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The presentation challenges a frequently-expressed assertion: “There is no single, 

authoritative perspective or definition of creativity [in mathematics]” Kattou et al. 

(2011). It points to difficulties resulting from using accepted definitions in educational 

research (Wallas, 1926; Thorance, 1975). In this paper, the authors express concern 

about joining research on creativity with the research into giftedness and suggest the 

need for democratizing that approach. To that end, they introduce an alternative 

definition of creativity - bisociation, that is “a creative leap of insight” or an Aha 

moment (Koestler, 1964). Prabhu and Czarnocha argue for adopting Koestler’s 

bisociation as “the authoritative perspective or definition of creativity.” 

THE STATE OF THE FIELD 

Mathematical creativity may be the only gate through which to reactivate the interest 

and the value of mathematics among contemporary youth whose engagement in the 

field is hampered by disempowering habits expressed as “I can’t do it,” “I am not good 

in math,” “thinking tires me” (Czarnocha et al., 2011). This teaching-research 

observation is in agreement with the research community: Lamon (2003) emphasizes 

the need for creative critical thinking and Mann (2005) asks for the explicit 

introduction of creativity as the component of learning in general. However, the 

conceptualization of creative learning varies due to the diversity of the proposed 

definitions of creativity. (Kattou et al., 2011) There is no single, authoritative 

perspective or definition of creativity (Mann, 2006; Sriraman, 2005; Leikin, 2011, 

Kattou et al., 2011) leaving practitioners without a clear and supportive viewpoint. 

However, a clear understanding of the cognitive and affective conditions for the 

creative act is important at present to be useful as the jumpstart for bridging the 

Achievement Gap in the US or start the numerical literacy campaign among the 

Tamilian Dalits of India (Prabhu, Czarnocha, 2008). There are two recently published 

excellent collections of papers, dealing with creativity in mathematics education,  

(Sriraman and Lee, 2011; Leikin et al., 2009). Both collections join the issue of 

creativity with the education of gifted students, indicating that the interest in creativity 

of all learners of mathematics is not the central focus of the field. There can be several 

reasons for so restrictive a focus on creativity: it could be due to the efforts of 

globalization so that “the winds are changing” (Sriraman and Lee, p. 2) or it could be 

that our understanding of the creative process is not sufficiently sharp to allow for the 

                                           
*
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effective focus of research on the mathematical creativity by all students including, of 

course, the gifted. This observation raises the issue of democratization of creativity in 

mathematics research and teaching.  

There are two definitions of the creative process on which many of the investigations 

are based. Wallas (1926) puts forth Gestalt-based definition of the process as 

consisting of preparation, incubation, illumination and verification.  More behavioural 

in approach is Torrance’s 1975 definition. It involves fluency, flexibility, novelty and 

elaboration. Leikin (2007) and Silver (1996) contracted it to fluency, flexibility and 

originality making the definition one of the bases for understanding creativity in 

mathematics education.  Neither approach, however, addresses itself directly to the act 

of creativity nor to the structure of the “Aha moment” as the commonly recognized site 

of creativity itself (Sriraman, 2005). Fortunately, the theory developed by Arthur 

Koestler in his 1964 work, Act of Creation, does exactly that. It builds our 

understanding of creativity on the basis of a thorough inquiry into the Aha moment, 

which Koestler calls a bisociative leap of insight. The development of a comprehensive 

Theory of an Aha Moment is particularly urgent at present from the theoretical 

research viewpoint given the empirical work of Campbell et al., (2012), who are 

investigating the Anatomy of an Aha Moment and the work our colleagues from 

computer creativity, a subdomain of Informatics, who are already employing 

bisociation for their data mining processes (Dubitsky et al., 2012). 

KOESTLER’S PRINCIPLES OF CREATIVITY.  

Arthur Koestler (1964) defines “bisociation” as “the spontaneous flash of insight, 

which …connects the previously unconnected frames of reference and makes us 

experience reality at several planes at once… ” (p. 45) – an Aha moment. Koestler 

clarifies the meaning of “insight”, by invoking Thorpe’s 1956 definition of insight: “an 

immediate perception of relations”. Koestler also refers to Koffka’s 1935 

understanding of insight as the “interconnection based on properties of these things in 

themselves.” In the words of Koestler:  

The pattern… is, the perceiving into situation or Idea, L, in two self-consistent but 

habitually incompatible frames of reference, M1 and M2. The event L, in which the two 

intersect, is made to vibrate simultaneously on two different wavelengths, as it were. While 

this unusual situation lasts, L is not merely linked to one associative context, but bisociated 

with two. (p. 35) 

Consequently, the creative leap or “an immediate perception of relations” can take 

place only if we are participating in at least two different frames, matrices of discourse. 

Examples of such simultaneous two frames of thought abound. One of them, present 

during the instruction of elementary algebra, is the theory of the number line based on 

(1) the framework of the number theory and (2) the framework of the geometrical line, 

memorialized through the creativity of the Dedekind axiom of one-to-one 

correspondence between real numbers and points on the line. Another one is the 

teaching-research methodology, which is the integration of the teaching framework 
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with the framework of research, a highly creative and effective method of teaching and 

doing research on teaching and learning at the same time (TR/NYCity in B.Czarnocha 

et al. 2014). Koestler offers examples of bisociation in the discovery of 

electromagnetism out of two separate investigations, that of electricity and that of 

magnetism; he mentions wave-particle duality, of course, as well, and many others.   

The depth of Koestler’s approach to creativity doesn’t rest here. Within his conceptual 

framework, “creativity is the defeat of habit by originality”. That means that 

bisociation not only is the cognitive reorganization of the concept by “an immediate 

perception of relations”, but also it can be an affective catalyzer of the transformation 

of habit into originality (Figure1). 

 

Figure 1: Habit to originality through the “flash of insight” (Prabhu, 2014) 

The presence of this cognitive/affective duality of creativity, of the Aha moment, can 

provide the intrinsic motivation to bridge the Achievement Gap in US and in other 

centres of educational inequality, according to Prabhu, (2014). In fact, the first 

teaching experiments introducing the principles of the Act of Creation into classrooms 

were conducted “to address the emotional climate of learners” in the 

remedial/developmental classes mathematics classroom. The transformative 

relationship between habit and originality formulated at the very basis of the 

bisociation theory confirms Liljedahl’s 2004 meta-findings that the “…Aha experience 

has a helpful and strongly transformative effect on a student’s beliefs and attitudes 

towards mathematics…” (p. 213). However, in stressing that “the aha experience is 

primarily an affective experience”, he is neglecting its equally significant cognitive 

component. (Liljedahl, 2009). Quoting Poincare, Koestler brings out explicitly the 

cognitive element of the Aha moment: “Ideas rose in crowds; I felt them collide until 

pairs interlocked, so to speak, making a stable combination” (Poincare qtd in 

Koestler,p. 115). Note the process of grasping stable relations of pairs of concepts in 

accordance with Koestler’s definition of bisociation. 
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THE IMPACT OF BISOCIATION UPON UNDERSTANDING OF 

CREATIVITY 

Koestler’s 700+ page Act of Creation argues convincingly that bisociation is the 

common structure across the domains of Humor, Scientific Discovery and Art 

Sublimation making it the principle underlying any creative act of invention. 

supporting Hadamard’s view that  

Between the work of the student who tries to solve a problem in geometry or algebra and a 

work of invention, one can say that there is only the difference of degree, the difference of 

a level, both works being of similar nature (1945, p. 104).  

Thus the standard division of creativity into absolute and relative is misleading 

because it seems to suggest an essential difference between the two. Similarly, in each 

intellectual domain the tools and the language through which creativity is expressed 

vary, but the process of insight through bisociation is exactly the same. Hence, the 

conventional distinction between general creativity and domain specific creativity 

doesn’t hold water.   

Situating the definition of creativity in the illumination stage of the Wallas definition 

itself provides a new perspective upon questions raised in recent discussions on the 

subject. In particular, Sriraman et al., (2011) assertion can be qualified: 

…when a person decides or thinks about reforming a network of concepts to improve it 

even for pedagogical reasons though new mathematics is not produced the person is 

engaged in a creative mathematical activity. (p. 121) 

Whether the process described above is or is not a creative mathematical activity can 

be decided on the basis of Koestler’s distinction between progress of understanding – 

the acquisition of new insights, and exercise of understanding – the explanation of 

particular events (p.619). If for example, I decide to design a developmental course of 

arithmetic/algebra based on my knowledge of the relationship between arithmetic and 

algebra (generalization and particularization), which involves the redesign of the 

curriculum, that is its “the network of concepts”, I am engaged in the exercise of 

understanding of mathematics, distinctly different from creative progress of 

understanding in mathematics. It may however, depending on the initial knowledge of 

the teacher, be a creative activity in pedagogical meta-mathematics, that is 

understanding mathematics from the teaching point of view – the content of 

professional craft knowledge. 

The bisociation theory, in which on the one hand creativity is “an immediate 

perception of relation(s)”, and on the other it is the affective catalyzer of the 

transformation of habit into originality, interacts well with MST methodology. (Leikin, 

2009). It predicts the absence of the difference between absolute and relative creativity 

observed by authors of the experiment. Moreover, the observed fall in the expression 

of originality reported by Leikin, (2009) as well as the correlation between creativity 

and originality is natural in the context of the relationship between habit, creativity and 

originality – a point made explicit in the often quoted Koestler’s assertion “Creativity 
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is the Defeat of the Habit by Originality”. The authors point correctly to the fluency 

and flexibility as the carriers of the habit which diminished the originality of student 

subjects: “…when students become more fluent they have less chance to be original”. 

This apparently complementary relationship between fluency and creativity dictates 

an utmost care in conducting the research into creativity with the help of the definition 

which includes fluency, because it may result in undesired lowering of creativity. And 

that we don’t want, especially in the “underserved communities”. This observation 

brings in the old question to the fore: What is the optimal composition of fluency and 

creativity in the preparation of teachers of mathematics, as well as in classroom 

teaching? 

CLASSROOM  IMPLEMENTATION OF THE THEORY – V.PRABHU (2014) 

Design of Triptych based Assignments 

The Act of Creation defines bisociation that is “the creative leap of insight, which 

connects previously unconnected frames of reference and makes us experience reality 

at several planes at once.” How to facilitate this process? Koestler offers a suggestion 

in the form of a triptych, which consists of three panels…indicating three domains of 

creativity which shade into each other without sharp boundaries: Humor, Discovery 

and Art. 

Each triptych stands for a pattern of creative activity which is represented on them; for 

instance 

Cosmic comparison                 objective analogy                   poetic analogy 

The first is intended to make us laugh, the second to make us understand, the third – to 

marvel. The creative process to be initiated in our classes of developmental and 

introductory mathematics needs to address the emotional climate of learners, and here 

is where the first panel of the triptych comes into play, Humor. 

Having found humour and the bearings of the concept in question, the connection 

within it have to be explored further to “discover” the concept in detail, and finally to 

take the discovery to a form of sublimation by Art. 

Triptych assignments facilitate student awareness of connections between relevant 

concepts and thus they facilitate understanding. However, what maybe even more 

important, the accompanying discussions help to break the “cannot do” habit and 

transform it into original creativity. There was a significant improvement (measured by 

the instructor’s intuitive assessment and tests results) in the experimental statistics 

class. 
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Figure: 2 Koestler’s triptychs 

Examples of triptych assignment used in the class of introductory statistics 

Trailblazer                             outlier                            originality 

Sampling 

probability 

confidence interval 

Law of Large Numbers 

Lurker                                correlation                            causation 

lurking variable. 

Figure 3: Triptych assignment 

Trailblazer                           OUTLIER                             Original 

Random                           SAMPLING                             Gambling 

Chance                         PROBABILITY                              Lottery 

Lurking Variable               CORRELATION                        Causation 

Testing                CONFIDENCE INTERVALS                   Results 

Sample Mean                LAW OF LARGE NUMBERS                 Probability 

Figure 4: Triptych student response 

Use of triptychs in the mathematics class brings back the puzzle inherent in 

mathematics. 

What is the connection between stated concepts? What could be the concepts 

connected to the given concepts? – A forum for meaning making is created in 

connecting the prior knowledge, with synthesized, reasoned exploration. The question 

“how” is answered by the question “why” through the use of mathematical triptychs.” 

CONCLUSION: A PROPOSAL 

This short review of our efforts to understand creativity indicates serious weaknesses 

in the field, which undermine the educational effectiveness of creativity.  
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In light of widely spread conviction that there is no single, authoritative perspective or 

definition of creativity as expressed by Mann, Sriraman, Leikin, and Kattout et al., we 

are proposing bisociation as the authoritative definition of creativity in the field of 

mathematics. Its relationship to two basic definitions (1) coming from Gestalt 

approach as well as (2) from a more behavioristic school depending on fluency, is 

clear. In the first case it focuses on the stage of illumination, the actual stage of 

creativity; in the second case, it suggest that fluency, which can correlate well with 

creativity, can undermine it at the same time. Clearly fluency does not measure nor 

defines creativity but instead some composition of creativity with a habit. Bisociation, 

on the other hand, is the “pure” act of creation in the making. Its disassociation from 

fluency is very important for the facilitation of mathematical creativity in the remedial 

and elementary mathematics classrooms of community colleges, where it is exactly 

fluency that’s missing. It is the definition of creativity for everyone, because 

“everyone” knows Aha moment. Koestler flatly asserts that “minor subjective 

bisociation processes…are the vehicle of untutored learning” (p. 658). Taking 

bisociation as the definition of creativity ensures democratization in mathematics 

education.  It’s interesting to note that our colleagues in computational creativity have 

discovered recently Koestler’s bisociation for the creative information exploration 

(Dubitsky et al., 2012). The simplicity of bisociative facilitation through the discovery 

& creative problem solving in the context of a triptych approaches provides us with 

ready pedagogical techniques of teaching and researching it. It would be very useful to 

understand better the process of scaffolding the bisociation; this understanding can 

come only if bisociation is observed en vivo, that is in the classroom, more in the 

context of qualitative research approach at present than quantitative. 
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ASSESSING TEACHERS' PROFOUND UNDERSTANDING OF 

EMERGENT MATHEMATICS IN A MASTERS COURSE 

Armando Paulino Preciado-Babb 

University of Calgary 

 

Profound Understanding of Emergent Mathematics has been recently proposed as a 

means of conceptualizing the mathematics knowing of teachers as an open disposition 

that extends well-defined and fixed categories of knowledge proposed in the literature. 

The purpose of this paper is to explore how this disposition may be assessed through 

the assignments submitted by the eleven teachers enrolled in a master's-level course. 

The assignments included concept study and collaborative lesson design. An analysis 

of the assignments of one team of teachers is presented suggesting that while previous 

categories for mathematics knowledge were reflected, evidence of an open disposition 

was limited. 

INTRODUCTION 

Davis and Renert (2014) have recently proposed a conceptualization of mathematics 

knowledge for teachers, Profound Understanding of Emergent Mathematics (PUEM), 

based upon complexity sciences and extending the previous conceptualizations widely 

reported in the literature. Tracing historical approaches to mathematics knowledge for 

teachers, Davis and Renert claimed that PUEM includes elements of these 

conceptualization such as: a) formal mathematical knowledge in terms of 

postsecondary courses and formal mathematics (Begle, 1972); b) specialized 

mathematics for teachers, such as pedagogical content knowledge (Shulman, 1986) 

and didactics in mathematics (Freudenthal, 1983); and c) mathematical knowledge 

entailed for teaching mathematics, such as unpacking as a key process of teachers' 

practice (Ma, 1999)—this last approach includes a shift from knowing more to 

knowing different. Davis and Renert saw these prior conceptualizations as important 

but limited in two key elements. First they proposed that teachers' knowledge of 

mathematics is "vast, evolving and distributed" (p. 48)—similar to Mathematics as a 

body of knowledge. Second, teachers should embody an open disposition to emergent 

mathematics in the classroom, including the capacity to participate in a knowledge 

building community in which students' ideas, misconceptions and questionings play a 

major role in extending learning beyond formal mathematics. Davis and Renert 

provided an example in the form of a classroom episode. Grade eight students were 

asked to approach the following problem: "Suppose that the earth is a perfect sphere 

and that we tie a rope tightly around the equator. How long will the rope be?" (p. 104). 

Students calculated an approximation of the length of the rope. In class discussion they 

agreed that adding ten more meters to the rope would create a gap between the earth 

and the rope, which they calculated as 1.6 meters long, approximately. Teachers 

explained that the result surprised them as the slackening effect of adding 10 meters to 
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the 40 000 kilometers long rope must be negligible. Without having an explanation for 

this result, teachers asked: "How can it be that the gap is large enough to allow a child 

through? How would you explain this result to a person who cannot calculate it?" (p. 

105). One student provided the following explanation:  

For us, a gap of 1.6 meters looks big. But this gap 1.6 meters is added to the radius of the 

earth. If you compare 1.6 meters to the radius of the earth, which is 6391 kilometers, you 

can see that this it is not large at all. In fact, it's tiny (p. 105). 

Teachers indicated that this problem puzzled them for a long time and considered the 

previous student's explanation as clear and sensible. The open disposition to this 

collective generation of knowledge was reflected in the planning of the class as 

teachers asked a question they had not yet answered. 

As a means for nurturing teachers' PUEM, Davis and Renert (2014) proposed concept 

study, a mix of lesson study (Stigler & Hiebert, 1999) and concept analysis (Usiskin, 

Peressini, Marchisotto, & Stanley, 2003). A main focus in concept study is that: 

"Learning of mathematics should be more structured around meanings than 

definitions" (Davis & Renert, p. 38). Rather than providing a prescribed list of steps for 

concept study, Davis and Renert described four emphases for the collective study of 

mathematical concepts. The first emphasis is on realizations (Sfard, 2008), that is, the 

learners' possible ways of association used to make sense of a mathematical construct, 

including: formal definitions, algorithms, metaphors, images, applications and 

gestures. The second emphasis is on landscapes, which are visual ways for 

representing relations among realizations—usually in form of tables and maps. Grade 

level has been a very useful criterion for organizing landscapes. The third emphasis is 

on entailments of the different realizations of a concept, which refer to the logical 

implications of each realization. The fourth emphasis of concept study is on blends, 

which correspond to grander interpretations connecting the realization of a 

mathematical concept in a more formal fashion. The emphasis on conceptual blends is 

a deliberate move into a formal, axiomatic world—as described by Tall (2004). 

Concept study has been enacted in several courses for mathematics teachers at both the 

master's and undergraduate levels in western Canadian universities for more than ten 

years. However, Davis and Renert (2014) still raised the question of "How might 

PUEM as an open disposition be assessed?" (p. 121). The purpose of this paper is to 

explore the potential evidence of PUEM, including this open disposition, in the 

assignments teachers submitted as part of a master's course in mathematics education, 

which included concept study and collaborative lesson design. Teachers' decisions 

within the lesson plans may serve to assess the open disposition toward emergent 

mathematics as enacted in the classroom. 

THE COURSE 

The master's program in mathematics education was designed exclusively for teachers 

at a particular school and consisted of four courses delivered on-site during one year. 

The course described here, Designing Tasks for the Math Classroom, was the second 
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course of the program. In the first course teachers surveyed a variety of theories of 

learning in mathematics and questioned their current teaching practices. The school, 

ranging from grades 2 to 12, served the education of students with learning disabilities. 

Students were streamed in either the collegiate program or the academy program. The 

latter program focused on students coded with learning disabilities. The collegiate 

program was designated for students who reached academic skills at age and grade 

appropriate levels, allowing them to stay at the school instead of going to a regular 

school. 

The course for this study included several goals for participants. First, they were 

expected to consult relevant literature on the social and historical context of selected 

topics and concepts in mathematics, as well as their related cognitive obstacles and 

alternative teaching approaches. Second, participants revisited literature regarding 

different forms of collaborative design—such as lesson study and learning study—in 

order to be able to design and enact it in their own context. Third, they were expected 

to develop capacities for the design, in collaboration with other teachers, of 

mathematical tasks aimed at student engagement in deep mathematical thinking. And 

finally, they engaged in ‘doing’ mathematics by solving diverse mathematical 

problems throughout the whole course—particularly, identifying stages of the problem 

solving process such as entry, conjecture, verification, specialization, and 

generalization, as per Mason, Burton and Stacey (2010). The assignments for the 

course are described in the following paragraphs. 

Concept study. This assignment was a deep study of a major mathematical concept or 

topic from the curriculum comprising its: (a) historical development; (b) cognitive 

obstacles and students' common mistakes and misunderstandings; (c) images, 

analogies, metaphors and exemplars used for mathematics and mathematics education; 

(d) contemporary role/place outside school; and (e) development through the whole 

curriculum. 

Lesson planning. This assignment consisted of planning/creating/selecting learning 

tasks and activities aimed at engaging students in mathematical thinking. This 

assignment elaborated from the concept study and extended it to anticipate students’ 

possible approaches and misunderstandings and appropriate teacher’s responses. This 

task was based on lesson study and teachers observed the enactment of the lessons. 

Individual enactment report. This was an individual report of the enactment of the 

lessons, including: (a) a general description of the enacted lessons highlighting 

relevant moments; (b) proof of students’ mathematical thinking; and (c) conclusions. 

Debriefing and refinement. A revisited version of the lesson planning including 

improvements and comments was submitted as a final assignment. 

METHODOLOGY 

This study took place in the context of a broader research aimed at studying changes in 

school culture when deliberate support is provided for the professional development of 
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teachers, including the master's program. In order to explore the potential evidence of 

PUEM in the assignments of the course, I took a qualitative approach. I read these 

assignments repeatedly to make a general sense of the data as a whole, conducting an 

open coding and looking for emerging themes. Then, I decided to code for evidence of 

teachers' knowledge in terms of: formal mathematics (Begle, 1972), including 

knowledge about mathematics such as history and current applications; pedagogical 

content knowledge (Shulman, 1986); knowledge of content and curriculum (Ball, et al. 

2008); and an open disposition (Davis & Renert, 2014).  

There were two teams in the group (eleven participants in total). One team decided to 

focus on the concept of surface area and designed a sequence of lessons for grades 

four, five, seven and eight. The other group focused on Pythagorean theorem and 

designed a lesson for grade ten. Due to the length limit in this report, only data from the 

latter group is presented. Results were, however, similar in the group focused on 

surface area. In particular, there was a strong interest in promoting relational 

understanding (Skemp, 1978), as opposed to instructional understanding, in both 

groups. This was probably a result of the previous course of the master's program. 

FINDINGS 

The group of teachers focusing on Pythagorean theorem designed a sequence of three 

lessons for grade ten in both the academic and the collegiate programs. The first lesson 

focused on visual representations of how the sum of the areas to two squares could 

yield the area of a third square. In the second lesson students explored triplets of 

square, most of them Pythagorean triplets. Examples of when the sum of two squares 

did not yield the area of the third were presented as 'non-examples.' The Pythagorean 

relationship would be expected to emerge by the end of this class. In the last session 

students were expected to use the theorem to address a challenging problem in a three 

dimensional context consisting of finding the length of the diagonal in a closed box. 

Examples of the evidence found in the assignments that teachers in this team submitted 

are summarized in Table 1. 

Evidence of disciplinary knowledge was clear from the concept study. This knowledge 

consisted of: references to literature reporting the use of the theorem across time and 

cultures, connections of related mathematical concepts, extensions such as Fermat's 

last theorem, and applications beyond school. 
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Knowledge Examples 

Knowledge of 

and about 

mathematics 

Historical development including several cultures at different times 

Connections with other mathematical concepts such as: area, symmetry, 

square root and algebra 

Connections to Fermat last theorem 

Applications out of school mathematics: statistics in baseball, medicine, 

and microchip technology 

Pedagogical 

Content 

knowledge 

Examples and non examples of right triangles 

Representation of doubling the area of a square using wooden hinged 

toys 

Different images for proofs based on areas 

Images of the theorem using shapes other than squares 

Common students mistakes and learning obstacles such as: learning 

formula without understanding; identify right triangles before applying 

the theorem, and proper identification of legs and hypotenuse 

Knowledge of 

content and 

curriculum 

Landscapes based on grades as per Alberta's program of studies: K to 3, 

4 to 6, and 7 to 9, 10, and 11 to 12 (Related topics for grade 10 included: 

linear measurement; trigonometric ratios; right triangles, perpendicular 

lines, right triangles; metric and imperial units; and area.) 

Open 

disposition 

Selection of a visual representation to ensure students understand that 

the sum of the areas of two squares can be the area of a third square.  

Design of an activity in which students have to figure out a relation 

between the areas of three squares. 

Table 1: Examples of evidence for each type of knowledge 

Pedagogical content knowledge could also be identified in the concept study and the 

decisions for the lesson plans. Common student obstacles, identified from both the 

literature and teachers' experience, were used in the design of the lessons. For instance, 

teachers identified that students have difficulties relating the square of a number with 

the area of a square having the length of its side equal to this number. The team of 

teachers decided to design an activity in which students would cut two squares into 

pieces and put them together into a third square: showing that the sum of the area of the 

two squares equaled the are of the third square. The rationale was that this kinesthetic 

activity would help students by providing recurring visual representations of squares. 

Teachers stressed the need for developing relational understanding, as opposed to only 

instrumental understanding. In particular teachers made the pedagogical decision of 

modifying the lesson plan format required by the school, which consisted of: 1) quick 

questions (5 min); 2) interesting idea intended to engage students in the topic, usually 
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presented in a video, new story or other type of media (2 min); 3) a review covering 

concepts from the previous class (5 to 10 min); 4) introduction of a new concept in 

which students are led through guided examples and asked to work on independent 

examples (20 min); 5)  seatwork in which students work independently in tasks that 

may be allocated as homework (10 min); and 6) a summary of the main topics covered 

in the lesson (2 min). In the concept study, teachers explained their decision for the 

modification in terms of instructional and relational understanding, as indicated in the 

following quotation. 

The above lesson plan [required by the school] allows for success with many of our 

students; however it is based on an instrumental approach to learning. … [This] lesson plan 

is a guided process, where students are led through the steps they need to successfully 

perform a required task.  In the past, to teach Pythagorean Theorem, we would have 

introduced the students to the Pythagorean Theorem in the front end of the lesson. Students 

would have worked through several teacher–led examples on the board, and then 

completed independent examples. This format of lesson plan has its merits, such as 

students leave the classroom with a consistent level of understanding of the material. As 

well, the independent seatwork allows the teacher to discover misconceptions in 

understanding and immediately correct these errors.  

For our lesson study we will be using the general format of a [school's] lesson plan.  

However, we are excluding the introduction of a New Concept and instead jumping 

straight into Seatwork. We have decided to take a relational approach to teaching 

Pythagorean Theorem by creating an inquiry based experience. As a result, we will not be 

directly teaching the Pythagorean Theorem. In fact, we will not mention the Pythagorean 

Theorem until the end of the second lesson. Our goal is to have students conceive the 

Pythagorean Theorem through their own findings, without channelled teaching of the 

concept.  (Concept Study on Pythagorean theorem) 

The interest in promoting a relational understanding was explicitly addressed in every 

assignment, including all the individual enactment reports. 

Knowledge of content and curriculum was evident in the landscapes of the concept 

study based on Alberta's program of studies. Figure 1 shows the landscape for grades 

11 and 12. The connection to other topics helped to pay attention to mathematical 

concepts and skills required to understand Pythagorean theorem, such as: concept of 

area, square root; square numbers; and algebra. 

While there was clear evidence of formal mathematical knowledge, pedagogical 

content knowledge, and knowledge of content and curriculum, the evidence for an 

open disposition to emergent mathematics was less obvious. The selection of images 

for the lessons and the emphasis on understanding that the theorem relates to the sum 

of areas of squares can be interpreted as attempts to create meaning with the theorem, 

instead of imposing the formula. Designing an activity, in the second day, in which 

students would discover the relationship between the areas of squares can be also 

interpreted as evidence of emerging mathematics in which students work 

collaboratively in class in order to find this connection. However, evidence of 
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explorations beyond formal mathematics knowledge, as part of the open disposition 

proposed by Davis and Renert (2014), was lacking in the lesson plans and teachers' 

reflections. This result was similar for the other group of teachers that focused on 

surface area. 

 

Figure 1: Grade 11-12 Landscape aligned with the Alberta Program of Studies in 

Mathematics 

CONCLUSION 

The assignments submitted by the teachers in the course described in this paper served 

to assess, at least partially, mathematics knowledge for teaching as per PUEM, 

including prior categories of knowledge as well as the open disposition toward 

mathematics. Concept study was useful for teachers to explore Pythagorean theorem 

including historical development and contemporary applications. This may help to 

extend teachers' understandings about the theorem, including different visual 

representations for the proofs. Pedagogical content knowledge and curricular content 

knowledge were also evident in both the concept study and the lesson plans.  Teachers 

were informed by both the literature and their collective experience with this topic in 

anticipating students learning obstacles. In particular, teachers made a special effort to 

address relational understanding as they identified an exclusive teaching instrumental 

approach in the school's lesson format. 

The open disposition to emergent mathematics was less obvious in the lesson plans. 

While common images were selected and students engaged in tasks aimed at the 

discovery of some relevant properties or relationships, these activities seemed to be 

more oriented for students to develop a better understanding of pre-existing 

knowledge. This approach is in contrast with the exploratory approach in the example 

of the rope and the earth provided by Davis and Renert (2014) and presented in the 

introduction of this paper. I believe that the combination of concept study and 

collaborative design is a sound means for teachers to develop an open disposition 
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toward mathematics. However, this disposition may not be immediately reflected in 

teachers' lesson plans. A more deliberate effort to promote this disposition may 

enhance the effect of concept study in teachers' professional development. 
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MENTAL MATHEMATICS AND OPERATIONS ON FUNCTIONS 
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This study is part of a larger research program aimed at studying mental mathematics 

with objects other than numbers. It concerns operations on functions in a graphical 

environment with Grade-11 students. Grounded in the enactivist theory of cognition, 

particularly in problem-posing, the study aims to characterize students’ mathematical 

activity in this mental mathematics environment. The data analysis offers 

understandings of strategies that students brought forth: algebraic/parametric, 

graphical/geometric, numerical/graphical. These are discussed in relation to 

implications for research on solving processes and potential for studying functions.  

To highlight the relevance and importance of teaching mental calculations, Thompson 

(1999) raises the following points: (1) most calculations in adult life are done mentally; 

(2) mental work develops insights into number system/number sense; (3) mental work 

develops problem-solving skills; (4) mental work promotes success in later written 

calculations. These aspects stress the non-local character of doing mental mathematics 

with numbers where the skills being developed extend to wider mathematical abilities 

and understandings. Indeed, diverse studies show the significant effect of mental 

mathematics practices with numbers on students’ problem solving skills (Butlen & 

Peizard, 1992; Schoen & Zweng, 1986), on the development of their number sense 

(Murphy, 2004; Heirdsfield & Cooper, 2004), on their paper-and-pencil skills (Butlen 

& Peizard, ibid.) and on their estimation strategies (Schoen & Zweng, ibid.). For 

Butlen and Peizard (ibid.), the practice of mental calculations can enable students to 

develop new ways of doing mathematics and solving arithmetic problems that the 

traditional paper-and-pencil context rarely affords, because it is often focused on 

techniques that are in themselves efficient and do not require other actions. Overall and 

across contexts, it is thus generally agreed that practicing mental mathematics with 

numbers enriches students’ learning and mathematical written work about calculations 

and numbers. This being so, as Rezat (2011) explains, most if not all studies on mental 

mathematics focus exclusively on numbers/arithmetic. However, mathematics taught 

in schools involves more than numbers, which rouses interest in knowing what mental 

mathematics with objects other than numbers might contribute to students’ 

mathematical activity. In this study, issues of functions, mainly operations on 

functions in graphs, are investigated. This paper reports on the strategies brought forth 

by Grade-11 students. 

THEORETICAL GROUNDING OF THE STUDY: AN ENACTIVIST FRAME 

Recent work on mental mathematics points to the need for better understanding and 

conceptualizing of how students develop mental strategies. Researchers have begun to 
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critique the notion that students choose from a toolbox of predetermined strategies to 

solve mental mathematics problems. E.g. Threlfall (2002) insists on the organic 

emergence and contingency of strategies in relation to the tasks and the solver (what he 

or she understands, prefers, knows, has experienced with these tasks, is confident with; 

see also Butlen & Peizard, 1992). This view on emergence is also discussed by Murphy 

(2004), who outlines perspectives that conceptualize mental strategies as flexible 

emergent responses adapted and linked to specific contexts and situations. Because the 

enactivist theory of cognition (c.f. Maturana & Varela, 1992; Varela, Thompson & 

Rosch, 1991) has been concerned in mathematics education with issues of emergence, 

adaptation, and contingency of learners’ mathematical activity, it offers a way to 

contribute to conceptualizations about students’ meaning-making and mathematical 

strategies. In particular, the distinction made between problem-posing and 

problem-solving offers ways to address questions about the emergence and 

characterization of strategies. 

For Varela (1996), problem-solving implies that problems are already in the world, 

independent of us, waiting to be solved. Varela explains, on the contrary, that we 

specify the problems that we encounter through the meanings we make of the world in 

which we live, leading us to recognize things in specific ways. We do not choose 

problems that are out there in the world independent of our actions. Rather, we bring 

problems forth: “The most important ability of all living cognition is precisely, to a 

large extent, to pose the relevant questions that emerge at each moment of our life. 

They are not predefined but enacted, we bring them forth against a background.” (p. 

91). The problems that we encounter, the questions that we ask, are as much a part of us 

as they are a part of our environment: they emerge from our interaction with/in it. The 

problems we solve are relevant for us as we allow them to be problems.  

If one adheres to this perspective, one cannot assume, as René de Cotret (1999) 

explains, that instructional properties are present in the tasks presented and that these 

causally determine solvers’ reactions. As Simmt (2000) explains, it is not tasks that are 

given to students, but mainly prompts that are taken up by students who themselves 

create tasks with. Prompts become tasks when students engage with them, when, as 

Varela would say, they pose problems. Students make the “wording” or the “prompt” a 

multiplication task, a ratio task, a function task, an algebra task, and so forth. 

Nonetheless, each prompt is designed following specific intentions in specific ways, 

which can play a role in how solvers pose problems (e.g. one does not react to two 

square-root functions in the same way as one does with two linear functions). In sum, 

each prompt can be seen to have what Gibson (1979) refers to as affordances: 

The affordances of the environment are what it offers the animal, what it provides or 

furnishes […] I mean by it something that refers to both the environment and the animal in 

a way that no existing term does. It implies the complementarity of the animal and the 

environment […]. If a terrestrial surface is nearly horizontal (instead of slanted), nearly flat 

(instead of convex or concave), and sufficiently extended (relative to the size of the 

animal) and if its substance is rigid (relative to the weight of the animal), then the surface 
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affords support […]. Note that the four properties listed – horizontal, flat, extended, and 

rigid – would be physical properties of a surface if they were measured with the scales and 

standard units used in physics. As an affordance of support for a species of animal, 

however, they have to be measured relative to the animal. They are unique for that animal. 

They are not just abstract physical properties. (p. 127, emphasis added) 

These affordances for Maturana and Varela (1992) play the role of triggers in relation 

to the solver’s posing. Hence reactions to a prompt do not reside in either the solver or 

the prompt: they emerge from the solver’s interaction with the prompt, through posing 

the task. Strategies are thus triggered by the prompt’s affordances, but determined by 

the solver’s experiences, where issues explored in a prompt are those that resonate with 

and emerge from the student, as Threlfall (2002) explains: 

As a result of this interaction between noticing and knowledge each solution ‘method’ is in 

a sense unique to that case, and is invented in the context of the particular calculation – 

although clearly influenced by experience. It is not learned as a general approach and then 

applied to particular cases. […] The ‘strategy’ […] is not decided, it emerges. (p. 42) 

This emergent/adapted perspective offers a specific way of talking about solving 

problems, avoiding ideas of possession (acquisition of, choice of, of having things, 

etc.) in favor of issues about emergence, flux, movement, interactions, relations, 

actions, and so forth. It is this perspective that orients this research. 

METHODOLOGICAL ISSUES, DATA COLLECTION AND ANALYSIS 

One intention of the research program is to study the nature of the mathematical 

activity that students brought forth when working on mental mathematics. This is 

probed through (multiple) case studies conducted in educational contexts designed for 

the study (classroom settings/activities). This reported study is one of these case 

studies, taking place in two Grade-11 classrooms. Classroom activities/tasks were 

designed with the teacher (covering two 75-minutes sessions for each group), in which 

students had to operate mentally on functions in a graphical environment, that is, they 

had to solve without paper-and-pencil or any other computational/material aids. For 

example, using a whiteboard, a typical prompt consisted of showing two functions in 

the same graph and ask students to add or subtract them (see Figure 1). 

 

Figure 1: Example of a graphical prompt on operations on functions [f(x) ± g(x)]. 

The activities were conducted by the regular teacher and had the following structure: 

(1) a graph is shown on the board and instructions are given orally; (2) students have 20 

seconds to think about their solutions; (3) at the teacher’s signal, students have 10 
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seconds to write their answer (on a sheet of paper showing a blank Cartesian graph) 

and then hold it up to show the teacher; (4) the teacher asks various students to 

show/explain their answers to others. Six thematic blocks, each composed of 6-10 

prompts, were organized. The 1
st
 block introduced students to the ideas, where both the 

graphs and the algebraic expressions of the functions were offered (prompts consisted 

of a combination of linear and constant functions). For the 2
nd

 block, graphs of two 

functions (sometimes three) were given without their algebraic representation, and 

students had to add them mentally (functions varied from a combination of constant 

with linear, quadratic, square root, constant, rational, and step functions). In the 3
rd

 

block, still on the same graph, students were given the representation of one function 

and the result of an operation and were instructed to find the function that had been 

added to or subtracted from the first to obtain the resulting function (functions varied 

from a combination of two linear, two square-root, or a combination of a constant with 

a linear or square root functions, see Figure 3). The 4
th
 block was similar to the second, 

but focused on subtractions. The 5
th
 block differed in that only algebraic expressions of 

functions were given. These algebraic expressions could not be “directly” computed, 

like f(x)=|x| or f(x)=[x] with g(x)=x or g(x)=x
2
. The 6

th
 block focused on symmetry, 

where students had to add two (linear, quadratic, by parts) functions that looked 

symmetrical in the graph (see e.g. Figure 2 and 4).  

Data collection focused on students’ strategies recorded in note form by the PI and a 

research-assistant, for each of the four sessions. To analyze the data, repeated 

interpretative readings of the field notes about the various strategies that emerged were 

conducted, and combined with the existing literature on functions to enrich the 

analysis. These repeated interpretative readings underlined three strategies, which are 

reported below: algebraic/parametric, graphical/geometric, graphical/numerical.  

FINDINGS – ON STRATEGIES BROUGHT FORTH 

Strategy 1. Algebraic/Parametric 

Even when prompts were proposed in a graphical context without algebraic 

expressions, many students engaged in algebraic-related solving. Students referred to 

what Duval (1988) calls significant units for “reading” the graphical representation of 

a linear function and offered an interpretation in relation to the algebraic expression. 

That is, students brought forth parameters from the algebraic expression (the a and b of 

the linear function f(x)=ax+b) to make sense of the graphs and add them. However, 

because the resulting function had to be expressed graphically, they explained their 

answer and strategy algebraically by blending aspects of graphical information. For 

example, in the following addition prompt (see Figure 2), where neither function had 

an algebraic expression attached, many students explained that “BOTH FUNCTIONS 

LOOKED SYMMETRICAL, SO THE ‘a’ PARAMETER OF EACH LINE WOULD CANCEL 

OUT, AS WELL AS THE ‘b’ AND THUS GIVE x=0” (quotations in are taken from 

students’ words and translated from French to English).  
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Figure 2: Addition of function graphical prompt. 

In prompts where e.g. a linear function f would be added to a constant function, even if 

no algebraic expression was attached to the functions, students would say that the “a” 

parameter of the function f does not change when added with a constant function that 

“DOES NOT HAVE AN ‘a’ PARAMETER, SO THE FUNCTION’S STEEPNESS STAYS THE 

SAME AND ONLY THE ‘b’ CHANGES” giving a function parallel to f with a y-intercept 

at “b” instead of at 0. Thus students generated algebraic information from the graphs of 

the functions in order to operate and develop their solutions. They were able to draw 

out an algebraic context, to pose it as an algebraic task, and to solve with/in that 

context. Even if no algebraic expression was attached to the functions, students 

illustrated affordances of the prompt for them, showing that there were potential 

algebraic pathways in them and for them (of course, students’ algebraic prominence or 

preference when working with functions is not new, see e.g. Vinner’s, 1989, “algebraic 

bias”). They thus posed the prompt as an algebraic problem, solving it in relation to 

algebraic aspects generated for the functions. 

Strategy 2. Graphical/Geometric 

When facing a function that was not linear (e.g. quadratic, square root, rational, 

hyperbolic), students generated particular ways of working with slope and parallelism. 

They assigned a constantly changing rate of change/slope to some nonlinear functions 

with which they were dealing (students used the expressions slope and rate of change 

interchangeably, hence the “/”). E.g. with the addition of a quadratic and a constant 

function (see Figure 1), students explained that the rate of change of the quadratic 

function was not affected by the addition of a constant function, because a constant 

function “DID NOT HAVE A VARIATION” and thus the slope of the quadratic function: 

“WILL CONTINUE TO VARY IN A CONSTANT WAY”. When students said constant, they 

meant that its appearance was not affected. Thus the resulting function of their addition 

would have the “SAME RATE OF CHANGE AS THE QUADRATIC FUNCTION” but would 

simply be “TRANSLATED DOWN” in the graph because the constant function was 

“NEGATIVE”. Although it is not clear what exactly students meant by this 

“CONSTANTLY CHANGING” rate of change/slope for nonlinear functions (especially 

e.g. when they were dealing with f(x)=1/x), many of them brought forth a language that 

enabled them to solve their problem (and talk about it) and not worry about the 

variation in the function. As one student said about the square-root function, “ITS RATE 

OF CHANGE IS LEFT UNTOUCHED WHEN I ADD THE CONSTANT FUNCTION, SINCE IT 

HAS NO VARIATION”. 
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In cases where students faced more than one nonlinear function, the above constantly 

changing rate of change strategy appeared insufficient, as they began analyzing 

functions in terms of “parallelism”. For example, in Figure 3 where the function g is to 

be found, some students expressed that “EACH FUNCTION WAS PARALLEL TO THE 

OTHER” and that g had to be a constant function “FOR THE CURVE TO BE TRANSLATED 

DOWN” and that it was “NEGATIVE FOR BRINGING THE CURVE LOWER”.  

 

Figure 3: A prompt for which the parallelism strategy was used. 

Again, this vocabulary and idea of parallelism (which can be mathematically 

questioned) emerged as a way of making sense without going into details about the 

fluctuation in image for each function. Somehow students defined these meanings 

through their use, in their emergent use for solving their problems. Theirs was a 

strategy well tailored/generated for their problem, which in turn made their problem 

about that strategy. To some extent, students offered a geometrical interpretation of 

rate of change/slope as a property not of the function, but of the curve present on the 

graph. They were talking about a geometric rate of change/slope, something 

reminiscent of Zaslavsky, Hagit and Leron’s (2002) concept of slope seen as a 

geometric concept rather than slope seen through the lens of analytical geometry. 

Through their geometrical rate of change, students brought forth the nonlinearity of 

nonlinear functions and developed ways of engaging with/in it. By posing the prompt 

in geometrical terms, they generated a graphical/geometric strategy to solve it. 

Strategy 3. Graphical/Numerical  

Students brought forth specific points in the graphs of functions (related to Even’s 

(1998) pointwise approach). In sum, the prompts were posed as numerical or pointwise 

tasks by students. Through those points, they generated exact and approximate answers 

(Kahane, 2003), which they combined to find the resulting function. In Figure 4 e.g. 

students had to find the function resulting from the addition of f and g. In this case, they 

would bring forth specific points: (1) where f cross the x-axis (x-intercept); (2) where 

both f and g intersect; (3) where f and g cross the y-axis (y-intercept); (4) where g cross 

the x-axis (x-intercept). For case (1), the operation is an exact calculation as the 

addition of the image for f (which is of length 0) with the one for g results in an image 

for f+g that is the same as that for g (it has the same image for g to which 0 was added). 

For case (2), the operation is an approximate calculation, as both images at f and g are 

the same, so the resulting image is double the value of the intersection point; but a 

precise location is impossible without knowing the exact location of the intersecting 

point in terms of precise length. For case (3), the same approximate calculation applies, 

as both images are added. For case (4), an exact answer is obtained, as in case (1). In 
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doing this, students mingle both exact and approximate calculations to find points for 

the resulting function. 

 
Figure 4: An addition of function prompt for which points were outlined 

Students generated precise and approximate points to determine the resulting function. 

In so doing, they were no longer in an algebraic context, but in a blend of numerical 

and graphical contexts, generating numbers/coordinates that had meaning for them in 

the graph. E.g. when they referred to the x-intercept, they did not attempt to find its 

meaning in the algebraic expression (see Moschkovich, 1999), but worked in the 

graphical context to gain information for computing the resulting function. The same is 

true for the y-intercept, not treated as parameter b, but as a point in the graph. Their 

posing was numerical or pointwise, making the task about points. 

DISCUSSION OF FINDINGS AND FINAL REMARKS 

These strategies enacted on the spot as emergent reactions tailored to their problems 

offer illustrations of students’ mathematical activity in this mental mathematics 

environment. Through their entry into the prompts, students posed their problems, 

making emerge affordances of the problems, that is algebraic, geometric, procedural, 

and so forth. Thus an algebraic posing of the functions produced an algebraic strategy; 

a graphical posing produced a graphical strategy; a numerical/pointwise posing 

produced a numerical pointwise strategy. These affordances are to be seen relative to 

students and the prompts, as affordances for those students interacting with these 

prompts: they do not exist in themselves, but are brought forth in the interaction with 

the prompt when posing the task and making them emerge.  

Three main lessons can be learned from this analysis. First, it shows how students 

illustrated significant meaning-making capacities, as they were fluent in linking 

algebraic (symbolic expression), numerical (coordinate values in x or y) and graphical 

aspects of functions. This seems to contrast with what we know from other studies, as 

students are frequently reported as experiencing difficulties of many kinds when 

linking graphs of functions with other representations (see e.g. Even, 1998; Hitt, 1998; 

Moschkovich, 1999). Second, even if more research is obviously needed, this fluency 

underlines the potential of these mental mathematics activities for studying functions, 

as it occasioned numerous (and even alternative) ways of conceiving and operating on 

functions, e.g. algebraic, graphic, and numerical. Third, and possibly most important, 

the creative and adapted nature of these approaches, seen through problem-posing, 

underlines the importance of being attentive to students’ mathematical activity when 

they are solving (their) problems. It shows how sensitive we ought to be, following 
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Threlfall (e.g. 2002), not to constrain students’ mathematical doings into specific 

frames of expected solutions or reducing them to already known categories of solving: 

it offers a window onto students’ mathematical activity that allows us to embrace its 

creative character and adaptive nature when students are solving (their) problems. 
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USING PRACTICAL WORKSHEET TO RECORD AND EXAMINE 

METACOGNITVE STRATEGIES IN PROBLEM SOLVING 

Khiok Seng Quek, Tin Lam Toh, Yew Hoong Leong, Foo Him Ho 

National Institute of Education, Nanyang Technological University, Singapore  

 

We adopted Brown’s (1987) conceptualisation of metacognition to examine how 

student teachers can be taught metacognitive control while solving mathematical 

problems. In addition, tasks given to these student teachers were in-built with 

opportunities for them to be aware of the need for metacognition. We describe the use 

of the Practical Worksheet as a way to make visible their metacognition, within the 

context of solving mathematics problems. Findings suggest that the greater awareness 

of control due to the use of the Practical Worksheet contributed to the greater 

employment of control in subsequent problem solving. 

INTRODUCTION AND LITERATURE REVIEW  

Metacognition is an important idea in the teaching of problem solving. However, its 

definition has remained elusive. Some have interpreted it as “thinking about thinking” 

(Lai, 2011; Larson, 2007). Others have attributed this difficulty to the fact that several 

terms such as self-regulated learning, reflective learning, executive control, 

meta-memory and monitoring are used interchangeably with metacognition; for 

example, Holton and Thomas (2001) view students’ ability to carry out 

self-interrogating and using self-scaffolding in problem-solving as metacognition. 

Brown (1987) conceptualised metacognition as having two components: the 

knowledge (what one knows about one’s cognition) and the control (what one does to 

regulate one’s cognition). Metacognitive knowledge refers to three different types of 

knowing: declarative knowledge (about one’s skills and intellectual resources); 

procedural knowledge (about how to execute procedural skills and apply strategies) 

and conditional knowledge (about when and why to use declarative and procedural 

knowledge). The control component refers to the actual metacognitive control actions 

applied to cognitive processes – they are planning (such as goal setting and allocation 

of resources), monitoring (assessing one’s strategy used) and evaluating (appraising 

the products and efficiency of learning). Metacognitive knowledge and control do not 

function separately or independently; rather, they complement each other for a person 

to achieve optimal performance. 

According to Desolete (2007), we cannot assume that metacognitive skills will develop 

in the mathematics classrooms. Veenman, Van Hout-Wolters and Afflerbach (2006) 

argued that in order for students to develop metacognitive skills, it is crucial that 

teachers model metacognitive skills since learners acquire metacognitive skills 

through implicit socialization with experts. 
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In the study reported here, we adopted Brown’s (1987) conceptualisation of 

metacognition to examine how student teachers can be taught metacognitive control 

while solving mathematical problems. In addition, tasks given to these student teachers 

were in-built with opportunities for them to be aware of the need for metacognition. In 

the next section, we describe the use of the Practical Worksheet as a way to make 

visible their thinking, including metacognition, within the context of solving 

mathematics problems. 

THE PRACTICAL WORKSHEET 

In Schoenfeld’s (1985) framework of mathematical problem solving, control is listed 

as one of four components essential for success. This idea of the importance of control, 

together with the well-known Pólya’s (1954) model of problem solving, formed the 

theoretical basis for our design of the Practical Worksheet (PW). 

The PW consists of four pages exactly corresponding to the four stages of Pólya:  

(1) Understand the Problem; (2) Devise a Plan; (3) Carry out the Plan; and (4) Look 

Back.  Through the Look Back (which we renamed “Check and Expand”) stage, the 

problem solver may revisit the solution, check the reasonableness of the 

answer/solution, look for alternative solutions to the problem, and make 

changes/extensions to the solution; in the process, this looping back is a location where 

metacognition can be identified.  In addition, a “Control” column was added in the 

Stage 3 so that any conscious metacognitive acts that are utilised can be recorded. 

THE PARTICIPANT AND METHOD 

One of the authors (hereafter referred to as the “tutor”) taught the mathematics 

methods module in the Postgraduate Diploma in Education (PGDE) programme. The 

PGDE is a pre-service teacher education programme. This module is taken by 

university graduates in Mathematics or in a Mathematics-related discipline such as 

Engineering who are seeking certification to become a secondary school mathematics 

teacher. Six hours of this 24-hour module are devoted to the idea of teaching of 

problem-solving and the teaching of mathematics through problem solving. 

Twenty-two pre-service teachers (PT) participated in this study. The tutor started by 

explaining what a mathematical problem is, emphasizing that it is different from a 

routine exercise and that it requires time and effort to solve. The tutor modelled the 

processes of problem solving before he discussed in detail Pólya’s model and 

Schoenfeld’s framework for problem solving. He then demonstrated how the PW 

should be used by working it through with a specific problem. During the first problem 

solving lesson, Example 1 was used to explain how the practical worksheet could be 

used to guide one towards problem solving. 

Example 1 : ABC is an equilateral triangle. P is a point inside the triangle such that the 

distances from its three sides are 4, 5 and 6 cm. Find the length of one side of the triangle. 
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Before concluding the problem solving part of the course module (which formed the 

first three lessons), the tutor presented two other problems to be solved in the next two 

tutorial sessions. 

Problem 1 : The coordinates of a given point A are (6, 2). Find a point B on the line y = x 

and another point C on the x-axis such that the perimeter of the triangle ABC is minimum. 

Find the coordinates of point B and C.  

At this point, it was found that almost all students had not paid much attention to 

noticing the thought processes involved in solving the problem. The tutor discussed 

Problem 1 again in class and attempted to get the student teachers to be more aware of 

their own thinking and to focus more on the metacognitive control action for the next 

problem. This was followed by another tutor demonstration on how the PW could be 

used to guide their thinking. However, one of the PTs mentioned that he needed time to 

examine and write down what was actually happening in his mind while solving a 

problem. In response to this request, the tutor gave 10 more minutes (making it a total 

of 30 minutes) for them to solve Problem 2 in their last problem solving lesson. 

Problem 2 : An equilateral triangle ABC with sides 4 cm is inscribed in a circle. If a point 

P lies on the minor arc BC, find the value of PA
2
 + PB

2
 + PC

2
.  

For both problems, the PTs had to solve the problem using the PW in class within the 

stipulated time. They knew that their performance in the two problem-solving sessions 

would not be graded.  

METACOGNITIVE STRATEGIES DEMONSTRATED IN THE 

PROSPECTIVE TEACHERS’ WORK 

In this section, we shall present using some PT’s solution of Problem 2 and examine 

them for evidence of the use of metacognitive strategies in their solution. 

For Metacognitive planning activity, we looked for evidence from the PW on 

statements about possible cognitive resources and heuristics that may be involved in 

solving the problem. For example, drawing a diagram is a common problem solving 

heuristic. While it is usually considered a cognitive rather than metacognitive 

behavior, we think that a diagram can also become a vehicle for stimulating 

metacognitive strategies, leading to a useful insight of the problem. In the case of 

Problem 2, a diagram can be seen as a tool for metacognitive planning in this way: 

when point P is moved along the arc BC to coincide with either points B or C, this 

special case reveals a way forward in the solution strategy. Using the PW, all except 

one PT indicated in writing what they planned to do for Stage 1 when they attempted to 

solve Problem 2. Figure 1 shows one of the PT’s metacognitive planning strategies.  
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Figure 1: PT4’s metacognitive planning strategies. 

There is also evidence for metacognitive monitoring activity. This is illustrated in 

PT11’s work as shown in Figure 2. She used Pythagoras’ Theorem and did not manage 

to obtain the form required by the question.  She switched her solution path to using 

trigonometric ratios to find PA, PB and PC correctly (though she made a slight 

computational mistake). This is a demonstration of the exercise of metacognitive 

monitoring strategy, in which the solver constantly monitors his or her solution plan 

and is ready for error-detection and correction, and to self-question if the current 

approach is on the correct path leading to the correct solution.  

Figure 2: PT11’s  metacognitive strategies in the “control” column. 

Figure 3 shows PT8’s careless mistake as part of the solution to Problem 2. As he did 

not proceed further on the PW, the tutor spoke with him after the activity about how he 

would have proceeded if he were given the additional time. He mentioned that he 

would have checked his working again before abandoning his solution.  We think that 

this is an example of the use of metacognitive evaluating. 
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Figure 3: Metacognitive action by PT8. Note that x = ACP 

The PWs were examined and marked. Metacognitive strategies written on the PWs 

were coded and classified into metacognitive planning, metacognitive monitoring and 

metacognitive evaluating. Table 1 shows the rules for classification. 

Metacognitive 

activity or 

strategy 

 

Prescriptions Sample written responses on the 

Practical Worksheet for Problem 2 

Planning Using heuristics to make sense 

of the problem. 

Stating goal and sub-goal of  

Indicating of  possible 

cognitive resources that may 

solve the problem  

PT1: trying to find the distance 

using sine or cosine rules. 

PT5: Draw and label the diagram 

to translate the problem into a 

pictorial form. 

Monitoring Indicating the need for 

answering to the question 

Indicating of the solution steps 

make sense  

Indicating of the 2
nd

 approach 

PT11 : … I wonder how to link 

back to the original form PA
2 
+ 

PB
2 

+ PC
2
  

 

PT19: Stuck at this point, go back 

to Stage II.  
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Evaluating Indication of a problem or 

error encountered  

Indication of possible 

short-coming of the method 

 

 

PT7. I do not know how to extend 

– my method does not seem to be 

able to work for other regular 

polygons. 

PT8: Once (I) find the value of 

sin2x, we’ll get the answer. x 

varies.  How ? 

Table 1: Summary of the coding scheme for metacognitive activity during 

mathematics problem solving. 

Summary of Data 

Table 2 shows the percentages of the three different metacognitive strategies used in 

solving Problems 1 and 2. 

 Metacognitive 

planning 

Metacognitive 

monitoring 

Metacognitive 

evaluating 

Correct answer 

(out of 22) 

 % of PT   

(Problem 1) 

       90.1%      27.3%       13.6%          9.1% 

 % of PT 

(Problem 2) 

       95.5%      72.8%       50.0%          22.7% 

      

Table 2: Percentage of PTs demonstrating different metacognitive strategies outlined 

in Table 1. 

Stage 1 of the PW provided the PTs an avenue to express in writing how they 

understand the problem and the plan to solve it—this explains the very high percentage 

of them (90% for Problem 1 and about 96% for Problem 2) demonstrating the 

metacognitive planning strategy. Although the percentage of PTs demonstrating 

metacognitive monitoring and metacognitive evaluating strategies were not high for 

both problems, especially for Problem 1, we are glad to see that there was an increase 

in the number of PTs displaying their metacognitive monitoring and evaluating 

strategies in solving Problem 2 (see Table 2). While this may be attributable in part to 

the PTs being more familiar with the use of PW to record their metacognitive strategies 

during problem solving, we think that the additional 10 minutes that were given to the 

PTs (for Problem 2) also allowed them to record their metacognitive processes on the 

PW. When we examined the PWs of those who obtained the correct answer for 

Problem 2, we noticed how PT18—who didn’t write about her metacognition at all for 

Problem 1 (she could not solve Problem 1)—were able to solve Problem 2 correctly. In 

addition, in the process of solving it, she revealed the metacognitive traces that could 

have helped her: realizing that her initial conjecture of “PB + PC – PA = 0” in her 

working may be correct but was unable to prove it, she wrote that there “may be 

another way of calculating area of triangle ABC to develop the relationship” (the 

relationship she meant is PB + PC – PA = 0). As it turned out, that metacognitive 
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evaluating act directed her to more productive ways of exploring the relationship 

among the three sides and solve the problem successfully. 

DISCUSSION AND CONCLUSION 

Research has shown that if students have gone through some metacognitive training, 

they could improve their ability in mathematics problem solving (Jacobse and 

Harskamp 2009). But the issue of measuring thinking-related variables such as 

metacognition accurately and effectively is still an issue of concern and it remains an 

ongoing area of research. In addition, there are debates and discussions about the 

suitability of instruments. Think-aloud protocols have been commonly used in 

measuring metacognition (Ku & Ho, 2010; Veenam et al, 2006) but the actual 

implementation of the measuring process is time-consuming and complex and thus less 

practical. The search for alternative instruments that are more classroom-friendly and 

that helps students more directly continues. 

From the results of this exploratory study, we think that the PW has the potential to aid 

learners keep track of their ongoing metacognitive behaviour and strategies used 

during the whole problem solving process. The PW ‘forces’ them to ‘think-aloud’ in 

the written form and teases out quite a good variation of metacognitive activities that 

were going on in problem solving process. Thus the PW can make metacognitive 

behaviour more visible, allowing the learners as well as the teachers to have 

information about the thinking processes. This information can, in turn, feedback to the 

problem solver and the teacher of problem solving.  

References  

Baer, M., Hollenstein, A., Hofstetter, M., Fuchs, M., & Reber-Wyss, M. (1994). How  expert 

and novice writers differing their knowledge of the writing process and its regulation 

(metacognition) from each other, and what are the differences in metacognitive knowledge 

between writers of different ages? Paper presented at the Annual Meeting of the American 

Educational Research Association, New Orleans, LA. 

Brown, A. (1987). Metacognition, executive control, self-regulation and other mysterious 

mechanisms. In F. Reiner & R. Kluwe (Eds.), Metacognition, motivation, and 

understanding (pp. 65-116). Hillsdale, NJ: Erlbaum. 

Coles, A. (2013). On metacognition. For the Learning of Mathematics, 33(1), 21-26. 

Desoete, A. (2007). Evaluating and improving the mathematics teaching-learning process 

through metacognition. Electronic Journal of Research in Educational Psychology, 5(3), 

705-730. 

Hascher, T. A., & Oser, F. (1995). Promoting autonomy in the workplace--A 

cognitive-developmental intervention. Paper presented at the Annual Meeting of the 

American Educational Research Association, San Francisco, CA. 

Holton, D., & Thomas, G. (2001). Mathematical interactions and their influence on learning. 

In D. J. Clark (Ed.), Perspectives on practice and meaning in Mathematics and Science 

Classrooms (pp. 75-104). The Netherlands: Kluwer Academic Publishers. 



Quek, Toh, Leong, Ho 

5 - 32 PME 2014 

Jacobse, A. E., & Harskamp, E. G. (2009). Student-controlled metacognitive training for 

solving word problems in primary school mathematics. Educational Research and 

Evaluation, 15, 447-463. 

Ku, K. Y. L., & Ho, I. T. (2010). Metacognitive strategies that enhance critical thinking. 

Metacognition Learning, 5, 251-267. 

Lai, E. R. (2011). Metacognition: A literature review. Upper Saddle River, NJ: Pearson 

Assessments. Retrieved from 

http://www.pearsonassessments.com/research  

Larson, C. (2007). The importance of vocabulary instruction in everyday mathematics (Math 

in the Middle Institute of Partnership Action Research Project Report). Lincoln, NE: 

University of Nebraska-Lincoln.  Retrieved from 

http://scimath.unl.edu/MIM/files/research/LarsonC.pdf  

Polya, G. (1954). How to solve it. Princeton: Princeton University Press. 

Schoenfeld, A. (1985). Mathematical problem solving. Orlando, FL: Academic. 

Veenman, M. V. J., Van Hout-Wolters, B. H. A. M., & Afflerbach, P. (2006). Metacognition 

and learning: Conceptual and methodological considerations. Metacognition and 

Learning, 1, 2-14. 



2014. In Nicol, C., Oesterle, S., Liljedahl, P., & Allan, D. (Eds.) Proceedings of the Joint Meeting 5 - 33 

of PME 38 and PME-NA 36,Vol. 5, pp. 33-40. Vancouver, Canada: PME. 

FEATURES OF SUCCESSFUL CALCULUS PROGRAMS AT FIVE 

DOCTORAL DEGREE GRANTING INSTITUTIONS 

Chris Rasmussen
1
, Jessica Ellis

1
, Dov Zazkis

2
, David Bressoud

3 

1
San Diego State University, 

2
Rutgers University, 

3
Macalester College 

 

We present findings from case study analyses at five exemplary calculus programs at 

US institutions that offer a doctoral degree in mathematics. Understanding the 

features that characterize exemplary calculus programs at doctoral degree granting 

institutions is particularly important because the vast majority of STEM graduates 

come from such institutions. Analysis of over 95 hours of interviews with faculty, 

administrators and students reveals seven different programmatic and structural 

features that are common across the five institutions. A community of practice and a 

social-academic integrations perspective are used to illuminate why and how these 

seven features contribute to successful calculus programs. 

INTRODUCTION 

Calculus is typically the first mathematics course for science, technology, engineering, 

and mathematics (STEM) majors in the United States. Indeed, each fall approximately 

300,000 college or university students, most of them in their first post-secondary year, 

take a course in differential calculus (Blair, Kirkman, & Maxwell, 2012). In the US, 

Calculus I is a university-level course that typically covers limits, rules and 

applications of the derivative, the definite integral, and the fundamental theorem of 

calculus. Typically, over half of Calculus I students also took a calculus course in 

secondary school, which usually focuses on techniques of differentiation and 

integration. In comparison, university-level Calculus I is usually more rigorous in its 

treatment of concepts (including limits, graphical interpretations, definitions, etc.) and 

applications. Proofs are typically not part of Calculus I at either the secondary or 

post-secondary levels. 

Internationally, first year university mathematics courses are consistently credited with 

preventing large numbers of students from pursuing a career in a STEM area (Steen 

1988; Wake 2011). In the United States, STEM intending students typically enroll in 

calculus (though not necessarily Calculus I).  In many European countries, STEM 

intending students instead typically enroll in abstract algebra or proof-based calculus 

(Wake 2011), as calculus is covered in secondary school. 

Recent studies show that in the US and elsewhere students show less interested in a 

STEM majors paired with an increased need for STEM professionals in the workforce 

(Carnevale, Smith, & Melton 2011; Hurtado, Eagan, & Chang 2010; van Langen & 

Dekkers, 2005). Thus for those students that do choose a STEM major, there is a 

pressing need for them to be successful in first year mathematics courses so that they 

can continue in their chosen STEM major and ultimately meet the growing demand of 
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the workplace for STEM graduates (PCAST, 2012; Wake 2011). However, student 

retention in STEM majors and the role of first year mathematics in student persistence 

is a major problem (Hutcheson, Pampaka, and Williams 2011; Pampaka, Williams,  

Hutcheson, Davis, and Wake 2012; Rasmussen and Ellis, 2013; Seymour and Hewitt 

1997).  

In order to better understand the terrain of calculus teaching and learning in the US, we 

are near completion of a five-year, large empirical study funded by the National 

Science Foundation and run under the auspices of the Mathematical Association of 

America. The goals of this project include: to improve our understanding of the 

demographics of students who enrol in calculus, to measure the impact of the various 

characteristics of calculus classes that are believed to influence student success, and to 

conduct explanatory case study analyses of exemplary programs to identify why and 

how these programs succeed. In this report, we present findings from our case study 

analyses at five exemplary calculus programs at institutions that offer a doctoral degree 

in mathematics. Understanding the features that characterize exemplary calculus 

programs at doctoral degree granting institutions is particularly important because 

these institutions produce the majority of STEM graduates.  

The overall five-year project was conducted in two phases. In Phase 1 surveys were 

sent to a stratified random sample of students and their instructors at the beginning and 

the end of Calculus I. The surveys were restricted to “mainstream” calculus, meaning 

the calculus course designed to prepare students for the study of engineering or the 

mathematical or physical sciences. Surveys were designed to gain an overview of the 

various mainstream calculus programs nationwide, and to determine which institutions 

had more successful calculus programs. Success was defined by a combination of 

student variables: persistence in calculus as marked by stated intention to take Calculus 

II; affective changes, including enjoyment of math, confidence in mathematical ability, 

interest to continue studying math; and passing rates. In Phase 2 of the project, we 

conducted explanatory case studies at 18 different post secondary institutions, where 

the type of institution was determined by the highest degree offered in mathematics. In 

this report, we present findings from analyses of the five case studies at doctoral degree 

granting institutions.  

THEORETICAL BACKGROUND 

Analysis of our case study data is grounded in two complementary perspectives, the 

first of which draws on the community of practice perspective put forth by Wenger and 

colleagues (Lave &Wenger; 1991; Wenger 1998). A community of practice is a 

collective construct in which the joint enterprise of achieving particular goals evolves 

and is sustained within the social connections of that particular group. In achieving a 

particular joint enterprise, such as the teaching and learning of calculus, a community 

of practice point of view highlights the role of brokers and boundary objects. A broker 

is someone who has membership status in more than one community and is in a 

position to infuse some element of one practice into another. The act of doing so is 
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referred to as brokering (Wenger, 1998). Boundary objects are material things that 

allow people to cross between different communities and facilitate progress on their 

joint enterprise.  

The second set of ideas that we employ to make sense of our case study data draws on 

research in Higher Education that has extensively studied factors related to student 

retention at the post-secondary level, with a focus on the effects of student engagement 

and integration on persistence (e.g., Kuh et al., 2008; Tinto, 1975, 2004). According to 

Tinto’s integration framework (1975), persistence occurs when students are socially 

and academically integrated in the institution. This integration occurs through a 

negotiation between the students’ incoming social and academic norms and the norms 

of the department and broader institution.  From this perspective, student persistence (a 

measure of success in calculus) is viewed as a function of the dynamic relationship 

between the student and other actors within the institutional environment, including 

the classroom environment.  

METHOD 

The survey results from Phase 1 provided information on which institutions are 

enabling students to be more successful in Calculus I (as compared to other institutions 

of the same type) per our measures of success. From this information, we were able to 

determine 18 institutions across all institution types that were more successful than 

others. Success was defined as a combination of increased student interest, enjoyment, 

and confidence in mathematics, persistence onto Calculus II, pass rates in Calculus I, 

and previously identified success on national measures of student understanding of 

calculus. Table 1 provides a brief description of the five selected doctoral granting 

institutions and why each was selected. 

Institution Why Selected 

D1  Large 

 Public 

 Increased confidence, interest in math, and intention to take 

Calc II; Higher than expected Calc I pass rate 

D2  Small 

 Private 

 Technical 

 Increased confidence, enjoyment of math, interest in math, 

and intention to take Calc II; Higher than expected Calc I pass 

rate 

D3  Small 

 Public 

 Technical 

 Increased confidence, enjoyment of math, interest in math, 

and intention to take Calc II; Higher than expected Calc I pass 

rate 

D4  Large 

 Public 

 Prev. identified implementation of best practices; high scores 

on national assessment of conceptual understanding of Calc 

D5  Large 

 Private 

 Increased confidence, enjoyment of math, interest in math, 

and intention to take Calc II 

Table 1: Description of case study sites. 
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Survey results, however well crafted and implemented, are limited in their ability to 

shed light on essential contextual aspects related to why and how institutions are 

producing students who are successful in calculus. The case studies were therefore 

designed to address this shortcoming by identifying and contextualizing the teaching 

practices, training practices, and institutional support practices that contribute to 

student success in Calculus I. As argued by Stake (1995) and Yin (2003), explanatory 

case studies are an appropriate methodology to study events (such as current practices 

in Calculus I) in situations in which the goal is to explain why or how, and for which 

there is little or no ability to control or manipulate relevant behaviors.  

Four different case study teams (one per each type of institution—community college, 

bachelor, masters, and doctoral) conducted three-day site visits at the selected 

institutions. During the site visit each team, which consisted of 2-4 project team 

members, interviewed students, instructors, and administrators; observed classes; and 

collected exams, course materials, and homework. Common interview protocols for all 

18 case studies were developed, piloted, and refined in order to facilitate comparison of 

calculus programs within and across institution type.  

At the completion of each site visit the case study teams developed a reflective 

summary that captured much of what was learned about the calculus program, 

including key facts and features that were identified by both the case study team and 

the people interviewed as contributing to the success of the institution’s calculus 

program. A more formal 3-4 page summary report was then developed by reviewing 

the reflective summary and transcripts and sent to the respective department of each 

institution as part of the member checking process (Stake, 1995).  

At the five doctoral degree granting institutions, we conducted 92 interviews with 

instructors, administrators, and students for a total of more than 95 hours of 

audiorecordings. All interviews were fully transcribed and checked by a second person 

for accuracy and completeness. In order to manage this vast amount of qualitative data, 

a tagging scheme was developed to facilitate the location of relevant interview 

excerpts related to one of more of 30 different areas of interest. These areas of interest 

include such things as placement, technology, assignments and assessments, instructor 

characteristics, etc. Each interview was first chunked in terms of what we refer to as a 

“codeable unit.” A codeable unit consists, more or less, of an interviewer question 

followed by a response. If a follow up question resulted in a new topic being discussed 

by the interviewee, then a new codeable unit was marked. Each codeable unit was then 

tagged with one or more of the 30+ codes. This data organization strategy then enable 

us to systematically identify all instances in which any interviewee addressed a 

particular topic area. Once these instances were located, then a more fine-grained 

grounded analysis proceeded. We used the facts and features documents to conduct 

initial cross case analysis to identify common features across the five doctoral degree 

granting institutions.  

The set of 30+ codes was developed by representatives from each of the four different 

case study teams and consists of both a priori codes from the literature and codes for 
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themes that emerged from the reflective summaries. The final set of 30+ codes 

underwent an extensive cyclical process in which representatives from each case study 

team coded the same transcripts, vetted their respective coding, which then led to 

refining, deleting, and adding new codes and operational definitions. Two different 

team members coded each transcript and the two coders resolved any discrepancies.  

DISCUSSION 

Cross case analysis of the five doctoral degree granting institutions led to the 

identification of seven features that contribute to the success of their calculus program. 

We first highlight what these seven features are followed by a discussion of the seven 

features in light of the communities of practice perspective and Tinto’s academic and 

social integration perspective. 

 Coordination. Calculus I (as well as PreCalculus and Calculus II) has a 

permanent course Coordinator. The Coordinator holds regular meetings 

where calculus instructors talk about course pacing and coverage, develop 

midterm and final exams, discuss teaching and student difficulties, etc. Exams 

and finals are common and in some cases the homework assignments are 

coordinated.  

 Attending to Local Data. There was someone in the department who routinely 

collected and analyzed data in order to inform and assess program changes. 

Departments did this work themselves and did not rely on the university to do 

so. Data collected and analyzed included pass rates, grade distributions, 

persistence, placement accuracy, and success in Calculus II.  

 Graduate Teaching Assistant (GTA) Training. The more successful calculus 

program had substantive and well thought out GTA training programs. These 

ranged from a weeklong training prior to the semester together with follow up 

work during the semester to a semester course taken prior to teaching. The 

course included a significant amount of mentoring, practice teaching, and 

observing classes. GTA’s were mentored in the use of active learning 

strategies in their recitation sections. The standard model of GTA’s solving 

homework problems at the board was not the norm. The more successful 

calculus programs were moving toward more interactive and student centered 

recitation sections. 

 Active Learning. Calculus instructors were encouraged to use and experiment 

with active learning strategies. In some cases the department Chair sent out 

regular emails with links to articles or other information about teaching. One 

institution even had biweekly teaching seminars led by the math faculty or 

invited experts. Particular instructional approaches, however, were not 

prescribed or required for faculty at any of the institutions.  

 Rigorous Courses. The more successful calculus programs tended to 

challenge students mathematically. They used textbooks and selected 

problems that required students to delve into concepts, work on 
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modeling-type problems, or even proof-type problems. Techniques and skills 

were still highly valued. In some cases these were assessed separately and a 

satisfactory score on this assessment was a requirement for passing the 

course.  

 Learning Centers. Students were provided with out of class resources. Almost 

every institution had a well-run and well-utilized tutoring center. In some 

cases this was a calculus only tutoring center and in other cases the tutoring 

center served linear algebra and differential equations. Tutoring labs had a 

director and tutors received training.  

 Placement. Programs tended to have more than one way to determine student 

readiness for calculus. This included: placement exams (which were 

monitored to see if they were doing the job intended), gateway tests two 

weeks into the semester and different calculus format (e.g., more time) for 

students with lower algebra skills.  

The fact that all five of the more successful calculus programs at doctoral degree 

granting institutions had someone whose official job included coordinating the 

different calculus sections is noteworthy. This role of coordinator was not something 

that rotated among faculty, such as committee assignments do, but rather was a 

designated and valued permanent position. The existence of this position is, however, 

only part of the story. An equally important part of the story is the role that calculus 

coordinator, among others, played in creating and sustaining a community of practice 

around the joint enterprise of teaching and learning of calculus. In other words, 

calculus was not seen as being under the purview of one person, such as the 

coordinator, but rather calculus was viewed as community property.  

Nonetheless, the calculus coordinator played a unique role within their community of 

practice. In particular, the calculus coordinator functioned as a broker between the 

more central members in the department that typically teach calculus and the many 

newcomers. At doctoral institutions, these newcomers to the calculus joint enterprise 

include visiting research or teaching faculty, post docs, lecturers, and graduate 

teaching assistants (GTAs). The regular meetings that the calculus coordinator 

convened provided occasions for newcomers to be enculturated into the norms and 

practices related to calculus. Long-term members of the community also used these 

meetings to reflect on their own and other’s practices. This reflection contributed to the 

sense of calculus as community property, as well as to the negotiation of communal 

practices.  

We identified a number of boundary objects that helped to facilitate this enculturation, 

including historical records of passing rates, current grade and persistence data, student 

evaluations, various training manuals (especially for GTAs and visiting faculty) and 

the development of common assignments and assessments. Other brokers in the joint 

enterprise of teaching and learning calculus included, for some of the five doctoral 

institutions, the graduate teaching assistant trainers and leaders, department chair and 

the person whose responsibility it was to collect and disseminate to the department 
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local data concern student pass rates and persistence and/or the correlation between 

these measures of success and the placement process. We conjecture that their 

attention to local data and continual improvement efforts contributed to a climate in 

which those involved with calculus teaching were always striving for improvement. 

Indeed, it was striking to us that none of the five case study institutions considered 

themselves to be particularly successful in calculus. That is, none of the five 

institutions in our case studies felt that they had everything just right.  

A community of practice perspective helps to illuminate the how and why particular 

calculus programs are successful from a point of view that highlights faculty and 

administration. In our view, Tinto’s academic and social integration perspective sheds 

equally important insight into how and why calculus programs are successful from a 

student point of view. In particular, almost without exception the students we talked 

with at the five doctoral institutions noted that they felt their calculus course was 

academically engaging and challenging (despite the fact that the vast majority had 

taken calculus in high school) but that there were a number of resources available to 

them to help them be successful. These resources included well-developed math help 

centers where students felt they received the help they needed and availability of 

instructor’s and GTAs office hours. Other factors that contributed to students’ 

academic and social integration included student centered instruction, common space 

in the math department where students could gather to work on homework, dorms that 

provided them with opportunities to interact with like minded fellow students, and in 

some places a cohort system or strong student culture that provided cohesion between 

students.   

In summary, our ongoing analysis of the five successful calculus programs at doctoral 

institutions is highlighting a number of structural and programmatic features that other 

institutions would likely be interested in adapting. The ongoing theoretical analysis 

points to the importance of how these structural and programmatic features come 

together for faculty so that calculus is seen as community property and for the 

academic and social integration so critical for students’ continued interest, enjoyment, 

and persistence in calculus. Our analysis that combines a community of practice 

perspective with the seminal work of Tinto on academic and social integration also sets 

the stage for the development of a more comprehensive model of successful college 

calculus programs. 
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Going beyond measuring accuracy of teachers’ judgments of students᾿ achievements, 

this paper focuses on how prospective elementary teachers proceed in one-on-one 

diagnostic mathematics interviews. As part of the project diagnose:pro, prospective 

elementary teachers (PTs) conduct diagnostic interviews with children in grade one 

and reflect on diagnostic strategies afterwards. Findings of the study lead to a model 

of strategic elements in diagnostic proceeding and suggest types of diagnostic 

strategies. It is also discussed how awareness of diagnostic strategies can be 

developed to foster sensitive every-day qualitative diagnostic attitudes in PTs.  

INTRODUCTION 

Based on the domains suggested by Shulman (1986) or Ball et al. (2008), pedagogical 

content knowledge (PCK) includes knowledge about common mathematical 

conceptions or misconceptions that are frequently encountered in the classroom. 

Besides theoretical instructions in teacher education or through a longer period of 

teaching experience, acquisition of this knowledge can also be enhanced as teachers 

examine individual cases: Analyzing a student’s error to find out more about the 

underlying misconception refers to knowledge of content and students (KCS), which is 

regarded as subdomain of PCK by Ball et al. (2008). Identifying unique facets of such 

individual cases may contribute to the understanding of widespread (mis)conceptions 

(e.g. Peter-Koop & Wollring, 2001; Hunting, 1997), thereby serving the elaboration of 

KCS and fostering the development of a teacher’s diagnostic attitude. 

Diagnostic competence is an important element of adaptive teaching competence since 

detailed information on a student’s individual conception can support the design of 

appropriate learning opportunities (Wang, 1992). Recent studies concerning teachers᾿ 
diagnostic competence mainly focus on measuring accuracy of teachers’ judgments 

(e.g. regarding a rank order within classes; cf. Südkamp et al., 2012). In these studies, 

diagnostic competence is “operationalized as the correlation between a teacher’s 

predicted scores for his or her students and those students’ actual scores” (Helmke & 

Schrader, 1987, p. 94). Contrary to this paradigm, there is a wide field in mathematics 

education research which deals with qualitative aspects of children’s wide-ranging 

learning developments. However, little is known about the processes of diagnosing 

which lead teachers to the evaluation of an individual student’s learning development 

in these process-oriented observations: Focusing on approaches of informal formative 

assessment (cf. Ginsburg, 2009), how do teachers arrive at a diagnosis of a student’s 
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conception via oral questioning or observation? As differences in accuracy might be 

due to teachers’ different ways of diagnostic proceeding and analyzing, how do they 

get to an appropriate interpretation of a child`s utterances or can be helped to do so? 

Setting the frame for this report, the project diagnose:pro emphasizes the need to 

sensitize prospective elementary mathematics teachers (PTs) to varieties, ranges and 

depth of young children’s mathematical thinking. Therefore, graduate students (Master 

of Education) prepare, conduct and analyze one-on-one interviews about arithmetic 

problems with children in grade one. One part of the project focuses on the cognitive 

diagnostic strategies PTs use in the reflection of those interviews. Thereby, it responds 

to the detected lack of knowledge regarding qualitative facets of interpretation in 

diagnostic situations. Findings in this scarcely explored domain are likely to strengthen 

the “power of task-based one-on-one interviews” (Clarke, 2013) in daily practice.  

THEORETICAL FRAMEWORK 

Diagnostic mathematics interviews in teacher education 

As teachers have to cope with an increasingly complex and demanding professional 

landscape, beginners and experienced teachers need to develop a sensitive, every-day 

constructivist view on their students’ individual mathematical thinking and progress. 

High-quality professional development engages teachers in concrete tasks (e.g. tasks 

of assessment or observation) and focuses on students’ learning processes (Borko et 

al., 2010). Preparing, conducting and analyzing one-on-one interviews provide novices 

with substantial learning opportunities as they study students’ mathematical 

conceptions (cf. Prediger, 2010; Sleep & Boerst, 2012). Developing a sensitive 

diagnostic attitude is also supported by involving PTs in research projects that include 

interview assessments (cf. Jungwirth et al., 2001; Peter-Koop & Wollring, 2001). 

Diagnostic interviews not only serve as a method in mathematics research and teacher 

education, but have also reached the classroom. Research-based frameworks (e.g. 

concerning learning trajectories) resulted in the design of standardized task-based 

interviews to assess children’s thinking in the context of mathematics learning in 

school – in short, to provide teachers with weighty arguments for sound diagnoses and 

for the preparation of adaptive learning arrangements. Here, interview tools and the 

prepared analysis (via empirically based growth points) serve to improve teachers’ 

professional development as they are encouraged to actively explore qualitative facets 

of children’s approaches to mathematics tasks (e.g. ENRP task-based assessment 

interview/CMIT/EMBI; cf. Clarke, 2013; Bobis et al., 2005; Peter-Koop et al., 2007). 

A process-oriented approach to diagnostic competence 

Ensuing a comprehensive understanding of diagnostic competence, expertise in this 

area reaches beyond teachers’ accuracy in measuring students’ achievements. Besides 

relating diagnostic competence to KCS as part of PCK, it additionally includes rather 

vague aspects like diagnostic sensitivity, curiosity, an interest in students’ emerging 

understanding and learning or the aptitude to gather and interpret relevant data in 
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non-standardized settings (e.g. Prediger, 2010). Acting within a diagnostic situation in 

a one-on-one interview which intends to enlighten students᾿ (mathematical) thinking 

can be regarded as an integral element of a multidimensional spiral process (Klug, 

2011; Klug et al., 2013). According to this model, a pre-actional phase (e.g. 

considerations of preparing diagnostic activities; choice of tasks/methods) prepares an 

actional phase (including data collection and data interpretation) that is followed by a 

post-actional phase. The latter implies taking the necessary action from data collection 

and interpretation which feeds to the design or the evaluation of a concept for an 

individual support in a repeated run through phases of the diagnostic macro-process. 

Cognitive elements in the micro-processes of the actional phase of diagnosing 

Researchers in mathematics education have partially specified the challenges that 

teachers face within such diagnostic macro-processes. Focusing on micro-processes 

within the actional phase; collecting data, interpreting and drawing conclusions have 

deep impact on the diagnosis from an interview and are likely based on different kinds 

of knowledge (e. g. KCS, see fig. 1). In this sense, proceeding in a one-on-one 

diagnostic interview is vitally influenced by cognitive processes. A person`s (verbal) 

articulation (e.g. ways of questioning, confirming) and intentional decisions (e.g. 

switching between tasks) may reveal facets of these ongoing internal considerations. 

Figure 1: Differentiating the micro-process in the actional phase of diagnosing. 

Moyer & Milewicz (2002) identified general questioning categories (check-listing/ 

instructing/probing/follow-up questions) used by PTs while collecting data in 

diagnostic interviews. As there is no direct access to students’ conceptions in these 

interviews, they “must be reconstructed by interpreting their utterances” (Prediger, 

2010, p. 76) as “the interviewer attempts to construct a model of the student’s 

mathematical knowledge” (Hunting, 1997, p. 149). Thus, it is also important to reach a 

substantial perception of the diagnostic situation while interpreting. According to 

Barth & Henninger (2012), this “includes the ability to structure the situation 

cognitively, the ability to change the focus of attention and the willingness and ability 

to adopt other perspectives” (p. 51) which leads to the generation/testing of hypothesis. 

Moreover, there is a demand “to know which information or knowledge sources play 

the most important role during the process of diagnosing students’ learning 

prerequisites” (Barth & Henninger, 2012, p. 50). But the implications of “gathering 

information, acting systematically” (Klug et al., 2013, p. 39) within the actional phase 

are not yet entirely clear for one-on-one interviews in mathematics education.  
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RESEARCH QUESTIONS 

Aiming at an empirically grounded theoretical framework for a qualitative view on 

PTs’ cognitive activities in one-on-one interviews with children, the main purpose of 

the partial study presented in this paper is to detect traits of diagnostic strategies: 

 What cognitive elements characterize the PTs᾿ diagnostic strategies when 

diagnosing individual arithmetic approaches in one-on-one mathematics 

interviews with children at the beginning of grade one? 

 Which types of (flexibly used) diagnostic strategies can be reconstructed from 

interviews they or others have been conducting?  

 What kind of knowledge (e.g. KCS) is used during the diagnostic proceeding? 

METHODS 

Data collection since 2011 included studies via video-vignettes (which led to written 

comments of 31 PTs on diagnostic scenes) and switched to video/audiotaped peer-talks 

among 28 graduate students about video-scenes of diagnostic interviews in 2012. Until 

fall 2013, retrospective interviews with seven PTs who had conducted a diagnostic 

mathematics interview with a first-grade child (cf. Moyer & Mielewicz, 2002) 

complemented data collection (cf. Reinhold, 2013). All PTs attended a mathematics 

methods course in the last year of their university studies (Master of Education). This 

course provided the opportunity to conduct individual diagnostic interviews with up to 

six first-graders per PT in cooperation with an elementary school. First drafts of these 

interviews were prepared at the beginning of the course where the PTs could refer to 

previous theoretical work on concepts of arithmetic learning trajectories and the 

method of task-based mathematics interviews (e.g. EMBI; Peter-Koop et al., 2007).  

With only general advice at the beginning of the retrospective interviews, the PTs were 

asked to “analyze the interview” while watching the video-recording of an interview 

they had conducted. The PT was requested to stop the video at any point in order to 

comment on the diagnosis he or she would derive from this specific situation or related 

observations. If comments were rather short or pure in detail, the PT was asked to 

explain what knowledge, information or evidence warranted his or her hypothesis. In 

addition to this concrete task (diagnosis of the child’s conception or knowledge), the 

PT reflected on his or her proceeding in a more general way: Referring to the 

preliminary design of the interview, the PTs were asked to comment on the choice of 

some selected tasks, on the wording of questions, on their own gestures or on 

deviations from the sketch. What prompted them to react to a child’s response? What 

was taken into account to confirm a diagnosis? 

The analyses of all re-interviews are based on Grounded Theory methodology and 

methods which include open, axial and selective coding (cf. Corbin & Strauss, 1990). 

The interpretation, coding and contrasting comparison of the data are supported by the 

software ATLAS.ti which enabled the research team to directly code video-data.  
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Fig. 2: Structured box  

FINDINGS 

Analyses of the study’s data support the notion that cognitive elements of PTs’ ways of 

diagnostic proceeding in one-on-one interviews often resemble basic processes in 

qualitative data analysis. This includes acts like collecting, interpreting and concluding 

within diagnostic micro-processes (see fig. 1). Furthermore, the findings contribute to 

the identification of sub-categories of collecting, interpreting or concluding and to 

interrelations among these sub-categories (see fig. 3). Excerpts from re-interviews with 

Ann and Sue, master’s students in their last year of studies, display exemplary facets of 

interpreting within the diagnostic micro-process of the actional phase.   

Facets of interpreting in a diagnostic micro-process: Comparing and contrasting 

In her interview with six-year old Tom, Ann offers empty 

boxes for ten eggs and some chestnuts. The boxes of ten 

are partitioned in four fields (see fig. 2) since Ann intends 

to find out how children use these structures for counting 

or for abbreviated enumeration (i.e. counting strategies 

including subitizing parts of an amount, cf. Besuden, 2003). Ann stops the video and 

comments on a scene where she has just put five chestnuts into the box (forming a 

row). Tom is asked to add further chestnuts in order to get a result of eight and fills two, 

then one more into the box. Answering Ann, he remarks “Because I left two free, one 

more’d be nine, then ten.”  

Ann (07:08): And there I noticed that he, eh, always took ten as a starting point for the 

higher numbers, well, for eight and a moment ago for nine. He remembers, 

okay there are ten in the package, and then he always counts backwards.
1
  

In her comment, Ann compares and refers to Tom’s previous work (“a moment ago”). 

Comparing details to a child’s previous utterances or actions, to that of others or to the 

PTs own concept may also occur in terms of contrasting different scenarios: 

Ann (08:30): Here, he saw, okay, there are four in one box and there are another four in 
the second box, well, four plus four equals eight, but he didn’t do it that way 
in the next task. There he’d count single ones, it was done quite differently. 

Facets of interpreting in a diagnostic micro-process: Coding 

Sue uses the same kind of tasks in her interview with six-year old Ben. She wants him 

to find out how many chestnuts have to be added to four chestnuts (which are presented 

in the “square” on the right side of the box) to get a result of seven. Ben replies by first 

adding two (forming a “rectangle”), then one more to reach seven (Ben: “These are six, 

then seven.”). Sue codes these actions by creating the new term “auxiliary 

calculation”: 

Sue (05:40):  Responding to my enquiry, how he’d done this, now, how many he’d add, 

actually, I only wanted to hear “three”, well, he would seize on his, let’s say 

“auxiliary calculation”, six plus one equals seven.  

                                           
1
 All interview excerpts are translated into English by the author. 
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PTs are similarly coding observed phenomena as they try to grasp unfamiliar, but 

obviously central aspects of a child’s conception. Codes are often referred to later in 

the interviews (e.g. Sue’s reference to the code “auxiliary calculation”, 22:30) and may 

also substitute established terms (e.g. “shortcut” instead of “subitizing”). 

Facets of interpreting: References to knowledge of content and students (KCS) 

To describe the children’s performances in the re-interview, PTs also try to make use 

of standardized terms. These refer to previously acquired KCS and seize on theoretical 

concepts that were studied in the methods course before conducting the interviews: 

Sue (04:50): At the beginning, Ben definitely used counting strategies. He saw those 

four and went on counting from that summand. He noticed, if I add two I’ll 

get six, thus, he didn’t go like “five…six”, but he said, okay, two, that’s six. 

Although details of the counting strategy “counting on by steps of two” are not 

reflected here, referring to KCS tends to be an important element of PTs’ diagnostic 

strategies: PTs do use information from their teacher preparation courses. They 

partially retain general knowledge of children’s development of mathematical 

conceptions, but often remain unfocused in supporting their interpretation with this 

knowledge as we see in Ann’s explanations of the term “understanding of quantities”: 

Ann (15:17): But, Tom doesn’t have, eh, a complete understanding of quantities at his 

disposal, partly he did, partly he didn’t. It’s when a child notices that a 

number is now, eh, bigger than the number before, or that one can draw 

conclusions from one equation to the next, that is connected to the first one. 

Types of diagnostic strategies 

Following Grounded Theory methodology, distinct types of diagnostic strategies with 

a stress on different elements of diagnostic proceeding (i.e. on the exemplified (sub-) 

categories) are detected. As indicated by the arrows in fig. 3, PTs’ diagnostic strategies 

are far from being a linear process and may be driven by general dimensions of 

diagnostic strategies (e.g. topographic or symptomatic search; Cegara & Hoc, 2006).  

 
Figure 3: Sub-categories of collecting, interpreting and concluding. 

Following the strategy descriptive collector, the PT searches rather typographically, 

focuses on collecting and describing the child’s actions and neglects both interpreting 



Reinhold 

PME 2014 5 - 47 

and concluding. A concluding collector strategy is characterized by skipping elements 

of interpretation as collecting directly leads to conclusions. Symptomatic searches 

occur when elements of interpreting prevail in a branched interpretation. Here, 

interpreting, collecting and concluding are intertwined and frequently linked to KCS. 

DISCUSSION 

The findings of the study provide evidence of sub-categories of collecting, interpreting 

and concluding within micro-processes of the actional phase of diagnosing, point at 

KCS within these processes and hint at a variety of strategy types. Thus, results enrich 

the idea of “interpreting” in the actional phase of diagnosing suggested by Prediger 

(2010) or Barth & Henninger (2012). Bearing in mind that the findings are restricted to 

a particular type of tasks (arithmetic) and that they refer to a rather small number of 

participants (n=28 in peer-talks; n=7 individual interviews), the study outlines new 

topics in the field of teachers’ professional development: It raises the hypothesis that 

reflecting on facets of proceeding in one-on-one interviews enhances PTs diagnostic 

sensitivity and increases their knowledge of assessing children’s mathematical 

abilities. As an integral element of PCK, this might include awareness of “strategic 

diagnostic tools” which help to master diagnostic challenges in the classroom. Thus, 

further activities of the project diagnose:pro will explore how the findings (elements 

of diagnostic strategies/types of strategies) can be taken up in university courses and  

contribute to appropriate diagnoses of children’s concepts in one-on-one interviews. 
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SOFYA KOVALEVSKAYA: MATHEMATICS AS FANTASY 

Veda Roodal Persad 

Simon Fraser University 

 

What is entailed in doing mathematics and becoming a mathematician? Working from 

an autobiographical sketch and biographies of Sofya Kovalevskaya (1850-1891), the 

first woman generally thought to have gained a doctorate in mathematics, and using 

the Lacanian notion of desire, I examine the forces that shape and influence 

engagement with mathematics. This work has consequences for mathematics 

education in examining the construction of identity/subjectivity in teachers and 

students alike. 

INTRODUCTION 

Over the years, mathematics education research has renewed itself in its quest for 

understanding the nature of learning and teaching mathematics by studying 

mathematicians: from finding out what mathematicians know, to describing what they 

do (the practices of mathematicians, e.g. Burton, 2004), and then to exploring who 

mathematicians are. More recently, researchers, including Tony Brown (2008; 2011), 

Baldino and Cabral (2006), and Walshaw (2004), have focused on the subjective 

aspects of being a mathematician, using a postmodern and, more particularly, a 

psychoanalytic approach. After waves of study on beliefs, emotions, and 

psychodynamics, the present focus on subjectivity and identity is an inevitable 

consequence in the search for the factors relating to engagement with mathematics, 

apart from the usual considerations of students, teachers, classrooms, and tasks.  

In this paper, I contend that any effort in understanding how and why students (and, in 

general, people) take up mathematics must begin with the mathematical subject, the 

individual in the encounter with the discipline, and that, contrary to expectations, the 

driving force in the endeavour is desire, on the part of both the subject and the 

discipline as a cultural phenomenon. I present, as an example of a trajectory in 

mathematics, the life of Sofya Kovalevskaya (1850-1891), the first woman in the 

world to have a professional university career in mathematics (Audin, 2013). 

Kovalevskaya did original work in three areas of mathematics, any of which would 

have been enough for a doctorate in mathematics.  The first area of her work was in 

solving partial differential equations (one of her results, called the Cauchy-Kovalevsky 

theorem, is the basic theorem on partial differential equations over complex numbers).  

In the second, she extended some results of Euler, Lagrange and Poisson involving the 

reduction of Abelian integrals to elliptic integrals, and in the third, she made some 

additions to the work of Laplace on Saturn’s rings. 

Accounts by and about mathematicians regarding their journeys in mathematics have 

long been neglected as a source of knowledge about the discipline. These accounts 
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have generally been concerned with historiography, showing the unique lives and 

accomplishments of mathematicians. Using data from an autobiography and 

biographies, I argue that her journey in mathematics was shaped primarily by the 

face/t/s of desire. I then discuss the implications for school mathematics. 

THEORETICAL INFLUENCES 

In keeping with the psychoanalytic approach of the researchers above, I am guided by 

Lacan’s theory of the subject and the construct of desire in the subject’s psychic 

economy played out in three registers or orders which obtain at every stage of the 

subject’s experience: the Imaginary, the Symbolic, and the Real. The Imaginary is the 

realm of “images, conscious or unconscious, perceived or imagined” (Lacan, 

1973/1981, p. 279) of the people and objects in the world present to us. The Symbolic 

is derived from the “laws” of the wider world in its structure and organization, and 

shapes or interpellates (Latin: inter/between, within, pellere/push) the subject, 

becoming the Other for the subject. The Symbolic is enabled by language as it is 

language that gives us the structures for the signifiers for the “I” and the Other, and for 

articulating the lack and misidentification of the self with the specular image. The Real 

is the unmarked backdrop against which the Imaginary (image-based) and the 

Symbolic (word-based) come into play, the screen on which images and words unfold 

and move. In the confluence of these three registers, the subject comes into play or is 

played with the forces of separation and alienation that lead to desire. Thus, the 

Lacanian subject experiences desire as a manifestation of lack as the subject seeks to 

both identify and separate itself from the Other.  

In applying these concepts to the interplay of the cultural phenomenon of mathematics 

and the subjects who encounter and engage with it, I tease out more carefully the 

notion of the Other, which, despite being a well-known concept in the social sciences, 

has a meaning in each of the three Lacanian registers. In the Symbolic, the Other is the 

code or discipline of mathematics, its knowledge and traditions with its concomitant 

demands and costs. In the Imaginary, the Other is the Imaginary others, the people who 

engage with mathematics in some form including the mathematicians who embody and 

make incarnate the code of mathematics. In the Real, the Other is the Lacanian objet a, 

which is the object-cause of desire, and which in some instances of desire will again 

turn out to be mathematics. 

Mathematics as a cultural phenomenon is far-reaching in its forces and effects. With 

respect to the discourse of literary and cultural criticism, the noted Lacanian theorist, 

Mark Bracher, writes: “Insofar as a cultural phenomenon succeeds in interpellating 

subjects—that is, in summoning them to assume a certain subjective (dis)position—it 

does so by evoking some form of desire or by promising satisfaction of some desire” 

(1993, p. 19). I demonstrate in the life of Kovalevskaya the desire that mathematics 

evokes as it holds out the promise of satisfaction.   

Bracher (1993, pp. 20-21) elaborates four forms of desire by exploring the ambiguities 

in Lacan’s dictum that desire is desire of the Other. These four forms come from the 
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oppositions of two types of desire, the desire to be (narcissistic) and the desire to have 

(anaclitic), and the two roles, active and passive, that the subject and the Other take 

(when the one is active, the other is passive). I present these forms in the following 

table and give examples of each desire with respect to mathematics: 

 Narcissistic (to be) Anaclitic (to have) 

Passive 
 
 

I can desire to be the object of the Other’s 
love (or the Other’s admiration, 
idealization, or recognition). 
“I want to be recognized by 
mathematics and its community as a 
mathematician.” 

I can desire to be desired or possessed by 
the Other as the object of the Other’s 
jouissance. 
“I want to be desired by mathematics as, 
e.g., a means of adding to its glory.” 

Active 
 

I can desire to become the Other – a desire 
of which identification is one form and 
love or devotion is another. 
“I want to be a mathematician.” 

I can desire to possess the Other as a means 
of jouissance. 
“I want to possess mathematics as, e.g., 
enjoyment, as a personal treasure.” 

Table 1: Forms of desire (Bracher, 1993) 

In describing desire, Lacan used the notion of the asymptote, always approaching but 

never attaining an object because there is no object of desire, only an object-cause of 

desire. The origin, nature, and path of desire are elaborated by Grosz (1990), in her 

feminist introduction to Lacan: 

Lurking beneath the demands for recognition uttered by the subject (to the other) is a 

disavowed, repressed or unspoken desire. Desire is a movement, a trajectory that 

asymptotically approaches its object but never attains it. Desire, as unconscious, belies and 

subverts the subject's conscious demands; it attests to the irruptive power of the 'other 

scene, the archaic unconscious discourse within all rational discourses. (p. 188) 

Further, in order to stage its unconscious, unknown, and unacknowledged desire, the 

subject resorts to fantasy; “a fantasy constitutes our desire, provides its coordinates, 

that is, it literally ‘teaches us how to desire’” (Žižek, 1997/2008, p. 7)  

METHODOLOGY 

The data for this study were accounts of Kovalevskaya’ life published in English. I did 

not know of Kovalevskaya as a mathematician despite my many years of learning and 

teaching mathematics. I came upon her serendipitously from a collection of stories by 

Alice Munro (2009), Too much happiness. Munro had been looking for something else 

when she came upon Kovalevskaya, and was struck by the unusual combination of 

mathematician and novelist. I soon found that there was much more material on 

Kovalevskaya including a memoir, A Russian childhood; indeed, there is a small 

industry on her life and work among historians of mathematics and science, a few 

mathematicians, and a few who are interested in gender studies. So far these give 

different perspectives on her life and the myths that have been created around her; none 

of these takes a psychoanalytical approach.  These studies also posed the challenge of 

translation into English and a related matter, citation. Much of the primary source 

material about Kovalevskaya is in other languages (Russian, French, and German) and 
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the English translations are not uniform (for example, the word, “imagination”, in 

place of “fantasy”).  

Using biographies and Kovalevskaya’s memoir as data, I searched for evidence of 

desire related to mathematics and being/becoming a mathematician. These included 

quotations (oral and written), events, and observations related to mathematics and 

mathematical activity. I then carried out a thematic analysis, informed by the lens of 

the above forms of desire. 

ANALYSIS AND DISCUSSION  

Of the four forms of desire, the one that stands out most clearly in Kovalevskaya’s life 

is active anaclitic desire: mathematics was the Other that she wanted to possess. She 

writes of hiding an algebra textbook under her pillow and reading it through the night 

as well as of her protracted fascination with the notes of a calculus course that was used 

as wallpaper of her nursery. Mathematics became a part of her from the long hours  

spent staring at those hieroglyphics and symbols (in particular, the symbol for the 

limit) and sleeping with those algebraic equations and expressions. Indeed, when she is 

introduced to these symbols later, her professor remarks that she understands them as if  

she had known them in advance. She also writes of the trigonometry she devised in 

order to understand a physics textbook written by her neighbor. Also her desire for 

higher education in mathematics was inflamed by the political movement of the times 

(the serfs had been recently emancipated and there was much hope for reforms such as 

independence and higher education for women). As a woman, she was barred from 

classes in mathematics and science and was smuggled into these classes at the 

university by men sympathetic to the cause, but it was evident that true possibilities for 

higher education lay outside Russia, further afield in Europe.  

Kovalevskaya continued her pursuit of mathematics by journeying though the major 

university cities in Europe seeking to be admitted or to attend classes (all barred to 

women). On the recommendation of her professor, Königsberger at Heidelberg, 

Kovalevskaya finally made her way to Weierstrass in Berlin in the desire and hope of 

being tutored by the best in the field of mathematics. Weierstrass (some thirty years 

older and a bachelor who lived with his spinster sisters) was so confused by her 

presence as a woman wanting to study mathematics that he gave her a list of problems 

to do in the hope that she would find them too hard and not return. She did return and 

amazed him with novel solutions that demonstrated unusually great depth of 

understanding. Her desire to possess higher mathematics led her to a relationship with 

Weierstrass as a colleague, no longer that of teacher and student.  

Closely intertwined with active anaclitic desire is active narcissistic desire where the 

subject seeks to become the Other, to identify with or to be devoted to the Other. The 

Other of mathematics was embodied for Kovalevskaya in Weierstrass. He was her 

primary model of a mathematician as she strove to adopt his style: “These studies [with 

Weierstrass] had the deepest possible influence on my entire career in mathematics. 

They determined finally and irrevocably the direction I was to follow in my later 
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scientific work: all my work has been done precisely in the spirit of Weierstrass” 

(Kovalevskaya, 1889/1978, p. 218). This meticulous attention and devotion to the 

requirements of doing mathematics as exemplified by Weierstrass worked to her 

detriment in that some mathematicians, in particular Felix Klein, charged that it was 

Weierstrass, and not her, who did the work for which she was given credit. Klein 

wrote: “Her works are done in the style of Weierstrass and so one doesn’t know how 

much of her own ideas are in them” (cited in Rappaport, 1981, p. 564), pointing to a 

loss of boundary in the fusion of her mathematical self in Weierstrass’s style of doing 

mathematics. Weierstrass came to occupy a special place for her as a father-figure, his 

tone in his letters to her deepening from the formal to one of encouragement and 

support. In one letter, he refers to himself as her Spiritual father. This was in keeping 

with the substitutes in her life; she was parented by her nurse (her mother to her nurse 

when she was brought into company: take your savage away, she is not wanted here), 

she engaged in a platonic marriage, and she sought a substitute father in Weierstrass. 

In seeking to identify with being a mathematician, Kovalevskaya carried out the work 

of a mathematician in writing and publishing. It was vital to her that her work was 

published in recognized arenas of mathematics at the time, namely Crelle’s Journal 

and Acta Mathematica: “At this writing Acta Mathematica is regarded as one of the 

foremost mathematics journals in scholarly importance. Its contributors include the 

most distinguished scholars of all countries and deal with the most ‘burning’ questions 

– those which above all others attract the attention of contemporary mathematicians” 

(Kovalevskaya, 1889/1978, p. 221). In these way she worked towards belonging to the 

community of mathematicians (the Imaginary others of mathematics). 

Beside the two active forms of desire, there are two passive forms of desire.  I begin 

with passive narcissistic desire, the desire to be object of the Other’s love, admiration, 

idealization, or recognition), which Lacan calls the strongest form of desire.  

Kovalevskaya desired strongly to be recognized as a mathematician; “At that time my 

name was fairly well-known in the mathematics world, through my work and also 

through my acquaintance with almost all the eminent mathematicians of Europe” 

(Kovalevskaya,1889/1978, p. 222). What is in a name and in wanting one’s name to be 

known? For Kovalevskaya, it was her very subjectivity and her desire for posterity in 

the “mathematics world”. Her desire was for a teaching position in a Russian or 

European university; the times dictated that her only opportunity would be at a school 

for girls. Despite an enthusiastic endorsement from Weierstrass, this desire went 

unfulfilled until with the help of Mittag-Leffler (also a former student of Weierstrass) 

she secured a position teaching mathematics at Stockholm University in Sweden.  

Kovalevskaya sought to be desired by mathematics in assuming the position of the first 

female editor, and only the second editor, of a mathematical journal, Acta Mathematica 

(its first editor and founder was Mittag-Leffler); such a position being occupied by a 

woman was again unheard of at the time. A further example of seeking the favours of 

mathematics was in her competing for and winning the Prix Bordin, then of the level of 
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a Fields prize in mathematics, the high quality of her submission, On the rotation of a 

solid body about a fixed point, being noted and rewarded with greater prize money.  

