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This paper addresses the role of learning progressions in informing many 

international standards documents, discussing the affordances and limitations of 

building standards and curricula from a learning progression model. An alternate 

model, the hypothetical learning trajectory, is introduced and contrasted with learning 

progressions. Using the example of exponential functions, learning progressions are 

compared to learning trajectories in terms of their theoretical origins and practical 

implications. Recommendations for further work building learning trajectories in 

secondary mathematics are discussed. 

INTRODUCTION 

Curriculum development increasingly relies on guidance from national content 

standards or benchmarks, with standards-based accountability growing as a movement 

internationally (e.g., Australian Ministerial Council on Education, Employment, 

Training and Youth Affairs, 2006; Ministry of Education of the People’s Republic of 

China, 2003; National Governor’s Association Center for Best Practices, 2010; UK 

Department of Education, 2009). Given the proliferation of content standards and their 

influence on curriculum development, the quality of such standards and their 

adherence to research on students’ learning is a key concern. However, evidence 

suggests that mathematics content standards typically approach learning goals from the 

perspective of sophisticated mathematical expertise, failing to address students’ 

conceptual development (Olive & Lobato, 2008). Lobato et al. (2012) conducted a 

survey of the mathematics content standards for seven countries focusing on quadratic 

functions and found that nearly all of the standards emphasized procedural knowledge 

and lacked specificity addressing conceptual knowledge. 

This paper discusses a typical approach guiding the development of many standards 

documents, that of a learning progression, and considers some of the limitations of 

learning progressions for informing standards and curricula. Using the example of 

exponential functions, we contrast the theoretical underpinnings of learning 

progressions with an alternate construct, the learning trajectory, and argue for the 

merits of learning trajectory research for developing content standards. 

BACKGROUND AND THEORETICAL FRAMEWORK: LEARNING 

PROGRESSIONS AND LEARNING TRAJECTORIES 

A learning progression is a sequence of successively more complex ways of reasoning 

about a set of ideas (National Assessment Governing Board, 2008). This definition 

situates a learning progression as a tool for curriculum design; the progression is a 
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construct for organizing mathematical content in order to provide a potential path 

through which students can traverse as they develop competence in the domain. Recent 

years have seen an increased focus on the development and elaboration of learning 

progressions, and in the use of learning progressions to inform standards documents. 

For instance, the American Institute for Research (2009) released a report calling for 

the development of standards based on learning progressions gleaned from analysing 

the content standards of three high-performing countries, Hong Kong, Korea, and 

Singapore. This study produced a set of composite standards guided by “learning 

progressions of specific competencies within each topic across grades” (p. 2). 

Similarly, Fuhrman, Resnick, and Shepard (2009) made the case for incorporating 

learning progressions into content standards documents by referencing 

high-performing countries such as Singapore, Japan, South Korea, and the Czech 

Republic, emphasizing the importance of building curricula “based on sequences, or 

progressions, of increasingly sophisticated concepts and knowledge applications” (p. 

28). A learning progression characterizes movement from novice to expert through the 

acquisition of relevant facts, skills, and concepts (National Assessment Governing 

Board, 2008). 

Learning progressions have at times been treated as interchangeable with learning 

trajectories, but the two constructs have significantly different theoretical origins 

(Empson, 2011). The notion of a hypothetical learning trajectory has different 

meanings among mathematics education researchers. Simon’s (1995) original 

discussion offered a description of a hypothetical learning trajectory consisting of “the 

learning goal, the learning activities, and the thinking and learning in which students 

might engage” (p. 133). Clements and Sarama (2004) expand on this definition, 

describing a learning trajectory as an elaboration of children’s thinking and learning in 

a specific mathematical domain, connected to a conjectured route through a set of tasks 

designed to support movement through a progression of levels of thinking. These 

definitions emphasize the construct as a teacher-researcher’s model, a tool for 

hypothesizing what students might understand about a particular mathematical topic 

and how students’ understanding may change over time in interaction with 

carefully-designed tasks and teaching actions. 

A learning trajectory is an account of changes in a student’s schemes and operations; as 

such, it is a tool that seeks to explain learning that occurs over time, specifying the 

particular schemes and operations in play and elaborating how accommodation occurs 

to build up knowledge. This view of a learning trajectory differs significantly from 

learning progression frameworks emphasizing strategies or skills.  

Challenges with Basing Standards Documents on Learning Progressions 

Learning progressions are based on the researcher’s knowledge of the field of 

mathematics. Steffe and Olive (2010) describe this as first-order knowledge, “the 

models an individual constructs to organize, comprehend, and control his or her 

experience, i.e., their own mathematical knowledge” (p. 16). Much of the organization 

of international content standards is based on first-order knowledge. Critiques of the 
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learning progression approach to standards documents emphasize, however, that the 

development of a progression cannot be based on an analysis of the discipline alone. In 

particular, content learning cannot be separated from activity and context; what 

students learn is intricately connected to the types of instructional tasks they encounter, 

the manner in which teachers foster students’ thinking with those tasks, and the ways in 

which students interact with one another and with their teachers (Empson, 2011). 

