASSROOMS 

Christina Koehne 
Texas State University 

crz7@txstate.edu 

Eva Thanheiser 
Portland State University 

evat@pdx.edu 

Sharon Strickland 
Texas State University 
strickland@txstate.edu 

Autumn Pham 
Portland State University 

autpham@pdx.edu 

Ruth Heaton 
Teachers Development Group 
ruth.heaton@teachersdg.org 

Kathleen Melhuish 
Texas State University 
melhuish@txstate.edu 

Centering class discussions around student mathematical thinking has been identified as one of the 
critical components of teaching that engages students in justifying and generalizing. This report 
shares analysis from a larger project aimed at describing and quantifying student and teacher 
components of productive classrooms at a fine-grain level. We share results from this analysis of 39 
mathematics lessons with a focus working with public records of students’ mathematical thinking. 
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The goal of Working with Public Records of Students’ Mathematical Thinking is to make student 
thinking available to all students (Ghousseini, 2009), and to maintain common ground (Staples, 
2007). This may look like recording student ideas (Cengiz et al., 2011; Staples, 2007) and engaging 
the class to work with it. Publicizing student work has the potential to position students as 
contributors to mathematics (Cohen, 1994). We illustrate an analysis of how public records of 
students’ thinking were used in 39 lessons of grades 4-8 classrooms to productively generate 
meaningful student discourse. Students can learn mathematics when engaging with each other around 
mathematics (Schwartz, Black, & Strange, 1991). Teacher prompts that elicit reflection, 
communication, and meaningful explanations regarding a student’s work and their thinking have 
been identified as essential and beneficial for mathematical learning and understanding (Hiebert, et 
al., 1997; Henningsen & Stein, 1997; Hiebert & Wearne, 1993; Kazemi & Stipek, 2001).We 
hypothesized that lessons in which teachers engaged students in examining public records of 
students’ mathematical thinking would generate more and higher-levels of student discourse. Our 
research questions were: (1) How prevalent are public records of students’ mathematical thinking 
within the lessons? (2) Do lessons that contain public records include more student-level 
engagement, specifically higher-level cognitive engagement? Do those lessons that also contain 
selected and sequenced public records include even more than those with either a) no selected and 
sequence public records and b) more than those with no public records at all? 

Theoretical Orientation and Analytic Framework 
There is a general consensus in the mathematics education community that high-quality 

mathematics classrooms are those in which student voices are heard, and student thinking is 
leveraged as the means to move instruction forward (e.g., Ball, 1993; Jacobs & Spangler, 2017; 
Nasir, & Cobb, 2006; Schoenfeld, 2011; Turner, Dominguez, Maldonado, & Empson, 
2013). Enacting practices that foreground student thinking is complex, requires intentional and 
strategic moves, and persistence in enacting these moves over time (Staples, 2007; Boaler & Staples 
2008; Franke, Kazemi & Battey, 2007). Mathematically productive teaching routines are a set of 
teaching routines designed for accessing and working with student mathematical thinking. Research 
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has emphasized attending to students’ mathematical thinking as one of the most essential aspects of 
impactful teaching (Jacobs & Spangler, 2018; Lampert et al., 2013). 

One such teaching routine is Working With Public Records of Students’ Mathematical Thinking 
(described above). This routine can be situated within the teaching routine Working With Selected 
and Sequenced Student Math Ideas. The goal of this routine is to advance student understanding by 
fostering connections related to the core mathematical ideas on which the lesson/task focuses. Once 
teachers have learned about how their students are thinking, they need to choose how to build ideas 
with the whole class by selecting and sequencing how student ideas are shared (Stein, Engle, Smith, 
& Hughes, 2008, Stein & Smith, 2011). 

Methods 
The 39 coded lessons for this project stem from two urban school districts in the United States: 

grades 4-5 were from a large urban district, whilst grades 6-8 came from a mid-sized urban district. 
The 20 lessons from the middle school were taken from each teacher at the end of the school year, 
and the 19 lessons from the elementary school teachers were a stratified random sample, according to 
Mathematical Quality of Instruction (Hill, 2014) scores. Because this paper focuses on two teaching 
routines (Working With Public Records of Students’ Mathematical Thinking and Working With 
Selected and Sequenced Student Math Ideas), all lessons were coded for those two teaching routines. 
Each lesson was also coded for Students’ Habits of Mind (HoM) and Habits of Interaction (HoI). HoI 
focus on students’ verbal interaction with the teacher as well as with one another. HoI include 
Explaining their thinking, asking Genuine Questions, Revoicing other students’ contributions, Private 
Reasoning Time, Compare logic and ideas for similarities or differences, exploring multiple 
Pathways to solving a problem, and Critique one another’s ideas. HoM can happen within an HoI 
and focus on the cognitive activity embedded within their verbal interaction. HoM are noted here as 
Representations (Reps), Connections within and across two mathematical concepts, strategies, or 
structures, Regularity and Structure using patterns, properties, or mathematical structures, 
Metacognition (Meta) or reflection on their own thinking, recognizing, examining, or using their own 
or each other’s Mistakes, engage in Meaning of tasks and terms, Justify their thinking, and 
Generalize ideas. To summarize, HoI are the ways a student can interact with others whereas HoM 
are the mathematical activities embedded within such an interaction. These codes were developed for 
a larger study involving the Math Habits Tool, which was developed to capture mathematically 
productive components of classrooms in terms of both student and teacher in-the-moment actions. 

All coding was completed by graduate students who took part in a three-day coding training camp 
that focused on the various student and teacher-level codes used in this project. Each lesson was then 
assigned to two graduate students to code independently. After each coder had completed their initial 
coding of the lesson, the pairs of coders meet to compare their independent coding and reconcile any 
differences and disagreements. Disagreements that could not be reconciled between the two coders 
were sent to a third person for final decision. 

In considering our research questions, we grouped the 39 lessons into three themes: (1) lessons 
containing public records where at least two public records were selected and sequenced; (2) lessons 
containing at least one public record, but none that were selected and sequenced; and (3) lessons 
containing no public records. We then compared those groups in terms of quantity and type of HoI, 
and HoM within the lesson. 

Results 
Of the 39 lessons, 26 lessons (67%) did not contain public records of students’ mathematical 

thinking (Group 3), thus, student work was not displayed and worked with at all. Of the 13 lessons 
(33%) that did include public records of students’ mathematical thinking, six were further situated in 
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a selecting and sequencing routine (Group 1), while seven were not (Group 2). Thus, only 33% of the 
lessons contained student work that was actively displayed and worked with, and about half of those 
were situated in a selected and sequenced routine. 

Across all three groups, the Habits of Interaction Explain and Questions were frequently used. 
Similarly, the Habit of Interaction Private Reasoning occurred sporadically throughout some of the 
lessons. Thus, explaining mathematics, asking genuine questions, and prompting students to use 
private reasoning about mathematics are habits of interaction that are seemingly not dependent on 
reasoning with students’ work within a public record, so we removed those three HoI from our next 
level of data analysis. Generalize was not present in any of the lessons, so it too was removed from 
the next level of data analysis. 

We found that while there was generally infrequent use of higher-level Habits of Mind and 
Interaction across all 39 lessons, lessons that did use public records engaged students in higher-level 
HoM and HoI more frequently than lessons that did not. Furthermore, lessons that selected and 
sequenced the public records were found to include student engagement in these codes more often 
than lessons that did not select and sequence their public records. (See table 1.)  

Table 1: Percentage of Lessons in Each Category with Relevant Student Habit Occurrence 
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Group 1 83% 67% 83% 50% 83% 67% 33% 50% 50% 17% 50% 
Group 2 14% 0% 29% 14% 86% 29% 43% 14% 29% 0% 0% 
Group 3 8% 4% 0% 0% 23% 12% 8% 4% 0% 12% 8% 

Moreover, we found this to not only be true of the lessons, but within the public records themselves. 
Next, we consider how the student engagement within a lesson compares to the engagement 
specifically during a public record portion of class. Table 2 highlights the average percentage 
frequency of a student habit for a whole lesson in the group’s top row, and the average percentage 
frequency of a student habit for the public records portion of a lesson in the group’s bottom row. For 
example, of all the higher-level student habits used in Group 1 lessons, 15% were Compare and 8% 
of those habits took place within a public record. Because Group 3 lessons contained no public 
record, there are no student habits within a public record to display (i.e. the second row is empty). 
Notice that 50% or more of the student habits in Group 1 lessons happen within a public record, and 
with the exception of Compare, Critique, and Mistakes. 

Table 2: Frequency Percentage of Habits Per Lessons & Public Record in Each Group 
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Group 1 56:50 15% 7% 14% 4% 28% 12% 2% 3% 8% 2% 5% 
 17:46 8% 4% 10% 2% 22% 8% 1% 2% 7% 2% 5% 

Group 2 58:30 2% 0% 14% 5% 43% 17% 10% 2% 7% 0% 0% 
 09:02 0% 0% 12% 2% 26% 14% 7% 0% 5% 0% 0% 

Group 3 45:00 11% 9% 0% 0% 32% 7% 20% 2% 0% 7% 11% 

Discussion and Future Research Plans 
Only 13 lessons (33%) engaged students using a public record of students’ mathematical thinking. 

Only 6 (15%) lessons selected and sequenced the public records. Lessons with public records showed 
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a higher percentage usage of higher-level cognitive engagement. Lessons which selected and 
sequenced the public records engage student in higher-level mathematical habits consistently more 
than lessons that did not. In fact, on average, lessons that selected and sequenced the public records 
of students’ mathematical thinking showed a 46% increase in higher-level cognitive engagement 
compared to lessons that did not. 

One explanation for this drastic difference is that in selecting and sequencing public records, 
students are exploring multiple pathways, comparing strategies, and inevitably critiquing and 
debating any contradictory or different ideas. Thus, by selecting and sequencing students’ ideas, 
teachers make these habits of interaction more accessible for the students and can more 
advantageously create a dialog around multiple ideas.  

Close to 50% or more of the student codes in Groups 1 and 2 lessons occurred within public 
records. Thus, public records are creating a time for students to engage in mathematical discourse 
more frequently and at a higher-level than time outside of the public record.  

Although important to make student thinking available to all students and work with it, it is not 
enough. Providing access to students’ ways of thinking offers ways of engaging; however, without 
selecting and sequencing the engagement is shallow and less frequent. Thus, by selecting and 
sequencing the public records of students’ mathematical thinking, an exploration and dialog using the 
habits of interaction can be sparked to ignite the higher-level conversation that leads to deeper, more 
frequent usage of habits of mind such as making meaning and justification. Therefore, as evident 
from literature (Stein, Engle, Smith, & Hughes, 2008, Stein & Smith, 2011), having students’ present 
their ideas to the class is not as effective in creating productive student discourse as carefully 
monitoring, selecting, and sequencing student ideas. Moreover, the results we have stated here 
illustrate the effects on students’ engagement when a teacher effectively selects and sequences 
students’ mathematical ideas. Further work will involve continued analysis of 61 more lessons to see 
if this pattern still holds. Additionally, this work focused on only student engagement in the lesson, 
but future work will also include analysis on teacher prompts for student engagement. 
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Mathematical tasks are central to students’ learning since they can influence and structure the ways 
in which students think about mathematics. Carefully selected tasks have potential to broaden 
students’ views of a subject matter and facilitate their mathematical growth. However, research 
identifies that cognitive demands of tasks may change as the tasks are enacted during instruction. 
For this reason, it is important to understand what instructors can do to maintain the intended 
cognitive demands. In this paper, we investigate a teacher’s actions for maintaining high-level 
cognitive demands of tasks in teaching proof by mathematical induction. Our findings suggest that 
the method of quasi-induction (Harel, 2002) may be considered as an example of a productive 
scaffolding strategy for assisting students in mastering proof by induction. 

Keywords: Classroom Discourse, Reasoning and Proof, University Mathematics 

Proof by mathematical induction is a technique for proving statements about natural numbers. To 
prove that proposition ! !  holds for any natural number !, one needs to check that (1) ! 1  is true 
(the base case) and (2) if ! !  is true for some fixed but arbitrary natural number !, then !(! + 1) is 
also true (inductive implication). The principle of mathematical induction poses conceptual 
difficulties to college students (Dubinsky, 1991; Harel, 2002; Movshovitz-Hadar, 1993; Stylianides, 
Stylianides, & Philippou, 2007).  

Carefully selected tasks can help students overcome cognitive obstacles associated with proof by 
mathematical induction. Mathematical tasks play a crucial role in students’ learning. They can shape 
students’ conceptions about the subject. Furthermore, they offer an opportunity for teachers to lower 
their authority in the classroom, in turn allowing students to create mathematics for themselves. 
However, one must be able to strike a balance when determining the appropriate difficulty of task for 
a student. When tasks do not significantly challenge the student, they may become routine or 
discourage creativity. In contrast, if a task is too difficult, students may make insufficient progress 
toward the intended mathematical goal.  

The cognitive demand of a task represents its level of difficulty (Stein, Grover, & Henningsen, 
1996). The cognitive demands of tasks for K-12 students have been well documented (Spears and 
Chávez, 2014; Bieda, 2010; Henningsen and Stein, 1997). However, to our knowledge, cognitive 
demands of have not been extensively explored at the undergraduate level. This study aims to 
contribute to the research on cognitive demands of tasks by considering problems an instructor used 
in teaching proof by mathematical induction. Specifically, the purpose of this case study is to 
investigate a teacher’s actions during the enactment of high-level tasks. Results address the following 
research question: what are the teachers’ actions for maintaining high-level cognitive demands of 
tasks in teaching proof by mathematical induction? 

Theoretical Framework  
The present study is guided by the Mathematical Tasks Framework (Stein et al., 1996). This model 

describes the evolution of a task through three phases of classroom: as written in instructional 
materials, as set up by a teacher in the classroom, and as implemented by the students. Ultimately, a 
mathematical task should lead to student learning.  
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For the purposes of this study, we distinguish between planned and enacted mathematical 
instruction. Planned instruction refers to how teachers plan a mathematical task and how they pose it 
in the classroom. Enacted instruction is the actual teaching that occurs, including the active roles of 
both teachers and students (Remillard, 2005). The Mathematical Tasks Framework represents 
planned instruction by the first two phases and enacted by the third one. 

The framework further specifies two dimensions of tasks, task features and cognitive demands, that 
may affect the transition between phases. This study is centered around cognitive demand. Cognitive 
demand refers to the variation in the kind of thinking processes required of students while engaging 
with the tasks. According to Stein et al., (2009), there are four levels of cognitive demands: a) 
memorization, b) procedures without connections, c) procedures with connections and d) doing 
mathematics. The first two levels are traditionally considered low-level demands, while the latter 
refer to high-level demands.  

The enactment of mathematical tasks of high cognitive demands allows students to develop sense-
making and reasoning skills, critique their peers’ solutions, formulate examples and 
counterexamples, create viable justifications, and properly communicate their reasoning. Therefore, 
implementation of high-level tasks may be beneficial for students’ mathematical growth. Planning 
the implementation of a task is crucial to students’ learning that occurs around this task. However, 
research identifies that teachers have difficulty enacting high-level tasks even if they were planned as 
such (Boston & Smith, 2009). Teachers may either maintain the high cognitive level or they may 
lower it to make tasks more accessible for students. Stein and Smith (1998) suggest a list of factors 
associated with the maintenance of high-level cognitive demands. These factors include teachers 
giving sufficient time, making conceptual connections, pressing for justifications, and scaffolding 
student thinking and reasoning. 

The term scaffolding has been used in various contexts. Anderson (1989) highlighted the 
importance of the Vygotskian notion of scaffolding in supporting students’ high-level thinking 
processes. Henderson and Stein (1997) define scaffolding as a teacher’s assistance in response to a 
student’s struggle with a task. This assistance enables the student to complete the task alone, but does 
not reduce the cognitive demands of the task. William and Baxter (1996) separate the constructs of 
analytic and social scaffolding. Social scaffolding refers to the scaffolding of social norms; analytic 
scaffolding is the “scaffolding of mathematical ideas for students” (p. 24). Speer and Wagner (2009) 
consider analytic scaffolding as guiding students “further toward the desired mathematical goal(s) by 
using selected student contributions” (p. 536). For the purposes of our data analysis, we put these 
ideas together and define the construct of scaffolding as a teacher’s pedagogical strategies or actions 
toward the desired mathematical goals in response to or in anticipation of students’ struggles. 
Furthermore, we introduce the term productive scaffolding to refer to scaffolding that maintains the 
cognitive demands of the task. 

Data and Methods 
This study used one white male instructor’s materials and three episodes of teaching proof by 

mathematical induction at a large public research university in the southeastern United States. The 
course is a junior-level course designed to teach mathematics majors typical mathematical proof 
techniques. The data used are part of a larger project studying cognitive components of proof by 
mathematical induction. For this project, research-based instruction was developed and implemented. 
Teaching episodes were video and audio recorded and transcribed by the authors. 

We analyzed the instructor’s lecture notes as written prior to instruction. All mathematical tasks 
were categorized using the Tasks Analysis Guide (TAG) (Stein et al., 2000) with respect to Stein et 
al.’s (1996) levels of cognitive demands. Once a consensus was reached between us, we went 
through two phases of video analysis and coding. During the first round of video analysis, we 
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classified each mathematical task’s level of cognitive demand as it was presented in the classroom. 
We then coded the teacher’s actions for instances of Stein et al.’s (2009) factors for maintaining 
cognitive demands, using Vygotsky’s notion of scaffolding. After identifying the factors, we returned 
to our data to closely study the instances of scaffolding using our definition. 

Results and Discussion 
During the observed teaching episodes, the instructor used PowerPoint slides with three tasks 

displayed on three big screens around the room (Figure 1).  
 
1. For each of the following parts, decide whether the given information is enough to conclude that the 

following claim is true. 
Claim: ! !   is true for all ! ∈ !!. 

If the given information is not enough, offer a brief explanation on why (perhaps listing a value of ! for 
which ! ! ,  is not known to be true). 
a) ! 1  is true and there is an integer ! ≥ 1, such that ! ! → !(! + 1). 
b) ! 1  is true and for all integers ! ≥ 1, ! ! → !(! + 1). 
c) For all integers ! ≥ 1, ! ! → !(! + 1). 
d) ! 1  is true and for all integers ! ≥ 2, ! ! → !(! + 1). 

2. a)   Prove that for all natural numbers !, 3 divides 8! − 5!. 
b) Prove that if 3 divides 8! − 5!, then 3 divides 8! − 5!. 

3. Prove that for all natural numbers !,  2 + 2! + 2! +⋯+ 2! = 2!!! − 2. 
Figure 1: Tasks 

 
When presenting the tasks to the class, the instructor provided students with little preliminary 

explanation. He typically displayed the tasks on the screens and encouraged students to work in small 
groups. For this reason, we can claim that these tasks were set up by the teacher in the same way that 
they were presented in the instructional materials. In the following discussion, we will refer to the 
tasks of first or second phase (Stein et al., 1996) as planned.  

We further used TAG as an instrument to analyze the cognitive demands of tasks. All the tasks 
exhibited key attributes of “Doing Mathematics” tasks (see Stein et al., 2000). The problems required 
complex and non-algorithmic thinking and considerable cognitive effort. They also encouraged 
students to explore and understand the nature of mathematical concepts and to access relevant 
knowledge and experience. 

The first round of analysis revealed the presence of most of the factors associated with maintaining 
high-level cognitive demands of tasks (Henningsen & Stein, 1997, Boston & Smith, 2009). First, the 
instructor seemed to allot an appropriate amount of time for the students to engage with the tasks 
through small-group discussion. Second, students received formal instruction on logical implication 
before they were introduced to the principle of mathematical induction. Given that logical 
implication is an important part of each task, we can argue that the tasks build on students’ prior 
knowledge. Third, the instructor constantly questioned students by asking them to rephrase and 
justify their reasoning. He also frequently made conceptual connections between the tasks and 
students’ solutions and modeled high-level performance through presenting counterexamples to 
students’ erroneous claims. 
Scaffolding 

Avital and Libeskind (1978) introduced the method of “naïve induction” to assist students in 
overcoming their bewilderment of the transition from the base case to the inductive step. Naïve 
induction has been elaborated by Harel (2002) and labeled as “quasi-induction.” Prior research has 
identified quasi-induction as a fruitful instructional approach (Harel, 2002; Cusi & Malara, 2008).  
This method engages students in repeated application of the inductive implication ! ! → ! ! + 1  
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for beginning values of !, reinforcing the logical reasoning that is essential in proof by mathematical 
induction. More specifically, students first establish that ! 1  is true. Then, they create a chain of 
logical implications ! 1 → ! 2 ,! 2 → ! 3 ,! 3 → ! 4 , and so on. After considering these 
first few implications, students can then infer that the process must continue until eventually ! !  is 
shown to be true.  

The idea of quasi-induction was built into the overall observed instruction. In anticipation of 
students’ struggle with formal proof, Tasks 1 and 2 were designed to engage students in quasi-
inductive reasoning. Quasi-induction was first explicitly introduced by one of the students in the 
discussion of Task 1c who said, “1 works, so ! 1 + 1  works, so 2 works. And you can plug 2 back 
in for ! and the logic repeats itself.” In response to the student’s reasoning, the instructor discussed 
mathematical rigor of quasi-induction, but accepted the suggested solution. Furthermore, during the 
group work on Task 3, students in one of the groups were not engaged with the task. The instructor 
suggested they use quasi-induction: “Sometimes it helps to do – just try a bunch of cases, just to get a 
feel of what’s going on.” This prompt allowed the task to still have the key attributes of Doing 
Mathematics while making it more accessible for the students.  

Task 2a was introduced at the very beginning of the first class. One of the students suggested using 
the binomial expansion to prove the statement. The teacher acknowledged this idea but encouraged 
the students “to practice something inductive.” The instructor anticipated students’ struggle with 
formal solution using proof by mathematical induction. For this reason, after the students went 
through Tasks 1a-1d, he presented an “easier” Task 2b. The use of Task 2b did not reduce the 
cognitive demand of Task 2a. However, the students were given means to generalize the proof of 
! ! → ! ! + 1  from a particular case of logical implication ! 5 → ! 6 . Therefore, we consider 
the idea of generalization from a particular case as another example of what we call productive 
scaffolding.  

Conclusion 
This study provides an example of instructor’s strategies for maintaining high-level cognitive 

demands of tasks in teaching proof by mathematical induction. The actions discussed above may 
inform instructors in preparation for and implementation of teaching mathematical induction.  Our 
findings are consistent with the factors suggested by the extant literature (Henningsen & Stein, 1997, 
Boston & Smith, 2009 Stein & Smith, 1998). Namely, the teacher actively built upon students’ prior 
knowledge, constantly asked students to explain their reasoning, and purposefully facilitated 
conceptual connections. We also report that scaffolding plays a central role in teaching proofs. In the 
context of proof by mathematical induction, the method of quasi-induction is suggested to be an 
example of what we call a productive scaffolding. 

Although formal mathematical induction may be considered as a generalization of quasi-induction, 
there is still a cognitive gap between the two, which the students are not always able to bridge. Harel 
(2002) described this gap as a difference in perception of the inference ! ! → ! ! + 1 . Future 
research must elucidate scaffolds as students attempt to bridge the gap.  
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Mathematics classrooms are spaces where teachers provide students with opportunities that will 
inevitably shape their conceptions of the subject and their own abilities to learn it. Therefore, it is 
important to understand how a classroom community defines mathematical knowledge, mathematical 
practice, and what it takes to be a person who is successful in mathematics. The study uses interviews 
with teachers and students in two classrooms plus a district wide survey to understand the 
relationships with mathematics they construct. The paper ends with a discussion of specific areas of 
pedagogy that could support the development of productive relationships with mathematics by more 
authentically centering student thinking in the classroom. 
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Introduction 
For many, math is seen as requiring rote memorization and the regurgitation of procedures with 

little to no room for free thinking. Research shows that such approaches to math learning are related 
to low achievement (Boaler & Zoido, 2016, PISA, 2012, Gray & Tall, 1994). Mathematics 
classrooms are spaces where teachers provide students with opportunities that will inevitably shape 
their conceptions of the subject and their own abilities to learn it. Therefore, it is important to 
understand how a classroom community defines mathematical knowledge, mathematical practice, 
and what it takes to be a person who is successful in mathematics. This paper builds upon Boaler’s 
2002 framework for a relationship with mathematics in terms of knowledge, practice, and identity. 
The study uses interviews with teachers and students in two classrooms plus a district wide survey to 
understand the relationships with mathematics they construct. The paper ends with a discussion of 
specific areas of pedagogy that could support the development of productive relationships with 
mathematics by more authentically centering student thinking in the classroom. These include a shift 
towards open and project-based curriculum and an increase in value placed on student mistakes and 
struggle. 

Literature Review 
Aguirre, Mayfield-Ingram, and Martin (2013) define mathematics identity as “the dispositions and 

deeply held beliefs that students develop about their ability to participate and perform effectively in 
mathematical contexts and to use mathematics in powerful ways across the contexts of their lives” (p. 
14). A student’s mathematics identity will be formed in part by the ways they have been positioned 
in their particular learning context (Holland et. al, 1998). However, these conceptions of math 
identity are missing a key component to students’ experience in the mathematics classroom-- the 
behaviors and practices they are expected to engage with while doing mathematics.  

Teacher expectations of student mathematical behavior can be thought of through the lens of agency 
and authority. Agency refers to the extent to which students are able to express and use their own 
ideas in mathematical problem solving and authoring (Boaler, 2002). Student agency depends deeply 
upon the beliefs held by both teachers and students about what is expected of students in their role as 
problem solvers. This ranges from one end of a spectrum where the students are able to approach 
problem solving creatively, using their own ideas and methods to the opposite end where students are 
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expected to use one specific procedure that’s been told to them by another authority (i.e. the teacher 
or textbook). Part of this type of agency involves the extent to which students see this aspect of 
problem solving as being within their control. Gutstein (2007) found that when students experienced 
a strong sense of agency in their problem solving, they were empowered to interrogate knowledge 
sources and critically analyze material rather than simply receive it as truth. This sense of agency 
resulted in students deconstructing representations using mathematics to deepen their understandings 
of new material rather than searching for a pre-determined solution strategy.  

Similar to the concept of student agency in the classroom is the concept of student authority. 
According to Cobb, Gresalfi, and Hodge (2009), authority in the mathematics classroom pertains to 
who decides what constitutes mathematical legitimacy. In some classrooms, this authority could lie 
solely with the teacher or textbook whereas in other classrooms it may be shared between the 
students, teacher, and textbook. Amit and Fried (2005) found that when the teacher is the main 
authority figure, students oftentimes use mathematical concepts introduced by the teacher 
unreflectively. In other words, students blindly reproduce what the teacher has shown without further 
thinking. These authors also found that this particular authority dynamic can hinder the productivity 
of collaborative learning efforts. For example, when students are working in groups, but the teacher 
is seen as the authority, little impetus exists for authentic collaborative problem solving. 
Relationships with Mathematics 

Boaler (2002) introduced the concept of a disciplinary relationship (see Figure 1). As knowledge, 
practice, and identity develop for a mathematics student, they each contribute to an overall 
relationship with mathematics. First, we consider the identity aspect of the relationship which is 
broken down into two parts: beliefs about one’s role, and one’s mindset. Within a mathematics 
learning setting, students will develop their own beliefs about what it means to learn math. A student 
may expect to be a passive receiver of knowledge, an active participant exercising agency and 
mathematical authority, or somewhere in between (Belenky, Clinchy, Goldberger, & Tarule, 1986). 
Additionally, they may believe that their mathematical abilities are static and fixed, or that they can 
be cultivated and grown (Dweck, 2005). Second, we consider the knowledge and practice aspects of 
the relationship with mathematics which together constitute the student’s beliefs about the nature of 
mathematics and doing mathematics. The student may believe that knowledge in mathematics is 
made up of facts and procedures to be memorized, or they may see math as a web of ideas connected 
by logic and reasoning (Boaler & Zoido, 2016, PISA, 2012, Gray & Tall, 1994).  Finally, the student 
may see the practice of doing mathematics as effortlessly and quickly understanding material or 
requiring struggle, learning from mistakes, and creative thinking (Boaler, 2015). 

 
Figure 1. Framework for Disciplinary Relationships adapted from Boaler, 2002 

Oftentimes, when a student has developed an unproductive relationship with mathematics, they 
respond to creative approaches in problem solving by stating something like, “am I allowed to do 
that?” As part of Boaler’s 2002 study, she observed many classrooms referred to as “traditional” and 
“reform”- oriented. One of the most observable differences between these two types of classes were 
the role that agency played in each of them. Within the traditionally oriented classrooms, students 
were expected to follow standard procedures of the discipline. In these cases, the students’ 
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relationships with mathematics revolved around the agency and authority of the discipline. The 
students expected to follow the procedures and practices defined by the discipline. 

In the reform-oriented classrooms students were “required to propose ‘theories’, critique each 
other’s ideas, suggest the direction of mathematical problem solving, ask questions, and ‘author’ 
some of the mathematical methods and directions in the classroom” (Boaler, 2002, p.45). While it 
appeared that these classes offered more agency to students, Boaler clarifies that these students 
engaged with what Pickering (1995) calls the “dance of agency” between the established methods of 
the discipline and their own knowledge and practices (Boaler, 2002). (Note: Pickering (1995) found 
that professional mathematicians also engage with the “dance of agency” when developing and 
discovering new mathematics.) Through this “dance of agency” students would employ standard 
procedures coupled with their own ideas to adapt and extend methods in new and unknown contexts. 
The students developed mathematics relationships that gave them a sense of agency and allowed 
them some authority over their mathematical knowledge construction.  

It is important to note that these students’ opportunities to engage with the “dance of agency” were 
dependent on a number of things including the presence of an engaging project based curriculum but 
also the practices that teachers expected students to exhibit (Boaler, 2002). When it comes to 
mathematical practices (or ways of engaging with mathematics), the field provides what seems like a 
never-ending list of possible practices that teachers might focus their classroom towards (CCSS 
Mathematical Practices, 2010; NCTM Process Standards; Stipek et al., 1998). These practices 
include: communication, reasoning, proof, representations, justification, argument, sense making, 
and many more. While each of these practices are undoubtedly important, teachers cannot be 
expected to prioritize each one to the same extent so they must make choices based on their 
pedagogical beliefs or the needs of their students. 

The decision of what to prioritize is complex in today’s mathematics classrooms where students 
enter with an increasingly diverse range of strengths and needs. That is not to say that heterogenous 
classrooms are an issue. In fact, many research studies have shown that all students benefit from 
learning in de-tracked and heterogenous classrooms (Boaler, 2006 & 2011; Burris, Heubert, & Levin, 
2006; Horn, 2008; Porter et al, 1994). However, knowing that the expectations for practice in the 
mathematics classroom will form the normative identity and ultimately influence the students’ 
relationships with mathematics, it is imperative to know what teachers emphasize and how these 
priorities are taken up by students. This leads to the research question guiding this study: How are 
teachers and students constructing relationships with mathematics together?  

Research Methods 
Study Context and Participants 

Although no two students will have the same relationship with mathematics, theoretically, the 
widest range of differences in these relationships would be apparent in a heterogeneous classroom 
where students represent a great range of prior experience and achievement levels. For this reason, 
this study focuses on heterogenous Algebra 1 classrooms.  

The data for this study comes from a research project on a large urban school district in the Bay 
Area that had recently implemented a district-wide change of their mathematics course taking 
sequence by de-tracking mathematics through sophomore year and enrolling all 9th grade students in 
Algebra 1. Previous to this policy, students took algebra in eighth grade and 40% of students were 
failing and re-taking Algebra 1 (Hull Barnes & Torres, 2018). Since the implementation of the de-
tracking policy, this failure rate has dropped to just 8% (Hull Barnes & Torres, 2018). 

The student body of the district is culturally diverse with about 35% of students identifying as 
Asian, 27% Latinx, 15% White, 7% African American, 5% Filipino ,1% pacific islander, and <1% 
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American Indian (Facts, 2018). Furthermore, approximately 55% of students are considered 
Socioeconomically Disadvantaged, 29% of students are designated as Language Learners, and 11% 
are students diagnosed with Special Educational Needs (Facts, 2018). The students at Park High 
School represent an even more diverse community than that of the district with a higher percentage 
of socioeconomically disadvantaged students and greater percentage of students of color. 

The participants in this study include two Algebra 1 teachers at Park High School and 6 of their 
students, for a total of 12 students. See Table 1 for more details about the participants.  

 
Table 1: Participant Details 

Teachers Teacher Details Student Pairs and designation1 
Ms. Anderson Early career teacher Jackie and Kim (high achieving) 

Silvia and Arthur (turn around) 
Leta and Jose (low achieving) 

Mr. Lang Veteran teacher Teresa and Mario (high achieving) 
Chantel and Steven (turn around) 
Marina and Lucy (low achieving) 

Data 
The data includes interviews with teachers and students in the two focal classrooms and results from 

a survey on mathematical mindset administered to 555 9th grade algebra students across the district. 
The interview questions for both teachers and students were developed using Rubin & Rubin (2008) 
as a guide. Teachers were interviewed during their prep periods and students were interviewed in 
pairs during class time.  

The Mathematical Mindset Survey was developed by the youcubed research team and validated 
through previous research studies. The survey contains 27 questions with Likert scale answer 
options: Strongly Disagree, Disagree, Somewhat Disagree, Somewhat Agree, Agree, and Strongly 
Agree. The survey was conducted using the Qualtrics online software and offered in English, Spanish 
and Chinese. There are approximately 4,750 ninth grade students in the district, and the email 
requested teachers to give the survey to at least one of their 9th grade Algebra 1 classes. The 
distribution of the survey resulted in a total of 555 student responses to the survey representing a 
sample from 8 different high schools and 23 different teachers within the district. 

Methods 
Interview Data 

To analyze this data, the researcher followed the analysis guidelines for inductive coding found in 
Miles, Huberman, & Saldana (2013). First, she open-coded each teacher interview to generate an 
initial set codes that were subsequently collapsed the codes into a broader set of codes and shared 
these with an expert in mathematics education for feedback. This resulted in a final teacher codebook 
that was applied to both teacher interviews. 

From here, the researcher conducted a theme analysis which included exporting all excerpts coded 
with the same code into an excel spreadsheet and re-reading the excerpts, making note of the general 
theme(s) coming up in that code. From this process the teacher themes were generated and written up 
as one summary paragraph per theme. 

                                                             
1 Teachers nominated a pair of students for each designation, “turn around” refers to students who started the school 
year low achieving but had improved throughout the school year.  
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Following the analysis of the teacher interviews, the researcher completed the same process with the 
student interview data which resulted in summary paragraphs for the student themes. 

Since the research question asks about how the teachers and students construct relationships with 
mathematics together, the next step in the analysis required making connections across the two data 
sets. This process started with a comparison of the theme paragraphs from both sets of data and then 
a grouping strategy to create general themes. In some cases, this process was straight forward 
because both teacher and student themes already matched. For example, both the student and the 
teacher analyses resulted in a theme around mathematical authority, so those were grouped together 
as a general theme across both data sets. However, for themes that were less straight forward, the 
researcher would group similar ones together and then generate a heading for that theme. As she 
made her way through the list of teacher and student themes, she would first try to place the theme 
into one of the already existing headings, adjusting the title of the heading to better suit the themes 
included. In the cases where she was unable to reasonably connect the theme to a heading, she would 
generate a new heading. This was an iterative process that resulted in four general themes that cover 
all of the teacher and student themes where the most noteworthy findings centered upon agency and 
authority in the classroom. 
Survey Data 

The survey response data was first downloaded from the Qualtrics site and uploaded into the 
STATA quantitative data analysis software by another member of the research team. Then, the 
researcher created a table for each survey question that displays the spread of student responses by 
both frequency and percentage. To draw connections between the interview data and survey data, the 
researcher combined all agree answers into one metric and all disagree answers into another. 

Findings 
Both the teacher and student interviews surfaced a theme around agency and authority. The teachers 

want their students to work with one another to make mathematical decisions, choose methods, share 
ideas, and come to their own understandings around the content and take control of their learning. In 
an effort to encourage these practices, both teachers report trying to take a step back so that students 
can have genuine experiences of doing math with one another – and making mathematical decisions - 
without the teacher as the main authority. 

Ms. Anderson: I think that if I was constantly stepping in, it doesn't... I think that that just puts me 
back at this position of: ‘I hold all the knowledge and I'm in charge of all of this.’ And there are 
already enough times when I am that, and I am playing that role. And I've had some experiences 
this year where I blatantly did something wrong, and the kids didn't say anything to me. And I 
was like, ‘Guys, what? You let me go through that whole thing.’ And they were like, ‘We figured 
you must have been right.’ And I was like, ‘Well, I'm flattered that you think I'm great.’ Like, 
‘No, if you... You guys need to trust, trust yourself.’ So I think that there are so many times where 
I already have all that power and control that if I'm gonna let a student go to the board, I don't 
wanna make that be a pseudo experience. I would rather have them actually be in control of it.  

Mr. Lang shares his thinking around the value of students exercising mathematical authority and 
sharing their work with the class, especially when the class is struggling with a particular topic.  

Mr Lang: I think the more that when we work on something and there's some sort of place where we 
get stuck, to have a student or a student group go and present their solutions or how they're 
thinking about it. We're not ready for the more— I think I read this is largely a common thread in 
Chinese mathematics classes where they actually look for people to do good mistakes, if you will, 
to present it on the board and have that be learning— I don't think we're there yet, we're probably 
more showing the thinking and the steps towards what's gonna be a productive solution, but to 
have more students talk both so that they can get their ideas heard and be seen as students that can 
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bring good mathematical knowledge to the class, as well as their articulation of what they 
understand about math, I believe, really helps them sort of solidify whatever understanding they 
develop. 

Although Mr. Lang would like for his students to have agency and authority in approaching math 
through their own different ways of thinking, he sees his class as ready to discuss correct or 
“productive” thinking only. Herein lies a tension, there is both a sense of freedom and confinement 
of student thinking embedded in his statements: he wants them to feel the freedom to express their 
ideas but confines which ideas he values. This focus on correct thinking and answers is reflected in 
the student responses in terms of their beliefs in their own mathematical agency and authority in the 
classroom.  

The students’ feelings of agency in mathematical problem solving are limited to choosing and 
utilizing different resources (such as calculators or peers) rather than choosing or creating their own 
mathematical ideas. For example, Kim, a high achieving student, explains that she is aware that she 
can utilize a variety of resources to succeed in math.  

Kim: I think what we need to do to be successful in our class is to ask more questions and ask for 
help, and really use the kind of resources we have around us, like our teachers and our peers, to 
help us. 

This response is similarly reflected in the survey results where 89.1% of students agreed with the 
statement: “I am in charge of my own learning journey in math.” However, only 66% agreed that “In 
math class I feel creativity is valued”. While many students feel that they are in charge of their 
“learning journey”, fewer see creativity valued in the classroom. If we consider creativity as original 
thinking, then we can understand this result to communicate that students do feel agency over their 
math learning more generally, but not necessarily mathematical agency, meaning, students are not 
expressing and utilizing their own mathematical ideas. Students feel free to utilize resources 
(including the teacher and peers) but when it comes to sharing their unique ideas about math 
(creativity) they feel less freedom.  

This apparent lack of expressions of mathematical thinking is closely intertwined with the students’ 
perception of mathematical authority. For these students, the act of deciding mathematical legitimacy 
was whittled down to merely deciding which answers are right and which ones are wrong rather than 
an interrogation of another’s mathematical reasoning or justification. For example, Silvia, a “turn 
around” student, was asked how she when the mathematical work she is doing is right and gave the 
following explanation: 

Silvia: We don't know. [chuckle] I mean, I don’t know when I’m doing my work, I don't know if it’s 
right or wrong. I would probably just ask a teammate or Ms. Anderson but yeah.  

Of the twelve students interviewed, eleven students believed that their peers can help them decide 
what is right and wrong but that their teacher is the ultimate authority on the material. Perhaps the 
greatest detailed expression of the teacher’s mathematical authority came from Lucy’s explanation of 
what she does to decide if her work is right. 

Lucy: Oh, I just ask the teacher time and time again like, "Is this right?" And then when the teacher 
sees the problem on the work we try to show, then the teacher just sits down with us and then 
explains it deeply and deeply like, "What you need, what's this thing called and what's that thing 
called?" And then you answer it and then you... And then once the teacher is like, "That's 
correct," then you write it down with it. You write down step-by-step, how do you do that and 
how you do that, which is really helpful. 
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The belief that the teacher is the main source of mathematical authority appears to also be shared by 
a portion of the students surveyed. The results showed that 42% of students agree with the statement: 
“The teacher is the only one that knows if I understand or not”. 

The focus on correct or incorrect answers rather than mathematical thinking seemed to manifest in a 
fear of mistakes and struggle.  The students interviewed talked about struggle as something that is 
negative and should be avoided. For students, struggling is a sign that you don’t understand rather 
than a key part of the learning process.  

Kim: Whenever I get stuck, it makes me feel frustrated, and it's really uncomfortable because I feel 
like I could do it, but it just stalls, and my brain is like blank.  

For Kim, and other students, getting stuck brings forth feelings of frustration and an inability to 
keep moving forward. Silvia expressed how continued instances of struggle begin to discourage her 
from mathematics learning.  

Silvia: I wouldn’t say I hate math, but it is frustrating. I was raised to be always a good kid, so I 
always like to be really good at what I’m doing. But when it comes to math, when I don’t get 
something, it just feels so frustrating. I'm just like, ‘you know what? Nevermind. Forget it. I’m 
not doing this,’ and I kinda just get stuck with that mindset…Yeah, it is really frustrating ‘cause 
you’re trying to actually be present in the group and trying to help other people. But then you’re 
just like, ‘Welp, I’m stuck.’ And it’s kind of (pause) ugly to have to be asking other people 
constantly about what's going on. 

This communicates a low level of student agency as the students become debilitated by their own 
signs of struggle. These sentiments are reflected in the survey responses, where just over half (52%) 
of the students surveyed responded that they agree with the statement: “It is important not to make 
mistakes in math”, and 77% agreed with the statement: “I feel discouraged when I get a low grade in 
math”. The majority of students see mistakes and struggle as negative indications of one’s math 
learning and math ability.  Furthermore, feelings of agency are thwarted as students feel discouraged 
by their struggles. 

Overall, both the teachers and students varied in their reports about agency and authority in the 
classroom. The teachers want students to have agency and authority in their classrooms and they 
attempt to cultivate these dispositions by asking students to present their work to the class or share 
their thinking with peers. However, Mr. Lang notes that he feels his class is not ready to share 
incorrect thinking with one another. The students explain that they do share their work with one 
another, but with a focus on obtaining the right answers rather than sharing their thinking. Both 
teachers emphasize a desire for students to see themselves and one another as mathematical 
authorities rather than relying on the teacher without question. However, for eleven of the twelve 
students, the ultimate authority lies with the teacher. 

Discussion and Conclusion 
Together, the teachers and students in this study have constructed particular relationships with 

mathematics that can be thought of in terms of identity, knowledge and practice. In terms of identity, 
students seem to expect to take on a role that is not entirely passive but not quite active either. They 
report interacting with their peers but mostly for the purposes of verifying they are getting right 
answers instead of for the purpose of sharing their mathematical thinking. Mathematical knowledge 
has taken the form of the ability to decide what answers are right or wrong. In terms of practice, 
teachers and students value producing right answers above exploring the value of mistakes and 
struggle. Teachers report focusing student attention on what’s deemed “productive”. For the students, 
even though they see effort as important for success, there is a tension here where students actually 
wish to avoid struggling and spending too much time on any one topic as this feeling of struggle 
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becomes debilitating for them, as noted by Kim who finds that when she gets stuck, “my brain is like 
blank”. The lack of value placed on struggle and mistakes works against the feelings of agency for 
students.  

The teachers feel that students are not ready to discuss mistakes and instead focus on student 
solutions that are “productive”. This begs the question of who are the students that are producing 
what Mr. Lang describes as “productive” solutions and “good mathematical knowledge”. The 
avoidance of engaging with struggle and mistakes keeps the focus on being right and therefore 
devalues asking too many questions or asking for too much support. Furthermore, it increases the risk 
of sharing your thinking if you are not sure it is correct. Although the teachers express a desire for 
students to experience agency and authority in the classroom, it appears that the development of 
these dispositions are thwarted by a fear of mistakes and struggle on behalf of both the teachers and 
the students. Students are focused on asking questions to obtain the right answers or making sure 
they are doing the right steps rather than engaging in collaborative mathematical sensemaking.  

An expansion of what is mathematically valuable would allow a wider range of students to see 
themselves (and be seen) as productive and important contributors to the mathematics community 
and expand beliefs about who is good at math. 
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We draw on our experiences researching teachers’ use of student thinking to theoretically unpack the 
work of attending to student contributions in order to articulate the student mathematics (SM) of 
those contribution. We propose four articulation-related categories of student contributions that 
occur in mathematics classrooms and require different teacher actions:(a) Stand Alone, which 
requires no inference to determine the SM; (b) Inference-Needed, which requires inferring from the 
context to determine the SM; (c) Clarification-Needed, which requires student clarification to 
determine the SM; and (d) Non-Mathematical, which has no SM. Experience articulating the SM of 
student contributions has the potential to increase teachers’ abilities to notice and productively use 
student mathematical thinking during instruction. 

Keywords: Classroom Discourse, Communication, Instructional Activities and Practices 

Productive use of student mathematical thinking during instruction is a critical aspect of effective 
teaching (National Council of Teachers of Mathematics, 2014). Along with other researchers (e.g., 
Sherin et al., 2011), we see noticing, in particular attending to student mathematical thinking, 
interpreting it, and deciding what to do with it (Jacobs et al., 2010), as critical skills that support this 
productive use. Although teachers who are adept at productively using student mathematical thinking 
might have developed intuition and skills that allow them to notice important aspects of student 
contributions, such practice needs to be unpacked to support more novice teachers’ learning (Boerst 
et al., 2011). Toward that end, in this paper we draw on our experiences researching teachers’ use of 
student thinking to theoretically unpack the work of attending to student contributions to articulate 
the student mathematics in those contributions. Our goal is to contribute to the knowledge base for 
developing teachers’ abilities to notice student mathematical thinking during instruction, abilities that 
lay the groundwork for productive use of that thinking. 

We conceptualized a set of high-leverage instances of student mathematical thinking—what we 
called Mathematically significant pedagogical Opportunities to build on Student Thinking, or 
MOSTs (Leatham et al., 2015). We proposed that building on MOSTs—turning the MOST over to 
the class for them to collectively make sense of it—was a productive way to use student 
mathematical thinking (see Van Zoest et al., 2016 for an elaboration of building). The first (of six) 
criteria for determining a MOST is “Student Mathematics” and requires evaluating a given student 
contribution to determine whether students’ words and actions provide “sufficient evidence to make 
reasonable inferences” (p. 92) about what the student is saying mathematically. This way of 
conceptualizing student mathematics (SM) is how we view what it means to attend to the 
mathematics in student contributions. Attending to students’ mathematics in this way requires 
attending to what students are and are not saying and being careful about the inferences we make in 
that regard. Such attention positions a teacher to “confidently articulate” the SM of the student 
contribution so that they can interpret that thinking and decide what to do with it based on the 
mathematics the contribution makes available for the class to engage with. 



Articulating the student mathematics in student contributions 

	 2106	

There is evidence that experience articulating SM can positively impact teachers’ noticing. 
Teuscher et al. (2017) studied two pairs of student teachers, of which one pair had had experience 
articulating the SM for student contributions in a data set of secondary mathematics lessons. The 
differences between the two pairs’ written reflections on student mathematical thinking during lesson 
observations were striking. All four consistently attended to student mathematics, but not to the same 
level of detail. The two who had previous experience articulating SM demonstrated skill in doing so 
in their reflections. The other two were only moderately able to provide a detailed articulation. This 
study suggests that developing teachers’ skills in articulating SM positions them to attend to the 
mathematics of student contributions. 

The Work of Articulating: Four Categories of Student Contributions 
According to our view, articulating SM requires that one provide a reasoned argument for any 

inferences. Based on our experience justifying such inferences, we propose four distinct articulation-
related categories of student contributions that require different teacher actions: 

1. Stand Alone Contributions require no inference to determine the SM. 
2. Inference-Needed Contributions require inferring from the context to determine the SM. 
3. Clarification-Needed Contributions require student clarification to determine the SM. 
4. Non-Mathematical Contributions have no SM because they are not mathematical. 

Stand-Alone Contributions 
Stand-alone student contributions are the easiest instances to identify the SM for, because the 

student contribution itself is the SM—no inference is required. This category of student contribution 
is straightforward and makes clear what mathematics the contribution makes available for the class to 
engage with. For example, consider a student contribution during an introductory lesson on adding 
fractions, where a student asks: “Is !! +

!
! =

!
!"?” The SM of this contribution is simply: Is !! +

!
! =

!
!"? 

The statement is clear (though not mathematically correct) and complete. This SM demonstrates that 
SM need not be true, and also that SM can come in a variety of forms, including questions. 
Inference-Needed Contributions 

Conversational norms dictate that we do not always use complete sentences or make explicit 
references. Instead, we use pronouns and take other communication shortcuts. Students do the same. 
Because it is impossible to know exactly what students are thinking, teachers make inferences about 
their students’ contributions. These inferences are based on observations of what students say, 
gesture, and write. Thus, these shortcuts often need to be filled in to make sense of what mathematics 
the student contribution makes available. In these situations, although the work of inferring the SM 
can be done, it requires making inferences from the context. Teachers must take care, however, to not 
infer beyond the evidence provided by the student contribution. In particular, there is a tendency to 
fill in the gaps with what one wants to hear. When a student makes a contribution, it is their 
mathematics that needs to be attended to. 

Suppose, for example, a class is asked a general question such as, “Do you understand?” and a 
student responds, “No.” We know that the student does not understand something, but their 
contribution does not provide evidence of what they do not understand. In contrast, if the class was 
asked, “Is Ax + By = C a linear equation?,” it could be reasonably inferred that if a student says 
“No,” they actually mean No, Ax + By = C is not a linear equation. Here, it is reasonable to infer that 
the student is answering the teacher’s question and the italicized statement articulates the 
mathematics that the contribution makes available and thus is the SM of the contribution. 

 In drawing such inferences, one must stay as close to the context as possible. For example, if a 
student says, “Can it ever have two y-intercepts?” in the context of an introductory discussion about 
the slope-intercept form of linear equations, a reasonably inferred SM is: Can a graph of a linear 
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equation ever have two y-intercepts? Although it is possible that this student is wondering about the 
multiplicity of y-intercepts for graphs of all types of equations, the contextual evidence suggests it is 
more likely that they are thinking only about linear equations. 

This section illustrates how articulating the SM makes explicit things that were implicit because of 
communication norms and the context, but does so without altering the mathematical content of the 
student contribution. The resulting SM is a clear articulation of a reasoned inference of what the 
student is expressing mathematically in the contribution. 
Clarification-Needed Contributions 

Clarification-needed contributions require additional information from the student to determine the 
SM. These contributions do not contain enough information to reasonably infer the SM; thus, we 
cannot reasonably articulate their SM. Sometimes clarification-needed contributions are students’ 
attempts to articulate ideas that are particularly insightful and relevant. This is why it is critical for 
teachers to learn to recognize when clarification is needed and how to productively seek that 
clarification. 

There are several ways in which a student contribution that appears mathematical may not contain 
enough information to reasonably infer the contribution’s mathematics. For example, students often 
express general confusion by saying things such as, “I don’t get it.” Without further information we 
cannot reasonably infer the mathematics underlying their confusion. Sometimes students’ 
contributions are too convoluted to make sense of what they are saying without clarification. For 
example, during a discussion about why ¼ times 3 is ¾, a student may state, “The 3 is like 3 and then 
you have a ¼.” The student recognizes that there is a 3 and a ¼ involved, but how they see the 
relationship between these numbers is unclear. Thus, there seems to be mathematical thinking going 
on, but we cannot infer what it is. 

Another subset of clarification-needed contributions are clarifiably ambiguous (Peterson et al., 
2019). These contributions have two or more viable interpretations, and we cannot make a reasoned 
argument for which one best articulates the SM of the contribution. Consider the interchange when a 
teacher says, “Could we use unit rate to solve the proportion !! =

!
!" ?” and a student responds, “Yes, 

by dividing.” We can infer that the student is saying, “Yes, we can use unit rate to solve the 
proportion !! =

!
!" by dividing.” The latter part of the sentence, however, is ambiguous; there is no 

indication of which quantity would be divided by which other quantity. There are several legitimate 
possibilities for these quantities, resulting in multiple interpretations for this student’s statement. The 
student might be saying “divide 6 by 4” to get 1.5 or they might be saying “divide the numerator by 2 
and the denominator by 2” to simplify 6/4 to 3/2. Both of these are viable interpretations for what the 
student might mean by dividing. Of course, there are other possible interpretations that might reveal 
misconceptions about the “unit rate” strategy or about proportions in general. Thus we cannot with 
any level of confidence infer the SM. In order to articulate the SM of this contribution, we would 
need to ask the student to clarify what is being divided by what. Regardless of the reason that 
clarification is needed, moving forward without clarifying such contributions could lead to 
misunderstandings. Students could think that different ideas are being considered, leading to cross-
talk and general confusion. Also, without knowing the SM of a contribution, teachers would not be 
able to determine whether that thinking is worth pursuing. 
Non-Mathematical Contributions 

Sometimes students say things like, “I need a pencil” that clearly have no mathematical content. 
Other times we have evidence THAT students are thinking, but there is not enough evidence to infer 
whether WHAT they are thinking is mathematical. For example, instances of general agreement 
(e.g., “Okay” or “Yeah”) in response to a vague teacher question (e.g., “Does this make sense?” or 
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“Was this problem the same as the ones last week?”). Even when a student is engaged in 
mathematics, they can make contributions that have no mathematical content. For example, a student 
describing their graph might say, “I made my line pink because pink is my favorite color.” Non-
mathematical contributions have no SM to infer. 

Summary and Conclusion 
We identified four categories of student contributions based on the inferability of their SM. The 

Stand Alone category requires no inference by a teacher because the student contribution and its SM 
are the same. The Inference-Needed category requires drawing on the context to infer the SM of the 
contribution. For both of these categories, we are able to articulate the SM of the contribution. For 
the Clarification-Needed and Non-Mathematical categories, we are not able to articulate an SM for 
the contribution; the Non-Mathematical because there is no mathematics involved and the 
Clarification-Needed because it needs clarification to articulate the SM. To make a Clarification-
Needed contribution the focus of a whole-class discussion in its current state would likely be 
unproductive—at best wasting valuable instructional time and at worst introducing misconceptions. 
In our own work articulating the SM of student contributions from a variety of classrooms where 
students are given the opportunity to share their thinking, we have found many Inference-Needed and 
Clarification-Needed contributions in every classroom—the types of contributions that require 
drawing (or deciding not to draw) inferences. Thus, reflection on or observation of almost any 
mathematics lessons provides ample opportunities to practice this critical work of attending “within” 
(Stockero et al., 2017) student contributions. Attending to student contributions with the necessary 
precision to articulate the SM is one important aspect of the “close listening” (Confrey, 1993, p. 311) 
teachers need to facilitate meaningful classroom mathematics discourse. Such listening is “not 
mastered instantaneously” but is truly a “habit of listening” (p. 312). Experience articulating the SM 
of student contributions has the potential  develop this habit and increase teachers’ abilities to notice 
student thinking during instruction. 

A classroom where a wide range of student contributions are available creates a complicated 
environment in which to carry out the work of teaching. Teachers must continually decide which 
students’ ideas to make the object of a class discussion and which to respond to in other ways. In this 
paper we unpacked the process of figuring out what students are expressing mathematically, a 
foundational skill for the productive use of student thinking. Being deliberate about making reasoned 
inferences of the SM of a student contribution sets teachers up to make informed decisions about 
whether and how they use the student thinking that is available to them. 
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In this qualitative empirical study, we discuss new perspectives on how the teaching of addition can 
be made visual for young learners. Our research is framed by scaffolding (specifically the 
development of conceptual discourse through representational tools) and subitizing. Subitizing is 
generally described as seeing how many suddenly without counting each individual item and 
representation tools are resources that support students and teachers to discuss and reflect on 
mathematical ideas. We describe one of many short Grade 2 classroom episodes that occurred 
weekly during an entire school year in Canada. Episodes were centered around the use of small 
round manipulatives that were arranged based on subitizing literature. We make initial claims about 
making the teaching of addition visual through student subitizing abilities, correctly solving an 
arithmetic problem and student explanations and responses to what they saw and did. 

Keywords: Number Concepts and Operations, Elementary School Education. 

Objective 
By examining a short classroom episode on addition through the lenses of scaffolding and 

subitizing, this study aligns with the PME-NA goal of deepening and understanding the 
psychological aspects of the teaching and learning of mathematics. Using subitizing, a construct that 
is firmly rooted in psychology (Kaufman et al., 1949; Revkin, et al., 2008), leads to new perspectives 
and pathways to discuss the issues of teaching number concepts and operations. This qualitative 
study pairs mathematics education literature (e.g., scaffolding) with psychological concepts (e.g., 
subitizing) with the aim of examining the question: How can the teaching of addition be grounded in 
visualization through capitalizing on subitizing?  

The difficulties and issues young students face when learning about how to solve basic arithmetic 
problems are well documented in mathematics education research (e.g., Boaler, 2015; Baroody et al., 
2009; Jordan & Montani, 1997) and is even apparent in media pieces with public calls for ‘back to 
the basics’ (Rushowy, 2019).  Boaler (2015) states, “[w]hen students focus on memorizing…they 
often memorize facts without number sense, which means they are very limited in what they can do 
and are prone to making errors” (p. 2).  Similarily, Kamii and Domenick (1998) suggest that when 
young students are pushed to memorizing algorithms too soon (such as the traditional addition 
algorithm where students stack the numbers and “carry”), the algorithms “unteach” place value 
which in turn hinders the acquisition of number sense.  

‘How to’ manuals and daily teaching activities have appeared and have great potential to address 
issues of basic arithmetic. The two we identify as having the most potential and influence are 
‘number talks’ and ‘making thinking visible’. These activities and manuals could benefit from 
conceptual framing and infusing/weaving of psychological research with explicit connections to 
teaching. Number talks are brief daily talks where students talk about their strategies to mentally 
solve computational questions (Humphreys & Parker, 2015). Number talks (Parrish, 2010) align with 
research findings that suggest that students learn basic arithmetic gradually over time (Bruce & 
Chang, 2013). ‘Making thinking visible’ for the purpose of enhancing teaching can be found in the 
form of books for teachers (e.g., Hull, Balka, D. S., & Miles, 2011). Ritchart, Church and Morrison 
(2011) explain how active use of knowledge (including retention and understanding) is achieved 
through learning experiences that require learners to think about and with what they are learning. 
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Understanding and explicating student thinking is a difficult task (Leatham et al., 2015) because 
thinking is largely invisible and often conceived as an internal process (Ritchhart, Church, Morrison, 
2011). 

Here, ideas from ‘number talks’ and ‘visible thinking’ inspired us to develop short classroom 
episodes on addition and subtraction where small round manipulative were spatially arranged based 
on recommendations in subitizing research.  In essence, these lessons aimed to make individual 
student’s addition and subtraction solution strategies visible so that they could be discussed.  

Conceptual framing 
Subitizing is generally described as “instantly seeing how many” (Clements, 1999, p. 400). 

Clements (1999) categorized subitizing into two types: perceptual and conceptual. Perceptual 
subitizing is “[r]ecognizing a number without consciously using other mental or mathematical 
processes and then naming it” (Clements, 1999, p. 401). Whereas, conceptual subitizing applies the 
perceptual process repeatedly and quickly uniting those numbers. For example, a child can perceptual 
subitize “4” by simply recognizing it and naming it and conceptually subitize 4 by recognizing 4 
consists of 2 groups of 2. It is important to note that the way objects are spatially arranged can impact 
the ease at which a student subitizes (Clements, 1999). Indeed, studies (e.g., Mandler & Shebo, 1982) 
about subitizing have concluded that students make less mistakes (i.e., find it easier) when dots 
appear as they do on dominoes—e.g. 10 as two sets of five as you would see a five on a dice face.  

Subitizing is deeply linked to visualization and images, and it has clearly been suggested that 
subitizing should be capitalized on for the learning and teaching of addition (Clements, et al., 2019). 
Clements (1999), while making these recommendations, draws on the work of Markovits and 
Hershkowitz (1997) to go as far as saying that “[c]onceptual subitizing is a component of 
visualization in all its forms…and [c]hildren refer to mental images when they discuss their 
strategies” (p. 403). Noteworthy is that a literature search on subitizing and number operations 
reveals many pieces from psychology and points to a scarcity of classroom-based research in how 
subitizing can be/has been used in the service of teaching addition. 

The wide use of scaffolding in math education is apparent in Bakker, Smit, and Wegerif’s (2015) 
literature review. In 2006, Anghileri related scaffolding specifically to math contexts based on 
previous research on scaffolding outside of math (e.g., Wood et al., 1976). She put forward three 
levels of scaffolding with the aim to provide language that can be used to describe actual acts of 
teaching in mathematics classrooms. Scholars (e.g., Bakker, Smit, and Wegerif, 2015), have used 
Anghileri’s three leveled framework to analyze data from math classrooms. 

Level 3: developing conceptual thinking comprises of two subcategories: making connections and 
developing representational tools. This level is “less commonly found but identified as the most 
effective interactions” (p. 47). Level 3 scaffolds are most relevant to this study because of 
representational tools. Representational tools support students and teachers in building conceptual 
discourse, as they “constitute as a resource that students can use to express, communicate, and reflect 
on their mathematical activity” (p. 48). Anghileri (2006) explains that representational tools can 
provide “powerful visual imagery” (p. 47) and are important because “[m]uch of mathematical 
learning relates to the interpretation and use of systems of images, words, and symbols that are 
integral to mathematical reasoning” (p.47). The most common form of representational tools take the 
form of symbolic records of students’ ideas that occur through teachers noting students’ 
interpretations and solution strategies. Representational tools can take other forms such as graphs, 
and in Dove and Hollenbrands’ (2015) study which examined scaffolds provided by high school 
geometry teachers, Geometer’s Sketchpad was considered a representational tool. 

In terms of most effective teaching and Level 3 scaffolds, Anghleri (2006) gives a sense that 
mathematics classrooms should go beyond the individual and there should be evidence of “shared”, 
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“togetherness”, “communal” and “cooperation”. This is apparent when she describes “real 
mathematics learning in the classroom” in terms of “struggle for shared meaning… a process of 
cooperatively figuring things out determines what can be said and understood by both teacher and 
students” (p. 46). She explains that with Level 3 scaffolding “understanding comes to be shared as 
the individuals engage in the communal act of making mathematical meanings” (p.49). Meaning that 
effective teaching (or developing conceptual thinking) can be evidenced through the development 
and the use of representational tools that are communal. 

Methods 
This study took place in a Grade 2 class, in which, researchers and the classroom teacher co-

planned short (typically 7-8 minute) weekly lessons/episodes, throughout the 2018-2019 school year. 
There were approximately 20 students involved in each episode which took place in a predominantly 
English-speaking public school in a highly populated Canadian city. One of the researchers (not the 
assigned teacher) acted as the lead teacher during the classroom episodes.  

During the lessons, the study participants were seated on a carpet together in front of the screen. 
Students were given an arithmetic problem (18+12) and asked to think about how they would solve 
it. Small circular objects (flat circular candies that are ¾ cm in diameter) were laid out and projected 
on a screen to represent numbers in questions. Numbers were often colour coded (i.e., for 18+12; 18 
was represented by blue objects and 12 by green objects, Figure 1).  

Eight of the 42 collected episodes were analyzed for this report. One episode was chosen because 
our conceptual framework points to the development of representational tools being communal acts 
that involves ‘shared’ and ‘together’. Hence, we looked for what we call ‘chorus’ in the data. These 
are incidents in the videos where students joined in ‘chorus’ speaking with the teacher or in response 
to teacher questions about what they saw. It is difficult to identify, from the audio of the video 
recorded data, how many students form chorus but it is clear that it is much more than 10 students. 
Data was analyzed using Powell et al.’s (2003) model for studying the development of learners’ 
mathematical ideas and reasoning using videotape data. 

Results (Episode of 18+12) 
The episode begins with the teacher directing students' attention to a pile of 18 blue candies and a 

pile of 12 green candies (with no structured arrangement) and asking students how many blue 
candies there are. A student comes to the projector and begins to move the candies one by one to 
create two strings of 3 candies each. The teacher interrupts the student and says: “Can I offer you an 
idea? I would really like 5s” and the teacher arranges five of the blue candies as you would see on the 
face of a dice. Before the student begins to re-arrange the objects, the teacher addresses the entire 
class with: “Does everyone agree this is five?” as she circles the five candies she re-arranged with her 
finger. A chorus of students calls out “yes”. Subitizing is confirmed with immediate student chorus 
confirmation to the question “can you see it right away?”.  

The student rearranges the rest of the blue candies and declares 18. The teacher verbally repeats the 
number 18 and asks the student “How do you know that?”. The student explains he (re)composed the 
larger number 18 by saying “five, ten, fifteen, eighteen” while simultaneously pointing at the 
manipulatives. The teacher says: “OK. Five, ten, fifteen, 16, 17, 18”. There is a chorus of students 
that join for “five, ten, fifteen” only the teacher says “16”, more students join for 17, and then there is 
a chorus for 18. Another student moves up to the projector and rearranged the green candies in a 
similar way. The student states: “five, ten, eleven, twelve” providing evidence of conceptual 
subitizing. The students are then told the goal of the teaching episode is to figure out how many 
candies are on the projector (i.e., to solve 18 + 12) and figure out as many strategies as they can.  
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The teacher invites another student to the projector to use counting on as a strategy to solve 18 +12. 
The student starts by recognizing the 18 blue candies. Then the teacher and student count one-by-one 
together using their hands and fingers “19, 20, 21, …” until 30 (note that the manipulatives are not 
used). The teacher then prompts for connection making by pointing to the candies individually as she 
says “19, 20, 21, …” until 30. There is no audible chorus with her as she spoke and she asks how 
many students used the strategy of counting on. Two other students lift their hands to indicate they 
used a solution strategy of counting on by 1s.  

The teacher asked, “who used a different strategy?” A student offers a strategy that counts by 5s and 
10s. The student starts by pointing at two blue groups of 5s that are already formed and saying “five, 
ten, fifteen, twenty, twenty-five [pause] then I moved these two and put them together” as she moved 
the two green candies to be with the three blue candies to form a five as you would see on the face of 
a dice (Figure 1).  

 

 
Figure 1: 18 + 12 

Discussion and/or Conclusions 
We conclude that addition was made visual, as teaching was grounded in visualization. Given the 

issues that students experience with addition, this study should be of great interest, as we offer a 
different way to teach addition that follows underlying principles of teacher resources (‘Number 
Talks’ and ‘making thinking visible’) but extends practical suggestions by infusing math education 
research and psychology research. In essence, we have shown how the teaching of addition can be 
made visual through using small objects that are spatial arranged in specific ways that are inline with 
research on subitizing. 

Our results evidence teaching grounded in visualization through conceptual subitizing (“a 
component of visualization in all its forms”) and the development and use of a representational tool 
that is communal. Students used conceptual subitizing to identify 12 and 18 items. There are 
indications of a representational tool that is communal when students respond in chorus and when 
solving 18+12. Spatially arranging small round manipulatives in a very specific way provoked one 
student to describe how she solved 18+12 by composing the last group of 5 (conceptually subitizing 
5) by composing 3 blue and 2 green candies.  

Although it has been recommended that subitizing can and should be used to support students in 
arithmetic, there is a scarcity of studies that respond to these recommendations and calls by enacting 
and researching them in actual mathematics classrooms. Significantly, through conducting classroom 
based research and analyzing our data through scaffolding and subitizing, we highlight how number 
talks that focus on making thinking visible by capitalizing on subitizing can be used to make the 
teaching of addition grounded in visualization.  
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Teachers’ beliefs impact their instructional choices, but characterizations of that relationship are 
limited in college settings. Based on interviews and classroom video from three units of instruction, 
this paper examines a full-time instructor’s stated beliefs about teaching and ways these beliefs 
manifested in their teaching. The instructor made curricular choices clearly aligned with their stated 
beliefs about math, learning, and teaching. Day-to-day instructional choices reflected these beliefs as 
well, but tensions between beliefs also manifested. Characterizations of the interactivity of classes 
are provided through descriptive and quantitative measures. These characterizations of instruction 
highlight changes in instruction throughout the semester.  

Keywords: Classroom Discourse; Teacher Beliefs; University Mathematics 

Beliefs impact the ways people perceive, interpret, and respond to situations (Pajares, 1992). Thus, 
numerous studies have examined teachers’ beliefs, including three handbook chapters on teachers’ 
beliefs in math education (Thompson, 1992; Richardson, 1996; Philipp, 2007). However, less is 
known about mathematicians’ beliefs and their impact on instruction. Similarly, limited research has 
been conducted on semester-long college instructional practice. In response to these gaps, this study 
addresses the following research questions: (1) How did an instructor describe their beliefs about 
math, learning, and teaching? (2) How can their instructional practice be characterized? (3) What 
relationship exists between their beliefs and instructional practice?  