Her desire for recognition met with mixed results. As a woman studying mathematics, 

she was often considered a freak of nature which contributed to her gaining the status 

of a celebrity; people stopped in the street, pointing her out as the young woman who 

took her studies seriously. Though she could not be a woman lecturer in Russia nor a 

member of the Russian Academy of Sciences, the local newspaper carried this item: 

“Today we do not herald the arrival of some vulgar insignificant prince of noble blood.  

No, the Princess of Science, Madam Kovalevskaya, has honoured our city with her 

arrival. She is to be the first woman lecturer in all Sweden” (Flood and Wilson, 2011, 

p.167). But she met with opposition in some quarters, for example, from the 

playwright, August Strindberg, who abhorred the idea of a female academic.  

The remaining form of passive desire is passive anaclitic desire or the desire to be 

desired or possessed by the Other as the object of the Other’s enjoyment. In 

Kovalevskaya’s life, the desire to be possessed by mathematics did not prove to be so 

strong as she had an equal passion for literature writing theatre reviews, poems (for 

herself), a novel, a memoir and play. For her, mathematics was to be revered: “a very 

lofty and mysterious science, which opened out to those who consecrated themselves 

to it a new and wonderful world not attained by simple mortals” (Kennedy, 1983, p. 

17) but she continues:  

As far as I am concerned, during my life I could never decide whether I had a greater 

inclination toward mathematics or literature. Just as my mind would tire from purely 

abstract speculations, I would immediately be drawn to observations about life, about 

stories; at another time, contrarily when life would begin to seem uninteresting and 

insignificant then the incontrovertible laws of science would draw me to them. It may well 

be that in either of these spheres, I would have done much more, had I devoted myself to 

one exclusively, but I nevertheless could never give up either one completely. (p. 17) 

Hence she did not devote herself entirely to mathematics, implying that mathematics 

was not “everything” for her, and perhaps that she could have been better had she been 

more faithful to it. Could she have served two masters or two gods? Does mathematics 

brook no other interests?  She pushed away the one (mathematics) as she reached for 

the other (literature) but then later returned to her first love and passion. For 

Kovalevskaya, literature provided counterpoint to the “abstract speculations” of 

mathematics, both literature and mathematics being variations on the theme of the 

creative. It is interesting that she realizes that she could have accomplished more had 

she focused exclusively on one of the two but that she was willing to sacrifice that 

achievement in order to keep a foot in both worlds.  

The leitmotif of her life: Asymptotic desire 

The four forms above underpin the central theme of asymptotic desire in 

Kovalevskaya’s life. For Lacan, every desire is born out of lack, out of alienation and 

separation. Kovalevskaya’s desire arose out of various lacks: of not being allowed to 
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take her place as a mathematician, of not being complete as a mathematician, and of 

not meeting the requirement of being male (the identities demanded by the 

“masculinities” of mathematics are explored in Mendick (2006)). Desire, constant, 

repetitive, and forever circling, in the two spheres of literature and mathematics can be 

seen as an attempt to address and reconcile the various aspects of herself with respect 

to the registers of the Imaginary (she was interested in life, its characters, its 

appearances, and its illusions) and the Symbolic (the words of literature and the 

symbols of mathematics that she could marshal to give life to her thoughts and ideas). 

Her desire was fed by both avenues, the one coming to the fore as interest in the other 

faded or was blocked in some way. 

CONCLUSION 

The analysis above shows that the dimensions of subjectivity and desire in the 

mathematical endeavour are significant in probing human relationships with 

mathematics. Kovalevskaya’s journey is an effect of desire orchestrated by the cultural 

phenomenon of mathematics and by her lack as a subject. Kovalevskaya was 

circumscribed by the signifiers of ‘woman’, ‘Russian’ and ‘mathematician’, none of 

which would have come up as an issue of struggle in a given society or community. 

Only when her desire was hemmed in by these did they become forces by which she 

was buffeted. Looking back on Kovalevskaya’s life, it seems to me that the distance 

from the place of mathematics as fantasy that she accessed through her mathematical 

work to the reality of her life in the circles in which she moved was too great. The 

metric needed to conceptualize that distance would take a century and more of social 

upheaval. The costs were too inordinate to bear and the cold realization is that 

mathematics is indeed, even with the gifts of genius and charm, not for the faint of 

heart. In the end, she was unable to realize her dreams to the extent of her desire. She 

had started with quadratures and asymptotes. Her life was an ode to her attempts of 

squaring the circle amid her trajectory of asymptotic desire in search of her old friend 

and lost object, the limit.  

The implications for the kind of knowledge that has been excavated above in 

mathematics and mathematics education are far-reaching. What is truly entailed in 

doing mathematics and being a mathematician? If what is true for Sofya Kovalevskaya 

is also true of others in becoming mathematicians, then desire is a paramount 

consideration. To this day, her life and work remains an inspiration for mathematicians 

and those who would be mathematicians. The most recent work on Kovalevskaya is a 

passionate subjective account by Michèle Audin (2008/2011), a renowned present-day 

mathematician who found Kovalevskaya from her own work on integrable systems.  

Further, official documents that describe what is entailed in learning and/or doing 

mathematics (such The Adding it up document, Kilpatrick et al, 2001) as a means of 

helping children develop as mathematicians has five strands, none of which addresses 

the subjective aspect of the endeavour on both the parts of the student and the teacher. 

In the encounter between the rational discourse of mathematics and the bundles of 
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subjectivity that are students and teachers, how, as teachers of mathematics and 

researchers in mathematics education, how must we conduct ourselves?  I contend that 

we consider that mathematics may not be for all, and that it is near transgressive that 

we do not address the personal costs and defences (Nimier, 1993). What is at stake is 

more than the curriculum, the delivery, and tasks; it is a recognition of the very nature 

of subjectivity, of who we are when we do mathematics,  of the subject positions we 

are called to be in order to do mathematics. It is a matter of what drives the engagement 

with mathematics, namely, desire.  
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This paper reports on the role of the graphing calculator (GC) in the learning of 

derivatives and instantaneous rate of change. In a longitudinal study, we administered 

task based interviews before and after the introduction of calculus. We analyzed 

students’ use of the GC in these interviews. This paper reports on the case of one 

student, Andy, who is a resilient user of the GC while he develops into a flexible solver 

of problems on instantaneous rate of change. His case demonstrates that, although the 

GC is meant to promote the integration of symbolical, graphical and numerical 

techniques, it can facilitate a learning process in which symbolical techniques develop 

separately from other techniques. 

INTRODUCTION 

Graphing calculators (GC) are widely used in mathematics education because they 

support a multiple-representational approach to the learning of mathematics. The GC 

gives opportunities to interactively discover relations between functions and graphs. 

Burrill et al. (2002) report on evidence that the use of the GC improves the ability to 

link symbolical, graphical, and numerical representations, in particular for the 

understanding of functions and algebraic expressions. Also for learning the concept of 

derivative, the GC can make a possible contribution, as Delos Santos (2006) notes. So, 

on the one hand there is evidence that using the GC promotes students to develop 

strong relationships between symbolical and graphical forms of functions and 

derivatives. On the other hand the question remains: what are effects of handheld 

technology on students’ mathematical thinking (Burrill et al., 2002)?  

This study will contribute to this question by zooming in on one particular student 

during the period, in which he is learning about derivatives at pre-university level. His 

learning context is Dutch mathematics education, in which the GC is used as a tool 

during the introduction of derivatives. The GC offers, for example, options to draw the 

graph of the derivative, such as NDeriv, or to find dy/dx in a point of the graph. 

Depending on the textbook series and the teacher, different GC-options are used in 

mathematics lessons.  

We will report on student Andy. He was part of a group of ten students in a longitudinal 

study (Roorda, Vos & Goedhart, in press). In that study general patterns of students’ 

thinking were reported. Andy showed an a-typical pattern, which we left largely 

unreported as he was an outlier. Unlike the other students, in Andy’s thinking the GC 
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played an important role. The goal of this paper is to present evidence of how a 

student’s understanding of the concept of derivative can be affected by the use of a GC. 

THEORETICAL FRAMEWORK 

To study the relationship between the use of digital technology and students’ 

mathematical thinking we use the theoretical framework of instrumental genesis (e.g., 

see Drijvers, Godino, Font & Trouche, 2013; Guin & Trouche, 1999). In this theory, 

artefacts are distinguished from instruments. The latter refers to a psychological 

construct, actively constructed by an individual, which consists of the user’s mental 

scheme for using the artefact for a type of tasks. As such, the instrumental scheme 

integrates technical knowledge of the use of the artefact and the (in our case 

mathematical) knowledge involved. Instrumental genesis is the process of an (in our 

case digital, handheld) artefact becoming an instrument; it is a process in which 

techniques for using the digital tool and mathematical insights co-emerge. The 

resulting instrumentation scheme is the more or less stable way to deal with specific 

situations or tasks, guided by the opportunities and constraints of the artefact, as well 

as by the available knowledge. 

The theory of instrumental genesis provides a widely applicable framework for 

investigation of the use of ICT-tools in mathematics education, and avoids an 

oversimplified separation of mathematical thinking and outsourcing calculations to the 

artefact. By explicitly describing instrumentation schemes, the instrumental genesis 

lens may help to identify the relationships between the use of the digital tools and the 

mathematical knowledge a student develops. This is exactly the way in which we will 

exploit this theory.  

Guin and Trouche (1999) conclude that there is a great diversity in instrumental 

geneses. However, schemes related to using a GC for studying the derivative so far 

have hardly been described. In our study, therefore, we will identify such schemes and 

investigate how these develop over time. In terms of the instrumentation framework, 

the research question is: how do students’ instrumentation schemes develop while 

studying the concept of derivative with the use of a GC? 

METHODS 

To gain insight into the development of students with regards to derivatives, we opted 

for a detailed description and analysis one student’s work over a time period of a year. 

The case study of Andy is part of a longitudinal, multiple case study, in which ten 

students were followed (Roorda, Vos & Goedhart, in press). The students were in a 

pre-university science track, which means that they take science and mathematics 

courses at an advanced level. When we discovered that Andy’s development 

contrasted with the other nine students, we decided to gather additional data on Andy’s 

development.  

The data were gathered at four different moments in time, together spanning the period 

before and after the introduction of calculus at school. In April and November 
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task-based interviews (Goldin, 2000) were administered. The first interview (TBI-1) 

was held while Andy was still in grade 10 and the concept of derivative had not yet 

been introduced in his mathematics classes. The second interview (TBI-2) was held a 

few weeks after the introduction of differential calculus (difference quotient, 

differential quotient, derivatives of polynomials) with Andy being in grade 11. Also, 

we collected his work on two calculus tests, which were set by his teacher (CT-1 and 

CT-2). CT-1 was immediately after the lesson series, while CT-2 was about two and a 

half months later for those students with a low mark on the first calculus test. Andy was 

one of the low performers on the first test. 

According to the Dutch curriculum for the pre-university science stream, at the 

beginning of grade 11 the derivative is introduced in mathematics classes. The 

introduction starts with the transition from graphs to functions and with the transition 

from a difference quotient to a differential quotient. Textbooks start with exercises on 

distance-time graphs to illustrate the meaning of average and instantaneous rate of 

change. The distance-time situation serves as an example to introduce the 

mathematical concept of derivative. After this physics-based introduction the slope of 

the tangent at a graph in the xy-plane is approximated by the slope of a line through two 

points on successively smaller intervals. The rate of change is directly linked to the 

tangent of the graph. Thereafter, the basic rules of symbolical differentiation are 

introduced and practiced.  

Instruments and analysis 

The two task-based interviews were designed to provide in-depth information about 

students’ mathematical thinking while studying the concept of derivative. The tasks 

offer different representations (graphs, symbols, tables, etc.). Special about the tasks is, 

that the mathematical terms derivative, slope or differentiation and the symbols f’ and 

dy/dx are explicitly avoided. In the tasks, the concept of derivative is asked for within 

situated contexts whereby variables have a physical meaning, such as time, volume or 

distance. The interview protocol prescribed, that a student, after completing a task, was 

repeatedly asked to check the obtained answer through other techniques. In this way, 

we were assured to observe a range of Andy’s techniques. 

In this paper we will focus on two tasks, Barrel and Monopoly (see Figure 1). These 

two tasks were selected because they offer students opportunities to use different 

techniques to solve the tasks, including numerical, graphical and symbolical 

approaches. The tasks were used in both task-based interviews, and therefore we can 

compare between the two interviews that were six months apart. We analyzed the 

interview transcripts and Andy’s written answers to the problems, focussing on his 

techniques and the GC-options used. 

The two calculus tests were designed by Andy’s mathematics teacher. The tests 

contained similar tasks, and for this paper we will focus on two tasks: (1) a 

velocity-task, in which a distance-time formula is given and an instantaneous velocity 

has to be calculated, and (2) a tangent-task, in which the formula of a function is given 
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and the tangent has to be calculated for a certain point of the graph. Based on Andy’s 

writings we analyzed his techniques and the GC-options used. 

Barrel: A barrel contains a liquid, which runs out through a hole in the bottom. The volume of 

the liquid in the barrel (V in m
3
) decreases over time (t in minutes). The volume of the liquid is 

expressed with a formula  

V = 10 ( 2 – 
1
/60 t)

2
 . Also its graph is presented.  

a. Calculate the outflow velocity at t = 40.  

b. When a pump is used, the out-flow velocity can be expressed with the formula 

V = 40 – 1/3t. When will the out-flow velocity by pumping be equal to the velocity of 

out-flow through a hole in the bottom? 

Monopoly: For a company the revenue function is R(q) = – 0.5q
2
 + 12q and the cost function 

is TK(q) = 0.03q
3
 – 0.5q

2
 + 4q + 15.  

a. For which amount of sold products do the costs increase at the slowest rate? 

b. At what production level will the costs and the revenue increase at the same rate? 

Figure 1: Short descriptions, without figures, of the Barrel and Monopoly tasks 

RESULTS  

We present the results in chronological order. Due to space limitations, Andy’s work in 

TBI-1 and 2 is strongly summarized. 

Task-based interview-1 (April, grade 10) 

Andy solved the Barrel-a task by calculating the volume at t = 40 and t = 41 and 

subtract these from each other. For the Barrel-b task he plots the linear graph of V into 

the diagram of the worksheet, and by drawing a parallel tangent to the curved graph 

(see Figure 2), he estimates that at t = 60 the out-flow velocity of both barrels is equal. 

He checks this estimation by using the trace-option of the GC to move to the volume at 

t = 60 and t = 61 and calculate their differences. So, in the Barrel-task Andy calculates 

rates of change on a unit-interval by using his GC as a graph-plotter and 

value-calculator. 

 

Figure 2: Drawing and calculation of Andy in the Barrel-b task 

In the task Monopoly-a he uses the trace-option of his GC again to move the cursor 

over the graph (see Figure 3) and to look where the costs increase least. In the task 

Monopoly-b Andy plots the graphs of TK and TO. He uses the option Intersect and 

calculates the two points of intersection. But then he remarks that this is not correct, 

because “the task is about increase”. 
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Figure 3: Example of Andy’s plot-trace-scheme 

Compared to the other nine students, Andy stands out by using his GC for the plot and 

trace options to explore the given functions. Andy is among the three students (out of 

ten) who solve the Barrel-task correctly. So, although derivatives and instantaneous 

rate of change have not yet been introduced, Andy is able to give meaning to rate of 

change in a volume-time situation and in a product-cost situation in terms of steepness 

of a curved graph. He does this by skilfully using plot, window and trace options of his 

GC. We refer to this as Andy’s plot-trace-calculate-scheme (see Figure 3). This 

scheme reflects a graphical view on instantaneous change as the increase of the 

function at a small interval on the graph.  

CT-1 Test on calculus (October, grade 11) 

Andy solves the velocity-task about a falling object at t = 6 (given a formula for the 

height) in a remarkable way. Although it is a mathematics test on derivatives, he uses 

his GC and knowledge of physics to correctly calculate the velocity. Other students use 

symbolical differentiation for this task. In the tangent-task, Andy calculates the 

derivative function, but then he ‘gets stuck’ in an incorrect calculation. The test shows 

that Andy is able to calculate derivatives, but he does not use derivatives, neither to 

calculate the slope of a tangent, nor to calculate velocity.  

TBI-2: Task-based interview (November, grade 11) 

In the second task-based interview, six months after the first interview, the tasks Barrel 

and Monopoly are used again. To calculate the out-flow velocity in the task Barrel-a, 

Andy mentions three different procedures. He starts by plotting the graph on his GC 

and uses the option dy/dx in the CALC-menu to reach a correct answer. When asked to 

check his answer he mentions two additional techniques: (1) drawing on paper a 

tangent and calculating its slope, and (2) calculating the difference quotient on a small 

interval (he puts t = 40 and t = 40.0001 into his GC to find the corresponding values of 

V). He remarks about this small-interval technique: “It is somewhat the same as dx-dy, 

dy-dx (option of GC), but then calculated by hand.” We notice at this point that Andy 

does not mention the derivative.  
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In the Barrel-b task Andy estimates the answer t = 60 by looking at the graph. He 

checks with the CALC-option dy/dx whether the slope at t = 60 is exactly -.333333. 

The interviewer asks if he is able to calculate the point. Andy says:  “To find this value 

in a direct way?[…] The line is always 1/3, so you have to find a point on the other 

graph where it is the same.”  

Andy also uses the dy/dx-option on his GC in the Monopoly-task. By looking at the 

plotted graphs he estimates the x-value, for which the steepness of both graphs is equal. 

He makes his cursor jump up-and-down between the two graphs using the dy/dx-option 

for calculating the steepness (see Figure 4). It is time-consuming and he says:  “I have 

no idea how to do this in another way.” 

 

Figure 4: Example of the plot-trace-dy/dx-scheme. 

Compared to the other nine students, Andy is the only one who uses the dy/dx-option of 

the GC. Other students work symbolically with the derivative combined with drawing 

a tangent. 

So, in situated tasks about instantaneous rate of change Andy first explores the 

situation by plotting and tracing, he proceeds by using the dy/dx-option of his GC. In 

his explanations he relates the GC-option dy/dx to the tangent and also to the increase 

at a small interval. We call this the plot-trace-dy/dx-scheme. For Andy, this scheme is 

related to tangent and a difference quotient on a minimal interval. When asked for 

other techniques for these tasks, Andy never mentions the derivative. To him, 

symbolical differentiation apparently is not related to the plot-trace-dy/dx-scheme. 

CT-2 (15 January, grade 11) 

On the second test on calculus Andy solves the velocity-task correctly using the 

dy-dx-option of his GC. He solves the tangent-task by using derivatives. Thus, in 

velocity-tasks Andy’s plot-trace-dy/dx-scheme becomes active, but apparently this 

scheme is not activated in tangent-tasks in the xy-plane.  
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CONCLUSIONS AND DISCUSSION 

Before the introduction of calculus Andy’s preferred instrumentation scheme is 

characterized as a plot-trace-scheme: he uses the plot and trace-options of his GC to 

calculate a rate of change. After the introduction of calculus we observe an uptake of 

another GC-option, dy/dx. His instrumentation scheme can be characterized as a 

plot-trace-dy/dx-scheme with links to tangent and small interval procedures. His skill 

in working with derivatives, which is observed in CT-1 and CT-2, is not used or 

mentioned by Andy in several situated tasks about velocity and increase. So, options of 

the GC become part of his instrumentation scheme for situated tasks on rate of change, 

but this scheme seems to develop separately from the symbolical procedure to 

calculate derivatives. Compared with nine other students, Andy is unique in his use of 

the GC. For solving the same tasks, the other students prefer symbolical differentiation 

combined with the use of a tangent.  

The idea that the use of the GC encourages students to create links between graphical 

and symbolical representations as reported by Burrill et al. (2002) and Delos Santos 

(2006) does not hold for Andy. Andy’s initial, resilient use of plot-options in his GC 

assimilates the dy/dx-option in situated rate-of-change tasks. Andy does not once 

mention or use symbolical differentiation in the task-based interviews, despite 

repeatedly being asked for alternative procedures. Nevertheless, Andy has learnt to use 

derivatives, as demonstrated in both calculus tests.  

It is not clear why Andy does not relate symbolical and GC techniques. Our hypothesis 

is that Andy’s instrumentation scheme is affected by the structure of the textbook. The 

textbook makes a clear distinction between tasks on the steepness of distance-time 

graphs, and tasks on tangents in the xy-plane. Solutions to the first type of tasks can 

often be approximations, solutions to the latter type of tasks always have to be exact. 

One can wonder if it is a problem that Andy does not relate symbolical techniques and 

GC-options. An advantage of Andy’s approach is his early uptake of graphical and 

numerical techniques with his plot-trace-scheme. A disadvantage is that he has few 

reasons to replace or supplement his GC-techniques with symbolical differentiation. 

We surmise that if Andy succeeds in linking symbolical differentiation to his 

plot-trace-dy/dx- scheme, he will have an excellent conceptual understanding of the 

concept of derivative in all representational aspects. 

The theory of instrumental genesis is helpful to identify relationships between the use 

of the GC and Andy’s knowledge about steepness, instantaneous rate of change and 

velocity in situations. Just as Trouche and Drijvers (2010) point out, the case of Andy 

shows that the use of technology in education can have complex and subtle effects: 

instead of being a tool that promotes links between representations, it can facilitate a 

learning process in which symbolical techniques develop separately from other 

techniques.  
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A FRAMEWORK FOR THE ANALYSIS OF VALUES THROUGH A 

MATHEMATICAL LITERACY LENS 

Sheena Rughubar-Reddy 

University of Cape Town 

 

This paper aims to offer a framework to interrogate how learners make sense of values 

in Mathematical Literacy lessons. Through an exploration of the curriculum materials, 

a framework that uses, the Bloom’s taxonomy to analyse the cognitive levels of the 

tasks in the materials against mathematical competency and knowledge areas was 

developed. Findings from this study show that there is merit in the use of the 

framework to analyse values in Mathematical Literacy 

INTRODUCTION 

Pundits concur that education systems play a pivotal role in fostering and developing 

values in learners. In South Africa the values and rights enshrined in the Constitution 

and the Bill of Rights resonate in the Schools Act. Society is making greater demands 

on its citizens to be numerate and demands that learners become more engaged with 

school mathematics (Bishop, 2007). The introduction of mathematical literacy into 

South African classrooms further reinforces this engagement by students. The 

OECD/PISA (2003) defines mathematical literacy as: 

… an individual’s capacity to identify and understand the role that mathematics plays in 

world, to make well- founded judgements and to use and engage with mathematics in ways 

that meet the needs of that individual’s life as a constructive, concerned and reflective 

citizen. (p. 10) 

The National Curriculum Statement (Grades 10-12) for Mathematical Literacy 

(Department of Education, 2001), states the following about education and values: 

Values and morality give meaning to our individual and social relationships. They are the 

common currencies that help make life more meaningful….An education system does not 

exist to simply serve as a market…..It’s primary purpose must be to enrich the individual.  

(pp. 4-5) 

Values may be imparted by example (Nieuwenhuis, 2007) or clarified through 

discussion, debate and negotiation (2004) suggest that values are implied in the 

mathematics curriculum, mathematics teaching and mathematics itself. This also 

applies to the mathematical literacy curriculum and classroom. 

Mathematical literacy may be taught through contexts giving rise to difficulties such as 

issues of language and the Nieuwenhuis (2007). Values in mathematical literacy are 

inculcated through the nature of the content, context and an individual’s experience in 

the mathematics classroom. These values provide the cognitive and affective lenses 

which modify and shape one’s perception and interpretation of the world (Seah & 
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Bishop, 1999). Since explicitly alerting students to values in a mathematical literacy 

lesson or articulating them anywhere is not a norm in mathematical literacy, values 

education may appear to have a hidden agenda. This paper forms a part of a larger 

study which aims to understand how learners make sense of values in Mathematical 

Literacy lessons. This paper, therefore reports on the development of tools necessary to 

carry out this analysis. 

In an attempt to understand the socio-moral and cognitive development of the learner 

in the classroom, I chose to refer to the work of Jean Piaget, Lawrence Kohlberg and 

Lev Vygotsky. Piaget (1932), whose focus was the moral development of children, 

was of the opinion that individuals use their interactions with the environment to 

construct and reconstruct their knowledge of the world and considered morality to be a 

developmental process His theory, if applied to values education, suggests that the 

teacher whose task is to provide students with opportunities for personal discovery 

through problem solving rather than indoctrination through societal norms is 

instrumental in the moral development of a learner (1932). In attempting to define 

moral development in terms of cognitive growth, Piaget identified the following four 

moral judgment dimensions which demonstrate a distinct correlation to his concept of 

cognitive development: (i) absolutism of moral perspective, (ii) concept of rule as 

unchangeable, (iii) belief in immanent justice, and (iv) evaluation of responsibility in 

terms of consequences (Lickona, 1976). Criticism levelled at Piaget is that he paid very 

little attention to the impact of social interactions and differing cultures on 

development (Sigelman & Rider, 2009). He paved the way for the theory of moral 

development advanced by Lawrence Kohlberg. 

Kohlberg (1984) developed a system for categorizing the moral reasoning in human 

beings into six stages. Central to this theory is the notion that the moral growth of 

human beings progresses through an invariant sequence – a fixed and universal order 

of stages, each of which represents a consistent way of thinking about moral issues that 

differs from the preceding or following stage (Sigelman & Rider, 2009;). The age of 

the individual, regardless of cross-cultural moral norms and beliefs, plays a vital role in 

this development. The six stages, as identified by Kohlberg, relate to moral thinking. 

He further suggested that associated with moral judgement is the concept of 

sociomoral perspective; a reference that is made to the point of view an individual 

takes in defining both social facts and sociomoral values (Kohlberg, 1976). There are 

three broad levels of social perspective that correspond to the three levels of moral 

judgement.  His non-subscription to the view that values education comprises of a 

moral agenda that prescribes a list of values to be learnt (cited in Nucci, 2001), 

resonates with my view on values education. Simpson (1974) suggests that Kohlberg’s 

stages are not culturally universal as they are based on western philosophical tradition. 

Her proposal for the transformation of his cognitive-developmental theory into a 

cognitive-affective-conative developmental theory is based on the claim that it will 

give equal regard to three facets of the human personality: thought, emotion and 

motivation (Simpson, 1974). Carol Gilligan (1982) points to a gender bias in 
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Kohlberg’s theory Simpson (1974) suggests that Kohlberg’s stages are not culturally 

universal while Gilligan (1982) points to a gender bias in the theory. 

The socio-cultural theory of learning suggests that characteristic to human evolvement 

is the development of higher order functions through social interactions. Lev Vygotsky 

(1978) was of the view that in order to understand the human development of an 

individual, a study of the individual and the external social world associated with him 

needs to be undertaken. Vygotskian theory (Vygotsky, 1978) suggests that each 

developmental stage is determined by genetic, maturational and socio-cultural factors. 

Socio-cultural theory (Vygotsky, 1978) differentiates between experiences produced 

by the individual’s contact with the environmental stimuli and those shaped by 

interactions with symbolic mediators. Central to Vygotskian theory is the Zone of 

Proximal Development (ZPD). Vygotsky (1978) defined the ZPD as the: 

… distance between the actual development level as determined by independent problem 

solving and the level of potential development as determined through problem-solving 

under adult guidance or in collaboration with more capable peers. (p. 86) 

Within the ZPD, through social and cultural interactions, learners receive instructional 

support from experienced peers and teachers in a particular mathematical literacy 

context.  

The Values Education Study Report of the Australian Government (2003) states that 

cognitive-developmental theorists’ argue in favour of values education being 

“promoted through the development of reasoning” while critics of this approach focus 

the on the neglect of the behavioural and emotional components of character and the 

absence of any attempt to determine whether the stated values resulted in behavioural 

change” (p. 35). I do not claim that any one approach to be most effective. The 

adoption of an approach is context dependent. At times a combination of approaches 

could prove to be more effective than the adoption of any single theory. While the 

literature does offer suggestions about possible strengths and weaknesses of 

approaches, I did not find any strong claims in the literature to warrant my not using 

the cognitive-developmental approach. 

FRAMEWORK FOR THE ANALYSIS OF VALUES 

This section outlines how the framework for analysing the values in a mathematical 

literacy lesson was developed. The framework is divided into five domains, namely: 

content categories, expected mathematical literacy competencies, Bloom’s taxonomy, 

evidence of values and the value itself. In order to appreciate how the learners 

understand, identify and implement the values inherent in the Mathematical Literacy 

lessons, I carried out an analysis of the classroom materials looking at the 

mathematical content in the learner materials. A content review of the textbooks, 

learner worksheets, assignments, tests and examination papers was conducted and 

classified into the following five content areas: compound growth and finance; 

measurement; numbers and calculations; patterns, relationships and representations; 
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and representation of statistical data. Table 1 provides details with respect to the 

content areas and the related sections. 

Content Related learning objectives 

Compound growth & Finance 

Banking loans; break-even analysis; budgets; cost & 

selling price; exchange rates; income & expenditure; 

inflation;  interest; profit & loss and tariff systems. 

Measurement 

 

Calculation of area, perimeter & volume; 

conversions; measuring length, weight & volume; 

temperature and time. 

Numbers & calculations 

 

Fractions; number formats & conventions; 

operations using numbers; percentages; proportions; 

rates; ratios and rounding 

Patterns, relationships & 

representations 

 

Patterns & relationships; representation of 

relationships in tables, charts & equations. 

Representation of statistical 

data 

Non-violence 

Table 1: Content categories in ML & related learning objectives. 

The content in Mathematical Literacy may be situated in contexts requiring learners to 

apply their mathematical and critical thinking abilities. Table 2 below provides a more 

detailed description of each competency category. The six competency categories 

suggested by Jaftha, Mhakure and Rughubar-Reddy (2012) in their study on 

Quantitative Literacy and social justice was adapted and used to analyse the 

competencies required in the Mathematical Literacy classroom. 

Bloom’s Taxonomy consisting of the knowledge dimension and cognitive process was 

also used in the analysis the cognitive levels of activities from the learner materials. 

For the purpose of analysis the six cognitive process dimensions, namely: 

remembering, understanding, applying, analysing, evaluating, and creating were used. 

Finally I examined the mathematical content of the activities in the learner materials 

for evidence of values. Discussions with colleagues and observations of their lessons in 

the Sathya Sai schools in South Africa and abroad, together with my own study of 

values in education, have convinced me that values are also embedded in the 

mathematical content. Sathya Sai schools in my analysis of the Mathematical Literacy 

lessons.  I do not claim that that the methods used by the Sathya Sai schools nor the set 

of values to be the best. I found the list of values very comprehensive and suitable for 

my analysis. The values embedded in the South African constitution are integrated in 

this list. 
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Competencies Core descriptors of competencies 

Comparing numbers Conversions of numbers from one form to another 

Critical thinking 

ability 

Interrogates the content & contexts; checks the validity of 

the solutions. 

Data representation Familiar with data representation (tables & graphs); 

analysis & interpretation of data from varying formats 

Reading data from 

texts, charts & tables 

Making sense of numbers in charts, tables & texts; 

comparing data in graphs, tables and texts 

Procedural 

competencies 

Routine calculations; relationships between quantities; 

substitution and manipulation of formulae 

Writing proficiency Effective communication of information; explains 

understanding of concepts; applying knowledge to novel 

situations 

Table 2: Expected Mathematical Literacy Competencies. 

Content Competencies 
Bloom’s 

Taxonomy 

Evidence of 

Values 
Value 

Compound 

growth & 

Finance 

Comparing numbers Remembering 

Explicit in 

either context or 

content 

Love 

Measurement 

 

Critical thinking 

ability 
Understanding 

Implicit in 

either context or 

content 

Truth 

Numbers & 

calculations 

 

Data representation Applying Explicit in both 

context or 

content 

Right conduct 

Patterns, 

relationships & 

representations 

 

Reading data from 

texts, charts & tables 

Analysing Implicit in both 

context or 

content 

Peace 

Representation 

of statistical 

data 

Procedural 

competencies 

Evaluating Value absent 

from context 

and content 

Non- 

violence 

 

 

Writing proficiency Creating   

Table 3: Summary of the framework. 
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The one hundred and eight sub-values are pooled into five major groups, namely; truth, 

right action, peace, love and non-violence. I also sought to establish whether the values 

are explicit or not in the contents and contexts of the Mathematical Literacy lesson. 

Table 3 provides a summary of the framework that resulted from the analysis of learner 

material. Table 3 was then used to analyse a mathematical literacy lesson. 

ANALYSIS OF A LESSON USING THE FRAMEWORK 

This paper reports on the exploration of the views of five grade 10 learners from a 

public secondary school. The school is situated in a low income, residential area in the 

Cape Flats region of Cape Town, South Africa. The learners were from the first cohort 

of students taking mathematical literacy at the senior secondary level. A discussion on 

what the study was about and an illustration of how to identify the values was 

presented. Classroom lessons were observed and videotaped to capture the learners’ 

participation and attitude during the lessons. This paper focuses only on a lesson on 

simple and compound interest.  The following were the questions under review: 

1. “Zandile takes out a bank loan of R13 500 to pay for an urgent medical operation. 

The bank terms are 12% p.a. compounded over two years, compounded annually. 

How much money must Zandile repay the bank?” 

2. “Bongani invests his first Christmas bonus of R750.00 in a bank that offers 

interest rates of 9% p.a. compounded yearly. How much interest will he have 

earned after 12 years?” 

3. A bank charges 11% interest p.a. on loans over 4 years. Oluwethu borrows R12 

000. Calculate: (a) the amount of interest due, (b) The total amount to be repaid, 

and (c) the monthly repayments needed. 

A focus group meeting was held with these five learners after the completion of the 

classroom visits. This was a two part meeting. Firstly the learners had to comment on 

the values that they attributed to their general experiences in the mathematical literacy 

classroom. Thereafter they were shown the video footage of the lesson and asked to 

identify values in the lesson. A list of values to assist with the identification of values 

was given to the learners. The learners had to support their claims with evidence of 

where or how these values manifested themselves in the lessons.   

The findings based on the viewing of the video are divided into three sections as 

follow: general values associated with the classroom experience, values in the context 

and values in the mathematical content. Table 4 gives a summary of the values 

identified by learners together with the evidence. During the focus meeting, 

consideration was first given to the values learners attributed to their experiences in the 

mathematical literacy classroom. Learners were of the opinion that the subject 

mathematical literacy was looked down upon by both the educators at their school and 

the learners who did mathematics. One learner commented that:“… the other learners 

think that they are better because they do maths … They think that we are stupid … 

they make us feel stupid …” 
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Value Evidence of value in the lesson 

General values associated with the classroom experience 

Values about classmates: 

Consideration 
Learner that was finding difficulty understanding a 

concept and required repeated explanation. 

Focus Learners concentrating on lessons 

  

Spirit of inquiry Learners asking questions to learn more about investments  

Values about educator: 

Dedication and 

sacrifice 

Teacher was at school despite being sick & had lost her 

voice. 

Helpfulness Walks around the classroom assisting learners 

(Lack of) Good 

manners 

Screams at learners & stamped her foot on the floor to get 

learners’ attention 

Values identified in the context of investments and loans 

Right action 
By investing his money Bongani was able to increase his 

bank balance. 

Discrimination 

(against Zandile) 

Zandile had to pay more than was required for her medical 

operation (as compared to Bongani) 

Values identified in the mathematical content 

Equality (sub-value of 

truth) 

The use of the equal to sign:
. 

   

Table 4: Values identified by focus group from video footage 

CONCLUSION 

The study has developed and validated a framework to interrogate how learners make 

sense of values in Mathematical Literacy lessons. Findings show that the learners 

found it easy to identify and talk about the values associated with the classroom 

environment. The fact that they were able to link an action to the value identified 

demonstrated their understanding. Although it did take the learners in the focus group a 

longer time to be able to identify values they thought were related to the content and 

context of the mathematics literacy lesson, they were able to do so quite effectively 

when they understood what was required of them. Using the framework will allow 

educators to ascertain whether their course materials provide the opportunity to 

sensitise students to the extensive social issues in their communities.  
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WRITTEN REASONING IN PRIMARY SCHOOL 

Silke Ruwisch, Astrid Neumann 

Leuphana University, Germany 

 

Currently, language competences in mathematics lessons gain more attention in 

Germany. The paper reports an interdisciplinary study of linguistics and mathematics 

education on reasoning. A model to rate the competences in arithmetic reasoning at 

primary level will be presented for discussion: mathematical reasoning is coded 

separately from its linguistic realization. In a pilot study, 243 students of 3
rd

, 4
th

, and 

6
th
 grade solved different arithmetic reasoning tasks. The results show a 

one-dimensional scale for the model of reasoning. Its specific components provide 

differentiated requirements, which are formulated concretely in the coding guidelines. 

They may unfold didactical potential for language support in mathematical reasoning 

as well as in mathematics lessons itself at primary level.  

THEORETICAL BACKGROUND 

Reasoning in mathematics and language learning 

Mathematical argumentation can be divided into four steps: detecting mathematical 

regularities, describing them, asking questions about them and giving reasons for their 

validity (Meyer, 2010; Bezold, 2009). The content base of an argumentation is 

achieved by description of the detected structures or by reference to common 

knowledge (Ehlich & Rehbein,1986; Krummheuer, 2000); reasoning then is necessary 

to acknowledge the described regularities as true (Toulmin, 2003/1958; Schwarzkopf,  

1999).  

The didactical value of reasoning in mathematics learning is seen in gaining deeper 

insights into mathematical structures and thereby as a development of one’s 

mathematical knowledge. In this sense, reasoning leads to ask questions about 

mathematical statements, to make sure they are right and to develop new mathematical 

connections (Steinbring, 2005). Two intertwined processes may be distinguished: 

one's own understanding and the process of sharing this understanding with others. 

Therefore, in its epistemic function mathematical reasoning may be monologic and 

lead to deeper individual understanding, in its communicative function it is dialogic 

and depend¬ent on other people if mathematical structures are explained and justified 

(Neumann, Beier, & Ruwisch, 2014). 

Mathematical reasoning in this sense has to be distinguished from reasoning in 

language classes, especially at primary level. While both are seen as concepts which 

develop out of situated everyday (“vernacular”) speech (Elbow, 2012), reasoning in 

language learning focusses much more on self-evident facts and personal meanings 

instead of provable structures in special content areas. So, argumentation in language 

learning leads to a more addressee-oriented cognitivization (Krelle, 2007); reasoning 
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in this kind is much more persuasion than proving. Nevertheless, typical linguistic 

formats of reasoning are learned in these everyday situations and students have to learn 

how to use them in different content areas. So, in combining the mathematical and the 

linguistic view on early reasoning, we try to get a broader and deeper understanding of 

early reasoning, like it can be found in written argumentation of primary students.  

Modelling written mathematical reasoning 

Although mathematical reasoning is seen as a key issue for students already at the 

primary level, which for example can be seen in the National Mathematics Standards, 

there is only few reasoning requested. A textbook analysis showed that not more than 

5-10% of all textbook tasks ask for reasoning (Ruwisch, 2012). As well, models which 

try to describe mathematical competences of this age regard reasoning as important but 

very specific and classify these competences only to the highest mathematical level 

(Roppelt & Reiss, 2012). This gap between importance for all and performance of only 

few was one reason for us to develop a model which may represent different stages of 

reasoning in early years.  

DATA AND METHOD 

Sample 

The data include 477 written justifications of 243 students. 41 third-graders (♀21;  

♂20), 96 fourth-graders (♀43; ♂53) and106 sixth-graders (♀52; ♂54) worked out 

two out of four designed arithmetic reasoning tasks (s. below). 

Arithmetic reasoning tasks 

All working sheets are divided into three sections (s. figure 1): In the first section given 

arithmetic tasks have to be solved and regularities have to be recognized and 

transferred to more tasks. Following this part of detection, the children are asked to 

describe their observations, before giving reasons for them.  

 

Figure 1: Complex addition tasks (CA) as a sample item. 

(on the left: original version; on the right: English translation) 

Four different arithmetic tasks were designed for this study. Although the tasks differ 

in the complexity of regularities, all of them are easy to compute and focus on 

detection and reasoning. In format ZF three number sequences need to be continued: 

+9, +7, and +2n. The format EA asks to continue a given additive structure in 

increasing all three summands by one, so the sum increases by three. In solving 
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formats CA and CM the children need to recognize two structures at the same time. To 

answer the complex addition task which is given in figure 1 children need to find two 

tasks with the same sum. At the same time they had to take into account that the 

summands have to be changed by 10 in opposite directions. The multiplication tasks 

CM show a constant difference in the product, caused by the difference between the 

multipliers while the multiplicands remain constant. 

Data analysis 

Rating scales 

Fundamental for our data analysis is the separate evaluation of detecting the 

mathematical structure and giving reasons for its validity. The argumentation itself is 

distinguished as well: we separate mathematical from linguistic aspects of reasoning. 

So, students’ writings are rated by one detection-scale and two reasoning-scales (see 

table 1, explanations below). This separation allows a differentiated grasping for sub- 

skills of reasoning. 

Mathematical 

detections 

Mathematical  

aspects of reasoning 

Linguistic  

aspects of reasoning 

 

irrelevant aspects  

as regularities 

   

regularities  

partly transferred 

   

regularities  

totally transferred 

 
regularities  

(partially) described 
  

indicators without 

reason-effect-structure 
 

 
rudimentary  

reasoning 
  

reason-effect 

structure 
 

 
reasoning  

through examples 
  

explicit linguistic  

reference to the task 
 

 
partially generalized 

reasoning 
  

completeness and  

consistency 
 

 
generalization /  

formal reasoning 
  

use of math. terminology / 

decontextualization 
 

Table 1: Rating-scales to evaluate written mathematical reasoning. 

Mathematical detections: Children have to compute the arithmetic tasks given on the 

sheet to find out the underlying structure and transfer it to two more packages with 

tasks. This process may be realised fully or only partly; sometimes only irrelevant 

aspects are used to create new tasks. If the structure is transferred fully, the results of 

the tasks given are also correct, so three stages of this rating scale seem sufficient.   

Mathematical aspects of reasoning: Reasoning needs a description of mathematical 

aspects as basis. If only some regularities are described without giving reasons this 

leads to stage 1. If a rudimentary reasoning is given despite a description, the work is 

coded by stage 2. To be rated by stage 3 to 5 all relevant aspects have to gain attention 

in the argumentation. If this is done by examples, the work is rated by stage 3, if it is 
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already partly generalized, it is rated by 4, and if it is totally general or a formal proof, 

by 5.  

Linguistic aspects of reasoning: The realisation of a mathematical argumentation by 

written language is also rated by 5 stages which were gained theoretically, especially in 

focussing on linguistic categories like the use of connectors and identifiable coherence 

of the text. If explicit linguistic indicators are already used without any structure of 

reasoning, the text is classified in stage 1. If the text shows a reason-effect-structure it 

is coded at least as stage 2. If also an explicit linguistic reference to the tasks is visible, 

the text is classified in stage 3. A text of stage 4 shows a consistent and complete 

argumentation. To be assigned to stage 5, the use of mathematical terminology must be 

given in addition, so a decontextualization is identifiable. 

Process of coding 

14 raters which concentrate either on the mathematical or the linguistic scales were 

included in the coding process. This process ensured an independent coding by the two 

professions.  

The raters found it easy to code the texts with respect to the detection scale. More 

difficulties were reported concerning the aspects of reasoning. So the decision between 

description and rudimentary reasoning was difficult for the mathematical raters. The 

trade-off between stage 2 and 3 (use of connectors without/with explicit reference to 

the tasks) as well as between 4 and 5 (use of mathematical terminology) was reported 

by the linguistic raters as difficult.  

Despite the many rater-combinations high absolute agreement in judgments can be 

reported (62% across all tasks and scales). Deviations of more than one stage occurred 

in 8% of the cases and showed three important results: 

 The multiplication task cannot be compared to the others, because up to now 

only 35 encodings made by only one pair of raters exist in the data.  

 The linguistic scale is the most difficult. Throughout all tasks and raters 

deviations of more than one stage are observable. 

 During the project an increase of coding quality can already be determined. 

Although acceptable internal consistencies exist across all tasks (Cronbach’s 

α=.80), these values increase, if only ZF (α=.82) and EA (α=.84) which were 

used later in the project are considered. Nevertheless, large individual 

deviations can still be observed. 

With respect to these results the multiplication task was excluded for the following 

overall scaling. Thereby, an acceptable average internal consistency of the individual 

scales over the remaining tasks was achieved: α=.86 for the mathematical detections, 

α=.81 for the mathematical aspects of reasoning and α=.71 for the linguistic aspects of 

reasoning. 
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RESULTS 

Due to the great number of rating persons and on the basis of an acceptable inter- 

rater-consistency (α >.70) we worked on with the means of the ratings for reporting 

first results. 

Overall scale 

The IRT-scale of the three tasks and all texts shows a common scale over all 

components (see table 2). The items are conform to the model as well (WMNSQ 

.85-1.09). Therefore, early mathematical reasoning in arithmetic like it is measured by 

the three tasks and the ratings with our scales can be described as a one-dimensional 

construct. 

 

Mathematical 

detections 

Mathematical  

aspects of reasoning 

Linguistic 

aspects of reasoning 

Item Estimate WMNSQ Estimate WMNSQ Estimate WMNSQ 

(ZF) number 

sequences  
-1.556 1.02 -0.459 1.06 0.124 0.85 

(EA) simple 

addition  
-1.628 1.09 1.057 1.09 1.570 0.93 

(CA) compl. 

addition  
-0.845 0.98 0.506 0.92 1.230 0.97 

Table 2: Item parameters (Estimate) in IRT scaling. 

Looking at the three scales, it becomes obvious that – as expected – it is easier to detect 

and transfer mathematical structures than to give reasons for their validity (negative 

deviation from zero). Comparing the two scales of reasoning it seems to be easier to 

realise mathematical aspects of reasoning than to do this in an appropriate linguistic 

structure. At the same time, mathematical detections is the most stable dimension with 

a maximum difference of .783 compared to 1.446 for the linguistic and 1.516 for the 

mathematical aspects of reasoning. 

Comparing the three tasks it seems as if the complex addition is the most difficult to be 

transferred whereas the simple addition and the number sequences show nearly no 

difference. The justifications show that it was most easy to realise mathematical as 

well as linguistic aspects of reasoning in the format number sequences, followed by the 

complex addition and then by the simple addition task. Despite these differences, all 

tasks can be characterized as well suited to capture mathematical reasoning in  

arithmetic. 

Students’ performances 

The performance of the total sample is distributed normally to slightly right-shifted: 

On the raw scores level 21.2% are one standard deviation above, 9.6% one standard 
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deviation below the mean; 6.2% are two standard deviations above, 4.2% two standard 

deviations below the mean.  

All scores were transformed onto a scale with the mean of 100 and a standard deviation 

of 20 to make comparison between the three groups of students easier (see figure 2):  

3
rd

 graders (M=102/SD=29), 4
th

 graders (M=98/SD=19) and 6
th
 graders 

(M=101/SD=17) showed nearly the same mean performance.  

 

Figure 2: Students’ performances by different grades. 

Unexpectedly, reasoning competences as they were measured by our tasks and ratings 

do not increase over time. Even though our data were collected cross-sectionally and 

not longitudinally a significant increase of competences could have been expected. In 

interpreting the differences of standard deviations over the three groups, it seems as if 

3
rd

 graders differ more in their results than 4
th

 graders and both more than 6
th

 graders, 

so a homogenization seems to take place during schooling. But, due to the fact of 

missing comparative data and the small number of our data this remains speculative at 

the moment. 

CONCLUSIONS 

Our aim was to describe and report the competences of primary students in dealing 

with written arithmetic reasoning tasks by different aspects. The results show on the 

one hand one consistent scale as a one-dimensional construct from detecting and 
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transferring mathematical structures to mathematical and linguistic aspects of 

reasoning. This one-dimensional construct confirms the approach of Roppelt and Reiss 

(2012) who assume that process-oriented mathematical skills at primary level are more 

or less interwoven, interdependent, and therefore one global construct, which will 

differentiate in higher mathematics learning. 

On the other hand, the detailed descriptions of the three scales allow an awareness of 

different components of mathematical reasoning which will be missed by only one 

global scale (Neumann 2013). So, the described stages may help to understand which 

aspects have to be taken into account to be successful in written arithmetic reasoning 

tasks.  

The internal relationships between mathematical and linguistic requirements in solving 

written reasoning tasks need further verifications and investigation. For instance, we 

cannot exclude that the difficulties during the coding process (see above) will have 

spilled over into the variance of the difficulty gradations in the students’ results. It 

might also be that linguistic aspects of reasoning are such difficult, because students do 

not expect them in mathematics classes. This effect may be reinforced by our 

anticipation of a very explicit use of “reasoning language” as can be seen in the coding 

table. So maybe the tasks are too demanding concerning the use of appropriate 

language to reason in mathematics.  

Another critical question concerns the multiplicative task, which did not fit into the 

model. This may be caused by a too small number of students solving this task (N=35) 

up to now. But we could also see that a more complex task produces more dropouts as 

well as more difficulties for the raters. Maybe, the multiplicative task is also too 

complex to gain information about written reasoning. This may lead to a deeper 

understanding of the critical aspects of a task to be a “good reasoning task” in 

mathematics classrooms. High complexity may require too much cognitive and motor 

capacity to assume a successful writing process (Hayes, 2012). As a consequence, we 

need more items to check which task is suitable to which function in reasoning 

processes. 

An open question is the stagnation of the students’ performance at the level of grade 4. 

This result may be caused by demotivation, because the sixth graders may think the 

tasks were too easy to give explicit reasons for the structures. Another argument could 

be that students still are not used to reasoning in mathematics lessons and competences 

do not increase by themselves without being taught. 

The design of the tasks and the scales of rating show already that written reasoning 

processes in mathematics at the primary level may be challenged as well as described 

in more detail then by only a global measure. Hopefully, such interdisciplinary projects 

help to sharpen the construct and lead to criteria for teachers how to focus on the 

different aspects of reasoning as well as to unfold didactical potential for language 

support in mathematics lessons. 
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LEARNING WITH INTERACTIVE ANIMATED  

WORKED-OUT EXAMPLES IN GROUPS OF TWO 

Alexander Salle 

Bielefeld University (Germany) 

 

This exemplary case study describes the learning process of two sixth-graders that 

learn from an animated worked-out example and an accompanying self-explanation 

prompt in the domain of fractions. It is based on a corresponding field study. The 

analysis focuses on the interaction with the computer, the communication between the 

students, the metacognitive aspects of the learning process and self-explanations. 

Supported with quantitative data, the qualitative results show that worked-out 

examples are proper materials for learning in groups of two. Furthermore, it is shown 

that self-explanation prompts have positive effects on the learning process and the 

analysed aspects. With detailed scenes it is elucidated, how the interactive capabilities 

and the animations are used during the learning process. 

WORKED-OUT EXAMPLES 

Studying worked-out examples is a well-known method for novices to increase their 

knowledge (Sweller & Cooper 1985). A huge body of research has shown the positive 

effects on knowledge acquisition and learning, whereat it often focuses on a single 

learner, who processes an example silently and alone. Only a few studies examine, 

how worked-out examples can be processed in groups (e.g. Retnowati, 2010). These 

studies emphasize quantitative aspects, but neither give detailed insight into the 

learning process nor consider differences in communication processes or learner 

behaviour when interpreting the results. There are different research findings about the 

role of animated worked-out examples in abstract domains (e.g. Tversky et al., 2002). 

A plausible position seems to be that such examples should be used, if a content 

analysis reveals benefits of a dynamic presentation (Höffler & Leutner, 2007). 

SELF-EXPLANATIONS 

The use of cognitive learning strategies has a crucial influence on the learning of 

mathematics (Murayama, 2012). Especially, when students learn from worked-out 

examples, they often do not apply meaningful strategies, but process the examples in a 

superficial or passive way (Renkl, 1997). Self-explanations form one class of cognitive 

learning strategies. A self-explanation is defined as  

a constructive activity that engages students in active learning and insures that learners 

attend to the material in a meaningful way while effectively monitoring their evolving 

understanding. (Roy & Chi, 2005, p. 272) 

Research about worked-out examples and self-explanations shows that 

self-explanations are a main predictor for the learning outcome (Chi, 1989; Renkl, 
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1997). Several concrete self-explaining processes in the domain of mathematics are 

integrating textual, iconic and symbolic representations (e.g. equations), goal-operator 

combinations and the determination of assumptions and special cases (e.g. dividing by 

zero). To encourage learners to learn actively and meaningfully, several methods of 

eliciting self-explanations and their implications on learning outcome and transfer 

have been analysed (e.g. Chi et al., 1994). A successful method is the use of open 

self-explanation prompts. These prompts are short questions or impulses that focus on 

key-concepts of the material or common misconceptions, or ask the learners to explain 

the presented procedure in their own words. The effect of self-explanation prompts on 

the processing of static examples is well known, whereas little is known about the 

combination of animated worked-out examples and self-explanation prompts 

(Betrancourt, 2005; de Koning, 2011). 

Self-explanations are activities inside the learner’s head – hence, they cannot be 

observed directly. However, verbal and nonverbal data can provide more or less 

obvious hints that allow the researcher to characterize the underlying cognitive 

processes (Chi, 2000). To distinct self-explanations from the observed phenomena, 

this paper uses the following definition: If a phenomenon (an utterance, gesture, action, 

etc.) gives rise to the interpretation that an underlying cognitive process is a 

self-explanation, this phenomenon is called a projection of a self-explanation. 

METACOGNITIVE PROCESSES 

The given definition of self-explanations names the importance of monitoring 

processes – without being aware of the need for an explanation, the learner probably 

will not give a self-explanation (Chi, 1989). Other important metacognitive strategies 

are planning and regulating (Pintrich, 1989). Planning means to organize the learning 

process. Possible manifestations are identifying task-requirements or formulating 

learning strategies. Regulations are alterations of the learning process like asking the 

partner or the teacher for help, or restructuring the learning process or details of it. An 

important group of regulations when considering learning processes with interactive 

animated learning material are meaningful interactions with the material such as 

controlling the pace of an animation or skipping animation-steps (Kettanurak, 2001). 

While metacognitive processes are often measured in studies concentrating on 

self-explanations, the concrete learning process and the effects of prompts on the 

metacognitive behaviour of students is rarely analysed. 

CONCEPTUAL FOCUS AND RESEARCH QUESTIONS 

From the former mentioned research gaps, we formulate two questions that should lead 

the analysis of the following case study. 

 What characteristic patterns and behaviour can be observed concerning 

computer-interaction, metacognitive processes and communication between 

students, when animated worked-out examples and self-explanation prompts 

are processed in dyads? 
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 How does an open self-explanation prompt affect the processing of the 

interactive animated worked-out examples in dyads, the metacognitive 

processes and the occurrence of self-explanations? 

SUBJECTS AND MATERIALS 

To answer the research questions, a field study with 85 sixth-graders from three classes 

of a German middle school was conducted (Salle, in press). The students of one class 

worked with interactive animated worked-out examples in a self-regulated learning 

scenario and accompanying open self-explanation prompts (cf. Salle, 2013).  

Materials 

The used fractions curriculum focuses on the construction of concepts by connecting 

the mathematical characteristics of fractions to meaningful activities and familiar real 

world situations to enable the students to operate flexibly in a syntactic and semantic 

way (English & Halford, 1995). One part of this curriculum deals with reducing of 

fractions. On an iconic representation level, this transformation is visualised by 

altering the equal segmentation of a given figure. To connect the symbolic operation of 

reducing to its dynamic iconic counterpart, an interactive animated example was 

designed (Figure 1). The accompanying prompt reads: “What is the meaning of 

‘altering a segmentation’? What changes, what remains?” 

 

Figure 1: Screenshot after the last step of the interactive animated worked-out example 

(dotted lines and italicised text in parentheses added as explanation for the reader). 

The solution is divided into 7 segments: the context with the rectangle on the right 

(S1), the task (S2), the fade-in of the first part of the solution-text (S3), an animation of 

the altering of the rectangle (S4), the fade-in of the equation (S5), an animation of the 

arrow-scheme (S6) and the last equation (S7). By highlighting certain words and 

fractions with boxes during the animation, the dynamic processes are connected to the 

textual and symbolic representations. With a bar of control-buttons the students can 

control the different steps of the animated worked-out example. 
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QUANTITATIVE RESULTS 

The example processing can be partitioned into a three-phase structure that could be 

derived from the data of the field study. In the first phase the students process the 

worked-out example without noticing the prompt. In the second phase they read the 

prompt and process it. In the third phase the students write down an answer. This 

sequence occurs in about 95% of all cases from the analysed class (Salle, in press).  

Various quantitative results of this field study are published in Salle (2013), especially 

concerning the observed argumentation processes. The coding of metacognitive 

processes, self-explanations and argumentation processes shows the influence of the 

prompt and the differences between the phases (Figure 2). A comparison of phase one 

with phase two and three reveals obvious increases after the transition to the 

prompt-centred phases in all diagrams. Furthermore, especially questioning and 

reasoning statements increase in the latter phases and shape the content-related 

dialogues between the learners. 
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Figure 2: Quantitative results of the average number of coded metacognitive processes, 

self-explanations and argumentation processes. 

The presented case of Ayla and Elli is chosen out of the transcribed learning processes 

of the analysed class because it contains exemplary aspects with regard to the research 

questions. Only phases one and two are considered in the following section, because 

these two phases reveal most of the aspects concerning the research questions. Due to 

the limited space, parts from the whole transcript are depicted, followed by a short 

description. Finally, the whole phase is summarized. 

THE CASE OF ELLI AND AYLA 

Elli and Ayla are two female students of the described class. The duration of their 

content-related dialogues during the processing of the examples is average. During the 

processing of the self-explanation prompts, they show the second longest duration in 

their class. The quantitative data of the girls’ metacognitive processes, 

self-explanations and argumentations show average results related to their class. 

Phase 1 

Ayla and Elli start to process the described interactive animated worked-out example: 

1 Ayla: (with context on screen, Ayla hits the play-button, segment S2 – the task –  



Salle 

PME 2014 5 - 85 

2  appears. Immediately, she hits the play-button again, segment S3 with the  

3  first two lines of the solution appears.) 

4 Elli:  (reads the example) Draw the segmentation... 

5 Ayla:  (moves the cursor above the play-button. Then she hits the play-button,  

6  segment S4 with the first animation begins, the part half as many parts is  

7  highlighted.) 

8 Elli:  No, hold on a second... (Meanwhile, the animation starts. Several lines of  

9  the iconic representation of the 12 thirtieths disappear successively.) 

In this short part from phase one, the two students follow the interactive animated 

worked-out example. Ayla controls the mouse and clicks on the play-button to start the 

segments of the example (line 1). Elli reads a short part of the text, but before she 

finishes, Ayla moves to the next segment and starts an animation (5-7, see S4 in Figure 

1). Elli asks Ayla to hold on, obviously because Elli hasn’t finished reading (8). 

Summary of the first phase: Either the two students process the example silently or one 

of them is reading the text aloud. At the beginning of their processing, different 

processing paces can be observed. But with ongoing time, they coordinate their 

learning process and read the same segments (“hold on a second”). The girls process 

the example in linear fashion – the succession of segments is not interrupted. In the 

whole first phase only the play button is used. No projections of self-explanations can 

be observed. Their behaviour can be characterised as passive and receptive. After the 

last segment, the students read the accompanying open self-explanation prompt. 

Phase 2 

10 Elli: (while both girls are looking into their workbook, Elli reads) Open the  

11  computer-example. Try to comprehend every example-step. Then answer  

12  the following question … What is the meaning of ‘altering a  

13  segmentation’? What changes, what remains? 

14 Ayla: (looks up) I can’t do that.  

15 Elli: (looks into her workbook) Well, look. What is the meaning of ‘altering a  

16  segmentation? What changes, what remains? (looks up at the  

17  computer-screen) Ok, look, here is something changing. (grabs the mouse  

18  and hits the rewind-button several times.) 

When Ayla hears the questions of the prompt, she states that she “can’t do that” (14). 

Elli tries to find something that helps to answer with the prompt (15-16). 

Simultaneously, she addresses her words to Ayla to involve her in the conversation 

(e.g. “Well, look”, 17). Elli does not want to surrender too early. She grabs the mouse 

and rewinds some segments to navigate to a part of the example. There she discovers 

“something changing” that could help with answering the prompt (17). 

After the depicted scene, the two girls continue their approach to the prompt-answer 

and repeat the animations. Then they stay at a point, at which the lighter green pieces 

become darker in an animation (can be seen in the smaller left and right rectangle). 
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19 Ayla: Hm? That doesn’t make sense. This has only changed its color. 

20 Elli: (hits the play-button, segment S5 – the calculation – appears) That has  

21  become darker .. And then, here. In absolute terms, numerator and  

22  denominator are divided by two … throughout by two, by two, by two..  

23 Ayla: Ah, ok, now. That’s because herein are such strange lines. 

24 Elli: (looks up) Yes. (5 seconds pause) Whatever. Divided by two, hm? ..  

25  Because, …, because one box (forms a rectangle with her hands), there  

26  were two boxes in it. Then, they removed the line there (the back of one  

27  flat hand touches the palm of the other, then she separates them vertically)  

28  and then there was a very big box, now again. And, uhm, then they have,  

29  .. two, well, divided against [sic!] two. 12 divided by 30, why 30? (2  

30  seconds pause) One two three ... Ah yes! (then she speaks a bit slower)  

31  because previously there were 30 (moves her fingers in circles). 

After an animation step (S5), Ayla is confused concerning the graphical alteration of 

the pieces (19). Simultaneously, this is a specific monitoring statement – she expresses 

which part of the animation does not make sense to her. Elli describes, that on a 

computational level, “numerator and denominator are divided by two” (21-22). She 

repeats “by two” three times, obviously to clarify that there are more 

dividing-processes than one (22). Ayla gets the point and connects Ellis explanation to 

the “strange lines” in the animation (23). Then Elli explicates her first utterance by an 

explanation how two rectangles were put together to one (25-29). During this 

explanation, she uses her hands to form a rectangle and to visualize the removal of the 

lines. Finally, she successfully connects the rectangle-pieces to the fraction (30). 

Summary of the second phase: The second processing-phase is characterised by a 

much more active behaviour of the two students. They regulate their learning process 

frequently by using the control-bar to navigate through the example, try to identify 

relevant information with regard to the prompt and make their partner aware of this 

information. The reading of the prompt oftentimes causes immediate monitoring 

utterances (“I can’t do that”, 14). Various projections of self-explanations can be 

observed – verbal projections (e.g. “by two, by two, by two” (22) suggests that she 

breaks the division down into a division of pieces) as well as nonverbal projections 

(imitating a rectangle and the altering-process with her hands). In following scenes, 

Elli continuously uses gestures to imitate depicted processes or to clarify aspects. Elli 

explains the altering-process in her own words and does not need to use the example to 

refer to it. 

RESULTS 

The case study of Ayla and Elli is exemplary in many aspects with respect to the 

analysed class that worked with open self-explanations in groups of two. In the 

following section, I refer to characteristic results of the whole class. 

Characteristic patterns and behaviour during example processing: The first phase is 

characterised by a passive and receptive processing of the steps of the animated 
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examples. Observed regulations are often adjustments of the processing pace, only in a 

few cases segments are rewinded or skipped. Mostly, they are followed in a linear way. 

The students follow the steps silently, or one of them reads out the text aloud. 

Monitoring statements are often unspecific. Only a few self-explanations can be 

reconstructed, a focus on special aspects of the content is identified seldom. With 

respect to the new content of the example, this behaviour could be expected. 

The second phase is shaped by lots of student activities. Many more of the monitoring 

statements are specific ones. Meaningful interactions with the animated worked-out 

examples can be observed frequently – with concrete aims in mind, the students use the 

buttons to navigate through the examples, heading for various segments or animations. 

The students talk much longer than in phase one – explanations, argumentative and 

coordinative statements are verbal features of their learning process. These utterances 

are often induced by parts of the prompt questions that want the students to explain or 

to reason. Many more self-explanations can be reconstructed from verbal as well as 

nonverbal projections than in the first phase. These cognitive activities focus on 

key-concepts of the depicted solution. During this lasting involvement in the example- 

and prompt-processing, the students can organise the depicted processes more and 

more mentally without referring to the animations. 

Effects of the open self-explanation prompts: Having watched the entire animated 

example in phase one, the first contact with the self-explanation prompt constitutes a 

caesura in the learning process. The prompt-question induces content-related 

conversations, especially argumentations, explanations and coordinative dialogues 

(Fig. 2, see also Salle, in press). The whole learning process is more focussed towards 

key-concepts and -principles. Self-explanation prompts serve as focal points and 

support students during the engagement with the examples. Only a few seconds after 

reading, the students often utter monitoring statements and self-explanations. This can 

be reconstructed in many transcripts. Subsequently, they navigate through the 

examples and break through the linear, superficial and passive processing of the first 

phase. Altogether, self-explanation prompts foster meaningful, active and 

self-regulated learning, content-related talk and argumentations during the learning 

with animated worked-out examples. 

PERSPECTIVES 

This paper shows the different positive implications that learning with animated 

worked-out examples and open self-explanation prompts can have despite their 

well-known properties. Nevertheless, a lot of questions remain unanswered and further 

research is needed to shed more light on cooperative learning from worked-out 

examples and the implications that prompts, trainings or design features of examples 

have on the learning process. 
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IMPACT OF SINGLE STUDENT MATHEMATICAL FIELD 

EXPERIENCE ON ELEMENTARY TEACHERS OVER TIME  

Amanda G. Sawyer, Yi Jung Lee 

University of Georgia 

 

Mewborn and Stinson (2007) explored three tasks implemented in a preservice teacher 

education program, which supported awareness of beliefs and reflection on teaching 

practice. In this study, we investigated one of these tasks, a single student 

mathematical field experience, to study its impact on learning and to determine its 

effects over time. We studied elementary teachers starting at their preservice teaching 

experience into their second year of teaching and after their tenth year teaching. We 

found this experience fostered development of implementation of multiple questioning 

strategies during their preservice teaching experience, which grew during their career 

as educators and is consistent into their tenth year of teaching. 

Some literature reported that teacher education programs have minimal impact on 

preservice teachers’ future teaching styles (e.g., Hiebert, Gallimore, & Stigler, 2002). 

However, we investigated a teacher education program that had a significant impact on 

four elementary teachers’ teaching practice as well as their beliefs (Spangler, Sawyer, 

Kang, Kim, & Kim, 2012). Mewborn and Stinson (2007) explored three tasks from this 

education program, which supported belief awareness and change: critiquing a 

reflective teaching essay, participating in a single student mathematical field 

experience, and observing a mathematics lesson from an experienced teacher. In this 

study, we explored the impact of the single student mathematical field experience 

(SSMFE) to investigate the teachers’ learning trajectory through the field experience 

and determine the staying power of the teaching practices developed from this event. 

The SSMFE was an activity where one preservice teacher assisted one elementary 

student over 8 weeks in various tasks. Four teachers were followed from their junior 

year in their teacher education program into their second year full time teaching and 

after their tenth year teaching to study the lasting affects of this experience. We found 

the SSMFE helped to foster teachers’ development of a variety of questioning styles as 

described by Boaler and Brodie (2004). 

LITERATURE REVIEW AND THEORETICAL FRAMEWORK 

Mewborn and Stinson (2007) explored the interplay between students’ personal 

theories, field experiences, and mathematical methods courses to suggest that specific 

tasks in teacher education program could assist preservice teachers’ examination of 

their beliefs about teaching. The authors identified the single student mathematical 

field experience (SSMFE) as one of the activities that influenced preservice teachers to 

become aware of beliefs and reflect on their teaching practice. However, the authors 

explicitly stated their goal was not to identify a belief change but rather to illustrate the 



Sawyer, Lee 

5 - 90 PME 2014 

tasks. Mewborn and Stinson (2007) advised that future research was needed, “to 

develop robust descriptions of their learning trajectories and to ascertain the staying 

power of the teaching practices they began to develop with assistance in their 

preservice program” (p. 1484). With this field experience, we investigated the 

teachers’ learning trajectories and determined the teaching practice’s staying power.  

Field experiences provide opportunities for preservice teachers to develop questioning 

strategies to gain knowledge of students’ mathematical thinking (Chamberlin & 

Chamberlin, 2010; Mewborn & Stinson, 2007). Mewborn and Stinson explained, 

“Field experiences provide a rich ground for questioning why we do the things we do 

and how we might do them differently if we are serving the goal of creating 

opportunities for preservice teachers to engage in assisted performances” (p. 1483). 

Chamberlin & Chamberlin (2010) found, “Many of the teachers mentioned 

questioning the students to stimulate their thinking, to refocus them on the problem at 

hand, to understand the students’ thinking, or to challenge the students in their 

thinking” (p. 402) in the preservice teachers’ field experience. However, the articles 

did not explain the kinds of questioning occurring during field experiences. 

One of the most common forms of questioning patterns initiated in schools is teacher 

Initiation, student Response, and teacher Evaluation (IRE) (Cazden, 2001). This form 

of mathematical conversations sets a norm where the teacher asks the questions, and 

the students provide answers. IRE has the teachers dominating the mathematical talk 

and determining what mathematics is “correct” in the classroom. The United States of 

America’s Common Core Standards (NGA Center and CCSSO, 2010) advocate that 

students need to be constructing viable arguments and critiquing the reasoning of 

others. The IRE mode of questioning does not support students’ construction of 

thought because the teacher validates the mathematics. Other questioning strategies 

were advocated, and many researchers sought to determine the actions teachers should 

make to support students’ mathematical thinking (Boaler & Brodie, 2004)  

Boaler and Brodie (2004) categorized nine different forms of questions: gathering 

information, leading students through a method, inserting terminology, exploring 

mathematical meaning and relationships, probing, generating discussion, linking and 

applying, extending and thinking, orienting and focusing, and establishing context. 

The authors determined that the majority of questions given in a traditional classroom 

were focused on gathering information while reform-oriented teachers implemented a 

variety of questions in their classroom (Boaler & Brodie, 2004). Therefore, supporting 

development of a variety of question types in preservice teachers may help them 

develop into reform-oriented teachers. 

METHODS 

The data corpus for this study was collected in two parts. The first study included 15 

participants across a 4-year period from their first year in a teacher education program 

through the end of their second year of teaching. The second study included 3 of the 15 
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previous participants 10 years after the initial 4-year study. In this investigation, we 

explored 4 of the participants, 3 of whom span both studies. 

Participants 

We began by analysing existing data on participants who we knew were still teaching 

and selected two pairs of participants for detailed analysis. These 4 were chosen 

because they entered the teacher education program with similar beliefs, but their 

teaching practices differed markedly by the end of their second year of teaching. One 

of these participants became a reading specialist immediately prior to his tenth year in 

the field, so he did not participate in the follow up study. The 4 participants were 

assigned the following pseudonyms: Laura, Jennifer, Jayne, and Alex. The initial study 

began during their junior year in college where they took one mathematics content 

course for elementary education majors prior to the study. During the study, they 

completed 2 mathematics methods courses for elementary education majors, the first 

of which included the SSMFE. During the second and third semesters they participated 

in 4-week field experiences in local schools; the fourth semester was a traditional 

student teaching experience. After graduating, the participants were employed at 

elementary schools for at least 10 years. 

Single Student Mathematical Field Experience (SSMFE) 

During the first mathematics methods course, the participants assisted the 

mathematical learning of one elementary student once a week for 8 weeks focusing on 

understanding the student’s thinking, explanations, and interpretation of mathematical 

problems the preservice students constructed. This interaction was designed to focus 

on the mathematics of the students, allowing preservice teachers to build confidence in 

their abilities to develop problem-solving activities.  

During the SSMFE, the instructor of the mathematical methods course and her two 

teaching assistants assisted the preservice teachers by coaching them in real time with 

questioning, adjusting instructional pace, and paying attention to the student’s 

mathematical thinking. For each session of the SSMFE preservice teachers prepared 

comprehensive written plans and wrote follow up reflections. They also constructed a 

final portfolio documenting their growth and the growth of the child with whom they 

worked over the course of the semester.  

Data Collection 

During the initial study, the participants were interviewed once per semester for four 

years, observed once during an early field experience, twice during student teaching 

and approximately 4 times during each of the first two years of teaching. They were 

also asked to complete the Integrating Mathematics and Pedagogy (IMAP) web-based 

beliefs survey (Ambrose, Philipp, Chauvot, & Clement, 2003). The survey is designed 

to assess beliefs about mathematics, about learning or knowing mathematics, and 

about children’s learning and doing mathematics.  
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During the tenth year study, the participants were individually interviewed and 

observed 3 times over the course of a semester, and they participated in a focus group. 

They were also asked to complete the IMAP web-based beliefs survey and Known 

Factors Affecting Belief Change survey created by one of the authors. 

Analysis 

Data from both studies were analysed using the constant comparison methods.  We 

first identified what the participants stated they learned from the SSMFE in their first 

methods course’s final portfolio and then compared what they said with their teaching 

practices over the first two years of teaching and then 10 years afterward. We 

understand that just because a participant stated something does not necessarily mean 

it will be enacted in their classroom practices. Individuals often are not aware of their 

beliefs, so we interpreted the participants’ understanding using multiple strategies to 

ensure an accurate representation of their views (Leatham, 2006).  

FINDINGS 

We followed our participants’ progress through this SSMFE in three stages. First, we 

identified what they said influenced their teaching practice as stated in their final 

portfolios from their first methods course. Next, we described the four teachers’ 

teaching practices through their first 2 years of teaching to assess the preservice 

teachers’ self-identified impact. Finally, we asked the teachers in their tenth year of 

teaching about these experiences and observed their teaching practices to see what 

impact still existed from the SSMFE.  

Laura 

In Laura’s final portfolio of her first methods course, she stated that she learned how to 

address issues in behaviour, how to assess student understanding from student’s work, 

and how to ask appropriate questions from the SSMFE, and these teaching practices 

were observed during her first two years of teaching. 

When she began full time teaching, Laura demonstrated learning when to press a 

student mathematically and when to “take a break” in her own teaching. Laura 

implemented her skills of assessing students’ understanding of concepts throughout 

her first two years of teaching though her use of questioning. Laura learned a lot about 

questioning from her SSMFE. She showed this by implementing different questioning 

styles in her classroom. When she was observed even as soon as student teaching, 

Laura would ask questions like, “Does this make sense?” “How do you know?” Laura 

explained that there was a difference between her student in the SSMFE and her 

kindergarten students by saying “I guess with the kindergartners, I had to ask a lot 

more leading questions, but with the [SSMFE student], I could just assume that she 

could make a lot of connections.” But she still admitted to learning how to construct 

different forms of questions from the SSMFE.  



Sawyer, Lee 

PME 2014 5 - 93 

Jennifer 

From the SSMFE, Jennifer identified in her final portfolio learning how to engage 

gifted students, how to implement appropriate wait time, and how to help students feel 

successful. However, the skills that had a lasting impact on her teaching were how to 

use questioning strategies to determine what students learned and how to help students 

enjoy mathematics. 

When she started teaching, Jennifer had a deep desire to make mathematics fun, and 

each lesson had some element to engage her students. This went along with her belief 

in helping students feel successful. Jennifer stated that she found a connection between 

questioning and her SSMFE. She did not originally identify questioning as learned 

from the SSMFE, but she explained, “I think personally I grew, like as a teacher” from 

the field experience because it taught her to think about questioning. She said, “I don’t 

know if I was asking as many of the right questions then as I might have. So yeah, I 

think I got better at it.” Although Jennifer did not initially identify questioning as 

learned from the SSMFE, reflecting on the process helped her to see her own mistakes, 

thus helping her develop questioning skills. In her observations, she showed 

improvement in asking a variety of questions over the course of the two years. In the 

beginning, Jennifer mainly implemented the IRE pattern, but over time she developed 

probing, exploring, and orienting questioning patterns as was suggested by Boaler and 

Brodie (2004). 

Jayne 

In Jayne’s final portfolio, she expressed that she had a strong belief in doing what was 

best for her student, which influenced what she learned from her SSMFE. Jayne 

identified from her SSMFE learning: how to select appropriate mathematical tasks, 

how to implement mathematical discourse, and how to follow students’ thinking.  

Jayne demonstrated selecting appropriate mathematical tasks by having a 

student-centred stance in her first two years of teaching. Jayne insisted students needed 

to conceptually understand the mathematics, not just recall the facts. Jayne believed 

that all teachers should prepare students for what they would need in the future rather 

than just for standardized examinations. In addition, she emphasized that knowing her 

students was the critical foundation in teaching, and she assessed her students’ 

understanding individually through asking questions. She explained that appropriate 

questioning was one of the most efficient means to assess students’ thinking. This 

matches with Boaler and Brodie’s (2004) categories of probing or getting students to 

explain their thinking. Jayne admitted assessing students’ performance takes a lot of 

time, and teachers need to be patience in this process. Finally, she continually 

implemented her belief in following her students’ thinking through her first two years 

of teaching. Jayne admitted that her school’s curriculum did influence what was 

taught, but she believed she still controlled how that material was taught to her 

students. Thus, Jayne preferred maintaining her student’s pace of learning, rather than 

a pace dictated by others. 
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Alex 

In working with his student in the SSMFE, Alex learned how to ask effective 

questions, how to explore and understand a child’s mathematical thinking, and how to 

learn a student’s unique problem solving techniques.  

In Alex’s first two years of teaching, he emphasized the use of questioning strategies to 

explore and understand children’s mathematical thinking. Alex assessed students’ 

understanding through a multitude of questions and also encouraged his students to ask 

questions in mathematical activities. For example, he had his students asking “how 

does this work” and “why did this happen” probing questions which is constant with 

Boaler and Brodie’s (2004) fourth questioning type. Although he tried hard to build on 

his students’ mathematical thinking, Alex felt a lot of pressure from the school 

administration for his students to preform on standardized tests. Thus, many of his 

teaching practices were defined by the curriculum designated by the school, which 

hindered him constructing mathematical tasks. 

10 Years Later 

Ten years after the SSMFE, Laura was the only participant to remember the activity. 

The student she was paired with was unresponsive and lacked key mathematical 

knowledge necessary to explore many of the tasks she planned for their sessions. Laura 

explained, “I should have approached it differently, but at the time I didn’t really know. 

I mean I think it was a growing experience. It was struggle time.” Laura still 

remembered this experience because of her struggles with her student, but what she 

learned about behavioural management and questioning during that time was apparent 

during her observations.  

Jayne and Jennifer did not remember the SSMFE when asked after their tenth year of 

teaching. Yet, they both explained experiences like that were beneficial. As Jennifer 

stated, “because, you know, how else are you going to learn about how kids think 

without sitting down and working one on one with them and listening to them?” They 

explained field experiences helped them to develop skills in building relationships with 

their students. Jayne still showed a desire to do what is best for her students through her 

pacing based on students’ needs and the student centred hands on activities she 

implement in her classroom. They both still demonstrated using multiple questioning 

types in their lessons. Altogether, the teachers explained that they mostly did not 

remember details about what they did in the SSMFE, but they believed it to be valuable 

and they still demonstrated knowledge of different questioning styles ten years after 

they were introduced.  

DISCUSSION 

Each of our participants identified that his/her questioning strategies were initiated 

from their SSMFE, and over time they improved in their use of different questioning 

types. We believe the field experience was a beneficial activity that fostered 
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development in this area, yet beliefs developed before entering into the teacher 

education program did influence the preservice teachers learning trajectory as well. 

Beliefs about Teaching Influenced Learning 

The four participants demonstrated a focus on students’ learning from their preservice 

teaching experience into their second year of teaching. However, even though they all 

consistently showed this behaviour into their second year of teacher and some into 

their tenth year of teaching, this teaching style appears to have been more influenced 

by their personal beliefs about students’ mathematical learning rather than any 

particular activity they did in their preservice experience. For example, Jennifer held a 

strong belief in making mathematics fun, and she even expressed that she found 

mathematics only to be meaningful if the students enjoyed what they were doing. Her 

actions to make students feel more successful were consistent with her belief in making 

mathematics fun. Jayne, on the other hand, had a strong belief in doing what is best for 

students. Her actions were influenced by her beliefs about student learning rather than 

a single activity from her teaching program. 

Questioning as a Learned Skill 

The participants demonstrated using multiple questioning types in their classrooms 

after the SSMFE, and there is evidence that they learned this skill from that activity. 

Each of our participants identified that his/her previous experiences with mathematics 

were in traditional classrooms. Questioning was not stressed in the traditional 

classroom, but it was stressed during their preservice teaching experience (Cadzen, 

2001). Laura, Jayne and Alex initially identified questioning as a skill they learned 

from their field experience, and Jennifer later asserted that she originally began 

learning questioning from her SSMFE even though she did not feel proficient in the 

skill at the time. Laura identified learning the different properties of questions, which is 

similar to what Boaler and Brodie (2004) categorized. Jayne worked on phrasing 

questions carefully to assess her children. Although Alex struggled with the 

accountability-driven system, he believed the advantage of questioning benefitted both 

teachers and students and applied it in assessing students’ mathematical understanding. 

Questioning students can be an unnatural activity for teachers. By giving them the 

chance to practice this skill, they can become more proficient. Thus, it appears that this 

SSMFE reinforced questioning strategies for these teachers.  

Lack of Memory of the Activity Does Not Influence Past Learning 

Ten years after the SSMFE most of the participants could not identify what they 

learned or what they did in the experiences. However, just because they could not 

identify that specific activity does not mean that it was not significant in their growth. 

Many people are not aware of their own beliefs or know why they developed (Green, 

1971). Jennifer, Laura, and Jayne were able to show how they focused on student 

thinking by using questioning during their observations. Because the participants did 

not remember the activity but still demonstrated skills learned during the SSMFE, we 

take this as evidence that SSMFE does have a lasting effect on preservice students. 
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CONCLUSION 

The SSMFE fosters the development of teachers’ questioning over time. This 

experience reinforced their ability to construct multiple questioning types and facilitate 

student thinking in their classroom. To focus on understanding students’ mathematical 

learning, the activity provided the preservice teachers an opportunity to learn about 

what they should do to become teachers without the pressure of dealing with classroom 

management. Further research is needed to determine if these findings can be 

duplicated in other schooling environments, but we can say for the four participants 

studied ten years after the introduction of the activity it continues to influence their 

teaching practice. 
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The transition from preformal and propaedeutic generalization-actions to a 

symbolically explicit use of the concept of variable has been a matter of significant 

attention in mathematics education, for example in the context of generalization 

processes on a preformal level and regarding the specific nature of algebraic 

concepts. This contribution offers an inferential theoretical perspective to study the 

relation of geometric and arithmetic notions when dealing with figural growing 

patterns and arithmetic sequences. By reconstructing “individual commitments” we 

show results of the impacts of this relation on the individual notion and explicit use of 

the concept of variable. Finally, the results also show that the concept of 

“propaedeutics” itself gains an extension in the light of the theoretical framework. 

GENERALIZING IN THE CONTEXT OF VARIABLE 

The concept of variable in algebraic expressions is one of the most important 

mathematical objects within mathematics classroom (Kieran, 2007, Usiskin, 1988, 

Lee, 1996). Its fundamental role is due to its conceptual nature as a tool to make 

explicit patterns and structures in form of generalizations. This paper presents results 

of a study (Schacht, 2012, Young Researchers Promotion Award 2012 by the GDM) 

on the propaedeutic and then symbolically explicit use of the concept of variable in 

early algebra. The explication of the concept of variable in mathematics classroom 

(usually in 5
th
 grade) does not mark the beginning of algebraic experiences for the 

students. These experiences are often deeply rooted within the conceptual dimensions 

of dealing with patterns, a functional context, equivalence and equations on a 

preformal level (e.g. Cooper & Warren, 2011). Cooper & Warren especially point out 

the importance of generalizing for learning algebra: “improving one’s ability to 

generalise lies at the foundation of efforts to enhance participation in and learning of 

algebra.” (Cooper & Warren, 2011, p. 190) There are many productive examples that 

use this idea within the context of early algebra (cf. Lee, 1996). For example, Lee 

(1996) points out to start early with generalization-actions: “Generalization is one of 

the important things we “do” in algebra and therefore something students should be 

initiated into fairly early on.” (Lee, 1996, p. 103) There are two different types of 

generalization, a recursive and an explicit one (e.g. Lannin, 2005), whereas “young 

students develop these abilities from recursive to explicit” (Cooper & Warren, 2011, p. 

197). With variables in algebraic expressions, students can make these generalizations 

explicit, for example in dynamic figural growing patterns or in arithmetic sequences.  
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It is important to note, that the notion of generalizing can both be done on a geometric 

level (with figural growing patterns) and on an arithmetic level, whereas the geometric 

level can be seen as essential in order to build a solid foundation for the future 

understanding of functional contexts (Moss & London McNab, 2011, p. 297). Becker 

and Rivera (2011, p. 363) even point out that the ability to generalize figural growing 

patterns supports the conceptualization of the concept of variable significantly. 

Within our study, a learning environment was used (Hußmann et al., 2012) that is 

mainly influenced by these ideas and that follows the following aspects: First, students 

use numerical expressions to describe static figural patterns (e.g. 2·3+6·5), then they 

use expressions like these to describe the number of dots in figural growing patterns 

(e.g. for the linear sequence 2+1·5, 2+2·5, 2+3·5, …). Then, in order determine the 

number of dots in for example the 1000th element of the sequence, they use this linear 

structure to determine 2+1000 ·3. Finally, they use the algebraic expressions with 

variables to make the generalization of the pattern explicit.  

Within this learning environment, the concept of variable is used to both determine the 

number of dots for different elements of a given sequence and pattern and to describe 

the structure of a given (figural or arithmetic) sequence. The potential of dealing with 

patterns and describing can be seen in the specific nature of patterns:  

Mathematical visualization and growing patterns (…) can mediate between the 

mathematical structure and the student’s thinking because of their special ‚double nature’ 

(they are on the one hand concrete objects, which can be dealt with, which can be pointed 

at and counted, (…) and at the same time they are symbolic representatives of abstract 

mathematical ideas). (Böttinger, et al., 2009, p. 151) 

Sfard et al. (1994) point out a similar notion the dual nature of algebraic concepts: “the 

operational outlook in algebra is fundamental and the structural approach does not 

develop immediately” (p. 209). Regarding the variable, this dichotomy means that it 

can be used specifically as a tool for example to find out the number of dots in a certain 

element of a growing pattern. At the same time the variable can be used as structural 

objects in algebraic expressions with variables for example to describe mathematical 

growing patterns. 

These insights refer to the different epistemological statuses of mathematical concepts 

and especially to the variable itself. Our results suggest, that these insights for 

algebraic concepts can be extended to a propaedeutic understanding. Within the 

context of the study and within the processes of concept-formation toward the variable, 

the students were engaged in many generalization processes when dealing with 

geometric and arithmetic sequences without using the concept of variable explicitly. 

Regarding these processes on a micro-level, there is a need for research concerning the 

question, how far these geometric and arithmetic generalization processes correspond 

to the (individual) later notion of the concept of variable as a tool or as a theoretical 

object.  
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THEORETICAL FRAMEWORK, RESEARCH QUESTIONS AND DESIGN 

The inferentialist perspective 

In order to describe both individual processes of concept formation as well as the 

process of constructing learning environments and in order to structure the subject 

matter we developed a consistent theoretical framework. Its foundations pick up 

philosophical ideas of Kant, Frege, Wittgenstein, Heidegger and Frege. Also, the 

theory of inferentialism (Brandom, 1994) was adopted to develop this framework. 

Within this framework, commitments are seen as (reconstructed) assertions in a 

propositional form, that the individual student acknowledges and holds to be true. 

Commitments can be made explicit. In this perspective it is one of the central 

background-theoretical assumptions, that doing mathematics a highly social process: 

“At the core of discursive practice is the game of giving and asking for reasons.” 

(Brandom, 1994, p. 159) This basic theoretical assumption is used within a qualitative 

psychological research design. Individual commitments are seen as the smallest units 

of thinking and acting, that do not necessarily have to be true, but which are being held 

to be true by the individual. Within the interpretative process, these individual 

commitments are reconstructed turn-by-turn. Commitments can be acknowledged by 

the individual and they can be attributed to our discursive partners. As reasons in 

argumentation, individual commitments are inferentially related. That does not mean 

an inferential relation in the sense of classical logic though: inferential relations 

between two commitments do not have to be true or false, but they are held to be true or 

false by the individual!  

In this commitment-based theoretical perspective, the notion of individual 

concept-formation is being extended: individual concept-formation is modeled as the 

development of individual commitments, that underlie our use of concepts (c.f. 

Schacht, 2012). Since our concepts are always inferentially related by the 

commitments we acknowledge, this implies a holistic perspective on concepts 

themselves: “One immediate consequence of such an inferential demarcation of the 

conceptual is that one must have many concepts in order to have any. For grasping a 

concept involves mastering the proprieties of inferential moves that connect it to many 

other concepts (...). One cannot have just one concept.” (Brandom, 1994, p. 89) This 

fundamental insight is one of the foundations of the analysis, since the theoretical 

framework gives respect to the many concepts that are involved when learning the 

concept of variable for example.  

Finally, this theoretical perspective has an important consequence for the notion of 

propaedeutics of concepts. Even if a certain concept is not yet symbolically explicit, 

there may be still identified a variety of individual commitments, that refer to the 

concept implicitly or explicitly. This means that even before the explication of the 

concept of variable it might be possible to reconstruct individual commitments that 

refer to the concept of variable for example in the context of generalizing arithmetic or 
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geometric patterns. This way, the genesis of individual concepts can be reconstructed 

and described within a fine-grained analysis (cf. Schacht, 2012, Hußmann et al., 2009).  

Research Questions and Design 

The inferential theoretical framework offers potential especially regarding its 

conceptual foundations. First the inferential notion of the framework faces an 

important nature of concepts: we never learn only one isolated concept (e.g. the 

concept of variable), but furthermore many other concepts, that may get a different and 

new shape within the practice, operations and new situations. The explication of the 

variable in mathematics classroom, that follows the exploration of geometric and 

arithmetic patterns, may have also influence on the concepts of balance, equivalence 

or recursivity. Within this perspective, the following research questions are posed:  

 How do individual commitments, that refer to geometric and arithmetic 

concepts, influence the individual notion and use of the concept of variable? 

 Within the process of concept-formation, how far do individual commitments 

relate, depending on i) the preformal and propaedeutic use within 

generalization processes and ii) the symbolically explicit use of the variable? 

These research questions are posed within a qualitative research design. The case study 

(Schacht, 2012) was planned and conducted within the design-research project 

KOSIMA (see Barzel et al., 2013). About 60 students (11 years) worked within a 

learning-environment which introduces to the concept of variable. The theoretical 

framework was used to understand and describe individual processes of 

concept-formation by reconstructing individual commitments and their inferential 

relation. In this paper, the case Orhan is discussed in detail.  

RESEARCH RESULTS AND DISCUSSION 

Geometric and arithmetic commitments within generalization processes 

The following scenes show the student Orhan dealing with linear dynamic figural 

patters with the arithmetic structure 2+6x. Within the learning process, Orhan has 

already dealt with static figural patterns. In the scenes below (Fig. 1), Orhan is given 

the figural pattern and he is asked to draw the next element of the sequence. He then 

counts the number of dots in the first three elements of the sequence, determines the 

arithmetic rule of the figural pattern (add 6, indicated by “2 + 6 = 8” and “8 + 6 = 14”, 

see Figure 1) and then he calculates the number of dots for the next element: 20 dots. 

Then he draws the next element with the shape of a triangle. 

              

  

Figure 1: First three elements of a growing 

pattern. Orhan draws the fourth element. 

Analyzing the transcript in detail, the reconstruction of the individual commitments 

shows that his actions in this scene are prototypical for many other scenes in a way, that 

they follow a certain scheme, that he repeats in different other scenes: Orhan first 
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counts the total number of dots of each element, he then determines the balance 

between each two elements and then generates the arithmetic rule that underlies the 

figural growing pattern. He then uses this arithmetic rule to determine the number of 

dots of the next element (see table 1 for a reconstruction of his commitments). He then 

continues the figural growing pattern by drawing the next element with a shape of a 

triangle. This is also a typical scene, because Orhan uses this shape in different scenes 

to continue differently structured growing patterns. By using the term “wall”, he refers 

to the triangle-shaped structure that he often uses to continue the sequences 

geometrically. 

1  Int.: Why did you draw the dots like this and not in a different way? 

2 Orhan:  Because, eh, the wall is easier for me. 

The following table shows the reconstruction of Orhan’s commitments within this 

scene. The arrow indicates the inferential relation, that means that a given commitment 

serves as a reason for the next one. 

Commit-

ment 

number 

Orhan’s individual commitments (reconstruction) inf. 

relation 

geo. or 

arith. 

1 I determine the number of dots by counting them one-by-one ↙ geo. 

2 I can find the arithmetic rule by determining the differences. ↙ arith. 

3 The rule of the growing pattern is: you have to add 6 dots to the last element. ↙ arith. 

4 I use the (arithmetic) rule of the pattern to determine the number of dots in the 

next pattern.  

↙ arith. 

5 The next element has 14+6=20 dots. ↙ arith. 

6 I can use a triangle shape to visualize a given number of dots.  geo. / 

arith. 

Table 1: Orhans individual commitments in an inferential structure 

This reconstruction of Orhan’s individual commitments shows a number of results. 

First, it shows the strong relation between commitments that refer to arithmetic 

(commitments number 2, 3, 4, 5 in Table 1) and to geometric concepts (1, 6 in Table 1). 

Also – typical for situations like these – Orhan initially changes from geometric 

commitments to arithmetic commitments when continuing a figural growing pattern. 

Originally, this task was posed in order to observe, if students see the geometric pattern 

(there is always a block of 6 dots added in 2 rows of 3 dots each) and if they use this 

pattern to continue the sequence. By doing so, we figured, they would initially use 

commitments that refer to geometric concepts (rows, geometric pattern etc.). But 

Orhan activates commitments that refer to arithmetic concepts. For him, it is a viable 

way of operating in situations like these. Continuing the sequence, Orhan uses a 

triangle shape to draw the next element. Asked for his commitment (line 2 of the 

transcript above), he says that it is easier for him to use “the wall”. It is one important 

result to show, that Orhan uses both geometric and arithmetic commitments to find the 

rule of the pattern and then to continue the sequence. This will play an important role in 

the light of the symbolically explicit use of the variable (see below). Second, it is an 

important result that these changes between geometric and arithmetic commitments do 

not occur without mathematical frictions: Although, for Orhan, it is a proper 
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conclusion to use a triangle shape when having determined the number of dots for the 

next element. But, mathematically, he does not use the given geometric structure to 

continue the sequence. This is an interesting result insofar, as it is typical for Orhan’s 

learning process that he is very flexible and shows strong competences when dealing in 

arithmetic situations but at the same time he often acknowledges geometric 

commitments that are mathematically not viable. As a third result in this scene, for 

Orhan, the “wall” is a tool to visualize a given (or determined) number of dots. Even 

more: The wall, for Orhan, is the easiest tool to visualize in situations like these. This 

scene shows – on a propaedeutic level – how far geometric patterns can be tools for 

students in visualization-situations. In contrast to these results dealing with figural 

growing patterns, the next section will show, that – also on a preformal level – Orhan 

acknowledges arithmetic commitments, that refer to the structural notion of the 

variable.  

The concept of variable in algebraic expressions between the implicit and the 

explicit 

In a different scene, Orhan works on a given arithmetic sequence: 2, 10, 18, 26, 34,…. 

Orhan is first asked to determine the rule and he answers: “You always have to add 8.” 

Using that rule, Orhan then determines the next three elements 42, 50 and 58 of the 

sequence. Meanwhile, the students have learned in class, that the (general) rule of a 

given arithmetic or geometric pattern can be made explicit with the help of an algebraic 

expression with a variable. Orhan writes down: “2+8x = ”. His commitment can be 

reconstructed here: I can make explicit generalizations of arithmetic patterns in 

algebraic expressions with variables. Being asked, what the x stands for, Orhan 

answers: “The x means a number, let’s say you want the 35
th
 element of a sequence.” 

Here, Orhan uses the concept of variable first to describe the arithmetic structure of the 

sequence and then, second, as a tool to determine certain elements of the sequence. 

Orhan uses the concept of element of a sequence, that can be determined with the help 

of the variable. For him, the meaning of the concept in this situation is mainly rooted in 

the calculation of elements with high numbers. For Orhan, the explicit concept of 

variable marks a specific character of a tool (c.f. Sfard & Linchevski, 1994) and he 

acknowledges the following commitment: Elements of sequences can be calculated 

with expressions using the variable. The x stands for the element.  

The importance of this result can be seen by analysing the last scene. Orhan is asked, if 

90 was an element of the sequence.  

1  Orhan: 90 (…) yes 

2 Int.:  (…) And why is 90 an element of the sequence? 

3 Orhan:  90, eh, because 88 can be divided by 8 (88 ist in der 8er Reihe)  

4   Int.: Yes. And 90? 

5   Orhan: 90 cannot be divided by 8, but 90 is part of the sequence. Then I subtracted 
2 and that makes 88. 
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Here Orhan activates commitments, that explicitly refer to structural algebraic 

concepts. For Orhan, the sequence 2, 10, 18, … in this situation is a structural object 

with certain properties. One of these properties is that each element of the sequence can 

be produced by taking a number that can be divided by 8 and then add 2. In this scene, 

Orhan puts 2 different sequences (0, 8, 16, 24,… and 2, 10, 18, 26,…) in a certain 

relation and his argumentation uses the properties of both sequences. It is important to 

note now, that by dealing with arithmetic sequences, Orhan acknowledges 

commitments, that not only refer to central algebraic concepts (Kieran 2007) but that 

also constitute a stable concept of function (Healy & Hoyles 1999). It is a central 

insight here, that Orhan uses the concept of sequence not as an operational but as a 

structural object with certain properties, that he uses as reasons in his argumentation. 

Also, this scene shows that his commitments refer to an elaborated concept of 

equivalence and the transformation of algebraic expressions although these concepts 

themselves are not symbolically explicit. Still, his commitments refer to them in on a 

preformal level (lines 1-5 in the transcript above).  

Although Orhan’s symbolically explicit use of the concept of variable refers to an 

operational character, the detailed analysis of his commitments shows that they also 

refer to important structural algebraic concepts on an implicit level. His commitments, 

that the properties of two sequences may be compared and used within a complex 

argumentation, reveal the concept of equivalence, variable and equality as structural 

objects that are not used symbolically explicit but on a propaedeutic level. This result 

extends the notion of the duality of concepts within the context of generalizing to a 

propaedeutic dimension of conceptual use.  

CONCLUSION 

The empirical results presented above allow some insights into processes of 

concept-formation when learning the concept of variable within a learning 

environment, that focuses on dealing with growing figural patterns and arithmetic 

sequences. The inferential theoretical approach unfolds its potential especially 

regarding the (inferential) relation of arithmetic and geometric commitments when 

learning the concept of variable. The data especially shows examples of students’ 

geometrical reasoning within generalization processes, whereas the reconstructed 

commitments refer to arithmetical concepts. Although we only refer to one case in this 

contribution, it not only shows the interplay between arithmetic and geometric 

commitments but also the different notions of structural and operational concept-usage 

on a propaedeutic as well as on a symbolically explicit level. Besides the very 

fine-grained analysis to study, this theoretical framework offers a tool to describe 

frictions and to interpret them within the individual argumentation processes that are 

being reconstructed with individual commitments and inferences. Finally, the data 

shows that this theoretical framework offers a perspective to extend and differentiate 

important insights (Sfard et al., 1994) regarding the symbolically explicit use of the 

variable to its propaedeutic usage and – more generally – it offers insights into the 

individual formation of concepts itself. 
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The purpose of this paper is twofold: On the one hand, this work frames a variety of 

considerations on cognitive processes underlying mathematical concept construction 

in  two research strands, namely an actions-first strand and an objects-first strand, 

that mainly shapes past and current approaches on abstraction in learning 

mathematics. This classification provides the identification of an often overlooked 

fundamental cognitive process, namely structural abstraction. On the other hand, this 

work shows a theory-driven and research-based approach illuminating the hidden 

architecture of cognitive processes involved in structural abstraction that gives new 

insights into an integrated framework on abstraction in learning mathematics. Based 

on our findings in empirical investigations, the paper outlines a theoretical framework 

on the cognitive processes taking place on mental (rather than physical) objects.  

INTRODUCTION 

Attributed as a crucial cognitive process in concept construction, abstraction has been 

the focus of many researchers in diverse research areas. Caused by both a confusion 

between abstraction and generalization and a characterization of abstraction aimed at 

decontextualization instead of recontextualization (see, van Oers, 1998), the term 

‘abstraction’ has been almost “removed from the discourse of learning” (Sfard, 2008, 

p. 10). Though attention in research on abstraction has steadily declined since its peak 

in the pre-cognitive science era, some researchers still have advanced our all 

understanding on this issue by integrating ‘modern’ perspectives on past and current 

theories of learning in a broader theoretical frame. The Nested RBC Model of 

Abstraction originally described by Hershkowitz, Schwarz, and Dreyfus (e.g., 2001), 

for instance, provides an interesting conceptual undertaken in this area. The following 

pages present a further theoretical approach addressing the issue of abstraction in 

learning mathematics more broadly. In this work, the purpose is not to compete with 

other theories but to shed lights on a neglected cognitive process, namely on structural 

abstraction.  

The proposed outline of the theoretical framework on structural abstraction results 

from (a) reconsidering Davydov’s (1972/1990) ascending from the abstract to the 

concrete from a dialectical point of view as expressed by Ilyenkov (1982), (b) taking 

fundamental findings in cognitive science and psychology into consideration,  

(c) embedding the framework into philosophical grounds, and undertaking a reanalysis 

and presentation of data obtained in a previous study (Pinto, 1998).  
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THEORETICAL BACKGROUND: TWO FUNDAMENTAL STRANDS IN 

RESEARCH ON ABSTRACTION IN LEARNING MATHEMATICS 

Several approaches, partly distinct and partly overlapping, shape the theoretical 

landscape in mathematics education research on abstraction. Taking as poles of a wide 

spectrum, we can distinguish two strands of cognitive processes underlying concept 

construction, namely (1) an actions-first strand and an objects-first strand. The former 

has to do with processes of focusing on the actions on objects, in particular, 

individuals’ reflections on actions on known objects, grounded in Piaget’s work of 

‘genetic epistemology’ that puts ‘actions’ in its heart with the underlying philosophy 

that knowledge is basically ‘operative’. The latter has to do with processes of focussing 

on the objects themselves, in particular, paying attention to the properties and 

structures inherent in those objects. As shown in Fig. 1, in both strands, the focus of 

attention may take place on 

physical objects (referring to the 

real world) or mental objects 

(referring to the thought world). 

Both strands capture the bulk of 

theoretical and practical work in 

past and recent years, however, 

it seems that the mathematics 

education research literature has 

nearly limited its focus on 

actions-first theoretical approaches. Research within the actions-first strand has made 

considerable progress considering both physical and mental objects as a point of 

departure in abstraction processes, while the focus of attention within the objects-first 

strand is limited, with few exceptions, to physical (instead of mental) objects. The 

current study considers cognitive processes underlying concept construction that take 

mental objects as a point of departure. Based on philosophical grounds and findings in 

psychology and cognitive science, we argue that structural abstraction is the key 

cognitive process in this issue. Furthermore, the paper outlines how an integrative 

framework might conceptualize the functional interplay of cognitive processes 

building the architecture of structural abstraction.  

Actions-first Strand 

Within this strand, two fundamental cognitive processes can be distinguished, namely 

(1) focussing on actions on physical objects and (2) focussing on actions on mental 

objects. The former refers to Piaget’s pseudo-empirical abstraction, while the latter 

refers to Piaget’s reflective abstraction. In his Recherches sur l’ abstraction 

réfléchissante, Piaget (1977/2001) describes pseudo-empirical abstraction as a process 

by which individuals discover in objects the properties that have been introduced into 

them by their own activity. In other words, the results covered by pseudo-empirical 

abstraction are read off from material objects but the observed properties are actually 

introduced into the objects by the subject’s activities. Yet, reflective abstraction is 

Figure 1: Actions-first and objects-first strand. 
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abstraction from the subject’s actions on objects, mostly from the coordination 

between these actions. Abstracting properties of an individual’s action coordinations is 

thought as the crucial function of Piaget’s reflective abstraction. In mathematics 

education, its highest impact is considered in its process of encapsulation (or 

reification). From Piaget’s reflective abstraction, Dubinsky et al (e.g., 1991) and his 

colleagues developed the APOS theory, describing the construction of concepts 

through the encapsulation of processes. Similar to the latter is reification – the main 

tenet of Sfard’s (e.g., 1991) framework emphasizing the cognitive process of forming a 

(structural) concept from an (operational) process. In the same line, Gray and Tall 

(e.g., 1994) describe this issue in terms of an overall progress from procedural thinking 

to proceptual thinking. 

Objects-first Strand 

Symmetrical to the actions-first strand, two fundamental cognitive processes can be 

distinguished within this strand, namely (1) focussing on physical objects and (2) 

focussing on mental objects. The former refers to empiricist approaches in the sense of 

seeing similarities among objects that fall under a particular concept. Empirical 

abstraction, in the sense of Piaget, describes a process when an individual abstracts 

sensory-motor properties from experiential situations. In Piaget’s (1977/2001) own 

words, empirical abstraction “draws its information from objects” (p. 317) but “is 

limited to recording the most obvious and global perceptual characteristics of objects” 

(p. 319). However, as argued by diSessa and Sherin (1998), though these abstraction 

processes (abstraction of dimensions that can be perceived) work well for 

category-like concepts, classical approaches (such as classifying or categorizing that 

are based on identifying commonalties from a set of specific exemplars) do not provide 

fertile insights into cognitive processes underlying concept construction in 

mathematics. An approach that goes beyond Piaget’s empirical abstraction has been 

developed by Mitchelmore and White (e.g., 2007). Drawing on Skemp’s (1986) 

conception on abstraction, their work on empirical abstraction in learning elementary 

mathematics describes abstraction in terms of the underlying structure rather than from 

superficial characteristics. This study of the underlying structure (of a mathematical 

concept) is considered as the heart of the objects-first strand in mathematics education 

research on abstraction. While Mitchelmore and White consider physical objects, the 

following subsection describes a cognitive process that takes mental objects as a point 

of departure.  

STRUCTURAL ABSTRACTION  

The notion of structural abstraction has been already used by Tall (2013) in the sense of 

a superordinate abstraction for empirical and platonic abstraction. Its “fundamental 

role […] throughout the full development of mathematical thinking” (ibid., p. 39) has 

been highlighted in Tall’s (2013) work How humans learn to think mathematically. As 

described in earlier work (Scheiner, 2013) and argued in this paper, structural 

abstraction goes beyond Tall’s conception of this particular kind of abstraction. The 
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crucial puzzle lies in the observation that structural abstraction has a dual nature, 

namely (1) ‘complementarizing’ the aspects and structure underlying specific objects 

falling under a particular mathematical concept and (2) facilitating the growth of 

coherent and complex knowledge structures. From this point of view, structural 

abstraction takes place both on the objects-structure and on the knowledge-structure 

(see, Figure 2). 

abstract/

general

objects-structure

perspective

concrete/

particluar

co
n

cr
et

iz
in

g
 p

ro
ce

ss

 placing  objects in 

different contexts using 

a specific model/

perspective

entering the structure/ 

the  kernel 

looking at the object

(different contexts/

points of view)

simple

knowledge-structure

perspective

complex

constructing 

 pieces of knowlegde  

restructuring  pieces of 

knowledge  into more 

coherent, complex 

knowledge structures
 

Figure 2: The dual nature of structural abstraction. 

From the objects-structure perspective, structural abstraction means (mentally) 

structuring the diverse aspects and the underlying structure of specific objects that 

have been particularized through placing the objects in a variety of different contexts. 