Mathematical learning occurs in interaction, with teachers’ actions profoundly 

influencing student thinking. One of the most difficult issues facing researchers 

constructing learning progressions, then, is the need to attend more explicitly to the 

role played by teaching interactions and to determine how instructional variation 

affects these progressions (Simon et al., 2010). 

These concerns are borne out by the meticulous research base demonstrating the 

non-convergence of children’s learning in some areas of mathematics, such as number, 

fractions, and ratio and proportion (e.g., Steffe & Olive, 2010). In addition, standards 

based on learning progressions may fail to account for how different students approach 

the same mathematical idea from different conceptual bases. A more efficacious 

approach may be one that attends to the variation in students’ conceptual development, 

building trajectories of student understanding over time. 

LEARNING TRAJECTORIES AS AN ALTERNATE MODEL 

While learning progressions are typically based on first-order knowledge, learning 

trajectories are an elaboration of researchers’ second-order mathematical knowledge, 

“the models observers may construct of the observed person’s knowledge” (Steffe & 

Olive, 2010, p. 16). As such learning trajectories are concerned with identifying the 

mathematics of students, elaborating models of students’ mathematical concepts and 

operations. Lobato et al. (2012) noted that an analysis of students’ constructions can 

also inform the way researchers conceive of the mathematics itself; a construction of 

second-order models can inform our first-order knowledge of the domain. 

A learning progression typically presents a target construct or skill, an associated 

learning goal, evidence for achievement of the learning goal, and tasks designed to 

foster that achievement. Table 1 contrasts the ways in which learning progressions and 

learning trajectories address each of these four categories in general. Using the specific 

example of exponential functions, we then compiled typical statements of 

mathematical constructs, learning goals, and evidence from international standards 

documents that included exponential functions, particularly Chinese Taipei (Ministry 

of Education of Taiwan, 2003), China (Ministry of Education of the People’s Republic 

of China, 2003), and the United States (National Governor’s Association Center for 

Best Practices, 2010) (see Table 2). Table 2 contrasts a learning progression approach 

with a learning trajectory approach for one sample construct/concept about exponential 

functions; due to space constraints, one example rather than an entire progression and 

trajectory is provided. 
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Learning Progression Learning Trajectory 

Construct  Based on 1
st
-order knowledge 

 Define levels in terms of 

subject-matter competencies 

 Constructs elaborated as formal 

mathematics 

Concept  Based on 2
nd

-order knowledge 

 Define stages of student thinking 

 Concepts elaborated in terms of 

students’ mental activity 

Learning 

Goals 
 Description of skills and 

procedures 

 Specifies target performances 

Character- 

ization 
 Description of the nature of 

student’s thinking  

 Identifies relevant schemes  

Evidence  Describes the necessary 

performance; focus on external 

performance 

 Identifies external strategies 

 Based on mathematical domain 

Examples  Describes conceptions based on 

strategies, language, activity 

 Identifies mental activity 

 Based on evidence of student 

activity 

Tasks  Developed from content 

analysis 

 Goal is to elicit target 

performances 

 Provided as stand-alone 

problems 

Activities  Developed from retrospective 

analysis of teaching experiments 

 Goal is to support emerging 

concept development 

 Provided with context and 

pedagogical connections 

Table 1: Learning progressions contrasted with learning trajectories 

Construct versus Concept 

Constructs arise from adults’ first-order knowledge of mathematics, and thus are 

developed according to the logic of the discipline. It is typical for constructs to describe 

formal mathematical ideas, strategies, or procedures. For instance, consider the case of 

exponential functions. A learning progression might describe a construct for 

exponential functions in terms of the desired subject matter competency without regard 

to the qualitative difference in thinking at different stages. The construct describes the 

mathematical idea, for instance, “Express a situation in which a quantity grows by a 

constant per-cent rate as y = ab
x
.” Rather than specifying a mental operation, the 

construct specifies a particular algebraic representation, as conceived by the 

researcher. This type of progression is concerned with identifying instructional goals 

framed in terms of target performances rather than target concepts. 

We can contrast this approach with a learning trajectory approach, drawing on a 

learning trajectory describing middle-school students’ initial understanding of 

exponential growth (see Ellis et al., 2013). A learning trajectory will define a concept 

in terms of student understanding, and would base concept definitions on existing 

knowledge of students’ ways of operating. For instance, one conceptual stage students 

achieve when developing ideas of exponential growth is that they can coordinate 

multiplicative change in y with additive change in x. A concept at this stage would 

include the understanding “that the ratio of y2 to y1 for a corresponding change in x 

holds for any x value, even when x is < 1.” 
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Learning Progression Learning Trajectory 

Construct  Express situations in which a 

quantity grows by a constant 

per-cent rate per unit interval 

relative to another as y = ab
x
 

where b is a whole number and x 

is non-negative. 