Literature Review and Conceptual Framework 
Extensive research describes the coordination of beliefs into a belief system. Philipp (2007) 

synthesized previous belief system characterizations as: “A metaphor for describing the manner in 
which one’s beliefs are organized in a cluster, generally around a particular idea or object” (p. 259). 
Prior work on beliefs highlighted how they are influenced by a teacher’s view of the nature of math 
(Ernest, 1991), prior school experiences, and immediate classroom situations (Raymond, 1997) as 
well as their effect on instructional practice (Wilkins, 2008). One of the distinctions between studies 
is how researchers address perceived inconsistencies in teachers’ statements and actions. Early 
studies examined differences between what a teacher claimed and what they did (e.g. Cohen, 1990). 
Later studies examined both teachers’ beliefs and practices before drawing conclusions (e.g. 
Schoenfeld, 2003; Speer, 2005; Speer 2008) and emphasized the importance of observing teachers 
for a long period to see how beliefs impact instruction (Skott, 2001).  

While extensive research has been conducted on K-12 teachers’ beliefs (e.g., Beswick, 2012), fewer 
studies have examined teachers’ beliefs or instruction at the university level. Weber (2004) examined 
a real analysis professor’s lecture-based teaching but observed the teaching style varied based on the 
material. Johnson, Caughman, Fredericks, and Gibson (2013) examined teachers’ priorities for 
instruction while using Inquiry-Oriented (IO) materials, especially noting content coverage concerns, 
goals for student learning, and student opportunities to discover mathematics. Surveys of abstract 
algebra instructors have examined influences on lecturers’ teaching (Johnson, Keller, & Fukawa-
Connelly, 2018; Johnson, Keller, Peterson, & Fukawa-Connelly, 2019). Those most influential (in 
order of frequency) were their experience as a teacher, experience as a student, and talking to 
colleagues. These instructors self-reported their time spent on types of instruction, leaving questions 
about how to characterize college teaching.  
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The theoretical framework in this study is Leatham’s (2006) construct of sensible systems. This 
framework posits that belief systems can be organized such that beliefs that seem contradictory to an 
outsider are not examined together by the teacher holding the belief, allowing “inconsistent” beliefs 
to coexist. Alternatively, certain beliefs could be held as ideal while others are given priority in 
specific situations. Generally, he suggested that if a researcher concluded a teacher’s beliefs were 
inconsistent, the researcher did not have all of the information. 

Methods 
In this case study, the instructor participant, Dr. Bailey (a pseudonym), was a full-time instructor 

teaching an introductory abstract algebra course. Bailey’s class met three times per week in 50-
minute periods that were a mixture of lecture and “lab” days. They engaged in two semi-structured 
interviews (Fylan, 2005) lasting one hour each. Interviews were audio and video recorded and coded 
using thematic analysis (Braun & Clarke, 2006). Classroom data were collected in the middle of a 
unit on groups and through the whole units on group isomorphism and quotient groups. Classroom 
data were analyzed with the Toolkit for Assessing Mathematics Instruction–Observation Protocol 
(TAMI-OP) (Hayward, Laursen, & Westin, 2017) and the Inquiry-Oriented Instructional Measure 
(IOIM) (Kuster, Johnson, Rupnow, & Wilhelm, 2019). 

The TAMI-OP is an observation protocol that aids recording what the instructor and students do in 
a classroom, broken into 2-minute segments of instruction. The IOIM was a rubric that provided a 
way to characterize how IO a class was. The IOIM uses a five-point scale and scores seven practices 
(below) that reflect the principles of IO instruction.  

1. Teachers facilitate student engagement in meaningful tasks and mathematical activity related 
to an important mathematical point. 

2. Teachers elicit student reasoning and contributions. 
3. Teachers actively inquire into student thinking. 
4. Teachers are responsive to student contributions, using student contributions to inform the 

lesson. 
5. Teachers engage students in one another’s reasoning. 
6. Teachers guide and manage the mathematical agenda. 
7. Teachers support formalizing of student ideas and contributions and introduce formal 

language and notation when appropriate. (Kuster et al., 2019) 

Results 
Instructor Beliefs 

Bailey highlighted mathematicians’ search for theorems as a purpose of math: “So I think 
mathematics is the search for theorems which…I would take to mean things that both can be 
proven…and then also the actual pursuit of proof…”  Bailey emphasized actively doing math to learn 
it: “I’m a firm believer in learning by doing is best, so…every class I try to give the students 
something to do even if it’s…here I’m gonna put this…example on the board for two minutes, let 
you guys work on it….” They based these ideas on how they learned: “I have to be …coming up 
with my own examples or coming up with my own proofs and just really synthesizing for it to stick.” 
They were aware that how they learned could differ from how others learn, just as people have 
different ways of thinking in other contexts: “Different people have different frames for interpreting 
politics…so I think the same applies to learning.” 

Bailey discussed the role of different types of instruction within a class period when addressing the 
nature of teaching math. On lecture days, they would focus more on exploring the definitions and 
proofs in the class with a few smaller examples worked in. On lab days, they would expand the 
interaction that students were engaged in, especially for addressing examples.  
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They valued lecture as a way to make sure they taught all of the intended material and were 
satisfied with the interaction/coverage balance struck with two lectures and one lab per week.  

Bailey identified two main ways that their beliefs about the nature of math, learning math, or 
teaching math were reflected in their instruction: the use of different types of instruction to reach 
different types of learners and an emphasis on students doing mathematics. 

It reflects my belief that people learn in different ways, and so, try not to use the same style 
throughout and also do different things….All my undergraduate mathematics classes were 
what I’ve been referring to as lecture.…I wasn’t great at following what was going on in the 
lectures at that point in time. The group work is the kind of thing that would have helped me, 
so…putting in that different element for maybe people who do learn in a different way. 

Their beliefs about creating a variety of learning opportunities for their students sprang from their 
experiences as a learner. In this case, the lack of alignment between their experiences and what 
would have helped them appeared to be formative. This relates to Johnson et al. (2018), in which the 
second most reported influence on instruction was experiences as a student.   
Characterizing Instruction 

Instruction is characterized based on data and analysis from the IOIM and TAMI-OP. IOIM practice 
scores are listed by practice (e.g. column P1 shows Practice 1 scores) with lecture scores on the left 
and lab scores on the right. TAMI-OP data rates are presented to the nearest whole percent. Counts of 
time blocks refer to numbers of 2-minute blocks (e.g. 9/31 segments lecturing means 9 of the 31 2-
minute segments had some time spent on lecturing).  

 

 
In the Group unit, the lectures received low (1) to medium (3) IOIM scores, and the lab received 

medium-low (2) to medium-high (4) scores, as shown in line one of Table 1. These scores indicate 
the lecture days were not well aligned with IO instruction whereas the lab days were somewhat 
aligned with IO instruction. Similar scores were given in the Isomorphism unit. In the Quotient 
Group unit, the lab days received scores similar to lecture days; the only difference was on Practice 
4, where the lab score was higher. Students engaged in less discussion with each other on lab days at 
all but one table, which depressed the IOIM scores. Across the three units, lecture scores held steady 
or decreased, except for Practice 7 in the Isomorphism unit. There, the lab started the unit, allowing 
some informal notation and ideas to come from the students before isomorphism was fully explained. 
The lab scores decreased or held steady except for Practice 6, where students were given more 
closure in a whole class setting in the last unit.  

The results from the IOIM are also reflected in the TAMI-OP. In Table 2, we see lecture days in the 
Group and Isomorphism units were dominated by the instructor lecturing and included less time for 
students to work individually or in groups, whereas the allocation of time was flipped on the lab 
days. In the Quotient Group unit, more time was spent lecturing and students spent less time working 
than in previous units. Furthermore, unlike the previous units, where labs received a full day each 
time, this unit’s labs received only partial days or spread over two days.  

 

Table 1: IOIM Practice Scores in Lectures/Labs 
Unit P1 P2 P3 P4 P5 P6 P7 
Groups 2/4 2/4 ½ 2/3 2/3 3/2 1/2 
Isomorphism 2/3 2/2 2/2 2/3 1/2 3/2 2/2 
Quotient Groups 2/2 2/2 2/2 1/2 1/1 3/3 1/1 
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Table 2: Time Averages Across All Three Units 
Day Segments  

Lecturing 
Segments 
Students 
Working 

Segments Student 
Presenting 

Segments Whole 
Class Discussion 

Group Lecture 49/51 9/51 0/51 0/51 
Group Lab 3/25 23/25 0/25 0/25 
Group Ave. 68% 42% 0% 0% 
Isomorphism Lecture 47/51 5/51 0/51 0/51 
Isomorphism Lab 6/26 26/26 0/26 0/26 
Isomorphism Ave. 69% 40% 0% 0% 
Quotient Gp. Lecture 168/177 12/177 0/177 0/177 
Quotient Gp. Lab 4/36 36/36 0/36 0/36 
Quotient Group Ave. 81% 18% 0% 0% 

 
Combining the information from the IOIM and the TAMI-OPs paints a picture of a class strongly 

guided by the instructor’s mathematical knowledge but with some opportunities for student 
exploration. The mathematical authority rested with Bailey, who was in charge of moving the class 
forward. As the semester progressed, students were given less time to work and the amount of time 
the instructor spent lecturing increased, especially in the final unit.  

Discussion and Conclusion 
Dr. Bailey’s stated beliefs about the nature of math focused on the structure of mathematics and the 

search for theorems. Their instruction reflected a belief in math as the search for theorems through 
their emphasis on proof in lecture, which they addressed by lecturing twice as much as they provided 
labs. Most of the time on lecture days was devoted to presenting proofs of theorems and thinking 
through implications of the work the instructor did at the board. However, the existence of two types 
of instructional days, opportunities to work on problems for extended periods, and opportunities to 
interact aligned with Bailey’s stated desire to use many types of instruction to reach many types of 
learners. Although most groups experienced largely lecture and individual work time in class instead 
of varied amounts of discussion, this was still more instructional variety than might be expected in a 
“typical” lecture class. Bailey noted that their previous semester’s section had been more interactive, 
so it is possible this was more due to the students’ preferences than Bailey’s intention. Here we have 
a tension between Bailey’s belief that students should be interactive and that students should be free 
to make choices about how they want to learn. In keeping with Leatham (2006), it seems Bailey 
acted more on the latter belief, indicating they considered aligning to students’ learning preferences 
more important than the incorporation of discussion while learning math.  

Bailey seemed to intend to enact the interactive classroom described in the interviews. However, as 
the semester wore on, other factors seem to have gotten in the way. When behind their schedule, they 
pressed to finish by reducing the student work time to half days for labs. The instructor did not state a 
desire to reduce student work time, so it is possible they did not notice they were shifting how much 
time they spent on different activities. Nevertheless, this raises questions for further research on the 
influence of instructional pressures across a semester. 
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Untangling the relationships between teaching, learning, and content is complex. This study focuses 
on one aspect of these relationships, i.e., the at times challenging role that language can play in 
mathematical tasks, discussions, and student access. The authors analyze two video banks to identify 
and operationalize combinations of teacher and student actions that support student access to 
mathematical tasks and language.  
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Mathematics education reforms and standards movements highlight the vital role that language and 
discussion plays in teaching and learning (National Council of Teachers of Mathematics (NCTM), 
2010, 2014; National Governor’s Association Center for Best Practices & Council of Chief School 
Officers (NGACBP & CCSO), 2010). Yet, the complex nature of mathematical tasks and discussions 
can become an obstacle for students’ participation in mathematics classrooms (Aguirre & Bunch, 
2012; Chval & Chavez, 2012).  In order to support student access, teachers must develop practices 
that facilitate student access to mathematical tasks and language (Boaler & Staples, 2008; Chval, 
Pinnow, & Thomas, 2014; Staples, 2007). 

This study comes from a decades long collaboration between K-12 schools, a nonprofit education 
organization focused on professional development and coaching for teachers of mathematics, and 
mathematics education faculty. In recent years, the partners collaborated to develop an app-based 
observation tool (Melhuish & Thanheiser, 2017) designed to provide teachers with formative 
assessment data about their implementation of observable mathematical teaching and learning 
practices. As part of this work, the authors are refining the tool to add or amplify student and teacher 
practices that support access to mathematical tasks and language. In alignment with this goal, this 
study was guided by the following research questions: (1) what observable teaching practices support 
students in making meaning of mathematical tasks and language, and (2) how might students engage 
in these making meaning practices? 

Theoretical Orientation 
Hawkins (2002) represents effective instruction by the relationships that exist between and among 

the vertices of the instructional triangle (see Figure 1a). In this triangle, the teacher builds a 
relationship with the student for purposes of understanding the student’s relationship to the content, 
and then the teacher responds in ways that engage the student in thinking about and interacting with 
others and ideas that are intended to lead to a deeper understanding of the content. Lampert’s (2003) 
expands on Hawkin’s triangle by explaining, through examples from her own practice, how the 
problem space of teaching occurs along each of the arrows connecting the vertices of the triangle. 
Lampert adds a fourth arrow to the diagram to represent the relationship between the teacher and the 
arrow between students and content (see Figure 1b). Both Lampert (2003) and Cohen, Raudenbush, 
and Ball (2003) write explicitly about the need to consider how these triangular relationships 
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function in the context of a teacher’s work with individual students as well as in a classroom full of 
students. Cohen et al. (2003) make this explicit by adding a representation of multiple students 
interacting at the “student” vertex. 

 
Figure 1. Three different representations of the student, teacher, content triangle. 

 
The study team is working to delineate the complexities of these relationships in ways that make the 

actions both observable and learnable. By overlaying the triangle on the tool, one can see that the 
relationships are embedded (see Figure 2). Teachers initiate and enact catalytic teaching habits 
(CTH) and teaching routines (TR) to elicit student ideas and/or in response to what they understand 
students to be saying, doing, or understanding. These teacher actions are designed to prompt students 
to engage in habits of mind and interaction as a means of deepening their understanding of 
mathematical content. This study focuses on the project team’s efforts to operationalize specific 
components of the tool (see highlighted text in Figure 2). What results is a smaller set of actions by 
and among teachers, students, and content that we hypothesize will support students in making 
meaning of tasks, contexts, and language.  

 
Figure 2. Teacher and student moves that support access to learning opportunities. 

Methods 
We drew upon two video banks of mathematics lessons spanning K-8 classrooms to identify teacher 

and student actions that supported students in making meaning of tasks and language. We initially 
developed a codebook that operationalized research-based practices (e.g., Ball, 1993; Jacobs & 
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Spangler, 2017; Nasir, & Cobb, 2006; Schoenfeld, 2011; Staples, 2007). Initial data analysis began 
with the development of a codebook with decision rules for the coding process and descriptions for 
each code. For example, we created distinct rules for coding TR stanzas and CTH stanzas with each 
stanza representing a discrete coded section of transcript data (Saldaña, 2013). TRs were defined as a 
collection of teacher-initiated moves that engaged students in prolonged mathematical discourse 
and/or productive thinking, while CTHs were defined as single teacher moves to elicit or focus 
student thinking. Additionally, student contributions were classified as a habit of mind (ways in 
which students engage with the mathematics) or habit of interaction (ways in which students engage 
with each other around the mathematics). These codes were then further refined through testing in 
classrooms and with video. Two researchers independently coded video transcripts, and then met to 
compare coding and resolve inconsistencies to reach interpretive convergence (Saldaña, 2013).  

Findings 
We present two excerpts that explicate the ways in which teachers might support students in making 

meaning of tasks and language. In the first transcript, the teacher implements a teaching routine to 
support students in making sense of a mathematical task before they start working on the task. The 
task states, “In a school gymnasium, 375 students have gathered for an assembly. The students are 
seated in 15 equal rows. How many students are seated in each row?” 

 
Figure 3. Teacher practice analyzed with the meaning-making codes. 

 
Here, the teacher uses the students’ shared experiences of going to assemblies in their school and 

possibly attending sporting events to make meaning of the context of the task. Within this longer TR, 
the teacher then uses a CTH to define the specific mathematical concepts of rows and columns. 
Noticeably, the students were not observed actively contributing to making meaning of the task or 
language. 

Conversely, in this second transcript the teacher and students both engage in making meaning of the 
task and language. This excerpt occurs after the students had been working through several story 
problems. The teacher implements the TR of making meaning of tasks and language after he notices 
that the wording of a particular task was confusing to some students. This task states, “How many 
periods of time, each ⅓ of an hour long, does a 8-hour period of time represent?” 
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Figure 4. Student teacher interaction analyzed with the meaning-making codes. 

 
During this TR, the teacher first elicits students’ understandings of the concept of periods of time 

rather than merely defining a period of time. This leads to a student engaging in the meaning making 
HOM. The teacher then extends this with a CTH by asking other students to revoice the original 
student’s ideas. The teacher adds to this definition by introducing the real world context of class 
periods in middle school. Finally, the clarification is made that a period of time refers to how many 
not how long, which leads to a student spontaneously engaging in a HOI to compare their thinking 
with the thinking being discussed. Taken together, these excerpts show how a teacher might 
implement a TR to support students in making meaning of task and language, and how the 
engagement of students during this TR may vary based on teacher responses. 

Discussion 
This work comes from a focus on how to support student access to mathematical content and 

discussions. We build upon Cohen and colleagues’ (2003), Hawkin’s (2002), and Lampert’s (2003) 
conceptualization of the instructional triangle in order to support this goal. Through multiple rounds 
of theoretical and empirical exploration, we have identified teacher and student actions that appear to 
support students in making meaning of tasks and language. By explicitly naming these teacher and 
student actions, we hope to bridge the theory to practice divide by supporting teachers in learning 
about and implementing these practices in their own classrooms. 
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Some research suggests that teachers’ beliefs and thoughts about the nature of mathematical 
knowledge and knowing (broadly termed epistemic dispositions) comprise an important factor that 
influences their practice. However, to date, there is no systematic review of the empirical literature 
on mathematics teachers’ epistemic dispositions. The purpose of this systematic research synthesis 
was to assess the existing empirical literature in order to (a) describe mathematics teachers’ 
epistemic dispositions, (b) to identify whether such dispositions correlate with teacher’s use of 
constructivist teaching practices, and (c) correlate with student learning outcomes. A systematic 
assessment of 30 relevant studies suggest that teachers, on average, hold constructivist epistemic 
dispositions regarding mathematics. Few studies reported correlations between epistemic cognition 
indices and teacher practice or student outcomes. 

Keywords: epistemic cognition, epistemic beliefs, epistemological beliefs, teacher beliefs 

Cognitive processes involved in constructing and evaluating arguments—called epistemic 
cognition—has been well studied in the educational psychology literature. Epistemic cognition 
concerns itself with the thinking that people do about what they know and how they know it (Chinn, 
Rinehart, & Buckland, 2014; Sandoval, Greene, Bråten, 2016). For example, a learner engages in 
epistemic cognition when they explain “how they know” that a mathematical assertion is true or 
justified. A common object of investigation in epistemic cognition research is people’s beliefs about 
the nature of mathematics, mathematical knowledge, and processes of knowing—sometimes termed 
epistemic beliefs (e.g., Cooney, 1985; Ernest, 1989; Muis, 2004; Thompson, 1984). Existing research 
syntheses suggest that students’ epistemic beliefs support their motivation, selection of productive 
problem-solving strategies, and achievement outcomes in mathematics (e.g., Muis, 2004) and are 
involved in teachers’ lesson planning, evaluation of student work, and instructional techniques (e.g., 
Maggioni & Parkinson, 2008). Yet, despite several decades of research consistently confirming that 
epistemic cognition plays a crucial role in facilitating teaching and learning in many disciplines, little 
to no research focuses on synthesizing findings regarding teachers’ epistemic cognition in the domain 
of mathematics. 

The purpose of this systematic review was therefore to synthesize the existing work on epistemic 
cognition in mathematics teaching in order to specify teachers’ epistemic dispositions and identify 
whether epistemic dispositions are associated with instructional practice and student achievement. 
Specifically, we sought to answer three central questions: (a) What are teachers’ epistemic 
dispositions towards mathematics? (b) To what extent are epistemic dispositions associated with 
teacher instruction? (c) To what extent are epistemic dispositions associated with student learning? 

Theoretical Framework 
Epistemic cognition can be defined as the thinking that people do about knowledge and knowing 

(Greene et al., 2016). A common focus in epistemic cognition research is on the beliefs that people 
hold about knowledge and knowing—or epistemic beliefs—which are studied both as both a domain-
general and domain-specific construct. Three decades of research from various disciplines have 
yielded multiple domain-general models of epistemic cognition that broadly fall into three categories: 
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developmental, multidimensional, and philosophically informed models (e.g., Sandoval et al., 2016). 
Developmental models of epistemic cognition investigate how people’s views of knowledge progress 
through a series of levels over time (e.g., Kuhn, 1991; Moshman, 2015; Perry, 1970). 
Multidimensional models explore epistemic cognition as a set of multiple, relatively independent 
dimensions of beliefs (e.g., Hofer & Pintrich, 1997; Schommer, 1990). Philosophically informed 
models more broadly conceive of epistemic cognition as encompassing not only beliefs, but cognitive 
processes that take into account motivation, emotion, and practices that dynamically interact with 
beliefs in context (e.g., Chinn et al., 2014). 
Theoretical Models of Epistemic Cognition Specific to Mathematics 

Much of the literature on mathematical epistemic cognition focuses on individuals’ beliefs about 
mathematics and the nature and acquisition of mathematical knowledge (e.g., epistemic beliefs; 
Ernest, 1989; Thompson, 1984). The most commonly cited model of teachers’ beliefs about 
mathematics is that of Ernest (1989). Ernests’ model posits that teachers’ beliefs about what 
mathematics is impacts their beliefs about how students learn, how teachers should teach, and 
subsequently impact their enacted model of how students learn (e.g., their teaching practices and how 
they utilize classroom resources like textbooks). Ernest proposes three categories of epistemological 
beliefs that increase in their level of sophistication: instrumentalist, Platonist, and problem-solving. 
Individuals that hold an instrumentalist perspective believe that mathematics is a set of unrelated 
rules and facts. Instrumentalists view mathematical statements as mere consequences of a set of 
arbitrary mathematical rules. Math teachers that adopt an instrumentalist perspective might view 
math statements as “just a collection of disconnected formulas” to be memorized and reproduced that 
are ultimately disconnected from our experience in the world. Platonists hold the view that 
mathematics is a unified body of objective mathematical knowledge and that mathematics is 
discovered. This can be illustrated by the teacher who believes that that mathematical knowledge is 
highly interconnected, builds upon itself, and exists in an unchanging almost transcendent world of 
objective mathematical knowledge. A Platonist teacher might believe that the best way to 
communicate mathematical knowledge to their students is to expose students to math knowledge in a 
logically consistent way. The problem-solving perspective holds that mathematics is dynamic, 
expanding, and is a human invention. This perspective stems from the view that mathematics is 
essentially a human invention constructed from subjective experience in the world. Teachers that 
hold a problem-solving perspective might believe that mathematical knowledge is a construction 
used to describe individual experience of the world, that math is a language to describe the world 
around us, and that the best way for students to learn mathematics is to co-construct knowledge 
through discussion and interaction in the classroom. 

Additional mathematics-specific theoretical models of epistemic cognition are similar to Ernest’s 
(see Table 1). Felbrich and colleagues (2012) and Daepepe and colleagues (2016) also posit 
categorizations of teachers’ epistemic dispositions that lie on a continuum of less to more 
constructivist (scheme-related, formalism, and process-related). Two of Blömeke’s three categories 
are similar, with the third category, the application perspective, being somewhat unique in that it 
represents a teacher with the perspective that math is a tool that can be applied to accomplish various 
tasks. 

Teachers’ mathematical beliefs are also predicted to shape their perceived role in the classroom, 
intended outcomes, and enacted instructional practices. For example, Ernest’s (1989) model predicts 
that teachers’ epistemic beliefs inform their espoused and enacted models of teaching and learning 
mathematics as well as their use of classroom materials. Briefly, this model posits that teachers’ 
constructivist epistemic beliefs are expected to correspond with teaching practices that subsequently 
support student learning. 
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Table 1: Four Developmental Models of Teachers’ Beliefs about Mathematics. 
Ernest (1989) Instrumentalist Platonist Problem Solving  
Felbrich (2012) Math is Static Science  Math is a Dynamic Process Application 
Blömeke (2008) Scheme-Related Formalist Process-Related  
Daepepe (2016) Absolutist  Fallibilist  

 
As it stands, the epistemic cognition frameworks reviewed here posit that teachers generally 

progress from less to more constructivist mathematical beliefs and that these views on the nature of 
mathematics shape teachers’ espoused models for teaching and learning and their enacted practices. 
However, it should be noted that such developmental models of epistemic cognition concentrate on 
epistemic beliefs and are limited in that they do not consider the multi-dimensionality or context-
sensitivity of epistemic cognition as proposed in the educational psychology literature (e.g., Hofer & 
Pintrich, 1997; Chinn et al., 2014). As such, we operationalized epistemic cognition to include 
multidimensional and philosophically informed models and cast a wide net for retrieving relevant 
information about the topic, despite there being no math-specific theoretical models that are widely 
used that take these perspectives. 

Method 
Inclusion criteria. This review investigates empirical research on epistemic cognition of instructors 

within the domains of educational psychology and mathematics education. Studies were selected if 
they examined teachers’ thinking about mathematical knowledge and knowing that could be 
identified as satisfying one or more of the components of the operational definition outlined above. 
These components included beliefs about the nature of knowledge in mathematics, justifications of 
knowledge in mathematics, sources of knowledge in mathematics including teachers’ perspectives on 
the acquisition of mathematical certainties (i.e., proof). We included articles, dissertations, reports, 
and book chapters published in English. 

Search procedures. Relevant empirical literature was identified by searching online databases, 
PsychINFO and ERIC, with the following search command: “(teach* OR instruct* OR profess* OR 
faculty) AND (epistem* OR proof* OR prove OR proving OR (math* NEAR/6 belief*)) AND 
(math*),” no additional restrictions were placed on the search. This search resulted in a total of 810 
items, of which a total of 30 texts met the inclusion criteria and were selected for this review after 
multiple rounds of screening (screening procedures available upon request). 

The 30 papers were then coded to capture characteristics of the theoretical framing, study setting, 
participants, internal validity, and external validity (Cooper, 2016; codebooks available upon 
request). Papers were broadly categorized by whether they addressed one or more of the three main 
research objectives to (a) describe teachers’ epistemic cognition about mathematics, (b) identify 
whether there is a relationship between epistemic cognition and teaching practices, and/or (c) identify 
whether there is a relationship between epistemic cognition and student learning outcomes. Some 
texts were applicable to more than one category. 

Preliminary analysis. For this preliminary analysis, we recorded the direction of effects—we noted 
whether each study found that teachers held constructivist dispositions or not, and whether these 
dispositions were positively or negatively correlated with reform-based instructional practices or with 
student learning. We then tallied up the direction of effects across these studies. The secondary 
reference section presents a list of the articles cited in the review. 
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Preliminary Results 
The empirical literature identified in this synthesis tended to centralize epistemic beliefs as the 

object of investigation. Of the 30 items reviewed, all 35 of them appeared to be explicitly focused on 
assessing static epistemic beliefs using developmental or multidimensional conceptions of epistemic 
cognition (rather than philosophically informed models that consider the context-sensitive nature of 
epistemic cognition). Study samples ranged from pre-service K-12 teachers, and in-service teachers 
of preschool up through undergraduate and graduate instructors. Of 30 texts, 12 were qualitative, 16 
were quantitative, and 2 were mixed methods. 
RQ1: What are teachers’ epistemic dispositions towards mathematics? 

We assessed sample means of teachers’ beliefs about mathematics from quantitative studies to 
judge whether their epistemic dispositions towards mathematics were constructivist or not. Of the 17 
studies presenting relevant means, 13 of them (76%) revealed that teachers on average held 
constructivist beliefs about mathematics knowledge and knowing. Qualitative findings were 
consistent, but suggest that these dispositions were context dependent. 
RQ 2: To what extent are epistemic dispositions are associated with teacher instruction? 

To answer the second research question, we tallied the direction of effects of correlations between 
constructivist epistemic dispositions and teachers’ reform-based teaching practices. Of the thirty 
papers, only four of them reported such correlations, all of which (100%) were positive and 
significant. 
RQ3: To what extent are epistemic dispositions associated with student learning? 

To answer the third research question, we tallied the direction of effects of correlations between 
constructivist epistemic dispositions and student learning outcomes. Of the thirty papers, only two 
studies presented correlations between epistemic dispositions and student learning. Both correlations 
were positive, but only one was significant. 

Significance 
We sought to assess the empirical literature on mathematics teachers’ epistemic cognition to 

describe their epistemic dispositions and identify potential relationships with their practice and 
student learning outcomes. A systematic review of 30 journal articles, book chapters, reports, and 
dissertations begin to suggest that teachers lean towards constructivist perspectives regarding 
mathematical knowledge and knowing. A few studies show that these constructivist dispositions are 
correlated with reform-based teaching practices. However, due to the very small number of studies 
linking such beliefs with specific teaching or student learning outcomes, we recommend that more 
research is needed to establish such links. 

We also found that all of the literature identified in this search conceived of and measured epistemic 
cognition as a unidimensional, static construct. Future work should also build from epistemic 
cognition models that centralize the role of context and frame epistemic cognition as a situated 
process rather than capturing only static beliefs. 

We also note that issues of race, gender, and class were all but absent from this body of literature. 
Existing research suggests that teachers’ seemingly innocuous beliefs about the nature of 
mathematical ability are not gender-neutral (Copur-Gencturk, Thacker, & Quinn, 2019). Such 
evidence suggests that implicit racial and gender biases may belie the seemingly harmless beliefs 
about the nature of mathematics and mathematical knowing. Future research should explore potential 
relationships. 
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This multi-case study examines how three elementary teachers, all certified by their school district in 
culturally responsive teaching (CRT) through professional development opportunities, implement 
mathematics teaching practices that support CRT. Furthermore, this study examines the CRT 
certification process in the focal district and the structures that support teachers in their enactment 
of CRT. Data were collected via interviews, questionnaires, observations, teacher journals, and other 
reportable data. The teachers’ CRT practices in mathematics fell into four large quadrants aligning 
with the work of Hammond’s (2015) Ready for Rigor framework. The findings expand upon the 
literature and provide us with a more informed understanding of what CRT looks like in elementary 
mathematics classrooms with teachers who have been certified in CRT from a district developed and 
applied certification model. 

Culturally Relevant Education, Elementary School Education, Equity and Diversity, and Instructional 
Activities and Practices 

Purpose & Theoretical Framework 
The achievement of historically marginalized students has been an ongoing concern for 

stakeholders. Gay (2010) stated, “The achievement of students of color continues to be 
disproportionately low at all levels of education, and the need to change these dismal conditions is 
even more pressing” (p. xxvii). While addressing student achievement in mathematics education, 
Bonner (2014) emphasized how data from the National Center for Education Statistics (NCES, 
2009), indicated that from 1990 to 2007 there was, “little progress in closing the persistent 
mathematics achievement gaps between certain groups” (p. 377). More recently, data from the 
National Assessment of Educational Progress (NAEP; 2017) reported that though there were not 
significant changes in racial and ethnic disparities from the previous years, the scores of White 
students remain higher on average than those of their Black and Latinx peers, indicating that while 
the achievement gap is smaller than it was in 1990, disparities are still prevalent. Although there are 
numerous reasons why such achievement gaps persist between students of color and their White 
counterparts in mathematics, including but not limited to, tracking/leveling, access to resources, 
institutional racism, and stereotype threat, research has shown that the achievement of historically 
marginalized youth is likely to increase when learners have positive mathematical identities (e.g., 
Borman & Overman, 2004) and cultural identities (e.g., Moll, Amanti, Neff, & González, 1992). 
Teachers play a significant role in forming student perceptions and fostering the development of such 
identities (Schoen, Cebulla, Finn, & Fi, 2003).  

Thus, Gay (2010) stated, “Culturally responsive teaching is a means for unleashing the higher 
learning potentials of ethnically diverse students by simultaneously cultivating their academic and 
psychosocial abilities” (p. 21). Though the theoretical framework for CRT has informed the 
educational community for quite some time, scholars (e.g., Hammond, 2015) continue to discuss the 
challenges of operationalizing CRT in practice. Mathematics education in particular has produced 
limited research examining the teaching practices of culturally responsive teachers in pre-
kindergarten through 12th grade (preK-12) (Thomas & Berry, 2019). Bonner (2014) offers three 
reasons for why this might be the case, including: 1) the majority of the works are specific to one 
population such as African American learners (e.g., Ladson-Billings, 1994); 2) there is a broad focus 
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on content and practice, making it non-mathematics-specific (e.g., Gay, 2010); and, 3) the works 
remain largely theoretical (e.g., Greer et al., 2009). 

The purpose of this multi-case study is to examine CRT practices in elementary mathematics with 
three teachers who have been locally recognized and certified in CRT by their school district. 
Furthermore, the intent is to examine the CRT certification process in the focal district and the 
structures that supported the teachers in their enactment of CRT with historically underserved 
students, in their efforts to address the achievement gap. Though there is variability in how to define 
achievement gap (e.g., test scores, course enrollment patterns, cognitively demanding learning 
opportunities, etc.), this study is utilizing the terminology to emphasize the gap in standardized test 
scores, based upon how the focal district is operationalizing the construct and their desired outcome. 
This study is not about “gap gazing” rather language surrounding the achievement gap has been 
made explicit to describe the context within the district (Gutiérrez & Dixon-Román, 2011). This 
study is grounded in CRT both in theory and practice.  

Methods 
Research Questions 

1. How do teachers become fully certified in CRT, and what structures support teachers in their 
enactment in the focal district? 

2. How do three elementary teachers, who have been certified in CRT, implement mathematics 
teaching practices? How does the mathematics instruction support CRT? 

Site and Sample 
William County (pseudonym) is located in a southeastern state and it is known for its diverse 

student population inclusive of over 90 spoken languages. There are approximately 14,000 students 
enrolled in elementary schools in the district. In an effort to close the achievement gap in William 
County, district leaders created a CRT certification program for preK-12 teachers, administrators, 
and counselors. Since the program’s enactment in 2016, 40 individuals have been certified across the 
district. The majority of the certified teachers are elementary, and to date, no secondary mathematics 
teachers have received certification. 

I secured the consent of Skylar, Elizabeth, and Clay (pseudonyms). Skylar and Elizabeth are both 
Black women and Clay is a White man. Skylar and Elizabeth both teach at River Elementary 
(pseudonyms for school names) and Clay is at Ivy Elementary. The participants teach mathematics in 
different grades such that Skylar is pre-kindergarten, Elizabeth is third-grade, and Clay is fourth-
grade. Their years of teaching experience range between five and 11 years. Additionally, their ages 
range from late-20s to late-40s. All of the teachers were part of the most recent cohort to receive 
certification. To incorporate multiple perspectives, I also draw upon the voices and the actions of 
district leaders. 
Data Gathering Procedures 

Mapping cultural reference points questionnaire. The first module of the district’s CRT 
certification focuses on teachers recognizing their own cultural lenses. To inform my understanding 
of how the teachers are pushing themselves outside of their own cultural boundaries, I had them 
complete a questionnaire (Hammond, 2015) following the first interview.  

Teacher journals. A key component of CRT examines how teachers react in the moment and how 
they use those experiences to inform their practices in the future, as seen in Bonner (2014). 
Following each observation, I asked the teachers to briefly reflect upon their own instruction using a 
journal protocol to gauge awareness.  
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Interviews. The first, semi-structured interview focused on the teachers’ perceptions of their 
enactment of CRT in mathematics education and their experiences with the certification process. The 
second teacher interview focused on emerging themes surrounding the teachers’ CRT practices and 
their perceptions of district structures.  

Classroom observations. I observed the actions of the teachers inclusive of both how they gained 
knowledge of their students and how they used such knowledge to inform their teaching practices. I 
observed (and video recorded) the teachers (using protocol) for at least 10 full mathematics lessons 
(1.5 hours each; time of a unit). Data were collected using fieldnotes.  

Other reportable events. Other reportable events in this study is multifaceted, including: informal, 
unstructured interviews and conversations that arose; various forms of artifacts such as assignments, 
student work, photographs, and the teachers’ certification portfolios; and data points from 
involvement in community partnerships, division meetings, and school-wide meetings in public 
spaces. 
Data Analysis 

The information gathered from the questionnaire served as preliminary data that led toward the 
development of other methods; particularly, by helping to inform the observations. The journal 
reflections were re-read, and compared to the data for the corresponding classroom observations to 
analyze teacher awareness. Both interviews with the teachers were recorded and transcribed to allow 
for member checking. All fieldnotes were transferred into write-ups, and analytic memos were 
written intermittently to document emerging themes and inferences from data collection. Data 
sources were triangulated and re-read and re-coded to document emerging patterns and themes of 
CRT practices. I compared confirming and disconfirming evidence and continued to adjust my 
findings until all of the evidence was accounted for. Additionally, I engaged in peer debriefs and 
consulted with experts in the field about emerging themes and patterns, aligning with the theoretical 
frameworks to ensure trustworthiness. 

Findings 
District Professional Development & Structures 

The focal district has enacted a CRT certification program inclusive of three professional 
development modules and three characteristics of focus for monthly cohort meetings. The three 
modules include: 1) recognizing your cultural lens, 2) engaging diverse learners, and 3) ensuring 
equitable parent participation. The characteristics of the CRT certification state that culturally 
responsive teachers: 1) acknowledge and incorporate the importance of cultural heritage of all 
students, while reflecting on their own personal cultural influences; 2) provide multi-cultural 
instruction and differentiation for relevance and rigor; and, 3) build positive learning partnerships 
with students and families. To receive certification, teachers have to demonstrate within their 
portfolios that they are working to enact CRT and present evidence of student achievement. The 
compilation of their work is also presented at a district-wide Equity Conference. Furthermore, district 
structures are in place with the purpose of continuing to influencing the teachers’ learning and 
implementation of CRT. These structures are evidenced in the county’s Equity Model that acts as a 
structural hierarchy of support (See Thomas (2020) for further discussion of the Equity Model and 
district-level support structures.). 
CRT in Mathematics Classrooms 

During my time working in the classroom with the teachers, it became evident that their 
conceptions of CRT were highly influenced by the work of Hammond (2015) and the Ready for 
Rigor framework. However, similarly to other works surround CRT, some of the components of each 
quadrant exemplified particular tenets that are more thoroughly captured in other literature (e.g., Gay, 
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2010; Ladson-Billings, 1994). The findings have been outlined in Figure 1. The quadrants are 
oriented to mathematically model the coordinate plane and the ways in which the teachers went about 
building CRT at the beginning of the school year. However, it is important to acknowledge that after 
the initial phase (of consecutive order), this is very much viewed as a continuous cycle without 
particular attention to order and the quadrants are not mutually exclusive. Furthermore, gaining 
knowledge has been placed at the center of this model.  

Although mathematics teaching and learning are embedded throughout Quadrants 1-3, Quadrant 4 
on information processing is most specific to mathematics education. All three teachers emphasized 
the importance of helping their students to first develop growth mindsets or mathematical mindsets 
(Boaler, 2016) when tackling challenging tasks that require cognitive demand and problem solving. 
Furthermore, in the domains for relevance, mathematical representations (Berry et al., 2017), and 
discourse, I examined how such standards-based practices (NCTM, 2000) were accompanied with 
CRT strategies to help students process information. The teachers viewed these as strategies for 
“stimulating brain growth to increase intellective capacity” (Hammond, 2015, p. 17). For sample 
excerpts and a thorough examination of the findings on CRT in practice as demonstrated in Figure 1 
refer to Thomas (2020).  

 
Figure 1: Findings of CRT in Elementary Mathematics Classrooms 

Discussion & Significance 
The study is significant because its findings expand upon the literature (e.g., Bonner, 2014; Thomas 

& Berry, 2019) and provide us with a more informed understanding of what CRT looks like in 
elementary mathematics classrooms. Furthermore, as indicated by Cai et al. (2017) there is a need in 
the field to link research and practice, and this study attempts to bridge that gap with CRT. This work 
is unique because the teachers are certified in CRT and supported by district structures in enacting 
CRT practices. This study continues to inform our understanding of how to operationalize CRT in 
mathematics, and it gives us insight into the professional development and support structures that 
may influence the implementation of such pedagogy. 
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This paper advances theory for language use in mathematics learning contexts. The theory arises 
from a cross-sectional longitudinal study of student language use in Grades 3 to 11, both in English 
first-language contexts and French Immersion contexts. We point to translanguaging and the 
language-as-resource metaphor to consider the goals educators have for documenting students’ 
mathematical language. We problematize deficit-oriented assessment of mathematical language and 
differentiate between using language for distinction-making and for register-fitting. Both are 
important. We introduce a tool for documenting language repertoires to recognize students’ 
language strategies, including distinction-making and register-fitting. 

Keywords: Classroom Discourse, Communication, Cross-cultural Studies, Probability 

The understanding of any mathematics is mediated by language. There is a reciprocal relationship 
between language and conceptualization: language repertoires are necessary to convey an idea, and 
the language used shapes the way people conceptualize. This reciprocity led us to to identify 
children’s language repertoires in a range of contexts. Here we present a tool for documenting 
language repertoire and we explain how it helps us think about theory.  

The research data from which we draw examples comprised a cross-sectional longitudinal study in 
English-medium and French Immersion instructional contexts in an Anglophone region in Canada. 
We worked with students in Grades 3, 6, and 9 in the first year, Grades 4, 7, and 10 in the second 
year, and Grades 5, 8, and 11 in the third year. 

Second language acquisition literature has shown that people are generally good at picking up and 
using the language strategies employed by others in interaction (Ellis, 1997; Long, 1985, 1996, 2007; 
Swain, 2000, 2008)—in other words, people are naturals at learning language. We claim that first 
language acquisition works similarly—people pick up and use the language strategies used by others. 
To listen for students’ language strategies (as opposed to students’ ability to understand and then use 
the strategies we exhibit), we deemed it necessary to design mathematical tasks that do not have us 
saying or writing language strategies we foresaw students using. We found it possible to avoid the 
specialist language of prediction in our tasks by constructing a narrative context for our questions. 

We introduced the game of Skunk with a narrative like this in each classroom: “I was picking 
strawberries in the forest. When my basket was quite full, a skunk wandered into the berry patch. I 
ran away so the skunk would not spray me. And I lost the berries in my basket.” Participants had a 
pile of beans (representing the berries), a cup (the basket), and a bowl (home). When the researcher 
rolled the die and called out the number, participants put that number of berries in their basket. A 6 
represented the skunk. When it was rolled, everyone would lose the berries in their baskets. If they 
had “gone home” (dumping their beans into their bowl) before the appearance of the skunk, their 
berries were safe. We played seven rounds.  

The day after playing the game in the classroom, we interviewed groups of students and played 
again but, instead of the die, we used six cards bearing the numbers one to six (the skunk). The 
interviewer would not replace the cards into the deck until the deck was completely played out, at 
which time it would be reshuffled. Thus the participants experienced the difference between 
independent and mutually exclusive events in probabilistic situations. During the card game, the 
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interviewer would ask the participants to say why they made their choices about when to “go home.” 
After the game, the interviewer would ask participants about specific things they had said earlier, 
asking for clarification on meaning. We had students work in pairs to encourage them to dialogue 
about their choices (e.g., “should we go home or stay in the berry patch?”). 

After transcribing the interviews, we collated students’ language strategies for identifying certainty 
or uncertainty, organizing them into charts—one chart for each interview. The chart identifies each 
strategy and when it was used by referring to the turn number. A turn begins and ends with a change 
in who is speaking. The structure of the chart emphasizes who is the first person to use each language 
strategy and who uses it after that. We show one such chart here (Table 1), from an interview with 
four English-medium Grade 6 students. The strategies are presented in the order that they are used. 
For example, the first language strategy for uncertainty was Bal’s use of ‘probably’ in turn 21. Bal 
used ‘probably’ again in turns 40, and 149.  (Names are pseudonyms. “Int.” refers to the 
Interviewer.) 

 
Table 1: Grade 6 English group – expressions of certainty and uncertainty 

Certainty Certainty (continued) Uncertainty 
Simple Assertion 

1st user: Col (23, 44, 60) 
2nd user: Int. (49) 
3rd user: Bal (62, 122, 
129) 

‘have to’ 
1st user: Int. (49, 81, 255, 
262, 279, 295, 297, 299) 

‘sure’ 
1st user: Researcher (121) 

‘you know’ 
1st user: Daz (197) 
2nd user: Int. (361) 

‘probably’ 
1st user: Daz (197) 

‘I know’ 
1st user: Col (226) 

‘need to’ 
1st user: Col (228, 294) 
2nd user: Daz (282) 

‘you know you’re going to’ 
1st user: Bal (238) 

‘you never know’ 
1st user: Bal (238) 
… 
 

 
… 
 
‘got to’ / ‘gotta’ 

1st user: Adi (260, 265) 
2nd user: Int. (262, 289) 
3rd user: Daz (283) 
4th user: Adi (284) 

‘you know it’s got to’ 
1st user: Col (261) 

‘has to’ 
1st user: Adi (265) 

‘a rule’ 
1st user: Col (290) 
2nd user: Daz (291) 
3rd user: Int. (293, 295, 357) 

‘can’t’ 
1st user: Int. (327, 329, 336, 
352, 361, 363) 

‘not allowed’ 
1st user: Bal (337) 
2nd user: Int. (338, 354, 361) 

‘impossible’ 
1st user: Col (340) 
2nd user: Int. (341, 344, 354, 
361) 

‘probably’ 
1st user: Bal (21, 40, 149) 

 ‘it depends’ 
1st user: Daz (22) 
2nd user: Adi (33) 

‘usually’ 
1st user: Bal (25) 

 ‘you never know’ 
1st user: Daz (35) 
2nd user: Bal (238) 
3rd user: Int. (239) 

‘could’ 
1st user: Daz (35) 
2nd user: Int. (303, 305, 311, 
313, 317) 

‘I/you think’ 
1st user: Int. (30, 66, 69, 126, 
128, 141) 
2nd user: Col (41, 106) 
3rd user: Bal (105, 125) 

‘not sure’ 
1st user: Int. (45, 47) 

‘I don’t know’ 
1st user: Daz (227) 

‘a chance’ 
1st user: Bal (304) 
2nd user: Int. (305) 

Problematizing deficit assessments of mathematical language 
We acknowledge that we found it hard to avoid deficit assessment even though it was our expressed 

intention to avoid it. For example, we expected students to use modal verbs to make distinctions in 
degrees of certainty—as we had found in earlier work (e.g., Wagner, Dicks & Kristmanson, 2015)—
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ranging from negative root modality (e.g., ‘it is not six’) to positive root modality (e.g., ‘it is six’) 
and different levels of modulation in between. 

However, we noticed that Adi, Bal, Col and Daz here did not use some common modal verbs. For 
example, after giving the students a chance to use the modal verb ‘can’t’ on their own, the 
interviewer used it multiple times (starting in turn 327), even explicitly asking the students what it 
meant. But the students did not use it. It was clear that they understood it, because when asked about 
it they made distinctions between things that are ‘not allowed’ (Bal in turn 337) and things that are 
‘impossible’ (Col in turn 340). If we were to rate their language use on a checklist, how would we 
assess their use of the word ‘can’t’? We can say they did not use the word. But it would be 
inappropriate to say they do not have the word in their repertoires. The fact that they did not use it 
does not mean they cannot use it. To illustrate further, we consider the word ‘impossible’. If we had 
ended the interview a little sooner, before turn 340, we would not have known that it was in Col’s 
repertoire. We can say that at least Bal and Col understand ‘can’t’ because they responded well to 
questions using the word. They even demonstrated sophisticated understanding by making 
distinctions between impossibility due to logic and due to authority. Rowland (2000) has documented 
the language of this distinction. 

Further, we see that Bal and Col responded with understanding to the word ‘can’t’. What can be 
said about the others in the group? We argue that it would be inappropriate to say that Adi and Daz 
did not understand ‘can’t’. While they did not use the word nor respond directly to the word being 
used, there was no reason for them to speak about it because Bal and Col already did so. We entered 
the research project with a principled decision to avoid deficit assessment. We found it difficult to 
avoid deficit approaches in our read of the data. Ultimately, our data gave us evidence to reject 
deficit assessments of language. 

Translanguaging for distinction-making and register-fitting 
Distinction is a word that appears multiple times in our theorizing above. Our stance of seeing 

language as resource (Martínez, 2017; Moschkovich, 2007, 2013; Planas & Setati-Phakeng, 2014; 
Ruiz, 1984) led us to appreciate the language work done by the students in our data across the ages. 
This led us to ask what goals we would promote for mathematics educators in relation to 
mathematical language. We settled on these three: (1) understanding mathematical concepts, (2) 
ability to use language to make mathematical distinctions, and (3) ability to sound knowledgeable 
(fitting the genre, the grammar, the lexicon) 

We assume that all mathematics educators are interested in supporting students to develop 
understanding of mathematical concepts. With an interest in mathematical language, it is common to 
say that students should also be able to communicate their mathematics. This goal compels us to ask 
what it means to communicate mathematics. We differentiate between successful communication of 
an idea, which we call distinction-making, and using ‘correct’ language, which we call register-
fitting. As shown by the students Adi, Bal, Col and Daz, and by the students in every other interview 
in our research from Grades 3 to 11, it is possible to communicate conceptual distinctions without 
using conventional language. 

We claim that communicating mathematics successfully means being able to make mathematical 
distinctions in a way that others understand. We use the new theory of translanguaging here, 
introduced by García and Wei (2014), to challenge the neat boundaries people often imagine around 
languages. We aim to appreciate the range of language strategies people use, no matter how they 
cross lines of recognized languages (e.g., English or French), and variations within languages 
(mathematics registers, dialects, etc.). 

For example, in relation to prediction, it is important to have language strategies that distinguish 
between certainty and uncertainty. This can be done with adverbs like ‘certainly’ and ‘possibly.’ Bal 



Documenting mathematical language: distinction-making and register-fitting 

	 2141	

used adverbs—‘probably’ thrice, and ‘usually’ once. The distinction can also be made with 
adjectives, such as ‘impossible’ which was used by Col first in this interview. The distinction can be 
made with modal verbs as noted above and with a distinction between knowing and thinking, also 
noted above.  

Further sophistication is possible with distinctions between levels of certainty (modulated 
certainty)—for example, Bal’s adverbs ‘probably’ versus ‘usually.’ Other than that distinction we did 
not find modulated certainty in this group. For further examples we can point to data from a group of 
three Grade 9 French Immersion students. (We do not show the table due to space restrictions.)  To 
identify a higher probability, Enk said ‘plus de chance’ (more chance) early in the interview (turn 
14). Much later, Gyl said ‘une bonne chance’ (a good chance) (turn 127). To identify lower 
probability, Gyl said ‘un sur trois chance’ (one in three chance) early in the interview (turn 20) and 
‘une petite chance’ (a small chance) later (turn 90). 

In addition to making distinctions clearly, we have seen that mathematics teachers value students 
using ‘proper’ words ‘properly’. We use the word proper in quotes because it can only refer to 
loosely defined expectations for standard lexicon (‘proper’ words) and standard grammar (words 
used ‘properly’). This means that educators want to induct students into a community of 
mathematicians, who, presumably, use the words and grammar of the mathematics register—the 
specialized methods of communication used amongst the mathematically literate (Barwell, 2007; 
Halliday, 1974; Pimm, 2007). We see this register-fitting as different from distinction-making. 
However, there is a connection: as people move to using more conventional language it becomes 
easier for others to understand their meaning. For example, if we use language that you know and 
use, you will more likely understand us. This is the unitary force of language in Bakhtin’s (1981) 
metaphor—the centripetal force (Barwell, 2014). 

French Immersion contexts are especially interesting to us in terms of register-fitting because there 
are two explicit goals: learning mathematics and learning French. We suggest similar goals in first-
language medium classrooms too: learning mathematics and learning to communicate mathematics, 
which would include both distinction-making and register-fitting. 

Two of the four strategies used by students to modulate certainty in the French group used improper 
French: ‘un sur trois chance’ (turn 20), and ‘une petite chance’ (turn 90). We could criticize the 
students for using improper French (a deficit assessment). Alternatively, we could honor them for 
using the language strategies available to them to make the distinctions they intended to make. 
Strong language speakers are inventive with language to communicate their ideas. There are plenty 
of other examples of ‘improper’ language being used powerfully across the corpus of data in both 
French and English interviews. 

But deficit views of ‘proper’ language are even more complicated. We consider the Francophone 
interviewer, who said ‘c’est peut-être pas’ (‘it might not be’) in turn 98. This too was successful 
communication in non-standard French (the speaker dropped the ‘ne’ in front of the verb ‘est’). 
However, in oral French it would be weird to say the standard French ‘ce n’est peut-être pas.’ The 
interviewer was using standard oral French. We believe that anyone who has transcribed natural 
language data will have realized that people do not often speak in proper sentences.  
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Our research is a case study, qualitative, exploratory and descriptive, in which we analyze the free 
textbook for mathematics and consider, among other variables: the structure, the didactic situations, 
the expected learning, etc. The participants at the beginning of the research were seven teachers from 
a Primary School located in the municipality of Toluca: Two from first grade and one from second to 
sixth, with their students respectively. In the profile of the teachers we consider the following 
features: Gender, age, degree attended, professional training, institution that accredits their studies 
and professional experience 

The information was obtained by applying a questionnaire to the teachers and another to their 
students. In the following we show an excerpt of them. 

Questionnaire for the students Questionnaires for teachers 
ON THE POSSESSION OF THE BOOK 
When did you enter school this year, did you get a 
math book? 
ABOUT KNOWING THE BOOK AND ITS 
PARTS 
Do you like your math book? Why? What is the 
most interesting thing about your book or about 
math? 
ON THE USE OF THE MATH BOOK 
Do you use the math book in your math classes? 
(never, sometimes, always) 
In your math classes do you use the book as a 
whole class, at the beginning, at the end or 
homework? 
Does someone in your house help you solve the 
problems in the math book? 
ON THE WORK SEQUENCE WITH THE BOOK 
When you are presented with a challenge from the 
book: What do you do first? Next? In the end? 
Do you discuss with your classmates different 
strategies to solve it? 
Do you agree to solve it? Do you participate in 
group discussions? 
Do you communicate what you do? Do you always 
understand what others are saying? 
 

The following questions are related to the free math textbook.  
How important is it to you in conducting math class? 
In relation to the didactic situations raised are: 
In relation to the didactic situations raised consider: 
When in class do you use it 
In relation to the mathematical concepts to build the didactic 
situations are: 
Do you use other books in your math class?  
What difficulties do you and the student face when using the 
new textbook: 
Didactic situations of the free textbook difficult to deal with. 
Do you consider that the textbook has defects? Which ones? 
Do you believe that parents can support students to carry out 
the activities in the textbook? Why? 
Are your students capable of producing their own ideas and 
procedures? YES NO Why? 
What is more important, the exercise or construction of the 
concepts? Why? 
Do students' ideas bring any new knowledge to you? Why? 
What do you consider before engaging your students in a new 
challenge? 
Have you solved all the challenges? Why? 
Are the challenges adjusted to the context and conditions of 
your children? But because? 
If they don't fit what do you do? Provide an example 
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Nuestra investigación, es un estudio de caso, de corte cualitativo, exploratoria y descriptive, dónde 
analizamos  el libro de texto gratuito de matemáticas y consideramos, entre otras variables: la 
estructura, las situaciones didácticas, los aprendizajes esperados, etc. Los participantes al inicio de la 
investigación fueron siete profesores de una Escuela Primaria ubicada en el municipio de Toluca: 
Dos de primer grado y uno de segundo a sexto, con sus estudiantes respectivamente. En el perfil de 
los profesores consideramos los siguientes rasgos: Género, edad, grado que atiende, formación 
profesional, institución que acredita sus estudios y la experiencia profesional 
La información la obtuvimos mediante la aplicación de un cuestionario a los profesores y otro a sus 
estudiantes. En lo siguiente mostramos un extracto de los mismos. 

Cuestionario para los alumnos Cuestionarios para los profesores 
SOBRE LA POSESIÓN DEL LIBRO  
¿Cuándo entraste a la escuela este año te 
entregaron un libro de matemáticas? 
SOBRE EL CONOCIMIENTO DEL 
LIBRO Y SUS PARTES 
¿Te gusta tu libro de matemáticas? ¿Por 
qué? ¿Qué es lo más interesante de tu libro 
o de matemáticas? 
SOBRE EL USO DEL LIBRO DE 
MATEMÁTICAS 
¿En tus clases de matemáticas utilizas el 
libro de matemáticas? (nunca, a veces, 
siempre) 
¿En tus clases de matemáticas utilizas el 
libro toda la clase, al principio, al final o 
tarea? 
¿Te ayuda alguien en tu casa a resolver los 
problemas del libro de matemáticas? 
SOBRE LA SECUENCIA DE TRABAJO 
CON EL LIBRO 
Cuando te presenta un desafío del libro 
¿Qué haces primero?, ¿después? ¿Al final? 
¿Comentas con los compañeros distintas 
estrategias para resolverlo? 
¿Se ponen de acuerdo para resolverlo? 
¿Participas en las discusiones grupales? 
¿Comunicas lo que haces? ¿Comprendes 
siempre lo que los demás exponen? 

Las siguientes preguntas están relacionadas con el libro de texto 
gratuito de matemáticas.  
¿Qué tan importante es para Usted en la conducción de la clase de 
matemáticas? 
En relación a las situaciones didácticas planteadas son: 
En relación a las situaciones didácticas planteadas considera: 
En qué momentos de la clase lo utiliza: 
5. En relación a los conceptos matemáticos a construir las situaciones 
didácticas son: 
¿Utiliza otros libros en su clase de matemáticas?¿Qué dificultades 
enfrenta Usted y el alumno al utilizar el nuevo libro de texto: 
Situaciones didácticas del libro de texto gratuito difíciles de abordar.  
• ¿Consideras que el libro de texto tiene defectos?  
• ¿Cree que los padres de familia pueden apoyar a los alumnos a 

realizar las actividades del libro de texto? ¿Por qué? 
¿Tus alumnos son capaces de producir ideas y procedimientos 
propios? ¿Por qué? 
¿Qué es más importante, la ejercitación o construcción de los 
conceptos? ¿Por qué? 
¿Las ideas de los estudiantes aportan algún conocimiento nuevo para 
ti?¿Por qué? 
¿Qué consideras antes de involucrar a tus estudiantes en un nuevo 
desafío? 
¿Haz resuelto todos los desafíos?¿Por qué? 
¿Los desafíos se ajustan al contexto y condiciones de tus niños?¿Por 
qué? 
Si no se ajustan ¿Qué haces? Proporciona un ejemplo 
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This poster session describes the results of a ranking activity from a three-year professional 
development (PD) program for middle level mathematics teachers. Not surprisingly, teachers in their 
first year of the PD program valued observing other teachers use questioning techniques with 
students and classroom observations more than any other of the seminar style activities.  Some subtle 
shifts such as planning with other teachers and activities involving sorting student work were valued 
higher for year three teachers rather than year one and year two teachers. The results are consistent 
with the types of activities teachers desire in PD programs (Matherson & Windle, 2017). 

The conceptual basis for the three-year professional development program involved two core 
components.  The first component involves knowledge of content and students (Ball, Thames, & 
Phelps, 2008). The focus of the PD is exploring diverse student approaches to solving middle grades 
mathematics problems and serves the dual purpose of increasing middle school teachers’ content 
knowledge and their understanding of students’ thinking within specific mathematics content areas 
and topics. The second component of the professional development is examination of potential 
learning trajectories with the goal of planning and predicting student responses and questions that 
will promote productive mathematical discourse (Sztajn, Confrey, Wilson, & Edgington, 2012). 

This study answers the following research questions: 
1. What activities in professional development specifically focused on middle school 

mathematics do teachers value the most? 
2. Are there shifts in what teachers value from year one participation to year three participation? 

Data sources were part of a survey that was given to teachers at the end of each year of the three-
year professional development program. The structure of the program involved three days of seminar 
style sessions in which teachers viewed videos of students solving problems, sorting student work, 
readings, discussions, planning problems to pose, and videos of teachers posing problems. Three of 
the four classroom embedded sessions involved sorting student work and then watching the host 
teacher orchestrate the sharing and questioning students. The fourth classroom embedded day 
involved planning problems and interviewing individual students. 

Fifty-two teachers were asked to rank 10 professional development activities from 1 (most valuable) 
to 10 (least valuable). The 10 activities are:  watching videos of students solving problems, predicting 
student solution strategies, observing in classrooms, interviewing individual students, sorting student 
work, planning with other teachers, learning about problem types, videos of classroom instruction, 
questioning techniques, and readings. The highest ranked activities of year one and year two teachers 
were questioning techniques and classroom observations. However, year 3 teachers ranked predicting 
student solution strategies and planning with other teachers highest, suggesting shifts in priorities 
over the three years of professional development. 

References  
Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal 

of teacher education, 59(5), 389-408. 
Matherson, L., & Windle, T. M. (2017). What do teachers want from their professional development? Four 

emerging themes. Delta Kappa Gamma Bulletin, 83(3), 28. 



What matters to middle school mathematics teachers: results from a three-year professional development program 

	 2147	

Sztajn, P., Confrey, J., Wilson, P. H., & Edgington, C. (2012). Learning trajectory based instruction: Toward a 
theory of teaching. Educational Researcher, 41(5), 147-156. 

 



Teaching and Classroom Practice 

In: Sacristán, A.I., Cortés-Zavala, J.C. & Ruiz-Arias, P.M. (Eds.). (2020). Mathematics Education Across Cultures: 
Proceedings of the 42nd Meeting of the North American Chapter of the International Group for the Psychology of 
Mathematics Education, Mexico. Cinvestav / AMIUTEM / PME-NA. https:/doi.org/10.51272/pmena.42.2020 

2148	

TRANSLANGUAGING MOVES IN ELEMENTARY MATHEMATICS CLASSROOM 
NUMBER TALKS: UNDERSTANDING LINGUISTIC REPERTOIRES 

Luz A. Maldonado Rodríguez 
Texas State University  

l.maldonado@txstate.edu 

Gladys Krause 
William and Mary 
ghkrause@wm.edu 

Melissa Adams-Corral 
The Ohio State University 

adams.2153@osu.edu 

Keywords: Computational Thinking; Instructional Activities and Practices; Classroom Discourse 

Mathematics education research advocates for practices that celebrate all students’ mathematical 
reasoning and ways of knowing (Turner & Drake, 2016). For multilingual teachers, translanguaging 
theory opens up how mathematical knowledge is shared and understood in multilingual mathematics 
classrooms. Translanguaging, a dynamic view of language acquisition, posits that instead of viewing 
multilinguals as having separate language registers, we instead view their access to multiple 
linguistic repertoires in specific contexts (García & Kleifgen, 2010). Number Talks are a structured 
series of computation problems selected and sequenced and presented to elementary students in order 
to build mental computation and relational thinking (Bray & Maldonado, 2018; Parrish, 2010; 
Humphreys & Parker, 2015).  This study investigated the translanguaging moves that revealed the 
mathematical thinking of multilingual elementary students while engaging in number talks. 

We conceptualize a translanguaging stance in the mathematics classroom as the deliberate choice by 
teachers to create a space in which children’s mathematical thinking and language practices are 
positioned as powerful resources during mathematics instruction (García, Ibarra Johnson & Seltzer, 
2017). Further, we posit that Number Talks are a beneficial activity for mathematics instruction in 
multilingual contexts due to the open-ended nature of the activity. Students may share their thinking, 
unencumbered by language separation requests, as they share their mental computation, all while the 
teacher facilitates a discussion of ongoing analysis of the mathematical relationships that are revealed 
in students’ strategies (Bray & Maldonado, 2018). 

Six number talks that occurred in a 3rd grade two-way dual language classroom at a Southwest 
school were analyzed for this study. Of 23 students, 22 identified as Latinx (with families from 
Mexico, El Salvador, Honduras and Puerto Rico), and one student identified as both Black and 
White. Number Talks were video recorded and transcribed, and focused on multidigit subtraction, 
multiplication and division, and unit fraction multiplication. We used multimodal analysis (Jewitt, 
2009) because it is particularly helpful to identify how bilingual learners use semiotic resources other 
than spoken language to participate (Domínguez, 2005). 

Two themes emerged from analysis of the Number Talks: translanguaging teacher moves to 
facilitate the mathematical flow of ideas, and ongoing community mathematical knowledge building 
moves. Translanguaging teacher moves emerged at various points in the Number Talk, both to invite 
students into conversation, to scribe students’ oral strategies, and to ask for further reflection and 
discussion. Community mathematical knowledge building occurred between students, and often 
began with a mathematical question or puzzlement. Our study highlights the need for opening up the 
ways in which multilingual students draw upon their linguistic repertoires to build community and 
individual mathematical knowledge. 
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In my 2005 doctoral thesis, I addressed the question of what is meant by individuals’ growing 
mathematical understanding within a particular bilingual situation wherein those individuals use 
words with no direct or precise translation between English, a dominant Western language, and 
Tongan, an indigenous Pacific vernacular. As a result of that study, a defined number of structural 
categories of “language switching” were then identified which in turn provided a useful way of 
describing the pattern in which the studied bilingual individuals alternated between the two aforesaid 
languages. Since then, one remaining challenge is how exactly this type of languaging can be 
formalized and practiced. 

This study employs the socio-linguistic theory of “translanguaging” as an alternative framework for 
analysing bilingual teachers’ language acts and as a new lens that allows me as researcher to re-
examine and deconstruct my earlier categorisations and findings about the role of the two aforesaid 
languages in bilingual individuals’ mathematical discussions and teaching. This alternative view of 
“bilingualism” recognizes that bilingual individuals may have only one language system, not two, 
and that effective instruction would involve finding ways to help these individuals draw on all their 
linguistic resources, their full repertoire, when learning academic content in a new language. 

This study also employs and thus continues to demonstrate the power of Pirie and Kieren’s Theory 
(Pirie & Kieren, 1994), which, along with its associated diagrammatical model, were presented and 
discussed previously at a number of PME meetings. Of particular interest and a focus in this new 
study is how translanguaging as a process, which is said to be accessible through a bilingual’s prior 
knowledge, may directly be related to Pirie-Kieren’s innermost Primitive Knowing layer – the 
starting point or “base knowledge” for the growth of mathematical understanding. This is an 
important link in using translanguaging as an analytical lens in this study as well as in re-examining 
the results of my earlier research work. 

Video recordings of bilingual mathematics teachers in two high schools in Tonga, which is a small 
island country in the South Pacific, were made in 2019. Several episodes of these bilingual teachers’ 
classroom language use are included in this poster presentation to illustrate the results and findings of 
the study. The preliminary findings not only corroborate many aspects of my earlier research work 
but also offer a different perspective. For while the new study supports the view that translanguaging 
is a normal yet personal practice in this type of bilingual classrooms, it also recognizes that effective 
instruction involves identifying clues that can help students draw not only on their entire linguistic 
resources and repertoire, but also on their primitive knowing.  

However, there appears to be no one-size-fits-all remedy to translanguaging. It varies among 
bilingual individuals in how it is deployed to facilitate learning or mathematical understanding. It 
also puts a damper on my desire to continue searching for an effective systematic pedagogical 
approach toward using two languages in a bilingual classroom environment. This new realization 
comes from viewing the language system that underlies what bilingual individuals actually speak as 
personal and unique, even when there is a commonly shared cultural identity (Otheguy, Garcia, and 
Reid, 2015), as is the case in Tonga. If bilingual individuals, like Tongans, are allowed the flexibility 
of translanguaging and thus access to mathematical terms and images in either language, such a 
dynamical practice would allow bilingual teachers and students alike to creatively interact and co-
construct mathematical meanings (Manu, 2005). 
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Teachers’ efforts to orchestrate mathematics class discussions frequently result in the 
monopolization of the discussion by a few students (Webb et al., 2019). The purpose of this paper is 
to explore how a teacher learned to transform mathematics whole class discussions toward being 
more inclusive of multiple students. I report on a study where students’ perspectives informed a 
teacher-researcher collaboration to develop these inclusive alternatives in a third-grade Spanish 
immersion classroom. I ask: How did a teacher make sense of students’ perspectives on mathematics 
class discussions to develop alternative ways to socialize ideas? I argue that developing inclusive 
ways to connect and expand children’s ideas involves learning about how students navigate class 
discussions and challenging unquestioned teaching practices. 

Methodology 
I followed a participatory research approach (Fals-Borda, 1987), where I collaborated with the 

teacher to make sense of students’ perspectives on mathematics class discussions, and to develop 
inclusive ways to socialize students’ mathematical ideas. Data sources included audio-recordings of 
focus groups with students, video-recordings of mathematics lessons, and audio-recordings of 
interviews and collaborative data analysis sessions with the teacher. I used a social semiotics 
analytical framework, which acknowledges that students’ multiple ways of developing and 
contributing ideas is part of the multimodal nature of mathematical activity (O'Halloran, 2015). The 
teacher and I collaborated analyzing data to interpret relationships between the students’ and the 
teacher’s perspectives. These interpretations informed how we co-developed teaching strategies to 
transform class discussions. Interpretations also informed how the teacher flexibly and responsively 
approached students’ interactions in her class. 

Summary of Findings 
Initially, the teacher considered her role in mathematics class discussions to involve distributing 

uniformly student talking time. In contrast, students valued opportunities to influence others’ 
thinking, and they experienced mathematics class discussions as overcompetitive. For students, 
influencing others’ thinking involved more than contributing ideas through spoken utterances. 

The teacher flexibly and responsively drew on two teaching strategies to promote inclusive ways to 
socialize mathematical ideas. The group ambassador’s strategy offered opportunities to develop 
initial ideas in a small group and then influence the work of a different group. Ideas circulated both 
within and across groups, thus serving one purpose typically reserved to class discussions. In the 
spotlighting gestures strategy, whenever the teacher noticed gestures that communicated relevant 
aspects of a mathematical idea, she directed the class attention to such gestures. Students observed 
the gestures, and adapted and incorporated them in their own mathematical activity. Spotlighting 
gestures helped children communicate ideas and make sense of others’ ideas without the linguistic 
demands that class discussions frequently impose. 
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The research program called Learning Through Activity (LTA) had its origins in Simon (1995). 
This research program has the objective of creating an integrated theory of conceptual learning, and 
the design of instructional mathematical activities through the use of Hypothetical Learning 
Trajectories (HLTs). Thus, this HLTs play a crucial role in the LTA program. This theoretical 
framework implements the constructivist theory of education, developed by Piaget (1970), as well as 
its applications in mathematics pedagogy by von Glasersfeld (1995). 