However, structuring the diverse aspects and the underlying structure of objects falling 

under a particular concept requires a concretizing process where the mathematical 

structure of a specific object is entered by looking at the object in relation with itself or 

with other objects that fall under the particular concept. Through placing objects into 

different specific contexts using a realistic model or perspective that provides 

theoretical structure in constructing a concept the meaningful components of the object 

may be highlighted. Models are, in this sense, intermediate in abstractness between 

‘the abstract’ and ‘the concrete’. This means that at the start of a particular learning 

process a model is constituted that supports the ‘ascending from the abstract to the 

concrete’ as described by Davydov (e.g., 1972/1990). Davydov’s strategy of ascending 

from the abstract to the concrete draws the transition from the general to the particular 

in the sense that learners initially seek out the primary general ‘kernel’ and, in further 

progress, deduce multiple particular features of the object using that ‘kernel’ as their 

mainstay. The crucial aspect in this approach is Ilyenkov’s (1982) observation that “the 

concrete is realized in thinking through the abstract” (p. 37). Taking this view, models 

are embedded in goal structures and used by embodied agents. The key feature within 

the objects-structure perspective, however, lays in the idea that various specific objects 
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falling under a particular concept mutually complement each other, so that the 

abstractness of each of them, taken separately, is overcome. From this perspective, 

structural abstraction is a movement towards complementarity of diverse aspects 

creating conceptual unity among objects. This is in line with a dialectical perspective 

described by Ilyenkov (1982) and differs from empiricist approaches in Skemp (1986).  

From the knowledge-structure perspective, structural abstraction, on the other hand, 

implies a process of restructuring the ‘pieces of knowledge’ constructed through the 

mentioned processes. Further, it also implies restructuring knowledge structures 

coming from current concept images, essential for the new concept construction. The 

cognitive function of structural abstraction is to facilitate the assembly of larger, more 

complex knowledge structures. The guiding philosophy here is rooted in the 

assumption that learners initially acquire mathematical concepts on their backgrounds 

of existing domain-specific conceptual knowledge through progressive integration of 

previous concept images or by the insertion of a new discourse alongside them. The 

crucial aspect of structural abstraction, from the knowledge-structure perspective, is 

that structural abstraction moves from simple to complex knowledge structures, a 

movement with the aim of establishing highly coherent knowledge structures.  

RESEARCH QUESTION AND METHOD  

Which insights does the above outline on structural abstraction reveal for the analysis 

of an individual’s striving for making sense of a mathematical concept and which 

aspects may be illuminated that have been hidden? These questions are addressed by 

returning to an earlier study (Pinto, 1998) that identified mathematics undergraduates’ 

strategies of making sense of formal mathematics, which were not fully captured by 

“action-first” models of concept construction (e.g., Dubinsky, 1991). The original data 

collected undertook an inductive approach throughout two academic terms during 

students’ first year at a university in England. It consists of classroom observation field 

notes and transcriptions of semi-structural individual interviews that took place every 

two weeks with eleven students. From a cross-sectional analysis of three pairs of 

students, two prototypical strategies of making sense could be identified, namely 

‘extracting meaning’ and ‘giving meaning’. Here the latter is our focus; through new 

lenses provided by the notion of ‘structural abstraction’ (Scheiner, 2013). Meanwhile, 

scrutinizing the old data contributes to the development of the very notion of structural 

abstraction itself. Due to the limited scope of the paper, we limit our focus on the case 

study of the learner Chris, who “consistently understood [the formal concepts] by just 

reconstructing it from the concept image” (Pinto, 1998, p. 301). 

SELECTED FINDINGS 

The above outline on structural abstraction provides indications to refine the 

characteristics of the ‘giving meaning’ strategy expressed by ‘reconstructing a formal 

object from the concept image’ (Pinto, 1998). If we return to examine the earlier study 

(Pinto, 1998), we find that several students take the formal definition of a mathematical 



Scheiner, Pinto 

5 - 110 PME 2014 

concept as just one amongst other related representations built in earlier experiences at 

school and out of school – a full meaning for considering the concept definition inside 

the concept image cell. The formal concept definition does not necessarily have 

primacy over the other representations but has a complementary power to give deeper 

insights into the ‘bigger picture’ of the concept. Moreover, we could identify some 

learners who ‘give meaning’ but simply ‘add’ the formal definition to their concept 

image. By merely juxtaposing pieces of knowledge, occasionally conflicting, the 

structure underlying the different facets of the concept may stay inconsistent, 

hampering the structural abstraction process. On the other hand, there are modes to 

succeed. Reasons for our claim rely in part on the analysis of Chris’ written formal 

definition of the limit of a sequence. We interpret that Chris firstly evokes a 

representation of a constructed object to start with, based upon his visual 

representation of a convergent sequence (see, Figure 3) and on his explanation of the 

meaning of the definition which starts as “... and you’ve got like the function there, and 

I think that ... ... it’s got 

the limit there...” (Chris, 

first interview). Yet, his 

written discourse seems 

to recall a specific 

representation of a 

sequence tending to L, as 

he starts “if na  tends to L” 

instead of “ na  tends to L 

if”, as he was told in the lessons, self correcting and crossing out the first line. Chris’ 

responses show that he developed and is guided by a generic representation of the 

limit concept. By taking a retrospective view, he described that he has developed this 

representation, looking at other sources than the lectures, through 

‘complementarization’ of a variety of representations.  

Chris expresses his doubts when responding whether the sequence 1,1,1,… has a limit:  

“(Laughter) I don’t know really. It definitely it will ... it will always be one ... so I am not 

really sure (laughter) ... ... umm ... it’s strange, because when something tends to a limit, 

you think of it as never reaching it ... so if it’s ... 1 ... then by definition it has a limit but ... 

you don’t really think of it as a limit (laughter) but just as a constant value.” 

(Chris, first interview) 

He evokes a dynamic view of the limit concept and an understanding (limit as 

unreachable) coexisting with the formal definition. His seriousness expressing his 

doubts suggest that, even immersed in the classroom culture at university, he will not 

simple let go ‘old images’ when faced with the formal definition,  acknowledging that 

he is not making a complete sense of the concept in its overall structure, which at the 

time is composed by conflicting ‘pieces of knowledge’. In a certain sense, there is no 

primacy of the formal definition in relation to other representations and he goes 

through a process of restructuring them into a coherent and complex whole proudly 

Figure 3: Chris’ representation of the limit concept. 
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announcing in his last interview where he could express the formal definition of limit 

of a sequence “without making it formal” as follows: 

 

(Chris, last interview) 

Modes to reconstruct earlier dynamical views of limit into the static version above, 

which seems unifying the various representations and we interpret as movements 

across levels of complexity, are only recovered through scrutinizing Chris’ 

descriptions of his attempts to make sense of the formal definition. During the second 

interview, when Chris comments “[I could] see what the definition meant”, may be 

referring to “... ... when you actually ... think that you can ... you make ε small.”  (Chris, 

seventh interview). Notice that “you can” suggests an experiment, which seems to be 

guided by his generic representation of a convergent sequence. He then self corrects, 

mentioning an action, “you make”, in order to define a convergent sequence. Other 

instances from the first interview suggest that he experimented by giving N and finding 

a related ε, in a logical inversion of what is stated in the definition:  

... you decide how far out ... and you can work out an epsilon from that ... or if you choose 

an epsilon you can work how far out.  

However, moving N to the right and determining ε allows a dynamical feeling that the 

sequence is tending to a limit. Such thought experiments may have guided him to “... 

thinking about why you are doing it ... ... you find out why you are choosing N so they 

lie all there in, so ... it gradually tends towards the limit” (Chris, seventh interview). 

Finally, a central aspect in this reanalysis is related to modes of dealing with cognitive 

conflicts, which appear as a pivot issue during the process of structural abstraction. 

Since there are learners who are not aware of a cognitive conflict, as further findings 

indicate, a realistic model/perspective, as described in the outline of the framework, 

may be a helpful ‘guide’ in order to construct the right idea of the concept. Further, the 

impact of cognitive conflicts and learning through conceptual change in our approach 

on structural abstraction reflects crucial issues in cognitive science. 

CONCLUDING REMARK 

Structural abstraction, from our point of view, is considered as a movement ‘from 

particular to unity’ in terms of ‘complementarizing’ particularized meaningful 

components/structure into a whole, and, on the other hand, as a movement ‘from 

simple to complex’ in terms of restructuring already constructed ‘pieces of knowledge’ 

into coherent and complex knowledge structures. In synthesis, structural abstraction 

acknowledges abstraction as a movement across levels of complexity rather than levels 

of abstractions or generality. With this approach, we call to free of the term abstraction 

from connotations that have been associated with it through decades in many works.  
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TYPES OF ARGUMENTS WHEN DEALING WITH CHANCE 

EXPERIMENTS  

Susanne Schnell 

TU Dortmund University, Germany 

 

This paper contributes to the discourse in stochastic education of how young students 

deal with learning settings that allow a data-based approach to probability. By using 

the micro-structure of arguments by Toulmin (1958), it explores which arguments 

students use and which role they play in the learning process. The data stems from 

design experiments with students at the beginning of their stochastic career (aged 11 to 

13) and is analysed with an interpretative approach.  

THEORETICAL BACKGROUND 

Integration of theoretical and experimental approach to probability 

There are several perspectives on probability, two of which will be taken into account 

here (Fig 1): the so-called ‘classical’ approach focusses on calculating probabilities 

theoretically, for instance by determining the ratio of outcomes favourable to the 

number of outcomes unfavourable of an event when all cases are equally likely (Jones 

et al. 2007, p. 912). The ‘experimental’ (or ‘frequentist’) approach is more centred on 

data: “the probability of an event is defined as the ratio of the number of trials 

favourable to the event to the total number of trials” (Jones et al. 2007).  

Figure 1: Interplay of theoretical probability and relative frequency. 

Coming from theoretical considerations, trends in data collected via experiments with 

random devices (such as dice) can be predicted. Or, having analysed data first, the 

relative frequencies can serve as estimation for the probability distribution underlying 

the experiment. The estimation and prediction will become better the more often the 

experiment is repeated. This is the definition Moore (1990) uses for the term ‘random’: 

“Phenomena having uncertain individual outcomes but a regular pattern of outcomes 

in many repetitions are called random. ‘Random’ is not a synonym for ‘haphazard’ but 

a description of a kind of order different from the deterministic one that is popularly 

associated with science and mathematics” (p. 98 emphasis in original).  

Open to question is how students gain and integrate understanding of these two 

perspectives (Jones et al., 2007, p. 946).  

theoretical 

probability 

THEORY 

relative frequency 

DATA 

make prediction 

make estimation 
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Reasoning and arguments in stochastics 

To investigate this, this paper focusses on the activity of reasoning as it gives insights 

into students’ sense-making processes. ‘Informal inferential reasoning’ was first used 

in statistics, a term which in probability education refers to exploring and making 

inferences about trends in data generated by random devices such as dice, without 

explicitly using probability or statistical terms (Pratt et al., 2008). 

In this paper, ‘reasoning’ is understood as using arguments in interaction. To get 

further insight, the micro-structure of arguments proposed by Toulmin (1958) is 

useful: Reasoning is finding arguments which are a series of propositions in which a 

Claim is inferred from Evidence. The so-called Warrant links the Evidence and 

Claims, for instance the fictive argument in Fig 2. The triple is called ‘argument’.  

 

Figure 2: Micro-structure of argument and fictive example. 

The example in Figure 2 links a data-focussed Evidence to a Claim about the 

probability distribution underlying the experiment. Due to page limitations, further 

elements of arguments such as the Backing will not be addressed in this paper (cf. 

Toulmin 1958).  

Applying this model to arguments in a stochastic setting adds a specific reasoning that 

refers to the random variation of data: “To understand the nature of statistical 

argument, we must consider what types of explanation qualify as answer to why 

questions. […] Indeed, statistical inference is rare among scientific logics in being 

forced to deal with chance explanations as alternatives or additions to systematic 

explanations” (Abelson, 1995, p. 6). 

Types of arguments when dealing with an experiment-based approach to 

probability 

Research in statistics and probability education has uncovered different conceptions 

and perspectives when dealing with probability that can lead to different arguments. 

The here presented types of arguments are not supposed to be disjunct; instead the 

analysis below will show that more complex arguments link different types together.  

 Data-centred arguments: The Evidence is an observation about the data; for 

instance, means of data analysis are applied to identify central trends which 

can then be inferred as a claim.  

Evidence 

Of 2000 throws with a 

six-sided die, 1000 are a “6”. 

Claim 

The die is unfair. 

Warrant 

When an event appears too 

often, the die is unfair. 
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 Theoretical arguments: In this case, the Evidence refers to probabilities (e.g. 

by determining the ratio of favourable to non-favourable outcomes) and 

probability distributions from which a Claim then is made, e.g. about 

expected trends in the data.  

 Non-deterministic arguments: As Moore (1990) points out, ‘random’ 

describes a non-deterministic order. Students might lack words for this, but 

are sometimes able to find conceptions such as ‘unpredictability’ (cf. Pratt 

2008). These can be used as base for a Claim. 

 (Quasi-)causal arguments: In this last type of argument, the Evidence is used 

as a cause to make a Claim why a certain phenomenon occurred. Learners 

might try to find causal explanations for the result of a single throw of a die, 

which according to Konold (1989) is a common misunderstanding when 

dealing with probabilities: Instead of applying stochastic reasoning, people 

perceive “the goal in dealing with uncertainty [as] to predict the outcome of a 

single next trial” (p. 61).  The (quasi)-causal explanations are often ‘magical’ 

(e.g. an animistic nature of the chance device, see Wollring, 1994) or refer to 

causes that can be manipulated by the students (Wollring 1994). These 

arguments are important elements of the learners’ process of making sense of 

the interplay of uncertain individual outcomes and regular pattern in the long 

term perspective (Pratt et al. 2008 and Wollring 1994).  

RESEARCH QUESTIONS AND DESIGN  

The insights presented here are part of a broader project to investigate students’ 

processes of constructing knowledge when confronted with an experiment-based 

approach to probability (Schnell, 2014). In this paper, the specific focus lies on the 

different types of arguments in order to gain deeper insight into the processes of 

integrating theoretical and data-centred notions of probability:   

1. Which (quasi-)causal and non-deterministic explanations do students use and 

which role do they play in the learning processes? 

2. (How) Do students integrate theoretical and experimental aspects of probability 

in their arguments?  

The teaching-learning-arrangement  

To investigate this, a teaching-learning-arrangement was used that works as an 

experiment-based, informal introduction to probability in grade 6 or 7. The core 

elements are two consecutive games in which students gain points by betting on the 

results of a race between four differently-coloured animals. The didactic intention is to 

provide systematic experience with the empirical law of large numbers. This paper will 

focus only on the first game (for more details see Prediger & Hußmann, 2014 and 

Schnell, 2014).  

At the core of the game is the repeated throwing of a 20-sided die with the following 

colour distribution and the corresponding animals: red ant 7 sides, green frog 5, yellow 
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snail 5 and blue hedgehog 3. While students have access to the die at all times in the 

teaching-learning-arrangement, experience shows that most of them assume an even 

colour distribution at first and discover the actual colour distribution later on. 

The length of the race (i.e. how many times the die is rolled in total) is set before the 

game start: every number between 1 and 10,000 is possible; longer games take place 

using a computer simulation. Each throw of the die moves the corresponding animal 

one step forward on the game board or in the computer simulation; the race is finished 

and the results are compared when the previously determined number of throws is 

reached. The animal with the highest absolute frequency is the winner of the race. 

Motivation for further investigation of the data are the questions “which animal is the 

best” and “when can you be as sure as possible that this animal will win”. To 

systematically compare the results of short races (e.g. 1, 10 or 20 throws) with each 

other but also with the results of long races (e.g. 100, 1000, 10 000 throws), the 

teaching-learning-arrangement provides record sheets and tasks focusing on these 

comparisons.  

Methods 

The author conducted design experiments (Cobb et al., 2003) with nine pairs of 

students (grade 6, German comprehensive school, ages 11 to 13) in a laboratory 

setting. Each design experiment took across four to six sessions of 60 to 90 minutes 

each; the game described above was finished within the first session for eight pairs and 

for one pair (Emily and Leo) within the second session. The data corpus includes 

videos, screen captures of the simulation, transcripts and all written products such as 

record sheets.  

The research questions were addressed by qualitatively analysing the transcripts and 

videos turn by turn. In a first step, all arguments were identified, i.e. all statements in 

which Claims and Evidence were explicitly stated and connected by a(n implicit) 

Warrant. This paper focusses on arguments with Claims about observations related to 

data or theoretical aspects (leaving out other arguments, for instance about the quality 

of a prediction; cf. Schnell 2014 for a broader investigation); in total 49 arguments 

were identified
1
. Then, these arguments were coded and categorized in terms of the 

type of argument and Evidence. Selected results of the analysis are presented here.  

ANALYSIS AND DISCUSSION OF DIFFERENT TYPES OF REASONING 

The role of (quasi-)causal and non-deterministic arguments 

(Quasi-)causal arguments: This category shows the most variety in the analysis which 

is in accordance with the literature (Jones et al. 2007). 17 of the 49 arguments can be 

                                           
1
 This number refers to arguments that were newly constructed in the course of the design 

experiments. Not included are numbers for when students repeated a previously used argument (e.g. 

repeating the superiority of the red ant because of the colour distribution). If two different pairs of 

students construct the same argument, both are counted. 
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coded as (quasi)-causal. All arguments with one exception are constructed before the 

discovery of the colour distribution. By looking more closely at the Evidence, 

subcategories can be built. Some of these subcategories are:  

 Device-focussed: Students try to find causes for outcomes by focussing on the 

die (or the computer simulation, but no participant did that), such as <When 

the die is manipulated, you get an unwanted outcome> (RS-24:35)
2
 or 

animistic conceptions such as <When the die is evil, you get an unwanted 

outcome> (DJu8- 31:55). Some students use the physics of throwing the die 

as a cause for the result. For one pair (Ramona and Sarah), this argument 

dominates the first 30 minutes: <When the die rolls for a short distance, the 

outcome is blue> (RS-22:39). All these arguments focus on explaining 

outcomes of a single throw of the die.  

 Property-focussed: This subcategory includes two arguments that claim the 

superiority of the red ant comes from the colour red itself or the specific 

animal: <When the colour is red, then the animal is on fire and is thus the 

fastest> (EL-41:42) and <When an animal has long legs, it wins more often> 

(DeK-87:50). The latter argument is the only causal argument that is built 

after the colour distribution is discovered.  

Non-deterministic arguments: Only two arguments could be identified as solely 

non-deterministic: They are both created by the same pair of students and use the 

concept ‘luck’ as Evidence, for instance: <When bad luck happens, then a series of red 

is ended by green> (EL-43:38). Both were also constructed before the colour 

distribution of the die was discovered. Even though other students also refer to good or 

bad luck, they are not using it explicitly as Evidence for a Claim. In three other cases, 

non-deterministic Evidence is combined with theoretical insights; these are discussed 

below.  

Addressing the first research question of the role of (quasi-)causal explanations: 

Looking at the overall picture, six out of nine pairs of students built (quasi-)causal and 

non-deterministic explanations. The variety of different explanations is in line with 

findings in literature (cf. Jones et al. 2007). The device-focussed arguments are 

concerned with not only explaining single outcomes, but also with undesired results. 

This might indicate that students tend to deal with experiences that are opposed to 

expectations by building these explanations. This observation is in line with 

Wollring’s (1994, p. 136) observations about the behaviour of children in primary 

school. Property-focussed arguments are used to explain the superiority of the red 

animal, rather than single outcomes. In all but one cases, these (quasi-)causal 

arguments are built before the discovery of the colour distribution of the die.  

                                           
2
 Noted in < > is the reconstructed Warrant of the form ‘When Evidence, then Conclusion’; in 

parentheses is the code for the pair of students and the time-stamp in which the argument was 

verbalised for the first time. 
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The role of data-centred and theoretical arguments 

Data-centred (8 arguments of 49): Due to the guide question “which coloured animal 

is the best” and the provision of record sheets, all students focussed on the produced 

data. The arguments here are those, in which students explicitly used a data-centred 

Evidence to make a Claim, such as <When red ant has won most often, it is the best 

animal>. They were built and mainly used before the colour distribution was 

discovered and seemed to disappear afterwards. 

Theoretical arguments (11 arguments): The discovery of the colour distribution of the 

die is crucial for giving meaning to the patterns in data such as the red ant being more 

likely to win. Thus, students who don’t discover the colour distribution by themselves 

are prompted by the research teacher (two pairs). Therefore, all pairs of students use 

arguments like <When red has more faces than the other colours, the red animal is 

more likely to be rolled> (appears for all pairs of students).  

Combination of theoretical and data-centred (8 arguments): The data analysis shows 

that theoretical- and data-centred arguments were combined in some cases, for instance 

<When red is more on the die, red is rolled more often and thus red ant wins more 

often> (EL2-27:10). This argument uses theoretical Evidence to claim the empirically 

observed superiority of the red ant. Furthermore, it might refer to the connection 

between the red ant winning a whole race (i.e. having the highest absolute frequency) 

and the single outcome of one throw of the die.  

Combination of theoretical and non-deterministic (3 arguments): Three of these 

combined arguments could be identified: <When blue hedgehog is lucky, it gets the 

three blue faces very often and can win> (RS-30:10), <When red ant is unlucky, it 

loses in races with an even number of throws even though it is superior> (RS-67:16) 

and <When you are lucky, an animal with fewer chances wins> (RS-41:15). Here, 

Ramona and Sarah start with (good/bad) luck as Evidence and make a Claim that this 

might interfere with the chances derived theoretically from the colour distribution. 

This could be interpreted as the integration of experienced random variation in single 

outcomes with data-based and theoretical insights.  

Addressing the second research question concerning the integration of data-centred 

and theoretical aspects of probability:  

Some arguments could be identified which combine theoretical and data-based 

aspects. Here, patterns (superior red ant) are related to the colour distribution (7 out of 

20 sides on the die). In these arguments, the theoretical insight serves as Evidence to 

make a claim related to data-centred observations. Looking at the sequence in which 

the different arguments were built, it is noticeable that after the discovery of the colour 

distribution, no new, solely data-centred arguments were built.  One pair of students 

also combines theoretical and non-deterministic insights to explain situations in which 

it encounters random variation (e.g. a losing red ant). A variety of micro-processes of 

combining different insights were investigated in Schnell & Prediger (2012). 
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CONCLUDING REMARKS 

This paper gives a short insight into the types of arguments that students at the 

beginning of secondary school use when working on an experiment-based setting 

introducing probability.  The in-depth analysis shows how they not only make 

connections between theoretical and data-centred aspects, but also integrate 

non-deterministic arguments in a meaningful way. This supports the claim that 

informal conceptions are important for individual learning pathways (Pratt et al. 2008; 

Schnell 2014).  

Another observation is that the discovery of the colour distribution seems to lead to a 

decline in (quasi-)causal and solely data-centred arguments. This raises the question of 

whether there is some kind of implicit hierarchy between the different types of 

arguments. The presented data suggests that students might be aware of a superiority of 

theoretical arguments over other types of arguments. To uncover the relations between 

different types of arguments, it might be fruitful to take into account further elements 

of arguments such as the Backing for the Warrant and Rebuttals (Toulmin, 1958). 
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EXPLORING STUDENTS’ MENTAL MODELS IN LINEAR 

ALGEBRA AND ANALYTIC GEOMETRY: OBSTACLES FOR 

UNDERSTANDING BASIC CONCEPTS 

Sven Schueler, Bettina Roesken-Winter 

Humboldt-Universität zu Berlin 

 

In this paper, we discuss the relevance of ‘Grundvorstellungen’ (GVs), a didactical 

category to analyze students’ mental models in comparison to the intended 

mathematical meanings in the context of Linear Algebra and Analytic Geometry. 

Diagnostic tasks were used to reveal students’ conceptual understanding in this field 

of expertise. In particular, an open item format was chosen to elicit students’ 

individual GVs and to explore how they use them while working on mathematical 

tasks. 30 students from upper secondary school participated in our study; data was 

collected by a paper-and-pencil test. The results show that elaborated representations 

of GVs foster students’ understanding of mathematics and facilitate the process of 

finding problem solving strategies. 

INTRODUCTION  

Research on students’ understanding of mathematical content is huge and varies with 

respect to constructs and categories employed for analyzing different facets. Some 

authors elaborate on procedural aspects of knowledge construction and underline the 

role of abstraction when students delve into mathematics (cf. Dreyfus, 2012). Other 

research investigates the role of mental models that students build up and to which 

degree these adequately reflect the mathematical properties of a specific concept (cf. 

Fischbein 1989; Vinner & Tall, 1981). While introducing the term concept image, Tall 

and Vinner (1981) explicitly accentuate the individual understanding that students 

develop when trying to make sense of the mathematics they encounter in the 

classroom.  

In German didactics tradition, the construct of Grundvorstellungen, abbreviated here 

as GV, serves as essential tool to capture both normative and intuitive interpretations 

of mathematics. Vom Hofe, Kleine, Blum and Pekrun (2005) emphasize that the value 

of the construct lies in interpreting GVs as “elements of connection or as objects of 

transition between the world of mathematics and the individual world of thinking” (p. 

2). In our study we are interested in gaining insight into upper secondary students’ GVs 

in the field of Linear Algebra and Analytic Geometry and how those influence 

students’ performance. In order to reveal what students really know and understand 

diagnostic tasks were employed.  
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THEORETICAL BACKGROUND 

Exploring the role of intuition for the learning of mathematics has a long tradition in 

PME research. One essential starting point for subsequent research was provided, for 

instance, by the seminal work of Fischbein (1989) who differentiates algorithmic, 

intuitive and formal knowledge. In particular, he stresses:  

To think by manipulating pure symbols which obey only formal constraints is practically 

impossible. Consequently, we produce models which confer some behavioral, practical, 

unifying meaning, to this symbols. (p. 9) 

These kind of students’ models of mathematical concepts and procedures and how 

their individually constructed knowledge conflicts with the mathematically intended 

one have been studied in depth. One promising approach lies in analyzing students’ 

concept images in relation to the intended concept definitions. Here, Tall and Vinner 

(1981) use the term concept image “to describe the total cognitive structure that is 

associated with the concept, which includes all the mental pictures and associated 

properties and processes” (p. 152). When working on mathematical tasks, students 

base their decisions on the concept image. To that effect, Vinner (1994) could show 

how obstacles in calculus occurred since students retain, for instance, a restricted 

concept image of a tangent developed earlier. This concept image of a tangent to a 

circle provokes difficulties in students’ learning of calculus when confronted with the 

analytical definition of a tangent.  

Concept images help to identify prototypes that students apply inappropriately in 

specific situations so that obstacles occur due to incorrect generalization of constructs. 

Considering GVs, the construct provides a broader scope to analyze students’ 

sense-making and occurring hindrances (cf. Prediger, 2008). Vom Hofe et al. (2005) 

point out that three significant aspects characterize the process of building up GVs 

during mathematical concept acquisition:  

 constitution of meaning of mathematical concepts based on familiar contexts 

and experiences, 

 generation of generalized mental representations of the concept which make 

operative thinking (in the Piagetian sense) possible, 

 ability to apply a concept to reality by recognizing the respective structure in 

real life contexts or by modeling a real life situation with the aid of the 

mathematical structure. (p. 2) 

Prediger (2008) uses an explorative item format to access multiple facets of students’ 

GVs when dealing with multiplication of fractions. From the mathematical viewpoint, 

the following GVs can be activated in the given situation: 

 repeated addition, repeated adjoining (temporal-successive interpretation) 

 part of interpretation 

 scaling up and down 

 multiplicative comparison 

 area of rectangle. (p. 10) 
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When comparing to students’ GVs, Prediger (2008) showed “that the individual 

models for multiplication were more heterogeneous and more distant from the 

mathematically intended models than for addition” (p. 10). Most students still applied 

the model for multiplication of natural numbers (repeated addition) which cannot be 

transferred to the multiplication of fractions. Here, analyzing student performances 

reveals inadequate GVs that occur as implicitly learned rules in another context. 

Our study aims at exploring students’ GVs in Linear Algebra and Analytic Geometry, 

a school topic which introduces a great variety of constructs and concepts. Classroom 

activities in this area are characterized by a dominance of algorithmic procedures and 

the use of schemata to arrive at solutions (Tietze, Klika & Wolpers, 2000). As a result, 

such treatment does often not allow students to develop a deep understanding of the 

mathematical concepts at hand (Malle, 2005).  

In particular, we draw on the work by Wittmann (2003) who distinguishes the 

following three GVs to capture the interplay between Geometry and Algebra:  

 Algebraization: Students use algebraic expressions to structure a presented 

(geometric) situation (parametrization, vectorization), and place geometrical 

objects in the coordinate system. 

 Geometrization: Students translate algebraic equations into a geometric 

object to use for further interpretation.  

 Structural Generalization: Students attend to overriding structural features, 

and they are involved in abstraction and generalization to bring together 

concepts on a meta-level.  

Mostly teaching of Linear Algebra and Analytic Geometry is restricted to paying 

attention to developing GVs in Algebraization or Geometrization (Wittmann, 2003). 

However, to attain comprehensive understanding that pretends insular knowledge the 

development of GVs in Structural Generalization is decisive (Tietze, Klika & 

Wolpers, 2000).  

RESEARCH QUESTIONS 

The research at hand is part of a larger study to survey significance and construction of 

diagnostic tasks as an instrument to understand students’ difficulties with main 

concepts of Linear Algebra and Analytic Geometry in school (cf. Schueler, 2013). 

With respect to the theoretical background we pay attention to students GVs on 

Algebraization (GVA), Geometrization (GVG), and Structural Generalization (GVSG). 

In particular, we pursue the following research questions:  

 Do students have preferred GVs (GVA, GVG or GVSG) in the field of Linear 

Algebra and Analytic Geometry?  

 How do students deal with mathematical tasks that entail interconnections of 

different GVs? 
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METHODOLOGY  

Qualitative methods are used for exploring students’ GVs while working on specific 

tasks. During a period of five weeks we observed corresponding lessons and analyzed 

the teaching material in order to construct a set of diagnostic mathematical tasks 

implying key aspects of Linear Algebra and Analytic Geometry in school. Data was 

collected by a one-hour paper-and-pencil test composed of seven diagnostic tasks. In 

this paper we focus on three tasks to highlight different facets of GVs.  

The sample consists of 30 students that range in age from sixteen to eighteen. Among 

them, 18 female and 12 male students who attend grade 12 of a German high school. In 

addition to the test we collected some information about students’ general performance 

level in mathematics and their self-assessment compared to the average of the class; 

these results are not presented in this paper.  

RESULTS AND DISCUSSION 

For the sake of brevity the presentation of results is limited to exemplary findings 

which illustrate students’ solutions against the background of the three basic GVs 

discussed in the theory section. In addition, we enrich our presentation by discussing 

essential mathematical aspects and by reporting typical obstacles.  

Task 1 

a) Explain with your own words the concept ‘vector’.  

b) Describe situations of application in which it is essential to use vector algebra. 

Introducing vectors in school is based on at least two different approaches, i.e. vectors 

are considered as equivalence classes of arrows or as n-tuples. In an equivalence class 

of arrows a vector is defined as an infinite set of arrows with same length, same 

orientation and same direction. The n-tuple model is based on abstract understanding 

of a vector as an ordered list of elements.  

In task a) we intend to reveal students’ prevalent GVs. In addition, task 1a) emphasizes 

what relevance students’ attach to the use of vectors in applications. Table 1 

summarizes the answers given by students.  

equivalence class of arrows n-tuple incorrect answer no answer 

54% 17% 23% 6% 

Table 1: Students’ answers to problem 1a). 

Having observed the lessons, we can confirm that both aspects of the vector concept 

were introduced in class. However, 54% of students rely on the geometric 

understanding of an equivalence class of arrows (GVG) while only 17% of them 

consider the n-tuple concept (GVA). Thus, the majority of students are able to define a 

vector as an equivalence class of arrows. Reviewing relevant teaching material we 

assume that the preference for a geometric association (GVG) results from the fact that 

the majority of the lesson material deals with geometric problems.  
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The answers given to task 1b) underline this aspect as 87% of students use vector 

algebra in geometric situations for example by considering the routes of airplanes 

(GVG).  

In sum, 29 % of students are not able to define the vector concept correctly. About 92% 

of the incorrect answers result from a deficient geometric interpretation of a vector as 

single arrow, placed at a concrete position in a three-dimensional coordinate system. 

Only 12% of students use both GVs to describe the vector concept. The combination of 

the geometric and the algebraic definition of a vector requires focusing on general 

mathematical characteristics common to both approaches. These thoughts refer to 

aspects of structural generalization (GVSG) and present an elaborated understanding of 

the concept of vectors.  

Task 2 

The geometric figure is called a regular tetrahedron. It consists 

of four equilateral triangles.  

Draw a figure to illustrate a convenient way to place the 

tetrahedron in a Cartesian coordinate system. Describe the 

position of the tetrahedron as accurately as possible. 

In task 2 the students were asked to give a possible parameterization of a tetrahedron. 

This task demands students to activate different facets of GVA. In the first place, the 

task strongly refers to GVA in terms of using algebraic expressions to describe and 

structure a presented geometric figure. In addition, a correct solution requires the 

understanding of typical characteristics of a tetrahedron like equal edge length. That is, 

task 2 furthermore addresses key aspects of studying global features of a geometric 

figure. 

In order to find a solution to this problem the students need to choose a convenient way 

of placing the Cartesian coordinate system and its point of origin and of translating the 

geometric characteristics of a tetrahedron into algebraic expressions. Table 2 

demonstrates the distribution of the students’ answers to task 2. 

correct answer incorrect answer no answer 

47% 33% 20% 

Table 2: Students’ answers to problem 2. 

47% of the students are able to give an adequate visualization of the tetrahedron. 

However, it is notable that the correct solutions differ with respect to placing the point 

of origin. The majority of students identify one surface of the tetrahedron with the 

x1-x2-plane as shown in Figure 1. Figure 2 shows an example of an alternative way 

that students chose to locate the Cartesian coordinate system. 
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However, 53% of the students are not able to give a correct answer. Analyzing the 

incorrect answers leads to two major problems. First, we observed that students face 

difficulties when identifying geometric characteristics of the tetrahedron. On the one 

hand some students disregard the aspect of equilateral triangles and on the other hand 

they misinterpret the tetrahedron as a square pyramid as shown in Figure 3. The second 

difficulty lies in choosing a position of the tetrahedron in the Cartesian coordinate 

system that facilitates algebraic parameterization. In sum, applying GVA which capture 

the process of algebraization, is problematic due to lacking understanding of some 

basic geometrical features. 

Task 3  

a) Describe the position of the planes (i) or (ii) in a Cartesian coordinate system.  

Draw a figure which illustrates the position of the plane. 

(i)  x1 = 4 

(ii) x1 – x3 = 0 

b) Give a possible equation of a plane which lies vertical to the x1 – x3-plane.  

Explain your choice.  

In-depth understanding of geometric objects in Linear Algebra and Analytic Geometry 

manifests itself in the ability to switch between a geometric characterization of an 

object and the corresponding algebraic expression. The ability of combining 

effectively these different representations is part of GVSG. In task 3 a) the students were 

asked to give an adequate geometric description of a plane which is presented in 

coordinate form, whereas subtask b) deals with this problem vice-versa. Table 3 sums 

up students’ answers. 

3 a) 
correct answer incorrect answer no answer 

35% 35% 30% 

3 b) 
correct answer incorrect answer no answer 

44% 40% 16% 

Table 3: Students’ answers to problem 3a) and 3b). 

Our findings show that 35% of the students answer task 3a) correctly, and 44% of them 

are able to give an adequate solution to task 3b). The relation between correct and 

Figure 1 Figure 2 Figure 3 
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incorrect answers for both tasks is hardly different indicating that both GVs (GVA and 

GVG) are equally assessable for students. However, considering the number of students 

that are not able to provide an answer at all, it appears that algebraization allows more 

students to approach the mathematical content. From explanations that students wrote 

to task 3a), we can gather that the missing answers are due to deficient understanding 

of the coordinate form of a plane (cf. Schüler, 2013). Several students brought forward 

the argument that the expression x1 = 4 does not describe a plane but a single point in 

the coordinate system. This argumentation reveals a typical obstacle, i.e. students 

interpret the missing of a coordinate signifies it to be zero (cf. Wittmann, 2003).  

CONCLUSION 

The presented problems stress in manifold ways the relevance of GVs in learning 

Linear Algebra and Analytic Geometry. Considering our exemplary findings we are 

able to underline the function of GVs as hinges which facilitate the transition from 

students’ individual understanding of situations described in tasks to the respective 

mathematical models.  

Regarding research question one and two our findings show that students neither have 

a preference for GVA nor GVG. However, the tasks would allow combing both GVs as 

required in the category GVSG. Given that GVSG are essential for developing a deep 

understanding, teaching would profit from using contexts that encourage structural 

generalization.  

Reviewing teaching material and schoolbooks traditionally used in the majority of 

German high schools shows that the preference of daily practice is to emphasize either 

GVA or GVG, i.e. dealing with characteristics of geometric figures is almost limited to 

finding an algebraic expression. This proceeding leads to the phenomenon that 

students learn solution strategies by heart and try to memorize how to fit them to tasks 

without activating a deeper mathematical understanding (cf. Tietze, Klika & Wolpers, 

2000). Such behavior could be seen as well in students’ task performance in our study.  
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ARE INTEREST AND ENJOYMENT IMPORTANT FOR 

STUDENTS’ PERFORMANCE? 

Stanislaw Schukajlow, André Krug 

University of Münster, Germany  

 

We conducted an experimental study with 192 ninth graders in which we investigated a 

connection between performance and students’ interest and enjoyment using 

task-unspecific and task-specific questionnaires. Students were randomly assigned to 

experimental group 1 or to experimental group 2. In group 1, they were asked about 

their affective measures after task processing, and in group 2, they were asked before 

task processing. In both groups, students who achieved higher scores on the 

performance test reported stronger interest and enjoyment. The connection of 

performance to the task-unspecific and task-specific affective scales did not differ 

significantly and ranged between .15 and .47 for problems with and without a 

connection to the real world.  

INTRODUCTION 

Affect is highly important for student learning and has been investigated intensively 

during the last few decades (Zan, Brown, Evans, & Hannula, 2006). The results of 

previous studies indicate that student achievement measured using students’ grades is 

connected to students’ interest and enjoyment. However, only a small number of 

studies have investigated correlations between students’ performance and their affect. 

In the current study, we examine whether students’ performance on problems with and 

without a connection to the real world is connected (1) to their task-unspecific affect in 

mathematics or (2) to their task-specific affect when they report on their affect before 

and after task processing. Further, differences in the correlations between performance 

and affect were investigated for problems with and without a connection to reality. 

THEORETICAL BACKGROUND AND RESEARCH QUESTIONS 

Interest and enjoyment  

Interest is a motivational variable that characterizes a relation between a person and an 

object and indicates an individual psychological state of engaging with this object over 

time (Hidi & Renninger, 2006). Interest develops from situational to individual interest 

and is important for students’ learning. Compared to other motivational constructs, 

interest is strongly connected to academic achievement. Correlations in mathematics 

range from .0 and .5 for different achievement tests and tend to decrease from the early 

to middle secondary level (see summary by Heinze, Reiss, & Rudolph, 2005). Interest 

is closely connected to emotions such as enjoyment (Schukajlow et al., 2012). 

Students’ emotions predict their career aspirations and thus influence their current and 

future lives (Wigfield, Battle, Keller, & Eccles, 2002). A control-value theory of 
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achievement emotions assumes that the value of learning materials and the 

controllability of learning activities are important for students` emotions (Pekrun, 

2006). Although enjoyment is among the most frequently reported positive emotions 

in the classroom, there are only a few studies that have investigated its connections to 

academic achievement. Students’ grades at school and at universities are positively 

connected to their enjoyment in mathematics (.22 and .46, respectively, Goetz, 

Frenzel, Pekrun, Hall, & Lüdtke, 2007; Pekrun, Goetz, Frenzel, Barchfeld, & Perry, 

2011). However, we could not find studies that had investigated the relation between 

students’ performance on an achievement test with their enjoyment. As a positive 

association between students’ grades and their enjoyment has previously been found, 

we expected a positive correlation between performance and students’ enjoyment.  

Characteristics of affect measurement 

Students’ affect can be measured before (prospective affect), during (current affect), or 

after (retrospective affect) activities such as problem solving (Efklides, 2006). 

Students’ prospective interest indicates their level of interest when they begin to solve 

a problem. Their current affect describes their level of interest while they are trying to 

solve the problem. Their retrospective affect provides information about their 

perceptions of mathematical activities after task processing. We argue that students’ 

prospective, current, and retrospective perceptions are important indicators of their 

affect.  

Recently, researchers have demanded several times that subject-specific aspects of 

affect be taken into account, that multimethod approaches be used, and that new 

instruments be developed to measure affective variables (Hannula, Pantziara, Wæge, 

& Schlöglmann, 2009; Zan et al., 2006). Thus, in this study, we used two instruments 

to measure affect: well-known task-unspecific affective scales that were validated in 

other studies and a new task-specific approach applied in the study by Schukajlow et 

al. (2012). In addition, we measured students’ affect before and after task processing in 

order to compare the stability of the connection between performance and affect. 

One characteristic of affective measures is their level of subject-specificity. A sample 

statement may be “I am interested in problem solving” or “I am interested in solving 

the equation 3 + 2x = -4x.” Although task-specific measures allow researchers to 

obtain answers about affect with regard to specific topics or kinds of tasks and are more 

sensitive to the affective changes that occur after intervention programs, they have 

rarely been used—except for self-efficacy expectations—to measure affect. As 

task-unspecific and task-specific affect can be used to assess the same construct, we do 

not expect performance to be more or less strongly correlated with task-specific 

measures than with task-unspecific measures. However, because of the sensitivity of 

task-specific measures, correlations between task-specific measures and performance 

may have greater variability across different types of problems than correlations 

between task-unspecific measures and performance. Thus, it is possible that the 

connection between performance and task-specific affect will differ across different 

problem types. 
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Problems with and without a connection to the real world 

Task-specific measures were used recently to investigate interest and enjoyment 

regarding to problems with and without a connection to reality (Schukajlow et al., 

2012). These problem types were modelling, “dressed up” word and 

intra-mathematical problems, all three of which are typically distinguished in 

discussions about modelling and applications (Blum, Galbraith, Henn, & Niss, 2007). 

To solve modelling problems, students need to construct a situation model of the task, 

and then they need to simplify that model by structuring and mathematizing it in order 

to generate a mathematical model that can be solved using mathematical procedures. In 

the end, mathematical results have to be interpreted and validated. Solving “dressed 

up” word problems is much simpler because a mathematical model is merely “dressed 

up” by the situation, and students have to “undress” it, mathematize it, and apply 

mathematical procedures to solve this type of problem. Intra-mathematical problems 

are not connected to reality at all.  

We assume that there should be no significant differences between correlations of 

performance and affect for problems with and without a connection to the real world. 

Students who achieve higher scores on tests should be more interested in the solutions 

to the problems and should enjoy solving the problems more.  

Research questions 

The research questions we addressed were: 

1. Is students’ performance connected to task-unspecific and task-specific interest 

and enjoyment in mathematics measured before and after problem solving? 

2. Is students’ performance connected more strongly to task-specific than to 

task-unspecific affect?  

3. Are correlations between performance and task-specific affect different for 

different types of problems (modelling problems, “dressed up” word problems, 

and intra-mathematical problems)?  

METHOD 

One hundred and ninety two German ninth and tenth graders from 4 middle-track and 4 

grammar school classes (53.6% female; mean age=16.1 years, SD=0.86) were asked 

about their task-unspecific interest, enjoyment, and boredom as well as about 

task-specific affect regarding various types of problems. The students were randomly 

assigned to two experimental groups. Students in group 1 solved problems first and 

then reported on their task-unspecific affect and on their task-specific interest, 

enjoyment, and boredom regarding these problems. In group 2, students reported on 

their task-unspecific and task-specific affect first and then solved tasks that were used 

in the task-specific part of the questionnaires (see Figure 1). Students in both groups 

worked on the same tasks and had the same amount of time to solve the problems and 

to complete the questionnaires.  
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Figure 1: An overview of the study. 

Sample problems 

Twenty-three problems on the topics Pythagoras’ theorem and linear functions—eight 

modelling, eight word, and seven intra-mathematical ones—were selected for this 

study and were used to examine students’ performance and their task-specific affect. 

Sample tasks on the topic Pythagoras’ Theorem are presented below.  

 
Figure 2: Modelling problem “Maypole”. 

The maypole, football pitch, and side c were classified as modelling, “dressed up” 

word, and intra-mathematical problems, respectively (for more sample tasks and 

detailed analysis of classification see Krug & Schukajlow, 2013; Schukajlow et al., 

2012). 

 
Figure 3: “Dressed up” word and intra-mathematical tasks “Football Pitch” 

and “Side c”. 
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Performance tests 

Three tests with 8, 8, and 7 tasks each were constructed to measure students’ 

performance in solving modelling, “dressed up” word, and intra-mathematical 

problems, respectively. All tasks that we used were examined in the framework of 

other projects. The Cronbach’s alpha reliabilities were .59, .67, and .52 for the 

modelling, word, and intra-mathematical tests, respectively, and were acceptable for 

the small number of items and their diversity (different contexts and/or different 

mathematical procedures). 

Task-unspecific interest and enjoyment  

Task-unspecific interest and enjoyment were assessed with scales used in other studies 

(e.g. Pekrun et al., 2011) and consisted of 6 and 4 statements that were answered on 

5-point Likert scales ranging from (1=strongly disagree) to (5=strongly agree). Sample 

items are “I am interested in mathematics” and “I enjoy being in class.” The 

Cronbach’s alpha reliabilities were .88 for interest and .80 for enjoyment. 

Task-specific interest and enjoyment 

On the task-specific questionnaire, each of the 23 problems was followed by a 

statement about students’ interest and enjoyment. The instructions for both groups (cf. 

Fig. 1) were: “Read each problem carefully and then answer some questions. You do 

not have to solve the problems!” After task processing, students in group 1 were 

asked to rate the extent to which they agreed or disagreed with the statements “It was 

interesting to work on this problem” and “I enjoyed solving the problem shown”. 

Students in group 2, on the other hand, were asked before task processing to rate the 

statements “It would be interesting to work on this problem” and “I would enjoy 

solving the problem shown” A 5-point Likert scale was used to record their answers 

(1=not at all true, 5=completely true). A total of 6 scales that measured either 

task-specific interest or enjoyment were formed across eight modelling problems, 

eight “dressed up” word problems, and seven intra-mathematical problems. The 

Cronbach’s alpha reliabilities for the 6 scales were all higher than .83.  

Treatment fidelity 

To control the treatment fidelity in groups 1 and 2, a five-point Likert item: “Before I 

agreed or disagreed with the statements (about task-specific affect), I solved the 

problems” (1=not at all true, 5=completely true) was used. Means and standard 

deviations were 4.3(1.17) for group 1 and 2.19(1.01) for group 2. An independent t test 

showed a significant mean difference between the two groups (t(179)=13.07, p<.0001, 

Cohen’s d=1.93). As intended, students in group 1 solved the tasks significantly more 

often than students in group 2 before they reported their task-specific interest or 

enjoyment. 
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RESULTS 

Correlations between students’ performance and task-unspecific as well as 

task-specific affect in groups 1 and 2 are presented in Tables 1 and 2, respectively. 

Students who achieved higher scores on the performance tests reported higher 

task-unspecific interest in mathematics and enjoyed mathematics classes more than 

students who received lower scores. Moreover, students who were interested in 

mathematics and in solving mathematical problems outperformed other students on the 

achievement tests. Despite finding a low correlation between performance on 

intra-mathematical problems and task-specific enjoyment in group one (.15) and a low 

correlation between performance on modelling problems and task-specific interest in 

group two (.16), a significant positive connection between performance and affect was 

found using task-specific and task-unspecific affect scales.  

 interest interest enjoyment enjoyment 

ma w mod task-unspecific ma w mod task-unspecific 

perfor-

mance 

ma .18
a
   .25* .15   .29* 

w  .39*  .39*  .47*  .45* 

mod   .31* .40*   .27* .45* 

Note: *p<.05; 
a
p<.10; ma intra-mathematical, w word, mod modelling problems; sample size N=100 

Table 1: Pearson correlations between performance and task-specific and 

task-unspecific interest and enjoyment in group 1. 

To answer the second research question, correlations between performance and 

task-specific affect were compared with correlations between performance and 

task-unspecific affect using Fisher’s z-test. For example, in group 1, the correlation 

between performance on intra-mathematical problems and interest in these problems 

(.18) was compared with the correlation between performance on this problem type 

and task-unspecific interest (.25). Fisher’s z-test showed that the correlations did not 

differ significantly (p=.61).  

 interest interest enjoyment enjoyment 

ma w mod task-unspecific ma w mod task-unspecific 

perfor-

mance 

ma .19
a
   .21* .38*   .34* 

w  .24*  .23*  .37*  .31* 

mod   .16 .33*   .37* .27* 

Note: *p<.05; 
a
p <.10; ma intra-mathematical, w word, mod modelling problems; sample size N=92 

Table 2: Pearson correlations between performance and task-specific and 

task-unspecific interest and enjoyment in group 2. 

Similar results were also found for other correlations between performance and 

interest. The relations between students’ performance and task-specific interest were 

comparable to the relation between performance and task-unspecific interest in both 

experimental groups. The comparisons of the correlations between performance and 
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enjoyment revealed similar results. We did not find significant differences between 

performance on modelling/word/intra-mathematical problems and enjoyment 

regarding to the respective type of problem and between performance and 

task-unspecific enjoyment.  

The third research question addressed the stability of the connection between 

performance and task-specific affect across different types of problems. Fisher’s z-test 

did not show any significant differences in performance-interest correlations between 

groups 1 and 2 for different types of problems. Thus, the relations between students’ 

performance and interest were comparable across intra-mathematical, “dressed up” 

word, and modelling problems. The connection between performance and 

task-specific enjoyment
1
 was also comparable between problems with and without a 

connection to the real world. Thus, we could conclude that the relation between 

performance and affect does not depend on the type of problem.  

SUMMARY 

In this study, we investigated the relations between performance and students’ interest 

and enjoyment using (1) task-unspecific and task-specific measures as well as (2) 

different perspectives (prospective and retrospective) in the measurement of affect. 

The results confirm the importance of interest and enjoyment for students’ 

performance in mathematics. The range of the magnitudes of the correlations between 

performance and affect in our study was comparable to the range found in other studies 

(Goetz, Frenzel, Hall, & Pekrun, 2008; Heinze et al., 2005) in which performance was 

estimated via students’ grades.  

As expected, correlations between performance and affect were comparable for 

task-specific and task-unspecific scales. However, we assume that task-unspecific and 

task-specific measures provide information about different features of interest or 

enjoyment. Task-specific scales are more unstable than task-unspecific ones and 

depend on the mathematical topic, the described situation, students’ prior knowledge, 

etc. This issue should be investigated further in future studies.  

Finally, we compared correlations for problems with and without a connection to the 

real world. Although the magnitudes of the correlations between performance and 

affect varied widely, we found no significant differences in correlations for different 

types of problems. One open research question involves whether there are different 

“sources” of interest and enjoyment for different types of problems. We suppose that 

affect for problems with a connection to reality may depend not only on the 

mathematical nature of the task but also on the situation described in the task. 

                                           
1
 As we conducted 12 tests to answer this research question, the significance level was adjusted from 

0.05 to 0.005 by using a Bonferroni correction to take into account the accumulation of the 

alpha-error. 
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THE IMPACT OF LEARNING AND TEACHING LINEAR 

FUNCTIONS PROFESSIONAL DEVELOPMENT 

Nanette Seago, Catherine Carroll, Tom Hanson, Steve Schneider 

WestEd, USA 

 

This study examines the impact of Learning and Teaching Linear Functions (LTLF) 

professional development materials on teachers’ mathematics understanding and 

teaching practices, as well as students’ resulting algebra proficiency, learning, and 

achievement. Learning and Teaching Linear Functions are modular, video-based 

professional development materials designed to enable teachers to deepen their 

specialized content knowledge by understanding ways to conceptualize and represent 

linear functions within their teaching practice. The intervention consisted of a 

one-week summer institute and on-line support throughout the academic year.  

INTRODUCTION 

New directions in mathematics education demand new approaches to professional 

development. Teacher educators need to help teachers develop richer instructional 

practices that integrate emphasis on developing students’ conceptual understanding, 

procedural fluency, strategic competence, adaptive reasoning, and productive 

disposition through mathematical investigation, problem solving, and discourse 

(Kilpatrick et al., 2001). There is a groundswell of interest in creating and using 

mathematics professional development materials that focus on helping teachers 

examine the interplay between mathematical content, teacher, students and context 

(Smith, 2001).  Rooted in the everyday work of teaching, classroom artefacts such as 

student work, videos or narrative accounts, become invaluable tools for learning 

teaching in practice-based materials (Lampert and Ball, 1998; Driscoll et al., 2001; 

Seago et al., 2004). Videos in particular have been found to be a promising tool in 

supporting teacher learning in professional development (Seidel et al. 2005). 

The best practices for supporting such professional development involve providing 

experiences that are intensive in focus and extensive in duration (Garet et al., 2001) 

and that are “practice-based”—that is, that offer teachers the opportunity to examine 

the mathematical skills and understanding that undergird the classroom curriculum, 

investigate students’ mathematical thinking, and explore instructional practices that 

support student learning (Cohen and Hill, 2001; Thompson and Zeuli, 1999). By 

focusing on developing the understanding, skills, and dispositions that teachers use in 

daily practice, this “practice-based” professional development provides a meaningful 

context for teachers’ learning.  

The Linear Functions for Teaching study focuses its work on the practice-based video 

case materials, Learning and Teaching Linear Functions (LTLF) (Seago, Mumme and 

Branca, 2004), which are designed to enable teachers to deepen their understanding of 
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ways to conceptualize and represent algebra content within their teaching practice. 

LTLF is premised on the idea that using artefacts of practice within a well-structured 

PD program can promote mathematical knowledge for teaching (Ball & Cohen, 1999). 

This idea is supported by a variety of learner-centred, inquiry-based theoretical 

traditions, including constructivist and situative perspectives on learning (Cobb, 1994). 

These perspectives share the notion that engaging in challenging, problem-based, 

collaborative, and socially shared activities is likely to promote an expanded 

knowledge base (Borko, et al., 2005). The Learning and Teaching Linear Functions 

materials were designed with all of these features in mind and include an analytic 

framework, explicit tasks, teacher learning goals, and facilitation supports. 

THEORETICAL FRAMEWORK 

The theoretical frame for the LTLF video case materials is adapted from the work of 

Deborah Ball and colleagues (Ball and Cohen, 1999; Cohen, Raudenbush & Ball, 

2003) that incorporates research on both teaching and learning. The content of the 

video case materials focuses on the interactions between the teacher, the content (in 

this case, linear functions tasks), and the students, within the context of an authentic 

classroom environment (see Figure 1, page 3). The materials are designed to be used 

by a teacher educator who is faced with a similar set of relationships: the interactions 

between the teacher educator, the content (in this case, teaching and learning of linear 

functions), and the teachers he/she works with. To assist the teacher educator in using 

the PD materials productively with teachers, in-depth resource materials are provided 

to facilitate teachers’ knowledge development. Resource materials include: 

mathematics content information, probing discussion questions, and other facilitation 

guidance specific to the materials.  

 

Figure 1: Theoretical Framework (Adapted from Cohen, Raudenbush, & Ball, 2003). 

As Ball and her colleagues have noted, teachers’ mathematical knowledge for teaching 

is of central importance with respect to interactions around the content with students 

(MKT; Ball, Hill & Bass, 2005; Ball, Lubienski & Mewborn, 2001). Their research has 

shown that MKT relates to the quality of teachers’ classroom work and positively 

predicts gains in their students’ mathematical achievement (Hill, 2010; Hill, Rowan & 

Ball, 2005). MKT can be understood as the knowledge that teachers need to effectively 
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carry out the work of teaching. MKT incorporates subject matter knowledge as well as 

pedagogical content knowledge (Ball, Thames, & Phelps, 2008).  

RESEARCH STUDY 

The following research questions guide the study: 

 Do teachers participating in the LTLF professional development program 

exhibit greater increases in knowledge and skills regarding linear functions 

 Do teachers participating show greater integration of LTLF-based teaching 

strategies into their instructional practice than teachers in control 

classrooms? 

 Do students in LTLF classrooms demonstrate greater increases in algebra 

understanding (in particular linear functions) and engagement in 

mathematics learning than their counterparts in control classrooms? 

The research questions focus on the impacts on teachers and students. For teachers, 

research on teacher knowledge and instructional practice over two academic years.  

For students, research focused on students in LTLF classrooms in the year that teachers 

received the professional development and students in LTLF classrooms in the year 

subsequent to teacher LTLF professional development.  

Study design and timeline 

Learning and Teaching Linear Functions was designed to enable teachers deepen their 

understanding of mathematics content, students’ mathematical thinking, and 

instructional strategies. The study took place from spring 2011 to spring 2013 in 62 

schools serving middle grades in California.  Schools and teachers were recruited in 

winter and spring 2011. Participation in the study was voluntary.  The intervention 

involved a one-week summer training course using the LTLF first module, 

Conceptualizing and Representing Linear Relationships, a sequential series of eight 

3-hour sessions designed to enrich teachers’ ability to teach linear relationships and 

deepen their own detailed knowledge of the distinctions and linkages among the 

various representations. Each session has at its core one or two digital video clips of a 

mathematics classroom. Additionally, participants received academic year online 

follow-up support in year 1 and year 2 (~20 PD hours).  

The efficacy of LTLF was investigated using a pre-test/post-test cluster randomized 

trial design with one intervention group and one control group. Teachers were 

randomly assigned to an intervention or control group, in which they remained until 

the conclusion of the study. The trial was conducted in 43 districts throughout 

California. A qualitative video study of a smaller sample of six randomly selected 

teachers is used to examine traceable elements of implementation of the LTLF PD, 

validate and explain quantitative findings, and to identify factors that influence the 

success of the pedagogical approach. 
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A total of 81 teachers in 62 schools were randomly assigned to groups – 41 to 

intervention and 40 to control. About 77 percent (63) of the original 81 teachers 

completed the study and provided teacher and/or student test score data. The 63 

teachers who were retained in the analytic sample after attrition came from 51 schools 

in 36 districts. Student quiz data were obtained from 1,645 students (934 intervention 

and 711 control). There was no evidence to suggest that the experimental groups 

differed with respect to attrition or missing data patterns. 

With an average of 28 students served by each participating teacher, the sample size is 

sufficient for detecting program impacts on student outcomes of 0.22 standard 

deviations for primary academic outcomes and 0.31 for item-level data.  The estimated 

minimum detectable effect size for the teacher knowledge assessment (see below) was 

0.36 standard deviations. 

Key outcomes and measures 

Table 1 below lists the study’s key outcome variables—teachers’ knowledge for 

mathematical instruction, teacher practice and conceptualization of student work, and 

student knowledge.  

Outcome Measure 

Teacher Knowledge  

Teachers’ knowledge for teaching Learning Mathematics for Teaching 

Assessment 

Teacher Practice  

Teachers’ conceptualization of teaching, 

students and student work 

Artefact Analysis 

Elements of PD that get used by teachers 

in their classroom 

Videotaped lessons 

Student Knowledge  

Knowledge of Algebra I  California Standardized Test – Algebra I 

Knowledge of Linear Functions 4 Released NAEP items 

Table 1: Outcome measures. 

Each outcome measure is described in more detail below. 

Learning Mathematics for Teaching Instrument. All participating intervention and 

control teachers completed the pre-test, post-test, and follow-up assessment of the 

online version of the Teacher Knowledge Assessment System (TKAS) (Hill, Blunk, 

Charalambous, Lewis, Phelps, Sleep, & Ball, 2008). Teachers were randomly assigned 

to complete alternative forms of the assessment. These measures have been used with 

over 2000 teachers, yielding information about reliability and item characteristics. The 

reliabilities for these scales range from 0.71 to 0.84. 
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Artefact Analysis Assessment. All teachers completed an artefact analysis assessment 

prior to and within one month after the summer institute. The artefact analysis 

assessment asks teachers to solve a mathematics task and to provide written responses 

about (a) a 5-minute video clip of 6th grade students presenting solutions to a linear 

function problem and (b) three specific samples of student work (each representing a 

different typical student error). Written responses were coded based on the extent to 

which teacher interpretations focus on students’ potential understandings, are backed 

by evidence, and focus on specific mathematics content. 

Videotaped Lessons. Video observations of 56 lessons from a randomly selected 

subset of teachers, using portable video camcorders and audio equipment, have been 

completed. Teachers received a package including a flip camera, microphones, tripod, 

and instructions. Each teacher videotaped two lessons in 2011–2012 and two more 

lessons in 2012–2013 (one each in fall and spring of each academic year). Coding of 

the lessons using Studiocode software is currently underway. The purpose of the 

coding is to identify “traceable elements” from the PD—those elements that were key 

to the intervention and that we expect to see in classrooms where teachers are 

implementing what they learned in the institute. Once criteria and coding schemes are 

finalized, we will score video data to gain scorer reliability of at least 0.8, after which 

we will code each video for evidence of the key elements and score as high, medium or 

low fidelity of implementation. 

Algebra 1 CST. Students’ knowledge of algebra I is assessed using California's 

end-of-course Algebra I CST. The criterion-referenced CST has been administered 

annually to all students through 2013. Baseline (pre-test) assessments of mathematics 

proficiency are used as covariates in the impact analysis models. For this study, data 

are collected on performance of participating teachers’ students in Spring 2011 (prior 

to the intervention) and again in Spring 2012 and 2013. At this time, these data are still 

being collected and are not reported on in this paper. 

NAEP Items. Students’ knowledge of linear functions is assessed with four publicly 

released NAEP problem-solving items. To date, two of the items have been scored by 

blinded raters as incorrect, minimal, partial, satisfactory, and extended.  Inter-rater 

agreement on the two items ranged from 0.77 to 0.92. 

ANALYSIS AND RESULTS 

To estimate program impacts, outcomes for teachers and students in intervention group 

classrooms were compared with those for teachers and students in control group 

classrooms. Multilevel regression models were used to analyze the effects of the LTLF 

program and to account for data clustering by teacher and school (Goldstein 1987; 

Raudenbush and Bryk 2002; Murray 1998). The impact analyses controlled for 

baseline (pre-test) measures of outcome variables and other teacher, student-, and 

school-level covariates. 
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Estimated impacts 

Teacher Knowledge. The results for the Learning Mathematics for Teaching (LMT) 

assessment suggest that intervention teachers scored about 25 percent of a standard 

deviation higher than control teachers on the LMT test after the first academic year. 

This difference, however, is not statistically significant at conventional levels, and the 

intervention/control group difference was no longer apparent after the second 

academic year. 

Teacher Practice. The results of the artefact analysis suggest the LTLF is associated 

with changes in teachers’ perceptions of student potential and analysis of student work.  

Although no pre-intervention differences were apparent between intervention and 

control teachers, at post-test, intervention teachers were substantially more likely to (1) 

indicate an understanding of students’ potential than control teachers on the student 

work task and (2) focus on the mathematical content of student work than their 

counterparts in the control group.  There was also a greater tendency for intervention 

teachers to use evidence to justify their inferences with regard to student work and 

analysis of the classroom video, although these differences were statistically 

significant at conventional levels. 

Student Knowledge. Estimated LTLF impacts on the Algebra I CST are not yet 

available as collection of state assessment scores is ongoing.  Although analyses of the 

four NAEP items assessing performance on linear functions problems suggest that 

LTLF is not associated with significant increases in knowledge, there was a tendency 

for students in intervention classrooms to score higher on the two open-ended items 

(p=0.10 and 0.18).  

SYNOPSIS 

The impact analyses indicated that LTLF resulted in modest short-term improvements 

in teachers’ knowledge for teaching mathematics, recognition of students’ 

mathematical understanding on student work, and attention to the appropriate 

mathematics content on student work. However, intervention/control group 

differences in knowledge for teaching mathematics were completely diminished at the 

2
nd

 post-test, as scores of teachers in the control group “caught-up” to their 

counterparts in the intervention group. We therefore conclude that the year 1 impacts 

of LTLF on teacher knowledge do not persist in year 2. The impacts (short and long 

term) on instructional practice are still under investigation. 

For student outcomes, only the results the NAEP linear function items are available for 

analysis at the present time. Although the results favor the intervention group for two 

of the four items, LTLF is not associated with increases in performance on this 

measure in a statistically significant manner. 

The Learning and Teaching Linear Functions professional development research is one 

study situated in the larger context of other research on PD interventions. The field is 

relatively new and has a thin empirical research base (Hill, Beisiegel, & Robin, 2013). 



Seago, Carroll, Hanson, Schneider 

PME 2014 5 - 143 

A particular challenge is determining what features of the PD cause an impact on 

teacher practice and student knowledge. Indeed, there is much to be learned about the 

development and delivery of effective PD, as well as the research of PD outcomes. The 

LTLF PD study in the process of developing evidence of impact of a PD intervention 

and is learning important contributions to the field regarding effective methods and 

measurement of impact studies. 
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Drawing on 1386 questionnaire responses, 11- and 12-year old primary students in 

mainland China, Hong Kong, and Taiwan valued the same six orientations in their 

mathematics learning. These are achievement, relevance, practice, communication, 

information and communication technologies [ICT], and feedback. Each of these six 

values was also embraced to different degrees by students across the three regions. 

These findings shed light on how students’ values might be used to support learning, at 

the same time emphasising that such values are culture-dependent. 

INTRODUCTION 

Students from several East Asian nations have been consistently performing very well 

in international comparative tests such as Programme for International Student 

Assessment [PISA] and Trends in International Mathematics and Science Studies 

[TIMSS]. These include regions such as Shanghai, Hong Kong, Japan, Korea, 

Singapore, and Taiwan (Mullis, Martin, Foy & Arora, 2012; OECD, 2013). Given that 

different cultures (or education systems) embrace and emphasise different approaches 

to mathematics teaching (Atweh & Seah, 2008), cultural values regarding 

(mathematics) education constitute a key factor for the students’ performance in these 

international comparative tests (Leung, 2006). A Nuffield Foundation review had 

found that “high attainment may be much more closely linked to cultural values than to 

specific mathematics teaching practices” (Askew, Hodgen, Hossain, & Bretscher, 

2010, p. 12).  

Looking beyond the general characteristics of East Asian nations and the constituent 

Confucian Heritage Cultures, important differences exist amongst these various 

education systems. How might these differences affect the people’s lifestyles, their 

outlooks, as well as their views on formal education? 

In this light, this paper reports on the analysis of data collected from 11- and 12-year 

old primary students in mainland China, Hong Kong, and Taiwan which relate to what 

they value in mathematics learning. These three regions are located close to one 

another geographically, and most of their populations share the same ethnic roots (i.e. 

Han Chinese). What do these students value collectively in mathematics learning? To 

what extent are these valued similarly or differently across each of the three regions? 

We will first review generally the recent historical developments across mainland 

China, Hong Kong and Taiwan. Given that the research being reported here is part of a 
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wider study, this paper will then provide an outline of the background to the study. The 

quantitative data collected will also be presented, and the findings summarised. 

HISTORICAL CONTEXTS OF THE THREE REGIONS 

After the Communist party took over mainland China in 1949, the country’s education 

system became very much influenced by that being used in the Soviet Union. Basic 

computation skills and ‘traditional’ topics (e.g. Euclidean geometry) were emphasised. 

The Modern Mathematics movement did not appear to have created any influence on 

the Chinese mathematics education system. It was not until the mid-1980s when 

mainland China adopted the open door economic policy that educational ideas from 

overseas – and from the Western countries in particular – were accepted. School 

education became available to the general mass of the Chinese population only in the 

early 2000s. 

In those early days, Western missionaries were refused entry to mainland China. They 

spent their time in Hong Kong instead and established schools there. As a British 

colony too, the Hong Kong school education system had been British. These had 

facilitated the introduction into the education system of initiatives stimulated by 

Nuffield Mathematics and Modern Mathematics. Universal education was 

implemented in the late 1970s (Wong & Tang, 2012).  

Taiwan developed somewhat differently from mainland China after 1949. Since the 

Nationalist government was set up in Taiwan that year, Taiwan has been in touch with 

the Western world. Educational ideas from around the world – especially the United 

States and Japan – were imported. Universal education was implemented in 1968. The 

Modern Mathematics movement did influence Taiwan and was introduced into the 

mathematics curriculum around that time.  

Recently, in revising their respective mathematics education curricula, mainland 

China, Hong Kong and Taiwan joined many other education systems around the world 

in embracing higher order thinking abilities such as collaboration, communication and 

creativity (Wong, Han, & Lee, 2004). It is in this context that we investigated what 

students from each of these three regions value in their mathematics learning 

experiences, and how similar/different these are. 

CONTEXTUALISING THIS STUDY  

The data reported in this paper were collected for a larger-scale, ‘What I Find 

Important (in mathematics education)’ [WIFI] study. For us, 

values are the convictions which an individual has internalised as being the things of 

importance and worth. What an individual values defines for her/him a window through 

which s/he views the world around her/him. Valuing provides the individual with the will 

and determination to maintain any course of action chosen in the learning and teaching of 

mathematics. They regulate the ways in which a learner’s/teacher’s cognitive skills and 

emotional dispositions are aligned to learning/teaching. (Seah & Andersson, in press) 
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The study reported in this paper poses the following research questions: 

1. What do primary school students in mainland China, Hong Kong and Taiwan 

value with regards to mathematics and to mathematics learning? 

2. How do primary school students in mainland China, Hong Kong and Taiwan 

value these aspects of mathematics and mathematics education similarly and 

differently? 

METHODOLOGY 

The questionnaire method had been selected, given its appropriateness in values 

research (Johnson & Christiensen, 2010; Reichers & Schneider, 1990). 

The WIFI questionnaire is a 93-item instrument with a combination of 64 Likert-scale 

items, 10 slider rating scale items, 6 open-ended items, and 13 items which collect 

demographic information about the respondents. The 74 Likert-scale and slider rating 

scale items name a list of mathematics learning tasks which reflect Bishop’s (1988) 6 

mathematical values, 14 mathematics educational values that were identified in a 

previous Third Wave Project’s study (see, for example, Seah & Peng, 2012), and 

Hofstede’s (1997) 6 value continua. The open-ended items include hypothetical 

situations for students to respond to.  

For this paper, only the first section of 64 Likert-scale items of the WIFI questionnaire 

was analysed. Also, only the responses of the 11- and 12-year old primary school 

students were selected, even though the same questionnaire was administered to 3814 

students in primary and secondary schools in urban areas across the three regions. This 

translated to a total of 1386 students from Wuhan (mainland China), Hong Kong, and 

Taipei (Taiwan). The 11- and 12-year old students (typically in the final two years of 

their primary school education) in the participating schools were invited to take part in 

the anonymous survey exercise during class time. 

RESULTS 

What students valued 

A Principal Component Analysis [PCA] with a Varimax rotation was used to examine 

the 64 questionnaire items. The significance level was set at 0.05, while a cut-off 

criterion for component loadings of at least 0.45 was used in interpreting the solution. 

Items that did not meet the criteria were eliminated. 

The Kaiser-Meyer-Olkin [KMO] (Kaiser, 1970) measure of sampling adequacy was 

0.96 and Bartlett’s test of sphericity [BTS] (Bartlett, 1950) was significant at the 0.001 

level. The factorability of the correlation matrix was thus assumed, which 

demonstrated that the identity matrix instrument was reliable and confirmed the 

usefulness of the factor analysis. According to the cut-off criterion, 17 items were 

removed from the original 64. The analysis yielded six components (see Table 1) with 

eigenvalues greater than one, which accounted for 45.65% of the total variance. 
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 Component 

1 2 3 4 5 6 

Q58KnowingWhichFormulaToUse .706      

Q56KnowingTheStepsOfTheSolution .678      

Q54UnderstandingConceptsProcesses .637      

Q13PractisingHowToUseMathsFormulae .623      

Q14MemorisingFacts .615      

Q63UnderstandingWhyMySolutionIsIncorrectOrCorrect .606      

Q59KnowingTheTheoreticalAspectsOfMathematics .577      

Q32UsingMathematicalWords .568      

Q49ExamplesToHelpMeUnderstand .536      

Q38GivenAFormulaToUse .531      

Q15LookingForDifferentWaysToFindTheAnswer .522      

Q30AlternativeSolutions .514      

Q33WritingTheSolutionsStepbystep .513      

Q55ShortcutsToSolvingAProblem .504      

Q28KnowingTheTimesTables .475      

Q5ExplainingByTheTeacher .473      

Q2Problemsolving .473      

Q61StoriesAboutMathematicians  .649     

Q18StoriesAboutRecentDevelopmentsInMathematics  .640     

Q17StoriesAboutMathematics  .630     

Q21StudentsPosingMathsProblems  .613     

Q11AppreciatingTheBeautyOfMathematics  .590     

Q60MysteryOfMaths  .586     

Q39LookingOutForMathsInRealLife  .566     

Q20MathematicsPuzzles  .552     

Q52HandsonActivities  .545     

Q29MakingUpMyOwnMathsQuestions  .524     

Q34OutdoorMathematicsActivities  .522     

Q40ExplainingWhereTheRulesFormulaeCameFrom  .506     

Q12ConnectingMathsToRealLife  .491     

Q47UsingDiagramsToUnderstandMaths  .480     

Q25MathematicsGames  .473     

Q19ExplainingMySolutionsToTheClass  .451     

Q36PractisingWithLotsOfQuestions   .791    

Q37DoingALotOfMathematicsWork   .751    

Q57MathematicsHomework   .699    

Q62CompletingMathematicsWork   .600    

Q43MathematicsTestsExaminations   .597    

Q7WholeclassDiscussions    .702   

Q3SmallgroupDiscussions    .581   

Q10RelatingMathematicsToOtherSubjectsInSchool    .454   

Q23LearningMathsWithTheComputer     .789  

Q24LearningMathsWithTheInternet     .777  

Q22UsingTheCalculatorToCheckTheAnswer     .760  

Q4UsingTheCalculatorToCalculate     .673  

Q44FeedbackFromMyTeacher      .726 

Q45FeedbackFromMyFriends      .725 

Note. Extraction method: PCA; Rotation method: Varimax with Kaiser Normalization, Minimum factor 

loadings .45; KMO, MSA, Eigenvalues > 1. 

Table 1: Rotated component matrix. 

We named the six components of the students’ set of values as follows: achievement, 

relevance, practice, communication, ICT, and feedback. 



Seah, Zhang, Barkatsas, Law, Leu 

PME 2014 5 - 149 

Regional differences amongst the student values 

To answer research question (2), a comparison was made of the mean responses for 

each component for each region. This showed that the structure of the values 

dimensions was very similar across the regions (see Table 2). (Note that in the 

questionnaire, a value with a higher mean score means that the items making up the 

component were considered more unimportant by the students.) 

 

Component 
Region  

F test 

 

Effect size CHN  HKG  TWN 

M(SD)  M(SD)  M(SD) 

Achievement 

(C1) 

1.44(.37)  1.51(.52)  1.64(.51) 8.045 

p < 

0.001 

η2 = 0.012; 

TWN > CHN 

Relevance 

(C2) 

1.79(.51)  2.04(.62)  2.23(.74) 78.078 

p < 

0.001 

η2 = 0.102; 

TWN> HKG, CHN; 

HKG > CHN 

Practice 

(C3) 

1.72(.62)  1.98(.83)  2.07(.78) 8.412 

p < 

0.001 

η2 = 0.012; 

HKG, TWN > CHN 

Communication 

(C4) 

1.95(.75)  2.25(.75)  1.94(.72) 49.140 

p < 

0.001 

η2 = 0.067; 

HKG > TWN, CHN 

ICT 

(C5) 

3.09(.77)  2.69(.93)  3.14(.88) 18.082 

p < 

0.001 

η2 = 0.026; 

TWN, CHN > HKG 

Feedback 

(C6) 

1.93(.95)  1.92(.82)  2.06(1.0) 13.877 

p < 

0.001 

η2 = 0.020; 

TWN > HKG 

Note: CHN: Mainland China; HKG: Hong Kong; TWN: Taiwan. 

Table 2: Mean comparison among three regions for the six components. 

The primary students from each of the three regions valued the same six convictions 

most. In fact, all of them also valued achievement most, since the mean scores of 

achievement (C1) in mainland China, Hong Kong and Taiwan (1.44, 1.51, and 1.64 

respectively) were the lowest compared to the other five components. ICT (C5), on the 

other hand, was valued least by students in all three regions, compared to the other five 

components. The mean scores were 3.09, 2.69 and 3.14 respectively. However, some 

differences were identified on closer examination of the results for each region, 

specifically by examining the sequencing of the mean scores. For mainland China, the 

sequence of mean scores from lowest to highest was C1-C3-C2-C6-C4-C5. In Hong 

Kong, the sequence was C1-C6-C3-C2-C4-C5; for Taiwan, it was 

C1-C4-C6-C3-C2-C5. 
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A multivariate analysis of variance (MANOVA) with Tukey’s HSD Post Hoc multiple 

comparisons tests was conducted to explore cultural differences for each value 

dimension by region. We had significant univariate main effects for each of the 

components at the 0.001 alpha level. There were statistically significant differences 

amongst the students by region, such that: 

 Students in mainland China (CHN) valued achievement more than their peers 

in Hong Kong (HKG) and Taiwan (TWN). 

 Students in CHN valued relevance more than their peers in HKG, who in turn 

valued relevance more than those in TWN. 

 Students in CHN valued practice more than those in HKG and TWN 

 Students in TWN and CHN valued communication more than their peers in 

HKG 

 Students in HKG valued ICT more than those in CHN and TWN. 

 Students in HKG valued feedback more than their peers in TWN. 

DISCUSSION 

What were valued commonly across the three regions 

The WIFI questionnaire was used to identify the value structure of East Asian students 

in mainland China, Hong Kong and Taiwan. The 1386 11- and 12-year old primary 

students in these three education systems valued six orientations commonly. These 

were, in order of importance, achievement, relevance, practice, communication, ICT, 

and feedback. 

The valuing of achievement was the most important to the primary students. Practice 

appeared to be emphasised as a means of doing well in mathematics. The relevance of 

the learning experience was also highly regarded, including its use in daily life and 

hands-on experience. Students also valued ideas such as ICT and communication 

which were advocated in the mathematics curriculum reforms in these regions (and 

elsewhere). Finally, feedback about their learning was highly valued, reflecting the 

findings of prior studies on students’ preferred mathematics learning environment 

(Ding & Wong, 2012).  

The students placed most importance in the valuing of achievement in their 

mathematics learning experience, a cultural trait that has been associated with the 

ethnic Chinese (see, for example, Bond, 2010). The questionnaire items in this 

component include knowing, memorizing and using mathematical facts and formulae, 

emphasizing solutions and seeking different ways to solve problems. On the one hand, 

this reflects the high value that the ethnic Chinese students place on basic skills. On the 

other hand, however, when this valuing is considered in the context of the Chinese 

culture, in which success is often attributed with the efforts made, we can understand 

how it can create tremendous pressure on the students. This can also be intensified 

when the students view learning as an obligation, to repay the care given to them by 

their parents (Wong, 2004). In addition, when the ‘basics’ progress from computation 
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to other higher order thinking skills, there is a danger that the students will interpret 

‘memorizing facts’ as ‘memorizing hands-on skills’ and ‘memorizing problem solving 

routines’ as well (Wong, Han, & Lee, 2004). 

These findings contribute to current knowledge that can further improve our practices 

in mathematics teaching. It is often suggested that congruence between the students’ 

preferences and the perceived classroom environment is an influential factor for better 

learning (Fraser, 1998), and current research relating to values alignment reflect this 

(see Seah & Andersson, in press).  

Cross-regional differences 

Although each region valued achievement most and ICT least (comparatively) amongst 

the six top values, the order of valuing for the other four common top orientations was 

different in each region. 

Statistically significant differences exist amongst the three regions for each of the 6 

values. Achievement, relevance and practice, which are closely tied to examinations, 

were more salient in student values in mainland China. Students in Hong Kong valued 

relevance, ICT and feedback more than their peers in Taiwan and mainland China, who 

valued communication more than students in Hong Kong. These differences, no matter 

how subtle they are, show that values are culture dependent. Thus, even if what 

students in East Asia value might be unique to the area, there can be diversity of value 

priorities within the area too. 
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IS ELIMINATING THE SIGN CONFUSION OF INTEGRAL 

POSSIBLE? THE CASE OF CAS SUPPORTED TEACHING 
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This study explored how the challenges encountered during integral sign 

determination process change after various learning processes. In this comparative 

investigation which is based on qualitative data, the students in the CAS group were 

subjected to technology enhanced teaching whereas the students in the traditional 

group were subjected to the traditional centered teaching approaches. Sign 

determination challenges of the students according to the groups were determined by 

means of pre- and post-application tests, and semi-structured interviews were 

employed as supportive data. The findings show that the students in CAS group, in 

comparison to the students in traditional group, had less “negative area” 

misconception in definite integral after teaching processes. In this investigation, it has 

also been discussed how teaching technology influences eliminating misconception. 

INTRODUCTION 

In many studies in the literature, misconceptions and challenges encountered in 

calculus lessons are mentioned. It is reported in many studies that calculus lesson 

students whose operational abilities have developed particularly in traditional class 

environment have difficulty in understanding, associating and interpreting concepts at 

basic level (Orton, 1983, Cornu, 1991; Rasslan & Tall, 2002; Berry & Nyman, 2003, 

Sofronas, De Franco, Vinsonhaler et al., 2011). Uniform presentation of information 

within the learning content and accustoming of students to solve questions in same 

pattern with mechanical steps are considered as the primary cause of this case. The fact 

that although students are successful in routine calculation problems requiring 

operational information they are confused about conceptual level has required revising 

lesson content and learning approaches. In this context, one of the steps that have been 

taken for fertilizing learning process is Calculus Reform Movement. As a result of this 

movement, textbooks and learning programs have been revised and they were 

rearranged according to the reform approach (Murphy, 1999). Key elements of reform 

approach are multiple representations. Accordingly, conducting only algebraic 

operation steps is not adequate to understand calculus subjects; in addition, interpreting 

inter-conceptual relations and choosing and using representations suitable for specific 

cases are also necessary (Dreyfus, 1991; Berry & Nyman, 2003). Calculus Reform 

Movement supporters claiming that teaching content and method must be reorganized 

in a way to offer opportunity for multiple representations support the process of 

integration of technology into learning environment (Murphy, 1999; Vlachos & 

Kehagias, 2000). A number of previous studies suggest that technology support can be 

benefited for eliminating the challenges encountered during teaching and learning 
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process of calculus (Berry & Nyman, 2003). The definition made by Vlachos and 

Kehagias (2000) for CAS-supported learning pattern is presentation of teaching 

contents organized according to multiple representations by means of technology 

support and this definition is based on in this study. This research is a part of a wider 

project which is concerned with students' understanding of the first-year calculus and 

project’s pre-findings which is related to “The role of CAS for concept images of 

definite integral” was presented in previous PME conference (Sevimli & Delice, 

2013). By means of this study, how misconceptions and challenges about integral 

observed in traditional calculus classes and that have correspondence in the literature 

are affected by CAS-supported teaching process was evaluated.  

THEORETICAL FRAMEWORK 

Integral concept, which is included within the fundamental subjects of higher 

education and which is the primary subject that students have difficulty in making 

sense of, is analyzed under definite and indefinite integral topics. Since definite 

integral involves previous subjects such as limit, derivative and function knowledge 

and requires solving techniques with various rules, it is considered among the primary 

and difficult subjects of higher education (Orton, 1983; Rasslan & Tall, 2002). 

Challenges encountered about definite integral is either associated with the nature of 

the concept or it can originate from pedagogical reasons. Accordingly, while Cornu 

(1991, p. 158) mentions about three reasons of cognitive challenges in calculus 

subjects, he lists them as epistemological, psychological and didactic oriented 

challenges. Some studies reports that traditional class students that can successfully 

solve integration problems that are difficult to calculate even with pencil and paper 

have difficulty in explaining and interpreting concept definitions at basic level (Orton; 

1983). In teaching content of traditional classes, more time is allocated for algebraic 

interpretation of integral subject and more stress is put on calculation sense of integral 

(Berry & Nyman, 2003; Sofronas et al., 2011). Some cognitive challenges encountered 

in the class environment in the studies on integral can be listed as follows: limited 

concept image, lack of awareness of multiple representations, misconception, 

difficulties in contextual problem, misusing of Fundamental Theorem of Calculus etc. 

(Orton, 1983; Oberg, 2000; Rasslan & Tall, 2002; Sevimli & Delice, 2013). 

One of the first studies on integral concept in the mathematical education literature was 

conducted to determine the misconceptions of students by Orton (1983). Emphasizing 

sign determination of students in his study he conducted to determine comprehension 

levels of students at introduction level of calculus about definite integral, Orton (ibid) 

expressed that the notion of limit of sums causes confusion in terms of algebra and 

stated that the biggest problem encountered arose from misconceptions named as 

‘negative area’. Negative area misconception is caused by interpretation of students the 

area above x-axis as positive and below x-axis as negative in area calculation problems. 

However, within [a,b] interval, since heights of the rectangles below the curve will be 

–f( ) if f(x)≤0, (  [ ]) area formula will be  (Hughes-Hallet et al., 
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2008). Oberg (2000) attribute the main problem encountered about sign confusion to 

lack of integral in geometrical sense. Accordingly, students that can interpret the 

behavior of a function over a graphic representation have less difficulty in area 

calculation problems. Rasslan and Tall (2002), embarking with a similar research 

question, reported that students did not calculate definite integral value by means of 

sum of positive and negative areas, actually this sign confusion repeated 

systematically. Although students had sign confusion about definite integral in many 

studies as it was mentioned in the previous paragraph, a study evaluating the role of 

teaching processes for encountered misconception and/or challenges was not found. In 

line with the suggestions of the previous studies, a perspective for the role of use of 

technology in eliminating misconception/concept challenge in sign determination 

process was presented in this study.  

METHOD 

Research Design and Study Group 

This study was designed according to multiple case study since teaching processes are 

assessed with a holistic approach over misconception of integral. The study was 

carried out in Calculus II during the 2011-2012 spring term. The participants of this 

study consists of 84 undergraduate calculus students at a state university; out of these 

students two groups have randomly been assigned, one as traditional group (n=42) and 

the other as CAS group (n=42). When assessing whether traditional and CAS groups 

are comparable, their marks in Calculus I in the previous term have been taken as 

criteria. It has been established that both groups have same scores in Calculus I and that 

groups are equal to each other in terms of their academic achievement. 

Settings 

The treatments in traditional and CAS groups in Calculus II are carried out during six 

weeks. In this period the role of two teaching approaches on eliminating misconception 

of integral were tested. Both approaches have been followed by the researchers. In the 

control group, where the course has been delivered in the traditional approach, the 

course notes from previous students have been made use of, and a traditional calculus 

textbook which generally emphasizes symbolic representation and focuses primarily 

on definition, theorem and proof processes has been used. Differing from traditional 

approach, technology support was benefited to provide different representations for a 

concept in the CAS-supported teaching. LiveMath software embedded textbook which 

was adjusted as per calculus reform and emphasizes translations between/within 

representations were used in CAS group (Hughes-Hallet et al., 2008). Teaching 

activities prepared according to multiple representations for preventing from 

misconception. 

Data Collection Tools 

Data collection techniques were test and interviews.  Concept Definition Questionnaire 

(CDQ) used for determining students’ misconception of definite integral before and 
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after teaching processes and semi-structured interviews conducted for understanding 

students’ problem-solving process in terms of misconception. 

Concept Definition Questionnaire (Pre& post test) 

The questions took place in previous studies are used to determine the students’ 

misconception of definite integrals (Orton, 1983; Rasslan & Tall, 2002; Robutti, 

2003). CDQ includes misconception and difficulties met during the teaching of 

integral, particularly “negative area” misconception. The questions in CDQ have 

different characteristic from each other in terms of obstacles at determining sign which 

might be depending on context of the question and the multiple representations used in 

the question. While the questions might be relevant to calculation of the integration 

and area with respect to context, they also might be algebraic and graphical with 

respect to representations in terms of characteristic. In Figure 1, an example questions 

from CDQ is presented with area context and algebraic representation. CDQ had been 

used in prior research (Sevimli & Delice, 2013) and three experts in mathematics 

(education) evaluated CDQ in terms of face and content validity. CDQ was given to the 

CAS and traditional groups as pre and post tests. 

Semi-structured interviews 

After administering post-CDQ, semi-structured interviews were conducted with four 

participants to get additional knowledge about integration processes and to understand 

the role of CAS-supported teaching in terms of elimination of misconception. These 

four participants in the interviews were selected using the purposeful sampling 

technique. Main selection criteria were that each participant taught by different 

teaching approach (CAS or traditional) and that they had different integral 

misconception. The participants were asked to explain their answers to the questions in 

CDQ.  

Data Analysis 

Pre & Post CDQ’s data was first assessed in terms of students’ misconception. To 

define the difficulties students have in determination of sign at before and after 

treatments, “negative area” confusion and “positive value” generalization which are 

frequently seen in the literature are utilised as categorization (Orton, 1983; Rasslan & 

Tall, 2002). According to these categorizations the change in determining sign 

confusion is compared with respect to characteristic of the questions over the study 

groups. Interview data was tagged for analysis using an open coding method. 

Participants’ arguments when determining integral sign are exemplified as it is. 

FINDINGS 

Pre & Post CDQ findings 

Evaluations were performed over tests that were conducted before (Pre-CDQ) and 

after (Post-CDQ) teaching application to determine the role of CAS support on 

eliminating sign confusion. No sign confusions were encountered pre-CDQ and 
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post-CDQ in the problems (Integration/Algebraic) that were delivered by means of 

algebraic representation and that require operational integral calculation. While 

operation result was negative in 40% of the answers in the CAS group and 33% of the 

answers in the traditional group for the problems delivered by means of graphic 

representation requiring integral calculation, positive results were reached (Table 1). It 

was observed that, students found positive results by taking the negative values within 

the integral calculation into absolute value. The challenge encountered in such type of 

solution is that students interpreting every graphic problem as area problem in integral 

consider the interval as positive even where the integral function is negative, and 

generalize operation sign as positive.  

Characteristic of 

Question 

Type of Difficulties Pre-CDQ (%)  Post-CDQ (%) 

CAS Tra  CAS Tra 

Integration/Algebraic - - -  - - 

Integration/Graphic Positive value 40 33  14 31 

Area/Algebraic Negative area 55 50  16 43 

Area/Graphic Negative area 36 29  9 21 

Table 1: Distribution of pre-CDQ and post-CDQ sign confusions of the groups 

according to question type. 

Post-CDQ findings showed that the sign that needed to be negative was determined as 

positive in 14% of the answers in the CAS group and 31% of the answers in the 

traditional group for integration/graphic characteristic question. When compared to the 

pre-CDQ findings, it can be suggested that CAS-supported teaching process 

considerably reduce “positive value” confusion encountered in integral problem 

delivered by means of graphic representation. It was observed that percentage of the 

students having “positive value” confusion was similar in the traditional group. 

The questions delivered by means of algebraic or graphic representation in Pre & Post 

CDQ were applied to both groups to determine the reflections of sign confusion 

encountered in definite integral onto area calculation problems. Pre-CDQ findings 

revealed that “negative area” confusion is encountered more in area/algebraic 

characteristic questions when compared to area/graphics characteristic questions. 

Pre-CDQ findings show that at least one of every two students in both groups had 

negative area confusion for the questions delivered by means if algebraic 

representation requiring area calculation in integral. It was observed that post-CDQ 

negative area confusion encountered in the questions with area/algebraic characteristic 

decreased for both groups, however CAS support was more determinant in eliminating 

this challenge. Comparisons between the groups showed that “negative area” 

confusion encountered in area/algebraic characteristic questions was eliminated in 

CAS group in great extent when compared to traditional group.  

Pre-CDQ findings showed that approximately one third of the students in both groups 

had “negative area” confusion in the area/graphic characteristic questions before the 

application. It was observed that, similar to the area/algebraic characteristic, “negative 

area” confusion encountered in area/graphic characteristic problems was reduced 
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more in the CAS group when compared to the traditional group. When the general 

situation is considered, it can be stated that one third of the students had difficulty in 

determining integral sign after traditional teaching process.  

Interview findings 

Interviews were made with two each participant (CAS-P1, CAS-P2, Tra-P1, Tra-P2) 

from each group having “negative area” and/or “positive value” confusion to 

determine whether the challenge encountered in the process of determination of 

integral sign is a kind of misconception. Participants were confronted with their 

solutions for the question with area/algebraic characteristic and they were asked why 

they reached negative area when the function was negative. More than half of the 

participants having difficulty could not visualize the data presented algebraically and 

could not notice the intervals where the function switches sign. It is remarkable in the 

solution in Figure 1 that although the Tra-P2 draw the graph and shaded the area of the 

region to be calculated, she did not count in negation of the sign in the area of the 

region below x-axis. It is wonder for what reason the Tra-P2 used the graph and why 

she did not benefited from its content and the related analyses were supported by the 

interview findings. 

 Question  Solution sample  

 

Find the areas of the regions 

enclosed by the function f(x)=sinx 

and x-axis for ≤x≤  

 

 

Figure 1: Questions and solution example for area/algebraic characteristic. 

Since Tra-P1 and CAS-P2 did not draw graph, they noticed that they incorrectly wrote 

the equation corresponding the related area. CAS-P1 determined the integral sign 

correctly for the problem with area/algebraic characteristic and stated that the area 

cannot be negative just like speed. Tra-P2 benefited from the argument that, when the 

function is negative, it will be negative in alteration when she was explaining her 

solution.  

...This graphic shows increase when it is above x-axis and decrease when it is below x-axis. 

Total change will be the sum of positive and negative changes. Therefore, the areas above 

and below the axis will cancel each other … (Tra-P2) 

DISCUSSION 

Limiting definite integral with only area image may cause sign confusion in other 

algebraic calculations. The participants of the traditional group who stated in the 

interviews that they considered integrals of positive valued functions as area had sign 

confusion when the function sign was negative. In this study, this confusion named as 
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“positive value generalization” is caused by explication of geometrical interpretation 

of definite integral as the area only below the curve. Students of CAS group seeing the 

algebraic and graphical approaches within teaching frequently and as a whole could 

easily differentiate geometrical sense of integral from algebraic calculation sense. 

Sevimli and Delice (2013) demonstrated that multiple representation opportunity 

supports richer and more variable image formation for integral. In this context, it can 

be remarked that CAS support emphasizes area sense of integral as well as calculation 

sense and thus provide support for making sense of calculation process. 

Another challenged emphasized in this study is negative sign confusion encountered in 

area calculation problems. Test and interview findings revealed that some of the 

students in the traditional group did not take the sign of the function into consideration 

in area calculation problems presented by means of algebra representation and 

negative sign confusion was actually confusion for some part of the students. It was 

determined in the interview findings that some students in the traditional group 

interpreted the area below x-axis as negative and above x-axis as positive. Orton (1983) 

remarks that the challenge in such solutions is a misconception while he bases the 

cause of this misconception on the rote teaching that have no conceptual basis. As a 

matter of fact, answer of a student from the traditional group “even if the area is 

negative, I multiply it with minus” supports the reasoning of Orton (ibid). These 

misconceptions may be originated from student, information or teaching process 

(Cornu, 1991). Differently from pedagogical challenges, Orton (1983) reports that 

integral concept has challenges arising from its own nature, while Dreyfus (1991) 

integral concept require advance mathematical thinking processes, and they altogether 

confirm presence of epistemology-originated challenges. The findings of this study are 

similar to the results of other studies on sign determination process (Oberg, 2000; 

Rasslan & Tall, 2002), and authentically show that CAS-supported environments 

create awareness in the process of sign determination in definite integral. The students 

of CAS group trying to interpret graphic data within the context of algebraic 

calculation and area senses of integral used analytic and visual judgments together and 

by means of association, and they were more successful in terms of this respect when 

compared to the students in the traditional group creating solutions basing on analytic 

judgment. Area calculation problems in the contents presented by means of LiveMath 

software in CAS group were associated with rectangles sum in Riemann’s definition. 

In teaching applications visualized by means of technology support, the fact that 

heights of the rectangles below x-axis were –f(x) was stressed and the contents that 

would provide making sense of sign change by students were employed. These 

arguments used by the students of CAS group when determining signs can be 

interpreted as technology being as scaffolding. Namely it may be claimed that 

technology helps students to construct or reshaped the knowledge and procedures 

during the integral problem-solving processes. 
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CONCLUSION 

Study results showed that the students in the traditional group could not interpret the 

graphic data before and after the teaching application, and therefore had “negative 

area” misconception and “positive value” confusion. Many students in the traditional 

group tried to make the transitions between graphic and algebra representation through 

the rule-based approaches that do not have conceptual basis. After CAS-supported 

teaching process, the students more frequently benefited from graphic representation 

in area calculation problems in integral and could correctly interpret graphic data in the 

problems orientated at integration calculation. Therefore, previous sign confusions of 

the students in the CAS group were eliminated to a large scale. In the light of the results 

mentioned above, it is concluded that CAS-supported teaching pattern is more 

effective in eliminating some misconceptions and challenges encountered before the 

application or in the literature when compared to the traditional teaching approach.  
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THE IMPACT OF A TEACHER DEVELOPMENT PROGRAM ON 

7TH GRADERS’ LEARNING OF ALGEBRA  

Sheree Sharpe, Analúcia D. Schliemann 

Tufts University 

 

We examine the impact of a teacher development program based on a functions 

approach to algebra on 7
th

 grade students’ understanding of equations. We focus on 

how students’ score gains relate to their teachers’ initial level of mathematics 

performance. Students from participating teachers’ and their control peers completed 

a mathematics assessment at the start and at the end of the school year the teachers 

were taking the second and third of three courses. Students of participating teachers 

made greater gains than controls regardless of their teachers’ initial level of 

mathematical understanding. 

BACKGROUND 

Algebra, a central topic in the mathematics curriculum (Moses & Cobb, 2001; National 

Council of Teachers of Mathematics, 2000; Common Core State Standards Initiative, 

2010), has become a gatekeeper for higher education and a roadblock to access to 

science careers (Kaput, 1998; Moses & Cobb, 2001). Although requirements across 

states in the U.S. may differ, all states require that all students take mathematics and 

science to graduate from high school, at least from the middle school years. However, 

most students lose interest in mathematics when, in middle school, algebra is first 

introduced.  

Research has repeatedly documented middle and high school students’ difficulties with 

algebra, which are often attributed to the inherent abstractness of algebra and to levels 

of cognitive development (see reviews by Carraher and Schliemann, 2007 and by 

Kieran, 2007). Students often view the equals sign as a unidirectional operator, focus 

on computing specific answers, find difficult to use mathematical symbols to express 

relationships between quantities, do not use letters as generalized numbers or as 

variables, and do not operate on unknowns. Generating equations from word problems 

and using those equations to solve the problem constitutes a major challenge for 11 to 

15 year-olds. Even when 6
th

 and 7
th
 grade students can generate the equation to 

represent a word problem, they often use methods other than algebra syntactic rules for 

manipulation of symbols to solve the equation.  

In contrast, recent studies of early algebra show that, given relevant experiences, 

elementary school children succeed in understanding basic algebraic principles and 

representations (Cai & Knuth, 2011; Carraher & Schliemann, 2007; Kaput, Carraher, 

& Blanton, 2007). Such findings strongly support Booth’s (1988) suggestion that 

students’ difficulties with algebra in middle and high school are due to the traditional 
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computational approach to algebra in the mathematics curriculum, rather than to 

developmental limitations.  

Mathematics education researchers (Kaput, 1998; Schoenfeld, 1995; Schwartz & 

Yerushalmy, 1992) have argued that a functions approach to algebra has the potential 

to better prepare students for a deep understanding of algebra. Within a functions 

approach, equations are considered as comparisons between two functions.  Instead of 

starting by learning to compute the unknown values in an equation, students are 

introduced early on to variables and to the analysis of relations between sets of 

numbers.  In doing so, they are introduced to multiple representations of functions, 

such as verbal statements, number lines, data tables, Cartesian graphs, and algebraic 

notation. Students move between multiple representations of functions and consider 

the process of solving equations as the comparison between two functions.  Within this 

approach, we argue that students will become better prepared to solve word problems 

by representing problem statements as functions and as equations and to understand 

how the transformations in an equation towards its solution corresponds to 

transformations of the graphs of the two functions in the Cartesian space. 

The implementation of a functions approach for teaching algebra represents a 

departure from the traditional path of teaching algebra by solely focusing on the 

manipulation of equations.  As such, it requires the preparation of teachers for doing 

so, as well as close evaluation of the impact of this preparation on students’ learning.  

This study evaluates the impact of a teacher development program focused on a 

functions approach to algebra on 7
th

 graders’ ability to understand algebra equations 

and to represent and solve verbal problems using equations. 

The Poincaré Institute (http://sites.tufts.edu/poincare/), a program supported by the 

National Science Foundation (grant #0962863), offers three semester-long online 

graduate level courses to teachers in three New England states (see Teixidor‐i‐Bigas, 

Schliemann, & Carraher, 2013 for details). The courses, offered to 5
th

 to 9
th
 grade 

teachers, covered algebra and functions, their multiple representations, and modelling 

and applications. Course 1 dealt with functions and relations and the representation of 

functions on the real line and on the plane. Course 2 focused on fractions and 

divisibility as they relate to functions, transformations of the line, and transformations 

of the plane, and on the use of transformations to analyse graphs of functions and for 

solving equations as the comparison of two functions represented in the plane. Course 

3 included the representation of problems as equations, work on linear, quadratic and 

higher order equations, the relation between factoring and roots of equations, and slope 

and rate of change. Course 1 alternated weeks of study of mathematical content with 

weeks on examining classroom lessons related to the topics. Courses 2 and 3 were each 

structured across four three-week units plus two weeks dedicated to a final project. The 

first two weeks of each unit were dedicated to mathematics and pedagogical content; in 

the third week, groups of three to five teachers designed a learning activity (course 2) 

or interviewed individual students to explore their thinking (course 3). For the final 

project of courses 1 and 2, each teacher designed, implemented, and analysed a lesson. 
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The goal was to help teachers deepen their understanding of mathematics and of 

students’ mathematical thinking and to enhance students’ mathematical learning in 

their classrooms. Weekly meetings of teachers contributed to the development of a 

strong professional learning community to examine and improve their practices.   

While, with a few exceptions, previous research more often has described the impact of 

teacher development programs on changes on teachers’ ways of teaching, not many 

studies have focused on the possible contribution of these programs to the students of 

participating teachers. This study (a) examines the impact of the Poincaré Institute 

program on how the students of participating teachers understand and create equations 

to solve word problems and (b) analyses how students’ score gains relate to teachers’ 

initial level of mathematics understanding. 

METHOD 

We focus on 7
th
 grade teachers and their 12- to 13-year old students because, at this 

level, the content of the program closely matched their mathematics curriculum.  

Of the 56 cohort teachers in the program, only 13 who taught 7
th

 grade were included in 

this analysis. A total of 319 students of these teachers (cohort students) and 267 from 

non-cohort teachers were given the mathematics assessment at the start (September 

2011) and at the end (June 2012) of the school year during which cohort teachers were 

taking the second and third courses of the program, respectively.  Teachers from both 

cohorts also took an online mathematics assessment on algebra, functions, and graphs 

at the start of the program (January 2011). 

We focus on four problems (see Figures 1 to 4) from the 15-problem written 

assessment. The first problem, the “Liam and Tobet problem”, is a multi-step algebraic 

word problem that requires representing two functions, setting them equal, thus 

generating an equation, solving the equation, and interpreting the equation solution. 

The second, the “Amusement Park problem”, is a multiple-choice problem about the 

relationship between the dependent and independent variables in an equation. The 

third, the “Cases problem”, is another multiple-choice problem about which equation 

satisfies three sets of ‘x’ and ‘y’ values. The fourth and final problem, the “Finding X” 

problem, asks students to find the value for ‘x’ for a given equation.  

Each of the five subparts of the Liam and Tobet problem and each of the three other 

problems was scored as “0” when answers were missing or incorrect and “1” when it 

was correct; hence, the minimum score a student could receive for the four problems 

was 0 and the maximum was 8.  

Teachers’ initial level of mathematics understanding was determined through the 24 

problems in their written assessment. Some of the problems had multiple parts, leading 

to scores that could vary from 0 to a maximum of 47. These scores were then recoded 

(using the 33.3 and 66.6 percentiles) as three levels, where low corresponded to scores 

from 0 to 35, medium to 36 to 40, and high scores to 41 to 47. 



Sharpe, Schliemann 

5 - 164 PME 2014 

 

 Figure 1: Liam and Tobet Problem     Figure 2: The Amusement Park Problem 

 

 Figure 3: The Cases Problem Figure 4: The Finding X Problem 

RESULTS 

The mean number of correct answers for all students in the two groups, for the eight 

items, increased from 2.88 (SD = 2.285) in September 2011 to 4.53 (SD = 2.541) in 

June 2012. The initial mathematics scores for all teachers, in January 2011, ranged 

from 20 to 44, with a mean of 36.92 (SD = 6.726). 

The program had a positive impact on the 7
th
 grade students’ average mathematics 

scores for all 15 problems (31 sub-items) in the assessment: the interaction effect of 

time (September 2011 vs. June 2012) by cohort (Cohort vs. Non-Cohort teachers’ 

students) on all students’ mathematics scores, after controlling for any differences 

between groups at time 1 was statistically significant (F(1, 583) = 13.63, p < .001, 
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η
2

p = .023). The analysis that follows will only deal with the four problems that directly 

relate to the main content of the courses (see above). 

Similar to the general results, students of cohort teachers performed better than the 7
th
 

grade students of non-cohort teachers after controlling for group differences at time 1 

(Figure 5). The interaction effect of time and cohort on students’ mathematics scores 

was, again, statistically significant (F(1, 583) = 22.93, p < .001, η
2

p = .038). 

 

Figure 5: The interaction between Time and Cohort membership on students’ scores 

for the four selected problems. 

Students’ average score gains in the eight selected items, by cohort and non-cohort 

teachers’ initial mathematics level at the start of the program, were obtained by taking 

the average difference between students’ scores in September 2011 and June 2012. 

Figure 6 shows that 7
th

 graders’ average score gains at the end of the school year were 

higher for students of cohort teachers, regardless of the teachers’ initial levels of 

mathematics understanding. Here, students of teachers classified at the low level 

performed nearly as well as those of teachers at the high level. In contrast, the score 

gains for the non-cohort group closely related to the teachers’ initial levels of 

mathematics, with students of non-cohort teachers in the low initial level showing less 

gains than students of teachers with high initial mathematics level. The interaction 

effect of cohort membership and teacher initial mathematics levels on student score 

gains was statistically significant (F(2, 585) = 6.53, p = .002). Thus, regardless of 

cohort teachers’ initial mathematics level at the start of the program, their students 

showed somewhat similar and higher score gains. For the non-cohort group, only 

students of teachers with high initial mathematical levels showed gains that 

approached those of students of cohort teachers.  

