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This paper describes a theoretical model for systemic change as it concerns the 

learning and teaching of mathematics in K – 12 schools, with particular attention 

being paid to the rural context. Systemic change is the active process of establishing 

change in the community through lasting, long-term relationships, practices, and 

procedures (Adelman & Taylor, 2003). Our purpose is to describe the mechanics of 

such change provided by the strategic, continuous, and monitored support of all three 

of the constituents: Teachers, administrators and community, and externally supported 

by a temporary catalyst.  Systemic change is achieved when the removal of the external 

catalyst does not affect the rest of the model. Evidence to support this claim has been 

derived from our case studies. 

INTRODUCTION 

This paper describes a theoretical model for systemic change as it concerns the 

learning and teaching of mathematics in K – 12 schools. The motivation for this study 

comes from an increasing demand for sustainable change in educational systems that 

seek to improve the performance of American students in mathematics (Stigler & 

Hiebert, 2009). With the implementation of the Common Core State Standards in 

Mathematics, there is a shift in emphasis on educational goals that may necessitate 

sustained school-wide change. Systemic change is an active process of establishing 

change in a community through relationships, practices, and procedures that become a 

lasting part of the community and is promoted by school leaders to institutionalize 

instructional strategies that increase student learning (Adelman & Taylor, 2003). Many 

recipients of major grants designed to increase students’ achievement in mathematics 

that are intended to produce lasting change in schools struggle with ways to make the 

change systemic. 

Despite the attention this topic has drawn from funding agencies, there is surprisingly 

little research that describes in detail successful implementation of sustainable 

system-wide change in mathematics instruction, particularly in rural schools. The 

proposed model emerged from our work with 34 rural schools in the Pacific Northwest 

through a NSF funded grant, Making Mathematical Reasoning Explicit (MMRE). The 

model attempts to describe the interconnections and interactions among teachers, 

administrators, and the community. We use the term community broadly to capture 

individuals or groups connected with the school, such as parents, and civic 

organizations with an interest in education. It is our intent to describe (a) the nature of 

the strategic, continuous and monitored support provided by these three constituents 

and their interactions with each other and (b) describe a fourth temporary, external 
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catalyst (in our case a federally funded grant). We illustrate this process using our case 

study data. 

LITERATURE REVIEW 

Three major constituents appear to influence the degree to which systemic change 

becomes sustainable: Teachers, administrators, and communities (Loucks-Horsley et 

al, 2009). Stigler and Hiebert (2009) make a strong case for the position that if we want 

different outcomes in student learning, then teachers must change what they do in the 

classroom. The process of teacher change is critical to the systemic change (Silvia, 

Gimbert, & Nolan, 2000). However, we limit our literature to the interactions and 

influences between, rather than within, the three groups: teachers, administrators, and 

community. Thus, our brief literature is focused on the influences of teachers, 

administrators, and community on systemic change. 

Teachers as supporters of systemic change 

Literature on the influence of teachers on systemic change is focused on their 

implementation of high quality professional development and the details of change 

process itself (e.g., Pegg & Krainer, 2008). Pegg and Kainer describe four large scale 

initiatives in Austria, United States, Australia, and South Korea.  These projects focus 

on supporting individual teachers through collaboration, communication, and 

partnerships. Teachers collaborated with each other and university staff members as 

valued members of the community with specific expertise. The inclusion of outside 

experts leads to in-depth discussions that facilitate the development of new 

instructional practices. Partnerships and communication were between the national 

funding agency, teachers, and university staff members. Teachers’ professional 

development is critical to systemic change. Developing teacher leaders have been seen 

as one component that can support systemic change. Unfortunately, literature on 

teacher leadership describes their development, roles, and interactions with colleagues 

(e.g., Christensen, 2012) and does not examine the interactions between the school 

administrators and the community. 

Administrators as supporters of systemic change 

Guskey & Sparks (2002) describe the types of support that administrators may provide 

to teachers: supervision, professional opportunities, coaching, and evaluation, as well 

as their leadership and its influence on the school community and culture. Specifically, 

principals who support their teachers by individually participating in and allotting time 

for professional development have reported increases in teacher effectiveness and 

organization (Darling-Hammond & Bransford, 2007). Pegg and Krainer (2008) 

summarize the influence of principals on teacher change in a large-scale Austrian 

initiative. Teachers who had support from their principal and colleagues were more 

motivated to use new instructional practices and their students were more enthusiastic. 

In contrast, teachers with little support or who felt pressure from the administration had 

little intrinsic motivation to use new instructional practices. 
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Community support for systemic change 

To support systemic change, it is important for all stakeholders to articulate the vision 

of this change (Adelman & Taylor, 2003). Stakeholders must anticipate barriers to 

change, create structures within the school system, and appropriately allocate 

resources to confront and remove these barriers. The likelihood of long-term systemic 

change is greatly enhanced when parents and the community support the innovation 

(Joseph & Reigeluth, 2010). Including parents into the change process is a “step 

toward helping parents not only to get involved, but also to take ownership of the 

change process.” (p. 10).  

SYSTEMIC CHANGE MODEL 

Anderson (2003) suggests that research is needed to investigate the reciprocal 

interactions among the various components of a school system. To investigate these 

reciprocal interactions, we needed a model to help us analyse the interactions among 

school personnel and the community. Our 3-D model (Fig. 1) consists of a double 

tetrahedron that represents the multidimensional aspects of these influences, with the 

central plane representing the playing field where interactions among teachers, 

administrators and community constituents occur. 

The playing field is supported by the external funding agency, and in turn supports 

student learning. The edges represent the interactions among these constituents. The 

goal of systemic change is to accomplish the shrinking of the lower tetrahedron until 

the external funding agency support is no longer necessary, while still maintaining the 

integrity of the upper tetrahedron. We next describe the external support, followed by a 

discussion of the interactions between community and school personnel. 

Playing field

Student learning

Administrators

Teachers

Community

External support
 

Figure 1: The goal of the systemic change model is to describe the school and 

community-based interactions that can provide continuous support to improve 

instruction and increase student learning. 
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External support 

External support most often occurs as the result of local, state or federal grants. Valley 

School District, the focus district of our case study, is supported by MMRE, an 

ongoing five-year National Science Foundation Mathematics and Science Partnership 

grant project. The goals of MMRE are to (a) develop teachers’ understanding of 

generalization and justification so that they can create opportunities for students to 

engage in these actions, (b) build mathematics teacher leaders, (c) support school 

districts create structures that increase students’ intellectual engagement in 

mathematics, and (d) boost student achievement. MMRE Teacher leaders are expected 

to mentor their colleagues during their second and third year of participation and then 

to continue working with colleagues for two additional years.  

Each year of MMRE teachers’ participation includes: attendance at a 2½ week 

Summer Institute, four to six half-day regional meetings during the school year, and 

three classroom observations by MMRE staff.  During the summer, we engage 

teachers in mathematical reasoning through the content areas of algebra, geometry and 

proportional reasoning. We hold daily sessions on leadership, designed to equip the 

teacher leaders with the skills necessary for leading professional development with 

their colleagues. Administrators from the participating school districts join their 

teacher leaders for three days to work on a three-year school district plan to support 

other teachers in the district implement instructional practices that support students to 

reason mathematically. In addition, administrators attend sessions to help them 

recognize mathematical reasoning as it occurs in mathematics classrooms and 

instructional strategies that promote it.  

Influences and interactions between school administrators and teachers 

School administrators include the superintendent, principals, curriculum coordinators,  

mathematics coaches, specialists, and their assistants. These individuals set the budget, 

define school district goals, policy and vision, set the schedule of classes, oversee 

curriculum, hire staff, and provide supervision and evaluation of them. Administrative 

support for change ensues from (a) allotting time for professional development, (b) 

allocating money for substitute teachers or supplies, and (c) revising policy to create a 

safe environment for teachers to use new practices. Through these actions, 

administrators influence teachers and their practice by providing opportunities for 

teachers to learn new instructional practices, collaborate, plan and enact instruction 

using them, and reflect on the impact of these new practices on student learning.  

Teachers influence administrators by their enthusiasm and willingness to embrace a 

change. They may discuss with staff members and parents the importance of changing 

instructional practices and their impact on students’ learning. They provide specific 

anecdotes to administrators, illustrating the positive and negative impacts of the new 

practices. Teachers discuss the importance of changing instructional practices and their 

impact on students’ learning and request resources to support them. Administrators 

often find these professional conversations inspiring and energizing. 
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The superintendent and the elementary principal in our case study school district, 

Valley School District, were enthusiastic about participating in MMRE from the 

outset. During an informational meeting, four teachers expressed interest in 

participating in the project. Funding to support two additional teachers was requested 

and provided by the school board, setting a tone of support which was in place from the 

advent of the project and established their continued investment in the goals of 

MMRE. 

The four teacher leaders and principal formed the MMRE Valley team. During the first 

year, they created a plan for implementing, sustaining and spreading MMRE 

instructional practices over a three-year time period. The focus of the first year was on 

developing teachers’ own practices. The principal observed the teachers and gave 

supportive feedback to them. The principal reflected on his early observations and 

noted,  

I could see impact. The difference was in instruction. I saw entry points for students across 

the spectrum. Students got connected to the problems and were engaged. It was this student 

engagement that sold me on MMRE [during the first year].  

From this reflection, it is clear the teachers and their students influenced the principal, 

leading to further support from the principal. This additional support came in the form 

of a reassignment of committee work for the three elementary teachers to focus solely 

on MMRE and he attended these meetings. This was a significant contribution as small 

schools have many needs to fill with very few staff members to contribute.  

During the second year, the MMRE teachers each selected a teacher to mentor, planned 

presentations for the school board, and provided professional development for staff 

members.  The teachers continued to influence the principal and the administration 

during the school year. Their enthusiasm and students’ excitement about learning math 

were contagious. One teacher wrote,  

The students were engaged in math conversations. They found patterns, made conjectures 

based on their observations, and were able to defend or explain why things happened the 

way that they did.  I was excited to see the kids all use exhaustion as their first strategy, but 

very few of them use that as a prevailing strategy as the problems became more difficult…  

Kids were excited about math and enjoyed working in the group setting. (Teacher 

reflection, September 2012). 

The students’ intellectual engagement in solving problems further encouraged the 

teacher to continue to implement these types of problems to teach mathematics. All of 

the MMRE teachers in Valley Schools shared these insights and commented on how 

students were able to think more deeply than they expected. A different teacher noted 

that, “I don’t have to teach them anything. I just give them the opportunity to explore 

and they figure out what I want them to learn.” 

A key element of Valley Schools’ success was the weekly meetings between teachers 

and the principal. The anecdotal stories that teachers shared increased their 

commitment and helped them gain confidence. The principal commented on the 
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transition of one elementary teacher who went from someone who was “apprehensive 

about teaching math to a teacher who wanted to go to a two-day state conference [on 

math instruction] to become a better resource for teachers.”  

Influences and interactions between teachers and community 

Teachers have opportunities to share new instructional practices directly with parents 

during informal and formal meetings. During parent-teacher conferences, teachers 

may provide work samples showing how the new instructional practices are directly 

impacting individual students.  Parents share personal observations of their students at 

home and ask questions about their students’ learning during conferences, through 

email communication, and casual exchanges in or outside school. These 

communications build support from the community. Although students attend a 

school, they can also be considered as part of the community and are one of the 

strongest supporters for teachers. When students are engaged in mathematical thinking 

with carefully scaffolded activities, they often show enthusiasm for mathematics. Their 

positive attitude and statements like, “Now I get it,” encourage teachers to persevere in 

using the new practice. 

All of these interactions occurred in our case study school. The teachers were proactive 

in communicating with both parents and the broader community. Teachers in Valley 

Schools were responsible for communicating instructional changes with parents and 

the community through three venues. They met with parents during Back-to-School 

night when they could help parents “understand what the kind of work that students 

would be bringing home.” Students from the MMRE classrooms “talked about 

something very different [in mathematics instruction].” Second, parents and teachers 

discussed students’ learning during conference. The teachers communicated the new 

depth of understanding using classroom examples.  Parents were pleased about their 

students’ enjoyment of mathematic and new abilities.  Third, teachers made yearly 

presentations to the school board about MMRE, its impact on their instruction, and 

anecdotal stories about students’ learning. The school board responded by 

acknowledging the teachers’ efforts and continuing their financial support of the 

project. 

Influences and interactions between school administrators and community 

Administrators in the United States typically meet monthly with their school board, 

(community representatives elected to provide oversight of the school district) approve 

policy and budget, and support the education of students. Administrators gain the 

support of the board by providing updates of educational programs, discussing new 

research-based instructional practices, and describing how these practices will enhance 

students’ learning. Administrators also create relationships with various community 

and civic groups. The support of the school board and other groups can be a critical 

factor in the success of systemic change.   

The administrators also interact with the community through the Parent Teacher 

Organization. Four meetings are held each year in which the principal provides a 
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school update, including a summary of MMRE activities along with progress on the 

school improvement plan. Another venue for communication among the 

administration and parents is at fall registration, and in newsletters that are sent home 

with students and posted on the school webpage.  

The Rotary Club is an example of a civic organization that supports the schools, 

promotes the community, and helps to develop its economic vitality. In Valley, the 

Rotary Club holds one meeting each year in the school. The principal arranged for 

students from the MMRE teachers’ classrooms to lead a mathematics problem, much 

to the surprise and delight of members! They commented that the math was more 

interesting than what they had experienced in school and thanked the students for the 

opportunity to work with them. These interactions garnered community support for 

MMRE. It is important to note the members of the Rotary Club tend to be the most 

influential individuals in a small rural community. 

SUMMARY 

When we began MMRE, we knew that administrative support was important. As we 

worked with schools, we began to notice differences in how school districts supported 

teacher leaders. We needed a theoretical model to provide a lens to describe the school 

district’s playing field and identify supporting interventions. From this model we were 

able to analyse the interactions between the three players, teachers, administrators, and 

community. The case study serves as an illustrative example of a school district that 

created a strong base. However, not all of the school districts create a strong base like 

our example.  

The model suggests interventions that we can use to shore up the base of school 

districts that may rely on only one or two players. Some of our school districts support 

the MMRE teachers in very superficial ways. For example, they provide substitute 

teachers to attend school-year meetings but do not provide time or resources for 

collaboration or professional development for teachers in the school district.  The 

model suggests that the MMRE leadership team needs to work with the school district 

administration to help them understand their role in providing support to the project if 

long term gains are to be systemically induced and maintained. We also noticed that 

many school districts do not provide information to the community about the project. 

The model suggests that the community is an important constituent in reaching 

sustainability.  

The model helped us identify ways that the school administrators and the community 

can help a project become sustainable and suggest interventions that can support our 

goals of increasing students’ mathematical achievement by engaging students in 

making generalizations and justifications. Additional research is needed to describe the 

usefulness of the model in our understanding of the playing field and the specific 

interventions that build school districts’ bases so that systemic change can be realized 

in school districts receiving temporary support from an external source.  
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PRIOR TO SCHOOL MATHEMATICAL SKILLS AND 

KNOWLEDGE OF CHILDREN LOW-ACHIEVING AT THE END 

OF GRADE 1 

Sebastian Kollhoff, Andrea Peter-Koop 

Bielefeld University, Germany 

 

Recent psychological studies as well as research findings in mathematics education 

highlight the significance of early number skills for the child’s achievement in 

mathematics at the end of primary school. In this context, first results from an ongoing 

four-year longitudinal study are reported. The study investigates the development of 

early numeracy understanding of 408 children from one year to school entry until the 

end of grade 2. The study seeks to identify children that struggle with respect to their 

mathematics learning after the first year of school mathematics and compare their 

performance with their number concept development one year prior to school as well 

as immediately prior to school entry. 

INTRODUCTION 

In their play, their everyday experiences at home, and in child care centres, children 

start developing mathematical knowledge and abilities a long time before entering 

formal education (e.g. Anderson, Anderson & Thauberger, 2008). However, the range 

of mathematical competencies children develop prior to school varies quite 

substantially. While most pre-schoolers manage to develop a wide range of informal 

knowledge and skills, there is a small number of children who tend to struggle with the 

acquisition of basic number-skills (e.g. Peter-Koop & Grüßing, 2014). Clinical 

psychological studies suggest that these children potentially at risk in learning school 

mathematics can already be identified one year prior to school entry by assessing their 

number concept development (e.g. Krajewski, 2005). These children benefit from 

interventions prior to school helping them to develop a foundation of knowledge and 

skills (e.g. Peter-Koop & Grüßing, 2014). This seems to be of crucial importance as 

findings from the SCHOLASTIK project (Weinert & Helmke, 1997) indicate that 

students who are low performing in mathematics from the beginning of primary school 

tend to stay in this position.  

THEORIES ON NUMBER CONCEPT DEVELOPMENT 

Research and curricula increasingly stress the importance of students’ early 

engagement with sets, numbers and counting activities for their number concept 

development. Clements (1984) classified alternative models for number concept 

development that deliberately include early counting skills as skill integrations models. 

While Piaget emphasized that the understanding of number depends on operational 

competencies and that counting exercises do not have operational value and in this 

respect no conductive effect on conceptual number competence, research findings 
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suggests the development of number skills and concepts result from the integration of 

number skills, such as counting, subitizing and comparing (Fusion, Secada, & Hall, 

1983; Clements, 1984). 

Krajewski & Schneider (2009) provide a theoretical model that is based on the 

assumption that the linkage of imprecise nonverbal quantity concepts with the ability 

to count forms the foundation for understanding several major principles of the number 

system. Their model depicts the acquisition of early numerical competencies via three 

developmental levels. On the first level (basic numerical skills) number words and 

number word sequence are isolated from quantities. Children compare quantities by 

using comparatives like “less”, “more” or “the same amount”. At the age of three to 

four years most children start to link number words to quantities and hence enter the 

second level (quantity number concept). The understanding of the linkage between 

quantities and number words is acquired in two phases: (a) an imprecise quantity to 

number-word linkage (e.g. 3 is “a bit” while 8 or 20 is “much” and 100 is “very 

much”), and (b) the precise quantity to number-word linkage, where quantity 

discrimination is based on counting. At this level children gain experiences with 

non-numerical relations between quantities as they increasingly understand part-whole 

and increase/decrease schemata (Resnick, 1989). At the third level (linking quantity 

relations with number words) children understand that the relationship between 

quantities also takes on a number-word reference. They realise that numerically 

indeterminate quantities can be divided into smaller amounts, and understand that this 

can also be represented with precise numbers. Furthermore they discover that two 

numerical quantities differ by a third numerical quantity. However, Krajewski and 

Schneider (2009) stress that children are not necessarily at the same developmental 

stage with respect to number words and number symbols and that the use of 

manipulatives also effects the children’s performances on the different levels. Hence, 

with respect to their numerical development, it is very difficult to assign children 

exactly to one level.  

In summary, Krajewski (2008) states that the quantity-number-competencies that 

children develop up to school entry build the foundations for their later understanding 

of school mathematics. While competencies on the third level reflect first computation 

skills and in this respect initial arithmetic understanding, the first to levels can be 

accounted as “preparatory mathematical skills” (ibid). 

EARLY NUMBER-QUANTITY COMPETENCIES AND THEIR INFLUENCE 

ON LATER SCHOOL MATHEMATICS LEARNING 

In their longitudinal study Krajewski & Schneider (2009) investigated the predictive 

validity of the quantity-number competencies of these developmental levels for 

mathematical school achievement. Their results indicate that quantity-number skills 

related to the second level measured in kindergarten predict about 25% of the variance 

in mathematical school achievement at the end of grade 4. Moreover, a subgroup 

analysis indicated that low-performing fourth-graders had already shown large deficits 

in their early quantity-number competencies. It can be concluded that these early 



Kollhoff, Peter-Koop 

PME 2014 4 - 11 

quantity-number competencies constitute an important prerequisite for the 

understanding of school mathematics. 

An intervention study by Peter-Koop & Grüßing (2014) with a pre-/post-test design 

(one year prior and immediately before school entry) and follow-up tests at the end of 

grades 1 and 2 suggests that an eight months intervention had a long-term effect lasting 

until the end of grade 1. Children in the treatment group demonstrated increased skills 

in the areas addressed in the intervention, i.e. knowledge about numbers and sets as 

well as counting abilities, ordinal numbers, and part-whole-relationships. A total 

number of 854 children performed on a standardised test as well as an individual 

interview one year prior to entering grade 1 and the analysis of their results lead to the 

identification of 73 children potentially at risk learning school mathematics that took 

part in the intervention. Children with a migration background who speak at least one 

other language than German at home were overrepresented in the group of 

pre-schoolers potentially at risk learning school mathematics. This group, however, 

demonstrated the highest increases in their performance within the treatment group.  

Since the study lacks a control group (due to missing parental consent with respect to 

their children not being given the opportunity to take part in the intervention group) it 

could not be investigated how many of the children identified to be potentially at risk 

learning school mathematics based on their number concept development one year 

prior to school would have shown at least an average performance at the end of grade 1 

without participating in the intervention. Hence, the number concept development of 

5- to 8-year old children in the transition from kindergarten to school is addressed in 

the ongoing longitudinal study (2011 – 2014) that is reported in this paper. In contrast 

to the previous intervention study, this study is recursive in nature, i.e. it seeks to 

identify the low-performing students at the end of grade 1. The longitudinal data from 

standardised tests and one-on-one early numeracy interviews one year prior to school 

and immediately before school entry is (and will further be) analysed to investigate 

whether these children already showed lower performance with respect to sets, 

numbers, quantities and counting than their better achieving peers in grade 1. It will 

further be analysed which areas these children – in contrast to their peers – did struggle 

with prior to school. The main questions addressed in the study are: 

 Which children perform clearly below average at the end of grade 1? 

 Which content areas do they struggle with the most? 

 How did they perform one year prior and immediately before school entry? 

 Which content areas did they struggle with the most prior to school? 

METHODOLOGY 

The data collection involves four measuring points (MP1 – MP4), i.e. one year prior to 

school, immediately before school entry, end of grade 1 and grade 2 (which will be 

conducted in June 2014). At each measuring point the children performed on both a 

standardised test on number concept development that is suitable for their respective 

age (OTZ, DEMAT 1+ / 2+) as well as on a not standardised task-based one-to-one 
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interview (EMBI-KiGa, EMBI) that focuses on the strategies that children apply on 

mathematical tasks or problems. Table 1 provides an overview of the study design. 

Measuring points   Instruments  Participants 

June 2011  MP 1 OTZ  children participating in the study (n = 538)  

 EMBI-KiGa  children participating in the study (n = 538)  

June 2012  MP 2 OTZ  children participating in the study (n = 495)  

 EMBI-Kiga  children participating in the study (n = 495) 

June 2013  MP 3 DEMAT 1+  all grade 1 classes with children participating in the study (n = 2250) 

 EMBI  children participating in the study (n = 408) 

June 2014  MP 4 DEMAT 2+  all grade 2 classes with children participating in the study 

(to be conducted) EMBI  children participating in the study 

Table 1: Measuring points, instruments and number of participants in the study (for a 

detailed description of the instruments see Peter-Koop & Grüßing, 2014) 

At MP3 and MP4 the whole learning group of children in the study is tested in order to 

compare the children’s performance to their peers’ and to diminish intra- and 

inter-group effects. Since the data collection is still in progress the analyses in this 

paper are only based on data from MP1 to MP3 while the whole learning group data 

has not been analysed yet. More detailed and complex analyses will be conducted after 

the completion of the data collection. For a total of 408 children (206 male, 202 

female) complete data sets from the first three measuring points are available and 

provide the basis for the following initial analyses. Whereas 215 children (52.7%) in 

the sample only speak German at home, 193 children with migration background 

(47.3%) speak at least one language other than German at home. 

In order to analyse the differences between the performances of the low-performing 

group of first-graders and their peers mean value comparisons have been computed 

using t-tests for independent samples. 

RESULTS 

Identification of low-performing children in the sample 

In order to identify the children in the sample who are low performing at the end of 

grade 1 a cross mapping of the results in the standardised DEMAT 1+ and the 

EMBI-Interview was used to eliminate the children with low performance in only one 

of both tests. In this respect the DEMAT 1+ values provided a pre-selection of the 

lowest 20%, which was further validated with the children’s performance on the 

EMBI. As a result 49 children (12% of the overall sample n=408) performed low in 

both, the standardised test and the interview (lowest 16% in EMBI scores) as well. This 

group of 49 children provides the basis for all further analyses.  

In comparison with the complete sample children with non-German-speaking 

background are significantly (p<0.001) overrepresented in the group of 
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low-performers (35 of 49 children, i.e. 71.4%), while there is no major difference in the 

sex distribution (21 male, 28 female) to the overall sample. 

Performance on the DEMAT 1+ subtests and EMBI interview parts 

With respect to the standardised DEMAT 1+ the group of low-performing first-graders 

scored significantly (p<0.001) lower in all nine DEMAT 1+ subtests. This also holds 

true for their results on all four interview parts of the EMBI. On average the 

low-performers scored one to two points less in each of the four interview domains 

(see Figure 1). Apart from domain A (counting) the low- performing first-graders only 

get assigned the first point in each domain. The biggest difference between both groups 

is found in domain C (strategies for addition and subtraction), in which the mean 

difference accounts for more than two points. 

 

Figure 1: DEMAT 1+ subscales (left) and EMBI mean scores at MP 3 

Performance prior to school (MP 1 and MP2) 

The analysis of the data from MP1 and MP2 showed that the group of low- performing 

first-graders already performed lower prior to school entry. Their total scores on the 

OTZ (MP1: Low-performing first-graders: Mean: 12.96, SD: 5.156 – Remaining 

sample: Mean: 21.04, SD: 6.889; MP2: Low-performing first-graders: Mean: 21.92, 

SD: 5.235 – Remaining sample: Mean: 29.67, SD: 5.473) and their total scores on the 

EMBI-KiGa (MP 1: Low-performing first-graders: Mean: 3.159, SD: 1.775 – 

Remaining sample: Mean: 6.632, SD: 2.230; MP 2: Low-performing first-graders: 

Mean: 6.693, SD: 1.978 – Remaining sample: Mean: 8.972, SD: 1.337) show 

significant (p < 0.001) differences. While the overall scores at MP2 have improved for 

both groups as it was expected, the significant difference between the mean scores of 

both groups remains at an average difference of 2 points. 
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Analysis of the performance with respect to the different content-specific items in 

the EMBI-KiGa 

The results on the EMBI-KiGa show that the group of low-performing first-graders 

performs significantly (p<0.001) worse in all content specific items apart from 

one-to-one correspondence (p>0.1) one year prior to school. 

 
 

Figure 2: EMBI-KiGa subcategory mean scores MP1 (left) and MP2 (right) 

They severely struggle with naming numbers before and after (mean=.051), ordering 

numbers 0 to 9 (mean=.063) and ordinal number (mean=.122). While the group of 

low-performing first-graders showed overall improvements in all categories of the 

EMBI-KiGa from MP1 to MP2, they still score significantly (p<0.001) lower than 

their peers and there is still a major difference on their performance in the areas 

numbers before/after (mean=.326), part-whole (mean=.489), ordering numbers 

(mean=.551) ordering by length (mean=.591) and ordinal number (mean=.653). 

DISCUSSION AND IMPLICATIONS 

The first analyses of the data collected in MP1 to MP3 suggest that low-performing 

first-graders already demonstrate a significantly lower understanding of sets and 

numbers as well as less elaborate counting skills than their peers at both measuring 

points prior to school. Again, children with a migration background are 

overrepresented in this group (see Peter-Koop & Grüßing, 2014). At the end of grade 1 

their performance is significantly lower in all subtests (DEMAT 1+) and in all content 

domains (EMBI). With respect to the DEMAT 1+ they particularly struggle with items 

on subtraction, part-whole relationships, addition with more than one addend, and 

finding the second addend. The subtests on part-whole relationships, subtraction, 

addition with more than one addend, and word problems proved to be the most 

difficult items for their better performing peers.  

In contrast to the DEMAT 1+ that focuses on correct results, the EMBI seeks to 

identify strategies that children apply on mathematical tasks and problems. In this 
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perspective the identified group of low-performing first-graders demonstrates less 

elaborate strategies for addition and subtraction. This is in line with their 

understanding of number and their number skills prior to school. In order to solve 

problems such as 8+6 other than counting, an understanding of part-whole schema is 

required in order to add up to 10 and then on (8+2+4). While they still struggle with 

part-whole relationships in grade 1, they already demonstrated less insight into this 

concept than their peers prior to school. In addition, the low-performing first-graders 

demonstrate less insight in counting procedures and place value. This implies that their 

better achieving peers show significantly more elaborate knowledge and skills with 

respect to high numbers. In how far this can be compensated at the end of grade 2 so far 

remains unclear. 

It is important to note that the group of low-performing first-graders experience special 

difficulties with respect to items that require elaborate language skills, i.e. language of 

location, numbers before/after, and ordinal numbers. This might explain the 

overrepresentation of children from a non-German-speaking background in this group. 

However, since the assessment of German language competencies has not been 

included in the study design, this concern needs further investigation. 

Prior to school the lower-performing first-graders demonstrated significantly less 

knowledge and understanding of number symbols, which suggests that their command 

of the German language might only be one factor among others that would explain why 

they tend to struggle with the development of number skills and counting a lot more 

than their peers.  

However, as the comparison of the results on the EMBI-KiGa suggests this group of 

children does improve from MP1 to MP2. Immediately before school entry they show 

about the same average scores as their peers did one year before school entry. This 

complies with findings from Aunola et al. (2004), who describe cumulation effects of 

number-related knowledge and skills deficits prior to school, i.e. pre-schoolers who 

only demonstrated weak competences in dealing with numbers and sets showed a 

slower development of their mathematical competencies in primary school with an 

increasing gap towards their peers who started school with higher number skills and 

knowledge. 

In summary the initial results of the study in progress that are reported in this paper 

confirm previous findings that understanding and skills with respect to number and 

counting are important precursors for later achievement at school. The children that 

were identified as low-performers at the end of grade 1, prior to school demonstrated 

significantly lower knowledge and skills than their better achieving peers. However, 

these results provide only first insights into the development of number and counting 

skills. Further in-depth analyses of the individual development of the children will help 

to better understand and describe the factors that explain the difference in achievement 

in the transition from kindergarten to school. 
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From a fallibilist perspective, mathematics gradually develops with problems, 

conjectures, proofs, and refutations. To attain such authentic mathematical learning, it 

is important to intentionally treat refutation in mathematics classrooms, such as facing 

or proposing counterexamples and coping with them. In particular, analysing 

students’ behaviour in response to counterexamples can lead to a design of teaching 

materials and instruction based on students’ existing knowledge and strategies. In this 

paper, we construct a framework for capturing students’ actions of inventing a new 

statement that holds for counterexamples to an original statement. We then illustrate a 

specific aspect of this framework with an episode that took place in an eighth grade  

classroom, and discuss two approaches to deductively generating a new statement.  

INTRODUCTION 

According to Lakatos (1976), mathematics progresses through the consideration of 

conjectures, proofs, and refutations, not just by monotonously increasing the number 

of indubitably established theorems. To introduce this authentic process in 

mathematics classrooms (Lampert, 1990), it is essential to deal with not only proving 

that a statement is true, but also refuting a conjecture by counterexamples, restricting 

the domain of the conjecture to exclude the counterexamples, and inventing a new 

statement to account for the counterexamples. In particular, it is fundamental to 

construct frameworks of analysis for students’ behaviour in response to 

counterexamples, because these frameworks will enable mathematics teachers and 

educators to deepen their understanding of students’ thought processes; such 

understanding may provide insights into a more effective design of teaching materials 

and instruction based on students’ existing knowledge and strategies. 

There are at least two research strands on students’ behaviour related to 

counterexamples. The first centres on the production of counterexamples; researchers 

have investigated whether students and teachers can produce a proper counterexample 

to show that a statement is false, how they generate counterexamples, and what types 

of counterexamples they create (e.g. Hoyles & Küchemann, 2002; Peled & Zaslavsky, 

1997; Weber, 2009). The second strand of research focuses on the recipients of 

counterexamples (Zazkis & Chernoff, 2008). In particular, some researchers utilise the 

mathematical actions shown in Proofs and Refutations (Lakatos, 1976) to analyse how 

students respond to counterexamples (Balacheff, 1991; Reid, 2002; Yim, Song & Kim, 

2008). For instance, Larsen and Zandieh (2008) construct a framework that consists of 

“monster barring”, “exception barring”, and “proof analysis” (lemma incorporation), 
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and they describe an undergraduate classroom episode to argue that this framework can 

serve as a description and explanation of students’ mathematical activity. This paper 

intends to contribute to this second strand of research.  

However, most researchers of the latter strand have focused on students’ behaviour to 

exclude counterexamples, and they have not dealt with the invention of a new 

statement that holds for the counterexamples. In fact, monster barring, exception 

barring, and lemma incorporation were formulated as methods for excluding 

counterexamples in Lakatos (1976). Although Balacheff (1991) shows that some 

students created new conjectures to account for counterexamples to their initial 

conjectures, he summarises various student responses as “modification of conjectures” 

and does not examine in detail how the students modified the conjectures or what 

relationships the modified conjectures had with the original ones. It is valuable to focus 

on the invention of a new statement for counterexamples because this invention can be 

regarded as a brave attempt to explain the counterexamples rather than disregard them.  

Consequently, this paper has two research purposes. First, we construct a framework 

for capturing students’ action to invent a new statement that holds for the 

counterexamples to an original statement. Second, we illustrate a specific aspect of this 

framework by describing an episode that took place in an eighth grade classroom, and 

discuss two approaches to deductively generating a new statement. 

THEORETICAL FRAMEWORK 

Lakatos (1976) referred to the invention of new conjectures to account for the 

counterexamples to a primitive conjecture, though the description has not been 

sufficiently considered in mathematics education research. It was mentioned as 

“increasing content by deductive guessing”, which means the deductive invention of a 

more general conjecture that holds even for the previous counterexamples (Lakatos, 

1976, p. 76). Komatsu (2011) demonstrates that Lakatos’s notion of increasing content 

by deductive guessing is useful for describing certain behaviour by ninth grade 

students. 

However, it may not be appropriate to directly introduce this notion for describing 

students’ behaviour in general because Lakatos’s main interest lay in describing a 

process of growth in the discipline of mathematics, and there are differences between 

mathematicians’ and students’ behaviour. In addition, Lakatos seemed to think that his 

heuristic rules, which included increasing content by deductive guessing, were not 

universal or obligatory (Kiss, 2006). Therefore, in the following, we examine 

alternatives to increasing content by deductive guessing to construct a framework for 

capturing students’ invention of a new statement that holds for previously given 

counterexamples. 

There are two characteristics of increasing content by deductive guessing. The first is 

related to ‘increasing content’, that is, the product of invention. As mentioned earlier, 

increasing content by deductive guessing refers to inventing a general conjecture that 
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holds even for the counterexamples to the previous conjecture. Therefore, the new 

generated conjecture is more general than the previous one in that it includes the 

counterexamples to the previous conjecture as its examples. However, there may be 

another case in which even if students can produce a statement for counterexamples to 

an original statement, the original statement and the produced statement do not always 

have such a particular-general relationship. In other words, the students may generate a 

statement separated from the original one, and these two statements may be regarded 

as just case analysis (see the following sections for an example). 

The second characteristic is related to ‘by deductive guessing’, that is, the approach to 

creating a new conjecture. When Lakatos mentioned increasing content by deductive 

guessing, he seemed to consider the deductive invention of conjectures that were 

difficult to find through empirical or perceptual approaches (Lakatos, 1976, p. 82). 

However, there are types of mathematical reasoning other than deduction, such as 

induction and analogy. Therefore, it is expected that students may generate a new 

statement for previous counterexamples in non-deductive ways, such as through 

inductive, perceptual, analogical, and ad-hoc methods. 

From the above, it is possible to construct a framework as shown in Table 1 for 

capturing students’ actions to invent a new statement that holds for counterexamples to 

an original statement. Regarding the horizontal structure of this framework, a 

particular-general relationship is more desirable than a case-analysis relationship 

because the former can unify an original statement and its counterexamples under a 

new statement, without separating them (Nakajima, 1982). Although the vertical 

direction does not have this desirable structure, a deductive approach may be more 

difficult for students than a non-deductive approach. In addition, the vertical structure 

of this framework is relevant to the functions of proof (De Villiers, 1990). A deductive 

approach involves the discovery function of proof, especially if students use the proof 

of an original statement to generate a new statement. On the other hand, the 

verification and explanatory functions of proof are relevant to a non-deductive 

approach if students produce a statement in a non-deductive way and then prove it. 

Invention approach 
Relationship between original and new statements 

Case analysis Particular-general 

Non-deductive Type I Type II 

Deductive Type III Type IV 

Table 1: A framework for invention of new statements to account for counterexamples 

Lakatos’s notion of increasing content by deductive guessing corresponds to Type IV 

in this framework, and this framework implies three possibilities of students’ 

behaviour other than increasing content by deductive guessing. Nevertheless, this 

framework is derived from purely theoretical considerations, and it therefore needs 

empirical support, which we describe in the following sections. 
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METHODS 

The classroom episode examined in this paper is taken from our larger study that aims 

to develop, through design experiments, a set of tasks and associated teachers’ 

guidance to foster student engagement in proofs and refutations (Komatsu & 

Tsujiyama, 2013). We selected this episode because it is suitable for one of the 

purposes of this paper, that is, illustration of the framework in Table 1. 

The second author, who has over 10 years of experience teaching in secondary schools, 

carried out a teaching experiment that consisted of two lessons (50 minutes per lesson) 

with 36 Japanese eighth graders (13–14 years old). He was not familiar with the above 

framework, but he took an active role in the lessons, encouraging the students to think 

of counterexamples and challenging the students’ thinking. Both authors were 

involved in the lesson design, and the first author observed all the lessons. 

On average, the students’ mathematical abilities were above standard. They could 

prove geometric statements related to various properties of triangles and quadrilaterals, 

using conditions for congruent triangles, and had learnt counterexamples as well.  

All the lessons were recorded and transcribed. The data for analysis included these 

transcripts, the students’ worksheets, and field notes taken during the lessons. We 

analysed the data with a focus on the students’ behaviour after proof construction, in 

particular, how they invented new statements to account for counterexamples to the 

original statement. We translated the problem sentences, the students’ words and 

proofs from Japanese to English. All the students’ names used here are pseudonyms. 

RESULTS 

Original statement and its proof 

We used the problem shown in Figure 1 in our teaching experiment because it enables 

students to find counterexamples to the statement PQ = DQ – BP, as described later. 

 

Figure 1: The problem in the lesson 

The teacher presented this problem at the start of the first lesson. We describe only 

briefly how the students proved the statement, because the focus of this paper is on 

their processes after proof construction. After discussing a plan for solving the 

problem, the students worked individually. Next, the teacher had a student, Emi, write 

her proof on the blackboard. Her proof was examined in a classroom discussion, which 

revealed that the part which showed the congruence of angles ABP and DAQ was 
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complicated for the other students. The teacher therefore had Mai give a 

complementary explanation with a different expression (Figure 2). 

 

Figure 2: The proof constructed by the students 

Counterexamples and new statements 

After this proof, the teacher asked, “Now, we drew line l which passed point A like this 

[Figure 1], but when the place of this line l is different from here [Figure 1], is it 

possible to say that this [PQ = DQ – BP] is true?” A few students responded “maybe 

impossible”. Then, the teacher told the students, “Draw various lines, l, which pass 

point A and investigate by drawing your own diagrams”. The first lesson finished with 

the students individually drawing diagrams on their worksheets. 

Analysing their worksheets after the lesson, we found that many students drew 

diagrams similar to those shown in Figure 3 (these figures are examples of the 

students’ actual drawings). In the case of Figure 3-a, the students wrote, “Segment BP 

becomes longer than segment DQ” or “DQ – BP becomes negative”. For Figure 3-b, 

they wrote, “Segment PQ is longer than segments DQ and BP” or “[DQ – BP] becomes 

negative as well”. Their worksheets evidenced that they grasped these cases as 

counterexamples refuting the statement in the original problem, PQ = DQ – BP. 

 

Figure 3: Counterexamples drawn by the students 

In the second lesson, the students investigated what relationships among PQ, DQ, and 

BP held in the cases in Figure 3. At this point, the teacher told them they were allowed 

to utilise the previous proof by Emi and Mai (Figure 2). 
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After the students engaged in this investigation individually, the teacher had Manabu 

and Ken write their ideas on the blackboard. Regarding the case represented by Figure 

3-b, Manabu wrote, “I prove the congruence of triangles ABP and DAQ as we did in 

the last lesson, and from PQ = AQ + PA, it should be true that PQ = BP + QD”. Thus, 

Manabu deductively invented a new statement, PQ = BP + QD, for this case that had 

been a counterexample to the original statement, by utilising the congruence of 

triangles ABP and DAQ as a reason which, he thought, could be shown by the same 

proof as the previous one. Ken thought similarly to Manabu, writing his idea for Figure 

3-a as follows: “[From the previous proof, I found DQ = AP and AQ = BP.] Since PQ = 

AQ – AP is true, the relationship among PQ, DQ, and BP is PQ = BP – DQ” (he wrote 

the square brackets on his worksheet, but not on the blackboard). 

Next, the students examined whether the congruence of triangles ABP and DAQ could 

actually be shown by the same proof as Emi and Mai’s one. For example, the teacher 

asked the students whether Emi and Mai’s proof was directly applicable to the case 

shown in Figure 3-b. Daisuke answered that it was possible to apply this proof up to its 

part deducing AP = DQ and BP = AQ, and many students seemed to agree. Then, the 

teacher urged the students to inspect this applicability in more detail, and some 

students had doubts as to the part stating that since an interior angle of a square is 90 

degrees, the degrees of angle DAQ are 90 – a (Figure 2). More concretely, Satoshi 

stated, “Because both angles DAQ and BAP are not inside it [angle BAD], I think it is 

not true”. After that, other students added that it was enough to use the degrees of angle 

PAQ (180 degrees) to prove that the degrees of angle DAQ are 90 – a. 

DISCUSSION 

In this episode, the students proved the original statement (Figures 1 and 2) and then 

faced counterexamples that refuted it (Figure 3). In response, they produced new 

statements, that is, PQ = BP – DQ for the case as Figure 3-a, and PQ = BP + QD for the 

case as Figure 3-b. The original statement and these new statements written for the 

counterexamples do not have a particular-general relationship, and they are regarded as 

case analysis according to the position of line l. In theory, it is possible to generate a 

general statement that holds for all cases if we represent PQ as the absolute value of the 

sum of vectors BP and DQ (Shimizu, 1981). However, the students in this episode had 

not learnt vector, and it was impossible for them to consider such a generalisation. 

The students invented the new statements for the counterexamples (Figure 3) in 

deductive ways, such as utilising a part of the previous proof as a reason for their 

thinking or constructing new deductive arguments. In addition to Manabu and Ken, 

Yuko wrote on her worksheet that “I had thought PQ = DQ – BP [in the case of Figure 

3-a], similar [to the case shown in Figure 1], because the right and left were only 

reversed, but I found [PQ = DQ – BP was] not true through copying [the previous] 

proof”. Toru also wrote that “In the process of making proofs, I gradually understood 

that I could represent the relationships between PQ, DQ, and BP by using + and –” (our 
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emphases). In summary, these students’ behaviour corresponded to Type III in the 

framework shown in Table 1. 

This episode implies a possibility of dividing a deductive approach to invention of a 

new statement into at least two categories. The students in this episode thought that the 

congruence of triangles ABP and DAQ, which had been shown by Emi and Mai for the 

original statement, held for the counterexample shown in Figure 3-b as well, and they 

used this congruence as a reason to produce a new statement, PQ = BP + QD. At that 

point, they did not examine this congruence in detail, such as by considering whether 

the previous proof by Emi and Mai was directly applicable to the case as Figure 3-b. 

These students’ behaviour can be regarded as modularly deductive in the sense that 

they thought a certain encapsulated part was true and invented the new statement by 

utilising this part as a reason for their thinking.  

Considering an alternative to a modularly deductive approach, it is possible to think up 

a sequentially deductive approach that refers to confirming, from the beginning, that 

each detailed point is true and piling these points step by step to invent a new 

statement. This approach is only a research hypothesis because we could not directly 

capture the relevant students’ behaviour in the episode reported in this paper. 

However, the relevant process can be seen in Lakatos (1976), which dealt with the 

Descartes-Euler conjecture on polyhedra, expressed as V – E + F = 2, where V, E, and 

F are the numbers of vertices, edges, and faces of polyhedra, respectively. In this 

literature, an imaginary teacher and students sequentially constructed polygons and 

polyhedra by marking points, connecting them, and pasting polyhedra whose values of 

V – E + F were already known. They then examined each increase and decrease in the 

numbers of vertices, edges, and faces to invent a more general conjecture than the 

above conjecture. In the future, it will be necessary to investigate whether a 

sequentially deductive approach can be observed in actual students’ activity. 

Another future task should explore the characteristics of a modularly or sequentially 

deductive approach. In the episode reported here, the students who took a modularly 

deductive approach first believed that part of the previous proof by Emi and Mai, up to 

deducing AP = DQ and BP = AQ, was directly applicable to the case shown in Figure 

3-b. After that, when the teacher urged the students to inspect this applicability in more 

detail, they could realise the necessity of modifying the part showing that the degrees 

of angle DAQ are 90 – a. In addition to such a pitfall, it will be valuable to investigate 

the advantages of each approach. 
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While representations of 3D shapes are used in the teaching of geometry in lower 

secondary school, it is known that such representations can provide difficulties for 

students. In this paper, we report findings from a classroom experiment in which 

Grade 7 students (aged 12-13) tackled a problem in 3D geometry that was, for them, 

quite challenging. To analyse students’ reasoning about 3D shapes, we constructed a 

framework of levels of 3D geometrical thinking. We found that students at a lower level 

of 3D thinking could not manipulate representations effectively, while students 

operating at a higher level of 3D thinking controlled representations well and could 

reason correctly. 

INTRODUCTION 

In geometry teaching, despite the study of 2D figures often taking precedence over the 

study of 3D figures, most school curricula aim to develop learners’ understanding of 

3D figures. As such, an issue for research is to seek ways to develop learners’ spatial 

thinking and reasoning in 3D geometry (Gutiérrez et al., 2004). In reporting an earlier 

study of students’ reasoning in 3D geometry (see Jones, Fujita, and Kunimune, 2012), 

we focused on how particular types of 3D representation can influence lower 

secondary school students’ reasoning about 3D shapes. The purpose of this paper is to 

propose a theoretical framework to capture students’ levels of thinking with 3D shapes 

and their representations. In particular, we address the following research questions:  

 What framework can be constructed to capture students’ spatial thinking in 

3D geometry?  

 What characteristics of thinking can be identified when students tackle 

challenging problems in 3D geometry? 

In what follows, we take as our starting point the levels of 3D geometrical thinking 

proposed by Gutiérrez (1992) and our previous study (Jones, Fujita and Kunimune, 

2012). We then construct a framework to capture students’ levels of thinking with 3D 

shapes. To construct our framework, we take a bottom up approach, i.e. our framework 

is mainly derived from data from 570 G7-9 students. We then evaluate our framework 

further by analysing classroom episodes taken from a sequence of two lessons from a 

teaching experiment with Grade 7 students. In considering how our framework is 

useful to capture students’ levels of thinking effectively, insights from our findings are 

discussed in terms of how we might improve students’ thinking with 3D shapes – a 

form of mathematical thinking which is challenging for many students. 
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STUDENTS’ REASONING IN 3D GEOMETRY: SURVEY RESULTS 

By considering existing studies, and in order to obtain detailed analyses of students’ 

thinking and reasoning with 3D shapes in relation to their interpretation of graphical 

information (Bishop, 1983) and decoding 3D figures (Pittalis & Christou, 2013), the 

following three theoretical components ‘Reasoning with 3D shapes’, ‘Manipulation of 

3D representations’, and ‘Levels of thinking of 3D shapes’ are important. 

Research on students’ reasoning and representations of 3D shapes 

While physical models of 3D shapes can be used in the teaching of geometry, 

representations of 3D shapes (on the 2D board or in textbooks or other materials) are 

the main mediational means. Existing research evidence indicates that representations 

of 3D shapes can have various impacts on learners’ reasoning processes. Parzysz 

(1988; 1991), for example, reported that not only do learners prefer the parallel 

perspective (in which parallels are drawn as parallels), but, in particular, they prefer the 

oblique parallel perspective in which the cube is drawn with one face as a square. Such 

external representations can lead to some ambiguities for students with the result that 

particular geometrical relationships might appear as ‘evident’ in a way that can prevent 

geometrical reasoning from developing in the most appropriate way. In line with this, 

Ryu et al. (2007) reported that while some of the mathematically-gifted students they 

studied could, for example, imagine the rotation of a represented 3D object, other such 

students had difficulty in imagining a 3D object from its 2D representation. 

Informed by research by Hershkowitz (1990) and Mesquita (1998), in research 

reported in Jones, Fujita and Kunimune (2012) we found that some students can take 

the cube as an abstract geometrical object and reason about it beyond reference to the 

representation, while others were influenced by the visual appearances of 3D 

representations and could not reason correctly. The 570 G7-9 students’ answers for the 

question illustrated in Figure 1 (which was one of the survey questions) were classified 

into the following five categories: (A) global judgment; e.g. 90
o
, no reason (19.3%); 

(B1) incorrect answer influenced by visual information; e.g. half of ∠AEF = 90
o
 /2 = 

45
o
 (44%); (B2) incorrect answer with some manipulations of a cube but influenced by 

visual information; e.g. drawing a net, and then 45
o
 + 45

o
 =90

o
  (10.3%); (C) incorrect 

answer by using sections of cube but influenced by visual information; e.g. in triangle 

BDE, ∠B = ∠D = 45
o
, therefore ∠AEF = 90

o
 (5%) ;(D) correct answer with correct 

reasoning; e.g. in triangle BDE, EB=BD=DE and therefore ∠BED = 60
o
 (6.3%) ;(E) 

no answer (15.3%). The result implies that it is difficult for many students to reason 

correctly with given representation. 

 

What is the size of the angle BED? 

State your reason why. 

Figure 1: Angle in a cube problem (survey problem version) 
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3D geometry thinking levels 

Based on the van Hiele model of thinking in geometry, something widely used to 

describe and analyse learners’ thinking in 2D geometry, Gutiérrez (1992) proposed 

levels of 3D thinking. This was used by Gutiérrez et al. (2004) to investigate students’ 

levels of thinking and their proof capabilities with problems involving prisms. The 

result was a characterization of students’ levels of 3D spatial thinking, with the lower 

levels characterised as relying on simple descriptions based on drawings, while at 

higher level students begin using reasoning more analytically (pp. 512-513). Extending 

this, we note that Pittalis and Christou (2013) argue that interpreting representations of 

3D figures utilises two capabilities: a) recognising the properties of 3D shapes and 

comparing 3D objects, and b) manipulating different representational models of 3D 

objects. From these points of view, we first undertook an initial analysis of the survey 

data mentioned above of 570 G7-9 students’ answers. We found that students’ 

incorrect responses were the result either of inappropriate reasoning with 3D shapes’ 

properties or inappropriate manipulating of shapes, or both. In this paper, we utilise 

this information to refine Gutiérrez ‘s work, and propose the framework set out in 

Table 1 to capture students’ geometrical thinking with 3D shapes. 

Level  Reasoning with 3D 

properties  

Manipulating  Features of students’ 3D thinking  

1  No  No  Students’ thinking is influenced by 2D 

representation. 

2a  Yes(not appropriate)  No  Students start utilising 3D properties of 

shapes but without effective 

manipulations.  

2b  Yes(not appropriate)  Yes(not 

appropriate)  

Students utilise 3D properties & 

manipulate the figure but it is not 

appropriate. 

2c  Yes(not appropriate)  Yes  Students utilise 3D properties & 

manipulate the figure appropriately but 

with an incorrect answer.  

3  Yes  Yes  Students utilise 3D properties & 

manipulate the figure appropriately, and 

obtain the correct answer.  

Table 1: Levels of thinking in 3D geometry 

STUDY CONTEXT AND METHODOLOGY 

Building on our earlier classroom-based research in 3D geometry (e.g. Jones, Fujita, & 

Kunimune, 2012), in this paper, to address our research questions, we analyse episodes 

taken from two lessons in which students tackled the problem in Figure 1 by using our 

framework presented in Table 1 (note in these lessons the size of angle BGD is asked 
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instead of the angle BED). We refer to the data from classroom episodes because the 

data from the survey is rather superficial to reveal students’ thinking and further 

qualitative analysis of students’ reasoning with this problem is worthwhile. In 

particular, the cube in the problem uses the oblique parallel projection and the angle to 

be found is changed from the original survey problem. All this means that it is not 

straightforward to know the size of the angle BGD because of this representation.  

The main data are taken from a class of 28 Grade 7 students (aged 12-13) from a public 

school in Japan. The class teacher, Mrs M, has more than 20 years teaching experience, 

and is particularly interested in students’ geometrical reasoning processes. Given that 

teachers’ interactions with students are crucial to encourage students’ reasoning (e.g. 

Jones & Herbst, 2012), in general her roles in the lessons were to facilitate students’ 

discussions by suggesting where to direct their attention in the problem, which 

properties might be used, and so on. Through following the Japanese geometry 

curriculum, the students had already studied selected properties of solid figures such as 

nets, sections of a cube, surface areas and volume (note that the measure of the angle 

between two lines in 3D space is not formally studied within the prescribed 

curriculum). We video-recorded two lessons (each 50 minutes) in which the students 

worked with the problem. Field notes were kept and the audio was transcribed. In 

addition, student worksheets from both lessons were collected to obtain information on 

how the students’ reasoning changed across the two lessons. All data were analysed 

qualitatively in terms of the theoretical framework presented above. We particularly 

analysed students’ interactions with the teacher during the lessons and their answers 

and explanations in their worksheets. Through this we determined the levels of 

students’ thinking in terms of the characteristics of their reasoning and manipulations 

of representations.  

FINDINGS AND ANALYSIS   

Lesson progression 

A key to correctly answering the problem is to deduce that triangle BGD is an 

equilateral triangle. During the two lessons, the 25 students (3 students were absent 

during the first lesson) attempted enthusiastically to solve the problem and Mrs M led 

the class well. In the first lesson, after the problem was posed, the students began by 

tacking the problem individually. Their initial answers from their worksheets are 

shown in Table 2. 

As can be seen from Table 2, only five of the students considered that the angle was 

60. This indicates that their reasoning is likely to be influenced by the external 

representation of the problem. After this initial stage, the teacher asked the students to 

share their ideas and answers, and the six answers in Figure 2 were presented. Mrs M 

then asked the students to comment on these, but no students stated their opinions. This 

was the end of the first lesson. 
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Answer  90 60 22.5 30 45 35 90 or 60 

Number of students  8  5   4  2  2  1 2 

In total 24 answers; one student did not write any answer. 

Table 2: Students’ initial answers to the problem 

(1) 35° (Student F1) 

I thought it is 35 because I 

used a set square (to 

measure the angle in the 

representation), and it 

seems 10 smaller. 

(2) 45° (student Y)  

I used a net and if I cut it 

from B to D, then it is 45°. 

So ∠ BGD＝45° 

 

(3) 90° (Student F2) 

I rotated the cube and I can 

make an isosceles triangle 

BGD. And ∠ BGD＝90° 

 

(4) 60° (Student IM) 

In a cube all diagonals of 

each face are the same. I 

added a line BD and we 

have a triangle BGD which 

is an equilateral triangle. 

And ∠ BGD＝60° 

 

(5) 22.5° (Student K) 

A line DG halves a 

square, and another line 

BG further halves it. So 

90×1/2＝45, and 45×1/2

＝22.5. 

 

(6) 30°  (Student H)  

 

No explanation and angles 

are measured as 2D 

angles.  

Figure 2: Presented students’ answers 

At the start of the second lesson the 24 students (four were absent during the second 

lesson) continued to exchange their ideas and reasoning. First, Mrs M asked the 

students whether they changed their answers or not, based on the presentations at the 

end of the first lesson. The students’ revised answers are shown in Table 3. While the 

number of students giving the answer 60 had risen to 16, during the second lesson 

some students still argued why they could not see the angle as 60.Mrs M asked the 

students to consider an explanation which would help everyone in the class to consider 

whether the answer was 60. One student explained BGD is an equilateral triangle. 

After another student (student IM) presented his proof to refute 90, Mrs M then used a 

physical model of a cube to demonstrate the reasoning. That completed the second 

lesson. 

Answer 90 60 22.5 30 45 35 22.5 or 60 

Number of students   6 16  0   1   0   0 1 

Table 3: Students’ revised answers to the problem 
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Students’ level of thinking 

As might be expected, students in the class illustrated various levels of 3D thinking. In 

the first lesson, some students determined the size of the angle neither by referring to 

the properties of 3D shapes nor by manipulating the presented figure. In our case, 

students F1 (the Figure 2-(1)) or H (in Figure 2-(6)) for example, used measurement 

from the given representation, and did not have any idea why this would not be correct. 

These students can be considered as Level 1 in our framework.  

Meanwhile, some students started using the properties of a cube and simple (but 

ineffective) manipulations. For example, like student K in Figure 2-(5), student J 

(Figure 3 left) did not add anything on the given figure but used properties of angles of 

a square (90) and concluded 22.5. This is Level 2a. Student C utilised a net to 

consider the size of the angle BGD to deduce the angle is 90, as illustrated in Figure 3 

(right). As evident, this approach does not work because the angles in the net and the 

angle required in the problem are different. Yet this student cannot see this by using 

only the net representation, i.e. they cannot utilise properties of cubes independently 

from the used representations (a similar case is student Y, Figure 2-(2)). Such thinking 

can be considered as level 2b, i.e. utilised properties of shapes and started to 

manipulate the given representation, but neither of them were effective and 

appropriate. 

   

Figure 3: Answers by student J (left) and C (right) 

Other students used more manipulations of shapes and also started using properties of 

shapes to construct some simple deductions. In our study an example of this was when 

student F2 joined B and D to form triangle BDG and started examining what the 

triangle BDG would be to deduce the size of the angle. However, the following 

exchange shows that this student could not recognise the triangle BGD as an 

equilateral because of how the representation of the cube looked: 

Student F2 I joined B and D.  

Mrs M Join B and D, and then? 

Student F2 Then I see a right-angled isosceles triangle (Figure 2-(3)). 

Mrs M OK, you thought the triangle is a right-angled isosceles triangle… 

Student F2 So, G should be 90? 
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It is notable that student F2 changed the oblique parallel projection to an orthogonal 

projection (see Figure 2-(3)) but still deduced an incorrect answer. This student’s 

manipulation was appropriate (i.e. can lead to the correct answer), but their reasoning 

was influenced by the visual appearance of the triangle in the figure, and they were not 

able to utilise properties of shapes effectively.  

Nevertheless, it was the case that even in the first lesson some students started 

manipulating the representations effectively to solve the problem. In such cases, their 

reasoning was not overly influenced by the external representation of the cube but was 

more controlled by logical thinking, which can be considered as level 3 thinking. For 

example, student IM explained his reasoning very clearly as follows: 

Student IM Because in a cube all diagonals should be the same length, this triangle is an 
equilateral.  

Mrs M OK, you thought it will be an equilateral because of the length of the 
diagonals. 

Student IM [nods] Each angle of an equilateral triangle is 60,  so ∠BDG is 60. 

Student IM also showed his clear and advanced thinking and explained how he could 

refute 90 as an answer as follows: 

Student IM  (writing the following answer) The sum of the inner angles of a triangle is 
180 so 90 does not work. D=90, B=90, G=90. D+B+G=90+90+90=270.  

Mrs M Can you explain this? 

Student IM If the line BD, DG and BG are all the same, then … no, sorry. If you add the 
angles of a triangle, then 180, and if the ∠BGD is 90, then it is an 
equilateral, so all angles should be the same and the other two angles are 
also 90, and add them together it will be 270. This does not work. 

DISCUSSION 

For our first research question ‘What framework can be constructed to capture 

students’ spatial thinking in 3D geometry?, we developed the framework of the levels 

of geometrical thinking with the two aspects ‘reasoning with 3D properties’ and 

‘manipulating 3D shapes representations’ derived from our large empirical data set. In 

order to evaluate our framework, in this paper we used data from the classroom 

episodes in the form of students’ explanations and tested how our framework can 

capture students’ characteristics of thinking. As we have seen, the students presented a 

wide variety of their answers and reasoning, and our framework can provide a 

comprehensive classification of these answers and reasoning.  

For our second research question ‘What characteristics of thinking can be identified 

when students tackle challenging problems in 3D geometry?’, from what we have 

observed in the two lessons and students’ worksheets, our framework can successfully 

characterise students’ thinking. At the first level, there are students who are strongly 

influenced by visual appearances of external representations. These students should be 

encouraged to explore their reasoning without relying on their naïve visual thinking. 
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Students at the second level cannot utilise manipulations of representations or 

properties of shapes. For example, although some students used effective 

manipulations such as drawing a line BD, some of these students could still not reach 

the correct answer. For these students, it is necessary to make them reflect on their 

reasoning or manipulations. Indeed, in our classroom episodes, it was useful when 

students in the class shared their ideas of various manipulations of shapes, reasoning 

and so on. In particular, student IM’s refutation which was appropriate use of 

reasoning with properties worked well in leading many students to the correct answer. 

In future research, we plan to examine these modified level descriptions further using a 

larger data set. While we only have space in this paper to present one problem, we have 

additional analyses of other problems that reveal students’ levels of thinking with 3D 

shapes in general.  
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Place value is a key concept for numbers that is introduced in early mathematics. It is 

necessary to have a flexible understanding of place value for efficient arithmetic 

strategies and success in written algorithmic arithmetic. In our research we explore 

typical mistakes and misconceptions that occur with 3
rd

 graders in German elementary 

school and investigate the various underlying actions when manipulating numbers in a 

place value chart. We also report on a follow-up quantitative study that compares real 

and virtual manipulatives for place value and their effect on learning of place value. 

INTRODUCTION 

As demonstrated in the PME 36 plenary by Mariotti (2012), it is helpful to analyse 

artefacts from a semiotic perspective for their semiotic potential. The Theory of 

Semiotic Mediation (TSM) can be used to analyze teaching experiments at all school 

levels and with artefacts of any type. This latter is particularly important when we want 

to find out whether and how new artefacts, in particular digital ones, can improve the 

teaching and learning process. In our research about place value and flexible 

interpretation of place value charts we realized that instead of focusing on sign 

productions it was more helpful to look at the individual actions that can be observed 

when children work with a place value chart. Using Artefact-Centric-Activity-Theory 

(ACAT, Ladel & Kortenkamp 2013) we designed a digital artefact as an alternative to 

traditional paper-and-pencil place value charts. This paper will report about the 

necessity of teaching place value, will analyze typical tasks found in textbooks, and 

show how these tasks correspond (or not) to certain actions with either artefact, the 

traditional and the electronic one. Finally, it will elaborate on a pre-study that helped to 

design an experiment that is currently conducted with 3
rd

 graders (N > 300) in a 

quantitative study that shall contribute to the research for designing learning 

environments for place value that has been started by Hiebert and Wearne (1992), who 

conclude: 

The data reported here suggest that understanding, as measured by the place-value tasks, 

does not translate directly into procedures but that it does interact with procedures to yield 

increased flexibility and power. However, this interaction is influenced by the 

in-structional environment and, in this case, flourished more when instruction attempted to 

facilitate students’ understanding rather than procedural proficiency. (p. 121) 
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PLACE VALUE AND NUMBER SYSTEMS 

The decimal number system (in fact, any positional system) is a powerful tool for 

writing mathematics and doing arithmetic. Any number
1
 can be written using only 10 

different digits in a unique way using a finite number of places. It is easily possible to 

compare, add, subtract and –a bit harder– multiply or divide two numbers when we are 

given the numbers of bundles in the maximal bundling.  

The underlying idea of the number system carries the proof for this non-obvious fact: 

By creating bundles of ten objects, bundles, bundles of bundles, etc. repeatedly until 

there are less than 10 objects of any same bundle size available we end up with a 

unique maximal bundling of objects. Creating bundles of objects is a basic task in 

many exercises in early mathematics learning, as it constitutes the basic operation for 

working with larger numbers.  

Another key concept besides bundling is the part-whole-concept that concerns the fact 

that each number can be partitioned into smaller parts that add up to whole. While this 

is trivial for most of us, it is still an important fact that is not obvious to all children. It 

is used in almost all further arithmetic work. Creating bundles and the 

part-whole-concept are connected: By replacing 10 single objects with a bundle of ten 

objects we do not change the whole quantity, as we replace a part with another part of 

same size. 

While any partition of a quantity into parts is feasible, some are more useful than 

others. If we are working with bundles, any partition that is created by (repeated) 

bundling, counting all bundles of the same size in one part, is called a decimal 

partition. More formally, if n = a0·10
0
 + a1·10

1
 + … + ak10

k
 then the summands form a 

decimal partition of n. The unique representation of a number results in a decimal 

partition created by less than 10 bundles of each bundle size and is called the standard 

(decimal) partition of n. In German schools, a different notation for decimal partitions 

is used: Instead of powers of ten a single or double letter is used. E (Einer/Ones) is used 

for 10
0
, Z (Zehner/Tens) for 10

1
, H (Hunderter/Hundreds) for 10

2
, T 

(Tausender/Thousands) for 10
3
, ZT (Zehntausender/Ten thousands) for 10

4
, HT, M, 

ZM, ….  A typical notation used for the number 324 while introducing place value is 

3H 2Z 4E (standard partition), but also 32Z 4E, 24E 3H, or even 324E (nonstandard 

partitions). We follow the naming convention of Ross (1989), who also claims that 

“Understanding place value requires an elaboration of the student’s emerging 

understanding of a part-whole concept.” (p. 47) 

Due to the structure of decimal partitions we can easily find a correspondence between 

tokens in a place value chart and such a decimal partition. Any placement of tokens in 

a place value chart corresponds to the decimal partition that has exactly as many 

bundles of a given size as there are tokens in the table cell for that size. 

                                           
1
 We consider positive integers, though most of the following is applicable to decimal fractions, too. 
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Figure 1: Abstraction 7–11 

Nonstandard partitions are important for flexible arithmetic. Dividing 320164 by 4 is 

much easier if the dividend is interpreted as 32 Tenthousands + 16 Tens + 4 Ones, just 

to give one example. They become even more important in written arithmetic, as we 

start with single digits and carryovers that directly lead to nonstandard partitions. 

Abstraction levels 

Sayers & Barber (2014) discuss teaching of place value to 5-6 year with a particular 

emphasis on the teacher and the manipulatives used in the classroom, and they 

conclude “In sum, place value is difficult to understand and to teach.” (ibid., p. 34) 

This difficulty is documented in the literature. Gerster 

& Walter (1973) describe eleven levels of abstraction 

from bundling up to standard notation of numbers. 

Levels 1–6 are just for creating bundles and exchanging 

between them. Only levels 7–11 are concerned with 

place value: (7) sort objects into a place value chart, (8) 

replace objects by iconic representations, for example 

coloured tokens, (9) replace icons by undistinguishable 

tokens, (10) replace tokens by a digit representing their 

number, (11) omit the chart and write the number as a 

sequence of digits. 

While it is neither clear that all these abstractions have 

to be followed one by one, nor at all, they influence 

teaching in primary school. According to Grevsmühl 

(1995) it is important to exchange and replace not only 

objects that are clearly distinguishable by their volume, shape or colour, but special 

care should be taken to exchange tokens of the same kind differing only by their 

position in a place value chart.  

Typical activities when teaching place value 

An analysis of seven German textbook series for primary schools showed that we can 

categorize place value related demonstrations and exercises into 

 Bundling activities as a preparatory task, 

 Grouping and sorting of bundles and placing them in charts, 

 Exercises based on the transfer between different representations of numbers 

(tokens or digits in a chart, the standard number representation, or spoken 

number words), 

 Exercises that use a place value chart as a tool, and 

 Exercises where number representations (either in a chart or in standard 

notation) are changed. 

Our main focus lies on the last two categories, as they involve nonstandard partitions as 

well as standard partitions. The third category, representation transfer, relies on 

students being able to create standard partitions from nonstandard partitions in a place 
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Figure 2: What number is this? 

value chart using repeated bundling to find a maximal bundling. This includes 

questions for the minimum number of tokens needed to represent a number. 

The tool use of place value charts occurred mainly when the algorithms for written 

addition and subtraction were introduced. For addition, the carryover is easily 

explained using the bundling process in a chart, and for subtraction, depending on the 

strategy used, we can demonstrate how to unbundle for borrowing. 

Some questions ask for the consequence of the 

movement of one or several tokens from one place 

to the other. It is important to note that the place 

value chart as a tool is now used differently: When 

we are placing objects that still carry their bundle 

size as an attribute, for example by being a base 

block of 100 or 10, by having a different colour, or 

by being an iconic representation of a bundle, we 

must not place these in the wrong cell of the chart, because this violates the rules and 

leads to a conflicting situation. A 10-stick place in the tens’ place represents one ten, 

while the same stick in the hundreds’ place could represent either one hundred, ten 

hundreds, or again one ten – or, even better: none of these, as it is illegal to place 

10-sticks there (Fig. 2). On abstraction level 9 –having the same tokens for counting 

any bundle size– it is no longer visible that this is illegal, and it leads to exercises like 

the following: “Paul places 324 with 9 tokens in a place value chart. He moves one 

token from the tens’ place to the hundreds’ place – what number does he have now?” 

While this exercise makes sense for children that already understand place value, it can 

be confusing for children who just learned (or are about to learn) that moving a token 

between different places changes their value and is illegal unless the token is replaced 

by its corresponding unbundled bundle. 

We conclude with the statement that there are both value-preserving and 

value-changing operations taking place in typical exercises. For us, it is important to 

support value-preserving operations, as these are the underlying mechanism for 

creating standard partitions from nonstandard partitions and also to create many new 

decimal partitions from one representation of a number in the place value chart. 

THEORETICAL FRAMEWORK: ACAT 

Our theoretical framework has been introduced in detail in Ladel & Kortenkamp 

(2013) and we recall it here only briefly and for better understanding of our study. In 

ACAT (Artefact-Centric Activity Theory), based on the work of Engeström (1987) and 

Leont’ev (1978) special attention is given to a mediating artefact between a subject 

(here: the student) and an object (here: the notion of place value), and the 

internalization and externalization processes occurring along this line of interaction. 

ACAT allows for the derivation of rules for the design of the artefact. 
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For our research, we used an interactive place value chart
2
 that works as an App on iOS 

devices. Its major design decision has been that moving a token with the finger should 

be value-preserving. In order to achieve that effect, the app is automatically 

unbundling tokens of a higher value when moving them to a lower place. When the 

student is moving tokens to a higher place this is only possible when there are enough 

further tokens of the same bundling size that can be bundled with the moving token. If 

so, tokens are automatically bundled and replaced with a single token. The standard 

configuration of the App does not colour the tokens in order to support the abstraction 

process described earlier, but it is possible to switch on an automatic recolouring as 

well (“Montessori mode”).  

RESULTS 

The App and the theoretical framework leading to its design have been demonstrated at 

PME 2013. We report on experimentation with it that has been carried out by us in 

laboratory situations and the classroom. 

Interview Pre-study 

In our pre-study we combined several exercises into a guided interview. The children 

were interviewed by one of the authors following the various questions and tasks that 

had to be carried out. The interactive place value chart App was introduced during the 

interview by the interviewer (I). We give some exemplary results.  

In the first set of questions children had to compare nonstandard decimal partitions in 

the typical notation (e.g., 32Z 4E, see above). After deciding which one is larger, or 

whether they are equal, they were asked for a justification of their answer. We could 

identify the following types of mistakes: (a) Numbers were created just by omitting the 

letters denoting the bundle size – 14E 2Z becomes 142; (b) Only the largest bundle is 

considered, such that 5Z 3E (=53) is considered to be larger than 4Z 15E (=55); (c) The 

bundle size letters are ignored completely (5Z 3E becomes 5 and 3); (d) Only the 

largest number of a certain bundle type is used to decide which number is larger. The 

answers showed that not all children have understood the notation that is used on a 

daily basis in schools for decimal partitions. 

The next item was to ask children how many tokens they need to represent 35 in a 

(two-column) place value chart. Next they were asked to show one representation. The 

children had red and blue tokens and strips of 10 blue tokens. One of the interviews 

highlighted the problem of mixing abstraction levels mentioned before. Here is part of 

the transcript after a student (S) placed three red tokens in the tens’ place and five blue 

tokens in the ones’ place: 

I: Is it necessary to use blue tokens there (points to the ones’ place) and red 

tokens there (points to the tens’ place)? 

S: No, not really. I just did it that way. […] 

                                           
2
 Available from https://itunes.apple.com/app/id568750442. 
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Figure 3 

I: Is there another way to put the tokens? 

S: Yes, 30 tokens here (points to the tens’ place) and 5 tokens there, as there are. 

I: (points to the tens’ place) Does it matter whether there are 3 or 30 there? 

S: It does not, not really. 

I: Can you explain that? 

S: Actually it is the same. The 3 is there (points to the tens’ place), the 5 is there 

(points to the ones’ place) and when I put 30 there then there is a 0 instead of a 

5 there.  

The student shows that he is able to abstract from the actual colour of the tokens, but he 

uses an interpretation of nonstandard partitions that will interfere with activities that 

require bundling and unbundling. 30 tokens in the tens’ place are not the same as 3 

tokens in the tens’ place. 

The last item was concerned with the action of moving a token 

from one place to the other. Children were asked what number is 

shown in the place value chart of Fig. 3. After answering the 

question they had to tell what they think will happen when one token is moved from the 

tens’ place (Z) to the ones’ place (E).  

Of course, there are two possible answers to that question, depending on whether the 

token is unbundled or not. Our textbook analysis showed that both behaviours are used 

currently: In a “what if one of the Z-tokens is used as a E-token” scenario students 

should answer that the value of the number is decreased by 9. Questions of that type are 

also contained in the national comparison VERA-3 (see Stanat et al. 2012). On the 

other hand, using the place value chart as a tool for the introduction and explanation of 

written arithmetic the behaviour must be value-preserving, such that we end up with 

one Z-token and thirteen E-tokens. 

Unsurprisingly, the students preferred the behaviour of traditional place value charts in 

their answers. Immediately after that they were given the interactive place value chart 

and were asked to move a token. Here is a transcript excerpt of another student. 

I: Let’s try it here. Here is the 23. Move a token from the tens to the ones! 

S: (moves a token). Ooooh. Ey Caramba. 

I: Ey Caramba. What is happening? 

S: They become many. 

I: Yes. Look here, the numbers are shown above. Can you try again and see? 

[…] 

S: I move (S. moves a ten token to the ones) 

I: What number is it now? 

S: 13 Ones. 

I: Yes, and there is a ten (points to the ten token) 
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S: Strange. 

I: What happened? 

S: (thinks) These are 10 single ones! Now, these (points to tokens). 

I: Why? 

S: Because that wouldn’t work. See, if you did on token, and then, if you do not 

have ten single ones, then it is only one. If you have ten single ones, then it is a 

ten. (S moves one token from the ones to the tens. Automatically, nine other 

tokens are bundled into it and the ten tokens are replaced by one token.) 

S: Oops, what happened there?  

I: Yes, what happened there? 

S: The others moved over. Because the one, you know, if it moves to the tens, it 

would be eleven only and then nine come as well and 9 plus 1 is ten, so its two 

tens again, twenty, so its 23 again.  

After being surprised by the magic behaviour of the App the student is able to explain 

this behaviour in detail. It seems to support the necessary flexible representation of 

numbers in the place value chart. 

Quantitative Study 

Based on the above we designed a study which shall reveal whether our digital artefact 

that interprets the action of moving a token from one place to the other differently, that 

is, preserving the value of the number, can improve the fluency of the students when 

creating nonstandard partitions. Also, we measure how the fluency –either acquired 

using the digital or virtual artefact, or already existing before– in creating nonstandard 

partitions in a place value chart influences the ability to transfer between written 

nonstandard partitions and the numbers represented by these. 

Currently, we run the experiment with over 300 students in grade 3. The students are 

assigned by random to one of two groups; in group A each student has access to an 

iPad with our place value chart software, in group B students work with paper and 

pencil only. Each student has to work without further support on a test with three parts. 

Part I and III contain questions of the type “Which is larger – 22E 5Z or 22Z 5E?” or 

“Which is larger – 1H 12Z 5E or 1H 3Z 5E?” where two decimal partitions have to be 

compared, and questions where a (nonstandard or standard) decimal partition should 

be written in standard notation. The questions are designed such that students without a 

proper understanding of decimal place value are likely to fail. 

Part II of the test consists of two activities. The students are asked to interpret numbers 

given by tokens in a place value chart as a number and to write them down. Next, 

students are asked to place tokens in a chart in order to represent a given number. For 

each number they are encouraged to find distinct representations. 

The data will be interpreted using statistical implicative analysis (SIA, Gras et al. 

2008) with Boolean variables that further differentiate between the ability to interpret 
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non-standard representations and only standard representations. Our first data set 

(N=37) supports our hypotheses that the use of the iPad lets students create more 

nonstandard partitions (1.58 vs. 1.06 on average) than in the non-technology group. 

Also, the iPad group performed about 7.9% better on average in part III than in part I, 

while the other group performed 7.6% worse. However, without further data, to be 

collected in late January 2014, it is impossible to discuss this further, but we hope to 

answer the question whether an activity-theoretic driven design of an electronic place 

value chart can support a flexible understanding of place value and whether this leads 

to better performance in place value tasks. 

References 

Engeström, Y. (1999). Activity theory and individual and social transformation. In Y. 

Engeström, R. Miettinen, & R.-L. Punamäk (Eds.), Perspectives on activity theory (pp. 

19-38). Cambridge University Press. 

Gerster, H.-D., & Walter, R. (1973). Mehr System im Mehrsystem-Rechnen. Zahldarstellung 

und Rechnen in Stellenwertsystemen. Freiburg im Breisgau: Herder. 

Gras, R., Suzuki, E., Guillet, F., & Spagnolo, F. (Eds.). (2008). Statistical implicative 

analysis. New York: Springer. 

Grevsmühl, U. (1995). Didaktisches Begleitheft zum Fernstudienlehrgang Mathematik für 

Grundschullehrer. Tübingen, DE: Deutsches Institut für Fernstudienforschung an der 

Universität Tübingen (DIFF).  

Hiebert, J., & Wearne, D. (1992). Links between teaching and learning place value with 

understanding in first grade. Journal for Research in Mathematics Education, 23(2), 

98-122. 

Ladel, S., & Kortenkamp, U. (2013). Designing a technology based learning environment for 

place value using artifact-centric Activity Theory. In A. M. Lindmaier, & A. Heinze 

(Eds.), Proc. 37
th

 Conf. of the Int. Group for the Psychology of Mathematics Education 

(Vol. 1, pp. 188-192). Kiel, Germany: PME. 

Leont’ev, A. N. (1978). Activity, consciousness and personality. Englewood Cliffs: Prentice 

Hall. 

Mariotti, M. A. (2012). ICT as opportunities for teaching-learning in a mathematics 

class-room: The semiotic potential of artefacts. In T.-Y. Tso (Ed.), Proc. 36
th

 Conf. of the 

Int. Group for the Psychology of Mathematics Education (Vol. 1, pp. 25-45). Taipei, 

Taiwan: PME. 

Ross, S. H. (1989). Parts, wholes, and place value: a developmental view. The Arithmetic 

Teacher, 36(6), 47-51. 

Sayers, J., & Barber, P. (2014). It is quite confusing isn’t it? In U. Kortenkamp, B. Brandt, C. 

Benz, G. Krummheuer, S. Ladel, & R. Vogel (Eds.), Early mathematics learning (pp. 

21-36). New York: Springer. doi: 10.1007/978-1-4614-4678-1_3 

Stanat, P., Pant, H. A., B hme, K., & Richter, D. (Eds.). (2012).  ompeten en von 

 ch lerinnen und  ch lern am  nde der vierten  ahrgangsstufe in den   chern Deutsch 

und  athematik   rgebnisse des I  -  ndervergleichs 2011. Münster: Waxmann. 



 

2014. In Liljedahl, P., Oesterle, S., Nicol, C., & Allan, D. (Eds.) Proceedings of the Joint Meeting 4 - 41 

of PME 38 and PME-NA 36,Vol. 4, pp. 41-48. Vancouver, Canada: PME. 

PERCEPTIONS AND REALITY: ONE TEACHER’S USE OF 

PROMPTS IN MATHEMATICAL DISCUSSIONS 

Karl W. Kosko, Yang Gao 

Kent State University 

 

We examined one primary teacher’s knowledge for facilitating mathematical 

discussion (MKT-Disc) via approximations of practice and compared her use of 

certain questioning prompts in these vignettes with her facilitation of discussions in 

her actual mathematics teaching. Findings showed differences in what the teacher 

reported she knows and what she actually did in practice. Evidence suggests the 

teacher’s institutional obligations to a mandated curriculum, as well as the nature of 

her MKT-Disc, were the primary reasons for the mismatch between approximations 

and actual practice. 

BACKGROUND AND OBJECTIVES 

Teachers’ use of questioning to facilitate mathematical discussions has been a topic of 

interest in much of the literature (Boaler & Brodie, 2004; Hiebert & Wearne, 1993). 

Much of this research has identified various ways of questioning that are more 

effective in promoting students’ mathematical understandings and achievement. 

However, certain issues have problematized applying what research has uncovered as 

more effective mathematics pedagogy, and what teachers do in the classroom. A 

growing body of research suggests discrepancies between what researchers describe as 

effective questioning and classroom teachers’ interpretations of such descriptions 

(Hill, 2005; Kosko et al., in press). Yet another issue lies in the potential discrepancy 

between what a teacher knows and what they actually do in their teaching. Specifically, 

teachers’ questioning to promote mathematical discussion can be considered as a form 

of pedagogical content knowledge, and such knowledge is only pragmatically useful if 

it can be applied to pedagogical practice. Hill et al. (2008) observed relationships 

between teachers’ mathematical knowledge for teaching (MKT) and their quality of 

instruction, and Kersting (2008) has observed similar connections in her use of 

vignettes to measure MKT. So, it appears that teacher knowledge does inform practice. 

Yet, teachers are influenced by a myriad of factors, stakeholders and context-specific 

conditions (Herbst & Chazan, 2012). Such influences may impose restrictions on how 

able a teacher is to apply what they know to be effective pedagogy in their classroom. 

The present study describes the case of a primary grades teacher with higher than 

average MKT and a disposition towards using dialogic mathematics discourse. The 

purpose of this study is to explore whether the teacher’s conceptions of appropriate 

mathematical discussion aligns with her facilitation of such discussions in her 

classroom.  
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TEACHER QUESTIONING 

One of the primary means for teachers to facilitate mathematical discussion is through 

the purposeful use of effective questioning practices. Kazemi and Stipek’s (2001) 

observations of four upper primary teachers in the U.S. revealed a connection between 

a press for meaning via questions that solicited explanation and justification with 

deepening students’ mathematical understandings. Supporting these observations, 

Hiebert and Wearne (1993) observed six early primary grades teachers and found that 

students whose teachers elicited more explanation and justification via questioning had 

higher mathematics achievement. Boaler and Brodie (2004) refer to such questions that 

solicit explanation and justification as probing questions. While probing questions are 

generally encouraged by findings from observational and empirical studies, another 

form of questioning is much more prevalent. Referred to as gathering information 

questions by Boaler and  Brodie (2004), such prompts solicit factual/answer-only 

responses, recalled/memorized procedures, and similarly simplistic mathematical 

statements. Gathering information prompts are the dominant form of questioning by 

teachers in math lessons in the U.S., and while such prompts may provide 

opportunities to stimulate discussion in certain contexts, probing questions are more 

consistent in eliciting deeper descriptions of mathematics (Temple & Doerr, 2012). 

While the literature generally supports the more prevalent use of probing questions, 

recent research has suggested inconsistencies between researchers’ descriptions of 

appropriate questioning and some teachers’ interpretations of such descriptions ( Hill, 

2005; Kosko et al., in press). This has led some researchers to argue for a more explicit 

approach to teacher education in facilitating mathematical discussions, particularly via 

questioning approaches (Boerst et al., 2011; Kosko et al., in press). One such 

specification applied here is the conceptualization of such questioning as a particular 

domain of teacher knowledge composed primarily of what Ball et al. (2008) would 

refer to as knowledge of content and students (KCS) and knowledge of content and 

teaching (KCT). Thus, using questioning to facilitate mathematical discussion is one 

portion of a subdomain of MKT which we refer to as MKT-Disc (although, MKT-Disc 

may also include revoicing, task selection, etc.). Relationships between MKT and 

more effective use of questioning have been observed by qualitative studies (e.g., Hill 

et al., 2008) and more recently by quantitative analysis (Kosko, in review). Yet, as 

argued by Kosko (in review), such relationships may be more pragmatic in defining 

teacher questioning as a domain of knowledge. As such, MKT-Disc requires the 

teacher to utilize, often simultaneously, KCS in listening and decoding student 

responses in discussions and KCT in framing an appropriate prompt to both attend to 

the student’s thinking and facilitate the general instruction of mathematics at hand for 

the whole class. The appropriate use of probing questions is only one element of 

MKT-Disc, and its complexities extend our brief review here. Yet, questioning is 

widely researched and, therefore, an appropriate gateway to examining MKT-Disc. 

For this reason, it is the central focus of the present study. 
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TEACHER PERCEPTIONS VERSUS ACTUAL PRACTICE 

Research on teacher perceptions (beliefs and knowledge) has shown that in certain 

cases, teachers’ perceptions align with their practice; while in other cases there is 

inconsistency (e.g., Kuhs & Ball, 1986; Stipek et al., 2001). For example, Stipek et al. 

(2001) found primary teachers beliefs about mathematics teaching correlated with their 

students’ perceptions about mathematics. Following a review of literature, Kuhs and 

Ball (1986) argue that inconsistencies between teachers’ beliefs and practice can be 

explained by their level of mathematical knowledge. Pajares (1992) suggests that 

internal (e.g., beliefs) and external (e.g., school/administrative) factors mediate beliefs 

and practice, thus causing some dissonance between teacher beliefs and practice. 

Given the potential both for alignment and misalignment between perceptions and 

practice, the current study examines the case of one teacher to ask:  

Do conceptions of using probing questions align with actual practice? 

METHODS 

Data was collected from a grade 3 teacher in the Midwestern U.S. whom we refer to as 

Mary. Mary was an early career teacher (2 years experience) with a Bachelors and 

Masters degree in education. She taught in a school district using Saxon Math 

curriculum. In the year data was collected, Mary indicated that district expectations 

were to adhere to the curriculum materials stringently. Mary participated in a 

two-phase study in which a larger sample completed a survey packet with open and 

closed response items regarding dispositions and knowledge for facilitating 

mathematical discussion. After completing the survey packet, Mary was randomly 

selected for the second phase of data collection which involved observing 10 of her 

mathematics lessons. The goal of the second phase of study was to compare teachers’ 

actual practice with findings from the survey packet. For the present study, we report 

on data from both phase one and two. 

Phase One: Data from Survey Packet 

The survey packet included items assessing knowledge and dispositions regarding 

facilitation of mathematical discussion, as well as some background information. We 

briefly describe some measures here, along with descriptive indicators for Mary. One 

measure was Truxaw et al.’s (2010) assessment of teachers’ dispositions for dialogic 

discourse. Mary’s score of 3.67 (Range = 1.00 to 4.00) indicated a strong disposition 

towards supporting dialogic discourse. Mary also had a higher than average score for 

MKT as assessed by a 2006 version of Hill et al.’s (2004) assessment (IRT Score = 1.72 

where a score of ‘average ability’ is 0.00). In addition to these measures, Mary 

completed one open-response question asking “What are the essential things a teacher 

must do to facilitate mathematical classroom discussions so they are effective in 

helping students’ understanding of the content?” This open-response prompt was 

followed by three incomplete vignettes which Mary and other participants were asked 

to complete so they were ‘model’ vignettes of teachers facilitating mathematical 
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discussions. While we provide excerpts of Mary’s responses in the analysis and results 

section, the general nature of her descriptions were supportive of using probing 

questions to solicit explanation and justification from students. Lastly, we presented 

Mary and other participants with three cartoon-based vignettes in which they were 

asked to select one of four provided prompts that would best aid students’ 

understanding in the discussion. In two of the three vignettes, Mary selected a probing 

question (see Kosko, in review for analysis of all Phase One participants). Responses 

Mary provided in the survey packet indicated a disposition towards facilitating 

mathematical discussions, aligned with a higher than average level of MKT. 

Phase Two: Observations of Whole Class Mathematical Discussions 

Observational data was collected from 10 class sessions over three weeks in Spring 

2013 via video and audio recording and were transcribed. Segments of recordings were 

selected that included whole class discussions generally about 25 minutes in length. 

Both authors coded Mary’s questioning following Boaler and Brodie’s (2004) rubric. 

Coding reliability was sufficient (Kappa = .61) and differences were reconciled before 

analysis. For purposes of space and simplicity, we limit discussion of all coding for 

Mary’s questioning to gathering information (n = 323; 89.5% of all prompts) and 

probing questions (n = 19; 5.3% of all prompts) across the 10 observations. However, 

descriptive statistics for all question types is reported in Table 1. 

Gather 

Info 

Insert 

terms 

Explore 

math 

meaning 

Probing 
Generate 

Disc. 

Link & 

apply 

Extend 

think 

Orient 

& 

focus 

Establish 

context 

323 

89.5% 

3 

0.8% 

9 

2.5% 

19 

5.3% 

5 

1.4% 

1 

0.3% 

0 

0.0% 

1 

0.3% 

0 

0.0% 

Table 1: Descriptive statistics for Mary’s questioning across 10 observations. 

ANALYSIS AND RESULTS 

We examined Mary’s responses from the survey packet and her use of questioning as 

coded in the transcripts from observational data. Our intent was to examine areas 

where there was overlap in Mary’s perceptions via beliefs and knowledge with her 

actual pedagogy. To do this, we first attended to Mary’s responses to the open and 

closed response items that included approximations of practice (i.e., vignettes). The 

open response items included one general question asking teachers to describe the 

essential things a teacher must do to facilitate mathematical discussions. Among other 

features, Mary’s response included the following statement related to teacher 

questioning: “teachers must encourage students to explain their thinking so that 

teachers can correct misconceptions.” Mary also provided responses to three 

incomplete vignettes, of which an example is shown in Figure 1. Mary’s response is 

also shown, with her use of prompts in bold. 
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Incomplete Vignette: 

 
Mary’s Response: 

Jared, please explain your thinking. I see 15 and 5 in the problem, but not 20 - why 

did you think to add 20? Let Jared explain + correct any misconception. "Keisha, what 

did you mean when you said 'you've got to do it in order'?" Let Keisha explain her 

thinking and be sure to clarify, "The commutative property says that it does not matter in 

what order we add numbers." 

Figure 1: Mary’s response to the first incomplete vignette. 

Mary’s response in Figure 1 includes a probing question for both hypothetical students, 

Jared and Keisha. This is followed by a description that infers a check for 

understanding. Mary provided a similar description for another vignette. Taken 

together with her response to the general prompt, Mary’s descriptions suggest a 

conception of using probing questions primarily as a means to assess students’ 

mathematical thinking. Her response to the third incomplete vignette, however, 

demonstrated a dominant use of gathering information prompts, but no use of probing 

questions. One potential reason for this is the nature of the vignette stem. Specifically, 

the third incomplete vignette includes a student’s description of mathematics where in 

the other vignettes, students provided only answers initially. Thus, Mary appears to be 

using probing questions to solicit student’s thinking, but when such thinking is present 

she is comfortable with the use of gathering information questions.  

Mary’s answers to the closed response vignette items provide support for this 

assessment. Figure 2 provides an example of one such item which, like the third 

incomplete vignette, includes a student’s description in the vignette. Mary’s response 

to this scenario was to select option 4, a gathering information prompt. Interestingly, 

the other two closed response items did not include initial student descriptions of their 

mathematics, and Mary selected options that were probing questions. Thus, from 

Mary’s responses to these six vignettes, it appears Mary uses probing questions as a 

means to assess students’ mathematical thinking, and uses gathering information 

questions when such thinking is apparent. Additionally, Mary provided responses to 

several survey items asking how frequently she used probing questions in her class 

discussions. Responses were along a Likert-scale (1=Never/Hardly Ever; 2=Some 

Discussions; 3=About Half of Discussions; 4=Every/Almost Every Discussion). Her 

response to each item was Every/Almost Every Discussion. Taken together, we can 

infer that Mary knows to use probing questions to elicit student thinking, and believes 

she does so in almost every mathematical discussion in her classroom. What is less 

apparent in examining her responses to vignettes is whether she knows to use probing 

sequences in certain contexts. As such, she has demonstrated both in the open and 

close response items that probing questions are only used to solicit student thinking, 

but not to press students for mathematical meaning. 
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Figure 2: Example closed response item assessing teacher questioning. 

We next compared Mary’s survey response data via approximations of practice (i.e., 

vignettes) with her questioning in her whole class discussions (i.e., actual practice). 

The discrepancy in actual use of probing questions and what Mary ‘knew’ or perceived 

to be appropriate use of probing questions was stark. To assess difference in 

frequencies in vignettes versus actual practice we used a Chi-Square analysis, which 

accounts for the different count data in each category and examines the distribution 

across the contingency table in Table 2. We found that the differences were 

independent from chance (χ
2
(df=1)=25.78, p<.001). As we alluded to earlier, Mary’s 

school district had strict curriculum requirements. Mary expressed the belief that these 

demands influenced her teaching and the nature of her class discussions. Specifically, 

she was concerned that the quality of her class mathematical discussions would not be 

as rich because she needed to keep pace with the curriculum guide. Findings from the 

Chi-Square analysis suggest her concerns may have been justified. 

 Approximations of Practice Actual Practice 

Gather Information 45.5% (n=5) 92.9% (n=404) 

Probing 54.5% (n=6) 7.1% (n=31) 

Table 2: Comparison for use of gather information and probing questions. 

We also compared Mary’s self-reported frequencies of using probing questions via 

survey items with explicit statements with the number of class discussions observed 

(n=10) where she used at least one probing question. Mary used probing questions in 

40% of observed mathematical discussions. To assess whether this was a significant 

variation from her self-reported survey data, we used a binomial test and assumed that 

usage of probing questions Every/Almost Every Day would account for a minimum of 

80% usage. Results indicated a statistically significant difference in perceived versus 
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actual use of probing questions in class discussions (p=.006). However, if Mary had 

selected the next frequent response available, About Half of Discussions, the binomial 

test would have found no statistical difference (p=.75). The difference in perceived 

frequency of probing questions versus actual frequency may be an over-estimation on 

the part of the teacher, not uncommon among those with reform-oriented beliefs. Yet, 

it may also represent a misalignment of Mary’s conceptions of appropriate questioning 

practices in mathematical discussions with those advocated by researchers.  

DISCUSSION AND CONCLUSIONS 

Mary’s responses to the open and closed response vignettes indicated both a 

disposition and knowledge for using probing questions to solicit students’ 

mathematical thinking. However, observations of her facilitation of actual class 

mathematical discussions showed starkly different patterns in her use of probing 

questions and gathering information questions. The most obvious rationale for this 

difference between knowledge (via approximation of practice) and practice (via 

observation of practice) stems from descriptions Mary provided about curriculum 

demands. Namely, she was expected to follow a curriculum guide at a set pace as 

mandated by her school district. There is evidence to suggest that curriculum demands 

influence teachers’ questioning (e.g., Boaler & Brodie, 2004). Herbst and Chazan 

(2012) classify such influences on teachers’ decision making as institutional 

obligations, or obligations to institutional demands that teachers must adhere.  

While it is tempting to identify the institutional obligation as the main reason for 

Mary’s infrequent use of probing questions, data suggests additional influences. 

Mary’s dialogic disposition and MKT scores were relatively high, but her responses to 

the vignette items indicated a specific understanding of questioning in mathematics. 

We surmise from her responses that Mary knows probing questions are useful for 

soliciting student thinking. However, when students have provided explanations, she 

did not elect to press for meaning either via vignette items or actual practice. 

Therefore, Mary’s MKT-Disc may have included a gap in knowledge which could 

further explain her infrequent use of probing questions in actual practice.  

The findings presented here are useful in continuing the work of understanding 

teachers’ questioning strategies to facilitate mathematical discussion, and thus further 

conceptualize MKT-Disc. Further research comparing teachers of similar levels of 

MKT-Disc, but under different sets of institutional obligations, would help illuminate 

how such institutional demands interact with MKT-Disc. By further investigating this 

interaction, we believe the field will be better informed to improve teacher education 

and professional development efforts related to facilitating MKT-Disc. 
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LOOKING FOR GOLDIN: CAN ADOPTING STUDENT 

ENGAGEMENT STRUCTURES REVEAL ENGAGEMENT 

STRUCTURES FOR TEACHERS? THE CASE OF ADAM 

Elizabeth Lake, Elena Nardi 

University of East Anglia 

 

Goldin et al. (2011) suggest nine ‘engagement structures’ for describing  complex, 

‘in-the-moment’ affective and social interactions as well as student beliefs. The study 

we report here examines the conjecture whether the ‘engagement structures’ construct 

can be appropriately adapted to allow such descriptions for secondary mathematics 

teachers. If this can be the case then linking teacher and student engagement 

structures could support detailed examination of classroom interactions. The aim of 

this paper is to consider one such adaptation and demonstrate some of its parts 

through the case of one teacher. We draw on this case study to indicate that such an 

approach has value, in particular in the ways in which it reveals relationships between 

engagement structures and norms in classroom interactions. 

INTRODUCTION  

There is a growing body of literature exploring affect in mathematics education 

(McLeod, 1992) and on the beliefs of mathematics teachers (Holm & Kajander, 2012). 

However there is less research on the complexity of teacher emotions as they engage in 

teaching mathematics (Hargreaves, 2000).  

Goldin et al.’s engagement structures (2011) are designed as a tool for framing 

analysis of the complex nature of affect, and particularly the interaction between 

individual and social aspects of students’ problem-solving experiences in mathematics. 

Goldin sees engagement structures as a useful, idealised multileveled hypothetical 

construct, one that covers a broader part of affect and more than emotions. He suggests 

that the construct of engagement structures can be used to describe complex 

“in-the-moment” (2011 p548) affective and social interactions for students by 

identifying positions that students can adopt when learning mathematics; and also 

locating the patterns which characterise individual behaviour, but are evoked in social 

situations. 

In this paper, we draw on an ongoing study to propose that the construct of engagement 

structures can be adapted to apply also to teachers of mathematics. To this purpose, we 

first introduce engagement structures and then exemplify their use in a sample of our 

data. We conclude with an outline of where the larger study is currently heading. 

ENGAGEMENT STRUCTURES AND THE AIMS OF THE STUDY 

This paper aims to provide evidence that supports the existence of engagement 

structures (in the sense of Goldin et al.) for teachers of mathematics that are similar to 
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those of students. This is potentially interesting as a position of power in the classroom 

means a teacher can manipulate the social situation and have a profound impact on the 

social dynamics of the classroom in a multitude of ways. For example, the teacher can, 

by condoning and modelling selected practices, through language and engaging in 

emotional interaction, act as gatekeeper to the community of practice of mathematics, 

establishing both ‘norms’ and ‘endorsed narratives’(Sfard & Prusak, 2005). 

Engagement structures are by no means fixed, but do emerge from common 

observable characteristics. Students can dip in and out of the positions suggested by 

these structures, sometimes showing characteristics of more than one structure, 

although at any one moment there will be a dominant structure, which directs their 

emotional reactions and hence their learning. Since Goldin et al. suggest that ‘different 

motivating desires may result in similar behaviours’ (2011 p550), this similarity 

implies there are a limited number of affective structures that encode current 

possibilities for the individual engagement structures for mathematics students. It also 

implies that, despite differing motivations for a mathematics teacher, the result may be 

similar structures. The nine original engagement structures that Goldin et al. (ibid.) 

suggest are: ‘Get the job done’; ‘Look how smart I am’; ‘Check this out’; ‘I’m really 

into this’; ‘Don’t disrespect me’; ‘Stay out of trouble’; ‘It’s not fair’; ‘Let me teach 

you’; and, ‘Pseudo engagement’ (p.553-557). 

To illustrate one of these engagement structures, ‘I’m really into this’ is in evidence 

when a student’s self concept appears to be that of a serious, involved thinker who 

values mathematical problem solving for its own sake, and is driven by an underlying 

mastery goal. This contrasts strongly with engagement structures such as ‘Stay out of 

trouble’ or ‘It’s not fair’, both representing lower levels of engagement. We illustrate 

more engagement structures later in the paper, when we consider the case of Adam. 

Goldin et al. (2011) mean to show patterns that are repeated or occur commonly; that 

are present in many different people and are therefore transferable. It seems reasonable 

to suggest that some recognisable patterns will also appear for mathematics teachers to 

form archetypal engagement structures. Here we examine this suggestion in the 

context of a study that involves secondary mathematics teachers in the UK.  

If evidence of such structures emerges likewise for teachers, then we may have a 

unified language to examine complex classroom interactions, especially emotional 

interactions. This would allow a closer examination of how the teacher functions in 

guiding and supporting shifts in engagement structures for students, particularly in 

ways that support their learning. This may also mean that we can begin to examine how 

a teacher limits or encourages certain engagement structures in students, both through 

which engagement structures they themselves adopt, and through setting norms in a 

classroom context. We may also then be able to examine the place of beliefs within 

‘in-the-moment’ interactions. Our experiences as teachers – and conversations with 

other teachers – suggest the viability of this plan and indicate a high degree of 

resonance and recognisability in these structures.  
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RESEARCH QUESTIONS, PARTICIPANTS AND DATA COLLECTION 

This paper draws on a larger study which enquires into how mathematics teachers 

perceive and feel about their subject, and how they share their emotional engagement 

with mathematics, especially enjoyment, with their students. 

The data collected for the full study comprises of three data sets for each participating 

teacher: data on their life history; lesson observations captured in video; and, 

post-observation discussions of video extracts where the teacher is asked to recall and 

articulate their emotions and thoughts during the incident presented in video extract. 

The selection of these extracts is guided by data collected through a galvanic skin 

sensor, worn by the teacher during the lessons, which records moisture changes in the 

teacher’s skin. These changes are taken (van Dooren, de Vries, & Janssen, 2012) as 

indicators of emotional shifts and, in our study, as potential indicators of shifts in the 

intensity – or otherwise – of the teacher engagement at given points in the lesson. The 

sensor generates a timed graph of aforementioned shifts. 

Participants to the study are UK secondary mathematics teachers who teach the age 

range 11 to 16 and are at various stages of their career, but not newly qualified. We 

have representatives from both urban and rural schools, and by gender and age. We are 

currently sampling across the school year, for example in early autumn, when norms 

are set with new classes. We expect to visit our teachers more than once. At the time of 

writing, data was being collected from twelve teachers.  

In this paper, we exemplify the proposed use of Goldin’s engagement structures in a 

small sample of our data, from one mathematics teacher, Adam. To this purpose we 

offer a snapshot of Adam’s practice in a rural UK secondary school and of his talking 

about mathematics and his teaching. We heard the teacher relating his life history and 

talking about an observed lesson whilst watching a selected part of the video recording 

of the lesson. The transcriptions from the three phases of the data collection (life 

history, recorded lesson, post-lesson interview) is a rich source from which to 

construct a profile of this teacher’s engagement structures, and to explore the place of 

his affect, as exemplified by the data, within his mathematical identity. 

ADAM’S AFFECT: AN OVERVIEW 

Adam, as evidenced from both interviews and observation of practice, values helping 

others, as he sees himself as being able to do mathematics when others cannot. He 

enjoyed his school work-experience helping primary children in mathematics: 

...I used to help students with their homework in the mornings, on the bus, in payment, 

[laughs] give me like a can of coke or a chocolate bar and I’d help them with their maths 

homework...  

Whilst training as a teacher, “...just having that opportunity to work with students and 

show them bits and pieces...” gave him a renewed enthusiasm for mathematics.  

Adam may then experience discomfort if he feels he has not helped enough, for 

example if students were leaving without full understanding, 
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...and this is where...possible...I was thinking [groans] they didn’t get this... so we thought, 

give them a bit to emphasise […]. So I don’t like it when students don’t get something. 

He evidently finds pleasure and satisfaction in his interaction with students, especially 

students who are willing to engage in effortful learning of mathematics,  

and um...teaching at that level, at that kind of GCSE/A-level pitch [UK age equivalent: 

15-19], I just get such a buzz […] when it starts to get a bit more um...like algebraic um....a 

bit more ‘mathsy’ and bits, when they get it, when they like it and love it like I do, it’s 

brilliant, I love it...hmm [sound interpreted as strong satisfaction and contentment]. 

Yet particularly in the short video extract of Adam’s teaching discussed during the 

interview, his motivation is primarily time, to cover the syllabus content quickly. He 

seems to value rapid pace, as in the utterance “I’ll show you something quickly to help 

tie this together”. The pace was clearly troubling him as he returned to this theme often, 

in the interview. For example: “I was talking quite a lot and we weren’t getting through 

the content as quick as we should have done.” 

He possibly experienced some discomfort or perhaps frustration in that the students did 

not have enough consolidation time and there would not be enough time to round off 

the lesson properly:  

...in the normal way...I think that I was also aware that again I hadn’t […] kind of switch 

off and just sit and let them do something for a longer period of time... 

There is evidence of competitiveness, which may be rooted in his stories about his 

early mathematical experiences. At about age 5, he says, in comparison to other 

children: “I was just able to do it...I just got any kind of numbers or anything.” 

Achievement was a repeating theme. At age 8, he was rewarded with early peer esteem 

for being good at mathematics. Adam’s story is about who was top in a test, and his 

empowerment when he got recognition from peers. 

However, vulnerability appears when Adam found university mathematics 

challenging. When other people were better at it, he “...lost the love a bit for 

mathematics.”  

A further thread in Adam’s stories is the place of significant others, in his case a high 

school mathematics teacher. Adam experienced successful learning in a ‘traditional’ 

practice orientated way (and the observation showed Adam also teaching 

‘traditionally’). Yet we also find that he kept an open mind about not being concerned 

about any mistakes in his board work, modelling accepting error as normal, “Yeh...I’m 

not fussed with that. It happens quite a lot. I always say to the students...I’ll make 

mistakes, and they’ll make mistakes...and there it goes.”  

Although all of the above is merely a snapshot of our data, we suggest that it reveals 

much about Adam and his potential engagement structures. We illustrate some of these 

next. 



Lake, Nardi 

PME 2014 4 - 53 

GOLDIN’S ENGAGEMENT STRUCTURES IN THE CASE OF ADAM 

Goldin et al. (2011) identifies for students ‘Get the job done’ through characteristics 

such as deference to establishment and following of the rules. In Adam’s case, these 

are also often the expected behaviours for a mathematics teacher: a need satisfied by 

achievement of the perceived obligations and through task completion regardless of 

whether, or what type of, learning is achieved. Such a position sees school 

mathematics as procedural. A story Adam tells about when his school was short of 

mathematics specialists at one point illustrates his unease with this position, “Um...so 

you kind of lose some of the nice bits of the job, all the perks, all the nice feeling, you 

are just trying to get the job done.”  

One of the conventional ‘expected’ behaviour and social interaction rules for success 

in mathematics is quickness (Black, Mendick, & Solomon, 2009). This is illustrated 

here by how Adam fulfils an identified desire for timely completion. The lesson 

observation data suggest that he inhibits comments or questions from the students in 

order to complete a mathematical task quickly and promptly. Yet he is not entirely 

comfortable with this, since he simultaneously engages in ‘in-the-moment’ behaviour, 

acknowledging by eye contact, use of ‘we’, and facial expression some student 

contributions, thus maintaining his approachable style. So, although we have examples 

of engagement within the ‘Get the job done’ structure within the data, we 

simultaneously have evidence that this is not entirely satisfying for Adam. 

A second engagement structure we have evidence for is ‘Look how smart I am’. A 

teacher adopting such a structure, as in the case of a student, would try to impress with 

ability or knowledge, both highly valued, and would give value to where self-regard 

has been increased. They would respond to an admiring audience and may have a 

performance goal orientation that includes competitiveness. Adam’s emphasis on pace 

and identified examples of competitiveness both in mathematics and in administration 

tasks places Adam within this structure at times. His losing some of his faith in 

mathematics, exactly when he was challenged at university and could not perform 

highly enough to meet the demands of this competitiveness, also reveals a perception 

of a need for affirmation that was unfulfilled, and the subsequent seeking of a new, 

more satisfying path. 