In the last decades, the community of mathematics educators has become very interested in 
continuing to expand this theoretical framework, in an effort to incorporate social, cultural and 
psychological theories in the teaching-learning processes involved in a classroom context.  

During this years, according to Stylianides & Stylianides (2009, 2018), research about teaching 
through this kind of activities has shown very promising results in the basic levels of education, and 
this being the case, HLTs as part of a mathematical teaching cycle have become one of the main 
referents about how to design activities to guide students learning according to the constructivist 
theory of education, for example (Leikin & Dinur, 2003; Simon, Kara, Placa & Avitzur, 2018; 
Stylianides & Stylianides, 2018). However, although HLTs seem to be a very promising way to 
approach mathematics pedagogy, there has been little research about their implementation in the 
higher levels of mathematical education (Simon et al, 2018). 

In this Poster, we present a synthesis of a didactical proposal, based on the LTA program’s 
approach, that includes a main HLT with the goal of guiding the student towards a proof of the 
Heine-Borel theorem, and other auxiliary HLTs, that will provide the student with the necessary tools 
to prove the theorem. We do this with the intent to investigate the efficiency of the LTA framework 
in the higher levels of mathematical education. 

The proposed trajectories begin with the definition of open covers, and continue through some 
supporting theorems, such as the theorem that guarantees the compactness of closed subsets of 
compact sets, and the theorem that guarantees the compactness of any K-cell, before culminating in 
the proof of the Heine-Borel theorem, which states that any subset A, of the Euclidean space Rn, is 
compact if and only if A is closed and bounded. 

The study is addressed to university students beginning their studies in the topology of Rn in the 
Faculty of Sciences of the “Universidad Nacional Autónoma de México” (UNAM), the most 
important public University of México. We based the mathematical part in Rudin (1986), and other 
classical texts such as Bartle (2011). 

Lastly, this poster will also include a synthesis of a metric based on Toulmin’s argumentative model 
that will be used to evaluate the knowledge acquired by the students through the learning trajectories. 
In the last years, this model has been used by several researchers in mathematical education to 
analyze non formal arguments, for example (Pedemonte, 2007; Simpson, 2015; Zazkis, Weber & 
Mejia, 2016; Herrera, Rivera & Aguirre, 2019). 
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Overview and Research Question 
Research on culturally responsive pedagogy (CRP) in mathematics education and teacher education 

has focused on either preparing new teachers for diverse classrooms (e.g., Aguirre et al., 2012; 
Ukpokodu, 2011) or on taking a critical stance toward disrupting dominant/oppressive paradigms in 
mathematics classrooms (e.g., Gutiérrez, 2017; Willey & Drake, 2013). The tendency has been to 
focus on developing the CRP of prospective/practicing teachers (PTs) and/or the mathematics 
curriculum, rather than that of mathematics teacher educators (MTEs).  

Our research responds to Averill et al.’s (2009) challenge to “critically reflect on [our] own 
culturally responsive practices, ideally in discussion with other practitioners, teacher educators, and 
students” (p. 181). We present a collaborative self-study of two mathematics teacher educators 
(MTEs) developing our own CRP. We address the question, “What do MTEs learn from attempts to 
grow and reflect on their own CRP?" In this presentation, we share our newly developed MTE 
Framework for Growing CRP. To date, no specific tool has been proposed for supporting and 
guiding the professional growth of culturally responsive teacher educators. 

Conceptual and Methodological Framework 
Our research takes a layered approach to collaborative self-study (e.g., Hamilton & Pinnegar, 2013; 

Hug & Möller, 2005) such that our individual self-studies in our respective institutions converge to a 
second layer of collaboration through conversations on how we enact our developing CRP. Our 
framework includes four key reflective questions, which we constructed from careful review of a few 
sources (see, for example, Aguirre & Zavala, 2013; Lingard & Keddie, 2013):  (1) How do my 
pedagogical practices draw on my students’ mathematical discourse and funds of knowledge? (2) 
How am I addressing concerns for balance between deep and rigorous mathematical knowledge with 
issues of culture, equity, social justice and language diversity? (3) What struggles and resistances do 
I experience as I attempt to disrupt dominant forms of pedagogy that my students express more 
comfort with? (4) How is my own identity and experiences of being a teacher interacting/integrating 
with key principles of what it means to be culturally responsive? In the framework, each key question 
is further clarified by sub-questions.  

Data Collection and Significance of Study 
Our collaborative self-study model includes individual journaling on the reflective questions of our 

self-study framework, and monthly meetings with each other for the collaborative layer. Data 
collection is ongoing with an aim of continually refining our framework for growing MTE CRP. In 
fact, the processes of applying, refining, and revising the framework itself help work toward the goal 
of growing as culturally responsive pedagogues. This poster brings to light ways that MTE 
collaborative self-reflection can support efforts to grow one’s own CRP practice— in collaboration 
with other MTEs and also with one’s students (PTs), making the framework available for use by 
other teacher educators who wish to reflect on their own CRP. 
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Number Talks (NTs) are instructional routines that offer students a participation structure for 
students to use mental mathematics to solve computational problems. Responding to a call for 
understanding ways teaching practices could be ambitious and equitable (Jackson & Cobb, 2010; 
Kazemi, Franke, & Lampert, 2009; Lampert et al., 2013), we investigate the structure of the routines 
and components of NTs as enacted by beginning teachers (BTs).  

We analyzed the 21 videos of NTs by creating transcripts of the lessons. We then drew on Parrish’s 
(2014) and Parker and Humphrey’s (2018) descriptions of NTs to identify phases in NTs. We 
identified a structure of NTs: introducing, collecting, idea sharing, and closing phases. This structure 
was consistent across the data set. We then drew on Cazden’s (2001) concept regarding the initiate-
respond-evaluate/feedback (IRE/F) pattern that is prevalent in mathematics classrooms (Lawrence & 
Crespo, 2003) to parse transcripts initially coded as idea sharing into manageable units for analysis, 
called segments. We then characterized each of the segments by their function (e.g., sharing 
strategies, comparing ideas). We looked for patterns across these characterizations. We analyzed 
segments by attending to patterns of who was talking within each segment type as well as overall 
patterns of individual’s talk throughout the duration of the NT. We then contrasted segments that 
contain a mathematical error with those that do not.  

Our analyses suggest two findings. First, BTs followed a routinized structure across this set of NTs. 
Within that structure, we identified important variation within the idea sharing phase that have 
implications for ambitious and equitable teaching. Second, segments coded as strategy plus, teacher 
strategy, and comparing created more opportunities (as compared to segments coded as strategy) for 
multiple students to engage with mathematical ideas. Further, in these three segment types, students 
engaged in a variety of ways. In this poster, we focus on strategy plus segments to illustrate the 
potential for NTs to be both ambitious and equitable. 

The recognizable structure of NTs across our dataset is notable. We see NTs as a type of 
transportable container through which BTs can develop an ambitious and equitable practice. NTs are 
transportable in the sense that their recognizable and reproduceable structure offer supports for BTs 
to engage in complex ambitious and equitable instruction. Though much current literature focuses on 
structures and routines to implement NTs, our analyses indicates that the structure itself does not 
inherently create ambitious and/or equitable NTs. We identified the idea sharing phase as a critical 
point for further development and investigation. It is here where we found distinctions between 
ambitious and/or equitable NTs related to the types of segments in which BTs engaged students. 
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This research was conducted by a fourth-grade teacher and doctoral student in mathematics 
education in conjunction with their advisor, a professor of mathematics education.  

A growing body of research in mathematics education has highlighted the importance of 
recognizing mathematics learning as a socially mediated activity.  Indeed, mathematics education 
researchers have increasingly focused on how classroom dialogue can facilitate students’ creation of 
shared understandings.  Aligned with this theoretical heritage, we recognize that human life and 
learning are inherently social and rooted in communication.  We also recognize that student discourse 
is connected to student cognition and thus learning. Accordingly, this study relied on socio-cultural 
discourse analysis (Hennesy, et al., 2016, Mercer, 2010) both as a theoretical and a methodological 
tool to examine the nature of dialogue in one classroom in the context of students’ collaborative work 
on one visual task. We ask, given the centrality of task selection to fostering discourse, how the use 
of a visual task, as an instructional tool, might affect students’ peer-to-peer discourse practices? 

Methods 
The goal of this study was to identify specific discourse practices students utilized while 

collaborating on a visual mathematics task.  A focus group of 4, fourth-grade students’ interactions 
on one task was used as a data source for analysis. 

The participants worked on a task (Boaler, 2017, p. 32) that asked them to work together to find 
patterns.  Students were each nine to ten-years-old and represented a range of academic abilities.  
The group discussion was videotaped and transcribed.  

Transcriptions were coded using Hennessy et al.’s Scheme for Educational Dialogue Analysis 
(SEDA) (Hennessy, et al., 2016). SEDA offers a scheme for analyzing discourse practices, 
specifically outlining different practices. 

Findings 
A total of 111 utterances were coded.  Students most frequently conjectured and made their 

reasoning explicit by utilizing visual models presented in the task.  Additionally, “Explicit reasoning” 
and “build on ideas of others” accounted for the majority of students’ communicative acts during the 
discussions. 

Group members exhibited different patterns of practice and adopted different roles. Despite 
differences in discourse moves, the majority of communicative acts consisted of students’ 
conjectures and ensuing explanations using the task’s visual models.  Learners’ comments frequently 
relied on the visuals with statements such as, “Look, (points to paper), there are triangles all over the 
place.”  Group members relied on the visual task as they considered proposed ideas, built on them, 
and utilized them in their own work. 
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In our on-going five-year naturalistic research, we analyze how math majors and future math 
teachers learn to use programming for mathematics investigation. Using the instrumental approach 
(Trouche, 2004) as a framework, we present some exploratory results on how the instrumental 
orchestration of an instructor (Bill) supports the activity of his students. 

Rabardel (1995) describes how people, through their instrumental geneses, appropriate an artifact 
and turn into an instrument. Trouche (2004), proposed the concept of instrumental orchestration to 
refer to the teacher’s organization: the arrangement and didactic use of artifacts in the class to steer 
the student’s instrumental geneses. As an extension to this concept, Drijvers et al. (2010) consider 
three instrumental orchestration’s components: (i) the didactical configuration – “an arrangement of 
artifacts in the environment; (ii) the exploitation mode – “the way the teacher decides to exploit a 
didactical configuration for the benefit of his or her didactical intentions”; and (iii) the didactical 
performance – which “involves the ad hoc decisions taken while teaching” (Drijvers et al., 2010; 
p. 215). Bill’s data includes the course syllabus and the assignment guidelines; assessment grading 
rubric and 6 instructor interviews. 

Bill’s didactical configuration involved mathematical and social considerations and a web of ideas 
and actions that provide a creative structure for drawing connections between programming and 
mathematics (Buteau et al., 2020). The choice of programming technology and the general guidelines 
of their use was established in 2000 by the mathematics department at his university. Bill follows this 
didactical configuration. 

The exploitation mode relates to his aims and the didactical design of the assignments, which 
involve modeling, problem-solving, simulations, and explorations; and where “mathematics is for 
programming”, and “programming is used to do and understand mathematics”. Bill provides his 
students with guidelines for each assignment including, in written form: worksheets guiding them 
through several steps or parts. For Bill, the mathematical content should be interesting for his 
students, related to computing and real-life phenomena. Bill’s didactical performance aims at 
supporting and empowering his students while also taking into account and promoting the affective 
aspects (e.g. motivation, as well as creativity). He supports students by guiding their activity through 
individual interactions (in the lab mainly) or/and through collective interventions and discussions in 
lectures (Sacristán et al., 2020). In our on-going work, we analyze how the instrumental orchestration 
proposed by Bill, in particular the artifacts used in class, the design of the assignments and how he 
interacted with his students, support the development of his students’ instrumental geneses of 
programming for mathematics. In the poster, we will illustrate the above in the case of a particular 
student in Bill’s class. 
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This study investigates the effects of a technology methods course containing a unique collaborative 
design experience on prospective elementary and secondary mathematics teachers’ technological 
beliefs, computer algebra system (CAS) beliefs, and technological pedagogical content knowledge 
(TPACK). Overall gain scores on all three instruments were statistically significant. Moreover, 
gender and level (elementary vs. secondary) were statistically significant predictors of TPACK gain 
scores. However, the influence of level on TPACK gain score was different for female prospective 
teachers (PTs) than male PTs. Even in the case of low gain scores PTs displayed beliefs that were 
aligned with productive uses of technology in the classroom. PTs showed greater gains on knowledge 
subdomains associated with technological knowledge than on technology free subdomains (e.g., 
pedagogical content knowledge). 

Keywords: technology, teacher beliefs, teacher knowledge 

Technology plays an increasingly pervasive role in our everyday lives and that influence extends 
into school classrooms. Yet research suggests that technology is often used to support current 
educational practices instead of as a catalyst for change (e.g., Cuban, Kirkpatrick, & Peck, 2001). 
The mathematics education community has created an extensive body of research that has recognized 
the important role that both knowledge (e.g., Meagher, Özgün-Koca, & Edwards, 2011) and beliefs 
(e.g., Kim et al., 2013) play in shaping teachers’ decisions around the use of technology in school 
classrooms. One particularly popular conceptual framework for thinking about the knowledge that 
teachers need to possess in these classrooms is technological pedagogical content knowledge 
(TPACK) (Mishra & Koehler, 2006). A variety of approaches have been used to promote TPACK 
among practicing and prospective teachers. One of the more popular approaches involves 
collaboration in the design of technology-infused lessons (e.g., Koehler & Mishra, 2005). This study 
examines the effect of a technology methods course containing a unique collaborative design 
environment on prospective elementary teachers’ (PSETs’) and prospective secondary mathematics 
teachers’ (PSTs’) beliefs about technology in general, beliefs about computer algebra systems (CAS), 
and their TPACK knowledge.  

Background 
TPACK is one of the most frequently used frameworks to conceptualize and research the 

knowledge that teachers who teach successfully with technology need to possess. A variety of 
interventions have been found to positively influence the TPACK of prospective teachers such as 
technology rich field experiences (Meagher, Özgün-Koca, & Edwards, 2011), collaborative design 
experiences (e.g., Agyei & Voogt, 2012), and engaging students in solving mathematics problems 
with technology (Meagher et al.). Wang, Schmidt-Crawford, and Yin (2018) reviewed 88 empirical 
studies and found that modeling of the integration of technological, pedagogical, and content 
knowledge in university courses and by practicing teachers was an effective way of increasing the 
TPACK of prospective teachers (PTs). Their synthesis also suggests that gaining experience teaching 
with technology, engaging in peer mentoring, and learning technological knowledge are important in 
developing PTs’ integrated knowledge domains such as technological content knowledge (TCK).  
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An extensive collection of research has highlighted the connections between beliefs and teaching 
practices (e.g, Kim et al., 2013) and numerous studies have investigated teachers’ beliefs with regard 
to technology. One way to conceptualize teacher beliefs regarding technology is what I refer to as the 
role of technology in mathematics classrooms which consists of a continuum with doing mathematics 
on one end and learning mathematics on the other end. Beliefs aligned with doing mathematics 
include the mastery principle (Fleener, 1995), “old school” (Erens & Eichler, 2015), and the 
restriction of CAS black box techniques (Doerr & Zangor, 2000). Individuals professing a learning 
mathematics position do not believe that students must learn fundamental ideas before technology; 
technology can be used as a tool to learn mathematical ideas (Lagrange, 1999). Proponents of a doing 
mathematics position argue that students should not use technology until they have learned the 
concepts or procedures that the technology can perform. An assumption hidden within this position, 
which is in contrast to the learning mathematics position is that students learn mathematics solely 
through paper-and-pencil work, not with technology. A belief that is aligned with the doing 
mathematics position is that even if technology is only allowed until students have acquired the 
paper-and-pencil skills they can still lose proficiency with these skills if technology is used too 
frequently, often described as technology becoming a “crutch” (e.g., Schmidt, 1999).  

Beliefs are often connected to other personal characteristics. Tharp, Fitzsimmons, and Ayers (1997) 
found that practicing secondary teachers used technology more extensively in the classroom if they 
possessed less rule-based perspectives of mathematics. Teo and colleagues (2008) found that 
constructivist teaching beliefs of PTs were positively correlated with both constructivist and 
traditional use of technology while traditional teaching beliefs were negatively correlated with a 
constructivist use of technology. There is also an extensive body of research highlighting connections 
between gender and technology (e.g., Sanders, 2006). 

Previous research has uncovered connections between TPACK and gender. For example, Bulut and 
Işiksal-Bostan (2019) found that male PSETs had significantly higher scores than female PSETs in 
TPK, TK, and TPACK. The relationship between TPACK and beliefs is mixed. For instance, Niess 
(2013) found that teachers’ TPACK levels were occasionally connected to their beliefs. Similarly, 
Smith, Kim, and Mcintyre (2016) investigated the TPACK and beliefs held by four prospective 
middle grades teachers. Two of the teachers appeared to show relationships between beliefs and 
TPACK, where more student-centered views of mathematics teaching and learning were aligned with 
higher levels of TPACK for one teacher. More teacher-centered views of mathematics teaching and 
learning were aligned with lower levels of TPACK for another teacher. The results for the other two 
teachers were less clear.  

This study builds on this extensive collection of research to investigate the effects of a technology 
methods course involving both PSETs and PSTs on their beliefs and TPACK. The technology 
methods course at the center of this study contains components that have been found to have 
significant impacts on the TPACK of PTs (Wang et al., 2018) as well as a previously uninvestigated 
collaborative design environment. This study was designed to answer three research questions. 

1. In what ways does a technology methods course involving a collaborative design experience 
influence PTs’ technological beliefs and CAS beliefs? 

2. In what ways does a technology methods course involving a collaborative design experience 
influence PTs’ TPACK and related knowledge subdomains? 

3. Does a technology methods course involving a collaborative design experience differentially 
impact PTs’ beliefs or TPACK knowledge depending on the gender or level (secondary vs. 
elementary) of participants? 
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Methodology 
Frameworks 

The TPACK framework (Mishra & Koehler, 2006) was used to understand the knowledge gained 
by PTs as a result of the activities comprising the technology methods course. This framework 
highlights the separate and interconnected nature of three different knowledge areas. By separate I 
mean that knowledge exists that is solely, technological, pedagogical, and content in nature that 
teachers must possess in using technology successfully in the classroom. For instance, purely 
technological knowledge comes into play when students “break” a pre-constructed technological 
document and the teacher must deploy his/her/their technological knowledge to diagnose and repair 
the problem. By integrated I mean that in addition to TPACK which involves the complex interplay 
of technological, pedagogical, and content knowledge there exist three other integrated knowledge 
types: pedagogical content knowledge (PCK); technological content knowledge (TCK); and 
technological pedagogical knowledge (TPK).  

The learning by design framework (Koehler & Mishra, 2005) guided the construction of 
collaborative design experiences that PTs experienced in the technology methods course as the center 
of this study. The framework involves learning-by-doing and extended design work on authentic 
problems. Specifically, learning-by-doing involves two components: construction of lessons 
involving technology and the teaching of those lessons in middle school and high school classrooms. 
Authentic problems are those that teachers working in schools frequently encounter such as how to 
incorporate technology into a textbook lesson that does not currently contain technology or how to 
develop technology-rich activities that help students to develop conceptual understanding of 
important mathematical ideas. The course instructor often acts as a facilitator or problem-solving 
expert. 
Context 

The study took place in a large university in the midwestern U.S. that is known for its teacher 
preparation program. In the past, the technology methods course taught in the mathematics 
department, only enrolled PSTs, but the development of an Elementary Education Mathematics 
Major with a certification across grades K-8 necessitated the creation of another course focusing on 
technology use at the middle school level (grades 6-8) for these individuals. Since the development 
of the middle school mathematics technology course both courses have been taught at the same time 
and place and by the same instructor. The class met for two 100-minute sessions a week for 12 
weeks. The course where the data for this study were collected was taught during the Spring 2019 
semester. A total of five prospective elementary teachers (PSETs) and four PSTs were enrolled in the 
jointly-held course and chose to participate in the study. 

PTs enrolled in both classes developed lesson plans and student activity sheets. The lesson plan 
involved components such as lesson objectives, places where students might struggle, how student 
struggles would be addressed, answers to lesson questions, and estimated time required for students 
to complete various lesson components. The student activity sheet involved a warm-up (if the PT 
chose to include one), activities and questions students were to complete, and oftentimes an exit 
ticket. The focus of the lesson was on conceptual understanding, the use of technology to help 
students learn the objectives of the lesson, the use of one or more high cognitive demand tasks (Stein 
& Smith, 1998), and the inclusion of at least one class discussion. All lessons taught in area 
classrooms involved middle school mathematics. The use of teaching experience with lessons 
involving technology has been found to positively affect prospective teachers’ TPACK knowledge 
(Wang et al., 2018).  

The class involved two different types of group lesson planning structures: brainstorming and 
refinement. Brainstorming involved the development of general ideas about a lesson without the 
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creation of specific lesson elements. Refinement involved the presentation and critique of a student 
activity sheet. Brainstorming occurred if the PT was struggling to develop a lesson plan and student 
activity sheet while refinement was used if the PT had already completed a lesson plan and student 
activity sheet. PTs engaged in the development of lesson plans and student activity sheets 
individually, as part of a large group consisting of the entire class, and working with the instructor of 
the course. All of the PTs wrote a paper detailing the planning, enactment, and reflection regarding 
their lesson.  

In addition to the presentations and brainstorming sessions, the PTs engaged in the following 
activities in the technology methods course: solving mathematics problems using technology; 
completing journal entries designed to make their beliefs regarding technology transparent to them; 
reading mathematics education articles involving technology and reacting to them; exploring the 
symbolic manipulation capabilities of CAS, the completion of a project involving the solution of an 
infinite class of optimization problems using graphical, tabular, and CAS capabilities; and 
considering how technology can be implemented in mathematics textbook lessons that do not 
currently use technology. Each PT created a lesson plan and student activity sheet which were either 
presented to the classroom for critique and refinement or began as brainstorming sessions for a total 
of nine lessons involving technology.  
Instruments 

A technology beliefs survey was administered to PTs on the first day of class and again on the last 
day of class. The beliefs survey was adapted from Schmidt (1999) in the following ways. First, the 
words calculator or calculators were replaced with technology. Second, items involving practicing 
teachers that referenced components of their work that were not applicable to prospective teachers 
(e.g., perspective of parents of their students) were removed. A frequently used TPACK 
questionnaire (Schmidt et al., 2009) consisting of 58 items measuring seven different knowledge 
domains was administered during the first day of class and again during the last day of class.  

This questionnaire contains items in four different content areas: mathematics; literacy; science; and 
social studies. In addition to measuring TPACK (five items), the questionnaire also measures 
technological knowledge (TK) (seven items), content knowledge (CK) (three items), pedagogical 
knowledge (PK) (seven items), pedagogical content knowledge (PCK) (one item), technological 
content knowledge (TCK) (one item), and technological pedagogical knowledge (TPK) (four items). 
This TPACK questionnaire was used with the group of PSETs as this was the population for which 
the instrument was developed.  

The questionnaire was adapted for PSTs (resulting in 44 items) by removing the CK, TCK, and 
PCK items related to literacy, science, and social studies and replacing them with similar items 
related to the students’ minor degrees (e.g., history). Given the work that the PTs completed with 
CAS described earlier, I also administered a CAS beliefs survey (Lavicza, 2010) on the first day and 
last day of class to determine whether their beliefs regarding this powerful technology had changed 
as a result of the activities in the technology methods course. This survey, consisting of 20 items, was 
adapted as the original was intended for faculty teaching mathematics at the university level. For 
instance, the word mathematicians in the item, CAS enables mathematicians to work on problems 
more efficiently, was replaced with students. The technology beliefs survey, CAS beliefs survey, and 
TPACK questionnaire consist of Likert scale items that range from strongly disagree to strongly 
agree. None of the PTs were enrolled in another course that involved the use of technology during 
the Spring 2019 semester, but all were taking either foundational education courses or courses 
involving pedagogical components. Thus, there is a potential that the gains seen on the instruments 
with regard to pedagogy could be a result of these other courses. Three out of four of the PSTs were 
enrolled in mathematics content courses during Spring 2019, but this was a modern algebra course 
that did not highlight the connections between its content and school mathematics.  
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Analysis 
I assigned a numerical score for each of the Likert scale items (strongly disagree – 1, disagree – 2, 

neutral – 3, agree – 4, strongly agree – 5). For each item of the technology belief survey and CAS 
beliefs survey, the differences between the first and last administration were calculated and the sum 
was found for each PT. Items that were negatively worded were reverse scored. The mean of the 
totals across the group of PSETs and the group of PSTs were found. All of the collected data were 
examined for trends. As there were different numbers of questions for the knowledge subdomains in 
the TPACK questionnaire, each PT’s difference was divided by the number of questions that 
contributed to that difference for reporting purposes. The mean of these values was reported for each 
PT as an average gain value that enables comparisons to be made across different knowledge 
subdomains. The assumptions for the statistical tests (e.g., normality) were met and an alpha level of 
.05 was used for all statistical tests. The paired samples t-test was used to test for statistical 
significance for gain scores on each of the three instruments. Effect sizes were found by converting a 
t-value into an r-value (Rosnow & Rosenthal, 2005). A factorial ANOVA test was run on the gain 
scores for technological beliefs, CAS beliefs, and the TPACK questionnaire with gender and level 
(elementary and secondary) as independent factors.  

Results 
Overall, PTs scored higher on the second administration (M = 130.11, SD = 12.424) than the first 

administration (M = 110.22, SD = 4.324) on the technological beliefs survey and this result was 
statistically significant, t(8) = –4.850, p = .001, r = .86. In the factorial analysis, the independent 
factors of gender and level as well as the interaction were statistically non-significant. The changes in 
technological beliefs for PSETs and PSTs are shown in Table 1. The beliefs score changes for PSTs 
were greater than the score changes for PSETs. Three questions were common across both groups in 
terms of the greatest change between administrations of the technological beliefs survey. The first of 
these involved the belief that technology can damage students’ paper-and-pencil skills and become a 
“crutch.”  A total of four out of nine of the PTs started out agreeing or strongly agreeing with this 
statement and shifted to disagreeing with this statement. The remaining five teachers either disagreed 
with the statement across both administrations of the survey or moved from disagree to strongly 
disagree. The second of these questions stated that students who use technology in high school 
mathematics classes learn mathematics better than those who do not use technology. Six out of nine 
of the PTs moved from disagree/neutral with regard to this statement to agreeing with it. The last 
statement involved prospective teachers’ lack of confidence to teach mathematics involving 
technology. Six out of nine PTs agreed with this statement at the start of the class, but by the end of 
class they all disagreed with the statement. 

Overall, PTs scored higher on the second administration (M = 69.89, SD = 8.42) than the first 
administration (M = 57.78, SD = 6.14) on the CAS beliefs survey and this result was statistically 
significant, t(8) = –3.210, p = .012, r = .75. In the factorial analysis, the independent factors of 
gender and level as well as the interaction were statistically non-significant. The changes in CAS 
beliefs for PSETs and PSTs are shown in Table 1. There were several low change scores in the table. 
For instance, Logan had no change on the technological belief survey, Liam had a CAS belief change 
of only two, and Madison had a change of -1 on the CAS belief survey. All of these PSETs possessed 
a number of initial beliefs that were aligned with an environment where technology is seen as a 
valuable tool to assist in the teaching of mathematics. For instance, Logan professed initial beliefs on 
19 out of the 39 technological beliefs questions that were aligned with practices presented in the 
class. Across all PTs, two questions had highest gains from first to last administration: CAS promotes 
students’ conceptual understanding; and CAS can be used to develop more engaging lessons.    
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Table 1: Changes in Beliefs for PSETs and PSTs 
Prospective Teachera Technological Belief Change CAS Belief Change 

 PSETs  
Liam 26 2 

Sophia 20 20 
Amelia 13 6 
Logan 0 15 

Madison 14 -1 
Mean 14.60 8.4 

 PSTs  
Noah 12 6 
Emma 40 23 
Olivia 35 33 
Mason 19 5 
Mean 26.50 16.8 

aAll names are pseudonyms. 
 

Overall, PTs scored higher on the second administration (M = 118.78, SD = 7.19) than the first 
administration (M = 102.44, SD = 12.78) of the TPACK questionnaire and this result was statistically 
significant, t(8) = –4.599, p = .002, r = .85. There was a significant main effect of gender on the 
TPACK gain score F (1, 5) = 14.12, p = .013, ,!-2.=.15. The main effect of level on the TPACK 
gain score was statistically significant F (1, 5) = 7.73, p = .039, ,!-2.=.08. Additionally, there was a 
statistically significant interaction between gender and group on TPACK gain score F (1, 5) = 
59.904, p = .001, ,!-2.=.67. In other words, the influence of level on TPACK gain scores is different 
for female PTs than male PTs. Specifically, male PSETs had higher TPACK gain scores (M = 18.5, 
SD = 3.54) than females PSETs (M = 9.67, SD = 2.08). Female PSTs had higher TPACK gain scores 
(M = 33.00, SD = 2.83) than male PSTs (M = 7.50, SD = 4.95).  

The knowledge gains by content subdomain for PSET and PST are shown in Table 2. For both 
groups the technology methods course appeared to have only a moderate influence on their content 
knowledge, technological knowledge, pedagogical knowledge, and pedagogical content knowledge. 
Both groups experienced the greatest knowledge gains in the TCK and TPACK areas. PSTs also 
experienced larger gains in the area of TPK.  

Amelia experienced a loss of four in the area of TPK on the questionnaire. This occurred because 
on three of the five statements she moved from strongly agree to agree resulting in a drop of negative 
three. On the fourth statement in this area she had no change from agree while on the last statement 
she moved downward from agree to unsure. Mason also had a sum for a content subdomain (TK) that 
was negative. On four of the seven questions comprising this area, he had no change from agree or 
strongly agree on the initial and final questionnaire. On the three other questions, he moved from 
agree or strongly agree to unsure. Noah also had a sum of negative one in the knowledge subdomain 
of TCK that included one question. On this question, he moved from strongly agree to agree. In sum, 
despite decreases in change scores for some of the PTs that resulted in overall decreases the final 
rating on the majority of these statements was still in the agree category.  
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Table 2: Changes in Knowledge for PSETs and PSTs 
Prospective 

Teacher 
TK CK PK PCK TCK TPK TPACK Total 

 PSETs 
Liam 1 0 4 1 2 2 6 16 

Sophia 0 1 3 0 2 3 3 12 
Amelia 4 0 2 0 2 -4 4 8 
Logan 1 1 6 0 0 5 8 21 

Madison 1 1 2 1 0 3 1 9 
Average Gain  0.2 0.2 0.49 0.2 1.20 0.36 0.88 13.20 

 PSTs 
Noah 2 0 1 0 -1 2 0 4 
Emma 7 1 12 2 1 5 7 35 
Olivia 9 3 3 1 2 6 7 31 
Mason -4 0 1 0 2 6 6 11 

Average Gain 0.61 0.33 0.61 0.75 1.00 1.19 1.00 20.25 

Discussion 
As a group, across all three instruments, PTs performed statistically significantly better on the 

second administration than the first administration. Thus, the collection of activities in the technology 
methods course appeared to positively influence PTs’ beliefs and their TPACK. In general, where 
PTs displayed smaller changes in beliefs, their initial beliefs were already aligned with environments 
where technology was seen as an important tool in learning mathematics thus they had less room to 
change. This suggests that simply experiencing activities involving the use of technology to learn 
mathematics as all of the PTs did in previous courses can promote positive beliefs involving 
technology.  

The PTs demonstrated less growth in CK, PK, and PCK as a result of the technology methods 
course than they did in the areas of TCK, TPK, and TPACK. This suggests that while topics 
regarding general pedagogical knowledge, content knowledge, and pedagogical content knowledge 
emerged during design work, teachers may not have perceived the work as occurring in these 
domains as the lessons were centered around the use of technology. That is, the PTs might have 
primarily seen the design work as involving technology. Indeed, on the technological belief survey 
one of the items of greatest change was their confidence in developing technologically based lessons. 
This result aligns with the work of Koehler and Mishra (2005) in which their collaborative learning 
environment resulted in greater connections among technology, pedagogy, and content. The 
differential gains on TK between PSETs and PSTs might have been a result of the particular lessons 
the groups developed. PSETs tended to create lessons involving technological applications that were 
already constructed while PSTs’ lessons required them to learn and deploy more technological 
knowledge.  

The PTs had limited work with CAS during the methods course as they used it to learn mathematics 
at the beginning of the course and solve optimization problems at the end of the course; none of the 
PTs created a lesson involving CAS. Nonetheless, they made statistically significant gains on this 
survey. This may have been due to a spillover effect involving the extensive design work in 
technology. Importantly, the technology methods course and its limited use of CAS resulted in a shift 
to envisioning the CAS as a tool to develop students’ conceptual understandings much like the 
teachers Lagrange (1999) investigated. This is an interesting finding as PTs did not specifically use 
CAS in activities focused on conceptual understanding. This finding suggests that the collaborative 
design experiences and their focus on conceptual understanding affected PTs’ beliefs in a different 
type of technology than where this work occurred. 
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As mentioned earlier, there were a few negative gain scores sprinkled throughout the results even 
though many of the PTs with these values were still agreeing with beliefs that were aligned with the 
use of technology to promote mathematics understandings and greater TPACK knowledge. These 
losses might have reflected a correcting of overly optimistic beliefs or knowledge as a result of deep 
engagements with technology during the collaborative design process.  

Despite previous findings with regard to gender and technology (Sanders, 2006) this study found no 
relationship between gender and technological beliefs or gender and CAS beliefs. However, gender, 
level, and the interaction between gender and level were significant predictors of TPACK gain 
scores. Female PSETs had lower initial scores than male PSETs on the TPACK questionnaire 
overall. Thus, male PSET gain scores might have been lower than females because there was less 
room to grow. Female PSTs had the lowest initial TPACK scores among all both groups, about 20 
points lower than female PSETs giving them more space to grow. PSETs had experienced more 
mathematics courses that incorporated technology and one more mathematics methods course than 
PSTs. These factors might have translated into higher initial TPACK scores. The higher TPACK 
scores among male students overall is similar to the findings of Bulut and Işiksal-Bostan (2019).  

In sum, these findings illustrate the effectiveness of a technology methods course on PTs’ beliefs 
and TPACK knowledge. The study is limited by its reliance on self-report data and the small sample 
size. In the future, I intend to examine other data (e.g., PT classroom enacted lessons involving 
technology) to move beyond self-report data in understanding the effect of the course on PTs’ 
TPACK. Moreover, the study focused on the effect of the technology methods course as a whole on 
PTs’ beliefs and knowledge and while the collaborative context was described in detail, the effects of 
this unique factor on PTs were not isolated. My future research intends to more carefully investigate 
the effects of this unique activity on PTs’ beliefs and knowledge. The omnipresence of technology in 
today’s classrooms necessitates that teachers be prepared to use it in ways that draw on its unique 
affordances and its potential to change mathematics instead of in ways that support traditional 
instruction (Cuban et al., 2001). 
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Computational activity is increasingly relevant in education and society, and researchers have 
investigated its role in students’ mathematical thinking and activity. More work is needed within 
mathematics education to explore ways in which computational activity might afford development of 
mathematical practices. In this paper, we specifically examine the generalizing activity of 
undergraduate students who solved combinatorial problems in the context of Python programming. 
We demonstrate instances of generalizing in terms of Ellis et al.’s (2017) framework, and we argue 
that some opportunities were facilitated and supported by the computational setting in which the 
students worked.  

Keywords: Cognition, Computational Thinking, Programming and Coding 

Introduction and Motivation 
Computation is an increasingly essential aspect of science and mathematics, and researchers and 

policy makers within STEM broadly (Blikstein, 2018; NGSS Lead States, 2013; Weintrop, Beheshti, 
Horn, Orton, Jona, Trouille, & Wilensky, 2016), and mathematics education especially (e.g., Benton, 
Saunders, Kalas, Hoyles, & Noss, 2018; Buteau & Muller, 2017; Cetin & Dubinsky, 2018; Hoyles & 
Noss, 2015; Feurzeig, Papert, & Lawler, 2011), are making the case for more attention to be paid to 
computing in the field. Central to current interest in computing are questions related to whether and 
how computing might strengthen students’ mathematical thinking and activity, including their 
engagement in mathematical practices. The question of whether such computing allows for transfer 
of content knowledge or practices is a source of debate, with some researchers making the case for 
and some against arguments that evidence of transfer exists (see Tedre & Denning (2016) for 
discussion). Acknowledging this debate, we investigate such questions with a qualitative exploration 
in which we demonstrate how computing may support students’ engagement with a mathematical 
practice – generalization.  

Our research question is: In what ways did a computational setting support undergraduate students’ 
generalizing activity on combinatorial tasks? We hope that by providing qualitative interview data, 
we can gain some insight into how students engage in generalization in a computational setting. We 
see the paper as serving both a specific and a broader purpose. First, the paper is meant to highlight 
specifically how students engage in the particular practice of generalization with the use of 
programming (within the domain of combinatorics). Our results thus shed light on generalization as a 
practice, and they also illuminate implications for generalization within combinatorics. More 
broadly, this paper exemplifies of how students can make connections to and engage in mathematical 
practices within a computational setting.  

Relevant Literature and Theoretical Perspectives  
Literature and Theoretical Perspectives on Computation 

In this paper we focus on machine-based computing, which we take to be the practice of developing 
and precisely articulating algorithms that may be run on a machine. We make two distinctions in this 
characterization. First, while computing can encompass many kinds of activity, we focus on activity 
that involves developing, articulating, and implementing algorithms. Second, while such algorithm 
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development could occur strictly by hand, we focus on activity that uses a machine. Further, we 
distinguish machine-based computing from engagement with technology more generally, which 
might include using computer algebra systems or dynamic geometry software – for us, machine-
based computing involves not just using software, but engaging in algorithm design and 
implementation in some capacity. In our study, the specific machine-based computing in which our 
students engaged was programming in Python. 

Mathematics education research has a history of using computers to enhance students’ mathematical 
reasoning, beginning with Papert’s (1980) introduction of Logo to help young children. Recently 
there seems to be an increasing amount of attention being paid to computation in education research, 
perhaps due in part to Wing’s (2006, 2008) re-popularization of the term computational thinking. We 
have seen considerable attention paid recently toward examining the role of computing in 
mathematics education (e.g., Benton, et al. 2018; Buteau, Gueudet, Muller, Mgombelo, & Sacristan, 
2019; Buteau & Muller, 2017; Cetin & Dubinsky, 2018; DeJarnette, 2019; Lockwood, DeJarnette, & 
Thomas, 2018; Lockwood & De Chenne, 2019).  

We acknowledge that there is some discussion about whether or not computing can be effective in 
helping students engage in other practices and skills (e.g., Tedre & Denning, 2016). However, in 
spite of such debates, we think it is still worth investigating the degree to which computational 
activity might in fact support students’ thinking and engagement in mathematical practices. Part of 
our reason for this is that we feel there are useful frameworks within mathematics education (such as 
Lobato’s view of actor-oriented transfer) that may bring fresh perspectives toward questions of the 
role of computing in mathematics education. We draw on recent work by Lockwood et al. (2019), 
who interviewed research mathematicians in academia about their use of computing in their work. 
While these mathematicians suggested many benefits of computing, they also “framed computing as 
allowing for some other important habits of mind or practices related to their work” (p. 9). While 
these mathematicians did not name the practice of generalizing specifically, we view our work as 
building on these findings by Lockwood et al. The mathematicians reported in Lockwood et al.’s 
study shared their own beliefs and experiences, and we wanted to explore and demonstrate some of 
their claims with student data, offering insights into how students’ engagement with computation can 
actually give opportunities for students to connect computing to the practice of generalizing. 
Literature and Theoretical Perspectives on Generalization 

Generalization is an essential aspect of mathematical thinking and learning, and there has been 
much work that has established the importance of generalization in mathematics education. Such 
work has included investigations into students’ generalizing within algebraic contexts (e.g., Amit & 
Neria, 2008; Ellis, 2007a, 2007b, Radford, 2008; Rivera & Becker, 2007, 2008), and there has also 
been exploration into generalizing activity among undergraduates in areas like calculus, linear 
algebra, and combinatorics (e.g., Dubinsky, 1991; Jones & Dorko, 2015; Kabael, 2011; Lockwood, 
2011; Lockwood & Reed, 2018). Researchers have also proposed theories about the nature of 
generalization, providing some categories and distinctions of generalizing activity (e.g., Ellis, 2007a; 
Harel & Tall, 1989; Harel, 2008). Together these studies provide rich insight into the nature of 
generalization in many settings. We contribute to this body of work by examining generalizing 
within the context of machine-based computing, and we hope to identify and understand specific 
ways that a computational setting might support students’ generalizing.  

Broadly, Ellis (2007a) followed Kaput (1999) and defined generalization as “engaging in at least 
one of three activities: a) identifying commonality across cases, b) extending one’s reasoning beyond 
the range in which it originated, or c) deriving broader results about new relationships from particular 
cases (p. 444), and we similarly adopt that broad characterization. We also draw upon Ellis, 
Lockwood, Tillema, & Moore’s (2017) Relating-Forming-Extending (R-F-E) framework of 
generalizing activity in characterizing generalization. Ellis et al. (2017) emphasize three different 
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generalizing activities, which build upon a previous taxonomy that Ellis (2007a) had developed. In 
relating, students establish “relationships of similarity across problems or contexts” (p. 680), and so 
students make connections among situations they have encountered. In forming, students engage in 
“searching for and identifying similar elements, patterns, and relationships” within a single task (p. 
680). Here, students may be attending to regularity and articulate some general pattern or relationship 
that they observe. In extending, “students extend established patterns and regularities to new cases” 
(p. 680). This might typically involve some increased abstraction (such as moving from numerical 
cases to arguments involving variables). Ellis et al. also discuss ways in which these generalizing 
activities are interrelated – for instance, relating and forming may help students start to identify some 
regularity, which can then facilitate their extending to more general cases. This categorization offers 
language by which to characterize generalizing activity that we observed in our students. We focus 
on instances of relating and forming in this paper.   
Mathematical Discussion and Motivation for Focusing on Combinatorics 

There are a couple of reasons that we focus on combinatorics in this paper. First, the computational 
setting is particularly well-suited for combinatorial problems, in the sense that some of the features of 
the programs (loop structures, conditional statements) serve to highlight important combinatorial 
concepts. We have articulated this phenomenon elsewhere, including demonstrating students’ uses of 
conditional statements to reason about types of counting problems (Lockwood & De Chenne, 2019) 
and highlighting the computer’s effectiveness in helping students verify solutions to counting 
problems (De Chenne & Lockwood, in press). We believe that combinatorial problems provide rich 
contexts in which students can solve mathematical problems in computational settings. In addition, 
combinatorial tasks are well suited to generalization, and researchers have previously explored 
students’ generalizing activity on combinatorial problems (e.g., Lockwood, 2011; Tillema & Gatza, 
2018). Our work builds on such studies by illuminating ways in which the computational setting 
supports generalizing within combinatorics. We thus aim to contribute both to work on 
generalization and work on combinatorics, building on our knowledge base of students’ generalizing 
activity within the field of combinatorics especially. Finally, on the whole, combinatorial problems 
can be difficult for students to solve (e.g., Batanero, Navarro-Pelayo, & Godino, 1997; Lockwood & 
Gibson, 2016), and we see value in investigating ways to improve students’ combinatorial 
experiences. In this case, by focusing on generalization within a computation setting, we gain insight 
into how students might understand and generalize ideas within the particular domain of 
combinatorics.  

Methods 
Data Collection 

We draw on two data sources for this paper, both of which were part of a broader study 
investigating the role of computing in teaching combinatorial ideas. The broader study is ongoing 
and includes multiple paired and small group teaching experiments and one round of classroom 
implementation. We narrowed our focus to these two data sources for the sake of space and because 
they provide illustrative examples of relating and forming. First, we conducted a paired teaching 
experiment (in the sense of Steffe & Thompson, 2000) with two undergraduate students, Charlotte 
and Diana (all names are pseudonyms). They were chemistry majors recruited from a vector calculus 
class, and they participated in selection interviews, which indicated that they had not taken courses in 
discrete math, they were not familiar with combinatorial formulas, and they had no prior 
programming experience. Second, we share results from an individual interview with a computer 
science (CS) student, Allen. He was a CS major recruited from an introductory class in computer 
science. He indicated on a recruitment survey that he had not taken a class in discrete mathematics 
and that he had programming experience. In both cases, the students sat at a computer and worked on 
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combinatorial tasks, writing in a Python coding environment while the interviewer asked clarifying 
questions. Charlotte and Diana participated in 11 total interview sessions during which they solved a 
variety of counting problems. Allen participated in 3 total interview sessions during which he wrote 
programs to list all outcomes of counting problems. In the final interview (from which the data in this 
paper is taken), we asked him only to solve a counting problem, and we then prompted him to 
explain how he would verify his solution. 
Data Analysis 

The data are part of a project in which we explored students’ combinatorial thinking and activity 
within a computational setting, and we were not explicitly targeting generalization in this project. 
However, as we reviewed data it became clear that students were engaging in generalizing activity, 
and we wanted to examine that activity more systematically. For analysis, we surveyed both sets of 
data for instances that illustrated each form of generalization in the R-F-E framework. We 
particularly sought examples that would highlight the role of the computer and ways in which it 
supported students’ generalizing activity. We identified a number of episodes of relating and forming 
in our data sets, and we chose the two episodes discussed in this paper as representative examples. 
Together we discussed additional generalizing in our data, and we articulated ways in which the 
computer in particular facilitated generalizing activity, which we elaborate in the Results and the 
Discussion and Implications sections.  

Results 
We provide two examples of students engaging in generalizing activity, and we focus especially on 

relating and forming within the R-F-E framework. We do not provide data related to extending in 
part due to space, and also because we hypothesize that the computer is particularly useful in 
supporting relating and forming, and students can then extend ideas and relationships by hand. We 
elaborate this point in the Discussion Implications section. 

Relating 
We demonstrate one particular sub-category of relating that Ellis et al. (2017) described: relating 

objects, which involves forming a relationship of similarity between two or more present 
mathematical objects. We demonstrate an instance of relating objects in which Charlotte and Diana 
connected back to work on a prior problem they had done (both sets of students engaged in more 
relating, but we do not have space to offer additional examples). We highlight the tendency of 
students to copy and paste, then edit, code from prior problems (we call this repurposing previous 
code), which we feel is a feature of the computer that particularly supported relating. On the one 
hand, repurposing code could seem just like practical, time-saving technique, but we argue that this is 
actually important for generalization for a couple of reasons. First, the code itself gives students a 
new aspect of the problem to which and from which they can relate. Because the code can be seen as 
encapsulating and representing a counting process, students can identify similarities between the 
representation of code on various problems. Our students drew on similar structures and features of 
code as they copied and pasted work from prior problems. For instance, at one point, Diana asked 
Charlotte, “Do you want me to copy this code from over here [a previous problem], since it’s really 
similar?” This suggests that she perceived similarity between code they had written in the past and a 
current situation. Notably, the computer specifically facilitates that similarity by allowing such 
repurposing easily to occur. With very little effort, students get to duplicate and then adjust 
something they did previously. Such adjustments could be done by hand, but there is something 
about editing and adjusting real time that allows for efficiency. We also hypothesize that because 
copying and pasting reduces students’ work load, it may incentivize their looking for similarity 
between solutions, thus encouraging generalizing activity.   
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As an example of relating, we offer an instance of Charlotte and Diana repurposing code. They had 
previously worked on a problem about enumerating people, How many ways are there to rearrange 5 
people: John, Craig, Brian, Angel, and Dan?, reasoning about code in Figure 1a. This code counts 
arrangements of five people – the nested loops cycle iteratively through each element in the set 
People, and != (not equal) prevents elements from being repeated (more details about such problems 
are in Lockwood & De Chenne, 2019). We later asked: Write some code to list and count the number 
of ways to arrange the letters in the word PHONE. How many outcomes are there? What do you 
think the output will look like? As they started this problem, they had the following exchange. 

  
Figure 1a, 1b: Code for the People and PHONE problems 

 

Charlotte:   Okay. So, I feel like, yeah, basically just gonna be the same as this one because, I mean 
PHONE has five letters and this had five people. So, I feel like we can maybe just copy the same 
code. 

Diana:  Yeah, and then like edit it to be like PHONE. 

The interviewer then asked her why their idea would work, and Diana said the following:  

Diana:   It works because there’s like the same number of things that you’re arranging. So, like you’re 
arranging people here, there’s five of them and then you’re arranging letters here and there’s five 
of them. And it’s still the same as like you’re not repeating any letter, so you keep the not equal to 
expressions. And, yeah. 

Diana’s comments highlight what she perceived as similar about the situation – they were still 
arranging five objects, and they still did not want to be able to repeat any object. So, she noted that 
they still wanted to maintain the same fundamental features of the code, which was the “not equal to 
expressions.” They edited the code from Figure 1a just to have the letters P, H, O, N, and E instead of 
the people (Figure 1b). They ran the code, which correctly printed all 120 arrangements of letters in 
the word PHONE. The fact that they left much of their code the same as the People problem is 
noteworthy, as it suggests that they were attuned to the fact that some features of the code were or 
were not essential to solving the new problem. Notably, they did not change what they perceived as 
features that would not change their process or output (for instance, they did not re-name the set 
People, and they kept and p1 through p5 as their variables). That is, they recognized that the 
underlying structure was the same between the problems, but some other features, like the names of 
the set and variables, did not matter. This gives insight into what they deemed as relevant similarities 
or differences among the two problems.  

To summarize, the computational setting afforded students with opportunities to repurpose code, 
and by doing so they related current situations to prior work. The computational representation of the 
code signified a particular counting process, and the computer’s capacity to allow such code to be 
repurposed facilitated the students’ generalizing activity of making connections among problems. We 
demonstrated one instance of this, but there were multiple examples throughout the teaching 
experiments of such activity. In this way, this example of relating within the computational setting 
lets us see one way in which computational settings could afford some unique opportunities for 
engagement in the practice of generalization.  
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Forming 
Next, we offer an instance of forming. Ellis et al. (2017) distinguish between types of forming, and 

we focus on searching for similarity or regularity (searching to find a stable pattern, regularity, or 
element of similarity across cases, numbers, or figures), and identifying a regularity (identification of 
a regularity or pattern across cases, numbers, or figures). We share Allen’s work on the Books 
problem, which states Suppose you have 8 books and you want to take three of them with you on 
vacation. How many ways are there to do this? Allen originally solved this problem incorrectly by 
finding the number of ways to arrange three of the eight books, 8*7*6 = P(8,3), rather than selecting 
three of the eight books, 8*7*6/6 = C(8,3). (We will refer to this correct answer as C(8,3), even 
though Allen did not yet know a closed form for it, and he could only find the value on the computer 
using his program.) After writing code that listed the outcomes of arranging the books, he noticed 
that outcome 132 appeared in the output after the outcome 123, and he realized that he had not been 
correct, stating “that would not be a good combo because it already appeared up here; it’s just in a 
different order.” He thus saw he needed to correct his solution, and to do so Allen wrote the code in 
Figure 2. When run, this code prints all three number combinations in ascending order, thus ensuring 
that each combination is printed exactly once, and it correctly outputs 56 as the total number of 
combinations.  

 
 Figure 2: Allen’s code for the Books problem 

 
While Allen’s code correctly counted the number of outcomes of the Books problem, he did not 

initially offer any justification for a counting process or mathematical expression. However, he 
remarked that it was interesting that 56 = 8*7, which was his original answer of 8*7*6 divided by 6. 
So, he realized that a ratio of his answer over the correct answer was 6 (that is, P(8,3)/C(8,3) = 6). He 
wondered what would happen if the problem were selecting from only 7 books instead of 8. After 
extending his original (and incorrect) solution to seven books, P(7,3) = 7*6*5, he predicted that the 
ratio of P(7,3)/C(7,3) would be 5. (One potential rationale for this prediction is that he reduced the 
total number of books by 1 (from 8 to 7), and so he reduced his prediction by 1). Allen then decided 
to use the computer and his computational experience to explore these relationships more 
systematically. First, he adjusted the code from Figure 2 to count the number of outcomes for 7 
books (rather than 8), yielding 35, and he computed the ratio of P(7,3)/C(7,3), yielding 6 (which 
contradicted his prediction of 5). Allen then adjusted his code to allow for him to explore more 
examples efficiently. In particular, he created a function that would let him explore multiple numbers 
of books within a range, from which he always selected 3 books. For each number of books, the 
program computed the ratio of his estimated guess (P(n,3) with the actual correct value that he found 
computationally (which is C(n,3)). Allen’s code is displayed in Figure 3, and the output shows 
verified that the ratio P(n,3)/C(n,3) was 6 in each case (again, we write P(n,3)/C(n,3) for clarity, as 
Allen thought about this ratio as his original solution divided by the actual solution). We view 
Allen’s initial exploration and creation of this function activity as an instance of forming, namely 
searching for similarity or regularity, as he was making predictions and looking for and expecting to 
observe patterns. Then, when he ultimately determined that the ratio was 6, we take this as an 
instance of identifying a regularity.  
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 Figure 3: Allen’s identification of regularity via programming a function 

 
Allen then decided to extend his work by changing the number of books being selected in his code; 

that is, rather than selecting three books, he wrote code to select four, five, and then six books. It is 
noteworthy that Allen had not yet provided justification for the constant 6, and so the decision to 
extend his work seems to stem from his desire to observe a pattern (thus we view this as an instance 
of forming). Further, the computer facilitated this forming activity by allowing him to adjust his 
previous code so other numbers of books were selected. For each of these new instances, he divided 
the answer from his original solution method by the actual answer, and he observed a constancy in 
each case. Essentially, Allen fixed an m and used his code to calculate P(n,m)/C(n,m) = m! as n 
ranged for values of from m + 1 to 21, (again, he expressed this ratio as his original solution divided 
by the actual solution). The constant he found in each case represented the number of ways to 
arrange the books after the books have been selected. After finding values in cases three through six, 
he remarked “Okay, I think I found a really high-level relationship that is several layers.” We asked 
him to elaborate, and Allen stated the following. 

Allen:   So, this is the number of books. This is three books, four books, five books, six books. So, if 
that’s the case, then with two books it should be 3. Three would be 6, four would be 24, five 
would be 120, and six would be 720… what I noticed is each time you go up, you multiply by the 
next number. So, 6 times 4 equals 24, which multiplied by 5 equals 120, which multiplied by 6 
equals 720. 

Allen went on to observe that “these are all factorials.” Using this information, he constructed and 
justified a closed form for C(n,m) (we do not include analysis of this data due to space). 

To summarize this episode, Allen used his code to find a constant ratio between his (incorrect) 
original solution and the correct solution he computed. He then identified a pattern between these 
constants as the number of books being selected was increased. We observed searching for similarity 
or regularity when Allen identified the constant 6 in his work on selecting three books. Then, we 
observed identifying a regularity when Allen found a pattern among constants as the number of 
books selected increased. We argue that the computer was fundamental in this process, as Allen 
generated these constants by writing and implementing code. The computer, and the outcomes 
generated, seemed to afford Allen the opportunity to search for patterns and identify relationships. In 
Allen’s case, he used the computer in two important but different ways. First, he used the computer 
to generate answers to problems he could not yet solve by hand (computing the correct number of 
combinations before he knew the closed form of C(m,n)). Second, he wrote a function to generate 
multiple cases, which allowed him to search for regularity in multiple cases efficiently. This episode 
thus sheds light on how the computational setting supported Allen in the specific generalizing 
activity of forming. 
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Discussion and Implications 
In this paper, we have offered instances of students engaging in generalizing activities of relating 

and forming (in terms of Ellis et al.’s (2017) R-F-E framework) within the context of programming 
in Python. We have tried to make the case that in these cases the computer offered specific 
affordances for generalizing activity. These included copying and pasting to support relating, and 
generating correct solutions to multiple problems in order to support forming. While some of these 
activities would technically be possible by hand, the manipulation that the computer allows seemed 
to expediate this practice of generalization for the students. As an additional note, we mostly 
observed the computer being used to support relating and forming, and extending that we observed 
among students tended to be done by hand (students often extended formulas or expressions they had 
written by hand). We thus hypothesize that the computer may be most effective for supporting 
relating and forming, which then contribute to extending. More work is needed to explore whether 
and how extending arises explicitly via computational activity. 

There is more to study specifically about the role of the computer (and specifically machine-based 
computing) in facilitating students’ generalizing activity. We have focused on combinatorics, but 
such computing may elicit generalizing in other ways in other domains. Researchers could explore 
ways that the computer might facilitate other kinds of generalizing activity in other domains or in 
other kinds of problems. Further, we have focused on one perspective of generalization, drawing 
explicitly on Ellis et al.’s (2017) framework, but researchers could consider other possible framings 
of generalization to consider the computer’s role in supporting students’ generalization. In addition, 
our results demonstrate instances in which students engage in the practice of generalization. 
However, there are many other practices, and Lockwood et al. (2019) have suggested that other 
practices like proving or problem solving might closely be related to the kind of machine-based 
computing described in this paper. Thus, future research could be conducted on ways in which 
computing might support other mathematical practices. 
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Middle school students (n=144) worked with an applet specially designed to introduce the concept of 
function without using algebraic representations. The purpose of the study was to examine whether 
the applet would help students to understand function as a relationship between a set of inputs and a 
set of outputs and to begin to develop a definition of function based on that relationship. Results 
indicate that, by focusing on consistency of the outputs the students, at a rate of approximately 80%, 
are able to distinguish functions from non-functions. Also, students showed some promise in 
recognising constant functions as functions, a known area of common misconceptions. 

Keywords: Middle School Education, Technology, Representations and Visualization 

Introduction 
The concept of function is considered to be one of the most important underlying and unifying 

concepts of mathematics (e.g., Leinhardt, Zaslavsky, & Stein, 1990; Thompson & Carlson, 2017). 
Students have experiences with functions, or function behaviour, from the very earliest grades 
usually through pattern exploration. Study of functions continues up to and through high school with 
a formal treatment of functions as arbitrary mappings between sets. Indeed, in the Common Core 
State Standards for Mathematics function is given its own domain in grades 9-12 (Common Core 
State Standards Initiative, 2010). 

Much of the lack of depth of knowledge of the concept can be attributed to the privileging of 
algebraic representations (function as algebraic rule) or graphical representations (function as graph 
that passes the vertical line test) and a consequent lack of focus on the general relationship (see e.g. 
Best & Bikner-Ahasbahs, 2012; Breidenbach et al., 1992; Carlson, 1998; Thompson, 1994). What 
might a group of students who have never encountered the concept of function learn by encountering 
it in a novel representation? Can they learn to think of a function as a relationship between inputs and 
outputs with some rules about the outputs rather than something that is defined by an algebraic rule? 
These are the questions that guided the current study. 

Related Literature 
Prior to secondary school, opportunities for study of functions are limited in scope (Best & Bikner-

Ahasbahs, 2012; Carlson & Oehrtman, 2005; Vinner & Dreyfus, 1989) and focus mainly on pattern 
recognition and study of covarying quantities, most often related to an underlying linear structure 
(Blanton et al., 2015; Stephens et al. 2017, Ellis, 2011). For example, in Blanton et al. (2015) 6th 
grade students are given the tasks “People and Ears: The relationship between the number of people 
and the total number of ears on the people (assuming each person has two ears)” (p.520) to study the 
function type y = x + x and “Age Difference: If Janice is 2 years younger than Keisha, the 
relationship between Keisha’s age and Janice’s age (Carraher et al., 2006).” (p. 521) to study the 
function type y = x + 2. In other words, the functional relationships typically encountered in 
elementary and middle school years are designed to prepare the (mathematical) ground for studying 
linear relationships (y = mx, y = x + b, y = mx + b) i.e. the privileging of algebraic representations 
begins early in the study of functions. Leinhardt et al. (1990), in a meta-study of research on 
function, and Mesa (2004), in a study of 24 middle grades textbooks from 15 countries, note the 
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difficulty for students in apprehending the modern, abstract definition of function depending, as it 
does, on the mapping of one set of elements to another emphasising the difference between function 
and relation (many-to-one acceptable, one-to-many not acceptable); whereas, the work on function in 
early grades builds on the intuitive notion of a 1-1 correspondence and the historical development of 
function rested on covarying quantities.  

Even in secondary school functions are typically introduced as very limited classes such as linear 
and quadratic, with attendant graphs and tables, with the result that students regularly consider 
functions to be mathematics objects solely defined by an algebraic formula (e.g., Best & Bikner-
Ahasbahs, 2012; Breidenbach et al., 1992; Carlson, 1998) and have difficulty identifying constant 
functions as functions (Bakar & Tall, 1991; Carlson, 1998; Rasmussen, 2000). Instruction and 
curricular materials often emphasize procedures and algebraic manipulations when studying 
functions and research shows that students then have difficulty in understanding different 
representations and different contexts for functions (Carlson & Oehrtman, 2005; Cooney et al., 
2010). At the heart of many student difficulties is a shallow understanding of the definition (Ayalon 
et al., 2017; Panaoura, et al., 2017). Students who have an algebraic view of function and who use 
procedural techniques to identify functions and non-functions struggle to comprehend a general 
mapping between sets (Carlson, 1998; Thompson, 1994). 

Exposure to, and facility with, various representations of functions, i.e “flexible use of functions . . . 
within and between all kinds of representations and also between different functions” (Best & 
Bikner-Ahasbahs, 2012, p. 877), has been shown to be a critical component of a rich understanding 
of function (Best & Bikner-Ahasbahs, 2012; Dubinsky & Wilson, 2013; Martinez-Plandi & Tigueros 
Galsman, 2012). Furthermore, researchers have found promising results when using novel contexts 
and non-standard representations of functions such as dynagraphs, arrow diagrams, and directed 
graphs (Dubinsky & Wilson, 2013; Sinclair, Healy & Sales, 2009). The purpose of this study is to 
examine the effect of a specially designed applet on middle school students’ ability to develop an 
understanding of the concept of function. 

Methods 
Context 

Previous research (Meagher et al., 2019) has shown the promise of a vending machine 
representation as a “cognitive root” (Tall, McGowen, & DeMarois, 2000) for the study of functions. 
Thus, we designed an applet, Introduction to Function, (https://tinyurl.com/y2dramsb) as a 
mechanism for learners who have never encountered the concept of mathematical function and, 
therefore, do not associate the concept with any particular representation, to learn the basic elements 
of function. The goal was for the students to learn that a function is a relationship between of a set 
inputs that are matched with a set of outputs in a consistent and, therefore, predictable manner. 

The Introduction to Function task is a GeoGebra book that consists of seven pages and has an 
accompanying worksheet. On the first two pages are two vending machines each of which consists of 
four buttons (Red Cola, Diet Blue, Silver Mist, and Green Dew). When a button is clicked it 
produces none, one, or more than one of the four different colored cans (red, blue, silver, and green), 
which may or may not correspond to the color of the button pressed (see Figure 1). The students are 
told that the first machine on each page is an example of something called a function, and the other is 
not a function, with their task being to identify what is the difference between the behaviour of the 
machines that makes one a function and the other not. 
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Figure 1: Screenshot of Introduction to Function 

 
The machines on the first two pages work as follows: 

 

 
Figure 2: Machines A – D 

 
Note that Machines B and D are not functions because one of the buttons, when clicked, will 

produce a random can (i.e. not always the same result). Note also that in Machine C the colour of the 
output can does not correspond to the input button pressed, but that the non-matching can is 
consistently produced. After the first two pages there was a whole group discussion in which students 
discussed the first two pages, with the goal of consolidating their ideas.  

The next four pages of the GeoGebra book consist of pairs of machines with the students being told 
that one of each pair is a function In each case there is a random element in the non-function. The 
machines work as follows: 

 

 
Figure 3: Machines E - L 



Middle school students’ development of an understanding of the concept of function 

	 2186	

On the worksheet, students are asked to note whether each machine is a function or not a function 
and how they know. After they complete these pages students are given the prompt: “Using the terms 
‘input’ and ‘output’ write a definition for function based on your exploration of the machines.”  
Participants 

The Introduction to Function applet was used in fifteen seventh grade classrooms. These 
classrooms were across two different states (one Northeastern state and one Southeastern state) and 
five different teachers for a total of 144 students who engaged with the task. These students engaged 
with the applet towards the end of their seventh grade year and had not yet learned about the 
definition of function or function notation.  
Data collection and analysis 

Students worked in pairs (N = 72) to engage with the applet on a laptop that screen captured their 
work. Data collected were their worksheets, which include their definitions, screen recordings, and 
audio recordings. For this study our analysis focused on the students’ worksheets. All data was coded 
by three researchers. Any disagreements were discussed until any discrepancies were resolved.  

For the definitions we coded for use of the terms input/output, attention to output, and focus 
(Author et al., 2019). In terms of input/output, each definition was read for use of those terms in the 
definition for example, “M49_M62: No matter what input the output is the same” and “M117_M118: 
A function is when you get the same output.” In terms of focus, each definition was coded regarding 
whether the definition indicated a function was a relationship (or mapping), an object, or neither. We 
referred to this set of codes as focus, as they indicated how the students “saw” function. If the 
definition indicated that the function relates to the input and output then the definition was coded as a 
relationship. For example, “VM_M91_M96 The word function may mean when you input 
something, even though you may not get what you asked for, you will only get one type of it.” The 
code “object” was used when the definition referred to a function as something, such as the button, or 
the machine. 

Finally, definitions were coded according to whether or not they attended to output. In order for a 
definition to be coded as attending to output, the definition needed to refer to an output having a 
pattern, or being the same or consistent. For example, “VM_M54_M59: Function is when you put in 
the input and the output will never change / will always be the same.” 

Analysis of the student worksheets proceeded along two dimensions: classification of whether the 
pairs of students correctly identified the machines E through L as functions and the students’ 
justifications for their classifications. For the pairs of machines E&F, G&H, I&J, K&L, since 
students were told one was a function and one was not, it was possible to simply count the 
classification. Of course, the percentages should mirror each other i.e. the number of “corrects” for 
machine E should match the number of “incorrects” for machine F.  

The students’ written justifications for their machine classifications were open coded using a 
constant comparative method to look for themes (Creswell, 2014). The final codes for students’ 
justifications are shown in Figure 4. Justification codes were not mutually exclusive, as a justification 
could have been coded based on inconsistency as well as using the context of the vending machines. 
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Figure 4: Justification codes 

Results 
Identification of the Machines. 

The first element of analysis was to tally whether the participants were able to correctly identify 
which of the machines E-L are functions. Recall that participants worked through machine pairs 
A&B and C&D being told that A is a function and B is not a function and that C is a function and D 
is not a function, and that the concept established was that the machine should behave consistently 
even if the colour of the output can does not match the colour of the button pressed. Students 
classification of the machines is shown in Table 1. 

 

 
Figure 5: Participants’ correct identification of functions 

 
At a first level of analysis this shows that, broadly speaking, the pairs of students were able to 

correctly identify which machines were functions. The percentage of correctly identified functions 
for the first four pairs of machines was at least 80% and ranged from 80.7% to 95.8%.  

It is interesting to note that for the pairs E&F, I&J and K&L the correct percentage is very similar 
(between 80% and 86%). The exception is the machine G&H pairing which has a much higher 
percentage of students identifying it correctly. This can be explained as follows: the primary 
identifying factor for a machine not being a function was the random behaviour of one of the buttons. 
However, one has to press a button often enough to be able to identify the behaviour as random. In 
the case of Machine G, all four buttons give random output and, therefore, the threshold to identify 
random behaviour is lower. Furthermore, Machine G comes first and, therefore, students can very 
quickly identify Machine G as not a function and not concern themselves too much with Machine H. 
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Looking more closely at the incorrect answers for the first four pairs of machines we see that it is 
often the same pairs of students getting incorrect answers. 10 of the 14 (71.4%) pairs of students who 
made a misidentification of the E&F pair misidentified at least one other machine, with 5 pairs 
misidentifying all of the first four sets of machines except the G&H pairing. Furthermore, of the 22 
pairs of students that misidentified at least one machine, only seven of the 22 (31.8%) had their first 
wrong answer after the first pair of machines E&F and six of those seven misidentified just one of 
the pairs E&F, G&H, I&J and K&L. 

The result for Machine L with 80.0% of participants identifying it as a function is a potentially 
significant result since researchers have shown that students exhibit difficulties identifying constant 
functions as functions (e.g. Carlson, 1998; Rasmussen, 2000). However, it may be that many students 
identified Machine K (output from Red Soda is two random cans) as not a function and concluded 
that Machine L must be a function. 
Characterizing Students’ Justification of Functions and non-Functions.  