Concept Coordinate change in y for any-value 

change in x: Understand that the ratio 

of y2 to y1 for a corresponding change 

in x holds for any x value, even when 

x is < 1. 

Learning 

Goals 
 Understand the meanings of 

the power in an exponential 

expression 

 Comprehend the calculations 

involving base numbers as 

whole numbers and exponents 

as non negatives 

 Interpret the parameters a and 

b in terms of a context 

Character- 

ization 
 One can coordinate the ratio of any 

two y-values for any-time gaps in 

corresponding x values. 

 Imagery is reliant on constant ratios, 

and is no longer grounded in images 

of repeated multiplication. 

 Understanding that the expression b
x
 

can represent both a static height 

value and a measure of growth for 

two values x time units apart. 

Evidence  Use repeated multiplication to 

find missing table values  

 Write correct equations in the 

form y = b
x 
and y = ab

x
 

 Perform correct calculations 

such as 3
2
 × 3

4
 = 3

6
  

 Recognize a non-zero a-value 

as the functions’ initial value  

Examples 

 

Tasks  Missing-value tables and 

far-prediction problems 

 Cell growth, population 

growth, and compound 

interest modelling problems 

Activities  First provide tasks with only two 

data points with large-time gaps in 

which students must determine the 

growth factor. Large gaps will 

encourage shifts away from repeated 

multiplication. 

 Next, provide tasks in which 

students must determine amounts of 

growth for a half-unit or other 

fractional amount of time. 

Table 2: Contrasting a progression with a trajectory for exponential functions 

Imagine two students who are at two different stages in their developing understanding 

of exponential growth. The first student can coordinate the ratio of two y-values for 

corresponding x-values when x  1, but his mental imagery is grounded in repeated 

multiplication. For instance, this student may compare the height of an 

exponentially-growing plant at two different time points: After 2 weeks, the plant is 4 

inches tall, and after 5 weeks, the plant is 32 inches tall. This student can conceive of 

the plant at 5 weeks as 8 times as tall is it was at 2 weeks by taking the 4 inches at 2 

weeks and doubling it three times: 8 inches, 16 inches, 32 inches. This student may 

even be able to express this idea as 2
3
, but that expression is grounded in a mental 

operation of doubling the height three times. This student’s ability to imagine a process 
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of repeated multiplication has some limitations; because he must mentally go through 

the process of doubling in order to compare two values, he cannot extend that process 

for very large-week gaps, or make sense of gaps smaller than 1. 

Imagine a second student whose imagery is no longer grounded in a process of 

repeated multiplication. This student has mentally truncated the process to the point at 

which she can think about multiplicatively comparing two heights for large-week gaps 

and does not have to go through the operation of doubling for each and every week 

between x1 and x2. This student can express the ratio R of two height values as b
x
 = R 

for the growth factor b. This expression no longer represents a process of multiplying 

by the growth factor b x times, but instead is grounded in an image of a constant ratio 

change in y for any constant additive change in x. This student may use language and 

gestures to indicate a notion of continuous scaling or magnification, and her imagery 

enables her to make sense of growth even when x is not a whole number. In both 

cases, the students may write the same algebraic expression b
x
, but the expression is a 

result of different ways of operating and means different things to the two students. A 

learning trajectory should account for these differences in students’ thinking and aim 

to capture them in its description of conceptual stages. 

Learning Goals versus Concept Characterization 

In order to develop a learning progression one might engage in task analysis (Gagné, 

1977) to identify the capabilities one must possess in order to perform a specific 

mathematical task. For exponential functions this may include using repeated 

multiplication to determine missing table values, writing correct equations and 

performing correct calculations with exponents, and identifying the parameter “a” as 

the initial value of a function when x = 0. Note that these learning goals are framed in 

terms of target performances. 

In contrast, learning trajectories are built on empirical evidence from working with 

students. The exponential functions learning trajectory emerged from repeated cycles 

of retrospective analysis of two teaching experiments with groups of middle-school 

students (see Ellis et al., 2013). Each teaching experiment lasted approximately 15 

1-hour sessions and was videotaped and transcribed. Rather than describing target 

performances, the learning trajectory characterizes the nature of students’ thinking at a 

particular stage, for instance, by specifying that a students’ imagery is grounded in 

constant ratios rather than repeated multiplication. One aim of these characterizations 

is to explain how students’ ways of thinking, schemes, and operations provide an 

explanation for how they solve problems. 