Yet Adam also exhibits elements of another engagement structure, ‘Check this out’, 

where value is given to utility yet also to mathematics solely as an enjoyable 

experience motivated by intrinsic or extrinsic reward, and includes both 

conscientiousness and consideration for what benefits there are in the activity. He 

seems to feel the need for completion of the activity, even if it means de-prioritising 

other aspects of learning, thus perhaps valuing utility. He also appears to find personal 

satisfaction in his own successes, both intrinsic and extrinsic. 

To a lesser degree there is some evidence of a further  engagement structure, ‘I’m 

really into this’, in Adam’s data. In the video he appeared able to focus 

single-mindedly on a task, exhibiting a desire to experience flow – complete 
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absorption in what one does and for tuning out of the rest of the world 

(Csikszentmihalyi, 1990). Goldin suggests that the underlying need within this 

engagement structure is for understanding i.e. a mastery/goal orientation. We would 

also suggest that Adam finds satisfaction in the experience of teaching itself, and in 

finding solutions to the challenges within his role. Both are strongly associated with 

this engagement structure. The satisfaction of mastery of teaching skills is perhaps 

illustrated through his use of idiosyncratic, observed yet subtle gesture and 

interjections, used to modify behaviour. These gestures were quick and clearly ‘norms’ 

for the group. For example, he used a rapid and directed ‘Shh’ for seeking the attention 

of the class, and he used the word ‘travellate’, which had meaning for this class (they 

were expected to assess their learning in the session) and the students immediately 

responded as expected. 

Yet, of all the engagement structures, we would suggest that the strongest match, 

(unsurprisingly) is with ‘let me teach you’, the strong evidence of a desire to help 

others understand and adopting a position of nurturance. Adam shows that he finds 

satisfaction in fulfilling this desire, and that this belief that he will find gratification in 

a positive response or appreciation is well established. This well established belief is 

evidenced when Adam talks about his own achievements, in particular the frequent use 

of a contented ‘hmm’ when he is proud of a remembered experience. Other examples 

include his statement that the students liking mathematics because they also like him is 

rewarding: “I think um...students I teach get that enthusiasm from me, and they like the 

subject.” 

Adam also used vocal tone and emphasis to stress mathematical points, and his 

speaking pattern was different for this purpose than for other parts of the lesson: the 

pace in these parts of the recording became slower and more repetitive. His voice had 

contrasting volume, and became louder for significant junctures in mathematical 

explanation. We would suggest that students, exposed to this pattern regularly, would 

soon ‘tune in’ to what Adam intended to highlight as important.  

TEACHER ENGAGEMENT STRUCTURES: AN EMERGING PERSPECTIVE 

The preceding analysis sample, based on data from observation, life history interview 

and post-lesson interview with one participant in our study, reveals more about 

Adam’s stable beliefs, as opposed to ‘in-the-moment’ emotional structures. This may 

be due to the broadness of the structures, especially what comprises ‘Let me teach 

you’, an issue which may later prove to limit the value of engagement structures for 

analysing interactions between teacher and student. Hannula (2012) also questions the 

stability issue, in that emotions are stable if the emotion patterns are similar in similar 

situations, becoming similar to beliefs which appear with particular triggers and this is 

what this analysis is revealing, and less about ‘in-the-moment’. This needs further 

investigation. 

Adam, experienced and comfortable in his role, very openly shows his shifting 

emotions in a classroom context. Therefore, his affective pathways (Gerald A. Goldin, 



Lake, Nardi 

PME 2014 4 - 55 

2000) are orientated into his beliefs and identity as a mathematics teacher. According 

to Hochschild (2003), emotions are generally managed according to organisational 

expectation rules, such as for display, framing and feeling. The role then becomes a 

baseline for appropriate emotional display, which we see as very much the case for a 

teacher of mathematics. Suppression may be evidence that the teacher is 

self-regulating his affect. We are not sure whether the teacher can, given role 

expectations, experience the meanings of a mathematics classroom as either 

emotionally engaged or disaffected in the same way as a student. We would, for 

example, suggest Adam appreciates and articulates times when he experiences class as 

pleasurable, yet is not so likely to reveal feeling bored, nervous, mean, mad or 

frustrated in class, as he may think that this would imply some valuing for  

unacceptable negative emotions.  

Nevertheless, a key part of engagement structures, meta-affect, a strand which G.A. 

Goldin (2002) suggests is ‘affect about affect’, provides stronger evidence to establish 

any engagement structures in the case of a teacher. The teacher is more likely than a 

student to reflect emotionally on experienced emotions, including self-monitoring of 

their emotions (DeBellis & Goldin, 1997; DeBellis & Goldin, 2006). For example 

when, as discussed earlier, Adam adds a contented ‘hmm’, he seems to be assigning 

positive attributes to the described emotion. One could interpret this unconscious purr 

as the very act of internally experiencing affect as a transformative tool for converting 

the experienced affective pathway into a positive experience or a more permanent 

belief. If this interpretation is valid, then such a response indicates the presence of an 

engagement structure since, according to Gerald A. Goldin et al. (2011), it is the 

structure that evokes meta-affective responses. 

So, to address our intended use of the model as a tool for analysis, there may also be 

new positions emerging as the research progresses and the model is applied to other 

teachers. However, we think at this stage that similar structures apply to teachers as 

well as to students, but with important provisos. Engagement structures for teachers 

cannot be divorced from the differentiated power relationship between teachers and 

students, and norms play a significant role as regulators of classroom behaviour 

management. For Adam, there seems to be a high level of norm setting in the 

relationship with students, which appears to facilitate the opportunities for learning in 

his classroom. Norm setting may therefore act in combination with Adam’s beliefs, 

acting as both promoter and limiter of ‘in-the moment’ interactions. Approaching the 

data in this way has revealed this strong association. 

To conclude, we would tentatively concur with Goldin’s (2011) suggestion that the 

value of engagement structures lies in enabling practical access to the complexity of 

teacher emotions as they engage in teaching mathematics and that developing a deeper 

understanding of these structures could provide a unified tool towards deeper 

understanding of the interplay between teacher and student emotions. 
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COOPERATION TYPES SPECIFIC FOR BARRIERS 

Diemut Lange 

Leibniz Universität Hannover 

 

We present the results of a study analysing the cooperative behaviour of fifth-grade 

student pairs when they have to overcome a difficulty (a barrier) in a mathematical 

problem task. As analysing method we used content analysis as well as frequency-tests 

(χ²-test, CFA, Freeman-Halton-test). Our results help to confirm and elaborate the 

vague assumptions about cooperation types occuring at barriers based on the results 

of existing studies. In addition, our results suggest that ‘presenting an idea of how or 

why to do sth.’ could be relevant for overcoming the barrier in a pair. 

It could be useful to solve a mathematical problem in a group: “The reasons given for 

the use of group work in problem solving include the opportunity for pooling of ideas, 

the natural need that arises to explain and express ideas clearly, and the reduction in 

anxiety for tackling something hard” (Stacey 1992, p. 261). If students reach a difficult 

point, they can stimulate and encourage each other to elaborate and question ideas. But 

surprisingly Stacey’s study (Stacey 1992) as well as other studies suggest that there 

doesn’t exist such an easy connection like ‘groups solve math problems better than 

individuals’. This study will provide a more nuanced view to this phenomenon by 

describing the cooperation types specific to problem solving.  

THEORETICAL FRAMEWORK  

In mathematics as well as in psychology, a problem is understood as a task in which the 

problem solver has to overcome at least one difficulty or barrier (e.g. Dörner 1979). In 

contrast to a problem, in our study a routine task is taken to be a task without such a 

barrier for the problem solver. Thus, if the task is a problem or a routine task depends 

on the problem solver who tries to solve the task (e.g. Schoenfeld 1985). The term 

barrier is circumscribed vaguely in the literature (e.g. Schoenfeld p. 74: “intellectual 

impasse”). In our study a barrier is defined as a passage in a solving process where a 

solver does not perform something self-evidently and cannot remember essentials for 

solving. For example a person hesitates what to do next or questions the last ideas. For 

solving the problem the solver can work heuristically.  

In our study we are interested in describing the kind of cooperation at barriers (for our 

understanding of cooperation see below). Only a few studies differentiate between 

separate cooperation types (e.g. asking, checking, explaining) and connect them with a 

difficulty in a problem. The research results suggest that there might be cooperation 

types specific for barriers and hints at these cooperation types.  

Gooding and Stacey (1993) analysed cooperation-processes when students were 

working on difficult tasks in mathematics. For that, they modified a coding system 

which Sharan and Shachar used for tasks in geography and history. Gooding and 
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Stacey coded the categorie thinking aloud more frequently than Sharan and Shachar. 

The researchers explained this difference with the distinctions in the nature and the 

difficulty of the tasks: In order to solve these tasks students have to spend more time in 

understanding difficult ideas and in stating a problem over and over.  

Apart from this cooperation type, students possibly cooperate at barriers more 

frequently in types which focus on the ‘how’ (e.g. explanations, elaborations and 

demonstrations) rather than in types which focus on the ‘what’ (informative) or on the 

‘why’ (evaluative). So, Hertz-Lazarowitz (1989) compared the cooperation types 

when students were working on a low-cooperative task with the types when students 

were working on a high-cooperative task (working on the task-process together). If the 

task was interpreted as high-cooperative, the students discussed most frequently on the 

how-level.  

In addition, there might be a difference in cooperation types if only one student has a 

barrier or if both students have the barrier. So, Goos et al. (1996) observed that if the 

relative expertise of the students is unequal, the dominant cooperation type is peer 

tutoring – in the other case collaboration (if there is a degree of challenge for the 

students inherent in the task). 

In sum, we hypothesize that there might be cooperation types specific for barriers. So 

the research results give hints for these cooperation types (thinking aloud, peer 

tutoring or collaboration). We also assume that students who have to overcome a 

barrier interpret the task as high-cooperative. So students are expected to cooperate at 

barriers most frequently on the how-level. In addition, the distinction ‘barrier only for 

one student’ and ‘barrier for both students’ might be suitable for our research purpose. 

But the assumptions based on these research results remain superficial, since the 

researchers use different definitions of the terms barrier and cooperation.  

Consequently, the research questions explores the characteristics of cooperation types 

specific for barriers. In order to get precise results, we will differentiate between 

cooperation types that (a) occur only at barriers and not in the rest-process, that (b) can 

be found more frequently at barriers than in the rest-process, and that (c) appear both at 

barriers and in the rest-process but bear special characteristics when employed at a 

barrier. 

As a system for cooperation types we don’t use one of the systems in these three 

studies because the differentiated types are either too rough for describing the 

cooperation behaviour at barriers (Hertz-Lazarowitz and Goos et al. differentiate only 

between three different cooperation types) or not suitable to model the whole 

cooperative behaviour in the own data (Gooding & Stacey). So, we build upon 

Naujok’s definition of cooperation (Naujok, 2000, p.12: “every kind of task-related 

interaction”) and her task-related cooperation types explaining, asking, comparing, 

prompting and copying: Her understanding of cooperation as an “empirical 

phenomenon” (p. 12) is more useful for our study than the definition as an ideal way to 

work together (Slavin, 1983), since first of all we aim at describing the cooperation 
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behaviour without a normative direction and since we expect various kinds of 

cooperation when solving mathematical problems. In a former study (Lange, 2012) we 

modeled the variety of cooperation acts when solving mathematical problems. We 

adapted and completed the list of cooperation types (see below).  

DESIGN AND METHOD  

Study: Between November 2008 and June 2010 we organized a math club at the 

University of Hanover (MALU), an enrichment project for fifth-grade students (age 

10-12). In this math club the students had to solve one or two mathematical problem 

tasks in pairs one afternoon a week. After working in pairs, we discussed possible ways 

to solve these tasks with the whole math club group. Based on the results of two tests (a 

general giftedness test CFT-20R, a mathematical giftedness test) we selected a group 

of 9 to 14 fifth-graders with different results for each of the four MALU semesters (for 

more details concerning the tests see Gawlick & Lange 2011). Since the kind of 

cooperation may depend on the composition of a pair, we arranged homogeneously as 

well as heterogeneously composed pairs (criterium: test results), pairs which were held 

constant during the semester as well as pairs with changing partners.  

The problem solving processes were videotaped and the students’ notes were collected. 

In addition, a log was kept of the children’s main thoughts and the observers’ 

subjective impressions. 

Tasks: Cooperation and the kind of barrier possible for fifth-graders in the tasks may 

vary with different problem tasks, so we looked at task-collections (e.g. competition 

tasks) and problem solving books, analysed the tasks and chose tasks with different 

features. Fifth-graders should be able to solve the chosen problem solving tasks with 

their mathematical knowledge. Two of the tasks we presented are the following: 

The seven gates (Bruder 2003, p. 12) 

A man picks up apples. On his way into town he has to go through seven gates. There is a guardian at each 

gate who claims half of his apples and one apple extra. In the end the man has just one apple left. How many 

apples did he have first? 

Oh yes, the chessboard (idea: Mason et al. 2010) 

Peter loves playing chess. He likes playing chess so much, that he keeps thinking about it 

even when he isn’t playing. Recently he asked himself how many squares there are on a 

chessboard. Try to answer Peter's question! 

 

 

Figure 1: Two problem tasks 

Evaluation Method: Because of the large amount of data and in order to receive a 

maximum diverse sample of cooperation types and barriers, we selected a 

cross-section from the data (different pairs, different semesters, different tasks) – 

altogether 23 processes (the analysing method is very time-consuming). The 

videographies of the processes were transcribed, and the transcripts were revised 

before the coding process started. As coding method for identifying cooperation acts 

and barriers we used qualitative content analysis (Mayring 2008).  
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In reference to cooperation, we were able to build upon Naujok’s cooperation acts and 

upon her descriptions of the cooperation phenomenon (see above). Since the setting in 

Naujok’s investigation (routine tasks, tasks from different subjects in school, younger 

students, school setting) differs in some kinds from our setting, the cooperation acts 

were collected on the one hand deductively from her study and on the other hand 

empirically from the MALU-transcripts (for more details in the development of the 

coding system see Lange 2012). The following table represents an excerpt from the 

original coding system for cooperation types (some cooperation types are explained 

together). An important point is the differentiation between the cooperation on the 

what-, how- and why-level. The why-level-cooperation in our study involves giving 

reasons and evaluating something. If students discuss products like results / answers or 

part of results / answers, they cooperate on the what-level – if they are interested in 

possibilities to understand or solve the task, they cooperate on the how-level. In our 

transcripts students use the terms how and why not selectively, partly even 

synonymously, that means they ask for example for reasons (why), but get an answer 

on the how-level (“first I did ..., then I did ...”). Therefore we cannot differentiate 

between these two levels (how- and why-level). If the interaction takes place visually, 

we defined this as non-verbal, otherwise as verbal. 

presenting an idea One person mentions an idea about a possible solution or about possible parts of the 

solution path (e.g. next steps, task-features, argumentation) before this person has solved 

the task or the parts of the solution path, which the person presents. 

informing about 

sth. 

One person says her/his (part) solution or says how she/he solved the task or parts of the 

task. 

helping One person has an advance in knowledge belonging to a part of the task and shares this 

knowledge with a partner within this cooperation type. The person can write it down 

(passing sth. non-verbally) or prompt or explain it. The partner can also be active by 

copying information from the person’s notations. 

comparing sth. At the moment of comparing the comparing persons have solved the part of the task, so 

they (or only one person) inform themselves about this part of the task ((part-)result, 

(part-)answer, process-step, whole process) of the other person. 

evaluating, 

checking,  

pointing out a 

mistake 

If persons check something, they go through the solution path and reflect the steps. 

Instead one person can point out a mistake or can assess the correctness or usefulness of 

something (evaluating). These three cooperation acts occur in the MALU-processes as 

saying-what as well as as saying-how. In the case of these acts the person could either 

have the solving step already done or haven't yet. 

commenting on 

the task 

The persons say something about the task (e.g. familiar, funny) or comment on the 

difficulty of the task (e.g. easy, difficult). 

asking One person asks sth., the partner responds. In order to reduce an overlap, this category is 

only coded, if the passage cannot be subsumed under another category. 

Table 1: Excerpt from the coding system for cooperation types 

The transcripts were coded in two steps: First, we marked the points if something 

changes (cooperation theme, cooperation type, cooperation into non-cooperation or 

reverse). Second, we dedicated a cooperation type-label to the marked out 

transcript-passages. 
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Belonging to barriers in the process, we started with the formulated definitions (see 

above) and coded first all barriers in the process. In a second step we decided, if only 

one person face the barrier or if both students experience the barrier. As signs for a 

barrier we observed among others the following aspects: A person says that she doesn’t 

know or that she’s unable to do something / A person does something not 

self-evidently (e.g. she/he hesitates or questions something). / A person changes the 

perspective or has an illumination. 

We trained three students in coding with both category systems. For the first (marking 

the begins of new cooperation-phases) and the third decision (decision for a barrier) the 

pairwise interrater-agreement varies between 60% and 69%. For the second decision 

(labeling the marked cooperation-phases) Cohen’s Kappa varies between 0.64 and 

0.68. Also the percentual-agreement-values can be termed as good because we only 

considered those transcript-passages where at least one person coded a 

cooperation-change or a barrier. After coding independently, we discussed the 

decisions where we disagreed, and coded jointly.  

For answering the second part of our research question (b) (if certain cooperation types 

occur more frequently at barriers than in the rest-process), we used the kx2-χ²-test with 

the CFA (Configural Frequency Analysis) as a posthoc-test. Since the codings are 

independent of each other and since every passage can be coded clearly, two of the 

three test-assumptions are fulfilled. As the third test-assumption (at least 80% of the 

expected frequencies should be greater than or equal 5) is not fulfilled in our study 

(although it is disputed), we also did the Freeman-Halton-test as an exact test. 

RESULTS  

Among the 23 chosen processes for analysis we coded 38 barriers in 16 problem 

solving processes. At about 82% of the barriers, the students cooperated. In figure 2 the 

cooperation types occuring at barriers are marked in bold. The non-marked 

cooperation types occurred only in the rest-process. The superficial assumption that 

none of Naujok’s cooperation acts (blue-grey background) but only the added 

cooperation types (white) could be observed at barriers proved incorrect. 

Comparing-types as well as some of the evaluating-types first of all help to uncover a 

mistake, so that these types do not occur in the context of discussing a barrier. The 

helping-types copying, prompting and passing sth. non-verbally are used to get 

information – often without questioning this information. However, the question 

remains whether the cooperation type informing about how or why have done sth. 

occur at barriers. Perhaps students only seldomly question these contents (see Goos 

2002 for reasons for metacognitive failure). 

Regarding the three above formulated criteria, we found the following results: None of 

the cooperation types were observed only at barriers (a). For analysing how far the 

second criterion (b) is fulfilled, we first summarized the cooperation types each 

belonging to helping, presenting, informing, comparing, evaluating and other types. 

This approach seems to be useful for testing purposes (otherwise: many cells with an 
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asking 

expected frequencies smaller than 5) and also possible because of the contentual 

relationship of the types belonging to the same cooperation intention. For this analysis 

we take all transcripts from two tasks (see fig. 1) into account, in order not to distort the 

quantitative results through sporadic chosen problem solving processes. See table 2 for 

results (expected frequencies in brackets). 

 non-verbal verbal 

 ...what ...how ...what ...how …why 

    

 

 

 

 

 

 

  

 

 

   

      

      

       

[blue-grey: Naujok’s cooperation types;  white: added cooperation types] 

 

Figure 2: Cooperation types occuring at barriers (marked boldly) 

cooperation intention barrier rest-process Σ 

helping 2 (2.81) 20 (19.19) 22 

presenting 14 (6.77) 39 (46.23) 53 

informing 0 (3.45) 27 (23.55) 27 

comparing 0 (2.68) 21 (18.32) 21 

evaluating 4 (4.60) 32 (31.40) 36 

other types 3 (2.68) 18 (18.32) 21 

Σ 23 157 180 

Table 2: Contingency table – cooperation types at barriers vs. in the rest-process 

The 6x2-χ²-test as well as the Freeman-Halton-test gave a significant result: both-sided 

test, χ²=16.28>11.1= χα,df²  df=5 (the significance level α=0.05 is appropriate, because 
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the study is an explorative one). The effect is medium-sized (w≈0.3). The 

configuration presenting / barrier can be accepted as statistical ascertained 

(CFA-results: γ≈0.0085≤0.05=α=α*). That means the cooperation intention presenting 

occurs significantly more frequently at barriers (14) than expected (6.77) (shaded in 

grey in tab. 2). By calculating the χ²-values for both presenting-types separately, we 

found that the above mentioned statement is only true for the cooperation type 

presenting an idea of how or why to do sth. (χij²==14.46>3.84= χ0.05,1²). So, only this 

cooperation type occurs significantly more frequently at barriers than expected. 

With regard to the cooperation type presenting an idea of how or why to do sth. we had 

enough transcript passages in order to compare the appearance at barriers with the 

appearance in the rest-process (c). In the rest-process this type was coded when 

students proposed a procedure for solving the next steps or when students considered 

or implemented an idea. On the contrary at barriers this type was coded when students 

didn’t know how to proceed next or how far the previous ideas were appropriate for 

solving the problem. In sum, based on this cooperation type we found manifestations 

occuring only at barriers and others we found only in the rest-process. 

DISCUSSION AND CONCLUSIONS 

Our results are compatible with and elaborate the results found in the three studies 

referenced in the theoretical section. Gooding and Stacey’s cooperation type thinking 

aloud contains facets from both presenting-cooperation acts. Both types occur at 

barriers (fig. 2), but as elaboration of their result only one type, namely presenting an 

idea of how or why to do sth., appeared more frequently at barriers than expected.  

The assumption that barriers occur more frequently in high-cooperative than in low- 

cooperative tasks is correct for our data: For that we recoded the MALU-transcripts in 

terms of low- and high-cooperative-processes. In accordance with Hertz-Lazarowitz’ 

results, at barriers students cooperated most frequently on the how-level. Our results 

offer two specifications: Only the type presenting an idea of how or why to do sth. 

represents the type the students cooperated in most frequently. In addition, students 

cooperated at barriers not only on this level, but rather on the other two levels.  

Also with regard to the results of the third study, our results can help to differentiate the 

statements: So, we observed not only helping-types if only one person has the barrier, 

but also for example presenting-types. Further research is needed concerning the 

differentiation between a barrier only for one and a barrier for both students: Our 

results couldn't confirm the results found by Goos et al. (1996). One reason might be a 

(possibly too) small data-base for this differentiation in our study. 

All together, our results confirm the vague studies’ results. Beyond this, our system 

allows for more specific predictions because our types are finer with more facets. In 

addition, we now can make a statement about the types at barriers as well as about 

quantitative connections between cooperation acts and the occurrence of barriers. 
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Our results suggest two additional conclusions: Firstly, because of our results to the 

first criterion (a), one cannot decide if students contemporarily have to overcome a 

barrier only based on the cooperation types. But the results to the third criterion (c) let 

us assume that this is possible when we distinguish between different manifestations 

related to each cooperation type. Secondly, our results emphasize the relevance of the 

cooperation type presenting an idea of how or why to do sth. for problem solving in 

pairs, because amongst all cooperation types at barriers this cooperation act appeared 

at barriers most frequently and furthermore significantly more frequently at barriers 

than in the rest-process. With a view to learning theories, cooperation in this type 

might help to overcome the barrier in pairs. 
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EXPLAINING MATHEMATICAL MEANING IN “PRACTICAL 

TERMS” AND ACCESS TO ADVANCED MATHEMATICS  

Kate le Roux 

University of Cape Town 

 

This paper uses a socio-political practice perspective of mathematics to investigate the 

action of first year university students as they work in small groups to explain the 

meaning of mathematical objects in “practical terms”. Written transcripts 

representing video recordings of the action were analysed using critical discourse 

analysis and focal analysis. I present a description of the micro-level action and locate 

this action relative to the mathematical discourses in the university space. This 

analysis raises questions about the relationship between problems requiring the use of 

the practical terms genre and access to advanced mathematics at university. 

INTRODUCTION 

The relationship between practical problems
1
 and access to school mathematics has 

been in view in mathematics education research for the past two decades. The 

sociological work of Basil Bernstein and Paul Dowling has been used extensively in 

this research, with this and related research showing that solving practical problems 

involves recognising the practical/mathematical boundary (e.g. Straehler-Pohl, 2010) 

and the esoteric domain knowledge driving the recontextualization of the practical 

(e.g. Gellert & Jablonka, 2009). It has been argued that possession of these recognition 

rules is not equally distributed across social class (e.g. Cooper & Dunne, 2000), with 

Nyabanyaba (2002) arguing that student agency in choosing not to answer certain 

practical problems in high-stakes examinations is enabled by socio-economic status.  

In this paper the relationship between practical problems and access to advanced 

mathematics
2
 at university is in view. I focus on problems requiring students to explain 

the meaning of mathematical objects in “practical terms” (see Figure 1). The design of 

this problem draws on calculus reform texts of the 1990s. These texts argue that 

“formal definitions and procedures evolve from the investigation of practical 

problems” (Hughes-Hallet et al., 1994, p.vii) and that explanations in “practical terms” 

(p.vii) strengthen the meaning students attach to mathematical objects. The transition 

from intuitive to advanced calculus has long been a concern in mathematics education 

research. However, the role of practical problems in this transition has traditionally not 

been in view in the psychological research on advanced mathematics (e.g. Tall, 1991) 

                                           
1
 My use of this term is consistent with its use in calculus reform texts (e.g. Hughes-Hallet et al., 

1994). The literature variously uses realistic problems, real-world problems, and word problems. 
2
 I use this term for the formal abstract mathematical practice at university (called advanced 

mathematical thinking in much of the literature, e.g. Tall, 1991). At South African universities, first 
year mathematics is preparation for advanced mathematics in the second year of undergraduate study.   
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and the untheorized evaluation studies of calculus reform curricula (e.g. Garner & 

Garner, 2001). A recent trend sees the uptake of sociological and systemic functional 

linguistic perspectives in research on undergraduate mathematics (e.g. Jablonka, 

Ashjari & Bergstrom, 2012), and this paper is part of this move. 

A flu virus has hit a community of 10 000 people. Once a person has had the flu he or she 

becomes immune to the disease and does not get it again. Sooner or later everybody in the 

community catches the flu. Let P(t) denote the number of people who have, or have had, 

the disease t days after the first case of flu was recorded. 

c) What does P(4) = 1 200 mean in practical terms? (Your explanation should make sense 

to somebody who does not know any mathematics.) 

d)  What does 350
47
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 mean in practical terms? Give the correct units. 

e)  What does P (4) = 400  mean in practical terms?  

Course Answers:  

c)  4 days after the first recorded person got flu, 1200 people had the flu. 

d)  From the 4
th

 to the 7
th

 day after the first recorded person got flu, the number of people 

on average who had the flu was increasing by 350 people per day. 

e)  4 days after the start of the epidemic, the number of people who had the flu was 

increasing by 400 people per day.  

Figure 1: The Flu Problem, questions (c) to (e), with course answers in italics. 

This paper investigates the action of students on the questions in Figure 1. The students 

are enrolled in a first year university mathematics course (called foundation 

mathematics) at a South African university. The course aims to provide 

epistemological access to advanced mathematics for students considered educationally 

disadvantaged on the basis of their race, socio-economic status and language. A pass in 

this course provides formal access to advanced mathematics courses. I use a 

socio-political practice perspective of mathematics (a) to describe the student action, 

and (b) to ask whether this action reproduces or diverges from the university 

mathematical discourses. This analysis problematizes, at the level of the individual 

student, the relationship between using practical terms and advanced mathematics.    

THEORETICAL FRAMEWORK  

The socio-political practice perspective of mathematics used in this paper is based on 

Fairclough’s (2001, 2003, 2006) critical linguistics, work that draws on Bernstein’s 

sociology and the systemic functional linguistics of Halliday. For the description of 

mathematical discourse I use Morgan (1998), Moschkovich (2004) and Sfard (2008). 

In this perspective, the student action as text is located in the socio-political practice of 

foundation mathematics. Language (or mathematical discourse) is used in the practice 

to represent mathematics, with the discourse type of foundation mathematics involving 

particular ways of talking about and looking at mathematical objects, of operating on 
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objects, and of making and evaluating arguments. Language is used to interact 

communicatively (the genre), making discursive links between texts and practices, and 

between students. Lastly, language identifies the students as particular types of people 

(the style).The term practical in this paper recognises the “relationship of 

recontextualization” (Fairclough, 2006, p.34) between foundation practice and the 

virus in epidemiology, with the discourse types, genres and styles in the latter practice 

“filtered” (Fairclough, 2003, p.139) by the recontextualising mathematical practice. 

In this perspective, using practical terms to describe mathematical objects is a genre. 

Using the genre involves, for example, looking at the spread of the flu mathematically 

as an increasing function and looking operationally at the subtraction P(7)–P(4) as the 

change in the number of people who have or have had the flu (Le Roux & Adler, 2012). 

The absence of mathematical words like “rate” is a key evaluation criterion in the 

genre. Practical terms are sourced via links to the problem text and the course lecture 

text where the genre was demonstrated prior to answering the Flu Problem. Students 

interact socio-politically as they talk in small groups. At the university at which this 

study was conducted this genre is restricted to foundation mathematics, its use thus 

identifying the students in the style of foundation students.  

The student action as text that is the focus of this paper is, according to Fairclough 

(2001), shaped by / a repetition of the mathematical discourse of the foundation 

practice. In fact, the students are enabled to act, provided this is within the constraints 

of the discourse. Yet the text also creates meaning and how it represents mathematics, 

interacts communicatively, and identifies students may diverge from the discourse 

type, genre and style respectively of the foundation practice. This is a result of the text 

cutting across practices and the agency of students. Fairclough (2001) points to likely 

asymmetries in the extent to which students resist the constraints of the discourse.   

Thus from this perspective, answering the research questions in this paper involves, 

firstly, describing the mathematical, discursive and socio-political action of the 

students. Second, I consider whether this meaning reproduces or diverges from the 

discourse types, genres and styles of the university mathematical discourses.    

METHODOLOGY 

The texts used in this paper are from a wider study of the use of practical problems and 

a learner-centred pedagogy in the foundation course (Le Roux, 2011).
3

 Video 

recordings of students working in small groups were transcribed to represent the 

non-verbal action (shown in bracketed italics) and the verbal action. For the latter, 

pauses are represented using three points..., emphasis is marked by underlining, rising 

intonation shown by the up arrow , and square brackets [ ] enclose overlapping talk.  

                                           
3
 I thank Jill Adler for her supervision of the wider study. I also acknowledge the research funding 

provided by the National Research Foundation (Grant No. TTK2006040500009). The opinions, 
findings and conclusions are those of the author and the NRF does not accept any liability in regard 
thereto. 
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For the analysis, the theoretical view of text as both repetition and creation was 

operationalized using Fairclough’s three-stage method of critical discourse analysis. 

The specific action on mathematical objects was brought into view using an adapted 

version of focal analysis (Sfard, 2000). First, the descriptive stage involved working 

line by line through the transcript to identify what students are looking at (the attended 

focus) and saying or writing (the pronounced focus). The latter was analysed in detail 

to identify textual features such as the choice of words, the tense and the mood. The 

interpretation stage involved working across longer pieces of text to identifying what 

meaning these features give to the mathematical discourse. For example, specialist 

terms may represent the text as mathematical, and rising intonation at the end of a 

statement may identify the student’s claim as tentative. Finally, I consider the 

mathematical discourse of the students in relation to the discourse-types, genres and 

styles of the foundation and advanced mathematics practices.    

In this paper I present the texts of two groups of five students each, with pseudonyms 

Bongani, Lungiswa, Mpumelelo, Siyabulela and Vuyani used in Group A and Hanah, 

Jane, Jeff, Lulama and Shae for Group B. The similarities and differences between the 

groups as they work with the function and both the average and instantaneous rate of 

change of this function enable a rich description of the student action. I note here that 

these groups are mixed with respect to gender, home language, socio-economic status, 

race and schooling, a point I return to at the end of this paper.  

DESCRIPTION OF THE STUDENT ACTION 

Describing the function value P(4) = 1 200 in practical terms  

The students write practical descriptions of P(4) = 1 200 relatively quickly. They 

evaluate one another’s verbal pronouncements about the two variables, for example, 

“After 4 days” for the independent variable. Shae looks at the problem text to identify 

that “t is in days”, but the students do not repeat the description of this variable in that 

text, where t represents the number of days “after the first case of flu was recorded”. 

The use of the preposition “after” for the time when four days have passed reproduces 

the course lecture text.  

To describe the dependent variable, some students repeat the problem text (“1 200 

people will have it or have had it”, Jane). It is not possible to tell whether they are 

simply copying the problem text or actually looking mathematically at P(t) as an 

increasing function, a gaze needed in some parts of the Flu Problem. Other students 

reword the problem text to people who “have been infected” (Hanah) or “are infected” 

(Lungiswa). The students’ lack of attention to variations in tense may suggest that they 

are acting in the style of students solving word problems; Gerofsky (2004) argues that, 

since these problems are only a pretence of the real world, inconsistencies in tense are 

not considered a problem by students familiar with the word problem genre.  

While co-constructing answers in practical terms, Siyabulela and Lungiswa in Group 

A express surprise at the large number of people infected; Lungiswa laughs as she says 
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“That’s too much”. Referring to the nameless “somebody” in question (c), Shae in 

Group B asks Jeff, “If he doesn’t know any mathematics, don’t we have to teach him 

numbers and stuff?” They link this action to the “yellow books” called “Maths for 

Dummies”. Thus these students give significance to mathematical action, with 

Siyabulela and Lungiswa only pretending that the flu virus exists (Gerofsky, 2004) and 

Shae and Jeff representing the practical terms genre as targeting “dummies”.     

Describing the average rate of change in practical terms 

Characteristic of the action in Group A, in lines 375 to 381 Siyabulela and Lungiswa 

co-construct the first verbal pronouncements, seeking feedback (the rising intonation 

↑) and giving feedback (“ja”).  The words “from four to seven days” suggest that they 

are looking operationally at the denominator of the fraction 
47
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 , with the 

subtraction representing the change in time. Their choice of prepositions “from…  

to…” reproduces their lecture text, although they do try out “between”. Siyabulela’s 

use of the unit “people” rather than “people per day”, and his evaluation of his peers’ 

pronouncements as described later in this section, suggests that his operational view 

does not extend to the numerator as the change in the number of people infected and 

the division as the change in the number of people infected relative to time.  

375 Lungiswa:  What does mean in practical terms↑° ((Reads text))... From four to 
seven days  

376 Siyabulela Oh... ai that one is bet... that one is between seven uh  

377 Lungiswa: Four to seven days 

378 Siyabulela: Oh ja… four to seven days… the number of people infected 

379 Lungiswa: Uh huh↑ Between ↑… ja 

380 Siyabulela: Ja [from four to seven days]… 350 people were infected↑ 

381 Lungiswa:  [from four to seven days] 

Vuyani enters the discussion with a tentative suggestion (using the imperative mood 

and the negation “aren’t”); “Aren’t we supposed to include the word... average?” He is 

looking structurally at the fraction as an object and linking to the lecture text where 

“the… word average” is used for such objects. This prompts other students to look 

structurally at the fraction (“this one” and “this”) as an average rate of change; “It’s the 

average this one”, and “This is a rate of change”. However, Lungiswa reminds her 

peers about using “practical terms”, and the students proceed to verbally insert “the 

word... average” into Siyabulela’s first attempt in line 380, as in “the average in the 

number of people were… ” (unidentified), and “… between that period of 4 and 7... 

there were like … how many people infected? Ja like 350 people ... on average 

average” (Bongani). However, trying to produce what sounds right in the lecture text 

ends in frustration, suggested by Bongani’s loud, “Aargh”.  

As usual, Siyabulela acts as an authority in the foundation practice by, firstly, 

critiquing Mpumelelo’s use of “a mathematical term” in “rate of infection”. Yet his 

laughter mocks the practical terms genre.  Secondly, he dismisses as “the derivative” 
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Bongani’s use of “increasing” in “the number of people were increasing that were 

infected by 350”. Since Bongani may be looking operationally at the subtraction 

P(7)–P(4) as required in the genre, Siyabulela diverges from his usual role as the 

student who enables the action in Group A. Not knowing how to proceed, the students 

discuss the prepositions and whether their choices are “bad English” (Siyabulela).   

The Group B students initially view the fraction 
47
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 PP
 as an object linked to the 

words “average” and “rate of change”. They also insert the word “average” into talk 

about the function (“the average... people who will be infected is 350... from”, Jane). 

Two actions enable a shift from testing what sounds right relative to the course. Firstly, 

Hanah’s attention to the units (“the average amount... per day”) suggests she is looking 

operationally at the division. Secondly, Lulama links the words “average” and “rate of 

change”; “is this an average or an average rate of change?” Attention to the voices of 

Lulama and Hanah is rare in this group, yet progress is made in the practical terms 

genre, for example, “From 4 to 7 days the average number of people infected per day 

are 350 people”.  Shae is the exception, using the “rate of change” in his answer. 

Describing the instantaneous rate of change in practical terms 

In Group A Siyabulela and Bongani link the symbols P(4) to their earlier talk about 

“the derivative”. Bongani avoids mathematical words by naming it “my thing thing”. 

As usual, Lungiswa and Siyabulela begin to co-construct verbal answers in practical 

terms. Lungiswa’s initial description of the independent variable (“After each four 

days”) reproduces the preposition in the lecture text, with Siyabulela refining this to 

“After four days”. Siyabulela then adds the meaning of the dependent variable, using 

Bongani’s word “increasing”; “the number of people… who were infected were 

increasing by… 400 per day”.  The other students join in, and considerable effort is 

made to produce practical wording that sounds right (irrespective of the tense).   

In contrast, the Group B students complete question (e) at different times and use 

mathematical words. As usual, Jeff and Shae begin and, after stating words like “rate of 

change” and “instantaneous” settle on “infection rate” in their writing. Answering 

question (e) later, Jane and Hanah identify Jeff as the authority in the practice, relying 

on him to confirm or rework their words. In one such version Jeff uses practical terms 

only (“at day 4, 400 people per day are being infected), although he gives significance 

to mathematical terms in his writing. For the time variable the students switch between 

the prepositions “after” of the lecture text and their own “at” for “instantaneous”. 

Lulama does not talk with his peers and writes “average rate of change”.    

DISCUSSION  

Using practical terms involves students verbally stating the meaning of the variables 

and reworking and adding to one another’s talk, action that is initiated by the students 

who identify and are identified as authorities in the foundation practice. Words from 

the problem and lecture texts are combined to sound right. Progress is enabled or 
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constrained by the group interaction, as students invest in or resist the style of students 

who collaborate in groups and as the authorities in the practice control who has a voice.   

Viewing this action relative to the discourse-types, genres and styles of the university 

mathematical discourses raises concerns about the relationship between the practical 

terms genre and advanced mathematics. Firstly, it is possible that, by repeating words 

in the problem and lecture texts and ignoring inconsistent tenses, students use the 

practical terms genre without recognising the esoteric domain knowledge of calculus 

as intended (Gellert & Jablonka, 2009). Secondly, the students’ jokes about the genre 

suggest that they recognise the practical/mathematical boundary (Straehler-Pohl, 

2010). Yet they still invest considerable time using the genre, sometimes 

unsuccessfully. It may be that not repeating the genre involves, in Lulama’s words, 

being “wrong” in the foundation practice, a practice that provides formal access to 

advanced mathematics. Paradoxically, using this genre requires producing meaning in 

the public domain which does not provide access to the vertical mathematics practice 

(Dowling, 1998) and, in question (d), looking operationally at an object rather than 

structurally as valued in the vertical practice.  

Finally, some students (e.g. Shae and Jeff) appear to resist using the practical terms 

genre more easily than others (e.g. Lulama and Lungiswa). It may be that, like the 

students in Nyabanyaba’s (2002) study, Shae and Jeff choose not to reproduce 

foundation questions targeting “dummies” in the knowledge that they can still pass the 

course. I note at this point that Shae and Jeff would not be classified as educationally 

disadvantaged in the South African context and only joined the foundation class after 

performing poorly in the first assessments in the mainstream mathematics course. 

While the conceptualization of this study does not allow claims in this regard, there is 

scope for an investigation of whether the foundation practice acts in reproductive ways 

with respect to race, socio-economic status and language.   
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We argue that the teaching practice of productively using student mathematical 

thinking [PUMT] needs to be better conceptualized for the construct to gain greater 

traction in the classroom and in research. We report the results of a study wherein we 

explored teachers’ perceptions of PU T. We interviewed mathematics teachers and 

analysed these interviews using and refining initial conjectures about the process 

teachers might go through in learning PU T. We found that teachers’ perceptions of 

PUMT ranged from valuing student participation, to valuing student mathematical 

thinking, to using that thinking in a variety of ways related to eliciting, interpreting and 

building on that thinking. 

INTRODUCTION 

Instruction that meaningfully incorporates students’ mathematical thinking is widely 

valued within the mathematics education community (e.g., NCTM, 2000, 2007). Past 

research has suggested both the benefits of instruction that incorporates student 

mathematical thinking to develop mathematical ideas (e.g., Fennema, et al., 1996; 

Stein & Lane, 1996), and the challenges of learning about and enacting such 

instruction (e.g., Ball & Cohen, 1999; Sherin, 2002). One reason for these challenges 

may be the under conceptualization of the teaching practice of productively using 

student mathematical thinking [PUMT]. 

The literature uses multiple terms, and the same terms in multiple ways, to describe 

PUMT. For example, some (e.g., Franke & Kazemi, 2001; Peterson & Leatham, 2009) 

talk of teachers using student mathematical thinking. Others (e.g., Hill, Ball, & 

Schilling, 2008; Leatham, Peterson, Stockero, & Van Zoest, 2014) discuss teachers 

building on student mathematical thinking, and still others (e.g., Feiman-Nemser & 

Remillard, 1996; Lampert, et al., 2013) refer to students attending to the mathematical 

thinking of others. Thus, although many advocate teachers being “responsive to 

students and… their understanding” (Remillard, 1999, p. 331), the nature of such 

responses is ill defined. 

This imprecision in language causes challenges when supporting teachers in 

developing PUMT, leaving them with multiple, and sometimes unhelpful, 

interpretations of the practice. This imprecision also hinders productive discourse 

within the research community and inhibits researchers from building on each other’s 

work. Our broader work on PUMT is designed to support teachers in developing this 

critical practice; thus we chose as participants practicing teachers so that we could use 



Leatham, Van Zoest, Stockero, Peterson 

4 - 74 PME 2014 

their thinking to begin to address these imprecision-related challenges. Our goal is to 

better understand the multiple interpretations of PUMT that teachers have developed, 

and to initiate a discussion about what the mathematics teacher education field means 

by PUMT. Specifically, we investigated the question, “What are teachers’ perceptions 

of productive use of student mathematical thinking during whole class discussion?” 

THEORETICAL PERSPECTIVES 

For us productive use of student mathematical thinking requires first that one honor 

students as legitimate creators of mathematics. In addition, productive use in a 

mathematics classroom must be in the service of facilitating the learning of significant 

mathematics. Finally, we use “use” in the immediate sense of a teacher orchestrating 

student learning during a lesson. Productive use of student mathematical thinking 

“engages students in making sense of mathematical ideas that have originated with 

students—that is, it builds on student mathematical thinking by making it the object of 

rich mathematical discussion” (Leatham et al., 2014, p. 5). For example, suppose 

students in a pre-algebra class are discussing how to solve the equation m – 12 = 5 and 

someone in the class suggests subtracting 12 from both sides. A teacher could 

productively use this student mathematical thinking by pursuing it with the class and 

making sense of the outcome, all in the service of facilitating better understanding of 

the use of inverse operations to isolate variables when solving linear equations. (See 

Leatham et al., 2014 for further elucidation of this and other such examples.) 

As we have already argued, enacting practices related to productively using student 

mathematical thinking is complex. As we have studied novice and expert teachers’ 

attempts to enact this practice (e.g., Peterson & Leatham, 2009; Van Zoest, Stockero & 

Kratky, 2010) we have developed conjectures about a hypothetical learning process 

[HLP] (Simon, 1995) related to PUMT. That is, it seems as though there are critical 

stages that build somewhat linearly on one another as a teacher develops PUMT (see 

Table 1). In professional development work, the HLP would combine with the goal of 

developing PUMT and with learning activities to form a hypothetical learning 

trajectory [HLT] (Simon, 1995). 

Although this study contributes to research on teachers’ beliefs, we use the somewhat 

weaker term “perceptions” here because of the nature of the data collection and 

analysis. We use the term “perception” to mean, in essence, “initial reaction,” and 

recognize that perceptions are part of complex sensible belief systems (Leatham, 

2006). Thus we expect that teachers may have more to say about these issues if they 

were explored in greater depth, and we make no claim to have sufficient data to infer 

deeper held beliefs. Initial reactions are very interesting, however, when looked at 

across a group of individuals because these commonalities can be construed, to some 

degree, as a “common wisdom” or “common viewpoint” (Leatham, 2009). Thus 

studying teachers’ perceptions will provide initial insights into the ways they 

conceptualize productive use of student mathematical thinking. 
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Hypothetical Learning Process for PUMT 

Reject Active Student Participation – Teachers do not see the value of students being 

actively engaged during instruction. 

Value Student Participation – Teachers want students to be actively engaged during 

instruction. 

Value Student Mathematical Thinking – Teachers view students as capable of diverse 

legitimate ways of viewing and doing mathematics. 

Elicit Student Mathematical Thinking – Teachers actively provide opportunities for 

students to share their mathematical thinking publicly. 

Interpret Student Mathematical Thinking – Teachers conscientiously attend to and 

make sense of the mathematical thinking that is being shared. 

Build on Student Mathematical Thinking – Teachers make student mathematical 

thinking the object of consideration in order to engage students in making sense of that 

thinking to better understand an important mathematical idea. (Teachers refine this practice 

first with individuals, then with small groups, and eventually in whole-class settings.) 

Table 1: Hypothetical learning process for developing the teaching practice of 

productively using student mathematical thinking [PUMT]. 

METHODS 

Our participants were 14 mathematics teachers (6 female and 8 male) with 1 to over 20 

years of experience teaching a variety of mathematics courses in grades 6-12. In order 

to explore teachers’ perceptions of productive use of student mathematical thinking we 

developed an interview protocol wherein we asked each teacher to sort a collection of 

cards describing teacher moves one might associate with classroom discourse (e.g., 

“get students’ ideas out there for the class to consider and discuss,” “juxtapose two 

student ideas that differ in an important mathematical way,” “repeat an important 

student comment”). We compiled these teacher moves from the literature, from our 

own experience, and from an informal survey of mathematics education colleagues 

that asked them to describe what it meant to build on student thinking. We asked the 

participants to sort the moves along a continuum, from least to most productive use of 

student thinking during whole-class discussion, thinking aloud as they did so. We 

further prompted them to explain their reasoning or describe the criteria they seemed to 

be applying in making their decisions as they sorted the cards. We ended the interview 

by asking the participants what characteristics they saw as encapsulating the moves 

they placed at the top (as well as the bottom) of the continuum. Prior to conducting the 

14 interviews we conducted two pilot interviews and made minor revisions to the 

protocol. All interviews were videotaped, with the video focused on the interviewees’ 

sorting of the cards. 

Initial analysis consisted of watching and writing brief summaries for each interview, 

in which we attempted to capture the essence of each teacher’s overall perception of 
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productive use of student thinking. Based on these summaries and on our initial 

learning trajectory (see Table 1) we developed a coding framework of potential 

perceptions and types of uses of student thinking and returned to the data to 

systematically code the interviews for evidence of these perceptions and uses (or for 

the emergence of others). We applied this framework to the interviews (refining and 

reapplying as appropriate) from six teachers who were selected to be representative of 

the range of perceptions based on analysis of the initial summaries. We then asked the 

following questions of the data: What are teachers’ perceptions of productive use of 

student thinking? To what extent do those perceptions align with the PUMT HLP? Our 

answers to these questions make up the results section of the paper. 

RESULTS 

Initial analysis of the interviews revealed a variety of ways that teachers thought about 

PUMT, including different uses of student thinking during instruction. Further analysis 

revealed that types of use seemed to align in interesting ways with our conjectures 

about stages of the PUMT HLP (see Table 2). We thus organize this results section 

around these stages. As we discuss the stages we provide examples from the data to 

illustrate the participants’ associated perceptions. 

 

Table 2: Conjectured relationship between the PUMT HLP and various types of use. 

Before beginning our discussion of the stages on the HLP, it is important to note that an 

individual teacher may be functioning in several stages simultaneously. This 

multiplicity can be a reflection of a transition or a result of contextual factors. For 

example, some teachers’ perceptions about productive use of student mathematical 

thinking were tied to the level of student (advanced vs. remedial, middle school vs. 

high school) or to school factors (pressure to prepare for high-stakes tests vs. freedom 

to vary the curriculum). These nuances are not our focus here, but deserve attention in 

future research. 

PUMT HLP Type of Use 

Reject Active Student Participation  

Value Student Participation   

Value Student Mathematical Thinking   

Elicit Student Mathematical Thinking  Engagement 

Replacement 

Validation 

Interpret Student Mathematical Thinking Assess 

Clarify 

Launch 

Build on Student Mathematical Thinking Pondering 

Establishing 

Extracting 
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Non-Use Stages 

The first three stages of the PUMT HLP do not involve incorporating students’ 

mathematical thinking into instruction. At the first stage, Reject Active Student 

Participation, teachers do not see the value of students being actively engaged during 

instruction. Instead, they consider the students as receivers of knowledge that the 

teacher presents to them. Teachers at the second stage, Value Student Participation, 

place a high regard on student participation, but in a way that seems to have little to do 

with the mathematical content of that participation. For example, one teacher wanted 

his students to understand that, “realistically, you might not use… any of these 

formulas in what you are going to do in life, but if you can learn to be a thinker… then 

that’s going to be of great benefit.” For this teacher participation through thinking 

yielded an important outcome regardless of the content of that thinking. At the third 

stage, Value Student Mathematical Thinking, teachers view students as capable of 

diverse legitimate ways of viewing and doing mathematics, but do not purposefully 

incorporate that thinking into instruction.  

Elicit Student Mathematical Thinking 

Teachers at the Elicit stage actively provide opportunities for students to share their 

mathematical thinking publicly. We have identified three types of use at this stage (not 

related hierarchically): (a) Engagement—The teacher elicits student mathematical 

thinking so that students will feel that they are an important part of the lesson and so 

that, by seeing others so engage, they will want to similarly participate. For example, 

one teacher indicated that any move that could elicit student mathematical thinking 

provided evidence that students were engaged and “trying to get the student involved is 

the most important thing. Everything else is secondary.” (b) Validation—The teacher 

elicits student mathematical thinking to create an opportunity to provide positive 

feedback for students so they feel good about themselves. One teacher explained that 

“acknowledging that you are thinking is important because that gives you positive 

reinforcement.”  (c) Replacement—The teacher elicits student mathematical thinking 

in such a way that students say what the teacher wanted said. For example, teachers 

might share a student solution to a problem rather than working an example themself. 

Or, instead of making a statement teachers might ask a question (simple or 

fill-in-the-blank) so that student responses say what they would have said. 

Interpret Student Mathematical Thinking 

Teachers at the Interpret stage conscientiously attend to and make sense of the thinking 

that is being shared during their instruction.  Three types of use (again not related 

hierarchically) were identified at this stage: (a) Assess—The teacher makes sense of 

the student mathematical thinking to determine whether given ideas are sufficiently 

understood to inform subsequent instruction. They may share this assessment with 

students, thus informing students about the correctness of their thinking. One teacher 

explained, “if they can verbalize how they are thinking about it then I actually get a 

better idea that they actually do know what is going on.” (b) Clarify—The teacher 
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makes sense of the student mathematical thinking and shares their own interpretation 

with the class with the intent to clarify the content of that thinking for the class. Some 

ways a teacher might clarify include adding mathematical language to a student 

comment, making a connection between the student thinking and a mathematical idea, 

and highlighting the importance of the thinking. (c) Launch—The teacher makes 

sufficient sense of the student mathematical thinking to see a connection to something 

they want to come out in the lesson. They then make the connection as a segue to 

making their point. As one teacher indicated, it is valuable to “give them suggestions 

about how they could advance their thinking about the mathematics, rather than just 

acknowledge that they are thinking.” 

Build on Student Mathematical Thinking 

Teachers at the Build stage make student thinking the object of consideration in order 

to engage students in making sense of that thinking to better understand an important 

mathematical idea. There are three types of use connected to this stage:  

(a) Pondering—The teacher invites the class to think about the student mathematical 

thinking. For example, the teacher could give students a few moments to digest an idea 

before moving on. One teacher indicated that a major goal in having students share 

their ideas is to “have the class think about them.” (b) Establishing—The teacher 

creates the space for the class to make sense of the student mathematical thinking and 

come to a mutual understanding of what was said or meant. For example, one teacher 

described how they “could have the student actually write what they just said and see 

if… the rest of the class could apply what the other student just said to the current 

problem they are working on.” Another teacher spoke of the value of having students 

“convince the other person what you’re thinking or try to understand the other idea.” 

(c) Extracting—The teacher orchestrates a discussion that leads to a mutual 

understanding of the student mathematical thinking and helps the class to see the 

underlying mathematics that the student thinking embodies. For example, one teacher 

felt that it was extremely productive to elicit a variety of student ideas and “ask them to 

compare and contrast them, to try to work out how they might be related.” It is this 

“work[ing] out how they might be related” that reflects the essence of extracting. 

Different from the earlier stages that involve use, the three types of use in this final 

stage appear to be hierarchical. That is, we anticipate teachers first developing skill at 

supporting students in thinking about their peers’ ideas, followed by increasing their 

abilities to create space for students to establish meaning from their peers’ thinking, 

before finally being able to help students to see the underlying mathematics that the 

student thinking embodies. It is this final use that fully capitalizes on the potential of 

student thinking to improve the learning of mathematics. 

DISCUSSION AND CONCLUSION 

The perceptions and their accompanying uses represent a continuum of less to more 

productive ways of incorporating student mathematical thinking into instruction. 

Valuing student participation and student mathematical thinking is important, but on 
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their own they do not make student mathematical thinking available for use in 

instruction. Likewise eliciting student mathematical thinking is a critical component of 

PUMT, but when it is thought of as an end in itself—rather than as a means toward 

building mathematical understanding—it fails to take full advantage of the possibilities 

student thinking offers. Interpreting student mathematical thinking allows for a 

broader range of productive use, but in these uses the teacher takes on the mathematical 

work, thus limiting students’ opportunities to engage with the mathematics at a deep 

level. Building incorporates valuing, eliciting, and interpreting, but uses the 

information gained from interpreting the student mathematical thinking to turn that 

thinking back to the students. The productivity of uses categorized as building 

increases as one moves beyond asking students to ponder their peers’ mathematical 

thinking, to engaging them in mutual sense making of that thinking in order to establish 

a mutual understanding, to collectively extracting important underlying mathematical 

ideas as a result of making the student thinking the object of discussion. 

The PUMT HLP provides a starting place for conceptualizing PUMT and 

demonstrates that such a conceptualization is possible and worthy of additional 

investigation. The HLP could be further refined through using it to analyse more 

interviews as well as other sources of data, such as videotapes of classroom practice. 

The HLP could also prove useful as a means of analysing teachers’ instruction to gauge 

proficiency with respect to this particular practice. We envision this work leading to 

the development of a HLT that could be used to support teachers in developing PUMT. 

As a result, this critical practice would gain greater traction both in research and in 

classrooms. 
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This paper presents study that investigates brain activity (using ERP methodology) of 

male adolescents when solving short problems in algebra and geometry. The study 

design links mathematics education research with neuro-cognitive studies. We 

performed a comparative analysis of brain activity associated with the translation 

from visual to symbolic representations of mathematical objects in algebra and 

geometry. The findings demonstrate that electrical activity associated with the 

performance of geometrical tasks is stronger than that associated with solving 

algebraic tasks. Additionally, we found different scalp topography of the brain activity 

associated with algebraic and geometric tasks. Based on these results, we argue that 

problem solving in algebra and geometry are related to different patterns of brain 

activity.  

INTRODUCTION 

This paper presents a small segment of a large scale project that analyses components 

of mathematical abilities in three dimensions: basic cognitive traits, brain activity 

associated with solving mathematical problems and mathematical creativity (Leikin, 

Leikin, Lev, Paz, & Waisman, 2014). In this paper we choose information about 

neuro-cognitive activity related to solving short problems in algebra and geometry, and 

perform a comparative analysis of brain activity associated with translation from visual 

to symbolic representations of mathematical objects in algebra and geometry. 

Algebraic tasks required translation from graphical to symbolic representation of a 

function, whereas tasks in geometry required translation from a drawing of a geometric 

figure to a symbolic representation of its property. In this paper we do not analyse 

relationship between students' mathematical performance and their mathematical 

abilities since no interaction between students' abilities and test effect was identified. 

BACKGROUND  

Neuro-cognitive research in mathematics education 

Neural basis of the use of mathematical cognition has been investigated in several 

directions mostly focusing on brain location of cognitive functions related to 

mathematical processing. Here we provide several examples. Research on number 

processing and simple arithmetic (Dehaene, Piazza, Pinel, & Cohen, 2003) emphasized 

the role of the parietal cortex to number processing and arithmetic calculations. The 

horizontal intraparietal sulcus has been found to be involved in calculations; the 
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posterior superior parietal lobule has been linked with the visuo-spatial and attention 

aspects of number processing while the angular gyrus has been found to be associated 

with the verbal processing of numbers and involved in fact retrieval (Grabner, Ansari, 

Koschutnig, Reishofer, Ebner, & Neuper, 2009). The parietal cortex has been found to 

be involved, too, in more complex mathematical processing such as word problem 

solving (Newman, Willoughby & Pruce, 2011). The posterior superior parietal cortex 

has been found to be involved in visuo-spatial processing including the mental 

representations of objects and mental rotations (Zacks, 2008). Some studies 

demonstrated that when complexity of the problems rises, more brain areas 

simultaneously support the solving process (Zamarian, Ischebeck, Delazer, 2009). 

Note, however, that the neural mechanisms involved in complex mathematics have not 

been studied sufficiently, and our study enters this lacuna. 

Studying functions and geometry in high school 

Function is one of the fundamental concepts in mathematics in general and in school 

algebra and calculus in particular (Da Ponte, 1992). Kaput (1989) argued that the 

sources of mathematical meaning-building are found in translations between 

representation systems. The ability to translate from one representation of the concept 

of function to another highly correlates with success in problem solving (Yerushalmy, 

2006) while flexible use of representations is part of cognitive variability, which 

enables individuals to solve problems quickly and accurately (Heinze, Star, & 

Veschaffel, 2009).  

Geometry in school mathematics is considered an important source for development of 

students' reasoning and justification skills (Lehrer & Chazan, 1998; Hanna, 2007; 

Herbst & Brach, 2006). Learning geometry in high school involves analyzing 

geometric objects, their properties and the relationships between them. Mental images 

of geometrical figures represent mental constructs possessing simultaneously 

conceptual and figural properties (Fischbein, 1993). Geometrical reasoning combines 

visual and logical components which are mutually related (Mariotti, 1995), while 

perceptual recognition of geometrical properties must remain under the control of 

theoretical statements and definitions (Duval, 1995).  

This paper focuses on brain activity associated with solving short geometry problems 

that require translation between visual representation of a geometric object and the 

symbolic representation of its property.  

METHODS 

The study goals 

This study examined behavioural measures, i.e., Accuracy of responses (Acc) and 

Reaction time for correct responses (RTc), and electrophysiological measure, i.e., 

amplitudes, latencies, and scalp topographies, related to solving short problems that 

require translation between symbolic and graphical representations in algebra and 
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geometry. We asked: How do the examined measures revealed when solving algebraic 

problems differ from those revealed when solving geometry problems? 

Participants 

We report herein our findings on 71 right-handed male adolescents. All participants 

were paid volunteers, native speakers of Hebrew, right-handed, with no history of 

learning disabilities and/or neurological disorders. All participants and their parents 

signed an informed consent form. The study received the approval of the Helsinki 

Committee, the Israel Ministry of Education, and the Ethics Committee of the 

University of Haifa. 

Materials and procedure 

A computerized test that required students to perform a translation between symbolic 

and graphical representations of function was designed with 60 tasks (trials) using 

E-Prime software (Schneider, Eschman, & Zuccolotto, 2002). 

 
S1 – Introducing a situation; S2 – Question presentation;  

+ – Fixation cross; ISI – Inter Stimulus Interval  
 

Figure 1: The sequence of events and 

task examples 

Figure 2: Location of the electrodes and 

selected electrode sites 

Each task on each test was presented in two windows with different stimuli (S1 – Task 

condition; and S2 – Suggested answer) that appeared consecutively. The sequence of 

events and examples of the tasks are presented in Figure 1. At S2 each subject had to 

decide whether the suggested answer was correct or not by pressing an appropriate 

button on the keyboard. Alpha-Chronbach was determined by accuracy criteria and 

found to be sufficiently high ( C  = .859 and C  = .760 for algebraic and geometric 

tasks, respectively). 

Scalp voltages were continuously recorded using a 64-channel BioSemi ActiveTwo 

system (BioSemi, Amsterdam, The Netherlands) and ActiveView recording software. 

Two flat electrodes are placed on the sides of the eyes in order to monitor horizontal 

eye movement. A third flat electrode is placed underneath the left eye to monitor 

vertical eye movement and blinks. During the session electrode offset is kept below  

50 µV. Figure 2 depicts location of the electrodes and the selected electrode sites. 
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Data analysis and statistics 

Trials with correct responses were used for both ERP and behavioural analysis. 

Behavioural data of trials excluded from electrophysiological analysis by artifact 

rejection were excluded from the behavioural analysis. 

Behavioural measures: We examined Accuracy (Acc) and Reaction time for correct 

responses (RTc) for each participant. Acc was determined by the mean percentage of 

correct responses to 60 tasks on the test. Reaction time for correct responses (RTc) was 

calculated as the mean time spent for verification of an answer (stage S2) and for 

correct responses only. We performed between the tests comparisons using repeated 

measures MANOVA.  

Electrophysiological measures: Event related potentials (ERPs) were analysed offline 

using the Brain Vision Analyzer software (Brain-products). Ocular artifacts were 

corrected using the Gratton, Coles and Donchin (1983) method. The ERP waveforms 

were time-locked to the onset of S1 and to the onset of S2. Due to the space contrarians 

we do not report analysis of ERP early components.  

Following visual inspection of grand average waveforms and appropriate scalp 

topographies we divided the late potential wave into three time frames: 300-500, 

500-700 and 700-900 ms. We used repeated measures ANOVA tests on the ERP mean 

amplitude, to examine effects of Tests, Laterality (Left, Mid-line and Right) and 

Caudality (Anterior and posterior). Analysis was done for each of the two stages of a 

task (S1 and S2). Table 1 depicts Electrophysiological data analysis performed for Late 

Potentials. 

ERP 

component 
Stage 

Time frame 

(ms) 
Factors Measures 

Late 

potentials 

S1 

S2 

 

300-500 

500-700 

700-900  

Laterality: 3 levels: Left, Middle and Right Mean 

amplitude  

 
Caudality: 2 levels: Anterior, Posterior 

Test: 2 levels: Algebra, Geometry 

Table 1: Electrophysiological data analysis of Late Potential 

RESULTS 

We report on the significant effects and interactions only. If a particular effect (or 

interaction) is not reported, this indicates that it was not significant. 

Differences in Acc and RTc 

Measure Algebra  Mean (SD) Geometry   Mean (SD) F (1, 67) 
2

p  

Acc 78.2 (9.7) 83.2 (7.5) 18.877
***

  .220 

RTc 1686.4 (398.6) 1593.7 (382.5) 5.513
*
 .076 

p <.05, 
**

 p <.01, 
***

 p <.001;  Acc – Accuracy, RTc – Reaction time for correct responses 

Table 2: Acc and RTc in the different groups of participants 

Repeated measures MANOVA demonstrated significant effects of the Test factor [F 

(2, 66) = 10.082
***

, Wilks ˄ = .766] both on the Acc and on the RTc (Table 2). On 
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algebraic test we found significantly lower Acc along with significantly higher RTc as 

compared to Acc and RTc on the geometry test (Table 2). 

Electrophysiological findings reflected in late potential 

Figure 3 depicts examples of the grand average waveforms and topographical maps of 

the late potentials for Algebra and Geometry tests. 

 A. Grandevarage waveforms B.  Topographical maps 

 Anterior Posterior Algebra Geometry 

 

S1 

    

S2 

    

 300 – 900 ms
     

Figure 3: (A)Examples of the grandevarage waveforms associated with Algebra and 

Geometry tests in the selected electrode sites.; (B) Topographical maps of 

voltage amplitudes for Algebra and Geometry tests 

 Significant factors and interactions Time F 
2
p

 
S1 Test  Amp(Algebra) < Amp(Geometry) 300-500 ms 7.687

** 
.103 

Test × Caudality 

300-500 ms 6.763
* 

.092 

500-700 ms 21.417
*** 

.242 

700-900 ms 13.211
*** 

.165 

Test × Laterality  
Amp (Algebra) < Amp(Geometry) in RH 

Amp(Algebra)  > Amp(Geometry) in ML 

300-500 ms F(1.657, 111.033) = 10.480
*** 

.135 

500-700 ms F(1.749, 117.165) = 8.561
*** 

.113 

Test × Laterality × Caudality 300-500 ms F(1.692, 113.371) = 7.709
***

 .103 

S2 
Test 
Amp(Algebra) < Amp(Geometry) 

300-500 ms 46.560
*** 

.410 

500-700 ms 25.155
*** 

.273 

700-900 ms 5.615
* 

.077 

Test × Caudality 
300-500 ms 41.390

*** 
.382 

500-700 ms 10.248
** 

.133 

Test × Laterality 
Amp (Algebra) < Amp(Geometry) in LH 

and ML 

Amp(Algebra) ~ Amp(Geometry) in RH 

500-700 ms 3.650
* 

.052 

p ≤.05, 
**

 p ≤.01,  
***
p ≤.001, when not mentioned d. f. (1, 67); RH –Right hemisphere; ML – Mid-line; LH – 

Left hemisphere 

Table 3: Significant results in mean amplitude in the selected electrode sites associated 

with the Algebra and Geometry tests 

Significant differences associated with the Test were found at both S1 and S2 stages. 

Table 3 demonstrates time frames at which Test, Laterality and Caudality factors had 

significant effects and interactions. We found that the mean amplitude was 

significantly higher for Geometry test than for Algebra test. Significant interaction 

between Test and Caudality revealed at posterior and anterior regions while absolute 
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values of voltages for the Geometry test were larger than for Algebra test with negative 

voltages in anterior regions and positive voltages in posterior regions. 

A significant interaction of Test with Laterality was found at S1 and at S2: At S1, the 

mean amplitude reveal for the Geometry test was larger than for the Algebra test in the 

right and left hemisphere, whereas in the mid-line the mean amplitude for Algebra test 

was higher as compared to mean amplitude for the Geometry test (Figure 4). At S2, the 

mean amplitude for the Geometry test was larger in the left hemisphere and mid-line as 

compared to that for the Algebra test, while the difference between the tests in the left 

hemisphere and the mid-line was significant. A significant interaction between Test, 

Caudality and Laterality was found at S1 (Figure 4). 

Test × Laterality Test × Laterality × Caudality 

S1: 300-500 ms 

 
*right:  

95% CI [.243, .521] 

S2: 500-700 ms 

 
***Left: 95% CI [.215, .546]  

**Middle: 95% CI [.072, .351] 

S1: 300-500 ms 

 
*** posterior right: 95% CI [.597, 1.583] 

** anterior middle: p = .007, 95 % CI [.158, .936] 
 

                              
*
p ≤.05, 

**
 p ≤.01,  

***
p ≤.001 

Figure 4: Mean amplitude for Algebra as compared to Geometry test in the Left, 

Middle and Right electrode sites in the 300-500 ms at S1 and in the 500-700 ms at S2. 

DISCUSSION 

Strength of electrical potentials: The first major finding of our study shows that 

solving geometry tasks emerged higher electrical potentials that solving algebraic tasks 

both at S1 and S2 stages at both the anterior and posterior parts of the scalp. Following 

previous research that connects cognitive functions of different types with activation of 

different brain regions, we hypothesise that the greater electrical activation in the 

anterior parts of the scalp demonstrated that geometry test requires greater cognitive 

control and activation working memory (Arsalidou & Taylor, 2011; Newman et al., 

2011). The enhanced voltages in the posterior (especially right) parts of the scalp 

during geometry test may be connected to the greater demands in visuo-spatial 

processing, including manipulation of internal representations (Zacks, 2008) in 

geometry problem solving.  

Brain topography: The second major result of our study revealed a significant 

interaction of hemispheric laterality with Test. At S1, the mean amplitudes associated 

with the geometry test were higher as compared to the algebra test in the right 

hemisphere, whereas the mean amplitudes associated with the algebra tests were 

higher in the mid-line. Moreover, in the right hemisphere the difference between the 

amplitudes elicited by the two tests was significant. In contrast, at S2 the mean 
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amplitudes associated with the geometry test were significantly higher in the left 

hemisphere and the mid-line. Previous studies demonstrated that the left hemisphere is 

thought to be more involved in processing verbal and symbolic information and is also 

shown to be more analytic from the processing viewpoint, while the right hemisphere 

seems to deal more with the processing of visuo-spatial information (e.g., Dien, 2008). 

Thus we hypothesise that differences in activation patterns between the Algebraic and 

Geometry tests in our study may be explained by the differences between the 

processing strategies used by the participants in algebra and geometry. We also suggest 

that when solving geometry tests, at the visual and symbolic stages, participants 

activate different hemispheres. 

Students' problem solving performance on geometry task as compared to their 

performance on algebra tasks revealed higher electrical potentials along with higher 

accuracy and shorter reaction times for correct responses. In contrast to the previous 

findings that task complexity lead to higher electrical potentials, by combining our 

research findings related to Acc and RTc with findings related to ERP measures, we 

speculate here that strength of electrical potentials when solving mathematical tasks 

are not necessarily connected to the task difficulty but subject-matter-dependent.  

This study emphasizes the contribution of neuropsychological research, which adds 

important information to previous findings of cognitive studies in the field of the 

psychology of mathematics education. Based on our findings we argue that problem 

solving in algebra and geometry is associated with different patterns of brain activity 

and, thus, we hypothesize that teaching algebra and geometry may require different 

didactical approaches. We also assume that our findings on the differences in scalp 

topology associated with solving algebra and geometry tasks may explain why 

different students are not equally good in geometry and algebra. 
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PRINCIPLES OF ACQUIRING INVARIANT IN MATHEMATICS 

TASK DESIGN: A DYNAMIC GEOMETRY EXAMPLE 

Allen Leung 

Hong Kong Baptist University 

 

This paper is a theoretical discussion on a pedagogic task design model based on using 

variation as an epistemic tool. A set of four Principles of Acquiring Invariant is put 

forward that is complementary to the patterns of variation in  arton’s Theory of 

Variation. These principles are then used as adhesive to tie together the epistemic 

modes in a model of task design in dynamic geometry environment that the author 

proposed in earlier research literature. A dynamic geometry task sequence is used to 

illustrate how the Principles of Acquiring Invariant can be used in mathematics task 

design. 

INTRODUCTION  

Marton’s Theory of Variation is a theory of learning and awareness that asks the 

question: what are powerful ways to discern and to learn? In recent years, the theory 

has been applied in different pedagogical contexts (see for example, Lo, 2012; Lo & 

Marton, 2012). The Theory of Variation starts with a taken-for-granted observation: 

nothing is one thing only, and each thing has many features. In this theory, discernment 

is about how to go from a holistic experience of a phenomenon (e.g. seeing a forest) to 

separating out different features (e.g. seeing a tree) in the phenomenon (cf. Marton and 

Booth, 1997). It concerns with how to pick up meaningful experiences through our 

senses, and how meaning comes about from relationship between similarity and 

difference derived under simultaneous attention. In particular, there is a discernment 

ordering from difference to similarity. That is, learning and awareness begins with 

noticing difference before observing similarity. Suppose I can only perceive “grey” in 

certain situation, then “grey” has no meaning for me even if you show me a grey chair, 

a grey car, or a grey whatever. “Greyness” becomes meaningful to me only if I can 

perceive something else other than “grey”. Thus, contrast (finding counter-examples 

focusing on difference) should come before generalization (which can be regarded as 

an inductive process focusing on similarity) in discernment. In this connection, a 

fundamental idea in the Theory of Variation is simultaneity. When we are 

simultaneously aware of (intentional focusing our attention on) different aspects of a 

phenomenon, we notice differences and similarities. By strategically observing 

variations of differences, similarities and their relationships, critical features of the 

phenomenon may be brought out. Morton proposed four patterns of variation as such 

strategic means: contrast, separation, generalization and fusion (Marton et al., 2004). A 

major undertaking of the Theory of Variation is to study how to organize and interpret 

a pedagogical event in powerful ways in terms of these patterns of variation (Lo & 

Marton, 2012).  
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THE THEORY OF VARIATION IN MATHEMATICS CONCEPT 

DEVELOPMENT 

In PME 27, I presented the first application of the Theory of Variation to mathematics 

pedagogy in dynamic geometry dragging exploration (Leung, 2003). There the four 

patterns of variation were used to interpret dragging modalities in a dynamic geometry 

construction problem to explore the gap between experimental reasoning and 

theoretical reasoning. This began a long programme of study where in my subsequent 

work; the values of the four patterns were gradually changing from originally as means 

to categorize possible powerful ways to discern into epistemic functions that can be 

used to bring about mathematical concept development (see for example, Leung, 2008; 

Leung, 2012; Leung et al., 2013). An epistemic activity in doing mathematics is to 

discern critical features (or patterns) in a mathematical situation. When these critical 

features are given interpretations, they may become invariants that can be used to 

conceptualize the mathematical situation. In Leung (2012), I used classification of 

plane figures as an example to develop a variation pedagogic model. The model 

consists of a sequence of discernment units in which different variation strategies are 

used to unveil different feature types of plane figure: intuitive visual type, geometrical 

property type, and equivalent geometrical properties type. Each discernment unit 

contains a process of mathematical concept development that is fused together by 

contrast and generalization driven by separation. The sequence represents a continuous 

process of refinement of mathematical concept, from primitive to progressively formal 

and mathematical. Mhlolo (2013) later used this model as an analytical framework to 

interpret a sequence of richly designed mathematics lessons teaching the conceptual 

development of number sequence. The upshot is, in variation perspective, 

mathematical concepts can be developed by strategic observation and variation 

interaction in terms of contrasting and comparing, separating out critical features, 

shifting focus of attention (cf. Mason, 1989) and varying features together to seek 

emergence of invariant patterns. A variation interaction is “a strategic use of variation 

to interact with a mathematics learning environment in order to bring about 

discernment of mathematical structure” (Leung, 2012). It is also a strategic way to 

observe a phenomenon focusing on variation and simultaneity. I interpret “interaction” 

in the sense that the acts of observing may involve direct or indirect manipulation of 

the mathematical object under studied.  

PRINCIPLES OF ACQUIRING INVARIANT 

Simultaneity is the epistemic crux of variation. The four patterns in Marton’s Theory 

of Variation are different types of simultaneous focus used to perceive differences and 

similarities which lead to unveiling of critical features of what is being observed. 

Looking for invariant in variation and using invariant to cope with variation are 

essences of mathematical concept development. A mathematical concept is in fact an 

invariant. For example, the basic concept of the number “three” is an invariant 

cognized out of myriad representation of “three-ness”. Thus in acquiring mathematical 

knowledge, to perceive and to understand invariant amidst variation are central 
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epistemic goals. Putting these together, I put forward a set of four Principles of 

Acquiring Invariant that are complementary to Marton’s four patterns of variation in 

the context of mathematics concept development (the italic words are the four patterns 

of variation): 

Difference and Similarity Principle (DS) Contrasting and comparing in order to 

perceive or generalize possible invariant features 

Sieving Principle (SI) Separating under prescribed constraints or conditions in order to 

reveal (“make visual”) critical invariant features or relationships 

Shifting Principle (SHI) Focusing and paying attention to different or similar features of a 

phenomenon at different time or situations in order to discern generalized invariant 

Co-variation Principle (CO) Co-varying or fusing together multiple features at the same 

time in order to perceive possible emergent pattern or invariant relationship between the 

features 

These four principles work with the four patterns of variation in a concerted way. All 

four principles, just like the four patterns, are different aspects of simultaneity and 

contrast. They are cognitive activities to look for mathematical invariants leading to 

development of mathematical concept. In particular, they have the following 

predominant functions. DS is about contrast and generalization leading to awareness of 

perceptual invariant feature. SI is about awareness of hidden invariant feature that is 

being separated out under variation when only selected aspects of the phenomenon are 

allowed to vary. SHI is about diachronic (across time) simultaneity leading to possible 

generalization in the conjecture making process. CO is about synchronic (same time) 

simultaneity leading to fusing together of critical features in the mathematical concept 

formation process. These four principles are learner driven which can be cognitively 

mingled and nested together. During a variation interaction, a learner can apply these 

principles with different weight and transparency. In the next section, I will illustrate a 

pedagogical example of these principles in designing a sequence of dynamic geometry 

tasks.  

MATHEMATICS TASK DESIGN: A DYNAMIC GEOMETRY EXAMPLE 

In Leung (2011), I proposed an epistemic model of task design in dynamic geometry 

environment (DGE). It consists of a sequence of three nested epistemic mode of 

cognitive activities: 

Practices Mode (PM) Construct DGE objects or manipulate pre-designed DGE objects. 

Interact with DGE feedbacks to develop (a) skill-based routines; (b) modalities of 

behaviour; (c) modes of situated dialogue. 

Critical Discernment Mode (CDM) Observe, record, recognize and re-present 

(re-construct) DGE invariant. 

Situated Discourse Mode (SDM) Develop reasoning that lead to making generalized 

DGE conjecture. Develop DGE discourses and modes of reasoning to explain and prove. 
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These task design modes are nested in the sense that CDM is a cognitive extension of 

PM and SDM is a cognitive extension of CDM. An exploration space is opening up for 

learners as the task sequence progresses to construct first-hand understanding of the 

mathematical concepts carried by the task. It is a nested expanding space where 

practices evolve into discernment followed by discernment evolves into discourses. 

Within each mode, cognitive activities can be organized by variation tasks. Thus, the 

four Principles of Acquiring Invariant can be used as a skeleton to frame this epistemic 

model of task design. A DGE task sequence can be designed combining the epistemic 

modes and the Principles of Acquiring Invariant to constitute an evolving process (not 

necessarily linear) that merges gradually from dominate perceptive experiential 

“thinking” to dominate conceptual theoretical “thinking”. The following is an example 

of such a task sequence. It is conceptualized and designed by using a student DGE 

exploration studied in Leung, Baccaglini-Frank and Mariotti (2013). 

TASK 1: Construction 

PM: DGE Construction 

Construct three points A, B, and C on the screen, the 

line through A and B, and the line through A and C. 

Construct a line l parallel to AC through B, and a line 

perpendicular to l through C. Label the point of 

intersection of these two lines D. Consider the 

quadrilateral ABCD (see Figure 1). 

TASK 2: Contrast and Comparison 

PM / DS: Variation tasks are used to bring about awareness of different and similar 

aspects/features in a DGE phenomenon that leads to observable invariants 

2.1 Drag A, B, C to different positions to make different quadrilaterals 

2.2 How many different or similar types of quadrilateral ABCD can you make? 

2.3 Describe how you drag a point to make it changes into different types of 

quadrilateral 

2.1 and 2.2 ask the learner to contrast and compare different positions of A, B and C as 

these vertices are being dragged to observe how many different types of quadrilateral 

can be formed. 2.3 ask the learner to think about the dragging strategies used to obtain 

different types of quadrilateral, thus motivating the learner to develop dragging skills 

and strategies, to relate feedback and dragging action, and to begin a DGE-based 

reasoning about perceiving DGE invariant. Figure 2 are two snapshots for different 

positions of A where B and C are fixed. There are only two types of possible 

quadrilaterals: right-angled trapezium and rectangle. This is making use of the 

Difference and Similarity Principle. 

Figure 1 
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Figure 2 

TASK 3: Separation of Critical Features 

CDM / SI and SHI: Variation tasks are used to bring about awareness of critical 

(causal) relationship among the observed invariants 

3.1 Activate the Trace function for point A. Drag A while keeping B and C fixed 

to maintain ABCD to look like a rectangle. 

3.2 Describe your experience and what you observe 

3.3 Make a guess on the geometrical shape of the path that A follows while 

maintaining ABCD to look like a rectangle. How do you make this guess? 

Call this guess a maintained-path (cf. Leung et al., 2013) 

3.1 asks the learner to use a special function in DGE to 

record the trace of point A as it is being dragged to keep 

ABCD looks like a rectangle. Using rectangle as a 

perceptual invariant to constrain the dragging control 

makes visible the emergence of another perceptual 

invariant: the trace-mark of A which appears to take a 

geometrical shape (see Figure 3). Guessing and naming the 

trace motivates the learner to engage into a DGE discourse. 

This is making use of the Sieving Principle. 

 

In 3.2 and 3.3, by asking the learner to describe his/her dragging experience and to 

make a guess on the geometrical shape of the traced path, the learner’s cognitive mode 

is transiting from observation of DGE phenomena to discernment of critical features 

which could lead to concept formation. In particular, while the learner shifts his/her 

attention to the two perceptual invariants (the rectangular-like ABCD and the 

maintained-path) during dragging, attention to discern possible causal relationship 

between the two invariants may come about. This is the Shifting Principle. 

TASK 4: Simultaneous Focus  

SDM / SHI and CO: Variation tasks are used to bring about awareness of a connection 

between critical relationships observed and possible mathematical discourses (causal 

condition, formal/informal conjecture, concept, pattern, mathematical proof, etc.) 

Figure 3 
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4.1 When A is being dragged to vary, vertices B, C and D either vary or not vary 

as consequence. Observe the behavior of B, C and D while A is varying to 

maintain ABCD looks like a rectangle.  

4.2 Find a possible condition to relate the maintained-path and the varying  

configuration of B, C and D. 

4.3 Use the condition found in 4.2 to construct the maintained path 

4.1 and 4.2 are continuation of 3.3, the Shifting Principle continues with added 

attention to the consequential movements of the vertices A, B, C and D, thus the 

Co-variation Principle become in effect. In the process, the learner develops a DGE 

discourse for geometrical reasoning and construction. 4.3 is a consummation of the 

exploration in the form of a DGE soft construction (cf. Healy, 2000). The 

maintained-path takes the form of a circle centred at the midpoint of segment BC. The 

construction of this circle ensured D lies on the circle and when A is being dragged 

along this circle, ABCD becomes a rectangle (Figure 4). 

 
Figure 4 

TASK 5: Conjecture and Proof (Development of Theoretical Reasoning) 

SDM / CO: Development of DGE discourse to connect experimental reasoning and 

theoretical reasoning 

5.1  Write a conjecture on what you have discovered in the form 

GIVEN  A DGE construction  

IF  (certain condition being maintained during dragging) 

THEN  (certain configuration appears to be maintained during dragging) 

5.2 Drag A along the constructed maintained-path. Observe how different 

aspects of the figure vary together. Explain what you observe and formulate 

a logical argument to explain/prove your conjecture 

4.3 (Figure 4) is a DGE representation of a conjecture, 5.1 asks the learner to write this 

in the form of a DGE-situated conditional statement, for example, 

GIVEN  Quadrilateral ABCD as constructed in TASK 1 

IF  A is being dragged along the circle centred at the midpoint of 

segment BC 

B

CA

D
B

C

A

D
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THEN  ABCD is always a rectangle 

5.2 challenges the learner to formulate an explanation (or even a proof) for the 

conjecture just formed. I leave the readers to explore this discourse and to see how the 

Principles of Acquiring Invariant can be embedded in the reasoning process. 

REMARKS 

In the above I meshed together two epistemic frameworks, i.e. Principles of Acquiring 

Invariant and Task Design Epistemic Modes, to explore the mathematical concept 

formation process from experimental observation to discernment of abstraction using 

DGE as a context. A first remark is that these principles and epistemic modes form a 

nested network rather than follow a linear hierarchy. At any one instance during an 

exploration, any one of the principles and one of the modes can take dominance. These 

cognitive activities are pretty much learner driven but when designing a mathematical 

task, the designer can guide (as the five Tasks above) a learner to pay more attention to 

particular principle and mode while other principles and mode can be put in the 

cognitive background. This shifting between foreground and background is in fact a 

basic idea in the Theory of Variation. A second remark is that the task design model 

discussed in this paper is an attempt to crystalize a possible process bridging the 

experimental-theoretical gap in the DGE context. Specifically, the upshot of using 

variation and invariant is to drive an epistemic sequence that may look like: 

Constraint  Pattern Observation  Predictability  Emergence of Causal 

Relationship  Concept Formation  Explanation/Proof 

This paper is an attempt to enrich the current research literature on the use of variation 

in mathematics education and to propose a perspective focusing on invariant that is 

pertinent to mathematics knowledge acquisition. 
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This study is the part of a larger study on investigating Hong Kong (HK) prospective 

teachers’ (PTs)  ubject  atter  nowledge (   ) and Pedagogical Content 

 nowledge (PC ). In this paper, five H  PTs’     and PC  on teaching one topic 

regarding square root were investigated. The results suggest that insufficient 

understanding on the concept of algebraic operation is the major obstacle to limit 

those student teachers from teaching students with mathematical understanding. The 

results further echo with the viewpoint that SMK and PCK are two interrelated 

constructs and rich SMK leads to high quality of PCK. 

BACKGROUND INFORMATION   

Results from international comparative studies such as TIMSS and PISA indicate that 

students from East Asian regions (including mainland China, Hong Kong, Taiwan, and 

Singapore) outperform their Western counterparts (e.g., Mullis, et al, 2008; OCED, 

2013). Educational professionals believe that the “curriculum gap” is not the sole 

explanation for the performance discrepancies between West and East, and that the 

“preparation gap” of teachers, as confirmed by the results of IEA-study Teacher 

Education and Development Study in Mathematics (TEDS-M) (Tatto et al., 2012), is a 

fundamental concern. The results from TEDS-M study showed that potential 

mathematics teachers from two participating East Asian regions – Taiwan and 

Singapore – ranked the top in their achievement in both CK and PCK assessments 

among other participating countries. It is intuitively believed that the good 

performance in such international assessment exercises would be the consequence of 

well-equipped and competent teachers in the two regions. However, less is known 

about the reasons behind this relationship, and more explorations on other East Asian 

regions might help. In this study, we aim to contribute to the current knowledge by 

studying a group of HK PTs’ teaching knowledge. HK had undergone substantial 

educational reform at the turn of the millennium, which requires a paradigm shift of 

teachers’ teaching from teachers-centered to students-centered; therefore the extent to 

which HK PTs are ready to deliver such kind of effective mathematics teaching 

becomes a crucial issue.  

In his most cited article, Shulman (1986) set out the multi-dimensional nature of 

teachers’ professional knowledge. He identified, among other dimensions, three 
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aspects of professional knowledge: pedagogical knowledge, subject knowledge, and 

PCK. In the subject of mathematics, this knowledge is further conceptualized by Ball 

and her colleagues and categorized into two domains: mathematical subject matter 

knowledge (SMK) and PCK. In their mathematics knowledge for teaching (MKT) 

model (Hill, et. al., 2008, p.377), PCK and SMK are treated as two separate 

components. PCK includes knowledge of content and students (KCS), knowledge of 

content and teaching (KCT), and knowledge of curriculum, yet all three constructs 

under PCK connect with content knowledge in various ways. Indeed, the relationship 

between PCK and SMK is very vague. Despite that some studies separated the 

constructs of PCK and SMK empirically, a deep connection between the two 

constructs was found (e.g., Krauss, Baumert, & Blum, 2008). The impacts of SMK on 

PCK have been explored by scholars, in particular, which types of SMK can equip 

mathematics teachers for effective teaching are attractive. For example, Even (1993) 

studied the SMK of pre-service secondary mathematics teachers from the U.S. and its 

interrelations with PCK in the context of teaching the concept of functions. The study 

showed that insufficient SMK might lead pre-service teachers to adopt teaching 

strategies that emphasize procedural mastery rather than conceptual understanding. By 

comparing the US and Chinese mathematics teachers’ teaching competency, Ma’s 

(1999) found that Chinese teachers possessed profound understanding of fundamental 

mathematics (PUFM), that their American counterparts lack, facilitates them to 

conduct more effective teaching, Ball and her associates also included both common 

content knowledge (CCK) and specialized content knowledge (SCK) into their 

construct of SMK. In particular, they defined SCK, different from CCK, “that allows 

teachers to engage in particular teaching tasks, including how to accurately represent 

mathematical ideas, provide explanations of common rules and procedures, and 

examine and understand unusual solution methods to problem” (Ball, et al., 2005).  

In a recent paper, Buchholtz et al. (2013) reemphasize and highlight Felix Klein’s ideas 

“elementary mathematics from an advanced standpoint” (EMFAS) as another 

important category of teachers’ professional knowledge. The results gained from their 

international comparative study indicate that the future mathematics teachers from top 

mathematics performing countries including HK still have the problems in linking 

school mathematics and university knowledge systematically. The construct of 

EMFAS looks different from SCK by definition. The former is stated as more 

mathematical, and the latter one is mathematics knowledge applied for teaching. 

However, we make the hypothesis that EMFAS and SCK should share some 

similarities in content, both of them lead to conceptual-understanding oriented 

mathematics teaching.  

In this paper, we investigated HK PTs’ PCK and SMK on one topic in lower secondary 

school algebra namely square root as one example. The fundamental to the learning of 

mathematics is the process of learning the abstraction (Mitchelmore and White, 2000). 

Therefore, when concerning the richness of their SMK and PCK in teaching this topic, 
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we focus on if their SMK and PCK can facilitate them to teach students with algebraic 

abstraction. Specifically, the research questions we aim to answer in current paper are:  

 What are the SMK and PCK that the HK PTs have for teaching the topic of 

square root?  

 How PTs’ algebraic thinking relates to the quality of PCK in teaching this 

topic?   

METHODS 

What is presented here is a portion of a larger project in which two groups of future 

secondary mathematics teachers in HK participated. They are either in the third or 

fourth year of their study towards a bachelor of Education (BEd) majoring in 

mathematics, or, during full or part time study in the program of postgraduate diploma 

in education (PGDE) in mathematics. The whole project comprises both quantitative 

and qualitative data collection, the former being a questionnaire tapping PTs’ beliefs of 

the nature of mathematics and mathematics teaching and mathematics knowledge. 

Base on the results of this phase, five participants were selected to take part in the 

second phase which constitutes an interview aiming at capturing the PTs’ PCK and 

SMK in teaching three topics. They were given the 

pseudonyms of Jack, Fanny, Mandy, Gary and Charles. In the 

second phase, video-based interview was employed. It was 

taken a TIMSS 1999 Hong Kong video which constitutes a 40 

minutes lesson of Grade 8 class. During the interview, both 

researcher and interviewee sat next to each other. The 

researcher controlled the play of video and asked questions 

where appropriate. The interviewee watched video and 

sometimes wrote their responses on the whiteboard. The 

whole process was video-taped. The interview questions 

basing on Ball et al. (2008) MKT framework (with incorporation of EMFAS), are 

depicted in Table 1.  

 Interview questions The context of video  

P
C

K
 

KCT  What are your comments on this 

teacher’s approach on how to 

introduce the topic of square root? 

If you were the teacher, how would 

you do?  

The teacher in the TIMSS video told 

the students to find a number that, 

after multiplication of two identical 

numbers to give the resulting number. 

In general, the process of getting a 

square root as introduced by this 

teacher as a simple multiplication 

procedure.  

KCT  How to teach your students to find 

out the square roots of 9, i.e., 

=9 

The teacher in the TIMSS video put 

the focus on emphasizing the square 

roots of 9 could be either positive or 

negative, as for the value of square 

root is negative or positive, this can 

be judged by the sign in front of the 

Figure 1: The context 

of video-based 

interview  
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surd.  

KCS  

KCT  

What’s the thinking behind the 

student when student treat “a” as a 

positive number in writing the 

expression: =9 for figuring 

out a negative value for the square 

root of a? (KCS); 

If you were the teacher, how would 

you respond to this student? (KCT) 

The teacher in the TIMSS video 

wanted to enlighten student to find 

out negative square root of 9, so she 

wrote down a question: what is the 

negative square root of 9? One male 

student was invited to solve this 

problem on the blackboard. He 

immediately wrote down the 

expression: =9, thought for a 

while but could not find the answer. 

The teacher suggested him wipe out 

the negative sign in front of a.  

S
M

K
 

CCK 

SCK 

( 

EMFAS) 

What are your comments on this 

student’s solution: = 

= = ? Is it correct 

or not? Please provide reasons to 

support your answere from the 

mathematical point of view?  

In the textbook utilized in this video 

lesson, one exercise was to ask 

students think about if it is true that 

= . To investigate the 

depth of student teacher’s SMK, one 

hypothetical scenario was posted: 

One student demonstrated = 

-4 is true, because = 

= =  

Table 1: Interview questions and how they correspond to PCK categories 

FINDINGS  

Some preliminary findings and analysis based on the HK PTs’ responses to part of 

PCK and SMK illustrated in Table 1 will be presented.  

KCT – Introduction the topic of square root  

All informants tended to introduce the topic of square root by making a connection 

with the topic of square. There are two approaches of making this connection. The first 

approach is to start with introducing square numbers such as 4, 9, 16 and 25, for 

example, Mandy suggested to ask students,  

What is the square of 3? What is the square of 4? Thinking of 1
2
, 

2
2
, 3

2
… (Mandy) 

The second approach is to introduce the relationship between 

the area and the side of a square. Some student teachers 

tended to emphasize the notation of square and square root, 

and illustrated the concept of notations by a square image 

either explicitly or implicitly. For example, the picture 

presented below by Fanny demonstrates that 3 is the length of 

a side of the square with the area of 9. At the meanwhile, 

Fanny tries to help students to distinguish the concept of 3
2
 

Figure 2: Fanny’s 

picture to explain 

why 3
2
 is not equal 

to 33 
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from 32  (see Fig.2).  

Not only Fanny, but other two student teachers Mandy and Jack mentioned explicitly 

that students might be confused the concept of the square of 3 with that 3 multiplies by 

2. For example, Mandy justified the reason why she adopted the approach of 

introducing square numbers to students is to strengthen students’ impression on the 

meaning of square, that refers to multiply by itself but not multiplying by 2.  

KCT – Introduction of the notion “a
2
= 9” 

As for how to explain the equation: a
2
= 9, which is related to teach how to introduce 

the students about positive and negative square roots. The major approach that student 

teachers introduce this idea emphasizes the procedures. They highlighted the term “self 

-multiplication”, and suggested to introduce students the concept that positive, positive 

turns out to be positive, and negative, negative turns out to be negative. Charles’ 

approach is typical among other student teachers, since he wrote down 33=9 and ( 3) 

 ( 3) =9. However, not any visual representations were used by those student 

teachers to explain how to solve problems. Even through Gary was able to draw a 

picture to illustrate that “a” refers to the length of the side of a square whose area is 

9, but he failed to use this similar image to explain why -3 is the square root of 9.  

Er… I might think of drawing a square. Three…three [is nine]…but I don’t have ideas on 

how to draw the square with [the side] as negative 3? (Gary)  

KCS and KCT – Reaction to a misconception  

The student wrote down the negative sign in front of “a” in expression ( )
2 
=9 when 

he tried to solve a problem – what the negative value for square root of 9 is, what is the 

thinking behind him? The informants came up with two types of interpretations. One 

interpretation endorsed by three PTs – Charles, Fanny and Gary – is that the student is 

misled by the information “negative value”. For instance,  

Em…he [the student] might not think that the value of this unknown number could be 

either positive or negative. He probably thought, taken it for granted, that a must be a 

positive number… because it is an unknown number, so the unknown number could be 

positive or negative? … but he did not think of the possibility that this number could be 

negative number. (Gary)  

The second interpretation is endorsed by two PTs- Jack and Mandy and they attributed 

it as a piece of student’s incorrectness.  

Well, in fact what he was thinking at that moment was what he had thought was totally 

wrong. I think he was empty in his mind. (Jack) 

To respond this piece of student’s thinking, the majority of informants just criticized 

this teacher’s suggestion – ask the student to wipe off the negative sign. For example,  

The teacher should let him (the student) continue. In fact he (this student) was able to write 

this, why don’t we let him finish it? That is … I think the teacher just wanted the student to 

write the equation…but I think that student have the whole plan in his mind,..., so we can 
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talk about what was in his mind and helped him to clarify the misconceptions in terms of 

format. (Jack) 

Other methods were regarding how to stimulate this student to think of “a” could be 

either a positive or a negative number. For example, Mandy tried to provide the student 

some hints,   

How about the number a is -3? How about the square of (-3)? (Mandy) 

CK – Mathematical explanations for why = 4 is not true 

All PTs can make a correct judgement that = 4 is not true. The knowledge 

they apply is CCK, i.e., the radicand is non-positive so   is not equal to -4.They 

also commented that there must be wrong in some steps in the expression: = 

= = , however, no PTs was able to point out the mathematical reasons 

for why this method did not work. Some thought that it should solve  first, and 

then deal with because the order of calculating matters. 

DISCUSSION  

The analysis of the five HK PTs’ PCK in teaching this current topic shows that they 

adopted a procedural and a purely calculating approach to teach students square root. 

As evidenced in their approaches of explaining to students that a
2
= 9, the most of them 

try to explain in the way that 3 times 3 equals 9, and negative 3 times negative 3 equals 

9, however, this approach cannot help students with algebraic thinking, since teaching 

them to substitute numbers 3 and -3 is kind of trial and error, yet nothing related to the 

generalization of patterns. Similarly, in responding students’ question- adding one 

negative sign in front of a, the only approach that those student teachers employed was 

to provide the hints that, “-3 is the square root of 9” in order to emphasize that “a” 

could be either positive or negative. Their response to the KCS question demonstrated 

that those student teachers tended to interpret students’ confusions from literal 

understanding; for some student teachers, it is even worse, they attributed it as 

students’ incorrectness or lack of mind. Some evidences show that those PTs embrace 

students’ previous knowledge in learning the topic square, that is, how to interpret the 

operational meaning of superscript 2 in 3
2
, yet this is nothing to do with the content of 

square root.  

The results from an analysis of those PTs’ SMK show that they could have sufficient 

CCK in making judgment, yet the failure to answer student’s enquiry why 

 reflects the weakness in their SCK in teaching this topic. It relates to 

their insufficient understanding of √, weak knowledge in how to apply index law and 

composite function. In the case: = = = , those PTs seemed to 

overlook the fact that the index law cannot apply in the case  

= , because of the properties of composite functions. 
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Here, , and , ideally by the use the concept of composite 

function, we have  , but making ,  and 

 equal only if  is well defined. However, in this case  

is undefined when .  

The lack of adequate SMK especially SCK could be the major reason to explain why 

their PCK in teaching this algebraic topic is procedural. Algebraic thinking involves 

the understanding of roles and properties of variables, and relevant operations among 

those variables. Learning algebra we often go from a less abstract state to a more 

abstract state. Mitchelmore and White (2000) identified the learning stages in term of 

the intensity of abstraction, namely familiarization, similarity recognition, 

rectification and application. In this current case, knowing computationally that the 

square of the number 3 or -3 is 9 learners only reach the familiarization and similarity 

recognition levels. While, the rectification level is only reached when learners identify 

that we can only take the positive sign when taking square root of a number. It is 

because we treat squaring-taking square root as a pair of function and its inverse. 

Knowing what constraint is in there when writing will 

be in the level of application because the domain of the inverse function can only be 

applied to positive real numbers. However, when PTs’ levels of abstraction cannot 

reach in rectification and application, how could they possess high quality of PCK that 

facilitates students to develop algebraic thinking?  

CONCLUSION 

In spite of the limitations, this study highlights the role of SMK especially SCK or 

EMFAS plays a significant role in those HK PTs’ PCK in teaching the topic of square 

and square root. Consistent with the study conducted by Buchholtz et al. (2013), the 

results gained from current study show that those HK PTs could not connect relevant 

university mathematics with current topic. Lack of adequate knowledge of algebraic 

operation and functions leads those student teachers teach this algebraic topic in a 

procedural way. In addition, this study provided another perspective to evaluate the 

quality of PCK from the perspective of SCK and EMFAS. We hence rethink of the 

construct of PCK, which cannot be apart from CK especially SCK or EMFAS, which is 

more important than CCK in facilitating mathematics teachers to teach students with 

more conceptual understanding.  
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EXPLORING THE RELATIONSHIP BETWEEN EXPLANATIONS 

AND EXAMPLES: PARITY AND EQUIVALENT FRACTIONS 

Esther S. Levenson 

Tel Aviv University 

 

Examples and explanations are inherent elements of mathematics learning and 

teaching. This study explores the relationship between examples and explanations 

given for the same concept. Results indicated that for the concept of parity, fifth grade 

students offer different explanations for different examples. However, for the concept 

of equivalent fractions, algorithmic explanations were most preferred.  

INTRODUCTION 

Mathematical concepts are complex and multi-faceted. That is, there may be different 

equivalent ways of defining a concept, but they all necessarily lead to one set of critical 

attributes. While mathematically, all of the critical attributes of a specific concept are 

equally essential and should be equally attributed to that concept, psychologically, they 

may not be the same. On the one hand, students often associate non-critical attributes 

with some concept; on the other hand, students may associate a concept with a shorter 

list of critical attributes than it truly has (Hershkowitz, 1990). How can we help 

students attain a fuller range and more encompassing recognition of all critical 

attributes for a mathematical concept?  

Several studies have focused on the roles of examples in concept formation and 

expanding a student’s accessible example space (e.g., Watson & Mason, 2005). Yet, 

recognizing a wide set of examples as being instances of some concept, does not 

necessarily mean that the student will also recognize a wide set of critical attributes as 

belonging to that concept. Another seemingly separate line of research related to 

learning mathematical concepts, is research concerning explanations. Previous studies 

have focused on the types of explanations used by teachers and students (e. g., Bowers 

& Doerr, 2001) as well as the sociomathematical norms related to giving and 

evaluating mathematical explanations (Levenson, Tirosh, & Tsamir, 2009). While 

those studies are perhaps implicitly related to concept development, they do not focus 

specifically on how explanations may be related to examples and how this relationship 

may inform us of students’ conceptualizations.  

According to Watson and Chick (2011), in order for students to learn from examples 

and see what an example could be an “example of”, a process must take place which 

includes seeking relations between elements of an example. This study explores the 

possibility that explanations can play a role in this process, that examples may help 

students “focus mindfully” on the examples (p. 285). It seeks to combine research 

related to examples with research related to explanations, and to explore the 

relationship between examples and explanations given for the same concept. Using 
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two mathematical contexts, parity and equivalent fractions, the following questions are 

investigated: Do different examples give rise to different explanations, or are some 

explanations more prevalent than others, regardless of the different examples? Do 

students consistently give the same explanation for a concept despite being shown 

different examples of that concept or do they give different explanations for different 

examples?  

EXAMPLES AND EXPLANATIONS 

One key to using examples in concept formation may be variation. Zodik and 

Zaslavsky (2008) refer to Watson and Mason’s (2006) discussion of variation in 

structuring tasks, and suggest a similar way of structuring examples. Just as some 

features of a task may vary while others are kept constant, so too with examples. The 

presentation of examples should be structured in such a way as to highlight relevant 

features while downplaying non-critical attributes. Rowland (2008) also claims that we 

learn from discerning variation and that “the provision of examples must therefore take 

into account the dimensions of variation inherent in the objects of attention” (p. 153). 

Learners need to be aware of which attributes of a concept can be varied and which 

cannot. At different times in the learning process, students may be aware of different 

dimensions which may be varied, sometimes claiming an unnecessarily restricted 

sense of possible variations (Goldeberg & Mason, 2008). In his study of examples in 

the teaching of elementary mathematics, Rowland (2008) found that some examples 

may obscure the role of variables, making it more difficult for students to learn from 

those examples. Recognizing the significance of teachers’ choice of examples, Zodik 

and Zaslavsky (2008) investigated teachers’ considerations in choosing examples. 

Their study pointed to several considerations, including choosing examples that will 

draw students’ attention to relevant features.  

Like examples, explanations are also used every day in the mathematics classroom and 

may have several functions. Explanations may answer a "how" question, and describe 

the procedure used to solve a problem, or they may answer a "why" question where the 

underlying assumption is that the explanation should rely on mathematical properties 

and generalizations (Levenson, Barkai, & Larson, 2013). Similarly, calculational 

explanations describe a process, procedure, or the steps taken to solve a problem. 

Conceptual explanations describe the reasons for the steps, which link procedures to 

the conceptual knowledge of the student (Bowers & Doerr, 2001). Hemmi, Lepik, and 

Viholainen (2013) inferred that explanations are an important part of problem solving 

and reasoning processes and may be used to make mathematical connections clear, 

even among young students. Explanations may also be given to rationalize actions, 

both for the giver of the explanation as well as for the receiver (Krummheuer, 2000). 

Nunokawa (2010) claimed that explanations not only communicate student’s existing 

thoughts but may also generate new objects of thought by directing new explorations 

which may then deepen the student’s understanding of the problem at hand. Thus, an 

underlying function of explanations is to expand students’ mathematics learning. 
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METHODOLOGY 

Tools and procedure 

Two questionnaires, the parity questionnaire and the equivalent-fractions 

questionnaire, were handed out to 71 fifth-grade students. Both concepts had been 

introduced to students previously and it was expected that students would be familiar 

with both concepts at the time of the study. The parity questionnaire was handed out in 

the beginning of the year. On the parity questionnaire, students were asked to consider 

whether the integers 14, 9, 286, and 0 were even or odd and to explain their reasoning. 

The first two integers, 14 and 9, were chosen because they are relatively small natural 

numbers that elementary students can easily relate to, envision, and manipulate. By 

choosing one even and one odd number we could discern if the types of explanations 

given were related to the parity of the number. Zero was chosen because of the much 

researched difficulties, among students and teachers alike, conceptualizing and 

operating with this number (e.g., Anthony & Walshaw, 2004). The fourth number, 286, 

was chosen because it is not a number that is usually encountered by children in a 

day-to-day context and in order to see if there would be a difference between students’ 

explanations for a two-digit number and a three-digit number. The fractions 

questionnaire was handed out approximately three months after the parity 

questionnaire. On the fractions questionnaire, students were asked to assess the 

equivalence of three pairs of fractions, 2/4 and 6/12, 5/15 and 10/30, 0/4 and 0/12, and 

to explain their reasoning. The first pair was chosen because it was thought that both 

fractions would be familiar to children, and like the numbers 14 and 9, they would be 

easy to relate to, envision, and manipulate. The second pair was chosen because they 

both reduce to one-third but students can also easily expand 5/15 to 10/30. The last pair 

was chosen because of its involvement with zero, as described above. 

Analyzing the data 

Students’ assessments of the parity of the given numbers and of the equivalence of the 

given pairs of fractions were coded for correctness. Only explanations associated with 

correct responses were analysed further. On the parity questionnaire, four categories of 

explanations emerged from the data (See Table 1). Three explanations were 

mathematically-based (i.e., explanations based on mathematical definitions or 

previously learned mathematical properties, often using mathematical reasoning ) and 

one was practically-based (PB). Some explanations were unequivocally wrong. For 

example, one student wrote that 9 is an odd number because "it is a prime number." 

Some explanations could not be categorized, such as “When you divide 14 by 7, 

nothing will stand by itself.” These types of explanations were categorized as “other”. 

On the fraction explanation, five categories emerged (see Table 2). As with the parity 

questionnaire some explanations (e.g., “2/4 is equivalent to 6/12 because all the 

numbers are even”) were either invalid or incomprehensible and could not be 

categorized. Two experts in the field of mathematics education validated the 

categorization of explanations for each concept. 
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Theoretically, each type of explanation could be used for each example. For example, 

the parity of each number could be explained by claiming that it was or was not 

divisible by two. In order to assess students’ tendencies to be consistent when 

explaining a concept, the explanations each student gave for the different examples 

were compared. For example, one student claimed that “14 is even because it’s 

divisible by 2”, “9 is not even because it is not divisible by 2”, “0 is even because when 

you stand on 2 and jump backwards 2 steps you land on 0”, and “286 is even because 6 

is even.” That student was consistent regarding the explanations given for parity of 14 

and 9, but not consistent with regard to 14 and 0, and with regard to 14 and 286. If we 

consider all three even numbers together, we would say that the student was not 

consistent regarding the explanations given for even numbers. A similar comparison 

was carried out for the explanations given on the fractions questionnaire. 