To better understand the ways in which students were making sense of the machines, we analyzed 
their justification for whether or not each machine was a function or non-function (see Figure 5). 
Those that were determined to be functions were justified based on consistency of the input/output 
relationship and those determined to be non-functions were described as such based on the 
inconsistency of this relationship. One notable exception to this is the 11 students that used the 
language of inconsistency to justify their choices for Machine F (Red Cola → silver, Diet Blue → 
green, Silver Mist → red, Green Dew → blue). All 11 of the students that described this as 
inconsistent, also determined the Machine was not a function. We see that these students could not 
overcome the cognitive dissonance of a machine giving them a different colour output can from the 
input button pressed, even if it did so consistently. For example, one student (M90) described 
Machine E (R→r, B→b, S→s, G→ random) as “more consistent” than Machine F (R→s, B→g, 
S→r, G→b) which “randomizes things.” The very next pair of Machines in the applet had a similar 
design (Machine H: R→b, B→s, S→g, G→ r), and only one student determined this to be a non-
function using the reasoning of inconsistency. This suggests that the students refined their meaning 
for such a justification to be aligned with situations in which a single output results in different 
outputs. Examples of students’ justifications based on inconsistency are shown in Figure 7 below. 

 

 
Figure 5: Characterizations of students’ justifications for each machine 
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Figure 7: Examples of justifications based on attention to inconsistency of outputs 

 
As is evident in the Machine F example above, the students’ justifications provide insight to their 

misidentification of both functions and non-functions. For example, looking at the 13 pairs of 
students that misidentified Machine K (R→random pair) as a function it is evident that they either 
did not test the machine enough to see the random outputs that occurred when clicking Red Cola 
(e.g., “every color is functional, red produces 2 greens”), or they decided that since the rest of the 
buttons were consistent it was “close enough”. For example, one pair wrote “mostly consistent” and 
another wrote “3 of the 4 function correctly.” Furthermore, the inability to accept machines giving a 
different output from the button pressed, even if it does so consistently, persisted for a number of 
pairs. For example, Pair M17 & M20 said of machine J (R→r, B→b & random, S→s, G→g “The 
Blue one gives two but the others work.”  

It is notable that 80% of the student pairs used the language of the machine context in their 
justifications (see Figure 8 for examples). This suggests that having a realistic context in which to 
both think about and test their conjectures proved to be helpful in explaining their thinking.  

 
Figure 8: Examples of justifications that use the context of a vending machine 

 
Definitions 

One of the 72 pairs of students did not complete a definition on their worksheet. The remaining 71 
definitions were coded using the codebook. In terms of the use of input/output 62 out of 71 (87.3%) 
definitions used the word input and 65 out of 73 (89.0%) definitions used the term output. Of course, 
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the participants were asked to use these terms and, therefore, the result is not entirely surprising. 
Nevertheless, the result is promising in terms of establishing sets of inputs and outputs as a central 
aspect of the definition of function. 

Perhaps the most interesting aspect of the activity was to examine the extent to which the 
participants would pay due attention to the outputs from the machines. Analysis of the definitions 
shows that 45/71 (61.6%) of the participants did pay attention to the output with definitions such as 
“When you input something, the output always will stay the same.” However, 14/71 (19.7%) of 
participants, while paying attention to the output made an incorrect statement such as “Your input is 
your output and does not change.” 

In terms of focus, none of the participants described a relationship between inputs and outputs 
explicitly as a mapping between sets, and most definitions (43/71 (60.6%)) were coded as “neither 
object or relationship.” A large number of participants’ definitions (27/71 (38.0%)) were coded as 
“object” since they made explicit reference to the vending machine or the buttons of the machine. For 
example, “Whenever you input into the vending machine, you know the output which makes it 
reliable.” 

Conclusion 
The purpose of this study was to explore whether seventh grade students who had not encountered 

the term function could use a specially designed applet to develop an understanding of a function as a 
relationship between inputs and outputs with some restrictions on the outputs. The non-standard 
representation of the Introduction to Function applet served to introduce the concept of function 
without algebraic representations. With the focus on the consistency, or otherwise, of the outputs the 
participants were able to correctly distinguish between functions and non-functions at least 80% of 
time. Some limitations of the study may be that the results were overdetermined by the discussion 
after the first two pairs of machines and that the participants might be seen to be simply playing a 
pattern recognition “game” with the rule “random bad, not random good.” Therefore, more study 
would be needed to establish if the basic concept learned here transfers effectively to further study of 
function. However, even within this study, more than 60% used some appropriate language to 
describe the nature of the output in their definitions of function. In addition, contrary to a well-known 
misconception, participants may be able to recognise a constant function as a function. 
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In this project, we investigate how teachers develop the skills and knowledge to integrate makerspace 
technologies into mathematics lessons. Makerspaces are physical spaces that encourage creative 
design that often include emerging technologies such as 3D fabrication, coding, and robotics, and 
are being increasingly used to enhance mathematics instruction. Research suggests that for teachers 
to integrate any new technology into instruction, they must develop a specialized technological 
pedagogical content knowledge (TPACK), but little is known about how teachers develop TPACK for 
makerspace technology. We present emerging findings investigating how practicing mathematics 
teachers developed TPACK for makerspaces during a graduate technology course. Results suggest 
that despite similar experiences in the course, teachers varied significantly in their development of 
TPACK and integration of technology. 

Keywords: STEM/STEAM; Teacher Education – Inservice/Professional Development; Teacher 
Knowledge; Technology 

The issue of how teachers can integrate technology into their instruction in order to improve student 
learning of mathematics has been a focus of research for decades (Weglinsky, 1998), but continues to 
be a source of new questions (Cullen, Hertel, & Nickels, 2020). As new technologies are developed, 
researchers continue to wonder how these new technologies might impact students’ mathematical 
thinking and learning. One emerging category of technologies which have the potential to transform 
student learning are those that are found in makerspaces.  

Broadly considered, a makerspace is a physical space equipped with materials and technologies to 
encourage creative design (Cavalcanti, 2013). Some technologies currently found in makerspaces 
include 3D printers and other digital fabrication tools, robotics, microcontrollers (e.g., Arduino), as 
well as craft and circuitry tools. In this project, we investigate how teachers can develop 
technological and pedagogical content knowledge of makerspaces. This work looks “across cultures” 
as we investigate whether teachers can successfully integrate the “playful, growth- and asset-
oriented, failure-positive, and collaborative” culture of makerspaces (Martin, 2015) into the context 
of their mathematics classrooms. 

Introduction and Literature Review 
Although makerspaces are relatively new, there is an emerging body of knowledge which suggests 

that they can be effective in improving student learning of mathematics. The use of makerspaces in 
mathematics instruction is informed by the cognitive theory of constructionism (Papert, 1980), which 
proposes that learning occurs by “actively constructing knowledge through the act of making 
something shareable” (Martinez & Stager, 2013, p. 21). Digital fabrication tools can expand 
constructionism to the creation of physical items. For example, students in a calculus class used 3D 
printers to create solids of revolution to create visual representations of integration (Propelka & 
Langlois, 2018). Some research has also suggested that makerspaces can be useful in developing 
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teachers’ pedagogical content knowledge (Corum & Garofalo, 2019; Greenstein, Fernandez, & 
Davidson, 2019). However, little is currently known about how teachers can build on these 
experiences in makerspace to inform their own instruction.   

A long-standing body of research suggests that teacher professional development is critical to the 
successful integration of technology (e.g., Weglinsky, 1998). Building on Shulman’s (1986) 
description of pedagogical content knowledge, researchers have described an integrated 
technological pedagogical content knowledge (TPACK) which combines expertise in technology 
with understanding of how it can be purposefully used to enhance student thinking of content ideas 
(Koehler & Mishra, 2009). Previous research suggests that professional development can be effective 
in developing teachers’ TPACK (e.g., Bos, 2011), but that this specialized knowledge can develop in 
uneven or unexpected ways (Polly, 2011). In particular, Niess et al. (2009) proposed a set of 
developmental levels for TPACK to describe teachers’ integration of a new technology into their 
mathematics instruction (Table 1). 

 
Table 1. Developmental levels for mathematics teachers’ TPACK (Niess et al., 2009) 

Level Teacher Knowledge and Technology Integration 
Recognizing Teachers can use a technology, but cannot yet integrate it into teaching 
Accepting Teachers see benefits of a technology and may use it for a teacher-led demonstration of a 

mathematical idea 
Adapting Teachers can include student use of technology in a surface or instrumental way to support 

previously-learned mathematics ideas 
Exploring Teachers can integrate a technology for effective learning of new mathematics 
Advancing Teachers can integrate technology to expand boundaries of students’ mathematical 

practices  
 

Niess et al. (2009) emphasize that teachers must go through these developmental stages separately 
for different technologies, and that particular features of each technology might impact teachers’ 
learning. However, no research has specifically investigated the development of teachers’ TPACK 
for makerspaces (which we refer to as MakerPACK). In order to address this gap in the literature, we 
investigated how professional development (in the form of a graduate-level, makerspace-augmented 
mathematics instructional technology course) can impact teachers’ MakerPACK. In particular, we 
explored the following research question: 

How does practicing teachers’ MakerPACK develop through their engagement with 
makerspaces, and to what extent are they able to use their MakerPACK to develop 
makerspace-augmented mathematics lessons? 

Methodology 
To understand how teachers’ MakerPACK develops, we designed a makerspace-augmented 

mathematics instructional technology course. Our goal in course design and implementation was both 
to develop teachers’ MakerPACK and to investigate that development, including how teachers 
demonstrated their MakerPACK through the creation of mathematics lessons. 
Course Development and Structure 

Informed by current trends in makerspace technologies, five modules were created to develop 
students’ technological knowledge of emerging technologies. These technologies included paper 
circuits, 3D fabrication, coding, robotics, and microcontrollers. The primary instructional method 
was open-ended guided exploration to model best practices when integrating makerspace-augmented 
lessons into a classroom. Examples of guided explorations include determining the volume of an 
origami balloon using non-standard measurement tools, deriving Ohm’s Law, using iterative 
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programming to draw various polygons, and creating a binary counter. Each module included open 
make time for teachers to explore the technology on their own and to develop their own mathematics 
lesson to highlight how this work could be incorporated into their own classroom contexts. Two of 
the authors with extensive experience in makerspace technology and mathematics education were 
lead curriculum writers. 
Participants and Implementation 

The makerspace-augmented mathematics instructional technology course was offered at a large 
public university in the Mid-Atlantic region of the U.S. A total of eight graduate students, all of 
whom were experienced mathematics teachers, completed the course in the Fall 2019 semester, with 
seven students agreeing to participate in the study. 
Data Collection and Analysis 

In order to assess the extent to which the makerspace-augmented mathematics instructional 
technology course supported students’ development of MakerPACK, we collected the “lesson 
concepts” students developed throughout the course. These lesson concepts consisted of an 
educational object using a specified technology, a description of how the technology could be used to 
teach a mathematics topic, and a reflection on the design process. We used a comparative case study 
approach to examine similarities and differences among teachers’ development of MakerPACK. A 
sample of teachers’ lesson concepts (each using coding to teach a mathematical idea) were analyzed 
using the components of the “Mathematics Teacher Development Model” as described by Niess et al. 
(2009). Two of the authors assessed the lesson concepts independently and then compared their 
assessments. When the authors’ individually assessments were not aligned, they reviewed the lesson 
concept together in order to come to a consensus. Three lesson concepts were purposefully selected 
to illustrate the different levels of MakerPACK as observed during the makerspace-augmented 
mathematics instructional technology course. 

Results and Discussion 
Data analysis of the codes from the “Mathematics Teacher Development Model” (Niess et al., 

2009) revealed that these three participants varied significantly in their MakerPACK development. 
None of these teachers had prior experience with makerspaces, and all three had similar experiences 
in the makerspace-augmented mathematics instructional technology course, yet their lesson concepts 
revealed quite different views and uses of technology. Looking across the components, we noticed 
three distinct profiles of MakerPACK: Accepting (Jenna), Exploring (Kyle), and Advancing 
(Lauren). 
Jenna: Accepting 

Jenna created a Scratch animation and activity to demonstrate geometric transformations for use in 
an eighth grade class. Her lesson included tightly teacher-directed instructions and little student 
autonomy. Jenna struggled with identifying an application for coding within her curriculum, and she 
expressed concern that the use of technology would divert students’ attention from learning 
mathematics. When Jenna encountered technical difficulties, she changed the content of her lesson 
rather than persevering to find a solution, and stated in her reflection, “I struggled to justify the 
amount of time and effort required to not make a lot of mathematical progress.” Across multiple 
components, analysis revealed that Jenna was at an accepting level of MakerPACK since she was 
willing to use the technology in a teacher-centered lesson, but similar to participants described by 
Niess (2013), her “concerns overshadowed [her] enthusiasm for the use of [technology] in 
instruction” (p. 181). 
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Kyle: Exploring 
Kyle created a Scratch animation and student project to learn about piecewise function for use in a 

precalculus class. His reflection expressed enthusiasm about a strong fit with his curriculum, and his 
project gave students multiple options and significant mathematical autonomy, using a rubric rather 
than specific instructions to provide guidance. We also note that Kyle’s view of the challenges of 
using new technologies was different than Jenna’s. Kyle identified his own difficulties in creating a 
Scratch animation that required him to use mathematics beyond the specified topic (e.g., converting, 
scaling), and he planned for how he would attend to these challenges when implementing the lesson 
concept with students. Data suggests that Kyle was at an exploring level of MakerPACK since he 
intended to give students autonomy in the classroom to explore new mathematical content; he 
“displayed indications of transforming [his] knowledge by more clearly integrating mathematics, 
pedagogy, and [technological] knowledge” (Niess, 2013, p. 188). 
Lauren: Advancing 

Lauren created a Python program and a programming experience related to the Pythagorean 
Theorem for use in an eighth grade class. Lauren intended to use technology to expand students’ 
mathematical practices, as the technology provided motivation for determining a generalized solution 
method for determining the unknown side length of a right triangle. Lauren recognized that the value 
of incorporating technology into this lesson extended beyond the identified instructional goals. She 
reflected that her initial errors and the trouble-shooting process gave her additional interest and 
ownership of her program, writing, “I hope coding brings out the problem solvers in my students.” 
Lauren’s lesson concept suggests she was at the advancing level of MakerPACK, in that she used her 
integrated technological pedagogical content knowledge to “willingly explore and extend the 
mathematics curriculum” (Niess, 2013, p. 189).  

These specific findings indicate that these three teachers’ development of MakerPACK varied in 
terms of the value they perceived in using technology, the level of student autonomy in their lessons, 
and their response to technical difficulties in using the technology. These findings reflect the 
integrated nature of TPACK, aligning with previous research suggesting that technical expertise, 
pedagogical practices, and beliefs about technology are closely linked. 

Conclusion 
Despite these three teachers having similar experiences in the makerspace-augmented mathematics 

instructional technology course, our analysis of their lesson concepts revealed wide variation in their 
development of MakerPACK. We hypothesize that their development of MakerPACK was mediated 
by their beliefs about mathematics teaching and learning. In weekly reflections, Jenna often revealed 
frustration with the technology and a desire for more explicit direction. Kyle and Lauren, however, 
revealed a willingness to engage in productive struggle and a desire for mastery of the technology. 
This hypothesis aligns with research suggesting that development of TPACK is often mediated by 
teachers’ beliefs (e.g., Smith, Kim, & McIntyre, 2016). Future research is needed to more closely 
understand the relationship between teachers’ beliefs and TPACK, as well as how TPACK for 
makerspaces can develop. 
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Resources play an important role in how subjects act and think. Teachers, throughout their 
professional career, develop ways of teaching mathematics —articulated by the organization and 
type of activities that guide their class, the resources they use and their forms of intervention; these 
are modified when a new resource is integrated. In this paper we present evidence of this 
phenomenon using the case study of a teacher who, as a result of her participation in a professional 
development course that we implemented, integrated digital resources into her documentation work, 
destabilizing her previous forms of teaching. 

Keywords: Elementary School Education, Technology, Teaching Tools and Resources, Teacher 
Education – In service / Professional Development 

Introduction 
Although, in this digital age, the integration of digital technological (DT) resources into the 

teaching of mathematics is a social and pedagogical necessity (Sunkel, Trucco & Espejo, 2014), there 
are deficiencies in some sectors of the Mexican basic education system (Enríquez & Sacristán, 2017, 
2019). In fact, DTs are given very little importance in primary-school teacher training (as can be seen 
in the syllabus of the official primary-school teacher training programs –SEP, 2018). In this report 
we present part of a study that looks at how primary school teachers in a rural area of Mexico, and 
who took part in a professional development (PD) course, integrate digital resources into their 
mathematics teaching. The study uses the Documentational Approach to Didactics or DAD (Gueudet 
& Trouche, 2009, 2012), to investigate the following question: When teachers integrate digital 
resources into their teaching practice, what changes occur in the design and implementation of their 
mathematics classes, that is, in their documentation system1?  

The Documentational Approach to Didactics (DAD) 
The DAD studies teachers’ practice and their professional development by looking at their 

interaction with the resources they use (select, adapt, review, reorganize) for teaching mathematics 
(Gueudet & Trouche, 2009, 2012). The resources they use, are integrated into a resource system 
(SR).The documentation work is the set of interactions of the teacher with their SR, “within 
processes where design and enacting are intertwined” (Gueudet & Trouche, 2012, p. 24) . This 
documentation work produces documents, which are composed of recombined resources and the 
usage schemes associated with them; a teacher's set of documents is their documentation system 
(Gueudet & Vandebrouck, 2011). Throughout a teacher's professional career, their documentation 
system evolves as they work and experiment with old and new resources. Thus, the teacher's 
documentation work reveals their professional development, that is, the evolution of their practice, 
knowledge and beliefs (Gueudet & Trouche, 2012). 

                                                             
1 “Documentation system” is defined further below. 
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Methodology 
This report is part of a larger research that has included: a diagnostic study to investigate teachers’ 

previous training in the use of DT and their access to these resources; an intervention phase, where 
we implemented a PD course for the integration of digital resources for teaching mathematics, to 
teachers who had participated in the diagnostic study; and an inquiry phase into the documentation 
work of the participating teachers when integrating DT into their practice. In the study, 67 teachers 
from 10 primary schools in a rural region of the Mexican state of Oaxaca, participated in the 
diagnostic study; these teachers in their majority, had little training in the use of DT for teaching 
mathematics; their use of DT in their practice was scarce; and their access to digital equipment was 
limited –because schools lack hardware and school policies limit the use of what little is available 
(Enríquez & Sacristán, 2017, 2019). This information was considered, in the intervention phase, for 
the design of the PD course aimed at promoting the integration of DT for mathematics teaching. The 
67 teachers who participated in the diagnostic study were invited to participate in the course and 
associated study; 15 of them accepted. The PD course lasted 5 months (6 hours per week). It was 
based on theoretical models on teacher knowledge (Shulman, 1986; Ball, et al., 2008, Thomas & 
Palmer, 2014). It was also based on the experiences of the EMAT program for teaching mathematics 
in middle schools (Sacristán and Rojano, 2009) and used some of its materials (the Logo software 
and accompanying didactic guidelines –Sacristán, 2005; Sacristán & Esparza, 2005). 

The PD course. It consisted of 3 modules, each focused on studying a certain DT resource –
respectively, miscellaneous applets and interactive apps, Geogebra and Logo. The tasks of each 
module were presented in 4 stages: (i) The study of the resource; (ii) the design of mathematics 
lesson plans integrating the digital resources studied in the course; (iii) the implementation of the 
designed classes; and, (iv) group reflections on the implementation experiences. 

Data collection. In order to study the changes in the participants’ documentation systems, we used: 
(i) initial interviews of the teachers, and subsequent ones after each implementation of their lessons 
using DT; (ii) the lesson plans designed by the teachers during the course; (iii) in-class observations 
of the implementations of the designed lessons; (iv) the teachers’ presentations of their class 
experiences, which they shared, during the PD course, with their colleagues. 

We now present data from a teacher, Nohelia, who was a participant in the study. 

The case of Nohelia 
Nohelia’s profile. This teacher has a bachelor's degree in primary education, with a master's degree 

in the development of teaching competencies, and she has also taken various DP courses, including 
one in mathematics and computing. At the beginning of the study, she had 9 years of teaching 
experience, and was in charge of the 5th grade in a rural primary school; her school had a computer 
lab with 18 units, a portable video projector, and the old hardware from Enciclomedia (SEP, 2012) –a 
computer, an electronic whiteboard and another projector. 
Changes in the documentation system (DS) of Nohelia  

Based on the data from the initial interview with Nohelia, we determined her initial documentation 
system (DS) –the resources, and how she used them, for her mathematics lessons, before the study. 
This DS changed after she participated in the DP course, when she integrated the studied DT 
resources to her practice. Nohelia's initial DS included several documents —e.g., activities to 
introduce topics, or to strengthen students’ knowledge (or to help her students overcome 
weaknesses)– each with specific resources. Her initial DS (see Table 1) structured her lessons in four 
stages: (1) a reviewing previous knowledge, (2) sharing knowledge with the whole group, (3) 
developing a new topic, and (4) assessment. 
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Table 1. The documentation systems (DS) of Nohelia 

 
 

In Nohelia's initial DS, according to the initial interview, the following aims and resources (shown 
in italics) were included at each stage: Stage 1 (reviewing previous knowledge) and Stage 3 
(developing a new topic) both focused on having children solve tasks, with the difference that in 
Stage 1, the aim was to make a diagnosis of children’s knowledge, through their problem-solving 
activity work in teams; while in Stage 3, the Stage 1 results (another resource in itself) are taken into 
account for posing tasks on which students work individually. Nohelia designed the tasks using the 
following resources: (i) the curricular aims of the study program, (ii) materials from the Ministry of 
Education’s teacher activity books (SEP 1994); (ii) didactic guidelines from the teacher activity 
books, or purchased or found on the Internet; (iii) fragments of stories, adapted to the context of the 
students, to motivate and interest them. The problems to be solved were presented as printed 
materials or projected on slides. Between Stages 1 and 3, in Stage 2 (sharing knowledge with the 
whole group), the student teams’ shared their solutions to the initial tasks, and the teacher guided the 
discussions and strengthened skills (e.g., arithmetic ones), through exercises, videos and concrete 
materials, before moving on to the individual problem solving activity (Stage 3). Finally, in Stage 4 
(assessment), she used the official textbook and program of study as resources for assessing the 
expected learning. Additionally, other resources that influenced her entire lesson plan were the 
program of study, colleagues' experiences, courses taken, and didactic literature.  

That initial DS was modified as a result of the PD course, where Nohelia designed three lessons 
integrating, respectively, the use of some of the proposed digital resources, giving rise to a new DS 
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for each class (see Table 1): In DS1, situations were proposed to find the quantity of milk comparing 
containers in three different scenarios, "at home", "in the stable" and in a "processing plant", using an 
interactive app called "Capacity measurements". In DS2, Geogebra was used to design –based on a 
task from the teacher activity book– triangles where a spider has to descend from one vertex to the 
opposite base in order to trace their heights. And in DS3, Logo was used to construct polygons. The 
DS1 and DS2 lessons were carried out by Nohelia in her classroom with a computer and projector, 
and the DS3 lesson, in the media room. 

For each new DS, Stage 1 still had as purpose to review the previous knowledge needed for the new 
topic; however, instead of posing a task, children were asked oral and written questions, and given 
games to play. In Stage 2, instead of being one in which knowledge was shared, the teacher posed 
other tasks: for DS1, she asked children to compare containers of different capacities (liters and 
milliliters), similar to what is included in the interactive app; in DS2, she used complementary tasks 
to those posed in Stage 1, in order to review student’s previous knowledge about triangles, 
particularly in terms of the heights the triangles; and in DS3, the teacher and students drew regular 
polygons on the blackboard in order to analyze their sides and angles. In Stage 3, the aim of 
developing the new topic was kept, using worksheets to pose tasks, the solutions of which were 
discussed as a whole group, but adapted in the following ways: in DS1 and DS3, the DT resources 
replaced those that the teacher originally used, in order to select, design and implement the tasks. In 
DS2, the DT resource (Geogebra) was used in combination with one of the original resources (a task 
from the teacher activity book). In DS3, the use of Logo led to study the content in another way, in 
terms of the Turtle Geometry context, which required thinking of the angles as turns; it was thus 
necessary to become aware that these did not correspond to internal angles. Finally, Stage 4 
continued to focus on children solving tasks from the textbook, in order to assess their learning 
(except in DS3, where Stage 4 was no longer carried out, because it was not possible to coordinate 
the Logo tasks with the curricular content). 

Final remarks 
In the case presented, we observed that the integration of digital resources, as well as the training 

(the PD course), generated modifications to the teacher's document system, causing: resources to be 
substituted, or used in combination to previous ones (i.e., in DS2); for the topic’s tasks (and 
worksheets) to be designed ad hoc by the teacher, instead of taken from other sources; and for some 
activities that the teacher used to carry out (such as assessing the solutions to the tasks), being done 
by the software. Each digital resource presented new possibilities (in terms of implementation, 
knowledge and even motivation), as well as some limitations: The interactive app was easy to use 
and was adapted to the curricular content, although the learning tasks were restricted to what was 
proposed in it; GeoGebra was difficult to use, but allowed the teacher to design her own digital 
material, according to her interests and the curricular content; and Logo brought about more drastic 
changes to the initial DS of Nohelia, because it modified how the curricular content was approached. 

These experiences show how the integration of digital resources into the DS of teachers is a 
complex but necessary task: it demands, in order to have meaningful DT integration, the 
collaboration of teachers, trainers, researchers and authorities, as well as access to hardware, with a 
development of teachers’ pedagogical technology knowledge (PTK) (Thomas & Palmer, 2014), as 
we attempted to achieve through the PD course. 
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Los recursos juegan un papel importante en la manera de actuar y pensar de los sujetos. Los 
profesores, a lo largo de su trayectoria profesional, han construido formas de enseñanza de las 
matemáticas —articulados por la organización y tipo de actividades que guían la clase, los recursos 
que utilizan y sus formas de intervención— que se ven modificados cuando un nuevo recurso es 
integrado. Aquí presentamos evidencias de este fenómeno a partir del caso de una profesora quien, 
al participar en un curso de desarrollo profesional que implementamos, integró recursos digitales en 
su trabajo documental, desestabilizando sus formas previas de enseñanza.  

Palabras clave: Educación Primaria, Tecnología, Herramientas y recursos docentes, Capacitación 
docente / Desarrollo Profesional 

Introducción 
Aunque, en esta era digital, la integración de recursos digitales en la enseñanza de las matemáticas 

es una necesidad social y pedagógica (Sunkel, Trucco & Espejo, 2014) se observan carencias en 
sectores de la educación básica en México (Enríquez & Sacristán, 2017, 2019). De hecho, el uso de 
tecnologías tiende a no ser casi considerado en la formación docente (e.g., ver el perfil de egreso para 
profesor de educación primaria –SEP, 2018). En este reporte presentamos parte de una investigación 
que indaga cómo profesores de escuelas primarias de Oaxaca participantes en un curso de desarrollo 
profesional (DP), integran recursos digitales en su enseñanza de las matemáticas. El estudio utiliza la 
Aproximación Documental de lo Didáctico o ADD (Gueudet& Trouche, 2009, 2012), para responder 
la pregunta: Cuando los profesores participantes integran recursos digitales a su práctica docente, 
¿qué cambios se dan en el diseño e implementación de sus clases de matemáticas, o sea, en su 
sistema documental2? 

La aproximación documental de lo didáctico (ADD) 
La ADD estudia la práctica del profesor y su desarrollo profesional a partir de su interacción con los 

recursos que utiliza (selecciona, adapta, revisa, reorganiza) para la enseñanza de las matemáticas 
(Gueudet & Trouche, 2009, 2012). Los recursos se integran en un sistema de recursos (SR). El 
conjunto de interacciones y procesos con el SR, donde se articulan diseño y puesta en práctica, 
conforman el trabajo documental (Gueudet & Trouche, 2012) del profesor. A través del trabajo 
documental se producen, documentos integrados por recursos recombinados y esquemas asociados de 
utilización; el conjunto de documentos de un profesor es su sistema documental (Gueudet & 
Vandebrouck, 2011).  A lo largo de la trayectoria profesional del profesor, su sistema de documentos 
va evolucionando, al trabajar y experimentar con viejos y nuevos recursos. Así, el trabajo documental 
del profesor da cuenta de su desarrollo profesional, es decir, de la evolución de su práctica, 
conocimiento y creencias (Gueudet & Trouche, 2012).  

                                                             
2 “Sistema documental” se define más abajo. 
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Metodología 
Este reporte se enmarca en una investigación que ha,consistido en: un estudio diagnóstico para 

indagar las condiciones de formación de los profesores y de acceso a recursos digitales; una fase de 
intervención, donde se implementó un curso de DP a profesores participantes en el estudio 
diagnóstico, para la integración de recursos digitales en la enseñanza de las matemáticas; y una fase 
de indagación del proceso de integración de recursos digitales de los participantes, a partir del 
seguimiento de su trabajo documental. En el estudio diagnóstico participaron 67 profesores de 10 
escuelas primarias de la región Mixteca del estado de Oaxaca, México, quienes carecían de 
formación sobre el uso de tecnología digital (TD) para la enseñanza de las matemáticas hacían uso 
limitado de TD en su práctica, y su acceso a equipo digital era limitado –debido a un pobre 
equipamiento de las escuelas y a políticas escolares que limitaban su uso (Enríquez & Sacristán, 
2017, 2019). Esta información se tomó en cuenta para el diseño del curso, en la fase de intervención, 
de DP para la integración de TD a la práctica docente de matemáticas. Se invitó a los 67 profesores 
participantes en el estudio diagnóstico a participar en el curso y estudio asociado; 15 de ellos 
aceptaron. El curso de DP duró 5 meses (6 horas semanales). Se fundamentó en modelos teóricos 
sobre el conocimiento base del profesor (Shulman, 1986; Ball, et al.,2008, Thomas & Palmer, 2014). 
También utilizó la experiencia del programa EMAT (Sacristán y Rojano, 2009) y algunos de sus 
materiales (el software Logo y las guías didácticas para uso – Sacristán, 2005; Sacristán & Esparza, 
2005). 

El curso. Consistió de tres módulos, cada uno dedicado al estudio de cierto tipo de recursos TD –
respectivamente, applets e interactivos diversos, Geogebra y Logo. Las actividades de cada módulo 
se desarrollaron en un ciclo de 4 momentos: (i) El estudio de los recursos digitales; (ii) el diseño de 
planes de clases de matemáticas integrando el uso de los recursos estudiados; (iii) la implementación 
de las clases diseñadas; y (iv) la reflexión grupal de las experiencias.  

La recolección de datos. Para indagar los cambios en los sistemas documentales de los 
participantes recurrimos a: (i) entrevistas iniciales a los profesores, así como posteriores a la 
implementación de cada una de sus clases con TD; (ii) los planes de clase diseñados por los 
profesores durante el curso; (iii) observaciones de las clases diseñadas; (iv) las presentaciones de sus 
experiencias de clase, compartidas con sus colegas del curso.  

Ahora presentamos datos de una profesora, Nohelia, participante en el estudio. 

El caso la profesora Nohelia 
Perfil de la profesora. Nohelia es licenciada en educación primaria con una maestría en desarrollo 

de competencias docentes, y ha tomado distintos cursos de DP, entre ellos de matemáticas y de 
computación. Al inicio del estudio, tenía 9 años de experiencia docente, y estaba a cargo del grado 5º 
en una escuela primaria rural, donde se cuenta con un aula de medios con 18 computadoras, un 
proyector portatil, y un viejo equipo de Enciclomedia (SEP, 2012) –computadora, pizarrón 
electrónico y otro proyector. 
Los cambios en el sistema documental (SD) de la profesora Nohelia  

A partir de los datos de la entrevista inicial a Nohelia, determinamos su sistema documental (SD) 
inicial –recursos y formas de uso para su clase de matemáticas— al principio del estudio. Este SD 
cambió a partir del curso, cuando integró los recursos digitales estudiados a su práctica. El SD inicial 
de Nohelia incluía varios documentos —e.g., actividades de orientación, o de reforzamiento (para 
ayudar a sus alumnos a superar debilidades) —cada uno con recursos específicos. Su SD inicial (ver 
Tabla 1) orientaba la totalidad de su clase, en cuatro momentos: (1) repasar conocimientos previos, 
(2) socialización de conocimientos, (3) desarrollo del tema y (4) evaluación.  
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Tabla 1. Los sistemas documentales (SD) de Nohelia con sus momentos (M) 

 
 
En el SD inicial de Nohelia, de acuerdo a la entrevista inicial, se conformaron cada momento con 

los siguientes propósitos y recursos (mostrados en cursivas): los momentos 1 (repasar conocimientos 
previos) y 3 (desarrollo del tema) se centraban ambos en poner a los niños a resolver problemas, con 
la diferencia que en el Momento 1, se buscaba hacer un diagnóstico de lo que sabían los niños, 
trabajando ellos en equipos; mientras que en el Momento 3, tomando en cuenta los resultados del 1 
(otro recurso en sí), los alumnos trabajaban individualmente. Nohelia diseñó los problemas a partir 
de los siguientes recursos: (i) los objetivos curriculares del programa de estudio, (ii) actividades de 
los “ficheros” de la Secretaría de Educación (SEP 1994); (ii) orientaciones o guías didácticas de los 
ficheros, compradas o halladas en Internet:  (iii) fragmentos de cuentos, adaptados al contexto de los 
estudiantes, para motivar e interesarlos. Los problemas se daban impresos o proyectados mediante 
diapositivas. Entre esos momentos, en el momento 2 (socialización de conocimientos), se 
compartían las soluciones grupales de los niños a los primeros problemas, y la profesora reforzaba 
habilidades mediante ejercicios (e.g., aritméticos), videos y materiales concretos, antes de pasar a la 
actividad de resolución individual de otros problemas (Momento 3). Finalmente, en el momento 4 
(evaluación), el libro de texto y programa de estudio fueron los recursos utilizados para valorar los 
aprendizajes esperados. Adicionalmente, hay otros recursos que influyen en la totalidad de la clase –
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tales como el programa de estudio, experiencias de colegas, cursos que ha tomado, y bibliografía 
didáctica.  

Ese SD inicial se modificó a raíz del curso de DP, donde Nohelia diseñó tres clases integrando, 
respectivamente, el uso de algunos de los recursos digitales propuestos, dando lugar a un nuevo SD 
para cada clase (ver Tabla 1): En el SD1, se plantean situaciones para hallar la cantidad de leche 
comparando recipientes en tres escenarios distintos, “en la casa”, “en el establo” y en la “planta 
procesadora”, usando el interactivo “Medidas de capacidad”. En el SD2, se usó Geogebra para 
diseñar, basándose en una actividad del fichero, triángulos por los que debía descender una araña 
desde un vértice hasta la base opuesta para trazar las alturas. Y en SD3 se usaría Logo para construir 
polígonos. Las clases de los SD1 y SD2 las implementó Nohelia en su salón con una computadora y 
un proyector, y la del SD3 en el aula de medios.  

Para cada nuevo SD, en el momento 1 se mantiene el propósito de introducir los temas repasando 
los conocimientos sobre el contenido a trabajar; sin embargo, en lugar de plantear un problema, se 
hicieron preguntas orales, escritas y juegos. El momento 2, en lugar de ser uno de socialización de 
conocimientos, fue uno para plantear otras situaciones: para el SD1, comparar recipientes de distintas 
capacidades (litros y mililitros), de manera similar a lo propuesto en el interactivo; en el SD2, 
actividades complementarias a las del momento 1 para evaluar los conocimientos previos sobre 
triángulos, en particular sobre sus alturas; y en el SD3, trazos de polígonos regulares para analizar 
sus lados y ángulos. En los momentos 3, se mantuvo el propósito de abordar el contenido mediante 
hojas de trabajo para plantear problemas, para luego discutir las soluciones en plenaria, con algunas 
adaptaciones: en los SD1 y SD3, los recursos TD suplieron los que originalmente utilizaba la 
profesora para seleccionar y diseñar problemas. En el SD2 se combinó el recurso TD (Geogebra) con 
uno de los recursos originales (una actividad del fichero). En el SD3, el uso de Logo llevó a estudiar 
el contenido de otra manera, en términos del contexto de la Tortuga, pensando en los ángulos como 
giros, y requirió percatarse que éstos no correspondían a los ángulos internos. Finalmente, los 
momentos 4 continuaron siendo la resolución de tareas del libro de texto para evaluar el aprendizaje 
(excepto en el SD3, donde no se llevó a cabo momento 4, ya que no pudo adaptar la actividad Logo, 
al contenido curricular).  

Comentarios finales 
En el caso analizado, observamos que la integración de recursos digitales, así como la capacitación 

(el curso DP) generaron modificaciones al sistema documental de la profesora, ocasionando: que se 
suplieran recursos, o se combinaran (i.e., en el SD2); que las actividades de aprendizaje (hojas de 
trabajo) del tema no fueran retomadas de otras fuentes, sino construidas por la profesora; que algunas 
actividades, que la profesora solía llevar a cabo (como el evaluar las respuestas a los problemas), 
fueran realizadas por el software. Cada recurso digital presentó nuevas posibilidades (en términos de 
implementación, conocimientos e incluso motivación), así como algunas limitantes: El interactivo 
fue de fácil manejo y adaptación al contenido curricular, aunque las tareas de aprendizaje se 
restringían a lo propuesto en éste; GeoGebra resultó de difícil manejo, pero permitió el diseño de 
material digital propio, de acuerdo al interés de la profesora y al contenido curricular; y Logo originó 
cambios más drásticos al SD inicial de Nohelia debido a que modificó la manera de estudiar el 
contenido curricular.  

Estas experiencias muestran cómo la integración de recursos digitales, al SD de los profesores, es 
una tarea compleja pero necesaria: para lograr una integración significativa de las TD, demanda la 
colaboración de profesores, capacitadores, investigadores y autoridades, requiriendo acceso a equipo 
digital y de desarrollo del conocimiento pedagógico tecnológico (PTK – Thomas & Palmer, 2014), 
como se intentó mediante el curso de DP. 
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Spatial reasoning is a high-impact topic as it strongly predicts interest in, appreciation of, and 
success in STEM domains and careers. Yet, spatial reasoning is often under-used, underdeveloped, 
and ignored in current grade-school curriculum and teaching. Framed by the perspective of 
embodied cognition, our study explores changes in elementary students’ spatial reasoning skills after 
participation in either a short-term or a long-term robotics intervention. We administered measures 
of spatial reasoning elements before and after two differently structured robotics interventions to 
students aged 9-10 years: a short-term (N=11) and two long-term (N=48). Statistical analysis 
revealed significant improvements to several different elements of spatial reasoning in both groups. 
Our findings suggest that programming robots in either the short- or long-term leads to 
improvements in spatial reasoning. 

Keywords: Programming and coding; STEM / STEAM; Technology 

The purpose of our study is to report changes in elementary students’ spatial reasoning skills after 
participation in either a short-term or a long-term robotics intervention. Spatial reasoning is a high-
impact topic as it strongly predicts interest in, appreciation of, and success in STEM domains and 
careers (Casey et al., 2011; Lubinski, 2010; Mix & Cheng, 2012; Mix et al., 2016; Wai et al., 2009). 
Spatial reasoning is highly malleable, and can be learned (Julià & Antolí, 2016; Sorby, 2009; Uttal et 
al., 2013).Yet, spatial reasoning is mostly under-used, underdeveloped, and ignored in current grade-
school curriculum and teaching (Newcombe, 2010). A few studies have investigated the positive 
effects of spatial reasoning and robotics interventions in schools (Coxon, 2012; Francis et al., 2016; 
Julià & Anatolì, 2016, Julià & Anatolì, 2018; Khan et al., 2014; Verner, 2004). Our current study 
builds on previous studies to further investigate the malleability of spatial reasoning with short-term 
and long-term robotics interventions. 

Background Literature 
What is spatial reasoning? 

While there is considerable debate about what spatial reasoning is (see Uttal et al., 2013), we draw 
upon Bruce et al.’s (2017) definition of spatial reasoning as the ability to recognize and (mentally) 
manipulate the spatial properties of objects and the spatial relations among objects. Davis et al. 
(2015, p. 141) describe the emergent complexity of spatial reasoning skills as co-evolved and 
complementary nature of the mental and physical actions. The nature of these skills is entangled and 
emergent. Their description of spatial reasoning elements include ALTERING (dilating/contracting, 
distorting/morphing, scaling, folding, shearing), MOVING (sliding, rotating, reflecting, balancing, 
sliding), SITUATING (dimension shifting, locating, orienting, pathfinding, intersecting), 
SENSATING (perspective-taking, visualizing, propriocepting, imagining, tactilizing), 
INTERPRETING (diagramming, modeling, symmetrizing, comparing, relating), 
[DE]CONSTRUCTING (de/re/composing, un/re/packing, re/arranging, sectioning, fitting). 
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Context 
This study is based on a multi-year design-based research project investigating how robotics 

influences spatial reasoning. The data reported here is based on quasi experimental results 
investigating if robotics interventions impact spatial reasoning. The first iteration of the design 
reported here was based on a week-long robotics academy with elementary teachers and Grade 4-5 
students held at a university (15 hours). The second and third iterations of the design reported here 
were year-long classroom interventions at a local school (40 hours) in Grades 4-5. It is beyond the 
confines of this brief research report to describe the structures of the interventions in detail. However, 
Table 1 summarizes the sequence and spatial reasoning elements engaged in each task. Every 
robotics task of the short-term and the long-term intervention involved multiple spatial elements. 

 
Table 1. Spatial Skills Found in the Intervention Task

 

Methodology 
Our study explores the following research question: Do elementary students’ spatial reasoning skills 

improve after participation in either a short-term or a long-term robotics intervention? The data 
reported here is based on the quasi experimental pre- and post-test results collected before and after 
the interventions mentioned above. Participants in the short-term intervention included 11 Grade 4 
students. Participants in the long-term intervention were from a different school and included 48 
students total, whereby ten Grade 4 students completed the pre- and post-tests in 2017-2018. During 
the following school year 2018-2019, 19 Grade 4 students and 19 Grade 5 students respectively took 
the pre- and post-tests on spatial reasoning skills. The administration of the pre- and post-test 
instruments was similar for the short- and long-term interventions. 

Description of pre- and post-test instrument. We developed an instrument that encompassed a 
broad range of spatial skills based on an amalgamation of established protocols. The spatial 
reasoning pre- post-test consisted of seven (different) task categories with 13 test items for the short-
term intervention, and three additional test items for the long-term intervention. The short-term pre- 
and post-test included four Sorby drawing items, two paper folding items, two shape rotation items, 
two stereonet items, one building a 3D object from an image item, one moving a shape on a grid 
item, and one cross-section of a cube: isometric projection. The three additional items in the 
reasoning pre- and post-test of the long-term intervention included one more paper folding item, a 
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block visualization/rotation item, and a pattern arranging item. Groups of three students were tested 
at a time. Each of the tests took approximately 45 minutes. 

Analysis of results of short-term intervention. The data reported in this section details the Grade 
4 results from the week-long intervention in 2016. The data consisted of one group of the same 
subjects at two different points in time (before and after the intervention). For such data, the Paired t-
Test is an appropriate test to compare the means when the data is normally distributed (Huck, 2012; 
Mills & Gay, 2019). For data that is not normally distributed, the non-parametric Wilcoxon Signed-
Ranks Test is more appropriate (Huck, 2012; Mills & Gay, 2019). To determine if that data is 
normally distributed, the Shapiro Wilks test is a suitable parametric test for a small sample size 
(Huck, 2012; Mills & Gay, 2019).  

To compare spatial reasoning at the beginning and end of the week long robotics camp (15 hours) a 
paired t-test was conducted on the normally distributed Items 2, 3, 5, 10, 11, 12, and Total (pre- and 
post-test) and a Wilcoxon signed-rank test was used for the not normally distributed Items 1, 4, 6, 7, 
8, 9, and 13 (pre- and post-test). All spatial reasoning test items saw improvement. There was a 
significant improvement for the Sorby drawing Item 2: t(10) = -2.4, p < .05; building a 3D object 
from a picture Item 11: t(36) = -2.9, p = .05, moving a shape on a grid Item 12: t(11) = -2.4, p = 0.05 
and; the overall total: t(11) = -3.05, p < .05. 

Analysis of Results of Year Long Intervention. To compare spatial reasoning at the beginning 
and end of the school year a paired t-test was conducted on normally distributed Items 1-16 (pre- and 
post-test) and a Wilcoxon signed-rank test was used on the non-normally distributed Items Total 
(pre- and post-test). The data combines the Grade 4 results from Year 2017-2018 and the Grade 4 
and 5 results from Year 2018-2019. All spatial reasoning test items saw improvement. There was a 
significant improvement for the Sorby drawing Item 2: t(47) = -2.4, p < .05; paper folding Item 5: 
t(47) = -3.4, p < .05; rotation Item 9: t(47) = -3.0, p < .05; pattern arranging Item 16: t(36) = -4.2, p < 
.05, and; the overall total: Z(-4.519), p < .05. 

Discussion 
In this study, we found how powerfully robotics interventions can improve spatial reasoning. We 

found similar results from both the short-term and long-term interventions. For the short-term 
significant results were observed in Sorby drawing, building a 3D object from a picture, moving a 
shape on a grid, and overall total score. For the long-term, significant results were observed in Sorby 
drawing, paper folding, shape rotation, pattern arranging and overall total score. The long-term 
intervention did not reveal a significant improvement to building 3D object from picture and moving 
along a grid. Perhaps this is because the students in the long-term study were already quite high in 
these two measures compared to the short-term group; there was not as much room to improve with 
these groups. 

Previous studies also found improvements in spatial reasoning with robotics interventions. Verner 
(2004) reported improvements in three spatial reasoning skills: visualization, perception, rotation. 
Julià and Anatolì (2016; 2018) found improvements with spatial reasoning tasks. By drawing upon 
Davis et al.’s (2015) descriptions of spatial reasoning elements, we were able to provide a broader 
perspective of spatial reasoning than Verner (2004). Like Julià and Anatolì (2016; 2018), our 
instrument included paper folding, shape rotation, cube comparison and perspective taking. However, 
our test instrument also included Sorby drawing items, stereonets, building 3D objects from pictures, 
moving shapes on a grid and isometric projects. We not only looked at the spatial reasoning tasks as 
did Julià and Anatolì (2016; 2018), we also identified the spatial reasoning elements that were 
associated with each task. For example, visualization and imagining from SENSTATING were 
elements that appeared in every task and are integral to spatial reasoning as evident from most 
definitions (see Uttal et al., 2013). 
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Our identification of spatial elements within the tasks was important to show the compatibility of 
the test instruments with robotics. For instance, it may seem like the Sorby drawing item is 
completely different from programming a robot to move. However, the Sorby drawing item requires 
seven spatial reasoning elements: SITUATING (dimension shifting, intersecting), SENSATING 
(visualizing, imagining), INTERPRETING (diagramming), and [DE]CONSTRUCTING 
(de/re/composing, fitting). Francis et al. (2016) observed the engagement of these same spatial 
reasoning elements when students programmed robots to move. 

Our findings complement our previous qualitative research which illustrated how spatial reasoning 
is engaged while building (Khan et al., 2014) and programming robots to move (Francis et al., 2016). 
These prior studies illustrated the complex and co-emergent nature of spatial reasoning which helped 
provide a basis for this current study that drew upon embodied cognition to investigate the results of 
learning from action. Our results provide some validation to Pouw et al.’s (2014) prediction that 
sensorimotor experiences are important for development of related concepts. In other words, this 
study along with our two previous studies (Khan et al., 2015; Francis et al., 2016) illustrate the power 
of sensorimotor experiences of robotics learning for improving spatial reasoning. Not only is spatial 
reasoning engaged, it also improves significantly. 

As future work, we would like to explore how programming robots to move helps with learning 
mathematics. Spatial reasoning ability is correlated to mathematics achievement (Mix & Cheng, 
2012) and computer programming is highly related to mathematics. Exploring connections could lead 
to unexpected and emerging insights for the teaching and learning of mathematics. 
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This paper shows the types of problems posed by of in service Mexican teachers in both  paper-and-
pencil and GeoGebra. The analysis and characterization of the posed problems were based on the 
model stated by Stoyanova (1998). According to the results, teachers can more easily pose  problems 
in paper and pencil when dealing within a semi-structured situation. However, when using  
GeoGebra,  they can more easily create  problems within a free situation. These kinds of results 
indicate the necessity of professional development regarding the use of new technologies for 
mathematics teaching, where problem posing is fundamental. 

Keywords: Problem posing, Technology, Teacher’s knowledge. 

Background 
Problem posing is an important issue in mathematics teaching and learning. It is a useful 

mathematical activity because it helps evaluate content understanding, it encourages critical thinking, 
creativity and motivation, and it guides teacher’s decision making. Furthermore, it is recognized that 
mathematics teaching and learning is modified in technological environments, therefore, problem 
posing is modified as well. In this regard, some researchers (e.g., Abramochivh & Cho, 2006; Fukuda 
& Kakihana, 2009, among others) have studied attitudes on the effect of problem posing in a paper-
and-pencil environment versus the use of technology, in which they have identified, as a potential to 
pose appropriate problems, the possibility of direct manipulation of the mathematical object in 
technological environments. 

In service teachers and future mathematics teachers usually are engaged in problem posing, but they 
are not aware of it. For instance, they pose problems when they adapt a problem from different 
sources and adequate it to the students’ context. Crespo and Sinclair (2008) have stated that teachers 
should have similar experiences than those they want to set in their students. Therefore, problem 
posing should be present intheir teacher training and professional development. Thus, the research 
question that guided this study is: What kind of problems are posed by mathematics teachers in a 
paper-and-pencil environment, and which ones in a technological environment? 

Theoretical Framework 
According to Silver (1994, p. 19) posing mathematical problems, or just Problem Posing, is “the 

production of new problems and the reformulation of given problems. Therefore, posing a problem 
can occur before, during or after the solution of a problem”. For González (2001), problem posing 
involves “to identify, create, describe and write a mathematical problem, individually or collectively, 
based on an initial situation–identified or created– by those involved in developing it” (cited in 
Rodriguez, García & Lozano, 2015, p. 103). 

Regarding the classification of the type of situations in problem posing, Stoyanova (1998, cited in 
Christou, Mousoulides, Pittalis, Pitta-Pantazi, & Sriraman, 2005) has proposed three categories: Free 
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situations, are those that have no restrictions when creating a problem. Semi-structured situations, 
are those in which a drawing, a graph or a part of a story is given to pose the problem. And, 
Structured situations, are those which specifically refer to reformulating an existing problem. 

Problem posing is important to promote mathematical thinking. In this regard, Ayllón and Gómez 
(2014) recognize that creating problems increases mathematical knowledge, because it encourages 
students to create connections between their already acquired knowledge. Among the different 
perspectives on problem posing, this paper is mainly based on Silver’s (1994) ideas and on the 
proposed classification by Stoyanova (1998), for both, task design and data analysis. 

Method 
This paper is part of a current research project. Here, we are reporting the work of five teachers (T1, 

T2,…, T5),  one male and four females (ages 27-37), for which their full work has been identified. Of 
the five teachers, one teaches at a junior high school, two teach at a high school, and one teaches at a 
college. 
Task Design 

Five problem posing tasks were designed, based on Stoyanova’s (1998) classification. In this report, 
only the first two tasks were analyzed: Task 1 uses a free situation to ask the teachers to pose a 
problem, related to any mathematical area.. Task 2 uses a semi-structured situation toask them to 
create a problem regarding a given geometrical drawing Both tasks are divided into two parts;  paper-
and-pencil problem posing and problem posing in a GeoGebra environment. 
Data Gathering 

Data collection was carried out by means of a group interview in a workshop on problem posing, 
during three sessions. First, the five tasks were set to pose problems in paper-and-pencil (first part). 
Later, the same five tasks were used to pose problems using GeoGebra (second part. In the second 
part, each participant was given a GeoGebra file, to visualize and manipulate the given geometrical 
figure related to the semi structured situation. The sources for data analysis were the worksheets from 
each participant, the generated GeoGebra files and field notes. 

Analysis and Results 
Part 1: Problem posing in paper-and-pencil 

Free situation. In Task 1 (creating a problem related to any mathematical area), the participants 
posed five problems. According to their answers, the following problems were posed: one 
geometry/calculus problem on optimization, one algebraic problem on second grade equations, two 
statistics problems on central tendency, and one financial mathematics on compound interest. 

Semi-structured situation. For Task 2 (posing, based on a given figure, as many problems as they 
could), 38 problems were created, 37 Euclidean geometry problems and 1 problem on analytical 
geometry. Problems regarding Euclidean geometry are about areas (11), length (13), visualization of 
elements in the given figure, i.e., radius, diameter, chord, etc. (9), angles (2), and figure 
reconstruction using a ruler and a compass (2). As an example of the problems posed by the teachers, 
Figure 1 (right) shows the analytical geometry problem created by T4. 

 

     

Find the 
circumference equation, 
ordinary and general, 
given that  

c: (0,0) and d=6 
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Figure 1: Given figure (left). Problem posed by P4 (right) 

 
Table 1 summarizes the total of posed problems in the first part, regarding the work on paper-and-

pencil. Even though Task1 explicitly asks the teachers to pose one problem, the number of problems 
posed in Task 2 is higher. Which means that it was easier for participants to create problems when 
information is provided (semi structured situation) than when it is not (free situation). 
 

Table 1: Summary, total created problems in paper-and-pencil 
Task Situation Total problems 

Task 1 Free 5 
Task 2 Semi-structured 38 

 
Part 2: Problem posing in GeoGebra 

Free situation. In this type of situation participants created six problems (one of the participants 
created two). By their characteristics, these can be categorized as problems related to analytical 
geometry, Euclidean geometry, algebra and financial mathematics. Figure 2 shows the Euclidean 
geometry problem posed by T3, which involves the bisector. 

 

 
Figure 2: Problem Posed by P3 using GeoGebra 

 
Semi-structured situation. This task involves a GeoGebra file. According to the results,  10 

problems of this kind of situation were created when using GeoGebra referring to Euclidean 
geometry. The problems can be categorized as follows: 6 relating to areas, 2 relating to angles, and 2 
to relating to length. Figure 3 (left) shows the given figure in this task (constructed in GeoGebra, and 
included in the given GeoGebra file used by participants) in which teachers based their problems. As 
an example, Figure 3 (right) shows the problems created by T5 using GeoGebra, the problem asks for 
measures of perimeter, angles, and the comparison of the areas of different figures involved, knowing 
that the observed square is 1 cm per side. 

 

 
Figure 3: Given Figure (left). Problems posed by P5 (right) 

 
Table 2 summarizes the problems posed by teachers during the second part. Based on the results, 

the number of problems created when using GeoGebra, in the semi-structured situation, decreases 
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compared with the posed problems in paper-and-pencil (see Table 1). However, in both parts, the 
number of problems created in the semi-structured situation is higher than in the free situation. 

 
Table 2: Summary, total created problems in GeoGebra 

Task Situation Total problems 
Task 1 Free 6 
Task 2 Semi-structured 10 

Conclusions 
Regarding the free situation, in the first part, during the interview teachers expressed uncertainty 

about how to proceed to answer the task. This indicates the lack of experience of problem posing in 
their practice. Nevertheless, when they had the opportunity of using GeoGebra in the free situation, 
they interacted with the software in order to pose their problems by using it as a guide to explore the 
given figure, -see Figure 3 left,, or by including the use of GeoGebra as part of the problem. 

In the semi-structured situation, when using only paper-and-pencil teachers assumed geometrical 
properties, which allowed them to pose a higher number of problems than in the second part. When 
the situation involved the use of GeoGebra, it was observed that teachers did not take advantage of 
the software’s capacities (i.e., its dynamic feature), GeoGebra was used only as a means for static 
visualization. This may have happened because only participants T1 and T5 had previous experience 
with GeoGebra. Furthermore, the problems posed by the teacher did not mention the use of 
GeoGebra in solving the problems. Thus, even when previous reports (e.g., Abramovich & Cho, 
2006; Fukuda & Kakihana, 2009) suggest the potential of the use of technology for problem posing, 
our results show the necessity for teachers to develop specific knowledge for mathematics teaching 
with technology in order to pose problems in technological environments. Therefore, models such as 
TPACK (Technological Pedagogical Content Knowledge, Mishra & Koehler, 2006, 2009), or KTMT 
(Knowledge for Teaching Mathematics with Technology, Rocha, 2013), among others, should be 
included in teacher training and development. 
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Este trabajo muestra los tipos de problemas planteados por profesores Mexicanos en servicio de 
diferentes niveles educativos tanto en un ambiente de papel-y-lápiz como mediante el uso de 
GeoGebra. El análisis y clasificación de los tipos de problemas fue realizado mediante la 
categorización propuesta por Stoyanova (1998). De acuerdo con los resultados, por un lado, los 
profesores plantean problemas con mayor facilidad, en papel-y-lápiz, cuando se trata de una 
situación semiestructurada. Por otro lado, al hacer uso de GeoGebra, se les facilita el planteamiento 
de problemas cuando la situación es libre. Lo anterior indica la necesidad de que los profesores 
cuenten con mayor apoyo respecto al uso de las nuevas tecnologías para la enseñanza de las 
matemáticas; donde el planteamiento de problemas es fundamental. 

Palabras clave: Planteamiento de problemas, Tecnología, Conocimiento del profesor 

Antecedentes 
El planteamiento de problemas es importante en la enseñanza y aprendizaje de las matemáticas, 

puesto que puede ser tomada como una herramienta que ayuda a evaluar la comprensión de los 
contenidos, estimula el pensamiento crítico, la creatividad y motivación, y promueve la toma de 
decisiones de los profesores. Además, es reconocido que la enseñanza y aprendizaje de las 
matemáticas se modifica en ambientes tecnológicos; por la tanto, también el planteamiento de 
problemas. De esta manera, algunas investigaciones (e.g., Abramovich & Cho, 2006; Fukuda & 
Kakihana, 2009; entre otros) han estudiado sobre las actitudes y efectos del planteamiento de 
problemas en ambiente de papel-y-lápiz frente al uso de tecnología; al respecto, identifican la 
manipulación de objetos matemáticos en entornos tecnológicos como un potencial para plantear 
problemas apropiados.  

Los profesores y futuros profesores, por su parte, en diversas ocasiones crean problemas sin ser 
conscientes de ello. Es decir, en el momento en que adaptan un problema extraído de otra fuente para 
que sea adecuado al contexto de sus estudiantes, llevan a cabo el proceso de planteamiento de un 
problema. Crespo y Sinclair (2008), afirman que los profesores deben tener experiencias similares a 
las que pretenden inculcar a sus alumnos, por lo que el planteamiento de problemas debería estar 
presente en los años de su formación. Por lo tanto, la pregunta de investigación que guió el estudio es 
la siguiente: ¿Qué tipos de problemas plantean profesores de matemáticas en ambiente de papel-y-
lápiz, así como con el uso de GeoGebra? 
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Marco Teórico 
De acuerdo con Silver (1994, p. 19) el planteamiento de problemas matemáticos, o Problem Posing, 

como se le conoce en la literatura es “la generación de nuevos problemas y la reformulación de 
problemas dados. Por lo que, plantear puede ocurrir antes, durante o después de la solución de un 
problema”. Para González (2001), plantear problemas consiste en “identificar, crear, narrar y redactar 
un problema matemático, en forma colectiva o individual, a partir de una situación inicial 
identificada o creada por la(s) persona(s) que la realiza(n)” (citado en Rodríguez, García & Lozano, 
2015, p.103). 

Respecto a clasificaciones de tipos de situaciones en el planteamiento de problemas, Stoyanova 
(1998, citado en Christou, Mousoulides, Pittalis, Pitta-Pantazi, & Sriraman, 2005), determina tres 
categorías: Situaciones libres, son aquellas que no tienen restricción alguna, sino que el creador 
decide el tema sobre el cual se planteará el problema. Situaciones semiestructuradas, se refiere a 
aquellas en la que se proporciona un dibujo, gráfico o parte de una historia sobre la cual se planteará 
el problema. Y Situaciones estructuradas las cuales tratan específicamente de reformular un 
problema ya existente.  

De acuerdo con lo anterior, el planteamiento de problemas resulta importante para promover el 
razonamiento matemático. Al respecto Ayllón y Gómez (2014), reconocen que la invención de 
problemas provoca el aumento de conocimientos matemáticos, debido a que obliga a los estudiantes 
a crear conexiones entre los conocimientos ya adquiridos. Respecto a las diversas perspectivas 
reportadas en la literatura, con referencia al problem posing, el presente trabajo se basa 
principalmente en las ideas de Silver (1994) y en las clasificaciones propuestas por Stoyanova 
(1998), las cuales sustentan tanto el diseño de tareas, como el análisis de datos. 

Método 
Este trabajo es parte de un proyecto de investigación en curso. Del total de participantes, se da 

cuenta de sólo cinco profesores (P1, P2,…, P5), un hombre y cuatro mujeres (de entre 27 a 37 años) 
de quienes, hasta el momento, se tiene evidencia de su trabajo. De los participantes, dos imparten 
clases en nivel secundaria, dos en el nivel medio superior y uno en nivel superior. 
Diseño de Tareas 

Se diseñaron cinco tareas sobre el planteamiento de problemas, con base en la clasificación de 
Stoyanova (1998). Para efectos de este trabajo, se analizaron solamente las primeras dos tareas: La 
Tarea 1, dirigida al planteamiento de problemas por medio de una situación libre, solicita crear un 
problema del área de matemáticas de su preferencia. La Tarea 2 se trata de una situación 
semiestructurada, en donde a partir de un dibujo geométrico se solicita plantear problemas 
relacionados con tal figura. Ambas tareas involucran dos momentos en el planteamiento de 
problemas: primero en papel y lápiz; segundo; en ambiente de GeoGebra.  
Recopilación de Datos 

La recopilación de datos se realizó mediante la implementación de un taller (entrevista grupal) 
dividido en tres sesiones. Primero se implementaron las cinco tareas referidas a plantear problemas 
en papel-y-lápiz (primer momento). Posteriormente, se utilizaron las mismas cinco tareas, para 
plantear problemas con ayuda del software GeoGebra (segundo momento). Para ello, cada 
participante contó con un archivo GeoGebra correspondiente, para visualizar y manipular la figura 
dada, para el caso de la situación semiestructurada. Para el análisis de datos, las fuentes de 
información fueron las hojas de trabajo de cada participante, los archivos GeoGebra y notas de 
campo. 
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Análisis y Resultados 
Momento 1: Planteamiento de problemas en papel-y-lápiz 

Situación libre. Para la Tarea 1 (inventar un problema del área de matemáticas de su preferencia), 
los participantes crearon un total de cinco problemas, uno por participante. De acuerdo con sus 
respuestas, fueron planteados: un problema sobre geometría/calculo (Optimización), uno de algebra 
(Ecuación cuadrática), dos problemas sobre estadística (Medidas de tendencia central) y uno de 
matemáticas financieras (interés compuesto). 

Situación semiestructurada. En el caso de la Tarea 2 (inventar, a partir de una figura dada, ver 
Figura 1 izquierda, tantos problemas como pudieran) fueron creados 38 problemas. Los participantes 
crearon 37 problemas del área de geometría Euclidiana y 1 referente a geometría analítica sobre la 
ecuación de la circunferencia. Los problemas correspondientes a geometría euclidiana tratan sobre: 
longitudes (13), áreas (11), visualización de elementos de la figura dada e.g., radio, diámetro, 
cuerdas, etc. (9), ángulos (2) y recrear la imagen con ayuda del juego geométrico (2). Como ejemplo 
de los problemas creados, la Figura 1 (derecha) muestra el problema sobre geometría analítica creado 
por el participante P4. 

 

 

Figura 1: Izquierda, figura dada. Derecha, problema propuesto por P4 
 
La Tabla 1 resume el total de problemas propuestos en el primer momento, referente al 

planteamiento de problemas en papel-y-lápiz. Si bien la Tarea 1 explicita crear un problema del área 
de su elección, el número de problemas creados en la Tarea 2 es considerablemente mayor, lo cual 
indica que para los participantes crear un problema resultó más fácil cuando se les provee de 
información (situación semiestructurada) a cuando no (situación libre).  

 
Tabla 1: Resumen del total de problemas creados en papel-y-lápiz 

Tarea Situación Total de problemas 
Tarea 1 Libre 5 
Tarea 2 Semiestructurada 38 

 
Momento 2: Planteamiento de problemas en GeoGebra 

Situación libre. En esta Tarea, los participantes crearon seis problemas (uno de los participantes 
creó dos). Por sus características, éstos pueden categorizarse como problemas de geometría analítica, 
geometría euclidiana, algebra y matemáticas financieras. La Figura 2 muestra el problema creado por 
P3; sobre geometría euclidiana, el cual involucra la mediatriz. 
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Figura 2: Problema propuesto por P3 con GeoGebra 
 

Situación semiestructurada. En esta tarea se incluye un archivo GeoGebra. De acuerdo con los 
resultados, se crearon 10 problemas, todos referidos al área de geometría euclidiana. Por sus 
características, se pueden categorizar como problemas sobre: área (6), ángulos (2) y longitud (2).  La 
Figura 3 (izquierda) muestra la figura dada (construida en GeoGebra) en la que cada participante se 
basó para crear sus problemas. Como ejemplo del tipo de problemas creados con ayuda de 
GeoGebra, la Figura 3 (derecha) muestra el creado por P5. 

 

 
Figura 3: Izquierda, figura dada en GeoGebra. Derecha, problemas propuestos por el P5  
 
La Tabla 2 resume el total de problemas propuestos en el Momento 2. De acuerdo con la Tabla 2, en 

GeoGebra, el número de problemas creados en la situación semiestructurada disminuye en 
comparación al ambiente de papel-y-lápiz (ver Tabla 1). Sin embargo, en ambos momentos, el 
número de problemas en la situación semiestructurada es mayor que en la libre. 

 
Tabla 2: Resumen del total de problemas creados en GeoGebra 

Tarea Situación Total de problemas 
Tarea 1 Libre 6 
Tarea 2 Semiestructurada 10 

 

Conclusiones 
Para la situación libre, en el primer momento, los profesores expresaron incertidumbre respecto a 

cómo proceder. Esto es indicativo de la poca experiencia sobre el planteamiento de problemas por 
parte de ellos en su práctica. Por otro lado, durante el uso de GeoGebra, la situación libre, les 
conduce a interactuar con el software, y de esta manera crearon los problemas, ya fuera que tomaran 
en cuenta GeoGebra como guía–al explorar–para la creación del problema, o bien sin necesidad de 
explorar, incluir su uso como parte del problema. 

En la situación semiestructurada es notorio cómo los profesores, cuando trabajaron en papel-y-lápiz, 
asumen propiedades de la figura geométrica dada, esto les permitió plantear un número mayor de 
problemas. Cuando la situación involucra el uso de GeoGebra se observa que los participantes no 
explotaron la capacidad del software (e.g., su componente dinámica), sólo lo utilizaron como medio 
de visualización estática de la imagen, esto puede deberse a que únicamente los participantes P5 y P1 
afirmaron haber utilizado GeoGebra en diversas ocasiones. Otra particularidad de los problemas 
propuestos es que no explicitan el uso de GeoGebra para resolverlo. En este sentido, aunque reportes 
previos (e.g., Abramovich & Cho, 2006; Fukuda & Kakihana, 2009) indican el potencial del uso de 
tecnología para el planteamiento de problemas, nuestros resultados muestran que, para ello, los 
profesores deben desarrollar conocimientos específicos sobre la enseñanza de las matemáticas con 
tecnología. Así, modelos como el TPACK (Technological Pedagogical Content Knowledge, Mishra 
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& Keohler, 2006, 2009), el KTMT (Knowledge for Teaching Mathematics with Technology, Rocha, 
2013), entre otros, deben estar presentes tanto en el desarrollo profesional como en su formación 
inicial. 
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Studies have highlighted a multitude of beneficial student outcomes associated with the 
implementation of educational technology. However, there is a lack of understanding in both why 
and how preservice teachers intend to integrate technology into their future mathematics teaching. 
This small-scale study sought to examine preservice teachers’ (N = 24) perspectives on technology 
integration within the context of elementary and middle school mathematics. The topics of primary 
interest in this study was preservice teachers’ intended purposes of technology integration. Themes 
within responses to open-ended prompts were identified and interpreted through the lens of the 
SAMR model (Puentedura, 2006). Findings show that participants most frequently integrate 
technological resources in a way that augments a mathematical task. Implications for future 
research and teacher education are discussed. 

Keywords: Technology, Preservice Teacher Education, Teacher Knowledge 

The integration of technology into kindergarten through eighth grade (K-8) mathematics has been 
associated with a variety of benefits to students, teachers, and schools. Though various technological 
resources exist, particularly popular resources in K-8 mathematics are virtual manipulatives and 
mathematical games. Virtual manipulatives, defined as “an interactive, Web-based visual 
representation of a dynamic object that presents opportunities for constructing mathematical 
knowledge” (Moyer et al., 2002, p. 373), have been shown to increase K-8 students’ conceptual 
knowledge of several mathematics topics (Reimer & Moyer, 2005; Suh & Moyer, 2007), positive 
attitudes toward mathematics (Lee & Chen, 2015; Sen et al., 2017), confidence in mathematics 
(Yuan et al., 2010), and feelings of competency (McLeod et al., 2013). K-8 students with disabilities 
have benefitted from virtual manipulative use as well, demonstrating increased rates of learning 
(Root et al., 2017), greater accuracy (Bouck et al., 2014), and faster independence (Bouck et al., 
2017; Bouck et al., 2018). Mathematical games, such as those offered by Math Playground 
(https://www.mathplayground.com/), have been shown to increase K-8 students’ achievement 
regarding multiplication (Kiger et al., 2012), adaptive number knowledge, arithmetic fluency, and 
pre-algebra knowledge (Brezovszky et al., 2019). Technological resources also benefit teachers and 
schools, as many are free to access, available for use outside of the classroom, and decrease in-class 
time spent distributing and gathering materials during lessons (Moyer et al., 2002). 