Figure 7 shows the percentage of cohort and non-cohort students who correctly 

answered each of the eight items in September 2011 and in June 2012. The items can 

be clustered in three groups in terms of the percentage of students’ correct answers in 

September 2011. Group 1, with more than 50% of students answering correctly, 

include part a of the Liam and Tobet Problem (LTPa), the Amusement Park problem 

(APP), and the Cases Problem (CP). Group 2, with an average of 35% of correct 

answers, include parts b and c of the Liam and Tobet Problem (LTPb and LTPc). 
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Group 3 includes parts d (LTPd) and e (LTPe) of the Liam and Tobet problem and the 

Finding X Problem (FXP), with 11 to 16% of students answering correctly. 

 

Figure 6: Student gains by Cohort membership and Teacher Initial Mathematics Levels 

(score gains ranged from -8 to 8). 
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Figure 7: Percentage of students who correctly solved each item by Time and Cohort 

Membership. 

The graphs for each item show that, in June 2012, cohort students did better on each of 

the items, in comparison to non-cohort students.  A Repeated Measure Mixed Design 

ANOVA showed that the interaction effect of time by cohort membership on the 

percentage of students giving correct answers was statistically significant 

(F(1, 14) = 6.61, p = .022, η
2
p = .321). 

We also investigated, for each of the eight items, the changes in the percentage of 

students who correctly solved each item, for each cohort and for each group of teacher 

initial mathematics level.  



Sharpe, Schliemann 

PME 2014 5 - 167 

For teachers with low initial mathematics level, the difference between cohort and 

non-cohort students’ changes were higher for cohort students in all items, varying from 

13% to 28%, Students of non-cohort teachers showed modest improvements in seven 

of the items and a decline in the CP problem (picking an equation that satisfy three sets 

of x and y values). For teachers with medium initial mathematics level, the change was 

5% to 20% higher for students of cohort teachers in five of the eight items (APP, LTPb, 

LTPc, LTPd, and LTPe), with students of non-cohort teachers showing a decline in the 

APP problem (finding the relationship between the dependent and independent 

variables), equal increase in one problem (LTPa), and 2% to 6% higher improvement 

for the other two problems. For teachers with high initial performance, the change was 

4% to 19% higher for students of cohort teachers on five of the eight items (CP, LTPa, 

LTPd, LTPe, and FXP) and from 3% to 9% higher for non-cohort students in the other 

problems.  

In summary, students of cohort teachers with low initial mathematics level showed 

higher improvement in their scores on all eight items in comparison to their control 

counterparts.  Moreover, regardless of the initial level of mathematics of their teachers, 

students of cohort teachers consistently outperformed non-cohort students in items 

LTPd and LTPe, on finding and interpreting the solution to the Liam and Tobet 

problem.  

DISCUSSION 

Our results suggest that teachers’ participation in a program focused on a functions 

approach to algebra and on students’ reasoning contributed to 7
th
 grade students’ 

learning of how to represent statements in a word problem as an equation, of how to 

solve and interpret the solution to equations, and of how the elements in an equation 

relate to each other.  

Students of teachers who had initially demonstrated relatively low levels of 

mathematical understanding benefited the most, in all the problems analysed here. The 

program seems to have helped all teachers better contribute to their students’ learning 

about how to create, solve, and interpret algebra equations to solve word problems.  

These are important achievements, given the well-documented difficulties with 

algebra among middle and high school students. 

Our data contribute to further advance our understanding of the impact of teacher 

development programs and of teachers’ levels of mathematical understanding on their 

students’ learning. 
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The present study is an ongoing survey targeting Japanese fifth and ninth grade 

elementary and junior high school students respectively using the framework of “The 

Third Wave” international comparative study. The purpose of this research report is to 

describe the questionnaire survey’s results and analyze some similarities and 

differences between fifth and ninth graders from a value perspective. The main results 

show that there are five common factors underlying students’ valuing and that fifth 

graders tend to value “process”, “effort”, “exploration”, “fact”, “openness” and 

“progress”; in contrast, ninth graders tend to value “product”, “ability”, 

“exposition”, “idea”, “mystery”, and “control”. 

THE THIRD WAVE: VALUES IN MATHEMATICS EDUCATION 

 “The Third Wave” is a metaphor from Alvin Toffler’s book published in 1980, which 

implies that cognition is the first wave, affect second, and value third. It is important to 

note that “the wave metaphor not only encapsulates the energy for change that is 

generated by the values approach, but it also implies the ongoing relevance of the 

previous two waves since waves overlap” (Seah & Wong, 2012, p. 1). Under the 

coordination of the project, initially, the role of values and students’ valuing in 

mathematics learning had been assessed using qualitative data such as interviews, 

classroom observations, photography or videotapes. Such qualitative data analysis had 

been important and useful “in a research context in which values studies were 

relatively new, when it was not known what the scope of values were, and indeed, what 

they looked like” (Seah, 2013, p. 197). More recently, a new questionnaire survey was 

designed and validated, due to the qualitative approach’s own constraints, such as “the 

time and skills that are needed to investigate and analyze the values respectively” 

(ibid., p. 197). The questionnaire survey, called ‘What I Find Important (in 

mathematics learning)’ [herein referred to as WIFI], was conceptualized in 2012, and 

gathered research teams from different countries such as Australia, Brazil, China, 

Hong Kong, Malaysia, Japan, Singapore, Sweden, Taiwan, Turkey and the United 

States. (e.g., Kinone et al., 2013; Andersson & Österling, 2013; Seah, 2013). This 

paper intends to investigate the Japanese part of the questionnaire survey based on the 

unique framework proposed in this project. Thus, there are two research questions as 

follows: what Japanese students find important in mathematics learning, and how can 

we analyze similarities and difference between fifth grade and ninth grade students by 

means of the questionnaire.  
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Additionally, we would like to reflect on a problematic situation related to the first and 

second wave in a Japanese educational context, as some other East Asian counties may 

have similar experiences. According to recent well-known international comparative 

studies, such as the TIMSS and the PISA, Japanese students’ cognitive performance in 

mathematics has been fairly high when compared to other countries. On the other hand, 

Japanese students’ affective performance in mathematics has been extremely low. For 

example, the following table shows five high cognitively performing countries and the 

percentages of respective students who “agree” with the statement “I like math” cited 

from TIMSS 2011 (cf. Mullis et al., 2012; NIER, 2013). 

 

Table 1: Affective performance in mathematics (TIMSS 2011) 

There are two problematic gaps, namely the gap between cognitive and affective 

performance, and between elementary and junior high school students. We believe that 

the Third Wave project can provide a new framework to understand and/or explain 

such problematic phenomena in light of the values perspective, since values are “the 

deep affective qualities which education fosters through the school subject of 

mathematics” (Bishop, 1999, p. 2). 

CONCEPTUAL BACKGROUND OF THE QUESTIONNAIRE STUDY 

Research on values in mathematics education began with Alan Bishop’s proposal of 

three pairs of complementary values for (western) mathematics: rationalism and 

objectivism, control and progress, as well as mystery and openness (Bishop, 1988). 

Regarding the term “values” as used in mathematics education, we refer to the 

following conceptualizations: 

There is clearly a relationship between values, beliefs and attitudes, with the literatures 

suggesting that values are more deep-seated and personal than attitudes, and less 

rationalised than beliefs. (Bishop, 2001, p. 238) 

Values are the convictions which the individual has internalised as being the things of 

importance and worth. They regulate the ways in which a learner utilises his/her cognitive 

skills and emotional dispositions to learning. (Seah, 2013, p. 193) 

In a later consideration, Bishop (1998) argued that three categories of values can be 

encountered in the mathematics classroom: general educational values (e.g., honesty, 

good behaviour), mathematical values (e.g., rationalism, openness), and mathematics 

educational values. According to Seah (2013), data analysis by the Third Wave project 

group specifically identified mathematics educational values continua such as ability 

and effort, wellbeing and hardship, process and product, application and computation, 
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facts and ideas, exposition and exploration, recalling and creating, as well as ICT and 

pen-and-paper.  

In developing the WIFI questionnaire, “a diverse range of items that span across the 

three categories of values in the mathematics classroom – mathematical, mathematics 

educational, and general educational” were sought after (Seah, 2013, p. 197). Here it is 

important to note that “children responding to the questionnaire cannot be expected to 

relate directly to values; hence, the questions posed are about different learning 

activities, regarded as value indicators. […] The learning activities pictured were 

treated as value indicators, and the results allowed the researchers to reflect on the 

problem of marking a difference between a value and a value indicator” (Anderson & 

Österling, 2013, p. 18). Therefore, the learning activity “learning the proof” is one item 

in the WIFI questionnaire categorized as an indicator of the mathematical value of 

rationalism.  

METHODOLOGY 

Now, let us explain the outline of the questionnaire. The questionnaire consists of four 

sections. “Section A” consists of 65 questions, 64 of which utilize a five point 

Likert-scale to indicate the extent that the respondent finds something important in 

mathematics learning; the final question is for comments. Next, “section B” consists of 

10 items in which respondents mark their relative valuation of the complementary 

values at each end of a horizontal line. Figure 1 shows part of the instructions from 

section B using a non-math example. A set of ten items in section B is reflective of the 

conception of the complementary or continua values mentioned above. 

Section B 
 
For each pair of phrases below, mark on the line segment to indicate how more 
important one phrase is to you in your maths learning than the other phrase. 
 
If you mark in the middle, it would mean that both phrases are equally important 
to you. 
 
Example (non-maths): 
 
  Watching a movie   ___ ___ ___ ___ ___ Shopping 
  

 

 

 

 

 

 

 

 

  

66. How the answer to a 
problem is obtained 

 
  ___ ___ ___ ___ ___ 

What the answer to a 
problem is 

67. Feeling relaxed or 
having fun when doing 

maths 

 
 
  ___ ___ ___ ___ ___ 

 
Hardwork is needed 
when doing maths 

68. Leaving it to ability 
when doing maths 

 
  ___ ___ ___ ___ ___ 

Putting in effort when 
doing maths 

69. Applying maths 
concepts to solve a 

problem 

 
 

  ___ ___ ___ ___ ___ 

 
Using a rule / formula 
to find the answer 

70.  
Truths and facts which 

were discovered 

 
 

  ___ ___ ___ ___ ___ 

Mathematical ideas and 
practices we normally 
use in life 

71.  
Someone teaching and 

explaining maths to me 

 
 

  ___ ___ ___ ___ ___ 

Exploring maths myself 
or with peers / friends / 
parents 

72. Remembering maths 
ideas, concepts, rules or 

formulae 

 
 
  ___ ___ ___ ___ ___ 

Creating maths ideas, 
concepts, rules or 
formulae 

 

Figure 1: Instructions from the section B (excerpt from the WIFI) 

“Section C” consists of 4 items and it is “made up of four conceptualised, open-ended 

items which encourage respondents to write down what they themselves value, given a 

common scenario of the production of a magic pill the ingestion of which makes one 

excel at mathematics” (Seah, 2013, p. 198). Finally, “Section D” consists of questions 

about personal attributes such as nationality, type of school, age, gender, etc. In the 

present study, the targets of analysis are sections A and B, which are the main part of 

the WIFI questionnaire. 

The questionnaire survey was conducted in different parts of Japan in 2012; seven 

elementary schools (605 fifth grade students) and seven junior high schools (711 ninth 

grade students) participated. Although the selection of schools was not random, 

different types of schools such as national and public from both urban and rural areas in 

three different prefectures (Hiroshima, Miyazaki, and Osaka) were included. In order 

for the teachers to understand the aim of the questionnaire survey, we visited each 

school and explained its purpose. The questionnaire was both distributed to and 
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answered by participating students in their classrooms. In one case a research member 

was present to observe the students as they completed the questionnaire. 

In describing the 64 items in section A, we scored the five choices as follows: 

“absolutely important” (score: 1), “important” (score: 2), “neither important nor 

unimportant” (score: 3), “unimportant” (score: 4), and “absolutely unimportant” 

(score: 5). The construct validity for section A was assessed using a Principal Factor 

Analysis [PFA] with a Varimax rotation, while a cut-off criterion for factor loadings of 

at least .35 was used in interpreting the solution. The Kaiser-Meyer-Olkin [KMO] 

measure of sampling adequacy and Bartlett’s Test of Sphericity [BTS] were also used 

for validation. As a result, KMO was more than 0.9, and the BTS was significant at 

0.001, validating the questionnaire through factor analysis. In the previous study, we 

compared fifth (G5) and ninth grades (G9) after the extraction of a PFA with a Promax 

rotation, although the previous analysis was conducted in G5 and G9 data separately 

(Kinone et al., 2013). For the further analysis, in the present study we applied 

independent sample t-tests to the identified the subscale scores of each factor by 

calculating the means of the item scores included in each factor respectively. 

In describing the 10 items in section B, we scored the five positions on a horizontal line 

in terms of the semantic differential method, which is a type of a rating scale designed 

to measure connotative meaning, as follows: (left side) [-2, -1, 0, +1, +2] (right side). 

Figure 1, for example, would receive a score of “-1”. In order to analyze the difference 

between G5 and G9, we applied independent sample t-tests to 10 items’ means. The 

present study analyzes the results of sections A and B separately, because the 

construction of each section has its own scoring methods. Although there may be some 

interrelationships between sections A and B, a more complete analysis lies outside the 

scope of this report, although it is one of our future tasks. 

RESULTS 

Exploratory factor analysis on students’ valuing 

As a result of analyzing the 64 items included in section A, we accepted five 

interpretable factors after the extraction of principal factor analysis with a Varimax 

rotation: I) Ways of understanding and problem-solving; II) Mathematical stories and 

connections; III) Collectivism; IV) Support from others; V) ICT. Five factors with 

eigenvalues greater than one explain 45.124% of the variance, with almost 16.645% 

attributed to the first factor. And seven items were eliminated. Reliability analysis 

yielded satisfactory Cronbach’s alpha values for each of the five factors, ranging from 

0.772 to 0.936, indicating an acceptable degree of internal consistency in each 

subscale. Although it will take an inordinate amount of space to list data about each of 

the five accepted factors (such as the factor loading, commonalities, etc.) as Table 2 

shows, we shall show this table because of the methodological reasons and of that there 

are some crucially important results of for the considerations. 
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items I II III IV V Commonality

58.Knowing which formula to use .710 .168 .120 .172 .007 .576
56.Knowing the steps of the solution .661 .075 .026 .193 .049 .483
63.Understanding why my solution is incorrect or .644 .179 .219 .244 -.028 .555
64.Remembering the work we have done .642 .165 .100 .117 -.002 .463
36.Practising with lots of questions .636 .074 .133 .101 -.052 .441
37.Doing a lot of mathematics work .636 .227 .178 .081 -.006 .494
54.Understanding concepts/processes .620 .207 .260 .149 .030 .518
59.Knowing the theoretical aspects of mathematics .597 .286 .191 .102 -.004 .485
2.Problem solving .571 .109 .148 .029 .018 .361
31.Verifying theorems/hypotheses .564 .229 .316 .082 .042 .479
42.Working out the maths by myself .547 .188 .028 .082 .022 .343
47.Using diagrams to understand maths .544 .285 .195 .252 -.004 .478
62.Completing mathematics work .526 .205 .236 .148 -.074 .401
43.Mathematics tests/examinations .507 .159 .060 .160 -.001 .312
13.Practising how to use maths formulae .502 .263 .162 .068 .025 .352
46.Me asking questions .494 .114 .218 .372 .039 .445
49.Examples to help me understand .489 .229 .178 .342 .112 .453
55.Shortcuts to solving a problem .486 .095 .036 .174 .141 .297
50.Getting the right answer .434 -.006 -.197 .058 .142 .251
32.Using mathematical words .423 .408 .172 .110 .021 .387
33.Writing the solutions step-by-step .423 .354 .225 .277 .059 .435
8.Learning the proofs .420 .249 .413 .072 -.007 .414
51.Learning through mistakes .418 .159 .191 .274 -.023 .313
26.Relationships between maths concepts .415 .383 .288 .132 .131 .437
1.Investigations .412 .338 .327 .027 .029 .393
53.Teacher use of keywords .411 .279 .051 .294 .093 .344
61.Stories about mathematicians .124 .709 .080 .145 .091 .554
18.Stories about recent developments in mathematics .163 .698 .171 .069 .134 .566
17.Stories about mathematics .179 .692 .157 .066 .122 .555
39.Looking out for maths in real life .195 .617 .264 .247 .074 .555
60.Mystery of maths .264 .610 .182 .154 .029 .500
40.Explaining where the rules/formulae came from .227 .607 .163 .115 .088 .468
34.Outdoor mathematics activities .080 .603 .199 .223 .234 .514
11.Appreciating the beauty of mathematics .215 .601 .146 .064 .034 .434
21.Students posing maths problems .206 .474 .404 .142 .106 .463
20.Mathematics puzzles .207 .471 .209 .115 .259 .389
12.Connecting maths to real life .242 .444 .299 .161 .017 .371
10.Relating mathematics to other subjects in school .249 .441 .302 .132 .102 .375
29.Making up my own maths questions .386 .405 .333 .102 .042 .436
52.Hands-on activities .209 .391 .060 .298 .138 .308
48.Using concrete materials to understand .242 .377 .111 .365 .168 .374
9.Mathematics debates .189 .276 .571 .244 .066 .501
19.Explaining my solutions to the class .211 .422 .561 .147 .049 .562
15.Looking for different ways to find the answer .424 .268 .538 .015 .057 .545
7.Whole-class discussions -.010 .283 .526 .346 .121 .491
30.Alternative solutions .449 .317 .492 .057 .081 .554
16.Looking for different possible answers .402 .324 .491 .064 .026 .513
3.Small-group discussions .046 .213 .430 .301 .116 .337
44.Feedback from my teacher .410 .135 .175 .592 .040 .569
45.Feedback from my friends .199 .185 .232 .585 .098 .480
41.Teacher helping me individually .291 .235 -.041 .388 .070 .298
6.Working step-by-step .341 .167 .190 .384 .059 .331
5.Explaining by the teacher .376 .090 .097 .380 .046 .306
35.Teacher asking us questions .313 .292 .306 .349 .036 .400
23.Learning maths with the computer .002 .191 .054 .069 .883 .823
24.Learning maths with the internet .005 .226 .059 .063 .871 .816
25.Mathematics games .011 .328 .156 .197 .503 .424
Proportion of variance(%) 16.645 12.421 6.960 5.223 3.875
Comulative proportion(%) 16.645 29.066 36.026 41.250 45.124  

Table 2: The result of the factor analysis (Section A) 
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How can we conceive the above labeled factors. If we attempt to make some 

interpretations about factor I, students’ learning activities such as knowing, 

understanding, solving resemble some aspects of problem-solving activities that may 

be seen as recent Japanese mathematics classroom culture (e.g., Shimizu, 2009). In 

particular, the following remarks from Stigler and Hiebert (1999) seem pertinent: 

In Japan, teachers appear to take a less active role, allowing their students to invent their 

own procedures for solving problems. And these problems are quite demanding, both 

procedurally and conceptually. Teacher, however, carefully design and orchestrate lessons 

so that students are likely to use procedures that have been developed recently in class. An 

appropriate motto for Japanese teaching would be “structured problem solving”. (p. 27) 

Additionally, the factor III, collectivism (in other words, social interactions) can be an 

essential aspect of “structured problem solving”. On the other hand, there are some 

differences between fifth and ninth graders. By applying independent sample t-tests to 

the subscale scores included in the five factors in G5 and G9, statistically significance 

differences between them were found (the significance level was set at .05). Table 3 

shows the results of such an analysis for each subscale; “G5 < G9” means that fifth 

graders’ scores are significantly low (a high degree of importance). Interestingly, there 

is a strong tendency among subscales, for fifth graders to find a high degree of 

importance when compared to ninth graders. 

 

Table 3: Analysis of t-test to the item means of subscale scores (Section A) 

Analysis on pairs of complementary values 

In the present study, the analysis of section B is rather limited, but some crucial aspects 

of students’ valuing are explicit in terms of their frequency distribution. As a result of 

an analysis of the 10 items included in section B, Table 4 shows means, SD, modes, 

medians in total data, as well as means and SD in G5 and G9 data respectively. Here 

we would like to note that the modes of items 66, 68, and 74 were respectively “-1,” 

“2,” and “-2,” although other items were “0.” Therefore, there is a common disposition 

among Japanese students to explicitly value process, effort, and openness over 

product, ability, and mystery. Thus, this is a possible reflection of the reality of 

Japanese mathematics classrooms. On the other hand, we were surprised by the data 

for item 72 (recalling vs. creating) because it is inconsistent with the fact that 
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“creating” is one of the most important values in the development of mathematics 

education in Japan, closely related to the pedagogical notion of “mathematical 

thinking” or “mathematical activity” (cf. Baba et al., 2012). 

 

Table 4: Data and analysis of t-tests to each item (Section B) 

By applying independent sample t-tests to the means of each item for G5 and G9, 

statistically significant differences were found between them (the significance level 

was set at .05) in items 66 (process vs. product), 68 (ability vs. effort), 71 (exposition 

vs. exploration), 73 (rationalism vs. objectivism), 74 (openness vs. mystery), and 75 

(control vs. progress). There is a tendency for fifth graders in their learning activities 

to value “process”, “effort”, “exploration”, “objectivism”, “openness” and “progress”; 

in contrast, ninth graders tend to value “product”, “ability”, “exposition”, 

“rationalism”, “mystery” and “control.” There are no significant differences between 

G5 and G9 for items 67 (wellbeing vs. hardship), 69 (application vs. computation), 70 

(facts vs. ideas), or 72 (recalling vs. creating). In particular, since the modes of items 

69, 70, and 75 in total data were nearly 0, it would mean that both phrases 

(complementary values) are almost equally important to them. Although further 

investigation is required concerning the interrelationship between the 10 items in 

section B, these results imply that different mathematics classroom cultures exist in 

elementary and junior high schools.  
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In this paper, we describe the process of students’ self-assessment of their creativity 

and its development in the context of posing mathematical problems, presuming that 

such a process would support the development of their creativity. Examination of two 

case studies reveals that self-assessment of creativity may support its development 

provided that one possesses specific personal recourses; however, this process might 

suppress the creativity of those lacking the needed resources. Therefore, we suggest 

that self-assessment of creativity cannot stand on its own, and should be supplemented 

by teachers’ feedback or other environmental 'scaffolding'. 

INTRODUCTION 

Reviewing over 90 articles with the word “creativity” in the title, Plucker, Beghetto, 

and Dow (2004) found that only 38% of them explicitly defined what creativity was. 

Clearly, a lack of agreed-upon definition of creativity makes it difficult to reach any 

consensus about how to assess creative expressions or creative personality, as well as 

make a decision about the appropriate design of learning environments intended to 

realize students’ creative potential. Nonetheless, the extensive literature concern with 

creativity recognizes the importance of nurturing students’ creativity and the central 

role of schools in this regard (e.g. Sternberg & Lubatrt, 1995). Therefore, in order to be 

able to actualize intentions of nurturing students’ creativity, one should first select a 

preferred definition and approach that would enable to translate ideas about creativity 

into practice. Thinking over how to design a learning environment that support the 

development of students’ mathematical creativity, we held in mind teachers’ 

difficulties in assessing students' creativity and its development (Shriki, 2010). We 

found Torrance’s (1974) psychometric approach to creativity as appropriate to that 

end, since it permits ‘measuring’ creativity using quantitative instruments. In addition, 

drawing on research that relates to the benefits of students’ self-assessment of 

creativity (e.g. Chamberlin & Moon, 2005), we presumed that allowing students to 

self-assess the level of creativity expressed in their outcomes might contribute to its 

development.  

In this paper, we present partial results from a study that aimed at examining the effect 

of students’ self-assessment of their mathematical creativity and its development in the 

context of problem posing on the actual development of their creativity.  
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LITERATURE BACKGROUND  

Approaches to the study of creativity 

Various approaches are implemented for studying and assessing creativity. Among 

them, the psychometric approach of Guilford (1967), who distinguished between 

convergent and divergent thinking, and his follower Torrance (1974), whose battery of 

tests are still being widely used today; The cognitive approach for the study of 

creativity focuses on cognitive and mental processes, among them the use of different 

representations, establishment of mental links among ostensibly unrelated objects, 

solving problems of various fields, and more (Sternberg & Davidson, 2005); The 

social-personality approach refers to emotional as well as socio-cultural aspects. The 

Investment Theory of creativity (Sternberg & Lubart, 1995) is rooted in this approach. 

The theory seeks to understand the foundation of creativity, and assumes that creative 

performance results from a confluence of 6 interrelated resources: Cognitive resources 

– Intellectual skills (synthetic, analytic, and practical), Knowledge (which might help 

or hinder creativity), and Thinking Styles (preferred ways of using one’s skills); 

Affective resources – Thinking Styles (as before), Personality (willingness to 

overcome obstacles, to take risks, to tolerate ambiguity, and self-efficacy), and 

Motivation (as related to task); and Environmental resources (whether or not support 

and reward creative ideas). “In order for these resources to be used effectively, they 

must converge in a way that capitalizes upon them both singly and in interaction” (p. 

4). In some cases, ‘strong’ resources may compensate for ‘weak’ resources.  

Self-assessment (SA) of creativity 

Students’ SA of their learning supports the development of their confidence and 

individuality and adds reflection and metacognition to learning of mathematics 

(NCTM, 2000). Therefore, students should be engaged in SA of their progress, and use 

it for articulating the value of their own study (Brookhart, Andolina, Zuza & Furman, 

2004). In order to enable students to assess their performance and progress, teachers 

should provide them with explicit, easy to understand, guidelines (Enz & Serafini, 

1995), and a proper support (Brookhart et al., 2004). Students who are trained in SA 

outperform those who do not receive such preparation (Enz & Serafini, 1995). 

SA of creativity is one of the simplest ways to assess creativity (Kaufman, Plucker & 

Russell, 2012), which in itself requires creativity and enables to refine one’s own 

products in successive iterations. One approach to SA of creativity is asking people to 

rate their creative accomplishments or ability (Beghetto, Kaufman & Baxter, 2011). 

The authors acknowledge that SA of creativity may seem as not reliable as it might not 

be compatible with estimates of external judges, therefore they suggest measuring it by 

“creative self-efficacy” (CSE), as it represent not only a subjective appraisal of specific 

creative ability, but also linked to actual creative behaviour or one’s perceived ability 

to accomplish particular behaviours and tasks. The authors found that on average 

students tended to rate their creative ability similar to how their teachers rated their 

creative expression.  
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THE FRAMEWORK OF THE STUDY 

Background 

Recognizing the value of students’ SA of their own creativity, and realizing that 

students are able to assess the extent of their creativity, we incorporate a component of 

SA of creativity as part of our wider educational effort to foster students' mathematical 

creativity. In Beghetto et al.’s (2011) study, students’ CSE was measured by their rank 

of 5 Likert-type items. As the authors pointed out that some students tended to 

underestimate their creative ability, it seemed to us that an approach that is based 

merely on self-perception, without relating to some specific ‘evident’, may obstruct 

some students from reliably self-assessing their creativity.  Therefore, we presumed 

that providing students with something “to hold on” while self-assessing their 

creativity may support their ability to assess it and may also contribute to its 

development. This presumption was put to the test in the current study.   

Assessing students’ creativity in the context of problem posing 

Acknowledging the centrality of problem posing (PP) processes within the 

mathematical creative act (Silver, 1997), the current study was part of an experiment in 

which 6 upper-elementary mathematics teachers engaged their students in a series of 5 

PP tasks, aimed at nurturing students’ creativity. Given an initial mathematical 

problem, students were asked to pose as many appropriate problems as possible 

through employing the “What-if-Not?” strategy suggested by Brown & Walter (1990). 

Relating to the posed problems, students’ creativity and its development were assessed 

through an instrument developed by Shriki (2013). This instrument considers 4 

measurable aspects of creativity: fluency, flexibility, originality and organization, as 

proposed by Torrance (1974). Fluency is measured by the number of different posed 

problems; flexibility is measured by the number of different categories of the posed 

problems; originality is measured by the relative infrequency of the problems, and 

organization is measured by the number of problems stated as generalizations. The 

scores given to each aspect are of two types: (1) Total scores: the absolute number of 

posed problems with respect to each of the 4 aspects, and a final score of creativity 

(based on predetermined relative weights of each aspect); (2) relative scores: each 

absolute number is transformed into a number that reflects the relative infrequency of 

the posed problems in student’s reference group. For instance, a student who poses 10 

problems receives a total score of 10 for fluency. Suppose that the highest total score 

for fluency in this student's reference group is 15, the student's relative score for 

fluency is 10/15≈67. Providing relative scores rests on the notion that developing 

students' creativity requires assessment of each student compared to his/her reference 

group, rather than comparing him/her with professionals in the field (Leikin, 2009).  

The SA process 

The first task was presented only after the students were informed about the meaning 

of the 4 measurable aspects of creativity and absolute and relative scores. This was 

followed by several examples of employing the “What-if-Not?” strategy and clarifying 
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the significance of "an appropriate problem". After every task, each student received a 

graphical display of his/her relative scores. Starting from the second task, the graphical 

display included cumulative scores, so that students were able to trace their 

progress/withdrawal relatively to their classmates. Examining the graphical display of 

scores, students were asked to reflect on modifications in their relative scores, and try 

to explain evident changes. As we aimed at examining the feasibility of implementing 

such a process without any external intervention, the teachers were instructed not to 

discuss with their students anything that relates to it until its completion. 

THE STUDY 

The study followed students' perceptions regarding the contribution of the described 

SA process to the development of their mathematical creativity.  

Research questions 

Relating to the SA process the following questions were addressed: How do students 

perceive the contribution of SA to the development of (i) their ability to assess their 

mathematical creativity; (ii) their self-efficacy as posers of mathematical problems; 

(iii) their development of mathematical creativity.   

Subjects 

The study involved 190 students from 6 different regular upper-elementary schools in 

the northern part of Israel: Two 9
th
 grade classes (high level group of 32 students, low 

level group of 29 students); one 10
th
 grade class (medium level group of 34 students); 

two 11
th

 grade classes (high level group of 31 students, medium level group of 36 

students); and one 12
th
 grade class (medium level group of 28 students).  

Research tools 

Data was gathered through weekly questionnaires. Subsequent to each PP task the 

teachers provided the students with an individual graphical display of their relative 

scores (cumulative scores starting from the second task) and a questionnaire that 

included 3 open questions: Observing the graphical display, what can you tell about: (i) 

your creativity with respect to posing mathematical problems?; (ii) your ability to pose 

mathematical problems?; (iii) your development of mathematical creativity. Try to 

explain evident changes or lack of changes. 

Methods for analysing the data 

Students' responses were analysed by means of analytical induction, aiming to identify 

the main themes and the typical patterns This process was done through open coding 

and content analysis in order to form the unifying categories and sub-categories 

(Strauss & Corbin, 1990).  

RESULTS AND DISCUSSION 

In this section, we present two case studies, both taken from the medium level group of 

11
th
 graders. Given space limitations, to avoid the effects of age group, level of study, 
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and achievements in mathematics, we chose to present examples of students from the 

same class with a similar average grade in mathematics. The two students, Ruth and 

Michael, represent two types of students: While Ruth’s relative scores consistently 

increased, Michael’s relative scores remained almost unchanged. Ruth’s and Michael's 

average grades in mathematics were 86 and 82, respectively. In Figure 1 appear Ruth's 

and Michael's cumulative relative scores of fluency, flexibility, originality, 

organization and creativity for the 5 tasks (t1-t5). The score for creativity was 

calculated so that each of the four aspects was given an equal weight. 

 

Figure 1: Ruth's and Michael's cumulative scores for task 1 (t1) to task 5 (t5) 

Unlike Chamberlin & Moon’s (2005) observation, Figure 1 indicates that SA of 

creativity has a diverse effect on different students. Hence, the question is what are the 

factors, combined with the SA process, that affect the development of students’ 

creativity? In order to answer this question, we analysed Ruth’s and Michael’s 

responses to the questionnaires through the lens of Sternberg & Lubart’s (1995) 

investment theory of creativity. We found the theory as suitable for this purpose since 

it seeks to understand the interrelations between person and product. Out of the 6 

resources, we excluded “knowledge”, as both students attended at the same class and 

their grades were not significantly different. We start with presenting some quotes 

taken from Ruth’s and Michael's responses. Next to each quote appear the number of 

task (t1-t5) and the number of the questionnaire’s question (i-iii) to which it relates. 

The citations were translated from Hebrew, and we strived to preserve their essence.  

Citations taken from Ruth’s responses 

“My scores were very disappointing, but I can only blame myself for not giving it enough 

time…I will surely work harder on the next task” (t1, ii); “I wasn’t satisfied with my scores 

for originality. I think that more than other scores this truly reflects creativity. So I 

promised myself to think ‘big’ next time” (t2, i); “I can see that my efforts paid off in all 

but originality. I think of myself as a creative person, so it’s a bit annoying, but I’m not 

giving up“ (t3, iii); “This time I changed my tactic, and it worked! I thought that if I would 

pose more problems, then I’ll increase the chance of being original” (t4, ii); “These tasks 

truly gave me a chance to think differently. At first, I was afraid to think too wild, because 

the teacher said that the problem should be appropriate. But when I saw my scores for the 

three tasks I realized that if I would limit myself to simple problems I will not go far. So I 

really tried to think of original and generalized problems…and as you can see [the 

teacher], I am one of the most creative students in the class! Yeeeh!!!” (t5, iii). 
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Citations taken from Michael's responses  

“I tried to think of many types of problems, and I thought it would be enough. But then I 

saw my score of creativity, and realized it wasn’t enough…O.K., so I am not very original 

and creative, what does it say about me?” (t1, i); “I tried to prove to you [the teacher[ that I 

can be original, but now I know I’m not…Actually, instead of getting better, I’m getting 

worse” (t2, iii); “It is the same as before. Perhaps I just don’t know how to pose problems. 

We never did it in class…I’m starting not to like these tasks” (t3, i); “It is not hard to see 

that other students are much more creative than me, so I give up” (t4, iii); “I understand 

that what we did was some kind of an experiment, but you [the teacher] probably had to 

explain it better, or tell me what I was doing wrong. If you had asked me a month ago if I 

could pose mathematical problems, I would definitely say “yes”, but it turned out I’m not 

very good at it” (t5, ii). 

Figure 1 indicates that Michael’s starting point was slightly better than Ruth’s, and 

both scores of total creativity were rather low. However, while Ruth exhibited an 

impressive progress Michael did not. What are the prominent differences between the 

reactions of both students and how can the investment theory explain them?  

Summarizing his extensive research within the area of investment theory, Sternberg 

(2009) describes the intellectual skills resource as relating, among others, to the 

ability to escape the bounds of conventional thinking, recognize which of one’s ideas 

worth pursuing, and willingness to devote time to think in new ways. Evidently, Ruth’s 

behaviour meets these skills, and she also takes a responsibility for her achievements. 

At the outset, she realized the need to spend more time working on the tasks in order to 

achieve the goal she set for herself: improve her relative scores, especially the score of 

originality (t1, t2). This objective was set following her view of originality as the 

essence of creativity (t2), and the fact she considered herself a creative person (t3). 

Through the entire process, Ruth’s thinking styles and her personality characteristics 

facilitated her efforts to improve. Thinking styles resources relate to the preferred 

ways of using one’s skills, namely, decisions about how to organize the available 

skills, and Personality resources relate to the willingness to overcome obstacles and 

take risks, and self-efficacy. These resources are essential for creative functioning 

(Sternberg, 2009). Apparently, Ruth is able to monitor her actions. Apart from the 

decision to spend more time, Ruth realized she needed to change her strategy, for 

example- pose more problems (t4), ‘think big’ (t3), and think of ‘wild problems’ (t5). 

Her self-efficacy as a creative person, combined with her willingness to overcome 

obstacles and take risks, proved to be what she called ‘pay off’. Obviously, the above 

resources might not be adequate, if Ruth had no motivation. Intrinsic, task-focused 

motivation is essential for creativity. However, motivation is not something inherent 

in a person, and one decides to be motivated given a certain incentives (Sternberg, 

2009). Ruth’s motivation to improve was first and foremost intrinsic, driven by her 

wish to confirm to herself that she was as creative as she believed (t2-t5). 

Michael, on the other hand, demonstrated a different pattern of resource exploitation. 

While, at the first task, he used his intellectual skills resource for thinking of various 



Shriki, Lavy 

PME 2014 5 - 183 

types of problems, believing this was the right approach (t1), realizing it was 

insufficient for receiving high scores he did not make any attempt to escape the bounds 

of his conventional thinking, or altered the use of his thinking styles resource. In 

Michael’s responses, there is no evidence for pondering, but rather a message of a 

‘quick waiver’ (t1, t3). Evidently, Michael lacks the Personality resources that would 

enable him to overcome obstacles and take risks, and his low self-efficacy is 

manifested already after t1. Michael’s responses (t1-t4) may indicate that he perceived 

the process as some kind of a ‘competition’ among his classmates, and it might be that 

being uncompetitive hindered the development of his creativity, damaged his 

self-efficacy and suppressed his intrinsic motivation. In fact, it appears that Michael’s 

main motivation was to prove something to his teacher, rather than an intrinsic one 

(t2). As a result, he tended to ‘blame’ his teacher for not providing him appropriate 

conditions to succeed (t3, t5). As Sternberg (2009) pointed out, some people may have 

all the needed internal resources to think creatively, however, if they do not get support 

from the environment, or alternatively – receive negative feedback on their creative 

thinking, they will find it difficult to demonstrate their creativity. Such people actually 

decide not to face environmental challenges, thereby blocking their creative output. 

Unlike Ruth, who is able to resolve her conflicts by herself, Michael needs his 

teacher’s guidance and support.  

In summary, the two case studies described above suggest that SA of creativity can be 

beneficial for students who possess an optimal mixture of resources from the outset.  

Such students are able to exploit SA of creativity to further develop it. On the other 

hand, students who lack a certain degree of threshold for some resources might be 

damaged from the process. It is possible that Michael could realize his creative 

potential if he had received a personal feedback from his teacher.  

Obviously, as we presented only two examples this observation cannot be conclusive, 

although it implies the impossibility to say that ‘one size fits all’.  In addition, we based 

our conclusions merely on one specific approach of SA and one specific method to 

nurture and assess students’ mathematics creativity. However, our initial findings call 

for the need to a wide scale examination of the advantages and disadvantages of SA of 

creativity. 

Finally, it would be interesting to ask students to respond Beghetto et al.’s (2011) 

questionnaire prior to engaging them with the described SA process in order identify 

some interconnections between students’ CSE and the impact of SA of creativity on its 

development.    
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In our study, we looked for an answer to the research question “How prospective 

teachers comprehend the concept of a plane angle and what kind of variation there is 

between the conceptions? The study shows that the prospective teachers interpret the 

concept “plane angle” which in principle is familiar to everybody in many different 

ways. In this paper, we categorise eight interpretations of a different type, appearing 

in the future teachers' ideas. We also show some examples of the fact that individuals 

can use different concept images of a plane angle when performing the tasks of 

different types even in the same test. 

INTRODUCTION 

The concept of a plane angle has been in the course of centuries a concept which even 

the mathematical science community has found hard to define and hard to approach 

from one single point of view (Matos, 1990; Keiser, 2004). The following three modes 

of definition have been the ones most frequently applied as the definition of an angle at 

different times. An angle is defined either (1) as a rotation by which one of two 

intersecting straight lines is made to merge into the other or (2) as a region defined by 

two half lines starting from the same point or (3) as the common region defined by two 

intersecting half planes (Mitchelmore & White, 2000). In fact, the Latin word angulus 

means literally "a little bending." According to these definition alternatives, an angle 

can be understood to be either a measurable quantity, a geometric construction or a 

plane region. Keiser’s studies (Keiser, 2004; Keiser et al., 2003), in particular, show 

that these different interpretations of the concept of an angle reflect the differences 

discovered in didactic research in the interpretations of individuals to this concept 

rather well. Our study intends to acquire information on the ways in which prospective 

class teachers and prospective subject teachers of mathematics grasp and make sense 

of the concept of a plane angle. We used two different task types in our study. As Tall 

and Vinner (1981) and after that many others have noted our understanding about 

concepts is based both to the more holistic and visual concept image and to the more 

formal concept definition. In our study, we tried to get information of both of these 

modes of understanding regarding the concept of a plane angle. The study revealed that 

in different contexts the prospective teachers seem to base their decisions on different 

concept images although tasks focus on the same concept.  
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RESEARCH QUESTIONS 

The main research question of our study is how prospective teachers comprehend the 

concept “plane angle” and what kind of variation there is between the conceptions?  

Primarily, we were here interested in the variation of the conceptions between 

individuals. However, as a secondary task we also wanted to look as whether student’s 

answers to the definition task and to the point selection task both reflected similar 

conception of a plane angle or did the answers as well show that individuals may apply 

different concept images to the same concepts when performing different processes. 

METHOD 

The way in which an individual grasps a mathematical concept can be examined either 

by observing how the individual uses the concept spontaneously in speech and action 

without actually being aware of the observation, or by planning a test situation in 

which the informant is asked to do something that reveals as much as possible of the 

way in which this individual interprets the meaning of the concept. In our earlier case 

study (Joutsenlahti & Silfverberg, 2007) we used the former method of collecting 

research data from schoolchildren, whereas in Silfverberg and Joutsenlahti (2007) and 

in the present study the latter method was used for the purpose of examining teacher 

students’ interpretations of an angle. 

An analysis of the definitions given by the informants can be done in several ways 

revealing different aspects the understanding about the concept image and concept 

definition (Tall & Vinner, 1981). For instance, we can focus on checking (1) how 

correctly a definition defines the concept in comparison with the normative 

interpretation; (2) how adequately the form of a given definition meets the formal 

criteria set for a mathematical definition (Hershkowitz, 1990; Leikin & 

Winicki-Landman, 2000a, 2000b; de Villiers, 1995); (3) how well a definition given 

by an informant corresponds with the concept form which this informant seems to have 

on the basis of the situations in which the concept was actually applied (Tall & Vinner, 

1981; Vinner & Dreyfus, 1989; Vinner, 1991); (4) what kind of linguistic form the 

informant uses in providing a definition (Barnbrook, 2002).  

The research data was collected by a questionnaire handed out to 191 Finnish 

university students. Hundred (100) of them were pursuing studies to become subject 

teachers in mathematics and science for grades 7 through 12, and 91 to become class 

teachers for grades 1 through 6. In item 1 of the questionnaire we just asked the 

prospective teachers to define the concept of a plane angle. In item 2 (Figure 1) the 

students were asked to choose from a given set of points the ones, which they thought 

to belong to the given angle. In item 3 (Figure 2) the students picked from the given set 

of points the ones, which they thought belonged to the angle of the triangle added into 

the same figure that was used in item 2. Items 2 and 3 were developed from the testing 

method presented by Hershkowitz et al. (1987). The item where it was asked students 

to write a definition for a plane angle was given as a first item on a questionnaire but it 
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was on the same paper as the other two items so the answerer could answer the 

questions in any order and easily correct the definition after answering more concrete 

items 2 and 3 if she/he felt it necessary.  

Figure 1: Item 2 of the questionnaire 

 

 

 

 

 

 

Figure 2: Item 3 of the questionnaire 

RESULTS 

Based on the earlier research literature we could expect that especially three particular 

classes of interpretations to the plane angle would be found in our data, namely an 

angle interpreted as (1) an amount of turning about a point between two lines; (2) a 

shape, formed by two lines or rays diverging from a common point (the vertex); (3) one 

of the two regions into which the two sides of the angle (rays) split the plane. 

In the following, we call them as turning interpretation (TI), line interpretation (LI) and 

region interpretation (RI). However, our data revealed that we have to both broaden 

and specify the range of these three possibilities how the concept of a plane angle can 

be interpreted. First there were few student teachers, who interpreted an angle to be 

limited only to a ‘corner’ of an angle (corner interpretation CI) consisting only the 

vertex of an angle or/and its ‘close surrounding’. There were also different 

interpretations of LI and RI depending if the angle was considered including only those 

elements visible in the actual drawn picture of the angle or if the angle was considered 

continuing endlessly in a direction it specifies. Finally, we classified interpretations 

into eight categories, namely to TI and CI and to six categories shown in Figure 3. 

Which of the points  

A, B, C, D, E, F, G, H, and I 

belong to the angle  ? 

 

Which of the points  

A, B, C, D, E, F, G, H, and I 

belong to the angle  ? 

Which of the points A, B, C, 

D, E, F, G, H, and I belong to 

the angle  in a triangle CFE 

? 

 

Which of the points A, B, C, 

D, E, F, G, H, and I belong to 

the angle  in a triangle CFE 

? 
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Point selection task (Item 2) 

We will begin by presenting first a summary of student’s answers to the point selection 

task (item 2). In the whole data (n =191) there were two prospective teachers who 

thought that only the vertex C from the given points belonged to the angle  reflecting 

the interpretation CI and two prospective teachers who didn’t select any of the points to 

the angle  probably because they interpreted a plane angle in item 1 to be a measure 

(TI) and not a kind of geometrical line or region construction. Table 1 presents the 

sub-categorisation we applied to LI and RI in our study. Correspondingly Table 2 

shows how the students' answers were distributed into these sub-categories. 

Point selection task (Item 3) 

When the angle  was placed as an angle of the triangle it did not essentially seem to 

affect the fact whether an angle was addressed according to the line interpretation or 

the area interpretation. In the whole data, 63.8 % of the student teachers chose the 

points in item 2 according to the line interpretation and 27.2 % according to the area 

interpretation. In the item 3, the corresponding percentages were 64.9 % and 32.5 %. 

However, as it was considered an angle of the triangle student teachers chose generally 

only the inner points of the triangle or the points belonging to the sides of the triangle. 

When 67.5 % of the students chose in the item 2 also the points of the angle belonging 

outside the part of the drawn angle, in item 3 only 11.5 % of the students did the same. 

The type of 

interpretation 

The line construction of 

two line segments or 

two rays 

The region construction  

with boundaries 

excluded  or                                             included 

Bounded by the 

drawing 

(visible) 

 

 

 

 

CEF 

 

               D 

 

            CDEF 

 

Continuing to 

the infinity 

(imaginary) 

 

 

        CEFI               DH                 

 

CDFHI 

Table 1: Classification of the line and region interpretations to the concept of a plane 

angle. The combinations of capital letters next to the pictures refer to the 

corresponding selection of the points in Figure 1. 
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The type of 

interpretation: 

Bounded or 

infinite/line or 

region 

construction 

The line construction 

of two line segments 

or two rays 

The region construction with boundaries 

          excluded                          included 

 

Class 

teachers 

(n=91) 

Subject 

teachers 

(n=100) 

Class 

teachers 

(n=91) 

Subject 

teachers 

(n=100) 

Class 

teachers 

(n=91) 

Subject 

teachers 

(n=100) 

 

Total 

Bounded by the 

drawing 

(visible) 

23 

25.3 % 

33 

33.0 % 

0 

0.0 % 

0 

0.0 % 

3 

3.3 % 

1 

1.0 % 

60 

31.4 % 

Continuing to 

the infinity 

(imaginary) 

32 

35.2 % 

34 

34.0 % 

1 

1.1 % 

0 

0.0 %  

21 

23.1 % 

26 

26.0 % 

114 

59.7 

Total 55 

60.4 % 

67 

67.0 % 

1 

1.1 % 

0 

0.0 % 

24 

26.4 % 

27 

27.0 % 

174 

91.1 % 

Table 2: Distribution of students’ responses to item 2 (n=191). 

The definition task (Item 1) 

The writing of the definition to the concept of the plane angle proved to be a difficult 

task to many prospective students and especially to the prospective class teachers. 

Some students left the item 1 totally unanswered. Because of this, we restrict the 

examination here to the data concerning only prospective subject teachers (n=80). 

About half of the respondents had attempts to write the description in the form of the 

definition, such as “An angle is formed by…”, “When two lines intersect, …”, An 

angle is a relation between..” etc. Because the answers to this item were so vague we do 

not here give precise numbers of the occurrence of different types of definitions. 

Instead of that, we present some general observations from to what kind of ideas and 

concept images of the angle the attempts of defining an angle concept seemed to be 

based. 

In the point selection task there were very few such students who restricted the angle 

concept so that only the vertex C would belong to the angle. However, in the defining 

task (item 1) remarkable many students seemed to have a kind of vertex or “sharp point 

interpretation” of a plane angle as the following examples show “Point of convergence 

formed by two line segments”, The common point of two lines which forms an acute or 

an obtuse angle”, “An angle is an acute or an obtuse point in a solid” etc. An interesting 

observation as well was that roughly estimated every fourth of the respondents who 

gave a written definition in item 1 described it so that it did not seem to base on the 

same concept image as the point selections in item 2 would reflect.  In the following, 

we will present five examples of the inconsistencies between the definitions students’ 

wrote as an answer to item 1 and the selection of points they made in item 2.  
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Example 1. A student teacher wrote a definition “Two straight lines intersect each 

other. An angle stays between the lines”. However, in item 2 the student considered 

that the points C, E and F only belonged to the angle  and did not choose the points D, 

H and I. The selection seems to base on the concept image “a combination of line 

segments intersecting each other” instead of that what was written in the definition.  

Example 2. Another student teacher defined an angle as “the region between two 

straight lines which have a common point” but chose only the points C, D, E and F 

which corresponds the interpretation “the finite region bounded by two line segments 

including the boundaries”. 

Example 3. The definition given by a student teacher was “An angle consists of two 

line segments and of their common intersection or of the common point from which the 

sector opens”. However, she chose only the points C, E, F and I seeming to be applying 

a concept image “combination of two rays starting from the same point”. 

Example 4. The definition which a student teacher wrote was “An angle consists of 

two line segments and of their common intersection point from which the sector 

opens”. In item 2, he chose the points: C, E, F and I seeming to apply more like a 

conception “Angle is formed by two rays starting from the same point” 

Example 5. After writing the definition “Two straight lines meet each other at one 

single point” the prospective teacher chose in item 2 the points D and H reflecting a 

concept image “An angle is one of the infinite regions between straight lines without 

boundaries”. 

One possible explanation for the fact that the concept images applied in items 1 and 2 

do not correspond to each other can be the fact that respondents use the concept straight 

line when they actually mean the concept line segment or vice versa. But these 

linguistic inaccuracies do not explain all the incompatibilities of the concept images as 

one can see also from the examples above. It is important to notice from the point of 

view of the theory that the concept images which some individuals used seemed to be 

at least in some extent dependent also on the context where they was taken in use. 

DISCUSSION 

To summarise the results of our study revealed fairly clearly that prospective teachers 

interpret the concept of an angle by several ways. Some respondents interpreted an 

angle as a line consisting of two line segments, some consisting of two rays, and some 

as a region defined by these elements. On the other hand, interpretations differed as to 

whether an angle continues outside the part shown in the drawing in the direction 

determined by the angle, or not. The results of our examination showed that even the 

adults who have completed their years of mathematics studies at lower and upper 

secondary school – and many of whom have also pursued the studies of mathematics at 

university level – still cherish various notions (beliefs) on such basic concepts of 

elementary mathematics as an angle, and these different notions and beliefs can remain 

very much alive although we use concepts in our mutual discussions regularly. 



Silfverberg, Joutsenlahti 

PME 2014 5 - 191 

Possibly, this fact can partly be explained by school mathematics learning practices. 

The nature of the exercises typical of school mathematics, like calculate …, draw …, 

classify …, define the magnitude of … etc., seem to allow communication on the 

issues to be examined as well as the completion of the exercises even though the basic 

concepts are understood in ways that are fundamentally different.  

In our view, mathematical concept formation could be enhanced by deliberately 

drawing attention to the differences of the interpretations learners may have even of the 

basic concepts of mathematics and by critically debating and negotiating the various 

ways of interpretation in line with the socio-constructivist learning theory. Our 

research also showed fairly clearly that few Finnish prospective teachers were not at all 

able to put their idea of the concept definition of the concept plane angle into words.  It 

seems that neither school nor university studies ensure that students are familiar with 

the idea of mathematical definition or with the requirements of the form and 

formulation of such a definition. It seems highly likely that the significance of learning 

to formulate a definition – i.e. being forced to analyse the content and meaning of a 

concept and to search for an explicit and easily comprehensible way of expressing this 

meaning – is not held in adequate esteem on any level of school education. 
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AN EMERGING THEORY FOR DESIGN OF MATHEMATICAL 

TASK SEQUENCES: PROMOTING REFLECTIVE ABSTRACTION 

OF MATHEMATICAL CONCEPTS1 

Martin A. Simon 
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This paper describes an emerging approach to the design of task sequences to promote 

reflective abstraction. The approach aims at promoting particular mathematical 

understandings. Central to this approach is the identification of available student 

activities from which students can abstract the intended ideas. The approach differs 

from a problem-solving approach. The paper illustrates the approach through data 

from a teaching experiment on learning of fraction concepts with fourth and fifth 

graders. 

INTRODUCTION 

Mathematical tasks are designed for a variety of reasons. The instructional design 

approach discussed here has the specific focus of promoting particular changes in 

students’ conceptual understanding and, as such, offers an approach to addressing 

difficult to learn concepts and to working with students who are struggling to learn 

specific concepts. This task design approach does not address other important areas of 

learning mathematics, particularly the important area of mathematical problem 

solving. Therefore, the approach is meant to complement existing approaches, not 

replace them. The emerging task design theory is a product of a research program, 

Learning Through Activity (LTA, Simon et al, 2010; Simon, 2013), aimed at 

understanding conceptual learning, particularly the development of abstraction from 

one’s own mathematical activity (activity that occurs in the context of designed 

sequences of mathematical tasks). Thus our research program involves a spiral 

approach in which we design task sequences to study learning through student activity, 

and we use what we come to understand about learning to improve our understanding 

of task design, and so forth. 

What is unique about our instructional approach is that it involves students actively in 

the developing of new concepts, yet it does not depend on the uncertain breakthroughs 

required in authentic problem solving lessons. Task sequences are designed to elicit the 

specific activity that will lead to the new conceptualization. I discuss an example of 

this below. 

                                           
1
 This research was supported by the National Science Foundation (DRL-1020154). The opinions 

expressed do not necessarily reflect the views of the foundation. 
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THEORETICAL BASIS 

The theoretical basis of our research program derives from Piaget’s (2001) work on 

reflective abstraction. DiSessa and Cobb (2004) pointed out, 

Piaget’s theory is powerful and continues to be an important source of insight. However, it 

was not developed with the intention of informing design and is inadequate, by itself, to do 

so deeply and effectively. (p. 81) 

Our research program is aimed at building theory that can inform instructional design. 

Three characteristics of reflective abstraction are foundational to our work. First, 

reflective abstraction is not abstraction of properties of objects, but rather abstraction 

based on the learner’s activity and results in a learned anticipation. Second, “activity” 

refers to goal-directed activity, which includes both physical and mental activity. The 

notion of goal-directed is important, because the learners’ goals partially determine 

both what knowledge they call upon and what they pay attention to and can notice. 

Third, Piaget (2001) described reflective abstraction as a coordination of actions. We 

understand the coordination of actions in the following way. Each action is called upon 

for a particular purpose (i.e., with anticipation of its results). Thus, the actions called 

upon are each part of existing schemes (the result of prior reflective abstractions). Thus 

the coordination of actions really is a coordination of schemes. Thinking about 

coordination of actions as coordination of schemes allows a way of understanding how 

new knowledge to be constructed from prior knowledge. In our research and 

theoretical work, consistent with Piaget and others, (c.f., Hershkowitz, Schwarz, & 

Dreyfus, 2001; Mitchelmore & White, 2008), we consider mathematics conceptual 

learning as the process of developing new and more powerful abstractions, specifically 

reflective abstractions.  

Our task design approach builds on this theoretical base and involves specifying 

hypothetical learning trajectories (Simon, 1995) at multiple levels. In this paper, I 

focus on the level of design for the learning of particular mathematical understandings, 

not the planning of trajectories for larger mathematical topics. A hypothetical learning 

trajectory consists of three components (Simon, 1995), (1) a learning goal, (2) a set of 

mathematical tasks, and (3) a hypothesized learning process. Whereas the specification 

of the learning goal generally precedes the specification of the tasks and hypothesized 

learning process, these latter two components necessarily co-emerge. The learning 

process is at least partially determined by the tasks used and the tasks used must reflect 

conjectures about the possible learning processes. The design approach outlined here 

provides a conceptualization of the design process with respect to these two 

components. 

The Design Approach 

The first two steps in our design approach are the first two steps in most instructional 

design that is aimed at conceptual learning. We assess student understanding and 
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articulate a learning goal
2
 for the students relative to their current knowledge. It is after 

these first two steps that our approach diverges. 

Our third step is to specify an activity that students can call on that can be the basis for 

the abstraction specified in the learning goal.
3
 The consideration of what activity we 

might elicit begins in a way that is similar to Realistic Mathematics Education 

(Gravemeijer, 1994), that is a consideration of students’ informal strategies. Whereas 

RME focuses on developing progressively more formal solution strategies, our 

approach is focused on developing concepts by developing anticipations from those 

activities.
4
 The fourth step is to complete the hypothetical learning trajectory, that is, to 

design a task sequence and related hypothesized learning process. The task sequence 

must both elicit the intended student activity and lead to the intended anticipation on 

the part of the students. The hypothesized learning process must account for not only 

the overt activity of the students, but also the mental activities that are expected to 

accompany those overt activities. I will not focus on steps beyond step 4 (e.g., 

symbolizing, introducing vocabulary, discussing justification), because again they are 

common to many approaches. 

I will now use an example from our current project that focuses on the learning of 

fraction concepts. Kylie was a fourth grade student (9–10-years old) with whom we 

worked in a one-on-one teaching experiment. We were using the computer application 

JavaBars (Biddlecomb & Olive, 2000). In Java Bars, quantities can be represented by 

rectangles of different lengths. The bars can be partitioned and bars and parts of bars 

can be iterated. In the example, Kylie is developing a concept of recursive partitioning, 

the understanding of the size of a particular part of a part. 

Task 1: “This is one-third of a unit [pointing to a rectangular bar on the screen], 

make one-sixth of a unit.” 

Kylie made clear that the only way she knew how to do the task was by first making the 

unit. She did not know how to just “cut up” the bar on the screen. She made the whole 

by iterating the third three times and then cut the first third in half. She indicated that 

one of the small pieces was one-sixth. Her explanation indicated that she was thinking 

about the number of subparts that would be created if she subdivided each of the three 

thirds (i.e., mentally iterating the two subparts three times). 

                                           
2
 Articulation of conceptual learning goals is a problematic issue not covered here. It is a theoretical 

and empirical challenge to specify learning goals in a way and level of specificity that adequately 

guides instructional design (as well as instruction and assessment). 
3
 The learning goal is a researcher/educator construct. There is no assumption that the students, after 

a successful lesson, will have an identical understanding to that of the instructor. Rather, formative 

and summative assessment will reveal whether students have a compatible understanding. 
4
 Although there are often overlaps in what is learned by students using these two approaches, I 

emphasize here the differences in the primary aim and the theory built to achieve that aim. We 

definitely build on aspects of RME, particularly their use of model of becoming model for 

(Gravemeijer, 1994). 
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Task 2: “This is one-fifth of a unit, make one-tenth of a unit.”  

Again, Kylie iterated the part to make the whole and then subdivided one of the parts, 

“Here, you have one-tenth of a unit.” 

After working three tasks in this way, she spontaneously showed a change in the 

following task. 

Task 3: “This is one-third of a unit, make one-ninth of a unit.”  

This time Kylie immediately divided the third bar into three pieces (without iterating to 

make the whole). 

K: One of those is one-ninth.  

R: How do you know? 

K: Because, um.  How many times does three go into nine? ... Three times.  

And it's one third!  So.  Three times three is nine, and one of -- if you cut 

[the thirds] up into thirds again.  That is, um. ... And you take one, it would 

be ... one-third.  … But that's really one-ninth of a unit.  

Task 4: “This is one-fifth of a unit, make one-twentieth of a unit.” 

She immediately cut the fifth into four.  She went on to complete two more tasks in this 

way in this session. 

In this example, Kylie learned that she could produce 1/mn from 1/n by partitioning 1/n 

into m parts.  She developed an anticipation that partitioning 1/n into m parts creates a 

fraction of the unit that is n times smaller than the 1/m (the fraction of the part), that is, 

a subpart that iterates n times more in the unit than it does in the original 1/n part.  Let 

us look more closely at this transition. 

Kylie’s partitive fraction scheme (Steffe & Olive, 2010), available at the outset of this 

set of tasks, included an understanding that 1/p is a part that can be iterated p times to 

make a unit. Initially, this allowed her to iterate the original part, one-third (Task 1), 

three times to make the whole.  She knew she needed to partition each part into two 

subparts to make sixths, using her multiplication scheme (# items/group x # groups = # 

items) along with her partitive fraction scheme.  

In Task 3, Kylie was no longer employing the sequence of actions she used in the first 

two tasks. Rather, she had developed a new action that was at a higher level than the 

sequence from which it was built and allowed her knowledge at once. The new 

abstraction moved Kylie from thinking about iterating a composite unit to thinking 

about an m split in a part, 1/n, as resulting in a subpart that is n times smaller in relation 

to the unit than it is in relation to the part. In other words, she knew that the part 

increased by n times the number of times the subpart would iterate to the unit compared 

to the number of times it iterated to the part. She now had an anticipation about the 

relationship of a part of a part to the unit.  

What we see from this example is that the learning process began with Kylie setting a 

goal (e.g., to complete the task) and bringing to bear available schemes (actions) to 



Simon 

PME 2014 5 - 197 

accomplish the goal. Initially, she used these actions in sequential fashion.  However, 

she came to a coordination of those actions. As a result of this coordination, she no 

longer needed to go through the sequence of actions used previously.  The result of the 

coordination was a structure that was at a higher level than the component schemes. 

(The reader is referred to Simon et al, 2010 for another example of this instructional 

design approach with a more in-depth analysis of the learning that took place.) 

I now return to the instructional design approach which I summarize as follows: 

Step 1: Assess relevant student understanding. 

Step 2: Identify learning goal. 

Step 3: Specify an activity, which the students can call on, that could be the 

basis for the intended abstraction. 

Step 4: Design a sequence of tasks in conjunction with a hypothesized learning 

process that accounts for how the students will progress from the initial activity 

to the intended abstraction. 

In the example, the task sequence was quite simple. Of course, this did not represent 

the full treatment of recursive partitioning in our teaching experiment, but it gives us a 

straightforward example for discussion. The tasks elicited an initial activity (action 

sequence):  

1. Iterate the part to make the whole. 

2. Divide the number of needed subparts by the number of parts to find how many 

subparts will be in each part. 

3. Carry out the appropriate subdivision. 

This activity afforded the opportunity for Kylie to make an abstraction. The key was 

that Kylie’s abstraction required no leap of insight or problem-solving breakthrough. 

Further, it required no input from the teacher or other students. The abstraction 

emerged from Kylie’s activity. Kylie was able to do every one of the tasks without 

assistance. However, an understanding of recursive partitioning emerged in the course 

of solving the tasks with her available activity. This seemed to indicate that Kylie was 

able to use her extant knowledge to develop the intended new understanding. 

CONCLUSIONS 

Our task design approach is an emerging one. I highlight here two of its features that 

can be seen in the example above. First, the approach provides a strategy for promoting 

specific mathematical understandings. It contrasts with strategies in which students 

must solve novel problems to progress (or hear the solutions of more able peers). 

Although mathematics teaching cannot cause learning, this is an approach that 

involves engineering task sequences so that participating students predictably make the 

new abstraction. (Of course, successful understanding of prerequisite concepts is 

required.) Second, the learning goal is not to learn to solve the tasks, as it is in many 

approaches. The tasks are made to initially elicit activities that the students already are 
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capable of engaging in. Kylie was able to solve all of the tasks prior to making the 

intended abstraction. Further, she was not consciously trying to find an easier way. Her 

learning was a product of coordination of actions across a sequence of tasks. 

Let us examine some of the possible implications of this approach to task design. 

1. This approach potentially provides a way to design task sequences for concepts 

that students tend to not learn well. These are concepts that many students do not 

spontaneously reinvent in problem solving situations and of which they do not 

develop deep understanding by being part of a class discussion with more 

knowledgeable students. The approach focuses the instructional designers on 

identifying key activities that are likely to afford the intended abstraction. 

2. Small group work using task sequences, of the kind discussed here, can lead to 

somewhat different class discussions. If students are making the new abstraction 

as a result of their engagement with the task sequence, discussions can focus more 

on articulation of the new idea, justification, and establishing the idea as 

taken-as-shared knowledge. 

3. The approach has potential to address issues of equity in two ways. First, many 

students who have conceptual gaps early on seem to never recover. This design 

approach provides a general methodology for building up the specific experience, 

based on students’ currently available activities, needed to make particular 

abstractions. Second, if during small group work, students are generally 

successful in deriving the new abstractions from their activity with the task 

sequence, a greater number of students will be able to participate in and benefit 

from the class discussions that follow. The underlying hypothesis here is that 

students who abstract ideas through their activity, based on their work with the 

mathematical tasks, tend to learn the concepts in a more powerful way than those 

who only follow the explanation of their more able peers offered in class 

discussions. 

One final point that was discussed briefly at the beginning of this paper is the 

relationship of our approach with mathematical problem solving. The approach that I 

have described and exemplified does not focus on students developing their problem 

solving abilities. Rather it focuses only on the development of mathematical concepts. 

Developing problem solving abilities is a key part of mathematics education. One 

could argue that conceptual understanding and problem solving are the two wings of 

mathematics education – students cannot fly without effective use of the two together. 

Students can learn concepts through problem solving lessons. Our approach is in no 

way intended to minimize the importance of lessons in which that is the case. Rather, 

our approach provides an additional tool that has the potential for success in areas 

where mathematics education has been less successful. One open question is how to 

use this tool in conjunction with the powerful tool of problem solving lessons to 

maximize the learning of students.  



Simon 

PME 2014 5 - 199 

References 

Biddlecomb, B., & Olive, J. (2000). JavaBars [Computer software]. Retrieved from 

http://math.coe.uga.edu/olive/welcome.html, December 1, 2011. 

DiSessa, A., & Cobb, P. (2004). Ontological innovation and the role of theory in design 

experiments. The Journal of the Learning Sciences, 13, 77-103. 

Gravemeijer, K. P. E. (1994). Developing realistic mathematics education. Utrecht: CD-ß 

Press / Freudenthal Institute. 

Hershkowitz, R., Schwarz, B. B., & Dreyfus, T. (2001). Abstraction in context: Epistemic 

actions. Journal for Research in Mathematics Education, 32(2), 195-222. 

Mitchelmore, M. C., & White, P. (2008). Teaching mathematics concepts: Instruction for 

abstraction. In M. Niss (Ed.), ICME-10 Proceedings [CD]. Roskilde, Denmark: Roskilde 

University, IMFUFA, Department of Science, Systems and Models. 

Piaget, J. (2001). Studies in reflecting abstraction. (R. L. Campbell, Ed. & Trans.). 

Philadelphia, PA: Psychology Press. 

Simon, M. A. (1995). Reconstructing mathematics pedagogy from a constructivist 

perspective. Journal for Research in Mathematics Education, 26, 114-145. 

Simon, M. A. (2013). Issues in theorizing mathematics learning and teaching: A contrast 

between learning through activity and DNR research programs. The Journal of 

Mathematical Behavior, 32(3), 281-294. 

Simon, M. A., Saldanha, L., McClintock, E., Karagoz Akar, G., Watanabe, T., & Ozgur 

Zembat, I. (2010). A developing approach to studying students’ learning through their 

mathematical activity. Cognition and Instruction, 28, 70-112. 

Steffe, L. P., & Olive, J. (2010). Children’s fractional knowledge. New York: Springer. 



 

 

 



2014. In Nicol, C., Oesterle, S., Liljedahl, P., & Allan, D. (Eds.) Proceedings of the Joint Meeting 5 - 201 

of PME 38 and PME-NA 36,Vol. 5, pp. 201-208. Vancouver, Canada: PME. 

TWO STAGES OF MATHEMATICS CONCEPT LEARNING: 

ADDITIONAL APPLICATIONS IN ANALYSIS OF STUDENT 

LEARNING 

Martin A. Simon, Nicora Placa, Arnon Avitzur 

New York University 

 

Tzur and Simon (2004) postulated two stages of concept development, participatory 

and anticipatory. The distinction between the two stages was exemplified by what they 

termed “the next-day phenomenon” in which learners who could solve a task one day 

in the context of the activity through which they made the abstraction, could not solve 

what seemed to be the same task in a subsequent lesson when the students were not 

engaged in or thinking about the activity. Here we expand the application of this 

theoretical distinction by providing two examples of use of the distinction in analyses 

of data segments that are different from the next-day phenomenon. 

BACKGROUND 

As part of a program of research on conceptual learning of mathematics, Tzur and 

Simon (2004) postulated two stages of development in learning a mathematical 

concept: participatory and anticipatory. To illustrate the stage distinction, Tzur and 

Simon (2004) gave the following example of what they called the "next day 

phenomenon":  

Consider a teacher who engaged learners for a few lessons in partitioning paper strips to 

create unit fractions. Toward the end of this hands-on activity, the learners were able to 

answer questions such as, “Which is larger, 1/6 or 1/8?” The teacher required the learners 

to explain their answers and most learners could clearly demonstrate with their strips and 

argue that 1/8 must be smaller than 1/6, because the strip showing eighths was cut into 

more pieces; so each piece had to be smaller. The next day, … the teacher begins the lesson 

by attempting to review the ideas generated by the learners during the paper-strip activity. 

The teacher writes two fractions on the board, ‘1/7’ and ‘1/5,’ and asks which one is larger. 

To the teacher’s surprise, most of the learners claim that 1/7 is larger because 7 is larger 

than 5. The teacher wonders how learners can “lose” overnight what they learned the day 

before. Intending to revisit the hands-on experience, the teacher asks the learners to take 

out their paper strips to set up the problem. Soon after the learners begin manipulating the 

paper strips, and without completing a paper-strip enactment of the problem posed, many 

learners, who had earlier claimed that 1/7 was larger, raise their hands to explain how they 

know that 1/5 is larger than 1/7. (p. 288-289)  

Tzur and Simon (2004) argued that it is not a case of learners forgetting what they 

learned the day before, but rather that there are two distinct stages of abstraction that 

occur as a learner is developing a new mathematical concept. In the first stage, labelled 

participatory, learners develop an anticipation based on engagement in a particular 

activity. That is, through engaging in the activity, they develop knowledge of a 
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mathematical relationship and no longer need to carry out the activity to determine the 

result. Furthermore, the learner can justify and explain the logical necessity of the 

result. However, at this first (participatory) stage, this anticipation is limited. Learners 

have not yet learned to call upon the abstraction (anticipation) when they are not 

involved with or thinking about the activity through which it was learned. If the 

learners are presented with a seemingly similar task the next day, outside of the context 

of the activity through which the anticipation was learned, they are not able to call on 

the relevant (from the observer’s perspective) anticipation. However, in the second 

stage of abstraction, labelled anticipatory, the learner is able to call upon the learned 

anticipation even when not engaged in the activity through which it was learned.  

The distinction between these stages of understanding implies that (for the learner) the 

next day’s task was not the same as the prior day’s task, which the learners were able to 

solve, even if the tasks were word-for-word the same. The same question posed in the 

context of the paper-folding activity was not the same as the question posed 

unconnected to the paper folding activity. Essentially, the first asked for an 

anticipation of the results of paper folding (partitioning), whereas the second was a 

more general question about fractions with no hint of how to approach it. The 

distinction also suggests that we define task not as just the written or oral articulation of 

the task. Rather the task is in part defined by its place in a sequence of tasks and by the 

tools available or given to the learner with which to work.  

OUR RESEARCH PROGRAM 

Before we present data to demonstrate the usefulness of the stage distinction in a 

long-term teaching experiment, we provide some background on the research program 

and current project from which these examples are drawn. 

We have been engaged in a research program, “Learning through Activity (LTA)” 

(Simon, 2013; Simon et al., 2010) that builds on Piaget’s (2001) theoretical construct 

of reflective abstraction. The aims of the program are to both explain learners’ 

development of mathematical concepts (a detailed examination of reflective 

abstraction in mathematics learning) and develop principles for promoting 

mathematical concept learning. As such, it is a research program intended to develop 

integrated theory on aspects of mathematics learning and pedagogy.  

This paper is based on research conducted during the second and third years of the 

five-year Measurement Approach to Rational Number (MARN) project
1
. The project 

is focused on two goals: (1) increasing understanding of how learners learn through 

their mathematical activity (LTA), and (2) understanding how learners can effectively 

develop fraction and ratio concepts through activities grounded in measurement. In this 

article, we present data from the second phase of the project (years 2 and 3), five 

                                           
1
 This work is supported by the National Science Foundation under Grant No. DRL-1020154. Any 

opinions, findings, and conclusions or recommendations expressed in this paper are those of the 

authors and do not necessarily reflect the views of the National Science Foundation. 
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one-on-one teaching experiments on fraction and ratio concepts. This phase involved 

developing and implementing task sequences for fraction and ratio learning and 

modifying those trajectories based on ongoing analyses. More in depth retrospective 

analyses followed. The data in this paper comes from a one-on-one teaching 

experiment with Kylie, during her fourth and fifth grade years (fall, 2011 through 

spring, 2013) in two one-hour sessions per week.  

Much of the students work was done in the software environment, JavaBars 

(Biddlecomb & Olive, 2000). In JavaBars, quantities are represented by rectangles of 

different lengths. The bars can be partitioned and bars and parts of bars can be iterated.
2
 

Although the examples do not contain actual use of JavaBars, the conversations refer 

to that work. 

APPLICATIONS OF THE STAGE DISTINCTION IN RETROSPECTIVE 

ANALYSES 

The participatory-anticipatory distinction is a key theoretical construct in our analysis 

of data. As demonstrated above, it explains the seeming inconsistency of performance 

from one session to another (the next-day phenomenon). Because of the frequency of 

data of this type, this alone is an important function of the construct. However it is not 

just in comparing learner work from different sessions that the construct has proved 

useful. Examples 3 and 4 below demonstrate the usefulness of the stage distinction for 

explaining data that do not follow the form of the next-day phenomenon. 

Example 1 

After not working with Kylie for more than 4 months (mid-May to late September), we 

started our second year of work by doing an assessment. We discuss here two of the 

questions that emerged from the analysis of the data generated and how the 

participatory-anticipatory distinction was useful in postulating answers to those 

questions. 

Midway through the assessment, Kylie was given the following tasks in succession: 

Task 1.1: This bar is three-sevenths of a unit long. I repeat it one hundred times, how 

long is my new bar? 

Kylie said three seven-hundredths and then changed her answer to three hundred 

sevenths. When she was asked for justification, she changed her answer to three 

hundred seven-hundredths. She could not provide justification for any of the 

calculations. 

Task 1.2: This bar is two-fifths of a unit long. I repeat it four times, how long is my new 

bar?  

                                           
2
 Frank Iannucci modified JavaBars for us to include an “iterate” button that creates a new bar the 

specified number of iterations of the original bar. 
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Kylie once again multiplied both the numerator and denominator by four resulting in 

eight twentieths. She was not able to justify her solution and did not seem to have 

confidence in it. 

Task 1.3: This bar is one-sixth of a unit long. I repeat it eleven times, how long is my 

new bar? 

S: Eleven-sixths 

R: Eleven-sixths?  

S: Yeah.  

R: Okay, convince me.  

S: Well, I repeated it that many...Oh I know what the other one is [referring to 

the previous task]. 

R: Yeah, what?  

S: It's eight-fifths. 

R: Okay, are you sure?  

S: Yes! 

Task 1.4: This bar is fourth-ninths of a unit long. I repeat it twenty-five times.  

R: What's that one?  

S: It's uh...I know, four times twenty-five is a hundred-ninths.  

In our analysis, we were initially puzzled by the data. Why could she do Task 1.3 

correctly, but not 1.1 and 1.2? Why was she able to do Task 1.2 (and 1.4) after solving 

1.3, but not before? The explanation we settled on is the following. In order for Kylie to 

be able to figure out the bar that would be produced by repeating a two-fifths-unit bar 

four times, she would have to think about the two-fifths- unit bar as being the result of 

iterating a one-fifth-unit bars two times. She likely was thinking with a part-whole 

scheme. Kylie had previously demonstrated that she could make two-fifths by 

partitioning a unit into 5 parts, pulling out 1 part and iterating it twice. However, the 

data seems to show that Kylie did not have an anticipatory-stage conception of a 

non-unit fraction as the result of an iteration of a unit fraction. That is, she did not think 

to call on that idea in the context of Tasks 1.1 and 1.2. Whether or not a student can do 

so is Steffe and Olive’s (2010) distinction between a partitive fraction scheme and an 

iterative fraction scheme. However, when she was asked the result of stringing 

together unit fractions in Task 1.3, it caused her to engage in the activity of creating a 

non-unit fraction through iteration. Following that task, she was able to solve Task 1.2 

and Task 1.4. These tasks were now participatory tasks; that is, in the context of 

thinking about iteration of a unit fraction to make a non-unit fraction, she was able to 

now think about the non-unit fraction (two-fifths) as the result of iterating a unit 

fraction (one-fifth). That allowed her to solve the tasks involving the iteration of a 

non-unit fraction (Tasks 1.2 and 1.4). One might say that she was at the participatory 

stage of an iterative fraction scheme. 
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Example 2 

In this session below, Kylie had been learning concepts of ratio. The tasks were 

designed to develop an abstraction of the multiplicative relationship between the two 

quantities and to understand the invariance of that relationship.  

Task 2.1: One of the giant’s steps is equal to six of Kylie’s steps. If the giant walks 84 

miles, how far would Kylie go in the same number of steps? 

Kylie needed to anticipate that the relationship between the giant's steps and her steps 

was multiplicative and that she could use this relationship to determine the number of 

miles she walked, making use of the invariance of that relationship. (Note, the use of 

two different units of length in the task, steps and miles, with no conversion factor 

provided, is meant to pre-empt the task being solved with a simple application of a 

per-one strategy or a build-up strategy). 

K: What’s eighty-four divided by six? 

I: Fourteen 

K: I walk fourteen miles. 

I: Why did you divide? 

K: I know for each step the giant takes, I take six. … Every time the giant 

walks eighty-four miles, I walk fourteen. It’s like one-sixth of eighty-four. 

I: How is that related to you and the giant? 

K: Not sure. Oh yeah, every time he takes a step, I have to take six, so if I only 

take one step that’s only one-sixth of his step.  

In the task above, Kylie shows an anticipation of the invariance of the multiplicative 

relationship between how far she walks and how far the giant walks. One can think 

about this anticipation as having two interrelated parts, comparing the two quantities 

multiplicatively and knowing that that relationship is invariant across any distance 

travelled.  

Later in the session, we gave her a slightly different task for which Kylie did not 

exhibit the same anticipation. 

Task 2.2: Forty-two of Kylie’s steps are equal to twenty-one of Marty’s steps, If Kylie 

walks twenty-five miles, how far does Marty walk taking the same number of steps?  

K: One hundred miles. Wait! I have to find out how many steps I take when 

Marty takes one step. [Note: If the researcher had allowed Kylie to proceed 

in this manner, she would likely have set herself up for a similar solution to 

the task above. However, his next question is what changed the task for 

Kylie.] 

I: Can you look at these numbers and tell me the answer? 

K: Seven? I thought forty-two, six times seven, and forty-two divided by six is 

seven. 
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I: And the twenty-one doesn’t matter? 

K: Ohhh, yes it does. 

I: If I tell you twenty-one of my steps is forty-two of your steps, what do you 

know about our steps? 

K: Yours is bigger 

I: How much bigger? 

K: Twenty-one steps bigger  

The data presented were puzzling. How could we account for the difference in Kylie’s 

anticipation in these two situations? The participatory-anticipatory distinction proved 

to be useful in allowing us to generate a hypothesis. Based on prior analyses of Kylie’s 

learning and the data described here, we made the following inferences. Kylie had had 

significant experience considering units and partial units, which was the basis for how 

she developed her fraction concept: a partial unit (unit fraction) is a part that iterates a 

certain number of times to make a unit. In Task 2.1, the given information that six of 

Kylie's steps are equivalent to one giant step likely cued the activity of iterating a 

partial unit to make a unit. Since, for Kylie, the relationship between a partial unit and 

the unit is a multiplicative relationship, she was able to anticipate the multiplicative 

relationship between her steps and the giant's steps and then use her understanding of 

the invariance of this relationship to determine the number of miles she would walk.
3
  

In Task 2.2, Kylie was about to convert this task to the form of the previous task (i.e., 

the number of Kylie’s steps in the larger step) in order to solve it in the same way. 

However, the researcher prevented that approach. As a result, Kylie was not able to 

mentally iterate one of her steps to make the larger step, so she did not think to use this 

relationship between partial units and units and thus did not consider the multiplicative 

relationship between the quantities. Once again, we see evidence of knowledge that is 

only at the participatory stage. The task as constrained by the researcher’s follow-up 

question was an anticipatory task. Because it did not cue the activity of iterating a 

partial unit for Kylie, she was unable to use her anticipation that was tied to that 

activity (i.e., iterating her step to make a giant step). In lieu of thinking about iteration 

of a partial unit, she thought only about the additive comparison.  

In these two examples of using the participatory-anticipatory distinction to explain 

puzzling data, we have demonstrated its usefulness in situations that are not of the form 

of the next-day phenomenon. In the next day phenomenon, the same task can be either 

a participatory task or an anticipatory task, depending on what came before it (i.e., 

whether the learner is thinking about the key activity). In this last example, it was not 

the order of the tasks that was crucial, but rather the extent to which the task evoked 

thinking about the key activity. The participatory-anticipatory distinction structured 

                                           
3
 Note, we are not offering an explanation of the basis for her anticipation of the multiplicative 

invariance for two reasons. First, it is not critical for making our intended point here, and second, we 

do not yet fully understand it. 
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our examination of the data to focus on what activity might have afforded the 

anticipation in Task 2.1 and how Task 2.2 might have not afforded the same access to 

that activity and the related anticipation. 
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NUMBER’S SUBTLE TOUCH: EXPANDING FINGER GNOSIS IN 

THE ERA OF MULTI-TOUCH TECHNOLOGIES 

Nathalie Sinclair, David Pimm 

Simon Fraser University, Canada 

 

In this paper, we explore a richer sense of finger gnosis with respect to three- and four- 

year-olds’ interactions with a novel iPad application (TouchCounts), focusing on their 

responses to an “inverse subitising” task. The direct and tactile nature of their 

engagement with TouchCounts leads to a striking shift from index finger 

incrementation to deployment of several fingers all-at-once (in a cardinal touch 

gesture) to achieve a given target number that is then spoken by the iPad. This form of 

finger gnosis differs from the more ordinally based differentiation of fingers that is 

discussed in the psychology literature.  

INTRODUCTION 

In nascent numeration with very young children, there is a telling ambiguity 

concerning the status and nature of fingers in relation to counting. This dual role is well 

captured by the English expressions ‘using fingers to count with’ and ‘using fingers to 

count on’. Fingers can serve as both a physical extension of what Rotman (1987, p. 27) 

calls the ‘one-who-counts’ (counting with my fingers) as well as the 

thing-to-be-counted (counting on my fingers): fingers are thus simultaneously subject 

and object, both of the person and of the world. In inhabiting this dual status (being 

both me and not-me), fingers provide echoes of the analyst Donald Winnicott’s notion 

of ‘transitional object’: “an intermediate area of experiencing to which inner reality 

and external life both contribute” (1971, p. 2). (See also Maher, 1994.) When a 

four-year-old asserts, “Don’t do it! I’m just fingering it out!” (Phillips, 1996, p. 82), in 

that slippage from ‘figure’ to ‘finger’ there is a literal as well as metaphorical truth 

being expressed. In this paper, we explore aspects of fingers’ transitional object status 

with regard to counting by means of three- and four-year-olds working on a novel 

application, TouchCounts (Sinclair & Jackiw, 2011), which makes central use of the 

iPad’s ability to respond to multiple tactile inputs synchronously.  

FINGER GNOSIS AND THE DEVELOPMENT OF NUMBER SENSE 

Within the field of developmental psychology, subitising (which connects to the 

mathematical task we report on in this paper) refers to the ability to enumerate the 

items in a set quickly, without counting. This notion has been claimed to be a core 

component upon which all other mathematical abilities are built (see Butterworth, 

1999; Penner-Wilger et al., 2007). For Butterworth, subitising provides initial access 

to cardinality, allowing children to “categorise the world in terms of numerosities – the 

number of things in a collection” (p. 6). Such access – and to number sense more 

generally – appears to be strongly dependent on ‘finger gnosis’ (literally “finger 
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knowledge”), defined as the ability to differentiate one’s own fingers without any 

visual clues when they are touched. Gracia-Bafalluy and Noël (2008) show that 

improving children’s finger gnosis by training them on finger differentiation tasks 

increases their numerical performance.  

Our research explores the nature of finger gnosis as it relates to children’s interaction 

with TouchCounts, which involves the use of various finger gestures (tapping, 

swiping, pinching, flicking) to produce numbered objects and spoken words. 

Multi-touch enables direct mediation, allowing children to produce and transform 

objects with fingers and gestures, instead of acting through a keyboard or mouse. This 

added sensory input seems to play no role in developmental psychology studies, but 

may provide a powerful accompaniment to the visual and oral forms of communication 

that are currently privileged in that research. The word gesture has been used by 

touchscreen interface designers to describe specific configurations and actions of the 

finger(s) on the screen (swiping, tapping, etc.). These kinds of gesture are different 

from those typically discussed in the mathematics education literature in two ways: 

they involve contact with a screen and they perform an action. Similar to the 

performative speech act (Austin, 1962; Searle, 1969), which refers to language that 

performs on the world, we use the term “performative gesture act” to describe these 

tangible, input gestures.  

DESIGN OF TOUCHCOUNTS 

Currently, there are two sub-applications in TouchCounts, one for Counting 

(1, 2, 3, … ) and the other for Adding (1+2+3+…). Here, we focus exclusively on the 

former (see Sinclair & Metzuyanim, 2014), for a more complete description). In this 

world, a user taps her fingers on the screen to summon numbered objects (yellow 

discs). The first tap produces a disc containing the numeral “1”. Subsequent taps 

produce sequentially numbered discs. As each tap summons a new numbered disc, 

TouchCounts audibly speaks the English word for its number (“one”, “two”, …). 

Fingers can be placed on the screen one at a time or simultaneously. With five 

successive taps, for instance, five discs (numbered 1 to 5) appear sequentially on the 

screen, which are counted aloud one by one (see Figure 1a). However, if the user 

places two fingers on the screen simultaneously, two consecutively numbered discs 

appear at the same time (Figure 1b), but only the higher-numbered one is explicitly 

named (“two,” if these are the first two taps). The entire ‘world’ can be reset, to clear 

all numbered discs and return the ‘count’ of the next summoned disc to one. 

The number of taps (made sequentially or simultaneously) is also the number of discs 

on the screen, which can reinforce the cardinality principle, since the last number 

“counted” (spoken aloud by TouchCounts) is exactly “how many” numbered discs 

there are. Even after children have counted a set of discs (up to five, say), when they 

are asked “how many” objects are in a given set, will often count the objects again 

(Baroody & Wilkins, 1999). The “how many” question seems to provoke a routine of 

sequential counting. In TouchCounts, the child is engaged in a somewhat different 
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routine – rather than counting a given set, she is actively producing that set with her 

finger(s) (perhaps to an instructor-given total) and elements of that set count 

themselves (both aurally and symbolically) as they are summoned into existence. 

The Counting world directly supports two of the five aspects of counting identified by 

Gelman and Meck (1983): (1) when counting, every object gets counted once and only 

once (one-to-one correspondence principle); (2) the number words should be provided 

in a constant order. Also, the last number said by TouchCounts is always the number of 

items on the screen, it reflects a third of Gelman and Meck’s ‘aspects’. 

   

Figure 1(a): Five sequential taps – “one, two, three, four, five” is said; 

1(b): A simultaneous two-finger tap – “two” is said. 

THEORETICAL FRAMING 

Broadly speaking, we take a non-dualistic perspective on thinking and learning. More 

specifically, we adopt an inclusive materialist approach in which the tool (in this case, 

TouchCounts) is seen as participating in an agential relationship with the user so that 

the tool and the user mutually constitute each other through interaction (de Freitas & 

Sinclair, 2013). In so far as the tool ‘speaks’ (and on occasion moves things) in 

interaction with the user, it takes on an animate role in the interaction, enabling but also 

preventing activity. We attend especially to the broad and varied ways of intervening 

involved in mathematical activity – including, bodily movements gestures and tone of 

voice. This is in accord with principles of embodied cognition, which posit that 

cognitive functions are “directly and indirectly related to a large range of sensorimotor 

functions expressed through the organism’s movement, tactility, sound reception and 

production, perception, etc.” (Radford, 2012, p. 4537). However, inclusive 

materialism insists on dissolving the rigid boundary that usually defines the human 

body and its sense organs. 

An inclusive materialist approach also extends to mathematical concepts, not just to 

the concrete tools and bodies in the environment. We therefore focus on how the 

assemblage of finger/tool/number changes over time; how new materialities become 

part of the activity and affect its progression. The notion of finger gnosis thus strikes us 

as very interesting since it relates directly to embodiment, while also suggesting a 
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distribution of senses foreshadowed in the introduction, in which the fingers comprise 

a core presence in the assemblage of counting.  

METHOD OF RESEARCH 

The study took place over three months in a day care located close to a North American 

University, which provides a play-based environment in which children are free to 

choose from a range of activities, each of which offers different sets of materials. In 

order to fit into the environment, the iPad was placed on the carpet in the corner of the 

room and children were free to come or leave as they wished. At the beginning of the 

session we analyse here, many children crowded around the iPad, jostling to get a 

chance to play, but after about twenty minutes, a small group of four children formed 

and stayed for the remaining twenty minutes. The analysis begins at the point the group 

formed, when it was possible to record the interactions and actions of the children. The 

four children in the group were all three or four years old.  

We focus on a five-minute interval because it was the beginning of the group’s work 

together, and there was a clear change in the way they use TouchCounts to summon 

numbers. We offered an ‘inverse subitising’ task where children were asked to produce 

a target number by using two or more fingers all-at-once (rather than sequentially). In 

subitising tasks, students must determine quickly the number of objects in an array, 

which they then either say or type onto a keyboard. Here, instead of making an spoken 

or alphanumeric action based on a visual prompt, the children are to make an action 

based on an oral prompt, a gesture act. Unlike traditional finger counting, which is both 

ordinal and fixed, such an all-at-once gesture act is neither.  

INVERSE SUBITISING 

The interviewer (first author, henceforth “I”) asked a pair of children (Owen and 

Ramona) to try to “get four together”. They each tapped the screen with one finger 

once, making TouchCounts say “one”, “two”, then again almost at the same time, thus 

producing “four” (see Figure 2a). When I asked Katherine and Christine to make four 

together, they each tapped with one finger, stopping after TouchCounts said “eight”. 

They tried again, this time stopping after TouchCounts said “sixteen”. Thinking that 

perhaps the girls were having difficulty coordinating their work, I asked Katherine to 

“get to four by yourself”. She placed all five fingers on the screen, which said “five” 

(see Figure 2b). Prompted by her use of more than one finger, I asked her then to “use 

lots of fingers to get to four”. She placed her whole palm on the screen. When it was 

her turn, Christine did the same thing.  

I then moved the iPad in front of Owen. 

I: You try to use lots of fingers to get to four.  

Owen: Initially he stretches out his whole right hand, then curls and ripples from 

pinkie to index finger, then tucks his thumb under, and then straightens the 

remaining and touches the screen all-at-once (see Figure 2c). 
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iPad: Four 

Ramona: Ah. (Very high pitch) He did it. 

I: He did it.  

   

Figure 2: (a) Ramona and Owen working together to get 4; (b) Katherine placing her 

five fingers on the screen; (c) Owen placing four fingers on the screen. 

I offered the iPad to Ramona. She raised her hand in the air and lifted her fingers one 

by one, then placed four of them on the screen. TouchCounts said “six”. Thinking that 

she had inadvertently tapped other parts of her hand on the screen, I rolled up her 

sleeve and let her try again. This time she tapped sequentially four times on the screen 

and TouchCounts said “one, two, three, four”. When asked to do it with lots of fingers, 

Ramona placed her whole palm on the screen, producing “twelve”. She screamed, 

rolled over and, when asked if that was what she wanted, she exclaimed “no!” 

Christine was next slapped the iPad with her whole hand, also producing more than 

four. Christine tried again, as did Katherine, who imitated Christine’s gesture.  

I then gave the iPad to Owen and asked him to “use lots of fingers to get to two”. He 

immediately put out his hand with his index and middle fingers outstretched and placed 

them on the screen. When it was Christine’s turn, she also extended two fingers, but 

when she touched the screen, TouchCounts said “three” (she had inadvertently touched 

the screen with another part of her hand). She tried three more times, always holding 

out her two fingers, but each time TouchCounts said a number greater than two. 

Katherine decided to press Reset and to tap sequentially twice. Then Christine placed 

two fingers on the screen and TouchCounts said “two”. I moved the iPad to Ramona, 

who lifted her left hand deliberately, extending one finger at a time and placed two 

fingers on the screen to get “two”. I then asked Owen to “do three with lots of fingers”, 

which he did successfully, as did Christine. Katherine then successfully placed three 

fingers on the iPad, as did Ramona. I congratulated the children for all managing to do 

“three with lots of fingers” and asked them to “do four”. Owen succeeded quickly, as 

did Christine and Katherine. Ramona stretched out four fingers, but placed her palm on 

the screen so that TouchCounts said “five”. This happened twice, and then she decided 

to tap successively four times. 

EXPANDING THE SENSE(S) OF FINGER GNOSIS  

At the very beginning, Ramona and Owen used their fingers to summon numbered 

discs and hear the count up to four while Christine and Katherine used them simply to 
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summon numbered discs, apparently without attending to the number of discs on the 

screen or the number words spoken aloud by TouchCounts. Ramona and Owen 

managed to get to four by using the oral/visual feedback from TouchCounts to stop 

tapping once they heard/saw “four/4”, but Katherine and Christine tapped, without 

listening/looking for four/4. Perhaps the excitement of tapping outweighed the interest 

in performing the task. However, even on her own, Katherine did not use her fingers to 

get to four/4. Despite having tapped with one finger previously, both Katherine and 

Christine tried to get to four/4 by slapping the iPad with their hands, all the while 

giggling. For them, the request to “make four” seems to have been interpreted as a 

request to make some big number. While all the children were using their fingers to 

conjure numbered objects and number words, only Ramona and Owen’s fingers were 

being used to produce particular ones. For Katherine and Christine, fingers were not 

yet counting tools (either counting with or counting on). 

Owen’s deliberate gesture introduced a new element to the assemblage; all the children 

saw his hand, which became joined up to the vocalised four of TouchCounts. The 

children heard that the gesture produced four all-at-once, without passing through 

other numbers. When it was her turn, Ramona stretched her four fingers out one by 

one, instead of simultaneously as Owen had done. But the fingers touched the screen 

simultaneously, perhaps mimicking Owen’s gesture. She had difficulty getting 

TouchCounts to say “four” though, and decided to revert to sequential tapping. Now 

the verbal sequence “one, two, three, four” had joined the assemblage. It is important 

to notice though, that each of Ramona’s four fingers touched the screen in order to 

produce the ordinal sequence 1, 2, 3, 4 so that she was not just counting up to four on 

her fingers, but producing one, two, three, four with her fingers – each finger feeling 

the screen and producing a distinct number word and numbered circle. While it may be 

argued that Ramona’s lack of manual dexterity got in the way of an Owen-like gesture 

act, we hypothesise that she may not be feeling the numerosity of her touch. She can 

present four on her hand, by extending her four fingers, so that her fingers can show 

four, but not yet use it to make four/4. 

Despite seeing/hearing the Ramona-fingers-screen intra-action, both Katherine and 

Christine stretched out their hands, but slapped the screens. It was as if they were 

mimicking Owen’s gesture, but without paying attention to the number of outstretched 

fingers or to the way in which those fingers touched the screen. Ramona and Owen 

responded by screaming and resetting, respectively, obviously aware that the action 

was incorrect and that the girls needed to try again.  

When a new round of tasks was initiated, one in which the children were asked to use 

many fingers to make two/2, three/3 and then four/4, Christine and Katherine began to 

use their fingers very differently. Whereas a few minutes ago, when asked to “do four”, 

they had slapped the screen almost haphazardly, by the end they both held up and 

placed four fingers on the screen. The speed at which Christine first held out her two 

fingers suggested some kind of subitising. She was confident enough about using these 

two fingers that she was willing to try several times to get TouchCounts to do as she 
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wished. Katherine’s impatience, and decision to proceed with sequential taps, may 

have stemmed from a strong ordinal finger sense – with the index finger as the main 

tool for presenting number (counting on). However, the speed and dexterity with 

which each child made three/3 shows the momentum of the gesture act, with the 

fingers now used both to present and produce a given quantity. When it came to 

making four/4 all-at-once, only Ramona extended her fingers one at a time. This 

reverting from using all three fingers at once to using them sequentially suggests that 

she was not mimicking the other children’s gesture; she knew, however, that counting 

up to four on her fingers would produce four discs, as well as the sound “four”. 

DISCUSSION 

By the end of this five-minute time span, all the children could use their four fingers 

all-at-once on the screen, to make TouchCounts say “four”. Owen was able to do this 

early on, but not the other three. Significantly, they did this by extending their fingers 

all at once as well, as a kind of gesture, instead of lifting them up one at a time (as 

occurred several times earlier in the episode). In this sense, there was a developing 

finger gnosis about fourness, in that four fingers were being touched to/by the screen. 

This form of finger gnosis differs from the more ordinally based differentiation of 

fingers that is discussed in the psychology literature, but seems mathematically 

significant as a form of ‘knowing about and through one’s fingers’. Unlike 

conventional subitising tasks, which rarely extend beyond five, ‘inverse subitising’ 

with TouchCounts has no upper limit, in the sense that a child may use all her fingers to 

make ten/10, but can also work collaboratively with other children to make even larger 

numbers. Our data (not presented here) show that, for numbers between five and ten, 

children quickly shift from counting on their fingers until they reach the target to a 

subitised gesture act producing the desired number of fingers all-at-once.  

Returning to the notion of fingers as both subject and object for the one-who-counts, 

each child showed a slightly different relationship between them. Owen was the first to 

create a fourfold gesture by means first of a brief counting on his fingers before 

counting with them, as if a single touch. His subsequent gesture acts reflect this plural 

resource. Christine and Katherine’s work with all-at-once gesture acts is quite distinct, 

with no independent finger movement (unfurling one by one). They seem to only count 

with. In contrast, Ramona moves back and forth between the newer all-at-once gesture 

acts and the more familiar single fingering. She seems aware they are different means 

to reach the same end. 

This short episode shows learning occurring in that three of the children were able to 

do something they could not do at the beginning. We claim that this learning cannot be 

separated from the materialities and interactions of the situation. TouchCounts was 

centrally involved in the learning. However, what particular role did it play in 

supporting this learning? Based on the above analysis, three features seem relevant: (1) 

the children could summon numbers one by one or all-at-once, without having to be 

previously familiar with the numbers they were creating; (2) the spoken number words 
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could be connected to the tapping, providing feedback that encouraged self-correction, 

without external prompting; (3) the emotional engagement of the children – the 

screams, giggles, smiles, as well as the concentration, confusion and cooperation – 

cannot be overlooked. Further analysis of the affective flow in this episode would 

provide even greater insight into the assemblages’ dynamic nature. 
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WHY ANNA LEFT ACADEMIA 

Lovisa Sumpter 

School of Education and Humanities, Dalarna University, Sweden 

 

This paper aims to explain why Swedish female mathematicians decide not to work in 

academia. The stories of five women were merged into one narrative. Anna describes a 

struggle with her own self-identity in a gendered structure that most often involved 

implicit power. One of the main reasons for not working in a mathematics department 

after finishing their PhD was the difficulty in getting a job without support. 

INTRODUCTION 

In Sweden, more women attend undergraduate higher education and more women than 

men receive degrees from such studies in most subjects. For graduate studies, the 

Swedish government has set an official gender policy of 60/40 meaning that no sex 

constitutes more than 60% of the total numbers of individuals. Nevertheless, there are 

still some unbalanced areas, and mathematics is one of the most extreme examples 

(Lindberg, Riis & Silander, 2011). This is despite a 50-50 division at the most 

mathematical intense upper secondary school programme. Women seem to disappear 

starting at undergraduate level: one third of all students in mathematics or other 

mathematics intensive courses including engineer and teacher education are female 

(Brandell, 2008). This is a similar situation to the USA (Herzig, 2004) and most of the 

European countries e.g. UK (Burton, 2004). For female post-doctoral fellows, senior 

lecturers and professors the number decreases even more. In 2007 the number of 

female post-docs in mathematics in Sweden were 6 %, senior lecturers 21%, and 

professors 7% (Lindberg, Riis & Silander, 2011). This decreasing pattern is in many 

ways an international phenomenon with different aspects connected to it (see e.g. 

Forgasz, Becker, Lee and Steinhorsdottir, 2010). In USA the number of women doing 

a postdoc is far less the number of graduate students, and considering that a postdoc is 

a strong factor for the possibility to get a tenure track it affects the number of 

professors (Nerad & Cerny, 1999). In the UK, in 2002 only 2 % of the professors in 

mathematics were women (Burton, 2004). Comparing with Sweden and 7% women 

professors, most of them are in subjects such as mathematical statistics and 

mathematics education (Wedege, 2011). This means that some areas are (even) more 

male than others, and this in a society where “gender equity is highly valued at societal 

and political levels” (Brandell, 2008, p. 659). The main problem seems to be number of 

women disappearing after undergraduate/graduate level, and the Glass Ceiling Effect 

in mathematics is in Sweden high (European commission, 2009). If all women doing a 

PhD in mathematical sciences (one third) stayed on, we would most likely have more 

female lectures and professors even in the areas ‘less female’. So, where do all the 

women go and why do they leave?  
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Earlier research suggests different potential answers that might explain why this is 

happening. By interviewing mathematicians, Burton (2004) found that one of the 

themes that indicated a gender structure was the discourse of power. Women seem to 

be facing the use of power in many different ways e.g. being disadvantaged as a job 

applicant only because of being a woman. This use of power can be explicit but also 

implicit and hidden, so called ‘non-events’ (Husu, 2013). Non-events can be anything 

from being ignored at meetings or in the coffee room to not being invited to 

conferences or selected as keynote speakers. The lack of support and discrimination 

(both explicit or hidden) are two main factors behind women struggle to advance in 

their careers both general (Husu, 2005) and in mathematics (Henrion, 1997) or other 

STEM subjects (Heilbronner, 2013). Women develop several coping mechanism in 

order to ‘survive’ (Husu, 2005), especially in areas where a female identity is attached 

with negative symbols (Volman & Ten Dam, 1998). Solomon (2012) women 

undergraduate students in mathematics are forced to work with their identity, their 

self-concept as ‘a woman in mathematics’, including how they talk about themselves 

and their situation. Other factors are built in the structure itself, such as 

norm-controlled self-selections and internal and external factors such as how research 

grants and other funding are distributed (Lindberg, Riis & Silander, 2011). Solomon 

(2007) concluded that even when they are successful, women position themselves as 

not belonging in mathematics. The aim for this paper is to explore women’s own 

stories. The research question posed is: What reasons do female mathematicians give 

for leaving mathematics as an academic profession?  

BACKGROUND 

The two main concepts for this paper are gender and self-concept or self-identity. I will 

here discuss these shortly. 

Gender is understood as a social construction more than a consequence of a biological 

sex (West & Zimmerman, 1987; Damarin and Erchick, 2010).  It refers to what is 

thought of as “feminine and masculine, characteristics and culture dependent traits 

attributed by society to men and women” (Wedege, 2011, p. 6). The concept gender 

can be divided into four different aspects (Bjerrum Nielsen, 2003): structural, 

symbolic, personal, and interactional gender. The structural aspect refers to gender as 

part of a social structure alongside other factors e.g. ethnicity and class. The number of 

female PhD students in mathematics in Sweden in relation to male students is an 

example of structural gender. The second aspect, symbolic gender, stems from these 

structures. Symbols and discourses are attributed to a specific gender creating norms 

and trajectories that tell us what is normal and what is deviant. The third aspect is 

personal gender. It focuses on for instance how the individual perceive the structure 

with its symbols, e.g. female professional mathematicians description what it is like to 

work in a mathematics department (Burton, 2004). Sometimes there can be 

discrepancies between the personal gender and the symbolic gender, e.g. girls are 

considered insecure in mathematics but don’t feel insecure themselves (Sumpter, 

2012). The last aspect is interactional gender. Compared to personal gender, which 
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describes gender as something we “are”, interactional gender is something we “do” 

(Wedege, 2011). These four aspects on gender is an analytical tool used to highlight 

different sides of the same phenomena more than something that occurs in different 

situations. 

Self-identity (or self-concept) is how you view yourself including dimensions, such as 

capacity or role in different situations (Devos & Banaji, 2003). A broad definition is a 

person’s perceptions of him- or herself (Marsh & Shavelson, 1985). This doesn’t need 

to be conscious knowledge that is explicitly indicated but could also be measured “via 

unconscious expressions of thought and feeling” (Devos & Banaji, 2003, p. 154). The 

notion of self-concept should be viewed as a dynamic concept that is developed and 

changed through interactions and experiences.  

METHOD 

A written questionnaire was sent out to nine female mathematicians that finished their 

PhD in a Swedish university in mathematics during the years 2002-2012. Mathematics 

should here be interpreted as mathematical sciences such as pure and applied 

mathematics, mathematical statistics, computational mathematics and optimization but 

not including mathematics history or mathematics education. The author knows four of 

the women and the other five were found through a mutual contact or the Swedish 

network ‘Women and mathematics’, a sub-organisation of IOWME. Since the answers 

to the questionnaire were kept anonymous, and the respondents were aware of this, the 

assumption is that the difference connections didn’t affect the objectivity or the quality 

of the replies. The respondents were instructed that they could write as much or as little 

as they wanted. The main questions posed were: (1) Why did you become a 

mathematician/ Why mathematics?; (2) How come you did a PhD in mathematics?; (3) 

How was it to be a (female) PhD student in mathematics?; and, (4) You have a career 

outside the university. How come? To each question, several optional sub-questions 

were posed to decompose the main questions. They were also asked to write something 

about their background. The respondents were requested to send back their answers 

within two weeks. A first analysis of the data showed that five of them had similar 

answers with a slightly more negative tone in their responses whereas the remaining 

four described a slightly more positive view. In this paper, because of the limited 

space, I will focus on the first five. They constitute the base of for the story here 

presented as Anna’s. This method, to create a collective narrative from several 

respondents, is a method used by several researchers e.g. Mendick (2002). It is a tool to 

emphasize meaning of responses, patterns, in a collective context rather than to show 

individual’s replies (Mendick, 2002). In this way, the collective narrative analysis here 

shares a similar approach to the data as content analysis (Smith, 2000):  the aim is to 

identify characteristics of the material. Here the characteristics are told by a fictive 

voice. The story presents the most common replies to the questions, where the 

respondents’ written answers have been interweaved into one. This is helpful when 

you want to increase to possibility of keeping the respondents anonymous especially in 

a small community. As common in narrative analysis, my own voice is part of the story 
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(Smith, 2000) although I’ve tried to minimize it as much as possible by using the 

respondents’ own formulations. Sometimes the formulations have been joined together 

to one sentence and in some cases I’ve changed the context (e.g. lessons have become 

seminars) to make sure that the specific person/ situation can’t be identified. The 

meaning of the replies remains the same in both these cases. This study falls under the 

personal aspect of gender focusing on women’s own explicit self-concept in the role of 

‘female non-academic mathematician’.  