Categories Students wrote… 

Divisible by 2: An even number is divisible by 2, 

is a multiple of 2, or can be expressed as the sum 

of 2 equal whole numbers. 

"14 can be written as 7 + 7”, "14 is an even 

number because it's divisible by two without a 

remainder." 

Number line: Even numbers are alternating whole 

numbers on the number line when you start with 

0. 

"When you start from 0 on the number line, 

jumping by twos, we end up standing on the 

number 14." 

Last digit rule: If the ones digit of a number is 

even, then the whole number is even. 

"14 is even because 4 is even." 

Practically-based: Explanations that use daily 

contexts, drawing, and/or manipulatives. 

"14 is even because if I want to give out 14 

pencils to two children, each one would get 

the same amount of pencils." 

Table 1: Categories of parity explanations 

Categories Students wrote… 

Equal to the same number: Equivalent fractions 

are two fractions that represent the same 

number. 

"5/15 and 10/30 are both equal to 1/3” 

Algorithmic: Expansion or reduction of one or 

both fractions. 

"If you multiply (both the numerator and 

denominator in 2/4) by 3, you get 6/12." 

Numerator/denominator (N/D) relationship: 

The denominator is a multiple of the numerator. 

"4 is twice as much as 2 and 12 is twice as much 

as 6." 

Zero is nothing: relates zero to nothing. "Because in both of them there is nothing." 

Practically-based (PB): Explanations that use 

daily contexts, drawing, and/or manipulatives. 

"Six and two are equal only with smaller 

pieces." (This explanation refers to the "pie" 

diagram where each "piece" is an equal 

fractional part of the whole pie.) 

Table 2: Categories of equivalent fractions explanations 

RESULTS 

Parity questionnaire 

As shown in Table 3, nearly all, of the students knew the parity of 14, 9, and 286. 

However, as expected, zero was a cause for confusion. Because one of the aims of this 
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study was to investigate the variability or, conversely, the consistency of explanations 

for different examples, only the explanations of students, who evaluated correctly the 

parity of all four integers, were examined. This led to a final sample of 56 students. 

 14 9 0 286 

Correct evaluations 71 (100) 70 (99) 57 (80) 68 (96) 

Table 3: Frequencies (in %) of correct evaluations per integer (N=71) 

Table 4 summarizes the results of how children explained the parity of each integer. 

Taking into consideration a total of 188 valid explanations, 35% of those explanations 

were based on divisibility by two, 34% were based on the number line, 29% were 

based on the last-digit rule, and 2% were practically-based. In other words, none of the 

categories stood out as being truly dominant over the others. On the other hand, for 

each integer, there seemed to be one type of explanation which was used more 

frequently than the others. For example, most students explained the parity of 14 by 

writing that it was divisible by two, while most students explained the parity of zero by 

its placement on the number line. 

 Divisible by 2 Number line Last-digit rule PB Other 

14 23 (41) 11 (20) 16 (29) - 6 (11) 

9 22 (39) 17 (30) 2 (4)  2 (4) 13 (23) 

0 8 (14) 31 (55) 2 (4) 1 (2) 14 (25) 

286 13 (23) 5 (9) 35 (63) - 3 (5) 

Table 4: Frequencies (in %) of types of explanations per integer (N=56) 

With regard to consistency, only valid comprehensible explanations were considered, 

leading to a sample of 42 students. Explanations for the two, relatively small and 

familiar integers, 14 and 9, were compared first. Following that comparison, 

explanations for each two even numbers were compared, and finally the explanations 

for all three even numbers were compared. The highest consistency of explanations 

occurred when explaining the parities of 14 and 9 and 14 and 286. While over a third of 

the students offered the same type of explanation for 14 and 0, only 19% of the students 

offered the same type of explanation for 0 and 286, leading to a relatively low 

consistency rate for all three even numbers. 

Examples 14, 9 14, 0 14, 286 0, 286 14, 0, 286 

Consistent explanations 27(64) 18(43) 25(60) 8(19) 7(17) 

Table 5: Frequencies (in %) of consistent explanations for groups of integers (N=42) 

Fractions questionnaire 

Out of the 71 students who filled in the parity questionnaire, 66 students also filled in 

the fraction questionnaire. Results of students’ assessments are summarized in Table 6. 

Once again, introducing zero into an example seemed to cause difficulties. 

 2/4=6/12 5/15=10/30 0/4=0/12 

Correct evaluations 65 (98) 63 (95) 48 (74) 

Table 6: Frequencies (in %) of correct evaluations of equivalent fractions (N=66) 
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There were 48 students that knew that all three pairs of fractions were equivalent. Their 

explanations are summarized in Table 7. Of the 120 valid explanations, 48% were 

algorithmic, 31% related to the fractions being equal to the same number, 10% related 

to the relationship between the numerator and denominator (N/D), 7% were PB, and 

4% considered the "zero is nothing" analogy. In other words, there seemed to be a clear 

preference for algorithmic explanations. When looking at the explanations given for 

the different examples, algorithmic explanations were most prevalent for the example 

5/10=10/30. However, no clear preference of one type of explanation was found for the 

other examples. Interestingly, more PB explanations were used to explain why 

0/4=0/12 than for any other example, perhaps indicating the need for students to relate 

zero to something concrete in order to comprehend this equivalence. 

 Equal to the 

same number 

Algorithmic N/D Zero is 

nothing 

PB  Other 

2/4=6/12 17 (35) 19 (40) 4 (8) - 1 (2) 7 (15) 

5/10=10/30 8 (16) 25 (52) 8 (16) - 1 (2) 6 (13) 

0/4=0/12 12 (24) 14 (29) - 5 (10) 6 (13) 11 (23) 

Table 7: Frequencies (in %) of types of explanations per pair of fractions (N=48) 

With regard to consistency, 32 valid explanations were considered (see Table 8). 

Surprisingly, few students explained why 2/4=6/12 in the same way as they explained 

why 5/15=10/30. Also note, the consistency rate for all three examples of equivalent 

functions (19%) was similar to the consistency rate for all three examples of even 

numbers (17%). 

Examples 2/4=6/12, 

5/15=10/30 

2/4=6/12, 

0/4=0/12 

5/15=10/30, 

0/4=0/12 

2/4=6/12, 

5/15=10/30, 

0/4=0/12 

Consistent explanations 8 (25) 15 (43) 17 (50) 6 (19) 

Table 8: Frequencies (in %) of consistent explanations for equivalent fractions (N=32) 

Comparing the contexts 

Finally, when considering both mathematical contexts, 32 students correctly evaluated 

all of the tasks and offered valid explanations. Out of those students, only four (12%) 

were consistent in the types of explanations they gave for both contexts, giving the 

same type of explanation to explain the parity of the three even numbers and the same 

type of explanation when explaining why the three pairs of fractions were equivalent. 

SUMMARY AND DISCUSSION 

Do different examples give rise to different explanations, or are some explanations 

more prevalent than others, regardless of the different examples? The answer to this 

question may be dependent on the context. With regard to parity, different examples 

elicited different explanations. Within the context of equivalent fractions, nearly half 

of all the fractions explanations were algorithmic. While algorithmic knowledge is an 

essential element of mathematics knowledge (Fischbein, 1993), this type of 
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explanation sheds little light on students’ conceptualization of fractions and, 

specifically, equivalent fractions. When explaining why 2/4=6/12, over a third of the 

students pointed out that both of these fractions were equal to 1/2 and therefore equal to 

each other. Perhaps because this example is intuitive and close to the student’s world, it 

was helpful in bringing out this explanation. This explanation focuses on the 

conceptualization of equivalent fractions as being different representation for the same 

quantity. On the other hand, the N/D explanation focuses on the conceptualization of a 

fraction as a ratio. Interestingly, this explanation hardly came up. Perhaps a different 

example, such as 3/9=5/15 would have elicited this explanation. Perhaps, in line with 

Watson and Mason’s (2006) theory of task variation, different tasks might expose 

different relationships between examples and explanations.  

Do students consistently give the same explanation for a concept despite being shown 

different examples of that concept or do they give different explanations for different 

examples? For both contexts, the general answer to this question was no, most students 

do not give the same explanation for different examples. However, upon a closer look, 

on the parity questionnaire, most students were consistent, not only when explaining 

the parity of 14 and 9, two relatively small numbers, but also when explaining the 

parity of 14 and 286. It was the introduction of zero, which caused students to think of 

other ways of explaining the parity of this number. On the fractions questionnaire, the 

opposite occurred. More research is needed in order to discern which examples will 

lead students to seek different explanations and which examples will lead students to 

use which explanations. Such research could be helpful to teachers planning lessons, as 

well as for researchers planning studies which involve the use of examples. 

Mathematically, there is no reason to use different explanations when explaining why 

various instances of some concept are all examples of that concept.  In fact, 

consistently using the same explanation may be seen as a sign of mathematical 

maturity. This study showed, however, that most students, at least during their younger 

years, do not consistently use the same explanation for each example. Zodik and 

Zaslavsky’s (2008) study noted that teachers consider several issues when choosing 

examples to present in class. However, the types of explanations that different 

examples may elicit from students, was not considered. Students may need assistance 

in recognizing the generality of instances and in finding relationships and connections 

between examples. Recall that explanations may be used to help make mathematical 

connections clear (Hemmi, Lepik, & Viholainen, 2013) and deepen students' 

understanding (Nunokawa, 2010). Considering that different explanations may be 

based on different ways of conceptualizing a concept and may emphasize different 

attributes of a concept, teachers, as well as researchers, may consider the combination 

and integration of examples and explanations, when choosing which examples, and 

which explanations, to present to students in class.  
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Mathematics education literature suggests that diagrams should be included in 

mathematics lectures, however few studies have empirically studied the use of 

diagrams in the undergraduate classroom. We present a case study investigating the 

use of diagrams in a university lecture and how students in the class understood them. 

Three archetypes of student understanding of diagrams are described and illustrated.   

INTRODUCTION 

Although one of the main objectives of advanced undergraduate mathematics courses 

is to help students learn to construct and understand proofs, mathematics majors have 

difficulty constructing proofs (e.g., Weber, 2001) and determining if a proof is correct 

(e.g., Selden & Selden, 2003). One possible way of investigating the sources of these 

difficulties is to consider how students are taught proof in these courses. In particular, 

given discussions on the importance of diagrams and informal arguments in the 

learning of mathematics and the construction of proof (e.g. Alcock, 2010; Thurston, 

1994), some have called for the use of diagrams in lectures for undergraduate students 

(e.g. Zimmerman & Cunningham, 1991; Alcock, 2010). 

In their review of the literature, Speer, Smith, and Horvath (2010) highlighted the 

dearth of research on college-level classroom teaching practices in mathematics. While 

some studies on undergraduate mathematics classrooms exist (Weber, 2004; Mills, 

2012; Fukawa-Connelly & Newton; in press), there is a lack of research on how 

mathematics professors use diagrams in their lectures and the extent to which diagrams 

enhance students’ understanding. The present study addresses these issues. 

Theoretical Perspective 

The literature outlines various theoretical benefits of using diagrams when presenting 

both definitions and proofs in the classroom. Using diagrams in the presentation of 

new definitions may enable students to develop an intuitive understanding of the 

definition (Vinner, 1991), perceive the connections between the formal symbolism of a 

definition and conceptual understanding of the definition (Zimmerman & Cunningham 

1991), develop intuition of whether or not related conjectures are true (Vinner, 1991), 

and prove related conjectures (Vinner, 1991). Using diagrams in the presentation of 

proofs may enable students to gain an intuitive sense of why a statement is true 

(Barwise & Etchemendy, 1991), understand steps within the proof (Barwise & 

Etchemendy, 1991), and prove similar theorems using similar diagrams (Tall, 1991). 

While we make no claims that this list is exhaustive, we used these potential benefits to 

frame our investigation into how students understood diagrams.  
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Research Questions 

We consider the diagrams used in a lecture introducing the Riemann integral in an 

undergraduate real analysis course with the following research questions: 1) How did 

the professor use diagrams in this lecture and for what purpose? 2) What did the 

professor intend to convey by presenting these diagrams? 3) How did students interpret 

the diagrams and pictures that were presented in this lecture?  

DR. A 

The context for this case study is a real analysis course at a large public research 

university in the U.S. The course was taught by Dr. A (a pseudonym), a professor of 

mathematics with over three decades of teaching experience at the university level and 

a history of receiving high student evaluations. Dr. A had a reputation within the 

department of being a thoughtful and careful lecturer who frequently used diagrams in 

his lectures.  

We videotaped a lecture in which Dr. A presented six diagrams. In this paper, we focus 

on the two diagrams presented in Table 1 (the diagram used when presenting the 

definition of upper and lower sums given a partition and the diagram used when 

presenting a proof of the claim that ).   

Diagram presented with the definition of upper 

and lower sums 

Diagram presented with the proof of the 

claim that  

  
Table 1: Diagrams presented by Dr. A 

Dr. A was interviewed on his use of the diagrams in Table 1 and on his opinion on the 

use of the diagrams in mathematics in general. Dr. A was first asked why he chose to 

include the definition/proof and its associated diagram, and what he hoped to convey 

through their use. Dr. A was then was asked if he had hoped to convey each of the 

benefits discussed in our theoretical perspective, both through his general use of 

diagrams and, in particular, through his use of each of the two diagrams in Table 1. 

Dr. A’s Interview 

In his interview, Dr. A reported having used the diagram illustrating the concept of 

upper and lower sums in order to help his students “associate concepts’ symbols with 

geometrical pictures.” He noted: 

The upper sum is approximation of the area by rectangles, which are larger than the area 

under the graph and the approximate by lower sums, again an approximation by rectangles, 

which have less area than the region under the graph of the function. 

His goal of presenting this diagram was to convey the fact that upper and lower sums 

are approximations of area, since this concept will be essential when defining the 
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Riemann integral. When probed about the potential benefits of using diagrams, Dr. A 

agreed that he hoped the diagram would help his students develop a sense of intuition 

of the definition and prove related conjectures.  

Next, Dr. A explained that he presented the proof of the proposition  as an 

example of using the approximation procedure that he outlined in the lecture. Dr. A 

reported that his goal in presenting this proof was to provide: 

A function where the areas a pretty clear, in the approximating rectangles can be easily 

seen to give the inequalities. … To give [the students] a concrete function to look at. 

When probed about the benefits of using diagrams with proofs (listed in our 

Theoretical Perspective), Dr. A agreed that he hoped to convey each of these to his 

students through his use of diagrams including helping students write proofs about this 

concept. He suggested asking students to prove  would be an appropriate 

task to test students’ understanding of his lecture. 

STUDENT PARTICIPANTS 

Five student participants for this study were recruited from Dr. A’s class.  Each of the 

students was pursuing either a major or minor in mathematics—the ages of the students 

varied from first to fourth years at the university. The goal of these interviews was to 

see how students understood the diagrams presented in the class and if the diagrams 

conveyed the mathematical insight that Dr. A intended.  Each student was interviewed 

individually. 

In the first task, we wanted to see how the participants understood the definition 

diagram use in lecture and whether this diagram conferred the benefits described in our 

theoretical perspective. Participants were first given a prompt with Figure 1 and were 

asked to draw the upper and lower sums on the partition, provide the definitions of 

upper and lower sums, and explain how the diagram was related to the definitions. 

Finally, to determine if the participants could use the diagram to infer properties about 

these concepts, each participant was asked what would happen to the sums if more 

points were added to the partition.  If participants struggled with the first task, they 

were given the option to watch the video of Dr. A’s presentation of the definition of 

upper and lower sums.   

 

Figure 1: Diagram for the upper and lower sum task 

In the second set of questions, we investigated how well students understood the proof 

that , particularly in relation to the diagram that Dr. A introduced in his 

lecture. After watching a video of Dr. A’s proof presentation, participants discussed 
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what they thought the professor was trying to convey in his presentation of the proof, 

what they remembered about the diagram, how the diagram affected their 

understanding of the proof, and what they thought the professor was trying to convey 

with the diagram. Each participant also was asked to explain Dr. A’s diagram, 

including which parts of the diagram connected to which parts of the proof.  Finally, 

each student was given the task of proving  which Dr. A thought students 

should be able to do if they understood the lecture. 

Three Ways that Students May Understand Diagrams 

We analyzed the student data to investigate how the students understood the diagrams 

from the lectures and to see the extent to which the students gained the insights the 

professor wished to convey. For the analysis of these data we followed the 

quasi-judicial procedure developed by Bromley (1986) for case study research, 

focusing on common patterns of student behavior to ultimately categorize them as 

cases of a certain type. The findings suggest three archetypes of student understanding 

of the diagrams presented in their course lectures: incoherent understanding, 

instrumental understanding, and integrated understanding.  

Incoherent understanding 

A student with an incoherent understanding of a diagram does not have a coherent 

understanding of how the components of the diagram relate to the formal mathematical 

theory. As a result, the student’s responses to questions are geared toward imitating the 

behavior of the professor that he or she had previously witnessed. Three students 

evinced this type of understanding, which we illustrate with D3.    

During the first task, D3 was able to correctly draw the upper and lower sums. 

However, when asked what information the graph provided, D3 responded: 

Well if I have both [the upper and lower sums], I could see that it will trace the function 

because if you put them on top of each other… It’s basically this [upper sum] area minus 

this [lower sum] area and I feel like, I think it would give you this line [the function]. 

When asked to relate the graphs and definitions, D3 attempted to recall reasoning 

previously seen, “well, all I remember—all I keep thinking about is the function they 

give you, which is the upper sum minus the lower sum.” Comments such as these 

reveal D3’s belief that the difference of the upper and lower sums yields the function 

itself, illustrating D3’s inability to connect the diagram to formal theory. Clearly D3 

did not view the areas as approximations of the integral, as Dr. A intended.   

Later, the student explained why the task was so difficult: “because I mean, during 

class we’ve never done any exercises like this. So I was really intimidated by like, I 

don’t know, am I doing it correctly or not?” Feeling unfamiliar with the task, D3 had 

difficulty deciding how to respond to the task.  D3’s attempt to recall the reasoning 

presented in lecture and her inability to judge whether her responses made sense 

suggest D3 was relying on imitative reasoning.   
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Instrumental understanding 

A student with an instrumental understanding of a diagram views the diagram as a tool 

to accomplish specific types of tasks, but does not understand the justification for why 

using this diagram yields the desired solution. Thus, following Skemp (1978), we say 

this student has an instrumental understanding of the diagram—the student knows 

what to do with the diagram to complete some tasks, but does not know why the 

solution is correct. In this archetype, the student does not have a strong understanding 

of how the diagram relates to the deductive mathematical theory. Hence, although the 

student may be able to flexibly use the diagram to accomplish some tasks, the student 

would not be able to draw novel inferences from the diagram, use the diagram to 

decide whether a statement is true or false, or connect the diagram to the logic of a 

proof that he or she observed. We illustrate this archetype with D2. 

When asked how the upper and lower sums would be affected by a refinement of the 

partition, D2 reported that the upper sum would increase and the lower sum would 

decrease. When asked why this would occur, D2 explained, “as we increase… these 

areas [indicating areas between the lower sum and the curve of the function] will also 

increase, and also the denominator will also increase”.  This clearly illustrates a 

misunderstanding of how a refinement adjusts the upper and lower sums.  

Next, when asked what the professor was trying to convey with the presentation of the 

proof that , the student responded “I think he’s trying to show us how to 

prove that the… difference of the lower integral and the upper integral can be made 

small enough to show the area."  When probed further: 

Interviewer: Okay. Umm, is there anything else, or is that it? 

D2: So that, that’s it. Just the technique of how to show it.   

We see that D2 believes the sole purpose of proof presentation is for the professor to 

communicate particular proving techniques to students.  

Despite having a flawed understanding of how a refinement affects the upper and 

lower sums, D2 correctly produced a proof showing that . D2’s 

description of how the diagram helped the proof construction highlights both the 

student’s ability to relate the diagram to the proof and imitate reasoning: 

So for this I was just concentrating on the, how the curve would look like and what would 

be the relation of the upper and the lower, of the maximum and the min compared to the 

normal function, say like x. So like, since we could compare this function to x, I just had 

that in mind so we could use that partition.   

The student further clarified that the professor’s example had been in mind during D2’s 

proof construction. D2 compared his diagram to Dr. A’s proof diagram and 

appropriately adjusted the argument to construct a complete proof. D2 was 

successfully able to relate the diagram to the high-level ideas of the proof, utilizing Dr. 

A’s reasoning to construct a similar proof.  We note while D3 and D2 both illustrate 

imitative reasoning, they do so in different manners. D2 used Dr. A’s reasoning and 
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diagrams and adjusted the arguments to fit the new task, constructing a complete proof.  

This differs from D3’s actions, which relied on mimicking exact actions and reasoning 

observed, regardless of the logical consequences.  

Integrated understanding 

A student with an integrated understanding of the diagram can use the diagram both to 

instantiate mathematical objects and mathematical logic; this student can form strong 

links between inferences drawn from the diagrams and deductive inferences drawn 

from the formal theory. One would expect that a student with an integrated 

understanding would be able to specify the components of a diagram, make inferences 

connecting the diagram and formal mathematical theory, and instantiate and apply the 

reasoning to proofs they observed and they wrote. So, not only is the student able to 

describe the mathematical objects being discussed at a basic level, but he or she is also 

able to build on the concepts. We illustrate this archetype with D1. 

When asked how the student’s diagram of the upper sum would be affected by a 

refinement, D1 was able to both relate the objects of the diagram to the formal theory 

and make inferences from the diagram. D1’s responses throughout the first task 

demonstrated a clear understanding of upper and lower sums. However, despite D1’s 

integrated understanding of the diagrams, D1 was unable to construct a complete proof 

of the claim that . D1’s proof attempt began with choosing the partition of  

sub-intervals of length . While correctly splitting the interval from 0 to 1 into 

sub-intervals with equal widths, this caused confusion when D1 did not correctly 

incorporate this when plugging in the maximums and minimums in the equations of the 

upper and lower sums, preventing D1 from constructing the proof. Nevertheless, when 

the interviewer asked what D1 was thinking while attempting to construct the proof, 

D1 explained why the integral should exist: 

Since your function is monotone increasing, every time you define a partition… [each 

rectangle is] going to the be upper for the one previous to it and the lower for the one after 

it… So as long as the partition is equidistantly spaced … You only have the last upper 

partition to consider. [Which] is just going to be the function value at that point, which is 1 

times this infinitely thin slice, which is going to be  as n goes to infinity so it should be 

nothing… it’s monotone increasing so I’m always going to have this property. 

D1 explained the monotonicity of the function leads the difference between the upper 

and lower sums to telescope to  , which goes to zero as n goes to infinity.  Not only did 

this explanation demonstrate D1’s ability to infer from the context of the diagram to 

the formal theory and to describe the relationship between them, but also justified the 

student’s unusual choice of partition.  Moreover, this monotonicity argument was not 

presented in lecture, illustrating D1’s ability to make inferences and build further on 

concepts presented by the professor.  

In Table 2, we present behaviors one may expect a student to exhibit as a result of their 

understanding archetype.   
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 Articulating the diagram’s 

components  

Inferring from the diagram Linking the diagram to 

reasoning/proofs 

Incoherent 

Understanding 

One has an unstable or 

inconsistent interpretation 

of the diagram depending 

on the task evoked. 

One may draw incorrect 

inferences, due to 

inconsistent understanding 

of diagram’s components. 

One cannot link the 

diagram to proofs in 

meaningful ways, since 

one may view proof as 

tightly tied to context. 

Instrumental 

Understanding 

One could specify the 

components of a diagram 

that relate to the 

mathematical objects 

discussed. 

One may draw incorrect 

inferences, since 

understanding may not be 

integrated to the 

mathematical theory. 

One may be able to relate 

the diagram to the high 

level ideas of the proof, 

but not specific logic of the 

proof.    

Integrated 

Understanding 

One could specify the 

components of a diagram 

that relate to the 

mathematical objects 

discussed. 

One can draw inferences 

from the diagram, that are 

consistent with the formal 

theory. 

One can use the diagram to 

instantiate reasoning and 

as a tool to construct 

proofs.   

Table 2: Expected outcomes from the understanding archetypes 

DISCUSSION 

In this report, we presented a case study in which we studied how and why diagrams 

were used in a real analysis lecture by a highly regarded instructor, as well as how 

students understood the diagrams presented. In particular, we outlined three archetypes 

of how students may understand diagrams. There are two important observations that 

we have made. First, three of the five participants evinced an incoherent understanding 

of the associated diagrams. In particular, they were unable to see the partition diagram 

as representing an approximation of the area under the curve. Recall that Dr. A had a 

reputation as an excellent lecturer who valued diagrams. That three of five students had 

such a flawed understanding of the diagrams Dr. A used in his lecture illustrates the 

difficulties of incorporating diagrams into lectures and suggests that for many students, 

the presence of diagrams in lectures might not improve comprehension (cf., Alcock, 

2010).  

Second, we note that students might be able to use a diagram instrumentally to 

accomplish proving tasks without any deep understanding. We described D2, who 

flexibly used his diagram to prove a statement that he had not seen before. As proof is 

the primary means to assess performance in advanced mathematics, we imagine a 

professor would take D2’s proof as evidence a deep understanding of the material. 

However, as we observed, he thought a refinement would increase the gap between 

upper and lower sums, implying that he could not possibly see how his proof 

established the existence of a Riemann integral. We contrast this with D1, who could 

not construct a proof despite seeming to have an integrated understanding of the 

diagrams. This reminds us that proof writing requires technical and algebraic expertise 

to complement the conceptual insights one might gain from a diagram. 

Due to the small scale of the study, we make no claims of the exhaustive nature of the 

list of archetypes.  We believe further research is necessary to investigate other 
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archetypes for understanding diagrams and the proportion of students who fit each 

archetype. Such research would inform our understanding of the extent that diagrams 

can be used to improve understanding in lecture and how lectures might be improved. 
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THE INCIDENCE OF DISAFFECTION WITH SCHOOL 

MATHEMATICS 

Gareth Lewis 

University of Leicester 

 

This paper reports the results of a study of affect and school mathematics, conducted 

with a whole cohort of pupils in year 9 (pupils aged 15 to 16 years) in a typical UK 

secondary school. This preliminary study provided contextual datafor a larger mixed 

methods investigation into disaffection. The study offers interesting insights into the 

incidence of affection/disaffection within this group. Further, since the school grouped 

pupils by ability, the study offered the opportunity to look at the distribution of aspects 

of affect and disaffection across the ability range. Results not only provide contextual 

data on the incidence of disaffection with mathematics amongst school pupils of this 

age, it also suggests some interesting tentative conclusions. 

INTRODUCTION 

Concern about disaffection with school mathematics is not new. There has been a 

widespread appreciation that it presents a problem for individuals and for society. The 

State of the Nation Report into Science and Mathematics Education by the Royal 

Society notes the widespread nature of current concern: “no decade since the 

1970’s…has seen so much being written about the disaffection young people appear to 

have for science and mathematics.” (The Royal Society, 2008 p.171) 

Many of these concerns relate poor attitude or disposition to mathematics to poor 

outcomes and achievement. In this way, the study of affect in mathematics education 

becomes important. In her own report, Vorderman (2011) talks about the corrosive 

effect of frequent failure, and the damage that this causes. The report espouses an 

approach to mathematics education that goes wider than the purely utilitarian. It talks 

about ‘entitlement’, and mentions not just achieving success, but also of ‘satisfaction’ 

and of ‘increased confidence and motivation’ (p.22). This wider rationale for studying 

mathematics in schools is endorsed by The Royal Society who suggest one of the 

purposes of learning mathematics is: 

To enable as many students as possible to participate in the scientific and mathematical 

elements of the conversation of humankind, in as many settings as possible. (The Royal 

Society, 2008,  p. 21) 

Considering the importance of the issue of disaffection as outlined here, there is not the 

volume of research that would seem appropriate to the social and individual impact 

that has been reported. The Royal Society State of the Nation report (2008) into 

mathematics points out that there has not been enough quality of research into this area, 

and cites only three studies (Brown, Brown, & Bibby, 2007; Mathews & Pepper, 

2005), (Nardi & Steward, 2003) in relation to mathematics. Much of this evidence is 
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concerned with progression, and thus with the incidence of disaffection, and is framed 

as the quantitative study of attitude or related constructs. The study by Nardi and 

Steward is the exception in that it goes further than other studies in addressing 

disaffection directly as an issue of significance, and in trying to characterise the 

construct in research terms. 

In international terms, one of the starting points of the study by Zan and Di Martino 

(2007) is what they called an ‘alarming phenomenon’: the perceived negative attitude 

of students of mathematics to the subject. Three core themes emerged from the study, 

and these related to emotion (‘I like/don’t like maths), competence or efficacy (‘I 

can/can’t do maths’) and belief (‘Mathematics is…..’). Strong associations were found 

between liking and being able to do mathematics. 

Other trends have also emerged more recently from the quantitative study of attitude. 

For instance, Noyes (2012) has remarked on the significant inter-group as well as 

inter-school differences found in data on affective variables studied in UK schools, 

suggesting that the teacher is a key influence in pupil’s experience of school 

mathematics. Further evidence of the important influence of individual teachers was 

also evident in a study I conducted with a colleague  (Lewis & Forsythe, 2012). Other 

researchers, such as Boaler (2000) have pointed out that it is not necessarily the case 

that just low attaining pupils have negative attitudes to mathematics, since she also 

observed this with pupils in higher sets. 

METHODS 

My doctoral study was an investigation into the nature of disaffection with school 

mathematics. It was primarily a qualitative study into the subjective experience of 

students and pupils who report disaffection. It was conducted within an interpretivist 

and constructivist frame, and was focussed on issues of motivation and emotion as 

being central to young peoples’s experience of school mathematics. Preliminary 

results have been reported elsewhere (Lewis, 2013). 

However, I had the opportunity to conduct a brief preliminary and quantitative study of 

a whole school cohort, in order to provide contextual data on the incidence and nature 

of aspects of affect. Since it was necessary for the study to be simple and bounded, I 

devised a simple instrument based on the core themes identified in the Zan and Di 

Martino study (2007), as described above. 

The school is a comprehensive foundation 11-19 school in the UK with approximately 

1300 pupils. The proportion of pupils who take free school meals is described as 

‘average’ in the 2011 Ofsted report, and only 6% of pupils are from ethnic minorities. 

The school was rated as ‘good and rapidly improving’. In just two visits to the school I 

was able to survey the whole of the year 9 population of this school (n = 208).  

Students were asked to rate the degree to which they agreed with these three 

statements, on a 4-point Likert scale (the points representing 1-‘not at all’; 2 - ‘a bit’; 3 

- ‘sometimes’; 4 - ‘a lot’): 
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I like mathematics; I can do mathematics; I am satisfied that I get what I want from 

mathematics 

RESULTS 

Table 1 shows the number (and proportion) of students in each response category, for 

each question. 

 Not at all 

(%) 

A bit (%) Sometimes 

(%) 

A lot (%) Mean 

Like 32 (15) 60 (29) 95 (46) 21 (10) 2.5 

Can do 7 (3) 31 (15) 116 (56) 53 (26) 3.0 

Satisfied 9 (4) 56 (27) 90 (43) 52 (25) 2.9 

Table 1: survey responses for whole cohort 

How these figures are evaluated depend to some degree on the perspective. Only 10% 

of these pupils like maths a lot, but even that might be more than expected. 44% (29% 

+ 15%) hardly seem to like it at all, with an additional 46% only liking it sometimes. 

More students appear to feel they can do mathematics than like it, with 26% reporting 

that they can do it ‘a lot’. But that still leaves 74% who can do mathematics at best only 

sometimes. The 25% of pupils who are satisfied ‘a lot’ is encouraging, but this also 

leaves 75% of pupils with at least a degree of dissatisfaction.  

Since the school sets groups by ability in mathematics within each half year (labelled 

‘K’ and ‘S’), we can address the question of whether, or to what degree, pupils in lower 

sets did (or did not) experience negative affect more than those in higher groups. This 

is an interesting question since it is sometimes assumed that lower attainment will lead 

to more disaffection, even though it is known that students in higher-attaining groups 

can also be disaffected with mathematics. A comparison can be made between the data 

from the groups in each half year. The scores below represent the percentage of pupils 

who reported ‘1’ (not at all), or ‘2’ (a bit) to the three items. This can be viewed as a 

blunt measure of negative affect. 

 S1 K1 S2 K2 S3 K3 S4 K4 S5 K5 

Don’t 

like 

64 24 67 29 27 60 50 43 36 50 

Can’t 

do 

14 0 33 7 18 15 25 29 18 33 

Not 

satisfied 

59 7 33 4 18 40 38 48 45 58 

Table 2: Percentage of pupils in each group reporting negative affect 

K1 and S1 are groups at the same level, but they have very different scores. A higher 

proportion of students in S1 and S2 don’t like mathematics than in any of the other 

groups. Apart from groups K1 and K2, lack of efficacy (‘can’t do) appears to be evenly 
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spread across the ability range. Also, whilst only 14% of S1 pupils report low efficacy, 

59% report dissatisfaction suggesting a non-simple relation between these two 

variables. 

It can  be seen that the most negative affect in terms of attitude (‘like’) are in groups S1 

and S2, with groups K1, S3 and S5 having the least. In terms of efficacy (‘can do’), S2 

and K5 score the highest (from the perspective of negative affect). For the satisfaction 

scale (where low scoring suggests dissatisfaction) pupils in K1 and K2 seem to be 

much more satisfied than other groups. S3 and S5 seem to have less negative affect 

than one might expect, but S1 and S2 seem to have significantly more than one would 

expect.  

We can conclude that all three measures appear not to decline according to level of 

attainment. But since parallel groups at the same attainment level can have very 

different scores, this suggests that it is the class or group itself that is the major 

determinant of pupils affective experience of mathematics. The scores seem to relate to 

teacher/group more than level. 

Qualitative data 

Whilst administering the questionnaires I had the opportunity to ask the students to 

write briefly their answers to two questions: 

The most frequent or strongest emotion that you feel in mathematics classes 

One sentence that sums up your feelings about mathematics 

The questions were not ‘leading’, since the pupils were only told that I was interested 

in their opinions about school mathematics. Since the number of students was 208, and 

all students in the year responded, the results can be said to be representative of 

mathematics students of this age. This data is useful in gaining an understanding of 

how prevalent aspects of disaffection with mathematics are within the population of 

that age. 

For the single emotion-word response data, care had to be taken in organising and 

analysing the data. For instance, board, bord, bored, boredom and boring were all taken 

to refer to the single emotion of boredom. Multiple variations on other terms were also 

similarly consolidated. The words were then classified in a simple ‘positive’, ‘neutral’ 

or ‘negative’ manner. Although this is a fairly simplistic way to organise the data, it 

does have meaning within the context of this study. The results are shown below: 

positive neutral negative 

37 29 135 

Table 3: Emotion word responses 

This is a dispiriting result, and even more so since the cohort includes the full range of 

ability. It suggests, at the very least, that mathematics is not a pleasant experience for 

many students, for much of the time. Nonetheless it is also important to point out that it 

is not necessarily the case that pupils who report boredom are disaffected. To be 
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strongly disaffected a pupil would have to report experiencing a whole range of 

negative or adverse affective responses.  

Individual results include: Anger 11, Boredom  68, Confusion 10, Stressful 8, 

Depressing 5 

On the other hand, ‘Happy’ was chosen 21 times, but ‘Fun’ only once.  

The ‘boredom’ score here is consistent with boredom being the highest scoring 

negative emotion on another instrument used in the wider study, although the 

population there is very different. Such results confirm data presented in the literature 

on the incidence of negative affect in the school population as a whole. 

In the two top groups (labelled K1 and S1) 30 pupils (17 +13 respectively) out of 51, 

which is well over half of pupils, reported negative emotions, of which 19 were 

‘bored’, whilst 20 pupils (5 +15) reported positive or neutral emotions.  It is worth 

noting the very different numbers of pupils in the two classes reporting positive 

emotions, suggesting that classroom climate is an important factor influencing 

students’ affective experience of mathematics. 

In the two bottom classes (labelled S5 and K5) 13 pupils (2 + 11) out of 23 reported 

negative emotions (about half) of which only 7 were ‘bored’, whilst 9 pupils (8 + 1) 

reported positive or neutral emotions. Note again the very different proportions of 

pupils choosing positive and negative emotions in the two classes.  

Some caution needs to be applied in generalising from this data, however, due to the 

simplicity of the data, and the small numbers in each group. On the one hand, the 

cohort represents the full range of ability. On the other hand since only 208 pupils were 

surveyed, no attempt is made to underwrite the statistical significance of the results. In 

addition, a single one-word response does not represent a full examination of these 

pupils affect in relation to school mathematics. 

The descriptive passages were also analysed by group, using the same categories as the 

quantitative data. Groups differ in the relative proportions who appear to ‘like’ and 

‘don’t like’ mathematics (and in terms of which one predominates in that group). Like 

the quantitative data, the evidence doesn’t support the assumption that higher or lower 

groups like or don’t like mathematics more than the other. Positive or negative affect 

(liking, not liking) and competence (can or cannot do) do not appear to be related to the 

level at which one is achieving. Put another way, students in higher groups appear to be 

as likely to not like, or feel they cannot do mathematics as students in lower groups. 

Although the primary focus in this study is disaffection, it is worth examining evidence 

of genuine affection. In class K1 (a top group) there are only 4 responses that can be 

interpreted as indicating a condition of such affection for mathematics: 

It can be quite exciting in some lessons 

Maths is good for making you think (reported emotion – happy) 

Maths can be exciting and I learn a lot from it 
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Maths is a tool we can use to solve problems (reported emotion – happy, relaxed) 

Of course, it could be argued that this evidence is thin, and may not represent strong 

enough evidence to fully support a generalised claim. Nonetheless, what evidence 

there is in this study suggests that affection for school mathematics is very much the 

exception. Overwhelmingly, the comments of these pupils are negative, except in 

terms of utility. In the data, 6 statements use the word ‘help’ (as in the sense ‘will help 

me’). A further 5 statements use utilitarian words like ‘useful’, ‘essential’, or 

‘important’. In class S1 this recourse to utility is mainly absent, and the picture that 

remains there is broadly negative. In the absence of utility, duty and coercion are 

mentioned: 

I have to do it 

I try to do the best I can to impress my parents 

If this is the picture in the two top sets, it hardly gets any better in the lower groups. It 

can only be concluded that genuine affection for mathematics is a rarity.  

The nature of mathematics 

In most cases it was quite easy to identify those descriptive statements that related to 

the nature of mathematics rather than to affect or competence. These statements were 

split evenly between positive and negative. In terms of positive statements, the most 

common were about the general utility or value of the competence: 

It helps in life in some situations 

I think maths is life changing and it can help you in the future 

A subset of these related directly to the exchange value of a good qualification in 

mathematics: 

It’s an important subject and you need a good grade to succeed in further education 

There were also some comments about mathematics being of value in its own right: 

Maths is good for making you think 

Maths is a tool we can use to solve problems 

Maths isn’t very useful later in life but it challenges me which is a good thing 

The negative statements include those that reflect the nature of mathematics as 

experienced by them. These include descriptions like ‘hard’, ‘complicated’, 

‘confusing’, ‘lists of tedious questions’. 

Other negative statements related to the perceived lack of importance or utility: 

80% of the time completely useless for my future (presumably said without irony!) 

It isn’t the primary purpose of this study to investigate in depth the epistemological 

beliefs about mathematics held by pupils, and no claim is made that this data represents 

a comprehensive examination in that way. However, pupils’ views also influence their 
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affective landscape, and it is interesting to have some idea of this broader picture, as 

exists in year 9. 

DISCUSSION 

The evidence from school K offers some insights into the incidence of negative affect 

in a whole-year population. This shows just how widespread the experience of 

negative emotions is. Boredom was identified as the single most common negative 

emotion. The data on disposition (‘I like/dislike mathematics’) and efficacy (‘I 

can/cannot do mathematics’) is broadly consistent with data from other studies (e.g. 

Zan & di Martino, 2007).  

The evidence suggests that the experience of aspects of negative affect does not appear 

to relate in a simple way to ability grouping or attainment. Pupils in ‘top’ sets for 

mathematics exhibit dissatisfaction and aspects of disaffection with school 

mathematics as much as pupils in lower sets. The data here suggests that a key 

determinant of pupil’s affective experience of mathematics is the classroom climate (or 

‘microculture’ to used Hannula’s (2012) term). There is very little data that relates 

such grouping to affect, but the data here is consistent with the finding of Noyes 

(2012). This is an important finding, and one that suggests that further research needs 

to be done to understand this phenomenon better.  
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This paper explores the role examples play in mathematicians’ conjecturing activity. 

While previous research has examined example-related activity during the act of 

proving, little is known about how examples arise during the formulation of 

conjectures. Thirteen mathematicians were interviewed as they explored tasks that 

required the development of conjectures. During the interviews, mathematicians 

productively used examples as they formulated conjectures, particularly by creating 

systematic lists of examples that they examined for patterns. The results suggest 

pedagogical implications for explicitly targeting examples in conjecturing, and the 

study contributes to a body of literature that points to the benefits of exploring, 

identifying, and leveraging examples in proof-related activity. 

INTRODUCTION AND MOTIVATION 

Proof is a crucial aspect of mathematical practice, and researchers have emphasized its 

importance in the mathematics education of students across grade levels (e.g., Ball, 

Hoyles, Jahnke, & Movshovitz-Hadar, 2002; Knuth, 2002; Sowder & Harel, 1998). 

However, there is much evidence that students at all levels struggle with learning to 

prove (e.g., Healy & Hoyles, 2000; Kloosterman & Lester, 2004; Knuth, Choppin, & 

Bieda, 2009; Porteous, 1990). One way to gain insight into how better to help students 

is to study the work of mathematicians, who are themselves successful at proof. 

Indeed, there is a history of research that studies mathematicians’ thinking and 

leveraging those findings for possible pedagogical implications for students (e.g., 

Carlson & Bloom, 2005; Weber, 2008). Thus, given the essential role examples play in 

mathematicians’ proof-related activities (e.g., Epstein & Levy, 1995), we examine 

mathematicians’ work on conjectures and draw potential pedagogical insights. In this 

paper, we continue our previous work with mathematicians (Lockwood, Ellis, Dogan, 

Williams & Knuth, 2012; Lockwood, Ellis, & Knuth, 2013) by studying 

mathematicians’ example-related activity as they engage in formulating conjectures. 

Our examination details the ways in which mathematicians systematically generated 

and used examples in developing conjectures and discusses implications for the 

teaching and learning of proof.  

RELEVANT LITERATURE AND THEORETICAL PERSPECTIVE 

In this paper, we follow Bills and Watson’s (2008) lead by defining an example as “any 

mathematics object from which it is expected to generalize” (p. 78).  In defining proof, 

we draw on Harel and Sowder’s (1998) definition, which is “the process employed by 

an individual to remove or create doubts about the truth of an observation” (p. 241). 
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Harel and Sowder further distinguish between two kinds of activity associated with 

proving – ascertaining (removing one’s own doubts) and persuading (removing 

others’ doubts) (p. 241).  

While much of the literature emphasizes limitations of example-based reasoning 

(particularly as a means of justification), a number of researchers have suggested the 

potential value examples may play in proof-related activity. As Epstein and Levy 

(1995) note, “Most mathematicians spend a lot of time thinking about and analyzing 

particular examples….It is probably the case that most significant advances in 

mathematics have arisen from experimentation with examples” (p. 6). Likewise, Harel 

(2008) notes that, “Examples and non-examples can help to generate ideas or give 

insight [about the development of proofs]” (p. 7). Other researchers have similarly 

reported that students and mathematicians display strategic uses of examples that 

benefit their proof-related activities (e.g., Ellis, et al., 2012; Garuti, Boero & Lemut, 

1998; Pedemonte, 2007; Sandefur, et al., 2013; Weber, 2008). Our work builds upon 

such studies by seeking to identify potentially fruitful aspects of example-related 

activity in the development and proving of conjectures.  

The study presented in this paper is situated within a framework developed by 

Lockwood, et al. (2012) and refined in Lockwood, et al. (2013) that categorizes 

example types, example uses, and example strategies. While the framework is not 

presented here due to space, it served as a broader context that guided data analysis. 

METHODS 

We conducted hour-long interviews with mathematicians in which they were presented 

with one or two mathematics tasks. A member of the research team (an advanced 

mathematics PhD student) conducted the interviews and participated in the analysis. 

During the interviews, the mathematicians were given time to work on the tasks on 

their own and were asked to think aloud; generally, the interviewer did not interrupt 

except to ask clarifying questions or to answer questions from the mathematicians. The 

mathematicians used Livescribe pens during the interviews, pens that both 

audio-record and keep live records of the mathematicians’ written work. This 

technology allows for efficient data collection and facilitates rich analysis by providing 

both audio and written work of the interviews that can be re-played in real time, with 

the audio synced with the written work. 

Participants 

The participants were thirteen mathematicians from a large Midwestern university. 

The participants included seven professors, three postdocs, and three lecturers, with 

eight males and five females. Twelve participants hold a Ph.D. in mathematics, and 

one participant holds a Ph.D. in computer science. There were a variety of 

mathematical areas represented, including topology, number theory, and analysis. 
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Tasks 

All thirteen mathematicians worked on the Interesting Numbers task while seven also 

tried an additional task that is not reported here. The Interesting Numbers task states, 

“Most positive integers can be expressed with the sum of two or more consecutive 

integers. For example, 24 = 7 + 8 + 9, and 51 = 25 + 26. A positive integer that cannot 

be expressed as a sum of two or more consecutive positive integers is therefore 

interesting. What are all the interesting numbers?” One approach to solving this task is 

as follows: It can be shown that the sum of any two or more consecutive positive 

integers has an odd factor greater than 1. Conversely, if a positive integer N has an odd 

factor k > 1, it can be shown that N can be written as the sum of either k or 2N/k 

consecutive positive integers, whichever is smaller. The interesting numbers are thus 

exactly those positive integers that have no odd factors greater than 1. In other words, 

the interesting numbers are the powers of 2. 

Both tasks were chosen because: a) they were accessible (i.e., did not require 

specialized content knowledge and were easy to explore) but were not trivial (i.e., a 

solution was not immediately available), b) they were accessible to the interviewer, 

allowing her to ask relevant questions and engage with the mathematicians, and c) they 

involved open-ended questions that would facilitate conjecturing. These were not 

“prove or disprove” statements that already stated a conjecture, but rather these tasks 

required that certain numbers and sets be characterized. Through such activity, the 

mathematicians developed conjectures that they could then attempt to prove.  

Analysis 

As mentioned, the Livescribe pen yields both an audio record of the interview and a 

pdf document of the interviewee’s written work (synced with the audio). In this pdf, 

the audio and the written work can be played back, so the researcher can see and hear 

what was written and said in real time. The interviews were also transcribed. To 

analyse these interviews, two members of the research team independently coded and 

then discussed four interviews using Lockwood, et al.’s (2012, 2013) framework for 

example types, uses, and strategies. In coding the interviews, the researchers also noted 

codes that emerged from their analysis and that were not captured by the previously 

developed framework. After the four interviews were initially coded, compared, and 

discussed, the remaining nine interviews were split up and coded. The two researchers 

came together regularly to discuss any issues or questions that arose in analysing these 

remaining interviews. After completing the coding of all the interviews, the 

researchers met to discuss phenomena and themes that pertained especially to 

conjecturing and revisited relevant episodes in the transcripts. 

RESULTS 

While we had previously (Lockwood, et al., 2013) reported on how mathematicians 

generated and used examples as they proved, here we report on their work with 

examples as they conjectured. In this section we elaborate a key phenomenon that we 
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observed as mathematicians used examples while formulating conjectures. We call this 

phenomenon “Data Collection,” in which the mathematicians systematically and, in 

some sense exhaustively, went through every example in a finite sequence in order to 

gather information. The mathematicians generated examples based on sequentially 

exhausting a small list of examples, and they then subsequently reflected back on these 

organized example lists in order to formulate a conjecture. This activity was productive 

for some mathematicians, as we explore below, suggesting that there is potential value 

in the methodical generation of examples in formulating conjectures. 

To illustrate this phenomenon, we present Mathematician 1’s (M1 – a professor) work 

on the Interesting Numbers task. M1 began by computing a sequence of small sums: 

1+2=3, 2+3=5, 3+4=7, and 4+5=9. From these examples, he recognized that odd 

numbers greater than 1 could not be interesting. He proved this fact algebraically by 

showing that any odd number 2n+1 is the sum of n and n+1. Continuing with algebra, 

he then looked at general sums of 3, 4, and 5 consecutive numbers beginning with n. 

Each case gave him an algebraic expression (3n+3, 4n+6, 5n+10) representing 

numbers that were not interesting, from which he tried to generalize. 

After some time, M1 recognized that his algebraic manipulation had not illuminated a 

conjecture, and he said, “Okay. So at this point, I would start over and try and do 

something a little more visual.” He then drew a number line and began to write out the 

numbers. Because M1 already knew that the odd numbers were not interesting, he 

crossed those out as he wrote. He then proceeded to go through the even numbers and 

cross out those of the form 3n+3, 4n+6, and 5n+10 for some n (Figure 1). After 

working through the numbers 1 through 21, he concluded, “well, the answer does kind 

of pop out that it's the powers of 2, doesn't it?” By actually writing out the examples 

and then crossing out non-interesting numbers, the pattern of numbers not crossed out 

– 1, 2, 4, 8, and 16 – stood out in his figure. His construction of the complete table, and 

his subsequent reflection on it, suggest the “Data Collection” phenomenon – he 

systematically gathered a complete sequence of examples and deduced patterns from 

them. 

 

Figure 1: The “visual” list from which the powers of 2 conjecture emerges 

We perceive that M1’s prior knowledge and experience made him attuned to this 

sequence of numbers as powers of 2. M1 continued to pursue the powers of 2, saying, 

“Okay, so, um, so at this point I would maybe try the next one, 32,” and he proceeded 

to write a conjecture that interesting numbers are powers of 2. To us, M1’s careful 

construction of examples allowed for a common, familiar pattern to emerge visually on 

the page. M1’s work suggests that the methodical generation of examples (what we 

call Data Collection) facilitated the efficient formulation of the conjecture. 
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As another, perhaps more extreme, example, we see in Figure 2 a table that M10 (a 

professor) created. This displays a great deal of care in detailing out a large number of 

cases. He also demonstrated Data Collection and formulated the correct conjecture by 

making note of the numbers that were not in the table. 

 

 

Figure 2: M10’s table 

To see why the phenomenon of data collection was especially useful, we note that not 

all mathematicians engaged with examples in this way. In contrast to M1’s work, 

another mathematician, M6, did not generate data and detect a pattern. Instead, M6 

developed an algebraic expression for a general non-interesting number, written as the 

sum of n consecutive integers starting with k. Starting with an arbitrary number 

(represented by 2 p ×q  with q odd), M6 tried to find k, n (in terms of p, q) to make 2 p ×q  

non-interesting. Using only algebraic manipulation, M6 eventually found that this 

could be done if and only if q >1. This result yielded the correct conjecture, but it took 

him more than twice as long (38 minutes) to find than the average time among the 

mathematicians that generated data (16 minutes). While the algebraic exploration was 

not an incorrect approach, we suspect that for conjecturing purposes, it did not so 

clearly illuminate potential patterns as the actual generation of concrete examples did. 

Indeed, unlike M1’s work, in which the powers of 2 conjecture fell out almost 

immediately upon exploring examples, the pattern of the interesting numbers was 

obfuscated for M6 by the algebraic manipulation.  

In addition to helping mathematicians formulate a correct conjecture, we present two 

ways in which Data Collection was efficacious in supporting mathematicians’ 

conjecturing: Lemma Development, and Preliminary Conjecture Breaking. First, 
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observations from generated data lead to lemmas, which in turn informed the 

development of conjectures. For example, M3 first looked at the numbers 1 to 14 and 

tried to write each one as a sum of consecutive numbers.  He noticed that odd numbers 

were sums of 2 consecutive numbers, multiples of 6 were sums of 3 consecutive 

numbers, and numbers congruent to 2 mod 4 other than 2 were sums of 4 consecutive 

numbers. From these observations, M3 proved lemmas stating that these types of 

numbers were non-interesting. These lemmas allowed M3 to restrict his attention to 

multiples of 4, which led to the development of the full conjecture. 

Second, the data collection also allowed the mathematicians to find examples that 

broke preliminary conjectures, which in turn led to the articulation of more accurate 

conjectures. This is seen in M4, who initially conjectured that the interesting numbers 

were the non-primes after looking at the numbers 1 to 6 (and incorrectly deciding that 6 

was interesting). He continued on to look at the numbers 7 to 10 before he realized his 

mistake, saying about 6, “Oh, 1, 2... 1 plus 2 plus 3. Right. Revise conjecture. So far, 

so, the interesting numbers so far are 4, 8, [...] It looks like it’s the [multiples] of 4.” M4 

revised his conjecture once more (to a correct conjecture) when he looked at 11, 12 and 

13 and discovered that 12 was also not interesting.  

DISCUSSION AND CONCLUSIONS 

The results highlight ways in which specific example-related activity like Data 

Collection may play a valuable role in the development of conjectures. In this section, 

we discuss three aspects of the results and suggest potential implications for students. 

First, some mathematicians (as seen in M1 and M10) took the time painstakingly to 

catalogue a number of examples. The generation of sequences of examples and 

subsequent reflection on them enabled the mathematicians to formulate conjectures 

effectively and efficiently. Students may thus benefit from generating comprehensive 

sets of data that they can survey in search of patterns, which in turn could illuminate 

conjectures. It is important to emphasize for students that such work may take patience 

and care. Second, also notable is the fact that these mathematicians engaged in 

deliberate and strategic example generation, which stands in contrast to less systematic 

behaviour often found in students’ work with examples. For students, then, there might 

be value in helping them learn to be more strategic and methodical in their use of 

examples, going beyond finding a few confirming examples that simply come to mind. 

Third, in some of the mathematicians (such as M6) we saw an immediate application of 

algebraic techniques that were less efficacious for conjecturing than the Data 

Collection was. We suspect that some students may put a premium on algebraic 

techniques and may assume that algebraic activity is more sophisticated than 

generating examples. Our findings suggest that students should be encouraged to 

engage with and see the value in finding concrete examples when conjecturing and not 

simply to apply algebraic formulas and techniques. As a final point of discussion, we 

note that the tasks in our study were well suited to facilitate Data Collection. Other 

tasks might be more or less effective in fostering conjecturing. Instructors should be 
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aware of what kinds of activity and thinking certain tasks elicit and should expose 

students to tasks that might encourage Data Collection activities.  

In this paper, we have reported on a beneficial phenomenon that emerged when 

mathematicians used examples during the activity of mathematical conjecturing. In 

this Data Collection phenomenon, mathematicians generated sequential lists of 

examples and used these lists in order to find patterns that might lead to conjectures. 

We saw this activity help mathematicians formulate correct conjectures, but it also 

helped with developing useful lemmas and also breaking initial conjectures to arrive at 

more accurate ones. These findings contribute to work that has been done previously 

that highlights the role of examples in mathematicians’ proving, and it adds to the 

overall narrative that examples play a vital role in mathematicians’ proof-related 

activity. The productive ways in which mathematicians use examples in formulating 

conjectures provide interesting and much-needed insights into proving and 

conjecturing into K-16 mathematics education. 
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INFLUENCE OF EARLY REPEATING PATTERNING ABILITY ON 

SCHOOL MATHEMATICS LEARNING  

Miriam M. Lüken, Andrea Peter-Koop, Sebastian Kollhoff 

University of Bielefeld, Germany 

 

Recent studies in early mathematics education highlight the importance of patterning 

abilities and their influence on mathematics learning and the development of 

mathematical reasoning in young children. This paper focuses on young children’s 

repeating patterning abilities and reports results from an ongoing four-year 

longitudinal study that investigates the development of early numeracy understanding 

of 408 children from one year prior to school until the end of grade 2. The analyses in 

this paper reveal a significant influence of young children’s repeating patterning 

abilities one year prior to school on their mathematical competencies at the end of 

grade one. 

INTRODUCTION 

Mathematics has often been defined as science of pattern (e.g., Davis, & Hersh, 1980). 

It is also widely acknowledged that a general awareness of mathematical pattern and 

structure is important for mathematics learning at all stages (e.g., Mason, Stephens & 

Watson, 2009; Mulligan, & Mitchelmore, 2009). In this paper we focus on patterning 

abilities in early mathematics and adopt a differentiated understanding of pattern. We 

particularly focus on the question what different types of patterns and what kind of 

patterning activities might influence the development of which key mathematical 

concepts and processes in early years mathematics learning and later on. 

REPEATING PATTERNS AND THEIR IMPORTANCE ON EARLY 

MATHEMATICS LEARNING  

With Mulligan and Mitchelmore (2009) we define a mathematical pattern as any 

predictable regularity. In the work with Kindergarteners and primary school children, 

where our research is based, we distinguish three main types of mathematical patterns: 

spatial structure patterns, repeating patterns, and growing patterns. Examples for 

spatial structure patterns are spatial dot patterns and grids like the twenty field, both 

used in the early years to visualize numbers. Repeating patterns consist of a sequence 

of elements (the unit of repeat) that is repeated indefinitely (e.g., ABCABC…). In 

growing patterns a sequence of elements changes systematically (e.g., 1, 3, 5, 7, …). 

In this paper we draw the focus exclusively on repeating patterns and their importance 

for mathematics learning.  

Patterning activities with repeating patterns are supposed to develop general 

mathematical concepts in children such as ordering, comparing, sequencing, 

classification, abstracting and generalizing rules and making predictions (see e.g., 
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Threlfall, 1999). These concepts then lead to the development of mathematical 

reasoning in young children (English, 2004; Mulligan, & Mitchelmore, 2009, 2013). It 

is mostly in the area of algebra (or pre-algebra) that repeating pattern work is seen as a 

conceptual stepping stone (Threlfall, 1999). National curriculums often consider 

repeating patterns (together with growing patterns) as a precursor for functional 

thinking and algebra (NCTM, 2000; Queensland Studies Authority, 2008). Mulligan 

and Mitchelmore (2009, 2013) highlight repeating patterns as important for 

measurement (which involves the iteration of identical spatial units) and as critical to 

the development of counting and multiplicative thinking (which involves the iteration 

of identical numerical units). However, it is important to note that these assumptions 

have been mainly derived from either observation, a experience, or are theoretical 

considerations. From the empirical perspective, in the last decade there is a substantial 

body of research, mainly qualitative studies, focusing on patterning strategies and 

looking at the level of students’ awareness of or attention to pattern and structure (see 

e.g., Mulligan, & Mitchelmore, 2009; Papic, Mulligan, & Mitchelmore, 2011; 

Radford, 2010; Rivera, 2013; Warren, & Cooper 2006, 2008). Few studies however 

have tried to quantitatively measure the significance of patterning abilities in the early 

years for later mathematics learning. 

FINDINGS FROM RECENT QUANTITATIVE STUDIES ON YOUNG 

CHILDREN’S PATTERNING ABILITIES 

Mulligan and Mitchelmore (2009) tested 103 Australian Grade 1 students (5.5 to 6.7 

years) on 39 pattern and structure items. They found a nearly perfect correlation 

between young students’ general mathematical understanding and their pattern and 

structure competencies. A German study (Lüken, 2012) with 74 school starters (5.8 to 

7.2 years) showed a significant correlation on a medium level between patterning 

competencies and early mathematical competencies and a slightly lower correlation 

with the mathematical achievement at the end of grade 2. Van Nes (2009) interviewed 

38 Dutch Kindergarteners (four- to six-year-olds) on tasks on counting, subitizing, 

repeating and spatial structure patterns. As she used a small sample van Nes only very 

carefully suggests a correlation between a child’s pattern and structure competencies 

and its mathematical competencies. However, all three studies either lack the use of 

statistically reliable instruments, or base their conclusions on rather small samples. 

Above all, all three studies did not discriminate between the different types of patterns. 

Thus, it is yet to be specified, if each of the three types of patterns in early childhood 

separately correlates with mathematical competencies and which key concepts and 

processes they effect. 

To underpin the importance of patterning abilities regarding repeating patterns this 

paper focuses on the question, whether a child’s ability to reproduce, extend, and 

explain a repeating pattern has a statistical effect on its mathematical competencies in 

kindergarten and the transition from kindergarten to school. Hence, the paper 

addresses the following questions: 
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 Is there a significant effect of young children’s repeating patterning abilities 

on their mathematical competencies? 

 To what extent do their repeating patterning abilities influence young 

children’s mathematical performance one year prior to school, immediately 

before school entry and at end of grade 1? 

METHODOLOGY 

Context of this paper is a longitudinal study investigating the development of number 

concept development of 408 children from one year prior to school entry (5-year olds) 

until the end of grade 2. The study seeks to identify children that struggle with respect 

to their mathematics learning after the first (and second) year of school and compare 

their performance with their number concept development one year prior to school as 

well as immediately before school entry (i.e., grade 1). 

Hence, the data collection involves four measuring points (MP1 – MP4) i.e., one year 

prior to school, immediately before school entry, at the end of grade 1 and grade 2 

(which will be conducted in June 2014). At each measuring point the children 

performed on both a standardised test on number concept development that is suitable 

for their respective age (OTZ, DEMAT 1+ / 2+) as well as on a task-based one-to-one 

interview (EMBI-KiGa, EMBI). Table 1 provides an overview of the study design. 

Measuring points Instruments  Participants 

June 2011  MP 1 OTZ children participating in the study (n = 538)  

 EMBI-KiGa children participating in the study (n = 538)  

June 2012  MP 2 OTZ children participating in the study (n = 495)  

 EMBI-Kiga children participating in the study (n = 495) 

June 2013  MP 3 DEMAT 1+ all grade 1 classes with children participating in the study          

(n = 2250) 

 EMBI children participating in the study (n = 408) 

June 2014  MP 4 DEMAT 2+ all grade 2 classes with children participating in the study 

(to be conducted) EMBI children participating in the study 

Table 1: Measuring points, instruments and number of participants in the study 

At MP3 and MP4 the whole learning group of children in the study is tested in order to 

compare the children’s performance to their peers’ and to diminish intra- and 

inter-group effects. When available, the instruments chosen for the data collection had 

been developed and trialled in international settings.  

The OTZ (Osnabrücker Test zur Zahlbegriffsentwicklung) is a German adaptation of 

the “Utrecht Numeracy Test” (van Luit, van de Rijt, & Pennings, 1994; van de Rijt, van 

Luit, & Pennings, 1999) – a standardized individual test aiming to measure children‘s 

number concept development that involves logical operations based tasks as well as 

counting related items (van Luit, van de Rijt, & Hasemann, 2001). 
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The EMBI (Elementarmathematisches Basisinterview) is the German version of the 

Australian “Early Years Numeracy Interview” (DEET, 2001) developed by Doug 

Clarke an his colleagues in Melbourne – a task- and material-based one-on-one 

interview assessing children’s developing mathematical understanding in the four 

areas counting, place value, addition/subtraction strategies, multiplication/ division in 

grade one and two (Peter-Koop, Wollring, Grüßing, & Spindeler, 2013). 

The EMBI-Kiga (Elementarmathematisches Interview Kiga; Peter-Koop, & Grüßing, 

2011) corresponds with the “Detour for children starting the first year of school” of the 

Early Years Numeracy Interview (ibid, 24–26), that is also recommended for children 

in grade 1 and 2 who demonstrated difficulty in counting a collection of 20 objects. For 

a detailed description of the items and their development see Clarke, Clarke, and 

Cheeseman (2006).  

The DEMAT 1+ (Deutscher Mathematiktest für 1. Klassen; Krajewski, Küspert, & 

Schneider, 2002) and the DEMAT 2+ (Krajewski, Liehm, & Schneider, 2004) are 

German curriculum based standardized paper and pencil tests to be conducted at the 

end of the school year with the whole class. 

One instrument only, the EMBI-KIGA, uses an item on repeating patterns. We used 

this item at MP1 as a measure for the children’s repeating patterning abilities one year 

prior to school. The repeating pattern in this item is an ABCC pattern. The children are 

asked to reproduce, to extend and to explain the pattern. Figure 1 shows the complete 

item. The material used is coloured plastic teddies (counters).  

Now watch what I do with the teddies. 

The interviewer makes a A CC pattern with the teddies (green, yellow, blue, blue, green, …). 

a) I have made a pattern with the teddies. Please make the same pattern.  

 

(If the child’s pattern is a correct copy, point to it.                                                                                

If not, point to your pattern.) 

b) Please make the pattern go on a bit more. 

c) How did you decide what came next in the pattern each time? 

Figure 1: Repeating pattern item from the EMBI-Kiga/Early Numeracy Interview 

(DEET, 2001, 24-25) 

For the data-analyses first a comparison of means in form of a one-way analysis of 

variance (one-way ANOVA) was conducted, because the item on children’s patterning 

abilities, which serves as the independent factor variable, can take three values (0, 0.5, 

and 1) and thus defines three separate groups based on the children’s performance on 

the item. Based on these groups the mean scores in all mathematics tests at all 

measuring points have been searched for significant differences between the groups. 

With the results of the one-way ANOVA the partial eta
2
-values have been calculated in 

order to approximate the amount of variance in the mathematics tests that can be 

explained by the children’s performance on the patterning item. As a last step the linear 

correlation (Pearson’s r) between the item-performance and the mathematics test 
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performances have been calculated to illustrate the linear dependencies of the two 

variables. 

RESULTS 

The results of the one-way ANOVA reveal significant (p < 0.001) differences in the 

mean values of the test and interview performances between the groups. Furthermore, 

the item on children’s repeating patterning abilities shows substantial influences on 

their performances in all mathematics tests at each measuring point (see Table 2), i.e. 

one year prior to school, immediately before school entry as well as at the end of  

grade 1. 

 

    

Repeating 

patterning item 

one year prior to 

school 

 
df 

Mean 

Square F Sig. 

Partial 

Eta
2 

Pearson 

Correlation 

Mathematics 

tests 

one year prior to 

school 

OTZ total 

 

N = 407 

Between Groups 2 2207,314 53,638 ,000 ,209 ,457
**
 

Within Groups 405 41,152     

Total 407      

EMBI-KiGa total  

 

N = 401 

Between Groups 2 361,898 85,767 ,000 ,301 ,547
**
 

Within Groups 399 4,220     

Total 401      

Mathematics 

tests 

at school entry 

OTZ total  

 

N = 407 

Between Groups 2 1293,345 43,497 ,000 ,177 ,420
**
 

Within Groups 405 29,734     

Total 407      

EMBI-KiGa total 

 

N = 407 

Between Groups 2 60,155 26,151 ,000 ,114 ,335
**
 

Within Groups 405 2,300     

Total 407      

Mathematics 

tests 

at the end of 

grade 1 

EMBI total  

 

N = 402 

Between Groups 2 214,795 18,515 ,000 ,085 ,289
**
 

Within Groups 400 11,601     

Total 402      

Demat 1+ total 

 

 N = 407 

Between Groups 2 1502,274 26,534 ,000 ,116 ,340
**
 

Within Groups 405 56,617     

Total 407      

Table 2: One-way ANOVA results, Partial Eta2 and Pearson correlation (**correlation 

is significant on the 0.01 level) 

One year prior to school the children’s performance on repeating patterning abilities 

explains about 21% of the variance on the overall mathematics test performance (OTZ) 

and shows a significant medium correlation with r = 0.457. This also holds true for the 
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performance on the EMBI-Kiga, where the influence is slighty stronger (30.1% 

explained variance, Pearson’s r = 0.547), which can be explained through the inclusion 

of the item in the interview.  

At the second measuring point immediately before school entry the item shows a 

medium but significant correlation to the children’s performances on the OTZ 

(Pearson’s r = 0.42) and still explains 17.7% of the overall mathematics 

test-performance (OZT). For the EMBI-KiGa performance the item-performance 

demonstrates similar effects and explains 11.4% of the variance with a significant 

correlation of Pearson’s r = 0.335. 

At the end of grade 1 the item-performance still explains 11.6% of the variance of their 

performance on the standardised DEMAT 1+ and shows a low but significant 

correlation (Pearson’ r = 0.34). For the EMBI interview the children’s repeating 

patterning abilities explains 8.5% of variance of the overall interview performance and 

correlates with Pearson’s r = 0.289. 

DISCUSSION 

With respect to the question if each of the three types of pattern (see above) in early 

childhood separately correlates with mathematical competencies, this effect could be 

shown for repeating pattern abilities. Those children, who manage to solve the 

EMBI-Kiga item on repeating patterns one year prior to school, i.e., they can 

reproduce, extend and explain a repeating pattern of the form ABCC, are the children 

who demonstrate elaborate number concept development in kindergarten and who 

achieve best in a standardised mathematics classroom test at the end of grade 1. 

This relationship appears to be stable over a period of two years and can be shown with 

different measuring instruments, i.e. individual (OTZ) and group tests (DEMAT 1+) as 

well as one-on-one interviews with a focus on strategies (EMBI-Kiga/EMBI).  The 

explanation of variance for mathematics test performance provided by the pattern item 

as expected decreases until the end of grade 1 (a period over 2 years), but remains at a 

substantial level. 

Looking closer at the mathematical concepts and processes of the applied instruments  

(see Table 1), significant positive linear correlations are found between repeating 

patterning abilities and computation skills (DEMAT 1+ and EMBI), i.e. children who 

demonstrate elaborate repeating patterning ability prior to school also show elaborate 

computation skills with respect to addition and subtraction at the end of grade 1. In 

addition, the data reveal significant positive linear correlations between repeating 

patterning abilities prior to school and addition and subtraction strategies other than 

counting (i.e., counting all, counting on and counting back) at all measuring points 

(EMBI). Furthermore, we cannot draw any conclusions with respect to other 

mathematical abilities or mathematical content areas e.g., geometry. 

However, the question whether repeating patterning ability is a predictor for the 

development in specific domains of early numeracy learning yet remains open also due 
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to limitations of the item used to assess patterning abilities in the EMBI-Kiga. 

Additional items considering different levels of difficulty with respect to repeating 

patterns as well as the documentation and analysis of children’s explanations of the 

pattern would be necessary to further investigate that impact. 

In summary the study reported in this paper indicates that it is important to differentiate 

the rather broad concept of pattern with respect to early mathematic learning (Papic et 

al., 2011). A correlation could be shown for repeating patterning abilities, but still 

needs to be investigated for growing patterning and spatial patterning abilities. Hence, 

a further large scale longitudinal study that involves several items on each repeating, 

growing, and spatial patterning abilities in order to increase reliability is desirable in 

the future. 
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Reform-based math instruction calls for students’ construction of conceptual 

understanding, solving challenging problems and explanation of reasoning. However, 

existing literature shows that students with learning disabilities (LD) easily get lost in 

reform-based instruction. As an outcome of collaborative work between math 

education and special education in instructing students with  D, we’ve developed an 

intelligent tutor (PGBM-COMPS) to nurture multiplicative reasoning of students with 

LD. The intelligent tutor dynamically models individual student's evolving conceptions 

and recommends tasks to promote her/his advancement to a higher level in the 

learning trajectory and solve complex word problems using mathematical model 

equations. This study evaluated the effect of this intelligent tutor on improving 

multiplicative reasoning and problem solving of students with LD. 

INTRODUCTION 

In line with the reform in math education, the Common Core State Standards for 

Mathematics (CCSSM) emphasizes conceptual understanding in problem solving, 

mathematical modeling, higher order thinking and reasoning, and algebra readiness 

(NGA & CCSSO, 2012). It also promotes student-centered learning as well as the use 

of technology.  

New standards also stress “opportunity to learn” (OTL) for students. OTL refers to all 

students, including those with special needs or learning difficulties, have equal 

opportunity to get access to learning resources and meet the same high standards. 

According to National Council of Teacher of Mathematics (NCTM) Standards (2000), 

students with LD and without LD should be given the equal opportunities to solve 

meaningful and complicated mathematics problems. However, students with Learning 

Disabilities (LD) lag behind their peers without LD at least two grades levels (Wagner, 

1995). Even though students with LD showed various problems in mathematics 

learning, they share some common characteristics (Goldman, 1989; Rivera, 1997). 

Students with LD are likely cognitively disadvantaged, particularly in the area of 

working memory (Richard, 2012), which lead to poor performance in acquiring math 

facts and solving mathematics problems (Kroesbergen & Van Luit, 2003). Due to these 

problems, students with LD often show difficulties in connecting the knowledge they 

have learned with new knowledge and generating new knowledge (Kroesbergen & 

Van Luit, 2003). Moreover, students with LD tend to have attention problems, which 
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are often regarded as short attention span (Stevens, 1996; National Association of 

Special Education Teachers, n.d.). Students with LD who have a short attention span 

will easily get distracted if they see something, hear something, smell something or 

feel something and cannot focus on a task for more than several seconds (Stevens; 

National Association of Special Education Teachers). Facing with these 

disadvantages, students with LD have difficulties to fully get involved in mathematics 

problem solving, particularly in reform-based instructional environment (Miller & 

Hudson, 2007). Besides this, existing literature shows that students with learning 

disabilities/difficulties easily get lost in reform-based instruction and “seemed to 

disappear during whole class discussions” (Baxter, Woodward, and Olson, 2001, p. 

545).  

Given the characteristics of students with LD, new standards students with LD need to 

meet and today’s inclusive classrooms, it is needed to develop intervention program to 

provide every student with optimal opportunities to learn and therefore meet the new 

standards. Computer-assisted instruction (CAI) may help teachers in meeting 

individual student’s needs in the inclusive classroom. In fact, according to the National 

Council of Teachers of Mathematics Standards (NCTM, 2000), the Mathematical 

Science Education Board (1991), as well as the Mathematical Association of America 

(1991), current mathematics reform encourages the use of computer technologies for 

both teachers and students in the classroom. 

The purpose of this study was to explore the effect of an intelligent tutor 

(PGBM-COMPS) on nurturing multiplicative reasoning of elementary students with 

LD. The specific research questions were: (1) Was there a functional relationship 

between the intervention delivered by the PGBM-COMPS tutor and students’ 

performance on a multiplicative reasoning and problem solving criterion test; (2) did 

students improve their performance on solving word problems in various contexts with 

large numbers? And (3) did the intervention influence students’ transfer of knowledge 

to performance on a norm-referenced standardized achievement test?  

METHODOLOGY 

Participants and Setting 

This study was conducted within the larger context of the NSF-funded, Nurturing 

Multiplicative Reasoning in Students with Learning Disabilities/Difficulties project
1
 

(Xin, Tzur, & Si, 2008). Participants were three 3
rd

 graders with school-identified LD, 

who enrolled in an urban elementary school in the United States. All three students 

(two boys and one girl) were included in the general education classrooms for 80% of 

the school day and they were all receiving Tier II and Tier III Response to Intervention 

                                           
1
 This research was supported by the National Science Foundation, under a NSF grant [Xin Y. P., 

Tzur, R., & Si, L. (2008-2013) Nurturing Multiplicative Reasoning in Students with Learning 
Disabilities in a Computerized Conceptual-Modeling Environment. National Science Foundation 
(NSF),]. The opinions expressed do not necessarily reflect the views of the Foundation. 
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(RtI) support. All the instruction and testing were conducted in the school’s computer 

lab early in the morning Monday through Thursday.  

Dependent Measures 

The criterion test used in this study was a researcher-developed 10-item test that 

assesses multiplicative reasoning (MR-test). Other tests included in this study were: a 

12-item word problem-solving test (COMPS-test, Xin et al., 2008) that contains a 

range of multiplication and division word problems involving large numbers; Stanford 

Achievement Test (SAT-10, Pearson Inc., 2004)a norm-referenced test involving a 

subtest on mathematics problem solving.  SAT-10 was used as a far-transfer measure. 

In addition, during the tutoring instruction, probes were given to assess students’ 

mastery of the skills pertinent to each of the four modules of the PGBM-COMPS 

program.  

Procedure  

An adapted multiple-probe-design (Horner & Baer, 1978) across participants was 

employed to evaluate potential functional relationship between the intervention and 

participants’ word problem-solving performance. 

All three participants completed one MR-test during the baseline condition. Then one 

student (Lily) took another two equivalent MR-tests. Following the baseline, the 

intervention on Module A was first introduced to Lily. Once the data for Lily showed 

an accelerating trend, the intervention on Module A was introduced to the second 

student David immediately after he took two additional baseline MR tests. The same 

sequence was followed until all three participants were introduced to Module A 

intervention. Following Module A instruction, a probe on the criterion MR-test was 

taken before Module B instruction took place. After Module B, another probe was 

taken before Module C & D was introduced. Posttests were given following all 

modules’ instruction.  

Participating students worked with the intelligent tutor one-on-one on a laptop 

computer four times a week, with each session lasting about 20-30 minutes. Sessions 

were supervised by trained Research Assistants (RAs). Their roles included 

administering pre-post assessment, fixing/recording computer/program’s “bugs” and 

guiding students to appropriate part of the program after any unexpected “interrupt.” 

Participants received about a total of 20-28 sessions during the spring semester. 

Intervention Components   

The PGBM-COMPS tutoring program is composed of four modules (A, B, C, & D). 

Module A focuses on multiplicative double counting (mDC). When working with 

mDC tasks, students learn the concept of composite unit (CU). For example, in the 

following question, PGBM 7 towers with 3 cubes in each, how many cubes in all?, 

students learn to consider 3 cubes as a CU and count 7 times of such unit for solution.  

Module B involves tasks to develop skills in unit differentiation and selection (UDS) 

and multiplicative mixed unit coordination (MUC), which make sure students know on 
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which unit they are operating, whether it is the # of cubes [the 1’] or # of towers [the 

CU]. Module C and Module D present quotative division and partitive division tasks 

respectively. In this part, students learn to solve the problems either through mDC or 

dividing cubes into equal-sized groups for solution. 

Following PGBM components in Modules A, C, and D, the COMPS component 

engages students in representing word problems in mathematical model equations 

(e.g., unit rate x # of units = product, Xin, 2012) and then solve for the unknown (could 

be any of the two factors or the product) in the equation. 

RESULTS AND ANALYSIS 

The figure in the Appendix presents three students’ performance on the MR and 

COMPS tests during baseline, intervention, and post-assessment. Each student’s 

performance in the PGBM-COMPS tutoring program is described as follows: 

Lily  

In the baseline, she used addition and subtraction for solving all problems and got 0 

points for all the tests. After the intervention was imposed, she demonstrated a steady 

increase on the MR- test (See Figure 1, the blue diamond data points and its data path 

across the phases) and learned to use multiplication and division but the increase was 

not significant. Her performance in the probes following each module was relatively 

low except for the last phase (module C and D instruction) where she had a steady 

increase in performance. Within all the modules, her performance in module B was 

poorest. However, she got great increase on the COMPS posttests-t. The transcript of 

her working video supports several explanations for her difficulties in learning of each 

module and poor performance in the MR- test and probes. First of all, she could not 

concentrate on the tasks very well. She kept clicking on everywhere of the screen, 

which often caused the computer frozen and the program restarted. This wasted a lot of 

learning time, which caused her not go through the whole study in each module 

because time allotted to each module was limited.  

David 

David demonstrated a steady increase on the MR criterion test throughout the program 

and also had great improvement in COMPs test. Within all the modules, module B was 

the most struggling part for David and he had difficulty in module B UDS part (See the 

transcription and Figure 1 below): 

Module B UDS, David, 04/24/2013 

The problem is “Tom has 4 towers of 5 cubes in each, John has 4 towers of 10 cubes in 

each”.  

Program(P): How are these collections similar?  

David(D):  Chose the choice of “They have the same number of towers” 

P:  That’s correct. How are these two collections different?  
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D:  Chose the choice of “They have different number of towers” 

P:   That’s incorrect. 

D:  Chose the choice of “John has more cubes in each tower” 

P:  That’s correct. How many more cubes does John have? 

D: Input "5" 

 

Figure 1 

Neal 

Similar to Lily and David, Neal also showed significant increase in COMPS-test, but 

he showed inconsistent and unsteady performance in MR-test. The probes scores 

indicated that module B was a struggling part for him. In addition, he had motivation 

problem. In the pretest and module A phase, his attitude was positive. However, from 

module B, where he faced strong struggle and had RA repeating prompting and 

instructing him, he became impatient and not concentrated on the tasks. In the post-test 

phase, he didn’t what to take any test and often showed miserable look on his face and 

RAs had to provide cookies as a reinforcement to have him finish the tests. 

DISCUSSION 

The PGBM-COMPS is probably the very first intelligent tutor that was created based 

on a research-based model of how students with LD develop multiplicative reasoning 

via reform-oriented pedagogy. Generally speaking, all three students’ performance in 

module B was relatively poor than their performance in Module A, C & D. One 

explanation for this might be that the UDS part in Module B involved two-step 

problems, which posed a challenge for these participants. Since module B is the second 

part of the program, at this point, the students did not have enough ability to solve such 

challenging tasks. Also, to solve two-step problems, the participants needed to hold 

and simultaneously process much information in their mind. Since students with LD 

had poor working memory (Richard, 2012), it posed challenge on the participants to 
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solve the two-steps problems. It is documented that students with LD performed at 

significantly lower levels than students without disabilities on multistep problem 

solving (Xin, 2005). So in the future research, it would be better to move UDS part to 

later phase.  

In addition, two out of the three students (Lily and David) demonstrated a steady 

increase on the criterion test (i.e., the MR-test) administered throughout the 

intervention but the increase was not significant. The third participant, Neal, showed 

inconsistent and unsteady performance. On the other hand, it seems that all three 

students significantly improved their performance in solving contextualized word 

problems on COMPS-test. There are several reasons for this result. First, COMPS 

component was taught at the last stage of the program and when the COMPs tests were 

administered, the students may still have fresh memory of COMPS knowledge, which 

caused them perform well in COMPs test. Second, along the dimension of MR, the 

current support build in the system might not be sufficient to address the disadvantages 

of students with LD, which might have contributed to the relatively lower performance 

on the MR-test. By comparison, the COMPs component involved some elements that 

might have better addressed the disadvantages of students with LD. For example, in the 

COMPs part, the important words of problems were highlighted and three key 

elements (Unit Rate, # of Unit and Product) were mapped to mathematical model 

equation, which contributed to better catching students’ attention to the crucial parts. 

Further, the model equation drove the development of the solution plan.  

However, in the MR component, there were many items on the screen without the 

important parts stressed. Students were easily distracted and got lost in information 

“overflow.” Session observation data indicated that two of the students (Lily and Neal) 

had trouble to concentrate on the tasks.  

Thirdly, MR-test was designed to assess students’ multiplicative reasoning ability. 

There are several types of problems in the MR-test. For most of the one-step problem, 

participating students had more success. For example, in the pretest, the participants 

mainly used addition and subtraction for solution. But after the intervention was 

imposed, they knew to use multiplication and division for solution. However, 

participating students had more difficulties in solving two-step problems in the MR- 

test.  If provided with more supporting strategies in solving two step problems, these 

students might have more access to the mathematics problems involved and their 

multiplicative reasoning might be better assessed. In addition to providing more 

scaffolding to these students, the future research might consider modifying the 

instructional sequences of the modules in the intelligent tutor.   
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CHILDREN’S CONCEPTUAL KNOWLEDGE OF TRIANGLES 

MANIFESTED IN THEIR DRAWINGS  
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When asked to draw different kinds of triangles, children reveal many creative ways to 

express variety. In this paper, the drawings of 81 children in the age between 4 and 6 

will be examined and illustrated what kind of understanding of the concept “triangle” 

precedes the drawings. Therefore, different categories of the children’s drawings were 

generated and also compared to their explanations of a triangle, which sometimes 

might not be in agreement with their drawings. 

INTRODUCTION 

“Shape is a fundamental construct in cognitive development in and beyond geometry” 

(Clements & Sarama, 2009, p. 199). According to Vollrath (1984), a comprehensive 

conception of geometric shapes is shown through different aspects like being able to 

name the shapes, give a definition of the shapes, show and illustrate further examples 

of this category and name all properties. Although this description was given for 

secondary school children and beyond, it is a good summary of what constitutes a 

comprehensive understanding of the concept of shape. In this paper it will be focused 

on the aspect of showing and illustrating many examples of geometrical shapes. This 

aspect is investigated through the drawings of the children. 

THEORETICAL AND EMPRICAL BACKGROUND  

It must be considered that in order to draw an object correctly, it demands the 

knowledge as well as the ability to put this knowledge down on paper, the so called 

drawing skills. If these are yet undeveloped, a child is not able to draw a geometric 

shape even though it might know how such a shape looks like. All developmental 

models concerning drawing skills (e.g. Piaget & Inhelder, 1967; Schuster, 2000) start 

with a so called “stage of scrawling”, which becomes more realistic and more detailed 

on each stage. Piaget gives a very detailed description how the drawing skills of 

children develop: from the age of three the scrawls become more differentiated and 

shapes showing properties like “inside” or “outside” can be illustrated. Here, copies of 

a circle, square and triangle all look the same. From age four onwards, basic shapes 

such as square, rectangle, triangle, circle and ellipses can be drawn, but only from age 6 

on, complex shapes can be drawn. If a child is not able to copy or draw a certain shape, 

Piaget interprets that it is due to a lack of knowledge, obviously not considering a lack 

of drawing skills, one of the reasons why his results are criticised (e.g. Freudenthal, 

1983; Battista, 2007). In mathematics mainly the knowledge, which lies behind the 

drawing is important. Still, drawing a shape correctly demands knowledge and 

drawing skills and therefore, “wrong” drawings should not serve as indicator for 
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lacking knowledge. Kläger (1990) highlights the importance to never regard drawings 

of children isolated but to always complement these through interviews, in order to 

gain insight in the perceptions of the children. For children cannot be “generalized”, 

they draw what they see but also more or less than they see, they draw what they know 

but also more or less than they know (cf. Kläger, 1990, p. 15f.). The van Hieles (van 

Hiele & van Hiele, 1986), who also created a hierarchical developmental description, 

which other researchers prefer to interpret as levels (Battista, 2007), constitute that 

children realize shapes as whole entities from the age of four onwards and are not able 

to distinguish shapes by their properties before primary school and are consequently 

not able to draw specific properties before that. 

There are several studies (e.g. Battista, 2007; Burger & Shaughnessy, 1986; Clements  

Swaminathan, Hannibal, & Sarama, 1999; Razel & Eylon, 1990) investigating young 

children’s understanding of showing and illustrating further examples of geometric 

shapes not through drawings but by letting the children for example distinguish 

between examples and non-examples. These studies showed that children had more 

difficulties in recognizing triangles which were identified correctly in all of the 

different studies by approximately 60% of the children, compared to squares (80% - 

90%) or to circles, which were identified correctly by nearly all of the children in these 

studies. There are no circles deviating from the prototype and square prototypes only 

occur concerning position, but there are several triangles deviating from the prototype 

and thus making it harder to be identified correctly in all variations. Therefore, it can be 

concluded that if it is harder to identify several types of triangles, it is also harder to 

draw several types of triangles – where knowledge is lacking it cannot be put into a 

representation. Some studies (e.g. Burger & Shaughnessy, 1986, Clements et al., 1999) 

indicate that children’s prototype of a triangle seemed to be an isosceles triangle. They 

found that the majority of children did not identify a long and narrow, scalene triangle 

as a triangle, although they often admitted that it has three lines and three corners, 

something which might be seen in drawings as well. 

The “drawing triangles task”, which will be presented in the following, was already 

conducted by Burger and Shaughnessy (1986) with a smaller sample and a larger range 

between the ages (from preschool to college) than in the empirical study reported in 

this paper. They found that younger children often vary their drawings by ending up 

with “new inventions”, as for example a triangle with “zic-zac-sides”, older children 

vary their drawings more according to the nature of triangles (equilateral, isosceles, 

rectangular or general triangles). The study at hand complements these studies by 

examining whether children also prefer drawing prototypical triangles and what kind 

of triangles are drawn as variations. Additionally it will be examined whether these 

drawings are in line with their explanations of triangles. Furthermore, the 

competencies of the children are illustrated in the light of two different educational 

settings.  
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DESIGN  

The study comprises 81 children, 34 from England and 47 from Germany in the age of 

four to six, who were interviewed at the beginning and at the end of one school year. 

The children in England were attending a primary school (for children from 4 to 11), 

where the children enter school in the year when they have their fifth birthday, but 

many children go to a reception class before that. The German children were attending 

a kindergarten where children from the age of three to six (up to primary school) can go 

to. In Germany (Baden-Württemberg), learning through play and an approach using 

“everyday mathematics” is at present the main concept for kindergarten education, 

whereas in England, elementary education is rather systematic and curriculum based 

and the expected competencies are described as “stepping stones”. 

The study was conducted in the form of qualitative interviews, taking about 30 minutes 

each. The order of the tasks – there were nine tasks altogether – as well as the material 

was predetermined but in accordance with the nature of qualitative interviews this 

order could be altered or complemented. There were two points of data collection, 

without a special intervention, one at the beginning of the school year 2008/ 2009 and 

one at the end of the school year. The English children, in contrast to the German 

children, were instructed in geometry during the year. Each child was interviewed 

individually, so copying the drawings from each other was not possible. 

In this paper, the results of the “explaining triangles task” and of the “drawing triangles 

task” will be illustrated. First, the children were asked to “explain a triangle to 

someone who has never seen a triangle before”. Later, after some other tasks, they 

were asked whether they could draw a triangle and afterwards a triangle that looks 

different than the first one and again a triangle that looks different than the first two, 

and so on. With this, the children’s idea of triangles as well as their idea of diverseness 

was tested. Then they were asked to explain their drawings. Afterwards, it could be 

seen whether their first, general explanation of triangles were in line with their 

drawings and the explanations of their drawings. 

In order to analyse the drawings and explanations of the children, different categories 

were generated and discussed. Besides the interpretation of the qualitative data as 

small case studies, also quantified details will be given to show tendencies and to 

suggest hypotheses because quantitative details can be one aspect of qualitative reality 

(Oswald, 2010, p. 186).  

The underlying research questions are: 

1. What kind of triangles do children draw when asked to draw a triangle? 

2. In how far do they vary their triangles when asked to draw another one (and again 

another one and so on) that looks different than the first one (two,…)? 

3. In how far do the explanations of the children match their drawings?  

4. Can any differences be observed comparing the results of the two educational 

settings or the two points of data collection? 
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RESULTS  

In the following, it first will be illustrated what kind of triangles the children drew as 

well as their way of varying different triangles, before it will be compared to the 

explanations of the children, all in the light of the two different educational settings. 

When examining the drawings of the children, it was first looked at what kinds of 

triangles the children did draw. It was distinguished between: (1) no triangle, (2) a 

“made-up” triangle (i.e. a non-triangle), (3) an equilateral triangle, (4) an isosceles 

triangle, (5) a rectangular triangle or (6) a general triangle (e.g. acute or obtuse angled). 

At both points of investigation, the majority of the children drew an isosceles triangle 

as their first triangle (38% of the English at the beginning and 47% at the end of the 

school year and 33% of the German at the beginning and 51% at the end of the school 

year). Only a few children drew an equilateral or a rectangular triangle as first triangle, 

but a general triangle (no specific one) was drawn by 24% of the English and 16% of 

the German children at the first investigation and by 38% of the English and 26% of the 

German children at the end of the school year. No child started with a “made-up” 

triangle, for example shapes with three corners but “zic-zac-sides”, but often used such 

“inventions” in order to alter their triangle.  

For the variations of the children, the following categories were generated. 

Identity – Child draws the same or similar triangle again and again; 

Area – Child draws triangles in different sizes;  

Angular dimension – Child draws triangles with different angles;  

Position – Child draws triangles in different positions and directions; 

Combination – Child draws triangles that differ at least in two of the following 

attributes: area, angular dimension or position; 

Objects from everyday life – Child draws objects from everyday life having geometric 

shapes (for example road signs); 

Shape – Child draws different shapes (triangles and “own inventions”);  

Missing critical attributes – Child draws a shape that is missing some critical attributes 

of a triangle, as for example a third side. 

The children’s drawings were either grouped into one of the categories identity, area, 

angular dimension, position, or, if they drew at least two of these varieties, they were 

grouped into combination. Moreover, they could be additionally grouped into one of 

the other categories: objects, shape or missing attributes. Therefore, the overall 

percentages might be more than 100%.  

It became obvious that most children connected “different” triangles with triangles that 

differ in their area dimension (see Table 1). Here, the triangles are all pointing 

upwards and are most of the time isosceles or equilateral. 
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 Identity Area Angular Position Comb. Objects Shape Missing 

 E G E G E G E G E G E G E G E G 

2008 18 7 50 49 15 9 6 5 6 7 0 9 29 21 3 3 

2009 12 14 71 44 24 28 9 12 6 12 0 9 9 21 3 3 

Table 1: Triangle Drawings in Percentages 

At the beginning of the school year, there were a few more English children than 

German children drawing triangles with different angles and positions. At the end of 

the school year, it was the other way round: now, slightly more German than English 

children diversified triangles according to angles and positions. Triangles as part of the 

geometric solids in everyday life (e.g. street signs or tents) were only drawn by the 

German children. At the beginning of the school year, there were more English 

children drawing triangles varying in their shapes, but later there were more German 

children drawing triangles varying in their shape. In both countries, only a few children 

left out critical attributes such as one side. 

The children used different ways (like answering with gestures, through comparisons, 

and other informal or formal ways) to explain or define a triangle as reply to the 

question: “Could you explain a triangle to someone who has never seen a triangle 

before?”. It could also be that children used several ways for their explanations and so 

the overall percentage could again be more than 100%. 

 No expl. Informal expl. Formal expl. Other expl. 

 E G E G E G E G 

2008 15 30 9 30 62 16 12 30 

2009 0 23 21 49 62 14 18 28 

Table 2: Explanation of Triangles in Percentage 

The results lead to the impression as if the concept knowledge of the English children 

is already more developed than that of the German children, because the English 

children explained the triangles more often, compared to 30% of the German children 

at the first and 23% at the second investigation, who did not explain the triangles at all. 

Moreover, the English children explained about four times more than the German 

children the triangles in a formal way, giving a definition as for example:”three straight 

sides and three corners”. Still, the drawings of the English children did often not fit the 

preceding explanations, as was the case for 24% at the first and for 12% at the second 

investigation. Here, only the informal and formal explanations were regarded (and no 

other explanations), because it is quite complicated to compare a gesture or a verbal 

comparison (e.g. “hat of a witch”), for example, with the properties of a drawing. 

The “triangles” of Emma at the beginning of the school year for example (see Figure 1 

below) do not all look like real triangles. Emma was explaining a triangle as having 

“three straight sides and three corners”, a correct definition not in line with two of her 

actual drawings: 
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Figure 1: Emma (4,5 years), 2008, 

England 

Interviewer: Could you explain to me 

the difference between the 

triangles? 

Emma: This one is thinner (points 

to shape no. 6) and those 

two (points to no. 4 and no. 

5) are fatter. 

Interviewer: Is there any other 

difference? 

Emma: No, they are all pointy. 

Some have two points and 

some have three points. 

Emma might have seen the different spikes of the stairs as single triangles. So a 

triangle could also be part of any other object, her concept knowledge was still limited 

to that perception. However, at the end of the school year, Emma was drawing only 

triangles and no “made-up” shapes. Louis’ triangles also deviate into non-triangles in 

the end. He explained a triangle in an informal but correct way, saying that it has “three 

points and it comes straight up and it comes straight down”. He started with the triangle 

on the very left and ended with the shape on the right. When asked, whether all of these 

shapes are triangles, he answered: 

 

Figure 2: Louis (5,1 years), 2008, 

England 

Louis: Well, that one has got this bit (points 

to no. 4) and this one (no. 5) goes 

like that, it’s all a bit strange... not a 

proper triangle. 

Interviewer: How many corners does this shape 

have? (points to no. 5) 

Louis: (counts). 1,2,3,4,5! 

Interviewer: And how many corners does a 

proper triangle have? 

Louis: 1,2,3 ...three!. 

Interviewer: But this is still a triangle? (points to 

shape no. 5) 

Louis: (nods) Yes! 

 

It seems that Louis discerns between proper triangles who have three points and “other 

shapes” who have more points but can still named as triangles. Other children, who 

drew “made-up” triangles also diverted the sides of the triangles and drew “wavy” or 

“rocky sides”.  
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All the German children who were able to explain correctly (no matter whether this 

was informal or formal) what a triangle looks like, were also able to draw a triangle 

correctly. But there was no German child who knew a definition but was not able to 

connect it with a representation then. In contrast to this, to summarize the results 

above, the English children were often able to formulate a definition of a triangle but 

were not always able to connect this definition with a variety of representations. 

DISCUSSION  

The results revealed that the children in both educational settings mainly drew 

isosceles triangles, but it could not be detected whether their attempt was to draw an 

equilateral triangle and whether it just happened to limited drawing skills. It can be 

stated that prototype presentations were dominant not only for the first drawn triangle 

but also as varying triangles because most children varied their triangles through area 

size. It has to be discussed if the rare use of position as variation can be explained by 

the format of the paper and the horizontal orientation by drawing. Looking only on the 

drawings, no meaningful differences between the two educational settings can be  

asserted, except in drawing objects from everyday life or other shapes (“own 

inventions”). Although the English children were instructed in school and thus able to 

explain or define a triangle in most cases, their explanations did not always go in line 

with their drawings, presumably because they just knew the definition but could not  

connect it with a variety of representations.  

CONCLUSION 

Therefore, it can be concluded that instead of an isolated memorising of definitions and 

the limited use of only prototypical representations, which can rule children’s thinking 

throughout their lives (Sarama & Clements, 2009, p. 216), already in preschool the 

focus should be more on the ability to connect a concept with many different 

representatives as examples. Teaching definitions should not be separated from 

showing different examples as well as from drawing shapes, otherwise it will be quite 

one-sided. Especially the drawing of triangles could be used not only as an assessment 

or research tool  (as it was used here as well as in the studies before) but also as a 

teaching tool in everyday situations as well as in all kinds of teaching situations, 

because by drawing different triangles, different attributes can be easily demonstrated 

and consequently the drawing of triangles could help to build valid perceptions. 
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The aim of this paper is to report early findings from university mathematics teaching 

in the tutorial setting. The study addresses characteristics of the teaching of an 

experienced research mathematician and through interviews, her underlying 

considerations. An analysis of a teaching episode illuminates her use of generic 

examples to reveal aspects of a mathematical concept and links with the tutor’s 

particular research practice, didactics and pedagogy emerge. 

INTRODUCTION 

Research on university teaching practice can inform mathematics education 

community’s understanding of university mathematics teaching and produce resources 

that novice and experienced university teachers might access for professional 

development (Speer, Smith & Horvath, 2010). However, research regarding pedagogy 

and mathematics puts an emphasis on school mathematics teaching (Jaworski, 2003) 

and very little has been studied to date concerning the teaching practices and 

knowledge of university mathematics teachers (Speer & Wagner, 2009). Furthermore, 

the number of studies about teaching in the small group tutorial setting is still limited.  

Petropoulou, Potari and Zachariades (2011, 2012) linked teaching practices in the 

format of lectures with research, teaching and studying experiences and argued that the 

process of thinking in mathematical research is used in university teaching 

(Petropoulou et al., 2011). The focus in this paper is on the characteristics emerging 

from one tutor’s mathematics teaching and how they are linked with the sources of 

knowledge coming from her research practices and teaching (including epistemology, 

didactics and pedagogy). The aim of the wider study, on which this paper is based, is to 

produce understanding about mathematics teaching at university level; the setting of 

small group tutorials was selected since more opportunities of teacher-student 

interaction and dialogue emerge there. 

THEORETICAL BACKGROUND 

A systematic literature review from Speer et al. (2010) categorised published 

scholarship in university mathematics teaching and showed lack of research in actual 

university mathematics teaching practice. In particular, these authors report that most 

of the studies offer researchers’ reflections on their own mathematics teaching and 

accounts of students’ learning, and they insist that there is no systematic data collection 

and analysis focusing on teachers and teaching. They also make the distinction 

between teaching practice and instructional activities at university level, defining the 



Mali, Biza, Jaworski 

4 - 162 PME 2014 

former as teacher’s judgements, thinking and decision making for the design, 

implementation and reflection on their teaching. Small group tutorials are seen as 

instructional activities along with lectures, whole class discussions, student’s 

individual work on exercises and many other activity structures.  

University mathematics education research is rapidly developing. A research focus has 

been the teaching of particular topics in undergraduate mathematics such as 

mathematical analysis (e.g. Petropoulou et al., 2011, 2012; Rowland, 2009) and linear 

algebra (e.g. Jaworski, Treffert-Thomas & Bartsch, 2009). The above studies are on 

the teaching of a large number of students in a lecture format; however, another focus 

of research is the teaching and learning of mathematics in alternative settings such as 

small group tutorials (e.g. Jaworski, 2003; Nardi, Jaworski & Hegedus, 2005; Nardi, 

1996). In the context of small group tutorials, Jaworski (2003) investigated first year 

mathematics tutoring of six tutors. She distinguished tutors’ exposition patterns as the 

main teaching aspect, with the most prevalent ones to accord with tutor explanation, 

tutor as expert and forms of tutor questioning and stressed that the teaching-learning 

interface is idiosyncratic to the tutor and to some degree to the particular students. 

Nardi et al. (2005) studied tutor’s thinking processes collecting their interpretations of 

incidents from their teaching in small group tutorials concerning three strands: tutor’s 

conceptuali ations of students’ difficulties, tutor’s descriptive accounts of pedagogical 

aims and practices with regard to these difficulties and tutor’s self-reflective accounts 

with regard to these practices. They produced a spectrum of tutor’s pedagogical 

awareness with four dimensions namely Naive and Dismissive, Intuitive and 

Questioning, Reflective and Analytic and Confident and Articulate and indicated a 

development in tutor’s readiness to respond in self-reflection questions over time. 

Nardi (1996) conducted her PhD research in undergraduate tutorials and explored the 

learning difficulties that first year students experienced in mathematics. Subsequently, 

Nardi (2008) investigated mathematicians’ perceptions of their students’ learning and 

reflections on their teaching practices based on data rooted in their small group 

tutorials and students’ work. In the above studies, the tutor’s teaching practice is 

examined in accordance with his or her students’ learning outcomes and difficulties. In 

our study, we are interested in the tutor’s teaching practice as well as the sources of 

knowledge that frame it. In this paper, we focus on the tutor’s teaching on features of 

mathematical concepts by using generic examples. 

Petropoulou et al. (2011) introduced the idea of an example used to illustrate critical 

characteristics of concepts as one of the lecturer’s strategies to construct mathematical 

meaning in lectures. Our interpretation is that the use of an example to illustrate critical 

characteristics of concepts is what other researchers call a generic example. A generic 

example is an example that is presented so as to carry the genericity (“the carrier of the 

general”) inherently (Mason & Pimm, 1984, p. 287). In other words, the general 

(argument) is embedded in the generic example “endeavoring to facilitate the 

identification and transfer of paradigm-yet-arbitrary values and structural invariants 

within it” (Rowland, 2002, p. 176). An example-of-a-generic-example that Rowland 



Mali, Biza, Jaworski 

PME 2014 4 - 163 

(2002) routinely chooses for the introduction of the notion “generic example” is the 

calculation of the sum from 1 to 100 with Gauss’ method. Gauss added 1 to 100, 2 to 99 

and, so on, and computed fifty 101s. The genericity of his method is that it can be 

generalised to find the sum of the first 2k positive integers, which is k(2k+1). The sum 

from 1 to 100 is a generic example of Gauss’ method and as such it is “a characteristic 

representative of the class” (Balacheff, 1988, p.219, cited in Rowland 2002) of the sum 

of the first 2k positive integers. Nardi et al. (2005) reported that the use of generic 

examples was amongst the most discussed strategies that tutors used to enhance their 

students’ concept image in tutorials.  

METHODOLOGY 

The context of the study 

The study is being conducted in small group tutorials for first year mathematics 

students at an English University. Tutorials are 50 minute weekly sessions and a group 

include 5 to 8 students. Tutors are lecturers in modules offered by the mathematics 

department and conduct research in mathematics or mathematics education. The 

modules that are usually tutored are analysis and linear algebra, but tutors are 

sometimes flexible to provide assistance in other modules, as well. This study is part of 

a PhD project, which draws on data of tutorials of 26 tutors and data that systematically 

follow three out of the 26 tutors for more than one semester. Zenobia is one of the three 

tutors. She is an experienced lecturer, holds a doctorate in mathematics and does not 

prepare a design for her tutorial. Her tutees decide what questions or topics they all 

struggle with and usually select with her to deal with one or two relevant exercises 

from the problem sheets that follow each chapter in lectures. During the tutorial time 

and through the exercises, Zenobia put emphasis on concepts and mathematical 

thinking rather than computations.  

Data collection and analysis 

The first author observed, audio recorded and transcribed Zenobia’s small group 

tutorials. Observation notes were also kept and a discussion with Zenobia about each 

tutorial was audio recorded and transcribed. The discussions concerned characteristics 

related to Zenobia’s teaching practice and from her reflections we gained insight into 

her underlying considerations. The characteristics emerged through a grounded 

analytical approach of a small number of tutorials and were subsequently traced 

throughout the data. The following episode has been selected from a vast amount of 

data as a paradigmatic case that characterises the use of generic examples allowing us 

to reveal key issues in practice. 

RESULTS 

In Zenobia’s tutorials, characteristics were identified through the process of coding and 

categorisation. These involved the use of examples to practice algorithms before 

tackling proofs in a more abstract setting; graphs to provide a visual intuition for 

formal representations; repertoires of strategies and techniques for the work on 
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mathematics; minimal information for elegant proofs; questioning in students’ valid or 

invalid definitions and claims for conceptual understanding; counterexamples to refute 

invalid arguments; and generic examples to reveal features of mathematical concepts. 

In this paper, we analyse a teaching episode from a small group tutorial, which was 

about calculus revision for exam preparation purposes. One of the exam questions was 

to show that a function is bijective and for this exercise, they chose to work first of all 

on injectivity. This episode concerns the use of generic examples to reveal that “a 

strictly monotonic function (in other terminology monotonically increasing or 

monotonically decreasing function) on an interval of its domain is injective on this 

interval”, a property that can be used as an alternative to the definition to prove 

injectivity on an interval. Before showing injectivity for the exam question, Zenobia 

used these examples and the following discussion occurred: 

1  Zen: Are there any kinds of functions that you know are going to be injective,  

2            for instance? Is there anything about a function that you… Ok. So, let’s  

3        draw some functions on the board, shall we? So, here’s an example of a 

4        function. [The graph of f(x)=x
2
]. And here’s another example of a 

5        function. [The graph of f(x)=sin(x).] And here’s an example of a  

6        function [the graph of f(x)=ln(x)], and here’s an example of a 

7        function [the graph of f(x)=x]. So, if you wanted to determine some  

8        domains on which all of these are injective, how would you do it? How  

9        would you do it for this one? [Zen. points to the graph of f(x)=x
2
]. How  

10        would you find your domain of injectivity? Is it injective on anything? 

11     S1:        From 0 to ∞. [Zen. draws a red line from 0 to ∞ to show the domain on 

12        which f(x)=x
2
 is injective.]  

13     Zen:      Right. This is definitely not injective on the whole thing, right? Because if  

14        I go off in opposite directions, I’m going to the same thing. Ok. But if I go  

15        from here on, that’s injective, right? Ok. And what about down here?  

16        [Zen. shows the graph of f(x)=sin(x).] Do you want to have a go at  

17        that? You’re very close. I know you can do it. Just draw a little red line on  

18        the domain axis.  

19     S2:       I hope I’m right. I think. [S2 draws a red line from 0 to ∞.] 

20     Zen:      You think? Ok. So, what does “injective” mean? It means that there  

21        shouldn’t be any two points that are at the same height. No, that’s 

22         definitely not right.  
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23     S2:       Can you have two parts to the domain? [S2 draws a red line from -π to π.] 

24    Zen:      I guess you could, sure. You just do it. I mean, it’s conventional to choose  

25        a connected interval, but you don’t have to. 

26     S2:       It must be from here to here. [S2 draws a red line from –π/2 to π/2.] 

27     Zen:      Excellent. Good, good. Right. So, what did you notice? You noticed that 

28        you can’t have it go up and down, basically. 

29     Zen:      So, what can I say about… Ok, what about this function? [Zen. shows the 

30        graph of f(x)=ln(x).] Is this injective? Is this an injective function? 

31     S3:        Yeah. It is injective. 

32     Zen:      It is injective. What about this one? [Zen. shows the graph of f(x)=x.] 

33     S3:       Yeah. 

34     Zen:     Ok. So, what can you say about this part of this function, this part of this  

35        function, this function and this function? [Zen. shows the previous  

36        functions restricted on the domain of injectivity.] What do they all have in  

37        common? 