Due to these benefits, it is imperative that preservice teachers (PSTs) are competent in technology 
integration upon degree completion. However, sufficiently preparing PSTs to integrate technology in 
their future classrooms has proven to be a challenging task for teacher education programs. A 
common approach implemented by teacher education programs has been adding the requirement of a 
stand-alone educational technology course – an approach that 85% of institutions have adopted 
(Kleiner et al., 2007). However, these courses often lack content-specific context and classroom 
practice opportunities, as just 32% of institutions provide learning experiences where PSTs deliver 
technology experiences within elementary classrooms (Rose et al., 2017) and many PSTs feel 
unprepared to effectively integrate technology on their first day of in-service teaching (Tondeur et 
al., 2012). Research has uncovered several factors that explain PSTs’ feeling of unpreparedness, 
including insufficient access to technology (Dawson, 2008), lack of technology skills (Teo, 2009), 
negative attitudes toward technology integration, lack of confidence in their ability to integrate 
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technology, and the belief that their competence may be undermined due to students potentially 
having more knowledge about technology (Crompton, 2015). Gaining additional information 
regarding PSTs’ perspectives on technology integration may prove beneficial to teacher education 
programs, current PSTs, and prospective PSTs. 

This study sought to examine PSTs’ perspectives on technology integration in K-8 mathematics. 
The aforementioned challenges associated with PSTs’ integration of technology into K-8 
mathematics inform the research question in this study: When prompted to select technological 
resources to enhance K-8 mathematics instruction after a two-day lesson about technology 
integration in K-8 mathematics, for what purpose do PSTs intend to use the selected resource? 

Theoretical Framework 
Puentedura’s (2006) Substitution, Augmentation, Modification, and Redefinition (SAMR) model 

offered a theoretical perspective by which the intended purpose of a technological resource may be 
categorized. The SAMR model highlights four levels in respect to the impact that the integration of 
technology has on the design of a task within a lesson. Technology acts as a direct tool substitute at 
both the substitution and augmentation levels, but only provides functional improvement to the task 
at the augmentation level. The ability to significantly redesign tasks due to technology use occurs at 
the modification level, and technology use at the redefinition level allows for the creation of new 
tasks that would otherwise be inconceivable. Within the mathematics context of graphing functions, 
Dorman (2018) provided examples for each level of the SAMR model: 

At the substitution level, instead of printing off paper copies of the worksheet, an instructor 
could make the worksheet available online. At the augmentation level, students could 
complete the same questions on a Google Form, and the instructor could capture the answers 
for individual students to check for understanding. … At the modification level, … students 
could work in groups to analyze the different characteristic of functions as they graph them. 
Then, students could video record the characteristics and steps of how to graph functions. 
The video could be uploaded to a classroom website so that students can use it as a tutorial or 
study aid. At the redefinition level, students could create an online portfolio of all types of 
functions, and their graphs could include real-world applications that are modeled by the 
functions. (para. 3) 

In this study, the SAMR model was utilized as a lens through which PSTs’ intended purpose of 
mathematics technological resources were examined and through which PSTs’ understanding of 
appropriate technology integration were interpreted. 

Methodology 
This study was conducted at a large university in the Northwest region of the United States. 

Participants (N = 24) were recruited from a K-8 Mathematics Methods course during the spring 
semester of 2020, which meets for two, 75-minute periods per week. All participants are PSTs 
majoring in elementary education which leads to licensure for teaching grades K-8. Participants were 
asked to respond to several prompts prior to, during, and following a two-day lesson about 
technology integration in K-8 mathematics. The design of the lesson was informed by Foulger et al.’s 
(2017) recommendations regarding teacher educator technology competencies and included: (a) an 
introduction to and exploration of mathematics technological resources; (b) modeling the alignment 
of K-8 mathematics content with both pedagogy and technology, and (c) collaborative activities in 
which PSTs designed mathematical tasks which utilized technological resources. 

Open-ended prompts were posed to PSTs, including “Find one resource (include the URL) and 
answer the following questions: (1) For what grade level and CCSS [Common Core State Standards] 
would the resource be appropriate to use? (2) Explain how this resource might benefit a lesson.” at 
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the end of day two and (1) “Locate one resource (include the URL) and describe how you might use 
this resource to assess understanding in your future classroom.” (2) “What do you think is the most 
practical application of technology in K-8 mathematics, and why?” after PSTs read Johnson et al. 
(2012) following the two-day lesson. The SAMR model was utilized to investigate the research 
question, with each response being coded as either substitution, augmentation, modification, or 
redefinition, according to PSTs’ description of how the technological resource would be utilized. 

Results 
Of the PSTs recruited for this study, 19 consented that their responses may be analyzed for research 

purposes and 18 successfully completed both prompts. The recruited sample did not allow for an 
analysis based on demographic factors due to the fact that the vast majority of PSTs in the sample are 
White females in their third or fourth year of the elementary education program. Thus, demographic 
information was not gathered in this study. 
Intended Purpose of Mathematics Technological Resources 

The research question was examined with the following prompts: “Find one resource (include the 
URL) and answer the following questions: (1) For what grade level and CCSS would the resource be 
appropriate to use? (2) Explain how this resource might benefit a lesson.” and “Locate one resource 
(include the URL) and describe how you might use this resource to assess understanding in your 
future classroom.” Each response was coded according to the SAMR model based on the capabilities 
of the technological resource and PSTs’ description of how the resource would be utilized in a 
lesson. In regard to the first prompt, the 18 PSTs who responded demonstrated a strong tendency to 
integrate technology into K-8 mathematics in a way that provides augmentation (n = 14). Four PSTs 
integrated technology in a way that modifies the task, while no PSTs described methods of 
integration where substitution or redefinition are utilized. Similar results were found in relation to the 
second prompt, in which PSTs favored augmentation (n = 14), while modification (n = 4) and both 
substitution and redefinition (n = 0) were less prevalent. It is worth noting that a total of 6 PSTs 
integrated technology in a way that modifies the task in response to at least one prompt. 

The left side of Figure 1 displays the Pan Balance applet from the National Council of Teachers of 
Mathematics’ (NCTM) Illuminations collection, which was selected by one PST as an opportunity to 
integrate technology to teach the commutative property, associative property, and distributive 
property. The PST supplied the equations located on the left side of Figure 1 and noted that this 
applet would benefit a lesson due to the visual representation of an equation being either equal to, 
greater than, or less than another equation. The affordances of the technological resource and 
rationale provided by the PST classify this instance of technology integration as an augmentation. 
Functional improvement is present, but a significant redesign of the task due to the integration of 
technology is not apparent. 
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Figure 1: Augmentation - NCTM Illuminations’ pan balance applet (NCTM, n.d.) and Modification 

- Osmo’s tangram game (Osmo, n.d.) 
 

The right side of Figure 1 presents the Tangram game to be used in conjunction with Osmo. Osmo, 
the red-colored device on the top of the tablet on the right side of Figure 1, utilizes the tablet’s 
camera to scan the area directly in front of the tablet and then transfers that image to the tablet’s 
screen. One PST selected Osmo as a technological resource to integrate into K-8 mathematics as a 
modeling task. The PST noted that Osmo allows for the concurrence of hands-on practice and 
technology integration in which students might explore the relationships between different shapes 
and construct/deconstruct various composite figures. The affordances of this game paired with the 
application described by the PST classify this method of integration as a modification task. The 
modeling task experiences a significant redesign via Osmo’s Tangram game, though implementing 
this task is not entirely inconceivable without the utilization of the game via Osmo. 

Discussion and Implications 
Findings in regard to the research question are highlighted by PSTs’ tendency to select and describe 

the integration of technological resources that augment a mathematical task. Similar results were 
found by Cherner & Curry (2017) when examining preservice English and social science teachers. 
While there is limited research of this topic within the context of mathematics education, this study 
uncovers a degree of understanding regarding PSTs’ intended purposes of technology integration in a 
K-8 mathematics setting. These findings also have potential implications in regard to teacher 
education. The SAMR model was not presented to PSTs in the K-8 Mathematics Methods course, so 
it is possible that PSTs are simply unaware of the various degrees to which technology integration 
can impact the quality of a mathematical task. How might we encourage our PSTs to more frequently 
integrate technological resources in ways that modify and/or redefine the mathematical task? Future 
research is needed to examine the relationship of both the exposure to and discussion of the SAMR 
model to PSTs’ design of mathematical tasks that utilize technological resources. 
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Using digital technologies when working on problem solving tasks allows students to engage in 
different ways to explore mathematical concepts as well as analyzing multiple approaches that 
emerge while solving the tasks. For this study, it was important to document the extent to which 
prospective teachers become aware of the potential of a Dynamic Geometry System (DGS) as a 
problem-solving tool. To this end, six prospective teachers participated in a series of problem-
solving activities meant to be approached by using a DGS. Even simple tasks offer ample 
opportunities to explore mathematical concepts when representing them within a digital medium, and 
in turn, the DGS’ affordances influence the way participants pose mathematical propositions and 
validate them while solving and extending problems.  

Keywords: Technology, Problem-solving, Geometry, Teacher Knowledge. 

Introduction 
The introduction of a technological element in the mathematics classroom modifies the way 

concepts are addressed, thus creating a perturbation within the teaching system. Laborde (2002), 
mentions two aspects that need to be considered when a certain technology is to be introduced in a 
learning environment: The domain of knowledge (how are mathematical objects interrelated through 
such technology? Which aspects are preserved, and which ones are modified?) and the teacher-
student interaction (What is the purpose being considered when using that technology? Is the 
technology used for learning or is it used to support the teacher’s discourse?). Technological tools 
such as Dynamic Geometry System (DGS) have the potential to open up multi-interpretations of 
mathematical knowledge (Leung, 2017), objects within the DGS do not appear as exclusively virtual 
to students, but become materialized (Moreno-Armella & Hegedus, 2009) and, therefore, subject to 
experimentation. One of the most notable outcomes from the study of mathematical objects in a 
dynamic environment is the emergence of alternative ways to justify mathematical relations (i.e. 
using point dragging to verify if a figure holds a geometric property in certain conditions). Santos-
Trigo (2019) mentions that the use of digital technologies in learning environments demands 
addressing what new pedagogies are needed to frame mathematical working in which learners 
participate in the construction of mathematical knowledge. To this matter, problem-solving activities 
can be exploited with the systematic use of digital technologies, allowing teachers and students to 
examine mathematical tasks from different perspectives that include a plethora of concepts, resources 
and representations (Santos-Trigo, Camacho-Machin & Olvera-Martinez, 2018). However, teachers’ 
perspective on the nature of mathematical knowledge and the role of digital technologies will define 
the ways in which students interrelate conceptual knowledge when solving mathematical tasks. Thus, 
teachers need to rethink the nature of mathematical activities in classroom when students solve 
problems using a DGS (Moreno & Llinares, 2018). For this study, six pospective teachers 
participated in a series of problem-solving activities with the support of a DGS. To this effect, the 
research question that guided this work was: What are some of the ways prospective teachers explore 
mathematical ideas when solving problems using a DGS? 
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Theoretical perspectives 
Mediating tools are not epistemological neutral (Moreno-Armella & Sriraman, 2010). In a DGS, 

motion becomes a key element of mathematical representations. Therefore, a tool like a computer 
affects the cognition of the user, it reorganizes her ideas. In this way, the computer can no longer be 
considered as an agent that "does the task of the student” but provides students with a cognitive tool 
(Moreno-Armella & Sriraman, 2010). In a problem-solving environment, a DGS has the potential to 
enhance the use of heuristics like analyzing multiple particular cases, and fosters different problem-
solving episodes like generate, explore and validate conjectures (Aguilar-Magallón & Poveda, 2017; 
Santos-Trigo & Moreno-Armella, 2016). These actions, however, are shaped by the subject’s 
expertise in using the tool. Throughout all problem-solving activities, it becomes important to pay 
attention to the transit in learners’ use of empirical approaches to the construction of geometric and 
analytic arguments to support results (Santos-Trigo, 2019). Santos-Trigo & Camacho-Machin (2013) 
proposed a framework to characterize ways of reasoning that emerge as result of using computational 
technology in problem-solving via four episodes: (a) comprehension episode, in which the solver 
needs to think of the task in terms of mathematical relations and how to use the DGS’ affordances to 
represent the problem (to generate a dynamic configuration); (b) problem exploration episode, where 
the tool is used to obtain empirically-generated conjectures; (c) search for multiple approaches 
episode, where students need to think of different ways to solve a problem in order to develop 
conceptual understanding of mathematical ideas; (d) Integration, a reflection of the different 
processes involved in the previous episodes. 

Participants, methods, and procedure 
The purpose of the study was to examine how high-school prospective teachers use a computational 

tool as a means of exploring multiple concepts derived from solving mathematical problems. Thus, 
this study is oriented to the analysis of cognitive processes exhibited by the participants and 
therefore, is of a qualitative nature. 

Six prospective teachers participated in a problem-solving course as part of a master’s degree 
program at the CINVESTAV-IPN (Mexico City). They all had completed a university degree akin to 
mathematics and were attending the first semester of the program. The activities were conducted for 
8 sessions of 3 hours each. The prospective teachers were encouraged to use a DGS (GeoGebra) as 
the main problem-solving resource. Firstly, they worked individually or in small groups and, 
subsequently, they presented their work to the group in plenary. Additionally, the participants were 
asked to prepare a report of their work in a text file and submit it to a google classroom platform. 
Data were collected through the information of the teacher’s reports and the video recordings of the 
sessions. 

In this research report, I focus on the prospective teacher’s performance related to the following 
problem: Let ABC be a right triangle with perimeter 12. What are the lengths of the sides such that 
the triangle has maximum area? 

It is important to note that, prior to the problem, participants worked on GeoGebra several 
construction problems collectively in plenary guided by the instructor. In this sense, they had 
knowledge about some of the DGS’ affordances. 

Results and discussion 
To present the results of this study, the participants’ work was structured around the problem-

solving episodes described by the framework of Santos-Trigo & Camacho-Machin (2013). Also, it is 
also worth noticing the extent to which the use of a digital tool like GeoGebra modifies the way 
mathematical statements are stablished and validated (Santos-Trigo, Camacho-Machin & Moreno-
Armella, 2016).   
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Comprehension episode. Most participants showed mainly algebraic procedures meant to find the 
function area !,!.=,36!−6,!-2.-12−!.. Subsequently, they didn’t have any difficulties in finding 
that ,!-′.,!.=0 if !=12−6,-2.≈3.515, which is the measure of both legs of the right triangle with 
perimeter 12 such that its area is maximum. However, they were asked to represent the problem in a 
DGS. That is, they needed to construct a right triangle with perimeter 12 within GeoGebra. All of 
them showed the following procedure: define a slider !, and draw a circle with center A and radius !. 
Thus, the radius AB has side !. From B, trace a perpendicular line to AB. This line intersects a 
circumference with center B and radius ,12(6−!)-12−!. at point C. As a result, a right triangle ABC 
is obtained, such that its perimeter is always 12 (Figure 1).   

 

 
Figure 1: Dynamic configuration for Problem A 

 
Exploration episode. How can the tool’s affordances be used to find an empirical answer? Once 

the participants had a dynamic representation of the problem, they defined the point !: (!, ,!-1.), 
where ,!-1. is the area of the triangle ABC. When moving the slider !, point D’s trajectory can be 
visualized through the locus command. In consequence, the value of a can be adjusted so that 
(visually) point D is located at the vertex of the parabola. 

Multiple approaches episode. The way this problem was been represented did not depend on the 
DGS’ affordances, since the key aspect of the statement of the problem was approached in an 
algebraic way. Thus, participants were asked to re-interpret the given perimeter as a line segment of 
length 12 instead of a number. Using the coordinated axes, they traced !! with length 12 and placed 
a point ! on the segment. In this way, AC is one of the sides of the triangle and by placing a point D 
on CB, segment AB will be partitioned into three segments. Are these segments always the three 
sides of a triangle with perimeter 12? It is important to see that this question does not appear when 
solving the problem by algebraic means, but in a digital medium, it is important to exploit the 
opportunities it offers to explore mathematical concepts. Figure 2 shows a triangle ACE such that 
,!!.=,!!. and ,!!.=,!!.. Whenever ,!!.>6 (or more generally, 2,!!.>|!!|) circumferences A 
and C will not intersect and, therefore, there will be no triangle. This is a crucial condition that must 
be stated when working with students because the motion of C must be limited in a way that ACE is 
always a triangle with perimeter 12 (or AB, in any case). Even though ACE is not necessarily a right 
triangle, it can be observed that when moving D, there is a position that results in angle AEC to be 
right. How to place point D such that the triangle is also a right triangle? 

At this point, participants struggled to use an element of the dynamic configuration as a resource to 
obtain information about the mathematical relations involved. After working in small groups, two 
participants used the command locus to note that the motion of point E, because of moving D along 
BD, seemed to be an ellipse (Figure 3). What arguments could be used to support the validity of this 
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conjecture? For different positions of D, it holds that ,!!.+,!!.=|!!|, which means the sum of the 
distances from point E to A and C is always constant. Hence, point E moves on an ellipse with foci A 
and C. 

 

 
Figure 2. Drawing a triangle of a given 

perimeter 

 
Figure 3. Locus of the point E as D moves along 

BC 
 

Reflections on the problem. Two elementary forms of using loci within a DGS can be seen as 
crucial elements for concrete problem-solving strategies. On the one hand, the intersection of the 
ellipse and the circumference obtained in the analysis of the problem is a way of consolidating the 
heuristic of relaxing the conditions of a problem through an intersection point that unifies the 
solution of two subtasks (drawing a right triangle and tracing a triangle with a given perimeter). On 
the other hand, using a locus that represent a variation phenomenon can serve as a departure point for 
learners to make use of different geometric and algebraic resources to build and make sense of a 
robust dynamic configuration. The DGS also provides a scenario where mathematical discussions 
can be constantly extended. For instance, tracing the triangle considering !! as the hypothenuse 
rather than the side or restating the problem into considering an isosceles triangle instead of a right 
triangle with fixed perimeter. 

Concluding remarks 
In a digital medium, mathematical objects involved in the dynamic configuration of a problem 

become executable and react to the user’s actions. This, in turn, allows the users to further extend 
their reflections or to find alternative approaches to the problem. In Problem A, the use of loci was 
underpinning in the formulation of conjectures and participants had to validate mathematical 
propositions stated in terms of the DGS affordances: what arguments can be stablished such that a 
certain property holds for the dynamic configuration when movable points are dragged? Prospective 
teachers were able to explore the concept of ellipse as a resource that can be useful in tasks related to 
the construction of triangles with a given perimeter. What is more, the concept of locus became a 
way to organize the use of problem-solving strategies such as solving similar simpler problems, 
simplify the conditions of the statement or solving many cases. As the activities developed, they 
became more prone to experiment with the tool and to find different solution paths that could open 
up for different kinds of mathematical discussions. 

Teachers need to be exposed to environments where they can experience at firsthand how a digital 
technology affects the organization of mathematical ideas. When students use digital artifacts like a 
DGS, they rely on them to bridge the gap between mathematical ideas and their personal experiences 
through actions that can develop in the medium such as dragging or measuring attributes. If digital 
classrooms are to be successful, then teachers need to be fully aware of how these processes develop 
and relate to the generation of mathematical knowledge (Monaghan & Trouche, 2016). 
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In this paper we present an integrated design approach for bridging content between science, 
technology, engineering, math, and computational thinking (STEM+C). We present data from a 
design experiment to show examples of the kinds of integrated reasoning that students exhibited 
while engaging with our design. We argue that covariational reasoning can provide strong 
scaffolding in making integrated connections between the STEM+C content areas. 

Keywords: Interdisciplinary Studies, STEM, Design Experiments, Computational Thinking. 

To integrate math and science content, science materials often simply provide graphs while math 
materials often merely mention science terms for context. However, these efforts do not show the 
ways in which students’ mathematical reasoning may influence their understanding of science, or 
how their scientific reasoning may influence their understanding of mathematical ideas. As English 
(2016) argued, in STEM integration there is a need for a more balanced focus on each of the 
disciplines, especially mathematics which is usually underrepresented. To illustrate this reciprocal 
relationship between mathematical and scientific reasoning, we looked for a design approach that 
could honor both math and science content. Specifically, our aim was to explore the research 
questions: (a) What kind of design integrates science and math for students? (b) What kind of 
reasoning do students display as they interact with this design? 

Design Framework for Integrated Learning 
First, we considered the power of covariational reasoning for bridging the two disciplines. 

Covariational reasoning is the mental coordination of simultaneous changes in two related quantities 
(Carlson et al., 2002). Mathematically, covariational reasoning has shown to be a strong building 
block towards the introduction of functions and graphing (Confrey & Smith, 1995). In terms of 
science, we considered that by engaging in covariational reasoning as they actively examine the 
interplay of variables in natural phenomena, students would develop deeper understandings of those 
phenomena than they might from exploring them only in terms of cause and effect relationships. To 
put it another way, there is a difference between reasoning about a cause and effect relationship, for 
instance, the depth of the rock affects its temperature, and reasoning covariationally about a 
relationship, for example, the temperature is changing as the depth of the rock is changing. This 
study of simultaneous change exhibited by covariational reasoning presented a promising route for 
supporting students’ development of integrated forms of math and science reasoning.  

We also considered the power of digital environments for designing simulations that dynamically 
model abstract mathematical and scientific concepts. We hoped that exploring a simulation would 
provide multiple trials and rapid feedback, supporting an inquiry environment (Meadows & Caniglia, 
2019). Our goal was to encourage students to use the simulation to engage in inquiry practices such 
as questioning, developing hypotheses, collecting data, and revising theories (Rutten et al., 2012). 
This use of simulations to model and interact with data is also defined by Weintrop et al. (2016) as a 
form of computational thinking. They describe a taxonomy of computational thinking that includes 
practices such as Collecting, Analyzing, and Visualizing Data as well as Using Computational 
Models to Understand a Concept.  

Finally, we gave careful attention to the design of tasks and questioning, aiming to shift students’ 
attention to specific elements of the model and influence the nature of their interactions with those 
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elements. The questioning was organized to encourage students to explore specific relationships, 
such as “What have you observed about how the temperature and pressure change as Bob moves 
deeper underground?” Our goal was to prompt the students to engage in some of the Carlson et al. 
(2002) mental actions of covariational reasoning. These include coordinating the change of one 
variable with changes in the other variable (MA1), coordinating the direction of change of one 
variable with changes in the other variable (MA2), coordinating the amount of change of one 
variable with changes in the other variable (MA3), coordinating the average rate-of-change of the 
function with uniform increments of change in the input variable (MA4), and finally coordinating the 
instantaneous rate of change of the function with continuous changes in the independent variable for 
the entire domain of the function (MA5).  

We also considered connecting the dynamic representations of relationships in the simulation with 
the graphing of those relationships. This connection was found to advance students’ conceptions of 
graphs of functions as a representation of coordinated change (e.g., Ellis et al., 2018). Students often 
fail to connect graphs with the covariational relationships they represent (Moore & Thompson, 
2015), therefore, beyond simply describing and then having students graph these relationships, our 
goal was to ask them to use the simulation to collect data and graph these relationships. Our 
conjecture was that by engaging in these kinds of reasoning and practices as they interacted with our 
design, students would construct their own conceptual bridges in the context of an integrated 
STEM+C experience. In this paper, we present this design approach by providing an example using 
the phenomenon of the rock cycle, which is part of a larger collection studying science phenomena 
(e.g., Basu & Panorkou, 2019; Zhu et al., 2018). 

An Example of Integrated STEM+C Design From the Rock Cycle 
The earth science concept of the rock cycle describes the cyclical changes rocks experience due to 

the earth’s thermal energy. Like many natural phenomena, the rock cycle involves multiple variables. 
By identifying relationships such as the increase in temperature and pressure as depth below ground 
increases, we conjectured that covariation can be used as a link to integrate science and math. To 
encourage students to investigate for themselves how these quantities covary in the rock cycle, we 
developed the Bob’s Life simulation. The Bob's Life simulation (Figure 1) models the life of a rock 
named Bob near the sea on a volcanic island as he experiences different rock cycle processes and 
takes on different forms. The student controls Bob's depth in 1-km increments to investigate the 
behavior of the model. The simulation provides immediate visual feedback as the animation shows 
Bob moving and changing his form. 

Though we used real geological data (e.g., Becerril et al., 2013) as a starting point to describe Bob’s 
path, these relationships are not always perfectly linear in the real world and can vary widely in real 
environments (e.g., de Wall et al., 2019). However, by sacrificing a certain amount of scientific 
realism, we were able to design the relationships between Bob's depth and the temperature and 
pressure to be piecewise linear functions with planned regions of friendlier numbers for students to 
graph. For example, in the Upper Crust environment we selected the numbers such that for each 1 km 
Bob moves down the temperature increases by 8 °C and the pressure increases by 1,000 kPa. This 
design choice maintains the scientific integrity of the model while creating an accessible data set for 
middle school students to investigate. The Bob’s Life simulation is thus a simplified model of real-
world processes designed to have useful pedagogical features (Weintrop et al., 2016). 
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Figure 1 (left): The Bob’s Life Simulation Interface 

Figure 2 (right): Michael’s Graph of Depth and Pressure 
 

Students’ Forms of Integrated STEM+C Reasoning 
We focus on a whole-class design experiment (Cobb et al., 2003) in a middle school classroom and 

present episodes from a single pair of students, Laura and Michael, to illustrate examples of students’ 
integrated reasoning as they interacted with our design. We adapted the Carlson et al. (2002) 
framework to identify episodes that illustrate students’ covariational reasoning. We also remained 
open to students’ use of other forms of reasoning, such as multivariational reasoning (Kuster & 
Jones, 2019) and computational thinking practices (Weintrop et al., 2016). At the same time, we 
examined how our design seemed to influence this reasoning by investigating the dialectic 
relationship between design and learning. 

At the start of the design experiment, students were asked to freely explore the simulation. We 
included this free play to build students’ interest and to encourage them to begin using inquiry 
practices (Rutten et al., 2012) as they interacted with the simulation and described what they noticed. 
During this time, we asked Laura about what she had noticed so far: 

Laura: I’d say, there's a rock named Bob, and you can control his depth. And if you go, the deeper 
you get, his form changes, his environment changes, his temperature, the pressure that's being put 
on the rock, the day, and the year change. 

Laura’s reasoning shows that the free exploration of the simulation offered a constructive space for 
her to both inquire into the behavior of the model and also to reason about how the rock’s form, 
environment, temperature, and pressure change based on its depth. She coordinated changes in the 
variable she controlled, Bob’s depth, with several other variables that were also changing 
simultaneously, illustrating MA1 reasoning. We would also argue that she exhibited multivariational 
reasoning since she was able to coordinate multiple variables at the same time. 

After the free exploration, Laura was asked to use the simulation to investigate how the temperature 
and pressure change as Bob moves deeper underground. She responded that “the deeper you go, the 
more pressure’s being put on it” and “the lower Bob goes in depth, the higher the temperature 
increases.” Her responses show that she coordinated the direction of change of Bob’s depth with the 
direction of change in pressure and temperature, engaging in both MA2 and multivariational 
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reasoning. Immediately after giving the latter response, she used the simulation to illustrate by 
moving Bob several kilometers lower and pointing at the increasing number in the temperature 
readout. Laura’s action shows that she used the simulation to understand what is changing and how it 
is changing in the model, illustrating a form of computational thinking.  

Next, we asked students to collect data and graph the relationship between the variables. When 
asked to describe the numerical relationship in his graph (Figure 2), Michael said, “I got 1, as Bob 
moves 1 km deeper underground, the pressure increases by 1,000 kPa, because each km you go 
deeper, is 1,000 pressure compacted on Bob.” Even though Michael’s graph visually appears to be a 
falling line, his response shows that he viewed this as representing the increase in pressure as Bob 
moved deeper. This is evidence of MA3 reasoning as well as an indication that he might have been 
imagining his graph as an emerging record of this covariational relationship rather than a static shape 
(Moore & Thompson, 2015). This also shows that our design supported Michael in using 
computational thinking practices of collecting, analyzing, and visualizing data. 

At the end of the experiment, students were asked to find intermediate values on their graphs. For 
example, we asked Michael to state the depth at which Bob would experience 4,500 kPa of pressure. 
Michael stated, “I think it's 4½ km underground.” He explained that this is “Because 4 km 
underground is 4,000, and every .5 is 500, so if you do 4.5, that's going to be 4,500.” Earlier, Michael 
had also observed, “1 km underground is 1,000, and if you add a .5 that's 500 more so that's 1,500.” 
This shows that Michael had not only noticed that the pressure changed by a certain amount for each 
1-km step, but that he had also used his graph to see that he could describe this relationship in terms 
of steps of .5 km. Michael’s observation that “every .5 is 500” is an example of MA4 because it 
shows that he was reasoning about the rate at which pressure was changing for equal incremental 
changes in Bob’s depth. It also shows that he used his graph as a second model to understand the 
relationships, illustrating computational thinking.  

Conclusion 
In response to RQ (a), we believe that this experiment has shown how our design approach can be 

used to develop integrated STEM+C instructional modules that have a more balanced focus (English, 
2016) on each of the disciplines. This work supports our assertion that covariational reasoning can 
serve as a bridge to integrated STEM+C learning. Guided by the task design and questioning, 
students explored and explained the model’s behavior in terms of both rock cycle processes and 
mathematical relationships. In response to RQ (b), the analysis of students’ reasoning showed that 
they developed a sophisticated understanding of the science content which included identifying the 
factors that influence the rock cycle and constructing relationships between the involved variables. 
Students reasoned covariationally at various levels (Carlson et al., 2002) as they interacted with our 
design. We have also shown that students displayed multivariational reasoning (Kuster & Jones, 
2019) and engaged in computational thinking practices (Weintrop et al., 2016). In the future, we plan 
to continue refining this integrated design framework with the rock cycle module as well as other 
modules that use covariational reasoning to build conceptual bridges between science and math. We 
also plan to explore other topics, such as probability and statistics, which might also be able to play 
the same bridging role that covariation plays in our Bob’s Life simulation and investigation design. 
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Science, technology, engineering, and mathematics (STEM) education continues to garner focus and 
attention from teachers, students, researchers, policymakers, and businesses due to the vast 
importance of technology in the world. The integration of STEM subjects has the potential to make 
learning relevant and more engaging for students, which can increase their mathematical 
knowledge. In this paper, I focus on integrated steM education through open-ended game-based 
learning within a technological context. Integrated steM education is the integration of STEM 
subjects with an explicit focus on mathematics. The possibilities for integrating mathematics and 
technology through open-ended game-based learning has increased in recent years. 
Recommendations for future work will be discussed. 

Keywords: Curriculum Enactment; Middle School Education; STEM 

Interest, discussion, and work around technology integration in education continues to grow as 
advances in technology permeate our daily lives. The way that technology is integrated into the 
classroom is important in ensuring optimum learning outcomes for students. In game-based learning, 
technology integration should allow students to engage in more high-level thinking and have new 
experiences with mathematics that would be difficult without the technology. There is a distinction 
between how technology is used as an amplifier and how it is used as a reorganizer of mental 
activity (Pea, 1985). Technology as an amplifier enables students to perform more efficiently tedious 
processes that might be done by hand. This does not change what students do or think but does save 
time and effort and improves accuracy. As a reorganizer, technology is capable of effecting or 
shifting the focus of students’ mathematical thinking or activity. This can enable students to do more 
higher-level thinking. A recent review of the literature suggests that the potential to integrate 
technology in a transformative way is not being met. For instance, researchers classified studies 
based on the ways in which technology has been integrated in mathematics education since 2009. 
The findings from this work indicated that the majority (61%) of the 139 studies were similar to an 
amplifier approach in that the technology was used as a direct substitute for traditional approaches 
with some functional improvement (Bray & Tangney, 2017). This result suggests that although 
innovative practices undoubtedly exist, the technology that could improve students’ learning 
experience is generally not well implemented in the classroom (Hoyles & Lagrange, 2010). The 
purpose of this paper is to describe research done with middle school students (ages 11-15) and 
game-based learning to highlight productive principles for technology integration with mathematics. 

Integrated steM Education Framework and Literature Review Integrated STEM 
Education 

Researchers have noted that mathematics is often not emphasized in the integration of STEM 
subjects (English, 2017; Gravemeijer, Stephan, Julie, Lin, & Ohtani, 2017). In response to this, I 
have proposed that mathematics teachers and researchers focus on integrated STEM. Integrated 
STEM is the integration of STEM subjects that has an explicit focus on mathematics (Stohlmann, 
2018). It is an effort to combine mathematics with at least one of the three disciplines of science, 
technology, and engineering, into a class, unit, or lesson that is based on connections between the 
subjects and open-ended problems. Further, integrated STEM education is an approach that builds on 
natural connections between STEM subjects for the purpose of (a) furthering student understanding 
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of each discipline by building on students’ prior knowledge; (b) broadening student understanding of 
each discipline through exposure to socially relevant STEM contexts; and (c) making STEM 
disciplines and careers more accessible and intriguing for students (Wang, Moore, Roehrig, & Park, 
2011). There are three main ways in which integrated steM can be implemented by mathematics 
teachers: engineering design challenges, mathematical modeling with science contexts, and 
mathematics integrated with technology through open-ended game-based learning (Stohlmann, 
2018). Each of the three approaches involves the integration of mathematics with a different science, 
technology, or engineering (STE) focus. In this paper, I focus specifically on mathematics integrated 
with technology through open-ended game-based learning. 
Game-based Learning 

Game-based learning has drawn international interest and has been reported as an effective 
educational method that can improve students’ motivation and performance in mathematics (Byun & 
Joung, 2018; Wang, Chang, Hwang, & Chen, 2018). Students enjoy playing technology-based games 
whether it is video games or apps on their phones. However, when used in the mathematics 
classroom, game-based learning is often not implemented with best practices for teaching 
mathematics in mind (Byun & Joung, 2018). A meta-analysis was conducted to look at the overall 
effect size of game-based learning on K-12 students’ mathematics achievement. Seventeen studies 
were identified that had sufficient statistical data from a time frame of the years 2000 to 2014. The 
overall weighted effect size was 0.37, which is a small effect size. There were 71 authors in the 
studies reviewed for the meta-analysis, with only five of these authors having a background in 
mathematics education. This research demonstrates the need for further studies on effective game-
based learning approaches and best practices in mathematics education. 

For example, most of the games used in the studies involved drill and practice (Byun & Joung, 
2018). An example of one popular game includes students solving traditional, non-contextual 
practice problems in order to get more speed for a race car and attempts to take advantage of 
students’ interest in videogames (Math-Play, 2019). However, in this type of game, students only 
receive feedback if the answers are correct or incorrect and do not receive support for improving 
their conceptual understanding. These types of games also emphasize that mathematics is about 
speed and focus on the memorization of ideas (Bay-Williams & Kling, 2015). Game-based learning 
for mathematics should move beyond drill and practice.  

Another area that requires improvement in the implementation of game-based learning is for 
students to be able to work collaboratively or competitively. This has been suggested to be more 
effective than individual gameplay (Hung, Huang, & Hwang, 2014). A study in which this 
collaboration versus individual play was investigated involved 242 students with an age range of 11 
to 15 years. There were four conditions in the study: collaboration and competition, collaboration 
control, competition control, and control. Overall, the game-based learning improved students’ 
proportional reasoning, but the effects did not differ between conditions (Vrugte et al., 2015). 

For game-based learning in integrated STEM, I refer to games in which the mathematics is 
integrated into the gameplay in a substantial way other than traditional practice problems. When 
structured well through open-ended problems, technology-based mathematics games may engage 
students in mathematics and help develop their conceptual understanding. 

Methods 
This study was structured as a teaching experiment (English, 2003). Nineteen students voluntarily 

enrolled in a five-week Saturday STEM program at a large urban university. The students were 
audio-taped and student work was collected including screenshots of the students’ work in Desmos. 
Researcher field notes were also collected. Desmos is an online graphing calculator, but also has a 
suite of classroom activities available with some of the activities being game-based. In the lessons, 
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students can share ideas and ask questions of one another. The principles that guide the Desmos’ 
team lesson development include the following: 

• Use technology to provide students with feedback as they work. 
• Use the existing network to connect students, supporting collaboration and discourse. 
• Provide information to teachers in real time during class (Danielson & Meyer, 2016, p. 259). 

Little research has been conducted on these activities, but they have the potential to enable teachers 
to develop students’ conceptual understanding. Research on how students develop conceptual 
understanding through technology integration tasks is important to investigate. The specific research 
question for this paper was the following. How do students use and develop mathematical vocabulary 
while playing the Polygraph lines game? 

Results 
 In this paper I describe results from a Desmos game-based activity called Polygraph lines. I 

analyzed the data with an interpretative approach by looking at the ways in which students used 
mathematical vocabulary in the game. In this game, sixteen linear graphs are given. One student 
selects one of the graphs and the other student asks yes or no questions to determine which graph has 
been selected. Between games students are shown questions that other students ask. The teacher also 
is able to view and have a record of all questions asked in each game. Table 1 has the initial 
questions that were asked by 4 of the groups. 

 
Table 1: Initial questions from polygraph lines 

Group 1 2 3 4 
Questions -Does your line go 

through the 
origin? 
-Is your line 
vertical? 
-Is your line 
horizontal? 
-Is your line in 
quadrant 2 and 3? 

 

-Does your line 
have a positive 
slope? 
-Does your line 
pass through the 
origin? 
-Does your line 
have a slope of 0 
or undefined? 
-Does your line 
have an undefined 
slope? 
-Is the slope 
negative? 
-Does your line 
have a slope of 0? 
-Does your line 
have a slope 
greater than -2? 
-Is the slope of 
your line greater 
than or equal to 1? 
 

-Is your slope 
positive? 
-Is the y-intercept 
positive? 
-Does it cross the 
origin? 
-Is your slope 
steep? 
-Is your line 
undefined? 
-Is your slope 
negative? 
-Is your line’s 
linear equation 
zero or undefined 
-Is your line 
horizontal? 
-Is your line 
vertical? 
 

-Is your line 
horizontal? 
-Is your line 
vertical? 
-Does your line 
intersect 2 
quadrants? 
-Does your line 
intersect 3 
quadrants? 
-Is your line 
positive? 
-Is it negative? 
-Does it go 
through the 
origin? 
-Does it pass 
through 3 
squares? 
 

 
After playing the game several times, the students discussed what quality questions to ask and 

strategies for asking the least amount of questions. Several questions appeared in common in the 
groups: “Is your slope positive?” “Is the slope negative?” “Is your line horizontal?” “Is your line 
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vertical?” “Does your line go through the origin?” Groups also came up with questions of what 
quadrants the line crossed through, though not all groups used the term “quadrants.” Through playing 
the game and subsequent discussions, students were able to make use of mathematical vocabulary 
including slope, positive slope, negative slope, horizontal line, vertical lines, origin, and quadrants. 
Desmos continues to develop their freely available activities, and further research is warranted on the 
effect of the games on students’ mathematical understanding of linearity and motivation to learn 
mathematics. 

Conclusions 
It has been found that the use of puzzles and gamification in mathematics increases students’ 

participation and engagement (Bryne, 2016). The research in this study provides early support for 
game-based learning done through integration with Desmos. This method can encourage students to 
develop mathematical understanding in an engaging game-based context. Through investigating 
technology game-based learning I have developed several important principles that should be 
incorporated to help make it more likely the game-based learning will be effective. First, the 
technology integration should allow for the creation of new tasks that would not be possible without 
the technology or for significant task redesign (Puentedura, 2006). Second, the tasks used should be 
worthwhile tasks. These tasks have no prescribed methods and there is no perception that there is 
only one “correct” strategy (Hiebert et al., 1997). Third, the tasks should be aligned with grade-level 
standards. Fourth, the tasks should enable students to work with multiple representations. Fifth, the 
technology should provide students feedback. Finally, the tasks should be open-ended and allow for 
discussion and multiple solutions (Stohlmann, 2019). When structured well, technology-based 
mathematics games can engage students in mathematics and help develop their conceptual 
understanding. 

Too often middle school students perceive mathematics to be dull, irrelevant, and too difficult 
(Grootenboer & Marshman, 2016). Further research on game-based learning in the mathematics 
classroom can help to provide one way to address this problem. Students can play video games for 
hours on end though with the time going by quickly and the students persevering in problem solving. 
Bringing more game-based learning into the mathematics classroom has the potential to help more 
students be successful in mathematics.  

References 
Bay-Williams, J., & Kling, G. (2015). Developing fact fluency. Turn off timers, turn up formative assessment. In C. 

Suurtamm (Ed.), Annual Perspectives in Mathematics Education (APME) 2015: Assessment to enhance 
learning and teaching. Reston, VA: National Council of Teachers of Mathematics.  

Bray, A., & Tangney, B. (2017). Technology usage in mathematics education research—A systematic review of 
recent trends. Computers & Education, 114(1), 255-273. 

Bryne, M. (2016). Using games to engage students in inquiry. PRIMUS, 27(2), 271-280.  
Byun, J., & Joung, E. (2018). Digital game-based learning for K-12 mathematics education: A meta-analysis. School 

Science and Mathematics, 118(3), 113-126. 
Danielson, C., & Meyer, D. (2016). Increased participation and conversation using networked devices. The 

Mathematics Teacher, 110(4), 258-264. 
English, L. (2017). Advancing elementary and middle school STEM education. International Journal of Science and 

Mathematics Education, 15(1), 5-24. 
English, L. (2003). Reconciling theory, research, and practice: A models and modelling perspective. Educational 

Studies in Mathematics, 54(2/3), 225-248.  
Gravemeijer, K., Stephan, M., Julie, C., Lin, F., & Ohtani, M. (2017). What mathematics education may prepare 

students for the society of the future? International Journal of Science and Mathematics Education, 15(1), 105-
123. 

Grootenboer, P., & Marshman, M. (2016). Mathematics, affect and learning: Middle school students’ beliefs and 
attitudes about mathematics education. New York: Springer.  



Integrated STEM education through game-based learning 

	 2242	

Hiebert, J., Carpenter, T., Fennema, E., Fuson, K., Wearne, D., Murray, H.,… Human, P. (1997). Making sense: 
Teaching and learning mathematics with understanding. Portsmouth, NH: Heinemann. 

Hoyles, C., & Lagrange, J. B. (2010). Introduction. In C. Hoyles & J. B. Lagrange (Eds.), Mathematics education 
and technology: Rethinking the terrain: The 17th ICMI study (pp.1-11). New York, NY: Springer.  

Hung, C.M., Huang, I., & Hwang, G. J. (2014). Effects of digital game-based learning on students’ self-efficacy, 
motivation, anxiety, and achievements in learning mathematics. Journal of Computers in Education, 1(2-3), 
151-166. 

Math-Play. (2019). Compare decimals math racing game. Retrieved from http://www.math-play.com/math-racing-
game-compare-decimals/math-racing-game-compare-decimals.html. 

Pea, R. (1985). Beyond amplification: Using the computer to reorganize mental functioning. Educational 
Psychologist, 20(4), 167-182 

Puentedura, R. (2006). Transformation, technology, and education. Retrieved from 
http://hippasus.com/resources/tte/. 

Stohlmann, M. (2019). Integrated steM education through open-ended game based learning. Journal of Mathematics 
Education, 12(1), 16-30.  

Stohlmann, M. (2018). A vision for future work to focus on the “m” in integrated STEM. School Science and 
Mathematics, 118(7), 310-319. 

Vrugte, J., Jong, T., Vandercruysse, S., Wouters, P., Oostendorp, H., & Elen, J. (2015). How competition and 
heterogeneous collaboration interact in prevocational game-based mathematics education. Computers & 
Education, 89(1), 42-52. 

Wang, S., Chang, S., Hwang, G., & Chen, P. (2018). A microworld-based role-playing game development approach 
to engaging students in interactive, enjoyable, and effective mathematics learning. Interactive Learning 
Environments, 26(3), 411-423. 

Wang, H., Moore, T., Roehrig, G., & Park, M.S. (2011). STEM integration: Teacher perceptions and practice. 
Journal of Pre-College Engineering Education Research, 1(2), 1-13. 

 



Technology 

In: Sacristán, A.I., Cortés-Zavala, J.C. & Ruiz-Arias, P.M. (Eds.). (2020). Mathematics Education Across Cultures: 
Proceedings of the 42nd Meeting of the North American Chapter of the International Group for the Psychology of 
Mathematics Education, Mexico. Cinvestav / AMIUTEM / PME-NA. https:/doi.org/10.51272/pmena.42.2020 

2243	

EMBODIMENT AS A ROSETTA STONE: COLLECTIVE CONJECTURING IN A 
MULTILINGUAL CLASSROOM USING A MOTION CAPTURE GEOMETRY GAME 

Michael I. Swart 
UW – Madison 

mswart@wisc.edu 

Kelsey E. Schenck 
UW – Madison 

keschenck@wisc.edu 

Fangli Xia 
UW – Madison 

fxia24@wisc.edu 

Doy Kim 
UW – Madison 

doy.kim@wisc.edu 

Oh Hoon Kwon 
UW – Madison 

kwon@math.wisc.edu 

Mitchell J. Nathan 
UW – Madison 

mnathan@wisc.edu 

 Candace Walkington 
Southern Methodist University 

cwalkington@mail.smu.edu 

 

The Hidden Village (THV) is a motion-capture video game for investigating how physical movements 
foster mathematical thinking and proof practices based on principles of embodied cognition. 
Analysis of the interactions of students in an all-Limited English Proficiency Title 1 high school 
geometry classroom revealed ways simulated enactment and collaborative gestural co-construction 
of mathematical ideas can bridge language barriers. These informed a redesign of THV to support 
both individual and collaborative play, as well as a collection of authoring tools for players to create 
their own content and upload it to an online database shared by users worldwide.  Players, teachers 
and learners can implement custom directed movements that could foster deeper mathematical 
understanding and engagement for them and their peers. 

Keywords: Technology; Reasoning & Proof; Geometry and Geometrical and Spatial Thinking 

New technological interventions for learning mathematics are leveraging the embodied affordances 
of motion-capture technology to teach proportional reasoning (Abrahamson, 2015), algebraic 
reasoning (Ottmar et al., 2012), numerical training (Fischer et al., 2015), and geometric angles 
(Smith et al., 2014). As a design experiment (Brown, 1992), the development of The Hidden Village 
(THV) has been an iterative process of refining and extending its instructional application.  THV is 
designed to help researchers better understand the grounded and embodied nature of geometric proof 
production by investigating how directed body actions, in combination with verbal prompts (i.e., 
pedagogical language), help students conceptualize the underlying mathematical ideas for geometric 
proof practices. Conducted in authentic classrooms, this type of in situ research exposes technologies 
like THV to dynamic environments in which “surprising occurrence[s]” emerge  from students’ 
collaboration and co-constructions to become sources for “ontological innovations” in the design 
process (diSessa & Cobb, 2004, p. 86).  We present instances from gameplay of THV v.5, in which 
students renegotiated how the game was played, using a range of collaborative gestures and 
discussions to communicate shared understandings and present the newest revision, THV v.6. 

Theoretical Background 
Mathematicians use particular practices in their formulation of valid proofs.  Research suggests that 

proof “is a richly embodied practice that involves inscribing and manipulating notations, interacting 
with those notations through speech and gesture, and using the body to enact the meanings of 
mathematical ideas” (Marghetis, Edwards, & Núñez, 2014, p. 243). Learners may derive new ideas 
and insights relevant to understanding and solving tasks based on their engagement in physical 
motions. Prior research shows that students’ dynamic gestures reliably predict mathematical 
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intuitions and proof validity (Nathan et al., 2018), even when controlling for spatial ability, gender, 
expertise, prior geometry knowledge, and speech content. Playing THV has been shown to help 
foster the production of beneficial gestures that promote higher proof performance (Authors, date). 
As study of collaborative proof has emerged, a growing body of evidence is demonstrating that 
collaborative gestures, as social extensions of cognition, are relevant to learner-learner interactions in 
the processes of mathematical sensemaking (Walkington et al., 2019). Collaborative gestures are 
physically and gesturally taken up by multiple learners. These co-constructive activities often extend 
cognition by echoing ideas, mirroring each other’s reasoning, alternating in co-constructions and 
jointly operating in the same problem spaces (Walkington et al., 2019; see Table 1). 

 
Table 1: Categories of Collaborative Gestures (adapted from Walkington et al., 2019). 

Echo Simple Echo 
(SE) 

One learner makes a gesture and then a second learner makes the same 
(or a very similar) gesture afterwards.  

 Echo & Build 
(E&B) 

The second learner must change or add to the echoed gesture in some 
way. 

Mirror Simple Mirror 
(SM) 

One learner makes a gesture, and then a second learner makes the same 
(or a very similar gesture) nearly at the same time.  

 Anticipation (A) One learner is gesturing, and then a second person anticipates a gesture 
they are about to do (correctly or incorrectly). 

Alternate Alternate & 
Build (A&B) 

One learner gestures their understanding, and then another learner 
follows up, building upon or extending their reasoning. 

 Alternate & 
Redirect (A&R) 

One learner gestures their understanding, and then another learner 
follows up with a different gesture and reasoning. 

Joint (J) Multiple learners manipulate mathematical object(s).  
 

Such multimodal discursive practices in communicating mathematics (e.g., Edwards, 2009; Hall, 
Ma, & Nemirovsky, 2015; Radford, Edwards, & Arzarello, 2009; Roth, 1994, 2001) often externalize 
representations of students’ minds and help establish and maintain intersubjectivity in a shared 
problem space (Nathan & Alibali, 2007). The design of THV draws from the theory of Gesture as 
Simulated Action (GSA; Hostetter & Alibali, 2019), the theory that people gesture because they 
activate perceptual-motor processes in the brain when they think about--and therefore simulate--the 
spatial or motoric properties of an idea while speaking and thinking. In this way, gestures can reveal 
the spatial and motor correlates of abstract and generalizable mathematical thinking.  THV also 
draws on Nathan’s (2014) model of action-cognition transduction, in which learners’ movements 
serve as inputs that can drive the cognitive system into related cognitive states much like the 
cognitive system can, reciprocally, direct the motor system to make specific movements in response 
to one’s thoughts and goals.  It is this bi-directional process, in which cognitive states give rise to 
physical actions and vice-versa that THV is designed to demonstrate. As an embodied intervention, 
THV elicits movements (i.e., directed actions) from its players with the intent of influencing their 
cognitive processes in ways that fostering mathematical insights in support of the proof process. The 
action-based intervention from game play not only helps elucidate mathematical ideas for learners 
(Nathan, 2014; Walkington & Nathan, 2017) by engaging mathematically relevant simulations, but it 
also offers novel, embodied design opportunities for education researchers and practitioners. 

In cases of collaborative gesture, intersubjectivity is a key determinant in the amount of 
collaboration and co-construction between actors. Figure 1 presents a 3D model of collaborative 
gesture ecology. As individuals collect into groups, intersubjectivity increases as group members 
echo, mirror, alternate and jointly gesture. Collaborative game play of THV can facilitate 
transduction to help students communicate their ideas about mathematics. 
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Figure 1: A 3D model of collaborative gesture ecology. 

The Hidden Village 
THV is a 3D motion-capture video game that delivers interactive math geometry curriculum in 

which each player mimics movements of in-game characters and then reads a geometry conjecture to 
determine if it always true or false. Each level of the game is comprised of 6 parts: Players meet 
members of the hidden village (Panel A), who implore players to perform movements (i.e., 
mathematically relevant directed actions detected by the MS Kinect; B). Next, players are given a 
math conjecture (C) and asked to indicate if the conjecture is true/false and why (D), followed by a 
multiple choice (E) and rewards and game achievement (F; see Figure 2). 

 
Figure 2: The Hidden Village Game Play. 

 
For example, in the triangle inequality conjecture (Figure 2, Panel C), a player will have performed 

the three movements (B) where they experience the arms extended laterally, then at an angle to the 
midline and then straight in front of the body. This series of movements is repeated 3 times. Next, 
they read the conjecture (C) and are prompted for an explanation (D).  It is here that we video record 
their spontaneous representational and dynamic co-speech gestures that are hypothesized to 
contribute to their intuitions, insights and proof production. Then, players choose from among 4 
multiple choices (E) before being rewarded by exposing a new portion of the Hidden Village map, a 
symbol, and energy strings to help power the ship (F). 
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Methods 
Participants and Procedure 

Over two days, we observed eight students in an all-LEP (Limited English Proficiency) Title 1 high 
school geometry classroom as they played THV v.5. Students’ languages and ethnicities included 
Spanish from Central and South America, Arabic and French from North Africa, Hmong from 
Southeast Asia, and Chinese. Players were grouped as yoked pairs, alternating playing THV and 
observing game play of their partner. 

Coding. Gameplay was audio and video recorded. The video clips were coded for whether 
participants made individual and collaborative gestures while validating the conjectures. 
Collaborative gestures were then coded by types identified by prior research (Walkington et al., 
2019): echo, mirror, alternate, and joint (see Table 1). 

Cases of Collaborative Gesture 
Students, in light of the variability in English proficiency, dealt with the delivery of the game 

narrative, instructions, and mathematics in many ways, some unanticipated.  In particular, many of 
the students used their bodies, objects in the room, and the bodies of other students to reason 
mathematically and formulate their justifications and proofs. To address comprehension and 
language production challenges, some students turned the dyadic game play into a collective activity 
where students contributed to each other’s successful game play. They translated narratives and 
conjectures for each other and used directed actions to clarify and ground the math. Gestures traveled 
from the game to students and then crossed into different student groups as the movements simulated 
their mathematical ideas. 

In this first transcript (see Figure 3), the students address the geometry conjecture: The sum of the 
lengths of two sides of a triangle is always greater than the length of the third side. In Figure 3 
(below), students (S) engage in a discussion that leads to a series of collaborative gestures (panels A 
– F). Student 1 (S1, standing), turns to his partner, S2, to discuss the validity of the statement.  S1 
(right) listens to S2 (left) and mirrors (C) his gesture and then builds on the idea (D) in which S1 
anticipates S2’s gesture (E) before finishing building his explanation (F). 

  
Figure 3: Embodied Collaboration – Mirror, Alternate and Build Gesturing. 

S2: What are you doing? [Giggling] 
S2: The sum of the length of two sides of a triangle is always greater than the lengths of the third side. 
S1: The sum of the lengths of two sides of a triangle is greater than the length of the third side... No? 
S2: Yes, because like the hypotenuse is the like, the greater one. 
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S1: Oh, yea, yea, yea. 
S2: But if they add the other, the other side, then... 
S1: The sum of the opposite angles...yea, so it is true. 

In this next transcript (see Figure 4), S1 (left) and S2 consider the false conjecture: If you double the 
length and width of any rectangle, then you exactly double the area.  S2 (a student from West Africa) 
explains the “doubling” of the sides to S1 (a student from Central America).  S2’s gestures extend a 
side (panel A), and S1 echoes the gesture (B).  Then, S1 builds (C) upon the imaginary rectangle and 
that gesture is echoed by S2 (D), which is then mirrored by S1 (E), at which point they alternate, 
build and redirect gestures (F) as S1 gains insights about the relevant geometric relations. 

 

 
Figure 4: Embodied Collaboration – Echo, Mirror, Build, Alternate & Redirect Gesturing. 

 

S1: So, the width of the rectangle... the area is... 
S2: They, they multiplied it by 2 like if... if the length... 
S1: So does it, does it have like, like this part? 
S2: Let me show you the length – If the length was three 
S1: Yeah 
S2: They add another 3 and that becomes 6... If this one was 2, they add another 2 and that becomes 

4. 
S1: Oh... 
S2: And they asking if the area, the area is like, like if that was a rectangle, the area is here, what is  
inside the rectangle? 
S1: The angle? 
S2: They asking if that would double, like if you... 
S1: So... [Giggling] 

In the final series (see Figure 5), S2 (right) asks for help translating words into Spanish and beckons 
S3 (left) over to interpret S1 (center, panel A).  S3 translates S2’s words in Spanish while echoing 
and mirroring the arm shape used by S3 (B & C) and replies “Todo todo todo” to S2 while adding 
several small circular motions between them (D).  At this point, S3 mirrors S1’s gestures (E) and 
then they gesture jointly (E) as they use a mutually shared discourse space.  Finally, their discussion 
culminates in their convergence over a nearby tabletop to offload their ideas onto a workspace (F). 
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Figure 5: Embodied Communication – Echo, Mirror & Joint Gesturing. 

S2: [Calls out to other Spanish speaking student for assistance]  
S2: [to S3], can you explain to [S1] in Spanish what I mean? That, they double?  
S3: Yea… What did it say? 
S2: Like, here, this question, they double the length, and they double the, I don’t know how to read in 

English... 
S3: Oh. 
S2: We talked about it... the width... [S1 and S2 engage in discussion in Spanish (Panels B – F)] 

A Game for Collaborative Embodied Co-Creation 
In effect, the students’ collaborative co-constructive discussions while playing the original 8 

conjectures in THV highlighted how varying levels of intersubjectivity combine to surpass language 
barriers and clarify concepts.  Observations of students playing THV proved valuable for informing a 
redesign of THV.  We learned that students may come up with novel movements that will help them 
understand the mathematical relations more clearly. Based on our observations, in the latest build of 
THV, students and teachers can now co-create the game characters’ movements as ways to foster 
their own mathematical sensemaking and support the geometric reasoning of their classmates. 

The conjecture editor allows players to co-create new levels of the game, including adding new 
conjectures and multiple-choice responses (see Figure 6). This content is stored and accessed via an 
external online database that allows users to share and play one another’s content to support further 
collaborative, creative play, and learning.   Additionally, players can collaboratively co-create new 
directed actions for a new conjecture using the Pose Editor (Figure 7), which is how THV “learns” to 
recognize new, user-generated poses.  The process of creating and assigning movements is expected 
to deepen students’ understanding of the embodied basis of geometric relations. When forming new 
poses (see Figure 7), each directed movement is comprised of 2-3 poses (starting, intermediate, and 
the target) that players design by posing the figure using pivots in the elbows and wrists.  Once an 
individual pose is complete, players confirm or reset the figure. Once players have created all the 
poses (1), they can preview the sequence of directed action movements (2) in the form of a short 
GIF-like movie. Then can then set the matching tolerances (3) (i.e., % of allowable error for motion 
capture detection). 
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Figure 6: THV v.6 Conjecture Editor. Allows students to author their own content, including 

designing their own directed actions. Creating a New Conjecture (1) opens the Edit Conjecture (2) 
portal, where players name their team, name their conjecture, enter keywords, create a PIN, design 

a new icon, publish the conjecture to the online database repository, create their own directed 
actions, write the conjecture and devise 4 multiple choices for players to choose from and indicate 

which is correct. 
 

A study that is currently underway in a set of ethnically and linguistically diverse, mixed ability 
high school geometry classes will assess how authoring conjectures and poses (i.e., directed actions) 
contributes to student learning.  We hypothesize students making new content for the game will 
think, act, and talk through the ways that directed actions can foster mathematical insights and proof 
performance. 

 

 
Figure 7: THV v.6 Pose Editor. The figure’s limbs are posable via mouse movement. Figure can be 
rotated using a right-click drag or can be reset back to its origin (4).  Being able to rotate the figure 

proved a critical for properly designing 3D directed actions. 
 

Once students or teachers have created a collection of conjectures, they can cluster conjectures 
together in a game module (currently up to 8 maximum) for others to play (see Figure 8).  Users can 
download individual conjectures or entire modules for their own use. As a tool for teaching, learning, 
and research, the conjectures within a module can be mixed and matched from any of the conjectures 
in the searchable database.  Moreover, the module editor also allows the creator to customize a set of 
features for the module (e.g., offer hints, change the number of repetitions of the directed 
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movements, etc.).  This flexibility allows teachers to contour the game experience for their students. 
It also makes THV a flexible research tool.  By making each feature of the game an option, 
investigators can create parallel versions of THV that only vary by a single variable, which is ideal 
for randomized controlled trials. 

 

 
Figure 8: THV v.6 Module Editor. (1) Create a module, name the module, set the pin, customize the 

module (2) including: turning sounds, music, story, calibrations, hints, poses, number of players, 
language preferences, and scaffolding features. Players can add keywords (for easier search), 

publish to the database, and customize player instructions. 

Discussion 
Embodied principles of learning environment design offer some new opportunities for advancing 

students’ mathematical reasoning. Embodied forms of reasoning offer a kind of Rosetta Stone that 
can bridge language barriers while supporting deep insights about the generalizable properties of 
space and shape. The co-construction of directed movements also allow students and teachers to 
institute more intuitive ways of embodying these mathematical ideas. The emergence of students’ 
collaborative co-constructions inspired insightful ontological innovations in the redesign of THV.  
Our most proximate future goal is to elucidate how movements can embody spatial relations and 
transformations in geometry while empowering students to comfortably create their own content and 
instill confidence for deep, creative mathematics discourse. While THV currently focuses on high 
school geometry, the platform is applicable to other areas of mathematics that engage body-based 
forms of reasoning via simulation and metaphor (Lakoff & Núñez, 2000) as a path toward 
meaningful mathematical reasoning. 
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We report on and validate a system for ranking the cognitive demand of mathematical tasks. In our 
framework, task rankings are determined by the sequences of units and unit transformations students 
might use to solve each task. Using this framework, we ranked a set of 10 fractions tasks. We then 
interviewed 12 pre-service teachers to assess the validity of the ranking system. Results validate the 
task ranking system by demonstrating that increases in task ranking predict increases in the 
cognitive demand experienced by the pre-service teachers, as evidenced by their responses to the 
tasks. These results hold implications for instruction that maintains appropriate cognitive demand 
and future research that models students’ mathematics. 

Keywords: Cognition; Learning Theory, Number Concepts and Operations; Problem Solving.  

In mathematics education, the cognitive demand of mathematical tasks has been categorized in 
terms of qualitative distinctions, such as procedures without connections and doing mathematics (e.g. 
Stein, Grover, Henningsen., 1996). In cognitive psychology, cognitive demand is quantified in terms 
of the number of action schemes a student might need to hold in mind in order to solve the task 
(Pascual-Leone, 1970). Here, we present a framework that accounts for the cognitive demand of 
mathematical tasks in terms of the sequences of units and unit transformations students might use to 
solve fractions tasks. Our framework integrates the math-specific construct of units coordination with 
the general cognitive construct of working memory.  

The purpose of this study is to test a task ranking system based on our integrated framework. This 
purpose addresses one the major goals of PME-NA, “to further a deeper and better understanding of 
the psychological aspects of teaching and learning mathematics and the implications thereof.” We 
created task rankings based on the hypothesis that longer sequences of units/transformations would 
induce higher cognitive demand. To test the hypothesis, we applied a simple statistical test from 12 
pre-service teachers’ (PSTs) responses to 10 ranked fractions tasks. Results confirm that the task’s 
rank predicts the cognitive demand experienced by PSTs, as evidenced by their behavioral (including 
verbal) responses to the task. Thus, our results validate the task ranking system and its underlying 
framework. 

Theoretical Framework 
Piaget characterized mathematics as a coordination of mental actions (e.g. Beth & Piaget, 1966). 

Mathematics educators who have adopted Piagetian perspectives on mathematical learning have 
attempted to account for the actions students rely upon to construct mathematical concepts (Simon, 
Placa, Avitzur, & Kara, 2018; Tzur & Simon, 2004). We are particularly concerned with the mental 
actions students use to construct and transform units. 

Steffe (1992) originally defined units coordination as the distribution of one composite unit (a unit 
containing units of 1) across each of the units in another composite unit. For example, a student 
might conceptualize the product 5 times 7 as the distribution of seven units of 1 within each of five 
units of 1, simultaneously producing five 7s and 35 1s. However, units coordination can be 
understood more broadly as any coordination of mental actions used to construct or transform units. 
For example, the unit fraction 1/5 might be constructed by partitioning a whole into five parts; 
conversely, iterating one of those parts five times reproduces the whole. The coordination of this 
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partitioning action and the corresponding iterating action establish 1/5 as a one-to-five relationship 
between the unit fraction and the whole (Wilkins & Norton, 2011) 

Research on students’ mathematics has identified several mental actions that undergird their 
fractions knowledge (Hackenberg & Tillema, 2009; Steffe & Olive, 2010; Ron Tzur, 1999; Boyce & 
Norton, 2016; Wilkins & Norton, 2011). In addition to partitioning and iterating, these mental actions 
include unitizing, disembedding, and distributing, as summarized in Table 1. 

 
Table 1: Mental actions for constructing and transforming 

Mental Action Description Fractions Example 
Unitizing 

(Un) 
Taking a collection of n items or units, 
or a continuous span of attention, as a 
whole unit 

Treating a rectangular bar as a 
whole unit, of 1 

Iterating 
(In) 

Making n identical, connected copies 
of a unit to form a new unit 

Iterating 1/7 of a whole three 
times to produce 3/7 of the bar 

Partitioning 
(Pn) 

Creating n equal parts within a whole Partitioning a whole bar into 15 
equal parts 

Disembedding 
(Dn) 

Taking n parts out of a whole while 
maintaining their inclusion as part of 
the whole 

Taking one part from a whole 
that has been partitioned into 9 
parts, to make 1/9 

Distributing 
(Tm:n) 

Inserting the m units of one composite 
unit into each of the n units in another 
composite unit to produce a unit of 
units of units 

Inserting three parts within each 
of the nine parts in 9/9 to make 
27 parts in the whole 

 
Working memory is a limited cognitive resource with special relevance in solving mathematical 

tasks (Bull & Lee, 2014; Swanson & Beebe-Frankenberger, 2004). Here, we adopt Pascual-Leone’s 
definition: “working memory involves the process of holding information in an active state and 
manipulating it until a goal is reached” (Agostino, Johnson, & Pascual-Leone, 2010, p. 62). In our 
framing, in the context of solving fractions tasks, working memory involves holding in mind 
sequences of mental actions used to construct and transform units. 

Methods 
Task Ranking  

We chose to focus on fractions tasks because of the wealth of literature on students’ development of 
fractions knowledge and the mental actions that undergird that knowledge (Boyce & Norton, 2016; 
Hackenberg & Tillema, 2009; Steffe & Olive, 2010). The literature identifies unitizing, partitioning, 
iterating, distributing and disembedding as mental actions potentially available to students in solving 
fraction tasks. We used these five actions along with three types of units (whole units, composite 
units, and fractional units) as the atoms of fractions knowledge. The fraction tasks we used were 
modified from Hackenberg and Tillema’s (2009) work. We report on a subset of 10 fraction tasks we 
ranked, listed in Table 2. 

In order to determine how cognitively demanding a task might be for a student, we examined results 
from the literature that reported on students’ prior responses. The literature we chose, and 
Hackenberg & Tillema (2009) in particular, included detailed accounts for the schemes and mental 
actions students seemed to use in solving the tasks. However, in some cases, we had to break down 
schemes and advanced ways of operating into the aforementioned atoms—simpler units and actions 
that undergird students’ fractions knowledge. That is, we hypothesized potential solution paths for 
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mathematical tasks using one unit/action at a time, without chunking them into larger structures, such 
as schemes. 

 
Table 2: Fractions tasks 

 
For example, consider Task 8. To solve this task, a student might start with the whole cake (whole1) 

and partition it (P9) into nine pieces (9), then disembed one of those pieces (D1) to make their piece 
of cake (whole2). The student could then partition (P3) that piece into three pieces (3) and disembed 
one (D1) of those to make a new piece (whole3). Knowing two pieces are needed, the student could 
iterate that piece twice (I2). The student still needs to name the fractional size of the small piece. To 
generate the relationship between the original whole cake and the small piece, the student could 
iterate (I27) the small piece to exhaust the original whole. This process is captured in the graph shown 
in Figure 1. We refer to such graphs as unit transformation graphs. 

Since our theory assumes that units and actions count towards the cognitive demand  a student 
experiences when solving a task, both were counted when determining the rank of a task.  This total 
sum of units and actions enumerated the cognitive demand of the task. In the unit transformation 
graph for Task 8 (Figure 1) there are six units (denoted by circles) and six mental actions (denoted by 
arrows), together giving a task demand of 12. All tasks were ranked using this same process and the 
ranks are reported in Table 2. Once all the tasks were ranked, we tested our theoretical ranking 
system through empirical evidence.  

 

Task Rank Description 
3 5 Imagine a cake that is cut into 13 equal pieces. You take 4 pieces. So, how 

much of the whole cake do you have? 
4 7 Imagine you have 1/7 of a whole candy bar. So, could you use that to figure out 

how long 3/7 of the whole candy bar would be? 
5 8 Imagine this [drawing a rectangle] is 5/9 of a whole candy bar. So, how could 

you make 1/9 of the whole candy bar from what you have? 

6 10 Imagine a rectangular cake that is cut into 15 equal pieces. You decide to share 
your piece of cake fairly with one other person. So, how much of the whole 
cake would that person get? 

7 10 Imagine you share a sub sandwich fairly among 17 people. Now each person 
shares their piece with two other people (three people total share each piece). 
So, could you figure out how much one little piece is of the whole sandwich? 

8 12 Imagine you are at a party and a cake is cut into nine equal pieces. Two people 
show up to the party late and you decide to share your piece of cake with them. 
So, what fraction of the whole cake do the latecomers get together? 

9 12 Imagine cutting off 2/5 of 1/3 of a cake. So, how much is that of the whole 
cake? 

10 14 Imagine cutting off 1/4 of 5/6 of a cake. So, how much is that of the whole 
cake? 

11 16/17 Imagine, you need 1/3 of a pound of sugar and all you have are bags of sugar 
that are 1/7 of a pound. So, how many 1/7 bags do you need? 