RESULTS 

Anna was born and grew up in a middle size town in Sweden. She studied the most 

mathematical intensive program at upper secondary school (age 16-19), the natural 

Science Programme. Her parents, although not in mathematics themselves, have 

always supported Anna in her studies. Anna started her PhD almost right after her 

undergraduate studies (which was in mathematics/applied mathematics combined with 

engineering/ physics/ statistics/ computer science; 4-5 years). She was then 25-30 

years old. During her PhD, she had children and was on parental leave. Anna finished 

her PhD when she was around the age of 35. This is now 1-10 years ago. She had both 

female and male supervisors (where the most common situation was only male 

supervisors). Anna is now working as a mathematician/ researcher in a private 

corporation or at a council/governmental institute.  

So why did Anna choose mathematics in the first place? Her answer is based in school 

mathematics and mathematics education:  

I have always found mathematics easy during school. Maybe it wasn’t fun to do all the 

routine stuff, but I really liked problem solving. Math is fascinating!  

She studied as much mathematics you can do at upper secondary school. When it was 

time to enter university, the choice of programme included mathematics. But it wasn’t 

obvious that she would do a Ph.D. in mathematics. Some people encouraged her to 

become a part of the department, but there were also people who discouraged her:  

During my undergraduate studies I was encouraged to take an amanuensis position. I 

doubted if I was clever enough to do a Ph.D. in mathematics, and one time during an oral 

examination, the teacher asked what my plans were. I said I was thinking about Ph.D. but 

that I wasn’t sure that I was clever enough. He said ‘yes, I can agree with that.’ But in the 

end, I felt that this was something I really wanted to do. I wanted to do a PhD, I wanted to 

learn more.  

Anna got a PhD position at the same department where she had done her undergraduate 

studies and worked as an amanuensis. How was it then to be a (female) PhD student in 

a mathematics department? Anna explains: 

Often you are the only woman (or one of few) when you study mathematics, so I was used 

to this from my undergraduate studies. Most people were positive and friendly, but it was 

like an underlying structure that now and again reminded me that I should not think that I 

was as good or clever as the male students. For instance, one time I took a course and the 

professor ignored me – he wouldn’t answer my questions! In seminars, when I raised 
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topics that could be seen as critique, I was told not to be so troublesome. Male students, 

they were instead praised for their ability to scrutinize and flexible thinking. But this didn’t 

discourage me. I would say I got more determined to show them wrong.  

Anna thinks that this might be a reason why female mathematics professor now and 

again are described as cold and sharp. She says:  

Sometimes you hear that female professor’s got sharp elbows because they have to fight 

their way up, and I assume it is because of the feeling of working in constant headwind. 

However, the symbols attributed and used in comments can be tiresome: 

I’ve heard everything that aims to diminish what I’m doing, such as that it is no point with 

female PhD students since they are going to end up next to the stove anyway to that the 

only reason why I got funding is because I’m a woman. Once I was told that you should 

have higher demands on female PhD students since they need to prove themselves. 

The department seemed to be aware of this structure and now and again made some 

effort to change the work climate. But this was not an easy task: 

When the department tried to implement things to make working life easier for women it 

was worked against [by some people]. It was like there was a systematic way of opposition 

against women, but it was made in a very subtle way so no one could really object. 

This hidden conscious or not conscious structure got more explicit at some occasions, 

for instance when scheduling seminars. During her PhD, Anna got pregnant and had 

children. She was on parental leave and then came back to work, trying to combine 

parenthood with work: 

The first years being a parent they scheduled seminars late in the afternoon, which meant 

that I couldn’t go since I had to pick up children from nursery. In the beginning there was 

no understanding about this.  

But overall, having children during the PhD was not a problem. The issues were more 

based on the restricted time of a PhD (related to funding) and the change of view of 

when to do work.  

Overall, I have never felt I was treated differently or badly for having children. The 

difference is how you as a parent want to spend your time changes. The working hours are 

for work, but when the day is over I want to go home to my family. It was though being 

pregnant, but that was more due to the pregnancy itself. But it was hard to focus when you 

are tired and math is a subject where you need to be focused the whole time. It was also 

tough coming back from parental leave because work felt so distance. It was hard to 

remember and to get going. It took some time and energy before I was back on track so to 

speak, and now I realise that this cost me a few months. 

The choice to leave was easy. 

I started by applying for lot of different positions. I didn’t get them. One time, they gave a 

position to a man who wasn’t as qualified as me with the explanation that his work was 

much more ‘developed’. How can you argue against that? I didn’t have the network to 

work for me, to argue for my case. I was alone, and you can’t get a position when you don’t 

have support. My supervisor(s) didn’t help me at all. So the choice was in some sense easy. 
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In my current workplace, I’ve been extremely well taken care of and they appreciate the 

work I’m doing. There is a clear plan of how I shall develop and the work I should do. We 

work in teams and we have the same goals. The sum is greater than the parts. At the 

department, we sat in our offices with closed doors and that didn’t suit me so well. And we 

are not pushed to work overtime – they respect our working hours. It is very interesting. 

You get a lot of feedback and you push each other forward. And our product is useful for 

the society.  

But Anna would have stayed if the situation had been different. 

You know, I really wanted to stay in academia. The only thing that was needed was a 

position that wasn’t a short-term temporary one. I both miss the type of research you do at 

a university – that you can completely focus on one single detail of a problem - and the 

teaching. I miss going to seminars even in subjects that wasn’t your own one. But I do not 

miss the working climate and I definitely don’t miss the stress of applying for grants that 

you are most likely not to get. I didn’t like that everyone should be ‘best’, the competition 

and the lack of common goals to strive for. 

Anna gives two main reasons for why she is working outside academia. The first 

reason is the lack of full-time, long-term jobs in academia, or more specifically, how 

hard it is to get such a job without the right network. The other reason is the atmosphere 

especially when compared to other workplaces.  

DISCUSSION 

The purpose of this paper is to try to understand the decreasing numbers of female in 

positions in higher education in mathematics in Sweden. Anna is one (fictional) voice 

aiming to give such explanations. Her voice relates to a structure recognised in 

previous research (e.g. Forgasz, et al, 2010). She describes the subtleness in how 

women are worked against and the struggle of keeping your self-concept in an 

environment where you are under pressure just for having the ‘wrong’ sex. Seminar 

scheduling and who to praise in a seminar are examples of explicit and implicit power, 

the latter one including what Husu (2013) refers to as ‘non-events’. Anna uses the term 

‘constant headwind’ as an illustration of this struggle. 

Anna describes several instances when she is talking about herself in relation to the 

context and the changes in her self-identity, for instance the change of view of work 

when having children. The negotiation of the self-identity seems to be an ongoing 

work (Solomon, 2012). If the efforts to change made by the department were 

successful depended on the people, not a lack of regulations or policy documents. One 

of the main reasons why Anna is working out-side academia is the struggle to find a job 

without support. This has been highlighted in previous studies both in mathematics 

(Henrion, 1997) and general (Husu, 2005).  Anna mentions also the stress of getting 

grants, which seems to be a filter for further careers (Lindberg, Riis & Silander, 2011).  

She also compares work environments and stresses how nice it was to find another 

place where the (collective) effort was appreciated. As Solomon (2007) concluded, 

there exists a language of a ‘not belonging’ even when a women is successful. Anna 
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expressed that she belongs to mathematics and mathematics belongs to her. What we 

need to further understand is why working in a mathematics department is not an 

option and how we can change this situation. 
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We describe an attempt by a former mathematics teacher to read an undergraduate 

mathematics proof aided by discussions with a mathematician using the language of 

mathematical problem solving. The literature on successful approaches to reading 

mathematics is scarce at the secondary and undergraduate levels. Shepherd, Selden 

and Selden (2012) offered three possible reasons why undergraduate students find it 

difficult to read passages from a mathematics textbook. From the ultimately fruitful 

attempt by the teacher, we postulate how a problem solving approach can successfully 

negotiate these three difficulties. 

INTRODUCTION 

Shepherd, Selden and Selden (2012) state that “it appears to be common knowledge 

that many, perhaps most, beginning university students do not read large parts of their 

mathematics textbooks in a way that is very useful in their learning”. This concurs with 

our own various experiences as secondary school teachers and university lecturers with 

regards to our students’ mathematics reading proclivities. 

Tay(2001) citing Waywood (1992) who noted that the majority of reported work on 

writing to learn mathematics is focused at a primary level, lamented that little progress 

had been made at the higher levels and suggested some assessment modes which 

would encourage good mathematics reading. Others (Bratina & Lipkin, 2003; DeLong 

& Winter, 2003; Draper, 2002) have also made calls for students to be taught how to 

read mathematics. Wilkerson-Jerde and Wilensky (2011) investigated how 

mathematicians make sense of an unfamiliar proof that they read for the first time and 

try to elicit reading strategies for school students. On the whole however, Osterholm 

(2008), based on a survey of 199 articles having to do with the reading of word 

problems, reported that there was little about reading comprehension of more general 

mathematical text. 

Difficulties in reading mathematics textbooks 

Shepherd, Selden and Selden (2012) adapted the Constructively Responsive Reading 

framework (CRR) by Pressley and Afflerbach (1995) to understand the difficulties 

first-year university students had in reading their mathematics textbooks. They made 

some significant observations which we shall report in this section. 

Their research (Shepherd, Selden, & Selden, 2012) involved eleven precalculus and 

calculus students who were each asked to read aloud a selected passage from their 

textbook. They were stopped at intervals during their reading and asked to attempt a 
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task based on what they had read or a textbook example. Overall, the students 

performed poorly although they were considered good students based on their 

American College Test (ACT) Reading and Mathematics scores. 

The students’ difficulties working tasks all seemed to arise from, or depend largely on, at 

least one of three main kinds of difficulty: (a) insufficient sensitivity to, or inappropriate 

response to, their own confusion or error; (b) inadequate or incorrect prior knowledge; and 

(c) insufficient attention to the detailed content of the textbook. The difficulties working 

tasks and their origins occurred throughout the passages read and were associated with 

exposition, definitions, theorems, worked examples, and explorations. Furthermore, most 

students exhibited all three of these difficulties usually several times. (p. 238) 

In spite of the generally poor performance, there were a few students who when they 

failed to understand a passage, persisted in rereading the passage and reworking the 

task until they could do it correctly. Shepherd, Selden and Selden (2012) wondered if 

such students had an unusual feeling or belief that in persisting they could ultimately 

succeed and if such a feeling of the value of persistence can be engendered by 

providing supporting experiences. 

Placed against the poor reading of most students and the nascent success attributable to 

persistence, Shepherd, Selden and Selden (2012) offered their observation of why 

mathematicians appear to be effective readers: 

For sufficiently important reading, we will work tasks or construct examples to check the 

correctness of our understanding and tend to look for errors. On finding an error, we 

rework the task, reread the appropriate passage, or construct an example. We each feel that 

we can benefit from such a process, and suspect that this feeling of self-efficacy arose from 

our past positive experiences with reworking tasks, rereading associated passages, and 

constructing examples. We suggest our students lacked the feeling that they can 

independently rework a task or reread a passage until they ultimately “get it right.” (p. 243) 

Reading mathematics through problem solving 

In this paper, we propose that reading mathematics could be approached as a series of 

problem solving attempts. Recall that Pólya’s (1945) model of problem solving 

requires firstly that one understands the problem. We conjecture that readers with a 

problem solving mindset will recognise their lack of understanding of a passage and so 

will be able to circumvent the difficulty (a) of the students of Shepherd, Selden and 

Selden (2012) with regard to “insufficient sensitivity to, or inappropriate response to, 

their own confusion or error”. Every statement or phrase that is unclear can be stated as 

a problem and the relevant problem solving stages of Understand the Problem, Devise 

a Plan, Carry out the Plan and Look Back, can be employed to gain understanding. 

While carrying this out, it will not be surprising to find the reader exhibiting a 

mathematician’s behavior of “construct[ing] examples to check the correctness of [his 

or her] understanding” (Shepherd, Selden, & Selden, 2012, p. 243). 

In addition, a reader who is familiar with Schoenfeld’s framework of mathematical 

problem solving (see Schoenfeld, 1985) will realize when his or her resources are 
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inadequate for the passage. We conjecture that this constant realisation may be crucial 

to overcome the difficulty (b) of inadequate or incorrect prior knowledge. 

Weber and Mejia-ramos (2014) contrasts the practice of a mathematician and that of 

the general undergraduate with respect to the amount of responsibility the reader bears 

in the comprehension of a proof. 

… the mathematician views his responsibility when reading the proof to be significant. 

Many new assertions in the proof require the construction of a sub-proof and sometimes 

understanding them also necessitates the drawing of pictures or the consideration of 

examples. Indeed, this mathematician suggests that the author of the proof deliberately left 

the responsibility of drawing the appropriate pictures to the reader of the proof, 

presumably because the reader would gain understanding from engaging in this process. 

(p. 91) 

We conjecture that a problem solving mindset will guide the reader to break down the 

passage into a series of sub-problems to be worked out so as to gain a deeper 

understanding both through the stage of Understanding the Problem as well as the 

stage of Looking Back at the solution. Having a problem solving mindset will thus 

prepare the reader to scrutinize the passage and give sufficient attention to the detailed 

content of the textbook (difficulty (c) of the students of Shepherd, Selden and Selden 

(2012)). 

Our research question in our pilot study of one reader is thus: 

Can a problem solving approach to reading mathematics overcome the following 

difficulties encountered by readers who are not professional mathematicians? 

a. Insufficient sensitivity to, or inappropriate response to, their own confusion or 

error. 

b. Inadequate or incorrect prior knowledge. 

c. Insufficient attention to the detailed content of the textbook. 

PARTICIPANT AND METHOD 

The reader, pseudonymously referred to as Tony, is a former school teacher who had 

taught Mathematics and Design and Technology for more than ten years in the 

secondary school environment. He is a mechanical engineering graduate with limited 

experience in undergraduate mathematics, having done only two mathematics modules 

in the university. Tony worked as a research associate with a problem solving project 

and enthusiastically embraced the Pólya model to problem solving. He found that the 

approach was very helpful to solving non-routine problems which were pitched at the 

secondary school level. 

We gave Tony a proof that a particular number is transcendental (see Appendix) and 

asked him to read it. We also suggested that he should view any difficulties he had with 

the text as non-routine problems and approach them as such with the Pólya model of 

problem solving (see for example, Pólya, 1945; Toh, Quek, Leong, Dindyal & Tay, 

2011). 
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Four sessions with a mathematician/researcher (the first author) to discuss his progress 

and difficulties were carried out. Field notes by the researcher and audio recording 

were taken for the sessions. Protocol analysis (see for example, Ericsson & Simon, 

1993) was not used as Tony was not trained to say aloud his thoughts without 

disturbing his own cognition as he worked through some aspects of the text. Thus, the 

conversations in the sessions were mostly between the researcher and Tony while there 

were long stretches of silence as Tony worked on the reading. In addition, Tony was 

asked to write a reflection of his reading journey (see Tay, Quek, Dindyal, Leong & 

Toh, 2011) and this short journal was used to corroborate the field notes and audio 

recordings. Finally, an interview was conducted at the end of the sessions. The 

interview protocol was semi-structured with the three parts of the research question as 

the main foci. 

TONY’S STORY 

Tony was given the two-page text in early November 2013 and the researcher advised 

him to use a ‘problem solving’ approach to reading and understanding the text. 

Discussion I, lasting about 45 minutes, with the researcher was on 6 November. Tony 

then read the text again sporadically over the next few weeks. At a writing retreat over 

the period 4-7 December for the project team where there would be time to discuss, 

Tony continued to work on the text and had three further discussions (II – IV) with the 

researcher for a period of about an hour each. Tony’s story will be told from his point 

of view through his written reflection interspersed with the researcher’s comments on 

his interaction with Tony during the four discussions. 

Tony’s reflection of his reading journey 

The first reaction  I started reading the entire proof once and I encountered many 

unfamiliar terms or definitions … “Foreign language!” was the first response … I sort of 

structure the reading into three main parts. Firstly, understand the definition, then Theorem 

1 and its proof and finally Theorem 2 and its proof. 

The main definition The approach was to understand the definition line by line … I 

tried using simple examples to understand or refresh the meanings of the terms like 

‘complex number’, ‘root’, … it seemed manageable. I … look[ed] for non-examples 

[unsuccessfully] … The assignment was then left aside for a while. Had the first discussion 

with [the researcher] to clarify. Explained the approach to him and realized that the 

non-example is actually defining transcendental number itself (… felt silly). 

In Discussion I, the researcher suggested that Tony ignore the rest of the text and focus 

on the definitions at the beginning, but one at a time. 

… After spending some time trying to understand the definition again, there was some 

progress (i.e. managed to proceed to the second sentence). What was helpful was to use 

numbers and do some manipulations … Moving on, was the understanding of algebraic 

numbers with degree n. Again examples were used and it seems understanding this part 

was fine. 
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Within Discussion I, we successfully negotiated the definitions of an algebraic number 

and the degree of the number by making Tony produce concrete instances of each 

concept. For example, Tony picked out the word complex in the definition and 

considered if i was algebraic. The researcher suggested that it was the root of x
2
 + 1, 

which was readily accepted. Then, he asked Tony to consider if 3+i was algebraic and 

Tony was able to work out the required polynomial starting from x = 3+i. 

We moved on with the definition and the next challenge came when I was asked to write 

out the statement for ‘transcendental number’. I thought I understood and knowing 

‘transcendental number’ is just ‘not algebraic number’ but I was not able to write out the 

statement. After some discussions, I was troubled by the concept of complement e.g. what 

is “not some” and what is “not any”. 

A problem that surfaced was Tony’s difficulty with basic propositional logic – the 

researcher had to explain that the complement of “root of some polynomial” is “not 

root of any polynomial”. Theorems 1 and 2 were tackled at the writing retreat. 

Looking at Theorem 1 There were several terms in Theorem 1 that … I did not manage 

to understand them on my own … my plan was to proceed on to read the proof hoping that 

the proof might lead to the understanding of some terms … looking at it closer, I was  

convinced that [the proof] was just algebraic manipulation. So my plan was to break the 

long string into smaller parts to understand them. I was successful with the first part of the 

proof and it can be explained using long division … it appeared that things [in the next part 

of the proof] are linking back to the earlier part which I’ve skipped. I was not able to 

resolve it on my own. [Meanwhile] I [had instinctively] used some heuristics like working 

backwards and breaking into smaller parts to help myself to understand. In the end I still 

struggled to understand as [my ability to manipulate expressions with the] absolute [sign] 

was not strong. With some guidance and scaffolding [in Discussion III] … I was able to 

[understand] the rest of the proof for Theorem 1.  

Although Tony struggled with the inequality 

 

he was able to restate it as a sub-problem: 

Show that   

 

He worked on comparing term by term and was successful for the second and third last 

terms. But as he reported, he was unable to independently see the general term because 

of his lack of dexterity with inequalities and the absolute sign. 

[However] I was not able to see the link between the main objective, which is the 

transcendental number and Theorem 1. [The researcher] had to [explain] to me. 
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This link is not obvious until one finishes Theorem 2. Yet for Tony to have this 

realization that he still did not understand the whole picture although he had just 

understood a major piece, i.e. Theorem 1, is a sign of a good reader. 

Looking at Theorem 2 I proceeded on to understand Theorem 2 by myself. The plan was 

to use some numbers to help in the understanding. I was able to do that. I asked myself if 

there is a better way to understand it. I proceeded on with using algebraic manipulation. It 

also ended fine. The part which ended up challenging was the final statement. I tried 

algebraic manipulation and was still unable to break through. I discussed with [the 

researcher] again [Discussion IV]. 

Tony could not see the need for m > n to falsify 
( 1) ! ( 1)! 1

1 1

10 10n m m  
 . Although he capably 

substituted suitable values of m and n to confirm the inequality, he knew that he did not 

understand the big picture. Later, he lamented that missing the big picture was a result 

of not understanding key phrases, in this case “sufficiently large”. 

Then I realized, I was missing the big picture again. Reflecting on that, I realized that I 

actually did not have thorough understanding of the problem. The understanding of the 

phrase “sufficiently large” was neglected since the beginning. Little did I realize the 

importance of understanding this definition. After I was guided through to understand the 

phrase “sufficiently large”, the understanding of the rest of the proof just fell into place. To 

stretch the understanding, we went on to ‘check and expand’ and I was able to give an 

example which I was happy about it. 

Tony was keen to produce the ‘next’ transcendental number on his own and following 

the proof which he was now confident that he understood, he gave this number:  

 

DISCUSSION AND CONCLUSION 

The proof for the ‘first transcendental number’ is not an easy one. Yet Tony who had 

only read two mathematics modules in his undergraduate studies was able to 

successfully understand it. The report in the section above showed that Tony was able 

to engage with the text for a very long time – in the interview, he estimated that he 

spent 15 hours working on understanding the proof. This may seem an inordinate 

amount of time but it pales compared to a colleague of ours who spent five months 

understanding the first page of a book during his doctoral studies. The report also 

shows that Tony consistently applied a problem solving approach to his reading – in 

the interview, he agreed that the first and last stages of Pólya were often applied to 

understanding definitions and statements in the theorems while the first three stages 

were useful in working out the algebraic manipulations. 

Tony showed great sensitivity to his own confusion and errors – he felt “silly” that he 

was trying to find a non-example of an algebraic number when the whole proof was 

about doing that. He was acutely aware of his inadequate or incorrect prior knowledge 

and sought advice from the researcher. In the interview, he said that in the past (i.e. 
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without the challenge of a problem solving approach), he would just look for answers 

from the internet when he was stuck. Finally, Tony paid great attention to the detailed 

content of the text – in the interview, he agreed that almost every word was important. 

We think that Tony did not face the same three difficulties that the students of 

Shepherd, Selden and Selden (2012) had mainly because he had anticipated that the 

text would be difficult. Also, by adopting the problem solving approach, he had 

relished the challenge ahead of him as he was confident of making progress. 

APPENDIX 

The ‘first’ transcendental number 

A complex number z is said to be algebraic if z is a root of some polynomial with all 

integral coefficients. 

A complex number z is said to be an algebraic number of degree n if z is algebraic and 

it is a root of some polynomial of degree n with all integral coefficients but not of any 

polynomial of degree less than n with all integral coefficients. 

A complex number z is said to be transcendental if z is not algebraic. 

Theorem 1 (Liouville) 

Let z be an algebraic number of degree n > 1 and let m
m

m

p
r

q
  be a sequence of rational 

numbers converging to z. Then, for a sufficiently large M, 
1

1m

n

m m

p
z

q q 
   for all qm > M. 

Proof Suppose that z is a solution to the polynomial equation 

 

Let  Then 

 

Letting m be such that 1mz r  , we may say that, for sufficiently large m, 
( )m

m

f r

r z



 

 

Let qm > M. Then 
| ( ) | | ( ) |

.m m
m

m

f r f r
z r

M q
    

Now     □ 
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Note that rm cannot be a solution to f(x) = 0 because if it were, we could factor out  

(x – rm) and so z would necessarily be of lesser degree. Hence f(rm) ≠ 0. Furthermore, 

the numerator of this fraction is an integer so it must be at least 1. We conclude that 

1

1 1 1
.m n n

m m m

z r
q q q 

     

Theorem 2 (Liouville) 

The number      is transcendental. 

Proof Let      Then 
( 1)!

1
| | 10

10
m m

z r


   . Now if z is an 

algebraic number of degree n, then Theorem 1 says that 
( 1) !

1
| |

10
m n m

z r


   for sufficiently 

large m. So  But this is false for m > n, so z is 

transcendental. □ 
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Motivating prospective elementary school teachers (PTs) to learn mathematics in 

university mathematics content courses remains a constant challenge. While authentic 

tasks are readily available for students taking methods courses, which generally 

appear later in students’ educational experience, authentic experiences for students 

enrolled in mathematics content courses are more challenging.  We examined the use 

of a particular kind of authentic task for PTs enrolled in mathematics content course, 

creating and enacting a mathematics activity with children, and found that PTs were 

excited about this activity and, knowing they would need to apply the knowledge 

learned in the course, felt additional motivation to learn the content and engage in the 

university classroom activities. 

RATIONALE AND BACKGROUND 

Elementary school children in the United States are not developing acceptable levels of 

mathematical proficiency (National Center for Education Statistics, 1999). For 

teachers to teach so that their students develop mathematical proficiency (Kilpatrick, 

Swafford, & Findell, 2001), teachers must develop deep and flexible understanding of 

the mathematics they are teaching (Ball, 1990; Ma, 1999; Sowder, Philipp, Armstrong, 

& Schappelle, 1998). For prospective elementary school teachers (PTs), most colleges 

and universities in the United States offer specially designed mathematics courses 

focused on rich mathematical content knowledge, but although such courses have been 

offered by many universities for decades, teachers’ mathematical content knowledge 

continues to be a major area of concern (Tatto et al., 2012).  

Although most PTs and teachers can execute algorithms, many struggle when asked to 

explain them conceptually (Ball, 1988/1989; Ma, 1999; Thanheiser, 2009) and may be 

unaware that rationales for the algorithms exist. With recent calls for a focus on having 

students in the United States develop conceptual understanding (Common Core State 

Standards, 2010; Kilpatrick et al., 2001; National Council of Teachers of Mathematics, 

2000), the fact that most PTs and teachers do not understand the rationales behind the 

procedures they teach is a major concern for those of us responsible for teaching PTs.  

However, PTs do not share this concern because many of them hold the beliefs that 

1. Knowing how to apply procedures is synonymous with understanding (Graeber, 

1999). 

2. “If I, a college student, do not know something, then children would not be 

expected to know it, and if I do know something, I certainly don’t need to learn it 

again” (Philipp et al., 2007, p. 439).  
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Thus many PTs view their mathematics content courses as annoying prerequisites they 

must endure instead of as opportunities to develop richer mathematical understanding. 

Of note is that in the United States, PTs taking content courses are typically years 

removed from teaching, working with children, or even their methods courses, thus 

they often struggle to see the connection between the university content course and 

their future careers.  

Our interest is in trying to understand and explore ways to motivate PTs to learn the 

mathematics of their content courses. In prior work (Thanheiser, Philipp, Fasteen, 

Strand, & Mills, 2013) we have shown that a brief one-on-one content interview with 

PTs led to the PTs changing their beliefs about mathematics and about their 

understanding of mathematics, leading to the recognition that (a) there is something to 

learn beyond procedures, (b) their own knowledge is limited and they need to know 

more to be able to teach, and (c) engaging in the mathematical activities in their content 

courses will lead them to learning important content.  

In this study we explore a new approach designed to sustain PT motivation and 

engagement in learning mathematics throughout the course, namely, creating and 

enacting a family math night (FMN) activity. Such an activity is typically found in 

methods courses, but we purposefully incorporate it into a content course with the goal 

to motivate PTs to learn mathematics. The central focus of the activity remains on the 

mathematics throughout the course.  

THEORETICAL FRAMEWORK 

Although most researchers studying learning examine the cognitive skills required to 

solve a task, other factors, such as motivation and engagement (Dweck, 1986; 

Middleton & Jansen, 2011) and authentic tasks (Newman, King, & Carmichael, 2007) 

play a major role in learning.  

Motivation and Engagement 

A student who is not motivated to learn will not engage in a task and thus will miss the 

chance to learn, whereas students who are motivated to learn and engage in tasks are 

more likely to learn. We adopt the definition of Hulleman, Durik, Schweigert and 

Harackiewicz (2008) of motivation as “a motive (e.g., wish, intention, drive) to engage 

in a specific activity” (p. 298). This is consistent with the theory that engagement in 

learning activities in the classroom can be seen as the “outward manifestation of a 

motivated student,” (Skinner, Kindermann, & Furrer, 2009, p. 494) a “visible 

manifestation” (Skinner & Pitzer, 2012, p. 22), or “the action component of … 

motivation” (p. 24).  Engagement describes the interaction of a student with a task and 

is easily observable.  Engagement, and thus motivation, is an essential element of 

academic learning as it is “a robust predictor of students’ learning, grades, 

achievement test scores” (Skinner & Pitzer, 2012, p. 21). 
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Authentic tasks 

Academic tasks have been identified as “especially important determinants of 

motivation and engagement” (Skinner & Pitzer, 2012, p. 28). To promote engagement, 

teachers should provide students with tasks that are “authentic, challenging, relevant to 

students’ experiences and concerns, hands-on, project-based, integrated across subject 

areas, and that allow students some freedom to choose their own direction and to work 

closely in cooperative groups over long periods of time” (Skinner & Pitzer, 2012, p. 

33). One way of making a task more authentic is by connecting the university 

classroom to the real world (in the case of PTs the K-12 classroom) (Newman et al., 

2007). Research has demonstrated the importance of authentic tasks, as “students who 

experienced higher levels of authentic instruction and assessment showed higher 

achievement than students who experienced lower levels of authentic instruction” 

(Newman et al., 2007, p. vii).  

PT learning 

To help PTs develop mathematical understanding, mathematics teacher educators need 

to understand three things: (a) the conceptions PTs bring to teacher education because 

“the key to turning even poorly prepared prospective elementary school teachers into 

mathematical thinkers is to work from what they do know” (Conference Board of the 

Mathematical Sciences, 2001, p. 17); (b) how those conceptions can be further 

developed, by, for example, using a hypothetical learning trajectory (Simon, 1995); 

and (c) how to motivate PTs to learn mathematics. This paper focuses on the latter 

point. Prior work has shown that classroom environment can influence learning goals 

and motivation (Morrone, Harkness, D'Ambrosio, & Caulfield, 2004). We share our 

results of incorporating a FMN activity into a content course for teachers to motivate 

them to learn the mathematical content of the class. 

METHODS 

The FMN consisted of pairs of PTs finding/modifying/developing a mathematical 

activity to work through with elementary school students. In Week 5 (of a 10 week 

course), students were asked to pair off and sign up for a topic (one of the topics 

covered in this course) and then: (a) find what children are expected to know at various 

grade levels about this topic via the Common Core State Standards (2010), (b) decide 

on a mathematical goal for their activity, (c) use online resources such as 

www.nctm.org to find ideas for their topic (including browsing the publication 

Teaching Children Mathematics and navigating through the resources provided, 

including www.illuminations.org), (d) (re)visit their topic in the textbook used in our 

course, and finally (e) use the internet and other sources to find additional ideas, if 

needed. In Week 6 students were asked to send a one-page idea of their activity to the 

instructor. In Week 7, the pairs of PTs met with their instructor to discuss their ideas 

and receive feedback. These meetings focussed on clarifying the mathematical goal of 

the activity and linking the activity to the goal. Once the PTs received feedback on 

their ideas, they created a draft of their activity, which was then presented in the 
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university classroom to their peers. This allowed the PTs to experience many of the 

activities and give/receive feedback from their peers and their instructor. The PTs then 

had a final chance to revise their activity and present it at the FMN event at a local 

elementary school (at the end of Week 8). The goal of the activity was to allow the PTs 

to explore one mathematical topic in depth in an authentic setting and motivate them to 

learn the mathematics of the course.   

The authors analysed data from work with 23 PTs in a 10-week (4 hours a week) 

content course focusing on number and operation at a large state university in the 

northwestern United States. All students participated in the creation and enactment of a 

FMN activity and completing three surveys on this experience throughout the term. 

The surveys were administered before the FMN, immediately after the FMN, and at the 

end of the term. The surveys were designed to allow the PTs to reflect on and share 

their experiences (see Table 1 for sample survey items). 

Sample Survey Questions for reflections of the FMN activity 

(a) How do you think the FMN activity contributes to your learning in this class? (S1) 

(b) How do you think that creating and enacting a family math night activity this term affected 

your learning in this class? Please explain. (S3) 

(c) Did anything surprise you? I expect that many things surprised you. I would love to hear at 

least two things that were surprising to you. (S2) 

(d) What did you learn? (S2) 

Table 1: Sample Survey Questions (S1=Survey 1, etc.) 

Because little is known about PTs' reactions to the creation and enactment of a FMN 

experience, we used a grounded theoretical approach (Strauss & Corbin, 1990) with 

open coding (Strauss & Corbin, 1998) to analyse the written responses to the surveys. 

We read though all PT responses and identified themes while we read the responses. 

For example after reading Hannah’s (all names are pseudonyms), statement “I'm 

excited about planning and enacting a FMN activity! It will be fun to put what we've 

learned into practice and spend some time with actual students,” we created a category 

labelled “Excitement/Fun” and when we came across similar statements we placed 

them into that category and/or adjusted the category as needed (i.e. this category was 

initially established for survey 1 but reappeared on survey 3, thus the future and past 

tense were taken out to encompass both. Another instantiation of this category was 

Alex stating, “It was some of the most fun I've ever had with kids.”) 

RESULTS AND DISCUSSION 

PTs entering the content courses often think their knowledge of mathematics is 

sufficient to teach K-3 and thus see this class as an inconvenient prerequisite rather 

than a class in which they can learn something useful. Sixteen of the 23 PTs in this 

study stated at the beginning of the course that they knew enough math to teach K-3, 2 

were ambivalent, and 5 said they did not know enough math to teach K-3. However, 
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these 5 did not refer to their lack of content knowledge, but rather to their lack of 

knowledge about teaching. For example, one stated, “While I think I can do all of the 

math in a K-3 class, I'm not sure I have the tools to teach those classes.” So in general 

the PTs feel confident that their content knowledge suffices to teach K-3 and may not 

see any relevance to the course. The FMN activity made the learning in the university 

classroom immediately relevant to the PTs and thus has the potential to change the 

PTs’ perception of the usefulness of the course. PTs were very excited about the 

authenticity of the task, focusing in particular on the fact that rather than simply 

planning the task, they were actually enacting it. Twenty of the 23 PTs mentioned this 

in their reflections. For example, Jennifer stated: 

Family Math Night is hands-on. Everything that we have learned about explanations and 

justification and talking about math are all things I can apply to this night. Reading about it 

and talking about it is only doing so much for my brain. Actually putting it to real practice 

with real children … is going to be extremely beneficial to my learning experience. Getting 

to watch it all play out will help me more. 

The PTs were typically nervous but excited in creating and enacting a FMN activity. 

This excitement motivated them to engage with their tasks and further developed their 

mathematical understanding. Seventeen of the 23 PTs stated that they held a deeper 

understanding of the mathematics of their activity through FMN. One PT, Heather, 

reflected on how her knowledge changed throughout the activity: 

I learned the difference between sharing division and measuring division. It was hard for 

me to come up with word problems at first for both kinds of division but by the end of 

preparing the lesson I can do it. 

Almost all (21 of 23) of the PTs reported after the FMN that their activity went well 

and most (16 of the 23) explicitly stated that it was a lot of fun. Alex, for example, 

stated 

It was some of the most fun I've ever had with kids. … actually seeing all the different 

ways children solved the problems was really fascinating. It was also interesting to see all 

the different levels of the children; we weren't expecting such young children, we had 

some first graders and a kindergartner, but they were able to solve a good portion of the 

problems. 

The FMN activity provided this PT with an authentic task, enabling her to engage more 

deeply in the mathematical activities of the class. In addition, the FMN allowed PTs to 

realize other important aspects of mathematics teaching.  For example, 18 of the 23 

PTs commented on the fact that children come in and learn at different levels, which 

motivated the PTs to dig deeper into the mathematics and create multiple entry levels 

for students. Sixteen of the 23 PTs seemed genuinely surprised by the fact that children 

are interested in mathematics. PTs often are scared of mathematics and project their 

fear onto the children with whom they are working. Experiencing mathematics as fun 

for all is an essential element of teacher education. When asked whether the PTs would 

recommend future PTs to take a math class with family math night, all PTs 

recommended such a class, with 17 stating “definitely take it with the FMN” and 6 
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stating “take it with the FMN.” They argued that “it truly is a practice of what we will 

be doing each day with students” and “my learning in this class was very focused and 

determined because I knew that I would need to know the subject well enough to teach 

it, and that is a whole different level of understanding for me.” In later reflections, 

some PTs explained that it was the immediate applicability of their learning that 

motivated them to really pay attention in the class. This applicability is especially 

crucial for content courses, which are typically years removed from PTs working with 

children.  

SUMMARY 

In summary, we know that (a) the PTs experienced the FMN as an authentic activity, 

(b) the FMN activity was a highly motivating activity (the PTs had fun and realized 

that the children had fun too), (c) the PTs stated that they learned various things 

through the FMN activity (such as how children do/learn mathematics), and (d) the 

PTs learned mathematics through the FMN activity. However, we do not want to 

overstate our claims. We as yet have no data as to the effect the FMN activity might 

have on PTs’ experiences in courses other than this content course. We are also not 

sure of the extent of the mathematics learning that happened as a result of the FMN 

activity. We believe that the PTs learned the mathematics of their activity at a deeper 

level (see Heather’s comment about division above). We also believe that, at least for 

some PTs, the FMN activity affected their learning throughout the course (see 

Hannah’s comment). Some questions that remain for further research: 1. Does the 

FMN activity change the PTs’ stance towards learning mathematics in general (beyond 

the context of their task)? 2. At what level does the FMN activity affect the PTs’ 

mathematics learning (local to the task, global to the course, global to the sequence of 

courses, global to mathematics)? 

CONCLUSIONS 

Learning mathematics in content courses designed for PTs is complicated. We 

(mathematics educators) are still working on understanding how to motivate the PTs to 

learn in our courses. Approaches such as working with children in an early field 

experience (Philipp et al., 2007), a one-on-one content interview (Thanheiser et al., 

2013), and the FMN experience described in this paper have been shown to motivate 

PTs to learn mathematics content. (We want to note that the emphasis of these 

experiences is not on the “methods” aspect, i.e. how do I create a lesson? but rather on 

the “mathematics” of the activity, i.e. What mathematics content do I want to work on 

with the children? What is my mathematical goal?, etc.) Given the importance of 

mathematical content knowledge for teaching and the extensive research highlighting 

the lack of rich teacher content knowledge, the FMN experience described, which may 

traditionally not have been considered for inclusion in content courses taught in 

mathematics departments, may be precisely what we need to motivate our students to 

learn.  
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THE ROLE OF TEACHING DECISIONS 

IN CURRICULUM ALIGNMENT 

Mike Thomas, Caroline Yoon 

The University of Auckland 

 

The classroom implementation of open-ended mathematics tasks, such as 

Model-Eliciting Activities (MEAs), can be challenging for teachers. This case study 

research considers a teacher, Adam, implementing a lesson intended to be an MEA on 

graphical antiderivative. We describe the lack of alignment of the written, intended 

and enacted curricula that occurred. An analysis of Adam’s conflicting resources, 

orientations and goals, and how these influenced his pedagogical decision making, 

enables a description of the reasons for this misalignment. One possible implication 

for teacher professional development arising from the case study is presented. 

INTRODUCTION AND LITERATURE 

Although curriculum designers often provide teacher guides on how to implement 

certain tasks, research shows, and even assumes that  “fidelity between written plans in 

a teacher’s guide and classroom action is impossible” (Stein, Remillard, & Smith, 

2007, p. 344). Teachers draw on their experiences, goals, knowledge and beliefs to 

interpret written curricula to form their own implementation plans, which are further 

transformed upon entering the classroom setting by the actions and thinking from 

students and the teacher. As a result, the curriculum experienced by the students in a 

classroom can differ considerably from what the teacher had intended to implement, 

and what the curriculum designers hoped would be implemented.  

This misalignment between written, intended and enacted curricula is often greater for 

open-ended, non-routine tasks, than for conventional tasks such as procedural 

exercises (Stein et al., 2007). Open-ended tasks are more dependent on the responses 

from students and teachers, who may not be used to implementing them. We found 

great divergence in the ways teachers implemented a particular open-ended task, called 

a Model-Eliciting Activity (MEA) (Lesh, Hoover, Hole, Kelly, & Post, 2000), 

involving antidifferentiation in a tramping (hiking) context. In this paper, we report on 

one case study of a teacher, Adam, who planned to implement the Tramping MEA 

within a 50 minute lesson, but spent the whole lesson setting up the task, and ran out of 

time to launch the modelling problem itself. We investigate the research question: 

What caused the misalignment between Adam’s enactment of the Tramping MEA as it 

was implemented, and his prior intended implementation of the MEA?  

The literature suggests that the alignment of written, intended and enacted curricula is 

influenced by a number of factors, including: teachers’ theories of teaching and 

learning (Biggs, 1996); deep levels of teacher pedagogical and content knowledge 

(Jaworski, 2012); and the need to deal with a wide range of incumbent educational 
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priorities (Skott, 2001). We analyse how Adam’s conflicting goals, orientations and 

resources (Schoenfeld, 2011) influenced the eventual misalignment between his 

enacted curriculum and the written and intended curricula regarding the MEA.  

THEORETICAL FRAMEWORK 

Stein, Remillard and Smith (2007) distinguish between the three broad meanings of 

curriculum. The written curriculum comprises the curriculum materials that are given 

to teachers, and which may include textbooks, curriculum documents, and specific 

mathematical tasks. The intended (or planned) curriculum is the teacher’s 

interpretation of how they plan to implement the curriculum materials, and the enacted 

curriculum is what is actually implemented in the classroom. A number of factors can 

affect transitions between these three curricula, which may look quite different, despite 

being based on the same materials. These include: teacher beliefs, knowledge, 

orientations, and professional identity; students’ capacities and willingness to engage; 

time, school and classroom culture, and characteristics of the curriculum (Stein, 

Remillard & Smith, 2007, p. 322). Many of these factors can be incorporated into 

Schoenfeld’s (2011) theoretical framework for decision-making, which is based on 

Resources, Orientations, and Goals (ROGs). In this framework a teacher’s 

orientations, which include beliefs, dispositions, attitudes and so forth, determine the 

goals established in any given situation. The teacher draws on and orchestrates 

available resources, such as mathematical knowledge for teaching (Ball, Hill & Bass, 

2005) and physical artefacts to attain goals. In each lesson a teacher will have a number 

of competing goals in broad areas such as classroom management, student engagement 

and student learning outcomes. The manner in which she balances these competing 

goals and their dynamic relationships, and the extent to which pragmatism is allowed 

to intervene, will be determined by the relative strength of her orientations.  

In this paper, we use Schoenfeld’s ROG framework to analyse the misalignment 

between one teacher’s enacted curriculum (the implementation of a particular MEA), 

his planned curriculum and the written curriculum.  

THE TASK: THE TRAMPING MODEL-ELICITING ACTIVITY 

The task in this study was a Model-Eliciting Activity, or MEA (Lesh, Hoover, Hole, 

Kelly & Post, 2000), set in the context of tramping (the term for hiking in New 

Zealand). MEAs are a class of tasks designed to provide students with authentic 

experiences of modelling a mathematically rich context. Any given MEA consists of 

three components: (1) A newspaper article, picture, or video for contextualising the 

problem, (2) A set of brief warm-up questions, and (3) The modelling problem itself. 

Correspondingly, the Tramping MEA begins with a newspaper article that describes 

shortcomings of difficulty ratings for tramping tracks (hiking trails) in New Zealand. 

After reading the newspaper article, students work on warm-up questions to familiarise 

themselves with the tramping context and mathematical tools that are necessary to start 

(but not necessarily successfully finish) the problem. For example, in the Tramping 
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MEA, the warm-up questions ask students to plot the gradient graph (i.e., derivative) of 

a distance-height graph of a simple tramping track so that students can understand what 

a gradient graph and distance-height graph are (see Figure 1). However, it does not 

give them any tips on how to construct a distance-height graph from a given gradient 

graph, which is the focus of the actual modelling problem. 

 

 How high is the highest part of the track? 

 Find the gradient of the track at (a) 400m (b) 600m. 

 What does the track look like when the gradient is zero? 

 Where is the track steepest uphill? How can you tell? 

 Plot the gradients of the track on the axes below and join 

them with a smooth curve. 

 The graph you have drawn is a “gradient graph” of the 

tramping track. How is it related to the “distance-height 

graph of the track?  

Figure 1: Excerpts from the set of warm-up questions in the Tramping MEA. 

The heart of the MEA is the modelling problem itself, which is designed according to 

six principles (Lesh et al., 2000) to encourage students to express, test and revise their 

initial mathematical interpretations via multiple modelling cycles. The modelling 

problem component of the Tramping MEA (Figure 2) asks students to create a method 

for visualising the terrain of tramping tracks from a graph of the track’s gradients—a 

task that is mathematically equivalent to finding the antiderivative of a function 

presented graphically. Students are also asked to generalise their method, and to 

communicate their method in writing.   

 

Figure 2: The problem statement for the Tramping Problem MEA. 

The modelling problem component of an MEA is intended to be challenging, and 

students are typically given at least 30 minutes to work on it in groups of three. In 

contrast, the newspaper article and warm-up components of the MEA are meant to take 

less than 15 minutes. The warm-up component ensures that students can start the 

modelling problem, but it does not guarantee immediate success; instead, students are 

likely to begin the modelling problem with primitive mathematical interpretations, and 

only develop more insightful mathematical models through expressing, testing and 

revising their ideas within their groups. 
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METHOD 

As part of an international project, seven secondary school teachers implemented the 

same set of curriculum materials, consisting of four graphical antiderivative tasks, in 

their classrooms in New Zealand, Israel and Italy. Prior to this study, the tasks had only 

been implemented in semi-clinical environments using volunteers who worked in 

pairs, outside of class time, and in the presence of a researcher who was not their 

teacher. A goal of the international project was to see how teachers could transform 

and implement these tasks in authentic secondary school classroom environments. 

The three New Zealand teachers in the project were instructed to adapt the materials as 

they saw fit to suit their particular classroom environment. For example, they were 

encouraged to change the context of the first task (the Tramping MEA) if they wished, 

and use videos or apps they thought might be useful. They were specifically told to 

reduce the warm-up questions to fit into 15 minutes (about one-third) of the whole 

lesson time, and were given concrete suggestions to achieve this, such as reducing the 

number of calculations students needed to perform, having students gesture rather than 

plot the gradients, or providing the gradient graph for students. The teachers were also 

reminded that at least 30 minutes of the lesson time should be allocated to having 

students working in groups on the modelling problem.  

We report on Adam’s implementation of the first task, the Tramping MEA. Adam was 

in his second year of secondary school teaching, and the class was a high ability year 

12 (age 16-17) mathematics class in a low socioeconomic school in Auckland, New 

Zealand, with predominantly Maori and Pacific Island students. The topic of graphical 

antiderivatives was not part of the New Zealand curriculum (NCEA), although the 

topic of graphical derivatives was. After each lesson, Adam participated in audiotaped 

debriefing interviews, in which he described explained his teaching decisions in the 

lesson and planned for subsequent lessons. These four interviews were transcribed and 

coded according to Schoenfeld’s ROG framework, and used to create descriptions of 

Adam’s overall espoused ROG, and his specific ROGs for each lesson. Adam 

personally checked and corroborated the coding. The videos of the lessons were 

transcribed and annotated with photos and descriptions of the teacher’s and students’ 

actions, gestures, boardwork and written work.  

RESULTS 

In accordance with MEA epistemology (Lesh et al., 2000), the primary goal of the 

Tramping MEA is to have students express, test and revise their initially primitive 

interpretations of graphical antiderivatives, and develop more powerful ones through 

modelling cycles over the course of 30 minutes as they worked on the modelling 

problem. An ancillary goal is to ensure all students can start the modelling problem, by 

engaging them in a brief 15-minute warm-up beforehand. This means that the entire 

MEA can fit into one 50-minute lesson. Although Adam also intended to implement 

the entire Tramping MEA during his 50-minute lesson, he only managed to enact the 

warm-up questions and ran out of time to enact the modelling problem. 
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A description of the enacted curriculum 

Table 1 describes a timeline of events in Adam’s 50-minute lesson. Adam spends the 

first 4 minutes 50 seconds of his lesson in setting up the context for the MEA. He 

introduces two contexts—a tramping one, using pictures of mountains accompanied by 

music, and a rollercoaster one, describing going up and down a rollercoaster and the 

speed at different points. Next, Adam spends 9 minutes 10 seconds reading out loud 

the warm-up questions and reviewing the notion of a tangent and its relationship to the 

gradient at a point on a curve. He then has students work on the first set of warm-up 

questions in small groups for 15 minutes 37 seconds. 

Time Description 

Start—4min 50s Adam introduces tramping and roller coaster contexts (whole class) 

—15min 0s Adam reviews tangents of gradients (whole class) 

—30min 37s Students work on warm-up questions (group work) 

—39min 52s Adam discusses solutions to first warm-up questions (whole class) 

—43min 33s Students plot warm-up gradient graph (group work) 

—50min 0s Adam discusses gradient graph and features (whole class) 

End Adam tells students to do tramping modelling problem for homework 

Table 1: A timeline description of Adam’s implementation of the Tramping MEA. 

At 30 minutes 37 seconds into the lesson, Adam leads a whole class discussion of 

possible solutions to the warm-up questions, asking for answers and writing them on 

the board. During this time, he invites a student to the board to demonstrate his answer 

to the question, “where is the track steepest uphill”, which takes less than 2 minutes. 

After 9 minutes of teacher led discussion, Adam tells students to plot the gradient 

graph in the warm-up and proceeds to walk around the classroom observing and 

helping students. Once again, at 43 minutes and 33 seconds, he invites a student to 

draw his gradient graph on the whiteboard. The student does so in less than 2 minutes, 

and although the solution is reasonable Adam says, “Let me just polish this”, and 

redraws the end points of the student’s graph to show them trailing off towards the 

x-axis at the sides, then discusses the concept of asymptotes.  

With less than 4 minutes of the lesson remaining, Adam decides to erase the graph he 

has drawn so far and says “I think I should draw it better.” He redraws the graph so that 

the vertical correspondence of the points with the graph above aligns better with 

inflection points matching maximums and minimums, and so forth. This is followed by 

a detailed explanation of the relationship between critical points on each of the graphs, 

using the terms gradient, increase, maximum, point of inflection, steepest, positive, 

negative, zero, more negative and less negative. When the bell rings, signalling the end 

of the lesson, Adam realises that he hasn’t yet implemented the modelling problem 

(Figure 2) so tells students to complete it at home. 
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ANALYSIS 

Adam’s failure to implement the modelling problem component of the MEA within the 

50-minute lesson can be explained by his adherence to eight, sometimes conflicting, 

goals, which are summarised in Table 2. 

G(A) To prepare students for success on future tasks 

G(B) To engage in student-centred learning as much as possible 

G(C) To complete the entire MEA (warm-up and modelling problem) within the 

lesson time  

G(D) To align the MEA with the national curriculum assessment (NCEA) 

O1(D) Belief that although NCEA should drive his teaching, the MEA helps develop 

understanding so he’s happy to make an exception.  

O2(D) Belief that the NCEA curriculum is the more important, “real curriculum”. 

O3(D) Concern about time spent doing something that is external to the curriculum. 

R1(D) Knowledge that the content of the MEA lies outside the NCEA curriculum 

G(E) To cover all the content in a structured and ordered manner 

O1(E) Fear of leaving anything out. 

O2(E) Belief that he has to cover everything he is given. 

G(F) To make sure the content is in a context meaningful for the students 

O1(F) Belief that the context must be meaningful for student understanding  

O2(F) Belief that a second context will be needed in addition to tramping 

R1(F) Knowledge that his students are familiar with roller-coasters 

G(G) To make sure students understand all the content correctly 

O1(G) Belief that students need a firm foundation before working on a problem 

O2(G) Belief that understanding develops over time 

R1(G) Knowledge that it takes time to develop an understanding of new ideas 

G(H) To use the MEA to revise previous content on graphical derivative 

O1(H) Belief that the modelling problem is too difficult for his students. 

O2(H) Belief that the warm-up can cover concepts that students didn’t “get” previously 

R1(H) Prior knowledge from students’ tests that many couldn’t create gradient graphs.  

Table 2: The eight goals (A-H) and their corresponding resources and orientations. 

Goals A and B arise from Adam’s four debriefing interviews, and are described in 

further detail together with their associated orientations and resources in Thomas and 

Yoon (2013). Goal C was evident from Adam’s lesson plan, in which he stated his 

intent to complete the entire MEA (warm-up and modelling problem) within the 

50-minute lesson. The remaining five goals (D, E, F, G and H) and their associated 

orientations and resources emerged from Adam’s first debriefing interview. Figure 3 

shows the core conflict between Adam’s desire to implement the entire MEA (goal C) 

and his desire to prepare students for upcoming tasks (goal A). Goal A was supported 

from two core directions by a complex, connected network of seven goals. In the first 

instance, goals B, E and F supported Adam’s desire to ensure students understood all 

the content (goal G) as they contribute to enhanced understanding through 
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student-centred participation, a structured approach to learning provided by the teacher 

and a meaningful context. The second influence on his decision making came from 

Adam’s desire to align the MEA with the NCEA curriculum (goal D), which also 

strongly supports his goal to prepare his students well for future tasks. Both of these 

directional influences on goal A were supported by goal H, to use the MEA for revision 

purposes, and the cluster of goals caused him to proceed slowly through the warm-up 

so students would be prepared for the modelling problem itself. This left his other goal, 

C, to complete the warm-up and modelling problem within the allotted lesson time 

alone, unsupported and eventually unachieved. 

 

Figure 3: Connections between seven of the goals and the isolation of goal C. 

DISCUSSION 

The recent ICMI study on task design reminds us that issues surrounding task design 

and teacher classroom implementation of tasks are complex but crucial to address. The 

challenges facing the teacher are highlighted in implementation of MEAs due to the 

greater variability of approach and possible student interpretation. This makes higher 

demands of the teacher in order to align the written MEA curriculum with the enacted 

one. Our study supports Stein et al.’s (2007) model of curriculum phases and confirms 

that teacher orientations play a crucial role in curriculum alignment. A teacher like 

Adam wants students to feel that they are able to tackle tasks successfully (Smith, 

2000) and hence he believes he needs to prepare them thoroughly. However, this desire 

brought Adam’s ROG into conflict with the MEA writer’s ROG. The latter includes 

the belief that the warm-up should enable students to start the modelling phase of the 

MEA but then they need to struggle with it in order to learn. Adam’s goal was to 

remove the necessity for this struggle by thorough preparation, and hence his decisions 

led to the lack of alignment. Other contributing factors included Adam’s inexperience 

with the content and approach of the MEA and his unfamiliarity with both the 

mathematical content and the approach to be employed. Hence, although the time 

available was sufficient to cover the material in the MEA he did not utilise it in the 

manner he intended. A second, strong influence on Adam was the constant context of 

student preparation for the national assessment of the curriculum (NCEA). His belief 

that he should align the MEA work with this if at all possible led to an inability to 

separate the lesson from the wider assessment context. Hence, he decided to include as 

a substantial part of the lesson a revision component that aligned the enacted 
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curriculum with the NCEA one, but caused a misalignment with the MEA curriculum. 

Thus, out of concern for his students, he was unable to reduce the amount of taught 

content in the warm-up, and hence the time spent on it, in order to allow the students 

time to struggle with the modelling activity in the MEA. 

This case study of Adam’s teaching suggests that including a mechanism for 

post-implementation lesson discussion in professional development could assist 

teachers to become more aware of their orientations and goals and the influence these 

have on decision making and curriculum alignment. Professional development activity 

that promotes such awareness may be one way to encourage pedagogical change. We 

believe that outcomes like those presented here could also be used to assist with lesson 

implementation, to motivate teacher discussion, and hence could supplement a teacher 

guide.  
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WHEN UNDERSTANDING EVOKES APPRECIATION: THE 

EFFECT OF MATHEMATICS CONTENT KNOWLEDGE ON 

AESTHETIC PREDISPOSITION 

Hartono Tjoe 

The Pennsylvania State University 

 

This study explored the problem solving experience of pre-service teachers in finding 

the greatest common factor and the least common multiple using many different 

approaches. In particular, it examined the effect of pre-service teachers’ mathematics 

content knowledge on how they chose their preferred approach and how they valued 

the most efficient approach. The findings indicated that the most efficient approach 

was appreciated only if such approach was reasonably understood by these 

pre-service teachers. 

INTRODUCTION 

Aesthetic values play a central role in experts’ mathematics problem solving 

experience (Silver & Metzger, 1989). Typically, a problem solving approach is 

considered “beautiful” if it is particularly clear, simple, and unexpected. Beginning 

problem solvers have also demonstrated the ability to develop and favour certain 

problem solving approaches often considered more efficient than others (Silver, 

Leung, & Cai, 1995). Nonetheless, little is known about the extent to which beginning 

problem solvers’ mathematics content knowledge influenced how they chose their 

preferred approach and how they valued the most efficient approach. In particular, 

does an aesthetic appreciation for the most efficient approach necessitate certain 

understanding of that approach? Is it possible to appreciate the most efficient approach 

if one lacks the understanding of problem solving using many different approaches? 

Does knowing more than one approach allow for more flexibility in problem solving? 

The purpose of this article is to investigate the effect of pre-service teachers’ 

mathematics content knowledge on their aesthetic predisposition in their problem 

solving experience involving problems of finding the greatest common factor (GCF) 

and the least common multiple (LCM) of two numbers. It begins with the theoretical 

background on the benefits of problem solving using many different approaches and 

the mathematics aesthetic aspect of experts’ problem solving practices, as well as 

examples of beginning problem solvers’ conceptions of what it means for an approach 

to be efficient. In connection with the instruments used in the methodology, several 

approaches for finding the GCF and LCM are discussed. The article continues with the 

findings and consequent analysis, and concludes with pedagogical recommendations 

that promote the habit of mind of creative problem solving and the mathematics 

aesthetic appreciations. 
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THEORETICAL BACKGROUND 

In recent years, mathematics problems solving using many different approaches has 

drawn more attention than before (Leikin & Levav-Waynberg, 2007). Some 

researchers, in fact, considered such practice to be beneficial for students’ mathematics 

learning experience. 

Silver et al. (2005) believed that students “can learn more from solving one problem in 

many different ways than [they] can from solving many different problems, each in 

only one way” (p. 288). They particularly advised students interested in mathematics 

to obtain more experience in problem solving with many different approaches. They 

regarded such experience as having “the potential advantage of providing students 

with access to a range of representations and solution strategies in a particular instance 

that can be useful in future problem-solving encounters” (p. 288). They also 

considered the use of many different approaches in order to “facilitate connection of a 

problem at hand to different elements of knowledge with which a student may be 

familiar, thereby strengthening networks of related ideas” (p. 288). 

Tabachneck, Koedinger, and Nathan (1994) recognized the purpose of adopting many 

different approaches in problem solving. They argued that on its own, each approach 

might entail disadvantages and weaknesses. In order to overcome these, they 

recommended students operate a combination of approaches, instead of counting on 

only one approach. More specifically, they maintained that students could benefit from 

employing this learning style in mathematical problem solving. In addition to teaching 

to solve one problem with many approaches, psychologists encouraged teaching a 

coherent interrelation among those approaches (Skemp, 1987; De Jong et al., 1998; 

Van Someren et al., 1998; Bodemer et al., 2004). Equally important, Reeves and 

Weisberg (1994) recommended showing students many analogical problems or 

examples concurrently. On the whole, cognitive psychologists took a positive stance 

on problem solving using many approaches, as did mathematics education researchers. 

Given the many possible different approaches to solve the same problem, a decision to 

choose one approach over the many other approaches may be less than arbitrary. 

Aesthetic aspects were particularly considered in many studies connected with experts’ 

preference in problem solving approaches. 

Silver and Metzger (1989) assessed the role of the aesthetics in a study involving 

university professors in mathematics. They found that these expert problem solvers 

displayed signs of aesthetic emotion. On one occasion, a subject resisted the 

temptation to resort to the use of calculus in solving a geometry problem, 

acknowledging the possibility of a “messy equation” (p. 66). Only after some 

unsuccessful attempts to seek a geometric approach did the subject concede to solving 

the problem using calculus. Although successful, he felt that “calculus failed to satisfy 

his personal goal of understanding, as well as his aesthetic desire for ‘harmony’ 

between the elements of the problem and elegance of solution” (p. 66). On another 

occasion, having solved another geometry problem algebraically, the same subject 
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appeared unsettled, recognizing that a geometric approach could be “more elegant” (p. 

66). 

Dreyfus and Eisenberg (1986) were interested in exploring whether students 

considered aesthetic values of mathematical reasoning in their problem solving 

approaches. Their study involved college-level mathematics students who had been 

rigorously prepared in advanced mathematics courses. They were tested on several 

carefully chosen mathematics problems which involved many different approaches not 

immediately apparent to average students, yet readily accessible with high school 

mathematics knowledge. After completing the test, students were presented with 

approaches that were considered elegant by expert mathematicians. 

Dreyfus and Eisenberg (1986) discovered that not only were the students not able to 

supply elegant approaches in the test as they had been expected to, but they were also 

not able to recognize the differences between elegant and pedestrian approaches. 

Furthermore, when presented with elegant approaches, they showed no enthusiasm and 

found them no more attractive than their own approaches. In other words, they had no 

sense of aesthetic appreciation. Dreyfus and Eisenberg (1986) concluded that 

mathematics instruction in classroom settings lacked an emphasis on reflective 

thinking, especially aesthetic value. 

Sinclair (2004) analysed the role of aesthetic values from several conceptual insights. 

She drew examples from existing empirical findings such as those by Dreyfus and 

Eisenberg (1986) and Silver and Metzger (1989). In one of her interpretations of their 

work, she suggested that “mathematicians’ aesthetic choices might be at least partially 

learned from their community as they interact with other mathematicians and seek 

their approval” (Sinclair, 2004, p. 276). Furthermore, she indicated that mathematical 

beauty was only feasible in the process “when young mathematicians are having to join 

the community of professional mathematicians—and when aesthetic considerations 

are recognized (unlike at high school and undergraduate levels)” (p. 276). 

Nevertheless, few studies have demonstrated that beginning problem solvers might 

actually be capable of recognizing mathematical “beauty” from the standpoint of 

efficiency. Nesher, Hershkovitz, and Novotna (2003) investigated students’ choices of 

approaches to solving algebra problems. Specifically, they were interested in ninth 

grade students’ use of independent variables when solving algebra word problems. 

These word problems involved a situation with three unknown quantities whose sum 

was known. In interviewing the students, the researchers found that the students’ 

choices of independent variables were mainly influenced by the order in which the 

quantities were described in the word problems. At the same time, students favoured 

independent variables with the smallest quantity in relation to the other two quantities 

discussed in the problems. By doing so, students unconsciously revealed their natural 

inclination to working with whole numbers as opposed to rational numbers. To some 

extent, students were capable on their own of constructing the notions of the more 

efficient approach in problem solving. 
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METHODOLOGY 

This study involved 37 pre-service teachers (31 female, 6 male, age 20-24) in an 

elementary (age 5-12, grade K-6) education program at a large, urban university. These 

37 pre-service teachers were enrolled in a mathematics content course in which the 

researcher was the instructor. Four approaches for the GCF and four approaches for the 

LCM were introduced to these pre-service teachers during the instruction time of two 

50-minutes sessions. 

Using an example of finding the GCF and LCM of 24 and 36, the eight approaches are 

discussed as follows. The first approach for finding the GCF is the Set Intersection 

Method where given all factors of 24 (e.g., 1, 2, 3, 4, 6, 8, 12, and 24) and 36 (e.g., 1, 2, 

3, 4, 6, 9, 12, 18, 36), the common factors of 24 and 36 are 1, 2, 3, 4, 6, and 12, of which 

12 is the largest. The second approach for finding the GCF is the Prime Factorization 

Method where after expressing 24 and 36 in their prime factor exponential forms (e.g., 

24 = 2
3
∙3

1
 and 36 = 2

2
∙3

2
), the GCF consists of the prime factors with the smaller 

exponents (e.g., 2
2
∙3

1
 = 12). The third approach for finding the GCF is the Repeated 

Subtractions Method where the GCF is obtained by repeatedly subtracting the smaller 

number from the larger number until both numbers are equal (e.g., 

GCF(24,36)=GCF(36-24,24)=GCF(12,24)=GCF(24-12,12)=GCF(12,12)=12). The 

fourth method for finding the GCF is the Euclidean Algorithm Method where the GCF 

is obtained by repeatedly dividing the larger number by the smaller number until a 

remainder of zero is obtained (e.g., 36÷24=1R12, 24÷12=2R0, and thus, GCF is 12). 

The first approach for finding the LCM is the Set Intersection Method where given 

some multiples of 24 (e.g., 24, 48, 72, 96, 120, 144, …) and 36 (e.g., 36, 72, 108, 144, 

…), the common multiples of 24 and 36 are 72, 144, …, of which 72 is the smallest. 

The second approach for finding the LCM is the Prime Factorization Method where 

after expressing 24 and 36 in their prime factor exponential forms (e.g., 24 = 2
3
∙3

1
 and 

36 = 2
2
∙3

2
), the LCM consists of the prime factors with the larger exponents (e.g., 2

3
∙3

2
 

= 72). The third approach for finding the LCM is the Build-up Method where after 

expressing 24 and 36 in their prime factor exponential forms (e.g., 24 = 2
3
∙3

1
 and 36 = 

2
2
∙3

2
), the LCM is obtained by building up the prime factors to the larger exponents 

(e.g., because 2
2
∙3

2
 has more threes than 2

3
∙3

1
, we build up from 24 = 2

3
∙3

1
 to have the 

same number of threes as 2
2
∙3

2
, making the LCM 2

3
∙3

2
 = 72). The fourth approach for 

finding the LCM is using the Theorem Method which states that the product of two 

numbers is equal to the product of their GCF and LCM (e.g., because the GCF of 24 

and 36 is 12, LCM of 72 is obtained by dividing 24×36 by 12). 

After the instruction, the pre-service teachers were evaluated by means of a quiz and a 

survey. In a quiz of 12 problems, problems 1, 2, 3, and 4 involved finding the GCF of 

45 and 75 using the first, second, third, and fourth approaches, respectively. Problems 

5, 6, 7, and 8 involved finding the LCM of 45 and 75 using the first, second, third, and 

fourth approaches, respectively. Problem 9 and 10 involved finding the GCF and LCM 

of 12 and 18 using any method. Problem 11 and 12 involved finding the GCF and LCM 

of 2,873 and 3,757 using any method. Each problem in the quiz was scored as 1 if the 
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correct answer was supported by clear explanations and logical arguments; otherwise, 

it was scored as 0. Thus, the quiz score ranged from 0 to 12. In the survey of two 

questionnaires, they were asked about their preference of finding the GCF and LCM 

based on their problem solving experience. They were also required to write one or two 

paragraphs explaining any criteria they identified for their choices of preferred 

approaches, as well as providing a comparison and contrast analysis of the different 

approaches for finding the GCF and LCM. 

FINDINGS 

Based on the survey, the first, second, third, and fourth approaches of finding the GCF 

were preferred by 2, 7, 6, and 22 pre-service teachers, respectively. The first, second, 

third, and fourth approaches of finding the LCM were preferred by 3, 20, 5, and 9 

pre-service teachers, respectively. 

Although the majority of the pre-service teachers recognized that the Set Intersection 

Method for finding the GCF and LCM was “clunky” and “only works for small 

numbers,” they agreed that such method was conceptually the more “natural” way of 

making sense of the GCF and LCM. The Prime Factorization Method for finding the 

GCF and LCM was the more “familiar” approach that most pre-service teachers 

“learned in grade school.” The pre-service teachers considered the Euclidian 

Algorithm Method the most efficient approach for finding the GCF because it “works 

for any numbers, including large ones” and “simplifies the steps in the Repeated 

Subtractions Method.” On the other hand, the Build-up Method was not favourable 

because it was viewed as less efficient than the Prime Factorization Method. While the 

Theorem Method was not the most popular approach, those who preferred it said it was 

the most efficient and “easiest” approach “if you figure out the GCF beforehand, 

especially for big numbers.” 

Supposing that the Euclidian Algorithm Method and the Theorem Method were the 

most efficient approaches for finding the GCF and LCM, respectively, as the 

pre-service teachers assessed in general, it was apparent that those who preferred either 

of those two approaches performed well above those who preferred other approaches. 

The average scores of all problems of the pre-service teachers who preferred the first, 

second, third, and fourth approaches of finding the GCF were 4, 6.7, 6.6, and 9.4, 

respectively. The average scores of all problems of the pre-service teachers who 

preferred the first, second, third, and fourth approaches of finding the LCM were 8, 

7.6, 8, and 11, respectively. 

In relation to their understanding of the most efficient approaches for finding the GCF 

and LCM, the pre-service teachers’ performance on problems 4 and 8 (problems 

involving the most efficient methods for the GCF and LCM, respectively) was highly 

indicative of their likelihood of preferring those most efficient approaches. The 

average scores of problem 4 of the pre-service teachers who preferred the first, second, 

third, and fourth approaches of finding the GCF were 0, 0.1, 0.1, and 0.8, respectively. 

The average scores of problem 8 of the pre-service teachers who preferred the first, 



Tjoe 

5 - 254 PME 2014 

second, third, and fourth approaches of finding the LCM were 0.3, 0.1, 0.2, and 0.9, 

respectively. 

Ten of the 12 pre-service teachers who successfully solved problems 11 and 12 

(problems involving finding the GCF and LCM of larger numbers) solved both 

problems using and chose as their preferred approach the Euclidian Algorithm Method 

or the Theorem Method. Only twelve of the 25 pre-service teachers who successfully 

solved problems 9 and 10 (problems involving finding the GCF and LCM of smaller 

numbers) but not problems 11 and 12 chose as their preferred approach the Euclidian 

Algorithm Method or the Theorem Method. In other words, the 

more-mathematically-able pre-service teachers were about twice as likely, in 

proportion to their group membership, both to solve them using and to prefer the 

Euclidian Algorithm Method or the Theorem Method to other approaches as the 

less-mathematically-able pre-service teachers. To this extent, the pre-service teachers’ 

mathematics content knowledge was a determining factor in their appreciation for the 

most efficient approach. 

Nevertheless, like the majority (23) of the 25 pre-service teachers who successfully 

solved problems 9 and 10 but not problems 11 and 12, 11 of the 12 pre-service teachers 

who successfully solved problems 11 and 12 was more likely to solve problems 9 and 

10 (problems involving finding the GCF and LCM of smaller numbers) using either the 

Set Intersection Method or the Prime Factorization Method than any other approaches. 

Evidently, the more-mathematically-able pre-service teachers appeared to be more 

flexible in choosing problem solving strategy, depending on the level of difficulty of 

the problems, in particular, the magnitude of the numbers involved in the problems. 

This, to some extent, demonstrated, from a point of view of number theory, a similar 

notion of the “apparently counter-intuitive inverted aptitude-strategy relationship” 

based on the findings by Roberts, Gilmore, and Wood (1997): the pre-service teachers 

who were more fluent in the more sophisticated approaches for finding the GCF and 

LCM (e.g., the Euclidian Algorithm Method and the Theorem Method) ingeniously 

avoided the use of such sophisticated approaches when solving simpler problems. One 

explanation to this flexibility might be that these more-mathematically-able 

pre-service teachers consciously attended to one attribute of an elegant approach, 

namely, simplicity (Silver & Metzger, 1989): simpler problems could and should be 

solved using a more elementary strategy (e.g., the Set Intersection Method or the Prime 

Factorization Method), instead of a more advanced strategy (e.g., the Euclidian 

Algorithm Method or the Theorem Method). 

Indeed, some of them explained that “I only began to see why we need to learn many 

different approaches until you gave us the last four problems [problems 9, 10, 11, and 

12] all at once,” while others deduced that “some methods work for some problems, 

while other methods work better for other problems.” Their explanations suggested, to 

some extent, that they valued the need to study more than one approach in order to 

better appreciate other approaches. It was clear that the more approaches they 

understood, the more positive they were towards the practice of problem solving using 
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many different approaches, and thus, the more mathematically mature they became to 

appreciate the various characteristics of a mathematically “beautiful” approach, 

including the idea of efficiency and simplicity. 

Such flexibility in adapting alternative approaches was yet not observed in the eight 

pre-service teachers who successfully solved problems 9 and 10 but not problems 11 

and 12. These less-mathematically-able pre-service teachers persisted in applying 

either the Set Intersection Method or the Prime Factorization Method to solve 

problems 11 and 12, albeit unsuccessfully. While the Set Intersection Method could be 

viewed as the more “natural” way of conceptualizing the GCF and LCM, this evidence 

suggested, to some extent, that such approach was realized by these 

less-mathematically-able pre-service teachers more at the procedural level, rather than 

at the conceptual level. 

CONCLUSIONS AND DISCUSSIONS 

The current study explored the relationship between pre-service teachers’ mathematics 

content knowledge and their preferred approaches for finding the GCF and LCM, as 

well as their predisposition to favour mathematically “beautiful” approach. Two major 

findings were observed. First, the more-mathematically-able pre-service teachers were 

more likely than the less-mathematically-able pre-service teachers to recognize the 

most efficient approach. An aesthetic appreciation for the most efficient approach 

appeared to necessitate a certain level of understanding of that approach; to some 

extent, it was not possible to appreciate the most efficient approach if one lacked the 

understanding of problem solving using many different approaches. Second, the 

more-mathematically-able pre-service teachers were more likely than the 

less-mathematically-able pre-service teachers to adaptively vary their problem solving 

strategies to accommodate the level of difficulty of the problems. The more tools they 

could work with to solve a problem, the more options they had when reflecting to 

decide which tool would be appropriate for which situation. 

Two pedagogical recommendations might be proposed. First, mathematics learning 

experience, perhaps as early as the elementary school level, could involve problem 

solving using many different approaches. Given sufficient exposure to a variety of 

different methods to solve the same problem involving the same mathematics concept, 

beginning problem solvers might become not only fluent in many different problem 

solving approaches but also creative in looking for novel problem solving approaches 

and flexible to recognize the appropriateness of utilizing certain problem solving 

approaches in solving particular situations. Second, aesthetic appreciations towards 

mathematical “beauty” could be nurtured to young children, even if they might only 

concern with the idea of efficiency in terms of time and the number of steps to solve a 

problem. To this end, mathematics teachers could promote classroom discussions that 

required students to compare and contrast different problem solving approaches. 
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The purpose of this study is to develop design principles for crafting tasks that will 

encourage conjecturing and proving in the context of elementary number theory at the 

undergraduate level. From the analyses of the written work of 46 prospective 

mathematics teachers on a task designed according to these principles, we think that 

there is potential to build on and refine from these principles for other undergraduate 

mathematics courses. 

INTRODUCTION 

Paul Erdös, one of the greatest mathematicians of the twentieth century, and certainly the 

most eccentric … believed that the meaning of life was to prove and conjecture. 

(Schechter, 2000) 

Most mathematicians would agree that making conjectures and then proving them is an 

indispensable component of practicing mathematics. The acts of conjecturing and 

proving also have immense educational value. The NCTM Principles and Standards 

for School Mathematics states that school programs at all levels should enable students 

to “recognize reasoning and proof as fundamental aspects of mathematics; make and 

investigate mathematical conjectures; develop and evaluate mathematical arguments 

and proofs.” (NCTM, 2000, p. 56). This is echoed by Lin et al. (2012, p. 308) who 

argued that “tasks of conjecturing and proving should be designed to be embedded into 

any level of mathematics classes in order to enhance students’ conceptual 

understanding, procedural fluency, or problem solving.” In addition, it would seem 

that for these acts of conjecturing and proving to be actualised in schools, it is even 

more imperative that prospective mathematics teachers should learn them in their 

mathematics training. This paper describes an attempt to develop design principles for 

crafting tasks that will encourage conjecturing and proving in an elementary number 

theory course for undergraduate prospective teachers.   

BACKGROUND 

It is widely accepted that the act of proving enhances students’ mathematical concepts 

and reasoning (Hanna, 2000), however the enactment in the curriculum sometimes 

result in students possessing a distorted view of what constitutes a mathematical proof. 

Selden (2012) suggests that the requirement to construct two-column geometry proofs 

may be partially responsible for some students’ perception that proofs are always 

constructed in a linear fashion. Hoyles (1997) argues that students see little meaning 
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and purpose in the act of proving mathematical statements, especially those which they 

already assumed to be true. Schoenfeld, after a series of studies exploring students’ 

understanding of geometry, formulated these erroneous students’ beliefs: (1) The 

processes of formal mathematics (e.g. “proof”) have little or nothing to do with 

discovery or invention. (2) Students who understand the subject matter can solve 

assigned mathematics problems in five minutes or less. (3) Only geniuses are capable 

of discovering, creating, or really understanding mathematics (1988, p. 151).  

One possible remedy to address these wrong perceptions is to provide students with 

opportunities to formulate and prove their own conjectures (Lin et al., 2012). As 

teacher educators, we recognize that correcting these perceptions in prospective 

teachers is a crucial step in arresting the propagation of these erroneous beliefs. The 

design of suitable tasks to elicit these dispositions from the prospective teachers is an 

important step towards this end. 

This study arose from the efforts of the first author – henceforth referred to in the first 

person singular pronoun – to design tasks to promote conjecturing and proving in an 

undergraduate elementary number theory course for prospective teachers. It is widely 

accepted that elementary number theory provides an appropriate context for 

undergraduates to learn proofs and engage in conjecturing (Ferrari, 2002; Selden & 

Selden 2002; Zazkis & Campbell, 2006). Thus I incorporated into the course problem 

solving tasks that explicitly required the prospective teachers to engage in conjecturing 

and proving. The tasks were designed according to these principles: (1) In line with the 

content emphasis of the course, the problem should require the content and techniques 

typical to undergraduate number theory courses; (2) The problem should lend itself to 

the motivation for prospective teachers to actively propose conjectures that is part of 

the process of solving the problem; in other words, we avoid problems that are too 

closed-ended – such as the conventional proof problems where the statement to be 

proven is given and thus there is no room for conjecturing; (3) the problem should be 

set at the right ‘level’; it should not be deemed too inaccessible for most of the students 

to the point that they do not feel encouraged to even try conjecturing; on the other hand, 

there should be sufficient cognitive demand in the problem to render the task of solving 

meaningful; (4) the problem should be unfamiliar to the prospective teachers and not 

easily found in public media. This is to reduce the likelihood of prospective teachers 

resorting to duplicating solutions found elsewhere and as such blunt their motivation to 

attack the problem through conjecturing and proving for themselves.  

In crafting these design principles, I relied on prior experiences teaching this course. It 

is heartening to note that these principles were in line with the characterisation of open 

problems as described by Furinghetti and Paola (2003), as well as several of the 

principles proposed by Lin et al. (2012). While the principles they stated were generic 

in nature, my motivation in deriving the design principles were for their specific 

relevance in the teaching of undergraduate-level number theory.  
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DATA SOURCE AND THE PROBLEM SOLVING TASK 

The aim of our study is to find out whether a problem crafted based on the design 

principles stated in the previous section will be efficacious, that is, whether it will bring 

about productive conjectures and motivation for proving these conjectures in the 

prospective teachers’ attempts at the problem.  

This study took place in a first year undergraduate number theory course for 46 

prospective teachers. The undergraduate programme for these prospective teachers is 

structured in such a way that they first learn mathematics content before they learn the 

pedagogical aspects concerning the teaching of the subject. Thus, during their first 

year, the academic profiles of these prospective teachers are typical to that of an 

undergraduate mathematics major.  Prior to this course, these prospective teachers had 

already read introductory calculus and introductory linear algebra. In addition, the first 

two weeks of this 13 week number theory course were devoted to methods of proof.  

Our data is taken from the following problem solving task assigned to the prospective 

teachers near the end of the course:  

Problem: An L-Shaped number is one that can be written as a difference of two squares. 

For example, 3 = 2
2
-1

2
 and 21 = 5

2
-2

2
 are L-Shaped numbers but 1 and 2 are not. Note that 

we do not consider 0 as a square. Can you describe as completely as possible, which 

natural numbers are L-Shaped numbers? (You should include proofs as necessary.)  

A diagram illustrating the geometric interpretation of L-shaped numbers (Figure 1) 

accompanied the description of the task.   

 

Figure 1: Geometric interpretation of L-Shaped numbers. 

The prospective teachers were given two weeks to complete the task on a practical 

worksheet, an instructional scaffold designed to develop problem solving disposition 

based on Pólya’s problem solving model (Pólya, 1945) and Schoenfeld’s problem 

solving framework (Schoenfeld, 1985). It contains sections that explicitly guide 

students to use the Pólya stages. The practical worksheet was used as part of the 

prospective teachers’ task as it provided a useful aid for their conjecturing and proving 

in the process of solving the problem. An account of how the practical worksheet was 

used to develop problem solving disposition in a previous iteration of the same number 

theory course can be found in Toh et al. (in press).  

It is clear that the task coheres with the design principles mentioned in the previous 

section: (1) an essential step in the complete solution require parity arguments which is 

a typical technique in number theory courses – and this point will be elaborated in the 
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context of discussion of solutions later; (2) the open nature of the problem requires the 

subjects’ active proposal of conjectures; (3) there are multiple entry levels into the 

problems – such as proceeding geometrically first, or just listing examples to observe a 

pattern – and thus encourage the prospective teachers to make good attempts at 

conjecturing and proving; (4) To the best of my knowledge, this problem is not found 

in the open media. In fact, this problem is a substantial adaptation from another 

problem I came across in the Singapore Mathematical Olympiads.     

ANALYSIS OF PROSPECTIVE TEACHERS’ WORKSHEETS 

All except one prospective teacher submitted their solution attempts. Their worksheets 

were analysed and coded according to whether they made one or more of three 

conjectures that are productive towards the complete solution of the problem, and 

whether they were able to provide a valid proof of their conjectures. 

Possible Conjectures Made the 

conjecture 

Provided valid 

proof 

All odd numbers, with the exception of 1, are 

L-shaped numbers 

43 34 

All even numbers which are multiples of 4, with 

the exception of 4, are L-shaped numbers 

39 22 

All even numbers which are not multiples of 4 are 

not L-shaped numbers 

15 3 

Table 1: Conjectures made and proved by prospective teachers. 

About conjecturing 

Most of the prospective teachers began by listing examples of L-shaped numbers and 

attempted to seek patterns from the list. All but two of the prospective teachers 

managed to observe that all odd numbers that are greater than 1, are L-shaped. A total 

of 39 prospective teachers also made the second conjecture that every even multiple of 

4, with the exception of 4, are L-shaped.
1
 Figure 2 provides an example of a 

prospective teacher who wrote the two conjectures clearly. It is noteworthy that – as we 

anticipated under Design Principle (3) – entries made into the problem include the 

technique of listing and geometrical approaches. 

                                           
1
 A mathematical point: Both 1 and 4 are not considered L-shaped numbers because of the explicit 

requirement that 0 is not a square. This additional constraint caused some difficulties for a small 

number of student teachers. However, since we were interested in the broad conjectures made by the 

student teachers, we did not make any distinction between students who included or ignored these 

two exceptional cases. 
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Figure 2: Prospective teacher formulating two conjectures. 

About proofs 

Almost 80% of the 43 prospective teachers managed to prove their conjecture that all 

odd numbers are L-shaped. For the second conjecture, a smaller albeit still significant 

56% of those who made the conjecture provided valid proofs. Examples of correct 

proofs of the two conjectures are given in Figure 3.  

Among the prospective teachers who failed to produce a valid proof of their 

conjectures, more than 75% chose to tackle the problem from the algebraic definition 

of an L-shaped number as n = a
2
 – b

2
. They then proceeded to consider all the possible 

parities of a and b which lead to the conclusion that L-shaped numbers are either odd or 

multiples of 4. These are actually the converses of the first two conjectures shown in 

Table 1; in other words, instead of proving that every odd number and every multiple of 

4 is an L-shaped number, they showed that an L-shaped number must be some odd 
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number or some multiple of 4. It is possible that some prospective teachers were not 

aware of the differences. Another explanation for this discrepancy between proof and 

conjecture is perhaps the lack of sufficient resources to prove their conjectures.  They 

focused on the definition of L-shaped numbers and attempted to deduce whatever 

implications they could, and stopped once they arrived at some plausible conclusions, 

without checking whether their conclusions were aligned to their conjectures. This is in 

line with the observations of Selden et al. (2010) of some students’ preference for 

immediately examining the hypothesis without considering the conclusion to be 

proved.   

 

 

Figure 3: Examples of correct proofs of the two conjectures. 

Only 15 out of 45 prospective teachers explicitly stated, in some form or other, the 

third conjecture that even numbers which are not multiples of 4 are not L-shaped. 

Proving this conjecture – together with the previous two – would have completed the 

solution to the problem. We believe there are two plausible reasons for the relatively 

small number of students who stated this conjecture: the first is related to the problem 

of distinguishing a statement and its converse, as discussed earlier; the second was the 

given instruction to “… describe as completely as possible, which natural numbers are 

L-Shaped numbers?” Prospective teachers may interpret it literally that they need not 

consider those numbers which are not L-shaped. 
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DISCUSSION 

We set out to study how prospective teachers would respond to a problem that was 

meant to encourage conjecturing and proving. We crafted the problem based on the 

design principles as stated in an earlier section of this paper. As seen from Table 1, we 

note that most of the prospective teachers were able to formulate correctly the first two 

conjectures and a majority managed to provide a valid proof. We derive 

encouragement from this result. We interpret this finding to mean that there is potential 

in these design principles in developing problems that will be helpful for prospective 

teachers to practise conjecturing and proving. In future research, we intend to replicate 

these principles and perhaps refine them to elicit better responses from the prospective 

teachers. 

We also notice that the reason a significant proportion of prospective teachers failed to 

provide a correct proof was due to their attempts at proving the converse instead. This 

finding reveals a gap in prospective teachers’ ability to make a distinction between 

necessary and sufficient conditions of a mathematical statement. From the perspective 

of teacher educators, there is a need to respond to this phenomenon. The responses can 

be in these forms: (1) In the regular teaching of mathematics courses, there should be 

more opportunities for prospective teachers to make judgments of statements and their 

converses; (2) in the design of the problems, we should be cognisant of these gaps in 

their knowledge. The errors made in confusing the necessary and sufficient conditions 

are opportunities for us to address these deficiencies. In general, we can include this in 

the list of design principles for problems: We should take into account prospective 

teachers’ errors in the choice of problems so that their solution attempts would reveal 

the errors and thus provide a motivation for us to address them accordingly. 
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This report focuses on key elements of teaching occurring during intensive, one-to-one 

instruction with 3
rd

- and 4
th
-graders. The study involves six cases in all, each 

consisting of video records of up to eight lessons, each of 30-45 minutes’ duration, 

resulting in the analysis of about 33 hours of video data. A resulting framework of four 

stages of analysis of one-to-one teaching is presented and the stage ‘During solving a 

task’ is elaborated according to students’ responses: correct, partly correct, incorrect, 

and no response. Three subcategories pertaining to an incorrect response are 

described and two are exemplified via cases drawn from the data. The cases exemplify 

how the framework can be applied to analyse or inform intervention instruction and 

highlight its theoretical and practical importance. 

One-to-one tutoring, particularly by expert tutors is widely acknowledged as a 

powerful method for promoting students’ learning gains (Bloom, 1984; Chi, Roy, & 

Hausmann, 2008; Cohen, Kulik, & Kulik, 1982). However, the reasons for the 

effectiveness of expert tutors are relatively unexplored. Thus it is worthwhile to 

research the instructional strategies of expert tutors during highly interactive 

one-to-one instruction.  

LITERATURE REVIEW AND THEORETICAL FRAMEWORK  

Accordingly, this study focuses on the pedagogical skills that teachers use in 

one-to-one instruction when responding to particular situations, such as scaffolding 

and providing explanations (Chi, Siler, Jeong, Yamauchi, & Hausmann, 2001). In this 

study the one-to-one instruction is conducted by expert teachers who could 

conceivably be referred to as expert tutors. From here on in this paper we refer to them 

as teachers. In describing and illustrating key features of intervention instruction, 

Wright, Martland, Stafford and Stanger (2002) provided a set of 12 teacher 

behaviours—key elements of one-to-one teaching. These are micro-instructional 

strategies that teachers use during highly interactive one-to-one teaching. More 

recently, a set of eight additional key elements has been developed (Wright, 2010). 

Examples of key elements include pre-formulating a task, that is, statements and 

actions by the teacher, prior to presenting a task to a student, that have the purpose of 

orienting the student’s thinking to the coming task; post-task wait-time, that is, the 

teacher’s behaviour in providing sufficient time after posing a task for the student to 

think about and solve the task; and within task setting change, that is, a deliberate 
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action on the teacher’s part in changing a setting during the period when the student is 

attempting to solve a task.  

Ewing (2005) documented the characteristics of one-to-one teaching used by four 

Mathematics Recovery (MR) (Wright, 2003) teachers by analysing videotaped 

excerpts of their MR teaching sessions. These characteristics include scaffolding, 

double bind, illusion of competence, pre-formulating and reformulating questions, post 

question wait-time, vague or ambiguous questioning, questioning and prompting, and 

communication. Munter (2010) found that key elements such as ‘post-task wait-time’ 

and ‘child checking’ have a significant positive effect on students’ learning. In 

considering teaching in general, as distinct from the teaching of arithmetic in 

particular, teacher behaviours such as scaffolding, post-task wait-time and child 

checking are well documented in research literature (e.g. Anghileri, 2006; Bliss, 

Askew, & Macrea, 1996; Grandi & Rowland, 2013; Hmelo-Silver, Duncan, & Clark, 

2007; Van Es & Sherin, 2002). 

This study focuses mainly on teaching whole-number arithmetic for the 3
rd

 and 4
th

 

grade because most of the teacher behaviours mentioned earlier in the literature 

(Ewing, 2005; Munter, 2010; Wright et al., 2002) were developed by investigating MR 

intervention teaching of 1
st
 grade students. The arithmetic content for intervention 

students at 3
rd

 and 4
th

 grade differs significantly from that at 1
st
 grade. Thus a focus on 

3
rd

 and 4
th

 grade students enables a review and extension of the existing framework. In 

this study, a key element of one-to-one teaching refers to the smallest unit of analysis 

of teaching with the following distinctive features. It is: (i) purposeful with the 

intention that it will lead to significant learning; (ii) ubiquitous in one-to-one teaching; 

and (iii) judged by experts to embody quality teaching. 

Research aims and research questions 

The study aims to: (i) illuminate the nature of observable teacher behaviours in the 

interactions between a teacher and a student; and (ii) develop a framework for 

analysing one-to-one teaching in whole-number arithmetic to 3
rd

 and 4
th

 graders. The 

study addresses the following research questions. RQ1: What are the key elements in 

one-to-one intervention teaching? RQ2: How can a framework of key elements be 

used to analyse one-to-one teaching?  

METHODOLOGY 

A qualitative research methodology is used to gain insight into the nature of observable 

teacher behaviours in teacher-student interactions in intensive, one-to-one teaching. 

Teacher behaviours are regarded as the central phenomena requiring exploration and 

understanding (Creswell, 2012). Considering that the nature of this investigation is to 

target phenomena (i.e., teacher behaviours), a phenomenological approach is adopted 

(Van Manen, 1990). Grounded theory method (Glaser & Strauss, 1967; Strauss & 

Corbin, 1994) is also used to discover patterns and theories through analysis of the 

teacher-student interactions in one-to-one teaching sessions.  
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The method used for this study is the collective case study (Stake, 2000). The 

participants consist of four teachers and six students. For two teachers, one student 

only was selected and for the other two teachers two students were selected. The four 

teachers were selected from a pool of approximately 50 teachers in the Mathematics 

Intervention Specialist Project (MISP) (Ellemor-Collins & Wright, 2011) and were 

regarded by MISP leaders as being particularly competent in intervention teaching. 

Thus ‘purposeful sampling’ strategies (Lincoln & Guba, 1985) constituted the basis for 

selecting the six case studies. The primary data source for this study consists of six sets 

of videotaped lessons involving one-to-one instruction in whole-number arithmetic. 

Each set consists of up to eight lessons, each of 30-45 minutes’ duration, conducted 

over a period of 12 weeks resulting in approximately 33 hours of video for analysis. 

The video data provide a rich corpus of teaching and enables a significant investigation 

of key elements of one-to-one teaching. The authors systematically observed each 

teacher-student pair in a context of one-to-one intervention teaching in order to capture 

the nature of the teacher behaviours.  

Data analysis 

A standard method of analyzing teaching is to review repeatedly, the recording of 

teaching sessions and characterise each teaching moment in terms of the teacher’s 

behaviours. Incorporating Van Manen’s analytical method (1990), a methodological 

approach for analysing large sets of videorecordings (Cobb & Whitenack, 1996) and a 

model for analysis of video data (Powell, Francisco, & Maher, 2003) were adopted in 

this study. The videos were transcribed and then coded with respect to the key elements 

of one-to-one teaching by using the NVivo 10 software program. Thus this study 

involved a systematic study of the teacher behaviours in one-to-one intervention 

teaching described in the literature review and endeavoured to identify additional 

teacher behaviours considered to be significant. 

RESULTS  

The extended list of key elements 

Table 1 lists two sets of key elements. Set A were described in research literature prior 

to the current study and are included in order to test their viability for future analyses of 

key elements. Set B arose during the analysis phase of the current study and therefore 

are likely to be useful for future analyses of key elements. Examples of the key 

elements in Set B include recapitulating which refers to a situation where the teacher 

summarises and states again a student’s contribution during solving a task; stating a 

goal refers to a situation where the teacher summarises the recent progress and makes a 

statement about what needs to be practised more or what needs to be done next; 

re-posing the task refers to a situation where the teacher restates the task in order to 

help the student fully understand the task. It happens when the student generally shows 

that they cannot solve the task because they have lost track of some of the details of the 

task.  The key elements in Set B complement the key elements in Set A and this results 

in a framework for analysing one-to-one teaching as follows. 
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Set A Set B 

Scaffolding before 

Scaffolding during 

Introducing a setting 

Pre-formulating a task 

Reformulating a task 

Post-task wait-time 

Within-task setting change 

Screening, color-coding and flashing 

Directing to check 

Affirming 

Querying a correct response 

Explaining 

Changing a task format 

Recapitulating  

Giving a meta-explanation 

Confirming and highlighting a correct 

response 

Re-posing the task 

Rephrasing the task 

Stating a goal 

Referring to a setting 

Asking ‘what do you notice?’ 

Querying an incorrect response 

 

Table 1: Extended list of key elements of one-to-one teaching. 

Key elements of one-to-one teaching: a reformulation  

Before posing a task

1. Introducing a setting

2. Referring a setting

3. Pre-formulating a task

4. Scaffolding before 

5. Stating a goal

Posing a task

1. Reformulating a task

2. Screening, color-coding and 

flashing

During solving a task

Responding to a correct 

response

Responding to a partly 

incorrect response

Responding to an incorrect 

response

1. Querying a correct response

2. Giving an affirmation

3. Confirming and highlighting 

a correct response

1. Scaffolding during

2. Post-task wait-time

3. Directing to check

4. Querying an incorrect 

response

5. Re-posing the task

6. Rephrasing the task

7. Asking ‘What do you 

notice?’

8. Within-task setting change

After solving a task

1. Recapitulating

2. Explaining

3. Giving a meta-explanation

4. Confirming and highlighting a 

correct response

5. Giving an affirmation

Responding to an impasse

 

Figure 1: An Experimental Framework for analysing one-to-one teaching. 
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In teacher-student interactions, the teacher might monitor and respond to the student’s 

response. This is sometimes called a ‘teacher move’ or ‘tutor move’ (e.g. Chi et al., 

2001; Lu, Eugenio, Kershaw, Ohlsson, & Corrigan-Halpern, 2007). Figure 1 sets out 

the Experimental Framework that resulted from analysis of the teacher-student 

interactions in the data. There are four stages of the teacher dealing with a task: 

A–Before posing a task; B–Posing a task; C–During solving a task; and D–After 

solving a task. Collectively, these constitute the first or highest level of analysis. As 

well, the stage of C–During solving a task, is construed as four categories of teacher 

responses: C1–Responding to a correct response; C2–Responding to a partly correct 

response; C3–Responding to an incorrect response; and C4–Responding to an impasse. 

For each category, there are specific key elements that teachers usually use to respond 

to the student’s response.  

This report will focus on Category C3. This refers to a teacher’s moves in response to 

an incorrect response on the part of the student, particularly in situations where the 

student is not using any strategy or seems unable to respond. This results in actions by 

the teacher relevant to the task and typically has the purpose of helping the student to 

solve the task. The situation is described as follows. The teacher initially poses a task. 

The student responds incorrectly. Three cases corresponding to C3 are:  

Case C31: The teacher then responds by directly correcting the student’s 

response. This typically applies to answer-focused tasks where the teacher 

focuses on getting the student’s answer but the nature of the task is such that it 

cannot not be elaborated in terms of a strategy. 

Case C32: The teacher assists the student indirectly by asking or allowing the 

student to check their last response. Student checking in this way typically 

involves a resort to an easier or simpler strategy. 

Case C33: The teacher provides assistance which results in a less-challenging 

task. In this situation, the teacher typically uses one or more key elements such 

as scaffolding during, post-task wait-time, querying an incorrect response, 

rephrasing the task, re-posing the task, and within-task setting change. This 

typically applies to strategy-focused tasks (Munter, 2010) where the teacher is 

interested in a particular strategy that the student used to solve the task. 

Examples for C31 and C33 follow.  

Example C31. Amilia-Karral: Ten pluses 

A: (Opens a workbook on table) What we are going to do in your book is to 

practice doing some of these (indicates the ten pluses) and some writing. 

What’s ten plus four? (Points at the sum 10+4) 

K:  Ten plus four is fourteen. 

A:  Can you write that down?  

K:  (Writes down the answer in the workbook – 41) 
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A:  Okay. (Gets the pen from Karral) When we write fourteen, we write a one 

first, not a four first (corrects the writing in the workbook).  

K:  Oh! 

Example C33. Amilia-Mia: Jumping forward to a decuple 

A: Okay. (Opens workbook on table) I’m going to tell you a number and I 

want you to tell me what the next ten is and how many to get there. (Writes 

in workbook: 48; 63; 27; so on) Does that make sense? 

M: Yep. 

A: Like we were doing yesterday. (Keeps filling page with examples). Okay. 

(Finishes writing and hands the workbook to Mia). 48. What’s the next ten? 

M: Fifty. (Immediately) 

A: Gorgeous! How many to get there? 

M: Um. Eight. (Looks at Amilia) 

A:  Forty-eight. Think about what forty-eight would look like. How many more 

will make fifty? 

M: (After 7 seconds) Wouldn’t it be... forty-nine? No… nine? (Looks at 

Amilia) 

A: Let’s have a look. (Takes out some ten-frames) 

M: Oh. It is seven. (Going to writes down the answer in workbook) 

A: No. Stop. Stop. There’s my eight (Places out an 8-dot ten-frame). There’s 

my forty (Places out four 10-dot ten-frames) 

M: Oh. Two. (Immediately) 

A:  Two more. (Nods) 

M: (Writes down the answer in workbook) 

DISCUSSION 

The framework of key elements enables micro-analyses of highly-interactive 

one-to-one instruction. The two cases exemplify how the framework can be applied to 

analyse or inform intervention instruction. Example C33 illustrates that a teacher can 

use many key elements effectively in responding to each particular situation and each 

particular response from the student. Before posing the task, the teacher uses the key 

element of ‘pre-formulating a task’ in order to orient the student’s thinking to the 

coming task. When the student responds incorrectly to the task, the teacher first uses 

‘rephrasing the task’ by expressing the task in an alternative way to make the meaning 

clearer to the student, and then allows the student time to think about the task by using 

‘post-task wait-time’. The student again gives an incorrect response. The teacher then 

changes the setting from a formal written task to one using ten frames, by using 

‘within-task setting change’, to help the student solve the task. The student comes up 
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with the right answer and the teacher then uses the key element ‘confirming and 

highlighting a correct response’. 

CONCLUSION AND RECOMMENDATIONS 

The key elements are of practical importance because they are frequently observed in 

one-to-one intervention teaching. They are of theoretical importance because 

understanding them better can lead to more effective ways to characterize the range of 

instructional methods teachers use. Thus the framework enables a deeper 

understanding of the teacher-student interactions in particular learning domains. As 

well, the framework is likely to be applicable across the range of student attainment 

and also to small group and whole class instruction. 

Further research could focus on three questions: (i) to what extent are different key 

elements prevalent for different teachers, that is, do some key elements occur more 

frequently for some teachers than others? (ii) to what extent can particular teachers be 

characterised in terms of the teacher behaviours, that is, to what extent can different 

teaching styles be determined? and (iii) to what extent are some key elements used 

more in particular learning domains? 
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This study aims to explore how undergraduate students in mathematics and 

engineering professions make sense out of graphs representing periodic and repeated 

but non-periodic motions. In this study, making sense out of graphs means interpreting 

graphical features and describing a situation that could be represented by them. The 

data was collected by means of a questionnaire administered to 132 participants. Our 

findings indicated both students’ misconceptions, as every repeated motion is periodi- 

cal, and their strong willingness to assign practical meaning to mathematical entities.  

INTRODUCTION 

Any motion that repeats itself identically at regular intervals is called 'periodic motion'. 

As we observe the periodic motion shown on a graph, we are looking at a function that 

repeats periodically and sinusoidal functions are of this type (King, 2009). The notion 

of periodicity is very close to students' experiences since it appears in nature all around 

us (the annual motion of the earth around the sun, the tides etc.). Moreover, periodicity 

is a considerable part of the scientific culture of every student in his secondary and 

post-secondary studies. Particularly, students come to terms with this notion in 

different school subjects such as mathematics and science (oscillations in physics, 

periodic functions in trigonometry and calculus) and in post-secondary studies (Fourier 

series, signal processing etc.). Hence, connecting aspects of periodicity from different 

school disciplines is important for students’ future studies in mathematics, science and 

engineering. Even though periodicity is central in a variety of disciplines, an extensive 

search of the literature shows that there is a limited number of studies that focus on its 

understanding. These studies conclude that most students' concept image of periodicity 

is based on time-dependent variations (Shama, 1998) while usually they consider any 

repetition as periodical (Buendia & Cordero, 2005). 

The present study is part of a research project that intends to take a close look at 

pedagogical practices adopted in mathematics and physics classrooms in Greek 

secondary schools on topics that are related to periodicity. To meet the aims of this 

inquiry, in the first phase of our project we analyzed Greek physics and mathematics 

textbooks on selected chapters in the topics of periodic motions and periodic functions 

respectively (Triantafillou, Spiliotopoulou & Potari, 2013). This analysis has indicated 

that, when aspects of the notion are introduced, physics adopt a holistic perspective on 

defining periodic motions, whereas mathematics adopt a point-wise perspective on 

defining periodic functions (f(x) is a periodic function if there is a positive number p, 

the period, such that f(x+p)=f(x) for all x in the domain of the function f). We also 
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highlighted some common practices in the analysis of the proposed exercises among 

the subjects, for example, aspects of periodicity are tackled almost exclusively by 

means of sinusoidal functions and graph related practices were mostly on sketching 

graphs of particular situations. Furthermore, in physics, functions such as 

f(x)=e
bx

sin(ωx) that fluctuate in a periodical way on the x-axis, are considered as 

functions that model periodic motions. This disciplinary understanding of periodicity 

could encourage incorrect generalizations, such as, any type of repetition is periodical. 

The aim of the present study is to see if all the above issues will continue to influence 

undergraduate students' understanding of aspects of periodicity when confronted with 

the task of making sense of graphical representations of repetitive motions. Our 

research questions are: (RQ1) How do undergraduate students interpret graphs of 

periodic motions and do they distinguish them from graphs of repeated but 

non-periodic motions? (RQ2) What type of examples of motions do they provide that 

could be represented by graphs of repeated functions? (RQ3) Are there any statistically 

significant differences between undergraduate students in Mathematics with 

undergraduate students in Engineering professions, when responding to tasks 

exploring the above issues? 

THEORETICAL FRAMEWORK 

We adopt the viewpoint that thinking about physical phenomena could enrich and 

promote the development of mathematical knowledge (Buendia & Cordero, 2005). 

Within the school curriculum, graphic competencies are central practices in 

mathematics and science classrooms (Roth & McGinn, 1997). Different theoretical 

perspectives have been adopted for analyzing students’ making sense of graphs in the 

mathematical context. From a cognitive perspective, graph sense means “looking at the 

entire graph (or part of it) and gaining meaning about the relationship between the two 

variables and, in particular, of their pattern of co-variation” (Leinhardt, Zaslavsky & 

Stein, 1990, p. 11). Under the embodied cognition perspective, bodily activities are 

involved in conceptualizing graphical representations as dynamic processes (Nunez, 

2007) while from a cultural-semiotic perspective, sensual experiences are important in 

making sense of motion graphs (Radford, Demers, Guzman & Cerulli, 2004). 

Moreover, the conceptual movement from graphs to a situation that they represent is 

termed ‘translation’ which presupposes the practice of ‘making sense out of graphs’ 

(Roth, 2004, p. 77). In the engineering context, translating domain-specific graphs is a 

central action since graphs mediate collective scientific activities such as 

communicating and constructing facts (Roth & McGinn, 1997). In the present study, 

‘making sense out of graphs’ means interpreting graphical features and describing a 

situation that could be represented by them.  

METHODOLOGY  

The participants were 132 undergraduate students (85 male and 47 female). 19 students 

were studying Mathematics, 70 were studying Informatics and 43 were studying 

Electronics. The students were at different stages of the courses (58 were in the second 
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semester, 45 in the fourth semester and 29 in their sixth or remaining semesters). All 

mathematics students fall into the last case. At undergraduate level, all students in the 

above fields encounter aspects of periodicity in their first year Calculus and Fourier 

analysis courses. Fourier analysis is a prerequisite course for studying signal 

processing in Informatics and Electronics. Thus, for all the participants, periodicity is 

considered as an important scientific notion not only for their academic studies, but for 

their professional life as well. 

The tasks: The data was collected by means of a questionnaire administered to the 

participants at the end of the academic year 2012-13. The questionnaire was completed 

in one teaching hour during a mathematics course in the case of the engineering 

students and during a course in mathematics education in the case of students in 

mathematics. The questionnaire was based on three different practices relating to 

periodicity (exemplifying; making sense out of graphs; and modelling periodic 

motions). In the present study we analyze participants’ responses to the tasks given in 

making sense out of graphs that represented repeated motions. In this case, four graphs 

were given to the students that all represent displacement in meters versus time in 

seconds. Table 1 shows the four graphs and the resources used. 

Graph 1 (Buendia & 

Cordero, 2005) 

Graph 2 (Buendia & 

Cordero, 2005) 

Graph 3 (Greek mathematics 

textbook) 

Graph 4 (Greek physics 

textbook) 

    
Table 1: The Graphs 

Graph 1 and Graph 3 represent periodic motions while Graph 2 and Graph 4 represent 

non-periodic motions. Moreover, Graph 1 and Graph 2 represent non-continuous 

motions. Two tasks were given to the students referring to each graph separately. Task 

1: Does this graph represent a periodic motion? Justify your answer. In this task, 

students are asked to focus on how the repetition is accomplished in order to 

distinguish the periodic from the non-periodic motions, as well as justifying their 

response. Task 2: Provide an example that could be described by this particular graph. 

In this task the students were asked to assign to each graph a motion that could be 

represented by it.  

Data analysis: Qualitative content analysis has been employed for the analysis of 

students’ responses in both tasks (Mayring, 2000). All the categories emerged from our 

continuous interrogation of the data. We separated students’ responses in 

distinguishing periodical from non-periodical motions (Task 1a); justifying their 

responses (Task 1b); analyzing the situations that were created by the students in 

respect of the salient features of the graphs they took into consideration (Task 2a); and 

categorizing the type of examples used by the students (Task 2b). Subsequently, we 

reported the frequency and the valid percentage of students’ responses on the 

categories that emerged from both tasks for the four graphs. Finally, in order to 
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compare mathematics and engineering students’ responses on the emerging categories 

we used the goodness of fit test at 0.05 level of significance.  