38     S4:       They’re monotonically increasing. 

39    Zen:       They’re monotonically increasing, right. So, a function that’s either  

40        monotonically increasing or… I could easily have chosen this, instead.  

41        [Zen. plots the graph of f(x)=loga(x) where 0<α<1.] I could have chosen 

42        this part instead. [Zen. shows the graph of f(x)=sin(x) restricted on  

43        [π/2, 3π/2].] So, either monotonically increasing or monotonically 

44        decreasing is automatically going to be injective. 

Using a range of examples, which included very simple and more complicated ones, 

Zenobia attempted to build up students’ awareness of the feature of monotonicity on an 

interval: “a strictly monotonic function is injective”. Through these examples, she 

introduced layers of generality of monotonicity on an interval so that her students 

could connect monotonicity on intervals with injectivity. In my discussion with her, 

she referred to the four functions as “standard” ones meaning that they “have many 

applications” and “are very special classes of functions; polynomial, trigonometric and 

logarithmic functions”. On lines 4-6, we see the first three examples she devised (the 

graphs of f(x)=x
2, f(x)=sin(x) and f(x)=ln(x)) each of which is a generic example of the 

feature of monotonicity on an interval. All four functions [lines 4-7] have the property 

that makes them monotonic on an interval; however, they should have a high level of 

generality about them in order to be generic examples. The linear nature of the graph of 

f(x)=x indicates that it is not a generic example, since not all strictly monotonic 
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functions are linear [line 7]. However, this function along with the parabola fit in the 

class of polynomial functions and also, the linear function is odd and the parabola is 

even. The logarithmic function carries more generality of monotonicity on the domain 

than the linear function, because it has not null curvature and its domain is not the 

whole ℝ. The periodic trigonometric function can be divided into intervals where it is 

either monotonically increasing or monotonically decreasing. As Zenobia argues: 

Everything you see in polynomials [regarding monotonicity on intervals] is already seen in 

these two functions so adding any additional polynomial you don’t get anything new, 

whereas you never see periodicity or natural domain less than a whole axis in polynomials. 

In the interview, she also informed us about her didactical and pedagogical intentions 

and links between the particular epistemology, didactics and pedagogy emerged: 

The particular epistemology 

In Zenobia’s discussion with the first author, reflecting on her teaching approach with 

generic examples, she related it to the research mathematicians’ practice of “decoding 

and encoding”. She drew on her research practice experiences and explained:  

The first step [in doing research] is the decoding where you are given a problem and you 

have to understand what the problem is, what everything mean [e.g. by experimenting with 

images against definition], why it is a problem; the second step is with this picture that you 

have got from the decoding process, you get some intuition, you play around with things in 

your head a little bit and then you get this sort of ‘aha I figured it out, I have got this idea 

now of why that works’ and then you have got the encoding process [i.e. the third step] 

where you write it down [formally]. […] [In this teaching episode,] through examples I 

tried to extract from the complicated language that core intuition [of step 2]. I tried to teach 

them to decode the problem to something where they can sort of see ‘oh of course that’s 

how it works’ and then figure out how to write it in their proof back into a formal language. 

Zenobia also related her inductive thinking approach to a way of producing 

mathematical definitions in research informed by the history of mathematics. 

It’s a situation where –from the set of examples that we have– we’ve come up with an ideal 

idea, and then we can actually rigorously then check that something is in that or not. […] 

We come up with new definitions any time we recognise that there are some sets of 

structures that have some relevance. But it really does emerge out of the examples. And if 

you look at the history of mathematics, it’s not that people have had the idea of a function. 

It’s that they’ve had lots of examples of functions and they’ve tried to distil what the 

critical characteristics of a function are. So, I think it’s a very natural way to think about 

the relationship between examples and theories – it’s that we don’t define definitions just 

off the tops of our heads. We define them because they capture a behaviour we see in 

examples that have interesting kinds of properties. 

The didactics 

The teaching episode provides an example where through the use of the four functions 

Zenobia applies in her teaching the process of decoding of what it means to be strictly 

monotonic and what it means to be injective. The three out of four functions are 
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carefully selected so as to be generic examples of monotonicity on intervals. Then, the 

observation of the commonality among the graphs of the functions leads to the “core 

intuition” (of step 2 in research) that ‘a strictly monotonic function is injective’. The 

encoding process is the writing of the proof that ‘a strictly monotonic function is 

injective’; however, this step is not included in this episode.  

An interesting detail is that the last excerpt, concerning the history of mathematics, fits 

into Zenobia’s discussion with her students in the tutorial studied, after the solution of 

the exam question. In the italic text of this extract, she explained to students the 

historical roots of the use of generic examples to reveal features of concepts. From a 

didactical point of view, through this discussion Zenobia enculturated students into 

this mathematical practice of the community of mathematicians and gave them 

historical evidence of its significance. Discussing with her, she reflects: 

I wanted to explain to them what it is to be a mathematician. […] It is important for 

students to learn this [encoding and decoding] process because that’s a lot of the process of 

doing mathematics. And I think that’s a lot of what mathematicians do on a daily basis. 

The pedagogy 

The teaching episode is also an example of her teaching in practice towards her aims 

(e.g. students’ enculturation into being mathematical). The decoding process and the 

“core intuition” are collective among the students since different students showed the 

intervals of injectivity [lines 11, 26, 31, 33] and noticed the common property [line 38]. 

Zenobia focused all students’ attention on the key features of monotonicity on intervals 

by explanations to each student concerning his or her claim [lines 13-15, 27-28, 

39-44]; rhetorical questions [lines 20, 27] and the question about the commonality of 

functions restricted on intervals where they are monotonically increasing [lines 34-37]. 

Focusing on her explanations to students during the decoding process [lines 13-15, 

27-28], we extract her use of everyday language. In the interview, she stresses: 

At this [intuitive view] point I am not trying to make them phrase things in a mathematical 

language. I do that quite a bit when I am trying to get into the intuition first and I really 

don’t want to burden it with technical vocabulary. I bring up the vocabulary later and by 

the end I really make them put things in a very strict mathematical formulation. 

CONCLUSIONS 

In this paper, we reported characteristics of tutorial teaching, which occurred in one 

tutor’s small group tutorials. The teaching episode discussed was “a particular moment 

in the zoom of a lens” (Lerman, 2001, cited in Jaworski 2003) and illuminated one of 

these characteristics. Zooming in we provided an example of the characteristic 

“generic examples to reveal features of mathematical concepts” and the suggestion of a 

path of informing: from the history of the development of mathematics to the research 

practices of the mathematician to his or her didactics to his or her pedagogy. This path 

contributes to mathematics education community’s understanding of university 

mathematics teaching and offers a way to lecturers to consider their teaching, with 

regard to their epistemology, didactics and pedagogy, in order to enculturate students 
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into the core of mathematics and being mathematical. An example of how a tutor 

implements her teaching towards this aim is revealed through the teaching episode. 

Zooming out and from analyses as a whole, we suggest that teaching practices are 

informed by research practices. This influence accords with findings in the format of 

lectures (Petropoulou et al., 2011, 2012) and has implications to the pedagogy of the 

tutor. In future studies, we will analyse data from the other tutors and search for 

common or different characteristics in teaching and underlying considerations. 
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CARDINALITY AND CARDINAL NUMBER OF AN INFINITE SET: 

A NUANCED RELATIONSHIP 

Ami Mamolo 

University of Ontario Institute of Technology 

 

This case study examines the salient features of two individuals’ reasoning when 

confronted with a task concerning the cardinality and associated cardinal number of 

equinumerous infinite sets. The APOS Theory was used as a framework to interpret 

their efforts to resolve the “infinite balls paradox” and one of its variants. These cases 

shed new light on the nuances involved in encapsulating, and de-encapsulating, a set 

theoretic concept of infinity. Implications for further research are discussed. 

This research explores the intricacies of reasoning about, and with, concepts of infinity 

as they appear in set theory – i.e., as infinite sets and their associated transfinite 

cardinal numbers. The APOS (Action, Process, Object, Schema) Theory (Dubinsky 

and McDonald, 2001) is used as a lens to interpret participants’ responses to variations 

of a well-known paradox which invite a playful approach to two distinct ideas of 

infinity: potential infinity and actual infinity. According to Fischbein (2001), potential 

infinity can be thought of as a process which at every moment in time is finite, but 

which goes on forever. In contrast, actual infinity can be described as a completed 

entity that envelops what was previously potential.  These two notions are identified 

with process and object conceptions of infinity, respectively (Dubinsky et al., 2005), 

with the latter emerging through the encapsulation of the former.  Borrowing APOS 

language, this study explores the question of “how to act?” – a question which speaks 

to the mental course of action an individual might go through when reasoning with 

concepts of infinity, as well as to how an action in the APOS sense may be applied. 

PARADOXES OF INFINITY 

In this study, two versions (P1 and P2) of the infinite balls paradox are considered. P1: 

Imagine an infinite set of ping pong balls numbered 1, 2, 3, …, and a very large barrel; you 

will embark on an experiment that will last for exactly 60 seconds. In the first 30s, you will 

place balls 1 – 10 into the barrel and then remove ball 1.  In half the remaining time, you 

place balls 11 – 20 into the barrel, and remove ball 2. Next, in half the remaining time (and 

working more quickly), you place balls 21 – 30 into the barrel, and remove ball 3. You 

continue this task ad infinitum.  At the end of the 60s, how many balls remain in the barrel?  

Briefly, the normative resolution to P1 compares three infinite sets: the in-going balls, 

the out-going balls, and the intervals of time. This resolution relies on two facts: (1) A 

set is infinite if and only if it can be put into a bijection (or one-to-one correspondence) 

with one of its proper subsets; and (2) Two infinite sets have the same cardinality (or 

‘size’) if and only if there exists a bijection between them (Cantor, 1915).  (The 

cardinalities of infinite sets are identified by transfinite cardinal numbers – a class of 
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numbers that extends the set of natural numbers.  While many of the properties of 

transfinite cardinal numbers are analogous to properties of natural numbers, there are 

some important exceptions, illustrated below.)  Using facts (1) and (2), one may show 

that although there are more in-going balls than out-going balls at each time interval, at 

the end of the experiment the barrel will be empty – all of the sets are infinite, the 

cardinalities for all sets are the same, and since the balls were removed in order, there is 

a specific time interval during which each of the in-going balls was removed. 

 A variation to the paradox can easily be imagined. Consider the following, P2: 

Rather than removing the balls in order, at the first time interval remove ball 1; at the 

second time interval, remove ball 11; at the third time interval, remove ball 21; and so on… 

At the end of this experiment, how many balls remain in the barrel? 

The difference between P1 and P2 is a subtle matter of which balls get removed – balls 

1, 2, 3, … in P1, and balls 1, 11, 21, … in P2. The consequence is that although both 

experiments involve the same task (subtracting a transfinite number from itself), the 

results are quite different: P1 ends with an empty barrel; P2 ends with infinitely many 

balls in the barrel (balls 2-10, 12-20, etc.). Taken together, the two paradoxes illustrate 

an anomaly of transfinite arithmetic – the lack of well-defined differences. 

BACKGROUND 

Classic research into learners’ understanding of infinity has centred predominantly on 

strategies of comparing infinite sets (e.g., Fischbein, et al., 1979; Tsamir & Tirosh, 

1999; Tsamir, 2003). While a more recent trend has looked toward infinite iterative 

processes (e.g. Radu & Weber, 2011), power set equivalences (e.g. Brown, et al., 

2010), and paradox resolution (e.g. Dubinsky, et al., 2008; Mamolo & Zazkis, 2008). 

In the classic studies, participants were given pairs of sets and asked to compare their 

cardinalities. A common approach by participants was to reflect on knowledge of 

related finite concepts and extend these properties to the infinite case. For example, 

students were observed to compare sets in ways that are acceptable for finite sets, such 

as reasoning that a subset must be smaller than its containing set, but which result in 

contradictions in the infinite case (see fact (1) above).  Furthermore, students were 

observed to rely on different and incompatible methods of comparison depending on 

the presentation of sets. If (e.g.) two sets were presented side-by-side, students were 

more likely to conclude the sets were of different cardinality than if the same sets were 

presented one above the other. Radu and Weber (2011) similarly found that students 

reasoned differently depending on the context of the problem – when infinite iterative 

processes were presented via geometric tasks, students reasoned about “reaching the 

limit”, while an abstract vector task “evoked object-based reasoning” (p. 172). 

In their work on power set equivalences, Brown and colleagues observed that while 

students “demonstrated knowledge of the definitions of the objects involved, all of the 

students tried to make sense of the infinite union by constructing one or more infinite 

processes” (McDonald & Brown, 2008, p. 61). These attempts were made despite the 
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problem being stated in terms of static objects. Dubinsky et al. (2008) explored the 

process-object duality in a variant of P1, and observed a common strategy of “trying to 

apply conceptual metaphors” but noted that “the state at infinity of iterative processes 

may require more than metaphorical thinking” (2008, p. 119).  

This study extends on prior research by using paradoxes to explore the nuances 

involved in reasoning with and about transfinite cardinal numbers. With APOS as a 

lens, this study offers a first look at participants’ understanding of “acting” on 

transfinite cardinal numbers via arithmetic operations, focusing in particular on the 

challenges associated with the indeterminacy of transfinite subtraction.   

THEORETICAL PERSPECTIVES 

Due to space limitations, familiarity with the APOS Theory is taken for granted (see 

Dubinsky and McDonald, 2001 for details), and we focus on aspects which most 

closely relate to conceptualizing infinity. Dubinsky et al. (2005) suggest that “potential 

and actual [infinity] represent two different cognitive conceptions that are related by 

the mental mechanism of encapsulation” (2005, p. 346). Specifically, potential infinity 

corresponds to the imagined Process of performing an endless action, though without 

imagining every step. They associate potential infinity with the unattainable, and 

propose that “through encapsulation, the infinite becomes cognitively attainable” 

(ibid). That is, through encapsulation, infinity may be conceived of an Object – a 

completed totality which can be acted upon and which exists at a moment in time.  

Brown et al. (2010) elaborate on what it means to have an encapsulated idea of infinity. 

Such an object is complete in the sense that the individual is able to imagine that all 

steps of the process have been carried out despite there not being any ‘last step’. To 

resolve the issue of a complete yet endless process, Brown et al. introduce the idea of a 

transcendent object – one which is the result of encapsulation yet which is understood 

to be “outside of the process” (p. 136), that is, the object or “state at infinity is not 

directly produced by the process” (p. 137). Recalling P1, the empty barrel at the end of 

the experiment corresponds to what Brown et al. refer to as the state at infinity. As an 

object, it is transcendent since it is not produced by the steps of the process itself, but 

instead through encapsulation of the process. In accordance with APOS, Brown et al. 

consider encapsulation to be catalysed and characterized by an individual’s attempt to 

apply actions to a completed entity. They offer an example to support Dubinsky et al.’s 

claim that while actual infinity results from encapsulation, the “underlying infinite 

process that led to the mental object is still available and many mathematical situations 

require one to de-encapsulate an object back to the process that led to it” (2005, p. 346). 

Brown et al. (2010) observed that the de-encapsulation of an infinite union back to a 

process was helpful in applying evaluative actions to an infinite union of power sets.  

Weller, Arnon, and Dubinsky recently suggested a refinement to the APOS Theory, 

which includes a new stage they term totality. This refinement emerged from their 

analysis of students’ understanding of 0.999… = 1. They observed differences among 

participants who “reached the Process stage but not the Object stage”, and suggested 
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an intermediate stage, wherein individuals would progress from process to totality and 

then to object. They noted that: “Because an infinite process has no final step, and 

hence no obvious indication of completion, the ability to think of an infinite process as 

mentally complete is a crucial step in moving beyond a purely potential view” (2009, 

p. 10). The authors suggested that while some of their participants could imagine 

0.999… as a totality (e.g. with all of the 9’s existing at once), they were not able to see 

0.999… as a number that could be acted upon. They suggest that the totality stage may 

be necessary for encapsulation of repeating decimals.  

In this study, the paradoxes P1 and P2, when taken together, offer a situation similar to, 

but different in important ways from, previous lenses through which to interpret 

individuals’ understanding of infinity. As mentioned, prior research indicates that 

de-encapsulation has been connected to learners’ successes in applying actions to the 

object of infinity. The studies address different contexts of infinity, but share a 

common feature: they examine instances in which de-encapsulation makes use of 

properties of a process that extend naturally to the object.  In contrast, P1 and P2 offer 

a way to explore transfinite subtraction, whose indeterminacy suggests a potential 

problem with de-encapsulation. The extent to which properties of the process may be 

relevant to properties of the object of infinity and the question of what other situations 

may or may not require de-encapsulation of an object in order to facilitate its 

manipulation are still open. This study takes an important step in that direction by 

exploring the following related questions: (1) How does one “act on infinity”? And (2) 

What can the “how” tell us about an individual’s understanding of infinity? As 

indicated above, the “how” refers to both the mental course of action an individual 

might go through when attempting to reason with actual infinity, as well as to how in 

the APOS sense an action (in this case transfinite subtraction) may be applied. 

PARTICIPANTS AND DATA COLLECTION 

For the purpose of this proposal, data from two participants with sophisticated 

mathematics backgrounds, Jan and Dion, will be considered. Jan was a high-attaining 

fourth year mathematics major who had formal instruction on comparing infinite sets 

via bijections. Dion was a university lecturer who taught prospective teachers in 

mathematics and didactics, the curriculum for which included comparing cardinalities 

of infinite sets.  Neither participant had experience with transfinite subtraction. 

Data was collected from one-on-one interviews, where participants were asked to 

respond to the paradox P1. Following their responses and justifications to P1, 

participants were asked to address the variant P2. A discussion of the normative 

resolution to P2 ensued, after which participants were encouraged to reflect on the two 

thought experiments and their outcomes. Jan and Dion were chosen for this study 

because they both resolved P1 correctly within the normative standards mentioned 

above, and because of their object-based reasoning which emerged in contrast to prior 

research (e.g. Mamolo & Zazkis, 2008; Dubinsky et al., 2008). As such, results and 

analyses will focus on their responses to P2 in comparison to their approaches to P1. 
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RESULTS 

As mentioned, both Dion and Jan resolved P1 with appropriate bijections and language 

which referred to the sets as completed objects. When addressing the comparison 

between sets of balls and time intervals, both participants explained that the 

cardinalities were the same, and that “every ball that is put into the barrel is removed.”  

Jan’s response to P2 was consistent with her approach to P1 – that is, she reasoned 

abstractly and deductively with the form of set elements, with sets as completed 

totalities, and with formal properties and definitions. She observed that “transfinite 

cardinal arithmetic doesn’t work exactly like finite cardinal arithmetic” and connected 

her understanding of correspondences between infinite sets to explain the 

indeterminacy of transfinite subtraction. She elaborated: 

By assumption, only the balls 1, 11, 21, 31,.... are removed, (i.e. All balls of the form 

10n+1 for n=0,1,2,3...). Now f(n) = 10n + 1 is not a bijection from the set of naturals to 

itself, since for example, there is no natural n such that f(n) = 2, so f(n) is not onto. So at 

first, one might guess that "the infinity of balls put in is somehow greater than the infinity 

of the balls removed". However! here we get into the indeterminacy of the "quantity" 

infinity minus infinity… The set of balls put into the barrel DOES have the same 

cardinality as the set of balls removed from the barrel, since there is a bijection between the 

set N of all naturals and the set [writes] S = {10n+1 | n is a natural number}, namely f(n) = 

10n+1, which IS a bijection from N to S, but NOT from N to N. But even though there is a 

bijection… there are still an infinite number of balls left in the barrel after the minute is up! 

This is because N … is equinumerous with a proper subset of itself. 

Thus, Jan realized that although the quantity of balls taken out of the barrel was the 

same as the quantity put in, this was not sufficient to conclude that all of the balls had 

been removed. She observed that remaining in the barrel was the set of balls numbered  

{10n+2 | n=0,1,2,...}. This set is clearly infinite, and represents a subset of the balls left... 

Since the set of balls left contains an infinite subset, it too must be infinite… we have 

changed the remaining balls from zero to infinity! 

In contrast, Dion’s response to P2 showed a shift in attention from describing 

cardinalities of sets to enumerating their elements.  He used language consistent with a 

process conception of infinity, and overlooked the specific form of the set. While Dion 

commented on the similarities between P1 and P2 as well as the relevance of Cantor’s 

work to his solutions, he reasoned with P2 informally, rather than deductively. When 

addressing P2, Dion noted that, as in P1, there existed bijections between pairs of sets 

of in-going and out-going balls and time intervals. He concluded that the variant and 

the “ordered case” should yield the same result: an empty barrel. When asked to 

elaborate, Dion argued for an empty barrel because “after you go [remove] 1, 11, 21, 

31, …, 91, etc, you go back to 2” – language that describes a process of moving balls. 

During the interview, Dion struggled with the idea of a nonempty barrel. He stated:  

If ball number 2 is there, so is ball 2 to 10, etc… so, infinite balls there? I have trouble with 

that. (long pause) I have a strong leaning to Cantor’s theorem (sic) and to use one-to-one… 

I want to subtract, but I can’t.  
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Eventually, Dion conceded he was “convinced” of the normative solution to P2 since 

“you can’t reason on infinity like you do on numbers”, and he observed that while “on 

one hand infinite minus infinite equals zero, on the other it’s infinite” – a property of 

transfinite arithmetic that was new to him.  

DISCUSSION 

This study delves into the conceptions of two individuals with sophisticated 

mathematics backgrounds, as elicited by variations of the infinite balls paradox, with 

the intent to shed new light on the intricacies of accommodating the idea of actual 

infinity. Dubinsky et al. (2005) proposed that the idea of actual infinity emerges from 

the encapsulation of potential infinity, and is recognised by an individual’s ability to 

apply actions and processes to completed infinite sets. This study is a first look at 

individuals’ understanding of ‘action’ given the nuanced relationship between an 

infinite set and its associated transfinite cardinal number. The issue of transfinite 

subtraction is explored and a first attempt is made to address the relationship amongst 

encapsulation of infinite sets and transfinite cardinal numbers, and the manner in 

which an individual applies actions to those entities. 

How does a learner act on infinity?  

In the context of set theory, actual infinity can be conceptualized in two ways – as the 

encapsulated object of a completed infinite set (to which bijections can be applied), 

and as the encapsulated object of a transfinite number representing the cardinality of an 

infinite set (to which arithmetic operations can be applied). Focusing on arithmetic 

operations, the data reveal two ways an individual may attempt to “act on infinity”: (i) 

by deducing properties through coordinating sets with their cardinalities and element 

form, and through the existence of bijections between sets; and (ii) by de-encapsulating 

the object of an infinite set to extend properties of finite cardinals (elements of its 

conceptualization as a process) to the transfinite case. Exemplifying the former was 

Jan’s reasoning with and resolution of the P2. Jan’s ability to deduce consequences of a 

set being equinumerous with one of its proper subsets was showcased throughout her 

response. She consistently used language that referred to sets as completed totalities, 

reasoning with the form of elements (e.g. 10n+1) and bijections, rather than relying on 

enumerating elements (e.g. 1, 11, 21,…) to describe sets and relationships. Jan’s 

response indicates that she consistently reasoned with the encapsulated object of an 

infinite set, using its properties to make sense of the paradoxes. Her approach allowed 

her to transition from acting on sets to acting on cardinals and contributed to her 

understanding of the indeterminacy of transfinite subtraction, allowing her to “act” – 

both by comparing sets and by applying arithmetic operations – in ways that are 

consistent with the normative standards of Cantorian set theory.  

In contrast, Dion, who revealed a normative understanding of infinite set comparison 

in his resolution of P1, struggled during his engagement with P2. His attention to the 

process of removing balls (“go back to 2”) suggests that Dion had de-encapsulated 

infinity (conceptualized as an infinite set) and tried to reason with properties of the 
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process in order to make sense of applying the action of transfinite subtraction to the 

object of infinity (conceptualized as a transfinite cardinal number). This approach is 

consistent with other attempts to reason with infinity (e.g., Brown et al., 2010), 

however, in Dion’s case, this lead to considerable frustration and self-described 

“trouble”. Dion’s struggle may be attributed to attempts to make use of properties of a 

process of infinitely many finite entities rather than make use of properties of an object 

of one infinite entity. In the case of subtraction, properties of the former are 

inconsistent with properties of the latter, whereas this is not necessarily the case with 

other actions. When Dion was faced with a non-routine problem regarding transfinite 

subtraction, he “acted” by de-encapsulating infinity, making use of the process and 

generalizing his intuition of subtracting finite cardinal numbers, and thus experienced 

difficulty with the indeterminacy of subtracting transfinite cardinals. 

What can the “how” tell us about an individual’s understanding of infinity?  

Dion’s difficulty and Jan’s success with P2 suggest that: 

 It is possible to conceptualize an infinite set as a completed object without 

conceiving of a transfinite cardinal number as one; 

 De-encapsulation of an infinite set in order to help make sense of an 

encapsulated transfinite cardinal number is problematic; and 

 In set theory, accommodating infinity involves more than being able to act on 

infinite sets, and includes knowledge of how to act on transfinite cardinals. 

Further, Dion’s difficulty highlights the importance of acknowledging the distinction 

between how actions or processes behave differently when applied to transfinite versus 

finite entities as an integral part of accommodating the idea of actual infinity. Through 

Dion’s frustration that “I want to subtract, but I can’t”, and his insistence that “at some 

point we’ll get back to 2” a conflict emerged that was difficult for him to resolve. 

Dion’s realization that “you can’t reason on infinity like you do on numbers”, was 

important: it helped convince him of the normative resolution to P2.  

Dion’s struggle to re-encapsulate infinity in order to appropriately apply transfinite 

subtraction indicates that an understanding of how actions ought to be applied is 

relevant to the encapsulation of a cognitive object. Although Dion seemed able to 

consider the infinite sets of ping pong balls as completed entities which could be 

compared, his understanding of infinity nevertheless lacked one of the fundamental 

features that contributed to Jan’s profound understanding: the knowledge of how to act 

on transfinite cardinal numbers. In Jan’s words, “it is nearly impossible to talk about it 

[infinity] informally for too long without running into entirely too much weirdness”. 

An important contribution of this study distinguishes between the object of an infinite 

set and the object of a transfinite cardinal number, and identifies the significance of 

understanding properties of transfinite arithmetic in order to accommodate the idea of 

actual infinity. While there is substantial research focused on individuals’ reasoning 

with cardinality comparisons, how individuals conceptualize transfinite subtraction 

has not previously been addressed. Jan and Dion illustrate two ways to try and make 
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sense of transfinite subtraction: via deduction that coordinated completed sets and their 

cardinalities or via the use of properties of an infinite process through 

de-encapsulation. Taking into account the newly identified stage of totality in a genetic 

decomposition of infinity (e.g., Weller et al., 2009), questions also arise about the 

relationship and tensions between object, process, totality, and the de-encapsulation of 

an object to make use of properties of its conception as a process. 
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An historical case is presented in which extra-mathematical certainties lead to invalid 

mathematics reasonings, and this is compared to a similar case that arose in the area 

of virtual education. A theoretical-methodological instrument is proposed for analysis 

of certainties. The article suggests the need for teachers to be aware that certainties of 

mathematics facts are not always based on mathematics understandings.  

BACKGROUND AND OBJECTIVES OF THE PAPER  

In Euclid’s Elements, the author supported his theory of the parallels in the Fifth 

Postulate; there he established that two lines that are not equally inclined in relation to 

a third line will always have to intersect. Said proposal engages a behavior in the 

infinite (Kline & Helier, 2012), hence throughout history mathematicians resorted to 

different means to convince themselves of their truth—states Lovachevski (1974, pg. 

2). Saccheri, for instance, decided to establish that truth by resorting to a double 

reduction to the absurd: denying  the existence (no parallel to l crosses P), and denying 

unicity (more than one line crosses P). Denial of the existence produced a 

contradiction. From the second possibility, Saccheri deduced theorems that, albeit 

contradiction-free, seemed odd to him. This was sufficient for him to reject the second 

possibility, from which he derived the veracity of the Fifth Postulate as the sole 

possible option. According to Kline & Helier (2012, pg. 508), “when Saccheri 

concluded that the Fifth Postulate was the necessary consequence of the others, he was 

only able to show that when a person intends to establish something of which s/he is 

already convinced, s/he will be satisfied even if his/her demonstration has nothing to 

do with the facts.” 

Another attempt to demonstrate the parallels postulate arises in Legendre. In 1800, he 

published, according to descriptions by Lovachevski, that the sum of the angles of a 

triangle cannot be greater than 180°. He moreover argued that said sum could not be 

less than 180°. From his analysis, Lobachevski deducted that Legendre’s reasons were 

incorrect and that “the biases in favor of the position accepted by all had probably 

induced him at each step to precipitate his conclusions or add what was still not 

legitimate to admit in the new hypothesis” (1974, p. 3).   

In a critical reading of history, Lovachevski questioned the absence of logical rigor of 

the demonstrations of the Fifth Postulate; he objected to the ontology and idealistic 

epistemology that was the foundation of those attempts, by suggesting that “the 

concepts themselves did not encompass the truth that he wanted to demonstrate” 

(1974, pg.1) and by raising an empirical route as the alternative proof, by way of 
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astronomical observations. With an open spirit, he built hyperbolic geometry, 

admitting with it “the existence of Geometry in a broader sense than what Euclid has 

presented” (1974, p. 1).  

This passage through history illustrates how biases—taken on by Saccheri or 

Legendre- can disturb mathematics reasoning, and how certainty and convincement of 

mathematics facts can be strongly tied to extra-mathematical sources, such as 

ontological or epistemological commitments. The subsequent text contains arguments 

based on empirical evidence derived from a case study (Mariana), that that historical 

phenomenon associated with convincement and certainty also arises in mathematics 

instruction processes. The regularity of that phenomenon in such dissimilar arenas 

suggests, in one way or another, its generality, and raises the need for teachers to have 

knowledge of it and consider it in their didactic practices. 

Research on certainty and convincement has been directed toward the professional 

arena of mathematics, such as that of the teaching of the subject. For the 

mathematician, convincement and certainty are drivers that boost its activity in the 

stages of heuristic development, and a guide for certifying its findings during proof 

processes (Tymoczko, 1986). The mathematics education community has carried out 

different studies that implicitly use the point of departure that, like what happens with 

mathematics, certainty is also important in building mathematics knowledge in the 

classroom. Some of those works have been recreated in extra-class environments and 

have focused either on the students (e.g., in Balacheff, 2000) or on the teachers (e.g., in 

Harel & Sowder, 2007); others, developed in classroom environments with 

intervention, have basically focused on the students (e.g., in Krummheuer, 1995). 

Unlike any of the foregoing, in this work the point of departure is an historical 

phenomenon associated with the building of certainties so as to take it as an 

epistemological laboratory that enables explaining the presence of the very 

phenomenon in current training environments using a virtual forum. This raises the 

challenge of having theoretical elements and analytical instruments that make it 

possible to distinguish states of certainty (with respect to the statements of 

mathematics contents that arise there) experienced by the students enrolled and that 

they express in writing. Below, the authors of this paper propose the instrument of 

analysis that has been developed for that purpose.  

PROPOSAL OF AN INSTRUMENT TO DISTINGUISH EPISTEMIC STATES 

OF CERTAINTY AND OF PRESUMPTION OR DOUBT  

This research deems that, associated with their assertions of mathematics content, 

subjects can experience internal states of certainty (when they associate the highest 

degree of probability to what they believe in) or of presumption (when they associate 

lower degrees of probability to what they believe in). Such states are known as 

“epistemic states” in Rigo (2013).  

In the design of the theoretical-methodological instrument proposed below, there is a 

convergence of perspectives from different disciplines, namely: from philosophy 
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(Wittgenstein), psychology (Bloom, Hastings & Madaus) and sociology (Abelson). Of 

particular relevance to this study was the contribution of linguistics works, such as 

those of Hyland (1998), which made it possible to resort to analysis of the 

meta-discourse of the participants in the virtual forum so as to reveal the 

communicative intentions (many of which are unconscious) that they project through 

their writings.  

The authors of this research consider that a person (who takes part in a virtual forum) 

experiences a degree of certainty, or of presumption or doubt, in a mathematics 

statement when one or more of the criteria that appear in Table 1 are met. Said criteria 

are sufficient, albeit not necessary. 

Elements of 

speech 

The person resorts to language emphasizers that can reveal a greater 

degree of commitment to the truth of what he is saying; for instance, 

when the person uses the indicative mode of verbs (e.g., I have).  

Action  The subject carries out actions that are consistent with his discourse.  

Familiarity The person resorts to forms of sustentation based on familiarity (result of 

repetition, memorization and customs).  

Cognitive 

formulation 

The person resorts to forms of justification based on mathematics 

reasons.  

Determination The person spontaneously and determinedly expresses his adherence to 

the veracity of a mathematics statement, indicating some degree of 

determination. That degree may be higher when the subject maintains a 

belief, in spite of having the collective against him. He may even make 

efforts to convince others of the truth of his position.  

Interest The participations of a person who shows interest concerning a specific 

mathematics fact in a virtual forum are:  

 -Systematic. That is to say, the subject answers all questions addressed to 

him in the most detailed manner possible. 

 -Informative. His assertions, procedures and/or results are sufficiently 

informative. 

 -Clear and precise. 

Consistency The person’s varying interventions show consistency.   

Table 1: Theoretical-methodological instrument for distinguishing states of certainty. 

METHODOLOGICAL ASPECTS 

The qualitative research reported here focuses on an interpretative-type case study 

(Denzin & Lincoln, 1994). The empirical study was carried out in the Diploma 

Program on Fundamental Themes of Algebra, the purpose of which was to strengthen 

the training of people who provide advice on algebra topics to adults in the process of 

obtaining their secondary school certificates. The teaching activities are carried out 

remotely by using the Moodle platform, through which the students receive support, 

are assessed and given feedback by a tutor. The episode analyzed here pertains to 

Module IV. It was selected due to the fact that the advisors tended to use sustentation in 

their responses. The episodes begin with the tutor asking the students to complete a 
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task and they end with the agreement of the students on the solution to the task. For this 

report, the participations of three students were chosen given that those students appear 

to have experienced very different epistemic states when faced with the task proposed, 

despite the fact that none of the three answered the task correctly.   

EPISODE: “THE MILLION DOLLAR PROBLEM”  

The episode dealt with resolution of the following problem: You will get one million 

dollars if you can find a two digit number that simultaneously meets the following 

conditions: a) If you add to the first digit of the number we seek, a figure that is twice 

the second figure, the result is 5; b) If you add four times the second figure to double 

the first digit of the number we seek, the result is 7. The students were expected to 

conclude that no number could meet the problem’s conditions, and that they would see 

that this was the case when they charted the equations in a graph that would produce 

two parallel lines.  

1
st
 Fragment. Mariana’s first intervention. Presence of certainties 

Mariana started with the following participation: 

During her resolution, Mariana used different equation systems. The first came from 

the translation from common to algebraic language (1.1); then she obtained an 

equivalent equation (at 1.5), and after that, at 1.7, she obtained a modified equation, by 

changing a sign (of the term 4y from the second equation). To obtain the value of x, she 

used the first equation at 1.7, and to obtain the value of y, she began with the second 

equation in 1.1 and ended with the second equation in 1.7. To prove the operation, she 

used the first equation from 1.1 and the second from 1.7.  

In her resolution, Mariana liberally applied the rules of algebra, by capriciously 

changing the signs of the terms of the equations and by indistinctly using the equations 

that appear in those systems and combining them in an ad hoc manner, as they suited 

her purposes. It would seem that this responded to a specific objective, namely: to 

obtain values for literals x and y, an objective that may possibly have been derived 

1.1 x+2y=5;      2x+4y=7  

1.2-1.6 ... Since the equations do not contain an equal unknown, the substitution method 

is applied … to eliminate one unknown, which leaves us with  2x+4y=10.  After 

that step, you can do the operation. 

1.7 2x+4y=10 

2x-4y=7 

4x+0=17 

1.8-1.9. We separate the terms and solve for “x”.  [So]...   x=4.25 

1.10-1.11  Obtaining the value, we substitute in one of the 2 equations:   2(4.25)+4y=7 

1.12-1.13 We do the operation, separate the terms and solve for “y”.  

8.5+4y=7;     4y=7-8.5;     4y=1.5;     y=0.375 

1.14-1.15 We prove. First equation:       4.25+2(0.375)=5;        5=5.  

Second equation:    2x-4y=7;      2(4.25)-4(0.375)=7;      8.5-1.5=7;      7=7 
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from an interpretation of the literal only as an unknown, excluding the variable’s other 

uses.  

During this process, it would seem that Mariana experienced high degrees of 

presumption and even of certainty. Amongst other reasons, this is because of her 

determination to be the first to submit her answers and procedures to the judgment of 

the group; her use of emphasizers, specifically due to the indicative mode of the verbs 

(at 1.2 or 1.14); because her actions were the result of the procedures that she was 

announcing, for example when she announced that the substitution method was to be 

applied (1.2), all of her subsequent actions were aimed at trying to apply rules that she 

believed  belonged to that method; because she sustained her assertions in schemes 

based on familiarity (such as the addition and subtraction method), at 1.7, or what she 

called the ‘substitution method’, at 1.2. She also demonstrated her certainty by 

showing interest in resolving the problem, by explaining her solution in a detailed 

manner, answering all of the questions in the problem, resolving the system raised 

without the tutor requesting it, and by presenting her resolution clearly.  

2
nd

 Fragment. José’s questioning  

José expressed the following to refute Mariana’s answer: 

2.1-2.2 Hello Mariana. You really surprised me. But you’ve [missed] a small detail. 

2.9-2.11 2x-4y=7. In that step, you changed the sign (it should be +4y or multiply by -1, 

but the entire equation), that’s no longer the original equation. What do you 

think? 

José realized that Mariana had not correctly applied the rules of algebra (changing the 

sign in the system at 1.7), and that that had consequences (“that’s no longer the original 

equation”, 2.9), and he informed her of it, waiting for her reaction. 

3
rd

 Fragment. Mariana’s reply. Explicitation of reasons and ontological 

commitments, and strengthening certainty  

Below is Mariana’s reply 

3.1-3.4 You are indeed completely right [José], the entire equation is affected. But the 

purpose of the system of equations is to arrive at the result by eliminating one of 

the unknowns. If I affect my entire equation, I would be left with 3 and I would 

not have an unknown to solve.  

3.5-3.10 x+2y=5; 2x+4y=7. In this case, since the equations do not have one same 

unknown, the substitution method is applied where one of the two equations is 

multiplied by a number that serves to eliminate one unknown. 2(x+2y)=2(5), 

leaving us with 2x+4y=10. All is well so far. 

3.11-3.12 After that step, you can do the operation 

2x+4y=10 

-2x-4y=-7 

40+0=3 

3.13-3.16 Once the value has been obtained, we substitute in one of the two equations: 

2(3)+4y=7. We do the operation, and solve for “y”...    y=0.25. 
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3.17-3.18 We prove it. First equation: x+2y=5;   3+2(0.25)=5 and I don’t get 5. 

Second equation: 2x-4y=7;   2(3)-4(0.25)=7;  6-1=5; nor do I get the 7. 

3.19-3.20 So I only affect 4y, in order to not affect the whole equation, and much less my 

result. You may not see it as correct, but it is [correct] for me because the 

objective is to find the correct value.  

3.22 Let’s prove it. First equation:   x+2y=5;   4.25+2(0.375)=5;   5=5. 

At the beginning of the fragment (from 3.1 to 3.4), Mariana told José that he was right. 

Yet she subordinated those reasons to what she thought should be obtained from a 

system of equations: “to arrive at the result”. This was probably because she believed 

that absurdities would be derived from her classmate’s answer (such as “I would not 

have an unknown to solve” and “I would be left with 3”, possibly referring to 3.12). At 

a second point (from 3.4 to 3.18), she followed José’s suggestion, perhaps with the idea 

of ‘mathematically showing him his error’ by letting a contradiction arise from his 

suggestion: “I don’t get 5” and “nor do I get the 7”, without realizing that the mistake 

did not come from the resolution, but from the arbitrary nature of her manipulation of 

algebraic language (e.g., by assuming at 3.12-3.13 that x=3 or using the system of 

equations that best suited her ends). At the third point (3.19-3.20), she once again 

sustained the advisability of her method, once again subjecting it to the obtainment of 

her objectives: “to find the correct value” (3.20), and at the fourth (3.22) she proved its 

validity without realizing that she needed to substitute the values in the two equations 

at 1.1 and not just in the equation that best suited her interests.  

In Mariana’s second intervention, she very likely strengthened her epistemic states of 

certainty by being able to make her objectives and arguments explicit, and 

‘demonstrating’ her classmate’s error and the validity of her principles and her method, 

all of which she did with determination and with a consistent attitude. Her certainty 

can also be inferred from the use of emphasizers (not just due to the assertiveness of 

her language, but also due to the use of the indicating mode in “I [don’t] get”, at 3.18, 

“it is” at 3.2 or “much less” at 3.19). Her interest can moreover be seen in her 

reiteration of her resolution, clarification of her points of view, and public refute of her 

classmate despite her understanding that he was right, to a certain extent.  

4
th

 Fragment. Jeimy’s participation. Doubt 

4.2-4.4 I think I have a problem too. I’m trying to do the second exercise and cannot 

find the value for x or for y. My equations are: x+2y=5; 2x+4y=7 

4.5 Then I change the sign in the first equation. 

4.6-4.8 -x-2y=-5 

2x+4y=7 

x+2y=2;  x=2-2y. Substituting in the first equation (2-2y)+2y=5  [so]  2=5 

4.9 And I don’t get any value   ???????????????        What’s going on? Help! ...  

By rigorously applying the rules of algebra, Jeimy arrived at an absurdity that made her 

doubt her work. Without presupposing anything, she simply detected it and asked for 

help. 
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MAJOR FINDINGS  

The case of Mariana is interesting. Although she shows her knowledge of some of the 

rules of algebra (see 3.5 to 3.12), her ontological commitments concerning the 

characteristics that must be possessed by mathematics tasks and, particularly by 

systems of equations –of having an unknown to solve and a precise and numerical 

solution that can be found- they appear to represent an obstacle that prevent her from 

fully applying those rules.  

Mariana, like Saccheri or Legendre, was faithful to her ontological principles (or 

biases) and, just like them, those commitments and certainties lead her to “admit 

demonstrations that had nothing to do with the facts” and “they lead her to precipitate 

her conclusions or add things that were not legitimate” (see pg. 1 of this text).  

Jeimy, like Mariana, faced a problem that jeopardized her beliefs (of the existence of a 

numerical and sole solution to all mathematical tasks) and her algebraic knowledge. 

But while Marianna obstinately held on, with not a trace of doubt, to an ideal of the 

mathematics object, subjecting the rules of algebra to those ontological commitments, 

Jeimy preferred to maintain her logical rigor—like Lovachevski did, taking due 

distance- by scrupulously following the rules of algebra. Unlike Mariana, Jeimy 

allowed herself to doubt the results obtained—like Lovachevski did—recognize her 

lack of knowledge and ask for help—a metacognitive openness that placed her in a 

position to learn.    

An important didactic consideration stems from the analysis presented. And it has to 

do with the help that can be given to Mariana. José’s participation reveals that it was 

not enough to demonstrate her algebraic errors because in one way or another she was 

already aware of them. What Mariana appears not to have realized, and perhaps she 

would need some help with this, is that her beliefs and ontological commitments (that 

she probably took as unquestionable and unmovable truths) lead her to lose logical 

rigor in application of algebraic rules and, in the final instance, represented an obstacle 

to moving forward in her learnings. 

This texts show that certainty of mathematics facts can have deep roots in 

extra-mathematical considerations, such as ontological commitments, and that 

certainty is not always or necessarily tied to mathematical comprehension. Given the 

information presented here, it is important that teachers and their professors become 

aware of the phenomenon because it has significant consequences in the learnings of 

students.  
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The aim of this qualitative research is to identify  exican high school students’ 

emotional experiences in mathematics classes. In order to obtain the data, focus group 

interviews were carried out with 22 students. The data analysis is based on the theory 

of the cognitive structure of emotions (Ortony, Clore & Collins, 1988) that specifies 

the eliciting conditions for each emotion and the variables that affect the intensity of 

each emotion. The participant students’ emotional experiences are composed of 1) 

Satisfaction and disappointment while solving a problem, 2) Joy or distress emotions 

when submitting a test, 3) Fear and relief emotions in mathematics classes, 4) Pride 

and self-reproach emotions when grading a course and 5) Boredom and interest in 

mathematics classes.  

INTRODUCTION  

In the field of mathematics education, most of the research on students’ emotions 

focuses on its role in mathematical problem solving (Corte, Op ’t Eynde,  & 

Verschaffel, 2011; McLeod & Adams, 1989; Schoenfeld, 1985; Madler, 1989; Op ’T 

Eynde, De Corte & Verschaffel, 2006; DeBellis & Goldin, 2006; Goldin, 2000; 

Goldin, Epstein, Schorr & Warner, 2011). Among other results, these studies have 

confirmed that people tend to experience similar emotions in the process of problem 

solving.  

Research on emotions (Hannula, Pantziara, Wæge & Schlöglmann, 2010) has outlined 

the necessity to move beyond the simplistic view of distinguishing between positive 

and negative emotions. According to Lewis (2013) there are several reasons why this 

has not been done: 1) It seems more difficult to build a solid theoretical basis for 

emotions than for other affective constructs, 2) quantitative analysis, like survey 

methods, offer multiple possibilities to find cause and effect relationships between 

attitudes and beliefs. Furthermore, Hannula et al. (2010) and Hannula (2012) also 

noted the need for research focused on emotions during routine mathematical 

experiences because most of the research has focused on emotions and intense 

emotions in non-routine mathematical activities. 

In this study we have attempted to analyse students emotions in routine activities and 

to go beyond a consideration of positive and negative emotions using the theory of the 

cognitive structure of emotions (Ortony, Clore & Collins, 1988). We are aware that the 

analysis of narratives of emotional experiences is quite different from the direct 
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analysis of emotions, but as Ortony et al. (1988, p.8) we are willing, “(…) to treat 

people’s reports of their emotions as valid, also because emotions are not themselves 

linguistic things, but the most readily available nonphenomenal access we have to 

them is through language”. This is why we focused on the following research question: 

What are high school students’ verbal expressions of their emotional experiences in 

mathematics classes? 

THE THEORY OF THE COGNITIVE STRUCTURE OF EMOTIONS 

We have chosen the theory of the cognitive structure of emotions (OCC theory from 

now on) to identify the students’ emotional experiences. For Ortony et al. (1988) 

emotions arise as a result of interpretations of situations by those who experienced 

them: “[Emotions can be taken as] valenced reactions to events, agents or objects, with 

their particular nature being determined by the way in which the eliciting situations is 

construed” (Ortony et al., 1988, p. 13). Thus a particular emotion experienced by a 

person on a specific occasion is determined by his interpretation of the changes in the 

world: 

When one focuses on events one does so because one is interested in their consequences, 

when one focuses on agents, one does so because of their actions, and when one focuses on 

objects, one is interested in certain aspects or imputed properties of them qua objects. (p. 

18) 

Different types of situations that elicit emotions are labeled in classes according to a 

word or phrase corresponding to a relatively neutral example that fits the type of 

emotion (Ortony et al.,1988). For example, to refer to the emotion type “pleased about 

the confirmation of the prospect of a desirable event” they choose the emotion word 

satisfaction because it represents an emotion of relatively neutral valence among all 

those that express that you are happy about the confirmation of something expected.  

The characterizations of emotions in the OCC theory are independent of the words that 

refer to emotions, as it is a theory about the things that concern denotative words of 

emotions and not a theory of the words themselves. From the distinction between 

reactions to events, agents, and objects, we have that there are three basic classes of 

emotions: 

Being pleased vs. displeased (reaction to events), approving vs. disapproving (reactions to 

agents) and liking vs. disliking (reactions to objects). (Ortony et al., 1988, p. 33) 

Reactions to events breaks into three groups: one, the Fortunes-of-others group, 

focuses on the consequences for oneself of events that affect other people. The other 

two, the Prospect-based and Well-being groups, focus only on the consequences for 

oneself. Reactions to agents are differentiated into four emotions comprising the 

Attribution group. Reactions to objects lead to an undifferentiated group called the 

Attraction group. There is also a compound group of emotions, the 

Well-being/Attribution compounds, involving reactions to both the event and the agent 

simultaneously. It seems to be a general progression that operates the different groups 
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of emotions in order: first reactions to events, then to agents, and finally to objects. 

From the previous considerations, the OCC theory specifies 3 classes, 5 groups and 22 

emotion types. To illustrate in Table 1, we present the corresponding emotions to the 

Prospect-based group 

Class Group Types (sample name)  

 PROSPECT-BASED  Pleased about the prospect of a desirable event (hope) 

Pleased about the confirmation of the prospected of a 

desirable event (satisfaction) 

Pleased about the disconfirmation of the prospect of an 

undesirable event (relief) 

Displeased about the disconfirmation of the prospect 

of a desirable event (disappointment) 

Displeased about the prospect of an undesirable event 

(fear) 

Displeased about the confirmation of the prospect of 

an undesirable event (fears-confirmed) 

Table 1: Emotion types according to the OCC theory (a extract) 

To interpret emotional experiences in mathematics classes we have added two types of 

emotions in the Well-being group of emotions to the OCC theory. We call them 

boredom and interest. These emotional experiences are elicited by the appraisal that 

the students made of their own cognitive state: 1) states of alertness and concentration 

that produce understanding and learning in the case of attention, and 2) states of 

distraction and deconcentration that prevent understanding and learning in the case of 

boredom. Thus, we consider boredom emotions like “Displeased about an undesirable 

cognitive state of distraction” and interest like “Pleased about a desirable cognitive 

state of attention”.  

METHODOLOGY 

Context  

The high school where the study was carried out lies to the west of Mexico City. Most 

of the students live in municipalities bordering the metropolitan area of Mexico City 

located in the State of Mexico, they come from low economic extraction and most of 

their parents did not attend college-level. Most students’ mothers are housewives.  

Due to the inflexibility of the curriculum, all students have the same mathematics 

schooling path composed of six courses (one per semester) with five hours each class 

per week: 1) Algebra, 2) Geometry and Trigonometry, 3) Analytical Geometry, 4) 

Differential Calculus, 5) Integral Calculus and 6) Probability and Statistics. Generally, 

there is a traditional process of teaching and learning mathematics because 
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mathematics classes focus primarily on the teacher’s explanation and the subsequent 

resolution of exercises by the students.  

Participants  

We selected the 22 high school students (ages from 16 to 19 years old, 19 males and 3 

females) who are the attending the Analytical Geometry course offered in a for 

students that have previously failed the course, and did not pass the “sufficiency test” 

for at least one time. The “ordinary tests” and the “extraordinary tests” are done during 

regular courses. If the student did not pass the “ordinary tests” has the right to take an 

“extraordinary test”. If the student did not pass the course has the right to take a 

“sufficiency test” (done outside of regular courses) that is the mechanism by which 

students can accredit a course based on the demonstration of skills or knowledge 

through a unique test. The 22 students enrolled in this course agreed to participate in 

this research. As we had no gender distribution control, it was not taken into account in 

the data analysis. 

Data gathering procedure 

Methodologically, we decided to access to the students’ emotions from their reports of 

experienced emotions because the focus of the research is on the students’ subjective 

experiences of emotions. Thus, we carried out four focus group interviews of 

approximately one and a half hours during the mathematics classes in a regular 

classroom. We decided to use it because we observed during previous research at the 

same school that students feel confident and comfortable to express their thoughts, 

feelings and emotions about various topics in focus group interview. 

The questions asked in the focus groups were: 1) Generally, how do you feel in 

mathematics classes? 2) How do you feel when solving a problem in a mathematics 

class? How do you feel when you cannot solve a problem in a mathematics class? 3) 

How do you feel when submitting a test? 4) How do you feel when you know that you 

failed a mathematics course? And 5) how do you feel when you pass a mathematics 

course? The role of the interviewers was to deepen on the use, meaning of words and 

phrases used by the students to answer the questions. Following the OCC theory, our 

questions intend to provoke students to talk about their emotional experiences in terms 

of the eliciting conditions. 

Data analysis  

The videotaped interviews were fully transcribed. In the transcript, students were 

identified as Mn-Gk or Fn-Gk. Where M and F indicate that the participant is male or 

female respectively, n (1 to 6) indicates the participant identification number and k (1 

to 4) indicates the focus group number. Interviewers were identified as MI (male 

interviewer) and FI (female interviewer). We included explanations in square brackets 

in order to clarify some of the students’ expressions. According to OCC theory to 

identify a type of emotion we consider three specifications:  
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1. Concise phrases that express all the eliciting conditions of the emotional 

experiences. We highlight with italic bold letters the concise phrases that shows 

the eliciting conditions of an emotion in the evidence.  

2. Emotion words that express emotional experience. We highlight with italic letters 

the concise phrases that show the emotions in the evidence. 

3. Variables that affect the intensity of emotions. We underlined phrases that 

express intensity of the variables in the evidence.  

RESULTS  

The participant students’ emotional experiences are summarized in Table 2. 

Eliciting conditions Emotion types Variables that affect 

intensity 

Mathematics class Fear/Relief Effort 

 Probability  

Solve a problem / Not solve a 

problem 

Satisfaction/Disappointment Realization 

Submit a test Joy/Distress Effort 

Mathematics class Boredom/Interest Desirability 

Arousal 

Grading a course / Not grading a 

course 

Solve a problem on the blackboard /  

Not Solve a problem on the 

blackboard 

Pride/Self-reproach Strength of cognitive 

unit 

Expectation-deviation 

Table 2: The students’ emotional experiences 

Here as an example, the detailed evidence presented identifying 

satisfaction/disappointment emotions. 

Satisfaction/disappointment  

Students experience satisfaction emotions (pleased about the confirmation of the 

prospected of a desirable event) when they are able to solve specific problems. When 

this does not happen disappointment emotions appear (displeased about the 

disconfirmation of the prospect of a desirable event). 

M2-G1: I feel good when I understand. I even want to go to the blackboard to answer the 

problem. But I don’t feel good when I am trying to do something I don’t even know. 

M1-G2: I feel happy when I can solve the problem because I can do it. In fact, it is very 

difficult for me and I feel good if I can. 
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M2-G2: I am satisfied if I can solve a problem. I am more motivated with the extra 

points, I even want more problems. 

Satisfaction emotions are affected by the “effort” variable (reflects the degree to which 

resources were expended in obtaining or avoiding an anticipated event). This occurs 

when the teacher gives favourable extra points in the assessment of the students that 

solve a problem, so the students are provoked to strive in order to obtain them. We 

noted this intensity when the students used the quantity adverb “more” to express a 

superlative degree of the experienced emotion. 

M2-G2: I am satisfied if I can solve a problem. I am more motivated with the extra 

points, I even want more problems. 

The “likelihood” variable (the degree of belief that an anticipated event will occur) also 

appeared in the belief of a student that he will be able to solve a problem in the future 

because he has already solved similar problems. 

M4-G2: I feel really cool because I have already learned how to solve the problem. It will 

be easier to solve more problems like this. 

On the other hand, disappointment emotions are also affected by the “effort” variable, 

because it reflects the degree of sources employed by the students to solve a problem. 

There are two possible outcomes when students cannot solve a problem: look for help 

or quit the problem. In both cases, the experimented emotions are more intense. The 

emotion word associated for not solving a problem is desperate (we interpret this as a 

form of deep disappointment). The following dialogue shows this: 

M1-G4: Sometimes I am desperate because some of my classmates have finished the 

work and I don’t even know what to do or how to begin. I ask the teacher for help but it 

is useless because I don’t know the previous subjects and the teacher says that I have to do 

the same. Then I am desperate when I see that everyone else has finished and I haven’t. 

M2-G4: I am desperate if I cannot solve the problem and stop trying. I wait until the 

teacher explains it later. 

DISCUSSION, CONCLUSIONS AND LIMITATIONS 

The results focused on the experienced emotions of students are an empirical 

contribution to mathematics education that helps to fill the gap in research about 

emotions in their daily lives with mathematics at school. By applying a complex theory 

of emotions, this research goes beyond a simplistic view that only considers positive 

and negative emotions.  

Our analysis found eight (fear/relief, satisfaction/disappointment, joy/distress, 

pride/self-reproach) of the twenty-two types of emotions that the OCC theory 

considers and two additional ones (boredom/interest). Because eight of them 

(fear/relief, satisfaction/disappointment, joy/distress, boredom/interest) are reactions 

to events we can conclude that most of the students’ emotional experience is related to 

achievement goals (learn in class, solve a problem, understand the teachers’ 

explanations, interest to learn at class, pass a course, etc.). In contrast, as two types of 
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emotion (pride/self-reproach) are reactions related to agents, a minority of experiences 

relate to “standards, principles, and values” (in the sense of the OCC theory). In 

addition, we did not find emotions arising from reactions to objects. This can be 

explained in several ways: First, it can be caused by a methodological limitation 

because we chose situations through which students had to recall triggering conditions. 

Well-Being/Attribution emotions may have been told if we had asked, for example: 

how do you feel when you collaborate with a classmate solving a problem? This 

methodological limitation is inevitable given the way the situation was presented to the 

participants. This leads us to consider a different implementation of the OCC theory in 

empirical research: ask participants for the situations where they experience a specific 

type of emotion. A possible question for this matter could be: What mathematical 

situations make you feel afraid/frighten? A similar question could be: In what 

situations have you been afraid of mathematics? Second, the emotional experiences 

that we found reflected the participants’ circumstances: they are students focused on 

the goal of passing a course in which they are enrolled for the second time.  

The proposed data analysis had the complexity to go beyond emotion words for 

students to focus on eliciting conditions. We consider that this is a methodological 

contribution, derived from the OCC theory, to analyze narratives of experienced 

emotions. Other studies could analyze students’ and teachers’ narratives as we 

proposed since it has been proved that narrative inquiry is relevant to an exploration of 

students’ and teachers’ affect (Di Martino & Zan, 2009, 2011).  

A limitation of the OCC theory for an analysis of the emotions experienced by students 

is that it was originally formulated with no consideration of the specific settings where 

emotions are experienced. Boredom and interest are important parts of the emotional 

experiences in mathematics classes of the participants in this study, but they do not 

match with any of the 22 types of emotions established by the OCC theory. This shows 

the necessity to expand and adapt the OCC theory in order to consider specific 

emotional experiences in the mathematics classes. Future research could focus on other 

emotions that should be included to capture the complexity of emotions experienced in 

mathematics at school.  
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In response to an open-ended assessment task, 282 children of 6 to 8 years of age 

revealed their understandings of mass measurement. Each of the Year 1 and 2 children 

in 13 classes from 3 schools represented their knowledge of mass measurement in 

drawing and / or writing. Responses ranged from portrayals of activities they had 

undertaken or materials they had used in classes, to the more explicit articulation of 

key mathematical ideas. This paper presents samples of children’s responses that 

illustrate a range of thinking and conceptual development about mass measurement 

revealed by the assessment tool. 

INTRODUCTION 

Although measurement is an important element of mathematics education, there is 

insufficient research in this area (Sarama, Clements, Barrett, Van Dine, & McDonel, 

2011; Smith, van den Heuvel-Panhuizen, & Teppo, 2011). Smith et al. wrote of poor 

learning of measurement around the globe and called for the development of 

assessments that are more revealing of children’s learning. In recent work, we have 

attempted to address some of the concerns related to both the teaching and learning of 

mass measurement (Cheeseman, McDonough, & Ferguson, in press). In a design 

experiment (Cobb, Confrey, DiSessa, Lehrer, & Schauble, 2003) we implemented rich 

learning experiences in mass measurement (McDonough, Cheeseman, & Ferguson, 

2013) and evaluated children’s understandings through use of a one-to-one interview 

(Cheeseman et al., in press). Our research has included assessment through the 

development and use of a pencil and paper test (Cheeseman & McDonough, 2013), and 

the administration of an open-ended task. Findings from administration of the latter are 

the subject of this paper. Our main purpose here is to present insights into the range and 

complexity of young children’s reflections on their thinking about mass measurement. 

In line with the philosophy of social constructivism, we hold “respect for each 

individual’s … sense-making … [and children] … are seen as active and enquiring 

makers of meaning and knowledge” (Ernest, 1991, p. 198). Interpreting children’s 

thinking from this perspective, we are interested not only in the common features in 

understandings as communicated by responses to the assessment task, but also in the 

differently constructed understandings that reflect the range and complexity of 

thinking exhibited by young learners when measuring mass.  

We use the term mass rather than weight as it is the term used in the Australian 

Mathematics Curriculum (Australian Curriculum Assessment and Reporting Authority 

(ACARA), 2012). We recognize that among researchers and educators there are 
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different interpretations of these terms and note that the English language adds 

complexity as we have no verb for the noun and we “weigh” objects to ascertain their 

mass. In our reading of research we found use of both terms mass and weight.  

BACKGROUND 

Young children are known to possess knowledge of mathematics, often informal 

knowledge, that is “surprisingly broad, complex, and sophisticated” (Clements & 

Sarama, 2007, p. 462) but research provides limited insights into young children’s 

understandings of mass measurement prior to or during the early years of school. 

Children’s expressions of their own perspectives on their knowledge of measurement 

can provide insights perhaps not otherwise available and can inform teacher 

interactions. The research reported here adds a layer to the education community’s 

knowledge of young children’s developing understandings of mass measurement. 

OPEN-ENDED ASSESSMENT TASKS 

Assessment is central to learning (Wiliam, 2010). In a review of research literature on 

formative assessment, Black and William (1998) discussed using student 

self-assessment as formative assessment and advocated greater use of formative 

assessment to improve student learning outcomes. They stated, “self-assessment by the 

student is not an interesting option or a luxury; it has to be seen as essential” (pp. 

54-55). The student self-assessment protocol reported here is an open-ended task 

which offers insights into young children’s thinking about the measurement of mass. 

Open-ended tasks provide opportunities for teachers to learn about individual student 

understanding (Sullivan & Lilburn, 2004). 

MEASUREMENT UNDERSTANDINGS  

In learning to measure, children develop skills such as how to use a balance scale and 

develop understandings of foundational ideas including awareness of the attribute, 

comparison, unit iteration, the need for identical units, precision, and number 

assignment (e.g., Lehrer, Jaslow, & Curtis, 2003; Wilson & Osborne, 1992).  

Although research on the measurement of mass is limited, the literature does provide 

some insights into children’s understandings at certain ages. Children play with ideas 

of mass from as young as 12 months (Lee, 2012), and there is evidence of children 

demonstrating awareness of the attribute from four to six years (MacDonald, 2012), 

identifying heavy and light objects prior to instruction at six to eight years (Cheeseman 

et al., in press), ordering three objects by weight at five years (Brainerd, 1974), 

quantifying with informal units in the second year of school (age six to seven years of 

age) and with formal units in the third year of school (Cheeseman, McDonough, & 

Clarke, 2011), and showing understanding of the relationship between the size of a unit 

and the number of units needed to measure the mass of an object at six and eight years 

(Spinillo & Batista, 2009).  
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However, with the exception of MacDonald (2012), we have been unable to locate 

literature on children’s perceptions of their understandings of mass measurement that 

is informed by student self-assessment. The current study contributes to this field.  

The research question addressed in this paper is: What understandings about 

measuring mass do young learners portray in response to the Impress Me open-ended 

assessment task? 

METHODOLOGY 

Research participants 

Two hundred and eighty-two Year 1 and 2 students (6 to 8 years of age) and their 

teachers from three urban and rural schools in Victoria, Australia participated in the 

study. Each teacher taught a sequence of five lessons on mass measurement (provided 

by the researchers) to their class, following which they administered the Impress Me 

assessment task.  

The assessment protocol 

The teachers gave each child a blank piece of A3 paper then read the following prompt: 

We have been doing lots of weighing lately. I want you to show me on this piece of paper 

all you know about mass and weighing. You can write or draw or do both! Take your time 

and show your ideas and thinking as best you can. 

I want you to “impress me” with all you know about mass and weighing. 

The researchers provided further information for the teachers: 

We expect no two responses to be the same and of course there is no one right answer! We 

want as much or as little as children are individually able to give. (If the issue arises, please 

note that we are happy to accept children’s spelling.) 

Children could choose to draw, write, or combine the two. For young children, drawing 

can potentially be a “powerful medium for discovering and expressing meaning [as it] 

brings ideas to the surface” (Woleck, 2001, p. 215). 

Data collection and analysis 

In analysing the children’s representations, work samples were read and each element 

on the page was identified as a response. A grounded theory approach was taken to the 

data (Strauss & Corbin, 1990). Categories were derived by constantly comparing 

children’s representations. Emerging patterns in the data were identified. In this paper, 

a selection of themes that reveal complexity in student thinking are discussed and 

illustrated by inclusion of sample responses. Any non-conventional spelling has been 

corrected to facilitate readability but sentence structure has not been altered.  

FINDINGS 

The Impress Me responses varied in and across classes and revealed various 

complexities in children’s thinking about measuring mass. In this paper examples of 
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responses are presented under three themes identified from the data: Equivalence, 

Measuring with precision, and Volume and mass.  

Equivalence 

Equivalence is a key understanding in mathematics (Charles, 2005). Equivalence of 

mass might be judged by hand (hefting), using balance or other scales, and using a 

range of objects and units. Responses dealing with ideas of equivalence are reported 

here from the simplest to the most complex levels of thinking.   

 Awareness of equivalence with no explicit mention of mass 

For example, seemingly referring to use of balance scales, a child wrote, “If you can’t 

see if it’s even or not you can look at the arrow. If it’s in the middle it’s even” and “If it 

is equal it stays in the same spot”. The apparent reference to a balance scale, and to 

even and equal suggest attention to the attribute of mass but, without a conversation 

with the child, we cannot be certain.  

 Emergent understanding of equivalence 

Some children included more explicit mass terminology along with portrayal of 

balance scales. For example, one student wrote “Equal is things that are light and 

heavy” and drew a level balance scale labelling it “That’s = the same”.  

 Equivalence with quantifiable materials 

For example, a child drew six cubes in one bucket of a balance scale and four in the 

other, but showed herself adding two more cubes. She wrote: “I’m trying to make these 

buckets the same”.  

 Sophisticated understanding of equivalence with quantifiable materials 

Children showed that two groups, each with a different number of objects, can be 

equivalent masses. For example, one student drew balance scales and wrote “10 tiny 

teddies and 3 Unifix blocks are the same weight”.  

 Equivalence using formal units  

For example, (see Figure 1) a student wrote, “the playdough is 50 grams” (annotated 

by the teacher) and added, “they’re equal” (transcribed by the teacher). The 

representation suggests also an understanding that two objects of different shapes can 

weigh the same amount, that is, an understanding of conservation of mass. Another 

child expressed this idea more explicitly: “Conservation means when you have the 

same amount but different shapes and make them into a different shape it will stay the 

same weight”. 
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Figure 1: Student shows equality using grams 

Measuring with precision 

A further theme identified within the Impress Me data relates to children having 

concern for precision when undertaking mass measurement activities. Under this 

heading no hierarchy is implied. 

 Demonstrated awareness of exactness and inexactness 

For example, responses described children’s fascination with the term, approximately. 

Explanations included: “close to your answer”, “about”, and “nearly the same”. 

Some children talked of the lack of precision of balance scales, in this example 

demonstrating keen observation of the scale and an awareness of possible limitations: 

Jack and I were [using] the scales. To make it even [we] did big ones and 4 tiny ones in one 

cup and in the other cup we put 1 pen and it was even!!!! But when we picked up the pen 

and put it in again and it did not equal so it depends what way you put it in. 

 Evaluated the relative accuracy of different scales  

For example one child wrote “The balance scale and the digital scale are maybe the 

best scales to use. Sometimes when you’re hefting with the balance scale or the digital 

scale … the balance scale is wrong and the digital scale is right”. Although the child 

used the term hefting incorrectly, and did not give an in-depth response, there appears 

to be attention to precision and some level of reflective thinking.  

 Referred to the choice of unit and accuracy  

For example, one child wrote “Mini teddies are more accurate because they’re lighter 

and they’re easier to stop the [balance] scale”. As teddies are plastic and cannot be cut, 

some children combined larger and smaller teddies as informal units to get a more 

precise measure of the mass of an item. They reported the numbers and different 

teddies, thus giving a mathematically legitimate, non-conventional measure.  

 Referred to weighing accurately in metric units 

For example, “Kitchen scales tell you the exact weight something is” and “Digital 

scales are easy to know how much something weighs because on the bottom it tells the 

exact grams or kilograms”.  

 Demonstrated attention to precision  
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For example, one child wrote, “I learnt that some potatoes weigh approximately the 

same … some potatoes weigh 40 and another weighs 41 grams”.  

Volume and mass 

A further theme identified within the data was related to the identification that volume 

and mass are not related. Again, there were differences in responses.  

The lack of relationship between volume and mass is a complex aspect of mass 

measurement that can present challenges for young learners, as expressed with clarity 

by one child: “There is something that is hard to understand, and that is, there are some 

things that are small that weigh more than a big thing and … big things are lighter than 

small things”. Some children seemed to be possibly developing an emerging 

understanding about mass and volume relationships or they were challenged in 

expressing their understandings, for example, “It doesn’t matter if it is small, it was the 

same”; “Some little things that are big same little thing weigh more grams”.  

With possible consideration of volume, some children indicated the important 

understanding that mass cannot be judged by sight, for example, “I know you can’t tell 

something is heavy by looking”. 

DISCUSSION AND CONCLUSION 

The themes shared in this paper suggest complexity in young children’s mathematical 

knowledge; thus the study concurs with previous research (Clements & Sarama, 2007). 

However, the findings also extend that research by showing complexity of 

understandings specifically in relation to the measurement of mass.   

It is apparent that, given suitable experiences, children of six to eight years of age can 

potentially engage with important mathematical ideas such as equivalence, precision, 

and the relationship between measurement attributes. Furthermore, the Impress Me 

assessment instrument provided the opportunity for the children to communicate their 

knowledge, record reasoning, and demonstrate reflective thinking. 

Lehrer et al. (2003) wrote that “Developing an understanding of the mathematics of 

measure should originate in children’s curiosity and everyday experience … and 

children [should] develop a theory of measure rather than simply collecting measures” 

(p. 100), with the intention of developing generative and flexible learning. The 

examples in the paper show that measuring mass can require complex thinking, and 

that children can develop insights into big ideas of measurement that can potentially be 

transferred to other measurement attributes.  

As illustrated in this paper, based on young children’s life experiences and limited 

formal study of five lessons on mass measurement in the year the study was conducted, 

there are many nuanced mathematical ideas that the children had come to understand, 

were developing, or potentially could develop. We recognise that there can be 

substantial differences in the meanings children construct from shared mathematical 

experiences and do not claim that all themes we have discussed apply to all children. 
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But we have shown that young children can potentially engage with sophisticated ideas 

of mass measurement. Like Stephan and Clements (2003), we question whether the 

complex mental accomplishments in measuring are always acknowledged in the 

teaching of mass. But to this end we also agree with the student who stated that “the 

more you do mass the better you get”. 

We propose that the Impress Me task can be a valuable self-assessment tool, and that 

its use can potentially benefit the children as well as researchers and teachers. While 

there may be limitations in its use, it can be one component of the formative 

assessment undertaken in mathematics classes.  
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In this study we investigated the effect of the request to reword the text of problematic 

word problems on the occurrence of realistic answers. We proposed the activity of 

rewording word problems to fifth grade pupils either working individually or in dyads. 

We found that the rewording the problems while working individually had no effect, 

while rewording in dyads produced a strong increase of pupils’ realistic answers. 

 oreover we analysed the pupils’ reworded texts in order to characteri e the kind of 

information added by pupils. 

INTRODUCTION 

The well known l’age du capitaine (Baruk, 1985) was one of the most popular studies 

that brought to the attention of international research the phenomenon known as 

‘suspension of sense-making’ when solving word problems (Schoenfeld, 1991). 

Indeed many pupils’ responses to this problem, as well as to other word problems of 

the same or a similar kind, have shown a tendency to unthinkingly apply arithmetic 

operations without critically considering the reality that the word problem is referring 

to. Explanations that have been raised for this phenomenon often refer to the 

stereotypical nature of the word problems typically used in school and to the implicit 

and explicit rules which govern educational practices surrounding word problems (the 

so-called didactical contract, see Brousseau, 1986) (Verschaffel et al., 2000).  

In the study reported in this paper, we investigated the effect of inviting pupils to 

reword a given word problem – individually or in dyads – on the realistic nature of 

their answer to that word problem. Moreover, we analysed the information added in 

pupils’ reworded problems to get a deeper understanding of their sense making 

process. 

THEORETICAL FRAMEWORK 

A word problem can be defined as: 

[...] a text (typically containing quantitative information) that describes a situation 

assumed as familiar to the reader and poses a quantitative question, an answer to which can 

be derived by mathematical operations performed on the data provided in the text. (Greer, 

Verschaffel, & De Corte, 2002, p. 271). 

World problem solving still comprises an important aspect of mathematical school life. 

One of the main goals of word problems is to bring pieces of reality in the classroom in 

order to let pupils experience different aspects of mathematical modelling and problem 

solving processes, without the practical inconvenience to a direct contact with real 
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world contexts (Verschaffel et al., 2000). In the 90’s two pioneering studies (Greer, 

1993; Verschaffel, De Corte, & Lasure, 1994) suggested that this goal of bringing 

mathematical modelling experiences into the classroom is very often not met. In these 

studies, it was found that upper elementary pupils only very rarely make realistic 

considerations when solving word problems. This was shown by a contrast between 

the very good performance on so-called standard word problems (S-items) – that can 

be solved correctly by straightforwardly applying operations with the numbers given in 

the word problem – and very low performance on so-called problematic word 

problems (P-items) – where peculiarities of the everyday life situation described in the 

word problem need to be taken into account. For example, the P-item A man wants to 

have a rope long enough to stretch between two poles 12m apart, but he has only 

pieces of rope 1.5m long. How many of these pieces would he need to tie together to 

stretch between the poles? was answered with “12 : 1,5 = 8 pieces” by virtually all fifth 

graders from Verschaffel et al.’s (1994) study. 

Many authors have argued that this phenomenon can to a large extent be grasped by 

looking at the processes that occur at the beginning of pupils’ word problem solution. 

Often, pupils seem to decide, based on a very quick and superficial reading of a word 

problem, which mathematical model leads to the solution. However, for the P-items as 

described above (and for word problems more generally), ideally there is an 

intermediate stage between the initial reading of the word problem text and the 

construction of a mathematical model. This intermediate stage, often described as the 

creation of a situation model (Kintsch & Greeno, 1985; Verschaffel et al., 2000), 

consists of representing the key elements and relations in the problem situation. In this 

stage, one’s real-world knowledge about and personal experiences with the situation 

described in the P-item may help to construct a rich situation model.   

The fact that pupils often do not succeed to create a(n extended) situation model of 

P-items and therefore fail to solve these problems realistically, may partly be explained 

by the scarcity of information available in the word problems themselves. As Zan 

(2011) suggested, word problems may show “narrative ruptures” when the question 

and the information needed for the solution are not consistent from the point of view of 

the narrated story. Voyer (2011) distinguished three kinds of information that may 

affect the extent to which this situation model is actually constructed: Solving 

information consists of the essential numerical data, the order of presentation of these 

data and the size of the numbers; Situational information is information which plays a 

role in the development of a context that anchors the mathematical question in a real 

life situation, like the initiating events, the setting details and temporal information; 

and Explanation information makes the relationships among the various pieces of 

information found in the text more explicit. Voyer (2011) posed different versions of 

the same frame problems to a sample of pupils to understand the relationship between 

the information presented in the problem text and the constructed situation model. He 

found that adding information that was non-essential for the mathematical solution of 

the problem, but still relevant to the problem context, had a positive influence on 
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pupils’ performance. Similarly, Palm (2008) observed that when information was 

added to word problems to make them more authentic (i.e., more closely simulating the 

real-life situation in which the problem occurred), a larger proportion of children 

makes proper use of their real-world knowledge in the problem-solving process.  

RATIONALE AND RESEARCH QUESTIONS 

So far, research has shown that reworded problems that provide more background 

information lead to better performance on word problems in general (Voyer, 2011), 

and to more realistic considerations vis-à-vis P-items specifically (Palm, 2008). In the 

current study, we did not make use of reworded problems in which we added 

information ourselves. Instead, we asked pupils to reword these problems by 

themselves and looked whether this would positively affect the realistic nature of their 

answers to these problems. Indeed, pupils may also be able to add to the word problems 

the various situational elements that were suggested by Voyer (2011). Using the 

argumentation by Zan (2011), the impact may even be stronger than when giving word 

problems with the information already added: One of the crucial differences between a 

real problem solving situation and a school word problem is that the latter is typically 

hetero-posed, i.e. the person posing the problem is someone different from who has to 

solve it (Zan, 2011). Therefore any word problem has to be expressed by a (generally 

written) text, to communicate to the solver what he/she has to solve, through an explicit 

request. Our proposal to ask pupils to reword the text of the problem may partially 

recover this loss of authenticity, and therefore positively affect the realistic 

considerations they make. In particular we wanted to see if this rewording helps pupils 

to consider aspects of reality in their situation model of the problem and consequently 

react more realistically to these items.  

In order to strengthen the possible effect of asking pupils to reword given P-items, we 

asked some pupils to do this in dyads rather than working individually. Indeed we 

weren’t sure that the rewording would be as effective if pupils work alone. Working in 

dyads creates a condition in which pupils are forced to make their proposals for 

rewordings (and possibly even the considerations that lead to them) explicit, and 

discuss to arrive to an agreement. Working in groups has been shown successful in 

eliciting realistic reactions (Verschaffel et al., 2000) and thus this kind of condition 

could make the rewording work more effective and the pupils react more realistically 

to the P-items. 

So, in the current study, we investigated whether asking pupils to reword given P-items 

would lead them to solve these items more realistically afterwards, and if so, whether 

this would be more effective when pupils do this assignment in dyads rather than 

individually. Based on our theoretical framework, we expected a very low number of 

realistic responses in pupils who solve the task individually, a moderate increase in 

realistic responses when pupils were asked to reword the problems or could work in 

dyads, and the highest number of realistic responses in pupils who were asked to 

reword the problems while working in dyads. 
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METHOD 

A total of 179 fifth graders (88 female and 91 male) were involved in this study. They 

came from three schools of Naples (South Italy, a region that is well-known for its 

weak results for mathematics both in national (INVALSI) and international (PISA) 

assessments). All pupils were randomly assigned to one of four conditions: 

 IS condition (n = 19): Pupils individually (I) worked on solving (S) P-items. 

 DS condition (n = 62): Pupils worked in dyads (D) on solving (S) P-items. 

 IR condition (n = 38): Pupils individually (I) worked on solving P-items after 

being asked to reword (R) them. 

 DR condition (n = 60):  Pupils worked in dyads (D) on solving P-items after 

being asked to reword (R) them. 

The DS-condition was added as an extra control condition in order to disentangle the 

effect of rewording the problems on the one hand and working in dyads on the other 

hand. 

All pupils (or dyads) received a booklet with four word problems adapted from 

Verschaffel et al. (1994) and were asked to solve them. In the IR and DR conditions 

pupils were asked to first reword the problems, and they received detailed instructions 

to do so. More specifically, they were asked to rewrite each word problem by adding 

details that could help to figure out the underlying situation as in a story (who is 

involved, what is happening and why, where does the question come from?), while 

making sure that the operations and the answer to the problem would remain the same.  

Pupils working in dyads (in the DS and DR conditions) received only one booklet per 

dyad and were instructed to work together on this assignment, to talk to each other and 

to negotiate about the rewriting of the word problem (in the DR condition) and to write 

down an answer only after agreement had been reached.  

Due to space limitations, we will focus on one of the four P-items included in the study, 

namely the buses problem, adapted from Verschaffel et al. (1994): 450 soldiers must 

be bused. Each army bus can hold 36 soldiers. How many buses are needed? 

ANALYSIS 

The key variable in this study is whether pupils’ reactions to the P-problems were 

non-realistic (NR) or realistic (RR). For the buses problem above, answers were 

considered NR when the numerical answer was the mere reporting of the result of the 

operation 450 : 36 (i.e. “12.5 buses”, or “12 buses remainder 18”), without any 

comment about the problematic nature of the problem and/or the given answer. 

Answers were considered RR when they showed some realistic consideration, either 

by rounding up the number of buses to the next number (“13 buses are needed”), or by 

adding any comment that indicated that realistic considerations were made (e.g., “12 

buses are needed, and 18 soldiers are left”, or “12 buses and perhaps a smaller one”).  
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In addition to the nature of pupils’ reactions to the word problems, we also did a deeper 

analysis of the reworded texts by the pupils in the IR and DR conditions. This analysis 

could reveal to what extent pupils had followed the instruction to reword the problem 

to a more meaningful one, and what kind of information pupils had added to do so. For 

this reason, we coded for every reworded problem in the IR and DR condition the 

number of information elements present in the reworded problem that were not yet in 

the original problem text, separated in descriptive (D) information (names, objects, 

places), intentional (I) information, action (A) information, temporal (T) information, 

and causal (C) information. 

The latter categorization was based on Voyer’s (2011) distinction among the different 

kinds of information that can be added in a word problem text, as well as on another 

study about the effect of different kinds of rewording of word problem texts on pupils’ 

performance (Vicente, Orrantia, & Verschaffel, 2007). Here is an example of a pupil’s 

reworded text together with our analysis: 

The head of the Italian army decided to make a war against the U.S. army. To do this, the 

Italian army has to train, so it must be transported in a proper military camp. The soldiers 

are 450 and must be transported by bus to 36 soldiers each. How many buses are needed?  

D:  ‘The head of the Italian army’, ‘U.S. army’, ‘proper military camp’;  

I:  ‘he decided to make a war’; 

A:  ‘to make a war’, ‘to train’; 

T: 

C:  ‘they have to train’ 

RESULTS 

As expected, there was a very low number of RRs to the word problem in the IS 

condition, where pupils worked individually and were not asked to reword the 

problem. Only 1 out of 19 pupils (5.3%) gave a RR. The same was true when pupils 

worked in dyads (DS condition): None of the 31 dyads gave an answer that could be 

considered realistic. Moreover, contrary to our expectations, we also did not find a 

positive effect of asking individual pupils to reword the problems: Only 2 out of 38 

pupils in the IR condition (5.3%) gave a RR. However, asking dyads to reword the 

problems led to a spectacular result, as 22 of the 30 dyads in the DR condition (73.3%) 

gave a realistic answer. So, only the combination of rewording and working in dyads 

led to a dramatic increase in the number of RRs to the buses item. 

As explained above, we also looked more carefully at the reworded texts that were 

produced by pupils in the IR and DR conditions, to get a better understanding of the 

effect of our experimental manipulations. Table 1 summarizes the mean number of 

elements added in the reworded texts for these two conditions.  
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 Total 

elements 

added 

Descriptive Intentional Action Temporal Causal 

       

IR 4.03 1.76 0.34 0.85 0.11 0.86 

DR 6.32 2.38 0.16 2.55 0.19 1.03 

Table 1: Mean number of elements added in the reworded texts in the IR and DR 

conditions 

Some differences could be noted. Pupils working in dyads added on average 6.32 

elements to the word problem, whereas pupils working individually only added 4.03 

elements, which was a significant difference, t(67) = 3.15, p = .001. Additional tests 

showed that this was due to a difference in the number of added descriptive elements 

(1.76 vs. 2.38 on average, t(67) = 1.79, p = .039) and action verbs (0.85 vs. 2.55, t(67) 

= 4.09, p < .001).  

We found many interesting and rich reworded texts built by pupils who answered in a 

realistic way. For example, the reworded text 450 soldiers must be transported in 

military bus where they will travel to go to a ceremony. The soldiers must be 

distributed by 36 in each bus. On the bus the soldiers eat tomato pizza and the generals 

talk. How many buses are needed?, which was built by pupils who worked in dyads, 

shows the presence of some ‘useless’ details from the mathematical point of view, like 

“the soldiers eat tomato pizza”, but that likely contributed to support pupils in 

imagining the situation, and afterwards giving the realistic answer “They used 13 

buses, and in one of them there will be 18 soldiers”. Other interesting considerations 

can be made regarding those pupils who decided to convert the story text in something 

closer to their own life. For example, In the fifth grade classes of Madonna Assunta 

[pupils’ school] there are 450 children who have to go to school camp in Puglia. The 

teachers have ordered the buses that can hold up to 36 children. Children pose 

themselves the problem of how many buses will be used to transport the 450 children. 

The dyad who built this text answered “12 buses are needed and 18 children do not go 

to school camp”. This kind of behaviour was consistent with the considerations 

developed in Davis-Dorsy et al.’s study (1991), where a problem personalization (i.e., 

personalizing the standard version of the problem with children’s favourite food, 

and/or their friends’ names) led to better results. In our study, these two pupils 

themselves proposed a personalization of the problem (they indeed just returned from a 

school camp), and the re-contextualization of the problem together with the 

personalized way of solving the realistic problem situation showed a flexible 

understanding of the arithmetical structure in the problem. 
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CONCLUSIONS AND DISCUSSION  

Mathematical word problems are still an important aspect of mathematical school life 

(in terms of classroom activities, textbook exercises, evaluation tools, and so on). 

Undoubtedly, the stereotyped nature of word problems used in school leads pupils to 

routinely apply arithmetical operations based on superficial text processing, leaving in 

the shadow the mathematical modelling, in particular the building of a rich situational 

model. This has been evidenced by previous research about pupils’ non-realistic 

answers to problematic word problems. 

In this study, we attempted to deepen fifth graders’ construction of a situational model 

of problematic word problems by asking to reword the word problem text. We also 

investigated the impact of working individually or in dyads. Combining these two 

manipulations resulted in four experimental conditions. We did not find any effect for 

the rewording activity when working individually (IR condition). However, asking 

dyads to reword the problems (DR condition) led to a spectacular result with almost 

three quarters of the dyads giving a realistic answer. Therefore, these results stress the 

importance to frame word problem solving processes as social activities. It would be 

interesting to investigate if this rewording experience in dyads can affect pupils’ 

individual behaviour also afterwards.  

Moreover we analysed the reworded texts produced by pupils in the IR and DR 

conditions. We found a major number of added descriptive elements and action verbs 

in the reworded texts of pupils who worked in dyads. Together with the previous 

results, this makes us to hypothesize that the descriptive elements and the action verbs 

are important elements in the building of situational models that carries pupils to 

develop mathematical correct and realistic considerations.  

It has been argued that, when solving word problems, sometimes “too much attention 

to the story will distract pupils from the translation task at hand, leading them to 

consider “extraneous” factors from the story rather than concentrating on extracting 

variables and operations from the more mathematically-salient components” 

(Gerofsky, 1996, p. 37). While this may be true for standard word problems, the 

present study revealed that, as far as P-items are concerned, asking pupils to reword the 

problems and add various elements may lead to substantially more realistic reactions, 

at least if they are put in a meaningful communicative setting.  
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STUDENTS’ MANIPULATION OF ALGEBRAIC EXPRESSIONS 

AS ‘RECOGNIZING BASIC STRUCTURES’ 

AND ‘GIVING RELEVANCE’ 

Alexander Meyer 
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 anipulating algebraic expressions is guided by students’ structure sense and the 

individual process of relating subexpressions to each other. This paper presents a 

framework for identifying the underlying cognitive processes of manipulating 

algebraic expressions, based on ‘basic structures’ and ‘giving relevance’. A 

design-research case study illustrates how different cognitive processes, related to 

each of these two constructs, lead to different activities of manipulating algebraic 

expressions. 

MANIPULATION OF ALGEBRAIC EXPRESSIONS AS THE APPLICATION 

OF RULES 

For several reasons, students need to learn to manipulate algebraic expressions in line 

with the appropriate rules. Not only does this help students to change the form of an 

expression in order to determine if two algebraic expressions are equal to one another, 

but it may also be a source for students’ meaning making in algebra (Kieran, 2004). 

However, several studies show that it is hard for students to learn how to manipulate 

algebraic expressions, as it poses several, non-trivial challenges (e.g. Linchevski & 

Livneh, 1999).  

In order for students to manipulate algebraic expressions in line with the appropriate 

rules, students must be able to see structures in an algebraic expression. Such a 

Structure Sense allows students to see, if and in what way a rule for algebraic 

manipulation can be applied to a given algebraic expression (Hoch & Dreyfus, 2005). 

However, there may be different ways in which an algebraic expression can be 

manipulated based on its structures. For example, ab+ab can be transformed into 2ab, 

but also into a(b+c). Thus, not only is the manipulation of algebraic expressions guided 

by structure sense, but the rule-based manipulation of algebraic expression is also 

guided by cognitive processes, that might, more appropriately, be described as an 

amalgam of structure sense and of focusing on certain aspects of an expression.  

This leads to the question, what characterizes such cognitive processes that lead 

students to focus on certain structures of an algebraic expression, while neglecting 

other structures? This paper attempts to characterize these cognitive processes. 
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MODEL FOR APPLYING RULES TO ALGEBRAIC EXPRESSIONS 

Structure Sense and the manipulation of algebraic expressions 

Studies about how students manipulate algebraic or even arithmetic expressions 

suggest that the rule-based transformation of such expressions is a complex interplay 

between the structure of an expression and the students’ ability to see structures in the 

expression. Linchevski & Livneh (1999) introduced the concept of structure sense in 

order to grasp students’ problems with the structure of algebraic expressions.  

Hoch & Dreyfus refined the definition of structure sense and found that structure sense 

is a compound of students’ abilities to  

 “Deal with a compound literal term as a single entity. (SS1) 

 Recognise equivalence to familiar structures. (SS2) 

 Choose appropriate manipulations to make best use of the structure. (SS3)” 

(Hoch & Dreyfus, 2005, p. 146) 

The starting point of Hoch and Dreyfus’ model of structure sense is the structure of 

algebraic expressions, as the above list illustrates. It is the structure of a given algebraic 

expression that shapes the students activities to manipulate the expression (Fig. 1, right 

side). 

 

Figure 1: Comparison of Hoch & Dreyfus’s and Rüede’s models of structure sense  

Rüede’s (2012) notion of structure sense emphasizes that structure sense is the 

individual process of seeing structures and that the structure of an expression is 

constituted by the individual student. Rüede defines structure sense as the students’ 

ability to see “different parts of the expression in relation to each other” (Rüede, 2012, 

p. 113). He empirically specifies four levels for allocating students’ structure sense, 

with increasing degrees of elaboration for relating expressions to each other, e.g., on 

the first level, finding graphical similarities between subexpressions. Rüede concludes 

that “[choosing] the appropriate manipulation” for manipulating an algebraic 

expression is based on the students’ ability  

 to see subexpressions in an algebraic expression...  

 …and to relate these subexpressions to each other and to the whole expression 

(Rüede, 2012) (see Figure 1, left side). 

Synthesized model of cognitive activities of manipulating algebraic expressions 

In this paper, it is assumed that the manipulation of algebraic expressions involves both 

processes of dealing with the structure of algebraic expressions, shown in Figure 1. 
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The first process is reconstructing the structure of an expression through relating its 

subexpression, the second process is identifying structures in an expression by 

“familiar structures”. These are regarded as different processes, and are modelled with 

the notions of “giving relevance” and of “basic structures” respectively.  

First, the role of a student’s ability to relate the parts or subexpressions of an algebraic 

expression with each other (Figure 1, left side) is conceptualized as ‘Giving 

Relevance’. Giving Relevance describes a student’s individual ways of focusing on 

certain subexpressions or parts of an expression, while neglecting other parts. This 

definition follows Rüede’s arguments of the importance of relating subexpressions; 

however, in contrast to him it is here proposed, that seeing a subexpression and relating 

it to others or to the whole expression is a matter of Giving Relevance to a 

subexpression. That is, for example, seeing the importance of a subexpression for 

applying an algebraic rule or for manipulating an expression with a certain aim.  

Second, the role of familiar structures in an algebraic expression (Figure 1, right side) 

is conceptualized with the notion ‘Basic Structures’ and recognizing Basic Structures. 

Basic Structures are a student’s individual knowledge of structures together with their 

symbolic manifestation. For example, ab+ab may be a basic structure for a student, 

and may be associated with “the sum of two products with equal factors”. Furthermore, 

a basic structure can, for a student, be associated with an algebraic rule, in the sense 

that it can establish the domain of applicability of a rule. For example, the application 

of the rule ab+ac = a(b+c) might be guided by recognizing the basic structure ab+ac . 

Thus, there are basic structures that guide the application of already learned and 

conventionalized rules like ac+ac = 2ac or a(b+c)= ab+ac . However, there may also 

be basic structures that might lead to spontaneously invented and un-conventional 

transformations, as Demby (1997) suggests. 

The manipulation of algebraic expressions is guided by both processes (also described 

below in Figure 2). For example, in an expression like abacab   it might be that a 

student gives relevance to the two ab ’s as a basic structure (sum of equal 

subexpressions), which might lead him to perceive the applicability of the rule 

ab+ab = 2ab, and thus, might lead him to transform the expression into 2ab+ac . On the 

other hand, if the student foregrounds the basic structure that underlies ab+ac , he 

might give relevance to all subexpressions (sum of subexpressions with one equal 

factor), which might then lead him to the transformation a(b+c+b). 

That is why in the theoretical approach of this article, both basic structures and giving 

relevance are conceptualized to moderate the students’ activities of manipulating an 

algebraic expression. They allow framing the underlying cognitive processes of 

manipulating algebraic expressions (Figure 2). For that, the term cognitive activities is 

introduced. Cognitive activities describe the whole of cognitive processes underlying a 

manipulation and the activity of manipulating itself. Different cognitive activities can 

be distinguished by the way cognitive processes (upper line of Figure 2) and actual 

manipulations (bottom line of Figure 2) are related and interconnected. For example, 
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there may be a cognitive activity “classifying”. In such a cognitive activity, relevance 

is given to two or more subexpressions, according to some shared characteristic. A 

basic structure like ab+ab might then lead to group equal subexpressions, in order to 

apply the underlying rule. It is the aim of this paper, to reconstruct and characterize the 

students’ cognitive activities of manipulating algebraic expressions.  

 

Figure 2: Synthesized model of cognitive activities of manipulating expressions 

In the next chapter, the empirical part of a design-research study is presented, which is 

specifically designed to support such cognitive activities of manipulation.  

METHODOLOGY 

Design research as a methodology 

The model of cognitive activities was used for a design research study on students’ 

repertoire of basic structures and their abilities to give relevance. Design research 

intends to investigate learning processes of a given learning content by iteratively 

conducting design experiments. Each iteration of a design research experiment builds 

upon the empirical insights from the previous iteration. In order to do that, design 

research experiments start with a conjectured learning trajectory, which is based on 

findings about learning processes to the given content (Prediger & Zwetschler, 2013). 

Design of the learning arrangement and the focus task 

The learning arrangement in the case study presented here aims to enable students to 

see patterns in rule-based manipulations of algebraic expressions. To that end, it 

focuses on simple algebraic expressions with no more than four subexpressions and 

which can be manipulated by three previously given rules, namely the distributive law, 

the commutative law and the rule ab+ab+ab =3ab (called “counting equal terms”). 

The case study presented here is part of the first design iteration. 

This paper focuses on students’ cognitive processes while working on one task of the 

learning arrangement, which was especially designed to support the cognitive 

processes in the model. In this focus task, students are asked to write down their 

manipulated expressions together with the original expression as an equation into the 

respective column. Each column stands for one of the above mentioned three algebraic 

rules (see Figure 3). The more algebraic expressions students manipulate, the more 

diverse become the equations in the columns, while, at the same time, these equations 

have the same underlying structure. This way, the task supports the cognitive processes 

and manipulation activities in the model of cognitive activities by: 
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 Helping students to gain awareness of rules by asking them to make rules 

explicit through writing the expression into the respective column. 

 Supporting students to gain a more elaborate notion of basic structures 

underlying each rule. The more equations are written into a column, the more 

material students have to acquire more elaborate basic structures.  

 Supporting students to give relevance, by enabling them to come back to 

previous manipulations in the column. This might help students to give 

relevance to those parts of an expression that constitute its underlying 

structure.  

 

Figure 3: Task with table (with Bianca’s notes in it), translation A.M. 

Data gathering in design experiments and data analysis 

The learning arrangement represents the first iteration of a design experiment, that is 

going to have three design circles. The learning arrangement in each iteration 

encompasses three school lessons (3 * 45min). Previous to each design experiment, the 

teacher uses specifically designed teaching materials in the classroom, which supports 

the description of geometric shapes with algebraic expressions. 

The design experiment was conducted in a laboratory setting. Three 7
th
-grade students, 

Bianca, Daniela and Andrew worked – separated from the class – under the 

supervision of the researcher (author) on the tasks of the design research experiment. 

The students were chosen by the teacher according to their active participation in the 

mathematics classes. The sessions were videotaped. The resulting video was 

transcribed and the relevant sequences were translated to English by the author.  

The data is based on the students work on the above described focus task (Figure 3). It 

stands exemplarily for the wider dataset of the design experiment. The method of 

analysis is a category-driven sequential discourse analysis. The three main categories 

of the analysis are based upon the two cognitive processes of the model of cognitive 

activities and the actual manipulation activities. The model is not an analytical tool, but 

was adapted in order to arrive at categories: The sequences, in which students 

manipulate algebraic expressions, are analysed for the nature of the underlying 

cognitive processes and of the actual manipulation, that is conducted or discussed. The 
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aim of the analysis is to characterize the cognitive activities, which guide the students’ 

manipulations of simple algebraic expressions. 

RESULTS 

At some point in the task, the students are confronted with the expression 

c ×a+c ×a+c ×a. They already have seen the rule ab+ab+ab =3ab in the previous task. 

The students are now asked to manipulate this expression by applying one of the three 

given rules. Daniela, when confronted with the expression, immediately says: 

319  D: There you could count equal terms, you could do 3 times c times a then.  

It is apparent, that Daniela has no problems applying an already known rule to the 

slightly different expression. For her, the expression in itself seems to be a familiar 

structure, it is a basic structure in itself. Thus, the cognitive processes of giving 

relevance seems to be secondary, because relevance is given only in the sense that the 

subexpressions are recognized as being equal – and this is the precondition of the rule 

“counting equal terms”. Thus, this cognitive activity, where an expression as a whole is 

associated with a known rule, is called “associating with a known rule”. 

At a later point, the students are confronted with the expression ab+ac+ad . The 

students already know the rule ab+ac = a(b+c). The following exchange occurs: 

334  B: Three times a times b times c…[…] 

336 D:  One could somehow everywhere, one could again exchange [colloquiual 

for applying the commutative law, A.M.] 

337a A:  One could count equal terms 

337b B:  One could exchange these [said at the same time as 337a] 

338 D:  Yes, but these are no equal terms. 

When confronted with this expression, the students could not decide easily, which rule 

might be applicable. It seems that recognizing a basic structure in the expression is not 

guided by the expression itself, but by what most likely seem to be guessing processes: 

In turn 334, relevance seems to be given to the fact that there a three subexpressions 

and variables in alphabetical order, which might lead to the wrong rule 

ab+ac+ad =3abc . The next utterances (turn 337a and 337b) might hint at a process 

similar to the above example, where the expression at hand is wrongly associated with 

known rules.  

In turn 338, Daniela counters Andrews proposal. She gives relevance to the different 

features of the subexpressions. This suggests that Daniela is aware of the declarative 

content of the rule “counting equal terms”, which might suggest that her basic structure 

behind this rule is elaborated: she interprets this rule as a proposition about the 

relations of equal parts in an algebraic expression. Thus, the underlying structure of the 

rule “counting equal terms” in her basic structure includes the declarative content of 

the rule, which allows her to give relevance to the features of the subexpressions. The 
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cognitive activity behind this manipulation is called “interpreting the declarative 

content of a rule”.  

The above described situation continues, and now Andrew takes the lead: 

351  A: A times left bracket b plus c plus d. 

352  D: What? 

  A: Bam! 

353  B: One could just b times a times… 

354  D: Yes, right, that is b plus c times d, that probably works. 

355  A: It is the same as a times left bracket b plus c, only with a number more, you 

know. This also works.   

In turn 351 Andrew suggests a new transformation of the algebraic expression 

ab+ac+ad , namely a × (b+c+d) . After a short interjection, Daniela approves this 

transformation (turn 354). Andrew also justifies his suggested expression in turn 355 

using an analogy to a previously applied (and negotiated as a correct rule in various 

conversions of algebraic expressions) rule a × (b+c) . He adds "with a number more, you 

know". In Andrew’s view, the variables b+ cseem to represent numbers – accordingly, 

he can see d  as an additional number. Thus, he gives relevance to the individual 

variables in the subexpression (b+c) . At the same time, through the lens of this 

subexpression, he brings the variable d  in relation to his basic structure underlying 

ab+ac = a(b+c). This bridges the gap between the expressions ab+ac  and ab+ac+ad .  

The cognitive process, which guides the manipulation of the expression, might be 

characterized with two features. Firstly, Andrew is giving relevance to one part of his 

basic structure of the rule ab+ac = a(b+c) , namely the expression (b+c)  and the 

variables (“numbers”) in it. This allows Andrew, secondly, to build analogies between 

ab+ac+ad  and the rule ab+ac = a(b+c), perhaps through the lens of the subexpression 

(b+c) and relating d  to this subexpression. This expands the basic structures that are 

available to him. Andrew’s cognitive activity is thus called “building analogies by 

focusing on a subexpression”. 

CONCLUSION AND DISCUSSION 

In this paper, a model for analysing the cognitive activities involved in the rule based 

manipulation of simple algebraic expressions is suggested and used to analyse a case 

study. Data from the first design iteration suggests different cognitive processes, which 

can be characterised by their underlying processes of recognising basic structures and 

giving relevance (Table 1).  

The data from this first experiment does not cover, whether the found cognitive 

activities are generalizable; that is, if these cognitive activities are also employed in 

cases where students are confronted with more complex algebraic expressions. In 

further iterations of the here presented design experiments, the above shown model is 
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going to be applied to design supportive means for manipulating more complex 

alge¬braic expressions. The here presented model of cognitive activities allows 

improving on future design experiments: the below illustrated cognitive activities 

(Table 1) can now be specifically initiated by supporting their underlying cognitive 

processes.  

Basic structure Giving relevance Cognitive activity 

Declarative content of 

rule is embedded 

Giving relevance to 

subexpressions and their 

features (“not equal”) 

Interpreting declarative 

content 

a(b+c+d) reconstructed 

through a(b+c)=ab+ac 

Giving relevance to one 

subexpression and its 

composition (“numbers”) 

Building analogies by 

focusing on a 

subexpression 

Table 1: Example of cognitive activities in the manipulation of algebraic expressions. 

More generally, the here suggested framework has proven successful in gaining insight 

into the nature of students’ cognitive activities of manipulating algebraic expressions. 

In the here discussed focus task, the students employ three cognitive activities to 

manipulate algebraic expressions. In spite of the simple algebraic expression used in 

this study and their ‘simple’ structure, rather complex cognitive processes were 

identifiable. This might suggest, that existing models of structure sense might not have 

allowed grasping the students’ activities of manipulating expressions in such detail, 

because of their sole focus on the structure of expressions.  
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AN INFERENTIAL VIEW ON CONCEPT FORMATION 

Michael Meyer 
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This paper focuses on an inferential view on introducing new concepts in mathematics 

classrooms. A theoretical framework is presented which helps to analyse and reflect on 

the processes of teaching and learning mathematical concepts. The framework is 

based on the philosophies by Ludwig Wittgenstein and Robert Brandom. 

Wittgenstein’s language-game metaphor and especially its core, the primacy of the use 

of words, provide insight into the processes of giving meaning to words. Concerning 

the inferentialism by Brandom, the use of words in inferences can be regarded as an 

indicator of the understanding of a concept. The theoretical considerations are 

exemplified by the interpretation of a scene of real classroom communication. 

INTRODUCTION 

A lot of research on communication in the mathematics classroom has been done. 

Mathematical interactions have been analysed from many different perspectives (cf. 

Cazden, 1986). This paper focuses on the teaching and learning of mathematical 

concepts in classroom communication. By his theory of “language-games”, 

Wittgenstein offers an alternative view on the introduction of concepts in mathematics 

classrooms. Elements of his perspective have often been used to discuss problems 

concerning communication in the mathematics classroom (e.g., Bauersfeld, 1995; 

Schmidt, 1998; Sfard, 2008). According to Wittgenstein, the expression of words does 

not constitute their meaning. Rather, it is the use of words, which constitutes the 

meaning, and therefore, the use of words constitutes the concept. On the basis of 

Wittgenstein’s philosophy, the American philosopher Brandom worked out an 

inferential approach to the comprehension of the processes of concept formation.  

On the basis of the theory of analysing arguments by Toulmin it will be described in 

this article in how far the processes of concept formation can be analysed in 

accordance with an understanding like this. In particular, the significance of judgments 

(the combination of subjects and predicates) and their connection among one another 

during their concept formation will be focused.  

USE OF WORDS IN LANGUAGE-GAMES 

Wittgenstein’s concept of language-game is closely connected with the process of 

concept formation. It means that words do not have a meaning by themself. Therefore, 

a fixed, temporal lasting word’s meaning does not exist:  

“Naming is so far not a move in the language-game—any more than putting a piece in 

its place on the board is a move in chess. We may say: nothing has so far been done, 
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when a thing has been named. It has not even got a name except in the 

language-game.” (Wittgenstein, PI § 49) 

Thus, Wittgenstein has a complex opinion on processes of concept formation. That 

means that the meaning of a word is solely put down to its use: “For a large class of 

cases—though not for all—in which we employ the word ‘meaning’ it can be defined 

thus: the meaning of a word is its use in the language” (PI § 43). 

The meaning of a word shows and manifests itself in using the word in language. This 

might be a reason for the fact that Wittgenstein does not define what exactly he 

understands by speaking of “language-games”. He uses the word “language-game” by 

describing the use of this word (e.g., by giving examples). That way, he gives meaning 

to this word. The theory of Wittgenstein of the attribution of meaning through the use 

of words is also closely connected with those of the language-game in another way: To 

this, let us have a look on the concept of numbers: When students understand numbers 

as a quantitative aspect of objects, then they can use this for calculating. But the 

handling of numerals is changing when numbers are regarded as ordinal numbers. 

Now, operations cannot be used in such an easy way anymore. The comprehension of 

the cardinal aspect of numbers is not sufficient either when negative numbers are 

introduced. Each of these changes entails an alteration of the language-game. In the 

changing language-games, the same numbers can be used in different ways. The way 

of use determines the current meaning. However, a well-developed concept of 

numbers needs different kinds of comprehensions – that is different ways of use – 

which are connected with family resemblances, to say it in Wittgenstein’s words:  

And for instance the kinds of number form a family in the same way. Why do we call 

something a ‘number’? Well, perhaps because it has a—direct—relationship with several 

things that have hitherto been called number; and this can be said to give it an indirect 

relationship to other things we call the same name. And we extend our concept of number 

as in spinning a thread we twist fibre on fibre. And the strength of the thread does not 

reside in the fact that some one fibre runs through its whole length, but in the overlapping 

of many fibres. (Wittgenstein, PI § 67) 

The use of words in a language-game is by no means arbitrary. Rather, the use is 

determined by certain rules. These rules tell us how words can be applied:  

We can say that a language is a certain amount of activities (or habits) which are 

determined by certain rules, namely those rules that rule all the different ways of use of 

words in language. (Fann 1971, p. 74; my own translation) 

Accordingly, observing the rules, that determine the use of words, is a considerable 

feature of our linguistic acting. A rule has the function of a “sign-post” (Wittgenstein, 

PI § 85) although each rule can be interpreted in a different way. Within the 

mathematics education research, a lot of rules, which determine the language-game 

“mathematics education”, have already been reconstructed. The patterns of interaction 

and routines which were described by Voigt (1984) can also be counted as 

(combinations of) rules. For instance, the pattern of staged-managed everyday 
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occurrences (in German: “Muster der inszenierten Alltäglichkeit”) describes the as if - 

character of classroom situations in which the students’ extracurricular experiences are 

taken up: if the students make too much use of these experiences, the teacher is going 

to disregard this use and highlights the mathematical contents. By using the word 

demathematizing (in German: “Vermathematisierung”), Neth and Voigt (1991) 

describe how teacher – while working on an situation which is open for different kinds 

of interpretations – makes a note on single words, formulas, signs, or the like of the 

students, in order to funnel the students’ diversity of interpretation on mathematics as 

quick and purposeful as possible. Such rules make sure that the actions in class run 

smoothly by showing the agents, for instance, which actions they have to carry out, 

what they can achieve with them and where the limits of their actions are. Therefore, 

rules are constitutive for the classes, particularly as they determine the use of words or 

rather sentences on the one hand and support that the classes pass off smoothly on the 

other hand.  