Evidence versus Examples 

Learning progressions focus on elaborating the necessary strategies, performances, 

and other observable behaviour for determining whether a student has met the learning 

goals. Evidence of this nature does not address how students’ conceptions will change 

as they progress from one level to the next. Rather than providing an account of 

learning that makes performance possible, the emphasis is on the performance itself, 
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which is taken as evidence of learning. While much can be gained from a careful 

analysis of students’ strategies, a focus on strategies to the exclusion of mental activity 

leaves much unknown about how learning progresses over time. In contrast, a learning 

trajectory builds evidence from students’ actions in teaching-experiment settings. 

Ongoing and retrospective analysis informs the construction of models of students’ 

thinking. Here the example evidence from Table 2 is from a task in which students had 

to predict, for a plant that tripled in height each week, how much larger it would grow 

in 1 day. One student wrote the expression “3
14 

= 1.17”, explaining, “I divided 1 week 

into 7 parts, which represents 1 day each and it’s .14 of a week.” This is evidence that 

the student could make sense of a non-integer exponent and could conceive of the 

expression 3
14

 as a measure of growth, an important feature of coordinating the ratio of 

y-values for time gaps smaller than 1 week. 

Tasks versus Activities 

Tasks for learning progressions, like activities for learning trajectories, may come from 

empirical evidence with large or small groups of students. Such tasks may also be 

developed, however, from a curricular analysis or other investigations focusing more 

on the content domain than on students’ thinking. One advantage of the learning 

trajectory approach is its empirical origins; descriptions of students’ conceptions 

evolve in relationship to their interactions with activities. Thus a learning trajectory 

could provide a way to include instructional moves or other contextual suggestions 

along with related activities. In Table 2, the two sample problem types are briefly 

provided with explanations about their ordering and justification. 

DISCUSSION 

Building learning trajectories requires a great deal of work in identifying a precise set 

of schemes and operations to serve as a model for informing how a student might be 

operating at a particular stage. Some of this work has already been done, particularly in 

the work of early number, fractions, and measurement (e.g., Clements & Sarama, 

2004; Steffe & Olive, 2010), but few models of this type exist for algebra and beyond. 

While there are promising steps in this direction, much work remains to develop tools 

to a) characterize qualitative distinctions in students’ thinking at different stages of 

development, and b) identify mechanisms of learning driving students’ transitions 

from one stage to the next (Simon et al., 2010). A stronger emphasis on learning 

trajectories research moving forward could support the development of standards and 

topic sequences that account for research-based findings on students’ conceptual 

development over time, thus leading to more useful guides for teachers at all grade 

levels. 
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PREPARING FUTURE PROFESSORS: HIGHLIGHTING THE 

IMPORTANCE OF GRADUATE STUDENT PROFESSIONAL 

DEVELOPMENT PROGRAMS IN CALCULUS INSTRUCTION 

Jessica Ellis 

San Diego State University 

 

This report details the importance of professional development and training for 

graduate student teaching assistants (GTAs) in in the teaching of calculus. Findings 

from a large, national study in the United States show that GTAs are teaching a large 

percentage of Calculus I students (either as the primary teacher or as a recitation 

leader), receiving widely varied preparation for this teaching, and experiencing this 

preparation to varying degrees of effectiveness. The results motivate the need to 

further investigate the current landscape of GTA professional development, and lay 

the groundwork for subsequent analyses to explore connections between GTA PD, 

instructor attributes, such as beliefs and practices, and student success.  

INTRODUCTION 

In this report I investigate the current state of graduate student teaching assistant 

(GTA) professional development (PD) programs among math departments employing 

GTAs in the teaching of Calculus I. In particular I examine (a) the number of Calculus 

I students being taught by GTAs compared to other instructor types, (b) the ways 

institutions are employing GTAs in the teaching of Calculus I, and (c) the frequency 

and effectiveness of various means of preparing and selecting GTAs for their roles in 

the teaching of Calculus I. Data for this study comes from a large, national study in the 

United States focused on successful calculus programs conducted under the auspices 

of the Mathematical Association of America (MAA). Initial reports from the project 

indicate that a number of student, instructor, and institutional characteristics appear to 

be associated with more successful programs, and serve as a backdrop to this study on 

GTAs roles in Calculus I (Bressoud, Carlson, Mesa, & Rasmussen, 2013).  

Calculus I is not only an integral part of all Science, Technology, Engineering, and 

Mathematics (STEM) fields, but it has also been shown as a critical contributing factor 

in students’ decisions to leave the STEM disciplines (Seymour & Hewitt, 1997). 