FINDINGS 

We present the results of our analysis of the categories that emerged from the students’ 

responses on the two tasks in the case of each graph and we provide some characteristic 

examples. Finally, we present the cases of statistical significant differences between 

the mathematics and the engineering students. In Tables 2, 3, 4 and 5, we present the 

percentages of students’ responses in the categories that emerged from each task across 

the four graphs and the number of students that responded to the particular item. 

Task 1a: Does this graph represent a periodic motion? Two categories emerged 

from the analysis of this task: the graph represents a non-periodic motion; and the 

graph represents a periodic motion. 

Categories 
Graph 1 Graph 2 Graph 3 Graph 4 

113 Participants 107 Participants 109 Participants 114 Participants 

Non-Periodic 23.89 74.77 7.34 32.46 

Periodic 76.11 24.30 92.66 67.55 

Table 2: % of students’ responses across categories and across graphs on Task 1a 

Almost three out of four students identified periodicity in Graph 1 and non-periodicity 

in Graph 2 while this percentage increases in the case of Graph 3 since more than nine 

out of ten students identified it as a periodic graph. Graph 4, which represents a 

repeated but a non-periodic motion, seemed to confuse students a lot since almost 

seven out of ten considered it to be a periodic graph. Comparing mathematics and 

engineering students’ responses the goodness of fit test showed statistical significant 

differences between them only in the case of Graph 4 (Pearson Chi square value 9.527 

and p= 0.009) since more than half of them (11 out of 17) considered it a case of 

non-periodic motion. However, this result does not change our hypothesis that students 

have difficulties distinguishing periodic from non-periodic motions.  

Task 1b: Justify your answer (in task 1a). The following categories emerged from 

the analysis of students’ responses: Referring to general patterns of repetition, relating 

variations in x-y axis, focusing on continuity issues, using the formal definition of 

periodic functions, and reasoning on a specific situation.  

Categories 
Graph 1 Graph 2 Graph 3 Graph 4 

59 Participants 46 Participants 58 Participants 63 Participants 

Referring to general patterns of 

repetition 23.73 23.91 32.76 15.87 

Relating variations in x-y axis 37.29 26.09 41.38 61.90 

Focusing on continuity issues  13.56 15.22 1.72 1.59 

Using a formal definition 0.00 2.17 1.72 0.00 

Reasoning on a specific situation  25.42 32.61 22.41 20.63 

Table 3: % of students’ responses in the categories and across graphs on Task1b 
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In both cases of periodic and non-periodic graphs, students preferred to justify their 

answers by relating patterns of repetitions between the x-axis and y-axis rather than 

referring to general patterns of repetition. It is interesting that the same type of the 

above justifications were used for conflicting answers for the same graph. Two 

characteristic responses of the type of General pattern in the case of Graph1 are the 

following: “It is periodic because we have a repetition” (st91_elec) and, “It is not 

periodic since there is not any harmony” (st59_elec). In the following examples we 

could identify inconsistencies in the students’ responses in the case of Graph 4 when 

relating patterns of variations in the x-axis and the y-axis: “It is periodic but we can see 

that as the time passes it dwindles and we are led to a standstill” (st101_elec); or “It is 

a periodic motion that decreases (its amplitude diminishes) all the time” (st68_elec). 

The contradictions in students’ responses were not realized by them. Focusing on the 

continuity issue is used as a warrant to take the stance that Graphs 1 and 2 are both 

non-periodic. For example, st19_math notices: “Ι do not know if this graph preserves a 

periodic behaviour because in its second position it has different values from left and 

right”. Only st6_math reasons by using the definition of periodic functions in order to 

accept that Graph 3 is periodic and Graph 2 is non-periodic. For example, Graph 3 “is 

periodic with period T=6 seconds since f(x+T)=f(x) for every x in the interval [0,14]. 

In the case of Graph 4, the same student changes his argument as follows: “It is 

periodic since any sinusoidal function is periodic”. The last category is reasoning on a 

specific situation. These situations, in most cases, were the examples they provided in 

Task 2. This type of situated justification was common in students’ responses in all 

graphs and ranged from 20% to 30%. Some characteristic examples are: (Graph 1) “the 

body of the graph diverges from the starting point of motion and then always returns 

within 4 seconds, therefore the graph is periodic (st99_elec); (Graph 2) “the graph 

shows a person who, as time passes, only draws away from a point ‘a,’ therefore 

non-periodic” (st107_inf); and (Graph 4) “it is periodic because it represents the 

motion of the swing” (st129_inf). This indicates students’ need to set up a background 

for their justifications.  

Finally, comparing mathematics and engineering students’ responses on the emerging 

categories the goodness of fit test showed statistical significant differences between 

them only in the case of Graph 2 (Pearson Chi square value 11.138 and p= 0.025) since 

they rarely used situated type justifications.  

Task 2: Provide an example of motion that could be described by each graph.  

Task 2a: The following categories emerged from the analysis of the salient features 

that were taken into consideration when the students were asked to provide examples 

that could be represented by each graph: Enriched repeated motion when students 

considering the repeated behaviour and other characteristics emerging from the graphs 

(periodicity, piece-wise continuity, and the relation between the variables), Only 

repeated motions when students took into consideration only the repeated behaviour, 

Non-repeated motions when there was no-indication of a repeating motion in students’ 

responses, and no-motion when the example was not representing a motion at all. 
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Categories  Graph 1 Graph 2 Graph 3 Graph 4 

84 Participants 83 Participants 85 Participants 102 Participants 

Enriched repeated 

motions 
9.52 21.69 7.06 6.86 

Only repeated motions 55.95 31.32 67.06 79.41 

Non-repeated motions 15.48 35.55 12.94 0.98 

Non-motions 19.05 8.43 12.94 12.75 

Table 4: % of students’ responses in the categories and across graphs on Task 2a 

Creating a motion example of a piece-wise continuous function is very difficult but a 

few students managed to provide examples that could satisfy all the graphical features 

in these graphs. In this case, students used their kinesthetic experiences of ‘jumping’ or 

‘climbing stairs’ in order to respond to this task. Some typical examples of enriched 

repeated motions in the case of Graph 1: “ascending and descending jumps between 

uneven steps (st1_math)”; in the case of Graph 2 is: “someone who is climbing stairs” 

(st57_inf). Noticing the resemblance of Graph 2 with stairs and visualize the motions 

helped almost 22% of the participants to provide enriched examples. However, Graphs 

3 and 4 were more complicated since the students had to take into consideration the 

type of co-variance of the two variables in order to provide enriched examples. 

Particularly, Graph 3 refers to an object’s motion that moves with constant speed in 

different directions and makes a few seconds stops. A significant example for Graph 3 

is: “someone who is using a piece of gym equipment which is going to and fro with 

constant speed and stops for a few seconds” (st59_elec). Although many students used 

the swing example for Graph 4, a typical example in their physics classes, only a few 

managed to specify what the x-axis and the y-axis represent in this graph. This is the 

reason we have the least percentage of enriched cases.  

The number of students who provided examples of repeated motions but did not 

consider other graphical features was high (more than one out of two students) for all 

graphs besides Graph 2. Two characteristic ideas were met in their answers and the 

corresponding examples for the graphs follow: (a) discontinuity was not taken into 

consideration (Graph 1) “it represents an elevator that is trapped going up and down 

between the second and fourth floor” (st3_math); (b) not specifying the x-y 

co-variance (Graph 3) “two people who are throwing a ball to each other” (st50_inf). 

The amount of students who provided examples of non- repeated motions was higher 

in the case of Graph 2, as for example: “a dog that goes hunting and increases its 

speed” (st71_elec). Some students provided examples that do not represent motions at 

all. These examples are mostly taken from their academic signal processing courses. 

The goodness of fit test did not indicate any statistical significant differences in 

mathematics students’ responses. Finally, students’ high participation in this task 

indicates their willingness to assign meaning to abstract mathematical entities. 

Task 2b: Kinesthetic students’ experiences seem to play a significant role in providing 

examples of repeated motions. So, we further analyzed the type of kinesthetic 

experiences they refer to and the categories emerged were: bodily actions when a 
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human agent performs the motion (an athlete running or a frog jumping), physical tools 

motions (a car is accelerating or a swing is oscillating), and vibrations of natural 

objects (a sea wave or a sound wave 

Categories 
Graph 1 Graph 2 Graph 3 Graph 4 

70 Participants 81 Participants 74 Participants 90 Participants 

Bodily actions 24.29 32.50 13.51 7.78 

Physical tools’ motions 72.14 63.80 81.09 64.44 

Vibrations of natural objects 3.57 3.70 5.40 27.78 

Table 5: % of students’ responses in the categories and across graphs on Task 2b 

Physical tools’ motions provided the context used by most students to translate the 

graphs to situations. The highest percentage of bodily actions examples was in the case 

of Graph 2 (32.5%). The highest percentage of physical tools’ motions (81%) was in 

the case of Graph 3. We interpret this result that most students consider that human 

actions are very difficult to model this type of motion graphs so they have changed the 

context of their example from bodily actions to physical tools’ motions. More than one 

out of four students used examples of vibrating natural objects (e.g. sea waves) in 

describing the case of Graph 4. The graphical image resemblance with traveling 

sinusoidal waves was the reason to use them as the context of their examples. We note 

that waves are functions of two variables, the displacement x and the time t (King, 

2013). Finally, the goodness of fit test showed high statistical significant differences in 

mathematics students’ responses in the case of Graph 2 (Pearson Chi square value 

13.547 and p= 0.001) since math students exclusively used examples of bodily motions 

when describing this graph. 

CONCLUDING REMARKS 

This study aims to explore how undergraduate students in mathematics and 

engineering professions make sense out of graphs representing periodic and repeated 

but non-periodic motions. Our findings indicate that conceptions such as “every 

repeated motion is periodic” or “any sinusoidal graph, even with decreasing amplitude, 

represents a periodic motion” dominate students’ understanding. Even mathematics 

students seem not to realize the above contradictions in their responses. 

However, students’ strong willingness to assign meaning to mathematical entities is 

proved both by their high participation in providing situations that could fit onto 

motion graphs and by the fact that they use these situations as warrants for their 

justifications. In this case, the role of students’ kinesthetic experiences proved central 

both when they provided enriched examples of motions represented by the particular 

graphs and when they take the stance to change the context of the examples according 

to their perception of the graphical features represented. These findings show the 

embodied nature of mathematical thinking and the genetic relationship between the 

sensual and the conceptual in knowledge formation (Nunez, 2007; Radford et al., 

2004). Translating graphs into describing situations (Roth, 2004) seems to be an 

activity that attracts undergraduate students’ attention. Maybe such activities help 
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students to cope with the contradictions that arise between their divergent conceptions 

on periodicity. The formal mathematical tools, as the definition of periodic functions, 

seem to be not enough to change such perceptions even in the case of students who 

study mathematics. 
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Mathematics-related affect is told to predict choices concerning future studies, to 

correlate with performance, and to be of importance per se. Unfortunately, the affect 

towards mathematics is frequently reported to be low in several countries, and this 

contradiction cannot be solved before knowing more about its development. The 

objective of this study is to increase our knowledge about the timing of the affective 

factors getting worse, which is crucial for implementing interventions at a correct 

phase. We investigated a longitudinal data covering Finnish students’ affect during 

comprehensive school years (n=3502). As a result, it was found that enjoyment of 

mathematics is most likely to decrease during primary school years, whereas 

self-efficacy is most likely to decrease during lower secondary school years.  

INTRODUCTION  

Mathematics-related affect proves to be of importance for a number of reasons. It is 

told to predict choices concerning future studies, to correlate with performance, and to 

be of importance per se (Evans, 2006). Unfortunately, the affect towards mathematics 

is in many studies reported to become low during comprehensive school years in 

several countries (Lee, 2009). The international trend of decreasing affect is visible as 

well in Finland in spite of the country’s high performance level in recent PISA studies 

(e.g. OECD, 2010).  

Finnish education system is fairly non-authoritarian and non-competitive, and either in 

spite or because of that in international studies such as TIMMS 2011 and Pisa 2009, 

Finnish pupils’ learning achievements in mathematics have been very good (Mullis, 

Martin, Foy & Arora, 2012; OECD 2010). Still, regardless of the lack of strictness and 

the high performance level, in TIMMS 2011 study only one third of Finnish 4th 

graders’ (compared to the international mean of 48%) and one tenth of 8th graders’ 

(compared to international mean 26 %) emotions toward mathematics were positive. In 

order to understand such a contradiction, we need to acquire more knowledge about the 

development of affect during comprehensive school years. In other words, though 

affect is repeatedly reported not to be positive enough, we have not learned what the 

development that leads into that situation is.  

In general, the affect is high when we consider young pupils (Metsämuuronen, 

Svedlin, & Ilic, 2012; Tuohilampi, Hannula, &Varas, 2013). Yet, this cannot be seen 

only as a sign of success of the early years of schooling, as the affect is high among 

young pupils anyway because of the developmental stage they are living through. 
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According to Harter (1999), the general view of self is typically unrealistically positive 

in childhood. Interacting with peers, children start to evaluate their skills and 

appearance according to the reactions of others; this developmental phase places itself 

into early school years. Harter’s view is in line with Op ’t Eynde, de Corte, and 

Verschaffel (2002), who argue that affect becomes from what is “first told”. This 

means that if there is nothing that contradicts with given information (true or false), 

children tend to take it as true. Only when a contradiction appears, children have a 

reason to evaluate former affect, as well as given information in the light of former 

affect. Thus, as children get older, it is normal for the affect to become lower over time 

(i.e. more realistic) because of the development. Still, when it comes to mathematics, 

the affect becomes unnecessarily negative nearly worldwide (e.g. Hirvonen, 2012; 

Lee, 2009).  

Chapman (2002) has shown that making changes in affect structure can be hard work. 

The previous situation needs to be conflicted in a way that is noticeable for the 

individual before new information can change it. Further, Hannula (2006) argues that 

the beliefs (i.e. thoughts and conceptions that are true at least for the individual 

her/himself, but not necessarily logically justified) are more likely to change from 

positive to negative than vice versa, at least when it comes to mathematics-related 

beliefs. Thus, it is wiser to concentrate on keeping the affect on a reasonable level in 

the first place instead of trying to change the situation after letting it get worse. To be 

able to do that, it is important to be aware of the development of affect that happens 

accordingly when pupils construct their affect through social responses by significant 

others during primary school years. In particular, we need to know the separate 

affective factors, like self-related beliefs (cognitive dimension of affect, see Hannula, 

2011), or emotions (emotive dimension of affect, ibid.), distinctive development. So 

far we lack this information, because though being actively studied, 

mathematics-related affect has rarely been examined with a help of effective 

longitudinal data. Thus the dynamics of affect and its components have remained 

under examined. Yet, earlier studies in Finland have shown that grade 5 students have 

higher mathematical self-confidence than grade 8 students [n=3057] (Hannula, 

Maijala, Pehkonen, & Nurmi, 2005) and a longitudinal study indicates a decline in 

self-confidence from grade 5 to grade 6 and from grade 7 to grade 8 [n=191] (Hannula, 

Maijala, & Pehkonen, 2004).  

When it comes to gender differences regarding mathematics related affect, studies 

have produced very consistent results that indicate that across age and performance 

levels, female students tend to have lower self-confidence in mathematics than male 

students (e.g. Hannula, Maijala, Pehkonen & Nurmi, 2005; Leder, 1995). In Finland, 

the biggest difference between girls and boys appears regarding self-efficacy feelings 

despite no differences in achievement: independent of the performance level, girls 

experienced poorer self-efficacy than boys (Hirvonen, 2012). As this is the case, it 

seems likely that in Finland girls receive less positive or more negative feedback for 
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their mathematical skills from their social surroundings than boys, independent on 

their actual capability. 

For increasing our knowledge about the development of affect, this study aims to give 

answers to the following research questions: 1. How do mathematics-related cognitive 

and emotional affective factors develop from 3
rd

 to 9
th
 grade among Finnish students? 

2. Are there differences between girls and boys when it comes to mathematics-related 

affective components’ development? Carrying out this research will give us crucial 

information about the dynamics of mathematics-related affect. With that information 

we will be more capable to address the interventions at a correct phase. 

METHOD 

Mathematics-related affect can be defined in different ways. In this research we will 

use a model of Hannula (2011), wherein affect is separated into cognitive, emotional, 

and motivational dimensions of affect. In particular, we are interested in pupils’ beliefs 

of self-efficacy (cognitive dimension of affect) and enjoyment (emotional dimension 

of affect) with respect to mathematics.  

The data used in this study consists of 3 502 Finnish students (1 702 girls, 1 800 boys) 

who were followed throughout comprehensive school in its entirety regarding 

mathematics achievement and mathematics-related affect. The measurements were 

done at the beginning of third, sixth, and at the end of ninth grade (years 2005, 2008, 

and 2012, respectively). All students were selected by using the stratified sampling of 

the comprehensive schools, with a representation of different instruction languages 

(Finnish/Swedish), provinces and municipal groups (Cities/Population density 

areas/Rural areas). Not all the students could be followed during the whole data 

collection process, and the students that dropped out from the study were more 

commonly weak than high achieving. Thus the data, though being representative of all 

students in Finland, is slightly biased. This means that the results might be little bit 

more positive than what they would be having included all the weaker students in the 

following process.  

The attitude scale used in the different datasets is a modified version of 

Fennema-Sherman Mathematics Attitude Scales (Fennema & Sherman, 1976; 

Metsämuuronen, 2012). In this study, we discuss two factors of the used instrument, 

i.e. self-efficacy regarding mathematics and enjoyment of mathematics. With respect 

to different measurements, the wording of the items was slightly modified to fit to the 

examinees’ developmental stage. Spice items were as follows: “Mathematics is easy” 

(self-efficacy, first measurement), “Mathematics is an easy subject” (self-efficacy, 

second and third measurement), “I like to learn Mathematics” (enjoyment, first 

measurement), “I like to study Mathematics” (enjoyment, second and third 

measurement). A 5-point Likert scale was in use, but for the analyses the attitude 

scores were changed into percentages of maximum score. Hence, as the most positive 

case, the student would get 100 which is strictly 100% of the maximum score. As the 

most negative case, the students would get zero which corresponds with 0% of the 
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maximum score. The reliabilities of the attitude scores were high enough for accurate 

inferences (see Table 1). 

α reliability Grade 3 Grade 6 Grade 9 

Overall affect 0.86 0.88 0.92 

Self-Efficacy 0.79 0.82 0.88 

Enjoyment 0.88 0.89 0.90 

Table 1: The reliabilities of the affect scales in the three measurements. 

The analyses were done by calculating distributions of overall affect (self-efficacy + 

enjoyment) and its components (self-efficacy / enjoyment) with respect to different 

time phases, and by investigating gender differences by t-tests.  

Finnish children start going to school normally around the age of 7. Before that most 

children have a year of pre-schooling. Almost all schools are public and free of charge. 

The number of school hours per week in Finland is one of the lowest compared to other 

countries (23 hours per week is the minimum at 3
rd

 grade), and there are about 3 

mathematics lessons a week in the 3
rd

 grade. All teachers in Finland need to have a 

master’s degree in education. On primary level, each teacher teaches all or nearly all 

subjects, and pupils study all subjects in one group, whereas in lower secondary level 

the teachers are subject teachers, and though the group typically still stays the same all 

the time, the students move from one class to another depending on the subject. The 

profession of a teacher is fairly valued in Finland, and the salaries are slightly above 

the country’s medium (OECD 2012). In general, having a childhood without much 

competition is valued in Finland, but one the other hand the children are given lots of 

independence: even first graders may walk or cycle to school without an 

accompanying adult. 

RESULTS 

In the first measurement the pupils’ mathematics-related affect appeared high. The 

mean for overall affect score was 71%, enjoyment being slightly higher than 

self-efficacy (mean for enjoyment 72%; mean for self-efficacy 68%). On following 

years the development turned negative. The overall affect score decreased from 71% to 

60% by the second measurement, and to 52% by the last measurement.  

The decrease did not happen in similar vein regarding both of the affective dimensions. 

When examining the dimensions separately, it was found out that the decrease began 

stronger with respect to enjoyment. In first measurement, this dimension was at a high 

level (72%), but by the second measurement it had decreased to 54%. The decrease 

continued after that, but less dramatically: at the last measurement the dimension was 

at 47%. Regarding self-efficacy, the decrease was very reasonable between the first 

and the second measurement (from 68% to 66%) despite the decrease of the 

enjoyment. Instead, by the last measurement the self-efficacy decreased very clearly, 

becoming 57% of the maximum score (see Figure 1). 
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Figure 1: Development of affective dimensions from 3
rd

 to 9
th
 grade 

With respect to different genders, the development of affect was similar, but the 

decrease was more dramatic regarding girls. The degree of overall attitude was 

statistically significantly different in all the three measurements to the detriment of the 

girls. At the first measurement, the mean for girls was 68%, whereas the mean for boys 

was 72%. At the second measurement, the mean for girls was 57%, while for boys it 

was 64%, and at the third measurement the mean for girls was 50%, whereas the mean 

for boys was 54%. In all three measurements the difference between genders was 

statistically significant according to t-tests (the test values were t = 4.63, p < 0.001; t = 

10.29, p < 0.001; t = 5.02, p < 0.001 regarding the three measurements respectively). 

Examining the gender difference further according to the affective dimensions, it was 

seen that the difference was greater concerning the cognitive dimension of affect, and 

it was at its highest at the second measurement. The situation seemed less dramatic 

regarding the emotional dimension of affect. According to t-tests, the difference was 

statistically significant in all the three measurement regarding self-efficacy (the test 

values were t = 6.4, p < 0.001; t = 14.1, p < 0.001; t = 9.5, p < 0.001; covering the three 

measurements respectively); whereas the difference regarding enjoyment was largest 

at the second measurement, and disappeared by the last measurement (the test values 

were t = 2.3, p < 0.05; t = 5.2, p < 0.001; t = 0.2, p > 0.05 covering the three 

measurements respectively). 

DISCUSSION 

This study gives confirmation to the previous result that, as is the case internationally, 

Finnish students’ affect decreases rather dramatically during comprehensive school 

years. Further, perhaps the most important result of this study is that enjoyment of 
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mathematics is most likely to decrease during primary school years, whereas 

self-efficacy is most likely to decrease during lower secondary school years among 

Finnish students. There are also clear gender differences: the decrease is more dramatic 

among girls than it is among boys. As all this happens at the time when students 

construct their identity according to responses from significant others, it is likely that 

students in Finland are not getting the right kind of feedback regarding that 

construction. 

The decrease of enjoyment of mathematics during primary school years happens 

independent of pupils’ self-efficacy feelings: boys maintain their self-efficacy during 

primary school years, girls do not, yet both genders’ enjoyment decreases. As earlier 

studies indicate that student anxiety in Finland is low, it is not likely that enjoyment 

would be declining due to mathematics being too difficult. On the contrary, we suggest 

that the declining enjoyment is due to boredom, and this feeling may become socially 

shared. If looking from the perspective of social responses, it looks like either pupils 

get negative responses regarding how enjoyable mathematics is, or they do not get 

enough positive responses of the enjoyability of mathematics independent of their 

ability to do mathematics. What is the mechanism in Finnish schools that makes this 

happen? One plausible reason is that no matter the good performance level, teaching 

seems rather traditional in Finland. According to Joutsenlahti and Vainionpää (2010), 

teaching practices are largely determined by the textbooks, and the content of the 

teaching is fairly mechanic. This might lead into needless emphasis on routine tasks, 

which might further narrow creativity and ability to see mathematics as something 

interesting. Showing mathematics as a largely mechanical subject, consisting of 

routines determined by textbooks, may also increase the feeling that one has to have 

specific univocal skills to be able to work with it.  

The decrease of self-efficacy might be connected to the move from primary school to 

lower secondary school. The teaching is from there on given by subject teachers, and 

the change might be too challenging for many students.  The content of mathematics 

becomes more abstract, and the students start to notice that some classmates are able to 

reach the level of abstract thinking easily. Looking from the perspective of social 

responses, it is possible that because of subject teachers and the most capable students 

an average student starts to see mathematics unnecessarily challenging. If the students 

are used to mechanical, routine tasks wherein only one solution is possible, they might 

value too much finding a solution immediately. In that case it would be important for 

teachers to start emphasising the value of making progress with the tasks, so that also 

those students that cannot exceed to the solution easily can have experiences of success 

because of being able to proceed.   

In Finland it has been found that what is most valued by teachers, concerning their 

teaching, is students’ positive affect towards mathematics (Niemi, 2010). Yet, teachers 

feel they have challenges with class management and they wish to have smaller groups 

than they do, although the class sizes are fairly small in Finland (the average is 19 at the 

primary level; OECD, 2012). According to the results of this study, pupils have a 
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positive affect at the beginning of school, and the decrease comes concurrently with 

the school years. If there is a need for strong class management in Finland despite the 

fairly small groups and good performance level, we see this as a sign of social 

responses concerning mathematics learning being poor, affecting to pupils’ affect 

negatively. Thus there is a need for knowing what kind of working methods will help 

students to construct their affect based on more positive social responses by their 

significant others. 
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The aim of this paper is to build up an argument about the importance of a 

mathematical analysis of young children’s activity in relevant for the age educational 

tasks. Most of current approaches (psychological, social, and pedagogical) are limited 

to the study of the development of children’s thinking, paying less attention to the 

involved mathematical concepts. In the paper these approaches are briefly presented 

and an attempt is then made to analyse the mathematical activity within and beyond 

them. Finally, implications and some examples from a program of early mathematics 

aimed at developing authentic mathematical activity is provided. 

INTRODUCTION 

Research in early childhood mathematics education highlights its importance; young 

children, working in appropriate educational and pedagogical environments, show 

interest and have the potential to develop remarkable mathematical ideas (e.g., 

Mulligan, & Mitchelmore, 2013; van Oers, 2013; English, 2012; Gisburg et al., 2008; 

van den Heuvel-Panhuizen et al., 2008; Perry et al., 2008). Most countries provide 

considerable early mathematics education programs to support children in developing 

basic mathematical concepts, but also to encourage practice with processes (problem 

solving, reasoning, etc.), mental skills, routines of mind and creativity (Sarama & 

Clements, 2009).  

There are many perspectives -psychological, social, cultural, pedagogical and recently 

neurophysiological, which attempt to contribute to the understanding of early 

mathematics development but there is less reflection and research examining the 

mathematical nature of this development (Newton & Alexander, 2013). It is 

documented that children, through a range of relevant experiences, challenges and 

activities, are enabled to develop interesting ideas, but it remains ambiguous whether 

these are mathematical ideas and if young pupils reach to a level of thinking or acting 

in a mathematical way (which is the goal of most current curricula). Moreover, it 

appears that, despite the considerable amount of studies and proposals related to early 

childhood, there is less progress in school, i.e. teachers’ implementation of relevant 

approaches, tasks and materials.  

One of the key factors could be the lack of understanding of the mathematical meaning 

shaped in the classroom and developed by children. All the aforementioned approaches 

deal with issues having to do with ‘mathematics’: mathematical development, 

mathematical thinking, mathematical activity and so on.  But, how do we define and 

how do teachers understand and deal with the ‘mathematical’ part in these 
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expressions? How can a meaning, an activity or an outcome be characterized as 

‘mathematical' and how do young children apprehend it?  

In the present paper, pursuing answers to above questions, we attempt to take a more 

substantial look at the mathematical aspect of several proposals related to early 

childhood mathematics education. This way we hope to contribute in building up an 

argument about how mathematics itself is related to both learning and teaching and 

provides essential answers to early mathematics education. We fist present shortly 

different approaches (psychological, social, and pedagogical) related to this education 

and then we attempt to analyze the mathematical activity within and beyond them. 

Finally, we provide some examples of our proposal concerning a program and tasks 

aimed at developing authentic early mathematical activity.   

THEORETICAL APPROACHES IN EARLY MATHEMATICS EDUCATION 

After a long period during which early mathematics education was almost non-existent 

or was dealing with simplistic activities concerning numbers and shapes, widespread 

and extensive research gave rise to different scientific and educational approaches that 

contributed to changes in national curricula  with special recommendations for this 

section of mathematics education. 

Starting with Piaget and his psychological approaches, later researchers (Sarama & 

Clements, 2009) studied systematically young children's mathematical thinking and 

developed what they call “learning trajectories”. According to the authors:  

Learning trajectories are descriptions of children’s thinking as they learn to achieve 

specific goals in a mathematical domain, and a related, conjectured route through a set of 

instructional tasks designed to engender those mental processes or actions hypothesized to 

move children through a developmental progression of levels of thinking. (p. 17) 

This approach, based on a theoretical frame that the authors call ‘hierarchic 

interactionalism’, is focused on children’s’ thinking; thus there are activities and tasks 

related to the progression of this thinking and its relevant levels. The engagement of 

children with these tasks is supposed to lead them to some mathematical ideas, but the 

connection between children’s thinking and relevant mathematical concepts (or 

aspects of them) don’t appear so clear. For example, while a child recognizes a shape 

and discusses about it or uses it to compose a larger configuration, what part of the 

development of geometric knowledge does s/he access? How does s/he draw on the 

mathematical characteristics of the relevant concepts, objects, properties, 

relationships, definitions? 

On this matter, Levenson, Tsamir and Tirosh (2011), in their work about early 

childhood geometry, add a ‘mathematical view’ to the development of geometry, 

proposing the formation of geometrical concepts with the use of  the expression 

‘working definitions’ that children can use for identifying and showing figures 

properties, relationships, comparing and communicating. The researchers, based on 

Fisbein’s and Vinner’s work about concept images and concepts in general, attempt to 
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develop an approach of geometric figures in line with mathematical concept 

definitions. 

Important and systematic work on early mathematics was carried out by English 

(2012) and Mulligan and Mitchelmore (2013) who also worked on developmental 

aspects of children’s thinking. Their work was not limited to specific mathematical 

content domains such as arithmetic or geometry, but dealt with the structural elements 

of mathematics, examining and connecting them with children’s mathematical 

understanding. These studies constituted an important development that opened a new 

direction to early mathematics education, beyond numbers and shapes.  However, they 

also raise some concerns regarding access to mathematical ideas: working with 

patterns and common structures isn’t only a component of the mathematical activity 

that has to be combined with other actions to support children’s conceptual formation? 

From a socio-pedagogical perspective, the ‘Learning Mathematics in Play’ gave rise to 

important and interesting suggestions for early mathematics education. Typically, 

children play joyfully in game situations with mathematical features (Wager, 2013) or 

mathematical objects (like numbers or shapes), but these applications often end up 

with the need of the teacher’s involvement in order to ‘mathematize unintentional 

mathematical engagement in play’ (Van oers, 2013). The later focuses his work on the 

use of language and communication within the Cultural-Historical Activity Theory 

perspective. While his approach has a clear orientation to mathematical thinking 

development, communication is again only a part of the process of mathematization 

and would also need (undefined) teachers’ guidance for the appropriation of the 

relevant mathematical ideas. 

In general, there are still many questions concerning early mathematics education: it is 

true that important aspects of mathematics can be found all around, in everyday 

situations and be used to develop children’s mathematical learning; children are 

dealing with mathematical objects and situations and come to school with many 

mathematical ideas; they are acting in some mathematical content (counting, shape 

recognizing, measuring etc.) and are involved in actions and tasks that demand serious 

possesses, like problem solving, testing, explaining, reflecting, etc, using material and 

technology, with special mathematical features. However, are all these oriented to the 

development of mathematical thinking, knowing or acting? Do all these ‘teach’ them 

mathematics? Which part of what children do or we encourage them to do could be 

described as a well defined ‘genuine mathematical activity’? 

MATHEMATICAL ACTIVITY 

Teaching and learning of mathematics is not restricted to the development of 

mathematical concepts and procedures, but it mainly encourages the development of a 

human activity within situations and environments, institutionally formed by the 

educational system in schools. If we are interesting in developing this special human 

activity we need to define it: What is a mathematical activity? Which are its specific 

characteristics? What criteria can be used to evaluate whether an activity developed by 
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the students is or is not mathematical? Which problems, tasks or situations guide the 

development of this activity? 

We find many similar or complementary approaches to the issue of what constitutes 

mathematical activity (in early childhood or generally). Most researchers consider as 

mathematical all the activities that involve specific type of working – processing 

including problem posing and solving, creative and flexible reasoning, communicating 

with arguments and documentation, reflecting and generalizing. Freudenthal (1983) 

understands the mathematical activity as a way of modelling to address and deal with 

real situations, while Brousseau (1997) as finding appropriate solutions for 

situation-problems. However, some researchers point out that learning mathematics 

overpasses problem solving, modelling and doing mathematics and concerns mainly 

obtaining forms of reflection about the world in a specific historical and cultural way, 

different from other forms of thinking. For them, acting of solving a problem without 

further explanation or transfer to a more general framework is only an aspect of the 

mathematical development (Radford, 2006). 

Noss, Healy and Hoyles (1997) argue that mathematical meanings derive from 

mathematical connections that they consider as the important part of a mathematical 

activity (something that students usually do not learn to do). From another point of 

view, Ernest (2006) considers Mathematics as that area of human endeavour and 

knowledge that, more than any other uses a wide and unique range of signs and 

symbols; thus, he understands the process of symbolization as a basic part of 

mathematical activity and learning. In a different way, Steinbring (2005) addresses it 

as a dynamic link amongst situations – signs and concepts in his epistemological 

triangle. 

In general, different views about mathematical development converge to the view that 

students need to reach a way of thinking that involves habits and mental routines and 

forms a high-level processing. Hence, combining different approaches we could argue 

that mathematical activity constitutes a set of (what we can call) mathematical actions 

that, based on the previous references, are summarized in the following (incomplete) 

list: search for properties and relationships, recognition of patterns and common 

structures, analysis and synthesis in parts and unit parts, connections, links to 

language, representations, signs and symbols, explanations / justifications, reflections 

and generalizations,.... All these actions start with genuine questions, problems, 

unknown situations, games and involve conjecturing, solving, modelling, use of 

resources or tools, justification, metacognitive processes and formulations (e.g. 

Freudenthal, 1983; Brousseau, 1997; Radford, 2006; Perry & Dockett, 2008).  

From the previous presentation it becomes clear that the simple engagement of 

children with mathematical objects does not always evoke relevant mathematical 

activity; moreover the activation of children alone is not sufficient for the development 

of a mathematical action. Thus, the study of forms of engagement with actions and 

tasks that are related to mathematical activity and supports children’s mathematical 

development needs further exploration. 
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MATHEMATICAL ACTIVITY IN EARLY CHLDHOOD 

The idea that simple practice in a concrete and local level does not mean generalizing 

of mathematical ideas or concepts is an old one (e.g. Nunes & Bryant, 1996). This 

position becomes more complicated and incoherent for early childhood as at this age 

children need to work with concrete material in everyday situations. Van oers (2013) 

analytically highlights: 

Children evidently demonstrate behavior (like counting) that looks mathematical from the 

outside (as it is fairly in conformity with adult mathematical operations). These children, 

however, are often unable to apply this ‘knowledge’ in new situations, or answer questions 

about numbers…(p. 185) 

Young children dispose an impressive amount of intuitive knowledge about space, 

quantities, patterns, measures, etc. evidenced by research (Sarama & Clements, 2009). 

This evidence gives an argument about the nature of this knowledge: is it 

‘mathematical’, couldn’t it be just general, common or everyday knowledge, 

perceptual, kinesthetic, social, related to experiences, to needs, etc.? Certainly, this 

intuitive knowledge as well as the potential of young children to develop ideas and 

strategies, to find solutions or to communicate and explain could be seen as a base for 

the development of mathematical ideas. But at this age, if you don’t want to reduce 

mathematical knowledge to other conceptual development, we need to minutely study 

and analyze children’s activity in terms of mathematical work and outcome.  

In early mathematics education, one could often wonder about the mathematical nature 

of tasks or actions carried out by children. A situation, a material, a story or another 

activity (such as cooking) are frequently presented in the classroom and the teachers 

ask questions to see if the children know how to count, or to compare bigger or smaller, 

or to give some location, or find a pattern or compose – decompose figures, accepting 

all these as mathematical actions and results (e.g. Doverborg, et al., 2011; van den 

Heuvel-Panhuizen, 2008; Sarama & Clements, 2009). But, these cases could raise 

questions about the development of authentic mathematical activity.   

The special abstract nature of mathematics demands a long term development of each 

piece of knowledge, sometimes continuous but sometimes discontinuous, during 

which this knowledge in children’s minds is enriched, gets broader and is stabilized in 

a certain level (Confrey & Kazak, 2006). Thus, their teaching presupposes systematic 

experiences and activities from early age, during which the research or the teacher 

needs to follow not only the progress of children’s thinking but also the progress of the 

knowledge itself at this level of children’s thinking. The example of the use of ‘working 

definition’ in approaching geometric figures is very close to this position. 

Concerning educational tasks, the suggestions in early childhood mathematics 

education usually take into account the previous experiences and knowledge of the 

children, their environment, their interests, their needs and so on. But their design 

needs also to be orientated by a framework that can connect the mathematical content 
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with the tasks and children’s activity. Table 1 presents an example initiated by Keitel 

(2006) and adapted to early mathematical activity. 

Content Mathematical 

knowledge / 

meaning/ idea 

What connection with the mathematical knowledge / 

meaning/ idea that aims to be developed by the task? 

Does it concern new knowledge, method, approach, 

reconstruction or widening of an older one? What 

connections to preexisting knowledge? 

Task Kind of task Problem, realistic situation, project, research, testing, 

construction, model, data processing, representation, 

game, dramatization, implementation? 

Tools Representations/ 

material/ tools 

What kind of language or representation is used for the 

task? Symbolic, synthetic (common elements), 

authentic related to the task? What kind of tools can be 

used? What recourses? What connections or aids?  

Actions  Mathematical 

actions 

What actions are proposed? Are there mathematical: 

search for properties/ relationships, pattern/ structure 

recognition, analysis and synthesis, connections, links 

to representations, explanation / justification, reflection 

and generalization. Do the children look for general 

solutions, methods, rules, general ideas?  

Process Mathematical 

processes  

What possesses are encouraged? Memorization/ 

application or imitation? Problem solving, dealing with 

situations, modeling, justification, metacognitive 

process, formulation, evaluation, creation? 

Table 1: Questions for the design of tasks related to early mathematical activity. 

Attempting to implement this approach, we organized a complete mathematical 

program with relevant content and tasks for ages 5-6 and 6-7 (the whole program is 

uploaded in www.nured.auth.gr/dp7nured/?q=el/userprofile/42). Following are some 

examples related to this program. 

A PROGRAM DEVELOPING MATHEMATICAL ACTIVITY  

The design of the program is based on the study of a coherent progressive development 

of mathematical concepts and procedures, analysed in their structural components and 

related to children’s way of thinking. It aims at putting foundation in the basic concepts 

of the common mathematics curriculum through relevant tasks that encourage a high 

level mathematical activity for the target age group. Due to space limitation, we only 

present an example about Reflection Symmetry from the axis ‘Space and Geometry’, 

showing the focus on the mathematical aspects of the concept and the mathematical 

actions of children. 

Preschool children identify quite easily and rather intuitively reflection symmetry in 

geometric shapes and other situations.  Thus, the interest in working with this concept, 

even at this age, is not its holistic recognition in figures but its ‘mathematical’ approach 
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through (informal) understanding of its properties in symmetric shapes or symmetrical 

parts of a shape (same shape and size, equal distance from the axis and reverse 

orientation), with no formal presentation or teachers’ guidance. To achieve this, we 

suggest tasks in which a transparent paper with a symmetrical part of a drawing is 

provided and the children have to complete it with the other symmetrical part. The 

paper is transparent so, after finishing their work, the children can fold the paper and 

control if their construction is right.  

Depending on drawing and paper, the folding activity helps children realize one or 

more properties of symmetrical parts. For example, Figure 1 makes children 

understand that they have to draw 

figures in equal distances from the 

axis: figures are already drawn, in 

same size, shape and orientation. If, 

after folding, there is a mismatch, the 

children need to reconsider distances. 

Similarly, Figure 2 helps children 

understand both equal distances from 

the axis and change of orientation: figures are given (same size and shape) but they 

have reverse orientations. Mismatch after folding makes this change apparent.  

Although the overall teaching approach is far from being completed, systematic 

implementation and observations of young children have produced important evidence 

about the development of mathematical activity in them (e.g. Tzekaki & Ikonomou, 

2009; Tzekaki & Kaplani, 2013). In the case of symmetry, a set of relevant tasks 

enabled children to approach the properties of reflection symmetry and ‘formulate’ 

them in a way. An ongoing research examines the development of this generalization, 

as part of mathematical activity, both in symmetry and other contents. 
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This mixed-method, qualitative/quantitative study examined (a) how a constructivist- 

based intervention (CBI) effected adults’ learning of unit fractions and performance 

on whole-number (WN) or unit fraction (FR) comparisons and (b) brain circuitry 

implicated (fMRI) when processing these comparisons. The CBI used unit-iteration 

based activities to foster a shift in participants’ understanding of FR, from the 

prevalent, limiting “one-out-of-so-many-equal-parts” idea to a multiplicative relation 

conception and thus inverse magnitude relation among FR (1/n>1/m though m>n). 

Pre- and two post-intervention tests indicated CBI impact on decreased reaction time 

in comparing not just FR but also WN and differentiated brain regions implicated for 

each. Implications for theory testing and CBI impact on WN-FR links are discussed. 

BACKGROUNG AND CONCEPTUAL FRAMEWORK 

Alluding to President Obama’s (White House, 2013) BRAIN Initiative, this study 

examined how task design for brain research and teaching unit fractions, rooted in a 

constructivist perspective (Piaget, 1985), may impact brain processing when adults 

compare numbers. It focused on a milestone shift—from direct comparison of whole 

numbers (e.g., 8>3) to the inverse relationship among unit fractions (1/3>1/8 while 

8>3). At issue was (a) how a conceptually driven intervention, used for teaching adults 

who already knew the “inverse rule”, may impact their performance and (b) what brain 

circuitry would be activated to process the numerical comparisons (i.e., identify the 

neuronal basis for operating on whole numbers (WN) vs. on unit fractions (FR)). 

Cross-disciplinary work of neuroscientists and educators is a new trend. Initially, 

educators became interested in brain-based research (Westermann et al., 2007). Later, 

this unidirectional, neuroscience-to-education fertilization, has yielded collaboration 

and reciprocal scholarship (De Smedt et al., 2011). Five facets of brain research seem 

of interest to mathematics educators: (a) compare learning/thinking and brain 

functioning among different groups (e.g., child-adolescent-adult); (b) understand how 

learners perceive, process, and link symbolic (e.g., Arabic) and non-symbolic 

quantities; (c) develop/validate observation-based theoretical frameworks of thinking, 

learning, and teaching; and (d) test effectiveness of practices to promote learning (e.g., 

critical-yet-intractable domains like fractions). To-date, however, the differences in 

operating on WN to FR were studied in each discipline separately.  

Much brain research has focused on how it represents and processes numerical 

information. Dehaene’s seminal work (Dehaene, 1997; Dehaene et al., 2003) yielded a 

triple code model of human WN perception. In that model, Arabic numerals are 
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processed and represented in low-level visual cortical regions, numeric words in more 

anterior and language related cortical areas (lingual gyrus, perysylvian cortex), and 

analog magnitudes (e.g., a “number-line”) involve the Intraparietal Sulcus (IPS). In 

contrast, only a few studies focused on how the brain processes fractions (Bonato et al., 

2007; Ischebeck et al., 2009; Jacob & Nieder, 2009). One study demonstrated that 

when adults solve challenging tasks (e.g., 2/3-1/4), the WN triple code model seems to 

also pertain to FR (Schmithorst & Brown, 2004). However, research has not yet 

conjoined WN and FR into a single study, let alone used a MathEd conceptual 

framework to guide research questions and design. The present study addressed this 

lacuna, to advance knowledge that can explain difficulties and potential affordances 

provided by (a) common/different brain circuitry used for WN vs. FR and (b) how 

number recognition (“cue”) and comparison (operation) may impact processing, and 

hence learning, of FR. 

Conceptual Framework 

Von Glasersfeld’s (1995) scheme theory grounds this study. A scheme is considered a 

tripartite conceptual building block: a situation into which a person assimilates 

information (which triggers her goal), an activity for accomplishing that goal, and an 

expected result. Extending this work, Simon et al. (2004) proposed (a) anticipation of 

activity-effect relationship as a lens to delineate “conception”—a dyad comprising the 

last two parts of a scheme, and (b) reflection on this relationship (abbreviated as 

Ref*AER) as a mechanism underlying cognitive change. Ref*AER commences with 

assimilating a task into the situation part of an available scheme, which also sets one’s 

goal. The mental knowledge system recalls and executes the scheme’s activity. The 

learner’s goal regulates effects produced by the activity. This enables noticing of 

discrepancies between one’s goal and the actual effects. Via reflection on solutions to 

comparable tasks, the learner abstracts a new, invariant relationship between an 

activity and its anticipated effect(s). This central notion of anticipation, which was 

developed via observational studies, has been corroborated by recent neuroimaging 

studies (Schacter et al., 2012; Suddendorf & Corballis, 2007). 

Importantly, this framework distinguishes objects on which the mind operates (e.g., 

number) from operations on those objects (e.g., ordering smaller to larger). This 

distinction informed task design for this study, so assimilation of cues would be 

triggered by only one of two possible symbols (number or operation) before an entire 

number-comparison task is presented. Cues that precede number comparisons were 

expected to differently effect performance due to the brain’s pre-task recognition and 

‘pulling the cue’ from long-term into working memory. That is, we hypothesized that 

distinct patterns of brain activation and/or neuronal circuitry would be recruited when 

an object is presented before an operation or vice versa.  

METHODOLOGY 

Participants (N=21), ages 23-36, took a pre-intervention computerized (ePrime) test 

comprised of 4 runs, each including 90, four-step number comparisons (randomized). 



Tzur, Depue 

PME 2014 5 - 299 

In Step A of each task (1 sec) a symbol of number or operation appeared (e.g., 7, 1/7, >, 

or =). In Step B (1 Sec) another symbol accompanied the first (e.g., 7>, 1/7=). In Step C 

the comparison task appeared fully (e.g., 7>8?, 1/7>1/8?), providing up to 2.5 sec to 

respond by pressing a key on the right for “true” or the left for “false.”  Step D showed 

three dots (0.5 sec) to separate tasks (ITI). 

A video recorded teaching episode (~50 minutes) followed pre-test immediately. First, 

participants provided, with drawn examples, their definition of fraction. Then, creating 

their perturbation was promoted via posing a problem for which that definition is 

inadequate (Figure 1). Next, they were engaged in the challenging task of equally 

sharing unmarked paper strips among 7 people (then, 11) without folding the paper or 

using a ruler. Instead, they were taught to use the Repeat Strategy (Tzur, 2000): 

estimating one person’s piece, iterating that piece 7 times, comparing the resulting 

whole to the given one, adjusting the estimate, etc. Reflection on this activity, 

promoted by teacher probing into participants’ reasons for those adjustments (“make 

the next shorter/longer? Why?”), aimed to foster a conception of the unique, 

multiplicative ‘fit’ between each unit fraction (1/n) and the whole (n times as much of 

1/n), and of the inverse relationships among unit fractions (to fit more pieces—each 

must be smaller). Discussion of why a larger denominator implied a smaller unit 

fraction for any FR, but no practice of such comparisons, concluded the episode. 

Sticks A and B are equal in length. A contains 4 equal parts. The 

shaded part on B is equal to the part above it on A. What fraction, if 

any, is the shaded part of B? Of A? Why?  

Figure 1 

A first post-test as described above was conducted immediately after the intervention, 

and a post-test took place a few months later during fMRI scanning. To increase fMRI 

signal, runs were altered to include 140 two-step tasks (eliminating Step B above). 

Response time (RT) was recorded when subjects pressed a button in the right hand for 

“true” and the left for “false,” but each task ended after exactly 2.5 seconds. 

Experimental tasks with a true “>” comparison included roughly 90% of all presented, 

while “=” and false “>” tasks served as control. Runs were organized in a hybrid-block 

design, including random-length sequence of like-comparisons (e.g., 1/3>1/8, 1/7>1/2, 

8=8, 5>3, 9>7, 4>3, 6>4, etc.). 

ANOVA was calculated to determine the impact each independent variable (number 

type, Step A cue, testing occasion) has on the two dependent variables (RT, ER). 

Repeated observation and analysis of video recording helped inferring into 

participants’ thinking about fractions before, during, and after instruction. 

RESULTS 

This section presents data and analysis of change in participants’ conception of FR 

(qualitative), change in their performance of WN or FR comparisons (quantitative – 

behavioral), and differentiated brain circuitry activated (quantitative – fMRI). 
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Changing Adults’ Conception of Unit Fractions 

Upon completion of the pre-test in the computer room, each participant wrote down a 

definition for fractions (with example of 1/4). Then, s/he was asked to solve the Sticks 

Problem as a conceptual pre-test. All (100%) participants explained that a unit fraction 

is, “One out of so many equal parts of a whole,” drew a circular figure (“pizza”) 

partitioned into 4 parts and shaded one to show 1/4, and none was able to answer both 

questions about the shaded part on Stick B. Particularly prevalent (>50%) were 

responses such as, “The shaded part cannot be a fraction of Stick A because it is not a 

part of A” and “I cannot determine what fraction is the shaded part of Stick B because 

there are six unequal pieces on it.”  

Then, asked to equally share a given paper strip among 7 people without folding it or 

using a ruler, they initially had no solution. When prompted, “Could you estimate the 

share of one person and then find out?” each either generated the Repeat Strategy 

independently or was offered by Tzur to use it. Once iterating the first estimated part 

(say, too long), and asked if the next one had to be shorter/longer, they all knew the 

direction of change needed (here, shorter), explaining that more pieces had to be 

“squeezed” into the whole so each should be smaller. After making one piece that’s too 

short and the other too long, they all also used a strategy of estimating the next piece’s 

size between the closest short/long pieces already produced. Once the 7-piece 

iterated-whole seemed very close to the given whole, they were shown how to use 

JavaBars to produce an equally partitioned whole (with 7) and how to pull out one of 

these parts and measure it with the whole as a “Unit Bar” (1/7 shown on piece). Then, 

when asked if to share the whole among 11 people they would make the first estimate 

shorter/longer than the pulled-out 1/7-part, all (100%) knew to make it shorter, 

“because I have to squeeze even more parts into the same whole.” At this point, each 

participant used the Repeat Strategy in JavaBars until the iterated whole was judged 

close enough to the given whole. Next, in reference to their activity, Tzur provided a 

definition (while they wrote it): “A unit fraction is a multiplicative relation to the 

whole; what makes 1/n what it is has to do with how many times it fits in the whole, or 

that the whole is n times as much of it. For example, your first estimated piece was 1/7 

because the whole is 7 times as much of it.” He also held one whole “fry” and asked if 

they could imagine the whole of which this single piece of paper would be 1/5. All 

explained they “saw” a strip that’s 5 times longer. 

At this point, Tzur returned to the Sticks Problem. All participants (100%) then 

explained that the shaded part is 1/4 of Stick A and 1/4 of Stick B for one and the same 

reason, namely, “the length of the whole is 4 times as much as the shaded piece’s 

length.” These data indicate that the CBI, via the Repeat Strategy, fostered each 

participant’s reconceptualization of what a unit fraction is—not solely or mainly as a 

part of a whole but rather as a multiplicative relation between two magnitudes. They 

could thus “see” the shaded part on B as 1/4 in spite of the whole being marked into 6 

unequal pieces, or as 1/4 of A although not part of A. 
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Improvements in Adults’ Reaction Time (RT) for Processing WN and FR 

Upon completion of each teaching episode, each participant re-took the computerized 

test (post). Analysis of test data showed that the average error rate in both occasions 

(pre/post) and for both number types (WN/FR) was very low (3-4%), while average 

reaction time (RT) significantly improved (p<.001). The latter included consideration 

of the cue that preceded each comparison trial: operation (>) or number (WN or FR). 

The chart below shows average RT (in milliseconds) for each type of task design, 

indicating statistically significant improvement (p<.001) from pre to post not only in 

comparing FR (as expected) but also, surprisingly, for WN. The data also show a cue X 

number-type interaction: non-significant impact of cue on RT for WN comparison vs. 

significant impact on RT for FR (p<.05). That is, RT when seeing FR before the 

comparison was shorter than when seeing “>” and this difference decreased in 

post-test. These results seem to lend support to the distinction among parts of a 

thinking process (scheme), as RT needed to recognize and process a mental object to 

be operated on is effected by how a “situation” is identified in the person’s mind. 

 Pre  Post  

 Cue:  >    Cue: Number Cue:  >    Cue: Number 

FR   1208  1144  (-64 = -5.3%)  923    901  (-22 = -2.4%) 

WN    925   949  (+24 = 2.6%)  757    763  (+6 = 0.8%) 

Table 1 

Brain Circuitry Activated to Process Numbers (WN, FR) and Operation (>) 

Figure 2 shows adult brain circuitry activated more for WN than FR comparisons 

(Figure 2a) and more for FR than WN comparisons (Figure 2b). The former shows WN 

implicated in: (A) the Hippocampus (LTM retrieval) and (B) the Medial Frontal and 

Anterior Pole (abstract retrieval). The latter shows substantially greater activation for 

FR, implicated in: (A) the bilateral IPS and Angular Gyrus (numerical judgments of 

denominators) and the Ventral Visual Processing Stream (object-based visual 

processing), (B) the Dorsal Fronto-Parietal control network (engaged in attention- 

demanding tasks, e.g., order inversion), (C) the Ventral-Frontal working memory 

network & Pulvinar (visual object attention/selection), and (D) the Supplementary 

Motor Area (SMA, preparing response). Combined, these analyses suggest that brain 

circuitry used by adults to compare FR involves higher activation in some areas used 

also for WN (e.g., IPS), along with a more widespread use of brain regions. 

 

Figure 2a: WN > FR 

 

Figure 2b: FR > WN 

 A B D C  A B 



Tzur, Depue 

5 - 302 PME 2014 

Figure 3 shows adult brain circuitry activated more for numbers than for the “>” 

operation (yellow/red colors show this for WN and blue colors for FR). Essentially, 

when comparing activation of both types of numbers to the operation on these objects 

(directed by the goal of “find the larger of two numbers”), the same four regions seem 

to be recruited. The fMRI simulations show more activation for numbers (than “>”) in: 

(A) the Ventral Visual processing stream/cortex (typical of object-based, visual 

processing mostly in the right hemisphere); (B) the IPS and Angular Gyrus (numerical 

judgments); (C) the SMA (preparing for response), and (D) Posterior Dorsolateral PFC 

(attention-demanding tasks). Combined, these analyses suggest that brain activation 

employed just for recognizing a “cue,” before any comparison activity of the task is 

carried out, is markedly different (smaller) for the symbolized operation than for either 

type of symbolized numbers the brain processes. Not surprisingly, a remarkable 

overlap can be seen between these regions and those in which greater activation was 

found for FR than for WN. Both number types activate some similar circuitry much 

more than the symbolized operation, whereas processing FR comparisons does so to a 

much greater extent than WN. 

 
Figure 3: WN > FR 

DISCUSSION 

We presented three key findings about how a constructivist-based intervention (CBI) 

impacts adults’ re-learning and performance of whole number (WN) and unit fraction 

(FR) comparisons, and of brain regions activated to process such comparisons. First, 

we found a change in participants’ conception of unit fractions, from “part-of-whole” 

to a multiplicative relation. Second, we found a CBI’s significant impact on their 

performance of numerical comparisons, not only for FR but also for WN. Third, we 

found significant differences in brain activation: Hippocampus activated more for WN 

comparisons (long-term memory), whereas IPS (numerical), PFC (task attention and 

control), Ventral-Frontal and Pulvinar (visual object attention) and SMA (motor 

response) were substantially more activated for FR comparisons. Combined, these 

findings entail three contributions to an emerging, cross-disciplinary field at the 

confluence of mathematics education and cognitive neuroscience. 

A first contribution concerns the construction of differentiated brain circuitry to 

process different types of numerical objects, not identified in previous studies. The 

limited scope of the fMRI part of our pilot study precludes determining when and how 

have regions, specialized in recognizing FR and processing comparisons among them, 

evolved. Moreover, it is not possible to determine if the CBI changed these adults’ 

 
A B D C 
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previously constructed activation patterns, or the differentiated circuitry evolved when 

they first learned about FR (as children). While these two issues await future research, 

distinguishing these regions paves the way for (a) studying such an evolution, (b) 

figuring out if it depends on the nature of instructional methods, and most importantly 

(c) appreciating the implied, greater cognitive load involved in making sense of and 

solving FR comparison tasks. Simply put, FR is not just a simple extension of WN. The 

brain and mind need to construct circuitry that give rise to these numbers and, by way 

of extrapolation, likely also for other number types. 

A second contribution is of a new way to test, and confirm or disconfirm, conceptual 

frameworks in mathematics education that were developed through observational 

studies. This pilot study provided an example of such a research pathway for the 

constructivist scheme theory (von Glasersfeld, 1995). Comparison tasks we designed 

capitalized on the distinction between the goal-directed activity and the object on 

which it operates, and showed differentiated impact on both brain circuitry (Fig. 3) and 

reaction time (see also, Tzur & Depue, 2014). Our findings seem to support the 

tripartite notion of a scheme, though more specific measures of brain circuitry that 

correspond to those parts are needed. Key here is that our study illustrates how a 

CogNeuro-MathEd collaboration can contribute to a two-way enrichment of research 

and knowledge, informing CogNeuro by MathEd frameworks and informing (curbing 

and/or expanding) MathEd by CogNeuro findings of the brain (De Smedt & 

Verschaffel, 2010). 

A third contribution involves the CBI’s impact on performance of WN comparisons. 

At issue is why, and how, would a conceptually driven method for teaching FR effect 

the comparison of WN—a long-established concept. We hypothesize that a person’s 

focus on the multiplicative relation between a unit fraction and a whole into which it 

uniquely fits via unit iteration could bring forth reflecting on and re-conceptualizing 

WN as an iterable magnitude (Steffe, 2010) with direct relationship to other 

magnitudes. Future research can examine this hypothesis, and alternative ones, to 

better explain links between WN and FR at both the mind and the brain levels. 
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The purpose of this study is to analyze the complex argumentative structure in 

undergraduate mathematics classroom conversations during problem solving by 

taking into consideration students’ and teacher’ utterances in the classroom using 

field-independent Toulmin’s theory of argumentation. Analyzing students’ and 

teacher’ utterances in the class allowed us to reconstruct argumentations evolving in 

the classroom talk as argumentations in classrooms are generally teacher guided. The 

analyses contributed to an emerging body of research on classroom conversations. 

INTRODUCTION 

Problem solving requires argumentation (Cerbin, 1988). Argumentation is a process of 

making claims and providing justification for the claims using evidence (Toulmin 

2003; Mejia-Ramos & Inglis, 2009; Knipping, 2008). On the other hand, 

argumentation is a verbal and social activity of reason aimed at increasing (or 

decreasing) the acceptability of a controversial standpoint for the listener or reader, by 

putting forward a constellation of propositions intended to justify (or refute) the 

standpoint before a rational judge’ (van Eemeren et al., 1996). Argumentation requires 

problem solvers to identify various alternative perspectives, views, and opinions; 

develop and select a preferred, reasonable solution; and support the solution with data 

and evidence (Voss, Lawrence, & Engle, 1991).  

Toulmin’s model has provided researchers in mathematics education with a useful tool 

for research, including formal and informal arguments in classrooms (Knipping, 2008) 

as it is intended to be applicable to arguments in any field. Studies using Toulmin 

model focused on analyzing students’ arguments and argumentations in proving 

processes in a classroom (Knipping, 2002, 2008; Krummheuer, 1995) and,  individual 

students’ arguments in proving processes (Pedemonte, 2007). Toulmin himself noted 

that his ideas has no finality. Indeed his model has been reshaped in various ways, his 

claims have been contested by some and in response reformulated by others, and some 

but not all aspects of his approach have been incorporated in applications in different 

domains (Hitchcock & Verheij, 2006). 

Having established these facts, the goal of our research is to study the argumentation in 

undergraduate mathematics classrooms during problem solving using Toulmin’s 

theory of argumentation. Specifically, the aim is to analyze the structure of the 

arguments accomplished in the course of interaction where the teacher and students 

involvement in this accomplishment.  This study is part of a wider study investigating 
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the argumentation generated in undergraduate mathematics classes while proof 

generation (see Ubuz, et al., 2012), definition construction (see Ubuz et al., 2013), and 

problem solving. This paper suggests a method by which complex argumentation in 

problem solving can be reconstructed and analyzed. Analyzing students’ and teacher’ 

utterances in the classroom according to Toulmin model allows us to reconstruct 

argumentations evolving in the classroom talk since arguments are produced by 

several students together with the guidance of the teacher. 

THEORETICAL FRAMEWORK 

In the following sections we will expose some theoretical considerations on the 

Toulmin model, and the problem solving process. 

The Toulmin Model 

According to Toulmin, an argument is like an organism. It has both a gross, anatomical 

structure and a finer, as-it-were physiological one (Toulmin, 2003). He is interested in 

the finer structure. The Toulmin model is differed from analysis of Arisitotle’s logic 

from premises to conclusion. First, we make a claim(C) by asserting something. For 

the challenger who asks “What have you got to go on?” the facts we appeal to as 

foundation for our claim is called data (D) by Toulmin. After producing our data, we 

may being asked another question like “How do you get there?” He notes,  at this point 

we have to show that the step from our data to our conclusion is appropriate one by 

giving different kind of propositions like rules, principals, inference – licenses or what 

you will, instead of additional items of information (Toulmin, 2003). A proposition of 

this form Toulmin calls a warrant (W). He notes that warrants are of different kinds and 

may confer different degrees of force on the conclusions they justify. We may have to 

put in a qualifier (Q) such as “necessarily”, “probably” or “presumably” to the degree 

of force which our data confer on our claim in virtue of our warrant. However there 

may be cases such that the exceptional conditions which might be capable of defeating 

or rebutting the warranted conclusion. These exceptional conditions Toulmin calls as 

rebuttal (R). For our challenger may question the general acceptability of our warrant: 

“Why do you think that?” Toulmin calls our answer to this question our backing (B) 

(Hitchcock & Verheij, 2006). The diagram of the Toulmin model is as follows: 

 

Figure 1: The Toulmin Model 

Data (D) Conclusion (C) 

Warrant (W) 

Qualifier(Q) 

Rebuttal (R) 

Backing (B) 
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Reconstructing and analyzing the complex argumentative structure in classroom 

conversations follow their own structure. For example, careful analyses of the types of 

warrants (and backings) that students and teachers employ in classroom situations 

allowed two distinctions in the justifications: visual and conceptual (Knipping, 2008). 

The warrants and backings based on conceptual aspect or deductive are mathematical 

concepts or mathematical relations between concepts, and make reference to theorems, 

definitions, axioms and rules of logic. The warrants and backings based on visual or 

figural aspect make reference to figures as part of the argumentation. 

Problem Solving Process 

Problems are identified as such if the participant sees a quandary or feels a difficulty or 

doubt that needs to be resolved (Hiebert et al., 1996). Once a problem has been 

identified, the participant actively pursues a solution by calling up and searching out 

related information, formulating hypotheses, interacting with the problem, and 

observing the results (Hiebert et al., 1996). Eventually some conclusion is reached, 

some resolution is achieved, some hypotheses are refined. The outcome of the process 

is a new situation, and perhaps a new problem, showing new relationships that are now 

understood (Hiebert et al, 1996). So, problem solving has two aspects: (a) the process, 

or set of behaviors or activities that direct the search for the solution, and (b) the 

product, or the actual solution. Both the process and the product are essential 

components of the problem-solving experience (Kantowski, 1977). The teacher bears 

the responsibility for developing a social community of students that shares in 

searching for solutions. Analyzing the adequacy of methods and searching for better 

ones are the activities around which teachers build the social and intellectual 

community of the classroom (Hiebert et al, 1996). 

METHODOLOGY 

Data were collected through nonparticipant observations that were videotaped.  

Observation was conducted 2009-2010 spring semesters in real analysis course for 

eight weeks, and 2010-2011 spring semesters in advanced calculus course for six 

weeks, offered to mathematics education student at the third and second years, 

respectively. These courses were selected as both formal and informal argumentations 

were at the focus of these courses. In these courses the number of students were 45 and 

40, respectively. Formal proof approaches are given to the students at the “Abstract 

Mathematics I - II” courses provided in the first year. In these courses, students learn 

what a proof is and how to prove theorems. That is, they learn how to argue 

mathematically, justify their claims and encounter the cases named “counter example” 

for the first time which rebuttals their claims.   

The analysis of the observations is based on the transcripts. As Toulmin (2003) noted, 

“an argument is like an organism. When set out explicitly in all its detail, it may occupy 

a number of printed pages or take perhaps a quarter of an hour to deliver; and within 

this time or space one can distinguish the main phases marking the progress of the 

argument from the initial statement of an unsettled problem to the final presentation of 
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a conclusion” (p. 87). Based on this explanation, eleven argumentations were 

determined and five of them were on problem solving. These five argumentations were 

observed in real analysis course. 

Observations were conducted by the second author. He analyzed the transcripts by 

marking the progress of the argument from the initial statement to the final conclusion 

through using Toulmin model components. He noticed that some aspects of observed 

argumentations were overlooked. He modified the Toulmin model by integrating guide 

– backing and guide – redirecting additional components which were observed in 

almost all argumentations. We called an approval given by teacher to the warrants, 

backings or intermediate conclusion as guide – backing. When the argumentation does 

not start from a right point or students get stuck on an argument point, teacher 

intervenes with an example, a question or a suggestion to arrange the argument. We 

called such intervenes as guide – redirecting.    

Having discussed with the first author who is a mathematics educator and doing 

research on proof, it was decided that observed argumentations could be considered 

into three classes: proof generation, definition construction, and problem solving. She 

also noted that some components could be classified in itself. After re-analyzing 

observed argumentations, warrant component were divided in two categories: 

deductive warrant and reference warrant. Students appeal reasoning like numerical 

computing, applying a rule to an inequality, creating new ideas from a definition, a 

theorem or a rule in producing their warrants. We called this kind of warrants as 

deductive warrants as Inglis et al. (2007) did. When a warrant referred to a theorem, a 

definition, a rule or a problem, we called such a warrant as reference warrant. Guide – 

backing was divided into three categories: approval, reference and terminator. When 

teacher just approve the students’ warrant, backing or conclusion by saying “good, 

fine, great, well done” and does not use any mathematical phrase, we called this kind of 

guide backing as approval guide backing. When teacher approve the students’ warrant, 

backing or conclusion by referring a definition, a theorem or a problem recently 

solved, we called this kind of guide backing as reference guide backing. 

Argumentations come to an end when teacher or students reach the final conclusion to 

be achieved. In case, teacher reaches the final conclusion, students convince that the 

conclusion is legitimate. In case, students reach the final conclusion, teacher serves a 

backing. This backing shows the final conclusion and we called it as terminator guide 

backing. One important point that must be noted here is that argumentations were not 

analyzed according to their mathematically correctness. 

Finally, full transcriptions together with analysis model components explanation are 

provided to an external auditor who is a researcher in mathematics education field. 

After a week, the auditor completed her analysis and a complete consensus was 

reached on analysis of argumentations. 
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RESULT 

Five open-ended problems requiring the search of counter-examples and/or application 

of the definitions, rules, theorems for the solution constituted five different problem 

solving argumentation context. In this paper only one of these problems is considered 

as example because of page restrictions. Here we analyze a transcript of a short 

argumentation in which deductive warrant, guide - redirecting and terminator guide – 

backing appear. The following argumentation occurred when teacher asked if a 

boundary point of a set is an accumulation point of that set in R
n
. 

1 Deniz: The boundary of a set A is defined as the intersection of its closure with its 

complement.   

2 Teac: Correct. 

3 Stu: And the closure of A is the union of A with the set of its accumulation 

points. Eeehm… “Or” operator… I got a mistake! I mean x(a boundary 

point of A) is in A or in the set of its accumulation points, so x does not 

have to be in the set of accumulation points of A.  

4 Teac: Well, you are right but it is not the way what is supposed to be. Instead, you 

should have a set, say A. Then x would be a boundary point of A but would 

not be a accumulation point of A. I mean you should give a counter 

example. Got it? Do you have a such example? 

5 Alpaslan : Would it be one-point set? 

6 Teac : Well done! Is it  one-point set? Yes, it is.  

7 Alpaslan : The set of its accumulation points is empty set. 

8 Teac : Which means that a boundary point does not have to be an accumulation  

point. 

In line 1, the student defined the boundary of a set. He considered it as a data. In line 3, 

he realized that he needs to use “or” conjunction. He used this reasoning as a deductive 

warrant to conclude that a boundary point of A shouldn’t be in the set of accumulation 

points of A.  In line 3, teacher intervened with a suggestion to arrange the argument. He 

clearly stated that he needs to have a counter example. So teacher gave a guide – 

redirecting. Hereon, Alpaslan suggested one-point set as his data in line 5. In line 6, 

teacher gave an approval guide backing by using phrases “Well done! Is it one point 

set? Yes, it is.”. Therewith, Alpaslan could produce easily the final conclusion at the 

end of line 7. In line 8, teacher gave a terminator guide – backing by confirming the 

final conclusion. Therefore, his conclusion is valid. We observed that student 

producing deductive and/or reference warrant get easily the final conclusion after 

getting terminator backing guide. We think that if students have an ability to produce 

deductive and/or reference warrants and get any kind of guide – backing, then he/she 

could get easily the final conclusion. The diagram corresponding to the argumentation 

above is as follows: 
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Figure 2 

CONCLUSIONS 

The model of Toulmin, which is helpful for reconstructing argumentation steps and 

streams, is not adequate for more complex argumentation structures. Argumentations 

in classrooms requires a different model for capturing the global structure of the 

argumentations developed there. Analyzing students’ and teacher’ utterances in the 

class according to the Toulmin model allowed us to reconstruct argumentations 

evolving in the classroom talk. Argumentations in classrooms are generally teacher 

guided. Teacher acts as a guide who exactly knows the path to follow i.e. where to start 

and to end the argumentation. Therefore argumentation guided by the teacher in the 

classroom comes to an end. During the argumentation if students follow the wrong 

path, get a false intermediate conclusion or get stuck in a point, teacher intervene the 
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Conclusion – Deniz 

x does not have to be in the 

set of accumulation points of 

A. 

Deductive Warrant – Deniz 

Any one-point set is closed. 

Guide – Redirecting 

Well, you are right but it is not the way 

what is supposed to be. Instead, you 

should have a set, say A. Then x would 

be a boundary point of A but would not 

be a accumulation point of A. I mean 
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students to put them on the path in which they have to follow. If students on their own 

can manage to get the conclusion of argumentation, then they are sure about the 

conclusion when they get the terminator guide backing. According to this and based on 

our observations, teacher played a role in argumentation like guide – backing and 

guide – redirecting. According to our view, guide – redirecting is an important 

component for searching out related information, formulating hypotheses, interacting 

with the problem, and observing the conclusions which are essentials of problem 

solving process. We also think, guide – backing and guide – redirecting components 

prevent emergence of qualifier component in argumentations in proof generation, in 

definition construction and in problem solving process. There are two reasons for that. 

Firstly, the conclusion needs to be reached is absolute. Secondly, guide – backing and 

guide – redirecting are components which leads the way to the absolute conclusion.  

In sum, new components were identified to be added to the Toulmin argumentation 

model as well as interactions between them. They were named guide-backing and 

guide-redirecting. Guide backing was divided into three classes: approval, reference 

and terminator. Approval guide-backing and terminator guide-backing occurred in 

almost all argumentations related to proof generation, definition construction, and 

problem solving but reference guide-backing occurred in almost all except 

argumentation on constructing a definition (see also Ubuz, et al, 2012, 2013). 

Furthermore, warrants were divided into two classes: deductive and reference. 

Deductive warrant occurred in any type of an argumentation but reference warrant 

occurred in any type of an argumentation except in an argumentation for constructing a 

definition (see also Ubuz, et al, 2012, 2013). 
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This paper describes a field experiment with a pretest-posttest-control group design in 

which the potential of reading picture books to children for supporting their 

mathematical understanding was investigated. The study involved 384 children from 

eighteen kindergarten classes in eighteen schools in the Netherlands. Data analyses 

revealed that the experimental group showed a significantly larger increase than the 

control group in their mathematics performance in a project test containing items on a 

variety of mathematical topics including arithmetic, measurement, and geometry. 

PICTURE BOOKS IN MATHEMATICS EDUCATION IN KINDERGARTEN 

One way of supporting children’s mathematical understanding is making use of 

children’s literature. This approach has become increasingly popular in recent years 

(Haury, 2001). Even though activities such as reading picture books might not seem 

very suitable for teaching mathematics, stories narrated in books may contain 

mathematics, and as such can offer children opportunities to face mathematics 

(Anderson, Anderson, & Shapiro, 2005). A very important reason why reading picture 

books to children may help them in learning mathematics has to do with the 

meaningful context of the stories included in picture books (e.g., Columba, Kim, & 

Moe, 2005). Research suggests that learning within a story context increases the 

retention and recall of the learned knowledge (e.g., Mishra, 2003). 

Earlier studies about effect of using picture books on mathematics achievement 

Several studies have been carried out that investigated the effect of reading picture 

books on young children’s learning of mathematics. In a study by Hong (1996), 

kindergartners in Korea with highly educated parents were involved. In this study, the 

intervention was based on mathematics-related storybook reading and play with 

mathematical materials that were associated with the content of the storybook. 

Children who received this intervention exhibited a more positive disposition towards 

mathematics and significantly greater performance in task about classification, number 

combination and shapes, than children of the control group. 

Young-Loveridge (2004) investigated the use of a program including number books 

and games. She examined the immediate effect of this program as well as its endurance 

on the improvement in the numeracy of 5-year-old children. The findings of the study 

showed that the program was highly effective in enhancing the numeracy learning of 

young children immediately after the intervention. Moreover, although later the 

performances decreased, children who participated in the intervention still performed 

significantly better than children who were not involved. 
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Furthermore, the findings of a study by Casey, Erkut, Ceder, & Mercer Young (2008), 

which included storytelling instead of story book reading, gave evidence for the 

advantages of using a storytelling context as a means for improving early geometry 

learning in children. 

A common characteristic of all aforementioned studies is that the book reading or 

storytelling sessions in class were always combined with other activities such as 

playing with story-related (mathematical) materials (Hong, 1996; Young-Loveridge, 

2004), singing mathematical rhymes (Young-Loveridge, 2004) or composing 

geometrical puzzles (Casey et al., 2008). 

The present study 

The present study is meant to gain more knowledge about the effect of the book 

reading itself, i.e., without inclusion of additional (book-related) mathematical 

activities. The study was carried out in the Netherlands and was part of the PICO-ma 

project (PIcture books and COncept development MAthematics). 

Our research question was: Can an intervention involving picture book reading 

contribute to children’s mathematics performance? Based on earlier research, our 

prediction was that kindergartners’ performance in a mathematics test would increase 

due to the picture book reading program, i.e., we hypothesized a positive intervention 

effect. 

METHOD 

To investigate the effect of reading picture books on young children’s mathematics 

performance, a field experiment was carried out in kindergarten classes based on a 

pretest-posttest-control-group design with a three-month picture book reading program 

as an intervention in which each week two books were read in class to the children. 

Participants 

Our sample was based on a stratified sampling procedure resulting in pairs of schools 

that were approximately similar regarding urbanization level, school size and average 

SES of their children. The schools in each pair were assigned randomly to the 

experimental group or the control group. In total we had 384 four- to-six-year-old 

kindergartners participating in our study: 199 in the experimental group and 185 in the 

control group. Both groups were quite similar. They had about the same average class 

size, proportions of children in Kindergarten year 1 and Kindergarten year 2, 

proportions of girls and boys, of children with non-Dutch and Dutch home language, 

and also the children’s age did not differ between the experimental and the control 

group. The same is true for the children’s mathematics and language abilities as 

measured by the Cito mathematics test and the Cito language test before the 

intervention took place. 

The used picture books and reading guidelines 

The reading program used in the intervention consisted of 24 trade books of high 

literary quality which have mathematics-related content. Yet, the authors did not 
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include this content purposely to teach children mathematics. To cover a rich variety of 

mathematical domains, we chose picture books dealing with arithmetic, measurement, 

or geometry. Within these domains we focused respectively on numbers and number 

relations, growth and perspective. Altogether, eight books were selected within each 

domain on the basis of their learning-supportive characteristics (Van den 

Heuvel-Panhuizen & Elia, 2012). 

For each book a reading guideline was developed that explains how to read the book. 

In general, the reading guidelines requested the teachers to maintain a reserved attitude 

and not to take each aspect of the story as a starting point for a class discussion, since 

lengthy or frequent intermissions could break the flow of being in the story and 

consequently diminish the book’s own power to contribute to the mathematical 

development of the children. To promote the children’s mathematical thinking the 

teachers were suggested to show behavior such as (1) asking oneself a question out 

loud about the mathematics, (2) playing dumb, or (3) just showing an inquiring 

expression at a certain page of a book. 

 
Figure 1: Page 4 of the book Feodoor has seven sisters

1
 

Figure 1 shows page 4 from the book Feodoor heeft zeven zussen [Feodoor has seven 

sisters] (Huiberts & Posthuma (illustrator), 2006), which is about a man who has seven 

sisters. The text on page 3, which is left to page 4, says: “At night before he goes to 

sleep, he doesn’t get just one kiss. No, his seven sisters give him, altogether twenty-one 

kisses. Fourteen arms around him, and he is wrapped up well from head to foot. Then, 

he is read six stories and one poem. Finally, seven fingers reach for the light-switch.” 

The reading guideline says the teacher to stop after “altogether twenty-one kisses” and 

to show an inquiring expression by raising her eyebrows. In one of the classes this led 

to the following classroom conversation.  

All children: [All children react together; look at each other; reactions are mumbled.] 

Teacher: Twenty-one kisses! 

                                           
1
 ©(2006): Gottmer Publishing, Huiberts, M., & Posthuma, S. This material has been copied with 

permission of the publisher. Resale or further copying of this material is strictly prohibited. 
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E: [Starts counting while tapping her cheek] 3, 4, 5 

Y: On two sides 

All children: [All children react to what Y says; only the word ‘two’ can be made out] 

M: [Says something inaudible to the teacher] 

Y: .... plus 13? 

Teacher:  No, he received twenty-one kisses, and you just said [she looks at Y] he 

gets a kiss on each side from every sister, right [teacher points at the first 

sister in the picture in the book] because you were already starting to count. 

You said 2... 

All children: [The teacher points at the second sister] 4 

All children: [The teacher points at the third sister] 6 

All children: [The teacher points at the fourth sister] 8 

All children: [The teacher points at the fifth sister] 10 

All children: [The teacher points at the sixth sister] 12 

All children: [The teacher points at the seventh sister; children hesitate] 

Y: [Starts, doesn’t finish the word] Thir... 

Teacher:  F... 

All children: 14 

Teacher: Fourteen, but then it’s not right. They say twenty-one kisses. 

E:  Okay, then it’s here, here and here [points at her own face to show where 

the kisses are placed; one on the left cheek, one on the right cheek, and one 

on the forehead.] 

Then, the teacher invited all children to check whether this is correct by giving Feodoor 

the kisses as child E suggested. Indeed, then they ended up with twenty-one kisses. All 

children shouted that Feodoor got three kisses from each of his sisters. This is quite an 

achievement for a group of kindergartners who have not yet been taught multiplication 

or division. 

The PICO test 

To investigate the effect of the picture book reading program we developed the 

so-called PICO test consisting of multiple-choice items for the domains of arithmetic 

(including the topics number and number relations), measurement (with the topic of 

length with emphasis on growth), and geometry (addressing the topic of perspective). 

Every item covers one page and contains an illustration depicting a situation and four 

small illustrations that represent the possible answers. After the test instruction of an 

item was read aloud to them, the children had to answer it by underlining the correct 

answer. Figure 2 shows two items for the domain of arithmetic. 

The PICO test was administered as a pretest before the intervention took place and as a 

posttest afterwards. At the same time points the PICO test was also administered in the 

control classes. At the start of the project, the teachers of these classes were not 
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informed about the aim of the study. The teachers were just told that a test would be 

administered at two time points to gain information about how kindergarten’s 

understanding of mathematics grows over a three-month period in normal school 

practice. 

Mittens 

 

Shoe boxes 

 
Test instruction: 

These children have cold hands. They all like 
to put on the warm mittens. Underline the 
amount of mittens they need in total. 

Test instruction: 

Two shoes fit into one box. How many boxes 
are needed for the other shoes? Underline the 
number of boxes you need for the other shoes. 

Figure 2: Two PICO test items 

The initial version of the test consisted of 42 items. After calculating the item 

discrimination based on the pretest data, we removed two items which had negative 

item discriminations. This led to a test with 40 items in total that all have a positive 

correlation with the total score. The calculation of the Cronbach’s alpha of this final 

version of the test resulted in a sufficient reliability of α = .79 for the whole sample, and 

α = .71 for the sample of K1 children as well as for the sample of K2 children. 

Furthermore, within the experimental and the control group, we found correlations 

between the PICO pretest and posttest score ranging from .62 to .83, indicating a high 

test stability. 

To further investigate the properties of the items in the PICO test, we conducted a 

confirmatory factor analysis at the item level (using WLSMV estimation implemented 

in Mplus; Muthén & Muthén, 2007) with the three mathematical topics number and 

number relations, growth, and perspective as dimensions. Due to very large 

correlations between these dimensions, we treated the test as essentially 

one-dimensional. Coherent with these findings, a one-dimensional factor analysis 

resulted in an almost equally well-fitting model (CFI = .96, TLI = .97, RMSEA = .02). 

Therefore, we used the total score of the PICO test for analyzing the intervention 

effect. 

Statistical analysis 

We investigated the intervention effect by using two linear regression models, namely 

One-Way ANCOVA models. In Model 1, we used the PICO posttest score as a 

dependent variable and as independent variables the experimental group (as a dummy 

variable) and the PICO pretest score (as a covariate). In Model 2, further covariates 
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were added, including kindergarten year, age, gender, home language, SES, and Cito 

mathematics and Cito language. 

Despite the nested structure of the data – children belonging to classes which belong to 

schools – we applied a single-level linear regression model, because our unit of 

inference was at the level of children. Moreover, our clustered sampling procedure in 

which matched pairs of schools were randomly assigned to either the experimental or 

the control group decreased the standard errors of the parameters of interest. Yet, to be 

sure about using a single-level linear regression model, we calculated the residual 

intra-class correlation of the PICO posttest score controlling for the pretest score by 

means of a multilevel random intercept model in lme4 (Bates et al., 2013). It turned out 

that the residual intra-class correlation was .025. This finding supported the conclusion 

that ignoring the multilevel structure in our analyses did not lead to notable 

underestimation of standard errors (Hox, 2010). 

RESULTS 

In Table 1 the descriptives are presented of the PICO test total scores in the pretest and 

posttest for the whole sample and specified for the experimental and control group, and 

for the two kindergarten years. For the PICO pretest score no differences between 

experimental and control group were found. For the PICO posttest score the 

experimental group scored slightly, but not significantly higher than the control group. 

Kindergarten 

year Group    N 

 Pretest score 

(total items: 40; 

max. score: 40) 

 Posttest score 

(total items: 40; 

max. score: 40) 

  M SD d p  M SD d p 

K1 Experimental   84  14.0 5.5 
.08 .59 

 18.2 6.0 
.25 .11 

 Control   66  13.6 4.0  16.9 4.5 

K2 Experimental 115  20.2 4.8 
.02 .92 

 24.6 5.3 
.19 .17 

 Control 119  20.1 5.1  23.6 5.4 

K1 + K2 Experimental 199  17.5 6.0 
-.03 .74 

 21.9 6.4 
.11 .26 

 Control 185  17.7 5.7  21.2 6.0 

Total sample  384  17.6 5.8    21.6 6.2   

Table 1: Descriptives for PICO pretest and posttest 

Table 2 shows the results of the two regression models we used for investigating the 

intervention effect on the PICO posttest score. Both models gave comparable results. 

Model 1, in which we had only the PICO pretest score as a covariate, revealed a 

significant intervention effect (B = .90, p = .01), while Model 2, in which we controlled 

for seven additional covariates, resulted in a similar intervention effect (B = .76, p = 

.02). In this model, pretest, home language and Cito mathematics did have a significant 

influence on the PICO posttest score. Due to space limitations further analyses of the 

intervention effects in subgroups and the differential intervention effects between 

subgroups cannot be discussed here. 
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 Model 1   Model 2 

 B
a
 SE p β   B

a
 SE   p β 

Intervention .90 .36 .01 .01  Intervention .76 .37 .02 .06 

PICO pretest
 b

 .89 .03 .00 .84  PICO pretest
 b

 .69 .05 .00 .64 

      Kindergarten year (K2)
c
 .32 .67 .64 .02 

      Age .05 .04 .22 .06 

      Gender (girl) -.10 .35 .79 -.01 

      Home language (Dutch) 1.22 .60 .04 .07 

      SES (medium/high) .20 .80 .80 .01 

      Cito mathematics .07 .02 .00 .16 

      Cito language .02 .03 .44 .05 

R² (Explained variance)     .70                   .73 

B: unstandardized regression coefficient of the intervention effect; SE: standard error of B; β: 
standardized regression coefficient. 
a
 Because we expected a positive influence of the picture book reading program the B value for 

the intervention effect was tested in a one-tailed way. 
b
 Because the covariates were only treated as control variables, the significance of the B value 

was tested in a two-tailed way. 
c
 For the categorical covariates the dummy variables are placed in parentheses. 

Table 2: Intervention effect on PICO posttest score 

When calculating the effect size d by dividing the B-values by the standard deviation 

of the PICO pretest scores, we found for Model 1 d = .16 (B = .90 divided by 5.8) and 

for Model 2 d = .13 (B = .76 divided by 5.8). Comparing these effect sizes with the 

effect size of the change from pretest to posttest in the control group (gain score: M = 

3.5, SD = 3.5, d = .60, p = .00), we found that the influence of the intervention was 

substantial. In Model 1, the change in the experimental group was 27% (.16/.60 = .27) 

larger than the change in the control group and in Model 2, the change was 22% 

(.13/.60 = .22) larger. 

CONCLUDING REMARKS 

Our study showed that a three-month picture book reading program with picture books 

containing mathematics-related content, had a positive effect on kindergartners’ 

mathematics performance as measured by the PICO test. Moreover, these positive 

results were found based on picture book reading without additional mathematical 

activities. In fact, this gain from a short program is quite a lot taking into account the 

spurt in cognitive growth children generally make at this age, which is clearly shown 

by the increase in performance of the children in the control group, and which is also 

emphasized by other authors (e.g., Bowman, Donovan, & Burns, 2000). In sum, we 

can conclude that our study provided evidence for giving picture book reading a 

significant place in the kindergarten curriculum for supporting children’s 

mathematical development. 

However, this evidence should be considered with prudence. The participation of 

schools and teachers was on a voluntary basis which might have caused that only 
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motivated teachers were involved in the study. Another shortcoming of the study was 

that despite of classroom visits and teachers’ logs we could not completely control the 

implementation of the picture book program and also not what the teachers did as 

regular mathematics-related activities. Therefore, we cannot be absolutely sure that the 

picture book reading program as intended was responsible for the effect. Further 

research should go more in detail at the micro-level of the classroom conversations 

during the book reading sessions. This would also provide opportunities to identify the 

specific effective elements of picture book reading that contribute to the mathematical 

understanding of kindergartners. 
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Yuly Marsela Vanegas, Joaquin Gimenez, Vicenç Font, Javier Díez-Palomar 
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In this paper we present how the redesign of professional tasks in the teachers' 

formation of Secondary Mathematics Teachers influences changes in didactical 

analysis competency of future secondary school teachers. We draw on data collected 

from 3 groups of prospective teachers, using qualitative methods. We discuss how the 

training on the use of didactical tools to redesign tasks led prospective teachers to 

further develop their own professional competence to analyse mathematical tasks from 

a rigorous didactical point of view.  

PRESENTATION AND CONTEXT 

In this paper we analyse how a specific mathematics teachers' training program may 

produce changes in terms of future secondary school teachers’ competence of 

didactical analysis, aiming at the growing and building knowledge for teaching 

(Zaslavski & Sullivan, 2011). Our general intention in such a program is to lead future 

teachers to develop the [professional] ability to (re)design sequences of suitable tasks, 

as well as to make them able to re-design their own designs of school tasks. In our 

study we call ‘professional task’ those tasks that we propose to future teachers in order 

to encourage them doing didactic analysis and developing their didactical analysis 

competencies. We understand such a competence as the ability for designing, applying 

and evaluating sequences of learning by means of didactic analysis techniques and 

quality criteria. It is also assumed that someone may reflect and improve their 

competence in terms of the analysis of mathematical classrooms, in order to make best 

use of the opportunities for being a teacher as teacher enquirer (Mason & 

Johnston-Wilder, 2004).  

We want to focus on some immediate effects over the Program. We found them when 

analysing prospective teachers’ thoughts emerging from their feedback [work 

assignments] with the researchers; and also emerging from our analysis of some 

impacts of the program itself. Such above mentioned development, it is stated when 

future teachers incorporate and use tools for the description, explanation and process 

valuation of mathematical school teacher/learning practices. 

THEORETICAL FRAMEWORK  

We introduce a teaching project based on an inquiry and reflective practicing 

framework in which we design and implement diverse teacher training cycles as 

teaching experiments (Tzur, Sullivan, & Zaslavsky, 2008) for developing transversal 

competences as citizenship, digital competency, didactical analysis, among others. In 
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particular, in this presentation we discuss a part of a teacher training cycle named 

"Didactic Analysis" which has been articulated across diverse subjects throughout the 

courses.  

The development of the cycles had been based from the very beginning on the research 

process including six big types of professional tasks: (a) analysis of practices, objects 

and mathematical processes in which it is expected to appear and discuss tools for a 

descriptive and explanatory analysis that serves to answer “what happens in the 

classroom and why?” (Font, Planas y Godino, 2010); (b) analysis of didactic 

interactions, conflicts and norms; (c) evaluation of tasks and classroom episodes using 

criteria of didactic suitability or quality; (d) design and implementation of a lesson in 

their period of internship; (e) analysis and valuation of the suitability of the didactic 

implemented unit; (f) improvement of their lessons designs (for future 

implementation), within the Master's Final Project (MFP). 

The analysis and description of the mathematical activity is conducted using the 

theoretical constructs proposed by the ‘Ontosemiotic’ approach (OSA). According to 

this perspective (Godino, Batanero y Font, 2007), the mathematical activity plays a 

central role and it is modelled in terms of systems of operative and discursive practices. 

From these practices the different types of related mathematical objects emerge 

building cognitive or epistemic configurations among them. Problem-situations 

promote and contextualize the activity; languages (symbols, notations, and graphics) 

represent the other entities and serve as tools for action; arguments justify the 

procedures and propositions that relate the concepts. Lastly, the objects that appear in 

mathematical practices and those which emerge from these practices might be 

considered from the five facets of dual dimensions. Both the dualities and objects can 

be analysed from a process-product perspective, a kind of analysis that lead us to the 

processes shown.  During the following type of tasks (c - f), we present theoretical 

tools (suitability criteria, according Godino, Batanero and Font (2007) to conduct 

evaluative analysis to answer “what could we improve?” We understand that the study 

of descriptive and explanatory analysis for a didactical situation is necessary to justify 

the evaluations (Pochulu & Font, 2011). 

METHODOLOGY 

The research is mainly qualitative in nature as the purpose is to describe the 

development of competence in didactic analysis among aspiring secondary school 

mathematics teachers, from the University of Barcelona (Spain) during the Project 

development (2010-2013) following Gravemeijer (1998) perspective. The data was 

collected from video recorded observations, sorting sheets produced by teacher 

trainers, students’ reflections at the end of the workshops and documentation housed in 

the Moodle platform (slides, reading material, tasks and the students’ responses to 

them, and questionnaires and the students’ responses to them). The samples were 3 

groups of 24-26 and 25 prospective teachers. This amount of teachers includes almost 

the totality of students recruited in the Teacher Program in the University. During all 
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these academic years, in general, these students vary in the amount of mathematical 

knowledge they have, while discussing certain conceptual biases regarding the 

teaching and learning of mathematics.  

During the first year, future teachers did many naïf comments regarding the first tasks 

(a-b).  We conjectured that protocols were static. During the next year we decided to 

use more videos and transcripts than during the previous one. Prospective teachers 

designed and implemented tasks (type b), with protocols showing constructs as 

cognitive and semiotic conflicts, epistemic obstacles, types of norms, patterns of 

models of management, interaction analysis, and so on. After that, they analysed a 

lesson focused on equations applying suitability criteria (task type c). Future teachers 

reflected, improved and refined their analysis by using the notion of ‘epistemic 

suitability’ (Font, Planas y Godino, 2010). Nevertheless, observing future teachers’ 

writings, it was still difficult for the students to identify some semiotic mathematical 

conflicts. Next we proposed them [the prospective teachers] to develop a task of 

planning and implementing of a lesson in their internship (task type d). When doing the 

analysis and evaluation of the lesson implemented (task type e), future teachers found 

that their planning was conditioned by the school plans in which they did their 

internship. As a consequence it was difficult for them to identify the epistemic 

consideration implicit in the schoolteacher proposal. We observed that the students 

focused more on the dialogue than on the mathematics involved in the lesson. For 

instance, Student 12 said, “short challenges appear, with follow up questions in order 

to engage students in brief conversations just to clarify responses”, and many others as 

Student 6, talked about “the teacher remains vigilant in order to ensure that 

classmates did not distract students.” The future teachers had little autonomy to apply 

their designed lessons. This aspect was considered a difficult problem to solve during 

redesign process because of institutional framework for the proposal. The tasks type 

(e) and (f) are considered activities driving the feedback for future teachers and 

trainers. 

During the second year we decided to implement some tasks type (a), by emphasizing 

the analysis of processes; and tasks type (b) by using new video sources. In the new 

tasks (type a) we proposed the observation of three short ways of introducing 

perpendicular bisector with 12-13 years old students, by observing three different 

teachers. The main purpose was to present a discussion about the different practices, 

objects and mathematics processes and to introduce a reflection associated to how each 

of these classes contributes to introduce different kind of epistemic configurations and 

objects associated to three different definitions. It was also introduced enough rich 

episodes which serving to propose different typologies to profit a short time available, 

instead of using different episodes in each task. It was also observed that some of the 

final internship reports (task type e) and master’s thesis (task type f) were found so rich 

to be considered as episodes to be incorporated in a later redesign process. 

After the second year of experience observing the analysis realized by the future 

teachers, some difficulties still appear: (1) difficulties to distinguish between concepts 
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and definitions; (2) duplicity between definitions, propositions and procedures; (3) 

duplicity between propositions and thesis of arguments; (4) the description of practices 

is overlapped by the configuration of objects and by the description of processes; and 

(5) difficulties to observe and to catalogue mathematical processes; among others.  

As a consequence, the changes proposed for the third year were the following ones: (1) 

to join the categories for epistemic suitability from OSA with categories from the 

quality for mathematics instruction given by Hill (2010). In such way, it was 

introduced new criteria for valuing mathematical quality as it is: mathematical 

richness, coherence, errors, etc.; (2) to select new case studies from previous years 

students with more wide and complex explanations than the previous case studies used 

en year 1 and 2. The aim was to connect echoes and voices to produce more consistent 

arguments (Garuti & Boero, 2002) when justifying mathematical quality of didactical 

sequences. We proposed to analyse a lesson presenting a contextualized problem, 

driving to the division of a desert in a set of regions. Within the works presented by the 

future teachers we observed interpretation processes, communication of didactical and 

mathematical meanings, etc. Furthermore it appears a reflection about distinguishing 

complex processes from simple processes and also a general reflection about the idea 

of processes itself. During the analysis it was observed that both first and second 

teachers did classical proposals and management about the content and the classroom. 

The tasks designed had achieved the effect of improving prospective teachers’ analysis 

of practices, objects and mathematical processes and mainly about processes. In this 

improvement, it was judged a crucial role of dynamic videotapes to analyse the 

visualization of professional didactical processes. On the other hand, they were 

introduced selected episodes of students’ from previous years that were considered as a 

short distance from prospective teachers’ perspectives. We still detected that the future 

teachers applied epistemic suitability criteria, by means of superficial explanations, 

short justifications, etc. Therefore, it’s needed to improve future teachers’ 

justifications about mathematical and didactical quality of their practices as a basis of 

the second redesign. Epistemic suitability criteria explained for years 1 and 2 were 

basically sustained in the idea of representativeness, understood as a degree, of 

representation of learned meanings representing relations to referenced meanings. Due 

to the superficiality of some students’ works during the moment to apply such criteria, 

it was decided to do an extensive study about how the students have been applied 

epistemic suitability criteria in their final masters’ thesis (to see if they have been used 

the representativeness criteria, introduced some personal proposals, etc.).  

A prototypical example of this new task (type c) was a case based analysis upon a 

student that planned a sequence with 7
th

 grade (13-14 years old students) for Thales 

theorem. The main idea was to use the voice of a previous future teacher M that 

analysed her own practice about Thales Theorem after the school practice during the 

course 2011-2012 as a new task. We observed that M did a personal final analysis in 

which she said  
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…Additionally, we have tried to establish connections either with the concepts of the unit 

(relating as an example, Thales with similar triangles; similar triangles with similar 

figures, and so on) as with other subjects (for example, to compute the measure of a 

columns with mirrors, Snell’s law of refraction, relating physical concepts to mathematical 

concepts)... So, in conclusion...my epistemic configuration was right. (St. M; final report 

of practice and master’s thesis, 2011). 

Some previous examples done by prospective teachers were also introduced as a new 

tasks (type c) by reflecting about the role of connections, drawing on three documents: 

(1) tasks proposed by M to explain Thales theorem in her proposal for school practice; 

(2) the analysis of epistemic suitability about M proposal, and (3) a textbook in which 

it was ensured the representativeness of epistemic configurations for Thales Theorem 

having a coherent connection. When doing the task it was promoted a discussion to 

understand the idea of representativeness and the idea of coherent connection by using 

triangles in Thales position. The aim of this professional task was to recognize a deep 

level of analysis from such previous prospective teacher’s practices (Choppin, 2011). 

Thus, the future teachers learn from this analysis, the idea of connecting two epistemic 

configurations. 

SOME RESULTS ABOUT REFLECTIVE ANALYSIS 

After first year observations, we found that some future teachers had difficulties to 

connect didactical analysis to epistemic ideas. For instance, Student 5 claims:  “When I 

did the didactic unit I didn’t contextualized enough the exercises. Now, I think it’s 

important to use activities proposed in the article: ‘Algebra for all Junior High School 

students’. In these kinds of sentences, we expected to talk more about the specific 

iterative algebraic approach as an explicit content in the article explained by the 

student. However, student 5 declined to focus his comment under such approach, and 

he highlighted the importance of contextualization for designing unit lessons. It’s an 

example of the initial difficulties to accept the role of epistemic and cognitive analysis.    

At the end of the third year, we found that students being to present their lesson more 

carefully, as result of such deeper analysis.  

When analysing the final work of those future teachers we found better results than 

previous years. Here we’ll see an example of growing ecological suitability relations 

among institutional framework, cognitive suitability and epistemic understanding in 

which the future teacher interpret why his new proposal really improves mathematical 

meanings. It’s the case of a future teacher X (belonging to the 2012 case study group). 

Let’s observe his explanations emerging from his written work compiled after his 

internship.  

The regular teacher gives to me the opportunity to improve some aspects of the classroom 

situation, by introducing hypermedia tools with a group of students with mathematical 

difficulties in another group (not the same as I did my first practice)… Therefore, I 

proposed “changes” in my initial proposal. In order to achieve the challenge (of expanding 

enriching, and consolidating the zone of personal geometrical meanings) we devoted more 
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than a half of time during the first session to revise their previous mathematical 

knowledge, and also the techniques, tools, resources and operational knowledge needed 

(as surfaces formulae, volumes, and so on). My strategy was to create a debate among the 

students...  by using an email-forum in which I could adjust mathematical rhythm to each 

student. Let’s see the dialogue showing the impact of my strategy:  For teacher X- 

Calculate the volume ...   Student O- Please, X, I have a doubt, As I must calculate the basis 

surface, do I need to multiply twice, because I have two basis? ... 

... I never heard about such difficulties, because I did group discussion in my first 

experience. Now, the one-to-one discussion provides the possibility to hear from the 

students...  (Master’s work of a future teacher X)   

CONCLUSION 

As a result of our study, we have analysed in depth what we call professional tasks to 

promote growing competency of didactical analysis year by year in our Program, 

considering different students. The levels of didactical analysis proposed by OSA were 

very useful to illuminate this didactical analysis. We assume the methodological 

potential of analysing case studies based on the texts coming from the students’ works 

done in previous years. In fact, these practices may explain the complexity of the 

analysis that teachers should conduct to value his/her own practice to move beyond 

from narratives and descriptions. We found the importance of some didactical notions 

as representativeness, connection and coherence. One of our conclusions for 

prospective teachers enrolled in teacher training programs is the necessity to use 

theoretical powerful tools to lead them reflect on the mathematical quality of 

task-design or lesson design (Krainer, 1993).  

After three years of experience, we found many evidence suggesting that students 

really transform their attitude towards using a “didactical approach” to inform their 

[future] professional work as teachers: “we had been developed our competence of 

didactical analysis”. On the other hand, we recognized the final master degree as the 

starting point for developing research competency for future teachers. In fact, it gives 

opportunities for students to learn and recognize problems of their professional 

context. Following our perspective we intend to see “didactical analysis” beyond the 

banality, considering classroom situations as an integral and dynamic system evolving 

in time, promoting autonomous mathematical thinking and independent validation of 

results as future teachers (Laborde, Perrin-Glorian, Sierpinska, 2005). We found that 

the “suitability criteria” used for redesigning the tasks (considered as teaching 

experiments and case studies) has anticipatory purposes as hypothetical trajectories, 

but also helps to improve didactic training trajectories. 
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In the present study we investigated to what extent workshops aimed at improving 

teachers’ use of classroom assessment techniques had an effect on students’ 

achievement in mathematics. Ten primary school teachers participated in two 

consecutive small-scale studies, aimed at using and improving different classroom 

assessment techniques in mathematics education. In total, 214 students were involved. 

The studies were carried out in the Netherlands. Qualitative and quantitative measures 

were used to investigate the feasibility and effectiveness of the assessment techniques. 

In both studies teachers and students reported enjoying the techniques and finding 

them useful. In terms of mathematics achievement, results indicate students improving 

considerably; the students’ scores increased more than the national mean. 

CLASSROOM ASSESSMENT TO IMPROVE STUDENT LEARNING 

To gauge student learning classroom assessment by the teacher plays a pivotal role 

(Cizek, 2010). By using classroom assessment teachers can gather information about 

their students’ skills and level of understanding. Collecting this information on 

students’ learning is primordial for at least two reasons: to find out whether the 

instruction has had its desired effect and to generate ideas for how to proceed in the 

subsequent lessons. Based on assessment information teachers can align their teaching 

to their students’ needs, which can result into adapting their teaching, but which can of 

course also mean not changing anything and continuing with what was planned before. 

Many of the characteristics of classroom assessment appear to be part of merely good 

teaching practice, as Ginsburg (2009) wrote in the context of mathematics education: 

“Good teaching [...] sometimes involves the same activities as those comprising 

formative assessment: understanding the mathematics, the trajectories, the child’s 

mind, the obstacles, and using general principles of instruction to inform the teaching 

of a child or a group of children (p. 126)”. Nonetheless, classroom assessment can be 

performed in many ways, even though most teachers think of externally developed 

summative assessment instruments such as textbook tests or student monitoring system 

tests when confronted with the word assessment. Classroom assessment however is 

much broader than applying these instruments: it comprises all activities that permit 

teachers to find out where their students are at a particular moment in terms of 

comprehension of the subject and to give information on what is going right and 

wrong. Policymakers as well as influential researchers have urged the educational 

community, and in particular teachers, to embrace (formative) classroom assessment in 
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their practice. For instance, the U.S. National Council of Teachers of Mathematics 

(NCTM, 2013) recently took the following position on formative assessment in 

mathematics education: “The use of formative assessment has been shown to result in 

higher achievement. The National Council of Teachers of Mathematics strongly en- 

dorses the integration of formative assessment strategies into daily instruction” (p. 1). 

Recently, researchers have critically examined the size of the effectiveness of 

(formative) assessment on student learning through reviews or meta-analyses of 

existing studies (e.g., Briggs, Ruiz-Primo, Furtak, Shepard, & Lin, 2012; Kingston & 

Nash, 2011; 2012; McMillan, Venable, & Varier, 2013). Common to these critical 

examinations, although their specificities differ, is that they do not contest the positive 

effects formative assessment is purported to have on student achievement. The matter 

that is under contention is the size of the effect for formative assessment on student 

achievement. 

The present study 

The purpose of the present study was to investigate the feasibility and effectiveness of 

classroom assessment techniques for mathematics in primary school. These classroom 

assessment techniques were inspired by research (e.g., Black, Harrison, Lee, Marshall 

& Wiliam, 2004; Torrance & Pryor, 2001), practice (e.g., Keeley & Tobey, 2011; 

Wiliam, 2011), and theory on classroom assessment (in mathematics education, e.g., 

Van den Heuvel-Panhuizen, 1996; Van den Heuvel-Panhuizen & Becker, 2003). The 

effectiveness of the use of separate assessment techniques (as was done for instance for 

the ‘Muddiest Point’ technique by Simpson-Beck, 2011) was not of interest here. Our 

focus was whether teachers and students were prone to use the techniques and whether 

the use of an ensemble of techniques would be related to an increase in achievement. 

Our research question was: Do teachers like to use classroom assessment techniques 

(feasibility/sustainability) and is this associated with an increase in student 

achievement (effectiveness)? To investigate this research question we performed two 

consecutive small-scale studies with groups of third-grade teachers in the Netherlands. 

Teachers participated in monthly workshops, consisting of three or four teachers and 

the first author. In these workshops classroom assessment techniques were presented, 

discussed, and evaluated. 

METHOD 

Both studies used the same method. The first part of the research question (feasibility 

and sustainability) was investigated by conducting regular classroom observations at 

least once for every teacher in between the workshops. These observations were 

intertwined with short informal interviews with students on their teacher’s assessment 

practice in mathematics. Teachers were also asked to register their evaluation of the 

used assessment techniques. These different sources of information are used to 

determine how teachers performed the classroom assessment techniques in practice, 

how students reacted to this, and what students and teachers alike thought of the 

classroom assessment techniques. To answer the second part of the research question 
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(effectiveness), we used a pre-/posttest evaluation of students’ mathematics 

achievement with between the tests professional development for the teachers. The 

pretest data consisted of the results from the midyear student monitoring system test 

for Grade 3 and the results from the end of year student monitoring system test for 

Grade 3 (Cito LOVS; Janssen, Verhelst, Engelen, & Scheltens, 2010) served as 

posttest data. These tests are administered by the teachers as is common in educational 

practice in the Netherlands. The scores on these tests are mathematical ability scores, 

as calculated through item response theory models. Through the use of these test 

results as pre- and posttest measurement we could evaluate firstly whether the students 

progressed in their mathematics ability, and secondly whether students of teachers that 

had participated in the workshops improved more than the national sample of students 

of teachers that did not participate in the workshops. 

Participants 

Ten teachers participated in the workshops in two consecutive school years (four in 

Study 1 and six in Study 2). In Study 1 all teachers were female and their mean age was 

38.5 years. In Study 2 two male teachers participated and the mean age was 52.5 years. 