INFERENTIAL USE OF WORDS 

Following Wittgenstein, a concept can be developed, if different ways of using the 

relevant word are well known. The definition of a word is just one possible way of 

using this word. Knowing different ways of using a word includes, among other things, 

knowing and using sentences that go with them:  

‘Owning’ a mathematical term requires to know more relations and to know more about 

the handling with the term than it is expressed in its definition. […] Proofs help to explain 

the terms‘ inner structures as well as to link concept and with that to develop the purport of 

term. (Fischer & Malle 1985, S. 189f, my own translation) 

We use words in situations of giving reasons for statements – also statements in which 

this word is used. For example, we can use “commutative law” to give reason for the 

similarity of 9+4 and 4+9. The aspect of reason of concept formation shows itself in the 

structure of the potential words’ ways of use. Thus, every definition, for instance, has a 

conditional structure (“If…, then…”). Definitions are equivalence relations (or rather 

biconditional – “if and only if”) which are also used in arguments. In short: The words’ 

meanings are arranged in an inferential way. The American philosopher Brandom 

elaborated this inferential approach: “To talk about concepts is to talk about roles in 

reasoning.” (ibid. 2000, p. 11). The understanding of a word is described by Brandom 

as follows:  

Grasping the concept that is applied in such a making explicit is mastering its inferential 

use: knowing (in the practical sense of being able to distinguish, a kind of knowing how) 

what else one would be committing oneself to by applying the concept, what would entitle 

one to do so, and what would preclude such entitlement. (ibid.) 

The inferential use is carried out using reasoned arguments in situations of reason. To 

examine the students’ corresponding arguments, the Toulmin-scheme – which has 

been already become established in mathematical education research – can be used. It 

also helps to reconstruct the implicit shares of arguments. In accordance with this, an 
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3 apples are more 

than 2 apples 

3 is bigger 

than 2 

If at one set there are more objects than at another set, then 

the according number of the first set is bigger than the one 

of the other set. 

aspect of cardinal 

numbers 

argument consists of several functional elements. Undisputable statements function as 

datum (Toulmin 1996, p. 88). Coming from this, a conclusion (ibid.) can be inferred, 

which might have been a doubtful statement before. The rule
1
 shows the connection 

between datum and conclusion. The rule legitimizes the conclusion. If the rule’s 

validity is questioned, then the arguer could be forced to assure it. Within the 

reconstruction, such making safes are recorded as backings (ibid, 93ff) and can 

happen, for instance, in giving further details about the field where the rule comes 

from. As an example for the analysis by means of the argumentation-scheme by 

Toulmin, the following fictitious remark of a student is reconstructed, which functions 

at the same time as an example for the inferential use of the concept bigger: “As 3 

apples are more than 2 apples, 3 is bigger than 2.” According to this statement that - 

talking about numbers of apples – there is a smaller-bigger relation (datum), it can be 

concluded that there is a relation of size between the relevant numbers (conclusion). 

The conclusion is legitimized by a rule which is only implicit and which can be 

supported with the reference to the aspect of cardinal numbers (backing). Accordingly, 

the following Toulmin-scheme can be reconstructed: 

Figure 1: Application of the Toulmin-scheme 

Following Wittgenstein, by means of such an argument a relation between two 

concrete numbers is expressed. In certain language-games, such an argument is surely 

regarded to be valid. But introducing negative numbers at school means that such kind 

of use of the word bigger is possibly no longer accepted. This change of the 

language-game causes a different use of numbers. Although 3 apples are more than 2 

apples is true, it does not mean that -3 is bigger than -2. If the rule is applied on 

negative numbers in this way, it loses its’ validity.  

With regard to the theoretical consideration before, different important elements of the 

processes of concept formation can be recognized: 

                                           
1
 The general connection which is described as warrant by Toulmin corresponds not entirely to the 

above rules by Wittgenstein (cf. the examples of (combinations of) rules given above).    
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 datum and conclusion consist of judgments, as a link between subjects and 

predicates, 

 rules have a general character, in so far they connect general judgments in 

conditional or biconditional forms and  

 the backings which are the basis for an argument.  

Accordingly, the enormous significance of concrete and (combinations of) general 

judgments for concept formation is shown: Concrete judgments (datum and 

conclusion) are linked via more general connections (rules). The possibility of this 

connection is based on the knowledge of an area or rather of a context in which this 

connection is perceptible to the learners (backing).  

METHODOLOGY 

According to Wittgenstein we should not ask: What is the meaning of a word? Rather, 

we should analyse what kind of meaning a word gets (by its use) in the classroom. 

Therefore, we have to analyse social processes. Accordingly, Wittgenstein’s approach 

enables a purely interactionist view on processes of concept formation which are a 

benefit for the interpretative researcher, particularly as they are not dependent on 

speculations concerning student’s thoughts. If the use gives meaning to words (in the 

interaction), then the (linguistic) action is the sole criterion for the reconstruction. 

Thus, we have to follow the ethnomethodological premise: The explication of meaning 

is the constitution of meaning. By analysing the students’ “languaging” (Sfard 2008) 

for mathematical concepts, the development and alteration of meaning by the use of 

the according words, we are able to reconstruct the social learning in the mathematics 

classroom. Therefore, the qualitative interpretation of the classroom communication is 

founded on an ethnomethodological and interactionist point of view (cf. Voigt 1984; 

Meyer 2007). Symbolic interactionism and ethnomethodology build the theoretical 

framework which will be combined with the concepts of “language-game” and 

“(inferential) use”.  

The main aim of the presented study is to get a deeper insight into the processes of 

giving meaning to words in the mathematics classroom. Therefore, alternative ways of 

introducing concepts are going to be considered. Comparing possible and real 

language-games can help to understand the special characteristics of the actual played 

language-game.  

The empirical data are taken from several studies in which the arithmetic mean was 

introduced. The surveys were carried out in two classes (first class: fourth grade in 

primary school, age of students: 9 to 10 years; second class: fifth grade, secondary 

school age of students: 10 to 11 years) on the one hand and in interviews with two 

students of the third grade in primary school (age: 8 to 9 years, duration: 3 x 45 

minutes) each on the other hand. It was the empirical studies’ aim to get the students to 

collect different judgments on one concept and give reasons for their relationship (in 

this situation: their equivalence). This means that in relation to the arithmetic mean, 

there are two judgments: Firstly, the arithmetic mean is the quotient of the total and the 
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number of the given values and secondly, the arithmetic mean is determined by the 

inversely arranging of the values to get an adjusted value. This can be expressed 

formally and briefly as follows ( x  is the arithmetic mean of a1,...,an): 

 

In every experimental setting, the series of tasks start with a reduction of the meaning 

of the arithmetic mean to the meaning of a “middle number” in a number series (the 

students were told that the second box contains the number of the first): 

(a1 + ...+ an ) = x+ ...+ x
n summands

! "# $# !

!
!

a1,...,an !

!
!

x !
!!!!!!

5 + 6 + 7 =                              : 3 =         

!
! !  

By solving tasks like this the students should discover that the result of the division 

will be the “number in the middle”, which could also be gained by modifying the 

summands to be equal to each other: 5+6+7 = (5+1)+6+(7-1) = 6+6+6. To get the 

general concept of the arithmetic mean, the summands, the amount of summands and 

the distance between the summands were varied gradually.   

USE OF WORDS FOR CONCEPT FORMATION – EMPIRICAL EXCERPTS  

By carrying out the empirical studies, learners were asked, among other things, to 

solve the following task – two different working-outs were to give: “Lisa weighs 14kg. 

Paul weighs 23 kg. Sarah weighs 25 kg. Marc weighs 26 kg. What is the middle 

weight?“ Jule wrote about this: 

 

Figure 2: Jule (fourth grade) determines the arithmetic mean on two ways 

(Translation: “The middle weight is 22kg. As you first have to calculate everything together 

and to divide it afterwards by the number of kids”) 

As suggested by the task, Jule speaks of “middle weight”. Concerning this and other 

tasks, the students named the concept “number in the middle”, “average”, “balanced 

number”, etc. Regardless of the name of the concept, the use of these words has been 

quite the same.  

As an example for the different reasons for the equivalence of the two judgments of the 

arithmetic mean (first: quotient, second: inversely arranging), Malte’s statements are 
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given in the following. Malte explains why the inversely changing of 12+14+16 does 

not change the total (the transcript has been translated and linguistically smoothed).   

Malte:  Eh, with plus it is a team so to say. The result always stays the same – no 

matter what is changed. If one doesn’t take away anything and doesn’t add 

anything, either- but if one always swaps, swaps, swaps, the result will 

always stay the same. With minus, it is different.  

Teacher:  Could you explain to me the thing you said about the team – What do you 

mean? […] 

Malte:  This (pointing left to right at the task 12+14+16) is the team now. And if 

this one (pointing at the summand 16) is now so to say- or- these (again 

pointing left to right at the task) are the students. This one (pointing at 12) 

is missing two pens and then this one (pointing at 16) who has two pens too 

much gives- one pen to this one (pointing at 12) who is missing two pens.  

Students:  2 pens (murmuring) 

Malte’s argument can be reconstructed as follows: 

 

Figure 3: Reconstruction of Malte’s argument 

Malte uses words like team and pen to describe the remaining total of the inversely 

arranging. His given reasons can be put down to the aspect of the cardinal number in so 

far as he considers the change of the singular summands and not totals. In this way, he 

links both judgments of this pre-form of the arithmetic mean, which expands the 

concept’s dimension. Later, Malte’s argument (resp. its functional elements) is taken 

up by other students again and again (even there, where the students are able to 

distinguish between the arithmetic mean and the median) so that not only the 

connection, determined by Malte, is taken up constantly (cf. the above quotation by 

Brandom), but also the equivalence of both judgments is made clear by more 

elaborated arguments compared to those in Figure 3. Only the words team or pens as 

concrete objects of the change were not taken up. This can be interpreted as follows: 

The students refer to the way of the use and not only to the specific words which are 

used. In other words: The students seem to refer to Malte’s implicit rule and his 

backing. Such moments are shown in the talk. 

12+14+16 is inversely 

changed to 16+16+16. 

12+14+16 = 

16+16+16 

If one changes the total of the summands mutually, the 

total does not change. 

aspect of cardinal 

numbers 
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FINAL REMARKS 

Wittgenstein’s theory itself is not a theory of interpretation. Rather, he presents a 

theoretical framework which can be used on top of a theory of interpretation in order to 

understand processes of languaging for concept formation. 

Corresponding to the given considerations based on the theories to Brandom, Toulmin 

and Wittgenstein concept formation can be understood as the (inferential) use of 

judgments and their (general, regular) connections (the rules). Throughout the 

arguments we commit ourselves to these judgments resp. to their connections which, if 

they are accepted, we can use continuously. This use can be, again, independent of the 

concrete words, but rather the more general way of using the words, the rules and 

backings, seem to be crucial for the (following) course of concept formation. 
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Amongst important and under-researched questions are how introductory lessons can 

be designed for teaching initial proofs to junior high school students, and how such 

lessons enrich students’ understanding of proofs. With a view to improving the 

learning situation in the classroom, in this paper we report on the various functions of 

introductory flow-chart proofs that use ‘open problems’ that have multiple possible 

solutions. Through an analysis of a teaching experiment in Grade 8, and by using a 

model of levels of understanding of proof structure, we identify the functions as 

enhancing the transition towards a relational understanding of the structure of formal 

proof, and encouraging forms of forward/backward thinking interactively that 

accompany such a relational understanding of the structure of proofs in mathematics. 

INTRODUCTION 

With proving and reasoning universally recognized as key competencies of 

mathematics education, it remains the case that students at the lower secondary school 

level can experience difficulties in understanding formal proofs (eg: Hanna & de 

Villiers, 2012; Mariotti, 2006). In order to enhance the capabilities of junior high 

school students with formal proving (from around the age of 14), it is important to have 

a clear framework to inform the design of introductory proof lessons. This is because 

such lessons aim to initiate inexperienced students into understanding the meaning of 

formal proofs fruitfully so that they can develop the competencies to construct proofs 

for themselves. We have previously reported that students who have experienced such 

introductory lessons can score around 10% better than expected on a question that 

involved choosing reasons to deduce a conclusion (see Miyazaki, Fujita and Jones, 

2012). In this paper we report a further qualitative analysis that focuses on why the 

students did well in such mathematical proofs. Our research questions are as follows: 

how can introductory lessons for formal proofs be designed, and how do such lessons 

enrich students’ understanding of proofs?  

In order to enrich the introductory lessons of formal proving, our research study 

focuses on the students learning to use flow-chart proofs in ‘open problem’ situations 

where they can construct multiple solutions for congruent triangle tasks by deciding 

the assumptions and intermediate propositions necessary to deduce a given conclusion 

in a flow-chart format. Such proofs involve using the conditions for triangle 

                                           
1
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congruency as these are often used to introduce formal proofs in geometry in Japanese 

lower secondary schools (Jones & Fujita, 2013), and our discussions and analyses are 

related to this topic. The aim of this paper is to evaluate the introductory lessons 

designed on the basis of our theoretical framework by identifying their pedagogical 

functions and implications. 

THEORETICAL FRAMEWORK: UNDERSTANDING PROOF STRUCTURE  

We take as our starting point that a formal proof generally consists of deductive 

reasoning between assumptions and conclusions. Within this reasoning process at least 

two types of deductive reasoning are employed: universal instantiation (which deduces 

a singular proposition from a universal proposition) and hypothetical syllogism (where 

the conclusion necessarily results from the premises).  

In order to understand the structure of proof, students need to pay attention to the 

elements of the proof and their inter-relationships. Research studies by Heinze and 

Reiss (2004) and by McCrone and Martin (2009) have identified that an appreciation 

of proof structure is an important component of learner competence with proof. In this 

paper we use the following levels of learner’s understanding of proof structure initially 

elaborated by Miyazaki and Fujita (2010): Pre-, Partial- and Holistic structural levels. 

These levels are described in Table 1 and the overall framework illustrated in Figure 1. 

Level Description 

Pre-structural The basic status in terms of an understanding of proof structure where learners 

regard proof as a kind of ‘cluster’ of possibly symbolic objects. 

Partial-structural Once learners have begun paying attention to each element, then we consider 

they are at the Partial-structural Elemental sub-level. To reach the next level, 

learners need to recognize some relationships between these elements (such as 

universal instantiations and syllogism). If learners have started paying attention 

to each relationship, then we consider them to be at the Partial-structural 

Relational sub-level, with this sub-level being further sub-divided into a) 

universal instantiation and b) syllogism (see Figure 1). 

Holistic-structural At this level, learners understand the relationships between singular and 

universal propositions, and see a proof as ‘whole’ in which premises and 

conclusions are logically connected through universal instantiations and 

hypothetical syllogism. 

Table 1: Levels of learner understanding of proof structure 

 
Figure 1: Framework of learner understanding of the structure of proof  

To date we have utilized this framework to demonstrate students’ explorative activity 

to overcome logical circularity in a proof problem (Fujita, Jones, & Miyazaki, 2011), 

and considered how a hypothetical learning trajectory for introductory lessons of 
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formal proving could be designed so that students can be helped to develop their 

understanding of the structure of proof (Miyazaki, Fujita, & Jones, 2012). In this paper 

we focus on the design of introductory lessons of formal proofs. 

INTRODUCTORY LESSONS USING OPEN FLOW-CHART PROVING 

To design introductory proof lessons we used the following two pedagogical ideas: 

flow-chart proof format and ‘open problem’ tasks. A flow-chart proof shows a ‘story 

line’ of the proof. McMurray (1978) and others have provided accounts of the value of 

using flow-chart proofs prior to the use of formats such as the ‘two column proof’. 

Given the evidence that flow-chart proofs can help students to visualize the structure of 

proofs, in our research we are investigating how the power of flow-chart proofs might 

be enhanced at the introductory stage of proof learning by using ‘open problem’ 

situations where students can construct multiple solutions by deciding the assumptions 

and intermediate propositions necessary to deduce a given conclusion.  

For example, the problem in Figure 2 is intentionally designed so that students can 

freely choose which assumptions they use to show the conclusion that B=C. After 

drawing a line AO, for instance, students might decide ∆ABO and ∆ACO should be 

congruent to show B=C by using the theorems “If two figures are congruent, then 

corresponding angles are equal.” Based on AO=AO as a same line, ∆ABO∆ACO can 

be shown by assuming AB=AC and BAO=CAO using the SAS condition. 

However, other solutions are also possible. One approach might be to use the fact that 

∆ABO∆ACO can be shown by assuming AO=AO, AB=AC and BO=CO, using the 

SSS condition. As students can construct more than one suitable proof, we refer to this 

type of problem situation as ‘open’.  

 
Figure 2: An example of flow-chart proving in an ‘open-problem’ situation 

In accordance with our theoretical framework, in the introductory proof lessons it is 

particularly important to support transitions from the Partial-Structural to the 

Holistic-Structural level. The flow-chart format aims to help students to visualize that a 

formal proof consists of two kinds of propositional layers, one of which contains 

universal propositions (theorems) and the other contains the chain of singular 

propositions. Also, the flow-chart format can show clearly that a singular proposition 

is deduced by the universal instantiation of universal proposition, and that the chain of 

singular propositions between assumptions and conclusions would be established by 

hypothetical syllogism. Moreover, in order to show a given conclusion in the ‘open 
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problem’ situation, students would be encouraged to seek out the necessary 

assumptions and intermediate propositions diversely. Then, they have a chance to 

originate alternative proofs by replacing the used theorems into others, and so on. 

METHODOLOGY 

To investigate the functions of open flow-chart proving in the introductory lessons of 

formal proving in Grade 8 (aged 14), we developed nine lessons based on the learning 

progression with three phases as follows (Miyazaki, Fujita, & Jones, 2012). 

 Constructing flow-chart proofs in an ‘open problem’ situation (four lessons) 

 Constructing a formal proof by reference to a flow-chart proof in a ‘closed 

problem’ situation (two lessons) 

 Refining formal proofs by placing them into flow-chart proof format in a 

‘closed problem’ situation (three lessons). 

During the first phase of lessons, students constructed flow-chart proofs in ‘open 

problem’ situations. Through these tasks, the students were expected to learn how to 

think forward/backward between assumptions/conclusions and how to organize their 

thinking in order to connect assumptions and conclusions. Thus this phase aimed at 

supporting them to understand how to ‘assemble’ a proof as a structural entity. Note 

that they study proof in ‘closed-problem’ situations after the first phase.  

Our main data are taken from one of our lesson implementations in which a teacher 

with 18 years of teaching experience conducted the set of the nine Grade 8 lessons in a 

junior high school in Japan during October 2013. The lessons were video-recorded and 

then transcribed. In the next section we report selected scenes from the fourth lesson in 

which students undertook the problem in Figure 2. By this data analysis, we identify 

the functions of open flow-chart proving during the introductory lessons designed 

using our theoretical framework of the understanding of structure of proof. 

DATA ANALYSIS AND DISCUSSION  

In reporting our findings from the fourth lesson, first we show the students’ levels of 

thinking at this stage; in particular their incomplete understanding of universal 

instantiations. Then, we show how learning with ‘open problem’ proof tasks helped 

them to start to see proofs from a more structural point of view.  

Enhancing the structural understanding of formal proof: universal instantiations 

While prior to the lesson the students had used a one-step flow-chart proof to prove that 

two given triangles are congruent, during this lesson they tackled the problem in Figure 

2. This has two steps; first deducing the congruence of triangles, and second, 

concluding the equivalence of angles. As one purpose of the lesson was to make 

students aware of the importance of universal instantiation (which deduces a singular 

proposition from a universal proposition), the teacher oriented the students to confirm 

the necessity of supplementary line AC to deduce B=C by using the congruency of 

∆ABO and ∆ACO, and wrote “∆ABO∆ACO” into the flow-chart on the board. 
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Thereafter, the students started to complete the flow-chart proof by themselves. After a 

suitable time the teacher asked student SA to say what he would put in the flow-chart 

box for the properties of congruent figures. SA answered “because of ∆ABO∆ACO” 

(see line 6 SA in the transcript below); the teacher wrote this answer on the blackboard. 

Next, the teacher directed two other students to show their answer. One of them said, 

“Due to congruent triangles, angles are congruent”, and another said, “In congruent 

triangles the corresponding angles are equivalent.” The teacher also wrote these 

answers on the blackboard. At this time the teacher compared these three answers, and 

asked SA to explain more; their dialogue is shown as follows. 

1 T: SA, can you tell us why you wrote this? 

2 SA:  Umm, I considered why the angles are equal; then I found an arrow is 

drawn.   

3 T: OK, because the arrow can be drawn (pointing the corresponding part of 

flow-chart on the blackboard). 

4 SA:  I put ‘it’.  

5 T: What is ‘it’? 

6 SA:  ∆ABO and ∆ACO are congruent.  

7 T: OK, if we can say these two are congruent, then we can use the arrow. So, 

SA, if two triangles are congruent, what can we show? 

8 SA:  Angles are also equal.  

9 T: Good, angles are also equal? Anything else?  

10 SA:  Sides are equal, too.   

11 T: Yes, sides are equal too. So, umm, in this case our conclusion is to say the 

angles are equal, so it is OK. But in general if two triangles are congruent, it 

can be angles but also sides as well, so we should add information generally 

about angles such as ‘because angles are congruent or equal’. 

Given that prior to this lesson the students could find the appropriate conditions of 

triangle congruency, and write them into the theorem box (universal proposition) given 

in the one-step flow-chart proof. It was expected that they would reach the 

partial-structural elemental sub-level (by paying attention to elements of proofs) 

during this lesson. Beyond this, some students might start reaching the relational 

sub-level (by understanding both universal instantiation and hypothetical syllogism) 

through examining the properties of congruent figures. 

Nevertheless, during the early parts of this lesson it was evident that only a small 

proportion of the students could reach the relational sub-level. In fact, about half the 

students could not correctly write two boxes of flow-chart, each of which requested the 

condition of congruent triangles and the properties of congruent figures. Others just 

wrote a singular proposition “because of ∆ABO∆ACO” into the theorem box (like 

student SA said). This singular proposition is not precise enough from a universal 

instantiation point of view. It is clear that such students remained at the elemental 

sub-level, and could not reach the relational one. In particular, the students who wrote 



Miyazaki, Fujita, Jones 

4 - 230 PME 2014 

the singular proposition could not understand that a singular proposition should be 

deduced by the universal instantiation of a universal proposition. 

In order to resolve the student’ lack of understanding, the teacher compared SA’s 

answer with others answer in which universal propositions were correctly used (the 

relational sub-level), and pointed out that it was necessary to express the property of 

congruent figures generally because it was being used to deduce the equivalence of 

angles in this case (although it could be used to deduce the equivalence of both angles 

and sides). This resolution managed by the teacher might have supported the students 

to enhance their understanding of the universal instantiation that deduces a singular 

proposition with a universal proposition. This, in turn, could promote the transition 

from the elemental sub-level to the relational one. 

From the above we can identify as the functions of ‘open problem’ flow-chart proving 

that it can enhance the transition towards a relational understanding of the structure of 

formal proof by helping student to visualize the connection of singular proposition to 

hypothetical syllogism and the connection with universal instantiation between a 

singular proposition and the necessary universal proposition. This ‘open problem’ 

flow-chart format can help visualize not only the connection of singular propositions 

by hypothetical syllogism but also the connections of a singular proposition with a 

universal one by universal instantiation. With this visualized format, students could be 

supported effectively to focus on the characteristics of the two kinds of deductive 

reasoning, by checking the expression of theorems and confirming their meaning 

and/or roles. 

Encouraging thinking forward/backward interactively by using open proof 

situations 

After most of the students made their own flow-chart proofs, the teacher picked up 

three answers, each of which used different conditions of congruent triangles (this was 

possible because of the ‘open problem’ situation). The teacher checked with the class if 

three pairs of angle/sides were necessary to deduce ∆ABO∆ACO with each 

congruent condition, and then also checked the reason why they chose these pairs on 

the basis of the words written in the box below each of the three pairs. 

For example, student KA used the ASA condition and the teacher asked him why he 

chose the followings; ‘AO=AO’, ‘BAO=CAO’, ‘AOB=AOC’.  

The student’s explanation was as follows: 

1 KA: Because we can see AO=AO from the given figure. 

2 T:  Can see it from the given figure? 

3 KA: And it is an assumption. I assumed by myself BAO＝CAO, and also 

AOB＝AOC as well. And then we can show ∆AOB∆AOC, and the 

condition is ‘Two pairs of corresponding angles are equal and the included 

sides equal’. Due to congruent triangles, corresponding angles are equal 

and therefore B＝C. 
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Figure 3: One of the flow-chart proofs by KA on the blackboard 

As can be seen from the dialogue and the flow-chart proofs by KA shown in Figure 3, 

for the reason why “AO=AO”, KA wrote “Assumption” in the box and explained that 

this equivalence was apparent by means of the given figure (see line 3 KA). In contrast, 

for the reasons why “BAO=CAO” and “AOB=AOC” KA wrote “By myself” 

and explained that they were decided by himself (see line 3 KA). In this thinking 

process, there were the two ways of approach. One way is thinking forward, i.e. in 

order to find the conditions for ∆ABO∆ACO, KA focused on the corresponding 

angles/sides of these triangles and judged that “AO=AO” could be one of the 

conditions. A second way is thinking backward, i.e. KA chose ASA as a condition and 

then looked for the other conditions (in this case “BAO=CAO” and 

“AOB=AOC”) which were necessary to satisfy this condition. It is the ‘open 

problem’ situation that made it possible for KA to use these two ways of thinking 

interactively. Furthermore, KA actually wrote in his worksheet two types of flow-chart 

proof. Each of these used different conditions: SSS and SAS. To complete these proofs 

he similarly determined the assumptions that were necessary to deduce the congruent 

triangles. Likewise, most other students in the class constructed three different proofs 

using similar thinking processes.  

From the above we can identify as the functions of ‘open problem’ flow-chart proving 

that it can encourage thinking forward/backward interactively, accompanied by 

relational understanding of the structure of proof. The amplification of thinking 

backward, in particular, can be triggered by the ‘open problem’ situation. Moreover, 

the flow-chart proof format can support students to associate two modes of 

forward/backward thinking visually. This systematic learning with thinking 

forward/backward interactively is useful for the planning of formal proof that usually 

precedes its construction (Tsujiyama, 2012). Thus the learning of ‘open problem’ 

flow-chart proving in the first phase of introductory lessons of formal proving can be 

preparatory to the planning of formal proof in a ‘closed problem’ situation. 

CONCLUSIONS 

Within our focus on students understanding of the structure of proof, we can identify 

two functions of ‘open problem’ flow-chart proving. One is that it can enhance the 

transition towards the relational understanding of the structure of formal proof by 

visualizing both the connection of singular proposition by hypothetical syllogism and 

the connection with universal instantiation between a singular proposition and the 
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necessary universal proposition. A second function is that ‘open problem’ flow-chart 

proving can encourage thinking forward/backward interactively, accompanied by 

relational understanding of the structure of proof. In particular, this study illustrates 

that ‘open problem’ flow-chart proving can give students a chance to find necessary 

conditions and combine them in order to connect assumptions with conclusions. This 

systematic learning with thinking forward/backward interactively is required to make 

the planning of formal proofs. We suggest that it is these functions that contribute to 

developing students’ understanding of proofs, and that is why the students who 

experienced our introductory lessons scored 10% better than the national average of 

proof problems in general (Miyazaki, Fujita & Jones, 2012).  

Due to page limitation we cannot show that some students, after finishing solving the 

assigned task, attempted to ‘expand’ and/or ‘break’ the given flow-chart proof format 

so that they could show their own way of proving. This further illustrates that the 

innovative use of ‘open problem’ flow-chart proving, as in our project, can cultivate 

students’ productive thinking about formal proofs even in introductory proof lessons. 
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This paper considers infinity as an element of professional knowledge. We assume that 

teachers need a wider knowledge of the topic than that they possess as mathematics 

students. Using three models of professional knowledge,  athematics Teacher’s 

Specialised Knowledge (MTSK), Mathematical Knowledge for Teaching (MKT), and 

Knowledge Quartet (KQ), we discuss how the notions being proposed in these models, 

and on which they are constructed, might contribute to studying teachers’ knowledge 

of infinity. 

INTRODUCTION 

Infinity as a learning item has been widely studied, from the seminal work of 

Fischbein, Tirosh and Hess (1979), to more recent contributions (e.g. Zoitsakos, 

Zachariades and Sakonidis, 2013; Dubinsky, Arnon, Weller, 2013). Worthy of note in 

this respect is the bibliographic review by Belmonte (2009), which considers over 300 

published papers on the topic. The focus of these publications concerns mainly two 

aspects: the process of developing the cognition of infinity (e.g Lakoff & Nuñez, 

2001), and differing conceptions of infinity (e.g. Belmonte 2009). Recently, the 

research community has begun to show interest in the understanding that prospective 

teachers have of infinity (e.g. Manfreda Kolar & Hodnik Cadez 2012, Dubinsky et al. 

2013). Most of the research on these two aspects focuses on students or prospective 

teachers, leaving aside practising teachers and their knowledge, as well as their role in 

and for practice. Although we concur with the philosophy underlying previous 

research, and recognize the value of understanding the degree of teachers’ cognitive 

development with respect to infinity, we feel an approach to teachers’ knowledge of 

infinity from the perspective of professional knowledge should not be limited to an “on 

its head” knowledge (Thames and VanZoest, 2013, p. 592), but should rather consider 

in what way the teacher understands infinity in the teaching and learning context, and 

how he or she uses (or can use) this knowledge in their professional practice. This leads 

to the question of whether a teacher should understand infinity differently to the pupil 

(and if so, how), or should simply understand it to a more advanced degree. This paper 

draws together perspectives on this question, from both the literature on learning about 

infinity and the field of professional knowledge, with the aim of providing insights for 

future research into teachers’ knowledge of the topic. 
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INFINITY IN THE CLASSROOM 

Infinity as a mathematical item is not typically explicit on primary and secondary 

syllabuses (e.g. NCTM, 2000), although it is to be found as a backdrop to certain 

mathematical notions, such as in the concept of limit or the measurement of area using 

integrals, and in others underlying basic processes, such as counting processes and 

number systems generation (Gardiner, 1985), both of which do have a place on the 

syllabus in various countries. A broad overview of curricular content leads us to 

wonder whether teacher training should contemplate the inclusion of mathematical 

aspects (the epistemological and phenomenological, amongst others) as well as 

didactic considerations, so that teachers know and understand infinity when it comes 

up in the curriculum, and, more significantly, are able to recognise it as a latent 

presence underlying a number of mathematical topics. 

There are many approaches to infinity which take the pupils’ point of view into 

account and tackle the topic intuitively. Many centre on the different types of 

reasoning called upon to understand iterative processes, or on pupils’ own ‘naturally’ 

expressed definitions when dealing with concepts such as limit, density, and the 

periodicity of the decimal part of a number. 

Recently, reviewing the notions put forward by different authors, Belmonte (2009) 

detected six different intuitive patterns underlying secondary pupils’ understanding of 

infinity, for which he aimed to group the different classification systems deployed in 

previous research within a single system, including several novel notions about finding 

the sum of a series. Such studies are of even greater interest when considered alongside 

research into how topics such as limit are explored in class (e.g. Sierpinska, 1987), as 

direct classroom applications become apparent, with examples from real lessons 

involving discussions with pupils in which they reflect and articulate their own 

understanding of infinity. 

From the point of view of teacher knowledge and training, it is not unreasonable to 

think that teachers should have a good working knowledge of the stages pupils need to 

pass through to achieve an understanding of infinity, as this will enable them to 

respond appropriately to their pupils, and to better select, organise and sequence 

classroom tasks. However, we would argue that in addition to understanding these 

developmental aspects of infinity; teachers should also know how to introduce the 

concept to their class in such a way as not to limit their pupils’ development. Likewise, 

they should be aware of how certain conceptualisations of infinity limit the 

mathematical constructs that can be built, as shall be seen below. 

AN EXAMPLE 

The extracts presented below are taken from a discussion between the first author (R) 

and a secondary teacher (A) about an example given in Belmonte (2009). The three 

excerpts appear in chronological order and correspond to three different points in a 

continuous discussion: 
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Example under discussion: 

Everyone imagine a number. Halve it. Halve the results, and so on successively. What is 

the final result? 

A pupil answers: 

We don’t know, because we don’t know when to stop. 

(Belmonte, 2009) 

 

Extract 1 

A:  This is like the example of the jumping frog, which jumps towards the edge 

of the reservoir. I used to use it, but not any more. 

R:  Why not? 

A:  Because there were arguments. […] One person wouldn’t accept it, while 

another would, and in the end they’d get angry and would say, “Well, I 

don’t” and the other would say, “Well, I do,” and they just wouldn’t agree.  

R:  And why did one accept it and the other didn’t? 

A:  Because of the physical aspect. You explain the sequences to them, how it 

works – half the length of the previous jump, then half again, and half again 

. . . and a lot of them say that the frog makes it. Others say when it gets 

close, it takes a bigger jump and gets there. 

Extract 2 

A:  Sometimes they’re given an example like the other day, the frog that jumps 

halfway. Does it reach, or not? 

R:  OK, and does it reach, or not? 

A:  No, no, it doesn’t. 

R:  OK. 

A:  It does reach the limit, but it doesn’t. In physical terms, it shouldn’t reach it. 

Extract 3 

A:  I’ll give you the definition I give to my pupils. Infinity is something 

invented to explain the inexplicable. [. . .] Unknown, untouchable. Not 

invented, but it’s there to explain something which doesn’t have an 

explanation really. 

We will use the teacher’s statements to analyse aspects of the conceptualisation of 

infinity using notions drawn from various models of professional knowledge, 

specifically Knowledge Quartet (Rowland, Turner, Thwaites & Huckstep, 2009), 

Mathematical Knowledge for Teaching (Ball, Thames & Phelps 2008) and 

Mathematics Teacher Specialized Knowledge (Carrillo, Climent, Contreras & 

Muñoz-Catalán, 2013). We will organise the analysis in terms of the domains of 
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Mathematical Knowledge and Pedagogical Content Knowledge (PCK), derived from 

Shulman (1986), for their compatibility with the above models.  

ANALYSIS 

Mathematical knowledge 

The teacher displays understanding of certain phenomenological aspects of infinity, 

such as the concept of limit, in that he expounds upon an example demonstrating an 

underlying notion of infinity as a gradual approach to a limit (from a clearly potential 

perspective), based on one of Zeno’s paradoxes. Additionally, not only is he capable of 

establishing the connection between the limit and the example, but also, from his way 

of conceptualising infinity, he is able to discuss the example. This “dealing with 

infinity” is one of the Big Ideas (Kuntze, Lerman, Murphy, Kurz-Milcke, Siller & 

Windbourne, 2011) in relation to mathematical content. Considered in terms of KQ, it 

can be seen as pertaining to Foundations (Rowland et al., 2009), as it constitutes the 

theoretical background to various ideas, while at the same time forming part of 

Connections (ibid.), in that it puts the teacher’s mathematical connections into action. 

Seen through the lens of MTSK, the Big Idea comes within the scope of Knowledge of 

the Structure of Mathematics (Carrillo et al., 2013), as it cuts across mathematical 

categories, and could be regarded as a foundation stone of school mathematics, lending 

theoretical support to a multitude of concepts. Regarding MKT, it is possible to argue 

for its inclusion in different subdomains. It seems clear that infinity cannot be regarded 

as pertaining to Common Content Knowledge, as it is beyond what might reasonably be 

expected of someone with mathematical schooling (given that, as mentioned above, 

there is not usually any specific focus on it), and as such it seems more appropriate, as 

an item exclusive to teaching, to assign it to the domain of Specialised Content 

Knowledge. In like fashion, it can be argued that an understanding of infinity, and the 

way in which this organises other mathematical concepts, fulfil the criteria for what 

Jakobsen, Thames and Ribeiro (2013) denominate “Familiarity with the discipline”, as 

a characteristic of Horizon Content Knowledge. 

In the case of our teacher, his conceptualisation of infinity as something unknown and 

artificial leads him to affirm that, although the concept of limit exists, the idea of its 

‘reachability’ would not make sense in real life, illustrating a certain confusion 

between context and problem. As a result of his interpretation of infinity, the teacher 

fails to abstract the situation to a mathematical context. This process of modelling, 

which requires the teacher to be aware of the need to do so (for example, in terms of his 

objectives in employing a particular example), leads us to another component of 

mathematical knowledge, Knowledge of the Practice of Mathematics, (Carrillo et al, 

2013), within the perspective of MTSK, or the Horizon Content Knowledge associated 

with the practice of mathematics (Ball and Bass, 2009). In this respect, given that the 

understanding involved is close to syntactic, we can understand the use of the notion of 

Foundations (Rowland et al. 2009). 
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Pedagogical content knowledge 

Seen through the lens of PCK, defined in Shulman’s (1986) seminal work as the 

knowledge which includes “ways of representing and formulating the subject that 

make it comprehensible to others” (ibid. p. 9), we note that the teacher chose a specific 

example to tackle a particular content associated with infinity, in this case the limit of a 

sequence. This choice, and the knowledge of the example itself as a means of 

representing the content, leads us to the need to consider PCK as applicable to infinity. 

In this case, the use of the three models above allows us to observe the teacher’s 

knowledge from a very similar standpoint. Consistent with the observations made 

above, Transformation is present, this element of Knowledge Quartet being very close 

to Shulman’s original definition of PCK. In the cases of MKT and MTSK, both models 

accommodate subdomains encompassing the choice of powerful examples for a 

particular content, Knowledge of Content and Teaching, in the case of MKT, and 

Knowledge of Mathematics Teaching in that of MTSK. 

In MKT and MTSK, PCK is explicitly divided into three different subdomains, one for 

teaching mentioned above, another for the curriculum (in MKT, identical to Curricular 

Knowledge proposed by Shulman, 1986) or learning standards (representing an 

amplification in MTSK of the earlier work), and a final subdomain focusing on the 

students (MKT), or the characteristics of learning related to mathematics (MTSK). 

This kind of knowledge is visible in the case of the example above, in that the teacher is 

able to predict a typical answer, “it [the frog] makes a bigger jump and gets there,” thus 

illustrating his understanding that some pupils are prevented from conceptualising the 

infinite reiteration of the process by the barrier which the context represents for them. 

FINAL REFLECTIONS 

Infinity is an item intrinsic to school mathematics, frequently non-explicit, requiring an 

approach beyond consideration of the process by which it is learnt, as has largely been 

the case to date. This paper represents a call to tackle the concept as an item of 

professional knowledge, applicable to the day-to-day work of teaching, while taking 

into account the cognitive aspects affecting the teacher’s understanding of infinity (as a 

learner). The different frameworks that have been applied support this notion. Each, 

incorporating its own theoretical constructs, helps us to better understand the 

conceptualisation of infinity brought into play by mathematics teachers tackling the 

various topics which constitute the phenomenology of the concept. The notion of 

structural concept in mathematics, which derives from the MTSK model is of special 

interest for us, along with the consideration that knowledge of infinity is exclusive to 

teachers, and pertains to the specialised content knowledge subdomain of MKT. With 

respect to KQ, Transformation represents a powerful means by which to consider the 

pedagogical implications of infinity. 

We recognise that the field under consideration, teachers’ knowledge of infinity, is a 

recent innovation. We hope that these considerations are followed by others which 
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enable them to be amplified. In the long term, we regard the inclusion of aspects of 

infinity in teacher training programmes as one of the challenges facing this field. 
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PROBABILITY, UNCERTAINTY AND THE TONGAN WAY 
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Problems teaching probability in Tonga (in the South Pacific) led to the question how 

language and culture affect the understanding of probability and uncertainty. The 

research uses a discursive approach to find the endorsed narratives which underlie 

Tongans' reasoning in situations of uncertainty. I aim to justify the claim that the 

Tongan Language and the Tongan way of life interact to make the concept of 

uncertainty unimportant and the concept of probability almost redundant in day to day 

discourse. 

INTRODUCTION – A BAYESIAN ARRIVES IN POLYNESIA 

As a teacher of statistics at 'Atenisi University in the Kingdom of Tonga (a group of 

Islands in the South Pacific) in 1994 and again in 2010, I experienced great difficulty 

explaining the concept of probability to students, who were otherwise proficient at 

learning mathematics. The students did not appear to relate to examples of uncertainty 

in the way in which I had expected.  

Preliminary observations indicated that the Tongan language does not provide Tongan 

students with the tools and the intuitive ideas which are so important in developing the 

ideas of uncertainty and of probability. Although secondary and tertiary education is 

supposed to be in English, my students regularly switched to Tongan when discussing 

what I was teaching. Tongan is the language that mediates and organises these 

students' lives and activities. It is an integral part of their culture. These observations 

motivate the research question: How do the Tongan language and culture shape 

discourses on probability and measuring uncertainty? More generally, the hypothesis 

to be tested is that the linguistic tools provided by the Tongan language differ 

significantly from European languages and as a result the western concepts of 

probability and uncertainty do not exist in the community of native Tongan discourse 

(this said, as the result of the arrival of English language and Western forms of life, 

both the discourse on uncertainty and activities that require probabilistic thinking are 

in the process of developing in Tonga).  

I should state from the start that my approach to statistics is that of a somewhat 

dogmatic Bayesian. Bayesian statistics is an axiomatic approach, which defines a 

rational way of making decisions in situations of uncertainty. My aim had been to try to 

teach this approach to my Tongan students, an attempt which ended in abject failure. 

The aim of this research is to explain, understand and learn from this failure. 

My research (for which Anna Sfard serves as an advisor) has led me to the conclusion 

that discourses on probability are closely related to discourses on fractions but in this 

paper I will concentrate on the topic of probability and uncertainty and only mention 
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findings about fractions in passing. In this paper I make use of a few samples from my 

field work in an attempt to explain the discourse on probability and uncertainty which I 

observed in Tonga. 

THEORETICAL BACKGROUND  

Language, culture, and mathematical thinking 

The idea that language shapes people's view of the world dates back to the mid 

twentieth century and is known as the Sapir-Whorf hypothesis (Whorf, 1959). Initially 

there was great interest in the hypothesis and then for many years it did not receive 

much attention. Recently there has been a renaissance of interest (Cole, 1996, 

Deutscher, 2010, and many others). It is suggested that part of the reason that Whorf's 

ideas did not receive more support is that he over stated his case. He claimed that our 

mother tongue restricts how we think and prevents us from being able to think certain 

thoughts. The dominant approach today is "that when we learn our mother tongue, we 

acquire certain habits of thought that shape our experience in significant and often 

surprising ways" (Deutscher, 2010).  

In his research, concerning the Oksampin communities in Papua New Guinea, Saxe 

develops the idea that not only language but culture and history are related to how 

mathematical ideas are understood. He proposes a methodological approach "rooted in 

the idea that both culture and cognition should be understood as processes that are 

reciprocally related, each participating in the constitution of the other" (Saxe, 2012, p. 

16). My research in Tonga originated with the idea that language affects understanding 

but it quickly became clear that the cultural and historical background of the 

community had to be taken into account. 

The development of probabilistic thinking – cross cultural studies 

Little has been written concerning cross cultural studies of probabilistic thinking. In his 

survey of the literature Jones raises concern about "the lack of probability research 

outside western countries" (Jones, 2007, p. 944). In an earlier survey Shaugnessy 

stresses the need for “cross cultural comparison studies using in-depth interviews on 

decision making and probability estimation tasks” (Shaughnessy, 1992. p. 489).  

I have only located two articles that deal with cross cultural studies on understanding 

probability. In the first (Amir and Williams, 1999), the authors compare two cultural 

groups within the same school in England. Language, beliefs, and experience were 

shown to influence the 11-12 year old children's “informal knowledge” of probability, 

which was defined as “the intuitive knowledge they bring to school and use in thinking 

about probabilistic situations" (ibid, p. 85). In the second article (Chassapis & 

Chatzivasileiou, 2008), the authors compare conceptions of chance and probability 

held by children who live in Greece and in Jordan. They also compare a group of 

Palestinian children living in Greece with children from the local Greek Christian 

community. They conclude that more religious Muslims tend to attribute random 
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events to God, while less religious Greek Christians tend to attribute random events to 

chance.  

Ian Hacking (1975) provides an historical dimension to the present study. The author 

looks at the preconditions for the sudden emergence of probability, as we know it 

today, in mid seventeenth century Europe. These preconditions included: 

 The development of a simple notation for fractions 

 Developments in the insurance industry and the theory behind annuities 

 Changing attitudes to religion, fatalism and causality. 

There are striking similarities between the historical process described by Hacking and 

the emergence of probability, which I observed, in Tonga.  Understanding how the idea 

of probability emerged in Europe helps to explain what is happening in Tonga today. 

CONCEPTUAL FRAMEWORK – A DISCURSIVE APPROACH 

In this study I adopt the discursive approach proposed by Anna Sfard (Sfard, 2008) in 

which mathematics is defined as a form of communication or discourse. People are 

members of various overlapping “communities of discourse”. A community of 

discourse is defined as those individuals participating in any given discourse and by the 

endorsed narratives which they use. An individual can be a member of a number of 

overlapping communities of discourse. This approach supplies a powerful framework 

through which to understand and explain the observations which I made in Tonga.  

Using this theoretical framework the aim of the research is to identify, analyse and 

contrast the various communities of discourse that exist in Tonga, how they overlap 

and how they compare with typical western communities of discourse. In this paper I 

aim to analyse the endorsed narratives about uncertainty and probability, which I 

observed in Tonga. 

SOME EMPIRICAL FINDINGS ABOUT PROBABILISTIC THINKING IN 

TONGA 

The seeds of this research were planted while I was trying to teach basic ideas of 

uncertainty to a university level class. I (the “lecturer”) was attempting to teach how 

future events can be assigned probabilities and had the following conversation: 

Lecturer:  What is the probability that the sun will be shining at this time tomorrow? 

(in my way of thinking there was a reasonable chance of cloud cover). 

Student:  It will be sunny. 

Lecturer:  Are you certain that it will be sunny? 

Student:  Yes. 

Lecturer:  Why are you certain? 

Student:  Because the angels told me. 
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The reader can imagine how frustrating I found this conversation when trying to teach 

basic ideas of probability from a Bayesian perspective. The student was an able student 

and spoke good English. The remainder of this paper should be seen as an attempt to 

understand what way of thinking lay behind my student's response.   

The research started with a collection of anecdotes and progressed to include the use of 

questionnaires, semi-structured interviews, classroom observations, audio and video 

recordings of conversations with children and adults, as well as interviews with various 

professionals.  

Vocabulary for uncertainty 

In English, as in many other languages, there is a large spectrum of words for different 

levels of uncertainty: Almost certain, ninety nine percent certain, very likely, probable, 

possible, conceivable, rare, slim chance, almost impossible and many more. In 

Tongan, the only word in common use, which is similar to the above list, is 'mahalo', 

which is best translated as "maybe" or "perhaps".  

An example to show how the dearth of suitable vocabulary affects the teaching of 

probability can be found in the Tongan version of the school curriculum for primary 

schools (Mathematics for Life Syllabus, 2009). The syllabus is written entirely in 

Tongan except for the section on probability, which is written together with an English 

translation. When I asked why the English translation was included, I received the 

explanation that the Tongan speaking teachers would not understand the Tongan and 

would need to refer to the English version to understand what they were supposed to 

teach! 

Probability is measured using fractions but there were no words for fractions in Tongan 

until the missionaries introduced a rather complex way of expressing them during the 

second half of the nineteenth century. I found strong evidence that fractions are not 

understood in the same way as they are in the West, for example a large majority of 

Tongans (including some maths teachers) did not know how to answer "What is a half 

of a half?" My research led me to the conclusion that the Tongan discourse does not 

relate to fractions as numbers between zero and one. This has a clear effect on how 

probability is understood. 

Answers to questions about the likelihood of future events 

I conducted sixty structured interviews with a cross section of the population. The 

interviews took place near the main market. Unless my respondents spoke good 

English the interviews were carried out in Tongan by my assistant. Some of the 

questions were about the likelihood of future events such as "What are the chances that 

it will rain tomorrow?", "What are the chances of getting a head when tossing a coin?" 

and "What are the chances of a first child being a boy?" In all cases less than twenty 

five percent of the answers were in terms of uncertainty. All the other answers were in 

terms which to a Western way of thinking may appear dogmatic:  
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The chances of rain: "The sky is cloudy so it will rain" 

 "It is not going to rain" 

 "Check at the internet [if it is going to rain]" 

The chances of a head: "You will know when you turn it over" 

 "Depends who tossed the coin" 

 "Toss it four times to get a head". 

The chances of a boy: "I believe they will get what they wish for" 

 "Depends on the scan" 

 "Sleep on time, wake up on time [then it will be a boy]" 

The place of uncertainty in the Tongan community of discourse 

In an attempt to understand the place of uncertainty in Tonga I interviewed a large 

number of people including teachers, church ministers, bankers, bingo players, 

government ministers, micro finance managers and Tongan language experts. The 

picture which emerged is of a community which, historically, has had little need for 

uncertainty. Definite answers are valued above uncertain answers and this is combined 

with a fatalism about the future. I have categorised some of the responses in terms of 

Hacking's preconditions for the emergence of probability. 

Hacking suggests that developments in the insurance industry were one of the 

preconditions for the emergence of uncertainty in Europe in the seventeenth century. 

Insurance companies exist in Tonga but most people only take out insurance policies 

when the bank demands this as a condition for a loan. A typical response was "I insured 

my house until we had repaid the bank loan and then I stopped paying the premium". 

This is despite the fact that there is a serious danger of burglary, fire, flooding and 

hurricanes. Life insurance is also seen as unnecessary – while interviewing the minister 

of education, she said "I think they [Tongans] are quite certain that the processes and 

the checks and balances we have in the society insure that the future will be taken care 

of. .... If you ask a Tongan to pay out for life insurance they will think it is a total waste 

of money – I agree."  

Another precondition, suggested by Hacking, concerns attitudes to religion, fatalism 

and causality. For more than a hundred and fifty years the Tongan way of life and value 

system has been dominated by what is known as the "Tongan Way", which aims to 

combine traditional Tongan values of respect and obedience with a deeply held belief 

in Christianity. In my research I explored how this belief system affects attitudes to 

free will, predetermination and the inevitability of future events. Most the people 

whom I interviewed expressed a strong belief that future events depend on the will of 

God and that we do not have free will to control them. A church minister suggested that 

"The might of God reinforced by concepts of monarchy and of culture and of respect 

and of dominance and of control [...] come through at the every person level as a sort of 

fatalism." I found evidence that the importance of obedience to God and to those of 
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higher status led people to regard expressions of uncertainty in a negative light. I asked 

one of my respondents why she had given a definite answer and had the following 

conversation: 

Interviewer: Why do you say that you are certain that it will rain? 

Respondent: A 'maybe' answer would be dishonest. A definite answer is more honest.  

Not good to have doubts when you answer question. If you have doubts that 

is bad. If you ask the child and he answers 'maybe' the child will get a slap 

(you are being cheeky). 

Interviewer: What about when you get it wrong [when it does not rain]? 

Respondent: I feel good that I am positive about something that I believe in I didn’t have 

doubts. 

DISCUSSION 

I suggest two interpretations of the above findings and in particular, two explanations 

for what my student meant when he said he was certain that the sun would be shining. 

The first looks at the lack of vocabulary for uncertainty and the limited use of fractions. 

The second is based on an analysis of fatalism and predetermination. Finally I suggest 

a synthesis of these two approaches by comparing the observations made in Tonga 

with the emergence of probability in seventeenth century Europe. 

Language, vocabulary and fractions (Sapir-Whorf) 

Whorf claimed that "We dissect nature along lines laid down by our native languages". 

My observations in Tonga support the Sapir-Whorf hypothesis that language, and in 

our case the dearth of vocabulary, limit how uncertainty can be expressed or 

understood. Since there is no discourse on probability in Tongan, my student, when 

asked, what is the probability that the sun will be shining tomorrow, did not have the 

tools to give an answer in terms of uncertainty. Instead he understood the question as a 

prediction about the future – will it be sunny tomorrow? The concept of giving a reply 

in terms of probability by using fractions or percentages was not part of his discourse.  

Religion, Fatalism and Predetermination 

Through interviews and discussions I found strong evidence that the religious belief, 

which dominates Tongan society, includes a kind of fatalism by which an all powerful 

God controls our lives. Future events have been predetermined and we only have to 

wait to observe that future. Thus future events are not uncertain but are waiting to be 

revealed.  

How does all this help us to understand the Tongan discourse on uncertainty? I suggest 

the following endorsed narrative: 

God is almighty (a translation of the much used Tongan phrase 'Otua Mafi Mafi). 

The future is predetermined because God is almighty and controls our destiny. 
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It follows that there is no such thing as uncertainty regarding whether it will be sunny at 

this time tomorrow. It is no more uncertain than whether it was sunny yesterday. 

Thus any discourse about future events is a discourse about definite events which are 

known to God. 

When asked whether it will be sunny tomorrow there is no need for vocabulary describing 

uncertainty. Any question about what will happen in the future is a question about what has 

been predetermined by God.  

Given all of the above, what better way to answer the question about what God has decided 

than to go through the intermediary of "the angels"? 

Both the above explanations combine to explain the developing discourse on 

probability and uncertainty, which I observed in Tonga. There are striking similarities 

with the process in seventeenth century Europe, described by Hacking (1975). In both 

cases the emergence of probability depends on a combination of a number of different 

preconditions. 

This leaves us with the question: how would my student have felt if the sun did not 

shine at the same time tomorrow? (I was never able to answer this specific question as 

the angels provided correct information and the sun was shining at the same time the 

next day!). 

CONCLUSION – A MORE MODEST BAYESIAN LEAVES POLYNESIA 

This research originated with some surprising observations which I made while 

teaching at 'Atenisi, an institute founded in 1975 and dedicated to the encouragement 

of critical thinking amongst the young people of Tonga. The immediate purpose of this 

study is to contribute to the aim of encouraging critical thinking, not only at 'Atenisi 

but throughout the Tongan education system. Its broader purpose is to deepen our 

understanding of factors that shape mathematical thinking. The data already collected, 

only a small fraction of which has been presented on these pages, brought ample 

evidence for the strong interdependence between cultural practices, discourse (thus 

language), and thinking. 

As noted above, I am a convinced Bayesian and over the years have made great efforts 

to convince family, friends and colleagues to make rational decisions in situations of 

uncertainty (usually with frustratingly little success). This research has led me to a 

more modest expectation from the Bayesian program, while also providing a 

framework on which to build a wider program to enable Tongans and people elsewhere 

to understand how to make rational decisions when faced with uncertainty. 
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This paper presents first results from a research project aimed at combining two 

theoretical frameworks, one concerning explanations and one related to rationality. 

The two theoretical lenses are used to understand one episode from a teaching 

experiment carried out in grade seven, concerning the construction of rectangles with 

a given perimeter. The combination of frameworks allows a finer analysis of the 

teaching episode and extends the original frameworks.  

INTRODUCTION 

Various theoretical frameworks are available to mathematics education researchers 

interested in analysing complex mathematical activities such as conjecturing, proving, 

and modelling. Sometimes, the networking of different theories may improve the 

understanding of data (Prediger, Bikner-Ahsbahs, & Arzarello, 2008). This paper 

combines two frameworks, one related to functions of explanations (Levenson, Barkai, 

& Larson, 2013) and one related to rational behavior in conjecturing and proving 

(Boero & Morselli, 2009), in order to investigate classroom tasks and didactical 

sequences which promote conjecturing and proving among students. 

We chose to combine the two frameworks for several reasons. First, the framework 

related to the functions of explanation was previously used to analyse tasks found in 

national guidelines and curricula. We were interested in investigating the use of this 

framework when analysing classroom tasks and didactical sequences. The model of 

rationality was initially developed for the analysis of students’ processes when faced 

with conjecturing and proving tasks. Those tasks usually took the form of “What can 

you tell about…?”. We were interested in investigating the use of this model when 

students are faced with other kind of tasks, such as inquiry-based tasks, or tasks which 

require them to explain procedures. Finally, we wished to examine the possible links 

between functions of explanations and dimensions of rationality.  

THEORETICAL FRAMEWORK S 

Functions of explanations 

Explanations are used every day in the mathematics classroom and are an integral part 

of learning and teaching mathematics. However, many research studies use the term 

'explanation' in different ways, alluding to different functions of explanations (e.g., 

Hemmi, Lepik, & Viholainen, 2013; Yackel, 2001). Levenson and Barkai (2013), and 

Levenson, Barkai, and Larson (2013) set out to systemize and classify the possible 

functions of explanations which may arise from solving mathematical tasks in the 



Morselli, Levenson 

4 - 250 PME 2014 

classroom. Analysing curriculum documents in Israel and in Sweden led to six possible 

functions: 

Function 1: Explanation as a description of one's thinking process or way of solving a 

problem (i.e., How did you solve the problem? Explain.) 

Function 2: Explanation as an answer to a "why" question where the underlying 

assumption is that the explanation should rely on mathematical properties and 

generalizations (i.e., Why is this statement true/false? Explain.) 

Function 3: Explanations as interpretations (i.e., Explain what this mathematical statement 

means in an everyday context. Explain an everyday occurrence in a mathematical context.) 

Function 4: Explanations as a step in directing new explorations leading to generalizations 

(i.e., Find all possible solutions and explain.)  

Function 5: Explanation as justifying the reasonableness or plausibility of a strategy or 

solution (i.e., Why did I choose to solve the problem in this way?) 

Function 6: Explanations as a means of communication. This function may be a more 

general function considering that explanations, whether written down or expressed orally, 

are meant to be communicated. 

It should be noted that the function of an explanation may depend on the task given as 

well as the context in which an explanation is requested or given. In the Israeli 

curriculum, for example, it was found that an investigative task may call for a child to 

explain a solution with the possible aim that this explanation leads to further 

investigation. A different task may call for an explanation which merely describes how 

to solve the task. It might be that the same task, implemented in different ways by the 

teacher, could lead to different functions of explanations. In Sweden, the functions of 

explanations seem to be tied in with major aims for teaching mathematics in primary 

school. The current study extends the study by Levenson, Barkai, and Larson (2013) 

by attempting to use their classification of the functions of explanations when 

analysing a series of classroom tasks given in an Italian mathematics classroom and by 

combining it with the framework of rationalization set out by Boero & Morselli (2009). 

Rationality 

Boero & Morselli (2009) developed a theoretical model for proving as a rational 

behaviour, derived from the construct of rationality proposed by Habermas (2003). 

According to the model, the discursive practice of proving may be seen as made up of 

three interrelated components: an epistemic rationality (ER), related to the conscious 

validation of statements according to shared premises and legitimate ways of 

reasoning; a teleological rationality (TR), inherent in the conscious choice and use of 

tools and strategies to achieve the goal of the activity; and a communicative rationality 

(CR), inherent in the conscious adhering to rules that ensure both the possibility of 

communicating steps of reasoning, and the conformity of the products (proofs) to 

standards in a given mathematical culture. The construct was further developed to 

analyse specific phases within the conjecturing process, for instance the use of 

algebraic language (Morselli & Boero, 2011). 
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The following episode, taken from a proving task (Morselli & Boero, 2011) illustrates 

the three components of rational behaviour, highlighting teleological rationality. 

Seventh grade students were given the following problem: “The teacher proposes a 

game: Choose a number, double it, add 5, take away the chosen number, add 8, take 

away 2, take away the chosen number. Without knowing the result of the game, is it 

possible for the teacher to guess the number that you initially chose? If yes, in what 

way?”. Students played the game and gradually discovered that the teacher always 

guesses ten. When explaining why the result is always ten, two solutions emerged: the 

expression (N×2+5-N+8-2-N-1=10) and the sequence of calculations (N×2 = A; A+5= 

B; B-N=C; C+8=D; D-2=E; E-N=F; F-1=10). Comparing the two representations 

sheds light on the dimensions on rationality. The two representations are correct from a 

mathematical point of view, thus fulfill the requirement of epistemic rationality, and 

are clear from the communicative point of view. Both representations lead to the result 

of the game, but the first one is more efficient in terms of the goal of the activity 

(showing that the result is always 10), since it shows that N is at first doubled and then 

taken away twice, making no contribution to the final result. From a teleological point 

of view, the first representation is more appropriate. The teleological component of 

rationality refers to efficiency and usefulness in relation to the final goal one wishes to 

achieve (here, showing that N does not affect the final result). We refer to teleological 

rationality for all those strategic choices that are linked to the final aim of the activity. 

Combining the frameworks 

As previously mentioned, the construct of rationality was initially adapted from a 

general description referring to any discursive practice (not only within mathematics), 

to the process of proving. The process of proving relates to only one specific function 

of explanation – explaining why a statement holds true. Yet explanations may have 

several functions. The aim of this study is to explore the possibility of extending the 

scope of the rationality construct and describe the rationality at issue when explaining. 

Can we see an expression of the three dimensions of rationality in explanation 

processes? If so, how can each dimension be described in relation to each function of 

explanations? 

METHOD 

The first step in combining two frameworks is to understand each one separately. 

Mutual understanding was achieved by reading previous research reports and by a first 

cycle of data analysis. Each author analysed the data by means of the two theoretical 

lenses. The two analyses were compared and divergent interpretations were 

questioned, so as to promote mutual understanding (of the frameworks) and a more 

complete interpretation of the teaching episode. Finally, we worked together in 

developing a combined description of rationality in explanation processes. In the 

following sections we describe some background of the project where this study was 

set and analyse some written productions in terms of the functions of explanations 

which arose and the dimensions of rationality observed. 
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TASK SEQUENCE: ISOPERIMETRIC RECTANGLES 

The episode we refer to comes from a teaching experiment carried out in 2012 in a 

lower secondary school, within the project “Language and Argumentation”, aimed at 

designing and experimenting task sequences with a special focus on argumentation and 

proof (Morselli, 2013). Core tasks are usually proposed as open-ended questions (What 

can you tell about…?) where, according to the socio-mathematical norms of the class, 

each answer must be justified.  

The data below was collected from the beginning parts of the task sequence 

“Isoperimetric rectangles”, implemented in grade 7 (age of the students: 13-14). At the 

core of this activity is the conjecture and explanation of the fact that, among all the 

rectangles with fixed perimeter, the square has the maximum area. The task sequence 

began with an explorative task in paper and pencil: “Draw four rectangles with a 

perimeter of 20 cm”. After drawing the rectangles, students were asked to reflect on the 

construction of their rectangles. The second task, to be worked on in groups, was: 

Compare the methods you used to draw the rectangles and synthesize. Here we present 

our analysis of the group work. 

FINDINGS 

Students’ written collective responses were collected by the researcher. Below, we 

analyse the results of four groups, using the dual lens of functions of explanations and 

rationality. For clarity of analysis, we break up the students’ writing into segments 

(Seg a, Seg b). 

Group One 

Two students working together wrote the following: 

Seg a: In order to make rectangles with a perimeter of 20 cm one must make 10 cm 

and then multiply by 2. 

Seg b: With this method one can make 9 rectangles: 6+4, 7+3, 8+2, 9+1, 4+6, 3+7, 

2+8 and 1+9, but the first, second, third and fourth one are equal to the last 

four. 5+5 cannot be done because a square is made. 

Segment a: Regarding functions of explanations, the students describe their method. 

This is Function 1. It might be said that the first segment, in which the students 

explained their method, led them to explore several options, basically covering all the 

whole number options (Seg b). Evidence of this may be seen in what the students wrote 

in Seg b, “With this method one can make…” In addition, the students set out what is, 

in their opinion, all the possible rectangles taking into consideration the constrictions. 

In this sense, we claim that Seg a may be related to Function 4 in that it led to additional 

exploration. In addition, the students justify their strategy. They explain that they are 

looking for numbers which sum to 10 cm in order to find a perimeter of 20 cm. 

Therefore, Function 5 is present. Regarding modes of rationality, the students began 

their explanation by writing “In order to….”. This clear indication of working towards 

a goal is evidence of Teleological Rationality (TR). The explanation is correct 



Morselli, Levenson 

PME 2014 4 - 253 

(Epistemic Rationality – ER) and communicated in a comprehensible although not 

complete manner (Communicative Rationality – CR). For example, although the 

students noted that “one must make 10 cm”, this statement is rather general; it was not 

explicitly stated that it is necessary to take exactly two numbers whose sum is ten.  

Segment b: Regarding functions of explanations, there might be evidence of Function 

2 in that the students explain why they do not include 5+5. It is likely that students 

compare the properties of squares and rectangles and incorrectly conclude that a 

rectangle must have unequal sides. This incorrect property is used for justifying that 

the solution 5+5 is not acceptable. Regarding rationality, the students only list 

rectangles with whole number lengths and they do not include the square. They 

explicitly state that there are nine rectangles which fit the requirements of the problem, 

implying that these are all the possible rectangles. Because the square is not included, 

there is a lack of ER. Furthermore, their explanation consists mostly of examples 

without further elaboration (CR). However, there is a clear goal to list all possible 

rectangles and the students organize their discourse accordingly (TR).  

Group Two 

Two students working together wrote the following: 

Seg a: We looked for a number that gave 10 and then we added it, for example 

8+2. Afterwards we added the same number 8+8 is the length and 2+2 is the 

side thus giving a rectangle.  

Seg b: Ex 9+9 and 1+1 = 20 and 3+3 [under the numbers it is written “sides”] and 

7+7 [under the numbers it is written “bases”] =20 ex3 6+6 [under the 

numbers: “bases”] and 4+4 [under the numbers: “sides”] = 20. 

Segment a: Regarding functions of explanations, the students describe what they are 

doing (Function 1). Unlike with Group one, it does not seem that the students expand 

their exploration beyond giving a few more examples (Seg b). Thus, there is no 

evidence of Function 4. Nor do they justify their strategy of looking for numbers that 

add to 10 cm. Therefore, Function 5 is not present. As in Group one, the students have 

a clear goal and they state so explicitly, “We looked for…” (TR). Their procedure is 

correct (ER), however, like Group one, their communication lacks the necessary 

details (CR). Instead of writing that they looked for two numbers which add to 10, they 

wrote, “We looked for a number that gave 10.”  In addition, the word “gave” is not 

mathematical and does not convey that the students are looking for numbers which 

“add” to ten.  

Segment b: Regarding functions of explanations, it seems that only Function 1 was 

present. Regarding rationality, the examples are correct and because the students do 

not claim that they have found all possible rectangles with perimeter 20 cm, we cannot 

comment on and evaluate the lack of additional examples (ER). On the one hand, the 

students attempt to communicate their ideas in a clear manner by designating “sides” 

and “bases” (CR) although perhaps, mathematically, it would be more precise to 

distinguish between “heights” and “bases” (ER). On the other hand, the statement “9+9 
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and 1+1=20” does not conform to mathematical standards of communication (e.g., 

using “and” instead of  “+”) (CR).  

Group Three 

Three students worked together and wrote the following: 

Seg a: We added two different sides, whose sum was 10 which multiplied by two 

the result was 20, that is to say the perimeter of the rectangle. 

Seg b: Other rectangles with perimeter of 20 cm, are not possible, unless with 

these sides 6cm+4cm= x2, 8+2cm= x2, 9+1cm= x2, 7+3cm= x2. 

 5+5+5+5cm=20 cm, it is not a rectangle, but a square. 10+10 cm= 20 cm 

but it is not a rectangle. 

Segment a: Regarding functions of explanation, in addition to describing what they 

did (Function 1), the students justified why their strategy is valid – because it leads to a 

rectangle perimeter of twenty. Thus, there is some evidence of Function 5. As with 

Group One, if we look ahead to Segment b, we may say that the explanation in the first 

part led the students to explore what might be all possible solutions. Thus, Function 4 is 

present as well. Regarding rationality, once again we see students working towards a 

goal of finding two numbers whose sum is ten (TR). The procedure is correct (ER) and, 

as opposed to the first two groups, it is communicated with necessary details, such as 

stating that when the sum of the two sides is multiplied by 2, the result is 20 (CR). In 

addition, the communication employs relevant mathematical language using terms 

such as “sum” and “perimeter”.  

Segment b: As with the first group, both Function 1 and Function 2 of explanations are 

present. They describe what they did but they also explain why they do not include the 

square in their results, writing, “it is not a rectangle, but a square.” From an ER point of 

view, the students’ claim is incorrect. From a TR point of view, the students are 

working towards a goal, that is, they wish to show why only some examples are 

possible. They work towards this goal, ultimately reaching the example of the square, 

which seems to be, for them, the limit of the possibilities. Their written mathematical 

expressions, such as “6cm+4cm=x2” do not conform to acceptable mathematical 

convention (CR).  

Group Four 

This group of three students wrote the following: 

We found different ways of [drawing] rectangles. For instance 9cm1cm x2 times so we 

got 20 cm. Other examples are: 

Bartek: 2 cm, 8 cm; 6 cm, 4 cm; 3 cm, 7 cm 

Angelo: 6cm, 3.5 cm; 8 cm, 2 cm; 10.5 cm, 1.2 cm; 7 cm, 3 cm 

Manuel: 4 cm, 6 cm; 7 cm, 3 cm; 9 cm, 1 cm; 8 cm, 2 cm 

As opposed to the other groups presented above, these students merely stated that they 

found different rectangles, some of which were incorrect, without describing the 
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procedure or explaining the method that they used to find them. Thus, Function 1 is not 

present and ER is lacking. Their means of communication is deficient “9cm1cm x2 

times” (CR). Finally, their list of examples seems to lack direction and purpose. Thus 

TR is missing as well. In comparison to the other groups, Group Four’s results are 

lacking both in terms of the functions of explanations and rationality. Perhaps the lack 

of functionality of their explanation is related to their lack of rationality. 

DISCUSSION 

This paper explored the possibility of extending the framework of rationality to the 

process of explaining. We found that the three components of rationality may be found 

in students’ explanations and that the three components may be expressed or described 

differently for explanations with different functions. We propose a first refinement of 

the framework of rationality, with reference to some functions of explanation. 

Function 1: When explaining one’s procedure,    relates to the correctness of the 

procedure (from a mathematical point of view), CR to the communication of the 

method (all passages must be communicated), TR to mentioning the final goal of the 

procedure and possibly to the links between aims and actions. 

Function 2: When explaining why a statement holds true, ER refers to the mentioning 

of correct mathematical properties, TR to the choice of suitable properties according 

to the proving aim, and CR to the organization of an intelligible explanation. 

Function 4: When looking for all the possible solutions, and explaining why they are 

finite/infinite, ER relates to referencing mathematical properties, TR to mentioning the 

final goal and to the organization of the exploration and explanation accordingly (for 

instance, showing all the possible sums in a regular order). CR refers both to the 

communication of the exploration and of the final explanation.  

Function 5: When justifying the plausibility of a method/procedure, ER refers to 

referencing correct mathematical properties and CR to the communication of the 

explanation in an intelligible form. At this point, perhaps due to the nature of the task, 

we have not been able to describe TR as it relates to Function 5.  Additional research is 

needed regarding this aspect of Function 5.  

What emerges from the above analysis is that the three dimensions of rationality are 

always present, and that each function of explanation requires rationality in action. 

Furthermore, we found that a single task may elicit explanations with different 

functions and that the shift from one explanation to another may be “natural”, 

occurring even when explicit requirements to give an explanation are missing. As was 

shown, some explanations (Function 1) may pave the way to further explanations 

(Function 2, 4 and 5). These findings suggest that explanations with different functions 

may help promote students’ rationality. 

The interest in combining frameworks is twofold: reaching a better understanding of 

the teaching episode at issue and improving theoretical frameworks (Prediger et al., 

2008). Combining the frameworks, allowed us to fine tune our analysis in terms of 
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understanding how students’ explanations may be intertwined with rationality. For 

example, as was shown in Groups 1 and 3, Function 5 of explanation seems to occur 

when there is a good level of TR evident in Function 1 of explanation. For the moment, 

we confined our analysis to the written group productions. The next step will be to use 

the refined and combined framework to analyse other parts of the teaching experiment, 

such as classroom discussions. From the point of view of functions of explanation, we 

expect that some functions of explanation, such as Function 1, 5 and 6 will emerge 

strongly in classroom discussions, while from the point of view of rationality, CR 

should have a major role, since communication to others is essential in discussions. An 

additional development concerns the planning and implementation of new tasks 

explicitly aimed at promoting different functions of explanation and associated 

rationality. 
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TEACHERS’ ABILITY TO EXPLAIN STUDENT REASONING IN 

PATTERN GENERALIZATION TASKS 

Rabih El Mouhayar 

American University of Beirut 

 

The purpose of this paper is to explore teachers’ ability to explain student reasoning in 

linear and non-linear patterns and in different types of generalization tasks. A 

questionnaire consisting of student responses to different types of generalization tasks 

was developed and then given to a sample of 91 in-service mathematics teachers from 

20 schools in  ebanon. Analysis of data shows that teachers’ explanations exhibited 

variations in the extent to which they identified the elements and relationships found in 

students’ responses. The results showed that teachers’ ability to explain students’ 

reasoning of linear tasks seemed to be higher than that of non-linear patterns. The 

findings also showed that teachers’ explanations of students’ reasoning for far 

generalization tasks exhibited a larger amount of data (elements and relationships) 

compared to the explanations for near generalization tasks. 

BACKGROUND 

Findings from previous studies reported that students’ reasoning and strategies in 

pattern generalization is influenced by different factors. Of these factors is the function 

type of the pattern (linear and non-linear patterns). Krebs (2005) found out that while 

students are able to generalize linear patterns (constant difference between consecutive 

terms), they have difficulty in generalizing non-linear patterns (varying difference 

between consecutive terms). Another factor that has an impact on students’ reasoning 

in patterns is the generalization type (near and far generalization tasks). Amit and 

Neria (2008) reported that while near generalization tasks (questions which can be 

solved by step-by-step drawing or counting) were accessible to the majority of 

students, those students faced difficulties in establishing and justifying a rule for the far 

generalizations (questions which are difficult to be solved by step-by-step drawing or 

counting).  

On the other hand, few research studies aimed to explore teachers’ ability to explain 

students’ reasoning in pattern generalization. For example, El Mouhayar and Jurdak 

(2012) reported that teachers’ ability to explain students’ reasoning in far 

generalization tasks depend on their ability to explain students’ reasoning in near 

generalization tasks. Other studies that focused on teachers’ knowledge of pattern 

generalization used samples of prospective teachers. These studies indicated that 

prospective teachers recognize patterns in different ways. For example, some 

prospective teachers formulated rules from the sequence of numbers that are listed in a 

pattern, whereas others used relationships and cues that are established from the figural 

structure of a pattern (Chua & Hoyles, 2009; Rivera & Becker, 2007).  
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The present study extends the previous research on teachers’ knowledge of pattern 

generalization and it attempts to understand teachers’ ability to explain students’ 

reasoning in pattern generalization.  

Teacher knowledge of linear and non-linear patterns 

Findings in the literature report that the difference between teachers’ identification of 

students’ rules in linear and non-linear is not significant. For example, El Mouhayar 

and Jurdak (2012) focused on the ability of inservice mathematics teachers from 

grades 7-9 to explain students’ reasoning in linear and non-linear patterns tasks. The 

findings showed that there was no significant difference in teachers’ ability to identify 

symbolic rules that best corresponded to students’ pattern generalization processing.  

Other findings from previous research showed that teachers are capable of using a 

variety of strategies to generalize linear and non-linear patterns in different ways. 

Rivera and Becker (2007) found that teachers generalized linear patterns using 

numerical and figural strategies. Similarly, Chua and Hoyles (2009) reported that 

teachers were capable of using a variety of strategies to generalize non-linear patterns 

in different ways resulting in a range of equivalent rules. 

Teacher knowledge of near and far generalization tasks   

Previous literature indicates that teachers are able to successfully generalize patterns 

using different strategies (Chua & Hoyles, 2009; Rivera & Becker, 2007). However, 

findings of previous studies reveal that teachers’ explanations of students’ reasoning in 

near and far generalization tasks seem to be lacking in terms of the elements which 

constitute a complete explanation. El Mouhayar and Jurdak (2012) showed that more 

than half of the in-service school teachers (grades 7-9) who participated in the study 

were unable to provide complete explanations for students’ reasoning in near and far 

generalization tasks. More specifically, while teachers’ explanations focused on 

constant-related counting elements that are not dependent on the step number of the 

pattern, the teachers’ explanations did not include the variable-related counting 

elements that are dependent on the step number by relating the growing parts of the 

pattern to the step number.  

RATIONALE OF THE STUDY  

This study extends previous research on teachers’ knowledge of student reasoning in 

pattern generalization in four directions. First, the present study aims at exploring 

teachers’ ability to explain students’ reasoning of linear and non-linear patterns and  of 

near and far generalization tasks whereas previous studies dealing with teachers’ 

knowledge in pattern generalization did not address function type (linear and 

non-linear) and pattern generalization type (near and far) simultaneously. Second, this 

study attempts to confirm and extend the results of few previous studies that 

investigated teacher knowledge of students’ reasoning in pattern generalization across 

a larger range of grade levels than previous studies. Third, the present study aims to 

explore in-service teachers’ ability to explain students’ reasoning using authentic 
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student work whereas previous studies have used contrived illustrative models of 

students’ reasoning taken from the literature. Fourth, this study uses the “SOLO 

model” as a theoretical construct to explore the extent to which teachers use elements 

of student response to generalize patterns. Although previous studies have used SOLO 

in the context of teachers’ knowledge, these studies did not explore teachers’ 

knowledge of students’ reasoning in pattern generalization in particular.  

RESEARCH QUESTIONS 

The present study aims at exploring teachers’ ability to explain student reasoning in 

linear and non-linear patterns and in immediate, near and far generalization tasks. In 

this paper we address the following research questions: 

 How well are in-service teachers able to explain students’ reasoning of linear 

and non-linear patterns? 

 How well are in-service teachers able to explain students’ reasoning of near 

and far generalization tasks? 

THE SOLO TAXONONMY 

The Structure of the Learned Outcomes (SOLO) taxonomy was developed by Biggs 

and Collis (1982) to describe a hierarchy of different levels of knowledge ranging from 

lack of ability to proficiency. The lowest level is called prestructural and it represents 

the use of no relevant aspect of knowledge in a task. Responses at this level show little 

understanding of the task. The second level, unistructural, represents the use of only 

one relevant aspect of the task and therefore indicates some understanding of the task. 

The third level is the multistructural level whereby responses contain more than one 

aspect of relevance to the given task; however, those aspects remain separated without 

being unified or integrated into a coherent structure. The fourth level of the SOLO 

taxonomy is relational. Relational responses include all the characteristics of the 

multistructural level in addition to the use of aspects that are related and integrated into 

a coherent structure. The fifth level and highest level of SOLO taxonomy is called 

extended-abstract which represents knowledge that goes beyond the task requirements 

and generalizes its structure. Several studies (e.g. Groth & Bergner, 2006) applied 

SOLO taxonomy to describe the knowledge of teachers in different contexts. 

METHOD 

Participants 

Ninety one in-service school teachers from different grade levels were selected from 

20 schools in Lebanon, particularly Beirut and its suburbs. The majority of the 

participants (75.8%) had five or more years of experience in teaching mathematics. Of 

the 91 participants, 79.8% were females and 20.2% were males. All of the participants 

had either a university teaching diploma or a BA/BS with 52.4% of them having a 

degree in math education and 29.8% having a degree in pure mathematics. 
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Instrument  

The instrument consisted of two parts. The first part collected information about 

teachers’ background including teaching experience, teacher’s major and teaching 

certificate. The second part consisted of 10 items designed by the researchers to 

examine teachers’ ability to explain student reasoning in pattern generalization. A 

sample of students’ responses were taken from a survey used in a previous study 

(Jurdak & El Mouhayar, 2013) involving 1232 Lebanese students from grades 4 to 11. 

The survey included four tasks (two linear and two non-linear). Each of the items 

displayed the problem (a linear or non-linear task showing the first four figural steps) 

and students’ responses to the (1) near generalization (predicting steps 5 and 9) and (2) 

far generalization (predicting step 100 or step n). Teachers were asked to analyze one 

of the two generalization types (near or far) for each of the ten items. For example, 

participants were asked to analyze student reasoning for step n for item 8 from the 

questionnaire (Figure 1). For each item, participants were asked "How did the student 

think to get the number of squares? 

The internal reliability of the questionnaire was calculated and Cronbach’s alpha was 

found to be 0.788. The questionnaire was piloted with in-service mathematics teachers 

from different grade levels to make sure that all the items were understood. 

 

Figure 1: Item 8 from the questionnaire in a non-linear pattern 
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Data collection and analysis  

In each of the 20 schools, participants filled out the questionnaire individually in the 

presence of the investigator. Filling out the questionnaire took around 90 minutes. 

The data obtained were subjected to a series of analyses. First, for each item a rubric 

based on the SOLO taxonomy was constructed for the purpose of evaluating the 

teachers’ responses to the questionnaire items. In particular, for each of the 10 items in 

the questionnaire, the investigator identified the elements and relationships that 

constituted a complete and coherent explanation of the students’ responses. The scale 

points of a rubric were as follows: A teacher’s explanation was given a score of 3 

“relational” if the teacher identified all the elements of student’s reasoning and 

connected them together; 2 “multistructural” if the teacher identified more than one 

element but did not address the relationships among these elements or did not address 

all the elements of student’s reasoning; 1 “unistructural” if the teacher identified only 

one element and 0 “prestructural” if the teacher’s explanation indicated a refusal or 

inability to become engaged in the problem. Two researchers coded the data 

independently and the discrepancies in coding were negotiated until consensus was 

reached. Second, cross-tabulations of teachers’ ability to explain students’ reasoning 

by (1) function type (linear and non-linear) and (2) pattern generalization type (near 

and far) were done to explore the possibility of significant differences. For this 

purpose, significant Chi-squared values and the adjusted residual values were 

examined. Third, a qualitative analysis was done on teachers’ explanations in order to 

understand the differences in their ability to explain student reasoning by function type 

and pattern generalization type. Specifically, the qualitative analysis focused on the 

extent to which the elements and relationships were missing in teachers’ explanation. 

For each item, the elements and relationships in each teacher explanation were 

identified based on the corresponding rubric. Consequently, the elements and 

relationships that were missing in teachers’ explanations were identified from the 

rubric and the percentages for the missing elements and relationships were determined. 

RESULTS   

Teachers’ ability to explain students’ reasoning by function type 

The cross tabulation of teachers’ ability to explain students’ reasoning by function 

type is shown in Table 1. Chi-squared was significant (
2
 (3) = 22.424, p = 0.00) 

indicating significant differences in teachers’ explanations.  

For each of the linear and non-linear tasks, teachers showed different abilities to 

explain students’ reasoning: pre-structural, uni-structural, multi-structural and 

relational with some variation in the relative frequencies across those levels (Table 1). 

Table 1 shows that teachers’ explanations for linear tasks were mainly classified 

(based on the mode) as relational (29.7%) whereas teachers’ explanations for 

non-linear patterns were mainly classified as either pre-structural (27.9%) or 

multi-structural (27.9%). 
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Function type   Prestructural Unistructural Multistructural Relational Total 

Linear (%) 17.1*
1
 28.6 24.6 29.7* 100.0 

Non-Linear (%) 27.9* 23.7 27.9 20.4* 100.0 

Total (%) 22.5 26.2 26.3 25.1 100.0 

Table 1: Cross tabulation of teachers’ explanations by function type 

A paired-samples t test was conducted to compare the mean of teachers’ explanations 

of students’ reasoning for the linear tasks (M=1.67, SD=1.077) with that of non-linear 

tasks (M=1.41, SD=1.101) and the difference was significant (p<0.05), which 

indicates that teachers’ explanations of students’ reasoning for linear tasks exhibited a 

larger amount of data (elements and relationships) than those for the non-linear tasks. 

Teachers’ ability to explain student reasoning by pattern type 

The cross tabulation of teachers’ ability to explain students’ reasoning by pattern 

generalization type is shown in Table 2. For the four types of tasks, Chi-squared was 

significant (
2
 (3) = 26.597, p = 0.00) indicating significant differences in teachers’ 

ability to explain students’ reasoning.  

Table 2 shows that teachers’ explanations for near tasks were mainly classified (based 

on the mode) at the multistructural level (30.1%) whereas teachers’ explanations for 

far tasks were mainly classified at the relational level (32.3%). 

Pattern type Prestructural Unistructural Multistructural Relational Total 

Near (%) 24.6 27.5 30.1* 17.8* 100.0 

Far (%) 20.4 24.8 22.4* 32.3* 100.0 

Total (%) 22.5 26.2 26.3 25.1 100.0 

Table 2: Cross tabulation of teachers’ explanations by pattern generalization type 

A paired-samples t test was conducted to compare the mean of teachers’ explanations 

of students’ reasoning for near tasks (M= 1.41, SD= 1.045) with that for far tasks (M= 

1.67, SD=1.131) and the difference was significant (p<0.05), which indicates that 

teachers’ explanations of students’ reasoning of far tasks exhibited a larger amount of 

data (elements and relationships) than those for near tasks. 

A qualitative analysis of teachers’ explanations focused on the amount of data 

(elements and relationships) that are used in explaining students’ responses. The 

qualitative analysis suggests that teachers’ explanations coded at the relational level 

used several elements of the students’ responses and related them together. 50.2% (120 

out of 239) of the teachers’ explanations that were coded multistructural missed 

elements that were strategy specific whereas 49.8% (119 out of 239) of the teachers’ 

                                           
1
 * indicates that the adjusted residual was greater than2 
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explanations focused on several elements of student reasoning without relating them. 

Explanations that were coded unistructural missed at least two elements that were 

strategy specific. Exemplars were produced to illustrate different levels of teachers’ 

explanations and to clarify discrepancies in explaining student reasoning in pattern 

generalization tasks. 

The following excerpts are examples of teachers’ explanations of a student reasoning 

in a far generalization task (step n) of a non-linear pattern (Figure 1). The pattern was 

perceived by the student as a large square in the middle with dimensions (n-1) by (n-1) 

and two additional rows at the top and bottom each of size equal to n.  

Explanation at the relational level:  

The student separated the middle part of the figure from the upper and lower rows and 

noticed that the middle part is a square of dimensions equal to figure number minus 1. The 

area of the inside part is (n-1)2 such that n is the figure number. The number of squares in 

each of the upper and lower rows is equal to the figure number so it would be 2n for the two 

rows. For example, for figure 4 it would be 3×3 for the middle part and 2×4in the upper and 

lower rows.   

Explanation at the multistructural level: 

The student related the figure number to the number of squares in the first and last row and 

to the number of rows in the middle. 

The teacher’s explanation explicitly referred to the different parts of the pattern and 

that there is a relationship with the figural step number, but did not explicitly point out 

the relationship of each part with the step number. 

Explanation at the unistructural level: 

The student found a relationship between the figure number and the number of squares in 

each of the first four given examples. He/she applied the formula and found the number of 

squares in step 5. The same formula was applied in step n. 

The teacher’s explanation pointed out that there is a relationship between the number 

of squares forming the pattern and the step number; however, the teacher did not 

explicitly identify the different parts of the pattern and did not relate each part of the 

pattern with the step number. 

DISCUSSION 

One major finding in this study is that there were variations in teachers’ ability to 

explain student reasoning in pattern generalization. Teachers’ explanations fell into 

four levels: prestructural, unistructural, multistructural and relational. From a SOLO 

perspective, this finding indicates that teachers’ explanations exhibited variation in the 

extent to which they used the elements and relationships found in student responses. 

This is supported by findings from other research studies that reported that teachers 

showed different abilities in analyzing students’ reasoning (El Mouhayar & Jurdak, 

2012) or in analyzing mathematical concepts and procedures (Groth & Bergner, 2006). 



Mouhayar 

4 - 264 PME 2014 

The findings in the present study indicate that teachers’ ability to explain students’ 

reasoning in linear patterns seems to be significantly higher than that of non-linear 

patterns. This finding does not parallel findings from previous research which indicate 

that differences between teachers’ abilities to identify student rules for linear and 

non-linear patterns were not significant (EL Mouhayar & Jurdak, 2012). One plausible 

explanation for this finding is that linear patterns are less complex than non-linear 

patterns since the growth between the consecutive figural steps is constant whereas the 

growth in the latter varies. 

The findings in the present study showed that teachers’ ability to explain students’ 

reasoning of far generalization tasks exhibited a larger amount of data (elements and 

relationships) compared to the explanations of near generalization tasks. This result 

does not parallel findings from other studies that indicate that while near generalization 

tasks were accessible to preservice teachers, they have difficulties in establishing and 

justifying a rule for the far generalization tasks (Rivera & Becker, 2007). 

In conclusion, the findings in this study suggest that a move to help teachers in 

developing their abilities to analyze students’ reasoning in pattern generalization is 

needed to ensure that teachers will have the ability to involve their students in 

pattern-based instruction as an approach for developing algebraic reasoning. 
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USING MODELING-BASED LEARNING AS A FACILITATOR OF 

PARENTEL ENGAGEMENT IN MATHEMATICS: THE ROLE OF 

PARENTS’ BELIEFS 

Nicholas G. Mousoulides 

University of Nicosia, Cyprus 

 

Being part of a larger research project aimed at connecting mathematics and science 

to the world of work by promoting mathematical modeling as an inquiry based 

approach, the present study aimed to  (a) describe parents’ beliefs about 

inquiry-based mathematical modeling and parental engagement, and (b) explore the 

impact of a modeling-based learning environment on enhancing parental engagement. 

Results from semi-structured interviews with 19 parents from one elementary school 

classroom revealed strong positive beliefs on their engagement in their children 

learning, an appreciation of the modeling approach for bridging school mathematics 

and home, and their willingness to collaborate with teachers. Implications for parental 

engagement in mathematics learning are discussed. 

INTRODUCTION  

This study argues for an inquiry-based approach (IBL) in the teaching and learning of 

mathematics, one that is based on a models and modeling perspective (Lesh & Doerr, 

2003). A modeling based IBL approach can serve as an appropriate means for bridging 

complex real world problem solving with schools mathematics (English & 

Mousoulides, 2011). This connection is necessary, as complexity gradually appears in 

all forms of the society and the education, and new forms of mathematical thinking are 

needed. Further, a modeling based IBL approach could contribute in enhancing 

students’ abilities in designing experiments, manipulating variables, working in teams, 

and communicating their solutions with others (Mousoulides, 2013).  

Integrating such an innovative approach in mathematics is not an easy process. It 

conflicts with various factors, including national curriculum requirements, teachers’ 

beliefs and practices, and parents’ beliefs and attitudes towards such innovations. The 

significance of parents’ role has been documented in a number of studies (see Epstein 

et al., 2009), and parental engagement has been documented as a positive influence on 

children’s achievement, attitudes, and behaviour. However, achieving appropriate 

parental engagement is a difficult and long-term process, and teachers should 

collaboratively work with parents to find the best appropriate methods. The present 

study targets the identified lack of studies, and examines parents’ beliefs on their 

engagement in their children learning in mathematics, and on communication with the 

classroom teacher and students, by focusing on a teaching experiment on mathematical 

modeling.  
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THEORETICAL FRAMEWORK   

The theoretical framework focuses on two strands: (a) instructional interventions to 

promote mathematical inquiry through a modeling perspective, and (b) parental 

engagement in the mathematics classrooms with an emphasis on parents’ beliefs.  

A Modeling Perspective in Inquiry Based Learning in Mathematics  

In successfully working with complex systems in elementary school, students need to 

develop new abilities for conceptualization, collaboration, and communication. In 

achieving these abilities, a number of researchers propose the use of an inquiry-based 

approach in the teaching of mathematics, one that builds on interdisciplinary 

problem-solving experiences that mirror the modeling principles. In this study we 

adopt the use of Engineering Model-Eliciting Activities (EngMEAs); realistic, 

client-driven problems based on the theoretical framework of models and modeling 

(English & Mousoulides, 2011). 

EngMEAs have been in the focus of our work for the last few years (see Mousoulides, 

Sriraman, & Lesh, 2008; Mousoulides, 2013). EngMEAs provides an enriched 

modeling approach by offering students opportunities to repeatedly express, test, and 

refine their current ways of thinking as they endeavour to create a structurally 

significant product for solving a complex problem. The development of the models 

necessary to solve the EngMEAs has been described by Lesh and Zawojewski (2007) 

in terms of four key, iterative activities: (a) Understanding the context of the problem / 

system to be modelled, (b) expressing / testing / revising a working model, (c) 

evaluating the model under conditions of its intended application, and (d) documenting 

the model throughout the development process. The cyclic process is repeated until the 

model meets the constraints specified by the problem.  

Parental Engagement  

Parental engagement has been documented as a positive influence on children’s 

achievement in mathematics, regardless of cultural background, ethnicity, and 

socioeconomic status (Epstein et al., 2009; Ginsburg-Block, Manz, & McWayne, 

2010). Active parental engagement, however, is quite difficult to be maintained. 

Therefore, programs of parental engagement should be carefully designed and 

implemented, taking into account all related variables and barriers (Vukovic, Roberts, 

& Wright, 2013). Musti-Rao and Cartledge (2004) suggest inviting parents’ 

experiences in into discussion, and including parental engagement strategies in teacher 

professional development courses. They also propose a number of strategies for 

engaging parents, such as mathematics and science fairs, community involvement 

utilizing engineering experts, and the establishment of a clear communication between 

teachers and parents, in an attempt to bridge teachers’ and parents’ beliefs and 

expectations (Musti-Rao & Cartledge, 2004; Vukovic et al., 2013).  

Epstein and Van Voorhis (2001) identify teacher and parents beliefs as an important 

barrier to creating effective relationships between home and school. Parents’ beliefs on 
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mathematics teaching and learning and the significance of their engagement might also 

impact parental engagement. Often, the beliefs and expectations between families and 

educators are not shared collectively, and in many cases parents might have negative 

beliefs that can lead to stereotypes regarding the relationship between them and 

teachers. In order for parents’ beliefs to change into positive ones, parents should be 

open to invitations to be engaged in school mathematics, while more parental 

engagement training on how to work with parents and communities is needed for 

teachers (Epstein, et al., 2009; Ginsburg-Block, et al., 2010). 

THE PRESENT STUDY 

The Purpose of the Study 

This study investigated parents’ beliefs on their engagement in their children learning 

in mathematics, during the implementation of two complex modeling activities, in an 

elementary school classroom. Specifically, the study focused on parents’ beliefs on the 

learning environment that was generated, parents’ beliefs on their engagement, and 

their experiences with regard to collaboration and communication.  

Participants and Procedures 

The research presented in this study was part of MASCIL, a larger research design that 

includes: (a) inquiry-based mathematics and science instruction, (b) integration of 

engineering model-eliciting activities as a means to connect school mathematics to the 

world of work, and (c) examination of the appropriateness of various forms of parental 

engagement, including workshop participation, participation in classroom activities, 

and communication with teachers. During her participation in MASCIL, a longitudinal 

four-year project on Inquiry and Modeling Based Learning in Mathematics and 

Science, Nefeli (pseudonym) an elementary school teacher in a public K-6 elementary 

school in Cyprus, participated in a five-day professional development course on 

inquiry- and modeling-based teaching and learning in mathematics. Following her 

participation in the training, Nefeli organized the implementation of two modeling 

activities in her 6
th
 grade (12 year olds) classroom.    

Prior to the implementation of the modeling activities, the parents of all students in 

Nefeli’s classroom (36 people) were invited to attend a presentation on the role of IBL 

and modeling in the learning of mathematics. Twenty-seven parents attended the 

presentation. Based on the feedback received by the participants, two three-hour 

workshops for parents were designed and delivered, prior to the implementation of the 

modeling activities. Nineteen parents and the classroom teacher participated in both 

workshops. During the workshops parents had the opportunity to work in groups in 

solving a modeling problem, and to discuss with the researchers and the teacher on 

how parental engagement could facilitate students’ learning in mathematics. During 

the second workshop parents had the opportunity to familiarize themselves with the 

two modeling activities that were to be implemented in the classroom. Parents were 

also introduced to Twitter
®
 and on the possibilities it could provide for the 
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mathematics classroom, as an online technological tool which can break down the rigid 

classroom schedule barriers and allow teachers, students, and parents to collaborate. 

During the implementation of the modeling activities parents were encouraged to 

reflect on and comment on their children developments in the classroom, using 

Twitter
®
.  

The Implementation of the Model Eliciting Activities 

The two modeling activities (Water Shortage and Bridge Design) followed the design 

principles of the model eliciting activities, as these are described by Lesh and 

colleagues (Lesh & Doerr, 2003). Activities are not presented here due to space 

constraints; however a detailed presentation of the activities can be found elsewhere 

(see Mousoulides, 2013; English & Mousoulides, 2011). Each model eliciting activity 

entailed: (a) a warm-up task comprising a mathematically rich newspaper article, 

designed to familiarize the students with the context of the modeling activity, (b) 

“readiness” questions to be answered about the article, and (c) the problem to be 

solved, including complex tables of data. The Water Shortage activity asked students 

to assist the local authorities in finding the best possible country that could supply 

Cyprus with water. The Bridge Design activity required students to develop a model 

for calculating the cost for various bridge types. Both activities required students to 

develop their models for solving the problems by integrating both quantitative and 

qualitative factors.  

The activities were implemented by the classroom teacher and the author. Working in 

groups of three, the students spent five 40-minute sessions on each activity. During the 

first two sessions the students worked on the newspaper articles and the readiness 

questions and familiarized themselves with software that was used for solving the 

problems (Google Earth & Spreadsheets) and for communicating their results 

(Twitter
®
 & Wikis). In the next two sessions students worked on solving the problems. 

They developed a number of appropriate models for solving the problem, and shared 

these models with their teacher and parents. During model development students were 

prompted by teachers to share their ideas with their parents. To facilitate model 

sharing, a public Wiki was created, in which students could easily upload their files. 

Student then shared the links to their models with their parents, using appropriate 

tweets. The great majority of parents participated in the implementation of the 

activities, by following student groups’ tweets and provided feedback and suggestions 

to students’ models using Twitter
®
 and the Wiki. All communication was held on an 

entirely anonymous basis, as to avoid only interactions between parents and their child; 

student groups were assigned random names (e.g., Aristotle, Plato etc.), and parents 

were also assigned names like parent 1, parent 2 etc. During the last session students 

wrote letters to local authorities (as required by the activities), explaining and 

documenting their models/solutions. Finally, a class discussion focused on the key 

mathematical ideas and relationships that students had generated took place.  
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Interviews 

All nineteen parents were invited to participate in individual interviews. Seventeen 

parents (representing thirteen families) accepted the invitation and participated in 

individual semi-structured interviews. Three areas of interest were investigated: (a) 

parents’ beliefs on the environment generated, which was based on mathematical 

modeling, and the implementation of the EngMEA, (b) participant’s beliefs on parental 

engagement, and (c) her/his experiences during the EngMEA implementation with 

regard to collaboration and communication with the teacher and the students. The 

interviews were conducted right after school or in the early evening. Each interview 

lasted between 30 to 45 minutes and all interviews were audio recorded and later 

transcribed. Data were summarized through sequential analysis, and a grounded theory 

approach was adopted. Themes were identified and clustered through axial coding, 

which was conducted in AtlasTI software. 

RESULTS 

Results are based on the qualitative analysis of the interviews. The results are 

presented in terms of the themes that arose from the sequential analysis of parents’ 

beliefs, with regard to the role of the mathematical modeling environment that was 

generated, and with regard to the collaboration and communication with the teacher 

and their children.   

Parents’ Beliefs on the Role of the Modeling Environment  

Parents reported very positive beliefs with regard to the modeling activities, and the 

learning environment that was generated. They commented that the activities were 

interesting and challenging. They were also very emphatic on how positively their 

children worked on the activities. One parent mentioned: “It is not very often that we 

discuss at home in such an explicit and detailed way her (his daughter) work in 

mathematics […] she liked the bridge problem so much […] it (the activity) was very 

challenging also for me, and we spent like at home to explore various things on 

bridges.” Another parent said: “Such activities could help our children to develop 

important skills, needed beyond school […] I am very pleased that Nefeli is using such 

innovative approaches.”  

The vast majority of parents mentioned that such activities were challenging, not only 

for their children, but also for them. One parent who was actively involved in the 

activity commented: “It was challenging to see interesting problems with no clear 

answers. I even discussed the activity with my husband a few times, and we both 

enjoyed the discussions with Andreas (their son).” She continued by clarifying: “I 

frequently visited the Wiki and commented on students’ tweets. It was great! And my 

son also liked it very much. Believe it or not, he even discussed the activity with his 

cousins.” Another parent expressed: “Students had a challenging opportunity to ask 

like professionals […] take into account various constraints, working with complex 
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data, drawing assumptions, and looking for more data on the Internet […] such skills 

are so powerful and important.”  

Less positively, some parents mentioned that the activities were interesting, but rather 

difficult, especially the Bridge Design. Three parents mentioned that the activity was 

quite complicated, even for them. They expressed that their children experienced 

various difficulties in working with the problem, and that they would prefer their 

children to work with similar activities (model eliciting) but rather easier ones.  

Parents’ Beliefs on Communication and Collaboration 

To improve their engagement, parents seemed to unanimously agree that good 

communication and active engagement was key. A parent noted: “I enjoyed the two 

workshops very much, although it was easy to participate […] workshops helped me a 

lot in understanding the concepts that were taught in the activities and in handling the 

Wiki.” Another parent added: “Working with our children in this project is very 

promising […] we like it, and we also see that our engagement is appreciated by our 

teacher.”  

Although quite satisfied with the situation, parents explicitly mentioned that they 

expected from school and teachers to do more, in order to enhance their (parental) 

engagement. It was revealed that school’s climate had a significant impact on the 

overall effectiveness of parental engagement. From parents’ responses a number of 

factors were uncovered, showing what schools should do in order to encourage and 

enhance parental engagement. A parent mentioned that schools should promote 

parental engagement using various methods, and not only by expecting from parents to 

be engaged. She said: “Schools and teachers must actively seek and promote the 

parental engagement. Not all parents are engaged by default”. The importance to 

implement initiatives that engage students was also mentioned by two parents. One of 

them mentioned: “Such activities are one of the best ways to engage parents, because 

their children are also much engaged. When children are excited and discuss their 

mathematics work at home, parents are more inclined to be engaged in mathematics. 

All parents underlined the necessity for open communication in order to improve 

parental engagement. One parent noted that open communication was the key to 

accessibility. He commented that: “Parents should feel comfortable enough with the 

teachers to ask content-related questions, and even spend time on working on 

activities, if we are expected to assist our children at home.” Another parent 

highlighted the importance of constant communication. She explained: “Every parent 

wants to be involved in her learning […] this should be welcomed by teachers and the 

school Head, and we should be able to freely communicate with them. An appropriate 

atmosphere is needed for successful parental engagement.”  

Although quite satisfied with the situation, parents explicitly mentioned that it was 

expected for school and teachers to do more in order to enhance parental engagement. 

It was revealed that a school’s climate and culture impacted the overall effectiveness of 

parental engagement efforts in a significant way. From parents’ responses a number of 
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suggestions emerged for what schools should do in order to better encourage and 

enhance parental engagement. Parents explicitly highlighted how the activities assisted 

in building a partnership climate between parents and teachers. The activities opened a 

whole new space for fruitful collaboration and created better communication channels 

among parents, teachers, and children. “I had the feeling that we (parents and teachers) 

were equal partners,” one parent commented. She continued: “It was far better than 

sitting at the back in the classroom and watching a lesson. We were actively involved 

and we had constant communication with our children and the teacher. It was really 

good.” Another parent added: “I found those messages [tweets] a much more 

appropriate method of communication than signing tests […] I knew exactly what my 

child did in the activity, and even better I could now observe the process, not only the 

results.” 

DISCUSSION  

The purpose of this study was to examine parents’ beliefs on parental engagement in 

mathematics teaching and learning, with a focus on modeling as a problem based 

approach. The results supported the expectation that such an approach was likely to 

positively affect teachers-parents’ partnership and possibly student outcomes (Epstein 

et al., 2009). The environment generated, provided opportunities for parents and 

teachers to establish appropriate communication and collaboration venues, which 

resulted in improved students’ models (English & Mousoulides, 2011). The modeling 

activity implementation as a means to engage parents in school mathematics could be 

considered successful, while parents responded positively to their new roles as 

engaging partners in their children learning. During interviews, parents revealed 

positive beliefs towards innovations like a models and modeling perspective. Parents 

also reported significant positive beliefs towards their engagement in schools, 

indicated at the same time the necessity for the school and teachers to take actions. 

Parents identified that a clear and constant bidirectional communication venue was 

urgently needed and they stressed that the modeling environment could be a successful 

method to achieve this goal.  

The findings from this study suggest a need for researchers to expand their definitions 

of parental engagement, beyond traditional ideas of school and classroom norms, to 

include a dimension related to active parental engagement and technology rich 

modeling environments. Despite its limitations, this study provides new insights into 

the importance of modeling related parental engagement practices in mathematics 

teaching and learning. It suggests that teachers and schools that have positive beliefs 

towards parental engagement and facilitate the use of inquiry- modeling-based 

approaches are more likely to have positive active parental engagement and probably 

better students’ learning results. Unquestionably, students need high-quality 

instruction to improve mathematics learning. However, if schools, teachers, and 

parents work together in creating appropriate, collaborative environments, they are 

more likely to see higher students’ learning outcomes.  
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DEVELOPING CONCEPTUAL UNDERSTANDING OF PLACE 

VALUE: ONE PRESERVICE TEACHER’S JOURNEY 

Jaclyn M. Murawska 

North Central College 

 

This paper reports on a portion of a research study that examined the development of 

43 preservice elementary school teachers’ conceptual understanding of place value, 

and highlights the experiences of one middle-performing preservice teacher. After 

participating in a research-based constructivist unit of instruction in place value, the 

findings showed that the preservice teachers demonstrated a statistically significant 

change in place value understanding. Common emergent mathematical qualities and 

qualities of disposition were identified in the qualitative analyses. These data provided 

insight into this preservice teacher’s thinking strategies. 

INTRODUCTION 

It is widely documented in the research literature that many elementary teachers lack 

sufficient depth of understanding of the mathematics they are expected to teach (Ball, 

1990; NRC, 2001). Oftentimes, elementary teachers can reproduce mathematical 

procedures, but they do not understand why the procedures make sense conceptually 

(Ma, 2010). Thus strengthening the mathematical content knowledge for teaching and 

improving constructivist-based pedagogical practices in teacher education programs 

should be explored (e.g., Hill, Blunk, Charalambous, Lewis, Phelps, Sleep, & Ball, 

2008). Because place value is the foundation of number sense and the prerequisite to 

multidigit operational fluency (AMS, 2001; NCTM, 2000), it is an important topic for 

elementary teachers. Therefore the purpose of this research study was to examine the 

development of preservice elementary teachers’ conceptual understanding of place 

value within a constructivist framework.  

THEORETICAL FRAMEWORK 

The learning theory of constructivism provided the framework and the lens through 

which the research was conducted, informed by the works of many researchers (e.g., 

Cobb, 1996; Noddings, 1990). The core components of constructivism in the 

mathematics classroom were explicit in the study’s instructional sequence as follows: 

(a) role of student as active learner and as the authority on mathematical justification, 

(b) role of teacher as facilitator of learning and expert in questioning techniques, and 

(c) role of the classroom environment with a focus on discussion and problem solving. 

The intervention for the research study was a constructivist instructional sequence 

designed by the researcher to develop conceptual understanding of place value. The 

place value instructional content was a blend of the works of Fosnot and Dolk (2005), 

McClain (2003), Safi (2009), and Yackel and Bowers (1997), in which place value was 
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described in terms of three interrelated observable subconstructs: (a) quantification in 

the base ten numeration system, (b) invariance of number when composing and 

decomposing, and (c) the meaning of regrouping in multidigit addition and subtraction. 

The place value instruction built upon the theoretical conceptions of number (Fuson, 

1990; Kamii, 1986), taking into consideration the complexity of place value, including 

key ideas such as the position of a digit, grouping, trading, and unitization. The 

researcher-developed assessment instruments as well as the interview protocols were 

anchored in this research literature on place value.  

METHODOLOGY 

Because the majority of current empirical research on preservice teachers’ place value 

understanding has been purely qualitative, a mixed methods approach was used to 

collect data from 43 preservice elementary school teachers enrolled in the mathematics 

methods course. Quantitative place value data were collected from all 43 participants 

through administration of one pretest and two posttests. Data were analyzed using a 

repeated-measures analysis of variance (ANOVA) for correlated samples. 