Graduate student teaching assistants contribute to calculus instruction in two ways: as 

the primary teacher and as recitation leaders. As the primary teacher, GTAs are 

completely in charge of the course, just as a lecturer or tenure-track/ tenured faculty 

member would be, although GTAs may lack the experience, education, or time 

commitment of their faculty counterparts.  
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GTAs can also be viewed as the next generation of mathematics instructors. This 

means that in addition to their immediate contribution to the landscape of Calculus I 

instruction, GTAs contribute significantly to the long-term state of undergraduate 

mathematics instruction. The preparation GTAs receive for teaching calculus therefore 

influences both their immediate teaching practices as well as their long-term 

pedagogical behavior. There has been significant interest regarding what knowledge 

and experiences are needed to foster excellent (or even adequate) teachers of 

mathematics at the K-12 level (Ball, Thames, & Phelps, 2008; Hill, Ball, & Schilling, 

2008; Shulman, 1986) and instructors at the undergraduate level (Johnson & Larsen, 

2012; Wagner, Speer, & Rossa, 2007; Zazkis & Zazkis, 2011). From these 

investigations, it is clear that expertise in mathematics alone is not sufficient in the 

preparation of teachers.  

Professional development efforts to improve teaching at the K-12 level are often aimed 

at developing teachers’ knowledge, beliefs, and instructional practices in order to 

improve their students’ success, and to enculturate new teachers into the teaching 

community (Putnam & Borko, 2000; Sowder, 2007). Literature surrounding GTA PD 

is growing, though still little is known about the current climate of GTA professional 

development on a national level. In this study I examine the roles and preparation of 

GTAs involved in the teaching of Calculus I across the US.  

BACKGROUND 

The National Science Board (NSB, 2008) uses the term “professional development” to 

refer both to teacher preparation (i.e. for preservice teachers) and to the development of 

practicing teachers (i.e. for in-service teachers). Graduate student teaching assistants 

(GTAs) have commonalities with both preservice and in-service teachers: the training 

they receive as GTAs is typically their first instructional training; however, they often 

receive this training after they have begun teaching.  

The literature surrounding GTA professional development is growing as national 

reports point to the significance of undergraduate education, especially in preparing 

students in the STEM disciplines (e.g., PCAST, 2012), and as GTAs play an 

increasingly important role in the teaching of STEM courses (Belnap & Allred, 2009; 

CBMS, 2005, 2010). Preliminary results from the most recent College Board of 

Mathematical Sciences (CBMS) survey show that, while there is a steady increase in 

the number of students enrolled in introductory mathematics courses nationwide, there 

is a 5 percent decrease in the number of tenured and tenure-track mathematics faculty 

from 2005 to 2010 (Lutzer et al., 2007). The heightened instructional need is being met 

by an increase in the number of GTAs, postdoctoral appointments, and adjunct faculty. 

Increased attention to GTA training is necessitated by the growing employment of 

GTAs in the teaching of undergraduate level mathematics, coupled with a number of 

studies pointing to GTAs’ lacking Mathematical Knowledge of Teaching (MKT) 

(Kung, 2010; Kung & Speer, 2009; Speer, Gutmann, & Murphy, 2005) and abundantly 

held novice beliefs regarding the teaching and learning of mathematics (Gutmann, 
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2009; Hauk et al., 2009; Raychaudhuri & Hsu, 2012). Further, Speer, Strickland, and 

Johnson (2005) found that even experienced graduate students often lack knowledge of 

student learning of key ideas and have not developed strategies to support student 

learning of these topics. However, Kung (2010) found that it is possible for GTAs to 

develop rich knowledge of their students’ mathematical understandings through 

professional development programs that emphasize student thinking. 

These studies highlight a view that has become more widely accepted since first 

introduced by Shulman (1986): strong content knowledge alone is not sufficient for 

teaching mathematics, but must be accompanied by strong pedagogical knowledge and 

beliefs. Knowledge and beliefs about the teaching and learning of mathematics are 

developed through experience and professional development (Sowder, 2007). Since 

GTAs often lack teaching experience, these instructional qualities are fostered in 

GTAs primarily through professional development (Speer & Kung, 2007; Speer & 

Hald, 2008). 

METHODS 

Data for this study comes from a large-scale national survey of mainstream Calculus I, 

where mainstream calculus refers to the calculus course that serve as prerequisites to 

typical upper-division mathematical sciences courses. This study included three 

surveys given to students (one at the beginning of Calculus I, one at the end of Calculus 

I, and one a year later), two surveys given to instructors (one at the beginning of 

Calculus I and one at the end of Calculus I), and one survey given to the calculus 

Course Coordinator, who acts as a institution representative regarding departmental 

programs targeting GTA PD. All surveys were completed online, and no incentives 

were given for completing the surveys. The surveys were sent to a stratified random 

sample of mathematics departments following the selection criteria used by the 

Conference Board of Mathematical Sciences in their 2005 study (Lutzer et al, 2007). 

There were 14,247 students and 1,149 instructors for whom there was either 

start-of-term survey data, end-of-term survey data, or both. Of these, 12,383 students 

were matched with 648 instructors with nearly complete data. In order to provide a 

description of the implementation and preparation of GTAs involved in the teaching of 

Calculus I, I conducted descriptive analyses of collected data. In the following section 

I present the results of these analyses, and then conclude with a discussion of the 

implications of these descriptive results, as well as next steps for this research.  