In total the ten teachers taught 214 Grade 3 students (14 to 29 students per class). The 

teachers were found through e-mail solicitation and volunteered to participate. The 

schools were all situated in urbanized areas with highly mixed student populations, and 

the teachers used four different textbooks. 

Material 

We used several classroom assessment techniques in this research project. The 

classroom assessment techniques consisted of short activities of less than 10 minutes, 

which should help teachers to quickly find out something about their students, 

providing them with indications for further instruction, and focusing on some of the 

mathematics content of the second half of Grade 3. Each assessment technique was 

explicitly introduced as modifiable; teachers could vary the content and/or the form. 

This was in line with Wilson and Sloan (2000) who noted that: 

[T]eachers must be: (1) Involved in the process of collecting and selecting student work. 

(2) Able to score and use the results immediately. (3) Able to interpret the results in 

instructional terms. (4) Able to have a creative role in the way that the assessment system is 

realized in their classrooms. (p. 191) 

The forms of assessment techniques that were used in the two studies were the 

following: Red/Green cards, Clouds, Hard or easy, Experiment, Find the error(s), and 

Find problems with the same result. In Figure 1 we illustrate the Red/Green cards. 

Most of the techniques were centered on the assessment of number sense, mainly in the 

context of addition and subtraction, but the Red/Green cards could also be used to 

assess multiplication and division tables. In all workshops attention was paid to giving 

feedback to students about the assessments, so that students could become aware of 

their own understanding. 
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Figure 1: An example of a classroom assessment technique: The Red/Green cards. 

Here teachers ask students a question that can be answered with Yes (green) or No (red). 

The focus is on number sense: the comprehension that two numbers together can be more 

or less than 10, 100, or 1000. The teacher’s question in this particular example is: “Do 

these numbers together cross ten, yes or no?” 

Procedure 

Both studies had the same set-up. Teachers used several classroom assessment tech- 

niques and in doing so enlarged and reinterpreted their toolbox of assessment 

techniques. During the second semester of the school year the teachers and the first 

author convened every three to five weeks in a workshop. These workshops were 

organized according to the principle of ‘practice what you preach’ and could be 

considered teacher learner communities. According to Wiliam (2007) “five principles 

are particularly important [in establishing and sustaining teacher learning 

communities]: gradualism, flexibility, choice, accountability, and support (p. 197)”, 

we strived to incorporate all of these in our workshops. As most mathematics 

classroom assessment techniques were embedded in or inspired by formative assess- 

ment ideas, the workshops also had a formative character. Teachers and researchers 

worked together in order to determine the important content in the weeks between the 

workshops and ways to find out whether students had learned the prerequisites or not. 

As such teachers “adopt and integrate these techniques and others into their own 

practice, they find a new synergy and see their own practice in new ways, which in turn 

leads to new thinking. In other words, rather than trying to transfer a researcher’s 

thinking straight to the teacher, this new approach to formative assessment emphasizes 

content, then process (Wiliam, 2007, p. 195)”. The order of business of every 

workshop was that first all teachers told what they had done in the preceding weeks: 

which assessment techniques did they use, why did they use them, in what form, how 

did the students react, what did they think of them, and what did they do to follow up 
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on what the assessment told them. These same questions were also on a feedback form 

the teachers were asked to fill out directly following the use of an assessment 

technique. When every teacher had told how their weeks had been, the researcher 

shared some observations made in the classrooms. The researcher visited every teacher 

at least one whole day between two consecutive workshops. In these visits he observed 

the teachers during mathematics instruction and of course the assessment techniques. 

As such he was able to reflect in the workshop upon what he had seen and heard in the 

classrooms. All the while the teachers reacted to each other’s stories, they would 

suggest different approaches or ask for more details; generally discussion in these 

workshops were very lively and informative. Finally, the focus would switch to the 

future weeks: the content and the accompanying assessment possibilities. All would 

discuss these, but the researcher would after some discussion propose several ideas of 

which the teachers would select some and then the researcher would explain and 

sometimes show how the assessment technique or activity works, and in particular 

what could be investigated with them. Then there would be some more discussion 

about the activities and the researcher would present the discussed techniques on paper 

so that the teachers could reflect upon them in preparing their lessons. 

RESULTS 

An overall finding for the first part of the research question (feasibility and 

sustainability) from the classroom observations, the interviews, and the discussions in 

the workshops was that every teacher, even though they participated in the same 

workshop and got the same assessment techniques to work with, interpreted the 

classroom assessment in their own way and adapted them to their own practice. For 

instance, the Red/Green cards technique seems quite straightforward on paper; 

nonetheless there was great variation in how teachers performed this technique in their 

respective classrooms. A teacher of Study 1 noticed that some students waited to see 

which card other students held up before choosing their own. She considered this a 

problem “as it was a testing situation” and decided that students had to be in “testing 

positions” (separated tables) and even close their eyes so that they could not cheat. 

Another teacher of Study 1 spend quite some time to ensure that all students were clear 

about what the colours green and red were, and subsequently in which hand they held 

each colour. A teacher of Study 2 interpreted the Red/Green cards more as a game, and 

adapted it to his own practice. He considered it to be “nonsense to be the only one 

doing the work” and let a student (every time a different one) come up with the 

problems on the spot. These three short examples show how diversely teachers 

operated in their classrooms and how flexibly they used this assessment technique. For 

the second part of the research question (effectiveness) we compared the pre- and 

posttest data of the student monitoring system tests for every study separately. 

Study 1 

For the first study, as can be seen in Table 1, the mean ability of students increased 

from midyear to end of year testing. 
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 Class N Mean ability 

midyear – end of year 

Ability 

gain 

Effect size 

(d) 

Study 1 I 15 65.3 – 76.7 11.4 1.30 

 II 13 62.2 – 68.4 6.2 0.42 

 III 14 71.6 – 83.2 11.6 0.73 

 IV 24 75.8 – 85.3 9.5 0.78 

 Total 66 68.7 – 78.4 9.7 0.81 

National mean  69.0 – 74.1 5.1 0.36 

Table 1: Mean ability, gain score, and effect size per class for the two studies, and the 

Dutch national mean on the Cito LOVS tests. 

It was to be expected that students progress in their mathematical ability whether they 

have teachers that perform specific assessment activities or not, just as a result of 

growing older and having more education; the national mean also shows this direction. 

However, the mean difference between pre- and posttest over the four classes of 

participating teachers and the effect size (gain score = 9.7 ability points, d = 0.81) are 

notably larger than those of the national norm sample (gain score = 5.1, d = 0.36). This 

means that students of teachers in Study 1 progressed 0.45 SD more in three months’ 

time than students in the national sample. 

Study 2 

For the second study we had not one workshop, but two separate workshops in two 

different cities. These workshops were of a slightly different nature than in Study 1, for 

one the ages of the participating teachers were quite different, also the frequency of 

meetings was down from every three weeks to once per month or even every five 

weeks, and finally the assessment techniques were provided in a slightly more definite 

way. The mean ability gains from midyear to end of the year are displayed in Table 2. 

 Class N Mean ability 

midyear – end of year 

Ability 

gain 

Effect size 

(d) 

Study 2 V 22 66.6 – 72.2 5.6 0.32 

 VI 17 66.3 – 76.1 7.8 0.44 

 VII 26 67.9 – 73.1 5.1 0.51 

 VIII 26 72.8 – 82.6 9.8 0.67 

 IX 28 74.8 – 83.6 8.9 0.74 

 X 27 75.6 – 83.8 8.2 0.61 

 Total 149 71.0 – 78.6 7.6 0.55 

National mean  69.0 – 74.1 5.1 0.36 

Table 2: Mean ability, gain score, and effect size per class for the two studies, and the 

Dutch national mean on the Cito LOVS tests. 

Just as for Study 1 we observe that all classes improved on average, and that with an 

ability gain of 7.6 and effect size of d = 0.55. This score gain was bigger than the one in 

the national sample, which was of 5.1 ability points with an effect size of d = 0.36. This 

means that students of teachers in the second study progressed 0.19 SD more in three 

months’ time than students in the national sample. 
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DISCUSSION 

The feasibility of the classroom assessment techniques combined with an indication 

that they were effective are the main results of this study. The gain scores of the two 

small-scale studies showed that students learned considerably more when teachers 

make effective use of classroom assessment, than students from the national sample. 

This relative gain was quite large (between 0.19 and 0.45 standard deviation), while 

the professional development –the intervention– only took between four and six 

meetings of about an hour. However, given the fact that there was no control group the 

direct attribution of these learning effects to the sole use of classroom assessment 

techniques would be too simple. 

The second study was performed to fine-tune the techniques as well as to find out 

whether a lower frequency of workshops and researcher visits would still be associated 

with a learning effect. In this second study we found approximately the same results as 

in Study 1: a larger than normal learning effect for the students of participating 

teachers. As such this provided supplementary evidence for the effectiveness of the 

techniques; however the same problems as in Study 1 persisted. The difference in 

Study 2 was slightly smaller than in Study 1. Several things could explain this 

difference in gains, for one there were less contact moments with other teachers and the 

researcher, which could have led to less implication in the research in the second study. 

This came forward in one of the workshops in Study 2, where some teachers admitted 

that they had only performed the classroom assessment techniques the morning 

preceding the workshop. The urgency and enthusiasm to use the techniques that they 

had voiced in the previous workshop had quickly diminished after it had ended. In 

Study 1 teachers used the techniques generally in the week following the workshop and 

often repeatedly until the next meeting. Quite understandably this could have caused a 

differential effect on student learning. An additional explanation as to why some of the 

teachers in the second study seemed less invested could be their ages. The teachers in 

Study 2 were older and had as such more experience in teaching than teachers in Study 

1. Some of these older teachers did not believe in all the techniques and were less 

inclined to use some of them, whereas this did not occur with the slightly younger 

group in Study 1. 

These considerations can be taken into account in the design of further research on the 

effectiveness and the use of classroom assessment techniques. 
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In this paper analysis of Grade 3 mathematics teaching in South Africa shows evidence 

of associations between teaching and learning outcomes in an adapted learning study. 

The intervention dealt with partitioning and part-part-whole relations, taking a 

structural approach within tasks and representations. Our analysis of this teaching 

emphasizes simultaneity of examples, and connections within and across examples and 

representations. This analysis indicated differences in enactment of a jointly planned 

lesson that related to different patterns of learning outcomes between the three classes. 

Episodes of teaching containing work with representations marked by connections and 

simultaneity closed gaps in learning outcomes seen in the pre-test. 

INTRODUCTION 

Difficulties with linking teaching and learning in any direct way have been noted in the 

literature. Complexity relates to the need to take prior understandings into account, 

making it hard to directly compare the efficacy of teaching. However, writing also 

notes the importance of teaching for the possibilities of learning, and acutely so in 

contexts of disadvantage. 

In this paper, we share a micro-analysis of videotaped Grade 3 mathematics teaching in 

South Africa that shows evidence of associations between teaching and learning 

outcomes in an adapted learning study intervention (Lo & Pong, 2005). The 

intervention dealt with part-part-whole relations, taking a structural approach and 

introducing structural representations – both new to participating teachers and 

students. Data were collected on students’ prior understandings of this topic. Our 

analysis of teachers’ work with part-part-whole representations emphasizes 

simultaneity of examples and connections within and across examples and 

representations. This analysis indicated differences in enactment of a jointly planned 

lesson that related to different trajectories of performance for three classes. Further, 

this focus suggested that teaching episodes marked by connections and simultaneity 

could close gaps in pre-test performance. 

We begin with an overview of literature on part-part-whole structures and 

representations within additive relations, noting that operational conceptions are more 

prevalent in South African curricula.  

THE PART-PART-WHOLE RELATIONS AND REPRESENTATIONS 

Additive relations is an area with a variety of nomenclatures for problem types, useful 

representations, and solution strategies. An area of contention relates to directionality 
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in the teaching and learning of additive relations. A significant body of work advocates 

counting as the fundamental base for addition and subtraction (Carpenter, Fennema, 

Franke, Levi, & Empson, 1999). Addition and subtraction, in this view, are built on an 

operational approach. Standing counter is a more structural approach in which 

addition/subtraction is viewed fundamentally as a relation between parts and wholes 

(Schmittau, 2003).  

Parallel to this discussion are representational options that push more in either 

operational or structural directions. The empty number line representation (a) 

advocated in the RME literature (Beshuizen, 1999) tends to align with more 

operational conceptions, while variations of part-part-whole representations (b) push 

towards structural relations (Figure 1): 

a)     b) 

 

 

 

 

Figure 1: Part-part-whole representations. 

Structural orientations to additive relations, in task and representation terms, were 

taken in this study. Systematicity, equivalence, commutativity, completeness and 

inverse relations can be dealt with in the context of part-part-whole problems. These 

ideas require connection between partition examples and help to build generality into 

specific working (Mason & Johnston-Wilder, 2004). 

THEORETICAL FRAME 

Variation theory (VT) forms the theoretical base for our analysis. VT argues the need 

for variation in the midst of invariance, as a condition for learning (Marton & Pang, 

2006), necessitating a focus on what is simultaneously available and whether, and if so, 

how, connections between examples are drawn. Schmittau (2003) recognizes 

part-part-whole relations as the central invariant feature of all additive relation 

problems – with examples and representations linked to this general theme. 

Representations can remain invariant across examples, emphasizing their general 

usefulness. Alternately, invariant examples allow for introduction of new 

representational pathways, providing openings for connections between 

representations and expanding representation spaces. 

RESEARCH DESIGN 

Learning studies share common features with Japanese lesson study. As in lesson 

studies, the teachers were involved in the development, teaching and retrospective 

analysis of lessons. The broader study involved two sub-study cycles during 2013, 
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each of three weeks’ duration, with the three Grade 3 teachers/classes in one suburban 

school in Johannesburg. In this paper we analyse results from the videorecorded first 

lesson together with learner performance on two worksheets in the first study. Analysis 

of student pre-test performance indicated differences between the classes in prior 

understandings of part-part-whole relations, but performance profiles shifted on the 

worksheets set after sections of teaching – summarized in Table 1: 

RESULTS PRESTEST 

Task 1:  

Split 9 marbles in 

two boxes 

No of correct partitions Class 3.1 

(n=40) 

Class 3.2 

(n=39) 

Class 3.3 

(n=44) 

10 0% 0% 0% 

4-9 12% 46% 23% 

0-3 88% 54% 77% 

Task 2: Split the 

number 12 in as 

many different ways 

as you can   
12 = __ +  __   

No of correct partitions Class 3.1 

(n=40) 

Class 3.2 

(n=39) 

Class 3.3 

(n=44) 

10 10% 8% 27% 

5-9 48% 41% 55% 

0-4 42% 51% 18% 

RESULTS WORKSHEET 1 

Task: Split number 7 

in different ways in a 

triad diagram 

 

 

No of correct partitions Class 3.1 

(n=43) 

Class 3.2 

(n=43) 

Class 3.3 

(n=46) 

8 33% 63% 37% 

5-7 44% 18,5% 50% 

0-4 23% 18,5% 13% 

RESULTS WORKSHEET 2 

Task: Split number 7 

in different ways in 

triad diagram  

and in number 

sentence 

 

No of correct partitions Class 3.1 

(n=43) 

Class 3.2 

(n=44) 

Class 3.3 

(n=46) 

8 25% 50% 66% 

5-7 46% 36% 30% 

0-4 29% 14% 4% 

Table 1: Pre-test, worksheet 1 and worksheet 2 results 

Pre-test results indicated that while class 3:2 were stronger on the marble splitting 

activity, class 3:3 were stronger on producing abstract number partitions of 12. 

Worksheets 1 and 2 followed segments of teaching that are analysed in this paper. 

Worksheet 1 results showed class 3:2 performing better than the other two classes, in 

spite of lower performance in abstract number partitioning in the pre-test. In contrast, 

7=    +       
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worksheet 2 data showed class 3:3 outperforming 3:2. Class 3:1 performed weakly 

throughout.  

Our analysis of teaching explored what produced these shifts in performance. In the 

teaching sections preceding worksheets 1 and 2 we saw differences in the three 

teachers’ work with examples and representations. Salient features of contrast related 

to which examples were elicited, whether examples were simultaneously visible, and 

how they were represented and connected within and across examples, and episodes.  

FIRST SECTION OF TEACHING 

In the planning meeting the teachers had agreed that in the first section they would 

introduce the idea of splitting a ‘whole’ into two ‘parts’. The triad diagram – a new 

representation – was to be introduced within the activity of splitting 7 monkeys 

between two trees (Cobb, Boufi, McClain & Whitenack, 1997). As the descriptive 

summaries indicate, Teacher 3:1 did not adhere to this plan  

Teacher 3:1 

Reporting subsequently that she thought 7 would be too easy, teacher 3:1 worked with 

whole values of 26 and 10 in this section. The first episode consisted of 16 ‘separate’ 

offers of partitions, 5 of these incorrect. For the first five correct examples, the split 

offered was represented in a triad diagram. These five triad partitions were then 

transferred to a table with split values verbally replayed. No gestures or actions 

emphasized either the connection between representations or the part-part-whole 

relationship. Thus, the table and triad representations were visible simultaneously but 

we described the connections between them as ‘weak’.  

In the next episode a concrete situation with ten monkeys and two trees was visible on 

the board. Physical splitting actions and table representations of the parts were 

produced with simultaneous visibility of four partitions in the table, but with each 

partition produced ‘separately’ with all monkeys returned to trees after each partition. 

No explicit connection was made verbally or gesturally by the teacher in support. Her 

instruction for worksheet 1 was to work on partitions of 30, rather than 7 – the planned 

whole value.  

Teacher 3:2 

The teacher introduced the concrete situation visually and orally, and asked students to 

split the monkeys in different ways. Eight unique partitions of 7 were offered, with 

some partitions produced by moving monkeys from one partition arrangement in the 

two trees to another. As the students physically split monkeys between the trees, the 

teacher verbally ‘re-played’ their actions in numerical terms and subsequently wrote 

all the different partitions in a table on the board. Across all eight examples offered, the 

teacher coherently connected students’ physical split results to verbal and tabular 

representations. This coherence between representations, with tabular representation 

added after the first three examples making all examples visible simultaneously – 

marked ‘strong’ connection.  
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In episode 2 the teacher returned to monkeys to be split between the two trees. She 

introduced the triad diagram and verbally related it to the concrete situation. Gesturing 

supported verbal connections between ‘monkeys in trees’ and ‘parts’ in the triad 

model. Three different numerical partitions were produced by learners, without 

physical actions of moving monkeys. The teacher rubbed out the numbers in the triad 

when she moved to the next example. The same situation used in episode 1 was thus 

linked to a ‘new’ representation, providing an expanded representation space and a 

pathway to it from a situation that was familiar.  

Teacher 3:3 

Teacher 3:3 dealt with just one example of splitting number 7. The representation 

space included, simultaneously, a verbal description of the visible concrete 

monkeys/trees situation, physical splitting actions with the whole and part values 

resulting from this action then transferred into a triad diagram. Gestures and verbal 

descriptions maintained ‘strong connections’ between the concrete situation, actions 

and triad diagram. We note gestural and verbal representations repeatedly as research 

continues to note their salience within mathematics teaching (Alibali et al., 2014). The 

teacher opened activity to individual working at this point to produce more examples 

of a split. The inclusion of only one example of splitting 7, in VT terms, provides 

limited possibility for students to discern other partitions of 7 or to see the invariance of 

representations across examples. Table 2 summarizes the teaching preceding 

worksheet 1, including the number and simultaneity of examples, the whole number, 

the representation space and the nature of connections. 

Table 2: Section 1 teaching: V = verbal, C = concrete situation, A= physical action, 

Ta = table and Tr = triad 

Teachers 3:1 and 3:2 both present multiple examples of splits of the given number, in 

contrast to teacher 3:3. In teacher 3:2’s work, the table and triad representations record 

the outcomes of physical splitting of monkeys between the two trees, whereas in 

teacher 3:1’s first episode, the split is enacted on abstract numbers. Further, while no 

attention was given to systematic production of different splits in any of these teaching 

episodes, teacher 3:2 did produce a complete set of splits of 7 in her Episode 1, with 

checks in her questioning (‘Is there still another way?’). In class 3:1, the use of 26 is an 

unwieldy choice for producing completeness, but the production of only four splits of 

10 in Episode 2 suggests lack of focus on this aspect anyway. 

Teacher No of examples 

Whole number 

Representations Connections Simultaneity  

of examples 

3.1 16   (26 –whole) V              Ta   Tr Weak Different partitions visible  

3.1 3     (10 –whole) V   C  A   Ta       Weak  Different partitions visible 

3.2 8       (7 –whole) V   C  A   Ta   Strong All partitions visible  

3.2 4       (7 –whole) V   C                Tr Strong Rubs out examples 

3.3 1       (7 –whole) V   C   A          Tr Strong One example 
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Verbal descriptions and gesturing connecting between the concrete situation, splitting 

action and triad representations were consistently present in teacher 3:2 and 3:3’s 

lessons, in contrast to teacher 3:1’s lesson. Simultaneous presence of whole and parts 

could be seen in all three classes, but in class 3:1 the whole faded as the teacher started 

talking about ‘pair of numbers’. 

This analysis confirms that multiple examples of split are more useful pedagogically 

than a single example from the perspective of learner performance, seen in the 

contrasts in performance on worksheet 1 between classes 3:2 and 3:3. But careful 

selection of examples and strong and consistent connections between representations 

are also critical within teachers’ handling of sequences of examples. 

SECOND SECTION OF TEACHING 

The teachers had agreed to continue with partitions of 7, expanding the splitting 

activity to a number sentence representation, with worksheet 2 following, prior to a 

final missing part problem task (completed in two classes only and therefore omitted 

from current analysis). Teacher 3:1 and 3:2 both handled one episode, while teacher 

3:3 handled two episodes before worksheet 2. Teacher 3:1 used 9 as the whole instead 

of 7 and introduced a missing part problem before worksheet 2.  

Teacher 3:1 

Rather than linking Section 1 representations to number sentences Teacher 3.1 used 

whole value 9 and dealt with three examples as missing part addition problems. In the 

first example the concrete situation, triad and number sentence were simultaneously 

visible. Strong connections were maintained between the teacher´s talk and moves 

from concrete situation to triad and symbolic form, in contrast to the other two 

examples where connections became weaker. In these subsequent examples, a triad 

diagram was presented in one example, and a concrete situation and number sentence 

in the third example, without connection to the triad. Therefore connections between 

representations were less consistent. Further, worksheet 2 with whole value 7, was 

disconnected from the teaching. 

Teacher 3:2 

Teacher 3:2 returned to the concrete situation and the triad diagram. With the seven 

monkeys/two trees visible on the board, the teacher verbally linked the concrete 

situation to the triad, and then transferred the triad partition to a number sentence. 

Across the four examples dealt with, the different representations were simultaneously 

present but with more sporadic verbal reference to the concrete situation, but with 

monkeys/trees remaining visible. Across all four examples verbal descriptions and 

gesturing connected representations and maintained visibility of the part-part-whole 

relationship, again marking ‘strong connection’. Her rubbing out each example of 

splitting 7 resulted in a lack of simultaneous representation of instances, and therefore 

no possibility for linking examples. 
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Teacher 3:3 

Worksheet 1 was followed by students splitting 7 monkeys again using concrete 

situation, physical action, triad and table. Initially, splitting was demonstrated with 

physical actions leading to results presented in triad form, but physical actions were 

dropped in the next three examples with direct moves to triad representations. The next 

four instances were presented in a table. Across this episode the teacher´s verbal 

descriptions and gestures connected different partitions and representations. The 

teacher handled eight partitions of 7, all shown on the board simultaneously.  While not 

all representations were visible for all the partitions, there were always multiple 

examples using the same representation and multiple representations presented 

simultaneously across examples, strongly connected through talk and gesture, and 

additionally, possibilities to discern completeness in the example space. 

In the next episode the teacher referred to monkeys while using one partition from the 

triad to link to a number sentence representation. In this example she connected the 

‘whole’ and ‘parts’ from the triad to monkeys in trees and transformed the partition to a 

number sentence with coherent verbal description and gestures. Connections were 

therefore, again, strong. Table 3 overviews the teaching preceding worksheet 2. 

Teacher No of  examples 

Whole number 

Representations Connections Simultaneity of examples 

3:1 3    (9 –whole) V  C  A        Tr  N   Mostly weak Fleeting appearance of 

representations  

3:2 4    (7 –whole) V  C             Tr  N  Strong Rubs out examples 

3:3 8    (7 –whole) V  C  A  Ta  Tr   Strong  All  partitions visible 

3:3 1    (7 –whole) V   C            Tr  N Strong One example 

Table 3: Section 2 teaching: V = verbal, C = concrete situation, A= physical action, 

Ta = table, Tr = triad and N = number sentence 

These descriptions indicate overlap relating to simultaneous presence of parts and 

whole. Teacher 3:3 produced a complete set of splits of 7 in the second episode, as 

teacher 3:2 did in the first episode. By leaving the eight splits on the board teacher 3:3 

provides opportunity to discern the complete set of partitions of 7, in contrast with 

teacher 3:2 who rubs out split examples as she proceeds in this section. In class 3:1 and 

3:3, some representations were not used across all the presented examples. In class 3:3 

though, sporadic representations were strongly connected to each other within 

examples, compared to fleeting representations connected in more limited ways in 

class 3:1. Teacher 3:3’s episode 2 included only one example, but this example was 

linked to the previous concrete situation using a split from the triad diagram to provide 

an expanded representation space. Thus, there were differences in the extent to which 

teacher talk connected between representations within and across examples. In class 

3:2 and 3:3 verbal descriptions and gesturing supporting connections between 

representations were consistently present, compared to class 3:1. Contrasts related to 
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invariance of the whole value across all episodes in class 3:2 and 3:3, while teacher 3:1 

varied the whole several times.  

CONCLUDING COMMENTS 

The comparatively strong attainment of Class 3:2 on Worksheet 1 and Class 3:3 on 

Worksheet 2 points to strongly connected representation spaces and simultaneity of 

examples contributing directly to improved understandings. The ‘newness’ of the triad 

representation and the structural approach has, in all likelihood, made it more possible 

for us to see sharper distinctions in shifting performance patterns between the three 

classes than would be possible on a more familiar topic where prior understandings 

would figure. While acknowledging this, these findings point to significant 

possibilities for progressing learning through attention to simultaneity in the example 

space, and strong connections between representations and across example spaces and 

representations.  
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This study uses data from TEDS-M to explore and compare possible individual-based 

and institutional-based predictors of future secondary mathematics teachers’ 

readiness to teach in Taiwan, Germany, and the United States. Across the three 

countries, future teachers’ intrinsic motivation to become teachers and the consistency 

of courses arrangement in the institutions where they studied were significant 

predictors of teaching readiness. Future teachers’ highest grade level of mathematics 

studied at secondary school was a predictor of teaching readiness only in Taiwan, 

whereas the motivation derived from the empathy of prior learning experience was a 

predictor of teaching readiness in Germany and the United States, but not in Taiwan. 

INTRODUCTION 

The purpose of teaching is to help students learn (Hiebert, Morris, Berk, & Jansen, 

2007), and the purpose of teacher education is to cultivate teachers’ ability to help 

students learn. NCTM (1991), NBPTS(2001), and CCSSO (2010) have set standards 

to articulate the teaching competencies that mathematics teachers should acquire. 

These standards delineate not only the knowledge mathematics teachers should 

possess, but also the actions they should undertake during teaching (for example, 

performance-based standards of the CCSSO account for actions). 

Teacher Education and Development Study in Mathematics (TEDS-M), an 

international comparison study conducted by the IEA, investigated the readiness of 

future secondary mathematics teachers to execute tasks central to mathematics 

teaching in 15 countries (Tatto et al., 2012; hereafter, referred to as “teaching 

readiness”). TEDS-M measured various facets of teaching readiness, for example, 

items related to instructional planning (e.g., set up mathematics learning activities to 

help pupils achieve learning goals), items related to instructional strategies (e.g., use 

questions to promote higher order thinking in mathematics), and items related to 

assessment (e.g., develop assessment tasks that promote learning in mathematics). The 

TEDS-M question was self-reported. Although self-reported data may be skewed 

because participants’ self-impressions may deviate from reality, self-reporting is 

simple and economical, and allows a large number of respondents, who may belong to 

various cultures and speak various languages, to be surveyed and compared. Moreover, 

future teachers’ self-evaluation constitutes a pragmatic benefit that is similar to 

customer evaluation of whether teacher education institutions prepared them well. 
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Self-evaluation is an effective indicator of readiness since it incorporates components 

of individual reflection and practical field experience into the survey process. 

Tang and Hsieh (2012) indicated that future secondary mathematics teachers in various 

TEDS-M participating countries reported different levels of teaching readiness. The 

characteristics that affect future teachers’ teaching readiness remain unclear; it also 

remains unclear whether the characteristics that affect the readiness are the same in 

various countries. Determining the characteristics that affect the readiness is crucial to 

enable teacher education institutions to develop their training programs according to 

reliable references. These characteristics can be considered by such institutions when 

recruiting or screening future teachers. In this study, TEDS-M data was used to explore 

and compare possible individual-based and institutional-based predictors of future 

teachers’ teaching readiness in three higher-achieving countries (achieved MCK and 

MPCK means beyond the international mean of 500) in Asia, Europe, and North 

America—Taiwan, Germany, and the United States.   

RESEARCH METHOD 

Conceptual framework 

Future teachers’ teaching readiness is considered an indicator of the effectiveness of 

teacher education (Tatto et al., 2012). After a review of studies related to effectiveness 

of schools and teacher education, individual- and institutional-based characteristics 

that possibly influenced this readiness were selected for further investigation. Several 

backgrounds of respondents have been identified to be influential.  

Demographics: Gender, home language, and socioeconomic status (SES) are typically 

considered powerful predictors of future teachers’ competence to teach mathematics. 

Blömeke et al. (2012) revealed that gender was the most critical individual 

characteristic that affected MCK across TEDS-M participating countries. Language 

background was known to affect students’ achievements in mathematics and was 

determined to affect knowledge levels among future teachers (Laschke, 2013). SES 

reflects access to learning resources, such as wealth or education (Stevenson & Baker, 

1992). Blömeke et al. demonstrated the relationship between future teachers’ MCK 

and their parents’ education levels. 

Entrance quality: Two indicators in TEDS-M were designed to measure future 

teachers’ entrance quality: secondary mathematics level and overall grades received in 

secondary school. Researches revealed that these two cognitive characteristics affected 

future teachers’ knowledge levels across TEDS-M countries (e.g., Hsieh et al., 2010).  

Motivation: Motivation is widely considered as a critical affective characteristic to 

impact student mathematics achievement (Eklöf, 2010). TEDS-M investigated the 

factors that motivated future teachers to pursue teaching. Studies found that intrinsic 

motivation and empathy from prior learning experience were positively correlated 

with knowledge achievements; and extrinsic motivation was negatively correlated with 

knowledge achievements (Blömeke et al., 2012; Hsieh et al., 2010; Laschke, 2013). 
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Predictors of student achievement are often studied by examining the characteristics 

reflecting the school education quality, like teacher quality and school features (Akyüz 

& Berberoğlu, 2010). Thus, this study took several indicators of teacher education 

quality as the institution characteristics to examine. 

Teacher education quality: Hsieh et al. (2011) proposed a framework for teacher 

education quality of programs in institutions, and designed two indicators to measure 

course quality, courses arrangement and teaching coherence, measuring the 

consistency of courses and content within a university, and the continuity between 

university instruction and practicum instruction respectively. Three indicators were 

designed to measure person quality: MR-instructor and SB-supervisor measured the 

effectiveness of educators responsible for teaching mathematics-related courses and 

supervising future teachers’ school-based experiences, respectively. The third person 

quality indicator was future teacher achievement, including MCK and MPCK. 

The framework and the potential predictors of teaching readiness are shown in Figure 

1. MCK and MPCK were also analysed as individual characteristics, because teachers’ 

MCK and MPCK are often related to whether they can carry out mathematics teaching 

or not (Leinhart & Smith, 1985). 

Individual characteristics   Institution characteristics 

Demographics 
 Gender 

 Home language 

 SES 

    

 Teacher education quality 

Course quality 
 Course arrangement 

 Teaching coherence 

Person quality 

Of educators 

 MR-instructor 

 SB-supervisor 

Of future teachers 

 Future teacher knowledge 

(MCK, MPCK) 

 

    

Entrance quality 
 Mathematics level 

 Overall grades 

 Teaching 

Readiness 

 

    

Motivation 
 Intrinsic motivation 

 Extrinsic motivation 

 Empathy from prior learning 

experience 

   

     

Future teacher 

knowledge 
 MCK 

 MPCK 

    

Figure 1: Framework of this study. 

Participants 

This study uses TEDS-M samples of future secondary mathematics teachers in 

Taiwan, Germany, and the US. TEDS-M used a stratified multistage probability 

sampling design, and drew the samples reflecting the distribution of future teachers at 

the end of their training in each country
1
 (Tatto et al., 2012). The samples of this study 

                                           
1
 The United States limited its participation to public institutions. 
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include 365 Taiwanese future teachers at 19 institutions, 771 German future teachers at 

13 institutions, and 607 American future teachers at 46 institutions. In Taiwan, only 

one training program is offered: teachers are trained to teach a single subject from 

Grades 7 to 12. German teachers are trained to teach two subjects from Grades 1 to 

9/10, 5/7 to 9/10, or 5/7 to 12/13. In the US, teachers are trained to teach one subject 

either to Grades 4/5 through 8/9, or 6/7 through 12 (Tatto et al., 2012). 

Measures 

Teaching readiness was measured by using 11 items graded on a 4-point Likert scale. 

In TEDS-M, a partial-credit model was used to estimate future teachers’ logit scores on 

the scale; a score of 10 was associated with the neutral position (Tatto et al., 2012). 

Higher scores indicated greater self-evaluated teaching readiness.  

Gender was a dichotomous item. Home language measured the frequency of speaking 

the official language used in teacher education at home on a 4-point Likert scale. A 

partial-credit model was used to estimate SES score for a composite of parental 

education and home resources. Four TEDS-M questions were included: paternal and 

maternal education levels (1 = primary to 7 = beyond ISCED 5A), a quantity of items 

available for education and leisure (e.g., DVD players; 0 to 7 items), and number of 

books at home (1 = none or few to 5 = enough to fill three or more bookcases). 

Secondary mathematics level employed a 5-point Likert scale to measure the highest 

grade level of mathematics future teachers studied in secondary school (1 = below year 

10 to 5 = advanced level of year 12). Overall grades were also graded according to a 

5-point Likert scale that measured future teachers’ secondary school achievements in 

comparison to their age cohort (1 = generally below average to 5 = always at the top). 

TEDS-M measured the factors that motivated future teachers to pursue teaching based 

on nine items through a 4-point Likert scale (1 = not a reason to 4 = a major reason). In 

a factor analysis, Hsieh et al. (2010) extracted three aspects: intrinsic motivation, 

salary and job security, and empathy from prior learning experience, with 4, 3, and 2 

items respectively. The average of rating points within an aspect was employed. 

TEDS-M measured future teachers’ MCK and MPCK based on 76 and 27 items, 

applying a balanced incomplete block design with three booklets. Scaled scores were 

created by using item response theory, and standardized to a mean of 500 and a 

standard deviation of 100 (Tatto et al., 2012). 

Courses arrangement, teaching coherence, MR-instructor, and SB-supervisor were 

determined based on six, five, six, and four items, respectively, all of which were 

graded according to 4-point or 6-point Likert scales. In TEDS-M, data were managed 

by conducting the same statistical analyses as those used for teaching readiness. 

Data analysis 

This study employed a hierarchical linear model to analyze the data to account for the 

nested sample structure of TEDS-M (using HLM 6.08). The influence of individual 

characteristics (level-1) on teaching readiness was examined. These characteristics 
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were introduced using group centering (centered around the arithmetic mean of the 

institution) to separate level-1 effects from higher-level effects. The effects of 

institution characteristics were then examined by controlling level-1 predictors.  

Institutions with fewer than 6 future teachers were excluded to ensure robust estimates. 

The adjusted data set contained data collected from 361 Taiwanese future teachers at 

18 institutions, 771 German future teachers at 13 institutions, and 563 US future 

teachers at 32 institutions. Weights of future teachers and institutions provided by 

TEDS-M were used to reflect selection probabilities and response rates. 

RESEARCH FINDINGS 

To examine the predictive effects of characteristics on teaching readiness, this study 

introduced the predictors by block. First, for level 1, demographics were included in 

the model (M1). Entrance quality (M2), motivation (M3), and future teacher 

knowledge (M4) were then added in order. Controlling level-1 predictors, the 

following level-2 predictors were then added to the model: future teacher person 

quality (M5), educator person quality (M6), and course quality (M7) in order. 

Individual characteristics 

As shown in M7 for Taiwan (see Table 1), SES, secondary mathematics level, and 

intrinsic motivation are influential individual characteristics. The effect size of SES is 

much smaller than that of the other two predictors. The German and the US models 

exhibited predictors different from Taiwan’ model, but were similar to each other. 

Intrinsic motivation (e.g., I want to have an influence on the next generation) is a 

common predictor of teaching readiness in all three countries. This corresponds with 

the idea in the literature that intrinsic motivation is crucial in both East Asia and the 

West (Zhu & Leung, 2011). However, the connotations of intrinsic motivation differ in 

the two cultures. Intrinsic motivation among Asian people involves attempts at 

mastering practices and gaining assurance from others, reflecting “social orientation.” 

People in the West derive intrinsic motivation from individual interest and fulfilment, 

reflecting “individual orientation” (Laschke, 2013; Markus & Kitayama, 1991).  

For the two Western countries, another motivating factor, empathy from prior learning 

experience (e.g., I love mathematics or I was always a good student in school), is 

predictive of future teachers’ teaching readiness. Compared with Taiwan, teaching is a 

less desirable job and secondary school academic performance requirements for future 

teachers are less demanding in Germany and the US (Laschke, 2013; Schmidt et al., 

2011). Thus, future teachers have various prior learning experiences. Positive 

experiences may serve as cognitive and affective supports for future teachers’ teaching 

readiness. By contrast, teacher training and teacher jobs are competitive, because of 

benefits for teachers and social expectations. Typically, only secondary school 

students competent in mathematics are admitted. Empathy from prior learning 

experience was thus determined to be unimportant to teaching readiness in Taiwan. 
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In Taiwan, secondary mathematics level positively affects teaching readiness. The 

highest level of mathematics offered in Taiwanese schools is offered in three forms: 

12
th
 grade mathematics A (for students with science orientations), 12

th
 grade 

mathematics B (for students with literature and arts orientations), and 11
th
 grade 

vocational mathematics. The concepts and skills taught and the difficulty levels differ 

substantially among these courses (Hsieh et al., 2010). Future teachers who were more 

competent at secondary mathematics evaluated themselves to be more ready to teach. 

 TW DE US 

 M1 M2 M3 M4 M6 M7 M7 M7 

Individual predictor 

Gender ns       ns 

Home language ns      -0.28
**

 -0.40
**

 

SES 0.24
*
 0.23

*
 0.15

†
 0.16

†
 0.16

*
 0.16

*
   

Sec. math level  0.61
**

 0.61
**

 0.58
**

 0.64
**

 0.64
**

   

Overall grades  ns     ns  

Intrinsic motivation   0.57
**

 0.59
**

 0.60
**

 0.60
**

 0.53
**

 1.11
**

 

Salary and job security   ns      

Empathy   ns    0.21
**

 0.27
*
 

MCK    0.001
†
     

MPCK    ns     

Institution predictor 

MCK         

MPCK         

MR-instructor,     0.57
*
 ns   

SB-supervisor     ns   ns 

Courses arrangement      0.39
†
 0.65

**
 0.39

**
 

Teaching coherence      ns ns ns 

R
2
 of level 1 3% 6.4% 17.4% 17.3% 21.4% 20.8% 10.7% 16/8% 

R
2
 of level 2     43.8% 42.1% 22.4% 64.7% 

Note. ns = not significant. 
†
p < .1. 

*
p < .05. 

**
p < .01. 

Table 1: Hierarchical linear model for future teachers’ teaching readiness. 

SES predicts Taiwanese future teachers’ teaching readiness. In Confucian culture, SES 

is often considered to be irrelevant to achievement. Whether SES affects future 

teachers’ teaching readiness from a cognitive or an affective perspective warrants 

further study. It was unexpected that home language produces negative effects in 

Germany and the US for its representing immigrant status to some degree (Laschke, 

2013). Further studies are needed. 
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Institution characteristics 

Courses arrangement was determined to be predictive of future teachers’ teaching 

readiness after controlling for individual predictors in all three countries. This 

indicated that courses arrangement is the most crucial factor to be modified by teacher 

education institutions in order to improve future teachers’ teaching readiness.  

In Taiwan, teaching coherence and MR-instructor were shown to have a significantly 

positive effect on the readiness when each of them is the single predictor at level 2, 

indicating that they were also crucial characteristics to modify to improve teaching 

readiness. When courses arrangement was singularly introduced in level 2, the 

proportions of variance explained by levels 1 and 2 were 20.8% and 39.3%; these 

percentages were close to those of M7. Most of the variance explained by teaching 

coherence and MR-instructor overlaps with that of courses arrangement, and teaching 

coherence and MR-instructor affect teaching readiness through courses arrangement. 

Germany and the US yielded similar results, but on different institution characteristics. 

CONCLUSION 

In Taiwan, Germany, and the US, future teachers’ intrinsic motivation is a critical 

individual characteristic predictive of teaching readiness. In Taiwan, whether future 

teachers are science oriented is a predictor of the readiness, whereas whether future 

teachers had satisfactory prior learning experiences is predictive of the readiness in 

Germany and the US. Regarding institution characteristics, the consistency of courses 

and content arranged by institutions was determined to be most predictive of teaching 

readiness; thus, this factor is the most crucial factor to enhance in the institutions. 

Unexpectedly, MCK and MPCK were not observed to be predictive of teaching 

readiness. A gap exists between future teachers’ knowledge and their evaluation of 

whether they are ready to teach mathematics. Further research is required. 
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PROOF AS A CLUSTER CONCEPT 

Keith Weber 

Rutgers University 

 

Proof is a central concept in mathematics education, yet mathematics educators have 

failed to reach a consensus on how proof should be conceptualized. I advocate 

defining proof as a clustered concept, in the sense of Lakoff (1987). I contend that this 

offers a better account of mathematicians’ practice with respect to proof than previous 

accounts that attempted to define a proof as an argument possessing an essential 

property, such as being convincing or deductive. I also argue that it leads to useful 

pedagogical consequences. 

PROOF CONCEPTUALIZATION IN MATHEMATICS EDUCATION 

It is widely accepted that having students successfully engage in the activity of proving 

is a central goal of mathematics education (e.g., Harel & Sowder, 1998). Yet 

mathematics educators cannot agree on a shared definition of proof (Balecheff, 2002; 

Reid & Knipping, 2010; Weber, 2009). This is recognized as problematic: without a 

shared definition, it is difficult for mathematics educators to meaningfully build upon 

each another’s research and it is impossible to judge if pedagogical goals related to 

proof are achieved (e.g., Balacheff, 2002; Weber, 2009). Until now, most mathematics 

educators have sought to define proof as an argument that possesses one or more 

desirable properties, such as employing deductive reasoning (Hoyles & Kuchemann, 

2002) or being convincing to oneself (Harel & Sowder, 1998) or community 

(Balacheff, 1987). However, there is not a consensus on which property or properties 

capture the essence of proof. The main thesis of this paper is that, in mathematical 

practice, there are no properties that are the essence of proof and viewing proof as a 

clustered model in the sense of Lakoff (1987) offers a better account of how proof is 

practiced by mathematicians. 

Two approaches to defining proof 

There are two approaches that philosophers and mathematics educators have used to 

define proof (CadwalladerOlsker, 2011). In the analytic philosophical tradition, some 

have sought to define a proof as a formal object, usually as a strictly syntactic object 

within a formal theory. Unfortunately, there is little intersection between the objects 

satisfying definitions of these types and the arguments that mathematicians refer to as 

proofs. Consequently, such a definition cannot provide a reasonable account of how 

proofs are produced or how they advance our mathematical knowledge (cf., Pelc, 

2009). Further, from an instructional perspective, this can imply the pedagogically 

dubious suggestion of focusing on the form of proof rather than its meaning. 

A second approach to proof is to define proofs as the proofs that mathematicians 

actually read and write or as the arguments that mathematicians label as proofs. 
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However, such a characterization is too broad to do useful philosophical or 

pedagogical work. What is needed is a sense what types of arguments mathematicians 

recognize as proof. Further, this sense should be philosophically and pedagogically 

pertinent. For instance, the observation that mathematicians usually publish their 

proofs is LaTEX will not inform instructional practice. If we accept Larvor’s (2012) 

observation that, “the field [the philosophy of mathematical practice] lacks an 

explication of ‘informal proof’ as it appears in expressions such as ‘the informal proofs 

that mathematicians actually read and write’” (p. 716), then it is clear that there is more 

work to do in this area. 

DIFFICULTIES IN FINDING AN ESSENCE OF PROOF 

A common approach to defining proof is to locate a characteristic (or set of 

characteristic) that is shared by all arguments that mathematicians consider to be 

proofs and not present in all other arguments. If successful, this approach would yield a 

clear way of characterizing proof. Unfortunately, this approach has not been 

successful. For instance, a proof has sometimes been defined as an argument that 

convinces oneself (or one’s community) that an assertion is true (e.g., Harel & Sowder, 

1998). However, Tall (1989) noted that there are convincing arguments that would not 

qualify as proofs. For instance, Eccheveria (1996) claims that the empirical evidence in 

support of Goldbach’s Conjecture is so overwhelming that the mathematical 

community is certain of its truth, but the claim is not proven. Proofs are sometimes 

defined to be a priori deductive arguments that do not depend on one’s observations or 

experience, but Fallis (1997) noted that computer-assisted arguments would not satisfy 

this description. 

It is natural to try to define proof as a category of objects sharing some properties. After 

all, this is how mathematical concepts are defined (Alcock & Simpson, 2002). 

However, I argue that proofs are not mathematical concepts, they are discursive 

concepts. And I further argue that there is no property that distinguishes proofs from 

non-proofs. 

Three proofs 

To highlight the difficulties of characterizing proofs, consider these three proofs as 

they appear in the mathematics literature. 

Theorem 1: If n is a number of the form 6k-1, then n is not perfect. 

Proof 1: Assume n is a positive integer of the form 6k-1. Then (mod 3) and 

hence n is not a square. Note also that for any divisor d of n, (mod 3) 

implies that (mod 3) and (mod 3) or (mod 3) and (mod 

3). Either way, (mod 3) and (mod 3). 

Computing 2n=2(6k-1) (mod 3), we see that n cannot be perfect. (from Holdener, 

2002) 
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Theorem 2:  

Proof 2: Here is a proof using Mathematica to perform the summation. 

FullSimplify[TrigtoExp[FullSimplify[ 

 ]]/. 

a_Log[b_]+a_Log[c_]:>a Log[b c]]. 

(from Adamchik & Wagon, 1997) 

Theorem 3: (Fixed Point Theorem) Let f(x) be continuous and increasing on [0, 1] 

such that f([0,1])[0,1]. Let  f2(x)=f(f(x)) and fn(x)=f(fn-1(x)). Then under iteration of f, 

every point is either a fixed point or else converges to a fixed point. 

Proof 3: The only proof needed is: 

(from Littlewood, 1957) 

These proofs vary widely in terms of the types of inferences that were made, the 

representation systems used, their level of transparency, and the level of detail they 

provide. At this point, the reader may want to make three objections: (1) Some of these 

“proofs” are not really proofs; (2) These proofs are outliers; (3) These proofs are 

considered controversial. 

I do not think (1) is a fair objection. If we were defining what proof ought to be, one 

could say Proof 2 or Proof 3 ought not be considered as a proof. However, if we wish to 

describe the proofs that mathematicians actually read and write, we must account for 

Proof 2 and Proof 3 because they were published in the literature by mathematicians as 

proofs. With (2), Proof 2 and Proof 3 were deliberately chosen to be provocative, yet 

they are also representative of the wider categories of computer-assisted proofs and 

visual proofs. 

With (3), these proofs are controversial. In Adamchik and Wagon’s (1997) paper in 

which their proof was presented, they admitted that, “Some might even say this is not 

truly a proof! But in principle, such computations can be viewed as proofs” (p. 852). In 
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an experimental study, Inglis and Mejia-Ramos (2009) demonstrated that 

mathematicians collectively find Proof 3 significantly less convincing than more 

conventional proofs. I accept that these proofs are controversial, but argue this 

controversy has important consequences for the nature of a descriptive account of 

proof. 

Proof* 

Aberdein (2009) coined the term, “proof*”, as “species of alleged ‘proof’ where there 

is no consensus that the method provides proof, or there is a broad consensus that it 

doesn’t, but a vocal minority or an historical precedent point the other way”. As 

examples of proof*, Aberdein included “picture proofs*, probabilistic proofs*, 

computer-assisted proofs*, [and] textbook proofs* which are didactically useful but 

would not satisfy an expert practitioner”. As Proof 2 is a computer-assisted proof and 

Proof 3 is a picture proof, these qualify as proofs*. 

Proofs* do not pose a problem for analytic philosophers who attempt to pose 

normative judgments for what should be considered a proof. Recently, there have been 

arguments that picture proofs, such as Proof 3, are perfectly valid and ought to be on 

par epistemologically with the more traditional verbal-symbolic proof (e.g., Kulpa, 

2009). Granted there may be some mathematicians who disagree, such as those in 

Inglis and Mejia-Ramos’ (2009) experimental study, but the proponents of picture 

proofs can argue that these mathematicians are simply mistaken.  

However, proofs* do pose a problem for philosophers and mathematics educators who, 

as Larvor (2012) put it, wish to describe “the proofs that mathematicians actually read 

and write”. Take picture proofs*, for instance. A proposed criteria of proof must either 

admit some picture proofs* as proofs or claim that all picture proofs* are not. If the 

former occurred, one could challenge this claim by citing the large number of 

mathematicians who do not produce such proofs and reject such proofs when they read 

them. If the latter occurred, one could rebut the claim by citing the picture proofs in the 

published literature as well as the large number of mathematicians (or at least the vocal 

minority) who accept such proofs. Similar arguments could be made for all types of 

proofs*.  

PROOF AS CLUSTER MODEL 

Cluster concepts 

Lakoff (1987) noted that “according to classical theory, categories are uniform in the 

following respect: they are defined by a collection of properties that the category 

members share” (p. 17). This perspective has dominated the way that philosophers 

have attempted to define proof. However, Lakoff’s thesis is that most real-world 

categories cannot be characterized this way. In particular, he argued that some 

categories might be better thought of as clustered models, which he defined as 

occurring when “a number of cognitive models combine to form a complex cluster that 
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is psychologically more basic than the models taken individually” (p. 74). I will argue 

that mathematical proof should be regarded in the same way. 

As an illustrative example of a clustered concept, Lakoff considered the category of 

mother. According to Lakoff, there are several types of mothers, including the birth 

mother, the genetic mother, the nurturance mother (i.e., the adult female caretaker of 

the child), and the marital mother (i.e., the wife of the father). These concepts are 

highly correlated-- the birth mother is nearly always the genetic mother and more often 

than not the caretaker. In the prototypical case, these concepts will converge—that is, 

the birth mother will also be the genetic mother, the nurturance mother, and so on. And 

indeed, when one hears that the woman is the mother of a child, the default assumption 

is that the woman assumes all roles. However, this is not always the case. 

Lakoff raised two points that will be relevant to this paper. First, there is a natural 

desire to pick out the “real” definition of mother, or the true essence of motherhood. 

However, Lakoff rejected this essentialist disposition. Different dictionaries list 

different conceptions of mother as their primary definition. Further, sentences such as, 

“I was adopted so I don’t know who my real mother is” and “I am uncaring so I doubt 

I could be a real mother to my child” both are intrinsically meaningful yet define real 

mother in contradictory ways. Second, in cases where there is divergence in the 

clustered concept of mother (e.g., a genetic but not adoptive mother), compound words 

exist to qualify the use of mother. Calling one a birth mother typically indicates that 

she in not the nurturance mother; calling one an adoptive mother or a stepmother 

indicates that she is not the birth mother.  

Proof as a clustered concept 

The main thesis of this paper is that it would be profitable to consider proof as a 

clustered concept. The exact models that should form the basis of this cluster should be 

the matter of debate, but I will propose the following models as a working description 

to highlight the utility of this approach: (1) A proof is a convincing argument that 

convinces a knowledgeable mathematician that a claim is true. (2) A proof is a 

deductive argument that does not admit possible rebuttals. The lack of potential 

rebuttals provides the proof with the psychological perception of being timeless. 

Proven theorems remain proven. (3) A proof is a transparent argument where a 

mathematician can fill in every gap (given sufficient time and motivation), perhaps to 

the level of being a formal derivation. In essence, the proof is a blueprint for the 

mathematician to develop an argument that he or she feels is complete. This gives a 

proof the psychological perception of being impersonal. Theorems are objectively true. 

(4) A proof is a perspicuous argument that provides the reader with an understanding 

of why a theorem is true. (5) A proof is an argument within a representation system 

satisfying communal norms. That is, there are certain ways of transforming 

mathematical propositions to deduce statements that are accepted as unproblematic by 

a community and all other steps need to be justified. (6) A proof is an argument that 

has been sanctioned by the mathematical community.  
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Of course, the criteria above are not original. All have previously been proposed by 

other philosophers and mathematicians. What is original here is claiming that one 

cannot demarcate proofs from non-proofs by saying that proofs must satisfy some 

subset of the criteria above.  

I argue that each of these more basic models do not, by themselves, characterize proof 

completely. I previously argued that (1) fails because there are convincing empirical 

arguments that are not proofs. Fallis (1997) notes that computer-assisted proofs fail to 

satisfy (2) and (3), since a possible rebuttal is that the computer software was faulty 

and since the proof does not give a blueprint for how a human could perform the 

computer checks for himself or herself. Similar arguments can be given for (4), (5), and 

(6). 

If we accept proof to be a clustered concept as defined above, we would expect the 

following to occur: (a) proofs that satisfied all of these criteria should be 

uncontroversial, but some proofs that satisfy only a subset of these criteria might be 

regarded as contentious; (b) compound words exist that qualify proofs that satisfy 

some of these criteria but not others; (c) it would be desirable for proofs to satisfy all 

six criteria. 

Regarding (a) and (b), Aberdein’s (2009) discussion of proofs* supports these points. 

He explicitly highlighted compound words delimiting the sense that arguments are 

proofs. For instance, computer-assisted proofs* are not transparent and it is not clear 

how a mathematician can fill in every gap of the proof and probabilistic proofs* are not 

deductive. Not only do these qualifying compound words exist, but as Aberdein (2009) 

argued, there is not a consensus on their validity amongst mathematicians. For (c), we 

can consider Dawson’s (2006) analysis of why mathematicians re-prove theorems. 

Dawson’s analysis demonstrated that sanctioned proofs are reproven to avoid 

controversial methods, fill in perceived gaps, become more perspicuous, and increase 

mathematician’s conviction, which correspond to the first four components of the 

cluster model described above. 

IMPLICATIONS FOR PEDAGOGY 

If we view proof as a cluster concept, like that of mother, we might expect that this 

concept is perhaps not best taught by direct instruction, but instead through practice in 

a community. For instance, Thurston (1994) described how he sought a clear definition 

in proof in graduate school; he did not find one but through experience, he began to 

“catch on”. Of course, we know that mathematics majors often do not catch on and 

remain deeply confused about the meaning of proof when they graduate. Here the 

instructor might help by pointing to features of the argument that make the argument a 

better or worse example of proof, rather than solely presenting the argument as right or 

wrong. 

At a broad level, the components of the clustered model of proof are correlated with 

one another. For instance, as an argument becomes more deductive, it often tends to 
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become more convincing, easier to translate into a formal proof, and more likely to be 

sanctioned by one’s peers. Hence, encouraging students to make their arguments more 

deductive would usually make their arguments more proof-like in other respects as 

well. However, this is not the case if we take some of these criteria to extremes. 

For a first example, suppose we strive to present students with arguments that are as 

convincing as possible in geometry. In many cases, an exploration on a dynamic 

geometry package would be entirely convincing, both for mathematicians and for 

students (de Villiers, 2004). For a student, such explorations would probably be more 

convincing than a complicated deductive argument because the student may worry that 

he or she has overlooked an error in the argument. If we view the mode of reasoning 

(deductive vs. perceptual) and the representation system in which an argument is 

couched as irrelevant, it is difficult to argue why demonstrations on dynamic geometry 

software packages are not proofs. 

A similar claim relates to how formal an argument is. Increasing the formality of an 

argument usually makes the argument more deductive and more acceptable to the 

mathematical community. However, it is generally accepted that there is a point where 

an argument is “formal enough” and making it more rigorous would be detrimental. 

Filling in all the gaps would make the proof impossibly long and unwieldy. The result 

would be a proof that masks its main ideas. As understanding these ideas is important 

for determining the validity of the proof, so increasing the rigor of the proof would 

lessen its persuasive power. 

If we want students and teachers to present proofs that satisfy all or most of the criteria 

above, it would be best not to focus on a single criterion. Not only would the other 

criteria be ignored, a singular focus on one criterion might actually lessen the 

possibilities of the other criteria being achieved. 
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STUDENTS’ USE OF GESTURE AND POSTURE MIMICRY IN 

DEVELOPING MUTUAL UNDERSTANDING 

Kevin J. Wells 

Simon Fraser University 

 

In this paper I focus on observations made regarding students mimicking of each 

other’s gestures in face-to-face conversation while problem solving. The data supports 

the idea that the students may use such gestures to subconsciously signal acceptance. 

Through talk, gesture, prosody, and intonation, combined with context, the 

interlocutors may develop a better connection with each other, enabling a belief in 

having achieved a shared understanding of each other’s contribution. In so doing, they 

are positioned to develop their understanding of the problem. In addition, recordings 

of students working together on problem solving show evidence of posture mimicking 

during times of effective collaborative. The results suggest that teachers’ recognition 

of such mimicry may help in knowing when to successfully intervene. 

INTRODUCTION 

In this report I address the question of what clues a teacher can look for as indicators of 

when to intervene in student group work. My consideration of the use of mimicked 

gestures arose on reviewing recordings of students engaged in mathematical problem 

solving. While not initially looking for such gestures it stood out that the students 

demonstrated mimicry of both gesture and posture, prompting deeper analysis. My 

initial question, arising from recognition of this phenomenon, was whether or not there 

seemed to be any relation between such gesturing and the students’ ability to progress 

with the problem. If so, could this be an indicator of the group’s progress? The 

evidence presented here indicates that a teacher can look for gesture and posture 

mimicry as guides to appropriate intervention timing. 

THEORETICAL FRAMEWORK 

The reform-based shift towards a sociocultural approach in mathematics teaching, 

associated with the Vygotskian school of thought, takes a view of human thinking as 

being essentially social. There has been a push to replace the traditional classrooms 

featuring an outspoken teacher and silent students with small groups of learners talking 

to each other and expressing their opinions in whole class settings (Sfard, Forman, & 

Kieran, 2001). The need for a teacher to carefully facilitate the discourse in these 

situations has been noted by many researchers (e.g. Sfard et. al, 1998; Jaworski, 2004). 

While there is much research on how a teacher can successfully intervene (e.g. Ding et 

al. 2007), knowing when to intervene has been a less discussed but is an equally 

important aspect of such facilitation. The close presence of a teacher can stymy the 

flow of the group, while at other times the teacher needs to intervene in order to 

encourage and give critical feedback.     
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When students engage in mathematical problem solving in a group situation, there is a 

clear need for good communication to occur within the group if all participants are to 

gain from the collective experience. In everyday talk, gestures have been considered to 

be an integral part of communication (e.g. McNeil, 2005), and linked to speech in a 

semantic and temporal way. Radford (2009) notes that ‘thinking does not occur solely 

in the head but also in and through a sophisticated semiotic coordination of speech, 

body, gestures, symbols and tools’ (p. 111). Sfard (2009) also considers gestures to be 

‘crucial to the effectiveness of mathematical communication (...) to ensure that all the 

interlocutors speak about the same mathematical object’ (p. 197). Other researchers 

(e.g. Goodwin, 2000) have examined the role of gesture on the sequential organization 

of conversation. Clark and Wilkes-Gibbs (1986) argue that interlocutors in a 

conversation create meaning jointly, with the aim of creating mutual understanding. 

The process is considered to be in constant need of attention since, at best, the 

interlocutors can only believe that they have understood what each other meant. Such a 

belief, however, may be sufficient to allow the dialogue to continue based on the 

situation. The impression, then, of students working together on a problem, is one of a 

continuous need to repair meaning and make connections to each other. If we hold the 

view that learning mathematics is akin to developing a special type of discourse (Sfard, 

2001) then observing students participating in such discourses is important. If, in 

addition, the important feature of group problem solving is in the activity rather than 

the end result, then being aware of that activity is a more important outcome than 

viewing the final answers. If we are interested in the unfolding understanding within 

the group then we ‘must focus on the various forms of signs that speakers make 

available to others as well as themselves. These signs comprise words, gestures, body 

positions, prosody, and so on’ (Roth & Radford, 2011, p. 55). With this in mind, 

students taking on, or mimicking, each other’s words and gestures may be an important 

and visible part of the process.  

There is evidence that people mimic a wide range of behaviours, including postures 

and mannerisms (Chartrand & Bargh, 1999). The occurrence of mimicry in physical 

behaviour during mathematics group work has been noted by Gordon-Calvert (2001). 

Holler and Wilkin (2011) found that mimicry in co-speech gestures does occur and 

concluded that ‘mimicked gestures play an important role in creating mutually shared 

understanding’ (p. 148). Holler and Wilkin also found that mimicked gestures were 

used to express acceptance of group members, suggesting that such gestures were an 

important part of the conversational structure, even when such acceptance was not 

expressed verbally. Gestures were also found to be important in signalling incremental 

understanding, something the authors paraphrased as ‘I am following what you are 

saying in an effort to reach shared understanding with you’ (p. 145). This view 

supports that of Roth (2000) who notes that ‘the human body maintains an essential 

rationality and provides others with the interpretive resources they need for building  

common ground and mutual intelligibility’ (p. 1685).  
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A limitation of many gesture studies, however, is that they are focussed on tangible 

objects that one party is attempting to describe to another (e.g. in Holler and Wilkin 

case it is abstract shapes with figure like qualities). A similar limitation can be seen in 

the work of McNeil (2005), wherein participants are asked to recall scenes from a 

cartoon they have watched. Students working in a classroom are generally describing 

or talking about mathematics that is not a recollection of an action but rather an 

ongoing action. Some of the actions involved may be hard for a student to put an image 

to in quite such a dynamic way as McNeil’s subjects. As a result, it might be expected 

that the gestures can often be more subtle, especially in the early stages of working 

together. In the case of mathematical problem solving the participants in the dialogue 

are trying to create a solution without one member having a privileged informational 

position (such as would occur if a teacher was present). In addition, any power 

relations within the group may lead to a particular student being granted a dominant 

starting position. Mimicked gestures may be an attempt by a student to reflect the 

mannerisms of his/her interlocutor with the aim of acceptance. 

METHODOLOGY 

The video clips were taken from a larger study in a school in which two classes of 

grade 5 students (aged 10-11 years) were videoed over the course of an academic year. 

A camera was set up and left unattended with the intent that neither researcher nor the 

classroom teacher was a direct part of, or influence on, the conversation. The school is 

located just outside of a large city in Canada and reflects a very multicultural 

population, with several ESL students. Economic background is not considered to be 

an obvious factor in the school. Recordings were made weekly while the students were 

engaged in problem solving and transcribed using a framework of Conversation 

Analysis. A second viewing was made paying attention to gestures and body language. 

As part of the transcription process the occurrence of mimicked gestures became 

apparent, and led to this reported study. Going through a collection of clips looking for 

a particular but different event can bring out common features that were not seen as 

significant on initial observation. On becoming aware of this mimicry in more obvious 

cases, a random selection of 20 of the recordings was re-examined explicitly for 

mimicked gestures and posture. The clips discussed here were selected as exemplary of 

different forms of observed mimicked gesturing and posture.  For the purposes of this 

report, only clear cases of mimicry were included, where a hand gesture or body 

position was mimicked either collectively or within two turns at talk. A deeper analysis 

of smaller gestures over the period of the discourse may prove interesting, but in this 

case I focussed on what might be seen by a teacher in a classroom setting observing 

several groups from a distance 

RESULTS 

Table 1 illustrates a conversation between Gina and Susan. The problem concerns the 

change in area of a desk reduced to half its length but doubled in width. This example 

matches several recorded in this lesson and is of interest because, while gestures used 
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differed between groups, there was evidence of gesture mimicry between interlocutors when the 

students were able to make progress. In examples where the students were unable to make 

progress, there was no clear evidence of gesture matching. In this example Gina 

initiated by describing the desk using large gestures. Susan, in her adjacent turn, 

mimicked the dynamic gesturing of Gina in describing the table. 

   

1.You’re taking it in half  2. (..) and then …. 3. doubling one side, right? 

   

4. You take some of it off 5. and you add it to  6. the other side (0.5) 

Table 1: Gina and Susan describe the same process. 

Table 2 also shows another example of gesture mimicry between two girls working in a 

group on a problem where they were asked to estimate the size of a bag required to 

hold a million dollars in $100 dollar notes. Panel 2 shows one girl, Jasmine, making an 

initial gesture which is then mimicked by Gina (panel 3) as they engaged in 

conversation. As the conversation develops Jasmine moved gradually closer to Gina 

until their gesture space became shared. They continued to mimic each other’s gestures 

as they did so. During this time, the conversation was rich, and led to a clear 

progression in the problem’s solution.  

Table 2 also shows the group engaging in posture mimicry. The three girls adopted an 

almost identical posture once they started to work on the problem together. The male 

member of the group, Jason, seemed to be shut out by this common posture and found 

it very difficult to gain attention (panel 1) until he adopted a similar posture (panel 3). 

A male-female dynamic or other social situation, may account for this early barrier to 

Jason’s inclusion, and he may not be aware of his own change in posture during the 

process, but in order to participate he appears to need to connect through posture first. 
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Common posture Initial gesture Gesture mimic 

   

Repeated gesture Adjacent gesturing Closing gesture space 

Table 2: An example of gesture mimicry within a group. 

The group shown in Table 3 also showed signs of gestural mimicry, but in this case it 

was rare. Panel 5 illustrates the only clear mimicked gesture, a cutting motion used in 

conjunction with talk of division. A common deictic gesture, as shown in panel 3, 

seemed to serve the similar purpose of connecting the group while talking. While there 

were other gestures which were repeated by different members of the group, such as 

the spread fingers shown by the girl on the left side of panel 5, these may or may not be 

mimicked gestures since they occurred more than two turns after the initial gesture.  

A second example of posture mimicry is illustrated in table 3. Panels 1 and 2 show 

three of the group have adopted a pose while the fourth student has become 

disengaged, initially standing while the others leaned, and then a different student 

sitting while the others stood. Throughout this problem session the group came 

together in this way, either in pairs, as a threesome, or all together whenever they were 

successfully sharing something about the problem (as indicated by the conversation 

transcript). The common posture varied, as shown between panel 1 and 2, but was 

generally shared by the members of the group. There were occasions when a student 

stepped back from this shared gesture space, as illustrated in panel 4. This was 

followed by a return to the group posture, perhaps when the student felt they had 

something to share, or had given up on an idea. 
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Posture mimicry Participation involves mimicry Deictic gestures 

   

Independent thinking? Mimicking a cutting gestures related to division 

Table 3: An example of posture mimicry within a group. 

SUMMARY 

Of twenty recordings analysed there were twenty-one clear incidents of gesture 

mimicry where students reproduced a given gesture exactly within two turns at talk. In 

four of the twenty recordings no clear gesture mimicry was observed. Only two 

recordings demonstrated no posture or gesture mimicry and in both of these recordings 

the students made little progress with the problem. In all cases gesture mimicry 

accompanied conversational adjacent pairs rather than an isolated utterance. Groups 

generally demonstrated several adoptions of posture mimicry and, in all but one case, 

this coincided with on-task work and resulted in progress with the problem. Gesture 

mimicry tended to be associated with actions, such as the description of shapes or 

objects, or mathematical operations such as divide, increase and counting. Very little 

mimicry was associated with student activities centred on calculating. In seven of the 

recordings the students were standing and in these recordings gesture mimicry was 

seen in six cases. These tended to involve a larger gesture space than when the students 

were seated. There was only one case involving three students mimicking gestures in 

succession. Generally, only pairs of students mimicked gestures whereas posture 

mimicking tended to involve more members of the group. 

Overall, mimicked gestures clearly occurred but were not seen to be used extensively 

while students were working on the mathematical processes. Gesture mimicking was 

predominantly used, and seemed important, in establishing the situation in which the 

mathematics was framed. When gesture mimicking was observed as related to the 

actual mathematics, the gestures were seen to represent ‘cutting’ (as in division), 

‘framing’ (as in framing a shape such as a circle), ‘counting’ (particularly the action of 
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skip counting using a bouncing motion) and a ‘this-and-that’ gesture where the flat 

hand was rotated at the wrist in a back and forth motion (as in referring to two cases). 

The predominant gesture seen during discussion about mathematical processes was 

deictic, with students pointing to the pages being working on. While these gestures 

often looked similar, there is not enough evidence to suggest mimicking, given the 

limited variations of pointing. Table 3, panel 3, illustrates this type of gesture.   

This study indicates that posture imitation is an important part of group work. When 

students were working productively on a problem, or exploring an idea together, they 

tended to imitate each other’s posture, whether standing or sitting. These common 

postures shifted throughout the working session and demonstrated enough variation to 

indicate that it was not merely coincidental. When a student opted out of the common 

posture they rarely added to the thinking of the group, or their attempted contribution 

was less well-received. In some cases it appeared that a student removed themselves 

from the group so that they could think through a situation independently as in these 

cases the student self-gestured (table 3 panel 4) before re-joining the group. In just over 

half of such cases the students made a positive contribution to the group. In other 

situations a student moved out of the group and showed no signs of thinking 

independently about the problem (i.e. using some kind of self-gesturing or facial 

expression); in none of these cases did the student return to offer anything new.  

The study suggests that mimicked gestures can play a role in creating a mutually 

shared understanding of the situation within which the problem is set. The mimicked 

gestures may help to coordinate a mathematical process amongst the group so that 

mathematic actions are seen to be agreed upon. This communication of acceptance in a 

process has been seen as a core step in the process of reaching a shared understanding 

in dialogue (Clark and Wilkes-Gibb, 1986). While gesture-mimicking may not be 

significant in advancing the mathematical process itself, it may be seen by the 

interlocutors as an acceptance that the speaker is understood and seen to be making 

progress. Gesture mimicry is part of the collaborative process but relies on the belief of 

the interlocutors that they have interpreted each other’s’ intent in the same way. It must 

also be noted that such gesturing may be subject to interpersonal relationship issues. 

Students with a strong rapport with each other may be more likely to mimic gestures.  

In conclusion, analysis of the recordings of student work provides evidence that 

students mimic each other’s posture when being collaborative, and also mimic each 

other’s gestures as a means to establish a common process. As such, mimicked 

gestures may play an important part in helping to establish a shared understanding 

amongst the interlocutors and assist in progression of the collaborative effort. Given 

this possibility, there is an opportunity for teachers’ observing from afar to recognise 

good opportunities to intervene in order to best facilitate the group’s progress. When a 

group is seen to mimic each other’s posture or gestures then this may be an indication 

to stay away from the group and allow them to continue to develop their ideas. If there 

is no evidence of such mimicry then that may indicate a good time to offer support to 

the group. This result may also tie in with the findings of Gerofsky (2008), in being 



Wells 

5 - 368 PME 2014 

another observable feature that students who are more confident of their ideas tend to 

use larger gestures. 
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DISMANTLING VISUAL OBSTACLES TO COMPREHENSION OF 

2-D SKETCHES DEPICTING 3-D OBJECTS 
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This study focuses on potentially misleading information (PMI) and potentially helpful 

information (PHI) embedded in the 2-D sketch of a 3-D geometric object. Our quest 

was to discover whether and how PHI and PMI capture visual obstacles, for 

high-school students, to desirable comprehension of the sketches used in teaching 

spatial geometry. We compared the anticipated difficulty of 24 sketches of cubes with 

different auxiliary constructions, according to their orientation and to the ratio 

#PHI/#PMI, with the actual difficulty reflected in the scores received by 174 

high-school students for comprehending these sketches. The findings suggest: (a) 

deviations from a normative sketch of a cube affect spatial comprehension; (b) the 

ratio #PHI/#PMI accounts for a significant part of the students’ visual difficulty. 

THEORETICAL BACKGROUND AND RESEARCH QUESTIONS  

Success in learning spatial geometry in high school is frequently attributed to a 

student’s ability to visualize 3-D geometric configurations from 2-D sketches 

(Gutiérrez, 1996). This attribution is based on the presupposition that human vision 

and cognition have a high capacity of pattern recognition and synthesis (Gutiérrez, 

1996; Christou, Pittalis, Mousoulides, & Jones, 2005). However, as shown by many 

researchers, this capacity by itself is not enough to enable an easy completion of 

missing information in the sketches (Parzysz, 1988; Kali & Orion, 1996; Gutiérrez, 

1996; Bakó, 2003; Christou et al., 2005). In their study about perception of geological 

structures from 2-D drawings, Kali and Orion (1996) found that many students rely 

solely on external visual information, and fail to "penetrate" the 2-D sketches and 

construct desirable 3-D mental representations. Concurrently, in spatial geometry, 

Bakó (2003) found that learners mostly consider figural aspects, omitting conceptive 

didactical inference.  

 Gutiérrez (1996) suggests that far less information is visible from a 2-D static drawing 

than from rotating the 3-D object in reality, and learners are not always able to 

complete the missing information in their minds. Moreover, the learner may be under 

the illusion that the sketch precisely represents the real object, totally unaware of the 

loss of information in transit between the real object and the sketch (Parzysz, 1988). As 

a result, many learners face visual obstacles, often being unaware of their existence. 

Further, a quick look on spatial geometry textbooks reveals a trend to orient spatial 

figures in a particular “normative” way. In planar geometry, existing conflicts between 

figural and conceptual aspects of geometrical objects may sometimes result in learners' 

incapacity to recognize a geometric figure when it does not coincide with a 
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prototypical representation or is not placed in a normative position (Maracci, 2001; 

Larios, 2003). On the other hand, prototypes are not necessarily linked with visual 

barriers; sometimes the use of familiar prototypes may be advantageous, and permit 

meaningful learning (Solso & Raynis, 1979). Therefore, the existence of prototypical 

images has to be taken into consideration when examining spatial perception.   

We argue that a better understanding of the visual obstacles' constituents, and the 

interaction between them, might be the key to improve spatial geometry instruction. 

Visual perception is undoubtedly influenced by many factors, some intrinsic to the 

learner, associated with individual knowledge, abilities and experience, while others 

extrinsic to the learner, related to the geometric problem itself and to the way it is 

presented (Parzysz, 1988; Arcavi, 2003; Christou et al., 2005).  

In our research, we focused on two extrinsic visual aspects, embedded in the 2-D 

sketch of the 3-D object: (1) Potentially helpful information embedded in the 2-D 

drawing of a given 3-D geometrical configuration (will be referred to as PHI); 

(2) Potentially misleading information perceived from the 2-D drawing due to the 

chosen perspective angle (will be referred to as PMI). As a phenomenon influenced by 

many factors, visual obstacle investigation requires small and prudent steps. Focusing 

on simple geometric forms, familiar to high-school students, may increase chances of 

better understanding visual obstacles. Consequently, our research concentrates on 

cubes, and on basic shapes such as triangles and quadrilaterals contained in them 

(hereafter, auxiliary constructions). Perception and visualization undoubtedly consist 

of complex interactions between many aspects that may not be dismantled into isolated 

components. However, sometimes a simplistic approach has the power to facilitate and 

enable comprehension. Therefore, keeping in mind that the whole may be greater than 

the sum of its parts, we aimed to find answers to the following two questions: 

1. Do deviations from the normative images of a cube affect spatial comprehension 

of auxiliary constructions?  

2. Whether and how do the interaction between PHI and PMI capture visual 

obstacles, for high-school students, to desirable comprehension of 2-D drawings 

depicting 3-D objects, used in teaching spatial geometry? 

DIFFERENT SOURCES OF VISUAL OBSTACLES  

Visual obstacles are closely related to the information embedded in a 2-D geometrical 

sketch of a 3-D object, and to the way this information is perceived. Perception is the 

process of obtaining awareness, organizing and deriving meaning of sensory visual 

data, while visualization refers to the cognitive faculty of processing this information 

and forming an adequate mental image (Kirby, 2008). Perception and visualization are 

filtered by former experience, prior knowledge and personal expectations (Arcavi, 

2003; Kirby, 2008), as well as by individual thinking skills and particular spatial 

abilities (Parzysz, 1988; Kali & Orion, 1996; Gutiérrez, 1996; Christou et al., 2005).  
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In spatial geometry, the angle from which a 3-D object is observed has the power to 

hinder or facilitate visualization. In particular, some projection angles may deform the 

object displayed almost beyond recognition, and present learners with a substantial 

visual obstacle. For instance, how can we identify the object in Figure 1? Is it an 

umbrella from bird's eye view, a right hexagonal-based pyramid seen from above, or a 

cube? All these interpretations are possible. 

 
Figure 1: A 2-D sketch that can represent different 3-D objects 

Potentially Misleading Information (PMI) 

PMI comprises of two categories of geometrical regularities: (1) Hidden correct 

information (such as hidden from view vertices, edges, surfaces and intersection of 

edges), and (2) altered or added incorrect information (such as non-existing added 

intersections of edges, non-existing confluences of edges with a straight line, altered 

longitudinal ratios, altered angles and edges crossing above the surface and therefore 

hiding it). For instance, let us contemplate Figure 1 as a drawing of a cube. We may 

notice one vertex appears to be missing, while some edges appear lying on a beam of 

straight lines through another vertex. Counting PMI for different sketches of a cube led 

us to the realization that a cube's PMI values are minimal for the normative sketches 

frequently used for cubes in school textbooks (see the two examples in Table 1). 

cube's 

sketch 
hidden correct information altered/added incorrect information 

total 

PMI 

 

number 

of hidden 

vertices 

number 

of hidden 

edges 

number 

of hidden 

sides 

number of 

hidden 

intersections 

of edges 

number of 

non-existing 

added 

intersections 

of edges 

number of 

non-existing 

confluences 

of edges 

with a 

straight line 

number of 

geometrically 

altered sides 

 

 

 

 

1 0 0 0 9 3 6 19 

 

 

 0 0 0 0 2 0 6 8 

Table 1: Counting PMI for two different cube sketches 
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However, typical high-school spatial geometry problems are not as simple, and contain 

auxiliary constructions. These constructions may add PMI. For example, cube 

ABCDA'B'C'D' in Figure 2a contains additional PMI: triangle DBB' may look 

isosceles in the 2-D sketch (DB=DB'), though in the desired comprehension it is not. 

Moreover, triangle DBB' does not look right-angled in the sketch, although in the 

desired comprehension it is. 

 
Figure 2: ABCDA'B'C'D' being a cube, what properties does triangle DBB' possess? 

Potentially Helpful Information (PHI) 

Two-dimensional sketches contain potentially helpful visual information (PHI) as 

well. Such information may supplement verbal data of the given spatial geometry 

problem, elicit visualization, and, support deductive reasoning and formal proof 

(Hadas, Hershkowitz & Schwarz, 2000). PHI comprises of geometrical regularities 

embedded in the drawing, such as vertices, edges, and diagonals, that auxiliary 

constructions share with the cube. Consider for example, triangle DBB' in Figure 2a: 

one side of the triangle coincides with the edge of the cube ABCDA'B'C'D', and the 

vertices of the triangle are simultaneously the vertices of the cube. Along with prior 

knowledge about the features of a cube, this visual information might help the learner 

reason that triangle DBB' cannot represent an isosceles triangle (though its sides on the 

drawing are equal) and has to be perceived as right-angled (ADD′=90º). 

Normative and Un-Normative Drawings 

PHI and PMI may not be the only objective features of a 2-D drawing influencing 

one’s vision; the orientation of the drawn object may affect perception as well (Larios, 

2003). Sketches in spatial geometry textbooks tend to present students with cubes 

oriented in two out of four possible positions (Figure 3). Consistently with previous 

findings in planar geometry (Larios, 2003), we expect frequent use of normatively 

positioned cubes in spatial geometry instruction to form a prototypical image of cubes. 

Students accustomed to the normative orientation of cubes might find un-normative 

drawings, obtained by simply turning normative sketches upside down, less familiar 

and less coherent. Therefore, un-normative sketches may turn out more challenging 

than normative sketches, even though PHI and PMI remain invariant when changing a 

cube's orientation (see Figure 2a vs. Figure 2b). 
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Figure 3: Does a certain position of the cube seem more familiar to us? 

METHODOLOGY 

We started by finding out which geometric elements of 2-D sketches of cube-related 

configurations function as PMI and PHI. We developed and validated a counting 

method of PHI and PMI, based on the geometrical elements pointed out by three 

experienced mathematics high-school teachers. After defining and enumerating the 

various components of PHI and PMI, an unequivocal counting method was attained 

and peer-validated by a group of 20 experienced high-school teachers: enumeration 

was nearly identical (93%), with a kappa coefficient indicating adequate inter-rater 

reliability (k = .758).  

Problem Difficulty Rating Test (PDRT) was constructed to accommodate our goals. 

To start with, we requested high-school students to draw a cube; since human drawings 

correspond to their memory representations of frequently encountered patterns (Solso 

& Raynis, 1979; Larios, 2003), we expected the cubes in the drawings to be 

normatively positioned, revealing an existing prototype.  

In order to find appropriate items to be included in PDRT, auxiliary constructions 

comprised in 102 initial drawings of normative cubes were sorted out and divided 

according to #PHI/#PMI into six separate groups of 17 items each. Calculating the 

ratio #PHI/#PMI (note that #PMI > 0 under parallel projection because parallel 

projection does not preserve the ratio of lengths of non-parallel sides), seemed a 

reasonable suggestion for a formula apt to generate a comparative criterion for visual 

difficulty embedded in various sketches. Average #PHI/#PMI was calculated for each 

group, and two items having an approximately average #PHI/#PMI were chosen to be 

included in the test. Attempting to avoid Necker's illusionary dual perception, all 

drawings used intermittent lines for marking the cubes' hidden edges (Kornmeier & 

Bach, 2005). These twelve initial items were duplicated by turning the drawings 

upside-down (see Figure 2). The resulting 24 items were blended throughout the PDRT 

test. A significant correlation was found between the PDRT scores for corresponding 

normative and un-normative sketches: r = .931, p<0.0001. Calculating the estimated 

internal-consistency reliability of the 24-item test rendered high value as well: 

Cronbach's alpha was a = .887. Table 2 shows an example of #PHI/#PMI calculation 

for the two corresponding PDRT items presented in Figure 2 (note that calculations in 

Table 2 are identical for Figure 2a and Figure 2b). 

Normative positions 

Metaphorically "glued to the floor" 

Un-normative positions 

Metaphorically "attached to the 

wall"  
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hidden correct information altered/added incorrect information 

PMI derived 

from cube's 

perspective 

number 

of 

hidden 

vertices 

number 

of 

hidden 

edges 

number 

of 

hidden 

surfaces 

number of 

hidden 

intersections 

of edges 

number of 

non-existing 

added 

intersections 

of edges 

number of 

non-existing 

confluences 

of edges 

with a 

straight line 

number of 

altered 

longitudinal 

ratios 

number 

of 

altered 

angles 

edges 

above 

surfac

e 

 

0 0 0 0 0 0 3 1 0 8 

total PMI: 12 

common vertices common edges side diagonals known locations edges behind surface 

3 1 1 0 1 

total PHI: 6 

#PHI/#PMI = 0.5 

Table 2: Calculating #PHI/#PMI for two corresponding PDRT items 

We administered the PDRT test to 174 high-school students, studying mathematics at 

the highest stream level in the 12th grade, and therefore familiar with cubes and their 

auxiliary constructions. Three scores were calculated for each respondent: average 

normative score (12 items), average un-normative score (12 items), and average 

general score (all 24 items).  

RESULTS  

Regarding our first question, 97% of the participants (174 out of 180) drew the same 

image of a cube, which was similar to a normative representation of a cube in                

the textbooks. We excluded the remaining 3% from our statistical analysis. Moreover, 

Fisher Test results indicate a significant difference between calculated correlations 

(see below) of #PHI/#PMI, normative and un-normative 2-D sketches (z =2.45,             

p = .014< .05), thus sustaining our anticipation that un-normative 2-D drawings, which 

do not match the prevalent prototype, may alter perceptual difficulty.  

As to our second question, the findings show a significant correlation between the ratio 

#PHI/#PMI and the PDRT scores: r = .703, p < .0001 for normative drawings,  r = .543, 

p < .0001 for un-normative drawings, and r = .612, p < .0001 for all 24 drawings. Thus, 

our hypothesis that the interaction between PHI and PMI captures the perceptual visual 

difficulty in spatial geometry for high-school students is highly supported by these 

significant correlations, not only for learners facing normative 2-D sketches, but also 

for learners presented with un-normative 2-D drawings: in both cases, spatial 

perception decreased, as the 2-D sketch exposed less PHI and more PMI.  

DISCUSSION AND FURTHER RESEARCH 

According to our findings, the ratio #PHI/#PMI accounts for a significant part of the 

students’ obstacles to comprehension of 2-D sketches depicting a cube. This finding is 

a novelty that suggests a direction for further research, focused on a possibly 
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unconscious mental pattern dominated by extrinsic visual stimuli, placing visual 

challenges to both, normative and un-normative spatial perception, beyond personal 

characteristics. Although further investigation is needed, spatial geometry instruction 

may already take advantage of this cognitive revelation and use #PHI/#PMI as a 

predictor of the visual difficulty embedded in drawings; different sketches should be 

adjusted to different educational purposes: minimizing PMI while maximizing PHI in 

2-D drafts may help learners comprehend the 3-D geometric situation, and therefore 

assist visualization, while maximizing PMI and minimizing PHI may serve other 

pedagogical goals such as training students to cope with high visual difficulty, or 

spatial ability testing.    

However, #PHI/#PMI serves as a better predictor for normative than for un-normative 

drawing, thus implying the involvement of an additional factor, disrupting vision in 

un-normative sketches. Evidently, our findings confirm the existence of a prototype 

representing a cube: the vast majority of the participants drew the same 

normatively-positioned cube frequently used during spatial geometry instruction. On 

one hand, the prototypical use of normative drawings of cubes in spatial geometry 

instruction may form a mental image meant to assist visualization. On the other hand, 

the prototypical model may not allow enough flexibility, and therefore hinder 

identification and manipulation of a 3-D geometrical situation in un-normative 

sketches (Larios, 2003). Further study is needed in order to determine the 

circumstances under which deviations from standard drawings affect perception. It 

may also be interesting to further investigate how prototypes influence our perception 

and whether it is appropriate to enrich the set of prototypes used in spatial geometry 

instruction. Still, we should denote an immediate instructional, pedagogical 

implication in classroom: special thought should be assigned to drawings' orientation; 

two students observing a geometric sketch from opposite directions may encounter 

different visual difficulty, since one of them is viewing a familiar, normative drawing, 

while the other is faced with a strange, un-normative sketch. 

Next, we intend to examine exploration strategies employed by high-school students 

when trying to overcome visual obstacles by means of dynamic geometry software. 

We suggest that when rotating or measuring a computerized 3-D model of a geometric 

situation, the drawing's orientations, as well as PHI and PMI are altered, and 

consequently, the change may occur in the problem's difficulty.  

We believe that, even though our findings are limited to cubes, and further research is 

needed for additional generalization to other 3-D geometric objects, the implications 

may be of interest for both research and practice not just within the area of 

mathematical education and technology-enhanced learning, but beyond. 
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We argue that the distinction between dialogue (after Bakhtin) and dialectic (after 

Hegel, Marx, Vygotsky), that Matusov has previously highlighted, is of key importance 

to mathematics education. According to Matusov, for Bakhtin these concepts are 

incommensurable since dialectics implies and the dialogism denies telos (a target). In 

this essay we argue that mathematical dialogue can and should have teleology 

Matusov says is implied by dialectics. Thus a good dialogue might involve 

mathematical (or professional) negation and sublation, providing the dialectic for 

mathematical (or professional) ‘progress’ and development. To make this concrete, we 

illustrate the argument with a lesson study in which progress emerging from dialogues 

is interpreted in dialectical terms. 

INTRODUCTION AND BACKGROUND CONCEPTS  

This essay aims to make progress in debates ongoing in the field of socio-cultural 

theory about dialogism and dialectics, showing how and why this debate is a 

significant one for mathematics education in particular. In everyday mathematics 

education terms, we are concerned with dialogue, in mathematics classrooms (between 

learners and teachers) and in staff rooms (between teachers, for example engaged in 

lesson study). The concern is whether a dialogue goes beyond the sharing of meanings 

by those involved, to a point where some sort of progress or development is achieved, 

for example mathematically, or perhaps professionally. Such developments can be said 

to have ‘telos’, a progressive direction.    

A case in point is from our lesson study project. Scenario: A group of children are 

counting the steps (strides) made by Usain Bolt in a video of his Olympic 100 metres 

winning sprint. The year 2 (6-year-old) children’s answers to the question, How many 

steps does he make (from the beginning of the video until he crosses the finish line)?, 

produce many and varied answers from 18, or 19 (the answer we thought correct) right 

up to 20s and 30s. In several trials of counting, the children’s answers converged 

somewhat (and gradually), but there were still differences. During the subsequent 

activity the children modelled the situation physically in the gymnasium, counting the 

steps laid out for them along number lines across the gym. One of the anticipated issues 

in children’s counting of the steps becomes clear and is discussed as part of the 

classroom dialogue: should the first foot-print (i.e. that before the start of the race) be 

counted as zero or one?  Another, unanticipated, issue (among others) arises from one 

of the children counting only up to the last foot-print (before the finishing line) and 

refusing to cross the line from the 18
th

 to the 19
th

 foot-print (see Figure 1)!  
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Now on the one hand progress in the classroom dialogue here might be the result of the 

learners coming to agree with the teacher’s preferred understanding of the situation and 

the mathematics, for example a convergence on an agreed answer of 19 steps. On the 

other hand, one might think progress in the dialogue arises due to the 

teachers/researchers understanding the children’s mathematics and their perspectives. 

Bakhtinian dialogism theorises a dialogue as monologic if the authority asserts their 

preferred, ‘correct’ answer, but as dialogic if an internally persuasive discourse is 

constructed such that both subjectivities have an opportunity to engage through 

dialogue with the other’s discourse (Bakhtin, 1981). Dialogism might involve progress 

in each person’s subjective understanding, and to that extent we will argue would be 

subjectively dialectical. The question arises, though, whether this subjective progress 

represents ‘objective’ telos in mathematics, i.e. can the dialogue be said to be 

mathematically more advanced, in an objective, historical-cultural sense? 

Figure 1 shows the foot-prints (with numbered marks below them from zero before the 

start to 19 after the finish line) and the foot-steps (shown by arrows).   

 

Figure 1: Shows foot-prints and ‘arrowed’ foot-steps 

The simplest answer is that the teachers’/researchers’ mathematics – if they are not 

mistaken in reference to the curriculum (and the curriculum is in turn not mistaken in 

relation to the cultural-historical state of mathematics) – will be more advanced 

culturally than the children’s mathematics. The telos then is here defined by the 

definition of the mathematics in the curriculum targeted by the teacher (end of story). 

Progress is objective if the children (and perhaps the teachers/researchers) make 

progress towards this target. In this view the dialogue is functional if and only if it 

allows the correct mathematics to become internally persuasive for the children: this is 

what Matusov criticises as monologic in Bakhtin’s terms. 

On the other hand, the constructivist tradition values the children’s own mathematics 

as genuinely mathematical in its own right: their perspective should not be expected to 

converge with the teachers’ or that of the curriculum, negating the above view. 

Progress is made by the child’s mathematics being more (subjectively) adequate in 

explaining the situation or task, and so on. This is loosely the constructivist position 

criticised by Radford (2013). 

We will now argue that Hegelian dialectics might offer another perspective: in true 

dialectical terms we seek a new sublation of these two positions. 

19 17 18 

Finish 

2 0 1 

Start 
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THEORETICAL ARGUMENT AND DIALECTICS 

This situation is addressed by Matusov, though not in the mathematical context. First 

he characterises Bakhtinian dialogism as ‘intersubjectivity without (necessarily 

achieving) agreement’ (Matusov, 1996), and more recently in characterising Hegelian 

dialectics as anathema to dialogism, arguing that it imposes a notion of telos that is 

more akin to monologue  (Matusov,  2011). 

We agree that the dialectic implies progress, i.e. a teleological process, though the 

actual end-target may not be anywhere visible during the process itself. Only from the 

vantage point of history can one see with some surety where progress was made. 

Nevertheless, the dialectical process that takes a notion (e.g. mathematics, or 

‘counting’) through its negation to its ‘sublation’ in a new notion, can be regarded as in 

itself progressive or developmental (for ‘notion’ here we might also say ‘idea’ or 

‘concept’). It is the character of negation and sublation in Hegel (2009) that 

characterises the type of progress and teleology: We consider now why this is so. 

Sublation requires that the notion and its negation are unified in the new (this is often 

simplistically presented as a ‘synthesis’ of a thesis and its negation). That is, the 

original notion and its negation do not disappear, but remain present subsumed within 

the new form. As such, the sublation represents progress from the old to the new level 

of thought. In his science of logic, Hegel begins with the notion of ‘being’ as perhaps 

the simplest notion of ontology; its negation is non-being or pure ‘nothing’. The 

sublation of being and non-being is then ‘becoming’, i.e. the movement from nothing 

to being (and additionally from being to nothing – so dying is also a kind of 

un-becoming, as unbecoming as it sounds).   

Here, as in every dialectic, thought (the notion, idea or concept) and its negation do not 

quite disappear but are sublated in relation to each other in the new thought. Indeed the 

concept of sublation (one that Hegel does not explicitly address, see Palm, 2009) 

implies preservation as well as change: in reality, preservation indeed requires 

adaptation and change. Sublation is thus a self-contradictory concept in this sense.  

One can read the notion of number as developing in this way: the notion of whole 

number is negated in practice by the fact that not all quantities can be counted as whole 

numbers (maybe not even ‘steps’), and the new number form (maybe fractions or 

decimals) then sublates the ‘whole number’ and its practical negation. Whole numbers 

(and their negation) have not disappeared here, but they are preserved in a new form 

(thus the whole number ‘one’ perhaps becomes the rational number 1.0, which is the 

same and yet not quite the same as the whole number ‘one’ that was negated).  

In this account the concept of practice has been adduced. Hegelian dialectic was 

originally presented as being the movement of ‘pure thought’ in itself, and the concept 

of social practice in this engagement is usually stressed as Marxian. Marx’s claim to 

have turned Hegel dialectics on its head (or feet) is easily misunderstood here: for 

Marx conscious thought is still a key moment in practice. Thus, in the preceding 

sublation, the practice of counting in new contexts pushes new thought: the cognitive 



Williams, Ryan 

5 - 380 PME 2014 

conflict induced provides one contradictory moment (in the moment of thought), and 

the contradictory positions in the practice and the dialogue provide others (in the 

objective and intersubjective moments respectively).  

Now Marx and Lenin’s readings of Hegel and the dialectic become relevant: we recall 

that Vygotsky (1986) appealed to both in this famous passage in Thought and 

Language, quoting volume 29 of Lenin’s collected works as follows: 

Man’s practice, repeated a billion times, anchors the figures of logic in his consciousness. 

These figures have the strength of prejudice, their axiomatic character, precisely (and only) 

because of this repetition. (p. 198) 

Ultimately, for Marx, Lenin and Vygotsky, the dialectic of theory and practice is 

developmental to the extent that thought proves efficacious in practice. As such, 

intersubjective dialogue (for example, between learners and teachers, and the 

curriculum, and the community of mathematicians) provides a powerful contradictory 

moment for dialectics in discourse, but material practice (including related discourses) 

is decisive. Dialogue without a practical context that proves a notion cannot be 

decisively progressive. Thus, Marx used Hegelian dialectics himself in thinking 

through his analyses of capital and labour in the Grundrisse: labour is the ‘negation’ of 

capital, and capital in order to conserve-renew itself must be negated through its 

investment in labour, and through the surplus value capital-and-labour become 

sublated in new, expanded capital, otherwise it will die in a pre-capitalist form of 

money in pure circulation (Marx, 1973). Yet it is the fully produced theory in Das 

Kapital that he publishes – in which dialectics are secondary to data and theory. 

In the context of measuring Usain Bolt’s footsteps, as we researchers thought about the 

children’s answers (was it 18 or 19 steps?), we saw that both were correct answers to 

different questions, and that the truth might even be that the answer is somewhere 

between the two, depending on what we choose to mean by the term ‘step’. This is 

perhaps the sublation of the previously constituted truth (the answer we thought was 

19) that we achieved through its negation in our joint lesson experience in practice with 

the children. In the next section we look at the dialogue of teachers discussing this very 

issue in their lesson study reflections. 

DIALECTICAL ANALYSIS OF LESSON STUDY DIALOGUE 

The following dialogue took place in the teacher-researcher meeting following the 

‘Usain Bolt lesson’ referred to above. This lesson was part of our lesson study research 

project (Williams & Ryan, 2013) where we have been working with staff in a primary 

school developing mathematical dialogue in their classrooms (Reception to year 6 

classes: 4/5- to 10/11-year-olds). The lesson had been planned jointly by a core group 

of teachers and university researchers for year 2 children. A key point for the team’s 

lesson plan was to make the number line ‘come alive’ for the children, and in particular 

to address the problem of counting the ‘ticks or the jumps’ on the number line, which 

the team agreed is a key mathematical problem (see Ryan & Williams, 2007, pp. 

93-94). This particular lesson event involved the entire school staff in the lesson 
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observation and the extensive after-lesson discussion. The two themes of the 

discussion that emerged were: how would we teach this lesson again or what would we 

do in the follow-up lesson? ‘Lesson study’ follows the Japanese model of research-led 

continuing teacher professional development cycles, though we have adapted it for 

local conditions and focus (Williams, Ryan & Morgan, 2013). 

In the following transcript, we see a discussion reflecting on the experience of teaching 

and observing the children and the way the teachers-researchers imagine developing 

new teaching based on this experience. This can be read as dialogism: the teachers and 

researchers are engaged in trying to make sense of the experience and to make sense of 

each others’ meanings for what occurred. But is there progress, and is there a dialectic? 

Teacher 1: Could you not give two different answers… And so – it could be this 

answer, it could be this answer … and actually get the children to be 

involved in deciding why one answer or the other ... and effectively  … 

those who think it’s 18, and those who think it’s 19 .. .We’re not saying this 

is the definitive answer, we are just saying it is one that could be 

explained... 

Researcher 1: I think we want to get to what Benny [pseudonym, one of the children] said 

where you count, (from) where the zero is ... and historically that's what 

humankind … had this problem ... so I’d suggest, yes, how did these people 

get 18, how 19, … so they’re engaged in ... so we get: THEY got 18 

because they started counting HERE, that's what we want articulation of ... 

These people call this foot-print “one”, and they call it “zero” ... so once 

you have that out on the table you ... then you can start a debate. So which... 

Teacher 1: If you do that, aren’t you going to be giving them (an) answer already? If 

you are saying this is one or zero, aren’t you? Whereas if you ask them the 

reasons for two answers, you aren’t explaining why... it’s up to them to 

prove or disprove... 

Researcher 1: Yes, I’m saying HOW did these children get 18, how 19... and they have to 

come back and say ... because they started the ONE here and they started 

the ONE there … and then you might get ... Who’s the little girl who got 

down and said that ...?  … Because there is miscounting from either one or 

zero... because it’s not a convention, it’s sensible: there’s the STEP, from a 

starting point so the one is out there ... (gestures to the end of the step). 

Teacher 2: Then the, the ...we want the rest of the class to be standing round to watch 

them do that (gestures to the circle the class would form) ... because I had to 

get Denis [pseudonym, one of the children] to come down … and they’re 

not used to having to look and listen to that group that's saying something 

important... We found when doing the project in the past that it took some 

lessons for them to get the idea that, ‘hold on, I need to stop and listen and 

look to what they are saying, that has something to do with ME’, and I think 

to get them round one of the group’s number line and get them to act out 

what they were doing again, so that they are there seeing the number line 
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together as well, I think that's something I’d want to do in the next lesson as 

well. 

Let us now consider this dialogue as a series of six reflective-imaginative moments in a 

dialectical process: 

“Could you not give two different answers… And so – it could be this answer, it could 

be this answer …”. Here the mathematical answer “19” is negated, that is, confronted 

directly with its opposite: the previously presumed correct mathematics is negated by 

an alternative answer, or alternative mathematisations of the task. 

“ … and actually get the children to be involved in deciding why one answer or the 

other”. Here the children are imagined to participate and engage subjectively with the 

mathematical alternatives in a classroom dialogue. They are asked to reason about the 

mathematics with others as subjects, intersubjectively in discourse (in a debate) 

reflecting the opposition of the mathematical object by its mathematical negation in the 

measurement practice. 

Researcher 1 then imagines that one of the children’s (Benny’s) mathematics could 

enter this debate somehow: the key mathematical mediation is the ‘zero’ reference 

point for the counting. This explains how the mathematically opposing objects (the 

counting to get 18 versus 19) become sublated in a new mathematical 

object-understanding (viz. where you start counting from or the counting of 

‘foot-prints’ rather than ‘foot-steps’, i.e. how the task is interpreted and modelled).  

Teacher 2 says “And then you might get ...” imagining now how this dialectic might 

come into being in her future classroom:  the ‘little girl’ who showed, from her 

subjective point of view, why it is sensible to count the foot-print at the end of the first 

step as “one”, justifying this ‘correct’ mathematical choice/answer.  

Researcher 1 participates in the little girl’s sense-making with her own gesturing, 

revealing why (objectifying how) the end of the step should be counted, ‘one’. This 

subjective sharing is offered as a generalisation, and therefore as a plan for the future 

lesson being imagined. 

Teacher 2 accepts this, and starts to envisage concretely how this could work in her 

future embodied teaching. She imagines how the debate might malfunction (as in past 

experiences) and she explains how the children need to be gathered to facilitate such a 

meaningful debate. This is made concrete through the recall of previous lessons where 

she had done this: her gestures represent the envisaged arrangement in the future class. 

In previous work we have described this kind of lesson study dialogue as offering a 

zone of proximal development for the teachers and for profession’s teaching practice, 

which we called a ‘zone of professional development’ (Radovic et al., in press). Such a 

dialogue can only be conceived as developmental in Vygotksyan terms if it is indeed 

teleological, i.e. if the teacher’s professional practice is seen to be making progress 

towards something better. We do not know what the target professional practice is until 
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after it has developed, but we can perhaps see in the dialogue the dialectic of 

development that our theoretical argument requires. 

Arguably, then, what makes this dialogue progressive is the sublation of notions with 

their negations in the new imagined practices: we do not know for certain that this will 

be progressive until practice is confronted in the future, whereupon no doubt new 

contradictions will arise. Thus, professional development in teaching is a dialectical 

work of theory and practice; we might play with this dialectic in much the same 

Grundrisse-sense that Marx did with capital and labour. The classroom provides the 

teaching-learning practice (labour) in which professional theory (capital) is invested, 

and which is sublated anew in developed professional theory. 

CONCLUSION 

Our argument is that dialogue should be (mathematically or professionally) 

developmental if it is dialectical, and that the dialectic requires a concrete dialogue in 

which the undeveloped notion is negated in and with practice. Development then can – 

though of course not with certainty – arise through a genuine sublation in which the 

undeveloped notion and its practical negation are reconciled but both conserved in the 

new. The negation may involve a purely discursive, dialogical moment of negation, but 

at root there lies a negation in practice; its validity in developing and advancing 

thought is dependent on its relevance and efficacy in practice. Hegel (and Marx) 

describe this as sublation of the universal (general) notion in the particular, or 

‘ascending from the abstract to the concrete’.   

In conclusion, let us consider the implications for mathematics education and the naïve 

alternatives put forward in the introduction. Bakhtin’s theory of dialogism provides a 

rationale for the importance of the ‘internally persuasive’ dialogue with the other: thus 

the teachers’ and the currriculum’s mathematics must be made persuasive for effective 

learning to take place, and we can reject monologism that is based on arbitrary, 

unequal power relations. In what way can the learners’ and teachers’ mathematics be 

‘equal’ in the inevitable power relations, given that the teachers’ and the curriculum’s 

mathematics has centuries of culturally-historically evolved science behind it? 

Materialist dialectics requires that the dialogical persuasion be based in efficacy in 

practice: the teacher as mediator of the curriculum in practice designs or implements 

tasks that engage the classroom community in contradictions of given mathematical 

notions with practice. The teacher and curriculum can thereby arrange for dialogues in 

which contradictions are developmental because practice negates inadequate notions; 

new mathematical notions develop in which the old are sublated. 

This of course applies equally to the development of the profession in lesson study 

processes. Well-designed lesson study should confront undeveloped theoretical ideas 

with challenges through classroom practice: genuine development occurs when, and 

because professional notions are negated (and so shown inadequate) in practice. We 

should perhaps celebrate and publish lesson study accounts of such inadequacies in 
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classrooms much more than we usually do: they may be the life blood of real 

development. 
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This paper reports from a broad investigation of mathematics knowledge as dependent 

on interconnected concepts. The paper focuses specifically on illustrating how network 

analysis may be used in examining spatiotemporal relationships between learned 

mathematics concepts, or curriculum outcomes, and concepts inherent in assessment 

items. Connections both within and between year levels are shown, based on primary 

years’ multiple-choice assessment items related to measurement. Network analysis 

provides a potentially powerful tool that may offer educators greater specificity in 

approaches to the design of revision and intervention through a view of complex rather 

than linear conceptual connectivity in mathematics learning. 

INTRODUCTION 

This paper uses analysis based in network theory, a modern development of graph 

theory, to illustrate connections between measurement items as part of a larger project 

MathsLinks: Spatiotemporal Links in Mathematics Learning in Classroom and Online 

Environments. A major thrust of this project is an examination of the connections 

between learned concepts as curriculum outcomes (e.g., Woolcott, 2013) and concepts 

inherent in assessment items. Network representations of such connections provide a 

spatiotemporal view of conceptual development in mathematics, with illustration here 

of complex connectivity in assessment items within and across year levels. 

This project is based in a growing awareness that knowledge is interconnected and it 

utilises the strong groundwork for quantitative and qualitative investigation laid down 

in approaches using complexity theory (e.g., Davis, Sumara & Luce-Kapler, 2008). 

Although such approaches have been applied only recently in educational studies, 

student knowledge of mathematics has been linked specifically to complex and 

non-linear concept connectivity using network theory, with Mowat & Davis (2010) 

viewing mathematics in terms of ‘complex networks’. Successful learning, in this 

view, depends on the development of major network junctions, or hubs, that support 

non-linear conceptual development, as well as the development of weak connections 

that circumvent hub failures (Khattar, 2010). 