In the larger study, six participants were chosen to be interviewees based on their 

scores on the place value pretest—two low-performing, two middle-performing, and 

two high-performing. Qualitative data for these six participants, collected through two 

sets of interviews and document reviews in the form of homework and journal entries, 

were analyzed through a process of coding. The first cycle used provisional coding, 

using codes identified a priori adapted from Cobb and Wheatley’s (1988) concepts of 

ten. Also included in the first cycle was initial coding, in which open-ended notes were 

made to characterize the preservice teachers’ thinking strategies and record any salient 

affective observations. The second cycle used focused coding and inductive analysis to 

identify themes in the data (Patton, 2002), and the third cycle of coding added a layer 

of analysis to align with current national initiatives (e.g., Common Core Standards for 

Mathematical Practice, CCSS, 2011). As a result of this qualitative data analysis, six 

common emergent mathematical qualities and three common emergent qualities of 

disposition were identified, as shown in Figure 1. 

Developing Quality 

 Mathematical Qualities 

   Flexibility, reversibility of composition and decomposition 

   Connections made between mathematics topics 

   Efficiency 

   Development of self-created notation 

   Improved mental mathematics proficiency 

   Precise vocabulary, e.g., groups, unitization 

 Qualities of Disposition 

   Comfort, trust, confidence in doing mathematics 

   Self-reflection, metacognition aided own understanding  

   Awareness of need for both procedural and conceptual knowledge 

Figure 1: Common Developing Qualities of Six Interviewees 
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RESULTS AND DISCUSSION 

Examining first the larger context of the study, prior to participating in the instructional 

sequence on place value, the 43 preservice teachers enrolled in the mathematics 

methods courses demonstrated developing levels of overall place value understanding 

but limited levels of base ten understanding. After participating in the place value 

instructional unit, the repeated-measures analysis of variance (ANOVA) of the pre- 

and posttest data showed that the preservice teachers’ level of place value 

understanding had changed significantly, F(2, 41) = 100.68, p < .001, partial eta
2
 = .71, 

placing the preservice teachers’ level of place value knowledge between the 

developing and full levels of understanding. These ANOVA results suggest that the 

intervention of the constructivist instructional sequence was effective since the scores 

increased over time.  

Though immersed in a larger study, this paper will focus on the journey of one 

preservice teacher, Liz, to illustrate a few of the emergent qualities identified in the 

qualitative analysis. In the original sampling, Liz was chosen as a middle-performing 

participant because her pretest score represented the median as compared to her 

classmates in her elementary mathematics methods course. In the present paper, Liz’s 

journey is highlighted because of her ability to be self-reflective of her own 

mathematical learning.  

Liz: Prior to Implementation of Instruction 

Prior to Liz’s participation in the instructional sequence, an initial interview was 

conducted to gain insight into the participants’ thinking strategies on the pretest. This 

interview started with a focus on base ten items, beginning with pretest item 5, Figure 

2. Liz’s first few statements in this interview were characterized by her reliance on 

procedural thinking, as illustrated in the following excerpt. 

5. Please consider the regrouped ones in the problem below: 

   1 1 

        389 

   + 475  

   864 

 a. What does the 1 above the 8 represent? 

 b. What does the 1 above the 3 represent? 

Figure 2: Item 5 on pretest (Thanheiser, 2010). 

Interviewer: My first question is about number 5: Please consider the regrouped ones in 

the problem below. I’m hoping that I’ve asked you questions you’ve never 

thought about before, like about these [regrouped] ones. 

Liz: Some of these tripped me up because no one has ever made me clarify them 

before. I just know that’s how it is? 

Interviewer: That’s right. And you know how to get the answer. 

Liz: Right, exactly. 
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Interviewer: And you never really thought about it deeply. And then as a teacher of 

mathematics, this is something we should be thinking about. So, what does 

the 1 above the 8 represent? What are your thoughts? 

Liz: I think I put down that it represented 1. I guess I was thinking that because I 

know that it’s 8 + 7 + 1, which comes to 16, so I just assumed that it 

represents 1. Now I’m analyzing everything…I guess it could represent 10 

because you could be adding it to the—no, that wouldn’t make sense. 

Never mind. Because it would be 10, then it would be 18 + 7 and that 

wouldn’t work. So I still don’t know! 

Interviewer: Okay. What about the other 1 [over the 3]? Do you think it means the same 

thing? 

Liz: Yeah, as of right now, yeah, because—it’s 4 + 3 + 1. 

Liz seemed to be following the verbal representation of the addition algorithm to 

describe her thinking for item 5. Even though Liz used metacognition strategies to 

rethink her answer, talking aloud reconfirmed her misconception of the values of the 

regrouped ones. In a subsequent discussion of a base ten subtraction problem during 

this interview, her response reflected a lack of understanding of the underlying base ten 

base ten concepts, as she was unable to see the unitization of a regrouped 1 

simultaneously having a value of 100 and 10 groups of ten. 

The last portion of Liz’s first interview was focused on base eight addition and 

subtraction problems set in the “Candy Factory” context, adapted from Bowers, Cobb, 

and McClain, 1999. On her pretest, Liz had solved these by converting into individual 

candy pieces, calculating in base ten, then repacking the candy back into base eight. 

With very little guidance from the interviewer during this first interview, Liz was able 

to begin using a more symbolic, efficient method of recording her trades in base eight 

for one subtraction problem. After obtaining her answer, she exclaimed, “Oh my gosh! 

That’s crazy! I would never have thought of it that way, though.” It was at this point in 

the interview that she articulated commonalities between the written algorithms across 

different place values with different bases. Thus, even before formal classroom 

instruction, Liz was beginning to exhibit some of the identified emergent qualities: 

connections made between mathematics topics; efficiency (in base eight computation); 

and self-reflection, metacognition aided own understanding. 

Liz: During Implementation of Instruction 

Liz’s journal responses to daily journal prompts provided rich descriptions of turning 

points in her understanding. On Liz’s third journal prompt, she was asked to describe 

one thing about place value that she didn’t know before the unit. She had written: “That 

sometimes in subtracting, borrowing from another number can represent a couple 

things. When we take from the hundreds column, it is actually a group of 100, but we 

treat it like a ten.” Here, Liz alluded to unitization between the tens and hundreds 

columns, and how these concepts provide meaning to the standard written algorithm 

for subtraction.  
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Liz: Following Implementation of Instruction 

Liz’s second interview was conducted after the administration of the first posttest, 

which showed an improvement of her overall place value understanding, especially in 

base ten concepts. When asked during this second interview to explain her thinking on 

posttest 1 item 6b, Figure 3, Liz’s journey of understanding took an interesting turn. 

Following is the dialogue that took place regarding item 6b. 

6. Please read over Ryan’s work then answer the question which follows. 

 
  Below is the work of Ryan, a second grader, who solved  

   this addition problem and this subtraction problem in May. 
    

  Problem A Problem B 

                                                       1                            2 1 

 438 345 
 +   47 −   52 
 485 293 
 a. Does the 1 in each of these problems represent the same amount? Please explain your answer. 

b. Explain why in addition (as in Problem A) the 1 is added to the 5, but in subtraction (as in 

Problem B) 10 is added to the 2. 

Figure 3: Item 6 on posttest 1, adapted from Thanheiser (2010). 

Interviewer: Now tell me about the 1 in subtraction and how it might be different [from 

the 1 in the addition problem]. 

Liz: For this one, it’s 345 and we can do 5 − 2, but we can’t do 4 − 5. So you 

borrow from the hundreds column. You’re borrowing 100 and making this 

200. And you’re moving it over to this column, so what it really is, it’s still 

345 because it’s 200 + 145. But when you move it over to this column, you 

treat it as a ten, but it’s 10 groups of ten. 

Interviewer: Aha, I think you’ve answered my next question. This 1 you said came from 

here so it means 100 this time, not 10. But even though it means 100, you 

said it means 10 groups of ten. My next question was why don’t we go 1 + 

4, but here you go 10 + 4? 

Liz: Because it’s ten groups of ten, not one group of ten. 

Interviewer: Yes! Ten groups of ten plus four groups of ten that’s 14 − 5 and you end up 

with 9. But you’re still in the tens column, so it’s nine groups of ten. You 

got it. 

Liz: I think I finally got it! 

Interviewer: I don’t think you said it right though on the second time around [posttest 1]. 

I think the second time around, you speak to the procedure, how it makes it 

easier, carrying, you’re over the limit so you’ve got to go the next one. 

Liz: Did I not talk about all those groups? 

Interviewer: But you didn’t tell me what you just told me here…. 

Liz: I think it was because I think it’s taken until right now. 
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Liz’s self-reflection during the second interview led her towards a more conceptual 

understanding of place value. She now spoke enthusiastically in terms of like groups of 

numbers, and therefore was unitizing, even though she still used the traditional 

“borrowing” language. Hence, Liz’s comments provided evidence of three developing 

qualities: precise vocabulary, e.g., groups, unitization; flexibility, reversibility of 

composition and decomposition (of base ten numbers); and comfort, trust, confidence 

in doing mathematics.     

Also during the second interview, Liz was asked to identify which classroom activities 

were most helpful in guiding her towards deeper understanding of base ten concepts. 

She cited that counting in base eight and finding base eight sums mentally were also 

helpful classroom activities: 

Liz: I thought the counting itself takes a while to get used to just because you 

don’t go to 10, you go to 8 and it starts over.…And I guess adding could 

be—I felt like I was doing grouping more in my head almost. When you 

had to add numbers, because if it was over— 

Interviewer: If it was over a rod? 

Liz: I was comfortable between 1 and 7, but once it went over 8, it was like wait, 

what does that represent now? 

Interviewer: Right, like if it was 7 + 2?  

Liz: Yeah, and then didn’t we say it was like one-ee-one? 

Interviewer: One rod and an extra one: one-ee-one. 

Liz: It was weird because one-ee-one in my mind is eleven, but it wasn’t eleven. 

Interviewer: Because it’s one group of eight and an extra. That’s good. So it made you 

think? 

Liz: Yeah, definitely made me think. 

When Liz stated that she was beginning to group in her head, this was evidence that she 

was developing the quality improved mental mathematics proficiency (in base eight). 

Near the end of the second interview, Liz reflected on her experiences thus far. The 

following excerpt illustrates the quality awareness of need for both procedural and 

conceptual knowledge. A distinction is made here that this does not refer to the 

preservice teachers’ acquisition of both procedural and conceptual knowledge, which 

is indeed important (Hiebert & Lefevre, 1996). Instead, this quality was designated if 

the participant expressed an awareness (newly discovered for most) of the need for 

conceptual knowledge underlying the procedures with which they were proficient. In 

this excerpt, Liz’s statements provide rich insight into her perception of mathematics. 

It’s just funny how much I didn’t know about those values [the regrouped ones]. 

Apparently, I didn’t know anything [laughs] because I think I just did it! We used to play 

with those cubes, and I did that right I think. But I guess I never knew how it translated to 

the algorithm.   
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This was a very powerful statement for two reasons. First, Liz had never realized, prior 

to this experience, how physical actions with manipulatives are directly connected to 

the written algorithms that they represent. But even more importantly, Liz’s statement 

about being able to correctly perform a written algorithm implied that she had 

previously thought that knowing how to do a procedure meant understanding the 

underlying mathematical concepts, which is not necessarily true.  

Liz’s Place Value Understanding: A Summary 

Prior to the instructional sequence, Liz exhibited a procedural knowledge of place 

value operations that lacked a conceptual foundation. As Liz participated in the 

constructivist instructional sequence, her place value understanding shifted from 

procedural to conceptual, exhibiting improved place value conceptual understanding in 

all three subconstructs and in the unifying themes of place value: unitization, grouping 

and trading rules, and the position of the digit determines its value. By the end of the 

study, Liz’s posttest scores placed her near full understanding of place value concepts. 

CONCLUSION AND IMPLICATIONS 

Preservice elementary teachers need rich mathematical experiences in their methods 

courses that provide them opportunities to discuss, invent, conjecture, and problem 

solve to increase their own conceptual understanding of place value. This place value 

understanding consequently provides a structure for the concepts underlying the 

written algorithms for whole number addition and subtraction. The participants’ 

thinking strategies articulated in these qualitative analyses not only provide insight into 

the quantitative data, but these strategies can also help mathematics teacher educators 

anticipate their preservice teachers’ place value misconceptions. 

The results of this study have the following implications for possible future research: a 

longitudinal study could be designed to explore connections between preservice 

teachers’ experiences and their students’ achievement in place value, an instructional 

model for constructivism could be developed to allow mathematics educators to 

readily implement constructivist strategies, or the common emergent mathematical 

qualities could be further explored to develop more robust descriptions in the context 

of cultivating mathematical habits of mind in preservice teachers. 
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FUNCTION NOTATION AS AN IDIOM1 

Stacy Musgrave, Patrick W. Thompson 

Arizona State University 

 

Functions play a large role in mathematics education beginning in middle school. The 

aim of this paper is to investigate the meaning teachers hold for function notation; 

namely, we suggest that many teachers view function notation as a four-character 

idiom consisting of function name, parenthesis, variable and parenthesis. Many of the 

teachers who engaged in tasks aimed at exploring teachers’ meanings for function 

notation responded in a manner suggestive of viewing function notation idiomatically. 

INTRODUCTION 

The function concept permeates mathematics education beginning in middle school. 

Studies show that learning the function concept is challenging, even for high 

performing undergraduates (Breidenbach, Dubinsky, Hawks, & Nichols, 1992; 

Carlson, 1998). While research continues to extend our understanding of function, 

there is still a need for exploring meanings associated with function. Wilson (1994) 

draws attention to the understanding of function for one particular pre-service teacher; 

this case study of the pre-service teacher’s thinking about functions as “computational 

activities” sets the tone for the goal in this paper of delving into the meanings teachers 

hold. Our focus shifts from the function concept in general, however, to function 

notation in particular.  

THEORETICAL FRAMEWORK 

The use of function notation is ubiquitous in mathematics beyond middle school. It is 

also commonly a teacher’s experience that, at some moment during its introduction, 

some student will ask, “Why use f(x) when all we really mean is y?” (Thompson, 

2013b). Teachers’ abilities to answer this question will be based in their meanings for 

function notation, its conventions, and its uses. As such, our goal in this paper is to 

explore teachers’ meanings for function notation.  

We consider meanings to be constructed by an individual to organize his or her 

experiences. Creating meaning entails constructing a scheme through repeated 

reasoning and reconstruction to organize experiences in a way that is internally 

consistent (Piaget & Garcia, 1991; Thompson, 2013a; Thompson, Carlson, Byerley, & 

Hatfield, in press). 

                                           
1

Research reported in this article was supported by NSF Grant No. MSP-1050595. Any 
recommendations or conclusions stated here are the author's (or authors') and do not necessarily 
reflect official positions of the NSF. 
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The function concept is a significant and complex element of mathematical fluency 

that permeates school mathematics beginning in grade 8. We choose to focus on the 

notational aspect of functions for the sake of brevity. In particular, we recall that a 

function’s definition consists of the components shown in Figure 1. 

 

Figure 1: A scheme for defining a function using function notation (from Thompson, 

2013b) 

For the working mathematician, the notation f(x) itself represents the value of the 

function f when given a value of x, with or without the associated defining rule. One 

may refer to the function f, specify the input variable x which is to be used to describe 

the rule, or call the entire f(x) to stand for the output of the function. The latter notation 

may be used to introduce a rule or to hold the place of an unknown or complex rule in 

the definition of another function. We suspect that many teachers do not have this 

meaning for function notation, and instead employ the four-character idiom—function 

name, parenthesis, variable, parenthesis (e.g. f(x)), in its entirety, as the name of a 

function.  

METHODOLOGY 

Thompson (2013a) argued the need for understanding teachers’ mathematical 

meanings because those meanings are passed on to the students. Investigating teachers’ 

in-the-moment meanings serves as a starting point for professional development to 

help teachers develop meanings that are more productive for teaching for coherence. In 

light of this, we designed tasks to explore teachers’ meanings for function, specifically 

focusing on whether function notation holds the same meaning for teachers as what we 

as researchers think of when using function notation. The tasks were administered to 

100 high school teachers as part of a larger assessment. A team developed scoring 

rubrics to characterize meanings revealed in teacher responses (Thompson & Draney, 

under review).  

Tasks 

The first task we will discuss consists of two parts. Part A asks the teacher to complete 

a function definition by filling in blanks and Part B presents sample student work for 

the teacher to explore (Figure 2).  

Part A addresses function notation as an idiom directly. We suspect that teachers who 

view function notation as a four-character idiom will read “c of v” as the name of the 

new function, and fill in the blanks with r’s and u’s because the functions referenced 

are read “w of u” and “q of r”. It is unlikely for teachers who see function notation 
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idiomatically to tease out the function name “w” from the notation w(u) because they 

view the “u” as part of the name. 

 
Figure 2: Item 1 Variable mismatch 

In the case where a teacher fills in the blanks of Part A with “v”, we included Part B to 

explore how the teacher addresses variable mismatch in student work. The sample 

work provided gives an ill-defined function f (x) =
n(n+1)

2
and requests the value of 

f(9). In particular, Part B reveals the degree to which teachers’ take notice of and can 

explain the problem of variable mismatch in a the definition of a function. A teacher 

who reads function notation idiomatically will be unbothered by the mismatched 

variables x and n in the function definition, and will compute f(9)=45. Teachers who do 

not read function notation idiomatically will, at least, observe that James’ function 

always produces the output 
n(n +1)

2
 regardless of the input x. Ideally, a teacher would 

be able to further explain to James that his function is ill-defined because the variable x 

has not been defined.  

The second task we include in this paper was designed to evaluate teachers’ tendency 

to use function notation in the rule of another function’s definition. In particular, we 

wanted to see if function notation served the purpose of representing a varying quantity 

for the teachers. So we designed a situation that necessitated the use of function 

notation to model a quantitative situation that was familiar to teachers (Figure 3). 
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Figure 3: Task 2 Rock into pond 

We anticipated that teachers might use function notation on the left-hand-side of the 

function’s definition but not use function notation to represent the circle’s radius as a 

function of time. We included the phrase “at a non-constant rate” to describe the 

growth of the circle’s radius so that teachers would not assume unthinkingly that the 

radius increases at a constant rate and hence model the scenario with r = kt .  

RESULTS 

Ninety-seven of the 100 teachers who were given Task 1 responded. Table 1 shows the 

distribution of responses. The table has two main points of interest. First, 48 of 97 

teachers filled in the blanks of Part A with u’s and r’s or otherwise did not use the 

variable v (e.g. some teachers wrote q or w in the blanks). This supports our suspicion 

that many teachers read function notation idiomatically, as explained in the task 

design. They saw what was written to the left of the equal sign as the name of what was 

written to the right of the equal sign. They did not parse the definition according to the 

scheme in Figure 1. For those teachers who filled in the blanks with something other 

than u, r or v, we suspect that the “c of v” on the left hand side of the function definition 

is read idiomatically by the teachers. These teachers are unlikely to identify “c” as the 

function name and “v” as the input variable, instead reading “c of v” as the entire 

function name. 

     Variable 

                    Mismatch  

Fill in Blanks 

f(9)=45 
f is constant 

but f(9)=45 

n(n +1)

2
 

f is 

ill-defined 
Totals 

Other 12 0 2 1 15 

u’s and r’s 26 3 2 2 33 

v in 1-3 blanks 2 1 1 3 7 

v in all blanks 17 1 12 12 42 

Totals 57 5 17 18 97 

Table 1: Teacher responses to Task 1 

The next number that stands out in Table 1 is that 57 of 97 teachers responded to Part B 

by substituting 9 for n in James’ definition to obtain a value of 45 handshakes. This 



Musgrave, Thompson 

PME 2014 4 - 285 

number shows that most teachers were untroubled by the variable mismatch in James’ 

definition and used the function definition as if it were written f (n) =
n(n+1)

2
 . Of the 33 

teachers whose Part A response suggested idiomatic thinking of function notation, only 

7 wrote responses that suggested an awareness of something awry with James’ 

definition. Only 2 of those 33 were explicit about the variable mismatch being 

problematic to the function definition.  

Moreover, almost half of the teachers who filled in the blanks of Part A with v’s 

substituted 9 in the right side of James’ definition in Part B. We suspect that these 

teachers are aware of the practice of using a variable consistently in function 

definitions, but this practice did not keep them from overlooking the variable mismatch 

in James’ definition.  

While the goal of Task 2 was to reveal teachers’ usage of function notation in 

modelling scenarios, it became evident in scoring that this item could be used to gain 

insight into whether teachers view function notation idiomatically. In Table 2, we 

compare teacher responses in Task 1 and Task 2. For Task 1, we categorized the 

pairing of responses in Part A and Part B as Low, Medium or High based on the degree 

to which responses revealed a tendency to use variables consistently and identified the 

problematic nature of James’ function definition. Likewise, teacher responses to Task 

2 are ranked as Low, Medium or High based on the use of function notation within the 

model described by the teacher.   

Fifty of 87 teachers gave Low responses, meaning that (1) they did not use function 

notation or (2) they used function notation only on the left-hand-side of their model 

and used variables inconsistently (see Figure 4). Another 16 of 87 gave Medium 

responses, which include responses that used function notation on both sides of the 

model but used variables inconsistently. 

     Task 2 

Task 1 
Low Medium High Totals 

Low 39 9 9 57 

Medium 1 2 2 5 

High 10 5 10 25 

Totals 50 16 21 87 

Table 2: Teacher responses to Task 1 and Task 2 

We suspect that teachers who gave solutions like that in Figure 4 view function 

notation idiomatically. In particular, this teacher might read “f of x” as the entire name 

of the function describing the area of the circle, making the variable mismatch on the 

right-hand-side of the definition a non-issue for this teacher. In fact, if we look to the 

same teacher’s response on Task 1, he filled in the blanks with r and u and computed 
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f(9)=45 as if the variable discrepancy was not present. In this manner, this teacher 

seems to consistently read function notation idiomatically. 

 

Figure 4: Sample teacher response to Task 2 

We look at another teacher’s responses to both items to try and describe a viable model 

for his thinking with regard to function notation (Figure 5). Notice this teacher gave the 

highest-level response to Task 1 Part A, filling in all the blanks with v. However, the 

teacher computed the value of f(9) in Task 1 Part B by substituting 9 into the right hand 

side of the James’ function definition. It is possible that this teacher is loosely aware of 

the need for consistency in variable usage in defining a function, but this consistency is 

not required to evaluate a function value. We suspect that this teacher sees the left hand 

side of a function definition as a label for the function name and the right hand side of 

a function definition as “where the math happens”. Looking on to his response to Task 

2, we see the teacher uses “Acircle” to introduce his model for area. This unconventional 

notation to reference the circle’s area reinforces the idea that what appears on the left 

side of the equal sign is a label. 

 

Figure 5: Sample teacher responses to Tasks 1 and 2 
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Figure 6: Sample responses from teacher on both tasks 

Figure 6 gives one final example of one teacher’s responses to both tasks. This teacher 

did not give a response to Task 1 Part A, used James’ definition by evaluating the right 

hand side by substituting n=9 in Task 1 Part B and struggled to introduce function 

notation in his response on Task 2. In fact, the teacher appears to have attempted to 

convert the area formula for a circle into a model using function notation by 

introducing the phrasing “f-parenthesis-variable-parenthesis” on the left hand side. 

Collectively, this teacher’s responses suggest a lack of importance, from the teacher’s 

perspective, to consistent usage of variables (as seen in Task 1 Part B and Task 2—in 

which the variables a, r and t are all utilized in the model) and the possibility of holding 

a meaning for function notation as nothing more than a conventional label of the left 

side of an equal sign.  

DISCUSSION  

Our goal for this research was to explore teachers’ mathematical meanings about 

function notation. We suggest that our results, though specific to meanings for function 

notation, support Thompson’s claim that attending to meanings must be central to our 

work as mathematics educators (Thompson, 2013a). Responses to our tasks reveal that 

many teachers read function notation idiomatically. Consequently, we suspect these 

teachers view only the content to the right of the equal sign as the mathematically 

relevant portion of a function definition as described in Figure 1. This type of 

reasoning leads to a need for describing a rule to model scenarios rather than 

employing function notation to represent a varying quantity. We suggest further 
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research be conducted to explore the extent to which teachers who view function 

notation idiomatically use function notation to represent varying quantities as opposed 

to developing rules to model scenarios.  

Another area of interest is to look at what meanings teachers hold for the notational 

devices used for operations on functions. For instance, what meaning do the following 

equations have for a teacher who views function notation idiomatically? 

 

Since the content on the left hand side of the equal sign is no longer of the simple 

form—letter, parenthesis, variable, parenthesis—does the left hand side still serve as a 

label? Does it add confusion, is it ignored, does the teacher simply focus on the right 

hand side? Under these conditions, what meanings do these teachers convey in their 

classrooms while teaching function notation and operations on functions? Further 

research ought to investigate such questions, as classroom discussions regarding 

function and operations on functions are likely impoverished when the teachers 

leading such discussion hold idiomatic meanings for function notation.  
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THE INTERPLAY BETWEEN LANGUAGE, GESTURES, 

DRAGGING AND DIAGRAMS IN BILINGUAL LEARNERS’ 

MATHEMATICAL COMMUNCIATIONS 

Oi-Lam Ng 

Simon Fraser University 

 

This paper provides a detailed analysis of the mathematical communication involving 

a pair of high school calculus students who are English language learners. The paper 

focuses on the word-use, gestures and dragging actions in the student-pair 

communication about calculus concepts when paper-based static and then 

touchscreen dynamic diagrams. Findings suggest that the students relied on gestures 

and dragging as multimodal resources to communicate about dynamic aspects of 

calculus. Moreover, examining the interplay between language, gestures, dragging 

and diagrams made it possible to uncover  nglish language learners’ competencies in 

mathematical communications. This paper points to an expanded view of bilingual 

learners’ communication that includes gestures, dragging and diagrams. 

INTRODUCTION 

The goal of my research has been to extend Moschkovich’s (2007) sociocultural view 

of bilingual learners, to “uncover” bilingual learners’ mathematical competencies 

when they communicate about significant calculus concepts. Although some research 

has shed light on bilingual learners’ non-linguistic forms of communication such as 

gestures and diagrams (Gutierrez, Sengupta-Irving, & Dieckmann, 2007; 

Moschkovich, 2007, 2009), this work has not addressed the use of digital technologies, 

and dynamic geometry enviornments (DGEs) in particular—which have been shown 

to facilitate student communication by providing visual and dynamic modes of 

interaction (Ferrara, Pratt, & Robutti, 2006; Falcade, Laborde and Mariotti, 

2007)—and the interplay between these multimodal resources for analysing bilingual 

learners’ mathematical communications. 

The current research questions concern the kinds of multimodal resources that 

bilingual learners use to communicate about certain calculus concepts using a 

touchscreen-based DGE.  In particular, I investigate: 

1. What characteristics of communications, and what kinds of mathematical 

discourse practices (Moschkovich, 2007) do bilingual learners engage in, when 

working with touchscreen-based DGE?  

2. How may this analysis uncover bilingual learners’ competencies and resources in 

mathematical communications? 
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THEORETICAL FRAMEWORK 

Moschkovich’s (2007) sociocultural view of bilingual learners questions the efficacy 

of the vocabulary and multiple meaning perspectives for understanding bilingual 

mathematics learners because such perspectives focus on what learners don’t know or 

can’t do. The vocabulary perspective views the acquisition of vocabulary as a central 

component of learning mathematics for bilingual learners. The multiple meaning 

perspective focusses on learning to use different meanings appropriately in different 

situations. In contrast to these deficit perspectives, the sociocultural view focuses on 

describing the resources that bilingual learners use to communicate mathematically.  

The sociocultural view draws on a situated perspective of learning mathematics. From 

this perspective, learning mathematics is a discursive activity “that involves 

participating in a community of practice, developing classroom socio-mathematical 

norms, and using multiple material, linguistic, and social resources” (p. 25). In the 

sociocultural lens, bilingual learners are seen as participating in mathematical 

discourse practices—practices that are shared by members who belong in the 

mathematics or classroom community. In general, “abstracting, generalising, 

searching for certainty, and being precise, explicit, brief, and logical are highly valued 

activities across different mathematical communities” (p. 10). Moschkovich argues 

that analysing the extent and type of mathematical discourse practices can highlight the 

competencies of bilingual learners: “even a student who is missing vocabulary may be 

proficient in describing patterns, using mathematical constructions, or presenting 

mathematically sound arguments” (p. 20).  

Complementary to Moschkovich’s sociocultural view of bilingual leaners, I adopt 

Sfard’s (2008) communicational theory, which conceptualises learning as a change in 

one’s mathematical discourse. Sfard’s approach highlights the way in which thinking 

and communicating (for Sfard, this includes talking and gesturing) stop being but 

‘expressions’ of thinking and become the process of thinking in itself. In terms of 

bilingual learners’ use of multiple resources in their mathematical discourse, Sfard 

(2009) suggests that utterances and gestures are two modalities that serve different 

functions in the thinking-communicating process. Namely, gestural communications 

ensure all interlocutors “speak about the same mathematical object” (p. 197). 

Moreover, gestures and diagrams are forms of visual mediators that learners may 

utilise as resources in mathematical discourse. Although Sfard has not adequately 

addressed the distinction between dynamic and static gestures, diagrams and visual 

mediators in general, the distinction is important for this paper because of the potential 

for the dynamic visual mediators in DGEs to evoke temporal and mathematical 

relations in calculus concepts. In addition, bilingual learners who are still grasping the 

English language may draw on dynamic visual mediators such as gestures and DGEs 

as multimodal resources to communicate.   

In summary, I use Sfard’s communicational theory to analyse bilingual learners’ 

thinking as they communicate about calculus concepts given two types of visual 

mediators, static and dynamic. I focus on their word use and gestures as features of 
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their mathematical discourse and their mathematical discourse practices within the 

activities. This enables me to analyse the interplay of resources situated in their use of 

static and dynamic diagrams and to uncover their competencies in mathematical 

communications. 

METHODOLOGY OF RESEARCH 

The participants of the study were three pairs of 12
th
 grade students (aged 17 to 18) 

enrolled in two sections of the AP Calculus class in a culturally diverse high school in 

Western Canada. The participants were selected for their relatively low English 

ability–all of them have only been studying in Canada in an English-speaking 

schooling environment for two to three years. The detailed data analysis that follows 

focusses on one pair of bilingual learners, Ana and Tammy, whose native language is 

Mandarin and who had the lowest English language ability amongst the three pairs. 

The study took place at the end of the school year in the participants’ regular calculus 

classroom, outside of school hours. At the time, the participants had just finished 

enrolling in a year-long AP Calculus course where key concepts in calculus were 

taught using an iPad-based DGE called Sketchpad Explorer (Jackiw, 2011). Therefore, 

the students have experienced with exploring and discussing, in pairs, concepts such as 

the definition of a derivative, derivative functions, related rates, and the Fundamental 

Theorem of Calculus through geometrical, dynamic sketches.   

Each pair of participants was asked to discuss ten different diagrams—five static 

diagrams shown in PDF form and then five dynamic diagrams presented in Sketchpad 

Explorer. The five static diagrams (see Figure 1a) were taken from students’ regular 

calculus textbook (Stewart, 2008), and the five dynamic sketches (see Figure 1b) were 

minimally adapted from the ones that the students had used in class during the school 

year. For the purpose of comparing patterns of communications, each of the five static 

diagrams had a corresponding dynamic sketch that involved the same target concept. 

After giving the instructions, the researcher turned on the camera located in front of 

and facing the student-pairs, and then left the room, until the students finished talking 

about all the diagrams. Each student-pair took around 25 minutes to complete the task. 

(a) 

 

(b) 

 

Figure 1(a): A static and (b): dynamic diagram conveying the definition of a derivative. 

Figure 1b shows the screenshot of the dynamic sketch related to the definition of a 

derivative (with Hide/Show buttons “show function”, “show tangent”, “show secant” 

and “show secant calculation” all activated). As either point on the secant line is 
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dragged, the corresponding numerical values of the tangent slope, secant slope, and 

secant slope calculation, [f(x+h)–f(x)]/h, are displayed with each value colour-coded. 

ANALYSIS OF DATA 

Below, I provide a detailed analysis of Ana and Tammy’s discussion around the 

dynamic sketch described above, relating to the definition of a derivative. Prior to the 

episode, the students have already talked about the corresponding static diagram; some 

key analysis of that episode is discussed alongside. I divided the episode into two parts, 

each beginning with a transcript, for the purpose of identifying themes in each part.   

Episode Part 1: Interplay between language, gestures, dragging and diagram 

1 T: From zero to positive <Dragging/gesture 1s start (Figure 2a)>, the slope is… 

2 A: The tangent line is increasing. 

3 T: Tangent line is increasing <Dragging/gesture 1s start end>. And from here to zero,  

         it’s decreasing.   

4  A:  <Dragging/gesture 2s start (Figure 2b)> And at zero, the tangent line is zero.  

        <Dragging/gesture 2 end>. 

(a) 

Dragging/ 

gesture 1s:  

 

(b) 

Dragging/ 

gesture 2s: 

 

Figure 2 (a) and (b): T and A’s dragging and gesturing actions in Episode Part 1. 

When the students opened the sketch, two buttons were already in the “show” position; 

therefore, the graph of a parabola, y = x
2 
and its tangent line at a given point appeared 

on the sketch. Ana and Tammy explored the dynamic sketch using the dragging 

modality. In the first exchange, Tammy’s utterances, “tangent line is increasing”  

(line 1) was accompanied by dragging the point of tangency from left to right 

(dragging 1s), although technically it was the tangent slope that was increasing and not 

the tangent line. Following that, Ana seemed to mimic Tammy’s utterance/dragging 

combination with “the tangent [slope of the] line is zero” (line 4) while she performed 

a similar dragging action to move the point of tangency towards the vertex (dragging 

2s). These are two of the five series of dragging actions spanning between 2 to 5 

seconds observed in the episode. 

A further analysis suggests that these dragging actions were not merely dragging but 

also gestural communications—to communicate the dynamic features and properties 

in the sketch as obtained by dragging.  To illustrate why the dragging actions are also 

considered gestures, it would be possible to imagine a static environment where the 

dragging modality is not available. If a speaker moves his/her finger along a graph 

while referring to the tangent slope as “increasing” or “decreasing”, this action can be 

considered a kind of dynamic gesture for communicating the idea, “as x varies along 

this graph”. In the current episode, the dynamic environment allows the dragging with 
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one finger on the touchscreen and the gesturing with the index finger to blend together 

as one action. Hence, I refer to this action as dragsturing.  The importance here is that 

dragsturing is one action subsuming both dragging and gesturing characteristics, in 

that it allowed the point to be moved on the screen (dragging), and it fulfilled a 

communicational function (Sfard’s definition of gesturing). My purpose here is not to 

objectify an action but to present the dual functions of dragging and gesturing in the 

dragsturing action for analysing the students’ thinking-communicating process.  Prior 

to this, Ana and Tammy had used deictic gestures, complemented by words like “this” 

and “here”, for naming various mathematical objects when discussing a static diagram. 

Furthermore, during the first exchange, Tammy used phrases “is increasing” and “is 

decreasing” to describe the tangent slope. Her utterances were accompanied by her 

dragsturing (dragging/gesture 1s) which was immediately mimicked by Ana 

(dragging/gesture 2s). The use of the present continuous tense “is [verb]–ing” was a 

change from their previous discussion over a static diagram, where the girls used the 

verb form “is [noun]” four times when discussing the same topic. The word use “is 

increasing” and “is decreasing” were accompanied by dynamic dragsturing to 

communicate the change of tangent slope as the point was being dragged. This shows 

the interplay between dragsturing, language and diagrams in the two students’ 

discourse. Thus, in the present episode, dragging and gesturing transformed the way 

Ana and Tammy communicated about the tangent slope. The verb forms suggest that 

“something is happening” at the very moment. This analysis is made possible by 

studying the interplay between dragsturing, language, and diagrams in the students’ 

mathematical communication. 

Episode Part 2: Engagement in valued mathematical discourse practices 

8 A: <T presses “show secant” button> Secant. <A presses “show secant calculation” button.> 

9 T:  For… <A starts performing dragging/gesture 3s (Figure 3a)> if you want to get the secant  

10  line… you have to find two points to, to, <A’s dragging/gesture 3s ends and immediately    

11  starts performing dragging/gestures 4s (Figure 3b)> calculate change of y and change of x. 

12 A: I think, when the two points get closer <dragging/gesture 4s end>, the tangent line is…  

13  there is less different between the tangent line and secant line.  <T starts performing  

14  dragging/gestures 5s (Figure 3c)> 

15 T: And <dragging/gestures 5s ends> they will be together. 

16 A: And if there are the same point, they will be the same, the two lines. 

(a) Dragging/gesture 3s:             (b) Dragging/gesture 4s:                     (c) Dragging/gesture 5s: 

                                                         

Figure 3(a),(b), and (c): T and A’s dragging and gesturing actions in Episode Part 2. 
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As the episode unfolds, Ana and Tammy began to explore the other two Hide/Show 

buttons, and continued to drag the points. They moved from discussing procedures to 

talking conceptually about the definition of a derivative. This can be observed through 

the evolution of different mathematical discourse practices they engaged in. Upon 

exploring the change of tangent slope in the early part of the episode, Tammy 

suggested that “if you want to get the secant line… you have to find two points to, to 

calculate the change of y and change of x” (lines 9 to 11). At this point, Tammy’s 

mathematical discourse practice focused on calculating.  

However, the students’ talk did not end with a formula as observed in the static 

environment; Tammy’s calculating was followed by Ana’s comparing, evident in her 

word use “closer” (line 12) and “less different” (line 13) to describe the state of the two 

lines when the tangent approaches the secant. Her comparing led to predicting and 

generalising about the tangent line in Tammy’s “the two points will be together” (line 

15) and Ana’s “they will be the same, the two lines” (line 16). The use of the future 

tense in “will be” in both statements indicates that both students had moved from a 

procedural and algebraic way of thinking about derivative to a conceptual and 

geometric one. Tammy’s dragsturing (dragging/gesture 5s) at the end to bring the 

secant line towards the tangent line can be taken as confirming her generalization that 

the two slopes will eventually be the same.   

Out of the sociocultural view, the vocabulary perspective would criticise Tammy for 

incorrectly stating that “tangent line is increasing... and from here to zero, it’s 

decreasing,” (line 2) in the earlier part of the episode when it is really the tangent slope 

that is changing. Likewise, the multiple meaning perspective would point to Ana’s 

inability to grasp the meaning of “function” later in the episode. Hence, neither 

perspective would view Ana and Tammy as engaging in valued mathematical 

discourse practices like comparing, predicting and generalising. 

Since gestures are taken as communicational acts in Sfard’s term, it was interesting to 

observe that the girls incorporated gestures in responding to each other. For example, 

while Tammy talked about the two points on the secant line, Ana was dragsturing the 

points on the secant line around, which seemed to be responding to Tammy’s 

utterance. Then, the two exchanged roles when Ana suggested that the secant line will 

get “closer” to the tangent line. Tammy seemed to have responded by her dragsturing 

to bring the lines “together”. These gesture-utterance correspondences were noted in 

the analysis of other pairs of bilingual learners’ conversational pattern involving 

dynamic sketches as well.   

DISCUSSION 

The detailed analysis provides strong evidence that bilingual learners utilised a variety 

of resources, including language, gestures and visual mediators in their mathematical 

communication—with gestures taking on a prevalent role. These included deictic 

gestures accompanying static visual mediators as well as dynamic gestures for 

communicating temporal relationships such as the “change of x”. Moreover, a new 
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form of gesture emerged in the touchscreen dragging action with the dynamic 

diagrams. These dragsturings fulfil the dual function of dragging and gesturing.   

The presence of dragging and gestures transformed word use. As illustrated in the 

episode, Ana and Tammy resorted to verb forms that imply motion while they used 

dragging to change the tangent slope. This was a change of verb-form from their earlier 

discussions around the static diagrams, where the students used the “is [noun]” form to 

communicate a static sense of calculus ideas. In a sociocultural view, the bilingual 

learners engaged in significant mathematical ideas on both static and dynamic 

environments, but they participated in different mathematical discourse practices. With 

the static diagrams, the students communicated about calculus procedurally by 

defining mathematical objects and developing a formula for tangent slope. With 

dynamic diagrams, their communication was characterised by comparing, predicting 

and generalising practices, as shown in the episode. The analysis is made possible by 

studying the interplay between word use, dragging, gestures and diagrams.  I argue that 

these elements must be accounted for in the full set of resources that bilingual learners 

utilise in mathematical communication. As Sfard (2009) explains, utterance and 

gestures take on different roles in mathematical communications. I would go further in 

suggesting that language, gestures, and diagrams serve complementary functions in 

mathematical communications.  

New conversational patterns were introduced by the students in the current episode.  

With a static visual mediator, the students mainly communicated with utterances 

accompanied by deictic gestures. This conversational pattern evolved in the presence 

of dragsturing over a dynamic visual mediator, where gestures-gestures and 

gestures-utterances sequences were observed in the conversation. This observation 

supports that bilingual learners make use of gestures as important forms of 

communication, and in this case, to respond to each other in mathematical 

communications. Also in the study, I observed one person dragsturing simultaneously 

as the other spoke; this allowed the two students to communicate simultaneously 

without interfering with each other. Using Sfard’s communicational framework–which 

defines gestures as communicational acts–is especially useful for understanding the 

mutual communications involved in these new kinds of conversational patterns.   

It could be said that the design of the dynamic sketches has a significant role in 

facilitating students’ mathematical communications. The Hide/Show buttons allowed 

the students to talk about their ideas gradually one button at a time, while the dragging 

affordance enabled them to attend to dynamic relationships and connect algebraic with 

geometric representations of calculus. In tune with previous studies on 

DGEs-mediated student thinking (Falcade, Laborde and Mariotti, 2007), the students 

may have communicated about derivatives geometrically and conceptually as they 

exploited the functionalities offered in the sketch. As Chen and Herbst (2012) contend, 

“the constraints of diagrams may enable students to use particular gestures and verbal 

expressions that, rather than using known facts, permit students to make hypothetical 

claims about diagrams” (p.304).   
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CONCLUSION 

In this paper, I showed that bilingual learners utilise language, gestures, dragging and 

diagrams as a full set of resources to communicate mathematically. I also addressed the 

interplay between these resources for uncovering bilingual learners’ competencies 

engaging in significant calculus ideas. In my analysis, dragsturing emerged as a new, 

significant form of communication which gave rise to new conversational patterns. 

This study points to an expanded view of bilingual learners’ communication that 

includes gestures, dragging and diagrams.  In particular, future research should 

consider examining the kinds of gestures and the interplay of resources, which are 

situated in the mathematical activities, in order to identify mathematical competencies 

for bilingual learners. 
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INVESTIGATING STUDENT PARTICIPATION TRAJECTORIES 

IN A MATHEMATICAL DISCOURSE COMMUNITY  

Siún NicMhuirí 

St. Patrick’s College 

 

This paper details the analysis of the participation of individual students in a teaching 

experiment in which the researcher aimed to facilitate a mathematical discourse 

community. This involved positioning students as mathematical authorities capable of 

generating and evaluating mathematical thinking. The extent to which students acted 

as mathematical authorities was investigated by tracking their participation across a 

number of lessons.  tudents’ use of discourse community practices such as explaining 

and justifying thinking, evaluating the thinking of others and asking questions was 

documented and Wenger’s (1998) trajectories of identity were used to describe their 

participation. The profiles of four students of different achievement levels with 

contrasting participation practices will be presented and discussed. 

INTRODUCTION 

In recent years, theoretical and empirical research has amassed which demonstrates the 

benefits of participation in classroom mathematical discussions (Walshaw & Anthony, 

2008). Learning mathematics can be conceived of as becoming a participant in 

progressive discourse. This follows Sfard’s (2001) conception of learning mathematics 

as developing a discourse and Bereiter’s (1994) arguments for science as progressive 

discourse. Bereiter lists the ‘moral commitments’ that facilitate progressive discourse. 

These involve a willingness to work toward common understanding, a willingness to 

pose questions and propositions so that they can be tested by others, a willingness to 

expand the set of collectively accepted propositions, and a willingness to subject any 

belief to criticism in order to advance the discourse. Bereiter also argues that classroom 

discussions can and should have these characteristics.  

One example of his ideas in the context of the mathematics classroom is the Math Talk 

Learning Community (MTLC) framework (Hufferd-Ackles, Fuson & Sherin, 2004). 

This was developed as part of a year-long study in an elementary class where the focus 

teacher successfully implemented reform-orientated, discussion-intensive teaching 

practice. The framework charts the progress of the class and describes developmental 

trajectories in the areas of questioning, explaining mathematical thinking, source of 

mathematical ideas, and responsibility for learning. These trajectories detail changes in 

teacher and student actions as the class began operating as a discourse community and 

generally involve devolution of mathematical authority from teacher to students in 

each of the areas listed above. This results in lessons consisting of community 

negotiation of mathematical meaning where students’ “math sense becomes the 

criterion for evaluation” of mathematical ideas (Hufferd-Ackles et al., 2004, p. 88).    
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The Irish primary mathematics curriculum emphasises mathematical discussion as a 

key part of a child-centred, constructivist approach (Government of Ireland, 1999). In 

the Irish context, Dooley (2011) has explored the potential of the discursive approach 

for harnessing learner agency and devolving mathematical power to students. The aim 

of my research was to facilitate a discourse community as described by the MTLC 

framework and to explore the nature of student learning over time in such a 

community. As such, I was following Mercer’s (2008) calls for a renewed focus on the 

temporal aspects of the teaching and learning process. Analysis of student participation 

in whole class discussion at group level was conducted using the MTLC framework 

(Hufferd-Ackles et al., 2004) and has been discussed elsewhere (NicMhuirí, 2012; 

2013). This analysis of the teaching experiment showed that I was successful to some 

extent in devolving mathematical power to students by positioning them as 

mathematical authorities capable of generating and evaluating mathematical ideas. 

However, it also became apparent that the nature of student participation varied from 

pupil to pupil. For this reason, and to better understand how the discourse community 

worked in practice, analysis was carried out on the participation of individual students. 

This analysis will be detailed and the trajectories of four students of different 

achievement levels and participation styles will be presented. 

THEORETICAL FRAMEWORK 

The research was conducted from a sociocultural perspective and my focus was on 

what students might learn from the discourse community approach in terms of 

transformation of participation (Rogoff, 1994). Dreier’s (1999) notion of a trajectory 

of participation in social practice through both time and space was used as a means of a 

conceiving of individual students’ participation in the discourse community over time. 

The concept of a community of practice (COP) (Lave & Wenger, 1991; Wenger, 1998) 

was also used. Engagement in a joint enterprise within a COP requires negotiation and 

“creates among participants relations of mutual accountability that become an integral 

part of the practice” (Wenger, 1998, p. 78). The concept of identity is central to 

theories of participation in a COP and Lave suggests that becoming ‘knowledgably 

skilful’ (1993, p. 65) and developing an identity as a community member are part of the 

same process. Because identity is constantly renegotiated in practice, identities form 

trajectories within and across communities (Wenger, 1998). Identity is developed in 

participation with others so the teacher and the classroom community are key 

influences for students (Grootenboer & Zevenbergen, 2008). It can be argued that 

within a discourse community, there is a different understanding of what it means to be 

‘knowledgeably skilful’ (Lave, 1993) than in traditional mathematics classrooms. In 

traditional classes, students are often positioned as ‘received knowers’ who reproduce 

teachers’ methods (Boaler, 2003) but in a discourse community, students are 

positioned as mathematical authorities capable of generating and evaluating 

mathematical ideas. For this reason, it was envisaged that participation in a 

mathematical discourse community might influence students’ mathematical identities. 
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METHODOLOGY 

Design research has been applied to the classroom in the form of the ‘classroom design 

experiment’ (Cobb, Gresalfi & Hodge, 2009) which has grown from the teaching 

experiment research approach. The aim of this classroom design experiment was both 

the facilitation of a discourse community and the study of this instructional design. 

Fractions, decimals and percentages were chosen as focus areas as these have been 

identified as problematic in Irish primary classes (Eivers et al., 2010). The experiment 

was carried out at fifth class level (10 – 11 years old) with 18 students in a designated 

disadvantaged boys’ school in which the researcher taught fulltime. Schools are 

designated as disadvantaged by the Department of Education based on indicators of 

socio-economic status in the population of parents. Lessons were recorded using a 

digital voice recorder based on their perceived potential for interesting classroom 

discourse. ‘Interesting’ should be understood to mean relevant to the research because 

of predicted participation patterns of students in whole-class discussion. Digital 

records of board work from the interactive board were also saved. In all, 31 recordings 

were collected over the course of a school year. Thirteen recordings were transcribed 

so as to be representative across mathematical topics and over time. The ethical issues 

of conducting teacher-research in ones’ own classroom are complex (NicMhuirí, 2012) 

but the university mandated guidelines were followed at all times.   

There are methodological issues relevant to examining the student experience through 

time and suitable data interrogation techniques were not easily identified. Mercer 

asserts that “the same act repeated cannot be assumed to be ‘the same’ act in repetition, 

because it builds historically on the earlier event” (2008, p. 36). This creates problems 

about using coding schemes that do not acknowledge the temporal nature of discourse. 

This is problematic when considering one student’s participation over time but 

particularly problematic when considering the influence of the community on the 

individual. The contribution of any individual student may build on the historical 

contribution of a different student. For this reason, it proved unmanageable to devise a 

systematic coding scheme that circumvented the embedded nature of student 

contributions in specific times and contexts. Instead, the transcripts were interrogated 

to discover to what extent students engaged in practices of the discourse community.   

Boaler defines classroom practices as “the recurrent activities and norms that develop 

in classrooms over time” (2003, p. 3). The key student practices in a discourse 

community were extrapolated from the MTLC framework (Huferd-Ackles et al., 

2004), rather than the empirical study because the community of the classroom design 

experiment might not exhibit all the practices that were envisaged in the design. The 

key practice that was envisaged for students was to act as mathematical authorities by 

engaging in generating and evaluating mathematical ideas as discussed earlier. When 

investigating the participation of individual students in lesson transcripts, attention was 

paid to how the student came to speak i.e. invited or unprompted. Similarly the nature 

of their contributions were studied to determine whether the contribution was 

mathematically correct or incorrect; the degree to which it was confidently and 
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coherently stated; whether it built on the solutions of others or came to be built on by 

others; whether it contained a question for me or for another student; and whether it 

gave any indication of ability or emotion. In this way, a description of the nature of 

student participation over time was created.  

The resulting participation profile was then examined with reference to Wenger’s 

(1998) trajectories of identity within a COP. These trajectories reflect the positioning 

of the person within the COP. Wenger presents five types of trajectories: peripheral, 

inbound, insider, boundary and outbound trajectories. A peripheral trajectory suggests 

less than full participation in community practices. An inbound trajectory may indicate 

current peripheral participation but a commitment to future full participation. An 

insider trajectory indicates full participation in community practices. A boundary 

trajectory indicates that identity is located in the nexus of communities of practice and 

an outbound trajectory indicates outward movement from one community to another. 

The participation of 10 out of the 18 students was investigated. These students 

represented different achievement levels according to standardised test results.   

STUDENT PROFILES 

The participation profiles of four students of different achievement levels and 

participation styles will be presented here. Pseudonyms have been used. 

Darragh 

While all higher achievers were active contributors to class discussion, none 

contributed to quite the same extent as Darragh. He consistently, and from the very 

beginning of the teaching experiment, contributed significant mathematical ideas and 

vocabulary to class discussions that other students later used. For example, he used the 

terms ‘simplify’ and ‘equivalent’ before I did and explained them to his peers when 

questioned. His many contributions were confidently and coherently stated and he was 

mathematically correct more often than he was incorrect. He regularly commented 

unprompted on the solution efforts of his peers, sometimes building on their 

suggestions (5 transcripts). In fact, he sometimes interrupted me or other students to 

share his thinking. He questioned students about their strategies (2 transcripts) and also 

directly questioned me in two lessons. Questioning of any kind was not a common 

student practice. It appeared that Darragh had an awareness of his own role and ability 

and once questioned his peers on whether they understood a mathematical explanation 

he had offered. On another occasion, he referred to not wanting to “confuse people.” 

He appeared to be alert to the nature of our mathematical activity, commenting when 

we had discussed at length whether 1/25 is equivalent to 25%, that it had been “a big 

discussion for a little question.” On his own initiative, he once described mathematical 

links between the activities in different lessons. On another occasion, again 

unprompted, he followed up on a question I had posed to another student. Darragh 

appeared to act as a mathematical authority, regularly contributing ideas and engaging 

in determining what was mathematically correct. In Wenger’s (1998) terms, the nature 

of Darragh’s participation could be described as an insider trajectory. 
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Jake 

Jake’s score on the standardised test placed him in the middle of the range of class 

achievement. He generally contributed to discussions on my invitation. His 

contributions, though often mathematically correct, were at times faltering and hard to 

follow. This is particularly true of his contributions to lessons early in the school year. 

His apparent increased ability to articulate his thinking after this may be due to the 

experience gained in teaching experiment lessons. It may equally reflect a greater 

competence with the later lesson topics. Jake often referenced other students’ work 

sometimes to agree with it or to suggest a new approach when a peer made an error (3 

transcripts). On other occasions, he shared significant ideas that went against 

contributions previously made by his peers (2 transcripts). Some of Jake’s 

contributions were significant both in relation to their mathematical content and their 

role in shaping the classroom discussion (2 transcripts). He also appeared to be willing 

to make an attempt at solution and share his ideas when faced with challenging 

problems. For example, on one occasion the class were attempting to convert 23/25 to 

a percentage and Jake suggested unprompted that it might be 22 10/10 %. While this 

contribution shows a gap in his knowledge of percentages, it also shows that he was 

willing to take risks and attempt to apply some of his previous knowledge about 

fractions to the new situation. This pattern of participation suggests a genuine effort to 

act as a mathematical authority. It is tempting to describe the nature of Jake’s 

participation as indicative of an inbound trajectory because of his growing confidence 

observable across the course of the year. However, he engaged in the practices of the 

discourse community from the first lesson of the teaching experiment. In this lesson, he 

displayed high levels of responsibility for learning when he disagreed with previous 

contributors to present his own understanding of the problem situation. This suggests 

that a description of insider trajectory is more suitable. 

Kevin 

Kevin was a lower achieving student who regularly displayed a willingness to 

contribute when invited to do so. His contributions were generally comprehensible but 

were not always mathematically correct. On a number of occasions, he used language 

which lacked mathematical precision. For example, he once suggested an alternative 

solution to sharing pizzas by saying, “You can put one slice in a half to get the same 

way… but not like one big half.” In this case it seemed that he was referring to cutting 

a half in half but lacked either the mathematical knowledge or language to identify 

what the result would be. He sometimes commented on the ideas of others, generally to 

agree with them rather than disagree (3 transcripts). On two occasions his contributions 

appeared to influence the ideas of others. On the first occasion, he described a pattern 

he had noticed in a group of equivalent fractions which another student built on in later 

contributions. On the second occasion, he correctly identified the largest of a group of 

decimal numbers and when another student suggested that it may be a different 

number, Kevin successfully explained his reasoning to him. Though Kevin’s ideas 

sometimes lacked the mathematical complexity and precision of some of his peers, his 
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pattern of participation indicates a genuine engagement in the community. However, 

the extent to which Kevin acted as a mathematical authority is debateable, particularly 

in regard to his evaluations of the thinking of others. Although he sometimes was 

observed to agree with the ideas of others, he was not observed to disagree with his 

peers or ask questions of their methods or my explanations in whole class discussion at 

any time. Such actions could be useful learning practices for all children and valuable 

next steps to a fuller participation in the discourse community for Kevin. I would argue 

that there is not enough evidence to describe Kevin’s participation as an insider 

trajectory. Instead I would suggest that he may have been on an inbound trajectory. 

Steven 

Steven was a lower achieving student who contributed regularly to whole class 

discussion both unprompted and by invitation. His contributions were coherently 

stated but were often not correct and on a number of occasions he struggled with 

mathematical language (4 transcripts). He frequently admitted to not understanding 

explanations of mine or of his peers (5 transcripts). In fact, he asked questions in the 

whole-class setting in 8 out of the 13 transcribed lessons. In one lesson, Steven asked 7 

out of the 14 recorded student questions. These questions tended to consist of requests 

for restatements of explanations rather than questions probing the mathematical 

content. As mentioned above, this mode of participation is different from other 

students, the majority of whom posed few if any questions. It appeared that Steven did 

not attach meaning to the commonly perceived social risk of asking questions or 

making mistakes. On one occasion, toward the end of the year, despite questions and 

hints from his peers, he persisted for a number of minutes in attempting an incorrect 

fraction-subtraction method on the whiteboard. He appeared to appreciate the attention 

of the class but did not engage with their comments about the mathematics involved in 

his method. In this sense, Steven’s contributions to discussions often appeared to be 

made with the aim of gaining the attention of the class, rather than with the aim of 

developing mathematical understanding.     

Despite his regular contributions, the nature of Steven’s participation appeared to be 

limited. Like Kevin, the extent to which he acted as a mathematical authority is 

debateable. While the admissions of incomprehension suggest that he was following 

the mathematical discussion and self-monitoring for understanding, they also suggest 

that he may have been struggling with mathematics at the class level and may indicate 

that he was appealing for more explicit direction in an effort to lessen the cognitive 

load. His actions suggest that he did not view participation in whole class discourse as 

a community effort to negotiate mathematical meaning. In fact, there is little evidence 

to suggest that his identity is invested in future full participation, a necessary condition 

of an inbound trajectory (Wenger, 1998). For this reason, a description of his 

participation as a peripheral trajectory may be best. 
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DISCUSSION 

The analysis of participation trajectories shows variation in the extent to which 

students engaged in discourse community practices. Those on insider trajectories, like 

Darragh and Jake, may have demonstrated positive practices to their peers as their 

participation styles consisted of many of the desirable student actions for a discourse 

community. Such students might be considered as ‘old timers’ (Lave & Wenger, 1991) 

from whom other students may have learned ways of acting in the community. The role 

of the teacher cannot be described in the same way as teacher actions in the discourse 

community are not necessarily suitable models for student actions. For example, the 

teacher will often refrain from evaluating mathematical contributions. Instead students 

are expected to take on this role. Boaler (2006) discusses how some effective teachers 

explicitly draw attention to and promote valuable learning practices in whole class 

discussion. It is likely that the incorporation of this teaching practice within my own 

approach would have improved students’ use of discourse community practices, 

particularly students like Kevin and Steven. It is possible that such a teaching practice 

would result in more dynamic trajectories of identity.  

The analysis of individual lessons (NicMhuirí, 2013) showed students appeared to be 

positioned as ‘active knowers’ (Boaler, 2003) and used their own agency to generate 

mathematical ideas. The analysis presented here attempts to go beyond a simple 

snapshot of a student’s actions in any one lesson, and is focused on how the 

relationship between the student and the discipline is developing over time irrespective 

of the particulars of mathematical topic or content. Although the teacher and the 

classroom community are key influences, the involvement of the teacher is central only 

for a limited time in a student’s life. It is a student’s identity and relationship with the 

discipline of mathematics that will remain an influence on the student’s learning over 

time (Grootenboer & Zevenbergen, 2008). The participation trajectory analysis gives 

some insight into that relationship and also gives an illustration of mathematics 

learning as participation in progressive discourse (Bereiter, 1994).  
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THE INFLUENCE OF SYMMETRIC OBJECTS ON SPATIAL 
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Symmetric objects are known to be perceived easier than asymmetric objects, because 

less information has to be processed. Therefore, symmetric objects are often used for 

spatial tasks. However, in perspective-taking the use of symmetric objects can also 

cause difficulties, as two side-views of these objects are mirror-images of each other. 

To examine this influence, 95 children at the beginning of first grade were asked to 

solve a systematically varied set of tasks in interview sessions. It was assumed that they 

have more difficulties to solve the tasks with symmetric objects than with asymmetric 

ones. Against expectation, this effect could not be confirmed based on the number of 

correct answers. However, the types of errors and the children’s explanations show 

the difficulties of perspective tasks with symmetric objects. 

INTRODUCTION 

Spatial perspective-taking is an essential component of spatial ability. Children’s 

spatial perspective-taking was initially studied in the famous “three-mountains-task” 

of Piaget and Inhelder (1999; French first edition in 1948). Subsequent studies varied 

many different task characteristics; the effects of these variations on the ability to 

coordinate perspectives are well known (for an overview see Fehr 1978 and 

Newcombe 1989). However, the effects of symmetry, which are suggested by some 

results of Lüthje (2010) in a spatial perspective task with preschool-children, have not 

been studied yet – although in research as well as in school symmetric objects like 

animals or vehicles are used often.  

This study examines, with a systematically varied set of tasks, if the use of symmetric 

objects influences spatial perspective-taking and under which circumstances this can 

be observed. Since symmetric objects have two side views that are mirror-images of 

each other and differ only in their left-right-orientation, we suppose that spatial 

perspective tasks with symmetric objects are solved less often or less well than tasks 

with asymmetric objects. In symmetric tasks, we also assume that the two side views, 

which are symmetric to each other, are more often confused with each other. 

THEORETICAL FRAMEWORK 

Spatial perspective-taking is defined as the ability to imagine how objects appear from 

another point of view than one’s own (see Cox 1977). There are two essential compo- 

nents for successfully solving spatial perspective tasks. First, one needs to know that 

one particular view of an object corresponds with one particular position. Therefore, 
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two persons in the same position perceive the object in the same way. If they differ in 

their positions, their views also differ from one another. Second, spatial perspective- 

taking also requires the ability to figure out mentally how exactly the other view looks 

like. In other words, one must be able to imagine what can be seen from the other 

position and especially how and where, in relation to other objects, this particular 

object is seen (see Coie et al. 1973; Fishbein et al. 1972; Salatas & Flavell 1976). 

To succeed in perspective tasks with symmetric objects, the subject must distinguish 

between the two side views that are symmetric to each other with respect to a vertical 

axis. These side views differ only in their left-right-orientation. However, the 

discrimination between left and right is difficult even for adults (see e.g. Ofte & 

Hugdahl 2002; Storfer 1995) and develops later than the discrimination in the two 

other dimensions, front-back and top-bottom (see Shepard & Hurwitz 1984).  

Studies about the perception of orientation observed that subjects often confuse an 

oriented object with its mirror-image, for example the letters “b” and “d” or “p” and 

“q”, as well as pictures of common objects (see Davidson 1935; Gregory et al. 2011; 

Gregory & McCloskey 2010). Interestingly, the confusion of mirror-images appears 

especially with respect to a vertical axis (but see for a different interpretation of 

research results Gregory & McCloskey 2010) whereas the perception or construction 

of symmetry is seen as particularly easy if the axis is vertical (see Grenier 1985). In 

reproduction tasks with dot pattern, symmetry (especially with respect to a vertical 

axis) even seems to be a facilitative factor (see Bartmann 1993; Bornstein & 

Stiles-Davis 1984; Liu & Uttal 1999). 

DATA AND METHOD 

Subjects and context 

95 first-graders (average age: 6 years 8 months) in Germany participated in this study. 

During individual interviews, every child was asked to solve 32 perspective tasks and 

to explain its solution after each task. The interviews took place in a separate room 

during lessons, lasted about 15 to 25 minutes, and were videotaped.  

The tasks 

For all tasks, a square base (40cm40cm) with four differently coloured toy figurines, 

placed in the center of each side, was used. In the middle of this plate, the interviewer 

placed 16 different objects one after another. Four photographs of the object (depicting 

the object’s four different sides) were positioned between the child and the plate. For 

every task, the child was asked which of the pictures would correspond to the view of 

one of the toy figurines, saying: “Which of the photographs did the green man take?” 

When the children gave their answers, they were invited to explain their decisions, 

before being asked about another toy figurine’s view. In every situation, only two 

views were tested to limit subsequent mistakes that are rooted in a previous mistake.  

Two different types of objects were used for the study: toy animals that are well-known 

to children and have clearly determined sides (front, back, left side, right side) and 
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arrangements of two differently colored cuboids of the same size as abstract objects 

without distinguishable front/back and sides. For each object type, eight symmetric 

and eight asymmetric objects were used. The natural symmetry of the animals was 

abolished by lifting one leg and adding an item from a circus-context. The symmetric 

animals were also extended with items from the circus-context to minimize the 

differences between symmetric and asymmetric animals (see figure 1). For cuboid 

tasks, first a symmetric arrangement was built; then an asymmetric arrangement was 

created by sliding one cuboid orthogonal to the mirror plane (see figure 2). 

 
 

 

Besides symmetry and type of object, two other factors were varied: the object’s 

orientation (parallel or orthogonal to the child’s line of sight) and the type of view (side 

view or front/back view). To ensure comparability, every symmetric object was paired 

with an asymmetric object of the same object type and within such a pair of tasks all 

other variables were kept constant: the orientation, the arrangement of the pictures, and 

the two toy figurines, whose views should be figured out.  

Procedure of analysis 

The interview data was analysed in two ways: the children’s decisions were classified 

with respect to the type of mistake made, and the explanations were transcribed and 

categorized by qualitative content analysis.  

The answers of the children were classified as follows:  

 Correct answer: the child chose the picture that shows the toy figurine’s view. 

 Egocentric mistake: the child chose the picture that shows its own view 

in-stead of that of the toy figurine. 

 Inversion mistake: being asked about a side view the child chose the wrong 

one. 

 Ambiguous mistake: if the child was asked about the view opposite to its own 

of an orthogonal aligned object (so it was a question about a side-view) and it 

chose the picture that shows its own view, this mistake could either be 

classified as an egocentric mistake or as inverting the side views. Therefore, 

this mistake was named “ambiguous mistake”.  

 Other: all other mistakes.  

Figure 1: Examples for symmetric and 

asymmetric animals 

Figure 2: Examples for symmetric and 

asymmetric cuboid arrangements 
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The children’s explanations were transcribed, including their gestures. In a second 

step, these explanations were sorted by likeness. The analysis of difficulties and 

similarities lead to a category system that is explicated in the following section. 

RESULTS 

Solution rates and error rates 

On average (), children solved 70% of all items correctly (this corresponds to 22 out 

of 32 items) with a minimum of 37% and a maximum of 100%. The solution rates of 

the different items are similar: on average, the items were solved correctly by 70% of 

all children (see table 1 for further information). 

animals symmetric asymmetric sum 

front/back views 92.3% 93.8% 93.1% 

side views 65.8% 62.8% 64.3% 

sum 79.3% 78.3% 78.8% 

    
cuboids symmetric asymmetric sum 

front/back views 82.5% 70.5% 76.5% 

side views 45.8% 45.8% 45.8% 

sum 64.2% 58.2% 61.2% 

    
animals and cuboids combined symmetric asymmetric sum 

front/back views 87.0% 82.1% 84.6% 

side views 56.1% 54.3% 55.2% 

sum 71.6% 68.2% 69.9% 

Table 1: Average solution rates  

As known from other perspective-taking studies, differences between the two objects 

types were significant (p<.001): children solved the tasks with animals (78.8%) more 

often than the tasks with cuboids (61.2%). It was also hypothesized that the side 

views (55.2%) would be more difficult than the front and back views (84.6%) 

(p<.001). However, a significant difference in the solution rates could be observed 

between symmetric and asymmetric objects in the other direction than expected 

(p<.005): the symmetric tasks (71.6%) were solved slightly more successfully than 

the asymmetric ones (68.2%). Further analyses showed that this difference is 

grounded in the tasks with front and back views of cuboids. The symmetry of the views 

seemed to help children to concentrate on relevant details of the views and to 

distinguish them from the asymmetric side views. In other groups of tasks (side views 

of cuboids, side views and front/back views of animals) no significant differences 

between tasks with symmetric and tasks with asymmetric objects were found.  

The assumption that children would solve spatial perspective tasks less often with 

symmetric objects than with asymmetric objects cannot be confirmed. However, the 

comparison of the error rates shows an interesting difference: the side views of 

parallel-aligned symmetric objects were inverted more often than those of asymmetric 

objects, with animals as well as with cuboids (see table 2).  
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animals symmetric asymmetric 

egocentric 36.1% 57.1% 

inverted side views 56.9% 36.4% 

   
cuboids symmetric asymmetric 

egocentric
 

45.0% 71.0% 

inverted side views 35.8% 19.4% 

Table 2: Rates of mistake-types in relation to all mistakes at side views with 

parallel-aligned objects
1
  

Thus, the difficulty that symmetric objects pose can be seen in the inversion of the side 

views. A more thorough analysis of the children’s explanations will give hints for 

better understanding these difficulties and differences.  

The children’s explanations 

In analysing the transcripts of the children’s explanations, three main categories could 

be extracted for both conditions. Since the children’s explanations differed according 

to the objects types, the categories are presented separately for animal and cuboid tasks 

before a comparison as well as frequencies are given. 

Categories for the animal tasks  

Category 1: Reference to details In statements subsumed under this category, the 

children referred to details of the animal and said what can be seen from a special view: 

“He sees the face.”; “She takes a picture of the tail.” Usually they name that part of the 

animal that is nearest to the toy figurine and therefore appears in the front. 

Category 2: Reference to intrinsic alignment of the animal This category contains 

statements that do not refer to special details, but to particular sides of the animal: 

“You see it only from behind.”; “Because he is standing in front of it.”; “He takes a 

photo of the side.” In this category, the words “behind”, “in front” and “side” could 

also refer to other frames of reference than the intrinsic alignment of the animal: to the 

child’s view or to the toy figurine’s view. However, in most cases the children referred 

to the intrinsic alignment of the animal: if they said “He stands behind the animal,” 

they did not mean the toy figurine opposite to themselves, but the toy figurine that is 

standing next to the animal’s tail. 

Category 3: Reference to extrinsic alignment of the animal This category includes all 

explanations about how the animal was oriented without referring to details or the 

intrinsic alignment of the animal: “The elephant looks to the man.”; “It walks there 

(showing the direction of the animal).”; “Because it stands that way (making a motion 

from the back to the front of the animal).” 

Categories for the cuboid tasks 

                                           
1
 The side views of the orthogonal aligned objects were excluded because in this condition the mis-

takes could not be classified as egocentric or inverting of side views (see above “ambiguous 
mistake”). 
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Category 1: Reference to the front-back-relation The explanations in this category 

showed awareness of what can be seen in the front from the position of the toy figurine 

or if a part of one cuboid is hidden by the other cuboid: “The red one is in front of the 

yellow.”; “He couldn’t see the blue block well.”; “She can see the black one better than 

the green one.” 

Category 2: Reference to different sides of the cuboids Although cuboids have no 

intrinsic alignment, some of the children’s statements are similar to statements of 

category 2 of the animals in that way that they refer to different sides of the cuboids: 

“Because there the block is narrow.”; “The block appears wide.” 

Category 3: Reference to the extrinsic alignment of the cuboid building This category 

includes all explanations by which children described how the cuboids were posi- 

tioned: “There is the black one, and there is the green one (showing both cuboids either 

at the arrangement or at the photographs).”; “Because this is here (pointing to one of 

the cuboids) and the other one is beside it.”; “The blue block is on THAT side (pointing 

to the blue block) and not there (pointing to the other side of the second block).” 

Apart from some categories that occurred very rarely and are therefore not presented, 

there is one frequently observed category in both object-groups, which may be called 

“Just because!” Statements subsumed under this category are not arguments but rather 

claims: “Because it is the same.”; “I know it.”; “They fit together.”  

Frequencies of categories 

The analyses of frequency distributions showed that all described categories are 

re-presented in both object-type conditions (animals and cuboids) and also in 

symmetric as well as in asymmetric tasks. The following descriptions focus on the 

comparison between symmetric and asymmetric items.  

Front/back views of animals: There was no difference between symmetric and 

asymmetric tasks. Both were predominantly justified with statements of category 1 

(reference to details): 51.5%
2

 (symmetric) and 52.9% (asymmetric) of all 

explanations could be assigned to this category. The second most common category 

was category 2 (reference to intrinsic alignment) with a frequency of 34.9% 

(symmetric) / 31.6% (asymmetric). Every other category accounted for less than 8%. 

The dominance of the first two categories is comprehensible because of the intrinsic 

alignment of the animals, which does not differ between symmetric and asymmetric 

animals.  

Side views of animals: For these tasks, differences in reasoning could be observed. The 

tasks with asymmetric animals were mostly justified with category 1 (reference to 

details) (41.7%), whereas with symmetric animals, category 1 accounted for only 

7.9%. With symmetric animals category 3 (reference to extrinsic alignment of the 

                                           
2
 The following percentages refer to all explanations that could be assigned to one of the categories. 

Situations, in which the child gave no explanation or the explanation could not be allocated, are not 
included in the frequencies. 
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animal) was the most frequent one (30.8%) and statements like “Just because!” were 

also very frequent (25.8%). This result reflects the problems that children often have 

in distinguishing the side views of symmetrical animals.  

Side views of cuboids: In this condition, a difference between symmetric and 

asymmetric tasks appeared as well. Category 1 (reference to details) occurred more 

often with asymmetric arrangements, in which one cuboid appears at the front or back 

of the other one (45.7% vs. 15.6%). For symmetric arrangements, category 3 was 

the most frequent one (40.0%). Interestingly the category “Just because!” was not as 

frequent as in the side-views-condition of animals (15.0%). 

Front/back views in cuboid tasks: Children justified their decisions in these tasks 

predominantly by category 1 (reference to the front-back-relation), but more often in 

symmetric (66.1%) than in asymmetric arrangements (52.9%). Asymmetric 

arrangements lead more often (14.4%) to category 3 (reference to extrinsic 

alignment) than symmetric arrangements (6.1%). These results confirm the 

interpretation of the solution rates, that the symmetry of the views helped the children 

to concentrate on relevant aspects (here: the front-back-relation). 

CONCLUSION 

Two different directions of the influence of symmetric objects on spatial perspective- 

taking could be observed in this study: On the one hand symmetry has a simplifying 

effect, probably because it helps perceiving relevant aspects of the task. This could be 

seen in the condition of front and back views of cuboids, in which tasks with 

symmetric objects were solved more often than tasks with asymmetric objects. On the 

other hand symmetric objects complicate the solution of the tasks, if the two side views 

that are symmetric to each other have to be distinguished. This effect was not reflected 

in the solution rates, but could be observed in the distributions of types of mistakes and 

of the children’s explanations: In symmetric conditions, the children more often 

interchanged the side-views and had more difficulties to justify their decisions than in 

the asymmetric ones. The statements for the asymmetric side views showed that the 

differences between the two side views, which lay in the front-back-dimension, helped 

the children to distinguish between them.  

For further research of perspective-taking the influence of symmetric objects should be 

considered carefully, especially if asymmetric and symmetric objects are used in the 

same study. For working with perspective-taking tasks in school, teachers should be 

sensitive to the difficulties of side views of symmetric objects. It could be useful to 

start perspective-taking with young pupils with asymmetric objects. Teachers should 

also stress the importance of considering the orientation of the objects, especially the 

left-right relation, because the strategy of referring to what can be seen is not always 

successful.  
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SURVIVAL OF THE FIT: A BOURDIEUIAN AND GRAPH 

THEORY NETWORK ANALOGY FOR MATHEMATICS 

TEACHER EDUCATION 

Kathleen Nolan 

University of Regina 

 

Supervision of student teachers in their field experience is one of the practices that 

characterizes the work of many teacher educators. This paper takes up the issue of 

teacher education field experience and associated faculty supervision, drawing on the 

conceptual tools of Bourdieu's social field theory and a graph theory network analogy 

to interpret data from a self-study research project. In this brief paper, one data 

storyline is presented to convey narratives of a teacher educator's efforts to disrupt 

and reconceptualize the network of relations in teacher education field experience.  

PURPOSE OF RESEARCH STUDY 

Field experience supervision constitutes a key aspect of the work of many teacher 

educators. The specific nature of this work varies significantly across teacher 

education program contexts, with varying efforts to enact supervision in ways that 

reflect the complexity of teaching and learning to teach. However constructed and 

conceptualized, supervision of student teachers in their field experience (also called 

practicum or internship) is one of the practices that characterizes my work as a teacher 

educator and faculty advisor. In addition to constituting one of my realities as a teacher 

educator, I also see it as an opportunity for studying my own learning about what 

shapes my identity as teacher educator, faculty advisor, and researcher.  

This paper takes up the issue of teacher education field experience, with a particular 

focus on the role of teacher educator as faculty supervisor 'in the field'. Having felt less 

than satisfied over the years with my role as a faculty advisor, I have been drawn to 

experiment with various models and visions for enacting my role differently (Nolan, 

2011). Without describing these models in detail, this paper focuses on the tensions 

and disruptions erupting as I endeavored to move my role as a faculty advisor beyond 

tokenism in the field (Nolan, under review).  

The paper draws on the theoretical framework of Bourdieu's social field theory─and 

his 'thinking tools' of habitus, field, capital and doxa─put forth as a way of visualizing 

the networks of social relations in the field of field experience. Also in this paper, I 

draw on the ideas and language of mathematics graph (network) theory (Clark & 

Holton, 1991) as a way to draw analogies between the two theoretical constructs.  Both 

theories, when interlinked in this unique and playful manner, lend themselves to a way 

of conceptualizing how networks of relations feature prominently in (re)constructing 

the field of teacher education, and token faculty advisors within. 
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RELATED LITERATURE  

The field of teacher education is being researched extensively from diverse 

perspectives. The study of theory-practice transitions from university courses to school 

practicum has been a prominent one, including those interested in making the 

transition a smoother one (Jaworski & Gellert, 2003) as well as those resisting the 

existence (or at least the language) of a theory-practice dichotomy (Zeichner, 2010). In 

addition, there are numerous and theoretically diversified studies on becoming a 

teacher, from those with a poststructural focus on identity constructions (Brown & 

McNamara; 2011; Nolan & Walshaw, 2012; Williams, 2011) to those with the more 

technical concern of understanding the skills and content knowledge required by 

teachers (Ball, Thames & Phelps, 2008; Chapman, 2013). More recently, the field of 

teacher education research has been paying much closer attention to the structures and 

roles of that specific component of teacher education programs referred to as the 

school practicum or field experiences (Cuenca, 2012; Falkenberg & Smits, 2010). 

CONTEXT AND METHODOLOGY 

In my university's four-year undergraduate teacher education program, the culminating 

field experience is a four-month internship (practicum, field) experience in schools. 

Each prospective teacher (intern) is paired with a cooperating (mentor) teacher in the 

school and assigned a university supervisor (faculty advisor). Each faulty advisor 

works with approximately four interns over the internship semester, and are expected 

to visit, observe and conference with each intern 3-5 times during this four-month 

internship. From my perspective, the model is problematic and 'deficient' in a number 

of ways, not the least of which is that a mentorship relationship between faculty 

advisor and intern based on only 3-5 visits over four months is not adequate to disrupt 

and challenge the view that teacher education programs merely train and prepare 

prospective teachers for the real experience of school classrooms. As a faculty advisor, 

my role in this internship model has felt superfluous, even token over the years. Thus, I 

was drawn to design and implement new ways of being a faculty advisor and doing 

internship supervision.  

This paper is based on a self-study of my practice as a faculty advisor, working with 

interns during their internship conducted each year over a period of approximately six 

years (2007-2012). As a methodology, self-study can be defined as the intentional and 

systematic inquiry into one’s own practice (Loughran, 2007). In teacher education, 

self-study is powerful because of the potential to influence prospective teachers, as 

well as impact one’s own learning and practice as a teacher educator. Drawing on self 

study approaches in my research highlight my conviction that the boundaries between 

research, teaching, and learning are blurred (Nolan, 2014). In fact, self study embeds 

the learning acts of teacher educator as both researcher and learner. By studying my 

own professional practice, I am in a better position to reflect on the relationships 

between research, teaching, and learning and to interrogate the discourses shaping my 

roles and practices as a teacher educator. I accept that a key “aim of self-study research 
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is to provoke, challenge, and illustrate rather than confirm and settle” (Bullough & 

Pinnegar, 2001, p. 20).  

THEORETICAL FRAMEWORK  

The research study informing this paper challenges and disrupts traditional discourses 

of teacher education programs and associated field experience, tracing the 

intersections of identity, agency and reflexivity in mathematics teacher education 

using Bourdieu’s sociological theory (Bourdieu, 1977, 1990; Bourdieu & Passeron, 

1977). The key concepts of Bourdieu’s social field theory confirm the complexities of 

becoming a teacher by focusing on the dynamic relationships between structure and 

agency within a social practice. Such an approach highlights the network of relations 

and discursive practices that support (and (re)produce) traditional practices in field 

experience models, acknowledging the normalized practices and dispositions of 

schooling as strong forces in shaping teacher educator (faculty advisor) identity and 

agency (Nolan, 2012). In this research, I draw on Bourdieu's social field theory 

(specifically, the concepts of habitus, field, capital and doxa) to expose the discursive 

productions of the network of relations constituting field experience.  

Bourdieu (1990) claims that a person’s habitus, or set of dispositions, in a social 

practice field (that is, a socially instituted and structured domain or space) are tightly 

bound up in and by the network of practices and discourses (relations) within that field. 

Field and habitus are central to understanding this social network of relations since the 

two concepts are produced and reproduced in a dialectical relation to each other 

through social practice. Grenfell (1996) clarifies these relations by offering the 

following: 

Individuals are embedded, located in time and space, which sets up relations. These 

relations are not simply self-motivated and arising from individual choices but immanent 

in the site locations in which they find themselves. Such relations are differential and 

objectively identifiable. They are structured structures, but, equally, structuring structures 

in a generative sense. (p. 290) 

In this brief paper, it is not possible to provide a comprehensive overview of 

Bourdieu's key concepts or thinking tools. The larger research study draws more 

extensively on these conceptual tools of Bourdieu's sociological theory to understand 

social relations in networks of practices, specifically those relations produced through 

teacher education field experience and supervision models.  

METHODS AND DATA SOURCES 

The study has taken on various characteristics as it has evolved over the years, and as I 

have adapted my internship 'supervision' approaches in response to research data. 

During each year of this self-study, a Professional Learning Community (PLC) was 

sustained ‘virtually’ through the use of desktop video conferencing and through ‘real’ 

face-to-face professional development sessions with interns and their cooperating 

teachers. The professional development aspect of the project focused on lesson study 
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approaches that incorporated the recording and analysis of classroom teaching videos. 

By creating a multi-dimensional model for internship, my aim was to construct an 

expanded faculty advisor role that would enhance opportunities for sustaining a 

mentorship relationship between myself and my interns. Data collection for this 

self-study included interviews and focus groups with interns during six internship 

semesters (2007-2012). The interviews and focus groups were conducted in person and 

through video conferences. Also, as researcher, I kept a self-study journal to better 

understand and reflect on my role as a faculty advisor.   

While the key aim of my evolving model for internship supervision focused on 

strategies for expanding my role as faculty advisor, that aim merely serves as the 

subtext for what I attend to in this paper. As alluded to earlier, the intent of this paper is 

not to present, analyze, and discuss large amounts of the research data per say, but 

more to reflect on the self-study data in the context of illuminating (and interrogating) 

the network of field experience relations within which my own identity and learning as 

a teacher educator and faculty advisor is being (re)produced. This paper draws on data 

from that larger research study, along with Bourdieu's social field theory, to 

conceptualize the network of relations that are shaping me as a faculty advisor in 

reconceptualizing secondary mathematics teacher education field experiences.   

PRESENTATION AND DISCUSSION OF DATA 

Elsewhere (Nolan, under review), I present and analyze five (5) data storylines that 

convey narratives of my efforts to disrupt and reconceptualize the network of relations 

in teacher education field experience, with the ultimate goal of understanding how (or, 

if) my professional practice might shape and influence a more dynamic view of these 

networks. I use the language of nodes and links to playfully highlight the metaphorical 

connections between Bourdieu's concept of social networks in a field and the 

mathematics field of these storylines in detail. Then, I briefly refer to the other 

storylines and present a network diagram to visualize the relations through one 

possible configuration of a directed graph, or “digraph” (Clark & Holton, 1991, p. 

230). 

For the purposes of this paper, I refer to the term nodes to stand for the sources, actors 

or agents in the network (of which there are 5, plus myself as faculty advisor (FA)) and 

links to reflect the pathways or relations connecting the various network nodes 

(represented by a directed graph with single or double arrowheads). The data storyline 

is presented as constituting a node and connecting pathway of the network. Playfully 

linking this research analysis to graph theory draws attention to how a mathematical 

structure such as a graph can be used to model key coupling relations between 

objects/agents, providing a way to imagine the interactions and links between the 

structuring structures in Bourdieu's social networks.  
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Data Storyline: Metaphorically Speaking  

This storyline conveys my efforts to understand my interns’ perceptions of my role as a 

faculty advisor in their professional development as interns and becoming teachers. 

My self-study initiative set out to expand my role as a faculty advisor—that is to move 

beyond tokenism (Nolan, under review). My model for enacting my role as a 

supervisor included many more contact hours than what is typical. During a focus 

group session with a group of three interns one semester (2010), I questioned them on 

my role as faculty advisor and its overall value to them in terms of their professional 

development during the internship semester. The following quote from one intern 

speaks to an illustrative response to this question:   

If our coop is doing their job right they really should be doing that professional 

development process with us, so having you there is just kind of extra, I guess. I don’t 

know if it’s completely necessary. But if you were to do it, I would probably still prefer 

that you come out and see me... like, if I had had problems with [the coop] then I would 

want you there, I would need someone else, but since we got along then the roles kind of 

seem the same to me. (Intern, Dec 2010) 

I pursued this line of questioning a bit deeper in the focus group, but the underlying 

message of their responses remained: I was “just kind of extra.” Later, I reflected in my 

self-study journal how I was taken aback by their comments: 

Wow. That's harsh. My efforts to disrupt the token and remote role of the faculty advisor 

have been constituted by the interns as 'extra' and much the same as the cooperating 

teacher has to offer. In their eyes, I've not expanded and redefined my role in the manner I 

set out to. Instead, the interns have constructed an identity for me as liaison, mediator, 

umpire, even peacemaker. So, as long as there are no “problems” with the cooperating 

teacher, I am not needed. Hmmm. [Researcher journal entry] 

In another year of the study (2011), an intern suggested that my role was like that of "a 

fine tooth comb":  

I think it's good that you're distinct from the cooperating teacher.  I feel like with my 

cooperating teacher, I come to class the morning of, we do a quick little preconference, I 

teach, and then we post conference.  Whereas with you, I feel like it's very specific, 

focused on one specific lesson and looking for perfection almost.  So I think you're more 

the fine tooth comb of the operation, and [my coop] is more of the overseeing almighty part 

of the operation, if you know what I mean? [Intern, Dec 2011] 

This storyline of 'metaphorically speaking' confirms that interns value their 

cooperating teacher's experience and perspective first and foremost, and that the role of 

the university supervisor takes on a distant second, or even unnecessary 'extra'. In a 

review of research on the ways in which cooperating teachers participate in teacher 

education, Clarke, Triggs, and Nielsen (2013) also found that the roles of cooperating 

teachers and university supervisors are valued quite differently. They echo other 

research in confirming how "the role of the cooperating teacher has always been 

regarded as important within teacher education" (p. 4), whereas perceptions on the role 

of the university supervisor is less uniform and agreed upon in the literature. It is 
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interesting to note that Clarke, et al. (2013) also report that "cooperating teacher 

feedback remains largely fixed on the technical aspects of teaching" and tends to be 

"more confirmatory (positive) than investigative (reflective) in nature" (p. 13), which 

leads me to propose a 'survival of the fit' mindset. That is, I propose that a positive, 

confirmatory approach to interacting with the interns in their process of becoming (a 

teacher) is a much better fit with their own habitus (set of dispositions) than one which 

challenges them to engage in deep and substantive reflections which may actually 

challenge their habitus-field fit. In other words, cooperating teachers provide interns 

with feedback in the form of practical tips and techniques, whereas I am asking interns 

to spend time in what Grenfell (2006) refers to as a nowhere space, that is, "areas in 

which they could engage with the contradictory elements of teaching and respond in 

line with their own developing pedagogic habitus" (p. 301).  

Once in the schools for their field experience, prospective teachers are “confronted 

with the task of learning the discursive codes of practice” (Walshaw, 2007, p. 124) in 

the secondary mathematics classroom, and no longer in my own university classroom. 

Interns identify their cooperating teachers as being much better positioned to initiate 

them into these practices, and hence the practices themselves often remain 

unquestioned and misrecognized. These discursive codes of classroom practices, in 

part, constitute the network of relations that Bourdieu puts forward. The pathways of 

already well-established classroom practices represent cultural capital that holds 

considerable value in the field, and thus preservation and normalization of these 

well-established practices are important in becoming a teacher. In the language of 

network theory, it is easy and convenient to follow the shortest path or the path of least 

resistance when it comes to participating in one's field experience.  

Bourdieu and Networks: The Work of Interpretation  

Since it is only possible to present and discuss one storyline, it is worth at least naming 

each of the other storylines and constructing a visual network to convey one possible 

configuration of pathways and nodes (Figure 1). The five storylines (nodes) are: (1) not 

sitting in the back of the classroom (interns), (2) metaphorically speaking (interns), (3) 

"I appreciate the opportunity but..." (interns), (4) intern placement protocols (program 

structure), and (5) "If the process becomes disruptive to students or the intern's 

growth..." (cooperating teacher). Each of these storylines and the directed links (edges) 

are further elaborated on in the full paper and presentation. 

The five storylines constituting a network of relations 

(consisting of nodes and pathways) all relate to the social 

practice of teacher education field experience and 

supervision—drawing attention to how tightly woven together 

the network of relations within a field are. They reaffirm the 

sources/nodes and links/pathways that form the core of 

established and taken-for-granted social practices of teacher 

education and field supervision—what could be referred to as 

teacher education and supervision doxa. In many ways, the Figure 1 
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storylines also highlight my failed attempts to bring about significant disruptions to the 

traditional model of supervision, including (as conveyed in storyline #2) cooperating 

teachers' and interns' constructions of the university supervisor as 'other' or 'extra'. 

CONCLUDING THOUGHTS 

Reflections on the research presented in this chapter means disrupting the storylines 

and pathways sustaining the current networks of relations, working to reveal their 

arbitrary and contingent nature. In connection to my own professional learning, I am 

coming to terms with the challenges facing me as I attempt to trouble the discursive 

network of relations in field experience. At times I am drawn toward abandoning my 

research efforts aimed at reconceptualizing secondary teacher education through an 

alternative field experience (internship) model. It is hard for me to believe that 

different and multi-directional pathways can be successfully introduced to trouble the 

current network.  

Adopting a reflexive stance in teacher education would aim to expose the socially 

conditioned and subconscious structures that underlay the reproductive nature of the 

network of relations (examining the interactions between and among nodes). What is 

unique about the approach I take up in this research study is how I acknowledge my 

own complicity in (re)producing the network of relations in the field experience and 

for supervision. While I seek to disrupt and reconstruct the network, it is evident that I 

also comply with its structures and relations. It could be said that I have learned how to 

be strategic—I am deliberate in striving not to disrupt the game of supervision so much 

so that no one will want to play with me anymore. In other words, my own 'survival of 

the fit' as a faculty advisor comes into play in this network analysis. 
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The purpose of this paper is to draw attention to a relatively new semantic theory 

called inferentialism as developed by the philosopher Robert Brandom. We argue that 

it offers a better alternative to the still present representational view of mind than does 

(socio)constructivism. After a discussion of the shortcomings of (socio)constructivism, 

we summarize the key features of inferentialism that make it worth thinking through 

more carefully in mathematics education research. 

REPRESENTATIONALISM AND THE MYTH OF THE GIVEN 

This paper invites mathematics educators to study a semantic theory that Brandom 

(1994, 2000) has elaborated in recent years. He critiques a representational view of 

mind that has long been criticized in several disciplines but is still common among 

cognitive scientists and, in our experience, in how mathematics educators and teachers 

talk about teaching and curriculum (Bakker & Derry, 2011). Rather than seeing 

representation to be the basis for reasoning, Brandom explains the meaning of 

representations through their origin in reasoning practices.  

Representationalist theories describe the activity of learning as that of the modification 

or construction of internal representations. The student is assumed to possess a 

pre-existing internal faculty of representing external phenomena which the teacher is 

supposed to expand in a given, pre-determined direction. The goal of teaching is 

accordingly characterized as bringing about the correct representations in the student’s 

mind, while its success is determined by the measure of correspondence which exists 

between the internal representations and external reality. In recent decades, 

representationalism has come under attack. Cobb, Yackel, and Wood (1992) argue that 

the central problem of representationalist theories is their implicit appeal to a dualism 

between individual representation and external reality. They write:  

At the outset, mathematics in students’ heads (internal representations) is separated from 

mathematics in their environment (external representations that are transparent for the 

expert). The basic problem is then to find ways of bringing the two back into contact.(p.14) 

This dualism is endemic to representationalism: Once representations are cut off from 

the world and the practices that contribute to their constitution, they cannot be brought 

together again except by the assumption that mind and world do stand in some sort of 

primitive relationship, for example through a fundamental form of immediate sense 

experience. Sellars (1956/1997), one of Brandom’s inspirations, attacked this 

assumption of immediate sense experience, which he called the “Myth of the Given.” 

He argued that the normativity inherent in conceptual content – the ways in which 
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concepts and speech, in contrast to objects and causes, can be correct and incorrect – 

cannot in any way be derived from a nonconceptual, nonnormative reality which is 

simply “given” to the mind. His argument was amplified by Brandom’s colleague 

McDowell (1994/1996), who pointed to a complementary and, he claimed, equally 

pernicious assumption. Once the failure of appeals to the given is recognized, it is 

natural to reject any form of foundationalism. But this response would go too far and 

may reject the need for any relation between mind and world at all, because it is 

thought that a form of foundationalism is the only way to make internal representations 

square up with the world. In McDowell’s term, one becomes a coherentist, rejecting 

any form of constraint on one’s thinking imposed by external reality and preferring 

instead pragmatic, deflationary notions such as the internal consistency of one’s 

ideas.Such an approach risks being like a “frictionless spinning in a void” (McDowell, 

1996, p. 11).  

One way to escape from the “oscillation” (p. 17) in the history philosophy between the 

given and coherentism is to accept Sellars’ view that, though humans have access to 

external objects, these objects or representations of them can only play a normative 

role (be used in assertions which can be correct or incorrect) by being taken up into the 

language games of people: They must become subject to norms which were already in 

place in human practices. In his influential phrase, they must be placed in the “space of 

reasons” (Sellars, 1997, §36). Brandom systematically elaborates this idea (Bransen, 

2002). He pictures humans’ interactions as engaging in a the essentially social “game 

of giving and asking for reasons”; objectivity and representation are not basic but must 

be mediated through this game. This also necessarily involves an emphasis on the 

holistic and social nature of concepts. 

Cobb et al. (1992) presented constructivism as an alternative to representationalism. 

We summarise some of the problems faced by constructivism and suggest 

inferentialism as an alternative that is more convincingly rooted in philosophical 

traditions. In brief, inferentialism has been argued to be compatible with Vygotsky’s 

ideas (Derry, 2013). It also connects to a “domesticated” Hegelianism (e.g., the 

aforementioned notions of mediation, holism and social nature of concepts) which 

maintains links with analytic philosophy (Bernstein, 2002). Inferentialism is more 

explicitly concerned with concept use and reasoning practices than much published 

work arising from sociocultural and activity-theoretical perspectives, which makes it 

especially interesting to mathematics education research. However, due to space 

limitations we concentrate on why we think it is a better alternative to variants of 

constructivism. 

CONSTRUCTIVISM 

A basic constructivist presupposition is that learners “create their own understandings” 

through the process by which they are immersed in meaning making (Rogers, 2011, p. 

178). In this way, the constructivist approach to knowledge overcomes the problematic 

representational tie between mind and world by downplaying the world element. As 
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such, the constructivist hopes to reject the correspondence relation that sits at the heart 

of representationalist theories by undermining the implicit dualism of the 

representational doctrine. Consequently, constructivism is able to make room for two 

desiderata which representationalism was shown to lack: It can offer accounts of 

individual learning and the social embedding of learning processes. 

The central problem the constructivist alternative faces, however, is how to come to 

terms with accommodating these central desiderata without postulating that the learner 

is in direct contact with the world. This section aims to show that constructivism has 

been unable to offer a satisfactory account of the learning process because it adheres to 

a thinly veiled neo-Kantian pre-supposition, which dictates that on some level mind 

and world must be kept apart if we are to avoid the problematic representationalist idea 

that mind and world stand in some sort of primitive relationship to one another. We 

hold that this neo-Kantian dogma undermines the constructivist’s position because, in 

trying to avoid falling into the Myth of the Given, it embraces a dualism of its own. 

There are many variants of constructivism, but for our argument it is sufficient to 

recognise the general distinction between the cognitive constructivist and 

socioconstructivist approaches, because most individual manifestations of 

constructivist theory can broadly be categorized under one of these constructivist 

positions (Mason, 2007). Cobb and Bowers (1999) delineate this general distinction by 

considering two metaphors: 

In the case of the cognitive perspective, a central organising metaphor is that of knowledge 

as an entity that is acquired in one task and conveyed to other task settings. In contrast, a 

primary metaphor of situated learning perspective is that of knowledge as an activity that is 

situated in regard to an individual’s position in a world of social affairs. (p. 2) 

This conceptual difference affects the methodology of both approaches, because, “If 

from the cognitive point of view, knowing means possessing, from the sociocultural 

perspective it means belonging, participating, and communicating” (Mason, 2007, p. 

2). In this sense the focus is either on the “construction of internal knowledge or 

meaning” or the “construction – if it can even be called that – of new communities of 

discourse and social practice” (Kaartinen & Kumpulainen, 2002). 

Thus there is a tension between cognitive and socioconstructivism resulting from their 

contrasting attempts to satisfy the desiderata lacking in representationalist theory, 

whilst simultaneously adhering to implicit and problematic neo-Kantian 

presuppositions, which dictate that on some level mind and world are disconnected. 

Consider cognitive constructivism (e.g., Von Glasersfeld, 1980). By focusing upon the 

individual’s internal cognitive mechanisms it explains the process of learning in terms 

of the individual’s construction of internal knowledge or meaning. The problem is that 

in attempting to circumvent the issue of a nonconceptual reality which the mind is 

primitively able to represent, cognitive constructivist’s take a coherentist approach, 

which tries to conceptualise knowledge claims and articulate standards of objectivity 

on the basis of the internal coherence of beliefs. In this way, the individual’s loses 
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touch with the world. So, even if cognitive constructivism satisfies one desideratum – 

that of individual learning – it can only do this by neglecting objective external 

constraint and falling prey to relativism. Learners, therefore, are left spinning in 

McDowell’s frictionless void. 

Socioconstructivism, on the other hand, appreciates that learning cannot be segregated 

from social practices and must take place within certain communities of discourse, but 

typically offers no account of how individual’s go about constructing internal 

knowledge claims. If we cast learning as that mental phenomena that take place only 

inside of the learner’s head, then we ignore the now well established idea that a theory 

of learning should include an account of the reflexive relation between an individual 

student’s reasoning and the evolution of the classroom practices that constitute the 

immediate social situation of their mathematical development (e.g., Bowers, 1996). On 

the socioconstructivist view, however, whilst we sidestep the coherentist pitfall, we 

have no account of how differing contexts and discourse practices provide the 

sufficient basis for individual understanding. We have no explanation of how the same 

knowledge – of simple mathematical truths, for example – can be internalised by 

differing individuals with often markedly different learning processes. Subsequently, 

if learning concerns only the construction of social practice, then we lack a convincing 

account of how individuals come to know anything. How, for example, can I know that 

my knowledge of the mathematical truth, 1 + 1 = 2, squares with yours? In Cobb et al.’s 

words, students “have no way of knowing whether their individual interpretations of a 

situation actually correspond to those of others” (1992, p. 17-18). For the 

socioconstructivist, therefore, learning refers solely to an individual’s integration into a 

particular environment to such an extent that the role of the mind – in forming and 

modifying knowledge claims and meaning designation – plays almost no part. 

To attend to this problem and so illuminate why there exists a tension between 

cognitive and socioconstructivism, we must look to constructivism’s neo-Kantian 

presuppositions about the mind-world relation. How can individual learning be any 

more than the coherence of my own beliefs and so satisfy the notion of objectivity? 

And how can the constructivist make an appeal to sociocultural practices whilst still 

accommodating individual learning? We claim that these two desiderata cannot be 

jointly satisfied within a rigidly neo-Kantian constructivist theoretical framework, 

because the constructivist maintains that the best way to deal with 

representationalism’s Myth of the Given inspired deficiencies is to adopt the 

neo-Kantian doctrine that says, on some level, mind and world must be kept apart. But 

this will not do, because it functions as an incomplete renunciation of the dualism at the 

heart of representationalism and causes problems for constructivism’s own account of 

learning processes. The constructivist wants to renounce the representationalist 

assumption that the world is simply given to us, but to do so he endorses the 

neo-Kantian notion that the world is not entirely open to the mind. But then, instead of 

overcoming dualism, the constructivist merely has a choice between deciding in favour 

of the mind and discounting the world (cognitive), or in favour of the environment 
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(socioconstructivist) and losing his way back to the mind. Just as in Kant’s 

transcendental story, the constructivist has – perhaps implicitly – decided that there 

exists a gap between mind and world, so that we can have a theory of learning centered 

on mind or environment, but not both.  

It is clear from the preceding discussion that if the constructivist is to offer a theory of 

learning that conceives of the learning process as one in which individual learners have 

“taken-as-shared mathematical interpretations, meanings, and practices 

institutionalized by wider society” (Cobb et al., 1992, p. 16), he needs additional 

theoretical tools to overcome the neo-Kantian gap described above. He requires an 

evolution of constructivism’s theoretical commitments. 

In our view, one interesting evolution of constructivism, which can be found in the 

ideas of Cobb et al., is the introduction of normativity. For Cobb et al., mathematical 

learning is multidimensional; it contains individual and sociocultural elements, 

because individual learners are subject to intersubjective sociomathematical norms 

(Cobb & Yackel, 1996). These norms, as instantiated via social practice, bind 

individual learning to the collective in a way inconceivable from within the traditional 

constructivist picture by regulating “what counts as an acceptable mathematical 

explanation and justification” (p. 461). Sociomathematical norms thus provide the 

basis by which constructivism can answer to both desiderata lacking in 

representationalist theory without succumbing to the Myth of the Given or coherentist 

tendencies. But Cobb’s account has not provided an explication of the functionality of 

the normative process that underpins the learning process; the how and why concerning 

normativity. As such, Cobb’s evolution only goes so far. Moreover, we wonder 

whether a perspicuous and systematic description of this process could be given by 

making further use of the metaphor of construction. As an alternative or supplement to 

this evolution in Cobb’s work, we argue that Brandom’s inferentialism offers an 

approach that permits of a clearer articulation and expansion of what Cobb is trying to 

achieve. 

INFERENTIALISM 

Inferentialism differs from representationalism and constructivism in privileging the 

metaphor of inference over those of representation and construction. Following 

Sellars, Brandom espouses an inferentialist semantics, which sees the meaning of a 

word as determined by the inferences in which the word plays a role – a Hegelian idea 

also found in Vygotsky (see Bakker & Derry, 2011). This distinguishes him from 

typically representationalist theories, which understand meaning in terms of reference 

to objects. For example, the meaning of “red,” for Brandom, is defined by that one can, 

inter alia, derive “p is colored” or “p is not blue” from “p is red.” From this it follows 

that inferentialism must be holistic in nature: To understand one concept, one must 

understand many. So, to 

grasp or understand […] a concept is to have practical mastery over the inferences it is 

involved in – to know, in the practical sense of being able to distinguish (a kind of 
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know-how), what follows from the applicability of a concept, and what it follows from. 

(Brandom, 2000, p. 48, his italics; cf. Sellars, 1997, §36) 

This is a practical mastery because the assessment of one’s concept use is not up to 

oneself (or to the way one’s concepts mirror reality). Rather, it is up to the people one 

engages with in the aforementioned social game of giving and asking for reasons. 

Brandom (1994, Part I) develops a social scorekeeping account of language, in which 

one keeps track of the claims one takes oneself or other persons to be committed to on 

the basis of their utterances, their actions, or what one takes to follow from those 

utterances or actions. These practices are constrained by norms, as in Cobb; but we 

wish to emphasize that, contrary to Cobb, Brandom gives a perspicuous account of 

their provenance from within scorekeeping practice. Brandom’s account is essentially 

socially perspectival (1994, Section 8.6). It is primarily important what one takes 

people to be committed to; only later does the question arise whether they are or should 

really be committed to those inferences. One’s commitments are, however, genuinely 

subject to external constraint, in that they may be challenged or endorsed on the basis 

of facts about reality; Brandom allows for noninferential access to the external world 

through perception. This access is not immediate, however, because it is filtered 

through the game of giving and asking for reasons. 

In sum, Brandom understands concepts in terms of the set of inferences in which they 

play a role. Concepts are not “in the head,” nor are they completely “out there” – rather, 

they reside in the game of giving and asking for reasons. Though concepts do refer to 

the external world and may be said to be “constructed,” in a loose sense, by the 

discovery and articulation of new inferences which involve them – a process which 

may occur both on an individual and a supra-individual level – both representation and 

construction can be explained in terms of inferences. The individual develops new 

concepts by becoming aware of new possible inferences. It is the task of the teacher to 

support and guide this process, while being aware of the individual learning which 

manifests itself in the situative teacher-student webs of reasons, and without being able 

to retreat to an external vantage point outside of the social game. 

The upshot is that Brandom gives a dynamic, holistic, nondualistic, and social picture 

of human rationality. Reasoning is not primarily an internal phenomenon which 

depends on essentially private cognitive structures, but takes place in the social game 

of giving and asking for reasons. This game is dynamic in that the inferences a given 

word is engaged are not fixed, and in that Brandom sees the status of utterances as 

depending on how they are recognized (in the Hegelian sense of anerkennen) by one’s 

conversational partners. The way they understand your utterance informs the content it 

is eventually seen to possess. This is one of the ways in which Brandom’s account of 

linguistic activity is relational. Moreover, it is inherently practical, stressing the 

concrete contexts in which learning can only take place, and allowing us to see, for 

example, how the teaching of concrete, meaningful examples may aid teaching more 

than the abstract transfer of structural knowledge that does not help students to make 

inferences. Finally, it is well suited to being applied at different levels of grain. By 
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introducing the notion of a web of reasons, which is the manifestation of the game of 

giving and asking for reasons in a particular situation (Brandom, 1994, p. 5), it is 

possible to accommodate both individual learning as well as more general features of 

classroom learning. 

IMPLICATIONS AND CONCLUSION 

It is worth emphasizing recommendations that inferentialism offers mathematics 

educators (Bakker & Derry, 2011). Firstly, it asks them to understand concepts 

primarily in inferential rather than representational terms, as the set of moves available 

in the social game of giving and asking for reasons. Secondly, it privileges holism over 

atomism, emphasizing the interrelations between concepts. This has implications for 

curriculum and teaching, not only in statistics education but also in, for example, 

vocational education, Bakker and Akkerman (in press) suggest that inferentialism has 

something important to offer when we intend to overcome common dichotomies such 

as between school-based and work-based knowledge, and between mathematical and 

contextual knowledge. In particular the concept of webs of reasons can help to do more 

fine-grained analyses of the many types of reasons in making claims or decisions. We 

assume that more areas within mathematics education can benefit from an inferentialist 

perspective, for example research into reasoning, proof and argumentation, but also 

research into the role of signs and representations. One key area for further research 

may be to study the relation between reasoning and representing. Brandom’s reversal 

of philosophical methodology of explaining the meaning of representations in terms of 

inference may be too extreme for explaining learning. It may turn out that a 

co-evolvement of reasoning and representing, as in Peirce’s theory of diagrammatic 

reasoning (Bakker, 2007), is more convincing.  

Inferentialism has been applied in educational settings and found useful, also for the 

analysis of mathematical learning (e.g., Huβmann & Schacht, 2009). This paper has 

sought to urge its theoretical virtues. We do not claim that it surpasses all its 

competitors, but we have given some reasons for studying if the metaphor of inference 

is preferable to those of construction or representation – both of which can be 

explained in terms of it. We also think that an inferentialist theory of education 

provides the systematic resources needed to solve some of the problems which have 

plagued educational researchers. Because of its systematicity and roots in both analytic 

and continental philosophy, it may prove a more perspicuous alternative to many 

proposals currently on the market. Inferentialism escapes the oscillation between the 

given and coherentism we discussed and avoids the dichotomies between, for example, 

mind and world, and the individual and the social. It promises a systematic and 

coherent way of dealing with these dichotomies without reifying them as is often done. 