RESULTS 

As shown in Table 1, 15.6 percent of the instructors were GTAs, 12.4 percent of all 

students were taught by a GTA. The percentage of students taught by a GTA increases 

slightly to 15.4% among students attending Ph.D.-granting institutions. In the 2005 

College Board of Mathematical Sciences (CBMS) report, GTAs were determined to 

have taught eight percent of the 201,000 students enrolled in mainstream Calculus I 

and 22% of all mainstream Calculus I sections at Ph.D.-granting institutions (Lutzer et 
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al., 2007). Thus our data set shows that GTAs are teaching a larger percentage of all 

mainstream Calculus I students compared to the 2005 CBMS but a smaller percentage 

of students at Ph.D.-granting institutions.  

Table 1 also shows that while the largest numbers of instructors were tenured faculty 

(33%) or other full time faculty (26%), other full time faculty taught the largest 

percentage of students (43%). In this study, other full time faculty include adjunct 

faculty, lecturers with security of employment, and non-tenure track teaching 

professors. This result shows that GTAs comprise a substantial percentage of Calculus 

I instructors and teach a substantial percentage of Calculus I students. In fact, GTAs 

comprise a larger percentage of Calculus I instructors and teach a larger percentage of 

Calculus I students than tenure-track faculty. In these frequencies, GTAs are the 

instructor on record. In this next analysis, I account for GTAs that led recitations. 

Instructor Status # Instructors Percent # Students Percent 

Tenure-track faculty 93 14.4 1373 11.1 

Tenured faculty 215 33.2 3397 27.4 

Other full-time faculty 170 26.2 5323 43.0 

Part-time faculty 57 8.8 503 4.1 

GTA 101 15.6 1540 12.4 

Visiting/ Post-doc 12 1.9 247 2.0 

Total 648 100 12,383 100 

Table 1: The number of instructors and students taught by them, by instructor status. 

As shown in Table 2, graduate students were employed by 62 institutions of the 65 

Doctoral granting institutions involved in the study. Of these, 46.8% employed GTAs 

as the primary instructor for a Calculus I course only, 53.2% employed GTAs as 

recitation leaders only, and the remaining 19.4% employed GTAs both as primary 

instructors and as recitation leaders. Together these results show that GTAs are widely 

utilized by Doctoral granting institutions both as recitation leaders and as the primary 

instructor in Calculus I. This wide utilization leads one to ask in what ways GTAs are 

being selected or prepared for these roles – the following analysis answers this 

question.  

Utilization of GTAs 
Number of 

Institutions 
Percent of institutions employing GTAs 

GTAs lead recitation only 33 53.2 

GTAs teach their own 

section only 
12 19.4 

GTAs do both 17 27.4 

Total 62 100.0 
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Table 2: Number of institutions utilizing GTAs. 

At these 62 institutions that utilize GTAs in some capacity, various practices geared 

toward the selection or preparation of GTAs were used, and to varying degrees of 

effectiveness. Table 3 shows that the most common programs for selecting or 

preparing GTAs are a seminar or class for the purpose of GTAs’ professional 

development, some form of screening GTAs prior to assigning them to a recitation 

section, and faculty observation of GTAs for the purpose of evaluating their teaching, 

with over 70% of institutions using each of these methods for preparing their GTAs. 

Among the institutions utilizing these preparation/ selection methods, at least 70% of 

institutions said they were effective, with 83% saying that the seminar or class was 

effective.  

Table 3 also shows that about half of the institutions have a program that pairs new 

GTAs with a faculty member, but only about 60% of these programs were said to be 

very effective or effective by the Course Coordinator. Additionally, about 40% of 

institutions have some other program for GTA mentoring or professional development, 

with 70% of these identified as effective. Research on K-12 professional development 

points to the important role that mentoring plays in teacher preparation, specifically in 

increasing teacher effectiveness and decreasing teacher attrition (Putnam & Borko, 

2000; Sowder, 2007). However, without knowing the nature of the mentorship at these 

institutions is difficult to understand what role this played in GTA preparation.  

GTA selection or preparation activity Institutions 

% institutions 

employing 

GTAs 

% 

effective 

Seminar or class for the purpose of GTAs 

professional development 
47 75.8 83.0 

Faculty observation of GTAs for the 

purpose of evaluating their teaching 
47 75.8 70.2 

Screen GTAs before assigning them to a 

recitation section 
44 71.0 70.5 

Pairs new GTAs with faculty members 33 53.2 60.6 

Other program for GTA mentoring or 

professional development 
27 43.5 70.4 

Interview process to select prospective 

GTAs 
21 33.9 76.2 

Table 3: Frequency and effectiveness of activities to select or prepare GTAs from 

national sample. 
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DISCUSSION 

These survey results call for more research into the connections between GTA 

preparation and instructor and student success, and lay the foundation for this work. 