BACKGROUND 

Network theory is a widely used and powerful tool for representing and examining 

relationships in terms of system connectivity, and follows a well-established analytical 

methodology that allows qualitative mapping and quantitative analysis of the 
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relationships between nodes connected in a network (Newman, Barabási, & Watts, 

2006). Network analysis has been applied widely across differing disciplines, largely 

because the rules governing network relationships remain independent of the nature of 

the subjects being linked (Newman et al., 2006). The main focus of Mowat and Davis 

(2010) is an argument that mathematics can be integrated through an examination of 

the complex linkages between mathematics concepts based on the embodied 

metaphors of Lakoff and Núñez (2000). A sidebar to this argument, however, is that 

mathematics concepts so integrated must be linked as networks. This seems to have 

support from the notion of expertise gained through the development of schemas, 

themselves arguably a type of network (Sweller, van Merriënboer, & Paas, 1998). The 

idea of knowledge linked as networks implies not only that mathematics concepts are 

linked together, but also that they are linked to other concepts in what Khattar (2010) 

considers as bodily experiences that are experienced emotionally.  

Contemporary mathematics curricula, however, can be seen as constructs that are, in 

effect, a sequence of disconnected ‘learned concepts’ (e.g., see Chapter 1 in Glatthorn, 

Boschee, Whitehead & Boschee, 2012). Devlin (2007) has argued that a mathematics 

learner may have a functional understanding of a taught concept, as a learned concept, 

if the learner shows, through assessment, some level of understanding of that concept. 

A mathematics curriculum concept, in this sense, is a concept being taught that is being 

defined in terms of what the learner can do with it. A primary school teacher, for 

example, may consider student knowledge of addition of one-digit numbers to be a 

concept, but later to consider knowledge of addition of any two-digit numbers to be 

also a concept. The view of a mathematics concept as determined by a curriculum and 

its assessment, however simplistic, is useful in that the links between learned concepts 

may be traceable, using assessment results, in terms of functional understanding 

(Woolcott, 2013). It may be possible, for example, using a sequence of assessments, to 

determine if a primary school student, who has answered successfully a question 

involving knowledge about circles, has knowledge of other mathematics concepts that 

have led either linearly, or through a network of supporting links, to that knowledge 

(e.g., Lamb, 1999, in Mowat & Davis, 2010). 

METHODOLOGY 

Large-scale testing programs, such as the Australian National Assessment Program – 

Literacy and Numeracy (NAPLAN) (ACARA, 2012) and the Australasian Schools 

Mathematics Assessment (ASMA) (EAA, 2012) include multiple-choice test items for 

assessing mathematics curriculum outcomes. Feedback from such testing is limited to 

assessing student responses against the outcome-based items. Network analysis 

methodology illustrates here how a more complex view of mathematics learning, 

generated from item data, may assist educators in understanding how concepts are 

related and why students find it difficult to make key connections between concepts.  

This paper shows examples of representations (maps) based on network analysis of 

measurement items, about 6-8 items per assessment, from a larger analysis of 
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2009-2012 ASMA across primary school Years 3-6 in NSW, Australia. The Year 6 

network results represent a single class sample of 62 students. The power of this 

analysis in comparing concepts longitudinally is illustrated using a map generated 

from results of one student who had completed ASMA in each of the years 2009-2012.  

Concept survey and matrix coding 

A matrix of coded data generated from a concept survey of all measurement items, was 

analysed and maps generated using NetDraw (Borgatti, 2002). Each of the items was 

assigned one or more outcomes from the NSW K-6 Syllabus (BOS, 2012). Adapting 

Newman’s Error Analysis (NEA, see White, 2010), additional inherent concepts were 

generated as ‘access concepts’ (Do I understand the question?) and ‘answer concepts’ 

(Can I now answer the question?). A limitation in using NEA for multiple-choice items 

is that analysis of student strategies cannot be used. Words as concepts, however, were 

included (e.g., Radford, 2003), as well as overarching concepts that allowed 

interpretation of diagrams (e.g., Lowrie, Diezman & Logan, 2012). An example of the 

concepts surveyed is shown in Figure 1 for a Year 5 ASMA practice question. 

 
Figure 1: Concepts determined for a Year 5 multiple-choice measurement item. 

Practice item used with the permission of EAA. 

For each of the ASMA Years 3-6 measurement items, responses and survey results 

were coded as follows: correct items and associated outcome/concepts as 1; incorrect 

items and associated outcome/concepts as 0. In network maps constructed using the 

matrix, nodes are either outcomes/concepts or items. Table 1 shows a sampling of the 

coded matrix for a Year 6 student with Item 2 correct and Item 5 incorrect. 

 

Inherent item concepts 

Access  

Recognise 3D representation in 2D image 

Concept of volume 

Object contains a liquid 

Objects may contain different volumes  

 

Answer  

Select informal unit to describe volumes 

Estimate volumes 

Compare volumes  

Words: Which, contains, most 

The Measurement Outcomes 

MES1.3  Compares the capacities of containers and the volumes of objects or substances 
using direct comparison 

MS1.1    Estimates, measures, compares and records volumes and capacities using informal 
units 
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Outcomes/Concepts Item 2  Item 5 

MES1.5  (NSW K-6 outcome) 1 0 

Recognise graph  (access concept) 1 0 

Read columns in graph  (answer concept) 1 0 

MS2.4  (NSW K-6 outcome) 0 0 

Word: bought  (access concept) 0 0 

Adds mass in grams  (answer concept) 0 0 

Table 1: Matrix coding for items and outcomes/concepts, for a Year 6 student with 

Item 2 correct and Item 5 incorrect. (Sample only - not all concepts shown.) 

Direct and inferred network connections 

As well as direct relationships between items and outcomes/concepts (Figure 2), 

analysis utilised two types of inferred relationships: connections between the 

concepts/outcomes associated with an item; and connections between all 

concepts/outcomes of two or more items that shared a concept/outcome. The inferred 

network maps in Figures 3 and 4 are designed to provide additional structural 

overviews of any concept connectivity. Two types of weightings have been calculated 

for these network connections: simple weighting based on total numbers of students 

with correct/incorrect item responses (Figure 2), and; weightings based on class 

averages of these item responses (Figure 3). Network maps provide a diagnostic tool 

that can act as a guide to assessed mathematics knowledge and potential interventions 

and, although associated metrics can also provide additional insights, such as patterns 

of conceptual linkage, these are included elsewhere in this project.  

RESULTS AND DISCUSSION 

Individual and class connectivity – Year 6 measurement items 

The network map in Figure 2 shows direct connections (lines) between nodes 

representing items (squares) and their outcomes/concepts (circles) for incorrect items. 

Each item node is a hub, since all paths from one of its concepts/outcomes to another 

must pass through the item node. Connection weights were calculated from totals of 

incorrect item responses across the Year 6 class, with heavier lines representing larger 

numbers of incorrect responses. The circled node indicates an outcome/concept shared 

across 3 items, one of several that form the basis for the inferred connectivity maps. 

Figure 3 shows such an inferred connectivity map for the Year 6 class, focusing again 

on incorrect responses (concepts excluding words). Network maps such as Figure 3 

allow an educator to identify key outcomes/concepts that were, on average, incorrect 

and that may need to be reinforced for successful future learning, in case of hub failure 

(see e.g., Khattar, 2010; Mowat & Davis, 2010). The type of inferred analysis in Figure 

3 may be particularly useful in its representation of connections between concepts or 

outcomes which were being used correctly in one context and incorrectly in another, 

on average (e.g., the connection between the dotted squares). The dotted squares, for 

example, show concepts that were shared across items that, although incorrect in one 

item, were correct in other items, more than 50% of the time in this simple illustration. 
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Figure 2: Direct connectivity map for Year 6 students with incorrect item responses  

The heavier the line, the larger the number of incorrect responses. Items are indicated by 

filled squares and outcomes/concepts by filled circles. The dotted circle shows a shared 

concept, in this case ‘a numeral written as a word’. 

 

Figure 3: Inferred connectivity map, average weighted, for Year 6 students with 

incorrect item responses. 

Solid lines are based on incorrect to incorrect connections and dashed lines on incorrect to 

correct connections between inherent item concepts (with word concepts not included for 

clarity). Concepts are indicated by filled circles. The dotted squares show two of the nodes 

that, on average, connect these concepts in incorrect and correct items. 
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The network analysis represented in Figures 2 and 3 (and other analysis not shown 

here) indicates to the teacher that a number of students in this class have not grasped 

particular measurement outcomes/concepts in this Year 6 assessment. These 

outcomes/concepts, therefore, may be a useful target for revision or intervention, even 

if it is only the centrally located outcomes/concepts that are targeted. The teacher could 

use such analysis to assist in design of revision or intervention around 

outcomes/concepts connected to the incorrect item responses for either the entire class 

or for individuals. Since this type of representation can also show nodes weighted by 

degree (number of connections), it offers further specificity for the classroom teacher 

as to relationships between items, outcomes and inherent concepts.  

Longitudinal connectivity – Year 3-6 measurement items 

Figure 4 shows one of a number of possible inferred relationship maps that can 

represent longitudinal connectivity. In this case the map shows inferred connections 

between the incorrect Item 10 in Year 6 and items in Years 3-5. The item connections 

were inferred from shared outcomes/concepts, effectively reversing the inference 

process utilised to construct Figure 3. For a focus on curriculum, this analysis could 

also feature inferred connections between outcomes instead of items, or connections 

between outcomes and inherent item concepts. 

 

Figure 4: Inferred connectivity of the incorrect Year 6 Item 10 with items in Years 3-5. 

Solid lines are based on incorrect to incorrect connections and dashed lines on incorrect to 

correct items. Items are indicated by filled squares with an item number. 

Figure 4 shows how Year 6 items can be connected to items in previous years, 

effectively a ‘concept trail’ through past items, indicating which items and associated 

outcomes/concepts were/were not learned successfully. Analysis exemplified in 
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Figure 4, used in conjunction with that in Figures 2 and 3, may be useful, therefore, in 

designing revision or intervention that includes prior knowledge over time, as far back 

as Year 3 in this case, but over differing periods in such testing systems as NAPLAN. 

Two of the authors (Woolcott and Chamberlain) are using this longitudinal 

connectivity to trial an interactive ‘App’ designed to link curriculum outcomes and 

inherent concepts to intervention strategies for both multiple-choice and other styles of 

assessment items. The broader project aims to test the success of such strategies. 

IMPLICATIONS AND FUTURE RESEARCH DIRECTIONS 

This paper provides an example of the network analysis we have been developing in 

order to examine the spatiotemporal interconnectivity of mathematical concepts. 

Although the application of network theory outlined here draws on extensive 

theoretical research on complex connectivity in mathematics (e.g., Lakoff & Núñez, 

2000; Mowat & Davis, 2010), the illustrations aim specifically at an initial 

examination of whether network analysis is functional in the context of a school 

mathematics curriculum. This functionality is shown in the exemplar representations 

here as both direct and inferred connections between inherent concepts and outcomes 

derived from assessment items. The representation of longitudinal connectivity, in 

particular, gives a functional picture of conceptual development in mathematics over 

time. This paper shows examples of novel conceptual connections between outcomes 

and inherent item concepts, in this case for primary years measurement items, that are 

not currently utilised in the analysis of such large-scale testing programs as ASMA and 

NAPLAN. 

The analysis here provides support for the view that new mathematics knowledge, 

even when described in terms of outcomes, requires prior knowledge (Sweller et al., 

1998). Longitudinal representations may allow a more extensive analysis of prior 

knowledge than that undertaken in large-scale testing programs. The analysis here 

supports also broader analyses we are undertaking at differing conceptual levels, 

including analyses using embodied conceptualisations (Roth & Thom, 2009) and 

conceptualisations based on graphic elements in mathematics tasks (Lowrie et al., 

2012) and pattern and structure (Mulligan, English, & Mitchelmore, 2013). 
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INTERVENTION FOR MIDDLE SCHOOL STUDENTS WITH 

POOR ACHIEVEMENT IN MATHEMATICS 

Shirley M. Yates, Michelle Lockwood 

Christian Brothers College, Adelaide, South Australia 

 

Poor mathematics achievement in middle school students is evident in many countries. 

While some of the difficulties can be attributed to student related factors, there is 

considerable evidence that computational automaticity is essential for mathematics 

achievement. A QuickSmart (QS) mathematics intervention program was trialled with 

a group of students in Grades 7 and 8, matched with a control group of similar 

underachieving classmates. A statistically significant decrease in mean response 

latencies was found for QS participants after lessons in multiplication only. Significant 

differences were also evident between the pre and post scores of the two groups on a 

standardised test of mathematics. This study confirms and extends previous findings of 

the efficacy of mathematics intervention for underperforming middle school students. 

INTRODUCTION 

Poor achievement in mathematics has been investigated in numerous studies in many 

countries in relation to student factors such as cognitive difficulties, memory, attention, 

motivation, anxiety and self efficacy. Other studies have focussed on teaching methods 

and curriculum issues (Vaughn, Bos & Schumm, 2000), with dyspedagogia 

(Westwood, 2004) or poor teaching cited as having a significant impact on student 

failure in basic mathematics. While the development of mathematical reasoning 

depends on students learning appropriate facts, concepts, strategies and beliefs, lack of 

procedural knowledge of the basic operations for addition, subtraction, multiplication 

and division is the most obvious obstacle to academic success in mathematics (Mayer, 

2006, p. 65). The development of computational fluency or the speed with which 

students can retrieve or calculate answers to simple mathematics problems is a 

prerequisite to mathematics achievement at all levels (Arroyo, Royer & Woolf, 2011).  

Cognitive psychologists have established a clear relationship between the development 

of basic computational automaticity and complex mathematical problem solving skills 

(Tronsky & Royer, 2002). A multiplicity of studies have found that being able to 

produce answers to basic number facts rapidly and accurately reduces the load on the 

working memory and it is this saving that is a key factor in being able to develop more 

complex problem solving abilities (Tronsky & Royer, 2002, p. 118).  

A recent report on Australia’s performance in the 2012 Programme for International 

Student Assessment (PISA) has raised considerable concerns about the significant 

decline in the mathematical literacy of 15 year old students in Australia in general and 

South Australia in particular (Thomson, De Bortoli & Buckley, 2013). Between PISA 

2000 and PISA 2012 Australia’s mean mathematical literacy performance dropped 
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significantly from fifth to 19
th
 place, with the decline most evident in the mean increase 

in the proportion of low performing students and decrease in top performers. South 

Australia has experienced one of the largest deteriorations, with the decrease of 46 

score points equivalent to more than a year of schooling and where 12 per cent more 

students did not reach base Level 2 in 2012 (Thomson, Hillman & De Bortoli, 2013). 

Significant declines in South Australia are also evident in Grade 8 students in the 

Trends in International Mathematics and Science Study (TIMSS) from 1995 to 2011 

(Thomson, Hillman & Wernert, 2012). Results from TIMSS 2011 have highlighted a 

substantial ‘tail’ of underperformance in mathematics, with 11 per cent of Australian 

students not even achieving the Low international benchmark (Thomson et al., 2012).  

Students’ poor performance in mathematics poses significant pedagogical issues for 

schools but particularly for middle school teachers who are caught in a “back to basics” 

dilemma (Yates, 2009a). Over time underachieving students fall increasingly behind 

their normally achieving peers and by the eighth year of school can be up to five years 

behind their average achieving peers (Pegg & Graham, 2007).  Many students in the 

middle school years have to expend considerable effort to work on lower level 

component skills they have encountered many times before (Hattie & Yates, 2014). 

Practice is essential for students to gain automaticity of basic skills in mathematics 

content areas (National Mathematics Advisory Panel, 2008), but in middle school 

classrooms there is much less time and opportunity to develop  skills that should have 

acquired in the early elementary grades (Carr, Taasoobshirazi, Stroud & Royer, 2011).  

THE PRESENT STUDY  

This research report is part of a larger longitudinal study of student mathematics 

achievement, self efficacy, anxiety and learned helplessness in a non-government, 

single sex, elementary and secondary school for boys in Adelaide, South Australia.  

The Progressive Achievement Tests in Mathematics Plus (PATM) (Australian Council 

for Educational Research, 2010) were administered online to students in Grades 3 to 10 

in March (Time 1) (T1) and November (Time 2) (T2), 2013. At T1 students completed 

the PATM test for their respective previous Grade level and at T2 their current Grade. 

At T1 a ‘tail’ of underperformance (Thomson et al., 2012) was most evident in Middle 

School students, with 33 (53%) of 63 Grade 7 boys and 33 (24%) of 140 Grade 8 boys 

scoring in the percentile rank range of 1-19 (-1 standard deviation) (SD). A further nine 

students in Grade 7 and 17 students in Grade 8 scored in the 20-30 percentile rank 

range. The poor achievement of some students could be accounted for, at least in part, 

by a verified learning disability or difficulty, but individual PATM profiles for the 

remaining students indicated poor performance in the numeracy strand.  

The school decided to trial the research-based QuickSmart (QS) mathematics 

intervention for the latter group as the program is designed to improve low achieving 

middle school students automaticity with addition, subtraction, multiplication and 

division over 30 weeks (Pegg, Graham, & Bellert, 2005; Graham & Pegg, 2010). 

Previous studies have shown QS participants gained on average two to three years 
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progress (effect size 0.49 - 0.80) measured from  PATM pre to post test scores (Pegg & 

Graham, 2009) and improved on measures of response speed and accuracy compared 

with average achieving (Bellert, 2009) or high achieving same-age non-participants 

(Graham, Bellert, Thomas & Pegg, 2007). The present quasi-experimental study used 

pairs of underperforming students in the same mathematics classrooms to compare pre 

and post scores on the PATM. Further, the comparisons between QS participants and 

the paired classmates were undertaken after the completion of the first part of the QS 

program on multiplication rather than at its conclusion as in the previous studies. 

Response automaticity and accuracy were examined for both groups prior to QS and 

for QS students at the completion of the multiplication section of the intervention. 

AIMS  

1. To investigate the QS intervention program for middle school students with poor 

achievement in mathematics; and  

2. To compare the performance of students participating in the QS program with 

their paired classmates who received classroom instruction in mathematics only. 

METHOD 

Participants  

Eight Grade 7 students and 12 Grade 8 students with PATM scores in the 1-30 

percentile rank range at T1 were nominated by their mathematics teachers on the basis 

of their attendance, behaviour and poor performance on the PATM numeracy subscale. 

The 20 students were paired within their mathematics classes, with one student from 

each pair assigned to the QS group and the other to a control group. QS students were 

then grouped in pairs by Grade level for the delivery of the program. Students ranged 

in age from 12.3 years to 13.11 years with a median age of 13.3 years.  

The QuickSmart Mathematics Intervention Program (Graham et al., 2007) 

The multiplication section of QS was delivered to pairs of students in three 30 minute 

lessons per week over a mean of 16.5 hours. 

Procedure 

In Terms 3 and 4 a mean of 33 lessons, focussed on multiplication only, were delivered 

to the 10 pairs of designated QS students by a trained teacher aide, supervised by a 

registered teacher. These lessons were additional to their classroom instruction in 

mathematics. Each QS lesson consisted of 5 minute sections of a knowledge and 

understanding check, flashcards, speed sheet challenge of multiplication number facts, 

independent work sheet/strategy development, assessment and games.  Response 

speed and accuracy was measured separately for each student in each lesson with the 

Cognitive Aptitude Assessment System (CASS) computer package (Royer, 1996) 

which is based on the Baddeley model of working memory (Tronsky & Royer, 2002). 

The CASS times student verbal responses via a microphone to randomised number 

sentences on a computer screen while the aide scores each response for accuracy. 
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Results are averaged and graphed automatically, providing each student with feedback 

to monitor his performance immediately and over time. QS and control students were 

tested with the CASS prior to the commencement of the intervention in Term 3, but 

thereafter students in the control group received five 40 minute mathematics lessons 

per week only. Numeracy achievement data from the National Assessment Program – 

Literacy and Numeracy (NAPLAN) administered annually in Australia to students in 

Grades 3, 5, 7 and 9 was available from 2013 for Grade 7 and 2012 for Grade 8. 

Analyses  

QS and control group students initial CASS averaged response time and accuracy 

scores, PATM scaled scores at T1 and T2 and NAPLAN numeracy logit scores were 

entered into a Statistical Package for the Social Sciences (SPSS) computer program. 

Speed scores were also entered for the final multiplication lesson for the QS students. 

The statistical analyses were conducted with nine QS students (program attrition of 

one boy in Grade 8) and nine control students (incomplete data for a Grade 7 boy). 

RESULTS 

The median accuracy score measured by the CASS for both groups was 88% prior to 

the intervention and 100% for QS students at the completion of the multiplication 

lessons.  Initial CASS speed scores for QS students, shown in Figure 1, ranged from 

1.77 - 4.80 seconds, with a mean of 2.78 secs and SD of 0.96. Control group scores 

ranged from 1.50 - 4.79 seconds with a mean of 2.64 (SD = 0.93). Analysis of Variance 

(ANOVA) revealed no statistically significant differences between the mean speed of 

the two groups before the QS began [F (1,16) <1]. However, there was a statistically 

significant relationship between QS students’ mean speed score prior to and at the end 

(Mean = 1.21 secs, SD 0.34) of the multiplication lessons [F (1, 8) = 39.28, p<0.001]. 

 

Figure 1: Speed scores for QS students prior to and after the multiplication intervention 

Although students were administered different pre and post tests their scaled scores 

can be validly compared as PATM tests are scaled on a single interval scale of 

mathematics achievement through the RASCH measurement model (ACER, 2010). 
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The effect of prior knowledge on PATM scores and QS intervention was tested by 

using students’ NAPLAN scores as a covariate. While NAPLAN scores predicted 

students’ PATM score at T1, it did not serve as a covariate for the treatment effect. 

The difference between the mean PATM scaled scores presented in Figure 2 for QS 

students at T1 of 53.2 (SD = 2.9) and 49.9 (SD = 2.6) for the controls was statistically 

significant (p< 0.005). The difference between the mean PATM scaled scores at T2 of 

55.58 (SD = 3.3) for QS and 51.0 (SD = 4.0) for controls was also statistically 

significant (p< 0.001). Covariance analysis which controls for the baseline score at T1 

showed the group effect remained significant [F (1,15) = 6.5 p< 0.022], with the 

achievement of the QS students increasing more over time compared with the control 

group. Repeated measures interaction approached significance [F(1,15)=6.5, p<0.06]. 

 
Figure 2: PATM scaled scores for QS and control students at T1 and T2 

DISCUSSION 

Developing automaticity in cognitive processing is a major goal in mathematics for 

students in the early elementary grades. Failure to acquire basic mathematics skills by 

the middle school grades has significant consequences for students who have to 

employ effortful and costly mental strategies to solve tasks that essentially require low 

level knowledge (Hattie & Yates, 2014). Lack of automaticity was evident for both 

groups of students in the initial CASS scores where their mean response latencies were 

reasonably accurate but slow. There was also considerable variability in the response 

speeds of both QS and control group students, shown in Figure 1 for the QS group. The 

statistically significant decrease in the mean response latency for the QS group by the 

end of the multiplication lessons is an important finding as it extends previous studies 

which have reported students to be quicker in fact retrieval and  smarter at strategy use 

by the conclusion of the QS intervention (Bellert, 2009; Pegg & Graham, 2009).  

In relation to the second aim of the study, students’ performance on PATM at T1 was 

predicted by their numeracy achievement as measured by the NAPLAN. Both the 

PATM and NAPLAN numeracy test were administered under timed conditions so it is 
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likely that lack of fluency would have influenced the performance of both groups 

(Arroyo, Woolf, Royer, Tai & English, 2010). Previous studies have found speed of 

retrieval of mathematics facts to be a significant predictor of middle school students’ 

test performance (Royer, Tronsky, Chan, Jackson, & Marchant, 1999).  

The statistically significantly difference in PATM scores between QS participants and 

control group at T1 is difficult to explain. However, the significant increase in the gap 

between the achievement of the QS and control groups at T2 is a notable finding which 

can be attributed to the QS intervention., There was no statistically significant 

difference in mean CASS response latencies between the two groups prior to the 

intervention, the effect of baseline performance on PATM was controlled for in the 

covariance analysis, QS and control students were paired within their respective Grade 

7 or 8 classrooms and received the same number of mathematics lessons each week, at 

the same time, from the same teachers, with the same textbooks and over the same time 

frame. Further, although the key focus of the additional lessons received by the QS 

group was to improve their understanding and speedy recall of basic multiplication 

facts, through the rehearsal of more sophisticated and efficient strategies which foster 

automatic recall (Bellert, 2009), the increase in their PATM scores is also evidence of 

generalisation to learning in other domains of mathematics. This finding extends 

evidence from a previous study in which middle school students had significantly 

higher PATM raw scores after completing the QS program in the four basic processes 

(effect size = 0.65) (Bellert, 2009). The current finding also raises the interesting 

research question of whether it is just as efficacious to administer the multiplication 

section of the program only rather than in its entirety. 

With respect to Aim 1 from the school perspective, the implementation of the 

intervention program in the middle school grades has considerable response costs 

associated with the purchase of the QS program, annual licensing fee, teacher aide and 

supervising teacher training and allocation of teaching time and space within which to 

operate the program. Further, QS participants have to be withdrawn from three lessons 

every week which affects their participation in their other subject areas.  QS lessons 

were timetabled to occur on a Monday, Wednesday and Friday to provide the 

opportunity for spaced rather than massed practice (Carpenter, 2014), but it is 

interesting to note that over Terms 3 and 4 (of 10 and 9 weeks duration respectively) 

students completed only a mean of 33 QS lessons over 16.5 hours. While some of the 

discrepancy can be explained by the time taken with the initial CASS testing with both 

groups of students and student absence from school, it was noted on several occasions 

that opportunities for QS lessons to occur were affected by school sanctioned activities 

such as assemblies, excursions, sports days and other events.   

These costs of implementing an intervention in the middle school grades have to be 

considered against the long term effects of not providing any intervention. There is 

considerable research evidence that students’ ability to retrieve basic number facts will 

not improve across the elementary school years without intervention (Gersten, Jordan 

& Flojo, 2005). Further, speed of retrieval is a significant predictor of students’ 
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achievement on mathematics tests throughout their secondary schooling and beyond 

(Royer et al., 1999). While the effects of the numeracy intervention on student work 

samples, self efficacy, anxiety and learned helplessness in mathematics (Yates, 2009b) 

will be considered at the completion of the trial of the QS program in 2014, the results 

thus far nevertheless indicate quite strongly that significant positive changes are 

evident in response latencies, accuracy and achievement in mathematics when students 

are provided with the knowledge of and opportunities to practice more efficient and 

effective basic skills and strategies in a supportive small group environment with 

motivating feedback. 
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VIABLE ARGUMENTS, CONCEPTUAL INSIGHTS, AND 

TECHNICAL HANDLES 

David Yopp 

University of Idaho, Moscow 

 

Findings from an empirical study on prospective elementary teachers’ argument 

productions are reported. In order to analyse the data, a generative study was 

conducted to develop a framework for expressed actions that afforded the 

communication of viable arguments for generalizations. Identified are three types of 

technical handles that appear constructive in communicating viable arguments. 

Inappropriate and inadequate technical handles are also noted. 

STATEMENT ABOUT THE FOCUS OF THIS PAPER  

This research builds on and recasts previous work regarding conceptual insights (CI) 

and technical handles (TH) during argumentation. Raman, Sandefur, Birky, Campbell, 

and Somers (2009) identify getting key ideas, discovering THs, and culminating the 

argument information into standard form as significant “moments” important in 

creating a proof, in no particular order. Sandefur, Mason, Stylianides, and Watson 

(2013) recast the framework as “(1) finding a [CI], i.e., a sense of a structural 

relationship pertinent to the phenomenon of interest that indicates why the statement is 

likely to be true, and (2) finding some [THs], i.e., ways of manipulating or making use 

of the structural relations that support the conversion of the CI into acceptable proofs” 

(p. 328). 

Based on empirical data generated by prospective elementary teachers (PSTs), who 

participated in a teaching experiment designed to improve argumentation skills, I 

found that I needed to again recast the TH framework. My objective was to describe 

PSTs’ communicated argument as an expression of their “handling” of information, 

not necessarily to describe the processes PSTs go through or experience when 

addressing a prompt/task and developing an argument. While the concept of a CI 

remanded similar to that express in Sandefur et al, I found three related but distinct 

types of THs important to communicating a viable argument. While the offer of a new 

framework aligns with a theoretical essay, this article is a research report because it 

uses empirical data to establish that each of these handles is important to 

communicating a viable argument. 

The presentation of these findings is intended to deepen our understanding of student 

actions that influence viable argument production and to promote further research in 

this area. My aim is to make international contacts with other researchers, who might 

benefit from these findings and who might wish to collaborate on future work. 
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THEORETICAL FRAMEWORK FOR THE RESEARCH 

Viable argument defined for this study  

For this study, an argument is defined as viable if it (1) expresses a clear, explicit, and 

unambiguous claim with explicit conditions and a conclusion, (2) expresses support for 

that claim that involves acceptable data (foundation), (3) expresses acceptable 

warrants that link the data to the claim, and (4) identifies the mathematics on which the 

claim relies.  

Criterion 2, acceptable data/foundations, is met by expressing/representing 

information or insights in a manner that (a) illustrates the conditions in the claim, (b) 

can be used to represent all cases in the domain of the claim, and (c) can be appealed to 

when connecting the data to the claim. Acceptable data can include examples, 

diagrams, prior results, axioms, definitions, narrative descriptions, stories, etc. 

provided that the three criteria are met.  

The connection between the data and claim referred to in acceptable data criterion (c) 

is the warrant and is deemed “acceptable,” viable argument criterion 3, when it 

expresses how the data is used to support the claim and takes into account all cases to 

which the claim applies. Using purely empirical warrants to support a generalization 

that applies to an infinite set is not acceptable. Using logical necessity, referencing 

prior results, and describing through narrative how the semantic meaning of 

mathematical objects support the claim can all be acceptable warrants. 

Criterion 4 is defined as the meaning of the objects and operations involved in the 

claim and those meanings are determined by definitions, axioms, and theorems. Viable 

arguments must express these meanings, at least semantically, for the argument to be 

viable.  

This framework for viable argument was developed by the author from existing 

frameworks found in Toulmin’s (1958/2003) argument analysis scheme and the 

Common Core State Standards’ (CCSS-M, 2010) description of the mathematical 

practice number 3, construct viable arguments and critique the arguments of others. 

Consistent with Toulmin, an argument is defined as a claim and its support. Other 

argument features in Toulmin’s scheme include data that provide facts and other 

information that support the claim, warrants that link data to a claim, backings that give 

support for why a warrant should be accepted, qualifiers that give the strength of a 

claim, and rebuttals that give circumstances, cases, or facts under which the claim 

would not be true. For this study, I focus my attention on claims, data, and warrant, 

which Krummheuer (1995) calls the core of the argument, and I often combine warrant 

and backing into a single category labelled warrant, unless the arguer is clearly 

addressing the acceptability of an existing warrant. 

Consistent with CCSS-M (2010), viable arguments can use referents such as objects, 

drawings, diagrams, actions, and in this study, examples, as the data/foundation of a 

viable argument. The term viable argument is not explicitly defined in CCSSM (2010), 
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but I make the assumption that this term is used instead of “proof” to note that there are 

plausible argument types other than formal, mathematically logical ones, and to draw 

distinctions between proofs and non-proofs. Consequently, my framework for viable 

argumentation leverages notions of less-than-formal mathematical arguments (e.g., 

Balacheff’s, 1988, notion of generic example proofs), which some authors have called 

proofs, but I classify them as viable arguments in an effort to value them but not 

confuse them with mathematical rigorous arguments that are explicit about the logic 

and prior results used.  

Conceptual insights and technical handles 

For this study, the term conceptual insights (CI) can refer to any one of the following: 

developing a sense or belief based in pertinent mathematical structure that a claim is 

true or false, developing a sense or belief based in pertinent mathematical structure 

about what might be claimed (stated as true), or developing a sense or belief based in 

pertinent mathematical structure about why a claim is true or false or what causes the 

claim to be true or false. 

As mentioned earlier, I found it necessary to recast earlier descriptions of THs (e.g., 

Raman et al, 2009 & Sandefur et al, 2013) to describe my data. My analysis only 

addresses the articulated argument, not what the arguer intended to write or say. Nor 

does my analysis attempt to document the processes through which the ideas expressed 

in the argument are generated. This focus helped me draw clearer distinctions between 

CI and THs and offered a purer description of what the arguer was able to express 

appropriately and viably when culminating ideas, findings, and insights into an 

argument product. From this narrowed focus, I was able to identify three distinct but 

related “handles.” Technical handles of type 1 (TH1) describe the articulated claim in 

relation to the expressed data, CIs, or warrants. Technical handles of type 2 (TH2) 

describe how the data or CIs are expressed. Technical handles of type 3 (TH3) describe 

the expressed link between the data or CIs and the claim (i.e., warrant). THs are first 

described without any connotation of whether or not the handles are constructive. 

Adjectives (e.g., appropriate, inappropriate, adequate, inadequate) are applied to note a 

TH’s subtype and potential for viable argumentation. This framework will be further 

exemplified in the results section. 

DATA SOURCES AND JUSTIFICATION FOR ANALYSIS METHODS 

Twenty-one PSTs enrolled in a undergraduate mathematics content course for 

elementary school teachers participated in the study. PSTs were given the definition of 

viable argument as presented in Section 2 and received two months of training and 

practice using the definition to construct and critique arguments. Five sources of data 

were collected and used in this study: (1) students’ weekly posts in the online 

environment (2) teacher/researcher observations during inclass work (3) student writen 

responses to inclass tasks (4) task-based, clinical interviews, audio taped and 

transcribed, and (5) responses on paper-and-pencil assessments. 
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For the online posts, students were instructed that to receive full credit, they must 

initiate a discussion by making a claim or respond to another student’s post. At 

minimum, a post needed to present at least one argument feature (a claim, data for a 

existing claim, a warrant, a backing for an existing warrant, a qualifier, or a rebuttal), 

but they were also told that this was a minimal criterion and that a complete argument 

was desired in each post. This concept of collective argumentation has been discussed 

in Krummheur (1995), Lampert (1992), and Yopp and Ely (under review), to name a 

few. 

Data was analysed from the perspective of a generative study (Clements, 1999) to 

develop or recast an existing theoretical model to explain data. Qualitative analysis 

methods were akin to those described by Miles and Huberman (1994) in which the 

analyst begins with a theoretical coding framework that is constantly compared to the 

data until a model that fits the data emerges. A cyclic process of analysis, refinement, 

and reanalysis was used to test emerging the framework and outcome of the data 

analysis (similar to the methods described in Goldin, 1999, & Sandefur et al., 2013). 

As conceptual themes emerged, the themes were verified through triangulation with 

multiple data sources. For example, as student posts were memoed, emerging themes 

were triangulated with task-based interview data to confirm TH codes. 

SAMPLE OF DATA AND RESULTS 

A sample of results are reported for data collected from one of the online tasks: 

Task 1: You are teaching a 6
th
 grade class. You ask the class to investigate the sums of 

consecutive numbers and develop some rules about the types of numbers that are sums 

of 2, 3, 4, and 5 numbers.  After some set time, three students offer rules. Sally says that 

the sum of two consecutive numbers is odd. Sophia says that the sum of three 

consecutive numbers is divisible by 3. Isabella says, “I think that the sum of four 

consecutive numbers is divisible by 4”. Write exemplary responses, which include 

viable arguments.  

Adequate and inadequate THs 

In this thread we find the same claim coded as an inappropriate TH1 in one post yet 

coded as appropriate TH1 in another post. We also find a follow-up post in which the 

arguer expresses appropriate or adequate THs for all three argument features and 

presents a viable argument. 

Charli:  Data for Claim #3: My example of the claim: 1+2+3+4=10 or 4+5+6+7=22 

supports the claim that says: "The sum of four consecutive counting 

numbers is not divisible by four" because shown here proves that these 

consecutive counting numbers are not divisible by four.  

Alex: Warrant for Claim 3: The sum of four consecutive counting numbers will 

not be divisible by four, because there is one multiple of four, but the other 

numbers do not add to equal a multiple of four.  1+2+3+4= 10[.] 4+6, only 
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the four is divisible by four, not the six[.] 5+6+7+8=26[.] 8+18, only the 

eight is divisible by 4[.] 

Franni: I think that a better claim for this problem would be that for any 4 

consecutive numbers added together, the sum will always be divisible by 2. 

The data supporting this would be: 2+3+4+5=14 which is divisible by 2, 

10+11+12+13=46 which is divisible by 2, and 23+24+25+26=98 which is 

divisible by 2.  The warrent [sic] would be:  For any 4 consecutive numbers, 

N, N+1, N+2, N+3 [data] added together, the sum will always be divisible 

by 2 because when added you have N+(N+1)+(N+2)+(N+3) which can be 

written as 4N + 6. 4N is divisible by 2 and 6 is divisible by 2 so no matter 

what number N is, the answer will always be divisible by 2. 

In the first post in this thread, Charli labels her post “data” but has presented an 

argument because both a claim and support are present. She presents empirical support 

and no CI about the generalization that no sum of four consecutives is divisible by 4. 

Although her claim is true, it is not appropriate with respect to the data. Charli’s use of 

the word “proves” raises concerns of empiricism. However, follow-up cognitive 

interviews revealed that Charli wished to express “generality” in her warrant.  

I mention “empiricism” and Charli’s perspective to again to draw attention to the focus 

of this paper. The approach here is to analyse what students are able to articulate 

against a class standard for viable argument, not to analyse their views about adequate 

support. While it has been established in the literature that a PSTs’ beliefs about what 

constitutes adequate support for a generalization can influence their argument 

production and their ratings of arguments (Martin & Harel, 1989; Sylianides, G.J. & 

Stylianides, A.J., 2009), other literature suggests that students who know the 

limitations of empirical evidence produce empirical evidence when they aren’t able to 

produce better (e.g., more general) arguments (Sylianides, A.J. & Stylianides, G.J., 

2009). There is a gap in the literature concerning the skill of argument production as 

separate from beliefs. The focus of this paper is to examine the argument product from 

a “handling” point of view as a technical skill, rather than an exploration of what a PST 

finds convincing. A PST with the appropriate TH training might express a more 

appropriate TH1 by stating “Based on the examples we can claim that at least some of 

the sums are not divisible by 4.” With this change, Charli’s argument would be viable. 

This skill of making appropriately claims might be unique from the PST’s views about 

sufficient support for claims. This makes this framework unique from the previous 

studies that gave their participants a claim, typically assumed true, and examined the 

participants’ support for that claim. In this framework, the truth of the claim made by 

the PST is not the focus. Because PSTs must develop a claim, the focus is the claim’s 

appropriateness relative the data presented. 

In contrast to the inappropriate TH1 expressed by Charli, Alex, who responsed to 

Charli’s post and wrote basically the same claim, expresses an appropriate TH1. This is 

because Alex expresses a CI that applies, at least in her mind, to all cases. Her claim is 

appropriate relative to the general nature of her insight, regardless of whether the 
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insight pans out as adequate support for the claim. Whether or not her insight has 

potential for an adequate representation (which it does) is not the point when assigning 

a TH1 code. This code refers only to whether or not the formation of the claim is 

prudent, and whether or not it is appropriately worded, expressing both the 

conditions/domain and the conclusion. 

Yet, despite Alex’s appropriately worded claim and interesting insight, Alex does not 

handle her insight adequately to communicate a viable argument or a viable argument 

features. It is noted that Alex labels her post as warrant, but it is also noted that 

warrants connect data to a claim. By default data must be present for a warrant to exist, 

either in the current post or a previous post. Thus, an argument is present in Alex’s 

post. 

There are at least two ways we might reconstruct the argument. One way is label the 

Alex’s examples and observations about these examples as data and label Alex’s 

statement “because there is one multiple of four, but the other numbers do not add to 

equal a multiple of four” as the warrant. Another way is to label the “because…” 

statement as both the data and implicit warrant and the examples as backing for the 

truth of the data and warrant. (A criticism of Toulmin’s analysis is that multiple 

plausible arguments may be constructed, Aberdein, 2005.) Regardless of how we 

reconstruct the argument, the CI in the “because” statement is not expressed in a 

manner that can be appealed to generically. The expression or representation does not 

reveal how we know all sums of four consecutives have the two mentioned properties: 

that one summand is a multiple of 4 and the others do not sum to a multiple of 4. 

Consequently, Alex expresses an inadequate TH2. 

Alex need not use a variable to represent these insights. Examples can be useful when 

crafting the arguments (Balacheff, 1988, Sandefur et al., 2013) and their concreteness 

makes them particularly accessible to PSTs. An example becomes a referent in an 

argument if the arguer uses the example to illustrate objects or relationships when 

supporting a claim. Despite their utility, examples are at times used in ways that do not 

lead themselves to viable argumentation (Balacheff, 1988; Healy & Hoyles, 2000). 

Using examples to construct viable arguments requires that the pre-service teachers’ 

develop CIs and are able to handle the data or insight in appropriate and useful ways 

(Raman et al., 2009; Sandefur et al., 2013). For a generic example argument, Alex 

might need several examples to argue all cases (e.g., the multiple of 4 as the first, 

second, third, or fourth summand). Alex might even develop “sub-arguments” to 

establishes each of the two properties separately. Never-the-less, the condition “sum of 

4 consecutives” must be represented adequately for viable argumentation 

In contrast, Franni communicates a viable argument in her response to Alex’s post. 

Franni expresses an appropriate TH1 and adequate TH2 when she expresses a claim 

about divisibility by 2 and supports this claim using a variable to represent the claim’s 

conditions as N+(N+1)+(N+2)+(N+3). The adequacy of this representation for viable 

argumentation is affirmed when Franni appeals to its equivalent form 4N+6 and notes 
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that both 4N and 6 are divisible by 2, expressing an adequate TH3. Admittedly, there 

are parts of the argument that could be improved: there are a few typos and the arguer 

should explicitly mention the “on the list” prior result that if both summands are 

divisible by an integer, then sum is as well, but the former issue is easily fixed through 

editing and the later is an issue of community norms about sufficient detail. 

Franni offers another opportunity to reflect on the utility of the focus on THs 

independently from a PST’s views about types of argument structure and sufficient 

support for generalizations. Franni presents several examples that she calls data prior 

to presenting her generic representation, which she calls the warrant. A cognitive 

interview revealed that Franni, like her group members, viewed the term “data” as 

numerical information as in a scientific experiment. This view was different from the 

way “data” was defined and used in class. Thus, despite her non-canonical expression 

of the argument structure, globally her data and CI are handled sufficiently well for 

viable argumentation. 

CONCLUSION 

The purpose of this work is to establish three types of THs as important for 

communicating a viable argument in response to a claim. In order to communicate a 

viable argument, as defined in this study and for this particular community, PSTs need 

to (1) communicate a claim that is appropriately worded, expressing the conditions and 

conclusion, and is prudent based on their data or CI; (2) express their data or CI in a 

manner that can be appealed to appropriate in a warrant that connects the data to the 

claim; and (3) express a warrant (and possibly backing) that appeals to the data, 

indicates how all cases in the domain of the claim are considered/expressed, and 

identifies the mathematics on which the claim relies. 

This work is unique from previous work because it focuses solely on what PSTs are 

able to communicate, not on what PSTs might intend to communicate, and because it 

demonstrates three distinct, although related, THs. An arguer may adequately or 

appropriate express any one of the handles without doing so with respect to the other 

two. This separation allows researchers and educators to focus on students’ abilities 

and deficits during argumentation as technical skills (e.g., given this type of data, 

examples, or counterexamples, what types of claims are appropriate?). 
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PLACE-VALUE USING MULTIPLICATION AND QUOTITIVE 

DIVISION  
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This paper focuses on selected findings from a study that explored the use of 

multiplication and division with 34 five- and six-year-old children from diverse 

cultural and linguistic backgrounds. The focus of instructional tasks was on working 

with groups of ten to support the understanding of place value. Findings from relevant 

assessment tasks and children’s work highlighted the importance of encouraging 

young children to move from unitary (counting by ones) to tens-structured thinking. 

BACKGROUND  

This study has emerged from the findings from both the national numeracy results 

(Young-Loveridge, 2010) and recent international results (May, 2013). The latest 

results of the Programme for International Student Assessment (PISA) (a study that 

assesses and compares how well countries are preparing their 15-year-olds to meet 

real-life opportunities and challenges) showed that New Zealand’s average scores in 

mathematics have declined since 2009. Compared to countries with a similar average 

score, New Zealand has a larger proportion of students who can complete only 

relatively basic mathematical tasks (below Level 2), as well as students who are 

capable of advanced mathematical thinking and reasoning (Level 5 and above). 

Mathematics reform over the past few decades has led to the development of 

frameworks outlining progressions in number as students acquire increasingly 

sophisticated ways of thinking and reasoning (Bobis, Clarke, Clarke, Thomas, Wright, 

Young-Loveridge, & Gould, 2005). Typically, at the lower stages, students solve 

problems by using counting strategies. As they come to appreciate additive 

composition, they are able to use strategies that involve partitioning and recombining 

quantities (part-whole thinking). The initial focus with younger children is often on 

addition and subtraction before introducing other domains such as multiplication and 

division, and proportional reasoning. Students are thought to need particular number 

knowledge in order to apply strategies for solving problems (Ministry of Education, 

2008). Such knowledge includes number-word sequences, basic facts, and place value. 

Our numeration or place-value system is characterised by four key properties: 

positional, base-ten, multiplicative, and additive (Ross, 1989). Place value is 

considered to be an essential foundational concept in mathematics. Fuson, Smith, and 

Cicero (1997) present a model of two-digit conceptions arranged developmentally, 

from unitary (count by ones) through an understanding of the ten-based structure, to a 

multi-unit conception. The shift from unitary counting to these higher stages involves 
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developing an understanding of part-whole relationships. Thompson (2000) argues 

that place value is too sophisticated for many young children to grasp and this idea is 

supported by evidence showing that young children have difficulty understanding the 

place-value system (Kamii, 1988; Ross, 1989). However, others have shown that with 

carefully planned learning experiences, first grade students can learn the beginnings of 

place value structure (e.g., Kari & Anderson, 2003; van de Walle, Karp, Lovin, & 

Bay-Williams, 2014). Mulligan and Mitchelmore’s (2009) innovative work on 

promoting awareness of pattern and structure is consistent with this approach. 

Grouping and partitioning activities can lay the foundations for developing place 

value, beginning with tens and ones and extending beyond two digits. Partitioning 

small numbers, composing wholes from parts, rearranging parts while recognising that 

the quantity of the whole has not changed, all contribute to developing an 

understanding of place value and part-whole relationships (Ross, 1989). 

It is important for students to develop both counting-based and collections-based 

approaches to working with numbers (Yackel, 2001). Yang and Cobb (1995, p. 10) 

have highlighted “an inherent contradiction” in the way that Western children are 

initially encouraged to count by ones and thus construct unitary counting-based 

number concepts, but are then expected to reorganise these into collections-based 

concepts involving units of ten and units of one when place-value instruction begins. 

Yang and Cobb contrast the Western counting-based view with the collections-based 

approach of Chinese mothers and teachers, who emphasize groups (units) of ten. The 

difference in emphasis on counting versus grouping by tens helps to explain Yang and 

Cobb’s (1995) finding of more advanced mathematical understanding by the Chinese 

children relative to that of the American children. 

The challenge of learning about place value is evident when students in the middle 

grades show limited understandings of two-digit numbers (Ross, 1989). Language 

factors have also been shown to influence place value understandings in different 

cultures. Asian language speakers, for example, have been shown to have a better 

understanding of place value than English language speakers. The irregularities and 

inconsistencies in the English language (e.g., ‘-teen’ & ‘-ty’ numbers) contrast with the 

transparent patterns found in most Asian languages, and research shows more 

advanced development of place-value understanding in Asian children (Miura, 

Okamoto, Kim, Steere, & Fayol, 1993).  

Although many western mathematics curricula introduce place value before 

multiplication and division, it has been suggested that multiplication and division 

provide an important conceptual foundation for understanding place value (Carpenter, 

Fennema, Franke, Levi, & Empson, 1999; Ross, 1989; van de Walle et al., 2014). 

Carpenter et al., emphasize the particular importance of quotitive (measurement or 

repeated subtraction) division problems that require objects to be collected into groups 

of ten to help develop the base-ten concept.  

Place value is a key aspect of number sense, defined as the “understanding of number 

and operations along with the ability and inclination to use this understanding in 
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flexible ways” (McIntosh, Reys & Reys, 1992, p. 3). A framework for the development 

of number sense outlined by McIntosh et al., includes knowledge and facility with 

numbers. Within this component there are four key aspects: a sense of orderliness of 

numbers (patterns and regularities); multiple representations for numbers (symbols 

&/or graphical representations); a sense of relative and absolute magnitude of 

numbers; and a system of benchmarks. Place value is a component of the sense of 

orderliness of numbers. This framework positions place-value understanding within a 

broader context and highlights its importance for children learning to engage in 

mathematical thinking. 

The project described here set out to explore the impact of using multiplication and 

division contexts with five- and six-year-olds on their emerging understandings of 

number, including part-whole relationships and place value. 

THE STUDY 

This study was set in an urban school (medium SES) in New Zealand. The participants 

were 34 five- and six-year-olds (17 girls & 17 boys) in two classes, one designated as 

Year 1 and the other Year 2. The average age of the students was 6.2 years at the 

beginning of the study (range 5.6 to 6.9 years). The children were from a diverse range 

of ethnic backgrounds, with approximately one third of European ancestry, one third 

Māori (the indigenous people of New Zealand), and other ethnicities including Asian, 

African, and Pasifika (Pacific Islands people). One third of the children had been 

identified as English Language Learners [ELL]. At the start of the study, the children 

were assessed individually using a diagnostic task-based interview designed to explore 

their number knowledge and problem-solving strategies (April). The assessment 

interview was completed again after each of the two four-week teaching blocks (June 

and November). The assessment tasks included: addition, subtraction, multiplication, 

division, basic facts, incrementing in tens, counting sequences, and place value. 

Teaching using Multiplication and Division Contexts 

Two series of 12 focused lessons were taught; the first phase was in May and the 

second in October. In these lessons the children were introduced to groups of two, 

using familiar contexts such as pairs of socks, shoes, gumboots, jandals, and mittens. 

Multiplication was introduced using simple word problems, such as: 

Kiri, Sam, and Len each get 2 socks from the bag. How many socks do the 3 children have 

altogether? 

Once children were familiar with working with groups of two, groups of five were 

introduced using contexts such as gloves focusing on the number of fingers on each 

glove, and five candles on a cake. The next objective was to introduce groups of ten. 

For this the context of filling cartons with eggs was introduced with cartons that held 

exactly ten eggs. Although the emphasis of the study was on multiplication and 

division, the focus in this paper is specifically on the quotitive division problems, 

making groups of ten, and considering leftover ones. 
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A typical problem was: 

There are 23 eggs. Each carton holds 10 eggs. How many full cartons are there?  

Later problems were posed so that children could self-select numbers, including 

generating their own ‘mystery number’ inside the empty brackets. 

There are 27 [76] [   ] chocs. Each box holds 10 chocs. How many full boxes are there? 

Lesson Structure 

A typical lesson began with all students completing a problem together on the mat, 

using materials to support the modelling process, and sharing ways of finding a 

solution. The teacher recorded children’s problem-solving processes (including use of 

manipulatives) and discussion in a large scrapbook (‘modelling book’). The problem 

for the day was already written in the book and both drawings and number sentences 

were recorded, acknowledging individual children’s contributions. The children then 

completed a problem in their own project books, choosing a similar or larger number, 

and/or selecting a new number. Materials (egg cartons and unifix cubes) were made 

available and children were encouraged to show their thinking using representations 

and to record matching equations.  

RESULTS 

Children’s performance on the tasks was examined to look for patterns and 

progressions. A tens-structure sub-score was calculated using students’ responses on 

24 tasks related to working with groups of ten (e.g., 60 sticks for grouping into tens; 

known facts such as 20+7, 10+8, 10+10, 2x10, 60÷10, 80÷10, 200÷10, 23÷10, half of 

20; $10 notes in $80, $240; the meaning of “2” in “25”; incrementing in tens such as 15 

and 10, 42 and 30; and producing quantities using groups of ten). Children’s responses 

to addition, subtraction, and multiplication problems were weighted according to the 

sophistication of strategies (counting all = 1, counting on/back or in multiples = 2, 

known & derived facts = 3). 

Children’s tens-structure sub-scores ranged from 0 to 24 (1 per task). A comparison of 

the top 20% of the distribution (n=6) with the bottom 20% (n=6) showed a marked 

difference in their knowledge of number and relationships, key ideas for 

tens-structured thinking. The lowest performers were able to complete no more than 

one task, whereas the top performers completed between 15 and 24 tasks successfully. 

These children with stronger baseline knowledge of facts, number –word sequences, 

and counting strategies (e.g., counting on/back), progressed to skip counting and using 

known or derived facts. They were fluent with incrementing by tens (adding), and also 

working with multiples of ten (multiplying & dividing). These six children were able 

to recognise that six groups of ten could be made from 60 objects, justifying their 

responses by referring to the tens digit. 

Children’s performance improved on many of the tasks related to tens-structured 

thinking. For example, when shown an array of 30 cakes in three rows of ten and asked 
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how many cakes altogether, the majority of children (85%) could work out the answer 

by the end of the project, an increase from 32%. Approximately one-quarter (24%) of 

these students used known or derived facts, and more than half (56%) used skip 

counting. More than half of the children were able to combine a multiple of ten (a 

‘-teen’ or a ‘-ty’ number) with a single-digit quantity without using a counting strategy. 

For example, 62 per cent knew 20 + 7 = 27 and 53% knew that 10 + 8 = 18. Children 

were shown a bag of 60 sticks (labelled with its total) and a bundle of ten sticks, and 

asked how many bundles could be made from the bag of sticks. Not quite half (44%) of 

the children were able to work out the answer by looking at the number ‘60’. More than 

half of the children (59%) knew the number of $10 notes needed to buy an $80 toy, up 

from 12 per cent initially. Almost one third (32%) were able to work out the $10 notes 

needed for an item costing $240. When similar tasks were presented using symbolic 

expressions as known facts, fewer were able to respond correctly (e.g., 32% knew 

60÷10 and 80÷10, while 24% knew 200÷10). One of the most difficult tasks was 

showing the meaning of the ‘2’ in ‘25’ for a picture of 25 blocks where the two groups 

of ten were linked. Only nine children (29%) circled the two groups of ten blocks 

rather than two single blocks. Table 1 presents the inter-correlations for responses to 

selected tasks at the start and end of the project. 

 

Nov 

Add/Sub 

Nov 

Mult 

Nov 

Div 

Nov 

Facts 

Nov 

Tens 

Apr 

A/S 

Apr 

Mult 

Apr 

Div 

Nov Mult 0.46 

       Nov Div 0.71 0.36 

      Nov Facts 0.75 0.66 0.72 

     Nov Tens 0.74 0.54 0.75 0.96 

    Apr A/S 0.80 0.63 0.68 0.75 0.72 

   Apr Mult 0.70 0.50 0.55 0.67 0.59 0.73 

  Apr Div 0.65 0.52 0.65 0.71 0.69 0.62 0.61 

 Apr Facts 0.83 0.63 0.73 0.86 0.83 0.81 0.73 0.69 

Table 1: Correlations among tasks including tens-structured tasks (Nov Tens) 

At the start of the study, knowledge of known facts was strongly related to the score on 

addition and subtraction problem solving (r = 0.81). A similar relationship was found 

for solutions to multiplication (r = 0.73), and division problems (r = 0.69). Correlations 

from the start to the end of the project (inside the bordered region) indicate that 

knowledge of known facts were most predictive of subsequent strategies for addition 

and subtraction (0.83), and division (0.73). They also predicted the measure of 

tens-structured awareness (0.83).  

Children’s representations from both an assessment task and the project books provide 

evidence that they can represent 2-digit numbers as groups of ten and ones. In the 

assessment interview, two-thirds (68%) of the children drew accurate diagrams 

representing 23 eggs in cartons of ten. In the children’s individual project books, they 

constructed their own ways of showing their thinking. However, they were encouraged 
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to use a ten-frame as a representation for quotitive division problems using egg 

cartons. Figure 1 shows how Nisha solved the following problem:  

There are 59 eggs. Each carton holds 10 eggs. How many full cartons are there? 

 

Figure 1: Student’s representation of division word problem 

Nisha’s work shows her clear understanding of groups of ten displayed in ten-frames 

and recognition of nine ones units as a remainder (9r). Some children referred to these 

as ‘leftovers’ whereas others readily adopted the convention of recording this as ‘r’. 

Her second equation was in response to children being asked to justify their solution. In 

this instance, Nisha has chosen to use an addition equation to show her thinking rather 

than multiplication. 

DISCUSSION 

The findings of this study show that even children as young as five and six years of age 

are able to work with multiplication and division problems, as well as place-value 

tasks. This is consistent with the work of researchers advocating for the introduction of 

place-value in the early years (e.g., Fuson et al., 1997; Kari & Anderson, 2003; van de 

Walle et al., 2014). This provides evidence contrasting with Thompson’s (2000) 

caution about introducing place value to young children, and also challenges 

international curricula that introduce place value before multiplication and division. 

Children were provided with opportunities to solve problems using different contexts 

(e.g., egg cartons and chocolate boxes) and manipulatives (e.g., unifix cubes). They 

were also encouraged to use representations such as ten-frames to show their thinking. 

This enabled children to represent groups of ten as composite units. They were also 

supported in recording their solutions as equations. The language of place value (e.g., 

‘-teen’ and ‘-ty’ numbers) was challenging for the children, consistent with research 

findings (e.g., (Miura et al., 1993; Yang & Cobb, 1995). One-third of the sample was 

composed of English language learners. However, it is difficult to know whether these 

children were advantaged or disadvantaged in learning about place value. 

Interestingly, three of the top six performers were ELLs whose first languages have 

transparent tens-structure. 
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The introduction of multiplication and division prior to formal place-value instruction 

was beneficial to the students, not just in understanding multiplication and division, 

but also in developing place-value understanding. The children’s knowledge of 

tens-structure reflected in their recall of known facts and working with groups of ten, is 

consistent with Yang and Cobb’s (1995) argument about the need to move from a 

counting-based to a collections-based approach for place-value understanding. This 

assists the transition from counting strategies to part-whole thinking. Providing 

opportunities to work with 2-digit numbers meant that several children self selected 

larger numbers (3-digit) for their word problems, moving well beyond expectations at 

this level (Ministry of Education, 2009).  

The early recognition of the underlying patterns and structure of groups of ten in 

2-digit numbers provided a foundation from which some children were able to abstract 

and generalise to larger numbers (Mulligan, 2010; Mulligan & Mitchelmore, 2009; 

McIntosh et al., 1992). The fact that only a few children were able to demonstrate the 

meaning of the ‘2’ in ’25’ indicates the challenge of building a sound understanding of 

place value. However, this exploratory study has shown that learning experiences 

using multiplication and quotitive division problems contributes to the development of 

place-value understanding.  
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ACTIVITIES THAT MATHEMATICS MAJORS USE TO BRIDGE 

THE GAP BETWEEN INFORMAL ARGUMENTS AND PROOFS 

Dov Zazkis, Keith Weber, Juan Pablo Mejia-Ramos 

Rutgers University 

 

In this paper we examine a commonly suggested proof construction strategy from the 

mathematics education literature—that students first produce an informal argument 

and then use this as a basis for constructing a formal proof. The work of students who 

produce such informal arguments during proving activities was analyzed to distill 

three activities that contribute to students’ successful translation of informal 

arguments into formal proofs. These are elaboration, syntactification, and 

rewarranting. We analyze how attempting to engage in these activities relates to 

success with proof construction. Additionally, we discuss how each individual activity 

contributes to the translation of an informal argument into a formal proof. 

INTRODUCTION 

Proving is central to mathematical practice. Unfortunately, numerous studies have 

documented that mathematics majors struggle with proof construction tasks and have 

documented numerous causes for these difficulties (see Weber, 2003, for a review of 

some difficulties). However, research on how mathematics majors can or should 

successfully write proofs has been comparatively sparse. In this paper, we examine one 

suggestion from the literature—that students base their formal proofs on informal 

arguments (e.g., Garuti, Boero, & Lamut, 1998; Raman, 2003; Weber & Alcock, 

2004). 

THEORETICAL PERSPECTIVE 

Basing proofs on informal arguments 

Boero (1999) observed that a proof must satisfy certain formal constraints, but the 

reasoning used to generate this proof need not. In particular, the informal arguments 

that one uses to understand why a proposition is true can be used as a basis for 

constructing a proof of this proposition (e.g., Bartollini-Bussi et al., 2007; Garuti, 

Boero, & Lamut, 1998). A number of researchers have advocated that students base 

their proofs on informal arguments. This is a driving force behind the research program 

of the Italian school whose proponents endorse proofs having a cognitive unity where, 

under particular circumstances, there is a continuum between a student’s production of 

a conjecture and how the student proves it (e.g., Garuti, Boero, & Lamut, 1998; 

Pedemonte, 2007). Support for these recommendations typically comes from the 

analysis of students successfully basing proofs off of informal arguments (e.g., Garuti, 

Boero, & Lamut, 1998) and that this is common in authentic mathematical practice 

(Raman, 2003).  
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To distinguish between an informal argument and a proof in advanced mathematics, 

we follow Stylianides (2007) who proposed assessing whether an argument is a proof 

along three criteria: (i) the representation system (as opposed to proofs, informal 

arguments may be expressed in terms of graphs or imprecise language), (ii) the facts 

that are taken as the starting points (in proofs, unjustified statements must be accepted 

by the mathematical community as true whereas in informal arguments, the individual 

only needs to believe they are true), and (iii) inference methods (the methods employed 

in a proof must be considered valid by one’s mathematical community, whereas in an 

argument the methods of inference must merely be plausible to the individual).   

Research on bridging the gap between argumentation and proof 

In recent years, researchers concerned about the gap between informal arguments and 

proofs have begun to look at how this distance is traversed.  Much of the research can 

be divided into two categories: analyzing the types of arguments that are easier to 

translate into proofs and designing classroom environments that help bridge this gap. 

In the first category, researchers such as Pedemonte have conceptualized the distance 

between the informal arguments and the corresponding formal proofs (e.g., 

Pedemonte, 2002, 2007). Pedemonte observed that if the general method of inference 

(structural distance) or the mathematical ideas (content distance) used in an informal 

argument and the corresponding proof differ greatly, students will face difficulties in 

writing the proof (e.g., Pedemonte, 2002, 2007). The second category of studies 

examines instructor roles in helping students build proofs of informal arguments. This 

includes research on creating instructional environments (e.g., Bartollini-Bussi et al., 

2007) and teacher moves that may facilitate this behavior (e.g., Stylianides, 2007). 

In this paper we explore how mathematics majors bridge the gap between informal 

arguments and proofs by addressing the following two questions: (1) What activities 

do mathematics majors engage in when they successfully write a proof based on an 

informal argument? (2) To what extent can these activities account for their success? 

The answer to these questions can inform instruction by highlighting what skills and 

practices students need to learn to write proofs based on informal arguments. 

METHODS 

We recruited 73 mathematics majors from a large public university in the United States 

who had recently completed a second linear algebra course. Participants met 

individually with an interviewer for two sessions, each session lasting approximately 

90 minutes. In one session, the participants worked on 7 proof construction tasks in 

linear algebra; in the other, they completed 7 proof construction tasks in calculus. In 

each session, participants were presented with proving tasks that could be approached 

either syntactically or semantically (in the sense of Weber & Alcock, 2004). 

Participants were asked to “think aloud” as they completed each task, given 15 minutes 

per task and told to write up a proof as if they were submitting it on a course exam. This 

corpus yielded a total of 1022 proof attempts (73×14). 
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We coded a participant’s argument as informal whenever it was a multi-inference 

argument where at least one of the inferences was drawn from the appearance of a 

graph or a diagram, or the inspection of a specific example. There were 37 informal 

arguments of this type in our data set. In this paper, we focus on these arguments, and 

how students attempted to translate these arguments into proofs.  

ANALYSIS 

Two research assistants, who are not authors of this paper, coded each proof as valid or 

invalid. There was 96% agreement on their codings across the data set. Among the 37 

proof attempts considered, 14 were coded as valid and 23 were coded as invalid.   

Following Pedemonte (2007), we used the basic Toulmin (2003) scheme to analyze 

each inference that the participant drew in his or her informal argument and final proof. 

According to the basic Toulmin (2003) scheme, each inference (or sub-argument) 

contains three parts, the claim (C) being advanced, the data (D) used to support the 

claim, and the warrant (W) that dictates how the claim follows from the data. In many 

cases, a warrant was not explicitly stated. In these cases, if possible, we would infer the 

warrant that the participant was using. This allowed us to notice differences between 

the participant’s initial informal argument and their final proof. 

For the 14 successful proof attempts, we used an open coding scheme in the style of 

Strauss and Corbin (1990) to categorize the ways that the mathematics majors 

attempted to transform their argument into a proof. This process yielded three 

categories of activity: syntactifying, rewarranting, and elaborating. Once these 

categories were created and defined, we then went through each of the 37 proof 

attempts, seeking out evidence of participants’ attempts to engage in these activities. 

RESULTS 

In this section, we describe syntactifying, rewarranting, and elaborating, which we 

illustrate graphically using Toulmin’s scheme in Figure 1. 

    

(a) Syntactifying (b) Rewarranting (c) Elaborating 

Figure 1: Three translation activities 

Syntactifying 

Syntactifying occurred when a participant attempted to take a statement in the informal 

argument that is given in what are perceived to be non-rigorous terms and translate it 

into what is considered to be a more appropriate representation system for proofs. Such 

actions included removing references to a diagram used in the informal argument and 

replacing them with more conventional mathematical terminology, or introducing 
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algebraic or logical notation. In terms of Toulmin’s scheme, we can regard 

syntactifying as translating the data (D), claim (C), and/or warrant (W) of an argument 

into new data (D’), claim (C’), and/or warrant (W’) in another representation system, 

without intending to change the meaning of D, C, or W. We illustrate this with Figure 

1a. The following informal argument occurred in student A’s work on when proving 

the derivative of a differentiable even function is odd. 

Student A: Okay, Like okay, since it's symmetric about the y-axis, so it's like a mirror 

and then all the tangent lines, all the derivatives would be like some values 

[pointing at negative side of x
2
 graph] and then this would just, since it's a 

mirror would be the negative of them [pointing at positive side of x
2
 graph]. 

So it would be odd. 

In the above excerpt Student A argues that since even functions are symmetric about 

the y-axis (D) the y-axis acts like a mirror (C). This mirror property is then used as data 

to justify that )()( afaf   for all a. The warrants used are implicit and perceived 

visually from the graph of x
2
, which is used as an example of a generic even function. 

Later, Student A syntactifies parts of this argument when she shifts away from 

discussing tangents in terms of the graph. 

Student A: How do I put that into words? [...] This is what we want f prime of negative 

x equals negative f prime of x. [writes f’(-x)=-f’(x)]. Okay, so if we take the 

derivative at negative, this would be the negative of f of x’s derivative, 

which makes sense. So how do we get from f of negative x equals f of x 

[writes f(-x)=f(x)]. Use the definition? Okay lets try that. f prime x. So by 

the definition of derivative its like as this approaches this point then the tan 

line of that. This is the limit at a. Either way, f of x minus f of a. over x 

minus a.  [writes 
ax

afxf
af

ax 






)()(
)( lim ]. 

Student A first syntactifies the end points of the argument. She begins with the 

conclusion, stating that she is trying to show that f’(-x)=-f’(x). This is a syntactification 

of her claim that the derivatives on one side are the negation of the other. She then 

syntactifies the initial data when she uses the analytic definition of odd (f(-x)=f(x)) to 

replace the graphical definition used in her informal argument. Although the chain rule 

can be used to warrant going directly from the data to the claim, she instead begins to 

build a proof based on her informal argument. Student A’s use of the definition of limit 

at a point can be seen as a syntactification of the tangent part of her argument, since the 

limit definition is used to find the slope of a tangent at an arbitrary point. By 

syntactifying she has moved from working with a graphical representation to an 

analytic representation and in doing so has shifted to a more appropriate representation 

system for a proof. The completion of her argument is discussed in the subsequent 

section on rewarranting. 
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Rewarranting 

Many informal arguments employ warrants that are not permissible in a proof. 

Rewarranting occurred when the participant tried to find a deductive reason for a claim 

that their informal argument justified in a non-deductive manner. In terms of 

Toulmin’s scheme, we can regard rewarranting as replacing a plausible warrant (W) 

(i.e., a warrant that the participant believes is likely to yield truth) with a valid warrant 

(W Å ) (i.e., a warrant that the participant believes is considered valid by the 

mathematical community). This is illustrated in Figure 1b. This differs from 

syntactifying a warrant (WW’), since this involves expressing W more formally but 

without changing its meaning. Below is the continuation of Student A’s work on the 

odd/even problem from the previous section, syntactification.  

Student A: Since f of x is even then f of negative x is equal to negative x. Now limit as x 

approaches a of tangent. I guess that is the right... consider a. Then f prime 

of [mumbling]. So a should be... then...is equal to some L. 

[writes L
ax

afxf
af

ax









)()(
)( lim ] so f prime of negative a equal but this is 

the same thing as f of x minus f of a. over x minus minus a. 

[
)(

)()(
)( lim

ax

afxf
af

ax 






] Which somehow equals negative L. f prime of 

negative x equals negative f of [writes silently 

L
xa

afxf

ax

afxf
af

axax














)()(

)(

)()(
)( limlim , so f’(-x)=-f’(x)]. 

In the above excerpt student A algebraically manipulates the limit definition of 

derivative at a point to show that f’(-x)=-f’(x). This changes the nature of the warrant 

that links the data that f(-x)=f(x) to the claim that f’(-x)=-f’(x). The warrant in the 

original informal argument based on the visual appearance of a graph. It is replaced 

here by a string of algebraic manipulations. The new warrant is not simply a translation 

of the previous warrant that leaves the meaning of the warrant unchanged; it is a 

different route to linking the data and claim. 

Elaborating 

Elaborating occurred when a participant attempted to add more detail to the proofs that 

were not present in their informal argument. This occurred in several ways: 

Participants would justify statements that they took for granted in their informal 

arguments by making explicit warrants that were initially implicit (Wi) in their 

informal arguments, or further justify their data (D) (i.e., the participant attempted to 

justify a fact that was taken for granted). We illustrate this in Figure 1c. The example 

below is of the first type, justifying claims initially taken for granted. It occurred 

during a participants work on the problem: Prove that 0)(sin3 


dxx
a

a

for any real 

number a. 
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Student B: Um it [sin
3
(x)] must be an odd function. […] Right it'll be symmetrical 

across the identity line, which would mean that the integral from negative a 

to zero should be the negation of zero to a. And so it would be zero. 

In this excerpt the participant has an informal argument that 0)(sin3 


dxx
a

a

. Notice that 

within this argument the assertion that sin
3
(x) is odd is treated as a known fact (data). 

Immediately following this informal explanation the participant begins to elaborate 

this argument by providing a justification for this assertion. 

Student B: I'm trying to think how to show that sin of x cubed is odd. So basically I'd 

have to show that f of negative x has to equal negative f of x. Is that right... 

yes. So sin cubed of negative x... sine by definition is an odd function 

[writes sin(-x)=-sin(x)]. Uh Yeah. So sin cubed negative is equal to sin 

negative x times sin negative x which is equal to sin of x times sine of x 

times sin of x. Which is sin of x cubed. Quantity cubed. [writes: 

sin
3
(-x)=sin(-x)sin(-x)sin(-x)=(-sin(x))(-sin(x))(-sin(x))=-sin

3
(x)] So it's 

odd. 

In the above excerpt, what was originally taken as data (D) in the argument (sin(x) is 

odd) is now taken to be the claim (C) of a new sub-argument. Student B shifts the 

starting point for the proof from sin
3
(x) is odd to sin(x) is odd, which is arguably more 

mathematically appropriate.  

A student may also elaborate by replacing an implicit warrant in their informal 

argument with an explicit one in their formal proof. The following excerpt is taken 

from student C’s work on the problem: Suppose f(0)=f’(0)=1 and f”(x)>0 for all 

positive x. Prove that f(2)>2). 

Student C: If the second derivative is greater than zero then f prime of x is increasing. 

So we know that f prime of zero equals one [draws: ]. So the 

derivative at zero equals one and the derivative is always increasing then 

the slope is greater than one after zero. Which means f of 1 is greater than 

one and f of 2 is greater than two. Well it makes sense. 

In the above student C produced an informal argument that relied on a graph. Notice 

that he, among other things, argues that f’(x) is increasing and f’(0)=1 (D) implies that 

f’(x)>1 for x>0 (C). The implicit warrant here is the definition of increasing. Later 

when he writes a formal proof this warrant is no longer implicit: 

Student C: [saying what he writes] If f double prime of x greater than zero, then f prime 

x is increasing for all positive x. Thus for any x sub 1 comma x sub two in 

the interval zero to infinity such that x sub 2 is greater than x sub 1. f prime 

of x sub 2 is greater than f prime of x sub 1. f prime of zero equals one. Thus 

f prime of x sub 2 is greater than f prime of x sub 1 is greater than one. The 

derivative at any point greater than zero is greater than 1… 
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Notice that in his proof he explicitly uses the formal definition of increasing (x2>x1 
Ûf(x2)>f(x1)), which was an implicit warrant in the informal argument. So elaboration 

has occurred. However, even though the proof involves taking smaller steps than the 

informal argument, the path the reasoning follows is unchanged. 

Prevalence of these three activities 

In Table 1, we present the frequency with which a participant attempted to engage in 

these activities as a function of whether or not they were able to successfully produce a 

proof. As Table 1 illustrates, participants who successfully produced proofs were 

considerably more likely to engage in syntactifying, rewarranting, and elaborating. 

Those who were successful in writing a proof usually engaged in all three activities, 

while those who were not successful rarely engaged in all three. 

 Total Syntactifying Rewarranting Elaborating  All three 

Successful 14 12 (85%) 12 (85%) 11 (79%) 11 (79%) 

Unsuccessful 23 15 (65%) 9   (39%) 12 (52%) 4   (17%) 

Table 1: Attempted engagement with translation activities and success 

Slicing the data another way, there were 15 instances in which a participant engaged in 

all three activities, and they succeeded in writing a proof 11 times (73% of the time). 

Among the 22 instances in which a participant did not engage in all three activities, the 

participants only succeeded in writing a proof three times (14% of the time); in two of 

those successful instances, the proofs produced differed substantially from the 

informal argument  

It is important to note that Table 1 documented whether a participant attempted to 

engage in the activity, not if this engagement was successful. Consequently, we believe 

a key factor in determining success in proof writing for these participants was their 

willingness to try to syntactify, rewarrant, and elaborate.  

DISCUSSION 

The data in this paper contributes to the literature on bridging the gap between informal 

arguments and proofs. We highlighted three activities—syntactifying, rewarranting, 

and elaborating—that contribute to writing a proof based on an informal argument. 

Syntactifying is used to translate data, claims and/or warrants stated in terms of 

informal representations and natural language to the representation system of proof. If 

successful, this results in an argument that uses the appropriate representation system. 

Elaborating adds additional details to an argument by shifting the starting point of an 

argument to a more basic and widely accepted statement and making clear how new 

inferences were derived. Rewarranting seeks to replace plausible warrants with valid 

ones, changing the meaning of the argumentation into one more acceptable for proof.  

We observed that there was a relative scarcity of informal arguments produced across 

this large data set (37 instances across 1022 proof attempts). In this respect, we support 
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research into the design of instructional environments that encourages students to 

create proofs based on these informal arguments (e.g., Bossulini-Bussi et al., 2007). 

We also observed that participants who engaged in syntactifying, rewarranting, and 

elaborating once their informal arguments were produced enjoyed far greater success 

in proof-writing than those who did not. Consequently, we hypothesize that some of 

students’ difficulties with bridging the gap between informal arguments and proofs is 

due to students’ inability to successfully engage in these activities. Designing 

instruction that specifically targets these activities has the potential to improve 

mathematics majors’ abilities to write proofs and would be a useful direction for future 

research. 
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UNCOVERING TEACHER’S VIEWS VIA IMAGINED 

ROLE-PLAYING 

Rina Zazkis, Masomeh Jamshid Nejad 

Simon Fraser University 

 

Role-playing is considered a valuable pedagogical strategy in a variety of fields. 

However, the use of this strategy in teacher education is underdeveloped. In this study 

we employ script-writing for a play (which we consider imagined role-playing) as a 

variation on a role-playing method. We invited teachers participating in a Master of 

Education professional development program to write an imagined dialogue with a 

colleague, in which they advocate for their teaching methods. The scripts reveal 

participants’ ideas about teaching as well as their perceptions of nature of criticism 

and opposition to their ideas. The benefits of the script-writing method are discussed. 

ON ROLE PLAYING  

Role-playing is an unscripted “dramatic technique that encourages participants to 

improvise behaviors that illustrate expected actions of persons involved in defined 

situations” (Lowenstein, 2007, p. 173). In other words, role-playing is “an ‘as-if' 

experiment in which the subject is asked to behave as if he [or she] were a particular 

person in a particular situation” (Aronson & Carlsmith, 1968, p. 26). 

Role-playing is used as an effective pedagogical strategy in a variety of fields, a few of 

which we mention here. Traditionally it is used in social studies classrooms in order to 

provide participants with more authentic experiences of historic events and people who 

experienced them (e.g., Cruz & Murthy, 2006). It is used to explore the complexities of 

social situations, such as prejudice, and ethical issues (e.g., Lawson, McDonough, & 

Bodle, 2010; Plous, 2000). Participants, after engaging in role-playing, reported being 

better prepared to deal constructively with everyday instances of prejudice (Plous, 

2000) and generated more effective responses to prejudiced comments (Lawson, 

McDonough, & Bodle, 2010). 

Role-playing is also used in the education of various groups of professionals in 

organizational research, where, for example, participants assume roles of interviewers 

of job applicants or performance evaluators (Greenberg & Eskew, 1993). It is also 

prevalent in the training of health professionals, where the participants play the roles of 

a care-giver and a patient, practicing their clinical, diagnostic and patient managements 

skills, and as such developing empathy and tolerance in a low-risk environment (e.g., 

Joyner & Young, 2006). However, among various uses in developing professionals, 

the use of role-playing in teacher education is rather rare.  
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ON ROLE-PLAYING IN TEACHER EDUCATION  

In considering role-play in teacher education, Van Ments (1983) described it as 

experiencing a problem under unfamiliar constraints, so that one’s own ideas emerge 

and one’s understanding increases. In this sense, role-playing can also be seen as 

role-training. It is aimed at increasing teachers’ awareness of various aspects of their 

actual work. Despite the known advantages, role-playing in teacher education is 

underdeveloped. While some authors advocate for this method and report on its 

implementation, this is most often done in the form of self-reports and anecdotal 

evidence of participants’ experiences.  A few examples are below. 

Kenworthy (1973) described a method in which one participant takes on a teacher-role 

while others take on the roles of various students (e.g., a slow student, a gifted student, 

a disturbing student). He considered this type of role-playing to be “one of the most 

profitable, provocative and productive methods in the education of social studies 

teachers” (p. 243). He claimed that engagement in role-playing activities helped 

participants anticipate difficulties they encounter in their classrooms and as such gain 

security in their successful experiences should they face similar situations on the job. 

In a similar fashion, with a particular focus on teaching mathematics, Lajoie and 

Maheux (2013) used role-playing in courses for prospective elementary school 

teachers, where participants improvise around mathematical tasks. They suggested that 

role-playing experience is instrumental in preparing teachers to deal with 

unpredictability of teaching situation.  

ON SCRIPT WRITING 

Despite the recognized advantages, time and participation logistics are a significant 

limitation of role-playing. If we intend to engage our students in role-playing during 

class time, only a few will be active players and the remainder will serve as an 

audience. To give all students the opportunity to participate in the role-playing 

scenario we turned to imagined role-playing, that is, writing a script for a dialogue 

between characters. We consider this to be imagined (rather than enacted) 

role-playing. 

The use of script writing as an instructional tool has been implemented in prior 

mathematics education research. For example, Gholamazad (2007) developed the 

‘proof as dialogue’ method. Prospective elementary school teachers participating in 

her study were asked to clarify statements of a given proof in elementary number 

theory by creating a dialogue, where one character had difficulty understanding the 

proof and another attempted to explain each claim. This method was amended and 

extended by Koichu and Zazkis (2013) and Zazkis (2013) in their work with 

prospective secondary school teachers. In both studies the participants had to identify 

problematic issues in the presented proofs and clarify those in a form of a dialogue, 

referred to as a proof-script. These scripts revealed participants’ personal 

understandings of the mathematical concepts involved in the proofs as well as what 

they perceived as potential difficulties for their imagined students.   
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Additionally, the ‘lesson play’ method was developed and used in teacher education in 

which participants were asked to write a script for an imaginary interaction between a 

teacher-character and student-character(s) (Zazkis, Sinclair, & Liljedahl, 2013). 

‘Lesson play’ was juxtaposed with the traditional ‘lesson plan’ and how the former 

may account for the deficiencies of the latter was outlined. The method was advocated 

as an effective tool in preparing for instruction, as a diagnostic tool for teacher 

educators, and as a window for researchers to studying a variety of issues in didactics 

and pedagogy. In this study we extend the script-writing method by using it to 

investigate experienced teachers perceptions of teaching.   

THE STUDY 

Participants in this study were practicing teachers in Master’s of Education 

professional development program. Towards the end of the program they were asked 

to write scripts for an imagined conversation in which they explain and argue for their 

approach to teaching. The interlocutor in this conversation had to be either a colleague, 

a school principal or a concerned parent. In this paper we analyse the 14 scripts that 

were dialogues with a colleague.  

The participants were provided with the particular setting for such a conversation and a 

starting prompt:  

It is 8:15 in the morning and you are busy preparing for your classes. A colleague comes to 

you room and says something like that: “Listen, I know you are doing your Master’s and 

all. But have you thought about what this is doing for the kids?”  

The task was to continue this conversation. The morning hour was chosen to keep the 

conversation rather focused, as 8:30 is the usual time when classes start. It also 

provided an opportunity to interrupt the conversation ‘by the bell’ without reaching a 

conclusion or an agreement, though only a few opted for this choice. The mention of 

‘kids’ was also intentional in order to guide the conversation towards students’ activity 

rather than general teaching strategies. Our analysis focuses on the needs of students 

that are attended to in the imagined dialogues. 

THEORETICAL CONSIDERATIONS: STUDENTS’ NEEDS 

Sfard (2003) surveyed a variety of theoretical frameworks and identified ten needs of 

learners, according to these theories, that are “the driving force behind human learning 

and must be fulfilled if this learning is to be successful” (p. 357). These are: the need 

for meaning, the need for structure, the need for repetitive action, the need for 

difficulty, the need for significance and relevance, the need for social interaction, the 

need for verbal symbolic interaction, the need for a well-defined discourse, the need 

for belonging, and the need for balance. While the theories that Sfard considered were 

not specific to learning mathematics, she described how these various needs were 

featured in the NCTM standards. As such, we use categories identified by Sfard as a 

theoretical lens for our analysis. 
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In our analysis we identified the main themes that emerged in teachers’ arguments as 

well as in the arguments of their imaginary interlocutor. We focused on how different 

intellectual needs of learners were featured in the scripts. 

RESULTS AND ANALYSIS 

Table 1 indicates what needs of students appeared in the scripts. We note significant 

overlap among various needs of students and acknowledge the difficulty in discussing 

them separately. Despite this, we identified the needs that are most evident in the 

teachers’ descriptions of what they do or intend to achieve in their teaching (�). We 

analysed each script individually and then compared the analyses and reconciled minor 

differences. Further, in each script we noted what appeared to be the most prevalent 

need of students to which the participants attended (¶¶). 

Needs/ 

/Parti- 

cipant# 

meaning 

 

structure repetitive 

action 

difficulty significance 

and 

relevance 

social 

interaction 

verbal 

symbolic 

interaction 

well- 

defined 

discourse 

belonging balance 

P#1 ¶ ¶  ¶  ¶¶ ¶ ¶  ¶ 

P#2 ¶¶ ¶  ¶    ¶   

P#3 ¶¶ ¶   ¶     ¶ 

P#4 ¶ ¶  ¶ ¶ ¶¶ ¶   ¶ 

P#5 ¶¶ ¶    ¶ ¶   ¶ 

P#6 ¶     ¶¶ ¶  ¶ ¶ 

P#7 ¶ ¶     ¶    

P#8 ¶   ¶ ¶¶ ¶   ¶  

P#9  ¶ ¶¶ ¶ ¶ ¶ ¶¶     

P#10 ¶     ¶    ¶ 

P#11 ¶¶   ¶  ¶    ¶ 

P#12 ¶ ¶¶ ¶   ¶    ¶ 

P#13   ¶ ¶ ¶    ¶  

P#14 ¶  ¶ ¶  ¶    ¶ 

Table 1: Students’ needs according to Sfard (2003) identified in the scripts 

As is evident in Table 1, the need for meaning/causality and the need for 

communication or social interaction were featured in almost all the scripts and were of 

central importance to most script-writers. We exemplify below how these needs were 

described in the imaginary dialogues. While the participants often used their personal 

names in the dialogues, we refer to interlocutors anonymously as ‘participant’ and 

‘colleague’. While in some scripts one particular need was emphasized, we chose to 

present the next script because it attended to a variety of students’ needs. It was written 

by a Grade 2 teacher (P4). 

1 Colleague: I know you have been busy with your masters, and are very passionate 

about what you have been doing but have you thought about how confusing 

this new type of math might be to them, not to mention the fact that when 

they come to me next year the math will be totally different?    

2 Participant:  Well Tom I am sure it will be different […].  But I do question why you 
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would think it would be confusing for the kids? 

3 Colleague:  I know that the kids in your class do some math but in all honesty it isn’t 

really the math that the rest of the staff is teaching. I don’t actually see a lot 

of them sitting down and doing math like the way they would be doing it in 

my class and I’m quite concerned that you have not provided them with a 

strong foundation. […]  

4 

 

Participant: Well I do think learning math facts has its place, however we usually do 

this through math games or some kind of partner activity. Computation is 

just one part of the math in my classroom.  It’s important to try and 

integrate a variety of tasks that challenge students in the area of problem 

solving and being able to communicate their understanding in 

mathematics. I know it looks a bit chaotic and its noisy, but I do believe the 

students are building strong understanding in their mathematics. 

5 Colleague: Math should be a quiet time. It should be a time for students to focus on 

solving problems without all this noise. 

6 Participant: Quiet is not always good.  It could mean that students are stuck and don’t 

know what to do?  I look at talking time in math as a time to share different 

ways to arrive at an answer.  It’s a chance for students to learn from each 

other. […] I try to differentiate instruction through open ended learning 

tasks. […] Not only are the problems designed for kids with different 

learning capabilities, but all the kids are helping each other. Sometimes it’s 

not the final answer that’s important, but rather the path they took to solve 

the problem. 

7 Colleague: Well sometimes the beauty of math is they either have the right answer or 

they don’t.  Math needs to be quiet and kids need to be able to perform the 

operation correctly so they can solve the problem. Too much talking is a 

distraction. 

8 

 

Participant: It is true my kids are talkative during math, and yes we spend a lot of time 

on the floor, but that doesn’t mean they are distracting others.  By having 

them work on the floor with a friend kids can make connections and 

communicate with each other -it’s a way of getting them to dig deeper into 

the math. […] They are trying to construct their knowledge so eventually 

they can move from the concrete to the symbolic.  You might see that as 

play in grade one but it is important that students are able to show their 

understanding through those concrete materials. So what do you think my 

kids are doing on the floor, just out of curiosity? [...] 

9 

 

Colleague: Well like I said – it really doesn’t look like math to me. It looks like they’re 

having a good time, lots of talking. 

10 Participant: (chuckle) Yes, you’re right they are having fun. 

11 Colleague: Well Math needs to be about learning Marie.  We’ve got so much to cover.  

How can you spend so much time on group work? 

12 Participant: […] Students are given a question but looking for different strategies to 
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solve it. In their groups, they discuss the different strategies so they know 

there is more than one way to arrive at an answer. Then together in a gallery 

walk, the kids get to explain their thinking in numbers, pictures and words 

as to how they solved that problem. Not only have they shown it, they now 

have to explain it and its really incredible how some of them arrive at an 

answer.  It is a great opportunity for me to see who really understands the 

task. 

13 Colleague: How am I supposed to keep track of what they actually learn or what they 

can do in my class at the end of the day? In my class, I have that workbook 

that I can look at. I choose a series of questions from the textbook so I can 

see all the questions and things they have solved. At the end of the day, 

what do you have to show as evidence as to what they have learned? 

You’ve had lots of great discussions again just going by what I see you've 

got these kids rolling on the carpet with their toys but they are not learning 

the importance of paying attention during a math lesson and they are not 

getting used to sitting in their desks quietly!  They have all had a lot fun but 

have they really learned the math? 

14 Participant Well I have their completed work, I have their verbal explanation, I've got 

their group work mark… […] I'm not sure that the depth of their 

explanations would be as great if they simply do just worksheets. […] Will 

they just have to calculate as opposed to showing you? We have really 

worked hard as a staff at encouraging the use of concrete materials into 

math. Our math room has all these wonderful manipulatives. […] 

We note here a strong connection between students’ need for social interaction and the 

need for meaning making in mathematics ([4], [8], [14]). The script-writer emphasizes 

the connection between students’ understanding and their ability to explain. 

Furthermore, this excerpt demonstrates attention to other needs of learners. The 

mention of differentiated instruction and the design of tasks to accommodate learners 

of different capabilities [6] is consistent with the need for balance. In addition, the need 

for balance is acknowledged, implicitly, in mentioning a variety of tasks [4] and a 

variety of solution strategies [6], [12]. The need for difficulty is seen in the reference to 

tasks that challenge students [4]. The need for structure appears in mentioning 

connections and in the move from concrete t symbolic [8]. Further, in the repeated 

mention of concrete materials [8], manipulatives [14], or pictures [12] we recognize 

this script-writer’s attention to students’ need for significance and relevance as well as 

for symbolic interaction.  

We acknowledge that while the participant-characters featured in the scripts refer 

mostly to students’ intellectual needs, their colleague-characters refer to the needs 

dictated by the system, that is, by their understanding of their job description. This 

includes, for example, classroom management [3], covering the curriculum [11], 

following the textbook and providing assessment [13]. We also note a significant 

disagreement between the characters with respect to their views of mathematics. These 

issues are explored in our subsequent analyses.   
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IMAGINED ROLE-PLAY: WHAT IS LOST, WHAT IS GAINED 

Enhanced interaction among group members, enhanced skills in collaboration and 

communication, are often considered among the outcomes and benefits of role-playing 

(e.g., Jackson and Walters, 2000; Mogra, 2012). These outcomes are unlikely to result 

from writing an imagined dialogue, unless participants collaborate on creating a script. 

But with this loss there are overwhelming gains, as we discuss below. Role-playing, as 

an improvisational procedure, requires that the players have a feeling of relative safety. 

Many unpleasant experiences of participants in role-playing have been attributed to a 

teacher’s failure to “warm up” the group where members learn to know and trust each 

other. In script-writing the safety concern is marginal as the play is confined to 

personal imagination.   

An important goal that is attributed to role-playing is training professionals to “think 

on their feet” (Alkin & Christie, 2002). However, one does not necessarily have to 

think on his/her feet in order to be prepared for it. To the contrary, the script-writing 

avoids the necessity of an immediate response and as such provides an opportunity for 

a more-thoughtful and a more-balanced response, that can be redrafted and 

reconsidered, and – eventually – be relied upon when the opportunity to think on one’s 

feed presents itself.  

Many authors agree that simulations and imagined situations can induce learning. In 

particular, Blatner (2009) described role-playing as “a technology for intensifying and 

accelerating learning”. We add to this that script writing invites a thoughtful and 

balanced response to an imagined situation and in such can induce learning even 

further. In addition, it provides researchers with a recorded account of one’s imagined 

scenario from a perspective of both (or several) interlocutors.  

In this study the scripts produced by participants demonstrated their views of teaching, 

in which their emphasis on students’ intellectual needs as learners becomes apparent. 

They also demonstrated participants’ perceptions of which traditional views they may 

be facing in their practice. Script writing appeared a useful way to exemplify and 

elaborate upon a potential struggle teachers who strive to improve their practice 

encounter.  
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PRE-SERVICE ELEMENTARY TEACHERS’ MISCONCEPTIONS 

OF PROOF AND COUNTEREXAMPLES AND THEIR POSSIBLE 

INFLUENCES ON THEIR INSTRUCTIONAL DECISIONS 

Zulfiye Zeybek, Enrique Galindo 

Indiana University 

 

How might pre-service elementary teachers’ misconceptions of proof and 

counterexamples influence their teaching of proof? To investigate this question, two 

types of interviews—task-based and scenario-based—were designed to elicit 

pre-service elementary teachers’ (PSTs) conceptions of proof and counterexamples 

and how those conceptions might impact their instructional decisions. A qualitative 

analysis of the data revealed that these PSTs had difficulties following or constructing 

formally presented deductive arguments and understanding how deductive arguments 

differ from inductive arguments. The data also revealed that the misconceptions that 

pre-service teachers held played an important role in their instructional decisions. 

INTRODUCTION  

Proof is considered an essential aspect of mathematics and mathematical reasoning and 

proof have gained an increasing level of attention in recent attempts to reform 

mathematics teaching (CCSSM, 2010; NCTM, 2000).  More notably, there is a call for 

an enhanced notion of proof that elevates proof beyond a topic of study in advanced 

mathematics courses to a tool for studying and learning mathematics at all levels 

(Stylianides & Ball, 2008). Thus, student understanding of proof should be extended 

through consistent opportunities to reason about why something is true, make and test 

conjectures, and build mathematical arguments. Engaging in reasoning and proof 

enables students to make sense of new ideas and to develop habits that will be of 

lifelong importance (Hanna, 2000; Martin & Harel, 1989). In order to create such an 

environment for students, teachers must themselves have a deep understanding of 

proof. The purpose of this study is twofold: To investigate elementary pre-service 

teachers’ misconceptions of proof and counterexamples, and to examine whether these 

misconceptions impact their instructional decisions. This study investigates the 

following two questions: 1) What are pre-service elementary teachers’ misconceptions 

of proof and counterexamples in mathematics classrooms? 2) Do pre-service 

elementary teachers’ misconceptions of proof and counterexamples influence their 

teaching practices? If so, how? 

FRAMEWORKS 

Proof Scheme 

A fruitful approach to understanding students’ difficulties with proof has been to 

classify these approaches along several dimensions (Balacheff, 1988; Harel & Sowder, 
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1998). Researchers have hypothesized that the development of students’ understanding 

of mathematical justification is likely to proceed from inductive to deductive or from 

particular cases toward greater generality (Harel & Sowder, 1998; Simon & Blume, 

1996) and various proof schemes have been proposed. We reviewed the literature in 

order to develop a taxonomy for teachers’ conception of proof. While many studies 

have focused primarily on distinctions between inductive and deductive justifications 

(Chazan, 1993; Martin & Harel, 1989), some researchers have divided inductive and 

deductive justifications into further subcategories (Balacheff, 1988; Harel & Sowder, 

2007; Simon & Blume, 1996). We followed that approach. 

The taxonomy of proof schemes, external, empirical, and analytical, proposed by Harel 

and Sowder (1998), is a fundamental framework for research on students’ conceptions 

of proof. It encapsulates the major categories included in other taxonomies and 

proposes further sub-categories. However, it is evidenced in the literature that some 

students may not even need to provide a justification, they may fail to produce a 

deductive argument even if they start with some deductions, or they may use a 

particular example—generic example—to express their deductive reasoning 

(Balacheff, 1988; Simon & Blume, 1996). Since these students do not hold external, 

empirical, nor fully developed analytical proof schemes, it may be hard to classify 

these students’ proof schemes using Harel and Sowder’s taxonomy. We propose Level 

0, Level 2, and Level 4, described in Table 1, to be added to Harel and Sowder’s 

taxonomy in order to account for a broader spectrum of proof schemes. 

Counterexamples 

Zazkis and Chernoff (2008) argue that the existence of a counterexample should fit 

within an individual’s proof scheme, therefore; what is convincing for one may not be 

convincing for others. They introduce the notions of pivotal and bridging examples to 

highlight the convincing power of counterexamples within an individual’s example 

space. A pivotal example creates a turning point in the learner’s cognitive perception, 

may introduce a conflict or may resolve it. A bridging example serves as a bridge from 

the learner’s initial conceptions towards more appropriate mathematical conceptions. 

We use the notions of pivotal and bridging examples in our study of PSTs’ conceptions 

of counterexamples. 

METHOD 

Participants 

To select participants representing a broad spectrum in terms of knowledge and beliefs 

about proof, a proof questionnaire with open-ended questions was developed and 

administered to all students in one section of a geometry and measurement course and 

one section of a mathematics methods course at the beginning of the semester. After 

administering the questionnaire to all students in both courses, twelve PSTs, including 

five from the geometry course and seven from the methods course, were selected based 
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on their responses so that there were participants displaying each of the following 

proof schemes: external, empirical, or deductive. 

Categories Characteristics of Categories 

 Subcategories  Characteristics of Subcategories 

Level 0 Responses that do not address justification 

Level 1: External Proof 

Scheme 

Responses appeal to external authority 

 (1) Authoritarian proof  Depends on an authority  

(2) Ritual proof   

 

Depends on the appearance of the 

argument 

(3) Non-referential 

symbolic proof 

Depends on some symbolic 

manipulation 

Level 2: Naïve 

Reasoning 

Responses usually with incorrect conclusions. Although, provers 

use some deduction, the arguments start with an analogy or with 

something that provers remember hearing, often incorrectly.  

Level 3: Empirical Proof 

Scheme 

Responses appeal to empirical demonstrations, or rudimentary 

transformational frame 

 (1) Naïve Empiricism 

 

An assertion is valid from a small 

number of cases  

(2) Crucial Empiricism  

 

An assertion is valid from strategically 

chosen cases of examples 

(3) Perceptual Proof An assertion is valid from inferences 

based on rudimentary mental images  

Level 4: Generic 

Example 

Responses expressed in terms of a particular instance (examples 

might be used to generalize the rules, but unlike an empirical proof 

scheme, the general rules are predicted based on deductive 

reasoning) 

Level 5: Analytic Proof 

Scheme 

Responses appeal to rigorous and logical reasoning 

 (1) Transformational 

proof scheme 

Involves goal-oriented operations on 

objects  

(2) Axiomatic proof 

scheme 

Involves statements that do not require 

justification 

Table 1: Taxonomy of proof scheme 

Data Collection 

The data was gathered in two distinct stages (Part I and Part II) with a different focus, 

and the primary sources of data were participants’ semi-structured interviews. Part I 

and Part II interviews took place at the beginning and near the end of the semester, in 
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order to detect any possible changes in PSTs’ professed way of teaching proof that 

took place during the course. All twelve participants were interviewed individually, 

and interviews lasted approximately 60 minutes and were audio-recorded 

Part I interviews focused on PSTs’ (mis)conceptions of proof, including their way of 

producing proofs/counterexamples, as well as validations of different types of 

arguments ranging from empirical to formal. Thus, on PSTs as “knowers” of 

mathematics. During the interviews, participants were handed four tasks (five tasks 

during the post interviews), one at a time, and were asked to think out loud when 

determining the correctness of the tasks. For each task, participants were asked (1) to 

rate the level of their content understanding of the task using a four-point scale, (2) to 

determine whether the task is a correct statement or not, and (3) to rate the level of their 

confidence in terms of the validity of their evaluation using a four-point scale. Then, 

they were asked to produce a justification in cases where they believed the statements 

to be always true or to refute the statements where they believed the statements to be 

never true. After they provided an argument to justify or refute the statement and state 

their level of confidence in terms of the validity of their arguments, they were 

presented four brief arguments (five for the post interviews), varying in terms of level 

of justification; from empirical to deductive, one after the other, and asked to think out 

loud as they read each one, judge the correctness, and say to what extent each argument 

is convincing. Incorrect formally written arguments were added for each task for the 

post interviews. Finally, they were provided “Always,” “Sometimes,” “Never” cards 

and asked to assign the appropriate card to each argument presented as well as their 

own justification.  

Part II interviews focused on the participants’ usage of their conceptions that emerged 

from the analysis of Part I data. Part II interviews focused on pre-service elementary 

teachers as individuals who are going to be teachers of school mathematics. Knuth 

(2002) criticizes that research on teachers’ conceptions of proof has tended to focus 

exclusively on teachers as individuals who are knowledgeable about mathematics 

rather than as teachers of school mathematics. Thus, in our study this stage focused 

primarily on PSTs’ conceptions in the context of school mathematics.  Participants’ 

responses to questions about classroom scenarios and hypothetical students’ questions 

were used to illuminate the process through which they would (1) validate proofs and 

counterexamples, (2) verify a statement’s veracity, and (3) produce proofs and 

counterexamples as well as evaluate the validity of students’ work. We also examined 

broader ideas and beliefs about how they plan to teach proofs in mathematics 

classrooms, including what types of arguments to incorporate in elementary 

classrooms.  

RESULTS 

Task-based interview results 

The findings of this study outline a mixed picture of what constitutes proof and 

counterexample in the eyes of those twelve pre-service elementary teachers. The 
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arguments that the participants constructed to justify the statements as well as the 

arguments presented to the participants after each task were coded according to the 

frameworks explained above. We now present our findings. 

When asked to define proof, it was clear that pre-service teachers had some experience 

with proof and were using this to inform their judgments about what constituted a good 

proof. They had experience of seeing a proof being performed and were quoting these 

as examples of what was required. However, despite their experience seeing proofs in 

their classrooms, the majority of the participants failed to produce and/or recognize a 

proof. For instance, when given Task A—A kite is a quadrilateral with two distinct 

pairs of adjacent sides that are equal. Given this definition, justify whether or not the 

following statement is true. “In a kite, one pair of opposite angles is the same.”—Only 

three out of seven students from the methods course were able to reproduce the proof 

that they learned in their previous geometry course correctly. Four students attempted 

to use triangle congruency to prove the statement as they learned in their geometry 

course. However, they either started with incorrect assumptions, such as trying to 

prove the wrong pair of angles as congruent, or they used incorrect reasoning to reach a 

correct conclusion. Only one out of 5 students from the geometry course was able to 

construct an argument that was coded as a deductive argument. The other four students 

came up with empirical arguments to justify the statement.  

Not surprisingly, empirical approaches were by far the most common strategy 

employed by participants. Seven out of twelve students who participated in the study 

found empirical arguments as sufficient proof. Overall, pre-service teachers who were 

using an empirical approach to justify the statements recognized that they needed to 

test multiple examples. However, we should also note here that the participants tended 

to test fewer examples when they were familiar with the statement or the statement was 

initially believed to be true.  

The fact that a generalization is found to be true in some cases does not guarantee − and 

thus does not prove − that it is true for all possible cases is a fundamental distinction 

between empirical and deductive arguments. However, we found that this distinction 

was not clear to the participants who constructed empirical arguments or found 

empirical arguments sufficient to prove. This is a fundamental difference between an 

empirical argument and the notion of proof in mathematics (Stylianides, 2007) and we 

believe it is necessary to learn it in order to move from an empirical proof scheme to a 

deductive proof scheme. We also found that some pre-service teachers failed to 

recognize that a proof always holds true. 

Moreover, if participants could not make the distinction between empirical and 

deductive arguments, they tended not to recognize incorrect reasoning presented in 

formally written arguments and claimed that the argument would suffice as a proof. 

Similarly, some of the participants claimed that a counterexample could be found even 

after a proof was presented. In other words, some of the participants seemed to believe 

that a proof and a counterexample could exist for the same situation. 
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The participants also demonstrated various misconceptions refuting wrong 

mathematical statements, for example the belief that providing more counterexamples 

would make an argument more convincing. We also found that a counterexample, 

when presented to or created by the learner, may not create a cognitive conflict or 

result in refuting the statement. Instead, it may be simply dismissed or treated as an 

exception and as a result the need of seeing more counterexample may occur.  

Scenario-based interview results 

In the scenario-based interviews, it was evident that the misconceptions described 

above played an important role when the pre-service teachers evaluated the classroom 

scenarios. We found that PSTs’ decisions of whether an argument was a proof were 

influenced by the context, and PSTs’conceptions of proof differed when they switched 

from discussing proof from their own perspective to examining proof in the context of 

evaluating student work. We believe that this speaks to deep theoretical and practical 

concerns. The participants demonstrated the tendency of accepting empirical 

arguments as sufficient proofs in the context of elementary school, even if they did not 

display an empirical level of thinking about proofs.  

Watson and Mason (2005) argued that examples could be seen as instances of a more 

general class or objects. In this study, PSTs treated examples as representation of a 

bigger class. In other words, the majority of the participants stated the importance of 

providing examples of different types to justify a statement in order to ensure the 

generality of the justification, thus, highlighting the importance of example space. 

If students view proof as sufficient evidence to support a conjecture, one would expect 

the students’ reasoning to end after generating a valid proof. While this was the case 

for the majority of the PSTs, some tested examples after generating/seeing a proof. It 

should also be noted that the majority of the PSTs stated that providing additional 

empirical checks could be helpful for students to better understand the proof and/or 

statement. Thus, almost all participants claimed that additional empirical checks were 

necessary. We interpret this finding in two possible ways: as a result of the 

conversation between the interviewer and the participant or it can be considered to be 

evidence that the students were not convinced by the generality of proofs. 

CONCLUSION AND DISCUSSION 

Despite the growing emphasis on justifying and proving in school mathematics, a large 

body of research shows that students of all levels of experience use empirical 

arguments to prove statements in mathematics and/or they accept empirical arguments 

as valid proofs and that many students fail to understand the nature of what counts as 

evidence and justification. We found confirmation for these results as the majority of 

the participants in our study failed to recognize that testing examples is not sufficient 

for proof. 

Several researches have focused on why many students possess these invalid proof 

techniques. Recio and Godino (2001) note that many such invalid proof techniques 
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would be appropriate in non-mathematical domains. Reid and Knipping (2010) 

observe that reasoning about a concept using a prototypical example is common in our 

everyday experience. In this study, it was evident that some participants were over 

generalizing what they learned in other courses to mathematics. We believe that unless 

pre-service teachers realize the limitations of empirical arguments as methods for 

validating generalizations, they are unlikely to appreciate the importance of proof in 

mathematics (Stylianides & Stylianides, 2009). In order to achieve this learning 

objective, however, teachers must have good knowledge in the area of proof, for the 

quality of learning opportunities that students receive in classrooms depends on the 

quality of their teachers’ knowledge (Ball, Thames, & Phelps, 2008).  

Elementary teaching practices that promote or tolerate a conception of proof as an 

empirical argument may instill mental habits in students that significantly deviate from 

conventional mathematical understanding in the field. Martin and Harel (1989) state 

that if elementary teachers lead their students to believe that a few well-chosen 

examples constitute a proof, it is natural to expect that the idea of proof in high school 

geometry and other courses will be difficult for the students (pp. 41-42). It was clear in 

this study that those PSTs tend to believe that empirical arguments could be tolerated 

as proofs in elementary levels while they cannot be accepted as proofs in higher grade 

levels. Additionally, we found that the distinction between empirical arguments and 

deductive arguments was not clear for many of the participants. Thus we argue that 

unless teachers at all levels of schooling develop a good understanding of this 

distinction, it is unlikely that large numbers of students will overcome their 

misconception that empirical arguments are proofs. 

There has been relatively little attention paid to the way PSTs conceptions of proof 

may depend on the particular context in which proof is being utilized. The results in 

this study indicate that this is an area worthy of further investigation as teachers’ 

conceptions of proof in the context of teaching may be, and perhaps should be, 

different from the way they engage with proof in other settings.  
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