Though promising evolutionary developments of the constructivist paradigm are found 

in Cobb’s work, we propose that a revolutionary account – a replacement by an 

inferentialist framework – may ultimately be more useful. We hope that mathematics 

educators feel invited to study inferentialism and related philosophical perspectives. 
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TECHNOLOGY-ACTIVE STUDENT ENGAGEMENT IN AN 

UNDERGRADUATE MATHEMATICS COURSE 

Greg Oates, Louise Sheryn, Mike Thomas 

The University of Auckland 

 

In this paper we describe the design and implementation of a technology-active 

introductory first year university mathematics course. The design principles 

underpinning the course are presented. The results of the implementation show some 

areas where the technology-active approach has proven of value, as well as 

improvements that can be made for the next cycle. Some implications for the 

integration of technology in large lecture undergraduate teaching are presented.  

BACKGROUND 

This paper describes the implementation of a study comprising one of three 

components of a wider research project, led by a research team at the University of 

Auckland, entitled Capturing Learning in Undergraduate Mathematics. The Intensive 

Technology Innovation reported here investigates a digital technology initiative in an 

entry-level mathematics course where technology is employed in four major ways, as 

described in the course design principles below.  

The use of technology in undergraduate mathematics is well-established with respect 

to lecturer use of mathematical environments (Thomas & Holton, 2003; Drijvers, 

2012), and students who have used technology within components of particular 

courses, for example as laboratory assignments (Oates, 2011). However, it is less 

common for students to use technology as intensively as in this study, especially in the 

sense of having integrated, unrestricted use of mathematical environments and 

websites (such as Matlab & Wolfram Alpha) in lectures, tutorials and assessments, and 

being able to access these ubiquitously (in all coursework except the final exam) 

through smart-phones or portable computers (Hoyles & Lagrange, 2010; Oates, 2011). 

Such technology use in tertiary education is strongly indicated (Hoyles & Lagrange, 

2010; Stewart, Thomas, & Hannah, 2005). Potential benefits include increased student 

engagement in mathematical activities and discourse (Scucuglia, 2006); improved 

inter-representational versatility (Thomas & Holton, 2003); and improved 

understanding in particular content areas (Thomas & Holton, 2003, Oates 2011). There 

are also studies that describe potential difficulties with the use of technology (e.g. see 

Drijvers, 2012), and Oates (2011) identifies a complex range of factors that should be 

considered to achieve an effective and integrated technology-active learning 

environment. For example, Gyöngyösi, Solovej and Winslow (2011) found evidence 

that weaker students commit more errors when technology is present, while Stewart, 

Thomas and Hannah, (2005) note that students need time for instrumental genesis 

(Artigue, 2002). Particular factors considered in the design of this study include 
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teacher privileging (Kendal & Stacey, 2001); access to technology and congruence 

between learning and assessment (Oates, 2011); student instrumentation (Stewart, 

Thomas, & Hannah, 2005); technology-active, -neutral and –trivial assessment (Oates, 

2011); students’ use of lecture recordings (Yoon, Oates & Sneddon, 2013); and the 

pragmatic, pedagogic and epistemic value of technology for particular topics in the 

curriculum (Artigue, 2002; Stacey, 2003). 

METHODOLOGY 

This research follows a design experiment methodology where “a primary goal for a 

design experiment is to improve the initial design by testing and revising conjectures as 

informed by ongoing analysis of both the students’ reasoning and the learning 

environment”. (Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003, p. 11). The focus 

of this study is a technology intervention introduced to a university mathematics 

course during the second semester of 2013. The research questions ask if the course 

design was effective in engaging students in learning mathematics, and if so how, and 

what improvements might be made for future cycles. What we present here are some 

results from the initial cycle in this continuing experimental process. 

Course design principles 

There are at least four guiding principles employed in the initial cycle of course design 

and construction. First, technology should be integral to the assessment process. 

Hence, each student was required to register and enrol into MathXL – a web-based 

homework, tutorial and assessment system, which was used for five skills quizzes (1% 

each) and the mid semester test (10%). The MathXL program provides instant feedback 

by marking student answers, identifies topics where the student needs to focus their 

attention and directs them to sections in an online textbook as well as creating a 

personalised Study Plan. The quiz and test questions were largely free-response, 

exercising the MathXL facility for numerical, algebraic and graphical input of 

solutions, in contrast to static multiple-choice style questions. The quizzes are a 

time-limited, non-supervised assessment where students have three attempts and their 

best score is recorded. The mid-semester test is also time-limited but held in a 

supervised computer lab with one attempt per question. Students were allowed access 

to CAS-calculators if they had them as well as online resources, although time factors 

would have made this impractical for most. There is still some debate about whether 

the test should be technology-free (skills-based) or technology-active. 

The second principle was that the lecturers should model a range of appropriate 

technology including: a web-based graphing calculator; YouTube clips; applets to 

demonstrate critical features of mathematics; and mathematical websites. In addition 

to the importance of teacher-privileging (Kendall & Stacey, 2001), another reason for 

this was to minimise any disadvantage to students who did not have access to specific 

technologies. At the end of each lecture students were directed to webpages that 

illustrated the concepts at the heart of each topic, and a video-recording of each lecture 

was available to students within 24 hours. Third, students were encouraged to use any 
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technology platform they had access to, including all calculators, mobile phones, 

computers, tablets, etc. and any e-resources they could access with these. The final 

design principle was that technology should be actively used in the one-hour weekly 

tutorials that all students were expected to attend. 

The course consists of 36 one-hour lectures and 10 one-hour tutorials, which are worth 

8% of the final grade. At the end of the course students were asked to complete three 

questionnaires: a technology questionnaire; an attitude survey; and the standard 

university student course evaluation. Three volunteers also worked on 

technology-active group tutorial tasks held in a computer lab. As they worked on these 

tasks field notes were made on an observation schedule. Each of these students had 

their own CAS-calculators and could use any technologies they thought appropriate. 

Figure 1 shows examples of the questions used in the online technology questionnaire, 

which contained a mix of 19 open and closed questions, and investigated student use of 

technology in general; mathematics-focused technology use; and the student pattern of 

technology use during the course. The open questions had unlimited response space. 

1. Which mathematical-learning technologies did you observe the lecturers or tutors using and modeling in 

their teaching of MATHS 102?  Please select all that are appropriate. 

MathXL    Graphics or CAS calculators    Autograph    Wolfram Alpha   

GeoGebra   Khan Academy      Smartphone or Tablet App    

Other Internet Use (specify)   ___________   Other Technology (specify)    

2. Which mathematics learning technologies did you personally use in the course? Please indicate your 

frequency of use, and whether this was the first time you had used them. 

Often = almost daily; Sometimes = 1 or 2 times per week; Seldom = a few times in the semester 

MathXL Often      Sometimes     Seldom   Never    

7. What activities did you use technology for? Please specify which technologies you used for each of the 

following activities: [Lectures, assignments, tutorials, quizzes] 

11. Describe the kind of activities you used technology for when working on mathematics problems in the 

course. 

Figure 1: Examples of the open and closed questions from the questionnaire. 

Attitude to learning mathematics with technology  Suggested goals 

I like using technology to learn maths  My primary intention in using technology in maths 

is to check my work 

Using technology in maths is worth the extra effort My main purpose in using technology is to get the 

answer to the problem I’m working on 

Maths is more interesting when using technology When I use technology I aim to finish as soon as 

possible 

Using technology hinders my ability to understand 

maths 

My main goal in using the technology is to get a 

better grade in the course 

I prefer working out maths by hand rather than using 

technology 

I use the technology to find more than just the basic 

answer to the question 

Table 1: Examples of the scale items  

For the attitude survey, a Likert scale was constructed with five subscales in 29 

randomised items and a range of five possible responses (strongly agree, agree, neutral, 
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disagree, and strongly disagree). The subscales measured: attitude to maths ability; 

confidence with technology; attitude to instrumental genesis of technology (learning 

how to use it); attitude to learning mathematics with technology; and attitude to 

versatile use of technology. The versatility subscale had four questions and the others 

five. In addition, there were five questions covering possible goals in technology use, 

which was not a subscale. Table 1 gives examples of some items. 

RESULTS 

22 students (out of 131 in the course who sat the final exam) participated in the study; 

thirteen of these completed the questionnaire and nine the attitude survey. Responses 

were anonymous so it was not possible to tell how many were in the intersection of the 

two groups. Although this is a relatively small number of responses, we still believe it 

gives a reasonable indication of the student reaction to the course. In addition, 50 

students completed the online course evaluation. In the questionnaire, ten of the 13 

students (76.9%) agreed that the lecturers had made sufficient use of the technologies 

in the lectures, and recognised the use of a range of platforms. They agreed there was a 

wide use of technology during the course. All used MathXL, seven almost daily and six 

once or twice a week; 11 used Desmos, six of them daily, two once or twice a week; 

and six used Wolfram Alpha, five of them daily. Khan Academy was used daily by five 

students, Autograph by two and GeoGebra by one. In addition ten students made daily 

use of a graphic or CAS calculator.  

All the students used MathXL for the assessment quizzes, at least once or twice a week, 

with a mean of 4.72 out of five quizzes. Similarly, all used it for homework, ten at least 

once or twice a week and twelve for revision, ten at least once or twice a week. 

Furthermore, nine used it in their study plan and ten for help with solving problems, 

mostly at least once or twice a week. For the assignments, along with various internet 

sites, six students mentioned using calculators, five Desmos, five Khan Academy and 

two each Autograph and MathXL. Nearly all the students owned a laptop (12) and a 

smartphone (11), with ten also having a home computer and four a tablet. Nine (69.2%) 

had external access to Desmos, five (41.7%) to Autograph and two (16.7%) to 

GeoGebra. On average they found Desmos useful (3.9 out of 5), Autograph slightly 

useful (3.33) and GeoGebra not useful (2.2). In response to the summary questions, 

twelve (92.3%) said that they thought the technology use had helped their learning of 

mathematics, eleven (84.6%) liked the extensive use of the technology and twelve 

(92.3%) wanted the technology to be available in future courses. Some comments they 

made included: 

I learnt a lot from this course through the many technologies made available to me. I spent 

several hours each week practicing using various websites, apps and online tutorials, as 

well as recorded lectures. Highly recommended. 

MathXL helped me to focus on areas of maths I needed help with. 
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There was a broad use of mathematical technology throughout this course, enabling 

students to feel supported in the learning process…technology (for) visual learners like 

myself (makes) maths seems less daunting. 

Particularly in year one mathematics, the use of technology has helped me gain a quicker 

and deeper understanding as to how various equations behave and being able to quickly 

look up a mathematics problem on the internet also assisted greatly. 

[It should be used in future] Because it is really useful for understanding concepts, for 

practising them and learning them. 

25 of the 42 open responses to the course evaluation item “What was most helpful for 

your learning?” specifically cited technology, with positive references to MathXL and 

the quizzes (17), recorded lectures (7) and access to the web (8), for example Desmos, 

Khan Academy and WolframAlpha. Comments included: 

Mainly the recorded lectures – I've found them very useful for going over when I haven't 

understood something or forgotten something. 

MathXL was extremely helpful for my learning. Being able to check my answers instantly 

was a great encouragement and stimulant.  

MathXL: The website was amazing – the instant feedback on answers and also the facilities 

to learn what I did wrong, as well as how to do it correctly were fantastic. 

Being prompted during lectures of other sources of information available such as Desmos 

and Khan Academy, to be able to be used concurrently with MathXL's resources.  

I think the quizzes online are the best method for cementing your knowledge of the math. 

Data from the MathXL website and the lecture recording access also support a high 

level of student engagement with the technology. While we would expect a high 

proportion of students to access the quizzes and the test because they are assessed 

(average of 95 across the 5 quizzes; 124 for the test out of 130 students), a significant 

number of students still engaged with revision exercises and individual study plans 

(e.g. 93 & 84 respectively for the test revision and 41 for an exercise on 

differentiation). Similarly, the lecture recordings were well used, with an average of 

more than 100 student-accesses to each individual lecture, and a peak of more than 200 

for two lectures, one on logs and exponential functions and one on trigonometry. 

However, not all comments and experiences were positive. Two students in the 

questionnaire presented forceful reasons for a negative perspective: 

MathXL was a disastrously unfair method of assessment as it was difficult to formulate 

your thoughts when a test is in such a different format to what you have always done. I 

have personally always been rather good at maths but I have done very poorly in this 

course as I have struggled with everything being computer/technology based. 

...too reliant on technology without understanding the core foundations of mathematics. It 

is like designing a bridge without first knowing fundamental engineering principles. 

These sentiments were echoed in a few responses to the course evaluation item “What 

improvements would you like to see?”, where comments were mostly about syntax or 
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the use of MathXL in assessment, for example: “I didn't like using Math XL for the 

mid-term test.” and “I also strongly disliked MathXL, for multiple reasons, and I lost 

marks on a few questions in quizzes for incorrectly entering something rather than for 

getting the wrong answer.” The means of the attitude survey subscales, shown in Table 

2, indicate student agreement that they have a positive attitude to their maths ability, to 

learning maths with technology and to versatile use of technology. The level of 

agreement rises in terms of their confidence in technology use and their attitude to 

learning how to use the technology (instrumental genesis).  

Subscale Mean* (Low-High) Cronbach Alpha 

Attitude to maths ability 3.89 (3.33-4.56) 0.695 

Confidence with technology 4.42 (4.33-4.44) 0.910 

Attitude to instrumental genesis 4.40 (4.11-4.56) 0.820 

Attitude to learning 

mathematics with technology 

3.93 (3.11-4.22) 0.838 

Attitude to versatile use of 

technology 

4.11 (3.67-4.44) 0.872 

*Scores on negative items were reversed. 5 represents Strongly Agree. 

Table 2: The means of the subscale responses and the reliability measures. 

To gauge the internal consistency of the subscales the Cronbach Alpha (CA) measure 

of reliability was calculated. Four of the subscales show good or excellent reliability. 

The consistency of the subscale Attitude to maths ability is marginal (a CA of 0.7 is 

considered acceptable) but the CA would rise to 0.801 if the item ‘I can get good 

results in maths’ (mean = 3.33) were excluded. This may indicate that even those who 

see themselves as good at maths may be less confident of getting good results. The 

levels of agreement with the suggested goals for technology use were: My primary 

intention in using technology in maths is to check my work (4.00); My main purpose in 

using technology is to get the answer to the problem I’m working on (3.11); When I 

use technology I aim to finish as soon as possible (2.78); My main goal in using the 

technology is to get a better grade in the course (3.56); and I use the technology to find 

more than just the basic answer to the question (4.11). So while students are using 

technology to check their by-hand work it is often not just a basic answer. They are 

mostly neutral on whether they only use the technology for their current task or 

whether they try to finish as soon as they can, and probably do want to use the 

technology to get a better course grade. In Q16 of the questionnaire the students were 

asked ‘Describe what you see as your main goals in using technology in the course’, 

with space for up to three goals. Without any suggestions to lead them, nine students 

contributed 20 goals, most commonly: to improve learning and understanding of 

mathematics (6); to apply the mathematics, especially in the real world (3); and to 

practise mathematics (2). 

Data from the group of three students working on the specially designed 

technology-active tasks has yet to be fully analysed. While space prohibits reproducing 

the tasks here, the tasks were designed with two main purposes and goals in mind: 
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firstly, they were non-directed problems to be worked on as a group; and secondly to 

facilitate and encourage active use of technology. All three volunteers were clearly 

enthusiastic about the use of technology; all had their own CAS-calculators, and made 

frequent use of the computer while working on the tasks. They were all enthused about 

the online graphing package Desmos especially its free availability and ease of use. An 

interesting observation came in the second tutorial, where one of the students, after 

they had effectively answered the set questions, used the internet to explore the nature 

of their findings (fitting a polynomial curve through a number of points). One negative 

observation was that on several occasions one or more of the students became 

disengaged from the group to work individually on their calculators, although the 

computer acted more as a focal point for the group. 

The examination results at the end of the course showed a pass rate of 74.6% with 

23.1% A grades, which compared well with previous corresponding semesters when 

technology was not integrated, such as 2012 (76.6%, 21.0%) and 2011 (77.4%, 

26.4%). Thus the students were not disadvantaged by the course changes in terms of 

results. The student course evaluation, completed by 50 students, confirmed 

satisfaction with the course, with 77.1% satisfied overall with the course quality.  

DISCUSSION 

The evidence from this first implementation of the technology-active undergraduate 

mathematics course supports the value of this kind of intervention. In particular, most 

of the students enjoyed the experience, especially the use of MathXL for revision and 

quizzes, and were highly engaged with the mathematics through the technology. Their 

confidence in using the technology and attitudes to technology use of all kinds, and, 

importantly, to learning mathematics through the technology, were all very positive. 

The examination results confirm that the effect on assessed learning was at worst 

neutral, with clear indications that the technology had both pragmatic and epistemic 

value (Artigue, 2002) in facilitating understanding. There were two factors that appear 

to have significantly enhanced student engagement, as suggested by Scucuglia (2006). 

One was the relative ease of instrumental genesis of some of the technology, especially 

the Desmos program. The second was the crucial role of lecturer example, privileging 

the use of the technology in learning (Kendal & Stacey, 2001). This was not only noted 

and commented on by students but seems to have led to a wider and increased level of 

participation in technology use. We have learned that the attitude scale used is robust 

and reliable, with a minor adjustment needed to one subscale. Other lessons include the 

need to increase student participation (especially in the surveys and collaborative 

tutorials), providing information and requesting volunteers early in the course, and 

scheduling interviews earlier too. The positive outcomes described here, and the 

lessons learned from this implementation, will be taken forward into a second cycle of 

the course in semester one 2014. Integration of an intensive, technology-active 

intervention in a large undergraduate mathematics class is relatively rare. This research 

has demonstrated that implementing such a programme is not only feasible and can be 

done smoothly, free of problems, but also that it has considerable potential benefits. 
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EXPERT MATHEMATICIANS’ STRATEGIES FOR COMPARING 

THE NUMERICAL VALUES OF FRACTIONS – EVIDENCE FROM 

EYE MOVEMENTS 
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There has been a controversial debate if individuals solve fraction comparison tasks 

componentially by comparing the numerators and denominators, or holistically by 

considering the numerical magnitudes of both fractions. Recent research suggested 

that expert mathematicians predominantly use componential strategies for fraction 

pairs with common components and holistic strategies for pairs without common 

components. This study for the first time used eye movements to test if this method 

allows distinguishing strategy use on specific problem types in expert mathematicians. 

We found the expected fixation differences between numerators and denominators in 

problems with common components but not in problems without common components. 

THEORETICAL FRAMEWORK 

Numerous studies have shown that students at all age levels experience large 

difficulties with learning of and dealing with fractions (e.g., Vamvakoussi & 

Vosniadou, 2004). A typical mistake is to consider a fraction as two separate natural 

numbers (the numerator and the denominator) rather than as one rational number. 

Accordingly, students have been found to compare two fractions by comparing their 

components separately rather than by comparing the holistic fraction values. As a 

consequence, many students make typical mistakes when componential comparison is 

not in line with holistic comparison (Van Hoof, Lijnen, Verschaffel, & Van Dooren, 

2013). For example, they believe that 1/4 is larger than 1/3 because 4 is larger than 3. 

Further studies have suggested that adults also tend to base their comparison of 

fractions on the fractions’ natural number components (“natural number bias”; 

Vamvakoussi, Van Dooren, & Verschaffel, 2012), and that even expert 

mathematicians do so in special cases of comparison problems, namely when the two 

fractions have the same numerator or the same denominator (Obersteiner, Van Dooren, 

Van Hoof, & Verschaffel, 2013). In fact, in such cases, it can be an effective strategy to 

compare only the non-equal components of the fractions, rather than taking into 

account the fraction magnitudes. 

These experiments with fraction comparison problems also contributed to the debate 

on whether individuals generally process fractions componentially by focusing on their 

components, or holistically by taking into account the fraction values. While Bonato, 

Fabbri, Umiltà, and Zorzi, (2007) suggested componential processing, Schneider and 

Siegler (2010) showed that holistic processing is also possible, and Meert, Grégoire, 
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and Noël (2010) proposed a hybrid model of fraction processing including 

componential and holistic characteristics. As suggested by Obersteiner et al. (2013), 

the question whether a person applies a componential or holistic strategy might 

crucially depend on individual factors and specific task characteristics. In a 

computerized experiment involving expert mathematicians, these authors could show 

that response times on fraction comparison items depended on the numerical distance 

between the numerators when the denominators were equal (e.g., 16/21 vs. 20/21), and 

on the numerical distance between the denominators when the numerators were equal 

(e.g., 4/17 vs. 4/39). When the two fractions had no common components (e.g., 11/23 

vs. 19/31), response times depended on the difference between the fraction values 

rather than on the differences between the components. These results led to the 

conclusion that expert mathematicians take into account the fraction values only when 

no easier strategy (comparing the components) is applicable.  

The conclusions above were based on response time data that were recorded in a 

computerized experiment and averaged across participants. Although such a method 

has certain advantages, it is only an indirect measure of individual strategies. The 

reason is that it is not possible to control for all factors that might have influenced 

response times in addition to the numerical distances between fractions or fraction 

components, so that alternative explanations (e.g., specific task features) for the 

observed response time patterns cannot be completely ruled out. Also, response time 

data on the group level do not take into account that strategy use might vary largely 

between individuals. In fact, there is a large number of strategies that can be applied to 

fraction comparison problems, and there is empirical evidence that individuals indeed 

make use of a wide range of strategies (Clarke & Roche, 2009). 

Eye Movements as a Method for Assessing Individual Strategies 

Assessing individual strategies on cognitive problems is a methodological challenge. 

Individual reports have been used in previous research, but the reliability of this 

method can be questioned, in particular in younger participants (Robinson, 2001). 

Recently, recording eye movements has become more and more attractive to 

researchers to assess individual strategies on mathematical tasks. For example, Green, 

Lemaire, and Dufau (2007) could show that eye movements were a reliable measure of 

individual strategies in multi-digit addition problems; Sullivan, Juhasz, Slattery, and 

Barth (2011) successfully used eye movements to assess adults’ strategies on 

positioning numbers on a number line; and Dewolf, Van Dooren, Hermens, and 

Verschaffel (2013) used eye movements to validate students’ strategies on 

mathematical word problems. In these and many other studies, recording eye 

movement has been considered a promising tool for investigating individual strategies, 

because eye fixations and eye movements are assumed to correspond to mental 

operations (Grant & Spivey, 2003).  
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THE PRESENT STUDY – QUESTIONS AND HYPOTHESES 

The aim of the present study was to test if recording eye movements could be a suitable 

method for assessing individual strategies on fraction comparison problems. Following 

the results of the above-mentioned study by Obersteiner et al. (2013), we addressed the 

questions if expert mathematicians indeed solve fraction comparison problems by 

comparing the numerators when the denominators are equal; by comparing the 

denominators when the numerators are equal; and by comparing the fraction 

magnitudes when the fractions do not have common components; and if these 

strategies could be measured through eye movements. We involved expert 

mathematicians in this study, because for these people it was possible to establish clear 

hypothesis concerning the strategies they would use for comparing fractions, based on 

previous studies. This would not have been the case for students who have been found 

to apply a variety of strategies, many of which are actually invalid (Clarke & Roche, 

2009). As this was – to the best of our knowledge – the first time eye movement was 

used for assessing strategies in fraction comparison, the aim of our study was to show 

that this method was in principle suitable for this purpose. 

We recorded individual fixation times of both eyes and hypothesized that fixation 

times would be longer for numerators than for denominators when the fractions have 

common denominators (Hypothesis 1), because participants would have to spend more 

time on comparing the numerical values of the (non-equal) numerators than to verify 

that the denominators are equal. For the analogue reason, we hypothesized that fixation 

times would be longer for denominators than for numerators when the fractions have 

common numerators (Hypothesis 2). Finally, we expected that fixation times would be 

equally long for denominators and numerators when the fractions do not have common 

components (Hypothesis 3), because the participants would need to take into account 

the numerical values of all numbers involved to determine the fraction magnitudes, and 

it is not sufficient to compare the components separately.  

METHOD 

Participants 

There were eight participants in this study with high expertise in mathematics. Six of 

them were staff members of a German university who had an academic degree in 

mathematics, and two were students majoring in mathematics. The mean age of these 

eight participants (five female) was 26 years (SD = 3.9).  

Design and Procedure 

The participants sat in front of a computer screen, which was connected to a binocular 

remote contact free eye tracking device (SensoMotoric Instruments) with a sampling 

rate of 500 Hz. The eye tracking device was placed underneath the screen. The 

participants were asked to avoid head and body movements as far as possible. First, 

calibration was performed through fixations of nine small dots on the screen. After 

that, two practice trials were presented to make the participants familiar with the 
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procedure. Then the experiment started, and two fractions at a time appeared next to 

each other. Participants were instructed to choose the larger fraction as fast and 

accurately as possible by saying aloud the word “left” or “right”. Their answers were 

noted down by a researcher who supervised the experiment. After each trial, a fixation 

cross appeared in the middle of the screen for two seconds. 

All in all, there were 32 fraction comparison items, half of which had common 

components (eight pairs with common numerators, eight pairs with common 

denominators). To be consistent with the experiment conducted by Obersteiner et al. 

(2013), we presented the items with common components and the items without 

common components in two separate blocks. Within each block, items appeared in 

pseudo-randomized order. 

RESULTS 

Data from one participant had to be excluded from the analysis due to low calibration 

quality. To analyse fixation times on numerators and denominators, we defined 

rectangular-shaped same-sized areas of interest (AOI) that surrounded the numerators 

(AOI “Num”) or the denominators (AOI “Denom”) of both fractions (Figure 1). We 

then compared fixation times between these AOIs for each fraction type. 

 

Figure 1: Sample item and areas of interest (AOI). 

 

Table 1 displays the mean fixation times in ms for numerators and denominators for 

each fraction type. For the statistical comparison of fixation times between AOIs, we 

used a generalized estimating equation model that takes into account repeated 

measures within subjects. 
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 Numerators Denominators 

Type M SD M SD 

Common Denominators 359 264 185 189 

Common Numerators 391 459 561 504 

Without Common Components 1053 836 820 586 

Table 1: Mean fixation times (in ms) for numerators and denominators, depending on 

comparison type. Note: M = Mean, SD = Standard deviation. 

As expected, for items with common denominators, fixation times were significantly 

higher for numerators than denominators, Wald χ
2
(1, N = 7) = 21.47, p < .001, 

suggesting that participants paid more attention to the (unequal) numerators than to the 

(equal) denominators, which supports Hypothesis 1. For items with common 

numerators, fixation times were significantly higher for denominators than for 

numerators, Wald χ
2
(1, N = 7) = 5.76, p = .016, suggesting that participants focused 

more on the (unequal) denominators than on the (equal) numerators. This is in line with 

Hypothesis 2. For the items without common components, the difference between 

fixation times for numerators and denominators was not significant, Wald χ
2
(1, N = 

7) = 2.28, p = .131, supporting Hypothesis 3. 

These results are in line with our expectation that the participants in our study would 

apply componential comparison strategies to fraction comparison problems with 

common components, and holistic comparison strategies to comparison problems 

without common components. Indeed, fixation patterns as illustrated by heat maps 

(Figure 2) lend further support to this assumption. Figure 2 displays heat maps for three 

selected items. In heat maps, reddish colours indicate longer fixation times. For the 

items with common denominators (2a) or common numerators (2b), fixations were 

predominantly placed on the non-equal parts of the fractions. For the item without 

common components, (2c), the heat maps indicate that fixations were more equally 

distributed among the fractions’ components, and they suggest that participants spent 

more time on comparing each fraction’s numerator and denominator, hinting to a 

holistic approach, in which the numerical value of each fraction is determined through 

the numerical relation between numerator and denominator.   
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Figure 2: Heat maps for sample items with common denominators (a.), common 

numerators (b.) and without common components (c.) Note: Reddish colours indicate 

longer fixation times. 

DISCUSSION 

This study was the first to report eye movement data during fraction comparison. We 

involved adults with high expertise in mathematics so that we could establish clear 

hypotheses concerning their strategies on specific types of fraction comparison 

problems, as reported in the literature. We distinguished comparison problems with 

fraction pairs that have common numerators, common denominators, or no common 

components. The purpose of this study was to investigate whether the expected 

differences in strategy use between problem types could be assessed through eye 

movements. 

In line with the results of the computerized experiment conducted by Obersteiner et al. 

(2013), the data suggest that the participants in our study focused on the non-equal 

components of the fractions when the two fractions had common components, but that 

they used a holistic approach when the two fractions did not have common 

components. This result helps understanding the controversial conclusions that have 

been drawn from studies about individuals’ strategies in fraction comparison (e.g., 

Bonato et al., 2007; Meert et al., 2010; Obersteiner et al., 2013; Schneider & Siegler, 
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2010; Vamvakoussi et al., 2012; Van Hoof, Lijnen, et al., 2013; Van Hoof, 

Vandewalle, & Van Dooren, 2013). It supports the assumption that adults with high 

expertise in mathematics use different strategies for comparing the numerical values of 

two fractions, and that these strategies depend on the specific type of fraction 

comparison task at hand. When the fractions have common components, they prefer 

componential strategies; when the fractions do not have common components, they 

prefer holistic strategies. As the participants in our study were expert mathematicians, 

this conclusion might not generalize to other individuals such as primary and lower 

secondary school students. However, when studying performance on fraction 

comparison problems, one should always be aware that individuals could apply 

different strategies depending on the type of item. 

Concerning the method of our study, we can conclude that recording eye movements is 

a promising tool to assess individual strategies. It might be used especially fruitfully 

with participants and on tasks for which self-reports are less reliable. More 

specifically, recording eye movements on fraction comparison could allow assessing 

the large variety of strategies that students have been reported to use on such problems 

(Clarke & Roche, 2009). The present study can be seen as a first step towards further 

investigations of eye movements on fraction problems in adults without mathematical 

expertise and – more importantly – in school students. Assessing these strategies can 

also be useful for identifying typical misconceptions about fractions that students 

might have. This could eventually lead to teaching approaches that are tailored to the 

individual needs of students. 

A limitation of the present study is certainly the low sample size, which limits the 

generalizability of our findings. We are currently conducting a follow-up study with 

very similar items in a larger sample of students of mathematics to replicate the results 

presented here. Moreover, further analyses on the individual level could allow deeper 

insight into individuals’ fraction comparison strategies. 
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THE DEVELOPMENT OF SOCIOPOLITICAL CONSCIOUSNESS 
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This is a case study on critical mathematics education lessons in South Korea. This 

study explores the development of the social consciousness of students via critical 

mathematics lessons in which students use mathematics as a tool to analyse social 

issues and to justify their claims about social issues. However, student’s rarely 

demonstrated much development of their agency for social change after taking part in 

such lessons. This phenomenon is interpreted in the light of the students’  orean 

sociocultural background and is explained as ‘reserved agency.’ 

INTRODUCTION AND THEORETICAL BACKGROUND 

Critical mathematics education (CME) is a compelling field of mathematics education 

research (Stinson & Wager, 2012). However, CME has primarily been studied among 

students of a Western sociocultural background; CME research conducted in countries 

with an Eastern cultural background (including South Korea) is difficult to find. The 

South Korean educational environment emphasizes social mobility via educational 

achievement, a phenomenon which is sometimes called ‘education fever,’ and 

constitutes the distinguishing feature of education in South Korea. Thus we expected to 

find some interesting outcomes from CME research conducted in a South Korean 

sociocultural context. Based on this assumption, I conducted a case study of CME 

lessons given in a Korean context. Frankenstein (1983), Gutstein (2003, 2006), and 

Turner (2003) have all conducted research on CME lessons. Their studies about CME 

are based on Freire’s educational theory (1972), particularly with regard to his notions 

of conscientization, a problem-posing pedagogy, and generative themes. The lessons 

in this case study are also designed based upon Freire’s theories (1972). The focus of 

this study is the development of the sociopolitical consciousness of students through 

CME lessons. The development of the sociopolitical consciousness of students is 

explained as a developing sense of agency (Gutstein, 2003). Gutstein (2006) separates 

the concept of a student’s agency into ‘using mathematics’ and ‘going beyond 

mathematics’. ‘Using mathematics’ means that, through mathematical analysis, 

students develop an understanding of and critical mind toward social issues. ‘Going 

beyond mathematics’ means that students have a positive perception about their 

sociocultural background, and realize that social change can be made by collective 

action. This study explores the development of social consciousness in students via 

CME lessons through interpretation of the agency of the students.      
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RESEARCH METHOD 

The CME lessons which serve as the basis of this study were conducted at a middle 

school in South Korea where the researcher worked for two years as a teacher. The 

lessons were conducted for five days during the students’ summer vacation. The 

research participants consisted of students of various levels of academic ability and 

from a variety of socioeconomic backgrounds. The lessons were designed and 

conducted by the researcher. Each lessons contained a generative theme related to 

social issues in South Korea. The themes of the lessons were ‘the gap between the rich 

and the poor’, ‘the minimum wage and the minimum cost of living’, ‘lookism’, and 

‘school violence’. Each theme was chose in hopes of garnering student interest. Of the 

previously mentioned themes, two lessons (‘The gap between rich and poor’ and ‘The 

minimum wage and the minimum cost of living’ lessons) were analysed for the 

purposes of this study. The tasks to be solved in the lessons contained two social issue 

contexts and mathematical problem solving. The students participated in small group 

activities and whole group discussion repeatedly throughout the lessons.  

Audio recording data for each group and video recording data for the whole classroom 

were collected. Each student’s worksheets, survey and interview data were also 

collected as well. All data was analysed using ground theory methods. Triangulation to 

obtain validity of research was carried out using various sources of data and participant 

checking. An audit trail and constant comparison method were used while conducting 

data analysis.  

RESEARCH RESULT AND ANALYSIS 

Identifying social conflict situations through numerical analysis 

The task that the students engaged in the classroom was to compare the wealth held by 

the six Americans, who share 59% of the world’s wealth with that held by the twenty 

people worldwide who share 2% of the world’s wealth. The students obtained detailed 

values related to social conflict while they solved the task. 

 

Figure 1: Student’s written work 

Students compared the value obtained by dividing 59% into 6, and the value obtained 

by dividing 2% into 20 (Figure 1). They noticed that the wealthy have 98 times more 

than the poor. After the specific value was obtained, the students talked in small 

groups, as transcribed in the conversation that follows (all names of this paper are 

pseudonym): 
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Su-bin: Oh, 90 times – that’s crazy! They’re earning 900,000 Won while I’m 

earning 10,000 Won. And they’re earning 1,800,000 Won while I’m 

earning 20,000 Won. 

Gun-yung: Wow. That’s a really big difference. 

Su-bin: Hey, this is about 100 times.   

A-reum: Yeah, it’s an amazing gap. 

When students first undertook this task, they didn’t show any emotional response to it. 

However, after they understood the social conflict situation through mathematical 

analysis, they spoke about their feelings. Students’ comments like “90 times – that’s 

crazy!”, “Wow”, and “It’s an amazing gap” are evidence of how impressed they were 

by the information. Specific numbers like “about 100 times” help students to become 

aware of and understand more concretely the problem of the gap between the rich and 

the poor. 

 

Figure 2: Student’s comments about intercontinental resource (wealth) distribution 

Some students applied the understanding of social issues that they acquired through the 

CME lessons to a broader context. While students solved the task related to 

intercontinental resource (wealth) distribution, one student remarked, “It helped me to 

understand the causes of the civil wars in Asia and Africa” (Figure 2). This concrete 

awareness that arose from mathematical analysis helped this student expand his 

thinking about social issues.  

Justifying assertions using mathematical investigation 

Students tried to justify their assertions using mathematical investigation. One student 

analysed the annual data about the minimum wage and the minimum cost of living by 

proportional thinking (Figure 3). 

 

Figure 3: Ye-jun’s worksheet 
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This analysis was conducted to account for the rate of increase of the minimum wage 

by showing it as a ration of the minimum wage and the minimum cost of living. 

Because the ratio gradually reduced, (1:512, 1:448, 1:400 and 1:346), though, the 

student’s analysis couldn’t be used to account for the change. However, his use of data 

was meaningful because it emerged from his own thought. After a while, he changed 

the focus of analysis from the ratio of the minimum wage and the minimum cost of 

living to the rate of increase of the two components.  

Ye-jun: Look! In 2000, the minimum cost of living was 928,398 Won, and now, it is 

1,546,000 Won. The minimum cost of living has increased 1.7 times, but 

the minimum wage has only increased 1.08 times. So the minimum wage 

should be higher.   

He said that the rate of increase of the minimum cost of living and the minimum wage 

are 1.7 and 1.08 each, so he claimed that the minimum wage should be increased in 

proportion to the minimum cost of living. This demonstrates how he used mathematics 

to justify his assertions with regard to a social conflict issue, i.e. his ‘using 

mathematics. (Gutstein, 2006). 

 

Figure 4: Student’s assertion regarding minimum wage 

Another student analysed one’s total monthly income when one works for minimum 

wage (Figure 4). He found that the monthly income of a labourer who receives 

minimum wage is 833,600 Won (about 800 U. S. dollars) in 2013. He thus showed that 

this level of income was lower than the minimum cost of living and asserted that the 

minimum wage should be increased. It is another example of a student using 

mathematics to justify his own claim.  

Sense of agency for social change 

One’s sense of agency is a person’s reaction to a social conflict situation as a member 

of society. The agency for social change of students can be seen in their ‘going beyond 

mathematics’ (Gutstein, 2006). The previous examples show that mathematical 

analysis was actively occurring in the classroom. However, the students didn’t take an 

active stance with regard to the individual’s role in social change.   
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Figure 5: Student worksheet #1 

In the first student response (Figure 5), the student asserts that, “We should help the 

lower class. In order to have a good life, I have to study.” These sentences present the 

student’s awareness of the gap between the rich and the poor, but it doesn’t mention 

any concrete actions one can take to reduce that gap. The only action the student 

mentions is that “I have to study” to achieve social success. The second student 

response (Figure 6) repeats a similar sentiment. Although the student mentioned “The 

severity of the gap between the rich and the poor,” the student also said, “I will live in 

the top 1%, so I have to work hard.” In short, the student’s perceptions about the social 

conflict situation and their vision for their role in bringing about social change are not 

consistent. This is quiet different from the results of previous studies by Gutstein(2003, 

2006) and Turner(2003) which showed growth in the critical agency of the students 

involved. In the case at hand, the students didn’t mention any actions that they could 

take to bring about social change, but instead focused on their own personal success. 

However, interviews with students showed that students are not just selfish. But that 

they already understand the prerequisites for social change.  

Teacher: Why do you say that nothing is going to change? 

Ye-won: Umm... I have seen many social movements, but such movements failed to 

reach a critical mass and bring about real social change… Still, many 

people have no interest in social change, they just want to become upper 

class. Some people’s struggle for social change will fail. Now, only people 

with wealth and power can change our society. Otherwise, every endeavour 

for social change will fail.    

Teacher: So, you don’t think that we can solve such socioeconomic problems? 

Ye-won: I think it’s possible to make a movement of a small number of people. But a 

small number of people has no power.  

Yoon-seo: Our government doesn’t do anything for (poor) people.  

Ye-won: We have a government that is only interested in money…  

Yoon-seo: I think the gap between the rich and the poor is a serious problem in our 

society. Our government frequently talks about welfare policies and how to 

fix this problem, but they do nothing.   

The students saw people’s participation in social movements and support of polices to 

help unprivileged groups as preconditions for social change. However, in their view, 

the Korean socio-political situation, so the students couldn’t see a way to bring about 

Figure 6: Students worksheet #2 
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social change via collective social action. In response to this reality, the students chose 

a more individualistic way. They decided to “study hard.” If we take a superficial view 

of this notion, such a choice seems far from affecting social change. This differs from 

previous studies where the participating students wanted to act to bring about social 

change, a sentiment which appears to be more proactive on the surfaces. The results of 

CME methods are closely connected to the social environment in which the research is 

conducted. Therefore, an attempt to interpret the students’ ideas as to how to affect 

social change based upon their sociocultural background is reasonable and consistent 

with the purpose of this study. Thus the interpretation of the students’ responses with 

regard to their Korean sociocultural background is as follows. 

First, we should consider several features of the study’s participants. The participating 

students chosen in Gutstein(2003, 2006) and Turner’s (2003) studies were typically 

social minorities. Because the identity of each group was largely homogenous, the 

participants expressed a common stance toward social conflict situations. However, 

the participants in the present study were students of various socioeconomic level and 

members of the ethnic majority of their country. Accordingly, the participants did not 

have a common position on social problems, and their awareness of social issues 

varied by student. Therefore the students tended to choose the more individual way of 

“studying hard” rather than collective means of seeking social change.  

Second, we should consider the sociocultural context in Korea. In Korea, educational 

achievement is emphasized as a means of social mobility (Lee, 2006). Students are 

pressured to to enter a prestigious university, get a well-paying, respectable  job, and 

work for the advancement of their family. Therefore, students are encouraged to focus 

on trying to get higher grades rather than participate in social movements. Meanwhile, 

the participation of secondary school students in social movements is considered 

unnecessary, and most parents of such students would not approve of such pursuits. 

Based on this background, the students that participated in this study thought that they 

couldn’t act for social change because they are students. Students regard taking action 

to affect social change as the exclusive property of adults. Consequently, the range of 

their imagination as to their role in affecting social change was limited to simply 

“studying hard”. 

As previously noted, students understand the prerequisite conditions for social change 

and believe in the need for social change. However, the possible avenues for social 

change in which they can participate is restricted by their sociocultural background. To 

their minds, the students’ agency can be manifested after they acquire educational 

achievements and social mobility. Although their sense of agency is already 

developed, its manifestation is delayed. I have termed this kind of later-appearing 

agency ‘reserved agency.’ Figure 7 below provides an explanation of reserved agency. 
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Figure 7: Emergence of reserved agency 

We can conceive of reserved agency as a result of the conflict between the student’s 

agency for social change that emerged from CME lessons and sociocultural 

restrictions. However, reserved agency partially affects the student’s agency for social 

change at the present point because reserved agency gradually induces changes in the 

student’s perspective on social issues. One student stated how her own view on labour 

strikes changed. The following interview was conducted 4 months after the CME 

lessons. 

Teacher: Have you experienced any change in your attitude towards labourers after 

the CME lessons? For example, with regard to labour strikes? 

A_reum: I think I feel bad for them now. 

Teacher: How did you used to feel?  

A_reum: I never gave them much thought before. After [the CME] lessons… I 

understand the social situation and I know why they go on strike, so I 

understand their position. I listen carefully to what they say.  

The dotted line from ‘reserved agency’ to ‘agency for social change’ in Figure 7 means 

the affection of reserved agency. Thus, we can regard a change of view as an evidence 

of the existence of reserved agency. 

CONCLUSION 

This study sought to examine the effect of CME lessons in Korea. In particular, this 

study focused on the development of social consciousness among the study’s middle 

school student participants. This study sought to explain why the student’s sense of 

agency for social change is limited and reserved sociocultural restrictions. This 

phenomenon, termed ‘reserved agency,’ is a consequence of the conflict between the 

students’ development of agency and the restrictions of their sociocultural background. 

However, reserved agency subtly induces the development of the students’ sense of 

agency at the present point as well. This study show not only how CME can induce the 
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development of social consciousness of students in the Korean sociocultural context, 

but also how the Korean sociocultural background of such students influences their 

experience of CME lessons. This implies that practice and interpretation based on 

social context is important for the implementation of CME. Considering the 

methodological limitations of this study, the conclusions of this study may not be 

easily generalized to other contexts. However, this study can contribute positively to a 

greater understanding of how CME might be used in Korea by suggesting the 

phenomenon of reserved agency.  
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This paper aims to clarify how coherence of ‘structured problem solving’ mathematics 

lessons can be produced by comparing the lessons of three teachers from a narrative 

perspective. Results of our analysis showed three main coherence characteristics of 

lesson teaching sequences: (1) sequence scenes are recursively developed based on the 

previous scenes, (2) there is a scene of setting a learning goal in terms of the conflict 

between what students know and what they do not know, and (3) coherent plots are 

grounded in certain mathematical content knowledge. We conclude by introducing a 

metaphor of living theatre to better understand the coherence of lesson structure. 

INTRODUCTION 

This paper aims to clarify the coherent qualities of mathematics lessons commonly 

referred to as “structured problem solving” (Stigler and Hiebert, 1999) as conducted by 

effective teachers. Since the TIMSS video study, Lesson Study has drawn global 

attention as a means for improving the quality of mathematics lessons and teachers’ 

knowledge for teaching. Stigler et al. (1999) identified a pattern, or script, in 

effectively taught mathematics lessons in Japan: reviewing the previous lesson, 

presenting the problem for the day, students working individually or in groups, 

discussing solution methods, and highlighting and summarizing the main point. This 

script has been historically developed by Japanese teachers for cultivating students’ 

mathematical thinking abilities and attitudes as well as their knowledge and skills. 

However, we should not directly equate the above teaching pattern with an effective 

mathematics lesson, because there is a range of teacher efficacy from effective to 

ineffective, and a range of lesson success from successful to unsuccessful, even if the 

pattern is indeed adopted by most of the primary school teachers in Japan. Namely, for 

teacher development it is not effective to simply use this pattern. Rather, it is important 

to know how lesson coherence can be produced. We believe that there is a substantial 

difference in lesson quality depending on whether a lesson is developed like a narrative 

or in isolated steps. It has been reported that Japanese mathematics lessons can be 

characterized as coherent accounts of a sequence of events and activities that comprise 

the classes, as if they were a story or drama (Stigler and Perry, 1988; Shimizu, 2009). 

We believe it is essential to explore how such coherent accounts are created for studies 

of teachers’ knowledge. Ball et al. (2008) provide a framework for mathematical 

knowledge for teaching (MKT) that elaborates on subject matter knowledge and 

pedagogical content knowledge. They mention several research tasks in situating such 

knowledge in the context of its use, such as how different categories of knowledge 
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come into play over the course of teaching. On this point, Silverman and Thompson’s 

(2008) MKT framework based on ‘key developmental understanding (KDU)’ as “a 

conceptual advance that is important to the development of a concept” (Simon, 2006, 

p. 363) seems useful for planning lessons. However, it remains unclear what processes 

of a lesson a teacher can practically realize using such knowledge, particularly to 

produce coherence in teaching. 

THEORETICAL BACKGROUND 

Several researchers have noted that children’s learning is narrative in nature. Dewey 

(1915, p. 141), for instance, stated, “(Children’s) interest is of a personal rather than of 

an objective or intellectual sort. Its intellectual counterpart is the story-form…Their 

minds seek wholes, varied through episode, enlivened with action and defined in 

salient features—there must be go, movement, the sense of use and 

operation—inspection of things separated from the idea by which they are carried. 

Analysis of isolated detail of form and structure neither appeals nor satisfies.” This 

suggests that even if we collect all of the parts that constitute a lesson structure, it will 

not attract the attention of children unless it is in a story-form. Mathematics education 

studies have also seen effective lessons as being in story-form. Krummheuer (2000) 

understood classroom situations as “processes of interaction: students and teachers 

contribute to according to their sense and purpose of these events” (p. 22) in terms of 

classroom culture; this view was influenced by Bruner’s (1990) view of narrative as 

having the following characteristics: sequentiality, a factual indifference between the 

real and the imaginary, a unique way of managing departures from the canonical, and a 

dramatic quality. Zazkis and Lilijedahl (2009) tried to shape mathematics learning as 

storytelling to enhance students’ interest in, and to engage them with, mathematical 

activities. They listed the following general elements of good stories: plot, beginning, 

conflict and resolution, imaginary elements, human meaning, wonder, and humour.  

We consider the concept of plot as being crucial to analyzing a quality lesson. 

Krummheuer stated that “a plot characterizes the sequence of action in its totality: it 

describes something that is already fixed… But an unfolding plot connotes something 

fragile, not yet entirely executed, still changeable. Both aspects are essential and the 

tension between these two dimensions of this concept is crucial for its adaptation for 

classroom interaction and its function for learning” (p.25). It seems that there are two 

of these aspects that correspond to the planning and the practicing of a lesson, 

respectively. We consider the following script, identified as a Japanese lesson structure 

(Stigler and Hiebert, 1999), as a way of adding the role of plot to a narrative structure. 

 Reviewing the previous lesson; 

 presenting the problem for the day;  

 students working individually or in groups; 

 discussing solution methods; and 

 highlighting and summarizing the main point. 
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However, as we stated above, even if teachers use this pattern in their teaching, there is 

a range of possible lesson evaluations from very good to very poor. Shimizu (2009) 

suggested that lessons conducted by effective teachers can be compared to stories or 

dramas. A coherent account of a lesson can be explained as a well-formed story which 

“consists of a protagonist, a set of goals, and a sequence of events that are causally 

related to each other and to the eventual realization of the protagonist’s goals. An 

ill-formed story, by contrast, consists of a simple list of events strung together by 

phrases such as “and then…”, but with no explicit reference to the relations among 

events” (Stigler and Perry, 1988, p. 215; cf. Shimizu, 2009). Thus, it is important to 

examine how a coherent plot in teaching can be produced during a lesson. In addition, 

it is important to remember that the protagonists are the students, and that thus their 

ideas and feelings are central components of the story, and that a teacher may assume 

that as many students as possible will play active roles. On the contrary, the lesson may 

not be effective if the only active persons are a teacher and just a few capable students. 

METHODOLOGY 

We asked six teachers to conduct lessons: A) 2 

experienced teachers who specialize in mathematics 

teaching, B) 2 experienced teachers who do not specialize 

in mathematics teaching, and C) 2 teachers who have a few years’ experience. We 

selected the content ‘area of a parallelogram for which the height cannot be known 

from a straight line on its inside’ from a fifth grade mathematics textbook (Fig.1, right). 

We assumed that children would have difficulty in the height, and that differences in 

teaching among the teachers would appear when dealing with this difficulty. 

During a preliminary meeting with each teacher, we introduced multiple methods for 

finding the area of the parallelogram. Then, we asked him/her to conduct their lesson to 

help students find multiple solutions to the problem and to understand the concept of 

area beyond simply understanding how to solve the problem. We also interviewed each 

teacher to better understand what he/she valued most in designing and practicing 

his/her daily lessons. 

The lessons were recorded with video cameras and field notes. We made transcripts of 

the video data. In our data analysis, we first extracted all meaningful interactions to 

examine whether a teacher’s questioning or instruction evoked student responses, and 

how he/she subsequently responded to the students. Next, we conceptualized each 

interaction unit in terms of the teacher’s intention and the interaction’s practical 

effects, before trying to reconstruct the entire picture of the lesson structure, that is, the 

‘plot’, by examining how the interactions were connected to each other. Finally, we 

compared the reconstructed lesson structures of the six teachers’ lessons and tried to 

clarify the characteristics which comprised the creation of a coherent plot. 

Below, we present the results of our analysis of the lessons conducted by three of the 

teachers: Mr F (the above type A, 35 years of experience), Ms Y (type B, 18 years of 

experience), and Mr S (type C, 3 years of experience). 

  

 
Figure 1 
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RESULT 1: THE CASE OF MR F’S LESSON 

First scene: Reviewing the formula for the area of a parallelogram 

Mr F began by reviewing the formula for finding the area of 

two parallelograms (base 6, height 4; base 3, height 1) (Fig. 

2). Here, the interactions between Mr F and the students 

showed a pattern. First, Mr F asked the value of the area and 

the students answered 24 by counting the unit squares or by 

using the area formula. Next, Mr F asked what formula they used, and they answered 

6×4. Moreover, Mr F asked what 6 and 4 referred to in the figure, and one student 

indicated the base and height locations by tracing along the figure with her finger on 

the blackboard. In particular, Mr F made her check the vertical relationship between 

the base and height and trace the height of the shape in several places. The pattern of 

interaction here was: answer   formula   meaning of the values in the formula   arbitrary 

places of height of the shape. We found that this pattern of interaction was also used in 

the case of the 3×1 formula. 

Second scene: Setting a problem through an experience of the conflict 

Mr F presented a problem as follows. 

Mr F: I have one issue with this. I am bothered by this 

parallelogram. Do you understand my trouble? 

Student 1: The previous parallelograms had this line. This time, 

we can’t draw this (line) (Fig. 3). 

Mr F: I tried to find the height, but there’s nothing there! Oh, there’s no height! 

Students: But, but… (Several students raised their hands to respond.) 

Mr F: But, does the parallelogram have an area? 

Students: Yes, it has an area. 

Mr F: Yes, it does. This is a parallelogram. But we can’t use the area formula 

because we don’t know the height. Don’t you feel like crying? 

The problem setting was like the beginning of a narrative in which the students were 

involved in an issue troubling Mr F, where the two circumstances (‘there is no height’ 

and ‘the area formula can’t be used’)were given as the problematic aspects of the issue. 

We note that the problem was set based on the preparation conducted in the first scene. 

Third scene: Setting a goal by comparing between the known and the unknown 

Mr F next proposed setting a learning goal for the students. One student said, “Let’s 

find the height”, but the task at hand was not simply to find the height of the shape. Mr 

F then tried to direct the students’ interest to figuring out a formula to find the area of a 

parallelogram of unknown height based on the student’s statement. 

Mr F: Oh, yes. The height of this is dubious. If you know the height, then… 

Students: We can know the formula! 

 
Figure 2 

 
Figure 3 
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Moreover, he clarified the task by aligning three parallelograms and 

confirming that the formula could now be used only for 6×4 and 3×1 

parallelograms (Fig. 4). Then, the students were able to set a goal: to 

find the area of a parallelogram of unknown height using a formula. 

We note that this aligning of the three parallelograms implicitly 

prepared the students with insight for two ideas to solve the problem 

by seeing it as half of a 6×4 parallelogram and as four 3×1 ones. 

Fourth scene: Individual activities and redefining the goal 

The students individually tried to solve the problem. However, Mr F 

found that some students just wrote the formula 3×4=12 procedurally 

(Fig. 5), which was different from the set goal of understanding the 

situation based on the known parallelograms using the area formula. 

Mr F then stopped these students and restated the task for all the 

students again. 

Mr F: Some of you may be thinking of this as the height. 

As it is now, we don’t know whether this is the 

height or not, because it doesn’t meet the base. So, 

you can’t set this as the height (Fig. 6). Consider 

using the formulas you already know. 

Mr F’s redefining of the task in this way seemed to work successfully because all the 

students then started considering the problem using the known parallelograms. We 

found a total of 13 distinguishable solutions in the students’ notebooks. 

Fifth scene: Class discussion (1): Sharing the fundamental idea 

We found that Mr F employed one particular type of interaction in which he tried to 

deepen one basic idea by using plural voices during the class discussion. First, Mr F 

invited the students who had come up with the idea of using four 3×1 parallelograms to 

present their idea to the class. Mr F’s writing on the blackboard gradually became more 

detailed as he interacted with the different students. We characterize this series of 

interactions as multi-layered. 

S2: Here is 1, 2, 3 

and 4. 

Mr F: What is 

here? (He circled 

the bottom one.) 

 S3: The small parallelo- 

gram is 3×1=3. As there 

are 4, the answer is 12.  

Mr F: Can anybody else 

explain in the same way? 

(He wrote the formula.) 

 S4: The bottom 

one is 3. There 

are 4 parallelo- 

grams, 3 times 4 

is 12. (He wrote 

the numbers.) 

 Mr F: What is the 

case of one step? 

Ss: Three. 

Mr F: What about 

for two steps? 

Ss: Six. … 

 



 

 



 

 



  

Figure 7 

 
Figure 4 

 
Figure 5 

 
Figure 6 
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Figure 9 
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4×3 

Figure 8.4 

 

4×7-(4×4÷2×2) 

Figure 8.3 

 

6×2 

Figure 8.2 

 

3×2×2 

Figure 8.1 

Sixth scene: Class discussion (2): Sharing various ideas 

Mr F then invited the students to share their other ideas, and the following four ideas 

(Fig. 8.1-8.4) were presented. 

 

Here, how to transform the parallelogram into known figures and the relevant formulas 

were confirmed. Then, Mr F classified these ideas into two categories, ‘parallelogram 

based’ (Figures 8.1, 8.2) and ‘rectangle based’ (Figures 8.3, 8.4). 

Seventh scene: Class discussion (3): Rethinking the goal 

Mr F then proposed a rethinking of the main goal, and asked the 

students again what the height of the shape was. The students 

answered that it was 4, but they were not confident about their 

answer. Here, Mr F told them to reflect on the idea shown in 

Figure 7, saying together with the students, “The height of the 

smallest one is 1 cm, the height of the parallelogram one step 

higher is 2 cm…” while circling each parallelogram as they spoke 

(Fig. 9). Moreover, he modified the table by changing the word 

‘step’ to ‘cm’ and newly adding cm2, indicating the area of each 

smaller shape (Fig. 10). As a consequence, the students could 

reinterpret one ‘step’ as 1 cm of height and then understand that the area formula that 

they already knew was actually applicable to all parallelograms. 

The lesson ended by applying the formula to other figures and summarizing the main 

learning points of the lesson. This was the final, eighth scene of the lesson.  

RESULT 2: THE CASE OF MS Y’S LESSON 

Ms Y’s lesson followed the 5 steps of the typical Japanese teaching 

‘pattern’ as identified by Stigler et al. (1999). However, a crucial 

difference from the class conducted by Mr F was that the students did 

not experience any conflict and did not share a common, explicitly 

stated learning goal. Ms Y simply presented the problem of ‘finding 

the area of a parallelogram with base BC’ (Fig. 11). She tried to 

prevent the students from considering side CD as the base, but this 

resulted in the following interactions. 

Student 5: I cut it horizontally and made it into two parallelograms. 

The formula is thus 2 of 4×3. It is 12×2, so the answer is 

24 (Fig. 12). 
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Student 6: But, in the upper parallelogram the middle line changes to become the base. 

Student 7: Yes, student 5 is wrong, because we must set BC as the base. 

In fact, a similar series of interactions occurred twice. Ms Y did not try to redefine the 

goal, as was seen in Mr F’s lesson. The lesson thus progressed in a disconnected way 

with respect to Ms Y’s original intention and the students’ actual thinking processes. 

RESULT 3: THE CASE OF MR S’S LESSON 

Mr S’s lesson also followed the previously mentioned five teaching steps. However, 

we found two main differences in comparison with Mr F’s lesson. First, the units of 

interaction often never exceeded one return consisting of the teacher’s questioning, a 

student’s response, and the teacher’s approval. Additionally, one interaction unit was 

often not connected meaningfully with another. Indeed, Mr S often used the expression 

“and then” when shifting between scenes. 

The second difference was related to subject matter knowledge regarding height. In Mr 

F’s case, the height was reconstructed by reflecting on how many parallelograms of 1 

cm height were stacked up together. On the other hand, in Mr S’s lesson, the height was 

summarized as the length of the segment which lies at a right angle to the base, similar 

to the length of the pillar of a house. We believe that these differences had substantial 

effects on the students’ ability to understand the height of the parallelogram; indeed, 

some of the students in Mr S’s class asked him “So, in the end, what is the height in this 

case?” at the last scene of the lesson when the main points were summarized. 

DISCUSSION 

To discuss how lesson coherence can be produced, here we take Mr F’s lesson as an 

exemplary case and compare it with those of Ms Y and Mr S. While all three lessons 

went through the five steps identified previously as the Japanese pattern, we observed 

that the eight scenes comprising Mr F’s lesson formed a coherent plot: 1) Reviewing 

the formula for the area of a parallelogram; 2) Setting a problem through an experience 

of the conflict; 3) Setting a goal by comparing what is known and what is unknown; 4) 

individual activities and redefining the goal; 5) Sharing the fundamental idea (Class 

discussion); 6) Sharing various ideas (Class discussion); 7) Rethinking a solution for 

the goal (Class discussion); and 8) Applying the formula to other problems and 

summarizing the main point(s). 

One characteristic of Mr F’s class was that one scene was recursively developed based 

on the previous scenes. For example, setting up a problem in the second scene was 

based on the preparations performed in the first scene; similarly, setting a goal in the 

third scene was conducted by comparing the problem (unknown) in the second scene 

with the known parallelograms and the formulas discussed in the first scene. Thus, we 

believe that this recursive characteristic represents a crucial aspect of coherence. 

A second characteristic consisted of the students’ experiences of the conflict between 

what was known and what was unknown, including the goal-setting activity for coping 

with the conflict and the final attainment of the goal. These all combined to make the 
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lesson into a coherent story. Without such goal-setting, Mr Y’s lesson would not have 

been a well-formed, coherent story, and as a result the students may have tried to refute 

the correct method of finding the area of the parallelogram. 

A third characteristic is that MKT based on KDU (Silverman and Thompson, 2008) 

increased coherence because the lesson was developed around the idea of how many 

parallelograms of 1 cm in height would need to be stacked. It seems that Mr F had 

understood beforehand that the idea would help lead the students to understand the 

formula for finding the area of parallelograms. This contrasts with Mr S’s teaching, in 

which the height was summarized as just the length of a segment in his class. 

Lastly, to focus on developing a sense of lesson coherence, we propose the term “living 

theatre” as a more appropriate metaphor. From this perspective, we can interpret the 

actions of Mr F to get as many students involved in the lesson as possible as his way of 

constructing a living theatre, with the students as the main actors (or role-players) on 

the classroom ‘stage’. In addition, the teacher is also one of the main characters in this 

theatre; in this case Mr F began the lesson with a story describing his problem in trying 

to find the height of the parallelogram. We believe that such a spirit is the very nature 

of successful efforts to construct coherence in mathematics lessons. 
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TEACHER METAPHORS – DIFFERENCES BETWEEN FINNISH 

IN-SERVICE AND PRE-SERVICE MATHEMATICS TEACHERS 

Susanna Oksanen, Päivi Portaankorva-Koivisto, Markku S. Hannula 

University of Helsinki 

 

This article reports what kind of metaphors do Finnish pre-service (n=72) and 

in-service (n=65) mathematics teachers use for teacher’s role, how do these 

metaphors differ and do in-service teachers metaphors differ due teaching experience. 

Data was gathered via questionnaires in years 2010-2013. Metaphors provide insights 

into beliefs that are not explicit or consciously held and show teacher’s beliefs about 

themselves. Changing teachers’ beliefs can help to change teachers’ behaviours and in 

such way improve teaching and learning process.  Metaphors were classified into five 

categories. The most common metaphor used by pre-service teachers was 

self-referential 46% (n=33). In-service teachers used by far didactical metaphors 

(51%, n=33) and only 15% (n=10) presented a self-referential metaphor. 

THEORETICAL BACKGROUND 

Metaphors are not just words or expressions. They enable people to understand one 

phenomenon by comparing it to something else. Metaphors are also a valid tool for 

gaining insights into teachers’ thoughts and feelings regarding their teaching (Zhao, 

2009). According to Kasten (1997) metaphors would seem to have an important place 

in the provision of explanation. Metaphors capture and model teachers’ understanding 

of teaching and learning and provide insights into beliefs that are not explicit or 

consciously held (Beijaard, Verloop and Vermunt, 2000).  

The potential power of metaphors as a “master switch” to change teachers’ beliefs was 

realized in 1990, when Tobin investigated how the use of metaphors helped teachers to 

conceptualize teaching roles. He found the possibility that significant changes in 

classroom practice are possible if teachers are assisted to understand their teaching 

roles in terms of new metaphors. When the teacher’s role changes also the metaphor 

describing it changes. Reflection is assumed to play a key role in change of practice. 

Many researchers see a cyclical relationship between changing beliefs and changing 

practices. It is therefore important to study how pre-service and in-service mathematics 

teachers describe their views of mathematics teacher’s role with metaphors and do 

these metaphors differ. (Kagan, 1992; Lerman, 2002; Wilson & Cooney, 2002)  

Mathematics teachers’ beliefs 

Teachers’ beliefs about mathematics, its learning and teaching are reflected strongly in 

their practice. Beliefs affect on what gets taught in the mathematics classroom and 

how. Pehkonen and T rner (1998) summarized that an individual’s mathematical 

beliefs are compound of his subjective, experience-based, implicit knowledge on 
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mathematics and its teaching and learning. The spectrum of an individual’s beliefs is 

very large, and its components influence each other.  

We base our construction of beliefs and referring terminology on the article of Op’t 

Eynde, De Corte, and Verschaffel (2002), who have strived for making a synthesis 

regarding previous belief researches. In the paper Op’t Eynde and others (2002) define 

mathematical beliefs to be implicitly or explicitly held subjective conceptions people 

hold to be true, that influence their mathematical learning and problem solving.  

Exploring mathematics teachers’ beliefs with metaphors 

The Beijaard, Verloop, and Vermunt’s (2000) model of teacher identity identifies three 

distinct knowledge bases of teacher knowledge. Teachers' professional identity can be 

described in terms of teacher as a subject matter expert, teacher as a pedagogical 

expert, and teacher as a didactical expert.  

Löfström, Anspal, Hannula and Poom-Valickis (2010) studied what metaphors first, 

third and fifth year university students’ in Estonia used and how much agreement there 

was between metaphors and the scores on the teacher identity measure by Beijaard 

model. The results indicate that the model by Beijaard and colleagues can be applied as 

an analytical frame of reference when examining metaphors, but that it would be useful 

to develop and expand the model further to include metaphors categorized as 

self-referential  and contextual metaphors.  

Oksanen and Hannula (2012) used the new Löfström et al. (2010) model of teacher 

identity to classify Finnish 7-9 grade mathematics teachers’ (n=70) metaphors about 

teacher. According to these results the new model makes the metaphor classification 

more clear. Only 2 metaphors (3%) were not classified into any category. The most 

common metaphor used by in-service teachers, was by far teacher as didactics expert 

(n=33, 51%). 

Portaankorva-Koivisto (2012) studied prospective mathematics teachers’ metaphors 

(n=16) for mathematics, teaching and the teachers’ role. She found out, that 44% of the 

pre-service teachers used self-referential metaphors. This indicated that further study 

and comparison to in-service teachers’ metaphors was needed. 

Metaphor categories 

In this study we use the L fstr m et al. (2010) model to analyse teachers’ metaphors 

for their profession: 

Teacher as subject expert. Teacher has a profound knowledge base in his subject(s). 

Teaching is concerned with getting across information to the students. Typical 

metaphors in the subject expert category describe the teacher as a source of knowledge. 

For example: a book, a radio, a computer. 

Teacher as didactics expert. Teachers need knowledge about how to teach specific 

subject-related content so that pupils can capitalize their learning. This kind of 

knowledge is referred as knowledge of didactics, and is integrated with an 
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understanding of how learning experiences are facilitated in a particular subject. The 

teacher is described as a person who is responsible for designing her pupils learning 

process. For example: a coach, an engine, a lighthouse.  

Teacher as pedagogical expert. The understanding of human thought, behavior, and 

communication are essential elements in the teacher’s pedagogical knowledge base. 

Emphasis is on relationships, values, and the moral and emotional aspects of 

development. The teacher is seen as someone who supports the child’s development as 

a human being. These metaphors stress teacher’s role to raise or educate the child. For 

example: a mother, a second father, an older brother, a firm tree. 

Self-referential metaphors. These metaphors describe features or characteristics of the 

teacher’s personality, with reference to the teacher’s characteristics (self-referential) 

without reference to the role or task of the teacher. One might say that the metaphors 

describe who the teacher is. For example: a machine, a candle. 

Contextual metaphors. These metaphors describe features or characteristics of the 

teacher’s work or work environment, or in other ways referred to characteristics of the 

environment (contextual). One might say that the metaphors described where 

(physically, socially and organizationally) or in what kind of setting or environment 

the teacher works. These metaphors mostly described teachers’ work as too 

demanding, multifunctional, including too many responsibilities (pupils, parents, 

colleagues, heads and society). For example: a king or an actor. 

Hybrids. These metaphors include elements of more than just one of the above 

categories.  

Unidentified. Unidentified metaphors could not be categorized in any of the categories 

presented above. 

RESEARCH QUESTIONS 

 What kind of metaphors do in-service mathematics teachers and pre-service 

mathematics teachers use for teacher’s role?  

 How do pre-service teachers’ metaphors differ from in-service teachers’ 

metaphors? 

 How do in-service teachers’ metaphors vary across the length of their 

teaching experience? 

METHODOLOGY 

Instrument and procedure 

Pre-service teachers. In Finland, secondary teacher education is a 5-year programme 

(3 BA and 2 MA, 300 ECTS). The students major in one school subject and minor in 

one or two others. Prospective mathematics teachers have pedagogical studies (60 

ECTS) as their minor subject and these studies can be taken within one academic year. 
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Pedagogical studies combined to subject studies give qualifications to teach at the 

secondary level. 

Data for this study was gathered from 81 mathematics teacher students in the 

University of Helsinki in two cohorts. The first cohort (n=38) had their pedagogical 

studies academic year 2011 – 2012 and the second cohort (n=43) a year later, 2012 – 

2013. The data was collected after the spring semester at the end of teacher students’ 

pedagogical studies.  

The assignment was: the students were asked to write a metaphor and expand the 

statement "as a mathematics teacher I am ...", and to continue with explanation for their 

statement. Only the metaphors with students’ permission to use as data were gathered 

for this study. 

In-service teachers. A questionnaire with 77 statements was built in connection with 

an international NorBa study (Nordic-Baltic Comparative Research in Mathematics 

Education). The last part of the questionnaire is qualitative and includes one item: 

“Please think and write down a metaphor characterizing a teacher. Please explain your 

metaphor. Teacher is like … My brief explanation of the metaphor is as follows…” 

The respondents were 94 Finnish mathematics teachers teaching grades 7-9 from 

different regions of Finland with different teaching experiences and ages. The average 

age of respondents was 41 ranging from 25 to 61 years of age. The average duration of 

teaching experience of the respondents was 14.5, ranging from 1 to 35 years (1-5 years 

teaching experience n = 23, 6-20 years teaching experience n = 19, over 21 years of 

teaching experience n = 26). Teachers filled in the survey and 70 of them presented 

also the metaphor. 

Analyses  

The metaphor categorization was judged on a case-to-case basis using two independent 

raters, whose coding was compared at the end. The three authors worked as two pairs, 

one pair coding the in-service teachers' metaphors and the other pair the pre-service 

teachers' metaphors. As the agreement rate was somewhat lower in the case of 

pre-service teachers' metaphors, the third author was invited to also code those 

metaphors where no consensus was found. The metaphors and their explanations were 

analyzed as a unit, as the metaphor itself may be used to express different meanings. 

The raters analyzed the metaphors “from pure towards complex”.  

83% (58/70) of the in-service teachers’ metaphors were categorized completely 

identically. In case of 13% (9/70) the metaphors were coded partly identically. If the 

unit of analysis contained elements of two or more aspects, the one category used by 

both raters became the final category. It both raters used two or more same categories, 

were these metaphors classified as hybrids 9% (6/70). Only 4% (3/70) were coded 

differently and 2 metaphors (3%) could not be identified in any category. Those five 

metaphors were removed (finally n=65).  
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After categorizing the in-service teachers’ metaphors, 77% (62/81) of the pre-service 

teachers’ metaphors were categorized completely identically. In case of 5% (4/81) the 

metaphors were coded partly identically. In the case of no consensus 19% (15/81), the 

third rater was used. When at least two coders agreed on coding, their coding was 

recorder. At this stage four metaphors, where categorized as hybrids (5%, 4/81). Two 

metaphors (3%) were left unidentified in agreement and for seven metaphors 9% 

(7/81) no agreement was found. Those nine metaphors were removed (finally n=72). 

RESULTS 

When pre-service teachers were asked to describe themselves as mathematics teachers, 

the most common type of metaphor 46% (n=33) was self-referential (see Table 1). In 

comparison, only 15% (n=10) of in-service teachers presented a self-referential 

metaphor. 

The most common metaphor used by in-service teachers was by far didactics expert 

51% (n=33) and also 38% (n=27) of the pre-service teachers presented a metaphor in 

this category. In all three professional-age-groups (1-5 years of teaching n=20, 6-20 

years of teaching n=17 and over 21 years of teaching n=28) teacher as didactics expert 

was the most commonly used category. After that pedagogical expert (n=9, 14%) and 

self-referential (n=10, 15%) metaphors were almost similarly used regardless of 

teaching experience. 

Teachers n 
Subject 

expert 

Didactics 

expert 

Pedagogic

al expert 

Self- 

referential 

Context

-ual 

Hybrids 

pre-service 

teachers 
72 2/72 (3%) 27 (38%) 5 (7%) 33 (46%) 1 (1%) 4 (6%) 

in-service 

teachers 
65 4/65 (6%) 33 (51%) 9 (14%) 10 (15%) 3 (5%) 6 (9%) 

1 – 5 years 

experience 
20 0/20 (0%) 11 (55%) 3 (15%) 4 (20%) 0 (0%) 2 (10%)  

6 – 20 years 

experience 
17 

2/17 

(12%) 
8 (47%) 2 (12%) 2 (12%) 2 (12%) 1 (6%) 

21 years or 

more 

experience 

28 2/28 (7%) 14 (50%) 4 (14%) 4 (14%) 1 (4%) 3 (11%) 

Table 1: In-service and pre-service teachers metaphors categorized in 6 categories (no 

unidentified metaphors included) 

A closer analysis of pre-service teachers’ self-referential metaphors shows that these 

metaphors can be classified into four different categories. Metaphors describing 

personality or characteristics (n=8, 24%): “As a mathematics teacher I am a clock. 

Punctual.” Metaphors describing hesitation (n=11, 33%): “As a mathematics teacher I 

am a ship in fog. Hopefully, I will find my way to harbor.” Metaphors describing a new 
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beginning, a new era (n=6, 18%): “As a mathematics teacher I am a young foal. 

Bouncing around everywhere.” Metaphors describing that something “big” is waiting 

ahead (n=8, 24%): “As a mathematics teacher I am a final leg runner, who has received 

the baton from my own teachers.” 

In-service teachers’ self-referential metaphors differ a lot from pre-service teachers’ 

self-referential metaphors. Only one big category was found when analysing these 

metaphors: over half (n=6, 60%) of in-service teachers’ self-referential metaphors 

describe the variability of mathematics teachers’ job. These teachers who presented a 

metaphor in this sub-category have all more than 6 years experience. For example, 

teacher with 17 years experience: “Teacher is like an amoeba. Adjusts into every 

situation. You can never know how your day at work will be.” Teacher with 13 years 

experience: “Teacher is like a rollercoaster. He has good and bad lessons, success and 

failure even with parallel classes. Excitement is always present.” The rest of the 

teachers (n=4, 40%), who only have 1-5 years teaching experience, presented a 

self-referential metaphor, which did not describe the variability of the job but instead 

something else: persistence or suitability to the job. It can be seen, that when teachers 

gain more experience their self-referential metaphors start to describe the variability of 

the job. 

Metaphors describing teacher as didactics experts can be classified into two categories: 

active and passive. Those teachers who presented an active didactic metaphor among 

didactical metaphors (pre-service teachers n=17, 63% and in-service teachers n=23, 

70%) are genuinely present in the learning process and constantly strive for better 

results both in teaching and learning. A pre-service teacher: “As a mathematics teacher 

I am a shepherd. Guiding my flock through varying terrain even when it is difficult. I 

lead the way to the new green pasture with my whistle.” An in-service teacher, 26 years 

experience: “Teacher is like an actor, who changes the role when needed. There is not 

just one correct way to teach – it depends on the a) subject and theme b) students c) 

occasion and d) teachers’ persona.” 

Teachers who presented a passive didactic metaphor among didactical metaphors 

(pre-service teachers n=10, 37% and in-service teachers n=10, 30%) see themselves 

mostly as someone who is there to support the students when needed. A pre-service 

teacher: “As a mathematics teacher I am a compass. Showing the way but can’t take 

anyone there.” An in-service teacher, 1 year experience: “Teacher is like a Guide. 

Gives information and helps to survive in problem situations, but the student and his 

parents decide where the student goes.” At this time, in-service teachers’ teaching 

experience did not have an influence whether an active or passive didactical metaphor 

was presented.  

DISCUSSION  

It is remarkable, that when in-service teachers gain more teaching experience, it does 

not change the metaphor describing mathematics teacher’s role. In all three in-service 

teachers’ professional-age-groups teacher as didactics expert was the most common 
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used metaphor (1-5 years of teaching n=11, 55%, 6-20 years of teaching n=8, 47% and 

over 21 years of teaching n=14, 50%) but only 38% of the pre-service teachers 

presented a metaphor in this category. This refers that the biggest change in metaphors 

and in such way also in teachers’ beliefs occurs during teacher studies. This is an 

important result and message to those who plan prospective teachers’ studies at the 

university level. 

Presence of hybrid metaphors could be explained by complexity of the teacher’s job.  

Four (6%) pre-service and six (9%) in-service mathematics teachers provided hybrid 

metaphors. The variability of teachers’ job was expressed also in other categories. The 

number of unidentified metaphors was low, only 4 metaphors from 151 (3%) were not 

categorized into any category of the model extended from Beijaard, Verloop, and 

Vermunt’s (2000) framework (L fstr n et al., 2010). 

Because the pre-service teachers were assigned to write a metaphor and expand the 

statement "as a mathematics teacher I am ..." it might have result into more 

self-referential metaphors. In-service teachers continued the following sentence 

“teacher is like …” which is not that subjective. Although a closer look into the 

self-referential metaphors reveals that pre-service teachers are more insecure and 

suspicious and maybe that’s why they presented metaphors in this category. An 

experienced teacher focuses more on the didactical side of the job and concentrates on 

how to manage the varying situations every day. 

Looking at all the respondents, teacher as “didactics expert” was the most common 

metaphor used (60/151, 40%). According to these teachers it is important to create 

learning environments that support the students learning process and to use different 

teaching and learning methods. Learning may occur when students are actively 

involved and critical thinking is pursued. According to this metaphor analysis Finnish 

mathematics teachers’ beliefs seem to be constructivist. Also Wilson and Cooney 

(2002) pointed that students learn mathematics most effectively when they construct 

meanings for themselves, rather than simply being told. A constructivist approach to 

teaching helps students to create these meanings and to learn. However, the latest PISA 

(2013) and two recent national assessments show reduction in students’ mathematical 

skills (Hirvonen, 2011 and Metsämuuronen, 2013). If teachers’ beliefs are 

constructivist, what kind of teaching approach do they actually use and how are their 

classroom practices? As the NorBa-project continues, we will find answers to these 

questions. It would also be interesting to collect metaphors from applicants applying 

for mathematics teacher studies and to follow these students trough their studies and 

see how the metaphor describing mathematics teacher changes. 
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PROSPECTIVE SECONDARY MATHEMATICS TEACHERS’ 

CONSTRUCTION OF BOX PLOTS AND DISTRIBUTIONAL 

REASONING WITH THREE CONSTRUCTION TOOLS 

Samet Okumuş, Emily Thrasher 

North Carolina State University 

 

In this study we examined two prospective secondary mathematics teachers’ 

constructions of box plots and their understanding of the distribution they were 

representing. The participants constructed box plots with paper-and-pencil, graphic 

calculator and TinkerPlots during clinical interviews. The study indicated that 

prospective mathematics teachers recognized that using technology to construct box 

plots provided affordances compared to creating a box plot by hand. 

INTRODUCTION 

In statistics, data can be represented in many different ways such as graphs and tables 

that have the potential to provide new understandings of the characteristics of the data 

(Myatt, 2007).  Bakker, Biehler, and Konold (2004) emphasize that box plots provide 

rich representations since they give information about both measures of center and 

spread of the data, and can facilitate making comparisons of distributions. Although 

box plots are viewed as effective representations, it has been documented that students 

struggle with understanding the data they convey.  Box plots can be challenging for 

students to understand because data is presented as aggregate instead showing 

individual points and understanding the median and quartiles is not as intuitive as once 

suspected (Bakker, Biehler, & Konold, 2004).  Additionally, delMas (2004) stresses 

that “understanding how the abstract representation of a “box” can stand for an abstract 

aspect of a data set (a specific, localized portion of its variability) is no small task”  

(p. 87).  

These problems could be minimized with the availability of technology in statistics. 

Chance et al (2007) outline many effective uses of technology in the learning of 

statistics.  Three of these categories are automation of calculations, emphasis on data 

exploration, and visualization of abstract concepts. Automation of calculations allows 

for timely calculations with high accuracy and emphasis on exploration suggests that 

many graphs can be produced quickly.  Visualization of abstract concepts is the idea 

that technology helps students to “see” statistical concepts. These uses of technology 

can potentially help students with the challenges of box plots.  

Although there are many statistical packages/technologies that can help students create 

box plots, two widely used options are TinkerPlots (TP) (Konold, & Miller, 2005) and 

graphing calculators (GCs).  Burrill (1997) studied the roles and potential of using GCs 

and remarked that, using GCs, students could be able to see if a data set contained an 

outlier, which could allow them to exclude the outlier from the data set and reexamine 
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the distribution. On the other hand, Garfield and Ben-Zvi (2008) found that TP allowed 

students to perceive individual data values of a box plot which facilitates students’ 

understanding. These studies focused on how the technology helped students 

understand box plots, but it is also important to focus on if teacher notice and 

appreciate these allowances when working with these technologies. 

In this study, we examined two prospective mathematics teachers’ thinking about box 

plot constructions by paper-and-pencil, GC, and TP. Using the above-mentioned 

categories of effective uses of technology (Chance et al., 2007) as a framework, we 

examined how prospective mathematics teachers reasoned while representing a data 

set. Accordingly, we identified the challenges and understandings of each prospective 

mathematics teacher as well as highlighting the teacher’s recognition of the 

affordances of each type of technology.  

METHOD 

Participants  

The participants of this study consisted of two prospective secondary mathematics 

teachers (1 male, 1 female) who were enrolled in a course about teaching mathematics 

with technology. These participants were selected based on recommendations from the 

instructor and their availability to meet with the researchers. Pseudonyms (Amy and 

John) are assigned to the participants. Both participants were seniors and their ages 

were 21. Neither participant had experienced using TP before the interviews but both 

had used GC. 

Task and Interviews 

The task used was taken from the Number of Rope Jumps data (Lappan et. al 2003, p. 

40), which describes the maximum number of rope jumps for each student of a 

28-person class. The data had a large variation and contained an outlier. 

Semi-structured clinical interviews were conducted individually with the participants.  

A TI-84 Plus Silver Edition GC, a laptop with TP software, a ruler, and paper were 

provided for the interviews. The data set was already entered as lists in the GC and 

available as a set of data cards in TP.  

The data for this paper comes from a larger interview about multiple data sets.   Each 

interviewee was asked to construct a box plot using paper-and-pencil first, then a GC, 

and lastly using TP. In addition, the interviewees were asked to construct a box plot 

after the outlier (300) was excluded from the data set by hand. The interviews, which 

took about an hour and a half with each participant, were videotaped and voice 

recorded. The interviews were transcribed and the transcribed data was analyzed 

descriptively. We analyzed the data by three main categories; which were box plot 

constructions with paper-and-pencil, using the GC, and using TP. In each category 

instances of reasoning with box plots and the issues or affordances of the technology 

were identified. Data matrices were constructed (Benard & Ryan, 2010) for each 

category in order to compare and contrast the interviewee’s responses. 
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RESULTS 

Box Plot Constructions with Paper-and-Pencil  

At the beginning of the interviews, both interviewees were given the data in a table, 

and asked what is needed to construct a box plot. Both interviewees mentioned the 

requirement of a five number summary, and each used 1-Variable stats from graphing 

calculator to find the five number summary then constructed the box plot by hand. 

Amy constructed a vertical box plot while John constructed a horizontal box plot 

(Figure 1 and Figure 2).   

In both cases the interviewees provided a number line with a scale but acknowledged 

that their scales were only estimates and not exact.  This is important to note because 

having imprecise representations makes reasoning about the data more difficult.  In 

fact Amy was aware of her inaccurate scale by saying: “the scale is gonna be kinda off” 

while constructing her box plot. 

 

 

 

Figure 1: Amy’s box plot   Figure 2: John’s box plot  

After constructing the box plots, each interviewee was asked to reason about the 

distribution. Amy (A) said it, “looks like the data is probably skewed. I guess to the 

right”. Then she explained: 

A:  ... And if I look at this sheet [data table], I can kinda see. That most of it, 

300, is kinda out by itself, but I have like a few 90’s 93, 96 that’s still pretty 

close to 84 [upper quartile] So, most of the data is right around the median 

besides this one 300 which is way out here [points to the upper whiskers] 

Oh, there is a 113 [in data table], that’s OK, that is kinda in there [shows a 

point on the upper whisker]. But I’d say it is pretty accurate [the box plot] 

based [on], like, the skewness of it, everything is pretty accurate, but kinda 

skewed. 

Although Amy was able to determine the shape of her distribution, Amy referenced the 

individual cases from the table to decide on the shape of the distribution instead of 

using her box plot. This suggested that Amy did not understand how her box plot 

described the shape of the data or that she is was sure about the accuracy of her 

representation.  When John was asked to reason about the distribution of the data with 

his box plot (Figure 2), he attended to an aspect of the variability by noting “It is 
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definitely clustered before the median, before 28 because there is much smaller range 

between the minimum and the median in that case.” Since John did not refer back to the 

data and used the aspects of a box plot to discuss the distribution, John demonstrated a 

better understanding of a box plot. However, unlike Amy, John did not address the 

shape of the distribution. 

Next, both interviewees were asked to identify any outliers and create a box plot 

without the outlier (Figure 3 and Figure 4). Amy had difficulty identifying whether 300 

was an outlier. She could not clearly express how she could identify outlier(s) in a data 

set, and she said that she forgot the formula for identifying an outlier. On the other 

hand, John did not have such difficulty. He applied the typical 1.5*IQR + Q3 formula 

of identifying outlier(s) in a data set.  

 

 

 

Figure 3: Amy’s box plot after 

excluding the outlier 

 Figure 4: John’s box plot after 

excluding the outlier 

While both interviewees were capable of creating a box plot for the data with little 

trouble, each had their own challenges. First, the constructions with paper-and-pencil 

were not accurate since both interviewees constructed box plots with a poor scale. 

Amy demonstrated difficultly with the aggregate nature of the box plot and needed to 

refer to the individual cases to describe the shape of the distribution. Additionally, 

Amy had a problem identifying the outlier of the data set.  On the other hand, John used 

the aspects of the box plot to reason about the variability demonstrating a better 

understanding of the representation.  

Box Plot Constructions Using the GC 

Next, interviewees were asked to construct box plots using the GC.  Both interviewees 

chose to create a modified box plot with 300 denoted as the outlier. The researcher 

asked the interviewees to compare these to their previous box plots. Since Amy 

constructed all vertical box plots with the paper-and-pencil environment and the GC 

only constructed horizontal box plots, she rotated her paper to view her previous 

graphs horizontally while comparing them with GC’s.  When asked how the box plots 

were alike and different, she answered as follows: 

A:  Theirs [GC] is much more accurate scale-wise…You can see…how they 

have it set up scale-wise.  You can barely see that little whisker but it is 
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really close 1 and 7, which is easy to see.  And then, you can see that—I 

mean mine is just more spread out. The scale is much better [GC]. 

On the other hand, John stressed the differences of his previous and current box plot 

constructions as follows:  

J:  It is different because it doesn’t, mine doesn’t show that there is, doesn’t 

consider the outlier not a part of the actual box plot. So, if I wanted to 

remedy that, then I would have my maximum here but I would have a lone 

dot….  

Also, the researcher asked the interviewees whether there was anything they wanted to 

change about their early understanding of the data after they constructed a box plot 

using the GC. John stated that “no my understanding stayed pretty, pretty 

[un]impacted. But it is nice to immediately be able to tell about outliers instead of 

having to calculate them for myself”. On the other hand, Amy believed that her 

understanding changed a lot. She addressed the accuracy of construction of the GC 

saying “this’d [showing the GC] tell a lot more versus this [showing her box plot]. This 

is, just looking at it [hand drawn box plot] looks more deceiving whereas this one [GC] 

it’s very accurate…”  

In both cases, the calculator’s ability to quickly and accurately create a box plot was 

considered helpful.  For Amy, the accuracy of the scale helped her to better understand 

the distribution.  In fact, she believed that her hand drawing was misleading. John 

appreciated the ability of the calculator to find and denote the outlier quickly. 

Box Plot Constructions Using TP 

For the final box plot, the interviewer constructed a box plot (Figure 5) within TP 

because interviewees were not familiar with the tool. Interviewees were asked to 

reason about the data and compare this graph with the previous box plots. The first 

impression of John about the representation was as follows: 

J:  This does not consider outliers although I would assume that we could 

make it consider outliers. This is really, really nice being able to show or 

because it shows where the data points lie. So you can clearly see that the 

data is clustered average of the left side (rope jumps) and as you and as you 

go to the right there is less and less data except, except for like around 90 

apparently they get tired at 90. Yeah this is really useful. 

Interestingly this is also the only instance in both interviews where the jump rope 

context was addressed. 

 

Figure 5: The box plot representation in TP 
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Compared to the GC representation of the box plot, John thought TP was superior since 

it could show the box plot as well as the individual data points. This gave him 

information to better understand his data and changed his understanding:  

J:  I think that this actually did change [his understanding] a little bit. We can 

see there is another cluster around 90, but with the other methods that I 

have been using there’s no way to turn that just by looking at it, you have to 

actually examine the data itself. 

In recognizing the there was another cluster around 90 that the box plot did not show, 

John was also gaining a better understanding of the pros and cons of the box plot 

representation. Amy provided similar expressions in terms of visualization of TP and 

being able to see individual data points, and addressed that the box plot representation 

in TP is better than the previous representations.  

A:  This, this is awesome [TP]…I know there was a lot of people that I was in 

school with that struggled and probably this kinda software--probably help 

them, a lot, with learning box plots and so, just visually you can see it. I 

mean I like this (showing the GC) and obviously, like, paper-and-pencil, 

probably, you can do it but it is not as effective. I mean like, like as I said 

earlier, like, mine were kinda skewed (refers her all previous box plots 

using paper-and-pencil) and you could see, when you saw it on the 

calculator and then, like, putting this information to this (showing TP) it’s 

just even more--visual. I really liked it. 

At the end of the interview, the researcher asked for the interviewee’s last comments 

about the three different technology representations. John’s thoughts summarize many 

of the affordances of each technology.  

J:  I’ll start with the paper. The pros, you can very clearly tell whether or not a 

student understands what minimum, umm the quartiles, the median, and the 

max represent…The paper method does make it more difficult to recognize 

when there are outliers, however. Calculator, it is nice in most cases 

because you’re able to use the trace to tell where each important area 

is--quartiles, and median, minimum, max. But, there is not really, there is 

not necessarily the understanding of what is going on behind the graph. 

You can’t tell for sure whether the students know without talking to them 

directly and in a large class that (inaudible) confusing and hectic. As for 

TP, it’s pretty much, I can’t come up with any cons, but it’s, it’s really nice 

to be able to see the data points to see where they lined at any point in time, 

it gives a really good visual representation of what each of the four areas or 

four quadrants represent. 

DISCUSSION AND IMPLICATIONS 

This study indicated how prospective mathematics teachers reasoned about 

distributions with box plots while using different tools. Amy initially had trouble 

understanding the distribution of the data set without the use of the individual cases 

while John demonstrated a better understanding of the box plot representation. In both 
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cases, the use of technology changed their understanding of the distribution.  For Amy, 

technology provided an accurate representation because her scale was poor. 

Additionally, Amy and John found that having the individual cases in TP gave them 

new insights into their distribution. Finally, John explicitly expressed that having the 

outlier identified and marked on the box plot was helpful to him.  Accordingly, we 

could conclude that these prospective teachers recognized the ability of technology to 

create box plots accurately and with additional information (denoted outliers or 

individual data points).  

Interestingly, all three of the aforementioned Chance et al (2007) categories for 

effective uses of technology were observed by the prospective teachers.  Both 

interviewees recognized the strengths of using technology for creating graphs 

accurately and quickly, automation of calculation and emphasis on data exploration 

were acknowledged by the prospective teachers. Finally, since box plots are an abstract 

representation (delMas, 2004) and the teachers expressed appreciation for technologies 

ability to help visualize the box plot, the prospective teachers are recognizing 

technologies ability to visualize abstract concepts.   

Although more research needs to be conducted in this area because of the small sample 

size of this study, the study findings suggest that prospective teachers should have 

experience with different types of technology to produce box plots. This exposure may 

help to produce prospective teachers that both develop deeper understanding of box 

plots and that are more likely to use different type of technology in their future 

classrooms. 
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RECONSTRUCTION OF ONE MATHEMATICAL INVENTION: 

FOCUS ON STRUCTURES OF ATTENTION 

Alik Palatnik, Boris Koichu 

Technion - Israel Institute of Technology 

 

The goal of the study was to reconstruct and dismantle a sequence of events that 

preceded an insight solution to a challenging problem by a ninth-grade student. A 

three-week long solution process was analysed by means of the theory of shifts of 

attention. We argue that concurrent focusing on what, how and why the student attends 

to when working on the problem can adequately explain his insight.  

INTRODUCTION 

The goal of the case study presented in this paper was to reconstruct a sequence of 

events that preceded an insight solution to a challenging problem by a 9
th

 grade student, 

Ron, who worked on it with his classmate, Arik. Solving the problem required from the 

students to re-invent the Gauss’ formula of the sum of the first n integers. The case of 

interest occurred in the framework of an on-going study that explores the affordances 

of a particular project-based learning instructional approach (Palatnik, in progress). 

The study aims at contributing to research concerned with demystification of insight in 

mathematical problem solving. Cognitive psychologists frequently refer to an insight 

problem as one, which solution includes restructuring the initial representation of the 

problem followed by a sudden realization of the solution – so called aha-experience 

(e.g., Knoblich, Ohlsson & Raney, 2001). Cognitive mechanisms involved in 

restructuring the initial representation are still relatively uncertain (e.g., Cushen & 

Wiley, 2012). Furthermore, research on insight problem solving usually explores 

processes that last for minutes rather than weeks, as it happened in the case presented 

in this paper. In our study, the three-week-long solution process is analysed through the 

lenses provided by the Mason’s (1989, 2008, 2010) theory of shifts of attention, which, 

as we argue below, can (partially) explain how the insight occurred.  

THEORETICAL FRAMEWORK AND RESEARCH QUESTIONS 

Mason (2010) defines learning as a transformation of attention that involves both 

“shifts in the form as well as in the focus of attention” (p. 24). To characterize 

attention, Mason considers not only what is attended to by an individual (i.e., what 

objects are in one’s focus of attention), but also how the objects of attention are 

attended to. To address the how-question, Mason (2008) distinguishes five different 

structures of attention. Four of them have shown up in our data analysis.  

According to Mason (2008), discerning details is a structure of attention, in which 

one’s attention is caught by a particular detail that becomes distinguished from the rest 

of the elements of the attended object. Mason (2008) asserts that “discerning details is 

neither algorithmic nor logically sequential” (p. 37). Recognizing relationships 
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between the discerned elements is a development from discerned details that often 

occurs automatically; it refers to specific connection between specific elements. For 

instance, when attending to the string of numbers 6, 2 and 3 one can effortlessly 

recognize that they are connected by the relationship 6 2 3  . Recognizing the same 

relationship, however, is more effortful when one looks at the string of numbers 1, 2, 3, 

4, 5 and 6. Perceiving properties structure of attention is different from recognizing 

relationships structure in a subtle, but essential way. In words of Mason (2008), 

“When you are aware of a possible relationship and you are looking for elements to fit 

it, you are perceiving a property” (p. 38). To stretch the above example, when one 

searches the string 1, 2, 3, 4, 5 and 6 for the numbers that can fit a division relationship, 

one can effortlessly discern the numbers 6, 3 and 2. Finally, reasoning on the basis of 

perceived properties is a structure of attention, in which selected properties are 

attended as the only basis for further reasoning. 

Since our study concerns the phenomena of insight problem solving, we choose to 

consider not only what is attended and how, but also why the solver’s attention shifts. 

We found it useful to address a why-question by identifying obstacles embedded for 

the solver in attending to a particular object and discerning the possible “gains and 

losses” of the shift to a subsequent object. Three research questions guided the study: 

1. What were some of the objects of attention for the pair of middle-school students 

in due course of re-inventing the Gauss formula in the context of coping, for three 

week, with an insight problem related to numerical sequences?  

2. For each identified object of attention, what was the structure of attention? 

3. Why did the students move from one object of attention to another? 

METHOD 

Context 

The case of interest occurred in the framework of a project "Open-ended mathematical 

problems", which is conducted by the authors of this paper in 9
th

 grade classes of one of 

schools in Israel. At the beginning of a yearly cycle of the project, a class is exposed to 

a set of about 10 challenging problems. The students choose a problem to pursue and 

then work on it in teams of two or three. The students work on the problem practically 

daily at home and during their enrichment classes. Weekly 20-minute meetings of each 

team with the instructor (the first author) take place during the enrichment classes. At 

the end of the project, the teams present their work at the workshop. 

One of the mathematical problems proposed to the students was Pizza Problem (Figure 

1). It is a variation of a problem of partitioning the plane by n lines (e.g., Pólya, 1954; 

Wetzel, 1978). When introduced to the problem, the students are briefly explained 

mathematical notation as well as the meaning of terms “recursive formula” and 

“explicit formula”. It is of note that 9
th
 graders in Israel, as a rule, do not possess any 

systematic knowledge on sequences; this topic is taught in 10
th

 grade. 
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Every straight cut divides pizza into two separate pieces. What is the largest number of pieces 

that can be obtained by n straight cuts? 

A. Solve for n = 1, 2, 3, 4, 5, 6. 

B. Find a recursive formula for the case of n.  

C. Find an explicit formula. 

D. Find and investigate other interesting sequences.  

Figure 1: Pizza Problem 

The choice of the case, data sources and analysis 

During the three years of the project, five groups of students choose to work on Pizza 

problem. One group out of five did not produce any explicit formula. Four groups did 

so, and in three of them the students were able to explain us how. In this paper, we 

focus on the remaining group, the team of Ron and Arik. This is for two reasons. First, 

it is a particularly illustrative case of successful learning (cf. Simon et al., 2010, for the 

rationale of focusing on successful learning cases). Second, Ron and Arik could hardly 

explain us, at least not straightforwardly, how they invented the formula. Moreover, 

the process of invention looked serendipitous to us. Thus, we found particularly 

interesting and important to attempt to dismantle this serendipity.   

The data included the audiotaped and transcribed protocols of the weekly meetings, 

intermediate written reports that the students prepared for and updated during the 

meetings, and authentic drafts produced between the meetings. These data were 

juxtaposed to initially reconstruct the whole story. Pencil marks on the students’ drafts 

were particularly informative for making suggestions about the occurrences of the 

shifts of attention. The initial reconstruction was shown to Ron, who took the leading 

role in the project, during a follow-up interview. (The interview was conducted six 

mounts after the events described.) In the interview, Ron provided us with additional 

information that supported most of our interpretations and rejected some of them. This 

information helped us to refine the initial reconstruction. 

RECONSTRUCTION 

At the beginning, the students produced about 30 drawings of circles representing a 

pizza, which were cut by straight lines. They counted the number of pieces on the 

drawings and observed that the maximum number of pieces is obtained if exactly two 

lines intersect within the circle. The answers for 1, 2, 3, and 4 cuts were found: 2, 4, 7 

and 11 pieces, respectively. It was difficult for the students to find a number of pieces 

for 5 cuts from the drawings as they became overcrowded.  

To overcome this difficulty, Ron created a GeoGebra sketch and found that the 

maximum number of pieces for 5 cuts is 16. The students recorded their results as a 

horizontal string of numbers. They noticed that the differences between the subsequent 

numbers in the string form a sequence 2, 3, 4, 5 and used this observation to solve the 

problem for 6 cuts. The next goal for the students was to find a recursive formula. After 

several unsuccessful attempts to think of the strings of numbers, the students organized 

their findings vertically and eventually drew a table (see Figure 2). 
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Figure 2: The drafts produced during the first week 

From this point, the students shifted their attention to exploring the tables. The 

students’ way for so doing can be described as looking for the arithmetic relationships 

between the numbers in the tables and marking them. One of the first relationships that 

they attended to was a zigzag pattern (see Figure 2d). At this stage they introduced the 

notation: P for the number of pieces, n for place of P in the table (only later they 

noticed that n represents also the number of cuts) and, eventually, Pn. A formula 

nPP nn  1  was written as a symbolic representation of zigzag pattern.  

Then the students began looking for an explicit formula, which would enable them, in 

words of Arik, “to find P100 without finding P99”
1
. The students tried to find it on the 

Internet and did not succeed. They also considered finding the explicit formula in 

Excel since “there are a lot of formulas in Excel.” When this plan did not work, they 

asked the instructor for help. The instructor only helped the students to build a 

spreadsheet based on their recursive formula and encouraged them to keep looking. 

In a week, the students brought to the meeting five tables with marked patterns: a 

diagonal pattern corresponding to the previously obtained formula nPP nn  1  

(Figure 3b), a horizontal pattern summarized by the formula   111   nPP nn  

(Figure 3c), a mixed pattern accompanied by (incorrect) formula 11   nPnP nn , 

and a vertical pattern corresponding to the formula 1nP .  

The instructor noted that the first three formulas were algebraically identical; the 

students had not noticed it and were surprised. Surprisingly to the instructor, the 

students presented a vertical pattern and formula 1nP  just as one of their 

results, and not as a milestone on the way to the explicit formula. He said:  

Instructor: [Let’s] focus on this way [vertical pattern]…Tell me, how do I get, for 

example, 22? 

Ron: Twenty two without 16?  It goes ... I make one plus zero and one and two 

and three and four and five and six.  

                                           
1
 All the excerpts are our translations from Hebrew. 

 

  
 

 

2a  2b 2c 2d 2e 
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Instructor: One and two and three and four and five… There is some formula for 

calculating it. 

… 

Arik: So, [you ask] how to calculate it? Without summing the numbers? 

Instructor: Yes, without summing the numbers. You know, there is a formula that can 

give you an answer [instantly]. Do you understand why this is important? 

Arik:  Because it takes time to calculate [by the formula 1nP ]. 

  
   

3a 3b 3c 3d 3e 

Figure 3: The drafts produced during the second week 

At the next meeting, the students introduced the desired formula: 11
2

)+(n+
n

=Pn . The 

instructor was astonished by the students’ success and asked them to explain their 

invention in as much detail as possible. Ron took the lead. In his words: "I was stuck in 

one to six. And I just thought…six divided by two gives three. I just thought there's 

three here, but I could not find the exact connection [to 22]. I do not know why, but I 

multiplied it by seven, and voila – I got the result." This explanation along with the data 

from the follow-up interview enables us to offer, with some certainty, the following 

reconstruction of the events immediately preceding Ron’s “voila”. 

Ron focused on the left column of a table similar to Table 3e. He experimented with the 

vertical string of numbers attempting to somehow, mostly by using the operations of 

addition and subtraction, create an arithmetic expression that would return a number 

from the right column. He asked his parents and the older sister for help; they tried and 

did not succeed. Then he came back to exploring the table, and this time he also tried to 

multiply and divide. One of these attempts began from computations 326  and 
2173  . Ron realized that 7 in the second computation is not just a factor that turns  

3 into 21, but also a number following 6 in the vertical pattern. He noticed (not exactly 

in these words) the following regularity: when a number from the left column is 

divided by 2 and the result of division is multiplied by the number following the initial 

number, the result differs from the number in the right column by one. He observed this 

regularity when trying to convert 6 into 22, and almost immediately saw that the 

procedure works also for converting 4 into 11 and 5 into 16. He observed that even 

when division by 2 returns a fractional result (5:2=2.5), the entire procedure still 

works. The aha-experience occurred at this moment. To verify the invention, he 

calculated P100 by the discerned procedure and compared the result with the 
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corresponding number in his Excel spreadsheet. The last step was to convert the 

invented procedure into the formula. From the follow-up interview: 

Instructor: How did you convert it [the observed regularity] into the formula? 

Ron: It was a difficult part…I did it really in line with the arithmetic operations 

that I’ve used. I divided n by 2, and then I like multiplied by n+1, which is 

the next n, and then plus one. 

SUMMARY OF FINDINGS 

The answer the first research question straightforwardly steams from the above 

reconstruction. Namely, the students attended, among others
2
, to the following objects: 

handmade sketches of a pizza, a GeoGebra sketch, strings of numbers, two-column 

tables, and a left column of a table similar to that in Figure 3e. For each of these 

objects, we now answer the second and third research questions. The answers for the 

first four objects are summarized in Table 1. 

The last object of attention was identified as “The left column of the table similar to 

that in Figure 3e.” The structures of attention for this object can be described as 

follows. Ron discerned sub-sets of the set of numbers 1, 2, 3, 4, 5 and 6, recognized 

various relationships in the sub-sets, perceived the division property and discerned a 

sub-set “2, 3, 6” that fits it. He recognized the relationship 6 2 3  , discerned a subset 

“3, 22”, recognized the relationship 3 7 1 22    and perceived numbers 6 and 7, which 

have been discerned in the above relationships, as numbers that belong to the vertical 

pattern. Ron then perceived the relationship “3 7 1 22   ” for additional triples of 

numbers, namely, (4 2) 5 1 11     and (5 2) 6 1 16    . (This was his aha-experience). 

Solution to the problem was concluded by means of symbolic reasoning with the 

perceived property, that is, converting “3 7 1 22   ” into the formula 1 1
2

n

n
P = (n+ )+ . 

Objects of 

attention 

Structures of attention:  

How is the object attended to?  

Why did the students move to 

the next object?  

Handmade 

sketches  

Discerning the bounded areas in order to count 

the pieces. Perceiving that the maximum 

number of pieces is obtained if exactly two 

lines intersect within the circle.    

When there are more than four 

cuts, some areas become small 

and it is difficult to count 

them.  

A GeoGebra 

sketch 

Discerning the areas bounded by the circle and 

five cuts in order to count the pieces. Counting 

is supported by the easiness of moving the cuts 

so that small areas can be enlarged.  

The drawings, even dynamic, 

are not convenient for the 

larger numbers of cuts; results 

of counting are not ordered.    

Strings of 

numbers 

Discerning the neighboring numbers of the 

string and recognizing the relationships 

between them: the differences of the 

neighboring numbers form a sequence 1, 2, 3, 

The number of pieces (Pn) is 

visible in the string, but the 

number of cuts (n) is not; 

realization that producing an 

                                           
2
 Additional objects of attention include an Excel spreadsheet and more. These objects were attended 

to, but turned to be secondary rather than primary objects of attention in due course of solving the 
problem. 
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4, 5 etc.  explicit formula requires both 

n and Pn to be visible.    

Two-column 

tables  

Recognizing various numerical relationships 

between the numbers (including diagonal, 

horizontal, mixed and vertical patterns). 

Symbolic reasoning on the basis of the 

perceived properties: 

nPP nn  1 ,   111   nPP nn , 1nP  

Realization, partially based on 

the instructor’s prompt, that 

an explicit formula can be 

produced by looking at the 

vertical pattern, which is 

visually situated in the left 

column of the table.  

Table 1: Structures of attention for the first four objects 

DISCUSSION 

Pizza Problem appeared to be extremely difficult for Ron and Arik, and one can 

wonder: why so? The research literature on algebraic reasoning provides us with some 

initial answers. In line with Radford (2000), we observe that the problem was difficult 

because it required from the students to shift from pattern recognition to algebraic 

generalization. In terms of Duval (2006), the problem required from the students to 

shift the representational registers for many times. In line with Zazkis and Liljedahl 

(2002), we conclude that the problem was difficult because in the course of its solution 

the recursive approach was dominant, and this approach is known to prevent the 

students from seeing more general regularities. Furthermore, Ron’s aha-moment could 

usefully be analysed in terms of the representation theory of insight (e.g. Knoblich, 

Ohlsson & Raney, 2001): the insight occurred when a particular representation was put 

forward among many other representations.  

However, considering the problem’s difficulty due to the students’ under-developed 

algebraic reasoning and explaining the insight by identification of shifts in 

representations is compatible only with one venue of the presented analysis, the one 

concerned with Mason’s what-question (i.e., what objects are in the focus of 

attention?) An added value of our analysis is in putting forward also a how-question – 

this is in line with the Mason’s theory – and a why-question. We argue that concurrent 

focus on these three questions is pivotal for explaining the observed phenomena. 

Specifically, focusing on the how-question enabled us to better understand the 

interplay of the structures of attention that lead Ron to his main insight. Focusing on 

the why-question enabled us to identify a pivotal sub-sequence of shifts of attention in 

a (seemingly) serendipitous chain of attempts. 

Our last point is about possible pedagogical implications of the presented case study. 