This analysis is the beginning of a larger project that draws on the survey data 

described above, as well as explanatory case studies (Yin, 2003) conducted at five 

doctoral granting institutions determined to be more successful than other institutions. 

Success was defined as a combination of student variables: persistence in Calculus as 

marked by stated intention to take Calculus II; affective changes, including enjoyment 

of mathematics, confidence in mathematical ability, interest to continue studying math; 

and passing rates. As part of the case studies we interviewed students, instructors, 

GTAs, GTA trainers, Course Coordinators, and administrators, observed classes; 

observed GTA training, and collected GTA training material, exams, course materials, 

and homework. Additionally, a follow up survey, in which GTAs were asked to 

describe and evaluate their preparation to teach, as well as answer questions regarding 

their beliefs about teaching mathematics, was sent to all current GTAs at the five 

selected institutions. Initial analyses of this multimodal data set point to a strong 

connection between student persistence in the calculus sequence and instruction by a 

GTA (Rasmussen, Ellis, & Bressoud, 2013). However, among the five successful 

institutions with high student persistence, GTAs received extensive preparation for 

their roles in teaching Calculus I (Rasmussen, Hsu, Burn, & Melhuish, 2013). 

Together, these results suggest a relationship between GTA PD and student success 

that needs to be further examined. 
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MATHEMATICAL PRACTICES AS UNDER-DETERMINED 

LEARNING GOALS: THE CASE OF EXPLAINING DIAGRAMS IN 

DIFFERENT CLASSROOM MICROCULTURES 

Kirstin Erath, Susanne Prediger 

TU Dortmund University, Germany 

 

More and more curricula and standards worldwide specify not only mathematical 

contents as learning goals but also process-oriented goals for mathematical practices. 

But even with clear formulations in the formal curricula, the implemented curricula of 

these mathematical practices can diverge substantially for different classroom 

cultures, as this research report shows for the discursive practice of “explaining”. By 

adopting an interactionist perspective, we compare the implemented curriculum in 

different video- recorded classroom microcultures. The comparative case study on the 

topic “explaining diagrams” in grade 5 shows that explaining practices and their 

underlying norms differ considerably with respect to explanandum, repertory of 

explanans in epistemic modes, and participation structures. 

COMPARING IMPLEMENTED CURRICULA FOR DISCOURSIVE 

MATHEMATICAL PRACTICES 

As process standards on mathematical practices gain an increasing importance in 

written curricula and standards (e.g., CCSS, 2010; KMK, 2004), it is time to ask 

whether the expectations concerning these learning goals are well defined and whether 

the implemented curricula are comparable in different classrooms. Although some 

gaps between written and implemented curricula can be found for many learning 

contents (e.g., van den Akker, 1998), the question is especially important for learning 

goals that are mainly orally established in classroom discourses (not in textbooks), 

such as explaining, describing, and arguing (that appear as “communicating,” for 

example, in the formal curricula). 

Accounting for this mainly oral status of mathematical discourse practices, we adopt 

an interactionist perspective and conceptualize them as being established in the 

classroom interaction (Yackel, 2004). Comparing the implemented curricula for 

different classroom microcultures therefore means reconstructing the interactively 

established practices and underlying sociomathematical norms in the interactions. 

Our video study focuses on the exemplary discourse practice explaining, chosen due to 

the highest frequency of appearance in the observed classroom discourse in five grade 

5 classrooms. In this paper, we use a comparative case study on explaining diagrams to 

show big differences between two implemented curricula. It raises questions about 

comparability of learning opportunities for all children, missing preconditions for 

comparable attained curricula, and difficulties for justice in central exams on a state 

level. 
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THEORETICAL BACKGROUND 

Explaining as a classroom practice from an interactionist perspective 

In the interactionist perspective, explaining is conceptualized as a mathematical 

practice being interactively established in a classroom microculture and regulated by 

specific sociomathematical norms (Yackel, 2004). Learning to explain in the 

interactionist approach means successively participating in the explaining practices. 

The constructs of microculture, norms, and practices allow a shift from evaluating 

students’ utterances as (pseudo-objectively) valid/invalid explanations to those 

matching/mismatching the classroom microculture’s norms and practices. This allows 

capturing of the implemented curriculum in terms of expectations and learning 

opportunities relative to each classroom. Whereas preceding empirical studies 

explored the interactionist mechanisms of how practices and norms can be established 

in principle, our current study intends to specify the explaining practices by 

systematically taking into account content and epistemic modes. 