12 16 Imagine I have 7/9 of a yard of ribbon, but every ninth it changes colors. My 
friend needs 2/3 of what I have, and she wants all of the colors. So, tell how 
much of a yard she has. 
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Figure 1: Graph of units and actions for Task 8  

 
Data Collection  

Participants were recruited from two sections of a mathematics for elementary school teachers 
content course taught by the same instructor at a large university in the mid-Atlantic United States. 
PSTs were selected for this study because they engage in metacognitive skills that enable them to 
express their thinking well; they commonly practice explaining their mathematics in the mathematics 
for elementary school teachers course. Moreover, they are mathematically mature enough to have 
constructed the mental actions required to productively engage with fraction tasks. 

Twelve PSTs volunteered to participate in a 75-minute semi-structured clinical interview (Goldin, 
2000). Each interview consisted of three parts: a units coordination assessment (Norton et. al, 2015), 
a working memory assessment (Morra, 1994), and a set of fraction tasks. This paper focuses on the 
final component of the interview. The PSTs were given the fraction tasks verbally one at a time and 
asked to solve them, initially without using figurative material. Sometimes follow-up questions were 
asked to probe a PST’s thinking; sometimes PSTs were encouraged to use drawing to support their 
solution. A subset of tasks from Table 2 was selected for each PST, depending on our assessment of 
that PST’s units coordinating ability and working memory. The tasks were always given in 
increasing order (top to bottom in Table 2), posing lower ranked tasks before higher ranked tasks. 
Each interview was video recorded with any written work collected using a Livescribe pen and 
notebook. The videos were selectively transcribed.  
Data Analysis 

Data analysis for this report consisted of two phases: coding for cognitive demand the PSTs 
experienced and a quantitative analysis of the task ranking system from the results of the coded 
cognitive demand.  

Coding cognitive demand. Videos were analyzed for the purpose of coding the cognitive demand 
of each task, as experienced by each PST. We relied on video recorded behavioral data (including 
verbalizations) as indicators of this experienced demand. 

Videos were analyzed one PST at a time with at least two of the three authors present. Experienced 
cognitive demand was coded as Low, High, or Over. The Low code was given when the PST was 
able to solve the task easily and confidently. Behavioral indicators included relaxed posture, 
providing an answer without verbal rehearsal or giving a fluent rehearsal of solution strategy. When a 
PST struggled but still had success engaging with the task, we assigned a High code. Behavioral 
indicators for a High code included asking for the question to be repeated during the solution process, 
expressing doubt throughout the task, unsure or repeated rehearsal needed to convince themselves of 
the task solution, and losing track of units during the solution process. The Over code meant that the 
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PST clearly was unable to assimilate the task or unable to resolve it without significant support from 
the interviewer or figurative material. This code often provided the easiest behavioral indicators with 
participants saying things like “Ah, it’s just hard to do it in my head. Umm…” or “my brain is 
confused now.”  

The following pair of transcripts, from PST G provide an example of the difference between a Low 
code and a High code. The first transcript is for Task 6 (rank 10), and the second is for Task 8 (rank 
12). In her response to Task 6, we see that PST G is quickly successful in solving the task with 
minimal rehearsal needed. Indeed, she seemed to have an answer ready (one-thirtieth) before saying 
anything, so that her verbalizations served as explanations to the researcher, rather than a necessary 
process in generating a solution to the task. The verbal run through of her solution process was 
succinct and confident. 

Researcher:  This is the next task [Task 6]. Imagine a rectangular cake that is cut into fifteen equal 
pieces. You decide to share your piece of cake fairly with one other person. So, how much of the 
whole cake would that person get? 

PST G:  [pauses for seven seconds and looks up.] You get one fifteenth of the cake and split that in 
half. My first thought was one-thirtieth…Of the cake, because…[makes splitting motion with 
hands in the air.] Splitting that in half, like if you were to split every piece of fifteen in half, then 
that would be like one thirtieth of the entire cake. 

In comparison to Task 6, Task 8 seemed to induce additional cognitive demands for PST G, who 
required verbal rehearsal of her thought process to determine the answer to this new task. While she 
was successful in the end, throughout the solution processes there were several times she expressed 
doubt about a step or result. She would say things like, “Wait, that doesn’t seem right,” and “I don’t 
know if that’d give you the same answer.” She was eventually able to be successful on this task after 
attempting it twice. The fact that she was able to work through and solve the task despite some 
expressed doubt meant it did not qualify for an Over coding. However, Task 8 appeared to require 
substantial mental effort to produce a correct solution, indicating demand was High. 

PST G:  So, it’s split up into nine equal pieces. So, then, you would split one ninth into…Two people 
come, but you still have a little bit? So, that… So, you would split that up into three. So, then I… 
Well, I guess you would do one ninth times two thirds to get how much they equal, like how 
much both their pieces would be. And then whatever that is, I guess it would be… two over… 
two eighteenths? Wait, that doesn’t seem right. [pauses for five seconds] I feel like… I mean, I 
guess… You take those nine pieces, splitting that one ninth into thirds. But to find out how much 
two of those thirds are, you’d multiply one ninth by two thirds… Or no. You’d… you’d multiply 
the one ninth by one third, and then just do that twice? I don’t know if that’d give you the same 
answer. 

Researcher:  Okay. Uh, let’s… Maybe I can help you. 
PST G:  Okay. 
Researcher:  If you want me to be your calculator again, I’ll do it. 
PST G:  [begins to draw on table with finger] So, you do one ninth, which divided by three, so you 

could times it by one third. So, then you’d have one over um… [pauses for five seconds.] Oh 
wait… [whispers to self] Three times nine, that’s twenty-seven. Oh no, one over twenty-seven. 
And then you multiply that by two… to get two-thirds or to get two parts of the thing… So, then I 
guess… What’s one over twenty-seven times two? Is that just two-twenty-sevenths? Okay. 

Researcher:  Nice, I like the way you reasoned through it. Yeah. 
PST G:  Okay. I was like, because I was thinking one over twenty-seven times two over one and I was 

like I guess that’s just two, twenty-sevenths. 

Quantitative analysis. The variable we measured was cognitive demand. This ordinal categorical 
data was coded as Low, High, and Over as described above. To test whether the task ranking system 
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was valid, we only considered instances where a PST experienced a change in cognitive demand 
between two successive and differently ranked tasks. We excluded any cases where the same 
cognitive demand was experienced on successive tasks and instances where the demand changed 
within the same ranked task. For example, if Task 6 (rank 10) was coded as High but Task 7 (rank 
10) was coded as Low, we did not count this as a trial. In fact, such instances were common and 
expected because PSTs might rely on their solution to the first task within a given rank to facilitate 
their solution to the second task of that rank. After excluding these cases, we were left with 21 trials. 
The trials are labeled in Table 3 with the number placed in the cell of the higher ranked task where 
the change occurred. Since our theory assumes an increase in task ranking predicts an increase in 
experienced cognitive demand, we consider a successful trial to be one where the change in cognitive 
demand increased for successively given tasks of increasing rank. There are 18 successful trials. The 
three unsuccessful trials occurring with PSTs F, G, and J, denoted in Table 3 with an asterisk (Trials 
7, 11, and 17).  

To test the validity of the task ranking system, we asked the following: What is the probability of 18 
successes in a sample of 21 trails if the chance of changed cognitive demand is 50%. To answer this 
question, we used a binomial test with a p-value of 0.05. We assume the independence of observation 
needed for a binomial test holds across PSTs since each was interviewed separately and any 
discussion of the interview between PST outside of the interview setting was negligible. We also 
assume the independence of observation holds within a PTS’s interview because of the novelty of the 
tasks and the exclusion of same ranked tasks from the trials. We analyzed the data using Microsoft 
Excel (version 15.33).  

Results 
Table 3 illustrates the cognitive demand of tasks as experienced by each PST. Green indicates Low 

demand, yellow High, and red Over. Two pairs of tasks, 6-7 and 8-9, have the same rank; if a PST 
was given both tasks of the same rank, we only consider the first of the same ranked task given to 
eliminate familiarity with the task as a confounding variable of cognitive demand. At a glance, we 
can see that the predicted trend of increasing rank with increased cognitive demand did occur. There 
are three PSTs (F, G, and J) for whom this pattern did not strictly hold outside of same ranked tasks. 
For PST F, the codes followed the pattern of Over, High, then Over again. PST G had a High code 
after two Over codes. Lastly, PST J had one High code in the middle of two Low codes before 
getting coded as Over. We attribute PST F’s deviation from the predicted pattern to her initial 
assimilation of fractions in an unconventional manner (e.g., assimilating “three-sevenths” as one-
third of 1/7) before adjusting this understanding in subsequent tasks as parts out of wholes. The 
switch from Over to High that PST G experienced was a case of persistence in trying to solve a task 
as she made use of new strategies used on previous tasks. For PST J, she experienced a perturbation 
with her scheme for “one-ninth” in Task 5 that led to an Over code but was resolved for subsequent 
tasks.  

 
Table 3: Summary of cognitive demand by task and PST 

Task Rank A B C D E F G H I J K L 
12 16       11*  15    
11 16/17             
10 14      8 10 13   20  
9 12             
8 12   3  6 7* 9 12 14 18 19 21 
7 10 1            
6 10  2  4 5     17*   
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5 8          16   
4 7             
3 5             

 
With 18 successes out of 21 trials, and a probability of success for a single trial of 50%, we obtained 

a p-value of 0.0006. This statistical result validates the task ranking system. In particular, it supports 
the hypothesis that increased length in sequences of units/actions required to solve fractions tasks 
predicts cognitive demand, as experienced by the PSTs and evidenced by their behavioral responses 
to the tasks.  

Discussion 
In validating the task ranking system with a simple statistical test, we have affirmed the hypothesis 

that informed it. In turn, the affirmation of this hypothesis demonstrates the utility of our 
framework—a framework that integrates the psychological construct of working memory (Pascual-
Leone, 1970) with the mathematics education construct of units coordination (Steffe, 1992). 
Furthermore, it supports the Piagetian perspective of mathematics as a coordination of actions (Beth 
& Piaget, 1966), while recognizing students’ mental actions as the source of their own mathematical 
power.  

Other mathematics education studies have addressed cognitive demand (e.g., Stein, Grover, 
Henningsen, 1996) or have identified how students might rely on sequences of mental actions to 
solve mathematical tasks (Simon, Placa, Avitzur, & Kara, 2018; R. Tzur & Simon, 2004). We used 
unit transformation graphs to account for both: mental actions constitute the atoms of students’ 
mathematical knowledge, as represented by the circles (unit constructions) and arrows (unit 
transformations) in our graphs. We enumerated cognitive demand by the number of circles and 
arrows in each graph. Although this characterization of cognitive demand aligns best with the 
psychological construct of working memory, it also relates to Stein and colleagues’ (1996) 
categorization. 

Stein and colleagues were especially concerned with maintaining high cognitive demand of 
instructional tasks, where high demand referred to aspirations of engaging their students in 
“procedures with connections” and “doing mathematics” (Boston & Smith, 2009; Stein et al., 1996). 
Unit transformation graphs might support such aspirational goals by informing teachers of ways they 
can help students manage the demands of mathematical tasks without reducing them to the lower 
categories of “memorization” or “procedures without connections.” Within our framework, 
maintaining such demand would involve facilitating students’ coordination of the mental actions 
involved in a task’s solution by providing appropriate figurative supports, such as manipulatives and 
opportunities for student drawings. Such supports could allow students to offload demands on 
working memory, especially in long sequences of units/actions, without eliminating the demand for 
their coordination (cf., Costa et al., 2011). 

Prior research has highlighted additional factors that contribute to cognitive demand. For example, 
Pajares (1994) demonstrated that self-efficacy and math anxiety can moderate the cognitive demands 
that students experience in response to mathematical tasks. Although we did not take such factors 
into account in our study, the complexities of teaching necessitate that teachers do. We recognize 
these complexities and intend unit transformation graphs as a tool teachers and researchers might use 
to manage them.  

Ultimately, we see unit transformation graphs as a means of recognizing and empowering students’ 
mathematics by explicitly accounting for their available mental actions and coordinations thereof. 
We might expand the program by relying on research that identifies students’ mental actions in other 
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domains of mathematics, such as algebra (e.g., Lee & Hackenberg, 2014) and covariation (e.g., 
Carlson et al., 2002).  
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Incorporating video case study of mathematics teaching into professional development (PD) can 
provide opportunities for teachers to develop new ways of seeing teaching and learning and inform 
efforts to enact new instructional practices. However, more research is needed to understand how 
such PD can foster sustained teacher learning about high-quality instruction and materials. In this 
paper, we share the evolution of our analytic method that aims to reveal how secondary mathematics 
teachers learn while collectively analyzing video of mathematics teaching. We found that 
conceptualizing this PD within a community of practice, along with applying analytic tools from 
frame analysis and professional noticing, helped us recognize and describe the process of teacher 
learning in this setting. We plan to apply our analytic method to our full dataset to better understand 
how teacher learning in this context is happening over time. 

Keywords: Teacher Education - Inservice / Professional Development, Teacher Knowledge, 
Research Methods 

Teaching is a dynamic endeavor for each teacher; no two learning environments are identical. Each 
classroom is shaped by teacher and student interactions, including teachers’ interpretations of and 
responses to students’ thinking and problem-solving strategies. Teachers’ decision making during 
these interactions provide opportunities for students to develop as problem solvers and effect 
mathematical thinkers (Schoenfeld, 2017). As educators, we can learn from classroom interactions, 
personal reflections, and collaborations with others in order to improve our own practice. Analyzing 
video case studies of mathematics teaching “can help [teachers] develop new ways of seeing teaching 
and learning and support their efforts to enact new instructional practices” (van Es & Sherin, 2017, p. 
1). 

However, teachers’ opportunities to systematically develop and share ideas about teaching are 
limited (Ball, Ben-Peretz, & Cohen, 2014). Professional development (PD) has been shown to be key 
in supporting instructional shifts that deepen students’ learning opportunities (Desimone, 2009). In 
our research, we designed a model of video-based PD for our work within professional learning 
teams (PLTs) of secondary mathematics teachers, bringing teachers together to collaboratively 
investigate video of mathematics teaching. One important aspect of our PD model is that it is 
grounded in the Teaching for Robust Understanding framework (TRU; Schoenfeld, 2017). The TRU 
framework details dimensions of high-quality instruction that support deep mathematical learning 
opportunities for students. Our goal is to understand (a) how discussions and activities used in the PD 
support teacher learning, and (b) the extent of teacher learning about high-quality instruction and 
instructional materials that can be used within mathematics classrooms. 

Submitted to the Theory and Research Methods strand of PME-NA, this proposal describes the 
analysis process for the NSF-funded project Analyzing Instruction in Mathematics using the 
Teaching for Robust Understanding Framework (project number 1908319), or AIM-TRU. The 
project team consists of a research group of practitioners and mathematics teacher educators 
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analyzing PLTs’ investigation of video cases. Through our analysis process, we aim to demonstrate 
how our PD model can foster sustained teacher learning about high-quality instruction that 
contributes to shared professional knowledge across a diversity of school settings. As we worked to 
understand the impact of our PD model on teacher learning, we drew from and expanded on a 
collection of complementary conceptual and analytic perspectives, including communities of 
practice, frame analysis, and professional noticing. Thus, the purpose of this proposal is to share our 
analytic method and illustrate how we have been using it to understand how teachers learn in a 
community of practice as they collectively analyze video case materials. 

Conceptual and Analytic Perspectives 
Our conceptual model relies on understanding learning within a community of practice (CoP; 

Wenger, 1998). To understand learning in a CoP, we incorporate analytic tools from frame analysis 
(Bannister, 2015) and apply constructs from professional noticing (Jacobs, Lamb, & Philipp, 2010). 
In this section we describe each of these frameworks to articulate our process of investigating teacher 
learning within professional learning teams. 
Communities of Practice 

Wenger (1998) claims that people learn through their participation in specific communities, called 
communities of practice (CoPs), consisting of people with whom they interact regularly. CoPs are 
defined as groups whose members (a) are mutually engaged in an activity, such as analysis of video 
case studies of mathematics teaching; (b) are connected by a joint enterprise, such as fostering 
sustained teacher learning about high-quality instruction; and (c) have a shared repertoire of 
communal resources, such as the TRU framework.  

According to Wenger (1998), communities of practice negotiate meaning collectively. This 
negotiation of meaning is represented by changes in participation which are reified to give form to 
the meaning through the three dimensions of the CoP outlined above. For our analytic process, we 
utilize frame analysis to identify these reified changes in participation, which manifest themselves as 
participants engage with “evolving forms of mutual engagement,” “understanding and tuning their 
enterprise,” and “developing their repertoire, styles, and discourses” (Wenger, 1998, p. 95). We 
consider changes within these three processes as evidence of learning within a CoP. 
Frame Analysis 

Bannister (2015) linked community participation with tools from frame analysis (Benford & Snow, 
2000; Snow & Benford, 1988), to examine how teachers’ participation patterns evolve around a 
community defined problem of practice (PoP). By employing the tools from frame analysis, 
Bannister sought to understand development within a group of teachers within common planning 
time to capture teachers’ reification patterns and give insights related to member participation. The 
tools from framing analysis consist of framing tasks (Snow & Benford, 1988): diagnostic framing 
(“identification of a PoP and the attribution of blame” (p. 200)), prognostic framing (“a proposed 
solution to the diagnosed PoP that specifies what needs to be done” (p. 199)), and motivational 
framing (“a call to arms or rationale for engaging in ameliorative or corrective action” (p. 199)).  

Bannister (2015) delineated the connections between the key concepts from frame analysis and 
processes of participation and reification in a CoP (see Figure 1). For example, a group of high 
school mathematics teachers (a CoP) collaborate weekly (shared repertoire) on developing 
interventions for struggling students (joint enterprise). As the teachers identify a PoP and specify 
possible causes (diagnostic framing), and discuss possible solutions (prognostic framing) by 
interacting each other and sharing their ideas (participation), the framings reify the community’s 
ideas about who the struggling students are and what can be done to help them. Changes in framings 
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within a community help to reify the changes in participation occurring within a CoP. These changes 
in participation and reification, are in turn, empirical evidence of learning occurring within a CoP.  

 
Figure 1: Connections between key ideas from communities of practice and frame analysis. 

(Bannister, 2015) 
Professional Noticing of Children’s Mathematical Thinking 

To identify a PoP, we use the construct professional noticing of children’s mathematical thinking to 
“begin to unpack in-the-moment decision making” (Jacobs et al., 2010, p. 173). Researchers argue 
that teachers need to first learn to productively attend to pertinent features of an instructional setting 
and be able to make mention of that which is noticed before they can make responsive instructional 
decisions (Jacobs et al., 2010; Superfine, Amador, & Bragelman, 2019). Thus, Jacobs et al. (2010) 
detail the components of professional noticing with three skills: “attending to children’s strategies, 
interpreting children’s understandings, and deciding how to respond on the basis of children’s 
understandings” (p. 172). The premise of the framework indicates that in order for teachers to 
respond to student thinking, the other skills of attending and interpreting are occurring 
simultaneously to provide the teacher insight and knowledge about how to respond. Moreover, 
according to Thomas et al. (2015), anticipating how students might respond provides a firm basis of 
noticing. Therefore, the framework for professional noticing for children’s mathematical thinking 
provides a foundation for us to apply frame analysis techniques to understand the ways in which 
teachers are learning within a CoP.  

Methods 
Participants 

The participants of the study include eight practicing secondary mathematics teachers and two 
participant observers from the research team. The teachers volunteered to be part of a Professional 
Learning Team (PLT) with the goal of analyzing videos of mathematics classrooms to interrogate 
mathematics teaching and learning. Two of the eight participants are facilitators for the discussions; 
however, the two research members also engage and probe teacher thinking throughout the PLT 
meetings.  
Context 

Teacher participants who elected to participate in this PLT enrolled with the knowledge that they 
would be analyzing video case studies that are aligned with the TRU framework. Each set of video 
case materials utilized in PLT meetings was created to demonstrate a teacher implementing a 
formative assessment lesson (FAL) from the Mathematics Assessment Project. The Mathematics 
Assessment Project also uses the TRU framework as a way of characterizing powerful mathematics 
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classrooms, defined by a focus on the mathematics, cognitive demand, equitable access to the 
mathematics, agency, ownership, & identity, and formative assessment (Schoenfeld, 2017). The TRU 
framework provides a necessary shared repertoire within the PLT for discussing the video case 
studies.   

Participants attended four PLT meetings and analyzed three sets of video case materials. The first 
PLT session was used for teachers to better acquaint themselves with FALs and the TRU framework 
with the intent to build a shared repertoire among members. In the next three sessions the participants 
engaged in a guided analysis of video case materials. Each PLT meeting was two hours in length. 
The teachers engaged with mathematical content around applying properties of exponents and 
representing quadratic functions graphically. The facilitators followed a predetermined guide to keep 
each session consistent throughout the larger project.  
Data Collection 

Data was collected with the intent of understanding how teachers develop knowledge through 
engagement with the video case materials. The four PLT meetings were video recorded and each of 
the recordings were later transcribed to be analyzed. Materials from the PLTs were also collected to 
cross reference teacher conversation and build knowledge of their understanding. The materials 
include individual and group generated artifacts, solutions, and responses to question prompts.  
Data Analysis 

In order for us to understand changes in participation and reification within the CoP, we used frame 
analysis (Bannister, 2015) as an analytic tool. Our first level of analysis was to reduce the data into 
episodes of pedagogical reasoning (EPRs). Horn (2005) defines episodes of pedagogical reasoning as 

units of teacher-to-teacher talk where teachers exhibit their reasoning about an issue in their 
practice. …EPRs are moments in teachers’ interaction where they describe issues in or raise 
questions about teaching practice that are accompanied by some elaboration of reasons, 
explanations, or justifications. These episodes can be individual, single-turn utterances, such 
as “I’m not using that worksheet because it bores the kids.” Alternatively, these can be 
multiparty coconstructions over many turns of talk. (p. 215) 

Using an EPR as our unit of analysis, we were able to systematically investigate teacher discussions. 
After collectively identifying each EPR, we analyzed the EPRs to determine what teachers were 
talking about and the nature by which they were having discussions.  

After separating EPRs, we created descriptions or themes to characterize the essence of the 
conversation. These descriptions detail what the teachers were discussing. For example, two of our 
identified themes were understanding one method of student strategies and using calculators to 
evaluate vs. expanding. To apply frame analysis, we examined each EPR and the previously 
identified theme to determine the PoP which grounded the teachers' conversations. The PoP occurred 
when teachers identified an instance as troublesome, challenging, recurrent, unexpectedly interesting, 
or otherwise worthy of comment (Horn & Little, 2010); they are issues of practice that teachers 
encounter regularly. We identified the PoP through either explicit mentioning from participants or 
through prior participation or discussion. While we were stating the PoP in each EPR, we began to 
discover repetitive language emerging as we defined the PoPs. Therefore, we began to create 
descriptions of PoPs that could be used across the PoPs and revisited each previously analyzed EPRs 
to determine if they would also have our newly defined PoP. For example, we analyzed the two EPRs 
with different themes, labeled above, and determined that in both cases the PoP was teachers 
anticipating student solution strategies.  

After identifying the PoP, we analyzed each EPR to understand the nature of the conversation 
through frame analysis. Incorporating the literature, we organized the definitions of framing tasks as 
detailed in Table 1. 
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Table 1: Definitions of Framing Tasks 

Framing Task Definition 
Diagnostic 
Framing 

Diagnostic framing is when teachers diagnose a PoP and attribute causality for the 
problem. 

Prognostic 
Framing 

Prognostic framing is when teachers discuss a solution or possible solutions for a PoP 
diagnosed or implicit from earlier conversations. This implies attribution of causality 

and solution(s) for the problem. 
Motivational 

Framing 
The motivational framing is the rationale for engaging in a particular action to attend to 
a particular PoP. This rationale should be more than just mentioning what the teacher 

thinks will change but include justification for why the proposed action will create 
change. This implies attribution of causality, solution(s) for the problem, and a rationale 

for why a solution or solutions would actually work. 
 

We described the diagnosis, the prognosis, and/or the motivation with each EPR. The descriptions 
were generated by using the teachers’ exact words or by interpreting the nature of the teachers’ 
conversation. In some EPRs, we saw a progression of conversation from diagnosing the PoP, to 
prognosing a hypothetical solution, to detailing their motivation behind their prognosis. However, 
other EPRs were limited to only diagnostic discussions where the teachers did not provide 
hypothetical solutions to their identified PoP.  

During the analysis process, we began to see patterns in our identified PoP and considered layering 
frame analysis with an additional analytic framework that would help us better understand what the 
teachers were talking about before we determined how they were talking about it. Through 
discussions, we realized that the PoPs contained themes aligned to the professional noticing of 
children’s mathematical thinking framework. As a team we revisited the definition of each PoP to 
align them with the framework as an object of focus for the community’s participation and reification. 
Figure 2 indicates how we visualize the noticing framework inside of a CoP. What and how the 
teachers notice throughout their engagement with video case studies can be evidence of changes in 
participation and reification. 

 
Figure 2: Noticing as a method to analyze changes in participation and reification. 

 
Based on the professional noticing framework, to define our PoP, we categorized each EPRs’ 

problem of practice as either attending, interpreting, or responding to student thinking. In our 
analysis, we also detailed the subject to what the teachers were either attending, interpreting, or 
responding. For example, the two EPRs, identified earlier regarding student solution strategies, were 
now coded as Attending-Teachers anticipating student solution strategies. However, using the 
definitions for attending, interpreting, and responding, we found some EPRs could not be 
characterized by one of these categories. In these instances, the teachers were not explicitly 
discussing students’ mathematical thinking. However, because the context of their conversations is 
important for our larger research project, we categorized these as “other” and maintained the original 
description as the PoP. 
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Illustrative Example of our Analytic Method 
In this section, we provide an illustrative example of our analytic method. We detail the processes 

of identifying an EPR and the PoP within the EPR, relating the PoP to the noticing framework, and 
identifying each EPR as a diagnostic, prognostic, and/or motivational frame.  

For context, the participating teachers in this example were analyzing the video case of an Applying 
the Properties of Exponents FAL during the second PLT session 
(https://tle.soe.umich.edu/MFA/Applying_Properties_of_Exponents_1). While analyzing the video 
case, the teachers focused on a group of students discussing the problem 2! ÷ 2!. Two of the 
students in the group were trying to convince a third student how the properties of exponents could 
be used to simplify this expression. The following transcript is a teacher conversation in the PLT 
meeting about the situation in the FAL. 

Louis:   I think if I could rewind then ask a question, I might ask them or maybe prompt them 1 
to do is maybe to think about it in terms of a different form. Because, from what I saw, it 2 
was like a back and forth between computation and exponents. And I think if maybe the 3 
students could maybe see it in the expanded form or another way it might, it might 4 
prompt them to think about it in a different way. 5 

Josh: Can I ask how you would go about doing that? Like, what would you ask them to 6 
stimulate that conversation? 7 

Louis:   I think I would start at the beginning and I think it was where they were doing the 8 
four divided by eight … it was two to the second divided by two to the third. That's what 9 
it was. And that prompted them to do four divided by eight. And they got some, they got 10 
some validation at the end, like he checked into the calculator and yes, in fact it was two 11 
to the negative one power. So, I guess the question would be like, well why exactly does 12 
that work? And then it would be, what's another way maybe we could write the initial 13 
statement and then maybe that would help them along the way to the other ones. 14 

Jackson: I agree. Have them write it in expanded form and then playing with it that way. 15 
Lisa: I know for me, one of the things I would have, um, and I again, I don't know if this is 16 

the right move, but being that it seems like the boy is a very visual person. Maybe he's  17 
not really listening to these rules because he's not getting, he's not really seeing their 18 
thinking. Uh, I know like I'm a very visual person. I need to see it written to really 19 
understand it. So, I almost want to suggest to the girls like, can you just show, show him 20 
what you're thinking? Can you show it on your whiteboards? And maybe then he'd have 21 
like a better understanding for it.22 

We identified this teacher conversation as an EPR because it was an incident of teacher-to-teacher 
talk about a student who had not been building on other students’ thinking or reasoning about 
2! ÷ 2! and were offering suggestions for improvement. We identified the PoP in this EPR as 
providing opportunities to learn in different ways through multiple representations. Evidence to 
support this description can be seen, in part, through one teacher’s comment: “And then it would be, 
what’s another way maybe we could write the initial statement and then maybe that would help them 
along the way to the other ones” (lines 13-14). Based on the professional noticing framework, we 
categorized the PoP as responding to student thinking because the teachers used what they learned 
about the student's understanding of the properties of exponents to pose hypothetical questions to 
students. As stated earlier, for teachers to respond to student thinking, they must first attend to 
student thinking. Evidence of teachers attending to student thinking occurs when Louis claims that he 
saw students using computation and expanding as methods of simplifying exponential functions 
(lines 2-4). We identified other hypothetical responses to student thinking by the teachers: Louis 
proposed probing student thinking by asking why their mathematics works (lines 12-14); Jackson 
suggests having students write the expressions in expanded form (line 15); and Lisa would ask 
students to make their thinking visible through the use of whiteboards (lines 20-22). In each of these 
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instances, the teachers are sharing questions they would ask students in response to the analysis of 
their thinking. 

We then analyzed the EPR to understand the nature of the conversation through frame analysis. The 
teachers diagnosed the PoP as responding to student thinking: providing opportunities to learn in 
different ways through multiple representations. They came to this diagnosis by focusing on one 
student who did not believe that one representation (the properties of exponents) was valid to 
illustrate the equivalence of expressions. The teachers’ determination of the attribution for causality, 
or what caused the PoP in this EPR, was that the student did not build on other students’ thinking. 
This is evidenced in Lisa’s claim, “Maybe he's not really listening to these rules because he's not 
getting, he's not really seeing their thinking” (lines 17-19, emphasis added).  

The teachers went on to provide a prognosis for this PoP. In this EPR, the teachers discussed 
prompting students to consider looking at the expanded form of 4 ÷ 8 (line 9) written on the 
whiteboard (line 21) because it would be helpful for the student, who might be a visual learner, to see 
and understand the properties of exponents are valid to illustrate the equivalence of expressions. In 
the end, we coded this EPR as a motivational frame because the teachers went beyond the diagnosis 
and prognosis of the identified PoP by providing a rationale for their proposed action based on their 
assessment of the student appearing to be a visual learner (lines 17-22). The summary of our analysis 
for this illustrative example is organized and presented in Table 2. 

 
Table 2: Sample Analysis  

Category Description 
Problem of 

Practice 
Providing opportunities to learn in different ways through multiple representations 

Noticing Skill Responding to student thinking 
Diagnostic 
Framing 

The student doesn't believe that one representation (properties of exponents) is 
valid. 

Prognostic 
Framing 

The teacher could prompt students to consider looking at the expanded form of 
expressions. 

Motivational 
Framing 

The student appears to be a visual learner, thus seeing expanded form might assist 
his belief in properties of exponents. 

Discussion 
Our analytic method stems from a need to understand how teachers learn in a CoP and, in turn, how 

to foster sustained teacher learning. In this paper, we elaborated how our analytic method is helpful 
to understand teacher learning within the PLT during their engagement with video cases. First, frame 
analysis enabled us to analyze what and how the teachers negotiated meaning in the PLT. 
Meanwhile, we saw that, during the teachers’ interaction, they mostly talked about noticing their 
students’ thinking. Thus, by adding the noticing framework to frame analysis, our team was able to 
categorize the PoPs in a consistent way. This consistent categorization of PoPs was beneficial to 
understand how the teachers could start to think about improving their own instruction. Taken 
together, within our analytic method, we combined frame analysis and professional noticing, which 
was conducive to our analysis of teacher conversations about FALs. Specifically, frame analysis 
played a major role while the noticing framework played a supporting role in our analysis process 
because we utilized the noticing framework after making use of frame analysis. If researchers or 
teacher educators apply the analytic method in their own context, it might be helpful to utilize an 
additional framework, like professional noticing, from the beginning of an analysis. By 
characterizing the PoP in a streamlined manner, patterns related to participation and reification will 



Analyzing teacher learning in a community of practice centered on video cases of mathematics teaching 
 

	 2269	

become more easily evident through analysis. Then, through analysis of the entire PLT data, using 
the identified PoPs, we will be able to discern if there are reified changes in participation. 
Next Steps 

In order to better understand teacher learning within PLTs of practitioners and mathematics teacher 
educators analyzing video cases, we first need to further investigate how teacher conversations and 
their framings are changing over time. These changes in frame will allow us to identify and describe 
the reified changes in participation that indicate learning in CoPs. Secondly, we need to look for 
patterns across EPRs in the remaining sessions of the PLT to verify that this analytic method is 
robust. Additionally, it will be necessary to determine how to interpret the EPRs we categorized as 
“other.” Our initial understanding of this collection of EPRs is that they are about group dynamics or 
classroom norms. However, we will need to continue to look at this data, and the PLT sessions to 
find confirming or disconfirming evidence of this conjecture. Finally, future studies can build on our 
analytic method by connecting this data to the TRU framework in order to obtain a deeper 
understanding of our overall research questions around understanding (a) how discussions and 
activities support teacher learning and (b) the extent of teacher learning about high-quality instruction 
and instructional materials that can be used within mathematics classrooms. 
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We reflect on the limitations of our research group’s prior methods for assessing covariational 
reasoning which primarily used graphical tasks found in extant literature. Graphical tasks dominate 
the literature on covariational reasoning, and through our use of these tasks we came to question the 
heavy reliance on them. Our concerns led us to ask the following: (1) What are the limitations of 
using tasks with graphs to assess covariational reasoning? (2) How can we improve assessment of 
covariational reasoning to accommodate students with nonnormative graphing schemes? We offer 
this piece as the beginning of a conversation to develop improved methodologies that attend to the 
ubiquity of students’ nonnormative graphing schemes. 

Keywords: Research Methods, Cognition, Precalculus, Calculus 

The role of quantitative and covariational reasoning in the teaching and learning of mathematics has 
received increased attention in recent decades. Researchers have adopted numerous methodologies to 
investigate said reasoning, and, relatedly, they have developed a number of research-based tasks and 
instructional settings that afford such investigations. In our previous work, we drew connections 
between covariational reasoning and units coordination (Boyce et al., 2019). In this paper, we reflect 
on the relationships between our prior methods for assessing covariational reasoning, including how 
this influenced our data and claims regarding participants’ maximum capacity to reason 
covariationally across settings. By sharing the analysis of our methods, we hope to spark a larger 
conversation that is important for a number of reasons. 

First, reflection and review of research processes can refine our research and the quality of research 
in the field as a whole. Second, our research team consists of many newcomers to covariational 
reasoning research, including three first-year doctoral students—two of whom are the leading authors 
of this piece. This affords us the opportunity to start a dialogue between both novice and expert 
researchers concerning the interpretation and use of covariational reasoning frameworks in research. 
To further help facilitate such a conversation, we invited an expert on quantitative and covariational 
reasoning (the last author) to participate in crafting this paper. Third, in the sphere of covariational 
reasoning, there is a new generation of researchers who have started using the covariational 
reasoning frameworks that Thompson and Carlson (2017) developed over the past 30 years 
(Gonzalez, 2018; Stevens, 2019). By examining the evolution and contemporary usage of these 
frameworks, we can adopt a lens by which to identify previous works’ contributions and limitations. 
Fourth, and most relevant to the present work, after reflecting on our methods we contend that extant 
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studies have often relied too heavily on graphical items to assess covariational reasoning. We offer 
specific suggestions on how to improve interview protocols to address this issue.  

Previous Study Design and Current Research Questions 
Our initial interview protocols for assessing a students’ overall ability to reason covariationally 

were guided by Carlson and Thompson’s work (Carlson et al., 2002; Thompson & Carlson, 2017), 
the Project Aspire covariation tasks (Thompson, 2016; Thompson et al., 2017), and the classic Bottle 
Problem (Swan, 1985). Project Aspire, led by Thompson, created a validated diagnostic assessment 
of secondary teachers’ mathematical meanings. Their work included drafting a number of covariation 
items and then piloting them with teachers to determine the best items for reliably assessing 
covariational reasoning. While the initial covariation item pool included both graphical and non-
graphical items, all non-graphical items were discarded for a variety of reasons. Because we drew 
inspiration from the Aspire instrument and Carlson et al.’s (2002) tasks, and the covariational 
reasoning literature sparingly highlights the importance of non-graphical tasks, it did not occur to us 
to include such tasks in our interview protocol.  

While retrospectively analyzing our methods and resulting data, we hypothesized that assessing 
overall covariational reasoning with mostly graphical tasks limited our ability to model students’ 
thinking. This hypothesis stemmed from our observation that some students correctly described 
relationships between two covarying quantities using words and gestures, but these same students 
failed to graphically convey their described relationships because of their nonnormative graphing 
schemes. In hindsight, it makes sense that graphical tasks have limitations given the growing body of 
evidence that a number of successful undergraduate students use nonnormative graphing schemes 
(Frank, 2017; Lee et al., 2019; Moore et al., 2019), which often involve meanings for graphs that do 
not entail covariational reasoning. Consequently, such student graphs do not provide data for a 
researcher to assess their covariational reasoning beyond an in-the-moment absence of it. Indeed, 
Saldanha and Thompson (1998) conveyed a similar sentiment when stating: “The results of this study 
lead us to believe that understanding graphs as representing a continuum of states of covarying 
quantities is nontrivial and should not be taken for granted” (p. 303). Building off Saldanha and 
Thompson’s sentiment, recent researchers’ characterizations of students’ nonnormative graphing 
schemes, and our inference of a possible overreliance on graphing tasks to assess covariational 
reasoning both within and outside of our own work, we ask: (1) What are the limitations of using 
tasks with graphs to assess covariational reasoning? and (2) How can we improve assessment of 
covariational reasoning to accommodate students with nonnormative graphing schemes? 

Theoretical Framework 
Covariational Reasoning 

Thompson’s research in covariational reasoning stemmed from his interest in how “students 
conceive situations as composed of quantities and relationships among quantities whose values vary” 
(Thompson and Carlson, 2017, pp. 424–425).  In Thompson’s (2011) view, “Quantification is the 
process of conceptualizing an object and an attribute of it so that the attribute has a unit of measure, 
and the attribute’s measure entails a proportional relationship (linear, bi-linear, multi-linear) with its 
unit” (p. 37). Quantitative reasoning, then, is a person’s conception of quantities and the relationships 
between those quantities. Building off prior quantitative approaches to covariational reasoning 
(Thompson, 1988, 1993, 1994; Thompson & Thompson, 1992), Carlson et al. (2002) defined 
covariational reasoning “to be the cognitive activities involved in coordinating two varying quantities 
while attending to the way they change in relation to each other” (p. 354). For instance, a person can 
conceive of the volume and height of water in a bottle as varying simultaneously as the bottle is 
emptied by evaporation.  
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Carlson et al. (2002) associated mental actions (MAs) with indicative behaviors (both graphical and 
verbal) in their covariational reasoning framework (see Table 1). Levels of covariational reasoning 
were then defined in terms of these mental actions. We originally interpreted this framework to mean 
that someone who exhibits MA2 verbal indicators would also exhibit the corresponding MA2 
graphical indicators. Carlson et al. (2002) clarified that a student can exhibit behavior associated with 
a specific mental action without engaging in the mental action itself, so we suspected someone might 
be able to perform a graphical behavior indicative of covariational reasoning but be unable to 
verbalize some covariational relationship. However, it did not occur to us that someone might 
verbally describe a covariational relationship at a much higher level than their graphical behavior 
would suggest. We will return to these ideas in our results section.  

 
Table 1: Portion of Carlson et al.’s (2002) Covariational Reasoning Framework 

 
Thompson and Carlson (2017) refined the Carlson et al. (2002) framework to craft a more broadly 

applicable covariational reasoning framework. Instead of listing indicative behaviors for each level of 
covariational reasoning, their descriptions focused on students’ abilities to envision and anticipate 
rather than construct, plot, or verbalize an awareness of something. In particular, their descriptions 
attend to the type of variational reasoning a student uses to envision how each quantity changes as 
well as the nature of the multiplicative object a student constructs between each quantity’s values. 
Thompson and Carlson followed Saldanha and Thompson’s (1998) usage of Piaget’s notion of “and” 
as a multiplicative operator to derive the notion of a multiplicative object. An individual forms a 
multiplicative object by uniting attributes of two objects to form a new third object. For example, 
Frank (2017) described how an individual can consider the attributes ‘red’ (perhaps from an apple) 
and ‘circular’ (from a ring) independently, then unite them to construct a single red circle as a 
multiplicative object. The resulting object is multiplicative because it is simultaneously red and 
circular. In regard to variational reasoning, Thompson and Carlson built off the variational reasoning 
research done by Castillo-Garsow (2010, 2012) and adapted the distinctions made by Castillo-
Garsow et al. (2013) between discrete, chunky continuous, and smooth continuous variational 
reasoning.  

Thompson and Carlson (2017) outlined two different ways researchers could use their covariational 
framework. First, the framework levels could be used to characterize a person’s covariational 
reasoning in a specific instance. And second, the framework levels could describe a person’s capacity 
or ceiling for covariational reasoning across settings. For example, a graduate student in mathematics 
may display a gross coordination of values in describing how the miles driven in their car and the 
gallons of gas used by the car increased as their road trip continued. Nevertheless, the student may 

Mental action (MA) Indicative behaviors 

MA1 - Coordinating the value of one variable 
with changes in the other. 

Labeling the axes with verbal indications of 
coordinating the two variables. 

MA2 - Coordinating the direction of change of 
one variable with changes in the other variable. 

Constructing an increasing straight line. 
Verbalizing an awareness of the direction of change of 
the output while considering changes in input. 

MA3 - Coordinating the amount of change of 
one variable with changes in the other variable. 

Plotting points/constructing secant lines. 
Verbalizing an awareness of the amount of change of 
the output while considering changes in the input. 
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also possess the ability to envision smooth continuous covariation. In this report, we are primarily 
concerned with the second way of using the framework levels. 
Nonnormative Graphing Schemes 

Research has recently begun to detail the extent to which students’ meanings for graphs diverge 
from the normative meanings privileged by the mathematical community (Moore et al., 2019). 
Roughly, there are two key components of a graph: a curve itself and the coordinate system in which 
the curve is plotted. To attend to the nuanced, nonnormative graphing schemes students use, we 
consider one construct for each component: (a) the type of shape thinking (Moore and Thompson, 
2015) students engage in while reasoning about a curve and (b) the quantitative frame(s) of reference 
(Joshua et al., 2015; Lee et al., 2019) students use to construct an underlying coordinate system. 

Shape thinking. In order to focus on the meaning an individual has for a graph, Moore and 
Thompson (2015) introduced the constructs of static shape thinking and emergent shape thinking. 
Static shape thinking involves attending primarily to the perceptual shape of a graph and inferring 
associations based on shape, rather than the underlying covariational relationship. On the other hand, 
emergent shape thinking involves conceiving of a graph as a trace or record representative of the 
underlying covariational relationship. Thompson (2016) reported that 29 of 111 written responses 
high school teachers provided to a version of the bouncy ball task were coded as representing static 
shape thinking (see pp. 449–450). If a nontrivial proportion of teachers are reasoning with static 
shape thinking, some students likely are as well. 

Frames of reference. Joshua et al. (2015) defined a frame of reference as “a set of mental actions 
through which an individual might organize processes and products of quantitative reasoning” (p. 
32). In particular,  

An individual conceives of measures as existing within a frame of reference if the act of 
measuring entails: 1) committing to a unit so that all measures are multiplicative 
comparisons to it, 2) committing to a reference point that gives meaning to a zero measure 
and all non-zero measures, and 3) committing to a directionality of measure comparison 
additively, multiplicatively, or both. (Joshua et al., 2015, p. 32, emphasis added) 

Constructing a complete quantitative structure for a two-dimensional Cartesian coordinate system 
requires measuring two quantities at once, which is accomplished by simultaneously combining two 
frames of reference. Ultimately, then, a coordinate system is the result of the many mental actions 
involved in constructing and combining frames of reference (Joshua et al., 2015). As Lee et al. 
(2019) found, it is a nontrivial task to coordinate across multiple frames of reference/coordinate 
systems at once. This suggests that students who do not construct canonical coordinate systems may 
struggle to interpret the conventional meanings a graph is meant to convey.  

Methods 
After publishing preliminary results on the relationship between students’ units coordination and 

covariational reasoning (Boyce et al., 2019), our group reflected on the tasks and methods we used to 
assess students’ capacity for covariational reasoning. During this reflective process, we analyzed 
artifacts from our previous research—including videos of interviews, individual/group coding notes, 
and meeting memos. For example, we looked at spreadsheets in which two members of the team 
independently commented on each interview and assigned each student a covariational reasoning 
level. Over five months, we engaged in sustained group discussion for an hour and a half each week 
about the theory of covariational reasoning, the literature on graphing and quantitative/covariational 
reasoning, and how we determined the levels we reported in Boyce et al. (2019). 

Prior to each weekly meeting, we spent extensive time considering these issues individually and in 
small groups. This helped ensure that all group members had a voice and that we were generating 
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several distinct suggestions for improving our covariational reasoning assessment protocol and 
analysis. As we revised our analysis procedures, we looked back at previous student interviews to 
determine how these new procedures would affect our past assessments of students’ capacity for 
covariational reasoning. 

Results 
Limitations of Graphical Tasks 

In this section, we discuss our results through an analysis of the actions of a college calculus student 
named Shania. Specifically, we respond to our first research question by highlighting the limitations 
of using a graphical task to assess her capacity to reason covariationally. As previously noted, 
Carlson et al. (2002) remarked that a student might exhibit a behavior associated with a particular 
mental action or level of covariational reasoning but not reason in a way consistent with that 
covariation level. They wrote, “Some students have been observed exhibiting behaviors that gave the 
appearance of engaging in [advanced mental actions] . . . When asked to provide a rationale for their 
construction, however, they indicated that they had relied on memorized facts to guide their 
construction” (pp. 361–362). Put more succinctly, graphical activity can lead a researcher to 
overestimate a student’s overall ability to reason covariationally. Shania, as we will demonstrate, is 
representative of the opposite: her graphing activity may have led us to underestimate her capacity to 
reason covariationally.  

Shania attempted a variation of Thompson’s (2016) Bouncy Ball task. The task scenario (with 
provided graphs shown in Figure 1) follows below: 

A ball is hanging by a 10-foot rubber cord, from a board that is 20 feet above the ground. 
The ball is given a sharp push downward and is left free to bob up and down. The graph on 
the left represents the ball’s displacement from its resting point in relation to the time elapsed 
since the ball was pushed. The graph on the right represents the ball’s total distance traveled 
in relation to the time elapsed. The information given is in the first second after being 
pushed. The final graph represents the ball’s displacement from its resting point in relation to 
its total distance traveled since being pushed. 

After Shania read the task, the interviewer asked, “What’s happening to the ball based on that 
description?” The interviewer also provided Shania with a coffee cup to physically illustrate the 
ball’s motion. Following some dialogue to clarify the initial dangling position of the ball relative to 
the board, Shania gestured up and down with the cup to demonstrate how she believed the bouncy 
ball would bob up and down after being first pushed down. Already, via gestures, Shania 
demonstrated signs of reasoning covariationally at the gross coordination of values level. Her 
movements suggest that she understood how the ball’s displacement and the number of seconds 
elapsed changed together. 

 

 
Figure 1: Graphs Provided for the Bouncy Ball Problem 

(a) (b) 
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Shania was then prompted to describe the y-axis label for the incomplete graph of total distance 

traveled with respect to time (See Figure 1b). After a brief conversation, the interviewer described 
how total distance traveled will always be positive. Shania agreed with this description and 
subsequently stated multiple times without prompting throughout the interview that, “The distance is 
always increasing.” The interviewer then asked Shania to produce the remainder of the incomplete 
graph. In response, she drew a graph (Figure 2b) that seems to reflect the provided graph over the x-
axis on the intervals where the displacement was negative. When describing her graph, Shania said 
that she thought of it as the derivative of the graph of displacement with respect to time (Figure 1a). 
But, when she described the relationship between different segments of her graph, she talked about 
the total distance traveled, rather than the displacement.  

 

 
Figure 2: Shania’s Work on the Bouncy Ball Task 

 
The interviewer asked Shania why she thought the graph she was asked to produce was the 

derivative of the first graph. Shania responded, “I kind of saw, like, when we were doing the 
derivatives in class with sine and cosine and everything and then how sine is the opposite of cosine.” 
The interviewer followed up and asked, “So it wasn’t anything about the wording of the question that 
made you think derivative. Like, it was the memory of an oscillating shape?” To this, Shania 
responded, “yeah.”  

The summation of the interactions suggest Shania conflated three different sources to produce her 
graph: the graphs presented in her calculus course, the shape of the provided graph of displacement 
with respect to time, and her understanding of how total distance traveled must always be positive. 
Instead of attending to how the two quantities (total distance traveled and time) simultaneously vary, 
Shania intended her graph to represent a variety of concepts. We interpret this as significant evidence 
that Shania created her graph as a record that is intended to communicate a number of specific facts 
about the ball’s movements. In other words, Shania was likely engaged in static shape thinking.  

After the interviewer and Shania came to a joint conclusion that the task did not ask for a graph 
related to the derivative, Shania was given a second opportunity to produce a graph of total distance 
traveled with respect to time on a new piece of graph paper. Before producing her second graph, the 
interviewer asked, “What about that graph [Figure 1b] shows us the distance?” Shania responded by 
saying, “The distance is from here to here [draws an arrow going up parallel to y-axis on the new 
graph] since it’s going up, increasing. And then our seconds were from zero to five.” Here, Shania’s 
language indicates that she was engaged in gross coordination of values due to her describing how 
the total distance traveled increases and how the time increases. Shania’s original graph suggests that 
she did not envision how the two quantities were varying together. Instead, according to Thompson 
and Carlson’s (2017) covariational framework, Shania would have most likely been classified at the 
precoordination level (a level beneath gross coordination of values).  

(a) (b) 
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As evidenced, nonnormative graphing schemes can cause underestimates of a student’s capacity to 
reason covariationally. Frank (2017) demonstrated that in order to construct a graph as a record of 
quantities covarying, a student must conceive of a multiplicative object. Gross covariational 
reasoning, however, does not require a student to conceive of a multiplicative object. Thus, a gross 
covariational reasoner’s graphing activity does not provide insight into their maximal capacity for 
reasoning covariationally. Subsequently, graphing tasks inhibit researchers’ ability to assess some 
students’ covariational reasoning capacity. 
Improving Covariational Reasoning Assessments 

We now transition to our second research question: How can we improve assessment of 
covariational reasoning to accommodate students with nonnormative graphing schemes? A 
reflective analysis of our own methodologies paired with a review of the literature has led us to one 
possible improvement that can be made: researchers could provide non-graphical tasks before—or 
possibly in place of—graphical ones. Although all interviewers in our prior study adhered to a 
general protocol, we noted in our analysis that one interviewer—the researcher who interviewed 
Shania—would often ask brief introductory questions to ensure interviewees fully understood the 
prompt before proceeding to any graphical tasks. Only upon retrospective analysis did the benefits of 
this practice become apparent. As detailed previously, the language and gestures Shania used to 
model the trajectory of the bouncy ball with a coffee cup provided strong evidence she was engaged 
in gross coordination of values. However, when she proceeded to the graphical component of the 
task, her tendency to engage in static shape thinking obscured evidence of this form of covariational 
reasoning. Further analysis and group discussion allowed us to see past her static shape thinking in 
our original study, but without data from the non-graphical introductory questions Shania’s 
interviewer asked, we may have incorrectly assessed her covariational reasoning level. 

The case of Shania highlights the importance of providing non-graphical means by which 
interviewees can engage in covariational reasoning. In line with this suggestion, Moore and Carlson 
(2012) noted that undergraduate precalculus students’ graphical and computational solutions tended 
to match their emergent image of the problem’s context as well as the quantitative structure they 
constructed for the problem. For example, Shania’s gestures provided no evidence that her image of 
the problem incorporated the damping of the bouncy ball’s displacement from rest as time passed. 
So, in line with Moore and Carlson’s findings, it should come as no surprise that her graph of total 
distance with respect to time did not reflect this damping (see Figure 2b). Moore and Carlson (2012) 
contended that “It is critical that students first engage in mental activity to visualize a situation and 
construct relevant quantitative relationships prior to determining formulas or graphs” (p. 48). A 
simple way of supporting such mental activity could be to have a conversation with an interviewee 
about the situation and any relevant quantities. Even a short conversation has the added benefit of 
providing valuable data about the quantities an interviewee is constructing (as we have illustrated in 
the case of Shania). Another means for supporting the interviewee in constructing mental images of 
the quantities is to have them model the situation using gestures, like how Shania was instructed to 
model the trajectory of the bouncy ball using a cup. Of course, there are many other ways to aid 
interviewees in constructing an image and quantitative structure for the situation. We encourage 
researchers to be creative and design their pre-graphical tasks in ways that best align with their 
planned trajectory of tasks and intended methods of analysis.  

The Invitation to Conversation 
By reflecting on our prior research methods, we identified significant limitations of using 

predominantly graphical tasks to assess one’s capacity for covariational reasoning across settings. 
Namely, students with nonnormative graphing schemes may be able to reason covariationally at 
higher levels in non-graphical settings. We suspect the primary difficulty for these students is 
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modeling how two quantities covary in the normative Cartesian coordinate system privileged by the 
mathematical community. After all, even constructing a coordinate system—a prerequisite for 
creating or reasoning about a graph—requires constructing two frames of reference and then 
combining them. Not to mention, if the coordinate system a student constructs to model a 
covariational situation does not align with the normative Cartesian one, they may spend more time 
resolving perceived contradictions than demonstrating their capacity to reason covariationally. In 
sum, our analysis has revealed that graphical tasks can add considerable noise to a researcher’s data 
for assessing students’ covariational reasoning. If a researcher hopes to use graphs to assess 
covariational reasoning, we urge them to devise explicit methodologies for reducing or, at the least, 
acknowledging this noise. 

Although we suspect experienced researchers have already begun to develop these types of 
methodologies (e.g., Johnson, 2015; Stevens & Moore, 2017), they are not yet explicitly outlined in 
the literature. We believe the community of covariational reasoning researchers, particularly novices, 
would benefit if experienced researchers shared the fine-grained details of their task design and 
analysis techniques. After all, such accounts are vital to communicating important considerations for 
conducting covariational reasoning research that may not yet be salient in the literature, such as the 
limitations of using graphical tasks. We call on researchers (ourselves included) to consider the role 
that non-graphical tasks should play in assessing covariational reasoning. To that end, we offer this 
piece as the beginning of what we hope becomes a larger conversation to develop improved 
methodologies that accommodate the ubiquity of students’ nonnormative graphing schemes. 
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Cognitive Load Theory’s Four Component Instructional Design (4C/ID) Model has been used in 
mathematics education but not confirmed as an instructional theory. Using the Factors Influencing 
College Success in Mathematics (FICSMath) project and confirmatory factor equation modeling, we 
empirically validated the model and created the 4C/IDMath Model. Instructional experiences of 
respondents completing the FICSMath survey were mapped to the theoretical components of the 
4C/ID Model. The Mathematical Learning Task, Conceptual Understanding, Procedural Fluency, 
and Practice for Recall Components correspond to the Learning Task, Support, Procedure, and Part 
Task Components, respectively, from the original 4C/ID Model. The 4C/IDMath Model can be used 
to guide instruction in secondary precalculus and calculus courses to support transfer of learning to 
single variable college calculus. 

Keywords: Research Methods, Design Experiments, Secondary-Tertiary Transition in Mathematics 

Theoretical Perspective 
Cognitive load theory (CLT) was introduced in the 1980s as an instructional theory based on well 

accepted aspects of human cognitive architecture (Sweller, van Merriënboer, & Paas, 2019). A major 
premise of the theory is that working memory load from cognitive processes is decreased when 
domain specific schemas are activated from long term memory. Comprehension, schema 
construction, schema automation, and problem solving in working memory often create high 
cognitive load. Hence, schemas transported from long term memory into working memory support 
learning and transfer of learning (Ginns & Leppin, 2019). One of the key developments from CLT 
has been the Four-Component Instructional Design (4C/ID) Model generated from evolutionary 
theorizing (Geary, 2008; Ginns & Leppink, 2019). Since its creation, the 4C/ID Model has been 
successfully applied to instruction that requires the learning of complex tasks. Van Merriënboer, 
Kester, and Paas (2006) defined a complex task as having many different solutions, real world 
connections, requiring time to learn, and as creating a high cognitive load. Based on this definition, 
the instruction and learning of mathematics is a complex task. For example, different solutions are 
algebraic, analytic, numeric, and graphic. Relative to real world connections, mathematics is one of 
the domains in the broader science, technology, engineering, mathematics (STEM) field and is 
regarded as the language of the sciences. Regarding taking time to learn and creating a high load on 
learner’s cognitive systems, mathematics teachers deal with the tension between covering all the 
required standards and taking the time to teach for understanding. Teachers face challenging 
decisions about instructional approaches, materials, productive struggle, and the amount of classroom 
time spent on various standards. Better models for instruction that support transfer of learning could 
help teachers improve instructional decision making. Although the 4C/ID Model has been used in 
secondary mathematics education (Sarfo, & Elen, 2007; Wade, 2011), it has never been confirmed as 
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a mathematical instructional theory. The purpose of this research report is to present an empirical 
confirmation of the 4C/ID Model, using data from the Factors Influencing College Success in 
Mathematics (FICSMath) project from Harvard University.  

FICSMath Project 
The Factors Influencing College Success in Mathematics (FICSMath) Project remains the largest 

and most recent national study of the secondary-tertiary transition in mathematics. Towards the 
beginning of the 2009 fall semester, college freshmen in single variable calculus courses across the 
United States (US) responded to questions on the FICSMath survey regarding educational 
experiences in their last high school mathematics course. Professors secured students’ completed 
surveys until the end of the semester and recorded final grades for each student on their respective 
survey before returning them to Harvard University. A total of 10,492 surveys were collected, and 
from this sample 5,985 students had taken either precalculus (n=2,326), or any level of high school 
calculus (n=3,659) as their most recent high school mathematics course. The 4C/ID Model appears 
appropriate to use as a theoretical lens through which to view secondary preparation for college 
calculus because the components of the model explicitly consider instruction to support transfer of 
learning (van Merriënboer, Kester, Paas, 2006). 

The 4C/ID Model 
Van Merriënboer and other cognitive load theorists developed the 4C/ID Model in the early 1990s 

under the premise that instruction for complex tasks should be combined with methods that have 
been shown to enhance transfer of learning (Van Merriënboer, Kirschner, Kester, 2003;   

Van Merriënboer, Clark, & de Croock, 2002). Transfer is required when prior learning must be 
recalled to support the learning of new tasks. Vertical transfer is required, for example, to transfer 
knowledge from the high school mathematics to college calculus. The model was not designed 
specifically for mathematics instruction, but generally for learning environments where complex 
problems are the basis of instruction and transfer of learning is the goal.  

The 4C/ID Model employs human cognitive architecture from cognitive load theory (Sweller, 
2008). The assumptions are that working memory is limited in space and duration while there 
appears to be no limit of either in long-term memory. The three sources of working memory load are 
assumed to be: (a) extraneous cognitive load coming from how the material is presented during 
instruction; (b) intrinsic cognitive load coming from element interactivity, or the interaction of the 
interconnected parts of the content; and (c) germane cognitive load, which sends and hooks new 
processed and encoded information into long term memory to be connected with existing schemas. 
Once information has been processed and connected within the learners’ schemas in long term 
memory, it can then be brought back into working memory as a chunk of knowledge to help process 
more new content. Integration of new content into schemas makes learning more efficient as it 
lowers the demands on working memory and supports the learning of complex tasks.  
Model Components 

The 4C/ID Model incorporates four components: Learning Task, Support, Procedure, and Part-Task 
Components. These come from theorizing how to instruct a complex task to enable working and 
long-term memory to develop, retain, and recall comprehension, schema construction, schema 
automation, and problem solving. Figure 1 shows how Van Merriënboer, Kester, and Paas (2006) 
theorized the model. Each of these components needs attention during precalculus and calculus 
instruction. The neglect of any one of them could prohibit learning and/or transfer of learning. As 
such, the components are discussed specifically regarding the instruction of mathematics during the 
secondary-tertiary transition. 



Four component instructional design (4C/ID) model confirmed for secondary tertiary mathematics 
 

	 2281	

 

 
Figure 1: The theorized general 4C/ID Model (modified from van Merriënboer, Clark, De Crook, 

[2002]) 
1. The Learning Task Component is modeled to engage learners in meaningful problem-solving 

tasks. Working with real world problems, often integrated into mathematics to motivate 
learning (Beswick, 2010), requires mental processes to move from the initial state of the 
problem to an acceptable solution (van Merriënboer et al., 2003). Engagement in higher-level 
tasks during mathematics instruction increases students’ engagement with mathematical ideas 
(Boaler and Staples, 2008). Such tasks include high element interactivity, which occurs 
because of the interacting parts of the mathematics that must be addressed during problem 
solving. Element interactivity is inherent in secondary preparation for college calculus 
because of the many interacting mathematical concepts involved in precalculus and calculus 
problem solving.  

2. The Support Component undergirds the Learning Task Component and includes conceptual 
understanding, reasoning of new information, problem solving, and cognitive assessment 
(van Merriënboer, Clark, de Croock, 2002). 

3. The Procedure Component integrates examples, hooks to previous learning or schemas from 
long-term memory, which supports the processing of complex ideas. These are important 
instructional practices in mathematics (Wade, Sonnert, Sadler, & Hazari, 2017; Wade, 
Cimbricz, Sonnert, Gruver, & Sadler, 2019). This is, first, because mathematics is abstract, 
and reasoning is required to understand abstract information (Russell, 1999). Another reason 
is that, when strategies are recalled from long term memory, it is common for mistakes in the 
problem-solving process to occur. Yet, with guidance, students can learn from their mistakes. 
This process is referred to as flawed reasoning and is believed to be an important part of 
learning mathematics (Russell, 1999).  

4. The Part Task Component models instruction working towards students developing 
automaticity. This means that specific tasks from previous learning can occur with little 
effort, requiring little conscious monitoring and few cognitive resources (Feldon, 2007). The 
part-task component is included in the 4C/ID Model because there are times that instruction 
allows repeated practice of information to the point of automaticity. Depending on where the 
learner is in understanding whole concepts first, this can both benefit or hinder the 
meaningful learning of mathematics. For example, if a student has not learned the concepts 
but practices procedures, the result is often what Skemp (2015) refers to as instrumental 
understanding or rules without reason. The goal is relational understanding, which Skemp 
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(2015) defined as knowing what to do and why, which requires understanding concepts as 
well as procedures.  

Research Question and Method 
Can the 4C/ID Model be empirically validated for mathematics instruction for the secondary-

tertiary level using data from the FICSMath Project and confirmatory factor analysis? 
Confirmatory Factor Analysis Model 

Freshmen respondents in single variable college calculus courses from large, medium, and small 2- 
and 4-year institutions from across the nation reported instructional experiences from their senior-
level high school precalculus or calculus courses (n=5,985). The percent of missing value cases were 
small (between 1.3% and 4.9%), yet multiple imputation was computed to create a small number of 
copies of the dataset, with each having missing values suitably imputed. Each complete dataset was 
analyzed independently and estimates of parameters of interest were averaged across the copies to 
provide a single estimate (Royston, 2004). In the end, the model reported 6,146 cases, a 2.6% 
increase from the 5985 respondents included in the model. Then confirmatory factor analysis (CFA) 
was used to test the extent to which these variables related to the underlying constructs of the 4C/ID 
Model.   

CFA is theory driven, so we began by analyzing the theoretical relationships among the observed 
and unobserved, or latent, variables (Schreiber, Nora, Stage, Barlow, & King, 2006). The observed 
variables (Figure 2 rectangles) are intercorrelated secondary instructional experiences reported by 
single variable college calculus students who completed the FICSMath survey. The unobserved 
variables (Figure 2 large ovals) are factors that account for correlations among the observed variables 
(Brown & Moore, 2012) that theoretically aligned to the 4C/ID constructs. We identified 
instructional experiences that provided: (a) complex mathematical tasks (Learning Task Component, 
n=4); (b) an overview of whole task mathematical concepts (Support Component, n=17); (c) support 
for the processing of mathematics, the use of algorithms, and graphing (Procedural Component, 
n=16); and (d) opportunities for practice (Part-Task Component, n=13). Figure 2 shows the number 
of observed variables that converged and survived CFA. The loadings to the right of the large ovals 
show the correlations between the components while loadings to the right of the rectangles show the 
correlations between the observed variables to each component. The small ovals connected to each 
rectangle on the left show the errors associated with the observed variables in the model. The 
loadings to the left of the errors show their correlations while one shows the correlation between the 
error for emphasis on vocabulary and the support component (discussed later).   
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Figure 2: The 4C/ID Math Model Confirmed using Confirmatory Factor Analysis. 

 
The large FICSMath sample size (n=5,985) allows assumptions of normality of data and increases 

the power of a hypothesis test. This large sample size, however, did limit some of the CFA measures 
that can be reported. For example, the chi square test, Normed Fit Index (NFI), and Tucker Lewis 
Index (TLI) are typically reported in CFA models, but these are preferable measures for smaller data 
sets. As shown in Table 1, the Comparative Fit Index (CFI) and the Root Mean Square Error 
Approximation (REMSA) confirm the components in the 4C/ID Model have meaningful 
relationships with the observed variables in the FICSMath dataset.  

 
Table 1: Measures of CFA Reported, Accepted Cut-off Scores for Significance, Results of the 4C/ID 

Math CFA Model with Notes for Clarity. 

CFA Measure Cutoff for 
Significance 

Model 
Value 

Notes 

Comparative Fit Index (CFI) CFI > 0.90 0.907* Compares the fit of a target model to the fit 
of a null hypothesis model. 

Root Mean Square Error 
Approximation (RMSEA) 

RMSEA < 
0.08 

0.050* A parsimony-adjusted index. Values closer 
to 0 represent a good fit. 

*Significant finding. (See Parry (no date); Brown & Moore, 2012). 
 

Figure 3 shows a representation of the confirmed 4C/ID Model, now referred to as the 4C/IDMath 
Model. The constructs have been renamed to align closer with the field of mathematics education. 
These components are now: 
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Figure 3: The 4C/IDMath Model for Secondary-Tertiary Mathematics (modified from van 

Merriënboer, Clark, De Crook, [2002]) 
 

1. The Mathematical Learning Task Component is the new name for the Learning Task 
Component. This is where whole tasks should be presented to avoid the transfer paradox. The 
transfer paradox is described as occurring when instruction breaks apart concepts to minimize 
the necessary time-on-task. This type of instruction has been shown to have a positive effect 
on short term retention for performance on tests, but not on transfer of learning (van 
Merriënboer et al., 2006).  

2. The Conceptual Understanding Component is the new name for the Support Component. 
This name change aligns with what teachers who were identified as teaching for high 
conceptual understanding on the FICSMath survey concretely did to teach for conceptual 
understanding (Wade, Sonnert, Sadler, Hazari (2017). This study showed that teaching 
functions and mathematical reasoning was highly correlated with conceptual understanding.  

3. The Procedural Fluency Component is the new name for the Procedure Component. Star 
(2005) presented thinking flexibly with mathematics as an indicator of deep procedural 
knowledge. To generate graphs, students must be able to think flexibly across the 
connections between equations and algorithms to points on various graphing planes. 
Mathematical proofs require meaningful connections across relevant mathematical 
relationships, which requires thinking flexibly with those relationships (Williams-Pierce et 
al., 2017).  

4. Practice for Recall Component is the new name for the Part-Task Component. Van 
Merriënboer, Kester, and Paas (2006) stated that part-task practice may provide additional 
practice needed to develop knowledge elements that allow the learner to perform routine 
aspects at a high level of automaticity. In mathematics education, this is better understood 
simply as practice for recall.  

Limitations and Future Work 
One weakness of the study may be that the FICSMath Project is from 2009, yet this project remains 

the most recent national study on secondary preparation for college calculus success. Until the 
FICSMath project can be replaced by another large-scale national study, the national representation 
and sample size strength of the project warrants its continued use. Additionally, the 4C/IDMath 
Model is confirmed for students in the secondary-tertiary transition who took either precalculus or 
calculus as their last mathematics course before entering into single variable college calculus. More 
research is needed to confirm the model at different levels of mathematical instruction, such as for 
algebra or geometry. Lastly, how the 4C/IDMath Model actually predicts performance in single 
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variable college calculus needs to be investigated. The focus of this paper was to confirm the 4C/ID 
Model and then modify it to be more user friendly for mathematics teachers.  

Discussion 
The theoretical perspective of the 4C/ID Model is that instruction of complex tasks should be 

guided by principles that reinforce learning and transfer of learning. The 4C/ID Model theorizes the 
Support Component as concepts that structure the learning of complex tasks and the Procedure 
Component as connecting prior learning, the order of steps and context for use. Both of these 
components undergird instruction of a complex task, which is represented as the Learning Task 
Component. The Part Task Component symbolizes the use of automatized information that requires 
little to no cognitive load in working memory. Van Merriënboer et al. (2006) state the 4C/ID Model 
was designed to focus instruction on whole tasks and claims breaking apart concepts to minimize 
time-on-task has a positive effect on short term retention for performance on tests, but not on transfer 
of learning. This was theorized as the transfer paradox. Skemp (2006) presented similar ideas in 
mathematics education through relational and instrumental understanding. Relational understanding 
comes from instruction that focuses on knowing what to do and why while instrumental 
understanding was conceived as instruction that focused on rules without reason. It was claimed that 
high school teachers often adopt a two-track strategy of instruction where they spend some time on 
drill and practice, providing for skills and facts, and some time on developing and integrating 
understandings (Skemp, 2006). Based on the 4C/ID Model, drill and practice can develop 
automaticity but does not reinforce learning for transfer. These similarities indicate the 4C/ID Model 
to be a good fit with mathematics education. The empirical confirmation of the 4C/ID Model using 
the FICSMath Project resulted in the 4C/IDMath Model for secondary-tertiary mathematics 
instruction. The 4C/IDMath Model confirms the importance of generating the learning task first then 
considering the concepts and procedures needed for learning and transfer of learning. Each of the 
components for the 4C/IDMath Model is discussed below relative to how this model can be used in 
precalculus and calculus secondary-tertiary mathematics instruction.    