Liljedahl (2005) found that aha-experiences have positive impact on students’ attitude 

towards mathematics. He then raised a question of how to organize learning 

environments, in which such experiences might occur. An instructional format 

outlined in this paper can serve as an example of such an environment
3
. Let us point out 

                                           
3
 We claim so based not only on the case of Ron and Arik, but on the fact that four out of five teams, 

who worked on the same problem, also experienced aha-moment when inventing the explicit 
formula. 
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its central characteristic. On one hand, the students had enough room for autonomous 

learning. On the other hand, the chosen format included opportunities for the instructor 

to focus the students’ attention on the most promising idea from the pool of their ideas.  
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The aim of this paper is three-fold. First, we review and briefly synthesise the main 

points of the recent debate around the concept of ‘attitudes to mathematics’. We then 

present the measurement methodology we employed to capture ‘attitudes to 

mathematics’ in the context of a large scale U  project with secondary school 

students, and how these results inform the theoretical debate. Finally, we report some 

substantive results about how the resulting attitudinal constructs, namely ‘maths 

disposition’ and ‘maths identity’ change during one academic year, and between 

various groups of interest (e.g. gender). We conclude with a brief discussion of 

methodological and educational implications. 

INTRODUCTION 

The importance of mathematics to students’ access to Science, Technology, 

Engineering and Mathematics (STEM) subjects in Higher education, and hence to their 

educational and socioeconomic life opportunities, as well as the need to promote a 

mathematically engaged society is well documented in literature and recent policy 

documents (Ofsted, 2006; Roberts, 2002; Smith, 2004). In a recent report ACME 

(ACME, 2009) recognises this important issue and advocates ‘tackling the perceptions 

of mathematics” as a particularly important issue in the current economic climate, 

placing emphasis on the importance of mathematics as a “powerful analytical tool”, 

with inherent “pervasiveness” and a “key workforce skill”.   

The paper focuses on ‘attitudes to mathematics’ with three particular aims: (a) to 

review and briefly synthesise the main points of the recent debate on the issue of 

‘attitudes to mathematics’, (b) to present the measurement methodology we employed 

to capture ‘attitudes to mathematics’ in the context of an on-going ESRC project with 

secondary school students and their teachers, and (c) to report some preliminary 

descriptive substantive results about how this attitudinal construct changes during one 

academic year.    

THEORETICAL PERSPECTIVE 

The study of students’ attitudes towards mathematics has gained considerable interest 

over the past 40 years. A lot of instruments (e.g. Lim & Chapman, 2013) have been 

proposed and used since then with a key influence  the widely used Fennema-Sherman 

scales  (Fennema & Sherman, 1977). Each of those instruments attempted to capture 

one of the many ‘dimensions’ or constructs associated with ‘attitudes towards 

mathematics’: beliefs, values, identities, engagement, affect, emotions, motivation, 
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confidence, self-efficacy, dispositions, are only a few on the list (Ruffell, Mason, & 

Allen, 1998). This complexity, as well as the lack of agreement on the definition of the 

construct has led researchers (e.g. Watson, 2011) to recently revisit the established 

instruments of the 1970s and 1980s looking for alternative universal definitions or 

more parsimonious instruments. A useful starting point to this conceptualisation is 

probably Ruffell et al.’s (1998) decomposition of attitudes into three sub-components, 

namely cognitive, affective and conative. Their reflective analysis, as well as others 

that followed did not manage to reach consensus on the topic. 

Despite these controversies, the study of students’ attitudes and/or dispositions is very 

important because this may reveal key influences on their choices and decision-making 

and hence future engagement with STEM (Archer, Halsall, Hollingworth, & Mendick, 

2005) . Previous studies had also identified a plethora of socio-cultural factors which 

are significant in shaping students’ dispositions and choice-making in education in 

general, and in STEM subjects and mathematics in particular: class, gender, 

nationality, ethnicity, parental and peer cultures are just the beginning of the list . In 

our earlier work with post-secondary students we had also contributed with 

instruments for measuring what we called dispositions and self-efficacy in 

mathematics (Pampaka, et al., 2011; Pampaka et al., 2013). 

Our current work, reported here, also attempts to add to this debate by a new concise 

instrument of students’ attitudes and dispositions towards mathematics. The overall 

aim of this study is to understand (i) how learners’ dispositions to study mathematics 

develop through secondary school, (ii) how mathematics pedagogies vary across 

different situations and contexts and (iii) how these pedagogies influence learning 

outcomes (including attitudinal ones). 

METHODOLOGY 

Project Design: The Teleprism Study 

The paper is empirically based on initial findings from an on-going ESRC funded 

study of teaching and learning secondary mathematics in UK (www.teleprism.com). 

The project is designed to capture the five years of students’ progression in Secondary 

Education (Year 7 to 11, i.e. students aged 11 to 16) in about one year of data 

collection: From October 2011 to December 2012. This design poses a series of 

methodological challenges around the combination of longitudinal and cross-sectional 

analyses, which go beyond the scope of this paper. The research question we seek to 

answer in this paper regards measuring ‘dispositions’ and attitudes to mathematics.  

Instrumentation and Sampling 

The nature and design of the study (i.e. longitudinal at school level for selection 

purposes) make it necessary to employ a varied sampling frame to ensure maximum 

coverage of the schools of England. We invited schools, drawing on various sources 

(including national databases), with an initial requirement for them to take part with all 

their Year 7 to 11 mathematics teachers and classes and be willing to follow this up at 
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two more data collection points (hereafter DPs). In total, we approached over 2200 

schools and we were able to establish collaboration with 40 of them. We note here 

issues around self-selection bias in this type of studies, which limits the 

representativeness of the achieved sample.
1
  

Data collection in these schools involved a student questionnaire (at all three data 

points, as shown in Table 1) about students’ attitudes to mathematics, confidence at 

various mathematical topics, future aspirations, and their perceptions of the teaching 

they encounter. The latter was also captured through a teacher survey administered to 

their mathematics teachers (twice during the course of the first academic year of the 

study, 2011-2012, i.e. along students’ DP1 and DP2). Student questionnaires are based 

on different versions of the same instrument to reflect the age and level of students (i.e. 

5 different Year Groups, from hereafter Y7 to Y11). Background variables and 

measures of students’ attainment are also being collected including gender, ethnicity, 

language of first choice, proxies of socioeconomic status, and earlier National 

Curriculum level records. The various sections of the questionnaire capturing teaching 

and learning perceptions have been constructed and expanded based on our previous 

TransMaths framework (www.transmaths.org) where we validated and used 

instruments for students aged 16 and older (Pampaka, Kleanthous, Hutcheson, & 

Wake, 2011; Pampaka et al., 2013; Pampaka et al., 2012). The achieved sample size at 

each data point, from the participating 40 schools is summarised in Table 1, with the 

different completion patterns. It should be noted that some schools dropped out during 

the study. 

Sample Description 

N=student numbers 

DP1 

Oct - Dec 2011 

DP2 

June/July 2012 

DP3 

Oct – Dec 2012 

Matched at all DPs 3744 3744 3744 

Completed only one DP 5358 1186 2127 

Completed DP1 and DP2 3051 3051 - 

Completed DP1 and DP3 1172 - 1172 

Completed DP2 and DP3 - 771 771 

Total cross sectional sample 13325 8752 7814 

Table 1: Sample Description [based on preliminary matching, unique cases: 17448] 

For this analysis we focus on the instrument developed to capture students’ 

mathematical attitudes, with the items, and the response format, shown in Figure 1.  

                                           
1
 However we have plans in place to investigate the comparability of our sample to the national one 
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1_Mathematics is important to me

2_Most people can learn to be good at maths.

3_My parents/carers like maths.

4_Maths is one of the most interesting school subjects.

5_Learning maths is enjoyable for me.

6_I have a mathematical mind.

7_I can get good results in maths.

8_I am interested in learning new things in maths.

9_In maths you get rewards for your effort.

10_Being good at maths is something you are born with.

11_I can learn maths even if it is hard.

12_I like using maths I am familiar with rather than new maths…

13_I am more worried about maths than any other subject.

14_I often need help with maths.

15_Compared to my classmates, I am good at maths.

16_My parents/carers enjoy solving mathematical problems.

17_I never want to take another mathematics course.

18_I would prefer my future studies to include a lot of maths.

19_I would look forward to studying more mathematics after…

20_I would like to be a mathematician.

21_Maths is important for my future (after school)

Strongly Disagree Disagree Unsure Agree Strongly Agree [Missing Data]

 

Figure 1: The items of the instrument for students’ ‘attitudes’ towards mathematics, 

with the distribution of their responses at Data Point 1 (DP1, N=13325) 

For the validation of the constructed measures (outlined in the next section) we draw 

on data from the cross sectional samples at each DP, whereas for some comparative, 

substantial results based on these measures, we limit analysis here to the 3744 matched 

cases who completed all DPs.  

A measurement approach to construct validation 

The validation process refers to the accumulation of evidence to support validity 

arguments regarding the students’ disposition measures. Our psychometric analysis for 

this purpose is conducted within the Rasch measurement framework, following 

relevant proposed guidelines (Wolfe & Smith Jr., 2007) based on Messick’s definitions 

of validity (Messick, 1989). The Rasch model is preferred because it provides the 

means for constructing interval measures from raw data. We have been extensively 

employing this approach for the validation of our constructed measures (Pampaka, et 

al., 2011; Pampaka, et al., 2013; Pampaka, et al., 2012). The Rasch rating scale model 

(using the Winsteps software) is considered the most appropriate for the scaling 

problems we have in this particular paper (i.e. a common Likert type scale). Our 

decisions about the validity of the measures are based on the following statistical 

indices (all these have been examined but cannot be all presented in this limited space):  

 Item fit statistics to indicate how accurately the data fit the model, providing 

evidence in support (or not) of the unidimensionality assumption.   
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 Category Statistics are examined for the appropriateness of the Likert scale 

used and its interpretation by the respondents (i.e. communication validity). 

 Person – item maps and the item difficulty hierarchy provide evidence for 

substantive, content and external validity.  

 Differential Item Functioning (DIF) suggests potential group differentiation, 

which is important when an instrument is used with different groups or at 

different occasions (e.g. gender, year group and DP for time invariance).  

 Qualitative data from interviews with students (in two case study schools) are 

used along the survey results, for validation, and deeper insight.   

Further Statistical Modelling 

Eventually, once the measures’ validity is established we proceed with further 

statistical modelling to investigate and model change in attitudes and its association 

with other measures of pedagogy (Pampaka, et al., 2012) or attainment. We limit the 

presentation here to some descriptive results.  

SELECTED RESULTS 

Measuring ‘attitudes’ towards mathematics 

As mentioned earlier, our instrument was intended to measure a general attitude in 

mathematics, as defined by the mixture of items. Following the measurement 

framework described above would provide us evidence of this hypothesis in regards to 

the unidimensionality of this construct. The evidence for this in the Rasch context is 

given by fit statistics which are local indicators of the degree to which the data is 

cooperating with the model’s requirements. Inconsistent data (e.g. those departing 

from the ideal of 1) may become a source of further inquiry.  For the purposes of this 

paper we take any number above 1.3 (of infit MnSq) as possible cause of concern, 

whereas infit values below 1 are considered as overfits and are not discussed.  The 

results from our initial analysis with all the items to define a measure of ‘mathematical 

attitudes’ were not supportive for this hypothesis and operationalization: a few items 

were signified as misfitting (i.e. Items 10, 12, 13, 14 and 21). A unidimensionality test 

also suggested the existence of two dominant dimensions, with the following split of 

items which we explored further: 

 Sub-dimension 1: Items 1, 4, 5, 8, 17, 18, 19, 20 and 21 

 Sub-dimension 2: Items 2, 3, 6, 7, 11, 12, 14, 15, and 16 

Separate Rasch rating scale models were performed on these two sub-dimensions, with 

all available data at each data point, combined together (resulting in a sample of 

30000+) in order to check for DIF between DPs to ensure measure invariance over 

time. The fit statistics of these two measures are presented in Tables 2, for what we call 

mathematics disposition and Table 3, for mathematics ‘identity’. For the former, two 

items are found to be misfitting (Item 17: I never want to take another mathematics 

course, and Item 21: Maths is important for my future). The coding of Item 17 was   

reversed for this analysis, and this might be causing its misfit. Item 21, seems to be one 
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of the most difficult items of this measure (as indicated by its low measure value). Both 

are considered useful for this construct, so it was decided to keep them in the model. 

The psychometric properties of the second construct of ‘identity’ do not present any 

problems in regards to fit statistics. 

------------------------------------------------------------------------------------------------- 

|ENTRY   TOTAL  TOTAL           MODEL|   INFIT  |  OUTFIT  |PT-MEASURE |EXACT MATCH|            | 

|NUMBER  SCORE  COUNT  MEASURE  S.E. |MNSQ  ZSTD|MNSQ  ZSTD|CORR.  EXP.| OBS%  EXP%| ITEM       | 

|------------------------------------+----------+----------+-----------+-----------+------------| 

|     1 119826  30547   -1.57     .01| .93  -8.8| .91  -9.9|  .69   .69| 59.3  54.0| statement1 | 

|     2  82107  30418     .59     .01| .85  -9.9| .85  -9.9|  .78   .73| 53.8  47.6| statement4 | 

|     3  91439  30454     .09     .01| .80  -9.9| .80  -9.9|  .79   .73| 54.2  47.6| statement5 | 

|     4 109298  30395    -.93     .01| .84  -9.9| .83  -9.9|  .74   .71| 56.6  50.4| statement8 | 

|     5  97413  30170    -.29     .01|1.48   9.9|1.72   9.9|  .62   .73| 47.6  48.2| statement17| 

|     6  82637  30182     .53     .01| .68  -9.9| .70  -9.9|  .80   .73| 59.0  47.1| statement18| 

|     7  77153  30180     .83     .01| .77  -9.9| .76  -9.9|  .78   .73| 57.3  47.9| statement19| 

|     8  57508  30194    2.04     .01|1.18   9.9|1.13   9.9|  .66   .70| 56.3  56.0| statement20| 

|     9 114163  30198   -1.28     .01|1.53   9.9|1.51   9.9|  .60   .70| 43.6  52.5| statement21| 

|------------------------------------+----------+----------+-----------+-----------+------------| 

| MEAN 92393.8  30304     .00     .01|1.01  -3.2|1.02  -3.3|           | 54.2  50.1|            | 

| S.D. 18822.5  139.2    1.08     .00| .30   9.3| .34   9.3|           |  5.0   3.1|            | 

------------------------------------------------------------------------------------------------- 

Table 2: Item fit statistics for “Mathematics Disposition” 

------------------------------------------------------------------------------------------------- 

|ENTRY   TOTAL  TOTAL           MODEL|   INFIT  |  OUTFIT  |PT-MEASURE |EXACT MATCH|            | 

|NUMBER  SCORE  COUNT  MEASURE  S.E. |MNSQ  ZSTD|MNSQ  ZSTD|CORR.  EXP.| OBS%  EXP%| ITEM       | 

|------------------------------------+----------+----------+-----------+-----------+------------| 

|     1 117106  30440    -.83     .01| .97  -3.8|1.01   1.7|  .48   .56| 56.8  51.9| statement2 | 

|     2  99364  30384     .11     .01|1.01   1.5|1.03   3.9|  .61   .60| 47.5  45.5| statement3 | 

|     3  92493  30433     .44     .01| .85  -9.9| .86  -9.9|  .75   .61| 46.7  43.7| statement6 | 

|     4 113759  30438    -.63     .01| .73  -9.9| .70  -9.9|  .70   .57| 59.8  50.1| statement7 | 

|     5 110610  30295    -.49     .01| .79  -9.9| .76  -9.9|  .67   .58| 57.1  49.2| statement11| 

|     6 103150  30164    -.11     .01|1.30   9.9|1.40   9.9|  .43   .60| 45.0  46.8| statement12| 

|     7  92695  30153     .39     .01|1.26   9.9|1.43   9.9|  .51   .61| 40.1  43.6| statement14| 

|     8  92089  30181     .43     .01| .72  -9.9| .75  -9.9|  .67   .61| 53.3  43.5| statement15| 

|     9  86303  30165     .69     .01|1.22   9.9|1.26   9.9|  .57   .62| 39.7  42.7| statement16| 

|------------------------------------+----------+----------+-----------+-----------+------------| 

| MEAN  100841  30295     .00     .01| .98  -1.4|1.02   -.5|           | 49.6  46.3|            | 

| S.D. 10319.2  122.8     .51     .00| .22   8.7| .26   8.8|           |  7.0   3.2|            | 

Table 3: Item fit statistics for Mathematics ‘Identity’ 

Further investigations of DIF as well as category statistics are in support of healthy 

measures (these results will be provided for the interested reader at 

www.teleprism.com/PME2014 and will accompany the presentation).  

Using the constructed measures in further analysis 

The corresponding resulting scores (in logits) of the students in these measures were 

extracted and added in the datasets for further analysis: higher score indicate higher 

disposition and more mathematical ‘identity’. Some descriptive results with these 

measures are shown next with the matched sample (N=3744), in relation to change 

over time, by year group and gender. 

Figure 2 shows students dropping mathematical attitudes as well as some gender and 

year group differences. It should be noted that Year 11 was excluded from this analysis 

due to the limited matching sample (<100). The other sample sizes are as follows: 

Y7=1249, Y8=856, Y9=734 Y10=742. 
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Figure 2: Changes in maths disposition (left plots) and ‘identity’ (right plots), by year 

group (top plots) and gender (bottom plots). 

CONCLUDING REMARKS 

Our results in regards to the dimensionality of mathematical attitudes are in agreement 

with earlier conceptualisations (Ruffell, et al., 1998) of attitudes as a multidimensional 

construct that could be decomposed into the affective, conative and cognitive 

components: Our ‘identity’ measure is constructed based on ‘expressions of feelings 

towards mathematics, thus is closely related to the affective component. Disposition is 

constructed based on expressions of behavioural intention, thus it corresponds to the 

conative component. To this we should add that our instruments include a 

contextualised self-efficacy instrument, which we believe is linked to the cognitive 

aspect, and we intend to test in the near future.  

Results with these measures (Figure 2) are in support of previous findings in regards to 

students’ dropping dispositions and engagement with mathematics (e.g. Pampaka, et 

al., 2012). However, further analysis needs to be performed to account for school 
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effects (multilevel modelling) and associate with other measures of interests such as 

pedagogical practices in mathematics. 
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‘VALUE CREATION’ THROUGH MATHEMATICAL MODELING: 

STUDENTS’ DISPOSITION AND IDENTITY DEVELOPED IN A 

LEARNING COMMUNITY 

Joo young Park 
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This study examined how mathematical modeling activities within a collaborative 

group impact on students’ perceived ‘value’ of mathematics. With a unified framework 

of  akiguchi’s theory of ‘value’, mathematical disposition, and identity, the study 

identified the elements of the value-beauty, gains, and social good-with the observable 

evidences of mathematical disposition and identity. A total of 60 college students 

participated in ‘ ifestyle’ mathematical modeling project.  oth qualitative and 

quantitative methods were used for data collection and analysis. The result from a 

paired-samples t-test showed the significant changes in students’ mathematical 

disposition. The results from the analysis of students’ written responses and interview 

data described how the context of the modeling tasks and the collaborative group 

interplayed with students’ perceived value.  

INTRODUCTION  

Studies reported that when students see themselves as capable of doing well in 

mathematics, they tend to value mathematics more than students who do not see 

themselves as capable of doing well (Eccles, Wigfield, & Reuman, 1987; Midgley, 

Feldlaufer, & Eccles, 1989). To see the value in mathematics, it is essential for students 

to believe that mathematics is understandable, not arbitrary; that, with diligent effort, it 

can be learned and used; and they are capable of figuring out mathematical problems 

based on their experiences. Kilpatrick and his colleagues (2001) introduced  

“productive disposition” as one of key components of mathematical proficiency and 

defined as the “habitual inclination to see mathematics as sensible, useful, and 

worthwhile, coupled with a belief in diligence and one’s own efficacy”(NRC, 2001, p. 

131). “Mathematics disposition” (NCTM, 1989, p233) was also included in the 

National Council of Teachers of Mathematics Evaluation Standards. Developing such 

a disposition toward mathematics requires frequent opportunities to recognize the 

benefits of perseverance, and to experience the rewards of sense making in 

mathematics. It becomes a question of what learning environment supports students to 

engage in meaningful learning of mathematics and to develop positive disposition as 

well as self-concept. A number of studies demonstrated that mathematical modeling, 

which plays a prominent role in the new Common Core State Standards for 

Mathematics (CCSSM), promotes socially situated learning environments with group 

collaboration, classroom discussion, initiative, and creativity and it has the potential to 

develops positive disposition toward mathematics and strengthen their mathematical 

identity (Ernest, 2002; Lesh & Doerr, 2003). The studies highlight that learning 
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mathematics extends beyond individuals’ learning concepts, procedures, and learners 

learn to be a part of a community of practice and become participants in the 

mathematics being practiced (Boaler, 2002). How a student learns mathematics 

involves the development of the student’s identity as being a part of a mathematics 

classroom community (Anderson, 2007). A mathematical identity consists of a 

participative “mode of belonging” related to one’s participation in a mathematical 

community of practice typically, the mathematics classroom (Wenger, 1998).  

THEORETICAL FRAMEWORK 

As a unified framework of Makiguchi’s theory of value creation (1930), mathematical 

dispositions outlined by NCTM Evaluation Standards 10, and identity (see Table 1), 

this study identified the elements of the value with the observable evidences of 

mathematical disposition and identity. 

Table 1: Theoretical framework (Makiguchi’s theory of value, disposition, and 

identity) 

The concept of value in the notion of Makiguchi (1930; Bethel, 1989) takes into 

account the subject and object relationship (students’ relationship with mathematics in 

this study), which reflects human creativity. In the notion of Makiguchi (1930; Bethel, 

Mathematical Disposition, Identity, Sense of belonging Makiguchi’s Elements of 

Value 

 Interest, curiosity, and inventiveness in doing math Beauty 

 Confidence in using math to solve problems and 

communicate ideas 

 Willingness to persevere and become persistent in 

math tasks 

 Flexibility in exploring math ideas and trying 

alternative methods in solving problems 

 Appreciation of the role of mathematics in our culture 

and its value as a tool and as a language 

 Inclination to monitor and reflect on their own thinking 

and performance 

 Valuing of the application of mathematics to situations 

arising in other disciplines and everyday experiences 

Gains 

 See oneself as a learner, and doer of mathematics 

 Sense of belonging in a learning community, global 

citizenship 

Identity 

Social value (Social Good) 
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1989)’s value creation, it is critical that students feel happiness, enjoyment, and 

pleasure in their own processes of investigating and understanding mathematics, as a 

result, students construct meaning, and value is created. In Makiguchi’s concept of 

value, the three elements of the value are the following: 

Beauty is perceived to be an emotional and temporary value. The value of Gain is an 

individual value and self-development, and beneficial aspect that is related to the 

whole of man’s life. Social good, however, is a social value and is related to the life of 

the group. The value of good is the expression given to the evaluation of each 

individual’s voluntary action, which contributes to the growth of a unified community 

composed of the individuals (Makiguchi, 1930; Bethel, 1989). 

RESEARCH QUESTIONS 

The purpose of this study is to develop and evaluate a model for students to create 

value in learning mathematics. With the unified framework of Makiguchi’s theory of 

value, mathematics disposition, and identity, this study examines how 

‘socially-situated’ mathematical modeling activity within a collaborative learning 

community can contribute to students’ development of their mathematical disposition, 

identity, and sense of community as well as students’ creating mathematical meaning. 

The guiding questions for this study are as follows:  

1. What changes (if any) are observed in students’ mathematical disposition that 

results from learning mathematics through mathematical modeling within a 

learning community?  

Specifically, How do students perceive value of beauty and gains, in Makiguchi’s 

notion, of learning mathematics before and after experiencing mathematical 

modeling activities within a collaborative group?  

2. How are students’ mathematical identities transformed from their involvement in 

mathematical modeling activities within a collaborative group? 

3. How are students’ perceived social values, in Makiguchi’s notion, of learning 

mathematics observed during mathematical modeling activities within a 

collaborative group? 

1) How does the collaborative group create a sense of belonging to the group that 

can be realized through engaging in mathematical modeling activities with 

group members?  

2) How do students interpret mathematical results within the socially situated 

context of modeling activities? 

METHODOLOGY 

Both quantitative and qualitative methodologies were used in data collection and 

analysis, investigation, and interpretation. Multiple data sources including surveys, 

interview data, students’ written tasks and journals were collected (see Figure 1). 
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These data sources provided participants with multiple opportunities of their reflecting 

and sharing thoughts about how these experiences impacted their disposition and 

identity. The participants were a total 60 students who enrolled in college algebra 

courses taught by the researcher. The curricular task for the study is a modified version 

of the mathematical modeling project developed by the Center for Discrete 

Mathematics and Theoretical Computer Science (DIMACS) at Rutgers University. 

The project introduces the ecology of humans as a topic, and ecological foot printing is 

developed as a tool for assessing human impact and as a decision-making tool. These 

topics are relevant to social and environmental issues in which students engage in 

everyday lives. The investigator attempted to provide students with the tasks that 

require everyday knowledge, critical thinking, and a collaborative work. The 

mathematical modeling project was conducted within groups of four or five for four 

consecutive weeks. After completing the first week of conducting the project, students 

were asked to collect their own data. The Mathematical Disposition Survey (MDS) 

was conducted at the beginning of the study and the end of the study, and the results 

were compared. The mathematical disposition survey instrument is a modification of 

the one developed by Kisunzu (2008). Students' written tasks and journals were 

collected after each class. A total of eighteen focal students were selected for interview 

based the results from the analysis of Mathematical Disposition Survey and students’ 

journals. Semi-structured interview offered students the opportunity of giving detailed 

statements on their written tasks, questionnaires, and journals. The researcher took 

field notes and audio-taped all the activities in classroom and interviews.  

 
Figure 1: Procedures (Multiple methods) 

RESULTS 

The result from a paired samples t-test showed the significant changes in students’ 

mathematical disposition between pre and post survey. There was significant 

difference in the mean scores for Mathematics Disposition Pre-test (Mean =132.57, 

SD= 23.65) and for Post-test (Mean=138.97 and SD= 24.52 with condition of t=-3.25 

with p < 0.01) (See Table 2.)  
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  Pre-Test Post-Test 

Mean 132.57 138.97 

Variance 567.12 607.65 

Observations (N) 47 47 

Pearson Correlation 0.85  

df 46  

t Stat -3.248  

P(T<=t) two-tail 0.002  

t Critical two-tail 2.013   

Table 2: Descriptive Statistics and Paired Samples T-test (Mathematics Disposition) 

For further investigation, the pre and post survey mean scores in each aspect of 

mathematics disposition (confidence, flexibility, perseverance, interest and 

inventiveness, meta-cognition, usefulness and appreciation) were analyzed by a paired 

samples t-test. Students’ gain score from pre to post test was statistically significant for 

the aspect of flexibility (Pre: Mean=10.53, SD=3.69; post: Mean=12.09, SD=2.51 with 

t=-3.28, p<0.01), for the aspect of appreciation (Pre: Mean=16.49, SD=5.34; Post: 

Mean=18.06, SD= 4.61 with t=-2.62, p<0.01). Interview data were analyzed searching 

for evidence of ‘changes’ in disposition, identity, and students’ perceived value 

resulting from engaging in modeling activities in a collaborative group. 

Students’ changes in disposition and identity 

As the main parts of the modeling project involves collecting their own data, 

mathematizing the data, and interpreting the data, the aspect of modeling with 

students’ own data promoted autonomy among students and alternative ways of 

solving problems (the aspect of flexibility) by reflecting their own thinking through 

collaborative group work: 

Excerpt 1. Change in the aspect of flexibility and meta-cognition (Value of gains) 

Chloe: Group members shared different ways of doing it, when they found 

different solutions from others, they thought about it and came back to talk 

about it. If you work with three other people, you can get different 

perspectives. For instance, there was a case that we had same answers but 

we found everyone solved them in different ways. Something like that, it 

was cool. Also no one depends on anyone since I myself had to live my 

days and collect my own data. 

The aspect of modeling that was relevant to students’ everyday lives seemed to have 

contributed to their development of positive disposition and personal identity as doers 

of mathematics: 

Excerpt 2. Change in the aspect of interest and confidence, and identity transformation 

(Value of beauty, gain, and identity) 
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Ella: I had difficult in doing math entire my life until to this day. I feel like this 

project would be beneficial for the students like me. I think it is important 

to think analytically and think outside of box through this kind of project. I 

changed my view of math in the sense that it became enjoyable since this 

project gave me some excitement. The project used math but it was 

interesting.  

Sense of belonging and social value: what it means to understand mathematics 

There was the evidences indicating socialization in a group through emotional 

connections by asking for help and sharing stories of events with particular topics: 

Lisa: We talked about our data, also our personal lives, why we had these 

numbers, what electric devices have used. I had a big number and she had a 

smaller number than mine. Then we talked about why and talked about the 

details in our personal lives. Especially with Alexis, cause we both live 

with family and others lived on campus so our numbers were pretty close 

but others’ were very different from ours. We talked about it at the personal 

level. Generally, as for a group work, some people do not do their parts but 

in our case, everyone contributed their parts.  

Interpreting mathematical results and social value: what counts as mathematical 

argumentations in modeling tasks 

‘What constitutes mathematics argument’ was related to the affiliation with the group, 

and the real life context of modeling tasks helped them to establish socio- 

mathematical norms.  

Interviewer: While working on this project in a group, how did you guys decide the   

solution is correct? 

Deana: we took a look at them to see if they make sense, like realistic number not 

too high or too low, one girl’s number was so low everybody else was high, 

so we told her “you did something wrong”. Then we found that she forgot 

to add something. 

With regards to the norms of what counted as an acceptable or valid mathematical 

explanation, students justified it based on the real life contexts by comparing data and 

examining the process of measuring footprints with group members.  

CONCLUSION 

In Makiguchi’s theory of value, benefit or gain as advancement of the life of the 

individual in a holistic manner and that is beneficial aspect of the interactions with an 

object (mathematics in this study), for example, one did develop the level of 

confidence in doing mathematics and was able to express his or her idea within a group 

or developed one’s willingness to navigate alternative ways of solving problems and 

monitor own thinking. The individual creates value through contributing to the 

well-being of the larger human community and society (Ikeda, 2001). Social value was 

created through students’ interactions with the external context to mathematics and 
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also with other members while working in a group. A mathematical identity and norms 

were related to students’ sense of belonging related to students’ participation in the 

mathematical community of practice (Wenger, 1998). Students deeply engaged with 

mathematics through modeling activities by sharing mistakes, listening to and offering 

suggestions about other’s work, and thinking about rationales behind why particular 

decisions were meaningful. The development of dispositions can be understood as 

being shaped by the interrelation between the context of mathematics tasks and 

interactions with others. For further study, By examining students’ modeling activities 

and interactions with peers in the classroom, one can understand better, how these 

elements interplay with students’ construction of disposition and identity. 
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The paper presents the results of a study based on a training program for in-service 

mathematics teachers, targeting to improve their skills of problem posing and 

qualitative appreciation of problems. During this training program, we found an 

improvement in participating teachers’ availability to discuss and analyse math 

problems, but also resistance to adapt posed tasks to the students’ thinking.  

INTRODUCTION 

The knowledge unique for an effective teaching of mathematics has been a research 

focus in mathematics education ever since Shulman (1986) introduced the concept of 

pedagogical content knowledge. Ball, Thames and Phelps (2008) further refined 

Shulman’s initial framework and proposed a structuration of mathematical knowledge 

for teaching into components as common content knowledge (CCK), specialized 

content knowledge (SCK), knowledge of content and students (KCS), and knowledge 

of content and teaching (KCT). From these, the SCK represents the mathematical 

knowledge needed for teaching and it is needed in tasks as “modifying tasks to be 

either easier or harder, finding an example to make a specific mathematical point” 

(Ball et al., 2008, p. 400).  

Ball et al. were primarily interested in operationalizing the acquisition of SCK in 

pre-service teacher training. However, research shows that task adaptation - as a form 

of problem posing – is a challenging activity for in-service teachers, independently of 

their teaching experience (Silver, Mamona-Downs, Leung, & Kenney, 1996). A 

second factor adding on the complexity of the in-service teachers’ case is the fact that 

many of the teachers obtained their initial training under a different educational 

paradigm. A third element worth mentioning is the teachers’ in-depth experience with 

curriculum materials, textbooks and evaluation systems. This experience can lead to 

situations where teachers assign differentiated importance to elements of the content to 

be taught, whether this is expressed in problem types, concepts or strategies for 

problem solving and thus limit their adaptations. Consequently, professional 

development programs for in-service teachers aiming to create conditions for acquiring 

or refining their SCK might require a completely different approach from the one 

employed in the case for pre-service teachers.  
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In this paper, we look at an implementation of a teacher-training program and analyse 

the impact (benefits and limitations) of its design on in-service teachers’ ability to pose 

multiple-choice problems relevant for students’ learning with understanding. 

In particular, the questions we ask in this paper are: Which elements of an in-service 

teacher training program might prove to be useful in helping teachers improve their 

problem posing skills? Which aspects of problem posing (PP) might prove to be 

effective to achieve this goal? More specifically, our hypothesis was the following: if, 

based on structured strategies, we systematically expose teachers to PP contexts, then 

their willingness to discuss and analyse problems will increase, and their ability to pose 

and solve problems focused on students’ understandings will improve. 

BACKGROUND 

In-service teacher training programs (ITTP), or professional development programs, 

are seen as part of the teachers’ learning process throughout their career (Broad & 

Evans, 2006). Their purpose is to provide, between others, the context for acquiring 

deep and broad content knowledge and knowledge about teaching and learning. 

Traditional ITTP were organized as “formal, highly structured activities outside the 

context of teachers’ actual work” (Schlager, Fusco, & Schank, 1998, p. 2). However, 

Broad and Evans, synthesize some characteristics of effective ITTP that contrast 

traditional ITTPs. Based on their literature review, the authors enumerate the features 

of ITTP that makes them useful: they link teacher and student learning; they must be 

personalized, and, the key element for its success is collaboration, shared inquiry and 

learning from and with peers. Under these conditions it is more likely that teachers will 

adopt the newly learned approaches in their classroom teaching. 

A second aspect relevant to our paper is problem posing (PP), in particular posing 

multiple choice questions. Literature on PP in mathematics education has increased 

significantly in the last two decades. Here we adhere to the definition given by Silver et 

al. (1996) according to which PP is defined as the creation of new problems or 

modification of an existing one. As far multiple choice problems are concerned, the 

literature consists mainly of tips, hints and recommendations on how to build 

distracters with no indications for a more systematic approach. The task of creating 

multiple-choice questions is challenging since the distracters need to consist of 

answers to which the teacher can (clearly) associate an interpretation in terms of the 

student’s knowledge and understanding. However, hint and feedback formulation is a 

challenging task for teachers (Singer & Voica, 2013). 

METHODOLOGY 

Participants 

The sample used in this experiment consisted of 51 in-service mathematics teachers at 

junior and high level, participants in a training program. The ITTP was organized by 

the authors of this paper and consisted of 5 days training within a summer institute. The 
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purpose of the training was to enhance teachers’ assessment related competences. 

More specifically, the training targeted at improving teacher’s competency to pose 

multiple-choice type problems and analyse them based on a set of criteria.  

Tasks and design of the study 

This study is based on detailed observation of the participants’ behaviour during 

discussions and their written work submitted during the training period. During the 

program, overall organized as a sequence of interactive workshops, participants had to 

solve a series of tasks such as: Discussion and comparison of problems’ formulation 

from the point of view of mathematical coherence and consistency, degree of difficulty 

and their usefulness in teaching particular concepts; Formulating distracters for a given 

problem; Modifying problem elements such as data, the problem question or the 

distracters;  Formulating hints and feedback for choosing certain distracter. By the end, 

participants were required to pose a multiple-choice problem along with: feedback to 

students on each distracter, a hint for solving the problem and two modifications of the 

initial problem (one easier and one more difficult). The problems were presented and 

their qualitative aspects discussed in-group, during a final session.  

For each task performed during the training program, participants completed work 

sheets where they noted the solution of the tasks, further proposals originating from 

their colleagues and comments/observations raised during the group discussion. All 

these files were scanned and posted on an e-learning platform associated to the training 

program. The final session, during which each participant presented his/her problem in 

front of the group, was audio and videotaped. 

We analysed, holistically, the problems generated during this workshop and the whole 

group discussions related to them. In this analysis, we looked at various aspects, as: the 

didactic potential of the proposed problems – comparisons with easier and harder 

version included; the quality of the feedback given on distracters; quality of hints for 

solving the problem; the focus of the collectively conducted analysis.  Here we present 

a qualitative study of those data. 

RESULTS AND DISCUSSIONS  

The ITTP presented few challenges. We see these challenges originating from two 

sources. On one hand, in Romania there are no specialized programs on PP and, 

consequently, this approach is a novel offer in ITTPs. On the other hand, many of the 

participants in our study were supervisors involved in the organization of mathematics 

Olympiads. The specific goal of these contests is to select highly trained students by 

facing them with difficult/advanced problems. In contrast, a teacher is more interested 

in advancing their students’ understanding through the problems they offer them. From 

this point of view, Olympiad problems are more performance oriented, while the 

problems that teachers need in their classroom teaching are learning oriented. The need 

to change participants’ vision about the finality of problems proved to be a challenging 

task for the organizers at the beginning of ITTP. 
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The training program: challenges and failures 

We started the program with the optimistic expectation that teachers’ competency in 

posing and solving problems (by having as reference point students’ understanding) 

will improve. However, the conclusions must be nuanced. 

The ITTP aimed, among other goals, to develop a self-reflexive attitude of the 

participants in what concerns the quality of the proposed/chosen problems for class 

work. In order to create the circumstances for the development of a reflexive attitude, 

the workshops were designed to be interactive, with systematic feedback from peers 

and instructors. Our impression, as instructors, from the workshops was one of real 

progress in participants’ ability to pose and analyse problems from the point of view of 

its affordances to promote student learning with understanding. However, when the 

participants performed their final products, in an individual manner, their old 

conceptions proved stronger in influencing the PP process than group discussions.  

In the following, we present the analysis of some components of trainees’ posed 

problems; the selection highlights key-points of recurrent situations and each example 

is representative for the general case. 

Example 1. The following problem was proposed by M: 

Consider the following sequence of numbers:
 

 , , . 

Then, a4 = ... 

In solving the posed problem, M starts from the following sequence of equalities: 

. M considers as natural the idea that, after 

processing as above the term a2 and observing the other two given terms, the solver 

could “guess” the following rule: . Therefore, he can identify the 

“correct” answer (  ). 

During the analysis of the problem’s elements (formulation and distractors; feedback 

to solver; hint for solving), we have not witnessed even a minimal concern for the 

solver. In designing the problem, its author has not thought of how the problem might 

be understood or seen by others. It seems that the poser started from a pre-existing idea 

he wanted to put forward, and the concern for the solver was hindered by an attitude 

such as: "If I thought about it, others will also do." 

Such behavior was not a singular one; several participants displayed a proudness 

stemming from the fact that they proposed competition problems which could be 

solved by very few students. In quite a few problems proposed at the end of the ITTP 

we could identify the same attitudinal pattern. 

Yet, teachers’ attitude has to be considered in perspective: in a culture dominated by 

school competitions aiming at strict mathematical performance, problem solving often 

is reduced to a formal game with mathematical concepts. 
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Example 2. The following problem was proposed by D: 

Mircea and Cristi have together 28 years. Victor and Mircea have together 26 years. 

Andrew is half of Cristi’s age. Victor,  ircea and Cristi were together 42 years. Which 

of the four boys is the second, if they are considered in increasing order of the ages? 

a) Mircea   b) Victor    c) Cristi    d) Andrei    e) It is impossible to know. 

The background topic of this problem is an artificial one, being only used as a kind of 

"cover" for a system of linear equations. However, as such, it is just a reflection of the 

kinds of problems often encountered in the textbooks.  

We focus another aspect now. The feedback to student on answer e) was formulated, as 

"The answer is absurd." If we evaluate the feedback from the point of view of the 

usefulness for the student, we have to conclude that this is not informative at all. The 

feedback doesn’t help students to realize what was wrong in their solving. For 

example, if the student fails to translate the problem into a system of equations and 

solve the system, then for that student it is really impossible to know the answer! A 

better choice for this distracter might be: "all the four persons have the same age": a 

minimal understanding of the meaning of the given data could lead immediately a 

solver to decide that this answer is (really) absurd. 

In fact, the feedback should be informative to the student; and teachers’ activities 

should start from imagining difficulties students might encounter in contrast with 

mistakes they could commit. In this respect, comments like "your solution is not right" 

or "you are wrong" (seen relatively often in proposals of the participants) are useless 

for the solver and might have a negative impact on their confidence. Comments as such 

made by D (and others in our sample) might originate from a traditional view of 

teaching: where the teacher “delivers” methods and content and, thus, the sole 

responsibility for failure is on the student who “didn’t try enough”. 

Example 3. V proposed the following problem: 

The parallelogram from the next represents a garden, whose 

area is 24 dam
2
. M, N, P are the mid-points of the sides AB, 

BC and CD. The area of MNP (cultivated with flowers) is 

equal to: 

a) 6    b)3    c)9    d)    12    e)18. 

V's intention was to propose a “realistic” problem. In his conception, the problem 

should get this characteristic just from using words that are from everyday use. 

However, the problem is purely mathematical: he even uses a geometric drawing and 

geometrical terms (midpoint).  

From a mathematical point of view, the problem is correctly formulated and might be a 

useful problem for students studying area in context of special quadrilaterals. 

However, the quality of problem formulation, due to the mixture of language, is poor. 

What might explain the participants’ inability to “see” this aspect of the problem? We 

hypothesize, again, that their experience as teachers is marked by strong focus on 
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content (and the reasons for this are so varied that we shall not dwell on them at this 

point). Therefore, they perceive the problem already beyond its formulation: as to what 

it is once in pure mathematical terms. Our hypothesis is sustained by the fact that, once 

the problem is subject of discussion, they realize the shortcomings – however, when 

they pose the problem they seem completely “absorbed” by the mathematical aim of it.   

The above examples reveal some important shortcomings in teachers’ PP, such as: 

certain “blindness”/”short-sightedness” about problem formulation; un-informative 

feedbacks; artificial problem contexts and failed attempts to connect to everyday 

situations. These aspects were recurrent in most of the participants’ problems. 

In comparison with a relative isolation at the beginning, progressively during the 

workshops, participants expressed their willingness to engage in discussion of the 

problems proposed by peers and by themselves. 

Their availability for involvement in the problem analysis process could be assessed 

through the dynamics of interventions during the workshops, but also through records 

from the final assessment, where the participants pointed out the usefulness and 

relevance of ITTP for the work of the teacher in a class. 

We insert below some comments of participants from this last category. 

“ ven after 30 years of teaching, I learned a lot.”  

“ ost interesting parts were the discussions about changing distracters.” 

“The part of maximal interest was about distracters and feedback to student.” 

If at the beginning, most teachers did not want to expose their products to group 

discussion (mainly of fear of value judgments), towards the end we witnessed 

participants’ openness in this regard and even a desire to get feedback on personal 

creations. Furthermore, we found that by the end of the seminar, the quality of problem 

analysis has improved. If at first discussions often slipped to collateral subjects, 

towards the end the themes addressed were converging towards key aspects of PP. 

Moreover, even the supervisors - initially reluctant to the idea of a training program 

with focus on PP - became actively involved in the process; not as much eager to share 

their own experience, but to learn more about the proposed methodology. We selected 

one more point that further illustrate the nature of discussions generated during the 

analysis of the posed problems. 

A participant, M, suggested the problem below, which generated a discussion about the 

possibility of applying them to different classes: 

Find out how many numbers in the sequence: 1, 4, 7, 10, ..., 301, are divisible by 5. 

In presenting his solution, M used an algebraic method, which involves writing the 

numbers from the sequence as 3k + 1 and identifying the numbers of the given form 

that are multiples of 5. Then, M indicated a second method of solving that goes more 

towards exploration: writing more terms of the sequence, one can observe that in each 

group of five consecutive terms, exactly one is divisible by 5. 
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Based on these solutions, participants discussed the possibility of proposing this 

problem for different classes, how distracters can be adjusted, or how the problem’s 

difficulty level can be controlled. For example, the discussion revealed that a more 

difficult problem might be: "Find out how many numbers in the given sequence are 

divisible by 5 or by 2." On this proposal, discussions continued on the possibility to 

adapt the initial solutions to the new problem. More specifically, it was concluded that 

it can be solved by the principle of inclusion and exclusion, or by an exploratory 

approach (in any sequence of 10 consecutive terms of the series, there is the same 

number of terms divisible by 2 or 5). Therefore, in the context of the ITTP sessions, 

even a “classical” problem led to relevant discussions on its exploitation in different 

class contexts. 

Other presentations have also generated extensive discussions, touching aspects of the 

nature of the context of a problem, its veracity, correctness in a strict mathematical 

sense, and the possibility to correlate mathematical correctness and the need to create 

attractive contextual problems. 

CONCLUSION 

In this paper, we presented a study on the benefits and limitations of an ITTP as 

teachers’ PP skills of multiple-choice problems are concerned. Two major aspects 

were identified. On the one hand, we observed a certain resistance from the behalf of 

teachers to shift in their problem posing process towards interpretations of students’ 

thinking. Next, we synthesized the different manifestations of this resistance. During 

problem posing, teachers gave a superficial attention in formulating the problem: 

often, the problem formulation is elliptic or full of ambiguity, while background topic 

is irrelevant for students’ motivation. Some formulations reflect a cognitive behaviour 

of the type: “if I had thought of this, surely the student will have the same idea”. We 

interpreted such case as one of “blindness/short-sightedness” of the problem poser 

since it prevents him/her from seeing the problem objectively, from the readers’ point 

of view. This attitude caused strong resistance to any suggestion of a need for change. 

On the other hand, we document a change of participants’ behaviour that happened on 

two dimensions, both observable in group interactions: an openness to discuss and 

analyse the quality of own posed problems, as well as a capacity to focus on some 

key-aspects of PP. The training program, thus, contributed to the development of a 

reflexive attitude as far as problem appreciation is concerned. These results illustrate 

that our starting hypothesis was only partially confirmed and that it needs further 

refinement. 

We found a positive impact on group interaction, while individual products still 

exhibited thinking patterns linked to traditional views of teaching and learning. We 

interpret this situation as indication for changes to be brought to the training program. 

It seems that a follow up that systematically combines group interactions with 

individual tasks exploited during further interactions could significantly influence a PP 
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approach focused on students learning with understanding. An ITTP built on such 

design principle might be a topic for future research. 
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To interpret in detail the meaning-making in the classroom and the corresponding 

teacher semiotic mediation, we have resorted to Peirce’s triadic  ign theory, 

interpreted by Sáenz-Ludlow and Zellweger. We present an example of the use of a few 

elements of that theory in the analysis of a classroom episode in which meaning is 

constructed with the teacher’s semiotic mediation. 

Meaning-making in the classroom (e. g., Antonini & Maracci, 2013) and the 

corresponding teacher semiotic mediation (e. g., Mariotti, 2012; Samper, Camargo, 

Molina & Perry, 2013) have gained importance as theoretic constructs for describing 

and explaining mathematics teaching and learning. In our case, they are fundamental 

due to the teaching approach (see details in Perry, Samper, Camargo & Molina, 2013) 

with which the pre-service mathematics teacher plane geometry course is developed in 

the Universidad Pedagógica Nacional (Colombia). This course has been the setting of 

our research, concerning teaching and learning proof, since 2004 (e. g., Camargo, 

Samper, Perry, Molina & Echeverry, 2009; Molina, Samper, Perry & Camargo, 2011). 

With the intention of interpreting in detail both phenomena, we have started to recur to 

elements of Peirce’s triadic Sign theory based on Sáenz-Ludlow and Zellweger’s 

(2012) elaborations. In this paper we analyze, in the light of such theoretical 

elaborations, a classroom episode in which geometric meaning is constructed with the 

teacher’s semiotic mediation. We want to contribute to the determination of what it 

means to adopt a semiotic perspective of teaching and learning, inspired on Peirce’s 

triadic sign idea. The analysis presented is part of an ongoing research on the use of 

conjectures as class content organizers, a project which is financed by the Colombian 

national science foundation, Colciencias.   

SPECIFYING THEORETIC ELEMENTS  

Peirce’s distinctive contribution is to conceive SIGN activity (semiosis) as one in 

which three components are related: sign-object (so) that which is alluded to in a 

communication or thought, sign-vehicle (sv) the representation with which the object is 

alluded to (e. g. a word, gesture, graph), and sign-interpretant (si) that which is 

produced by the sign-vehicle in the mind of whoever perceives and interprets it.  

Succinctly, we describe the semiosis that takes place in a verbal exchange constituted 

by two turns: in an intra-interpretation act (self-self), a person Y selects a particular 

aspect of a sign-object that is part of his sign-interpretant, encodes it and expresses it in 
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a sign-vehicle addressed to a person X; in an inter-interpretation act (self-others) that 

takes place within his knowledge and experience, X decodes the sign-vehicle emitted 

by Y and constructs a sign-interpretant which determines a sign-object. 

Delving deeper into the sign-object, there are three subcategories: Mathematical Real 

Object (MRO), immediate object (io), and dynamic object (do). The Mathematical 

Real Object is a historic-cultural object constructed by the community of 

mathematicians, which serves as reference for the community of mathematical 

discourse. The sender’s immediate object is constituted by the specific aspect of the 

Mathematical Real Object that he wants to represent with a sign-vehicle. The 

receiver’s dynamic object is constituted by the aspect interpreted from the sender’s 

sign-vehicle. The immediate object is expressed in the sign-vehicle that carries it while 

the dynamic object is generated in the receiver’s sign-interpretant. For this reason, for 

the analysis, it must be inferred from one or more sign-vehicles. This makes clearly 

distinguishing the dynamic object from the immediate object harder when the person 

changes his role from receiver to sender and there has not been a substantial change in 

the Real Object’s aspect that the person is referring to.  

In a dialogic interaction (a collective semiosis) in the classroom, which purpose is to 

make sense of an MRO, a sequence of SIGNS from different semiotic systems is 

naturally used. The do’s that emerge in the students’ minds from the interpretation of 

these SIGNS will be, in a lesser or greater degree, in accordance with the teacher’s 

intended io. The teacher’s intentional semiotic mediation is constituted by all his 

deliberate actions that facilitate and guide the convergence of the students’ evolving 

do’s to the intended io of the SIGNS. For this to happen, the teacher infers, interprets, 

and integrates, into one dynamic object, the most significant aspects of the do’s 

articulated by the students’ that, in one way or another, he deems necessary in the 

evolution of their do’s as they try to make sense of the intended MRO. We call didactic 

dynamic object (ddo) this emerging and evolving dynamic object that is inferred and 

constructed by the teacher as a result of an intentional classroom interaction. The 

teacher uses his constructed ddo’s to make those didactical decisions necessary to 

facilitate the evolution of students’ do’s so that they will approximate the intended io.  

EPISODE CONTEXT  

The episode took place in the plane geometry course developed during the second 

semester of 2013. The course is a second semester course of the pre-service teacher 

program and one of its intentions is that the students learn to prove and widen their 

view of proof. The teacher, coauthor of this paper, has ample experience in the 

respective curricular development. 

The students, in groups of three, after solving the problem, “Given three non-collinear 

points A, B and C, does there exist a point D such that AB  and CD  bisect each 

other?”, using Cabri, formulated a conjecture related to the construction carried out to 

solve the problem. One of the groups constructed the three non-collinear points A, B 
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and C, AB  , the midpoint M of AB , line CM, the circle with center M and radius CM, 

and determined D as the intersection of the circle and line CM. 

 

 
 

Figure 1 

The conjecture the group presented, taking into account the teacher’s request to specify 

in the conditional statement’s antecedent the conditions for D, was: “Given three 

non-collinear points A, B and C, if D belongs to line CM, such that    D C , M 

midpoint of AB  and MD MC , then AB  and CD  bisect each other”. Interacting in 

an instructional conversation (Perry, Samper, Camargo & Molina, 2013), teacher and 

students proved the conjecture. They then analyzed how the proof would change if the 

condition D belongs to line CM is substituted for D belongs to ray CM, concluding that 

different warrants would be involved which lead to different possible betweeness 

relations of points D, C and M. Immediately, the teacher questioned the existence of a 

point D with all the conditions imposed in the antecedent of the conjecture; due to this, 

they began the task of specifying what in the theory they then had to permitted them to 

construct each geometric object involved (i. e., validate the construction). Specifically, 

they could guarantee the construction of the segment, its midpoint and the ray or line, 

but not the construction of the circle used to determine D because the available 

theoretic system did not include geometric facts about circles. 

The scene of the episode that we analyze in this paper is solving this difficulty, 

motivated from the theory.  It starts with the teacher asking the class how to substitute 

the construction of the circle, that is, how to obtain point D with the required conditions 

without using the Cabri option “circle”. The following are possible appropriate 

answers
1
: (i) Having points C and M, construct line CM to assign to them coordinates y 

and x, respectively, with y > x, use the defined metric to find the distance from C to M 

(y – x) conviniently construct the number z ( (2 2 ) 2z x y x y x     ); assign to z a 

point which turns out to be D. (ii) The procedure is the same as the previous one except 

that zero is assigned as C’s coordinate, and therefore, the real number conveniently 

constructed is 2y. (iii) Having points M and C, determine (without using coordinates) 

the distance (MC) between them; construct the ray opposite to ray MC; use the latter 

ray and the distance determined to locate point D on that ray. 

                                           
1
 They are based on the Real-Number-Line Postulate which establishes that: (i) to each point of the 

line there corresponds a unique real number and (ii) to each real number there corresponds exactly 
one point of the line. 
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EPISODE ANALYSIS 

With his sv, “How can we make point D appear without using the circle?”, the teacher 

sets a task with the purpose of helping the students begin to make meaning of the Point- 

localization Theorem: “Given ray CT and a positive real number z, then there exists 

only one point X such that X belongs to ray CT and CX z , reason why we consider 

this theorem and its proof, which is not part of the available theoretic system, as the 

MRO of the semiotic activity when the task is carried out. Now, the teacher’s MRO is 

the process described in (iii). Specifically, the teacher wants the students to experience 

constructing the conditions that permit localizing a point X, since in each future 

situation in which the theorem is used they will have to begin by establishing the real 

number z and the ray on which the point will be located. The teacher’s sv carries as io 

the possibility of defining a procedure to find D with a certain betweeness and at a 

certain distance from a specific point, without using circle. Taking into account the 

question’s context, the io can be specified as: the possibility of defining a procedure to 

find D such that M is between C and D, and M is equidistant from C and D, without 

using a circle. 

María
2
 answers: “There we already have a ray [CM, (or a ray on line CM)], we could 

take measurements, first take a measurement from… C to M and then we take the 

measurement from M to… that is, take another measurement and up to where that 

measurement gives us (with the fingers of the extended hands, and these in 

perpendicular planes, she lets the right hand fall over the left one twice, gesturing 

cutting), there put point D”. María’s sv includes enunciation and gestures with her 

hands as she verbalizes. It carries as io a procedure which consists of measuring the 

distance between M and C and copying it starting at M on ray CM (which corresponds 

to transferring the measurement on the opposite ray of ray MC) to determine D such 

that M is between C and D. Above we have used boldface letters for the specific signs 

which back María’s io description. It seems María’s si includes an image of a physical 

compass capturing a distance and transporting it, and her do is consistent with the 

teacher’s io in so far the student defines a procedure with the required conditions. 

The teacher interprets María’s answer as appropriate to continue constructing the 

details of the io he expects the students to approach; so his ddo includes the coordinates 

as resource to obtain the distance between two given points. The teachers’ sv, “If  we 

take measurements, what do we automatically need?” carries as io the same aspect of 

the procedure –find measurement– which María made reference to, but it also indicates 

that she must specify which geometric object she will use to obtain distance, request 

that although it does not carry, for any listener, explicitly an aspect of the procedure 

they are talking about, it can be understood by whoever knows that the use of 

coordinates together with a metric are required to find the distance between two points 

or the use of the Two points-number Postulate that declares the existence of the 

distance between any pair of different points. Ángela interpreted the first option. Her 

                                           
2
 This and the other student names are pseudonyms. 
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sv, “Coordinates”, carries as io the use of the points’ coordinates to determine distance; 

in this moment of the conversation, her do seems to coincide with the teacher’s 

intended io, who accepts her idea to use the coordinates to find the wanted distance. 

From the expression “take measurements” with which the teacher echoes María’s 

proposal, we see that he accepts the path she suggests, using coordinates, although 

using the afore mentioned postulate is a more direct way to introduce the 

Point-localization Theorem. This is a teachers’ didactic decision. 

The next intervention is Dina’s with the sv: “we can say […] that twice the distance 

from A to M is equal to the distance from A to B, right? Because it is a midpoint. So, 

using Ángela’s idea, with coordinates, we can say that twice CM is equal to the 

distance from C to a D that I am going to place somewhere. Then, already there we are 

placing…”. This sv carries two immediate objects: first, a relation between distance 

measurements implied by the midpoint of any segment (2AM = AB); second, the 

possibility of applying the relation mentioned to C and M, having obtained the required 

distances using the points’ coordinates. We see that Dina’s si includes a different 

condition to the one used so far (CM = MD), to characterize the midpoint of a segment 

(2CM = CD), condition she wants to use with coordinates to find D. Her do is a 

procedure to determine D as the endpoint of a segment with C as the other endpoint and 

M as midpoint, using the relation established by the Midpoint Theorem (i. e., If M is the 

midpoint of AB  then 2AM = AB in terms of coordinates. Dina’s do is relatively close 

to the teacher’s intended io because it satisfies the condition of not using a circle to 

locate D, and also, when proposing the use of the afore mentioned theorem she is 

constructing the z mentioned in the Point-localization Theorem. That is, she substitutes 

the use of the circle with the use of the midpoint of CD  not determined yet (which 

leads to having M between C and D) and using C as the initial point from which the 

constructed distance is put. As will be seen, this do is lacking proximity to the teacher’s 

io in what concerns how to use the coordinates and for what.   

The teacher points out that Dina and Ángela’s ideas are pertinent. Besides, he clarifies 

that: “Then, we use coordinates to guarantee the distance that I want it to be”, sv that 

carries as the teacher’s io the role the coordinates will have in the procedure for finding 

D without using circles. The teacher’s si includes the idea that the procedure that he 

aspires to establish in the class is developing adequately, and with his ddo he 

emphasizes that the procedure without circles requires coordinates not only for 

obtaining a distance but also for using it in determining the coordinate that will turn out 

to be that of the point that they want to locate. 

With his next sv, “[…] what you (Dina) want is to use concrete numbers as coordinates. 

What concrete numbers do you want?”, the teacher initiates the construction of an 

example of the obtainment of the coordinate that they want to determine using the 

coordinates of C and M. Here we do not analyze the interaction through which the 

example was constructed because its content is mainly of an arithmetic nature. It is 

enough to know that the coordinates of C and M were 2 and 4, respectively, and that 

they concluded, not without some difficulty for some students, that the coordinate of 
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point D had to be 6. Molly explained the reason for this result with the following sv: 

“Because the distance from C to M  is… two… units. That from M to D must also be 

two units, therefore D’s coordinate must be six”. Molly’s do seems to be a procedure 

consistent with: calculate CM and take into account the equidistance condition (CM = 

MD) to obtain D’s coordinate by adding CM to M’s coordinate.   

Having finished developing the example, on the blackboard, written by the teacher, can 

be read: c(C) = 2, c(M) = 4, c(D) = 6 (i. e., the coordinate of C is two, etc.). With regard 

to this, the teacher emphasizes the difference between what is represented with the first 

two notations (having points C and M, to each a coordinate is assigned) and what is 

expressed in the third (having coordinate 6, to it a point is assigned which is precisely 

D). This description corresponds to his next sv: “These points (signaling the points in 

the notation c(C) = 2, c(M) = 4) already exist; we can give them those coordinates, 

right? After that we would have to say, this number exists, six, (points at the notation 

c(D) = 6) and to this number six, what do we do to it?” Various students respond the 

question correctly as they say: to six we have to “associate a point, D”. From the 

teacher’s intervention, we infer that his si includes an image of the difficulty students 

have to distinguish the conditions under which each of the items of the 

Real-Number-Line Postulate can be applied and the corresponding effect. His ddo 

emphasizes the distinction of each of the item’s application; specifically he highlights 

that to determine point D it is necessary to first give the real number that will be his 

coordinate. The do of each of the various students who completed the teacher’s 

comment is relatively consistent with the teacher’s intended io. Later, already having 

assigned D to the coordinate 6, teacher and students agree that the equidistance 

condition alluded to by María at the beginning of this episode is satisfied. 

Next, the teacher indicates that the procedure carried out in the example must be 

generalized. Various students propose designing as x and y the respective coordinates 

of points C and M. Antonio wants to designate D’s coordinate but the teacher changes 

the course of the conversation towards the number z, “First the number… Which one 

shall it be? A number will appear… then there exists the number z, and what condition 

should  that z have?”. The teacher’s interaction with various students trying to refine an 

answer can be summarized as follows: z is a positive number because it is an absolute 

value, x y . When the teacher asks whether what they have said about z is sufficient, 

Molly responds: “No, we must say that that number belongs to [is associated to] point 

D”. With respect to such an answer, the teacher asks if they agree with that statement 

and although various students disagree, the comments they make indicate that they find 

it difficult obtain a general expression for z. From this we see that the teacher’s io is 

closely related to, on the one hand, Molly’s explanation on why, in the example, D’s 

coordinate should be 6, and on the other hand, the comment he made to emphasize that 

they have points C and M and coordinates are assigned to them, but with respect to the 

point they are searching for, first a positive number must be determined and then, the 

point assigned to it is precisely the one searched. The do that appears as a collective 

construction by the students that participate in the verbal exchange seems to be far 
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from the teacher’s intended io in three issues: (i) designating D’s coordinate without 

taking into account that they are looking for D; (ii) believing that the number z 

represents the distance between M and the point searched for; (iii) believing that the 

distance between M and the point searched for coincides with the coordinate that this 

point must have.  

Seeing the difficulty the students have to obtain a general expression for the number z, 

makes the teacher simplify the situation by proposing that C’s coordinate be zero and 

M’s coordinate y, with y > 0. We also gives the value of z ( 2z y ) and shows that 

effectively the distance from C to M is the same as that from M to the point to which z 

should be assigned to. 

With the former explanation, they are ready to continue validating the construction, 

specifically the existence of D. In this process, orchestrated by the teacher, students are 

given the opportunity to respond correctly very punctual questions related with the 

procedure to determine D. These correct answers permit us to see signs of the 

beginning of a convergence of the do, constructed communally by those that 

participated in the exchange, towards the teacher’s intended io. 

234 Teacher: […] So, we can say the coordinate of point C is going to be equal 

to whom? 

235  Juan and others: To zero. 

242  Teacher: […] Ready, coordinates for points C and M appeared. What do we 

have to do afterwards? 

243  Jack: Create the number z. 

244  Teacher: […] What would we do with that number z afterwards? 

245  Student: Assign a point to it. 

250  Teacher: A unique point. What will it be called? 

251  Various: D 

252  Teacher: D, okay, such D… 

253  Ángela belongs to the line 

254  Student: CM 

255  Teacher: belongs to the line CM, okay, and… 

256  Juan: D’s coordinate is twice y. 

257  Student: z 

258  Teacher: D’s coordinate is equal to z. That is the correct way to write it. […] 

FINAL REMARKS 

The analysis presented is illustrative of the teacher’s semiotic mediation 

characterization, using the elaboration that Saénz-Ludlow and Zellweger have done of 

Peirce’s triadic Sign theory. In this paper we present an extension of that elaboration to 

include, as a central aspect of the mediation, the didactic dynamic objects (ddo’s) that 
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emerge and evolve in the course of semiotic mediation, and that seek the convergence 

of the student’s dynamic objects to the teacher’s intended immediate object. 

Conceiving the teacher’s semiotic mediation this way permits us to identify in greater 

detail the teacher’s role in students’ meaning-making. 

It is important to mention that in the analysis carried out here we focused on the 

discursive student sign-vehicles but not on the gestures with which they accompany 

their interventions. This is due to the fact that the teacher’s ddo’s seem to emerge 

principally from what the students say and not from what they do. Particularly, in 

María’s first intervention with which the communicative exchange begins (when she 

proposes “take measurements”) directs the semiosis through a path that permits 

advancing in meaning-making of the Point Localization Theorem, relating it to the 

Real-Number-Line Postulate. However, the gesture with which María accompanies 

her proposal seems to be a parody (acted out) of the Point-Localization Theorem, 

which if it had been discussed in class, would have led to a different semiosis and 

probably to meaning-making of the theorem relating it to the Two Points-Number 

Postulate as well as to the Real-Number-Line Postulate. This observation leads us to 

point out the importance of the teacher’s didactic decisions, in the course of semiotic 

mediation—the semiosis that takes place in the classroom. 
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Emotions play important part in mathematical problem solving, yet the theories of 

their role are still at their preliminary stages. In our study, we introduce a method, 

where screen recordings and automatic emotion recognition software are used to 

study the emotional states of five upper secondary school students during a solitary 

GeoGebra problem solving session. Common emotional states during problem solving 

were neutral (40 % of time), sad (34 % of time), happy (15 % of time) and angry (8 % 

of time). Different phases of problem solving were emotionally different, non-neutral 

emotional states being most prevalent during decision points such as using the undo 

button. The method used opens possibilities for new kinds of research designs for 

studying the role of emotions in problem solving. 

INTRODUCTION 

Affective elements have received much attention in the literature of mathematics 

education in general and problem solving in particular (e.g. McLeod & Adams 1989, 

Schoenfeld 1985, Leder, Pehkonen & Törner 2002, DeBellis & Goldin 2006). 

However, the majority of studies have focused on relatively stable traits in the affective 

domain, such as attitudes, beliefs and values. Considerably less attention has been 

given to emotions, defined as “rapidly changing states of feeling experienced 

consciously or occurring preconsciously or unconsciously during mathematical (or 

other) activity” (DeBellis & Goldin 2006, p. 135).   

Emotions are influential in the key moments that determine the success of solving a 

problem. Goldin (2000) uses the concept of affective pathways to describe how the 

typical patterns of emotional states lead to successful or unsuccessful problem solving 

behavior, and in the long run partly shape one's attitudes, beliefs and values concerning 

mathematics. However, proper understanding about the role of emotional states 

requires further research. 

Studying momentary emotional states is typically work-intensive and therefore the 

number of subjects in such studies is often small. In this report, we introduce a method 

that automatizes part of the work and thus opens possibilities for new kinds of research 

designs: we use screen recording technology to capture student’s computer-aided 

problem solving process and automatic emotion recognition software to analyze 

student’s emotions during the process. 
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Phases of problem solving 

For research purposes it is often useful to identify different phases of the problem 

solving process. Several models of phases or stages of problem solving have been 

introduced by different authors (e.g. Polyá 1945; Mason, Burton & Stacey 1982; 

Schoenfeld 1985; Hähkiöniemi, Leppäaho & Francisco 2013). Polyá's (1945) model 

with four phases – understanding the problem, devising a plan, carrying out the plan 

and looking back – is most widely recognized, but it is intended to be rather a guide to 

a problem solver than a research tool. Although the same applies to Mason's et al. 

(1982) model, they importantly point out that problem solving process doesn't 

necessarily proceed linearly along the phases but the solver might for example return to 

make sense of the problem after some new information has occurred to him or her.  

In his studies, Schoenfeld (1985) used transcriptions of students' discussions during 

problem solving to identify the phases of problem solving. He distinguishes six phases 

in problem solving: reading, analyzing, exploring, planning, implementing, and 

verifying. Essential to his model are also decision points – moments in the problem 

solving process when a student should use metacognitive skills to decide on further 

actions. For example, when new information concerning the problem occurs to the 

student, he or she must consider whether the current attempt to solve the problem is 

still valid or should a new strategy be used instead.   

The two main approaches to collect data on student thinking during the process of 

problem solving have been think-aloud and stimulated recall methods. However, as 

Hähkiöniemi, Leppäaho and Francisco (2013) indicate, it is possible to study problem 

solving with computer software using only screen recordings as the base for analysis. 

Hähkiöniemi et al. (2013) investigated problem solving with dynamic geometry 

software GeoGebra. They found none of the previous models of problem solving 

directly applicable, and thus developed a new classification, consisting of five phases: 

framing the problem, exploring the solution, conjecturing, investigating the 

conjecture, and justifying. There was great variation between students on how they 

moved through these phases: some students proceeded linearly from phase to phase, 

but most of them skipped phases and/or returned to previous phases during the process.  

In present study, an adaptation of Schoenfeld's (1985) model is used. Instead of 

discussion or think-aloud transcriptions, screen recordings are used to conduct the 

analysis, similarly to Hähki niemi’s et al. (2013) study. 

Emotions and problem solving 

There is a general agreement that emotions have an important role in human learning 

and mathematical problem solving specifically (Hannula 2012). However, theories 

about the role of emotions in the process of problem solving are still at their 

preliminary stages (Lehman et. al. 2008, Goldin, Epstein, Schorr & Warner 2011).  

It is well established that emotions direct attention and bias cognitive processing. For 

example, fear (anxiety) directs attention towards threatening information and sadness 
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(depression) biases memory towards a less optimistic view of the past (Power and 

Dalgleish 1997). There is also indication that positive emotions promote the creative 

aspects of problem solving, while negative emotions facilitate the reliable memory 

retrieval and performance of routines (Pekrun & Stephens, 2010). In mathematical 

problem solving, curiosity, puzzlement, bewilderment, frustration, pleasure, elation, 

satisfaction, anxiety, and despair have been observed to have important self-regulative 

functions (DeBellis & Goldin 2006).  

There are several theories concerning emotion, emerging from different research 

traditions. In this paper, we follow the Darwinian tradition, where emotions are seen as 

products of evolution, they can be categorized to a small number of universal basic 

emotions (anger, disgust, fear, happiness, sadness and surprise) and these emotions can 

be identified from facial expressions (Ekman & Friesen 1971; Ekman 1992). This 

approach allows us to use Facial Action Coding System (FACS; Ekman & Friesen 

1978) to identify emotions from students’ facial expressions. The process of 

identifying emotions has traditionally required trained human coders, but during last 

few decades, automated computer methods have been developed (Bettadapura 2012).  

There is some evidence that basic emotions would be rare in learning context. (Craig, 

D’Mello, Witherspoon & Graesser 2008; Lehman, D’Mello & Person 2008). 

Therefore, alternative emotion classifications that would suit better the learning setting 

have been developed. Both Craig et al. (2008) and Lehman et al. (2008) used a 

learning-centered emotion classification consisting of anxiety, boredom, confusion, 

contempt, curiosity, eureka and frustration. Pekrun and Stephens (2010) describe a 

model for emotion in achievement setting, which includes enjoyment, relaxation, 

anger, frustration, boredom, hope, joy, relief, anxiety, hopelessness, pride, gratitude, 

contentment, shame, sadness and disappointment.  

Hannula (2012) suggests that achievement emotions can also be looked through six 

basic emotions.  Enjoyment, hope, joy, pride, and gratitude are different variants of 

happiness, whereas boredom, hopelessness, sadness, and disappointment are variants 

of sadness. Frustration is a variant of anger and anxiety a variant of fear.  Relaxation, 

relief and contentment do not present any basic emotion, but they can be seen as 

removal of a negative emotion. (Hannula 2012).  

In this study, our aim is to find out, how different basic emotions occur in different 

phases of problem solving. Another important aim is to investigate, how our research 

methodology, which combines screen recording and automatic emotion recognition, 

works in the context of mathematical problem solving. 

METHODS 

Data collection 

The data for this study was collected in a Finnish upper secondary school in Helsinki. 

Participants were five students (two girls, three boys) participating in the advanced 

mathematics syllabus. Each student separately participated in a session lasting about 
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one hour, of which 20 minutes was devoted to problem solving. The session consisted 

of getting acquainted with the dynamic geometry software GeoGebra (Hohenwarter, 

2002) using a practice applet, working with a two-part mathematical problem using 

two GeoGebra applets, and discussing the process with the researcher.  

The mathematical background of the problem was the circumscribed circle of a 

triangle. First part of the problem was to find out, whether a circle could be drawn so 

that it goes through three points, in three given situations. The following instructions 

were given: 

Let A=(-2,0), B=(0,2), C=(2,0), D=(0,0) and E=(3,-2). Is it possible to draw a circle so that 

the circle goes through a) A, B and C, b) B, C or D, c) C, D and E? 

The GeoGebra applet provided with the problem included the points mentioned in the 

instructions, a coordinate system and a customized toolbar with following tools: Move, 

Delete, Point, Perpendicular Line, Perpendicular Bisector, Angle Bisector, Polygon 

and Circle with Center through Point.  

In the second part of the problem, the GeoGebra applet contained the same toolbar but 

no coordinate system. Students were given a statement "It is always possible to draw a 

circle through three given points" and asked to either show that it is true or show that it 

is false.  

Each student's screen was recorded during the use of GeoGebra applets. Integrated 

webcam of the laptop computer running GeoGebra was used to record a video of 

student's face. After the problem solving session, a video-based stimulated recall 

interview (e.g. DeBellis & Goldin 2006), was conducted and audio-recorded, but that 

data is not analyzed in this report. 

Analyzing the screen recordings 

We analyzed only the screen recordings of the two problems. Events on the screen 

were transcribed to a table with time codes. Transcriptions were read multiple times 

and similar events were grouped together. We ended up with the following event 

classes: changes to next or previous applet, chooses a new tool, clicks the undo button, 

deletes an object, draws an object, explores the menu, holds the pointer still, moves a 

point and moves the cursor.  

To identify the phases of problem solving, the screen recordings were watched again, 

looking for phases described in the literature. By making interpretations of students' 

actions (Table 1), events representing Schoenfeld's (1985) characterizations of 

reading, analyzing, exploring, implementing and verifying could be found in the data. 

Moments when a student used GeoGebra's delete tool or the undo button, or changed to 

the next or the previous applet, were considered decision points. Each event in the 

transcription was encoded to belong to one of the phases or to be a decision point. 
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Student action Phase 

Student holds the pointer still above instructions Read 

Student holds the pointer still or moves it around without concentrating on 

any particular object 

Analyze 

Student draws objects, moves points or objects or explores the menu Explore 

Student performs a series of actions Implement 

After accomplishing a goal, student holds the pointer still or redoes the 

actions that lead to success 

Verify 

Student uses the delete tool, the undo button, or changes to next or previous 

applet 

Decision 

point 

Table 1: Interpretation rules for student actions. 

Automatic emotion recognition 

Noldus FaceReader 5 was used to recognize emotions from student's face videos. The 

software is based on the theory of basic emotions and it has been used e.g. in studies of 

usability (Goldberg 2012), intelligent tutoring systems (Harley, Bouchet & Azevedo 

2012) and consumer behaviour (He, Boesveldt, Graaf, & Wijk 2012). FaceReader 

identifies key points in subject's face and classifies the emotions using an artificial 

neural network trained with manually notated images (Loijens & Krips 2014). In 

addition to six basic emotions, the classification includes an emotionally neutral state. 

As an output, FaceReader produces the intensity of each emotional state 10-30 times 

per second and the dominating emotional state at each time.  

In our analysis, for each face video we first used FaceReader's automatic calibration 

and then ran the analysis. FaceReader state logs were used to add emotional data to the 

event transcription. Whenever multiple emotional states occurred during a single 

event, all the states were recorded (Table 2). 

Time code Event Emotional state 

15:34 Student draws an angle bisector at the intersect of the 

perpendicular bisectors of AD and BD  

Sad 

15:38 Student clicks the undo button Sad/Angry 

15:45 Student explores the menu Angry/Neutral 

Table 2: GeoGebra event transcription with emotional states. 

All event-emotion combinations were extracted from the transcriptions and separately 

cross tabulated with the classifications of the event classes and phases of problem 

solving. A chi-squared test was calculated for both contingency tables. 
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RESULTS 

Most common emotional states during problem solving were neutral (40 % of time) 

and sad (34 % of time). Happy (15 % of time) and angry (8 % of time) were also 

common, whereas surprised (3 % of time), disgusted (1 % of time) and scared (0% of 

time) were rare. 

Cross tabulation of event classes and emotional states is presented in Table 3. 

Surprised, disgusted and scared with 12, 7 and 0 event-emotion combinations 

respectively were so rare that they were excluded from further analysis. Small 

expected frequency prevented using a chi-squared test. 

Event-emotion combinations Neutral Happy Sad Angry Total 

Changes to next or previous applet 3 1 5 1 10 

Chooses a new tool 25 16 30 7 78 

Clicks the undo button 0 5 10 10 25 

Deletes an object 3 2 3 3 11 

Draws an object 24 17 29 7 77 

Holds the pointer still 27 11 19 3 60 

Moves a point 19 11 17 1 48 

Moves the cursor 21 9 19 4 53 

Total 126 73 139 41 379 

Table 3: Contingency table of the event classes and the emotional states 

The cross tabulation of the phases of problem solving and the emotional states is 

presented in Table 4. Different phases were emotionally different beyond coincidence 

(chi-squared test p=0.004). 

Event-emotion combinations Neutral Happy Sad Angry Total 

Read 11 7 12 2 32 

Analyze 21 3 10 3 37 

Explore 58 42 70 20 190 

Implement 19 1 20 4 44 

Verify 10 6 11 2 29 

Decision points 7 14 16 10 47 

Total 126 73 139 41 379 

Table 4: Contingency table of the phases of problem solving and the emotional states 
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DISCUSSION 

Our results suggest, that although neutral was the most common emotional state in this 

study, also some of the basic emotions (happiness, sadness and anger) are common in 

problem solving. If achievement emotions, described by Pekrun and Stephens (2010), 

are looked through basic emotions as Hannula (2012) suggests, most of the 

achievement emotions are covered by these three emotional states.  

Results also indicate that different events and the phases of problem solving are 

emotionally different. However, more research is needed to investigate these 

differences in detail. The method for classifying phases of problem solving used in this 

study, although being straightforward, includes multiple presumptions about student 

thinking.   

Goldin (2000) suggests that emotions are in an important role during the key moments 

of problem solving process. This is in line with our findings about the emotional states 

associated with decision points (Schoenfeld 1985): the proportion of non-neutral 

emotional states (happiness, sadness and anger) was greatest during the decision points 

(Table 4). 

CONCLUSIONS 

The aim of this study was to use a combination of screen recording analysis and 

automatic emotion recognition to analyze students' emotions in different phases of 

problem solving. Our results, indicating that different phases are emotionally different, 

are encouraging and suggest that this kind of methodology can be used to study 

mathematical problem solving. More studies with a larger number of subjects are 

needed to further investigate the potential of this research design.   
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 eviewing the research on teachers’ diagnostic competences shows that most findings 

focus on the correspondence between teachers’ diagnostic judgments and students’ 

actual achievement, while cognitive processes and cognitive resources of teachers in 

diagnostic situations have been examined much less. We intend to extend this state of 

research from a domain-specific point of view by empirically identifying and 

theoretically describing processes and resources of mathematics teachers while 

judging tasks and students’ solutions. In an interview study with expert teachers and 

mathematics educators (n=6) it was possible to deduce typical steps in a diagnostic 

process to identify resources (i.e. aspects of teacher knowledge) they relied on.  

INTRODUCTION 

In mathematics teaching we find many different diagnostic situations, which can be 

characterized according to their position in the learning process and their respective 

objectives (e.g. Ingenkamp & Lissmann 2008; Wiliam 2007): 

 Initial assessment aims at gaining information about the students’ conditions 

for future learning (e.g. previous knowledge of students). 

 Formative assessment is needed for supporting individuals or for adapting 

instructional choices during the learning process. 

 Summative assessment is needed for assessing learning results and can be 

used for certification or placement of students. 

(Depending on the authors the terms ‘assessment’ and ‘diagnosis’ are considered either 

synonymous or contrasting in certain aspects. In this paper we assume no difference). 

Diagnostic situations can also be differentiated by the level of formality: In addition to 

formal diagnostic tests, there are also informal diagnostic situations which influence 

instruction. In mathematics teaching such diagnostic situations are often linked to the 

activity of working with tasks, e.g. (i) Teachers analyse and select tasks with respect to 

their potential diagnostic value and (ii) teachers evaluate students’ solutions to a task.  

Current and recent research focuses on the precision of teachers’ diagnostic 

judgements (dubbed the ‘veridicality-paradigm’) (cf. Hoge & Colardaci 1989, 

Südkamp, Kaiser & Möller 2012), while many questions regarding the cognitive 

processes of teachers during the assessment process and the domain specificity of 

diagnostic competence remain unsettled (Schrader, 2011). In a similar way that Ball, 

Thames & Phelps (2008) investigated mathematical knowledge for teaching by 

analysing teachers activities, we intend to create some insights into teachers’ 
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diagnostic competencies by analysing their cognitive processes and their use of 

resources during assessment.   

THEORETICAL FRAMEWORK 

Concepts of diagnostic competence 

Diagnostic competence most often is defined as the ability of a person to judge people 

appropriately (Schrader, 2011) and measured by numerical indicators for the precision 

of such diagnostic judgements. Three aspects of precision are frequently studied, each 

of them being related to specific diagnostic activities and situations (Spinath 2005, 

Lorenz & Artelt 2009, Schrader & Helmke 1987): (1) The judgement of a level of an 

attribute of a student or a task relates to the situation of selecting tasks with an 

appropriate content or level of difficulty. One can ask if teachers underrate or overrate 

such attributes. (2) Judging the variance of some attributes within a group of students 

is necessary for deciding about individualisation strategies. Finally (3) correctly 

estimating the rank (a) of the difficulty of tasks or (b) the abilities of students can tell 

something on the use of content knowledge for selecting tasks or the knowledge on the 

relative strengths and weaknesses of the class. It seems obvious that the numerical 

precision of such judgments can only be regarded as an indicator for diagnostic 

competence at work. Within this approach knowledge about the structure and the 

influencing factors of diagnostic competence (pertaining to the task, the student, the 

context or the teacher) is based on studying the reasons for judgment biases (Südkamp, 

Kaiser & Möller 2012). 

Still there are many open questions left, such as in which way teachers generate 

diagnostic judgements in the pedagogical context. There is a lack of understanding of 

cognitive processes of teachers guiding their judgement. Also the domain-specificity 

or even topic-specificity of diagnostic competence and how diagnostic competence is 

composed would be of interest. By correlating the above-mentioned indicators Spinath 

(2005) showed that diagnostic competence should not be considered as general ability 

but rather as construct that consists of several sub-competences. Still we do not possess 

any fairly coherent theoretical model of diagnostic competence and empirical evidence 

for it (Schrader 2011; Anders et al. 2010).  

For mathematics education it is a fruitful task to contribute to a better understanding of 

the processes and the knowledge connected to diagnostic situations with respect to the 

domain of mathematics. This can be seen as embedded within the broader challenge of 

constructing a theory of teacher knowledge in mathematics. For example, within the 

framework of Ball et al. (2008) competences needed for diagnostic activities can be 

located in several areas: Common content knowledge (CCK) is needed to evaluate the 

correctness of a student’s solution for instance, specialized content knowledge (SCK) 

is used for example to vary the degree of difficulty of tasks and knowledge of content 

and students (KCS) helps to understand students (mis-)conceptions and approaches.  
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Approaches for modelling diagnostic processes 

Understanding cognitive processes in diagnostic situations can also be seen as a 

question within the field of research on expertise. Here one can find several models for 

cognitive processes in diagnostic situations which can be used as a framework for 

further research: Croskerry (2009) proposes a model for diagnostic reasoning in the 

medical context by integrating previous efforts of promoting diagnostic competence of 

physicians: (1) the intuitive approach leaning on experience and gestalt effects and (2) 

the analytic approach using knowledge and systematic information gathering. To 

describe diagnostic judgements she proposes a dual process model (in the sense of 

Kahneman, 2003) where patterns are processed by an unconscious system and by 

rational processes of a conscious system which interact in specific ways (practice, 

override and calibration processes) to reach a diagnostic judgement. The fact that 

Croskerry (2009) calls this a “universal” model already indicates that this can be 

considered a broad framework which leaves many space for specification (such as by 

modelling the conscious system by critical thinking, training, logical competence etc.). 

Nickerson (1999) proposes a model to describe the process of rating other people’s 

knowledge. First a model of own knowledge is used as an anchor to describe the 

knowledge of others (default model). In several steps this model is refined by including 

information on the particularity of one’s own position, on the random other and on 

more and more information on specific others. This way the process of gaining insight 

in other people’s knowledge can be seen as an alternation of anchoring and adjustment 

(Tversky & Kahnemann 1974). In this model Nickerson can explain frequent 

tendencies of overestimating knowledge of others. Nickersons model appears to be 

very general and especially refers to factual knowledge. It should be transferred into 

pedagogical context with caution. Morris et al. (2009) on the other hand construct a 

model very specific to a diagnostic situation in mathematics teaching. They show that 

“unpacking” the sub-goals of a task can be considered an important facet of diagnostic 

competence with regard to the planning and evaluation of learning processes. The 

ability to decompose mathematical content within a task can be useful in diagnostic 

situations to locate students’ mistakes. However is doubtful if the “unpacking 

competence” is enough to master diagnostic situations which require identifying 

deficient conceptions of students, since misconceptions (such as the “division makes 

smaller” error in calculating with fractions) cannot be deduced by analysing correct 

solution processes. 

These examples of very different scope show, that there are indeed different 

frameworks available for modelling cognitive processes and knowledge resources of 

teachers during diagnostic activities. To substantiate these models it seems desirable to 

have a concrete picture of cognitive processes of mathematics teachers. It is our goal 

not to test these general models but to create knowledge on processes in the concrete 

domain of mathematics teaching that can connect to the more general models and 

inspire further research in this area. 
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RESEARCH QUESTIONS 

In our study we focus on informal diagnostic situations and teachers working with 

mathematical tasks in a diagnostic way, such as when judging tasks or evaluating 

students’ solutions. These diagnostic situations often occur when tasks have to be 

selected and embedded in existing material or when the teacher has to react towards 

students mistakes spontaneously. For an in-depth investigation of teachers’ diagnostic 

competence in these situations we assume a double focus on processes and on 

resources during the formation of diagnostic judgments and pursue the following 

research questions: (1) What kind of processes can be identified in teachers´ diagnostic 

judgements? (2) What kind of knowledge do teachers rely on during these processes? 

By these questions we intend to create a deeper understanding of diagnostic processes 

but also to further clarify possible components of diagnostic competence of 

mathematics educators. A long-term objective connected with our research is to derive 

consequences for teacher education and professional development. 

DESIGN OF THE STUDY 

As a method to gain information on cognitive processes and knowledge of teachers we 

decided to capture their reasoning by means of two phased think-aloud interviews 

(Ericsson & Simon 1993). In the first phase we initiated diagnostic processes by first 

presenting two tasks and afterwards three students’ solutions to each task and asking 

the participants to evaluate each of them. In the second phase teachers had to reflect 

their own diagnostic process by describing the process and additionally by giving 

reasons for their judgement. By this combination of parallel and retrospective think we 

expected to capture a large part of the relevant processes.  

As participants we chose three experienced mathematics teachers and three scholars in 

mathematics education. The latter had experiences as mathematics teachers and as 

teacher educators (for at least three years in each of their professional phases) and so 

we could draw on practical experience and reflected theoretical knowledge likewise. 

The aim of selecting this sample was to find a maximum variety of different processes. 

Think-aloud-protocols of the diagnostic processes and the reflections of their own 

processes supplied the data for the analysis in the present study which amounted to 12 

evaluations of tasks and 36 evaluations of students’ solutions. For the interviews we 

chose the tasks from the topic “fractions”, because of the broad systematic knowledge 

about students’ conceptions, errors and misconceptions in this field. The tasks and the 

interview guideline were developed and optimized in a pilot study. The students´ 

solutions were selected so that they represented typical mistakes and frequent 

misconceptions. Figure 1 shows the tasks and solutions we used.  

In the first phase the participants had to analyse tasks. They were asked: “Which 

challenges do you see? Which difficulties do you expect?” Then the participants were 

given the three students’ solutions to each task and had to evaluate them by answering 

the question: “Which conclusions do you draw?”  
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Figure 1: Tasks and students´ solutions (from: Wartha, 2007). 

Interpretative content analysis techniques were used to analyse the data (Ericsson & 

Simon 1993, Mayring 1983) with the objectives were to reconstruct types of diagnostic 

processes and to generate a theoretical overarching structure. In the analysis we first 

focused on assessment processes (see research question 1). In the next step we 

analysed the same data with a focus on the kinds of knowledge underlying these 

processes (see research question 2). 

RESULTS 

We present some exemplary results of the two interpretative cycles described above. 

Focussing on diagnostic processes (see research question (1)) resulted in more than 15 

Processes, of which we present three important ones. Table 1 shows the name of the 

process (code), a description of the code and excerpt of an interview to illustrate the 

category.  

Code Description Representative teacher statement 

Standard 

solution 

Design a solution 

for a given task. 
“[...] you can solve it by division.” 

Identify deficits 

Discover and name 

an incorrect 

approach. 

“1/4 is bigger than 1/3. This is typical. 

When the numbers are in the denominator. 

With bigger and smaller.” 

Identify 

strengths 

Discover and name 

skills. 

“[...] this is great. He writes down the 

number 2400 as fraction.” 

Table 1: Excerpt of identified assessment processes. 

The category “standard solution” refers to the process of designing a solution on your 

own or mentioning a common solution approach by its name. “Identify deficits” refers 

to recognizing an incorrect approach in a student solution. Finally to “identify 

strengths” means to see students´ competences in their solutions. When analysing the 

same data with a focus on the kinds of knowledge underlying these processes (see 
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research question (2)) we found among others the following knowledge categories: In 

the first example in Table 1 (see above) the interviewee refers to the mathematical 

correctness and therefore draws on his mathematical knowledge. In the second 

example the interviewee explicitly refers to a typical mistake and therefore uses a 

component of pedagogical content knowledge that refers to systematic knowledge 

(gained in educational research). In the third example one can see a reference to a 

concept of a fraction as a rational number – although it remains unclear whether this 

should be assigned to explicit knowledge on students’ development of number 

concepts or merely to the recognition of a mathematical fact. 

When analysing the results of the coding process (which could only be indicated by 

few examples here) it is possible to develop a “bigger picture”: Some of the processes 

are essential; they show up frequently and can be interpreted as steps in an assessment 

process. In every step different qualities of individual processes were observable. 

Figure 2: Idealized five-step model for the diagnostic process. 

Figure 2 shows an idealized model of steps during informal assessment: The initial 

point often is a standard solution or an approach. Then own solutions are compared 

with students’ solutions. Thereby strengths and deficits of the solution can be 

identified. The last step is to find a (hypothetical) reason (or several reasons) for errors 

– if they occur. As a very common strategy across all steps we observed that 

interviewees spontaneously decompose tasks or solutions and to analyse them step by 

step – just as Morris et al (2009) advise the participants in their study. 

The cognitive resources the interviewees rely on when moving through the diagnostic 

process as described above can be characterized as different types of knowledge: We 

could identify content knowledge (CK) and pedagogical content knowledge (PCK). 

For example, the participants of our study used knowledge on mental models of 

mathematical concepts, on typical errors and on typical misconceptions, Furthermore 

mathematical correctness was evaluated and student strategies were identified.  

CONCLUSIONS AND DISCUSSION 

The main objective of our study was a deeper understanding of diagnostic processes. 

Although such processes followed quite individual patterns, they could be categorized 

as different types of “steps in the diagnostic process”. Furthermore it became evident 



Philipp, Leuders 

PME 2014 4 - 431 

that the participants showed different degrees of flexibility, for example in the number 

of possible approaches to solve a task they mentioned (often combined with more than 

one representation). In future analyses this flexibility may serve as an indicator for the 

quality of the diagnostic process and/or the diagnostic competence of the teacher. To 

clarify this connection remains an open question for further study.  

Another objective was to identify types of knowledge, which teachers use while 

forming their diagnostic judgement – this amounts to delineate different components 

of diagnostic competence. A provisional interpretation of our results with regard to 

aspects of diagnostic competence is that three different aspects can be identified:  

(1) Knowledge: the use of content knowledge (CK) as well as pedagogical content 

knowledge (PCK) was observable. (2) Abilities: we observed the ability to decompose 

mathematical tasks but also to analyse tasks and solutions step by step and the ability to 

take the students’ perspective. (3) Attitudes: we state that a kind of readiness for 

assessment is necessary e.g. for taking students perspective – although this aspect did 

not emerge directly by our systematic analysis but is inferred rather generally from our 

experience during the interviews. 

We regard our results as modest extensions to theoretical frameworks which only 

partially focus on diagnostic competence, First our results regarding aspects of 

knowledge can be integrated into the theoretical framework of Ball et al. (2008) but 

still need further foundation, e.g. by efforts to quantitatively measure the aspects 

described here. Second, the decomposing of tasks and students solutions found within 

our study can be considered close to the research by Morris et al. (2009). However, 

while Morris et al. refer only to teachers “unpacking” mathematical concepts one 

should also consider the process of teachers identifying misconceptions that cannot be 

deduced by starting from correct mathematical concepts.  

Finally our research also uncovered certain differences in diagnostic processes of 

teachers with different levels of experience. For example, in our analyses some striking 

differences showed up, which also should be investigated further: Experts (with a 

scholarly background) seem to use a variety of different approaches to analyse a task. 

They appear to be more focused on strengths in their assessment than teachers. Experts 

draw more explicitly on subject-based knowledge (PCK). Because of the sample size 

of our study these differences can be seen as tendencies only. They should be regarded 

as hypotheses which need a more rigorous treatment and may be tested in a different 

design. 
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The present study revalidated a measurement model describing the nature of early 

number sense. Number sense was shown to be composed of elementary number sense, 

conventional arithmetic and algebraic arithmetic. Algebraic arithmetic was 

conceptualized as synthesis of number patterns, restrictions and functions. Two 

hundred and four 1
st
 grade students were individually tested on four different 

occasions. Data analysis suggested that elementary number sense follows a 

logarithmic growth, while conventional arithmetic and algebraic arithmetic adopt a 

linear growth rate until the third measurement and then they accelerate. Analysis 

showed that the growth of algebraic arithmetic directly predicts students’ mathematics 

achievement in second grade and the growth of conventional arithmetic and indirectly 

the growth of elementary number sense.  

INTRODUCTION  

Researchers and organizations have documented the importance of enhancing 

students’ early number sense (National Council of Teachers of Mathematics, 2000; 

National Mathematics Advisory Panel, 2008; Pittalis, Pitta-Pantazi & Christou, 2013). 

The development of students’ number sense is considered as an important outcome and 

key ingredient of school curricula and a foundation for developing formal 

mathematical concepts and skills in elementary school (Yang, Li & Lin, 2007). 

Research findings support that number sense is a powerful predictor of mathematics 

outcomes and a vital prerequisite to success in mathematics (Malofeeva, Day, Saco, 

Young, & Ciancio, 2004).  

The present study builds on previous studies asserting that early number sense consists 

of three distinct, but interrelated components (Pittalis, Pitta-Pantazi, & Christou, 

2013). In particular, it was theoretically established and empirically validated that 

early number sense is a general theoretical construct that consists of three components 

(a) elementary number sense, (b) conventional arithmetic and (c) algebraic arithmetic. 

It was suggested that elementary number sense is comprised of key elements of 

numbers sense (see Jordan, et al., 2006), such as counting and number knowledge. 

Conventional arithmetic refers to story problems and number combinations that 

encompass number transformation situations. Finally, the proposed new component, 

algebraic arithmetic extends the two-dimensional model proposed by Jordan and her 

colleagues (2006) and incorporates number patterns and number equations. 

In this study, we revalidated the structure of early number sense by encapsulating 

algebraic arithmetic component in a more comprehensive and systematic way, traced 
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the development of number sense components and examined the way in which number 

sense growth factors relate to mathematics achievement. In particular the aims of the 

study were to: (a) validate the nature of early number sense components, (b) propose a 

growth model describing the development of number sense and (c) examine the 

relation between number sense growth factors and mathematics achievement.  

THEORETICAL BACKGROUND 

Research indicated that number sense is one of the most important concepts to be 

developed in early mathematics (Baroody, Eiland & Thompson, 2009).  The quality of 

young children’s number sense is a key predictor of later mathematical success; both in 

short and long term (Aunio & Niemivirta, 2010). For instance, research findings 

suggest that early number sense development contributes in learning more complex 

mathematics concepts; it promotes numerical fluency and is foundational to all aspects 

of early mathematical skills (Baroody, et al, 2009; Jordan et al., 2010). A number of 

research studies showed that inadequate development of number sense in early grades 

may be related to mathematical learning difficulties (Jordan et al, 2007). Moreover, 

Jordan and her colleagues (2010) showed that number sense is a powerful predictor of 

mathematics outcomes at the end of first grade and at the end of third grade, while 

number sense at the beginning and at the end of kindergarten was highly correlated 

with first grade mathematical achievement (Jordan et al., 2007). Locuniak and Jordan 

(2008) showed that kindergarten number sense was a strong predictor of calculation 

fluency in second grade, while Yang and her colleagues (2007) showed that the 

mathematics achievement of students in 5th grade was correlated with number sense 

performance. In addition, it is supported that students who enter school with strong 

number sense are more likely to benefit from teaching in the elementary grades and 

that the effect of weak number sense may be cumulative (Jordan et al., 2010). 

A well-accepted and broad definition of number sense refers to a coherent 

understanding of what numbers mean, numerical relationships and the ability to handle 

daily life situations which involve numbers (Yang, 2005). Pittalis, Pitta-Pantazi, and 

Christou (2013), based on a synthesis of the literature, empirically validated a 

measurement model hypothesizing that number sense is a general second-order 

theoretical construct comprised of three first-order latent factors, namely (a) 

elementary number sense, (b) conventional arithmetic and (c) algebraic arithmetic. The 

proposed nature of number sense defines a more dynamic and flexible construct that 

may facilitate students’ advancements and transition to a more abstract and relational 

system of thinking.  

The foundation of algebraic arithmetic component of number sense lies on the research 

findings suggesting the introduction of students to algebraic reasoning at a much 

earlier age (Lins & Kaput, 2004). It should be noted that early algebraic reasoning 

conceptualizes algebra as a specific type of activity that builds on bridging arithmetic 

and algebra by promoting (a) understanding of the function of operations, (b) 

generalization and justification, (c) extension of the number system and (d) notation 



Pittalis, Pitta-Pantazi, Christou 

PME 2014 4 - 435 

with meaning. These kinds of activities may contribute to the (a) transition of students 

from arithmetic towards algebra and (b) in the empowerment of arithmetic operations 

and computational fluency (Russell, Schifter, & Bastable, 2011).  

The conceptualization of algebraic arithmetic component of number sense builds on 

Drijvers and his colleagues (2011) description of algebra as an amalgamation of (a) 

patterns and formulas, (b) restrictions and (c) functions. Examining the relations of 

these three stands with number sense, it can be conjectured that patterns, restrictions 

and functions may contribute in sustaining and further enhancing two major 

dimensions of number sense, namely, the relations among numbers and the 

conceptualization of the effect of operations of numbers. Moreover, this kind of 

activities may activate self-awareness mechanisms regarding the relations among 

numbers and promote self-reflection about the function and the properties of 

operations.   Thus, in an attempt to provide a comprehensive and functional description 

of early number sense, we could suggest that “algebraic arithmetic” encompasses the 

development of a more sustainable and abstract understanding of the relations among 

numbers and of the effect of operations on numbers. 

THE PRESENT STUDY 

The purpose of the present study was to describe the nature of early number sense and 

explore the predictive validity of number sense growth factors on mathematical 

achievement. Specifically, the aims of the study were to (a) to revalidate the model 

proposed by the authors in PME36 suggesting that algebraic arithmetic is a component 

of early number sense, (b) to trace the development of six year old students’ early 

number sense and (c) to investigate the relations among number sense latent growth 

factors and mathematics achievement. 

In the present study, algebraic arithmetic component captures number patterns, 

functions and restrictions (equations and balance scale restrictions), as proposed by 

Drijvers and his colleagues (2011). The parameter of number patterns involves 

researching for regularity and patterns to recognize a common algebraic structure. The 

dimension of restrictions describes students’ ability to find which value(s) of the 

unknown satisfies the required conditions in various situations; balance scale tasks or 

in more formal setting, such as equations. Finally, the function component involves 

students’ ability to investigate arithmetic relations between quantities/variables. 

Measures 

The majority of the test items were adopted from the Curriculum Based Measurement 

(Fernstrom & Powell, 2007) and the rest ones were developed based on the theoretical 

considerations of the study. Six types of tasks were used to measure elementary 

number sense: (a) counting tasks, (b) number recognition, (c) quantity discrimination, 

(d) number knowledge, (e) enumeration, and (f) non-verbal calculation. In the counting 

tasks, students were asked to enumerate objects, in the number recognition tasks, 

students had to read numbers, in the quantity discrimination tasks students were asked 
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to decide which was the largest number, in the number knowledge tasks, students were 

asked to find smaller and bigger numbers of a given one and in the non-verbal 

calculation tasks students had to add or delete objects in a given set so the number of 

objects corresponds to a given number. Conventional arithmetic factor was measured 

by three types of tasks: (a) story problems, (b) understanding of operations and (b) 

number combinations. In story problems tasks, students had to select the appropriate 

number sentence for a list of story problems. A set of new items were developed  for 

understanding of operations in which students were presented with simple addition, 

subtraction and multiplication word problems and were asked to select out of 4 

mathematical sentences, the one that fitted the problem. In number combinations tasks 

students had to find mentally the result of addition, subtraction, multiplication and 

division combinations. Finally, the proposed component algebraic arithmetic number 

sense was measured with four types of tasks: (a) number patterns, (b) 

restrictions-equations, (c) restrictions-balance scale and (d) functions. In number 

patterns tasks, students had to extend or complete number patterns, such as 5, 8, 11, … 

The ability to solve number patterns implies that a student can conceptualize the 

relations among numbers to fill in or extend a number pattern. For the assessment of 

students’ abilities in number restrictions two types of tasks were used, number 

equations and balance scales. In the number equations, students were asked to 

complete the missing terms of equations, such as 3+5=4+□.  The other restriction task 

appeared in the form of a balance scale. Students had to identify the value of two or 

three shapes which balanced in a balance scale with a given number. Finally, regarding 

student’s abilities with functions, students were presented with function machines and 

a table which showed the input and output values. Students were requested to provide 

the input or output numbers which were missing. The task was an adaptation of a task 

presented by Drijvers and his colleagues (2011).  

Mathematics achievement was measured with the Screening Assessment for Gifted 

Elementary and Middle School Students (SAGES-2). The SAGES-2 assesses aptitude 

and achievement in order to identify gifted students. We used the Mathematics subtest 

measures (K-3) which required not only recall but also understanding and application 

of mathematical ideas and concepts. In the present study, we used the mathematics 

score of SAGES-2 to measure students’ mathematics achievement. 

Participants, Procedure and Data Analysis 

Two hundred and four first grade students were the subjects of the study. Students were 

assessed on the number sense measures four times during the period October to June 

(approximately one administration per two months) in the school year 2012-2013. 

During each measurement students were interviewed in two sessions of approximately 

30 minutes each. Students had a time restriction for each type of task (one minute for 

the majority of tasks). Students were individually tested in all four occasions. The 

order of the parts was rotated in the four time series. The SAGES-2 test was 

administered a year later, in December 2013, when the subjects of the study were in the 

second grade.  
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The use of confirmatory factor analysis made sense because we wanted to examine the 

validity of an a priori model, based on past evidence and theory. CFA was conducted 

by using MPLUS, which is widely popular for its robust parameters (Muthén & 

Muthén, 2007). To trace the development of number sense components we used 

growth models. Growth models examine the development of individuals on one or 

more outcome variables over time. In order to evaluate model fit, three widely 

accepted fit indices were computed: The chi-square to its degree of freedom ratio 

(x2/df should be <2); the comparative fit index (CFI should be >.9); and the root 

mean-square error of approximation (RMSEA should be close to or lower than .08).  

 
Figure 1: The nature of early number sense components. 

RESULTS 

The results of the analysis gave strong evidence to revalidate the construct validity of 

the hypothesized model describing the nature of early number sense (χ
2
/df=1.60, 

CFI=.96, and RMSEA=.05). The results of the study showed that early number sense is 

a general, higher-order latent construct and might be described as a synthesis of three 

dimensions, namely, elementary number sense, conventional arithmetic and algebraic 

arithmetic. Figure 1 presents the standardized solution of the analysis and indicates that 

all factor loadings were statistically significant and most of them were rather large, 

ranging from .42 to .83 (see Figure 1). In addition, the factor loadings of the three 

first-order factors, elementary number sense, conventional arithmetic and algebraic 

arithmetic to the  second-order factor, early number sense, were extremely high (.93, 

.95 and .92 respectively). Moreover, the predictive validity of the three components of 
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number sense on the higher order early number sense factor was almost identical 

(r
2

element. =.87, r
2

algebraic =.89, and r
2

conventional=.85). 

To examine the relation of number sense growth with mathematics achievement, first 

we examined the validity of alternative growth models. Longitudinal data in four time 

waves were used. The best fitting model (with the smallest AIC and BIC, χ
2
/df=2.54, 

CFI=.98, and RMSEA=.08) was the one hypothesizing that elementary number sense 

follows a logarithmic growth rate while conventional arithmetic and algebraic 

arithmetic follow a linear growth rate until the third measurement and then they 

accelerate (see Figure 2). Thus, the results of the study showed that the growth of 

elementary number sense progressively is reduced, compared to the growth rate of the 

other components that increase. Elementary number sense had the largest mean latent 

slope (3.55), while conventional arithmetic mean latent slope was the second largest 

(3.28) and algebraic arithmetic mean latent slope was the smallest one (3.23). 

 
Figure 2: The development of number sense components. 

Then, to examine the relation among number sense growth factors and mathematics 

achievement we tested alternative structural models. The adopted model (χ
2
/df=2.18, 

CFI=.97, and RMSEA=.07) showed that the latent slope factor of the algebraic 

arithmetic component is a strong predictor of mathematics achievement (r=.64) and of 

the latent slope factor of conventional arithmetic (r=.70). Figure 3 shows that the slope 

factor of algebraic arithmetic had also an indirect effect on the latent slope factor of 

elementary arithmetic (r=.32), through the latent slope of conventional arithmetic. In 

addition, the latent slope factor of conventional arithmetic had a direct effect on the 

latent slope of elementary arithmetic (r=.46). The analysis showed that the intercept 

and the slope factors of algebraic arithmetic had a very high positive correlation, 

indicating that a student with a higher initial value in algebraic arithmetic would have a 

higher growth. On the other hand, the intercept and the slope factors of elementary 

arithmetic had a moderate negative correlation, indicating possibly a ceiling effect. 

DISCUSSION 

The results of the study reaffirmed the model describing the nature of students’ early 

number sense, suggesting that early number sense consists of elementary, conventional 

and algebraic arithmetic components. Algebraic arithmetic includes number patterns, 
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restrictions and functions. The proposed component of algebraic arithmetic adopts 

Drijvers and his colleagues (2011) definition of algebra. Elementary number sense 

develops with a logarithmic rate, while conventional arithmetic and algebraic 

arithmetic develop with a constant rate and accelerate progressively. 

 

Figure 3: The relations among number sense and mathematics achievement. 

The innovative aspect of the study lies on the exploration of the relation among the 

growth factors of number sense and mathematical achievement. The results of the 

study showed that students’ algebraic arithmetic growth rate in the first grade predicts 

their mathematical achievement in the second grade. What is noteworthy is that neither 

the conventional arithmetic nor the elementary arithmetic could predict the second 

year’s mathematical achievement. On the contrary, the growth rate of algebraic 

arithmetic proved to have a direct effect on the growth of conventional arithmetic and 

an indirect effect on the growth of elementary number sense through the growth of 

conventional arithmetic. This means, that algebraic arithmetic predicts conventional 

arithmetic and elementary arithmetic growth rates. Moreover, the intercept of algebraic 

arithmetic relates positively with its slope, suggesting that a student entering first grade 

with a good understanding of algebraic arithmetic will result in a significant growth 

rate of algebraic arithmetic. Thus, students entering primary school with a high value 

in algebraic arithmetic might exhibit high growth rate in algebraic arithmetic and 

consequently high growth rate in the two other components of number sense and high 

mathematics achievement in general. These findings highlight the dynamic nature of 

algebraic arithmetic and underlie the potential of integrating algebraic arithmetic 

situations in kindergarten. This algebraic arithmetic may be of the form of simple 

number patterns, restrictions and function activities appropriately developed for 

kindergarten children that enhance their understanding of the relations among numbers 

and flexibility with numbers. 
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