1. The Mathematical Learning Task Component represents complex tasks that must be 
considered as a whole to support transfer of learning. Instruction that breaks apart concepts to 
minimize time for learning has been shown to have a positive effect on short term retention 
but not on transfer of learning (van Merriënboer et al., 2006). Considering complex tasks and 
how to present the many interacting elements as a whole concept first is important, especially 
in mathematics where transfer of learning is critical. As seen in Figure 2, this component 
includes the emphasis on (mathematical) vocabulary item. The vocabulary item was 
originally mapped to the Support Component, but the CFA model was not valid. When the 
vocabulary item was moved to the Learning Task Component, the error associated with the 
item was too high. After correlating the vocabulary item error term with the Support 
Component, the 4C/ID Model converged. This correlation indicates the vocabulary term is 
essential to both, the Mathematical Learning Task and the Support Component. Tall (2004) 
stated real world representations require the sophistication of language to support abstract 
concepts in formal mathematics. After determining what standards and elements are to be 
instructed, focus should then be placed on the language required to present the content and 
how to connect the mathematics to real world applications and other subjects.  

2. The Conceptual Understanding Component emphasizes conceptual understanding, 
mathematical reasoning, functions, illustrations, and alternate problem-solving methods 
necessary to support learning mathematical content. Wade, Sonnert, Sadler, and Hazari 
(2017) showed mathematical reasoning and emphasis on functions to be part of the construct 
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that described what teachers did to teach for conceptual understanding. This component 
aligns well with the field of mathematics education.  

3. The Procedural Fluency Component demonstrates hooking previous learning, or schemas, 
from long-term memory to concepts presented in the Conceptual Understanding Component.  
Graphing functions and equations require modeling mathematics both by hand and, in the 
secondary mathematics classroom, the graphing calculator. Most secondary mathematics 
standardized exams, including AP exams, require the use of a graphing calculator but most 
single variable college calculus courses do not allow their use in class or on exams. This 
implies the importance of students understanding the mathematical procedures even if they 
have a graphing calculator available. Mathematical proofs, independent of the format, require 
justification from prior learning and are an important part of the secondary-tertiary transition. 
At the tertiary level, proofs tend to be longer, more complex, and require more mathematical 
insight than at the secondary level (Selden, 2011). Many students are not well prepared for 
the types of proofs they will be exposed to in college calculus (Bressoud, 2009). It could be 
that incorporating more proofs into secondary precalculus and calculus courses may reduce 
some of the transition struggles for students in college calculus.  

4. The Practice for Recall Component illustrates that opportunities for practice using reviews 
and small group discussions are beneficial for developing automatic recall.  

It is our hope that the confirmation of the 4C/ID Model, leading to the 4C/IDMath Model, brings 
this instructional framework into the purview of secondary mathematics teachers and mathematics 
professors who teach students in the secondary-tertiary transition. Better preparation for single 
variable college calculus is important because this is the first mathematics course that is commonly 
required in all STEM majors. 
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Facilitating productive mathematical argumentation is challenging; it is critical to develop a specific 
guiding vision of practices to help teachers learn to teach argumentation. However, what counts as 
acceptable classroom-based mathematical argumentation remains an open question. In this study, 
building on Habermas' theory of communicative action, we developed two analytic frameworks to 
examine questioning strategies used to support the validity of collective mathematical 
argumentation. Habermas' three components of rationality allowed us to focus on fine-grained 
rationality components of teacher questioning as well as teachers' intentions of asking these 
questions. The theory of validity claims was used to capture different forms of validating 
argumentation. The frameworks may help teachers to be aware of the types of questions that they are 
asking when aiming at supporting valid argumentation. 

Keywords: Research Methods, Classroom Discourse, Reasoning and Proof 

Rationale and Purpose 
Current research discusses many benefits of incorporating mathematical argumentation in 

classroom discourse (e.g., Nussbaum, 2008) and emphasizes the essential role of teacher questioning 
in facilitating collective mathematical argumentation — teacher and students (or a small group of 
students working independently) working together to determine the validity of a claim (Conner et al., 
2014). Studies (e.g., Kazemi & Stipek, 2001; Kosko et al., 2014; Wood, 1999) have highlighted 
teachers' questioning as a pivotal factor shaping argumentative discourse and as strongly influencing 
students' engagement in productive mathematical argumentation. However, most of these studies 
placed more emphasis on documenting current situations or difficulties that teachers had in using 
questioning to regulate argumentative discourse than on developing effective ways to address some 
of these difficulties. For example, Sahin and Kulm (2008) analyzed types of questions two teachers 
used in two sixth-grade classes over two months. They found that the majority of questions teachers 
posed were factual, even when using a reform-based textbook, which included probing and guiding 
questions in the teaching guides. Scaffolding argumentation is not an easy task, and it is not clear 
precisely what actions of the teacher provide the desired results of argumentation. Further, no 
consensus exists in the field of mathematics education concerning the characteristics of successful 
argumentative discourse. Some researchers (e.g., Stylianides et al., 2016) have called for more 
research in the field to design practical tools for use in the classroom to address teachers' difficulties 
or particular learning goals in orchestrating argumentative discourse.  

The goal of this study is to investigate how a beginning secondary mathematics teacher uses 
rational questioning as a didactical tool to support the validity of collective mathematical 
argumentation according to Habermas's (1984) theory of validity claims. 

Theoretical Framework 
Two concepts from Habermas' theory of communicative action are used in this study to investigate 

how teachers could support valid argumentative practices with a particular focus on teachers' 
questioning strategies. The first is Habermas' (1998) perspective on three interrelated components of 
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rationality: epistemic (inherent in the control of validation of statements), teleological (inherent in the 
strategic choice of tools to achieve the goal of the activity), and communicative (inherent in the 
conscious choice of suitable means to communicate understandably within a given community). 
Boero (2006) advocated that Habermas’ three components of rationality account for students' rational 
behavior in proving and argumentative activities. Corresponding to these components, students are 
expected to strategically choose tools to achieve a goal (teleological rationality) on the basis of 
specific knowledge (epistemic rationality) and communicate in a precise way with the aim of being 
understood by the classroom community (communicative rationality). Douek suggested that it was 
beneficial to develop argumentative discourse along the three components of rationality (i.e., 
epistemic, teleological, or communicative) and that the teacher should support students to meet the 
requirements of rationality, thus dialectically forming argumentation (Boero & Planas, 2014). In 
order to reach such aims, Douek further proposed the idea of using "rational questioning" as a 
method to “organize the mathematical discussion according to the three components of rationality” 
(Boero & Planas, 2014, p. 210). Following Douek's idea, we developed a Teacher Rational 
Questioning Framework (see Table 1) to classify types of rational questioning from teachers' 
perspectives to engage student participation in argumentation with different kinds of rationality (For 
more details, see Zhuang & Conner, 2018). We defined rational questioning as a question that 
contains at least one component of rationality. At times, for clarity, we call a question epistemic 
rational questioning if it contains an epistemic rationality component. 

 
Table 1: Teacher Rational Questioning Framework  

Components of 
Habermas' Rationality 

Features Examples 

Epistemic Rationality  
(ER) 

The questions intended to allow students to 
reason and justify their arguments; to 
clarify/challenge students when they gave 
unclear or incorrect responses.  

Can you tell me 
why? 

Teleological Rationality  
(TR) 

The questions intended to allow students to show 
or reflect on the strategic choices that they used 
to achieve their arguments or ideas; to point 
students towards the specific means or tools. 

How did you figure 
that out? 

Communicative 
Rationality 

(CR) 

The questions intended to allow students to 
communicate or reflect on the steps involved in 
their reasoning and arguments to ensure that their 
ideas can be understandable in the given 
community; to point students towards the correct 
use of mathematical terminology.  

How would we 
write this correctly 
mathematically? 

 
In terms of validation of argumentation, we adapted Habermas (1984) theory of validity claims, 

which proposed that three forms of validity claims exist: to truth, to rightness, and to sincerity (see 
Table 2). By adapting Habermas' theory of validity claims to collective argumentation in 
mathematics classrooms, we identified three parallel dimensions of validating argumentative practice 
(For more details, see Zhuang & Conner, unpublished).  
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Table 2:  Validity Claims and Corresponding Validating Argumentative Practice 
Validity Claims Features Corresponding Validating Argumentative 

Practice 
Truth Concern the way things are in 

the external world of objects 
and spatiotemporal entities, 
thus constituting a constative 
(fact-stating) speech act. 

Argumentation results in correct mathematical 
conclusions (T). The truth of an 
argumentation was judged by the researcher's 
perspective according to shared mathematical 
theorems, axioms, and principles in the given 
mathematical  
classroom community. 

Rightness Concern the way things are in 
the social world of shared 
duties, norms, values, thus 
constituting a regulative speech 
act.  
 

Argumentative practices conforming to the 
social norms (N-S) and sociomathematical 
norms (N-M) (Yackel & Cobb, 1996) in a 
given classroom social context. 

Sincerity Concern the way things are in 
the subjective world consisting 
of personal self-understandings, 
thoughts, intentions, feelings, 
thus constituting an expressive 
speech act. 

We assume when the students engaged in the 
argumentation, they satisfied the sincerity of 
argumentation unless there is clear evidence 
demonstrating that the argumentative 
discourse deteriorates into oppositional or 
confrontational talk and interpersonal 
conflicts spill over into the intellectual 
content.  

 
Further, Habermas (1984) argued that the acceptance of valid argumentation not only links to the 

referred mathematical objective world, to norms, but also to the use of language. If a speaker cannot 
present comprehensible and accepted language, then there is no way to establish a shared 
understanding through communication. This concern about the fundamental use of language gives 
rise to a new dimension for validating argumentation, which focuses on communicative validity of 
argumentation and the participants' intentions on reaching a shared understanding within an 
argumentative practice, that is: Argumentation is communicated by using appropriate mathematical 
language and representations with participants' intentions to reach a consensus or a shared 
understanding (C).  

In this study, we adapted two developed frameworks on the basis of Habermas’ theory of 
communicative action to investigate how rational questioning supports the validity of collective 
argumentation in a 9th-grade algebraic mathematics classroom.  

Data and Methods 
The participant, Jill (a pseudonym), was in her third year of teaching and was purposefully selected 

based on her good understanding of argumentation and willingness to support student engagement in 
argumentation. We video recorded two consecutive days of Jill’s instruction per month, which 
translated into eight classes a semester. The primary data sources in this study included video 
recordings and transcriptions of two consecutive days of Jill’s instruction, focused on factoring and 
expanding binomials with integer coefficients.  

Each lesson was first divided into multiple argumentation episodes. An argumentation episode was 
located by identifying the final claim of an argument and the accompanying data, warrants, and 
data/claims supporting the final claim the collective attempted to establish. Therefore, if there were 
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arguments or claims that supported or refuted the initial argument, these arguments were viewed as 
connected with each other and included in an episode of argumentation. The next step was analyzing 
all teacher questions within each chosen argumentation episode in order to identify and categorize 
rational questioning based on our Teacher Rational Questioning Framework (see Table 1). Each 
rational question was also categorized according to the valid argumentation analytic framework (see 
Table 2) to explore how teachers used rational questioning to support the validity of argumentative 
practices. The classification of teacher questioning started with developed frameworks, but we kept 
an open mind by using a grounded theory approach (Glaser & Strauss, 1967) to ensure the inclusion 
of additional themes that were not included initially in the framework. A simple enumerative 
approach was finally used to quantify rational questioning in order to explicate the patterns that 
emerged from the open-coding process.  
An Example of Using Habermas' Frameworks 

As an illustration, let us consider an argumentation episode on the second day where students had 
reviewed the greatest common factor and expansion of binomials with form (! ± !)(! ± !) on the 
first day of the lesson. During this episode, the students were learning about factoring trinomials with 
integer coefficients in a small group:  

Given x2 + ___ x +12 , what are the possible values for the blank? 

1           T:       All right, what do we think? (Questioning without a rational component: N). 
2           S1: It's six or nine. 
3           T:  Six or nine. 
4           S2: Yup. 
5           T:  Tell me why. (ER: contains epistemic rational component). 
6           S1:      Tell her why S2. 
7           S2: Why do I have to tell her. Oh. Um, okay, so couldn't, couldn't like...  
8           T:        Hang on. I want to hear 6 or 9 explanations first. (N) 
9           S2:  Oh gosh. Could you say the 9 explanation and I say 6 explanation? 
10         T:        Tell me the 6 explanation. (ER) 

Interpretation. At the beginning of this episode, both students provided incorrect answers. Instead 
of giving direct corrective feedback, the teacher challenged students' arguments by asking them to 
provide an explanation of incorrect answers (Lines 5, 8 and 10). Thus, we coded these three 
questions as rational questioning that contains epistemic rational components (ER). These questions 
also illustrated that the teacher has a special role to play in trying to develop classroom social norms 
(N-S) to address expectations for student participation in argumentative practices through ongoing 
negotiations. In this context, students were expected to provide warrants, reasons, or backings to 
justify their claims. Thus, we coded these rational questions as facilitating the validity of 
argumentative practices in regard to classroom social norms.  

11         S2: Okay. So, 6 times 2 is 12. 
12         T:       Yes, 6 times 2 is 12. That's true. 
13         S2:      Yeah, and then 6 might not work, 6 wouldn't work.  
14         T:  Why not? Talk to me about why 6 might not work. (ER)  
15         S2: Because 6 plus 2 is 8 and you have to have 12 and so because [mumbling] 
16         T:  Hang on, hang on. You are saying things that are on the very right track.    
17                    Think through it. (ETCR: contains all three rational components). 

Interpretation. Through the explanation of her arguments, S2 noticed that 6 was incorrect and 
worked towards the correct answer 8. However, she lacked the confidence to further articulate the 
justification in her thinking. At this point, the teacher encouraged her to explain her reasoning (Lines 
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16 to 17) which revealed again that students are expected to provide reasons to justify their claims 
(N-S). 

18        S2: Okay. 6 plus 2 is 8 but yeah do not even know where 12 like, how are you  
19                    supposed to like, do you know what I am saying it's like 
20        S1:  You can put 8 in here. That's the point. 
21        S2:  Yeah.   
22  S1:       So we are trying to find the line, what goes on the line up here.   
23        S2:  Yeah. 
24        S1:  You can put 8 but 6 times 2 is 12 and then 6 plus 2 is 8.   
25        S2:  So it's 8.    
26        S3:  Yeah. 
27        T:        Yes. You are thinking about it in the right way. You said 8. That's okay. 
28                   That's why I want you to think about it. Now does that make sense? (ETCR) 
29        S2:  Yeah. 

Interpretation. The student-student interactions (Lines 18 to 24) illustrated that pushing students to 
justify why their arguments hold served to support students to understand that the acceptable claims 
are based on mutual understanding and agreement on epistemic reasons. The question "Now does 
that make sense?" showed Jill's intention to provide students with opportunities to make sense of 
other students' epistemic, teleological and communicative requirements of argumentative practices 
(ETCR). It also pushed students to be able to learn from each other which promotes their productive 
disposition towards mathematics to reach a consensus or a shared understanding in argumentation 
(C). 

30          T:  So does anyone come up with another number besides 8 that could go 
31                    there? Anybody come up...S4, why could you do 7? (ER) 
32          S4: Oh gosh.   
33          T:  You said you could do it. Why? (ER) 
34          S4: 4 plus 3 is 7 and 4 times 3 is 12.    
35          T:  Very good. Is there anything else? (TR) 

Interpretation. When S4 came up with answer 7, which was different than others, the teacher 
intentionally called on her to explain why this could work (Lines 30 to 31, ER), which established the 
expectations for students in the class to share their thinking, ideas, and solutions, even if they have 
answers that differ from other students’ answers (N-S). At this point, the teacher's directive question 
served to help students understand what counts as mathematically different solutions (N-M). The 
final claims of this argumentation are 8 and 7 could work while 6 cannot. Notice that the answers 
provided here do not include all possible values. At the end of this episode, the teacher asked 
students to keep thinking of any other possible values that might exist (Line 35, TR). From the 
researcher's point of view, all the rational questions used in this episode also support the requirement 
of truth argumentation (T). Therefore, rational questioning can support multiple forms of validating 
argumentation.   

Results 
Based on our definition of argumentation episodes, Jill's two consecutive days of lessons contained 

23 argumentation episodes. Within argumentation episodes, Jill asked 136 questions, and 81% 
(110/136) of questions involved rational questioning. According to our analysis, Jill used a variety of 
combined forms of rational questioning: some questions included two or three components of 
rationality and others only involved one. For the purpose of this study, we looked across epistemic, 
teleological, and communicative rational questioning and examined how different types of rational 



Teacher questioning strategies in supporting validity of collective argumentation: explanation adapted from 
habermas' communicative theory 

 

	 2293	

questioning were related to these components of validity of argumentative discourse. Table 3 gives 
the numbers in each type of rational questioning and how it related to engagement in valid 
argumentation.  

 
Table 3: Rational Questioning Supports Validity of Collective Argumentation 

Type of Rational 
Questioning 

Number of 
Questions 

Truth  Norms Communication 

Epistemic  
Teleological 

46 
70 

27 
54 

45 
31 

9 
15 

Communicative 32 22 17 15 
Note. The number of questions in each category is not discrete; a question might be categorized in 

several categories. 
 

The content of these lessons included multiple problem-solving mathematical activities to teach 
students how to factor and expand binomials with integer coefficients (see Figure 1), and the 
teleological (i.e., producing strategies to achieve the aim of the activity) was the most common 
rationality component among all rational questioning, in which over 60% (70/110) of rational 
questioning contained a teleological component. Most of Jill's teleological rational questions (54/70) 
were strategically goal-oriented to support students achieving the truth of arguments in regard to 
filling in an area model (e.g., "Alright now I have the inside of my area model filled out. How do I 
get the outside?") and finding the greatest common factor in each row and column of the area model 
so as to solve the problem (e.g., "What is the greatest common factor of the bottom row?"). Jill also 
intentionally used some teleological rational questioning to encourage other students to join the 
discussion: "Okay at this point we have two empty boxes. Somebody else, I want you to tell me how 
we find what goes into those two empty boxes that we have." By continuing to ask other students to 
respond to particular students' answers, Jill developed norms that every student in the class was 
expected to pay attention to what other students say and be ready to share solutions. On a few 
occasions, Jill wanted students to be able to use precise mathematics language to communicate their 
ideas and communicated this by asking them to be more specific about their solutions.    

 

 
Figure 1: An Example of Task in Lesson One 

 
Epistemic rationality followed as the second most common component of rational questioning 

(46/110). Jill used most of her epistemic rational questioning (45/46) to encourage her students to 
justify why their arguments hold (e.g., "You are correct; it's not three, but why?") or challenge her 
students to provide reasons for their arguments, especially when they gave incorrect answers. 
Epistemic rational questioning presses students to provide evidence to support the claims that 
contribute to the development of another norm: when engaging in argumentation, constructing a 
claim is not enough, you are expected to provide your reasoning for the claim. Through analysis we 
also noticed that not all epistemic rational questioning resulted in correct responses (27/46 prompted 
correct answers). Jill used sequences of epistemic rational questioning to make students’ implicit 
ideas more explicit and help students to revise their incorrect answers (as shown in the example 
above). In this way, the teacher also supports the development of students' ability to form 
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comprehensive and acceptable speech acts (i.e., communication) based on mutual understanding and 
agreement. This result provides empirical evidence to support Frank and colleagues’ (2009) 
contention that a single specific question is not enough to elicit a complete explanation or 
justification; sequences of questions that concentrate on students' explanations are required.  

Based on our analysis, 29% (32/110) of the rational questioning contained communicative 
components. In this unit, Jill's goal for students was apparently less focused on communicative 
rationality than on teleological and epistemic rationality. Most of the communicative rational 
questions (22/32) served to introduce graphic representation (the area model) to help students reason 
and to pull out correct answers (truth). For example, she asked, "If this is an area model, what could I 
call this [point at length] and what could I call this [point at width]?" Sometimes Jill intentionally 
asked students to rewrite a mathematical expression so that they could easily find the greatest 
common factor (e.g., "x4, how do I rewrite this one?"). Occasionally, Jill wanted to highlight her 
expectations for students to use correct mathematical representations and ensure their representations 
can be understood in the given classroom community (i.e., norms and communication). An example 
of this type of question would be as follows: "Have I actually finished...I need to write it in the factor 
form. So tell me what to write."  

Conclusions and Implications 
Drawing on two different concepts from Habermas' theory of communicative action, in this study 

we developed two frameworks focused on teacher questioning strategies to facilitate valid 
argumentative practices. Our definition and classification of rational questioning came from 
Habermas’ three components of rational behavior. Many researchers (e.g., Boero, 2006; Cramer, 
2015) applied this construct as a tool to analyze students’ participation in argumentation; our study 
shows it could also be used to analyze teachers’ ways of dealing with argumentation in the 
classroom. Habermas' theory of validity claims provides a tool to develop an analytic framework to 
capture "validation" of an argumentative discourse according to the three forms of validity claims. 
The two analytic lenses from Habermas’ theory provide us with a more comprehensive perspective to 
shed light on teacher questioning that supports collective mathematical argumentation. Habermas’ 
threefold perspective on epistemic, teleological and communicative rationality helps us to identify 
fine-grained rationality components of teachers’ questions and how teachers’ questioning is 
constrained in relation to the three components of rational behavior; the teacher's use of rational 
questioning to control the validation of argumentation is seen through Habermas' theory of validity 
claims.  

Classroom-based argumentative discourse is a form of collaborative discussion, and classroom 
discussions are complex, messy (Frank et al., 2007), and sometimes the argumentation may not 
happen in the intended way. In order to facilitate productive collective mathematical argumentation, 
it is critical to understand what constitutes successful argumentative practice. We view rational 
questioning as a teaching intervention to enrich different levels of argumentation and help students to 
meet the requirements of rationality, thus dialectically forming productive collective argumentation. 
Our analytic framework for valid argumentation supports the analysis of classroom instruction 
related to argumentation and identifies different forms of valid argumentation. It considers students 
as mathematics learners to participate in argumentation throughout the grades and emphasizes the 
validity of argumentation as context-dependent. For future research, we should continue to find 
effective ways to support students' participation in appropriate local acceptance criteria for 
argumentation and study the role of teachers in regulating valid collective argumentation.  

More importantly, in this study, we investigated the effectiveness of classroom-based rational 
questioning as a didactical tool to support validating argumentation, which responds to the call from 
the field to use theoretical ideas to design practical tools for teachers to use in the classroom. Our 
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results indicated that although epistemic rational questioning may not always elicit correct or 
complete reasoning, it served as a way for teachers to set social norms that students were expected to 
provide reasons to justify their claims when engaging in argumentative activities. Through leading 
students to work towards a specific method or foreground a particular piece of mathematics for 
consideration, teleological rational questioning worked well in constructing correct claims. Further, 
by calling on a particular student to share a different solution, the class worked on what counted as a 
mathematically different solution, which facilitated the establishment of sociomathematical norms. 
Communicative rational questioning contributed to the development of students' communicative 
competencies by asking students to make sure their representations were correct and to use 
appropriate mathematical terminology to communicate ideas. Questioning focused on 
communicative rationality also cultivated norms that students were expected to ensure their use of 
mathematical language and representation can be understood in the given mathematical classroom 
community. Teacher questioning is one of the most frequently used ways of orchestrating students' 
reasoning and a key factor in promoting argumentation (Kosko et al., 2014). The fine-grained 
analysis of teacher questioning in regard to Habermas' three components of rationality served as a 
method to help us understand how collective argumentation could be initiated and sustained, which 
thereby contributes to the construction of the culture of rationality in argumentative discourse. This 
study only focused on general types of rational questioning; it will be interesting to examine what 
combinations of components of rational questioning appeared to be more supportive and which are 
less supportive of the validity of argumentation.  

In summary, the findings of this study have implications for both theory and professional 
development in mathematics education. This study illustrates how an important theoretical construct 
from outside mathematics education can be interpreted and flexibly adapted to offer a new and 
promising perspective into the study of discursive practices that are related to mathematical 
argumentation. The frameworks provide a new perspective to understand the roles of teacher 
questioning in supporting mathematical argumentation. As for professional development, the types of 
questions provide information about how a beginning mathematics teacher used questions to support 
mathematical argumentation. In addition, the work of this study contributes to illustrate the link 
between theoretical and classroom-based research and can be applied in teacher professional 
programs as a means to develop teachers’ awareness about using rational questioning to support the 
rationality and validity of argumentative discourse. 
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In this brief theoretical report, I describe the process of the construction of units coordinating 
structures as the result of a non-linear progression from pseudo-empirical to internalized to 
interiorized mental activity, and I propose the utility of a parallel distinction between pseudo-
empirical, internalized, and interiorized levels of covariational reasoning. 

Keywords: Cognition, Number Concepts and Operations, Rational Numbers 

Research with middle grades students suggests that the attributes of a quantity conceptualized by a 
student can lead to assimilation to schemes involving different units coordinating structures (Boyce 
& Norton, 2017). Similarly, I expect that when analyzing students’ covariational reasoning, a critical 
aspect of their reasoning is how they assimilate attributes of objects as measurable and how they 
assimilate quantities as co-varying. In this paper, I propose utility of adopting distinctions between 
students’ schemes for coordinating units (pseudo-empirical, internalized, and interiorized) to levels 
of covariational reasoning (Thompson & Carlson, 2017). I begin by providing background on scheme 
theory (von Glasersfeld, 1995). 
Scheme Theory 

A scheme consists of three parts: recognition of a situation, operations (mental actions), and an 
expected result (von Glasersfeld, 1995). Following von Glasersfeld (1995), I distinguish three types 
of schemes based on their activity: pseudo-empirical, internalized, and interiorized schemes. The 
“empirical” part of a pseudo-empirical scheme refers to an individual’s need for an external object of 
attention to act upon; the activity portion of the scheme requires sensory-motor experience of an 
external transformation. What makes it “pseudo”-empirical rather than empirical is that the object 
acted upon is figurative material; the result of the scheme is not about the object itself. With an 
internalized scheme, perception of an act of transformation is still required, but the transformation 
can involve completely imagined representations (i.e., mental imagery). Representations of the 
results of internalized schemes can still involve external representations, but actions with these 
external representations involve communicating internalized reasoning rather than being a necessary 
aspect of one’s reasoning. Both internalized and pseudo-empirical schemes involve mental activities 
that are experienced temporally; as part of a flow of experience of perceiving an object, acting upon 
it (mentally), perceiving the resulting object, and conceiving the results of the action. In contrast, an 
interiorized scheme does not require either internal or external representations for mental activity. 
Interiorized schemes are anticipatory, in the sense that the recognition of a situation, the mental 
actions, and the expected result of the actions of an interiorized scheme are experienced as 
synchronous, reversible, and necessary.  

Although the process of interiorization is prefaced by stages of pseudo-empirical and internalized 
activity, constructing more advanced schemes is dependent upon individuals’ lived experiences 
rather than following a strictly linear process, via psychological processes of perturbation, abduction, 
assimilation, accommodation, and reflective abstraction. Perturbation is the experience of a lack of 
stability or reliability of one’s current schemes; often accompanied with emotive experiences of 
uncertainty or confusion (Piaget, 1970). Perturbation can be momentary and is most often closely 
tied to social interactions (communication with others about their mathematical reasoning can be 
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viewed as a process of introducing and resolving perturbations involving interpreting others’ 
semiotics; Steffe & Thompson, 2000). Perturbation can also be prolonged and invoke a powerful 
intellectual need for resolution (Harel, 2013) and involve internalized communication (Sfard 2007). 

Abduction is a logical process of forming a hypothesis that, if true, would be experienced as 
satisfying an observation (Norton, 2008; Prawat, 1999). The process of assimilation is the result of a 
successful abduction of a modification of recognition of a situation or a modification of the 
recognition of a result that resolves a perturbation (most commonly an expansion of the recognition 
template, so that a scheme applies more broadly, von Glasersfeld, 1995). Typically accommodations 
involve a curtailing that is the reverse of the most common form of assimilation. Processes of 
assimilation and accommodation are thus intertwined, as assimilations lead to accommodations that 
lead to assimilations (von Glasersfeld, 1995).  

Schemes can be thought of as recursive in the sense that the output of a scheme can become part of 
the activity of another scheme. I use the term meta-scheme to refer to processes that act on schemes 
(cf., Piaget, 1970). I thus consider the processes of assimilation and accommodation as meta-
schemes. Schemes for internalization and interiorization of schemes are also meta-schemes whose 
input is a scheme itself. For the vast majority of situations, meta-schemes are enacted without meta-
cognitive awareness, but learners also develop a meta-scheme of reflective abstraction. Reflective 
abstraction begins with reasoning about prior experiences, via re-presentations (mental recordings of 
prior experiences). Via processes of abduction, perturbation, assimilation and accommodation, these 
re-presentations can become successively more abstract. Reflective abstraction is thus an 
accommodation of an individual’s meta-schemes to include more awareness, control, and flexibility. 
Due to limitations of working memory, reasoning about successively more abstract re-presentations 
of mental objects both requires and necessitates interiorizations of systems of mental actions on those 
objects as conceptual structures, which are systems of interiorized operations (Piaget, 1970; Norton 
& Bell, 2017).  
Units Coordinating Structures 

A units coordinating structure defines and regulates relationships between transformed units as 
possible, logically necessary, and reversible (Boyce & Norton, 2017). Here a unit refers to a size, and 
transformations include operations of partitioning and iterating as well as composing (putting one 
unit inside another unit) and disembedding (removing a copy of a unit from within a composite unit 
without modifying the composite unit). Such operations are constructed by students as part of their 
process of constructing sequences of counting numbers and reorganized to apply to fractions (Norton 
& Wilkins, 2012) and integers (Ulrich, 2015).  

Individuals’ schemes for rational number are thus characterized in part by their levels of units 
(Steffe & Olive, 2010), where the number of levels of the structure refer to the nestedness of 
reversible coordinations. The iterative fraction scheme requires assimilation with a units coordinating 
structure relating three levels of units (e.g., four 1/4 units within one and nine 1/4 units within 9/4). 
Assimilation of fractional situations with three levels of units allows a student who has constructed 
an interiorized iterative fraction scheme to anticipate iteration of an amount determined by 
partitioning before actually carrying out the partitioning with internalized or physical objects.  
Need for Distinguishment of Covariational Reasoning Levels by Pseudo-Empirical, 
Internalized, or Interiorized Mental Activity 

Note that with one exception, the descriptions of the covariational reasoning levels (depicted in 
Figure 1) refer to forming mental imagery, which I associate with internalized schemes. I propose 
theorized distinguishment of pseudo-empirical and interiorized covariational reasoning. I contend 
that to understand learners’ development of covariational reasoning across levels requires 
understanding their pseudo-empirical, internalized, and interiorized reasoning within levels. For 
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instance, whereas internalized continuous covariational reasoning (both smooth and chunky) might 
require assimilation with three levels of units, perhaps students assimilating with two levels of units 
can construct pseudo-empirical schemes for smooth continuous covariational reasoning. 
Consideration of this additional lens can help to inform the field of more specific learning trajectories 
and support the design of tasks engendering perturbation, abduction, assimilation, accommodation, 
and reflective abstraction that result in students’ construction of more powerful covariational 
reasoning. 

Framing mental imagery associated with levels of covariational reasoning as internalized activity of 
covariational reasoning schemes allows for other representations of internalized actions (such as 
imagery of zooming in or out on the graph of an emergent trace (Ellis, Ely, Singleton, & Tasova, 
2018) that may require the same levels of units interiorized. More generally, it allows for identifying 
learning trajectories within and across levels of covariational reasoning that extend beyond 
descriptions of internalized mental activities to include focus on how students act upon standard and 
non-standard representations of graphs (Frank, 2018; Paoletti & Moore, 2017) and equations 
(Stevens, 2019) as part of analyses of covariational reasoning. 
 
Level Description from (Thompson & 

Carlson, 2017, p. 440) 
Proposed Distinguishment by Pseudo-
empirical, Internalized, or Interiorized 
Reasoning 

Smooth 
continuous 
covariation 

The person envisions increases or 
decreases (hereafter, changes) in one 
quantity’s or variable’s value (hereafter, 
variable) as happening simultaneously 
with changes in another variable’s 
value, and the person envisions both 
variables varying smoothly and 
continuously 

Interiorized: The person anticipates smooth 
and continuous covariation between two 
quantities without necessarily forming 
mental imagery. 
 
Pseudo-empirical: The person evokes 
reasoning about a smooth and continuous 
representation without envisioning 
covariation between two quantities.  

Chunky 
continuous 
covariation 

The person envisions changes in one 
variable’s value as happening 
simultaneously with changes in another 
variable’s value, and they envision both 
variables varying with chunky 
continuous variation. 
 

Interiorized: The person anticipates chunky 
and continuous covariation between two 
quantities without necessarily forming 
mental imagery. 
 
Pseudo-empirical: The person evokes 
reasoning about a chunky and continuous 
representation without envisioning 
covariation between two quantities.  

Coordination 
of values 

The person coordinates the values of 
one variable (x) with values of another 
variable (y) with the anticipation of 
creating a discrete collection of pairs (x, 
y). 

Interiorized: The person anticipates 
correspondence between two variables’ 
values without necessarily forming mental 
imagery of their pairing. 
 
Pseudo-empirical: The person anticipates 
forming a new representation of discrete 
correspondences by which to reason about 
changes. 
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Gross 
coordination 
of values 

The person forms a gross image of 
quantities’ values varying together, such 
as “this quantity increases while that 
quantity decreases.”  The person does 
not envision that individual values of 
quantities go together. Instead, the 
person envisions a loose, 
nonmultiplicative link between the 
overall changes in two quantities’ 
values. 

Interiorized: The person anticipates binary 
correspondences between two variables’ 
changes without forming mental imagery. 
 
Pseudo-empirical: The person identifies and 
reasons about representations of binary 
correspondences between two variables’ 
changes.    

Pre-
coordination 
of values 

The person envisions two variables’ 
values varying, but asynchronously—
one variable changes, then the second 
variable changes, then the first, and so 
on. The person does not anticipate 
creating pairs of values as multiplicative 
objects. 

Interiorized: The person anticipates an 
asynchronous sequence of binary changes in 
values without forming mental imagery. 
 
Pseudo-empirical: The person identifies and 
reasons about representations of an 
asynchronous sequence of binary changes in 
values. 
 

No 
coordination 

The person has no image of variables 
varying together. The person focuses on 
one or another variable’s variation with 
no coordination of values. 

Internalized: The person forms an image of 
one variable varying. 
 
Pseudo-empirical: The person reasons about 
variation in one variable by relying on a 
representation. 

Figure 1. Covariational Reasoning Level Descriptions 
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The development of a model that explains how teachers learn from teaching is critical for informing 
the design of quality professional development, which in turn can support teachers’ effectiveness and 
student learning. This article reports the authors’ effort to develop a model that brings together 
critical findings from existing research to unpack when and under what conditions teachers learn 
from teaching. Grounded in evidence drawn from research relating to teachers’ learning and 
practice, the authors build a rationale for the Learning from Teaching (LFT) model, introduce each 
component of the model and propose two conditions that increase the likelihood of teachers’ 
learning from their own teaching. 

Keywords: Learning Theory, Mathematical Knowledge for Teaching, Teacher Education, Teacher 
Knowledge 

Most people would agree that teachers continue to learn and improve their teaching throughout their 
career. Yet, when and under which conditions teachers learn from teaching are not clearly identified. 
Reviews of professional development programs pinpoint different attributes of professional learning 
opportunities that result in changes in teacher practices and improvements in student learning (cf. 
Blank, las Alas, & Smith, 2008; Borko, Jacobs, & Koellner, 2010; Darling-Hammond, Hyler, & 
Gardner, 2017; Desimone, 2009; Garet et al., 2011, 2016; Kennedy, 2016; Piasta, Logan, Pelatti, 
Capps, & Petrill, 2015; Santagata, Kersting, Givven, & Stigler, 2011). For instance, Darling-
Hammond and colleagues (2017) identified in their review of professional development studies that 
the content focus was a characteristic of effective programs, whereas Kennedy (2016) found that 
programs with a content focus did not seem effective.  

We suggest that this cycle of conflicting findings about what makes professional development 
effective can be interrupted by the development of a testable model of how teachers learn from 
teaching. Without such a foundational model that seeks to explain the key mechanisms underlying 
teachers’ learning from teaching, researchers will continue to conduct assessments of teacher 
learning from various perspectives that yield conflicting findings. In alignment with our argument, 
Kennedy (2016) noted in her recent review that “Education research is at a stage in which we have 
strong theories of student learning, but we do not have well-developed ideas about teacher learning” 
(p. 973). 

Thus, our intentions of the present article are (a) to contribute to the literature by bringing attention 
to the importance of developing a model of how teachers learn from teaching and (b) to share our 
theoretical Learning from Teaching (LFT) model that is informed by prior research and can be tested 
in future research. We conceptualize teachers’ learning from teaching as adjusting, adding to, or 
changing instructional practices. 

The Learning from Teaching (LFT) Model 
Our model considers how teachers and students co-create the teaching context that shapes teachers’ 

learning process (see Figure 1). Central to this model is that the temporal links (i.e., time interval) 
between teaching actions and evidence of student learning influences what can be learned from 
teaching. For instance, the model suggests that a teacher who does not attempt to capture students’ 
learning (through formative or summative assessments) for a week will be unlikely to learn from his 
or her teaching because it will be challenging to pinpoint which teaching actions contributed to 
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students’ learning. We also identify teachers’ problem-solving skills as the key mechanism for their 
learning. We argue that without problem-solving skills, teachers cannot learn from their teaching 
because they will not be able to identify what teaching action is causing students to learn or struggle. 
Teachers and Students Co-Create the Teaching Context 

As shown in the first part of the figure, our model highlights how characteristics of individual 
teachers and their students will co-create the teaching context. This teaching context will shape what 
teachers can learn from their teaching. What we suggest here is that each individual teacher has a 
somewhat different teaching context and encounters different teaching moments that influence the 
teacher’s learning environment. Therefore, understanding how teachers, their students, and other 
contextual factors simultaneously create a potential learning environment that could be different for 
individual teachers is crucial.  

This dynamic and yet individualized teaching context includes instances of teaching actions and 
evidence of students’ learning. While many scholars focus on either teaching actions (e.g., improving 
the cognitive demand of tasks) or students’ thinking (identifying instances of students’ mathematical 
thinking as key to productive classroom discussions; Leatham, Peterson, Stockero, & Van Zoest, 
2015), both are included in the LFT model.  
Temporal Links Between Teaching Actions and Evidence of Student Learning 

In the next part of the LFT model, we consider how the temporal links between teaching actions and 
evidence of student learning play a key role in whether teacher learning occurs. If the time interval 
between the teaching actions and evidence of student learning is too great, it becomes a difficult task 
for teachers to identify which of their actions is leading to student learning. Our argument is both 
supported by research suggesting that formative assessment, which includes teachers’ informal 
assessment of students’ learning throughout a lesson, can lead to student learning (Black & William, 
1998) and data driven research (e.g., Farrell & Marsh, 2016a; 2016b). To illustrate our point, 
consider a dramatized example of two teachers who have identical teaching contexts (identical 
students, the same levels of knowledge and skills, identical beliefs, and the same teaching materials). 
Teacher A is not collecting any information on his students’ understanding through questions or 
observations and is not frequently inviting students to share their ideas to reveal their thinking. In 
contrast, Teacher B is frequently “collecting data” from her students through observations, student 
participations, or questions to see whether her students are on track. Thus, we propose that because 
the time distance between the teaching actions and student input is longer for Teacher A, it becomes 
challenging for him to pinpoint what his students do or do not learn and identify what part of his 
instruction could potentially have contributed to this outcome. As illustrated in Figure 1, when the 
time distance between the teacher’s actions and student learning narrows, the number of potential 
links decreases, which in turn helps the teacher identify how his or her teaching interacts with the 
students’ learning.   
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Figure 1. The Learning from Teaching (LFT) model.  

 
Teachers’ Problem-Solving Skills 

We argue that problem-solving skills are key to teacher learning, and those who have developed 
problem-solving skills can learn on their own from teaching (Franke, Carpenter, Levi, & Fennema, 
2001). As for any sorts of problems, dealing with them effectively requires developing a systematic 
approach to problem solving. That is why we have turned to one of the most successful strategies 
developed by Polya (2004) to help students develop problem-solving skills. According to Polya, 
problem solving involves four phases: (1) understanding the problem (why students learned or did 
not learn, what contributed to this outcome, what data we must have to find a solution, what other 
factors we need to take into consideration); (2) devise a plan (of all the potential strategies, knowing 
which one is more likely to lead to a correct solution); (3) execute the plan; and (4) look back 
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(identifying whether the strategy was the right one and what can be generalized from this experience 
to other similar situations).  

Understanding the problem is one of the first and most vital steps in solving any problem. It 
requires teachers to identify “the unknown, the data, the condition” (p. 28, Polya, 2004). Consider a 
teacher who wants to know whether his or her students have achieved the learning goal. What is 
unknown is what contributed to students’ learning or confusion. The data are the temporal links 
created during teaching or additional data, such as exit tickets, gathered on student learning. The 
condition is whether other factors in the teaching context and the available data are sufficient to 
determine what students learned or did not learn.  

Devising a plan is the long journey that takes place after understanding the problem; it involves 
many unsuccessful trials. Indeed, this is why we created different learning paths, depending on 
teachers’ problem-solving skills. Teachers with strong problem-solving skills may think of a similar 
situation with similar unknowns and analyze how the current problem is related to similar problems 
solved before.  

The third phase, carrying out the plan, is testing what is determined to be the reason for student 
learning. Executing the plan requires paying attention to the steps involved in the plan. For instance, 
if the plan is to use a specific manipulative (e.g., base-10 blocks) to help students understand the 
concept they are struggling with (e.g., the place-value system), then attending to the fact that 
mathematical ideas and representations (base-10 models) are clearly linked is the step required for 
correct execution of the plan.  

The final step is looking back, which allows teachers to reexamine both the strategy and the result 
(e.g., whether modeling with base-10 blocks helped students understand what each digit means in the 
base-10 system). Checking whether the solution is supported by all the data collected helps teachers 
learn to analyze their teaching systematically to determine what works. Finally, good problem solvers 
generalize what is learned from a particular problem to solve similar problems by looking back at the 
same problem. Thus, we propose that only teachers with good problem-solving skills may change or 
adapt their existing conceptions because they collect data, devise a strategy, and evaluate their 
strategy by using evidence and reasoning.  
Summary of the LFT Model 

The LFT model suggests that teacher learning from teaching is situated in the teacher’s dynamic 
teaching environment and is jointly created by teachers and their students. Learning from teaching 
depends on the time distance between teaching actions and student learning evidence as well as on 
teachers’ problem-solving skills. In particular, two conditions increase the likelihood of teachers’ 
learning from teaching: (1) shortening the temporal links between teaching actions and evidence of 
student learning, because this limits the amount of potential actions the teacher can select to explain a 
certain outcome and (2) problem-solving abilities, because these allow teachers to use the 
information on hand systematically to find an answer to how particular teaching actions are linked to 
student learning. Teachers with problem-solving skills can work on the problem of teaching 
systematically and eventually find a correct answer to what is helping students learn or causing them 
to struggle.  
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In this article, we share the design and validation processes of two instruments measuring aspects of 
the mathematical modeling process – one that measures competency and one that measures students’ 
self-efficacy to do modeling. The study evaluates both instruments to establish their validity and 
reliability, using classical test theory.  

Keywords: Measurement and Evaluation, Post-Secondary Education, Advanced Mathematical 
Thinking 

Despite calls over recent decades to increase the number of graduates in STEM fields, these numbers 
have not grown sufficiently. Learning to apply knowledge in these majors implies integration of 
experiences leveraging design theories, scientific inquiry, technological literacy, and mathematical 
thinking (Kelley & Knowles, 2016). These goals can be realized through mathematical modeling. 
Modeling is of utmost importance for students pursuing STEM majors because modeling skills are of 
critical import to solving society’s problems – whose solutions have global consequences. Today’s 
students also take great interest in solving them (Eccles & Wang, 2016; Su, Rounds, & Armstrong, 
2009). Further, research suggests that learning mathematics through modeling, as a pedagogical 
approach, has potential to increase student interest, proficiency in mathematics, robustness of 
mathematical knowledge, and self-efficacy for doing mathematics (Czocher, 2017; Czocher, 
Melhuish, & Kandasamy, 2019; Lesh, Hoover, Hole, Kelly, & Post, 2000; Rasmussen & Kwon, 
2007; Sokolowski, 2015). Taken together, these factors are positively associated with persistence in 
mathematics and therefore in majors with high mathematics requirements. One aspect of 
incorporating more modeling in undergraduate mathematics classrooms is being able to demonstrate 
the efficacy of instructional interventions by measuring gains in students’ modeling skills. This 
information would help refine programmatic innovations that focus on augmenting students’ 
modeling experiences. Despite the need, there are presently no validated, reliable instruments to 
measure students’ modeling skills available for undergraduates. In this article, we share two such 
instruments and their psychometric properties: one for modeling competencies and one for self-
efficacy to carry out those competencies. 

Conceptual Framework 
For this project, we adopt a view of mathematical modeling as a cognitive process of rendering a 
non-mathematical problem about a real-world phenomenon of interest, such as those common to 
STEM fields, as a well-posed mathematical problem to be solved. It is a cyclic process realized as a 
suite of mathematical activities and cognitive processes (e.g., Kaiser, 2017). The mathematical 
problem can be expressed as an equation, a graph, a table, etc. The modeler solves the mathematical 
problem and interprets its solution in terms of the real-world context. The modeler validates and 
verifies each step of the process, evaluating whether the model correctly represents the situation and 
whether the solution makes sense (Czocher, 2018). Table 1 summarizes the conceptual framework, 
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called a mathematical modeling cycle (MMC) (Blum & Leiss, 2007; Czocher, 2016; Maaß, 2006), 
and also defines the competencies that constitute the modeling process. 

 
Table 1 Modeling competencies 

Competency Description 
Understanding  Forming an idea of the real World problema or identifying a real world phenomenon worth 

investigating 
Structuring Identifying (ir)relevant quantities and variables; making assumptions to simplify the problem  
Mathematizing Expressing relations among the variables using a mathematical representation 
Working 
mathematically 

Solving the mathematical problema, using techniques learned in mathematics classes 

Interpreting Interpreting the mathematical results with reference to the context of the real world problem 
Validating Evaluating whether the model represents the situation; verifying the analysis; establishing 

limitatinos 
 
We operationalize self-efficacy about a task as an individual’s self-assessed capacity to successfully 
carry it out (Bandura, 2006; Betz & Hackett, 1983; Hackett & Betz, 1989). In this study, self-efficacy 
is always evaluated with reference to a specified task. We operationalize the construct self-efficacy 
for mathematical modeling as an individual’s self-assessed capacity to successfully carry out the 
interrelated competencies of the mathematical modeling process. In this way, we can, for example, 
consider a student’s self-efficacy to identify the most important variables involved in estimating the 
spread of smart homes in the 21st century. The conceptual frameworks are compatible and we used 
them together to guide the design of the modeling self-efficacy and modeling competency scale 
items. 

Methods 
This study has a quantitative nature and is situated within the development of the two instruments, 
with the purpose of establishing evidence in support of their validity and reliability. The population 
under study was university STEM majors in the United States. The modeling self efficacy (MSE) 
instrument went through four rounds of design and testing. In each field test, we used a sample of 
STEM majors who participated in an international modeling competition called SCUDEM1, which 
focuses on modeling with differential equations. In the first round of field testing, there were 6 
related items for students to report their self-efficacy for the modeling competencies. In the second 
round, we created an additional item asking about establishing limits (a competency of validating, 
see Table 2, item 6) and we clarified previous items. We used pre- and post- forms of the MSE to 
measure change in students’ self-efficacy from before to after competing. We found gains of 
moderate effect size ! = 0.545 (!(92) = −6.663, ! < 0.001).   In the third round, we created a new 
item targeting working mathematically (Table 2, Item 4). Previously, this competency was excluded 
because it is traditionally the focus of mathematics instruction, and is complementary to modeling. In 
the third round, we measured statistically significant positive gains in self-efficacy for those 
participants who answered both the pre- and post-survey  (! = 4.202 ,!" = 51, ! < 0.001). The 
final round was carried out concurrently with field testing of the Modeling Competency 
Questionnaire (MCQ), detailed be low. In each round, we carried out a principal component analysis 
(Abdi & Williams, 2010) to estimate variance and calculated Cronbach’s α as a measure of internal 
consistency. Summary statistics are in Table 3. Our analyses, together with the instrument’s 
construction based in theories of mathematical modeling, suggest that the MSE is unidimensional 
with high internal consistency, fase, content, and construct validity. 
                                                             
1 The annual SCUDEM challenge is hosted by SIMIODE, https://www.simiode.org/scudem. SIMIODE is a 
professional organization of educators who advocate teaching differential equations from a modeling perspective. 
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Table 2 Final MSE instrument.  
Rate your level of confidence by recording a number from 0 to 100 using the scale given below Competencies  
0       10        20        30        40       50      60       70        80        90       100 
Cannot do at all Moderately can do Highly certain can do. 
Create a differential equation model for the spread of smart home appliances in the United States 
during the twenty-first century. 

Mathematize 

In (1) identify the important variables leading to a reasonably accurate prediction. Identify variables 
In (1) make simplifying assumptions to reduce the number of important variables. Make 

assumptions 
In (1) select an appropriate numerical, graphical, or analytic technique to solve the resulting 
differential equation 

Work 
mathematically  

In (1) consult appropriate resources to check whether your model was reasonable. Validate 
In (1) list the real-life and mathematical limitations of your model. List limitations 
In (1) create a short presentation to convince a smart appliance manufacturer that they could rely 
on your model to develop their business plan. 

Communicate 
findings 

Given a differential equation which describes the rate of formation of material A,  
!! ! =  !!(!)! 
and a data set of observations for time, t, amount of material A at each time t, you could estimate 
the parameters ! and !. 

Estimate 
parameters  

 
Tabla 3 Summary of analysis of MSE  

Round N Varience (ACP) ! Round N Variance (ACP) ! 
1 38 62.5% 0.822 3 198 61.5% 0.908 
2 276 67.1% 0.917 4 226 69.0% 0.935 

 
Design and testing for the MCQ was carried out in three rounds (feasibility, difficulty, and 
discrimination) with distinct samples drawn from a large, southwestern university in the United 
States. We imposed four restrictions on the design: (1) items should be drawn from authentic and 
relevant contexts (e.g., radioactive decay or analysis of a recycling program), (2) items should draw 
on knowledge from STEM content or everyday knowledge, (3) items should target the aspects of the 
modeling competencies, and (4) distractor choices should capture decisions and justifications 
common to students’ reasoning. We created 118 multiple choice items belonging to 9 real-world 
situations, selected from instructional and research materials from STEM education. Mathematics 
content included arithmetic, algebra, calculus, and differential equations. For each item, we created 
one correct answer and four distractors that would appear reasonable to the students but would not 
help to model the situation. To establish content and construct validity, we invited two 
mathematicians who teach differential equations to STEM students and three mathematics education 
researchers who specialize in teaching and learning of mathematical modeling to evaluate the items 
for appropriateness, correctness, and aptness to the MMC. In the first round, 14 students answered 
the MCQs and gave us reasoning to justify their choices. We eliminated items that did not make 
sense to the student. In cases where a student selected a distractor but had sensible reasoning, we 
modified the item. In the second round, 78 students answered 63 items, distributed among two forms 
that balanced contexts and competencies. For each item, we calculated the mean difficulty. The 
majority (76%) of the items had moderate difficulty (0.20<p<0.70). We eliminated items outside this 
range as either too difficult or too easy, restructuring some of the too-difficult items. To analyze 
distractor efficiency, we calculated the proportion of students that selected each option. At least 5% 
of the students selected each of the 253 distractors (one item had 5 distractors). For 17 items, a 
distractor was selected more frequently than the correct answer. These items were flagged as 
potentially strong discriminators among students with varying levels of modeling competencies. 
After restructuring problematic items, we chose 30 items (15 items for each of 2 forms). The two 
forms were administered to a sample of ! = 314 volunteers who participated in the SCUDEM 
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competition, ! = 135 responded to Form 1 and ! = 139 responded to Form 2. For each item, we 
calculated the mean difficulty. Form 1 had mean difficulty 0.359 (!" = 0.126), with 0.177 < ! <
.0595. Form 2 had mean difficulty 0.369 (!" = 0.129), with 0.147 < ! < 0.580. Four items were 
too difficult. We conducted another analysis of distractors and concluded that they were functioning 
adequately. We used point-biserial correlations (rPBIS) to conduct discrimination analysis. Only one 
item from Form 1 had a negative rPBIS; the remaining items had rPBIs > 0.20. We report the 
statistics Revelle’s Omega Total !!  as an estimate of internal consistency. This selection is 
appropriate in cases, like the MCQ, where the instrument is multidimensional and when those 
multiple dimensions contribute to the construct under investigation (Revelle & Zinbarg, 2009). Using 
the software package ‘userfriendlyscience’ in !, we obtained  !! = 0.59 y  !! =  0.63, 
respectively, for Forms 1 and 2. The scales are approaching traditional estimates of 0.7. 

Discussion 
In this article, we have shared two instruments measuring mathematical modeling competencies and 
modeling self-efficacy. We also documented their design processes and their psychometric 
properties. The instruments are aligned with theories of mathematical modeling and have gone 
through several rounds of field testing. Future research will move into Item Response Theory as a 
means for constructing and calibrating parallel versions of the modeling competence questionnaire 
for use as pre/post or group comparison measures. In this way, the instruments can help to evaluate 
innovative educational interventions aimed at augmenting students’ modeling skills. With such 
information, instructors, researchers, and academic units can improve modeling experiences for 
students and provide evidence of their efficacy. We are cautious but optimistic that the instruments 
can meet this goal as the evidence presented here suggests that both are reliable and valid for that 
purpose. 
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En este artículo, describimos el diseño y la validación de dos instrumentos – uno que mide la 
autoeficacia y otro que mide las competencias del proceso de la modelización matemática. La 
investigación consiste en la evaluación de ambas para establecer la validez y la confiabilidad 
utilizando técnicas de teoría clásica de validación.  

Palabras clave: Valoración y Evaluación, Educación Postsecundaria, Modelización 

A pesar de que una de las metas de la educación postsecundaria ha sido el aumentar el número de los 
graduados universitarios en las carreras de ciencia, tecnología e ingeniería, estos números no se han 
incrementado suficientemente. Para adquirir conocimiento útil, es necesario que el aprendizaje se 
fundamente en la combinación de la práctica y teoría de diseño, indagación científica, y en el 
pensamiento matemático (Kelley & Knowles, 2016). A través de la modelización matemática, se 
pueden lograr estas metas. Las habilidades de modelización matemática son de suma importancia al 
cursar carreras universitarias que requieren técnicas aplicadas a las matemáticas. También son 
importantes para resolver problemas sociales cuyas soluciones conllevan consecuencias mundiales y 
tangibles. La posibilidad de resolver los problemas sociales llama la atención de los estudiantes 
(Eccles & Wang, 2016; Su, Rounds, & Armstrong, 2009). Además, las investigaciones empíricas 
sugieren que aprender matemáticas a través de la modelización es beneficiosa para obtener una 
autoeficacia y un conocimiento matemático más robusto (Czocher, 2017; Lesh, Hoover, Hole, Kelly, 
& Post, 2000; Rasmussen & Kwon, 2007; Sokolowski, 2015). La modelización matemática, guiada 
por las innovaciones educativas, aumenta el interés, la competencia, y la autoeficacia de los 
estudiantes hacia las matemáticas (Czocher, Melhuish, & Kandasamy, 2019). Conjuntamente, esos 
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factores también están asociados positivamente con la perseverancia en los campos disciplinarios que 
requieren las matemáticas. Para evaluar atentamente las intervenciones educativas y mostrar su 
eficacia, es necesario medir el aprendizaje. Esto ayuda a refinar programas que se enfoquen en las 
habilidades de la modelización matemática. A pesar de su necesidad tangible no existen instrumentos 
válidos ni confiables para evaluar las habilidades de modelización de los estudiantes universitarios. 
Aquí, compartimos dos instrumentos de medición y sus propiedades psicométricas: uno de 
competencias de modelización y otro de autoeficacia en realizarla. 

Marco de Referencia 
En este trabajo de investigación, se plantea el supuesto de que la modelización matemática es un 
proceso iterativo y cíclico que puede ser conceptualizado como un conjunto de actividades 
matemáticas y procesos cognitivos (e.g., Kaiser, 2017). El proceso comienza con un problema de la 
vida real – como los que son comunes en los estudios de ciencia, ingeniería o en la vida cotidiana – y 
desemboca en un problema matemático. El problema matemático se puede expresar como una 
ecuación, un gráfico, o una tabla de valores.  El modelador resuelve el problema matemático y desde 
la solución matemática él interpreta el significado de los resultados al problema original planteado. 
El modelador valida y verifica cada etapa del proceso para evaluar si el modelo representa 
correctamente la situación real y si la solución tiene sentido (Czocher, 2018). La Tabla 1 presenta el 
marco de referencia que se denomina “ciclo de modelización matemática” (CMM) (Blum & Leiss, 
2007; Czocher, 2016; Maaß, 2006) y define las competencias que constituyen el proceso de 
modelización matemática. Definimos la autoeficacia de realizar una tarea como la confianza de una 
persona en sí misma y en su capacidad para lograr resolver la tarea exitosamente (Bandura, 2006; 
Betz & Hackett, 1983; Hackett & Betz, 1989). En esta investigación, la autoeficacia siempre es 
evaluada con referencia al objetivo de la tarea.  Definimos el constructo autoeficacia de modelización 
matemática como la confianza de una persona en sí misma y en su capacidad de realizar las 
actividades interrelacionadas que constituyen el proceso de modelización. De esta manera podríamos 
medir la autoeficacia de un estudiante para identificar las variables más importantes involucrados en 
estimar la propagación de hogares inteligentes en el siglo 21.  El CMM y la autoeficacia son 
compatibles, y los utilizamos en conjunto para guiar el diseño de los ítems.   
 

Tabla 1 Competencias de modelización. 
Competencia Descripción 
Comprender  Formación de una idea de lo que debe ser el problema o identificación de un fenómeno de la 

vida real que merece investigación  
Establecer 
estructura 

Identificar los factores y cantidades reales relevantes y la información que se puede ignorar; 
imponer restricciones o supuestos para simplificar el problema 

Matematizar Expresar las relaciones entre las cantidades en una representación matemática 
Analizar Resolver el problema matemático, usando técnicas aprendidas en la clase de matemáticas 
Interpretar Observar y entender los resultados matemáticos desde el contexto del problema real 
Validar Examinar si el modelo representa la situación; verificar el análisis; establecer limitaciones  

Metodología  
La investigación es de naturaleza cuantitativa y se enmarca dentro de un estudio de desarrollo para 
establecer evidencia en apoyo de la validez y la confiabilidad de los instrumentos. La población bajo 
estudio consistió en estudiantes universitarios que estudian carreras en ciencias, tecnología, 
ingeniería, y matemáticas.  A continuación, se documenta el diseño de los ítems. La evaluación del 
instrumento de autoeficacia se realizó en cuatro rondas de pruebas. En cada prueba empírica, usamos 
una muestra de estudiantes universitarios inscritos en un concurso internacional de modelización 
basado en lo que se llama SCUDEM (por sus siglas en inglés). El concurso se lleva a cabo cada año y 
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es parte de una organización de capacitación que apoya a los profesores de matemáticas a quienes les 
gustaría enseñar los conceptos de ecuaciones diferenciales desde una perspectiva de aplicaciones y 
modelización matemática. En la primera ronda, eran 6 ítems relacionados con la autoeficacia de 
modelización. En la segunda, creamos un ítem (Tabla 2, ítem 6) y modificamos los ítems anteriores 
para mejorar su claridad. En la segunda ronda, también medimos el cambio de autoeficacia antes y 
después de participar en el concurso y constatamos una ganancia de efecto moderato, 
! = 0.545 (!(92) = −6.663, ! < 0.001).  En la tercera, creamos un item nuevo de análisis 
matemático (Tabla 2, Ítem 4).  Previamente fue excluido porque el enfoque eran las actividades 
complementarias de modelización.   En la tercera ronda el instrumento midió el cambio positivo de 
autoeficacia (! = 4.202 , !" = 51, ! < 0.001) de los participantes que contestaron las preguntas 
antes y después de participar en el concurso. En cada ronda de validación, realizamos un análisis de 
los componentes principales (Abdi & Williams, 2010), calculamos el Chronbach’s ! para estimar la 
consistencia interna, y medimos el cambio de autoeficacia antes y después de participar en el 
concurso. La Tabla 3 resume los resultados. Este análisis, en conjunto con su construcción basado en 
la teoría de modelización matemática, indica que el instrumento de autoeficacia es unidimensional 
con coherencia interna alta y tiene validez de diseño y de constructo. 

Tabla 2 El instrumento final de autoeficacia.  
Indica tu nivel de confiabilidad en cada uno de los escenarios siguientes, elegiendo un 
numero de 0 a 100 usando la siguiente escala: 

Competencias  

0       10        20        30        40       50      60       70        80        90       100 
No puedo hacer. Tengo dudas… Con certeza elevada. 
Crear un modelo de ecuaciones diferenciales para estimar la propagación de hogares inteligentes 
en el siglo 21. 

Matematizar 

En (1), identificar las cantidades importantes que aseguran una predicción razonablemente precisa.  Establecer 
estructura 

En (1), establecer los supuestos que reducen la cantidad de factores importantes. Establecer 
estructura. 

En (1), elegir un método apropiado de tipo numérico, gráfico ó analítico para resolver la ecuación 
diferencial que resulta de (1). 

Analizar  

En (1) consultar a los recursos apropiados para verificar si el modelo matemático es razonable.  Validar 
En (1) enumerar las limitaciones del modelo matemático, incluyendo restricciones de la vida real y 
restricciones matemáticas. 

Validar 

En (1), crear una presentación breve para persuadir un fabricante de aparatos inteligentes que 
podrían depender en tu modelo matemático para fomentar un plan de negocios.   

Comunicar 

Proporcionando una ecuación diferencial que modela la tasa de formación del material A,  
!! ! =  !!(!)!  
y los datos de observaciones en tiempo !, la cantidad de material A por cada punto de tiempo !, 
podría estimar los parámetros ! y !. 

Establecer 
estructura 

 
Tabla 3 El resumen del análisis del instrumento de autoeficacia de modelización  

Ronda N Varianza (ACP) ! Ronda N Varianza (ACP) ! 
1 38 62.5% 0.822 3 198 61.5% 0.908 
2 276 67.1% 0.917 4 226 69.0% 0.935 

 
La evaluación del instrumento de competencias de modelización se realizó en tres rondas de pruebas 
con muestras distintas de una universidad de más de 40,000 estudiantes en los EEUU: viabilidad, 
dificultad, y discriminación. Para diseñar el instrumento tomamos en cuenta cuatro restricciones: (1) 
los ítems parten de contextos auténticos y relevantes (por ejemplo, la desintegración radioactiva o un 
programa de reciclaje). (2) Los ítems evocan conocimientos de matemática, ciencia, ingeniería, y 
sentido común. (3) Los ítems abordan aspectos de las competencias. Por ejemplo, un ítem aborda la 
competencia de establecer la estructura que se requiere al utilizar la habilidad de identificar 
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cantidades importantes. (4) Los distractores son basados en las decisiones y justificaciones comunes 
al pensamiento de estudiantes actuales. Elaboramos 118 ítems de tipo selección múltiple (ISM) que 
pertenecen a 9 situaciones de la vida real elegido de materiales de cursos de matemáticas, física, 
biología, química e ingeniería. El contenido matemático incluye aritmética, álgebra, cálculo 
diferencial e integral y ecuaciones diferenciales. Por cada ítem, elaboramos una respuesta correcta y 
cuatro distractores que parecieran razonables a los estudiantes pero que no ayudaran a modelizar la 
situación. Para establecer la validez de contenido y la validez de los constructos, invitamos a revisar 
los ítems a dos investigadores matemáticos que se enfocan en la investigación de ecuaciones 
diferenciales y tres profesores universitarios de matemáticas que se especializan en realizar 
investigaciones sobre el aprender y enseñar la modelización. Aplicamos los cambios que sugirieron 
los expertos y eliminamos los ítems que resultaron no válidos. En la primera ronda, 14 estudiantes 
nos dieron su razonamiento para justificar sus elecciones. En el caso de que un estudiante eligiera un 
distractor y su razonamiento tuviera sentido, el ISM fue ajustado. Eliminamos los que no tenían 
sentido para los estudiantes. En la segunda ronda, 78 estudiantes contestaron 63 ISM en 2 versiones, 
equilibrando ítems de acuerdo a las distintas competencias de modelización. Por cada ISM, 
calculamos la dificultad media. La mayoría (76%) de los ISM tenían dificultad moderada 
(0.20<p<0.70). Eliminamos los ítems que eran demasiado fáciles (p>0.7) y restructuramos los ítems 
que fueron demasiado difíciles (p<0.20). Para analizar la eficacia de los distractores, calculamos la 
proporción de los estudiantes que eligieron cada opción. De los 253 distractores (62 ítems contaban 
con 4 distractores y 1 contaba con 5), El 5% de los participantes eligieron la mayoría de estos 
distractores. En 17 de los ítems, los distractores fueron elegidos más frecuentemente que las 
respuestas correctas. Estos fueron identificados de acuerdo con su potencial de discriminar entre 
estudiantes de distintas habilidades o como ítems que necesitaban ser reestructurados.   Después de 
reestructurar los ISM según el análisis de distractores, elegimos 30 ítems (2 versiones de 15 ítems). 
Las dos versiones se administraron a una muestra de ! = 314 voluntarios que participaron en el 
concurso SCUDEM, incluyendo ! = 135 que contestaron a la versión 1 y ! = 139 que contestaron a 
la versión 2. Por cada ISM, calculamos la dificultad media. La versión 1 obtuvo dificultad media 
de 0.359 (!" = 0.126), con 0.177 < ! < .0595. La versión 2 obtuvo dificultad media 
de 0.369 (!" = 0.129), con 0.147 < ! < 0.580. Cuatro ítems eran demasiado difíciles. Se realizó 
un análisis de detractores y concluimos que los distractores funcionaban adecuadamente. Para 
realizar el análisis de discriminación, usamos la correlación point-biserial (rPBIS por sus siglas en 
ingles). Un solo ítem de la versión 1 tenía rPBIS negativo. El resto tenían rPBIS > 0.20. Reportamos 
la estadística Revelle’s Omega Total (!! ) para estimar la consistencia interna. La selección fué 
apropiada en casos donde el instrumento era multidimensional y cuando múltiples dimensiones 
contribuían a predecir el constructo bajo investigación (Revelle & Zinbarg, 2009). Usando el paquete 
de software ‘userfriendlyscience‘ del programa !, obtenemos !! = 0.59 y  !! =  0.63 para la 
versión 1 y la versión 2, respectivamente. Las escalas se acercan al estimado tradicional 0.7. 

Discusión  
En este artículo, presentamos dos instrumentos de medición, uno de autoeficacia de modelización y 
uno de competencia de modelización. Así mismo, documentamos los procesos de construcción y 
diseño y las propiedades de ambos. Los instrumentos se alinean con las teorías de modelización y 
han pasado múltiples rondas de pruebas. Se planea emplear la Teoría de Repuesta al Ítems para 
componer versiones que sean paralelas para medir los cambios positivos de las competencias de 
modelización de los estudiantes con el propósito de evaluar programas educativos que se enfoquen 
en ensenar la modelización. Con esta información investigadores y docentes pueden mejorar las 
experiencias de modelización o proporcionar evidencia de su éxito. Estamos cautas pero optimistas 
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que los instrumentos alcancen este objetivo ya que la evidencia expuesta aquí sugiere que los 
instrumentos son confiables y válidos para su propósito. 
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GESTURE IN PROOF AND LOGICAL REASONING 
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Twelve doctoral students in mathematics took part in clinical interviews during which they were 
asked about their experiences with teaching, learning and doing proof. They were also asked to work 
together to find a proof for an unfamiliar conjecture. The students’ discourse, including gesture, was 
analysed from the perspective of embodied cognition. In particular, a potential continuity between 
mathematical and everyday discourse was investigated, with a particular focus on epistemic 
conditionals, that is, “if-then” statements.  

Keywords: Embodiment and Gesture; Reasoning and Proof; Advanced Mathematical Thinking; 
Cognition 

Objectives of Study 
In recent decades, researchers have investigated how the body in implicated in mathematical 

teaching and learning, challenging the paradigm that cognition is amodal and abstract, based solely 
“in the head.” In addition, attention to embodiment has broadened the focus within mathematics 
education research beyond written symbols, images, and oral speech to include modalities such as 
gesture and other bodily movements (Edwards, Ferrara, & Moore-Russo, 2014; Hall & Nemirovsky, 
2012). The purpose of this paper is to examine mathematical proof and logical reasoning from the 
perspective of embodied cognition (Edwards, 2011; Varela, Thompson, & Rosch, 1991), using data 
collected from clinical interviews with 12 doctoral students in mathematics. 

The analysis presented here is based on the principle of cognitive continuity; that is, the proposition 
that there are not multiple different kinds of thinking, even within a domain like mathematics, but 
rather all thought is ultimately founded in embodied, physical experience (Johnson, 2012; Lakoff, & 
Núñez, 2000; Varela, Thompson, & Rosch, 1991). The implication is that even with “advanced” 
mathematical thinking, like that involving proof and logic, connections can be made with more 
everyday kinds of thinking and basic human experiences. As Johnson states, "we do not have two 
kinds of logic, one for spatial-bodily concepts and a wholly different one for abstract concepts. There 
is no disembodied logic at all. Instead, we recruit body-based, image-schematic logic to perform 
abstract reasoning" (Johnson, 2012, p. 181). The research reported her aims to delineate one way in 
which elements within the abstract domain of mathematical proof are connected to similar ones in 
everyday discourse. 

Following Hanna (1990), we take proof to be: 
[A] finite sequence of sentences such that the first sentence is an axiom, each of the 
following sentences is either an axiom or has been derived from preceding sentences by 
applying rules of inference, and the last sentence is the one to be proved. (Hanna, 1990, p. 6) 

Although this definition is appropriate for the end product of a process of proving, we also frame 
proof and proving as a specialized type of discourse, built on simple logical elements and constrained 
by agreements on validity generated within the mathematical community. In the current research, the 
specific focus is on logical statements that take the form of “if-then” statements; these statements can 
be seen as the building blocks of proofs. The central research question is whether the physical 
gestures that accompany these “if-then” statements when talking about proof are similar to those 
accompanying “if-then” statements in non-mathematical contexts. If so, then this would provide 
support for the notion of cognitive continuity between these two contexts. 
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Theoretical Perspective 
The research was carried out utilizing the theoretical perspective of embodied cognition, making 

use of tools from cognitive linguistics and gesture studies. The theory of embodied cognition focuses 
on the bodily basis of thinking, that is, “on the ways in which complex adaptive behavior emerges 
from physical experience in biologically-constrained systems” (Núñez, Edwards, & Matos, 1999, p. 
49; see also Varela, Thompson, & Rosch, 1991). Here, we focus not on specific mathematical 
content, for example, algebra or analysis, but on the mechanisms used by mathematicians to test and 
establish logical truth. Under Johnson’s continuity principle, we propose that deductive proof and 
logic are constructed using the same basic conceptual building blocks as more mundane thought 
(Johnson, 2007).  

Within an embodied cognition framework, mathematics is not seen as a transcendental, formal 
collection of rules and patterns, unrelated to everyday thinking and experience, but instead, as a 
human intellectual product, one which develops both historically as a discipline over time, and 
ontologically as it is constructed by an individual learner. It is socially-constructed, but not in an 
arbitrary way, being both constrained and enabled by the biological capabilities and physical 
situatedness of human beings. Embodiment does not deny the influence of social interaction and 
culture; rather it grounds it in shared biological constants (Hall & Nemirovsky, 2012; Nuñéz, 
Edwards, & Matos, 1999). As stated by Hall and Nemirovsky (2012), “We think of concepts (in 
mathematics but also in other domains) as forms of modal engagement in which bodies incorporate 
and express culture” (p. 212). 
Prior Research on Proof 

Prior research has been fruitful in its examination of the learning and teaching of proof, whether 
addressing the understandings and misunderstandings of novices, productive instructional practices 
and tools, or the thinking of advanced mathematicians (a selection of recent work can be found in 
Lin, Hsieh, Hanna & deVilliers, 2009). The current research builds on this foundation, particularly in 
seeing proof as a form of socially constructed knowledge and a specific form of discourse (Balacheff, 
1991; Sfard, 2001). The current analysis adds the lens of embodiment and gesture studies in 
analyzing this discourse. 
Prior Research on Conditional Statements 

From the point of view of cognitive linguistics, mathematical or logical deductions (“if-then” 
statements) belong to a linguistic category known as conditionals (Dancygeir & Sweetser, 2005). 
Specifically, “if-then” statements represent the type called epistemic conditionals, because they 
reference a reasoning process, rather than a prediction or statement of fact. Two examples of 
epistemic conditionals are: “If the car is in the driveway, he must be home” and “If x is even, then 
x/2 is an integer” (p. 17). These kinds of conditionals involve what Danceygeir and Sweetser call a 
“metaphoric ‘compulsion’” (p. 20) in which the speaker is “forced” to draw the given conclusion, 
either based on inductive reasoning (“the car is almost always in the driveway when he is home”) or 
deductive logic (the mathematical definition of “even”).  An analysis of how this metaphoric 
“compulsion” is grounded in early embodied experiences, providing a physical basis for the later 
construction of the notion of proof, can be found in Edwards (2017, 2019). 

In addition to the linguistic analysis of explicit conditional statements by Danceygeir and Sweetser, 
recent research by Sweetser has examined gestures associated with spoken conditionals. In a study 
involving 402 video clips of talk shows, Sweetser and Smith (2015) found that conditionals were 
generally accompanied by a particular hand motion, specifically a movement along a transverse axis 
through gesture space, starting on the speaker’s left and moving toward the speaker’s right. The 
current analysis examined the gestures of mathematical doctoral students to see whether they also 
reflected this characteristic motion when orally stating epistemic conditionals.  If so, then this would 
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constitute evidence of the continuity between everyday uses of conditionals and their use in 
mathematical proof. 

Methods 
The research took the form of a qualitative study similar in format to a task-based clinical interview, 

recorded on audio and videotape. The participants, pairs of doctoral students in mathematics, were 
first interviewed about their specializations in mathematics, their experiences with teaching proof, 
and their ideas about whether there are different kinds of proofs. They were then presented with the 
conjecture below on a sheet of paper, and asked to work together to find a proof for it. 

Let f be a strictly increasing function from [0, 1] to [0, 1]. Prove that there exists a number a 
in the interval [0, 1] such that f(a)=a. 

They were given 40 minutes to try to find a proof, during which the researcher left the room so that 
the participants could work without feeling self-conscious about being observed. During the third 
part of the interview, the students were asked to evaluate a visual “proof.” The results presented here 
were drawn from the first part of the interview. 
Participants 

The participants were 12 doctoral students in mathematics, 9 men and 3 women, attending a 
research university in the United States. They were placed in pairs for the interviews based on their 
availability and schedules. They all knew each other as fellow students in the doctoral program, and 
two of the women, who worked together as a pair, were good friends. The time they had spent in the 
doctoral program ranged from less than a year to almost four years, and all had had experience in 
teaching undergraduate mathematics courses, although this experience did not involve much teaching 
of proof. 
Context 

The interviews took place in a small unused office with a blackboard at one end. The participants 
sat on chairs in front of the blackboard, facing the interviewer and the video camera. They were 
asked to use only the blackboard while working on the proof. 
Data Collection 

All sessions, lasting from 60 to 90 minutes each, were recorded on videotape and via digital audio, 
with the camera oriented to capture both the blackboard and the students as they sat or stood in front 
of it. A total of 6 hours and 55 minutes of video and audio were collected. 
Analysis 

The audiotapes were transcribed and annotated with brief notations of gestures as well as time spans 
of the use of different modalities by the participants. Specific segments of discourse containing 
gestures of interest were analyzed in more detail, utilizing the concurrent speech, written symbols, 
and drawn graphs to develop plausible interpretations consistent the context and with other research 
into gesture (Alibali, Boncoddo, & Hostetter, 2014; McNeill, 1992; Perrill & Sweetser, 2004). 

Results 
The analysis of the doctoral students’ gestures when making conditional statements did indeed 

reveal the presence of the same left-to-right transverse gesture previously identified in non-
mathematical contexts. Although the use of epistemic conditionals in speech was found throughout 
the video data, most instances occurred while the students were actively working on finding a proof; 
thus, their hands were often occupied with chalk or they were pointing to inscriptions on the board, 
meaning that “if-then” statements were often not accompanied by gestures. However, the transverse 
gesture did occur regularly in the data, approximately once in every ten instances in which an 
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epistemic conditional was uttered. This occurred primarily when the students were talking to the 
interviewer, explaining a proof.  

The example shown in Figure 1 illustrates three instances of this gesture form. In this example, the 
epistemic conditional that the student is expressing can be summarized as follows: “If you have a 
scalar function and a vector function, then the rule for finding their product is the same as the rule for 
finding the product of two scalar functions.” 

 

AC: Well, I guess, so, the 
other day they were 
trying to prove that, um, 
if you have some scalar 
function of T 

 
Int: Uh huh 
 
AC: ―and some vector 

function of T, 

 

 
Figure 1a 

 
Figure 1b 

Left hand starts in horizontal C-shape 
(“bracket”) facing upward on left side 
of body 
 
 
 
 
 
 
Left to right motion with left hand along 
transverse axis, ending in middle of 
body, with C-shape turning vertical 

Int: Uh huh 
 
AC: ―that the derivative of 

their product... 
 
 

Figure 1c 

 
Figure 1d 

Left to right motion with left hand along 
transverse axis, with left hand open and 
facing outwards. Left hand begins on 
left side of body and ends in middle of 
body. 
  
 

is the same...  Rapid left to right motion with left hand 
along transverse axis. Left hand starts in 
loose horizontal C-shape (“bracket”) 
facing upward on left side of body and 
ends in pointing gesture to the right.  
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Figure 1e 

 
Figure 1f 

 
 

AC: ...product rule 
essentially that you 
know from just, you  

 
Int: (talking over): Uh huh. 

 
Figure 1g 

 
Figure 1h 

A complex motion in which the left 
hand begins by pointing downward, 
then is moved in a circle twice around 
the right hand while saying “you know,” 
ending up open and facing the speaker  

AC: know from like scalar 
functions 

Figure 1i 

Left hand moves to right and finishes in 
horizontal C-shape (“bracket”) on left 
side of body.  
 
This is the same shape and location as 
when the phrase “scalar function” was 
initially uttered. 

Note: Underlined speech indicated the stroke or emphasized portion of the gesture 
Figure 1: Student’s discourse about scalar functions  
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The sequence of gestures accompanying the student’s speech is very rich, taking into account 
characteristics including hand shape and orientation, hand location, and movement of the hands 
through space. Consistent with other conditionals used in non-mathematical contexts, the sequence 
includes left-to-right motion along the transverse axis; in fact, this transverse motion occurs three 
different times, as shown in the pairs of figures above: 

• Figure 1a – b: A relatively small left-to-right motion of the left hand, as AC begins by saying, 
“If you have some scalar function of T and some vector function of T.”  This sequence also 
includes a change in orientation of the left hand; when holding it on the left, AC uses an 
upward-opening (horizontal) C-shape as if “bracketing” or “holding” a scalar function. As she 
moves her hand to the right, she rotates her wrist so that when she says, “vector function,” the 
C-shape is now vertical. She thus uses both hand shape and hand location to gesturally 
distinguish the two different kinds of functions. 

• Figure 1c – d: A wider left-to-right motion of the left hand, as AC says, “the derivative of their 
product.” In this case, the hand shape stays the same throughout, open and facing outward. 

• Figure 1e – f: After saying “derivative of their product,” AC pauses briefly, then makes a very 
rapid left-to-right motion of her left hand while saying, “is the same,” starting with a horizontal 
C-shape and ending with a right-facing point. 

As can be seen above, in addition to an overall left-to-right movement that occurs three times during 
the sequence, gestures are also used to mark or indicate specific mathematical objects, in a scheme 
that Calbris (2008) calls “two-entity opposition.” Two-entity opposition occurs when either two 
locations in space or the two hands are used to denote or “mark” two related but distinct entities. In 
Figure 1, this happens when AC uses a horizontal “bracket” held to her left when saying “scalar 
functions” and then a vertical bracket held to her right when saying “vector functions.” The terms 
“derivative” and “product” have the same hand shape but are marked by left and right hand locations, 
indicating two-entity opposition. 

The discourse segment ends with AC discussing a “product rule” while using an iterative circular 
gesture during a pause in speech. This pause and rhythmic circular gesture may indicate that the 
participant is searching for her next words (Lucero, Zaharchuk, & Casasanto, 2014). She compares 
this product rule to a presumably familiar rule for scalar functions. Interestingly, the final gesture of 
the sequence, associated with the words “scalar function” has an identical shape and location as the 
gesture used the first time the words were uttered. This is an example of using specific hand shapes 
and locations in gesture space to “hold” a referent in discourse (Calbris, 2008; McNeill, 1992). 

Discussion 
Calbris (2008) has stated that in gesture space, the transverse axis can represent logico-temporal 

concepts, such as cause and effect, or before and after: 
A path in space or time is depicted by a left-to-right movement. But give that body symmetry 
allows this axis to account for splitting in two as well as two-entity oppositions, it can be 
used to oppose past and future, or precedence and successor, by locating the past on the left 
side and the future on the right side. (Calbris, 2008, p. 43) 

In the current case, and in the research by Sweetser and Smith (2015), the transverse axis is used to 
indicate the premise followed by the conclusion of a conditional “if-then” statement. 

The transverse axis of the body has been also called “the axis of reading and writing, pointing to the 
right in the Western world” (Calbris, 2008, p. 28). In this case, the motion of AC’s gestures is 
consistent both with the placement of the “cause” (premise) on the left and the “effect” (conclusion) 
on the right, as well as the left-to-right order in which premise and conclusion are generally written 
in English. In the example given above, the left-to-right motion along the transverse axis is thus 
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consistent both with how “if-then” statements are written in English, and with prior research and 
theory identifying this gestural motion with logical and conditional statements. 

Taken in conjunction with related research (Edwards, 2010, 2011, 2017), we would argue that the 
examples above provide further evidence that proof and its building blocks, statements of logical 
deduction, are not abstract elements of disembodied rationality. Instead, we argue, these 
sophisticated forms of discourse make use of metaphorical mappings related to motion, and are 
supported by conceptual metaphors grounded in physical experiences.  

Mathematical proof is thus seen as a specialized cultural product and a specific form of discourse, 
with particular constraints that distinguish it from everyday speech and make it more powerful for the 
purpose of exploring structure and patterns. Yet the form that this discourse takes is not arbitrary, but 
rather is grounded in embodied human experience. As shown above, there exists a continuity 
between the gestural grounding for the logical conditionals used in proof and those used in non-
mathematical contexts. This kind of analysis is relevant to mathematics education because the 
conceptual sources that students draw from in constructing new mathematical knowledge may not 
correspond to the more sophisticated intra-mathematical sources that their instructors use (c.f., 
Núñez, Edwards & Matos, 1999). For example, students who are beginning to learn about formal 
logic often “import” expectations about conditionals from everyday speech, assuming that “if A, then 
B” implies “if not A, then not B” (Evans, Newstead, & Byrne, 1993). A better understanding of the 
cognitive roots of mathematical thinking may help in designing corrective instruction in such 
situations. 
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In this theoretical report we focus on the issue of communicating learning trajectories (LTs) to 
researchers. There is great variation in the body of work on LTs including how researchers 
communicate what a LT entails, and the kinds of metaphors employed for making meaning of LTs. 
We elaborate possible affordances and limitations of different metaphors for LTs including “a 
garden path” and “growing flowers.” This work has implications for how LTs are taken up by 
researchers, and also how LTs are leveraged to inform student-centered teaching practices.  

Keywords: Learning Trajectories, Metaphors, Representations and Visualization 

Learning trajectories are theoretical tools that elaborate transitions in students’ processes of learning 
and goal-directed instructional supports. As a construct, learning trajectories can guide the design and 
study of teaching and learning by establishing predictions of how teaching and learning will unfold in 
tandem. Imagining, testing, and analyzing learning trajectories is core to the work of some design-
based researchers, as are inquiries into how students learn mathematical ideas in response to 
instructional supports. Despite the integral nature of learning trajectories to some design-based 
research, the work of communicating such complex tools is challenging. Indeed, the domain of 
research on learning trajectories has grown and diversified in the approaches and theoretical 
orientations researchers take (e.g., see reviews by Empson, 2011; Lobato & Walters, 2017; and 
Fonger, Stephens et al. 2018).  

This variation in theoretical orientation parallels what Simon (2009) articulated as a growth in the 
variety of theories of learning (and we might add, local instructional theories) being employed and 
developed in the field of mathematics education writ large. Amidst this growth, Simon recounts 
several challenges, including the need for researchers to engage in ongoing conversations to make 
theoretical choices transparent. In response to this challenge, we shed light on the practice of evoking 
visual metaphors for learning trajectories by considering the variation in both what learning 
trajectories communicate and how they are communicated in the research community. 

Background and Major Issue 
Variation in Learning Trajectories Research 

One common definition for the construct of a learning trajectory (LT) is that it is a conceptual tool 
that links goals, instructional activities, and processes of students’ learning (Simon, 1995). Learning 
trajectories vary widely in how they may (or may not) give evidence of students’ mathematics with 
linked descriptions of the mathematical goals, learning activities, and/or the teacher moves that may 
engender such ways of understanding (cf. Lobato & Walters, 2017). As Empson (2011) elaborates, 
there has been a tendency for research reports in mathematics education to separate descriptions of 
learners’ conceptions as evidenced on specific mathematical tasks, from the contexts, teaching, and 
tools, that might have engendered such learning (e.g., Steffe & Olive, 2010; Clements & Sarama, 
2009). This focus on articulating students’ conceptual trajectories on sets of tasks is a general trend in 
mathematics education research. Consider, for example, Hackenberg’s (2014) research that details 
three epistemic algebra students’ learning trajectories of fraction schemes and operations. In 
introducing these LTs, Hackenberg describes some ideas as to how the interviewer’s questioning 
may have incited particular shifts in the students’ reasoning on particular tasks. However, she 
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acknowledges that many open questions remain regarding the role of instructional support in such 
shifts in students’ learning processes.  

Despite this apparent trend in how LT are taken up, not all LTs are communicated with this same 
orientation and emphasis. Some LTs more explicitly attend to things like teacher moves or other 
contextual features influencing student learning as a way to developing local instructional theory. 
Stephan and Akyuz’s (2012) research, for example, leverages LTs as a tool to build an instructional 
theory. In their approach, instructional supports for students’ understanding of addition and 
subtraction included classroom mathematical practices as engendered through tools, gestures, 
imagery, and taken as shared activities. 
Evoking Metaphors as a Tool for Communicating Learning Trajectories Research 

The challenge of conveying the simultaneity of change in students’ learning and goal-directed 
instructional supports (as we believe learning trajectories as a research construct are primed to 
engender) may be a challenge of conceptual metaphor and related figural representations. Metaphors 
are essential to theory building and scientific inquiry (cf. Sfard, 1998). “Because metaphors bring 
with them certain well-defined expectations as to the possible features or target concepts, the choice 
of metaphor is a highly consequential decision. Different metaphors may lead to different ways of 
thinking and to different activities. We may say, therefore, that we live by the metaphors we use” 
(ibid., p. 5). Taking learning trajectories as the ‘target concept’ of our inquiry and theory building, we 
seek to understand the issue of communicating learning trajectories through an examination of the 
metaphors and meanings people make of them. 

Different learning trajectories represent different things. Hence it is not always clear what types of 
information a particular learning trajectory might offer. Given this challenge, our inquiry into 
learning trajectories research is guided by the question of “What metaphors do researchers leverage 
in communicating learning trajectories?” We hypothesize that there is close link between what is 
communicated as a learning trajectory, and the conceptual and/or visual metaphor evoked in 
research. 

Visual Metaphors for Learning Trajectories 
Learning Trajectories Are Like “A Garden Path” 

Sarama (2018) evoked the metaphor of a “garden path” to conceptualize learning trajectories, in 
which there are stepping stones that act as a developmental path to lead students through a gate—the 
goal state. From this view, learning trajectories must be interpreted by teachers and realized through 
social interaction around mathematical tasks. Indeed, the tight coupling of developmental 
progressions in children’s thinking and sequences of tasks is evident in Sarama’s research program 
(e.g., Clements & Sarama, 2014). Yet notice in Figure 1a, how the teacher, social interaction, and 
instructional activities are absent from the visual metaphor itself. Relatedly, Battista (2004) evoked 
the metaphor of “levels of sophistication plateaus” to characterize the “cognitive terrain” of learning 
processes for a learning trajectory (p. 186-187). In Battista’s (2011) research, the sequence of tasks 
and ordered levels of sophistication in students’ understanding are central to both what is conveyed 
in a learning trajectory and how it is communicated. Figure 1b offers a visual depiction of Battista’s 
metaphor of “plateaus” of levels of understanding, which are complemented by narrative descriptions 
of related task type and instruction in his research. 



Making meaning of learning trajectories amidst multiple metaphors 
 

	 2327	

               
(a)                                                                (b) 

Figure 1. A visual depiction of (a) Sarama’s (2018) “garden path” metaphor and (b) Battista’s 
(2004) “levels of sophistication plateaus” metaphor for a learning trajectory. 

 
It is notable that the aforementioned visual metaphors (garden path and plateaus, cf. Figure 1) evoke 

a sense of capturing the shifts or changes in how students understand mathematical ideas as measured 
by student outcomes on mathematical tasks. In these “conceptual trajectories” (cf. Empson, 2011), 
the role of instructional supports is not necessarily captured in the metaphor itself. Said otherwise, 
these approaches to learning trajectories afford great insight into the nature of students’ conceptions 
and mathematical reasoning that are possible given certain task situations, with possible descriptive 
connections to instructional supports. However, the nature, character, and nuances of the 
instructional intervention, teacher-student relationships, time, and place, are often masked in the 
levels and path metaphors for learning trajectories. As a field, advancing understanding of student 
cognition and related curricular supports (e.g., sequences of task progressions) remain important, 
valued research agendas. Indeed, recent research has indicated that teacher’s knowledge of students 
is an important predictor for improving student learning outcomes (Hill and Chen, 2018). However, 
learning and instruction are complex inter-related processes, with learning as a function of teaching 
(cf. Empson, 2011). If a goal of learning trajectories research is to convey a progression from lesser 
to greater sophistication in students’ mathematical learning processes toward desired goal states, 
these metaphors provide little guidance for how instruction might engender change in students’ 
learning that goes beyond a coupling of knowledge of students and related mathematical tasks. 
Learning Trajectories Are Like “Growing a Garden” 

In some of our own work on learning trajectories (Ellis et al., 2016; Fonger, Ellis, & Dogan, 2019; 
Fonger, Ellis, & Dogan, forthcoming), we frame learning trajectories as a networked relationship 
between transitions in students’ ways of thinking and related instructional supports. In Figure 2a we 
offer a visual depiction of how students’ mathematics (their ways of thinking and ways of 
understanding, ala Harel, 2014), transitions together with instructional supports (tasks, teacher 
moves, and norms) as guided by goal-directed activity (arrow). In our work, this conceptualization of 
learning trajectories was supported by evoking the metaphor of “growing a garden.” Depicted in 
Figure 2b, the growing a garden metaphor captures the complex interplays between how a plant 
grows in response to environmental conditions such as soil, sun, and water. Evoking this metaphor 
for a learning trajectory accounts for changes in students’ conceptions of mathematical ideas (i.e., the 
growth of a flower) together with the nature of instructional supports including but not limited to 
teacher moves, task design features, norms, student discourse, and student activity with artifacts and 
tools (i.e., the environmental conditions).  

With these depictions, we intend to capture a more nuanced model of both what change in students’ 
conceptions might look like, and how the learning environment (of which tasks are just one part) 
supported such change. We argue for treating learning trajectories as more than “just a bunch of 
flowers;” learning trajectories convey the transitions in the growth of the flower in relation to the 
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supporting environment that evoked such change. This interpretation of a growing garden metaphor 
seems well-aligned to other research on learning trajectories (e.g., Stephan & Akyuz, 2012) that 
communicates the complexity of the interplay between the teaching and learning. 

     
                             (a)                                                                           (b) 

Figure 2. Visualized Metaphors for Learning Trajectories as (a) a “growing garden”, (b) 
Accentuating Transitions in Students’ Mathematics and Instructional Supports 

Discussion and Conclusion 
To address the issue of what and how learning trajectories are communicated, we leveraged visual 

metaphors as a tool to make sense of two different approaches to learning trajectories research. In 
some approaches, learning trajectories are conceptualized as “a garden path”, or “levels” wherein 
processes of students’ learning and/or development as conceptual trajectories is foregrounded. Said 
otherwise, in a “garden path,” characterizations of students’ conceptual trajectories on sequenced sets 
of tasks is prominent. In another approach, learning trajectories are conceptualized as an interactive 
system of “growing a garden” wherein representations of goal-directed learning and instructional 
supports are taken together.  

We invite conversation about the metaphors evoked in learning trajectories research as a way to 
address the issue of both what and how learning trajectories are communicated. We see a great need 
and opportunity to enrich the body of literature on learning trajectories (and learning progressions). 
In this report we argue that the use of interdisciplinary visual metaphors are productive for studying 
and representing learning trajectories. By articulating the metaphor(s) that guide our research, the 
products of learning trajectories research can become more explicit expressions of our theoretical 
assumptions about learning and teaching. Moreover, for researchers and practitioners concerned with 
learning trajectory based instruction (cf. Stzajn, Confrey, Wilson, Edgington, 2012), we hypothesize 
that by making theories of teaching (e.g., local instructional theory) more explicit in our 
communication of metaphors for learning trajectories, the field might improve the potential for 
learning trajectories to inform practice. 

In close, by attending more seriously to the metaphors researchers evoke to communicate learning 
trajectories, the affordances and constraints of different approaches to learning trajectories becomes 
clearer. We intend for such elaborations to support the knitting together of a tapestry of research on 
learning trajectories that does not pit one approach against another, but that instead pushes for greater 
specification in the power of learning trajectories to advance research and inform practice as 
theoretical tools for research. 
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This theoretical discussion provides insight into an intersect of the mathematics education, cognitive 
psychology, and special education fields. To examine this intersect, the authors focus on how 
students identified with a learning disability develop actions on material when constructing and 
coordinating units. This theoretical frame considers results from several case studies in special 
education and cognitive learning fields, focusing on young students’ number development, set in 
their subitizing activity and units construction/coordination. These results provide context and 
illustrate critical importance to their actions in light of neural differences and differences in their 
rate of development for future number and operation construction.  

Keywords: Learning Theory; Number Concepts and Operations; Special Education; Cognition 

Before children construct arithmetic units, they construct pre-numerical units, evident through a 
reliance on external representations, such as touching items while counting aloud or flashing four 
fingers sequentially or with manipulatives in patterned spatial arrangements (MacDonald & Wilkins, 
2019). Children construct and reflect on their pre-numerical units to form internal or arithmetic units 
(Steffe & Cobb, 1988). To internalize units, children would need to step away from a reliance on 
perceptual material towards material that can stand in for the perceptual units they have constructed. 
These new pre-numerical units are described as figurative units and evidenced with fingers or 
counting words. Steffe (2017) estimated that about 40% of first graders do not yet use figurative units 
when counting and unitizing; this population remains at about 5-8% by third grade. By remaining 
reliant upon perceptual units, children are not yet able to develop mental operations grounded in their 
conceptual understandings. These same students are sometimes also identified as having a 
mathematics learning disability (LD) (Butterworth, 2011). Clements et al. (2013) explain that many 
children evidence precursors for an LD but are not yet identified, preventing them from receiving 
targeted mathematics interventions.   

To consider how interventions could best be designed, we need to begin leveraging information 
pertaining to how young children construct pre-numerical units instead of focusing on deficits 
students with LD evidence (Butterworth, 2011). The purpose of this theoretical commentary is to 
shift from a deficit model towards a progressive model. In particular, we discuss students’ actions 
and their possible progressions when subitizing (a quick apprehension of the numerosity of a small 
set of items - Kaufman, Lord, Reese, & Volkmann, 1949) and constructing units to determine how 
students’ actions with visual patterns can best support early mathematics development. This, the aim 
of this theoretical commentary is to examine aspects of number abstraction processes through 
students’ subitizing activity and/or units construction/coordination.  

Theoretical Framework 
To frame this theoretical commentary and consider this aim in the context of special education and 

mathematics education, we draw broadly from an intersection of cognition and learning and radical 
constructivist paradigms. In particular, we consider concepts that inform these paradigms: executive 
functioning (Clements & Sarama, 2019) and units construction and coordination (Norton & Boyce, 
2015).  
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Executive Functioning 
Executive functioning is evidenced through several processes that young children develop 

throughout their early childhood years (birth to third grade) (Clements & Sarama, 2019). These 
processes assist children in their ability to self-regulate their learning of mathematics and have been 
found to positively correlate with children’s mathematics achievement (e.g., Best et al., 2011; 
Clements et al., 2016; Viterbori et al., 2015). In this commentary, we focus on attentional shifting 
and updating working memory.  

Attentional shifting can explain mathematics strategy development through use of attentional 
mechanisms (Clements & Sarama, 2019). Attentional shifting is when children are able to shift their 
attention from perceived material to new perceptual material when developing problem solving 
strategies. This is evident when young children conceptually subitize (relying on conceptual 
processes when subitizing). For example, when a four-year-old child is shown five items arranged in 
a patterned spatial arrangement typical to the face of a die, MacDonald and colleagues (2016; 2019; 
under review) found children typically subitize two sets of two and one set of one. To segment and 
unitize, students would need to subitize two and associate this with a verbal word for two. By their 
attentional shifting between twos and ones, while attending to new information (what warrants 
attention) and not to other visual material (distractors), children are developing additive strategies 
(Clements & Sarama, 2019). Many students with LD experience attention differences compared to 
their peers that contribute to differences when learning mathematics.  

When an individual manipulates and maintains information relevant for problem solving, Clements 
et al. (2013) explain this characterizes students’ ability to update their working memory. Children 
engage in this when given multi-step problems, which require their working memory to be engaged 
and then updated with additional information. For example, when a five-year-old child is shown five 
items arranged in the same orientation described earlier, and then two additional items are added to 
this spatial arrangement, this child would be required to hold on to the five items while adding two 
additional items (possibly combining subitizing and counting). If a child considers the set of five 
items in isolation to the adding of two items, this child may struggle to construct units for these 
items, resulting in a counting all strategy. Students with LD struggle with some of these executive 
functions, pressing them to learn “tricks” grounded in procedural knowledge as they realize their 
peers are developing more sophisticated strategies for number and operation tasks (Hunt et al., 2019; 
see also Hunt & Silva, 2020).  
Units Construction and Coordination 

Units coordination and construction refers to the number of levels and type of units children can 
construct and bring into a situation (Norton & Boyce, 2015). Prior to units coordination, children use 
counting to construct pre-numerical units in their activity. For instance, children first rely on 
manipulatives (perceptual units) to construct a pre-numerical unit and determine the total amount 
through their counting activity. When pressed to step away from the perceptual units, children 
construct pre-numerical units with finger patterns (figurative units), pointing/tapping (motor units), 
and/or number words (verbal units) (Steffe & Cobb, 1988). Progressions from perceptual units 
towards verbal units provide evidence of children transitioning towards internalized actions 
(imagined external activity). When children interiorize units, these units are considered arithmetic 
units and allows children to operationalize number through their coordination of units (e.g., five is 
three away from two). 

MacDonald and Wilkins (2019) found that one preschool student’s subitizing related to her pre-
numerical units construction. When developing conceptual processes to assist in her subitizing (e.g., 
two, two, and one is five; two and three is five), this preschool student constructed perceptual units 
and then figurative units to evidence her reasoning. Moreover, this student’s units were represented 
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with parallel actions (e.g., picking up two manipulatives simultaneously, flashing three fingers). 
Thus, counting and subitizing activity has been found to inform students of conceptual material that 
promotes their pre-numerical units construction.  

The Intersect of Special Education, Subitizing, and Executive Functioning 
Butterworth (2011) found students with LD encode numerosity information differently when 

subitizing compared to their normal achieving peers. In particular, Butterworth draws from decades 
of research to explain how young children typically develop numerosity codes, where individuals use 
a particular region of their brain to process sets of items over time and space. Fundamental to number 
understanding, numerosity codes have been found to evidence deficits in students identified with a 
LD and explains different types of subitizing activity (Butterworth, 2011). Butterworth explains that 
this neural difference fundamentally explains why students with LD rely mainly on rudimentary 
reasoning and strategy development with number (see also Hunt & Silva, 2020).  

Hunt et al. (2016) compared findings from clinical interviews involving 21 upper elementary age 
students with LD with 23 students identified with a mathematics difficulty. Findings evidenced 
nuances to students with LD’s partitioning (partitioning with no regard to equal parts, partitioning 
with regard to “halves”, partitioning with regard to equal parts). When comparing students with LD 
to students with mathematics difficulties, Hunt et al. (2016) found that 30% of students with LD were 
able to partition with no regard to equal parts (10%) or with regard to “halves” (20%). 
Comparatively, students with mathematics difficulties did not rely on such rudimentary partitioning 
activity. Moreover, 70% of students with LD and 100% of students with mathematics difficulties 
partitioned with regard to equal parts. These differences suggest some students with LD partition in a 
very similar way to students experiencing mathematics difficulties, but may be developing their 
partitioning at a different rate than their peers. These different types of partitioning may also explain 
working memory differences that students with LD experience when given other tasks that do not 
provide external representations when working with complicated mathematics concepts. If a student 
with LD has not yet begun partitioning with equal parts, then solving symbolic fraction tasks may be 
too much for their working memory to manage. For instance, when solving tasks that only represent 
fractions as symbols, students may need to consider each symbol as a separate item (e.g., ¾ is 
considered as a 3 and a 4).  

Given these different rates of development, students with LD may evidence seemingly puzzling 
ways of reasoning that, from a developmental and psychological stance, actually makes sense.  For 
example, Hunt et al. (2019) found that one third grade student, Gina, relied only upon ways of 
solving number problems using procedures that she could not explain or make sense of.  
Interestingly, Gina was not perturbed when differences between her procedural number knowledge 
and physical actions did not align. Yet, when given novel rational number tasks for which she had no 
procedures for, Gina more readily connected her conceptual knowledge with her actions. Hunt et al. 
(2019) argued that students with LD are able to develop the same conceptual knowledge as their 
normal achieving peers, but may be doing so at a different rate. This is important because noticing 
differences between procedures and physical actions would not be a goal for Gina if  procedures 
were not yet connected in her long-term memory and would make connections back to conceptual 
understanding difficult.  

Conversely, another student, Stu, (Hunt et al., 2016) was also able to anticipate which strategies to 
use because he was engaged in a platform that supported him to successfully develop equi-
partitioning (mental segmenting to form equal parts). In fact, he developed anticipatory types of 
strategies that allowed him to utilize mental actions so he was not dependent on his physical 
actions/material to solve problems. Opportunities to develop and abstract the actions that bring about 
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number and rational number affords students with LD opportunities to access tasks that only 
represent number through symbols.   

When considering how these differences evidence themselves in students’ subitizing activity, we 
consider findings from Koontz and Berch (1996) who found elementary age students with LD had 
significantly slower response times when matching small (two and three) dot arrangements to 
number words. These findings suggest that young children with LD struggle to update their working 
memory because items were not processed in a parallel manner and these children struggled to inhibit 
distracting visual information. When considering this in relation to shifting attention it seemed young 
children were not yet able to inhibit distracting perceptual material and then shift their attention to 
primary perceptual material.  

Finally, MacDonald et al.’s (under review) findings echo some of these findings, as one first-grade 
student, Diego, relies mainly on his unitization and iteration actions when solving subitizing and 
units construction tasks. Findings further indicate that Diego relies heavily on perceptually clustered 
items when unitizing and not yet able to construct figurative units. These findings also echo 
Butterworth’s (2011) discussion, as he describes an unfinished amount of research examining 
relationships between students with LD’s use of fingers and their numerosity code development.  

Conclusion 
To date, the research base remains an unfinished work when considering if and/or how students 

with mathematics difficulties develop separate, or different, understandings of part whole and what 
features of their diverse cognitive backgrounds (e.g., working memory or attentional processes) 
might interact with development (e.g., Hunt et al., 2016; Hunt et al., 2019a, 2019b; Hunt & Silva, 
2020; Lewis, 2014; Lewis, 2017). In the absence of a convergence of evidence in the research 
literature, present research efforts document elements of students’ diverse cognitive background 
thought to interplay with children’s mathematical learning from an early point in their lives 
(Compton, Fuchs, Fuchs, Lambert, & Hamlett, 2012). These factors are then used in a predictive 
sense to explain “learning difference” as variations in certain norms that predict performance over 
time (Vukovic, 2012).  

These findings suggest that students with LD are constructing and coordinating units with  
partitioning/segmenting activity at a different rate than other students. In fact, we wonder if these 
different rates of development relate to differences in their development of parallel processing 
activity, attentional mechanisms, and/or working memory resources. These developmental 
differences might evidence themselves in their subitizing activity and prevent them access to 
particular tasks in their early childhood years. To consider these differences more closely, we need to 
begin adopting new questions and theoretical perspectives, which allow us to work with intersections 
of mathematics education, special education, and cognitive psychology. Moreover, we need to 
consider how early actions students construct can explain these differences and inform intervention 
design that aligns with a wide variety of elementary age students’ mathematics development.  
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This theoretical commentary examines theory driven discussions in Science, Technology, 
Engineering, and Mathematics (STEM) fields and mathematics fields. Through this examination, the 
authors articulate particular parallels between spatial encoding strategy theory and units 
coordination theory. Finally, these parallel are considering pragmatically in the Elementary STEM 
Teaching Integrating Textiles and Computing Holistically (ESTITCH) curriculum where STEM and 
social studies topics are explored by elementary students. This commentary concludes with questions 
and particular directions our mathematics education field can progress when integrating 
mathematics in STEM fields. 
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Studies 

Computational thinking (CT) has recently been making a larger presence in elementary classrooms, 
yet it is still not yet clear how CT relates to young children’s mathematical reasoning or even how it 
can be defined. Feldon (2019) explains “computational thinking has been characterized as a 
foundational competency, akin to reading and arithmetic” (p. 1).  Given this characterization, the 
instructional technology field has yet to define CT (Feldon, 2019; Grover & Pea, 2013, 2018). 
Margulieux (2019) examined findings that suggest relationships between students’ spatial reasoning 
and their Science, Technology, Engineering, and Mathematics (STEM) achievement when outlining 
particular theories that explain CT achievement. Pragmatic delineation of CT in the K-12 standards 
of the Computer Science Teachers Association (CTSA Task Force, 2011, p. 10) broadly characterize 
CT as a “problem-solving methodology” that draws from reasoning present in mathematics 
education, such as “abstraction, recursion, and iteration.” These learning constructs and types of 
reasoning echo K-12 mathematics reasoning, effective mathematics practices, and mathematics 
learning objectives. Thus, the purpose of this brief research report is to consider theoretically how 
CT reasoning (framed through spatial reasoning) relates to mathematics reasoning (framed through 
units construction and coordination).  

To frame this theoretical commentary, we first draw from spatial encoding strategy theory to 
explain how students’ engagement with visual and mental representations may explain CT 
achievement. Second, we draw from the units coordination learning theory to determine how young 
children may be drawing from mathematics reasoning in elementary grade levels. From this 
theoretical framing, we consider particular parallels between these theories to determine multifaceted 
mathematics reasoning, as integrated in CT activities.  Through an integrated STEM-driven 
curriculum grounded in social studies, titled, Elementary STEM Teaching Integrating Textiles and 
Computing Holistically (ESTITCH) (Hawkman et al., under review), we frame the pragmatic aspects 
of these integrated activities, and we delineate parallels between particular CT and mathematics 
reasoning, objectives, and practices. Moreover, we include social studies topics to determine how 
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social artifacts leverage CT and mathematics engagement and what is gained with such an 
interdisciplinary instructional approach.  

Theoretical Framework 
This theoretical discussion is set in an emergent perspective paradigm (Cobb & Yackel, 1996), 

meaning we examine individuals’ construction of mental objects and actions before considering the 
meaning gained through their engagement with social artifacts. Therefore, we begin by articulating 
theories framed with cognition learning science paradigms (Attkinson & Shiffrin, 1971; Baddeley, 
1994; Clements & Sarama, 2019) and radical constructivist paradigms (Glasersfeld, 1995; Norton & 
Boyce, 2015), before drawing on this emergent perspective (Cobb & Yackel, 1996) within the 
context of STEM curricula. This framework begins by discussing spatial encoding strategy theory 
(cognition learning paradigm) before drawing from units construction and coordination learning 
theory (radical constructivist paradigm).   
Spatial Encoding Strategy Theory 

Through a review of the literature and drawing specifically from Parkinson and Cutts’ (2018) 
findings, Margulieux (2019) proposed a spatial encoding strategy theory to explain the cognitive 
mechanisms related to individuals’ spatial skills and STEM achievement.  Margulieux explains that 
both the encoding of mental representations and the identification of landmarks (non-verbal 
representations) help individuals develop strategies and spatial skills (e.g., orientation, relations, and 
visualization).  Encoding (making sense of) mental representations is best characterized in the 
cognition learning sciences where (1) individuals “chunk” information to act on in their working 
memory (limited memory capacity – Baddeley, 1994) and (2) individuals draw from attentional 
mechanisms (a component of executive functioning processes – Clements & Sarama, 2019) to 
determine what feature of a representation warrants attention (Attkinson & Shiffrin, 1971). For 
instance, when young children are asked to use text or symbols to solve problems in STEM fields 
(e.g., develop a code to move a LEGO® robot), they would need to map their anticipated results to a 
mental model that they can manipulate (Parkinson & Cutts, 2018). Prior to this experience, we argue 
young children would need physical experiences to form this model.  

Moreover, Margulieux (2019) proposes individuals’ mental representation construction partially 
depends upon individuals’ development of non-verbal representations. For instance, when 
individuals chunk encoded information of mental representations, they are required to determine 
critical features and relationships of non-verbal representations (Margulieux, 2019). Thus, for 
individuals to encode mental representations successfully, they need to engage with/construct non-
verbal representations that form these mental models.  
Units Construction and Coordination Theory 

Units coordination and construction refers to the number of levels and type of units children can 
construct and bring into a situation (Norton & Boyce, 2015). We utilize units construction and 
coordination learning theories to frame students’ actions and establish transitions from their 
construction of pre-numerical units (physical material representing number) towards arithmetic units 
coordination. Children begin counting when first constructing pre-numerical units with which to use 
as material for future activity (Steffe & Cobb, 1988). These units are first constructed through 
children’s external activity before becoming internalized (imagined activity) and then interiorized 
(automaticity).  

To transition from pre-numerical units construction to arithmetic units coordination, children 
engage in one of four actions: unitizing, partitioning, iterating, and disembedding. Once students can 
count on they are next able to unitize (taking an item, or collection of items, as a whole unit that can 
be further acted upon) and iterate (making copies of a unit) units to construct number sequences (1, 
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2, 3, 4, 5, 6 …) (Norton, 2016; Steffe & Cobb, 1988). Once number sequences are constructed, 
students are able to partition (break into equally sized parts) these number sequences with which to 
count on from (Norton, 2016; Steffe & Cobb, 1988). To coordinate two levels of units, students 
would need to both iterate and partition (reversible actions), but would not yet be able to use them 
simultaneously (Norton, 2016). For instance, through counting, students could unitize two composite 
units (e.g., 3 and 12) where there are able to iterate three in a “count by” sequence (e.g., three, six, 
nine, twelve).  

Once students coordinate all three levels of units and are able to do so in an anticipatory manner, 
they compose reversible actions and develop what Piaget (1970) described as logico-mathematical 
actions (operations). These operations allow students to construct number as a mental object with 
which to disembed a whole into parts while remaining cognizant of the whole (i.e., 12 is understood 
as 4 sets of 3) (Norton, 2016; Steffe & Cobb, 1988). 

The CTSA (2011) articulate objectives grounded in some of these actions “abstraction, recursion, 
and iteration” (p. 10). For instance, as children iterate units, they construct sequences and are more 
readily able to abstract these sequences. Moreover, through children’s composition of reversible 
actions (e.g., iterating and partitioning), they are able to recursively make sense of activity in STEM 
fields, providing them strategy development for future success.  

Intersection of CT and Mathematics Reasoning within Social Studies Activities 
Much of the mathematics education literature (Sarama & Clements, 2009) has found relationships 

between young children’s spatial reasoning and mathematics development. By considering 
Margulieux’s (2019) spatial encoding strategy theory, we argue that children’s “chunking” of 
features from representations occurs in CT and in mathematics activities. By setting these activities 
in Social Studies, we posit children are using social artifacts to determine what warrants attention, 
which provides culturally responsive learning opportunities. Thus, we first consider parallels between 
one of the two CT learning objectives (see table 1) before considering how these might evidence 
themselves in the ESTITCH curriculum where integration of social studies and STEM provide 
meaning to students’ units coordination.  

In table 1, we outline relationships between two CT learning objectives and how they relate to 
corresponding elementary mathematics objectives and practices. For instance, when considering 
children’s ability to decompose systems of computational thinking tasks, we propose their reasoning 
would be similar when they apply properties of operations, generate patterns, and evaluate 
expressions. To meet both sets of objectives, we posit they would need reason abstractly and attend 
to precision. In particular, students would be required to have two or three levels of interiorized units 
(dependent on type of operation) and would be required to determine critical features of a visual 
representation that relates to the goal of the task.  

On day five, part 2 in the ESTITCH curriculum, students use stories centered on immigration, 
migration, and forced relocation to determine what landmarks are present in their own histories and 
how might they be used to form a timeline. Through their timeline development, they create circuits 
coded to represent these landmarks and proportional length/time to represent relationships between 
these landmark events. Through these activities, students are representing time and length in a scaled 
model, which presses them to generalize particular patterns abstractly and attend to precision of these 
events. Moreover, students are constructing units based on features of cultural artifacts they value to 
coordinate in a linear format. These integrated activities are powerful because they draw from 
cultural artifacts that children can connect to their mental representations of experiences and 
development of relationships between units that form these relationships.  
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Table 1: Intersection of Computational Thinking, Mathematics Standards and Mathematical 
Practices 

Computational Thinking Operations and Algebra Mathematical Practices 
Decomposition: Break 
down a task into minute 
details.  
 

Apply properties of operations as strategies to 
multiply and divide (3.OA.B.5). 
Generate a pattern that follows a given rule. 
Identify features of the pattern not explicit in 
the rule itself (4.OA.C.5). 

Reason abstractly and 
quantitatively (MP2) 
 
Attend to precision 
(MP6). 

Pattern Generalization and 
Abstraction: Filter out 
information to solve a 
certain type of problem 
and generalize 
information. 

Identify arithmetic patterns and explain them 
using properties of operations (3.OA.D.9).  
Write simple expressions, and interpret 
numerical expressions. Analyze patterns and 
relationships (5.OA.A.2). 

Look for and make use of 
structure (MP7). 
 
Use appropriate tools 
strategically (MP5). 

 
To emphasize the mathematics in this unit of study, an educator could have students construct 

visual models of decimals to represent time in such a proportional manner. For instance, if ten meter 
sticks represented one whole unit (one second), students could explore proportional relationships 
with smaller portions of a second with base-ten blocks (one centimeter in length) to explore coding 
with milliseconds. This type of precursor activity allows students opportunities to develop 
proportional relationships with physical models before requiring them to draw from mental models of 
the same relationships (MacDonald et al., 2018).  

Conclusion 
By considering the intersection of students’ reasoning associated with STEM and mathematics 

fields, we are more able to emphasize mathematical reasoning in curricula development while 
utilizing theories that focus on students’ mathematics reasoning. Moreover, as theory and associated 
curricula begins to emerge in the STEM fields, more questions surrounding theory and curricula need 
to be considered. For instance, how do STEM activities afford and/or constrain students’ 
mathematics reasoning? What trajectories in STEM are present for young children in prekindergarten 
classrooms as they transition to elementary classrooms? How might students with particular learning 
disabilities evidence STEM reasoning development in elementary classrooms and how might this 
relate to their access to mathematics in schools? Only through such multi-faceted theoretical 
frameworks and questions will our field continue to progress in a technology-driven society.  
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At the core of productive research-practice partnerships is a mutual commitment to addressing 
problems of practice, which must be jointly negotiated, working through differences in perspective, 
status, and authority across partners. But what is less clear is how to account for and navigate the 
influence of broader accountability policies in the framing of those problems, as their application 
can lead to “manufactured” problems specified around state standardized testing outcomes. In this 
conceptual paper, we reflect on recent encounters with school district personnel, some of whom we 
were interested in fostering research-practice partnerships, to describe an ethical dilemma of 
whether and how, in our position as researchers, to invite potential partners to take up more 
“authentic” problems of practice. 

Keywords: research-practice partnerships, design experiments, equity and diversity, systemic change 

Late in 2017, the lead author and a small team of researchers were meeting with leaders of a small, 
rural district in the midwest U.S. in hopes of initiating partnership work around a common problem 
of interest. That fall, they had conducted a series of interviews with leaders and teachers, attempting 
to learn about the mathematics-related problems with which the district was wrestling and how 
individuals in the district framed those problems (Benford & Snow, 2000). From the outset, the 
researchers had expressed interest in developing a partnership rooted in district challenges rather than 
imposing ideas stemming from their own research agenda (Penuel, Fishman, Cheng, & Sabelli, 
2011). At this meeting they were sharing what they had learned through the interviews, inviting 
district personnel’s responses, and listening for opportunities to endorse and offer help with a 
challenge of mutual interest. Toward the end of the near-hourlong meeting, the lead author (CM) 
invited the group to take a step back and articulate, in broad terms, their aspirations for mathematics 
learning in the district, to which a school administrator (A) responded: 

CM: Thinking broadly, what- what are your goals for the children of [your community] in 
mathematics? 

A:  Short term, for at least my building, by the time they get to fifth grade, their fifth-grade scores are 
not- not good. Like, at all.  

CM: So, Ok- 
A: And a lot of it was number sense even starting in the third grade, so, like, when third graders are 

struggling with number sense, that’s obviously coming from us too, so- I mean, that’s not very 
narrowed down, but-  

CM:  But, I want to suggest that you, kind of, immediately went to test scores. 
A:  Well, because data shows if there’s progress or not. 

In this exchange, the administrator suggested that the grades 3-5 intermediate school may be 
insufficiently supporting students in developing number sense (“that’s obviously coming from us 
too”), but what was most troubling for the administrator—and what defined the broader mathematics 
goal—was improvement on state standardized test scores. Munter, failing to hide his disappointment 
with that framing, lamented that the administrator “immediately went to test scores” when invited to 
think broadly about children’s mathematics learning.  
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Negotiating Problems of Practice 
Over the last decade, there has been increasing attention to and support for research-practice 

partnerships (RPPs) in education as a means of bridging the “research-practice divide” (Coburn & 
Stein, 2010), as evidenced by grant competitions (e.g., the Institute of Education Science’s 
Researcher-Practitioner Partnerships in Education Research program; the Spencer Foundation’s 
Research-Practice Partnership Grants Program) or special issues in research journals (e.g., Herenkohl 
& Herenkohl, 2019; Penuel, Cole, & O’Neill, 2016; Penuel & Hill, 2019). One frequently employed 
definition for such partnerships is that they are “long-term, mutualistic collaborations between 
practitioners and researchers that are intentionally organized to investigate problems of practice and 
solutions for improving district outcomes” (Coburn, Penuel, & Giel, 2013, p. 2). Indeed, a consistent 
commitment across the growing body of work through/on RPPs in education is that they begin with 
problems of practice “as encountered by participants in an activity system, rather than with 
researchers’ goals for the improvement of teaching and learning” (Penuel, 2014, p. 100).  

Increasingly, there are also accounts in the literature of the messiness and tensions that can arise as 
researchers and practitioners negotiate the problems they might collaboratively address (e.g., 
Desimone, Wolford, & Hill, 2016; Henrick, Muñoz, & Cobb, 2016; Penuel, Coburn, & Gallagher, 
2013; Vakil, McKinney de Royston, Nasir, & Kirshner, 2016). Penuel and colleagues (2013), in 
particular, have highlighted the roles that status (e.g., from university affiliation or role as 
practitioner) and authority (e.g., from positions of leadership in a district) play as problems are 
identified and defined and as decisions about which solution strategies to pursue are made. And 
Vakil et al. (2016) have stressed how hierarchical relationships between researchers and practitioners 
can persist, especially when dimensions of researchers’ positionalities are left unexamined. Such 
work helps to foreground the ethical issues that underly the formation and work of research-practice 
partnerships. As Bang and Vossoughi (2016) have reminded us, “we must take seriously the question 
of ‘Who does the design and why?’ (Engeström, 2011, p. 3),” the answers to which are “also deeply 
bound up with the how and where of design, demanding a focus on process and the genesis of 
relations as well as the places within which they are made, live, and unfold” (p. 179, italics in 
original).  

Whose Problems? Whose Practice? 
In some ways, the episode with which we began this paper matches descriptions of partnership 

negotiation in the literature, as the researchers and practitioners were likely entering the conversation 
with different values, interests, and perspectives, and differences in authority and status were 
undoubtedly shaping the interactions. But we have come to view the question of “Who does the 
design and why?”—and concomitantly, “Who does the problem framing and why?”—as likely 
implicating entities not at the negotiating table. Specifically, for us, the school administrator’s 
pointing to “fifth grade scores” as a primary object of concern invokes a much broader set of reforms 
and accompanying discourse that are rooted in neoliberal principles (Croft, Roberts, & Stenhouse, 
2016) and reduce the role of K-12 students to data production for the benefit of adults’ regimes 
(McDermott, 2013). And, although a host of local stakeholders are arguably complicit in building 
and maintaining this system, more broadly, it is imposed by legislators, policymakers, and other 
“silent partners” who, with their authority, impose constraints within which school leaders and 
teachers identify goals and problems.  

Given the potential influence of this broader frame, we can ask whether the problems of practice 
that district leaders articulate are real or manufactured. When we say “real,” we refer to challenges 
that exist in pursuit of an extensive aim of education, such as the pursuit of truth (Dewey, 1938) or 
the practice of freedom (Freire, 1970), which seek to prepare students for a “whole life, not simply an 
economic existence” (Noddings, 2007, p. 26). And by “manufactured” (Berliner, 1995) we refer to 
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challenges that exist only as a result of the imposition of standardized test-based metrics of 
proficiency and “adequate progress” (U.S. Department of Education, 2002; 2015), which offer no 
direct benefits to the laborers “at the bottom”—public school children (Munter & Haines, 2019). 
Based on experiences like the opening scenario, we became curious which kinds of challenges are 
most salient in school districts, and whether there might be patterns in relation to community 
contexts.  

Patterns in Problems of Practice 
To answer those questions, we investigated the mathematics-related challenges identified by 

mathematics leaders across the U.S. state of Missouri. We sampled 50 districts, ranging from rural to 
urban contexts, and in each one interviewed the district leader most directly responsible for 
mathematics instruction (Munter, Nguyen, & Quinn, 2020). In each interview, we invited leaders to 
describe their biggest mathematics-related challenges, what they perceived to be the cause(s), and 
what, if any, initiatives they were pursuing in response. Two of the leaders reported that their districts 
did not have any mathematics-related challenges, and nine described initiatives they were pursuing, 
but without specifying any problems motivating their efforts. For the present discussion, we focus on 
the other 39, among whom three main types of problems emerged: student outcomes (n=30), student 
experiences (n=6), and equity (n=3).  

As we have alluded to above, we found some of these problems of practice to be real (challenges 
that exist in pursuit of expansive educational aims) and others manufactured (challenges that exist 
only as a result of the imposition of standardized test-based metrics of proficiency). Of the 30 leaders 
who articulated problems related to student outcomes, two pertained to internally established 
indicators of course taking patterns; all of the other 28 were focused on externally established 
indicators, primarily state standardized test scores. It is possible, of course, that some districts were 
facing challenges with ensuring all of their students were being supported in learning mathematics. 
However, their identification of low test scores as, itself, the problem and not merely a symptom, 
suggests that the bulk of district leaders we interviewed articulated manufactured problems of 
practice.  

Of the remaining nine leaders, three articulated challenges related to issues of equity and six 
described challenges related to how students experience school mathematics. Because they look past 
the surface of standardized test scores, it is possible that these problems of practice are more genuine. 
For example, six leaders centered students’ classroom experiences, with one describing a challenge 
of providing a cohesive school experience, and five describing challenges related to supporting 
student engagement (i.e., enjoying mathematics, seeing its usefulness, or engaging in sensemaking). 
For example, one small metropolitan district is working on supporting student engagement by 
adopting a workshop model, with the intention that through collaborative activities, mathematics 
experiences will be more authentic for students. And the three leaders’ descriptions of problems 
related to equity may signal a concern about real problems in differences in opportunity (Da Silva, 
Huguley, Kakli, & Rao, 2007; Flores, 2007). However, it is also possible that even these problems 
are, to some extent, manufactured. For example, a district may be concerned about student 
engagement or cohesion only as a means of improving state test scores. Similarly, leaders’ equity 
concerns may be defined by and limited to “achievement gaps”—narratives that are framed by 
externally established, standardized test-based metrics and often reinforce deficit narratives of 
students of color (Martin, 2009).  

Additionally, as reported elsewhere (Munter et al., 2020), we found that leaders from districts 
outside of metropolitan areas were more likely to describe problems of practice related to outcomes. 
This suggests that the “where of design” (Bang & Vossoughi, 2016) indeed matters, as small, rural, 
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districts may be suffering the differential impact of accountability policies, and more often attending 
to manufactured problems.  

An Ethical Dilemma 
It is at this point in our consideration that we reach an ethical dilemma. In our position as 

university-affiliated researchers, with the hierarchy and status that accompanies whatever “academic 
expertise” we are perceived to have (Penuel et al., 2013, p. 247), if we are convinced that the 
problems with which a great number of our potential partners are concerned are manufactured (i.e., 
that they are accepting a frame from the broader neoliberal agenda), who are we to tell them that their 
problem is not real? After all, even if the problem is manufactured, how they experience its 
implications are likely very real. Then again, who are we to withhold those insights? If we “honor” 
the problem they have identified, we risk (being complicit in) perpetuating a system of sorting and 
ranking that does not enrich the lives of students, particularly those who are most vulnerable in 
institutions of schooling. And, if we simply walk away from a potential partnership because we are 
unwilling or uninterested in taking up what we view to be a manufactured problem, whatever 
assistance we might have had to offer is squandered. 

We have not reached a clear resolution of this dilemma. We do, however, take inspiration from 
Freire (1970) in assuming that the question is not whether to engage in fostering partnerships, but 
how to do so in liberating ways—which may require further reflection and analysis with respect to 
how to ethically pursue problems of practice that are increasingly “real,” including how we can 
respectfully acknowledge and affirm practitioners’ very real institutional pressures and demands 
while advocating for problem frames that more explicitly target inequity and students’ experiences in 
school mathematics.  
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Formative assessment has been identified as one way that teachers can gather critical information 
about a student’s level of understanding in order to make informed instructional adaptations that 
meet the needs of all students (NCTM, 2000; Shepard et al., 2005). Over several decades, research 
has shown the potential of formative assessment to effectively improve student achievement (Black 
& Wiliam, 1998; Kingston & Nash, 2011). Despite its potential, issues in preparing teachers to 
implement formative assessment practices has kept its potential from being realized (Schoenfeld, 
2015) and many teachers have limited understanding of its use (Shepard et al., 2005).   

In order to better understand how to prepare teachers to use formative assessment, a trajectory 
describing how teachers develop formative assessment knowledge and practice is needed. The 
Formative Assessment Levels of Appropriation (FALA) framework evolved from a larger qualitative 
research study on the evolution of formative assessment knowledge and practice of novice teachers 
from teacher preparation through their third year of teaching. Grounded in activity theory, the FALA 
framework describes the levels of appropriation (Grossman et al., 1998) for the five aspects of 
formative assessment defined by Black & Wiliam (2009). Table 1 provides an example of the 
framework for one aspect of formative assessment—clarifying intentions and criteria for success. 

 
Table 1: Levels of Appropriation for Clarifying Intentions and Criteria for Success 

Level 1 Level 2 Level 3 Level 4 Level 5 
No conceptual 
understanding 

and/or not used 
in the classroom 

Identifies learning 
goals/criteria by 

name, but does not 
understand purpose 

of learning 
goals/criteria (e.g., 

equates with 
standards) and does 
not engage students 

with them. 

Understands that 
learning 

goals/criteria as 
targets for 

performance and 
may share them with 

students, but does 
not impact student 

learning and 
instructional 

decisions. 

Understands learning 
goals/criteria and 

their relationship to 
student learning 

progressions. Makes 
connections to 
instructional 

decisions but may 
have limited 

experience applying 
to practice. 

Understands the purpose 
of learning goals/criteria 

in shaping student 
learning and frequently 

makes instructional 
adaptations based on 
student progression 

towards learning goals. 
Evidence of student 

engagement with 
goals/criteria. 

 

    
 

To create each level of appropriation, a typological analysis approach (Hatch, 2002) was used to 
code course data over three semesters of a course on the use of formative assessment for teaching 
mathematics.  The data was first chunked by individual assignment posts and coded by its reference 
to one of the five aspects. Next, data for each aspect was read through and examples of the five levels 
were coded based on Grossman & Smagorinsky’s (1998) general definitions of each level of 
appropriation.  All levels were re-read and summarized as one to two sentence generalizations.  A 
secondary coder worked with the primary researcher on coding a sample of the data until an inter-
rater reliability level of 81% as met (Miles & Huberman, 1984).   
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Overview  
The research described in this presentation asks the question of how school mathematics and 

mathematics teacher education might be reframed through critical and culturally responsive 
pedagogies through the introduction of a new theory-methodology framework. By synthesizing 
perspectives offered by Ethnomathematics (EM), Critical Mathematics (CM), Indigenous Education 
(IE), Language Diversity (LD) and Equity-based (E-b) approaches to research in mathematics 
education, a new (disruptive) form of culturally responsive pedagogy (CRdP) is being 
conceptualized. CRdP is pedagogically informed by the EM-CM-IE-LD-E-b collective; it is 
theoretically informed by Nancy Fraser’s three-dimensional approach to social justice and 
participatory parity; and it is methodologically informed by discourse analysis. Grounded in a 
conceptual approach to responding to the study’s question, the research (and this presentation) offers 
a comprehensive approach to challenging teacher education practices and navigating toward socio-
economic, cultural and political justice/parity for all mathematics learners. 

Theory-Methodology Framework 
CRdP is being conceptualized by building on existing and highly relevant research in the field of 

mathematics education— research which views the education of mathematics teachers through 
diverse theoretical/philosophical lenses, including those of Culturally Responsive Pedagogy (CRP) 
(see, for example, Aguirre & Zavala, 2013; Nicol et al, 2013); Ethnomathematics (EM) (e.g., 
Presmeg, 1998; Rosa & Orey, 2011); Critical Mathematics (CM) (e.g., Ernest et al, 2016); 
Indigenous Education (IE) (e.g., Lunney Borden & Wiseman, 2016; Sterenberg, 2013); Language 
Diversity (LD) (e.g., Barwell, 2018; Chronaki & Planas, 2018) and Equity-based (E-b) (e.g., 
Gutiérrez, 2012; Herbel-Eisenmann et al, 2012) approaches. The socio-critical work of Nancy Fraser 
(Fraser, 2009; Lingard & Keddie, 2013; Meaney et al., 2016) is central to the research, with the 
design of CRdP framed through the three dimensions of Fraser’s theory of social justice: distribution 
(socio-economic justice), recognition (cultural justice), and representation (political justice), 
revealing how school mathematics may be reframed through the EM-CM-IE-LD-E-b collective. As a 
means of grounding Fraser’s three dimensions in a research method, I draw on a critical discourse 
analytic (CDA) approach (Wodak & Meyer, 2009). The six-question CDA framework that I have 
developed to interrogate research texts and to construct CRdP, along with initial results of its 
application, will be outlined in this presentation. 

Significance of the Work  
In acknowledging the culture of mathematics, of mathematics classrooms and of students’ lives and 

communities, the research is an innovative and productive response to the call to educate teachers in 
critical and culturally responsive pedagogies. In doing so, the research serves to strengthen 
communication and connections between the fields of teacher education, mathematics education 
research, and curriculum cultural revitalization in multi-cultural contexts.  
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The National Council of Teachers of Mathematics (NCTM, 2014) has called for the use of 
cognitively demanding tasks. When using such tasks it is not only important that a task start out as 
cognitively demanding, but also that high cognitive demand is maintained during the task enactment; 
unfraternally, cognitive demand is often not maintained (Stein & Lane, 1996). To better understand 
this phenomenon, Stein, Grover, & Henningsen (1996) identified seven factors that help maintain, 
and six factors that lower cognitive demand during task enactments (Fig. 1). These factors have been 
used by numerous researchers who looked to understand what the maintenance of cognitive demands 
looks like (e.g. Hong & Choi, 2018; Lunt, 2011). But, the studies that use these factors don’t discuss 
how they use the factors. They don’t explain if they were just looking for the existence of the factors, 
or if they were coding the degree to which factors were applicable. As such, there is no reliable way 
to measure or compare what the maintenance of cognitive demand looks like within and across 
studies. The Instructional Quality Assessment (IQA; Boston, 2012) is a tool that could be used to 
help us to do this, but the IQA takes all 13 factors related to the maintenance of cognitive demand, 
and puts them on a single rubric with a four point scale. As such, it does not provide much detail 
about what each of the individual factors that maintains or lowers cognitive demand looks like during 
a task enactment. 

To address the need for a tool that can provide a detailed analysis of how cognitive demand is 
maintained during task enactments, I conceptualized the Reorganized Factors that Undermine or 
Keep Cognitive Demand (RUK). Looking at each factor individually, I found that many of the 
factors that lower and maintain cognitive demand are similar, and can be considered two ends of a 
continuum. This is true for nearly every factor, as can be seen by the continuums of the RUK ( Fig. 
1). For each continuum, the RUK provides a four point scale (available by contacting the author) to 
aid in the quantification of the factors that lower and maintain cognitive demand. By viewing these 
factors as two ends of a continuum, the RUK provides an efficient way to create a detailed analysis 
of what the maintenance of cognitive demand looks like during a task enactments. Additionally, the 
RUK provides a medium that can be used in subsequent research to allow how cognitive demand is 
maintained to be compared across different studies. 

 
Figure 1: Factors that Maintain and Lower Cognitive Demand (Derived from the work of Stein, 

Grover, & Henningsen, 1996) and their relationship to the RUK. 

Factors that that maintain cognitive demand Factors that lower cognitive demand Factors combined on the RUK continuum
1) Tasks were built on students’ prior knowledge 1) Task is inappropriate for the students To what extent were students prepared to engage with this task?

2) Tasks were of the appropriate amount of time 2) Students are given too much or too 
little time to work on a task

To what extent was the amount of time students were given to work on 
this task appropriate?

3) High-level performance was modeled 3) The focus of the tasks shifts to 
finding a correct answer

To what extent are solution strategies discussed and important 
mathematical ideas and concepts uncovered?

4) The teacher sustained pressure for explanation 
and meaning 4) Lack of accountability To what extent were students held accountable for explaining their 

thinking/reasoning?

5) Tasks had proper scaffolding 5) Challenges become nonproblems To what extent did the teacher or more capable peers give away solution 
strategies in an attempt to help other?

6) Classroom management problems To what extent do classroom management issues occur during this task?

6) Student self-monitoring To what extent can students provide evidence for their claims or explain 
their thinking?

7) The teacher drew conceptual connections To what extent did the teacher draw conceptual connections?
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Emerging research has shown how student engagement with educational robots (e.g., Dash) can be 
associated with application and learning of mathematical concepts (e.g., Zhong & Xia, 2020). Yet, 
less is known about student learning in non-formal contexts (e.g., after-school programs) in contrast 
to formal learning environments (Pattison et al., 2016). The purpose of this proposal is to describe 
our varying, yet complementary analytical perspectives in understanding the complex nature of 
mathematical learning in a non-formal STEM environment. The project studied here – to design, 
build, and test an electronic vehicle – was not developed with an explicit mathematical goal(s) or 
objective(s). Thus, we intend to make the mathematical learning process visible through our 
emerging analytical perspective. Our proposed poster in the Theory and Research Methods strand 
will address a gap in the literature regarding how robotics can foster the application and learning of 
mathematics in a non-formal STEM learning environment (Karim et al., 2015), as well as address the 
PME-NA theme of looking across different cultures of mathematics and other disciplines (e.g., 
engineering).  For context, data consisted of 24 days of audio/video recordings of two students, each 
equipped with a chest-mounted camera (i.e., GoPro) to capture their individual and collaborative 
points of view.  

Our units of analysis are mathematical moments, or spontaneous experiences to engage with and 
explore mathematical concepts (Cunningham, 2015), that emerged as students collaborated in a non-
formal STEM learning environment. To observe the growth of mathematical understanding in these 
moments, the Pirie-Kieren theory (1994) was used as an analytical tool. This theory perceives 
understanding as a dynamic, leveled but nonlinear, recursive process and describes eight levels of 
actions for mathematical understanding. By tracing the participants’ growth of understanding along 
these potential levels, we can ascertain a global sense of the mathematical thinking and learning 
occurring during these moments. To complement the Pirie-Kieren theory and to capture details of the 
learning process, we apply additional frameworks to reveal perseverance pathways as the students 
navigated mathematical obstacles (DiNapoli, 2018) and their emotions as in-the-moment affective 
states (Middleton et al., 2017). We will detail our analysis of a mathematical moment through these 
three frameworks to make visible the learning that occurred in this non-formal STEM learning 
environment (e.g., the concept of variable through programming and engineering activity). 

We argue that the overlay of multiple complementary perspectives on the same piece of data helps 
make visible the mathematics occurring in spaces where it may be hard to see otherwise, as well as 
provide triangulation of claims about student cognition and affect. This approach of aligning 
different views on an activity may be productive for other researchers as well. Ultimately, this work 
is a step towards understanding how non-formal environments can support mathematics learning and 
points of connection between non-formal and formal spaces.  
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