Distinctions for explanans and explanandum in the epistemic matrix 

We define explaining as a discourse practice that aims at building and connecting 

knowledge in a systematic, structured way by linking an explanandum (the issue that 

needs to be explained) to an explanans (by which the issue is explained). Besides 

explaining-why, it includes explaining-what and explaining-how. In Prediger and 

Erath (2014), we developed a conceptual framework for clarifying the addressed 

mathematical core of the explaining practices in detail. Adopting an epistemological 

perspective, explaining practices can be distinguished by different logical levels and 

epistemic modes in the so-called epistemic matrix (see Figure 1). The rows distinguish 

the explanandum in 7 logical levels: the four conceptual levels comprise concepts 

(categories such as “bar chart”), semiotic representations (here the diagram itself), 

mathematical models (addressing the relation between reality and mathematical 

objects/statements), and propositions (mathematical patterns, statements, or 

theorems); the three procedural levels comprise procedures (such as a general way of 

drawing a diagram), conventional rules (e.g., “frequencies on vertical axis”), and 

concrete solutions (such as individual solutions of a task). The columns of the 

epistemic matrix address the explanans in six different epistemic modes: “labelling & 

naming” is the only mode that can be addressed by a single word (e.g., “maximum”).   

The mode “explicit formulation” is a linguistically elaborate way to treat an 

explanandum as it includes definitions and formulating patterns or procedures. The 

mode “exemplification” addresses examples and counterexamples. The mode 

“meaning & connection” comprises all aspects of an explanandum that bridge to 

another level or mode, for example pre-existing knowledge (e.g., meanings, 

arguments, reasons). The mode “purpose” belongs to a pragmatic approach of 

explaining by its inner mathematical or everyday functions, for example “by a 

diagram, we see pattern more clearly.” The mode “evaluation” appears in the context 

of presenting solutions in class. 
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Figure 1: Epistemic matrix for distinguishing explanans and explanandum in 

explaining practices 

In our empirical approach, each explanation that is demanded or given in a classroom 

interaction can be characterized by its so-called epistemic field, that is, the combination 

of addressed logical level and epistemic mode. Figure 1 contains an exemplary 

navigation pathway of Episode 1 (see below) in which the teacher addresses the fields 

– concepts/semiotic representations – “exemplification/purpose” (shortened [CRep]) 

by asking the class why you can find diagrams more often than lists in printed media. 

Here, students answer in the expected fields. 

DESIGN AND METHODOLOGY OF THE STUDY 

The comparison of curricula was led by the following research questions: 

Q1. Which epistemic fields are addressed in explaining practices?  

Q2. How do the explaining practices differ in the navigation between epistemic fields?  

Q3.How do students’ learning opportunities for explaining practices differ in terms of 

participation structures? 

Data corpus. In the larger project Interpass, video data was gathered in 10 x 12 lessons 

(of 45–60 minutes each) in five different grade 5 classes. The data corpus also 

comprised students’ and teachers’ written products and classroom materials. The small 

comparative case study presented in this paper focuses on the statistical learning 

content “diagrams” which was treated in each class in 3–5 lessons. We specifically 

focus on two classrooms with comparable textbook and student populations; altogether 

383 min. of video material, including 111 min. of explaining practices.  

Data analysis in four steps. (1) All video data were coded by the applied teaching 

methods, the epistemic field in which the statistical content “diagrams” was treated, 

and the emergence of common discursive practices of explaining. (2) All 18 episodes 

with a common explaining practice in classroom discourse were transcribed and 

carefully analyzed within their interactive structure. Not only teachers’ moves, but also 

students’ answers were classified with respect to the addressed epistemic field and 

condensed in navigation pathways (see Fig. 1, Fig. 3, and Prediger & Erath, 2014). (3) 

The navigation pathways in both scenes were contrasted and compared to other scenes 

for reconstructing typical profiles. (4) For comparing students’ learning opportunities, 

categories were specified for capturing participation structures.  
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EMPIRICAL CASE STUDY: CONTRASTING TWO CLASSROOMS 

Overview of all addressed epistemic fields 

Figure 2 shows all the epistemic fields addressed at a certain moment while explaining 

diagrams. In this first approach to teachers’ questions and students’ utterances and 

written tasks, no major differences between the two classrooms can be found. 
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Figure 2: Covered epistemic fields in the classroom of Mr. Maler (brighter green) and 

Mr. Schroedinger (darker blue) 

Deeper analysis of explaining practices 

Although on a surface level, both classrooms treat the same learning content 

“diagrams” and “explaining” in similar epistemic modes, the deeper analysis shows 

large differences that are illustrated by the two following. 

Episode 1: Mr. Schroedinger’s classroom: function of diagrams 

The teacher (TE) Mr. Schroedinger introduces the topic diagrams with a slide full of 

examples and constitutes an explanandum on the conceptual level by asking for the 

function of diagrams [the abbreviated epistemic field is shown next to the transcript].  

1 TE […] WHY they’re doing quite frequently in printed media but also um 

on TV in the news, um why they’re not giving a LIST like that […] 
[CRep] 

2 Nik um because maybe because this CATCHES one’s eye much faster and 

um well that you can SEE this faster; so that something is BIGGER; 

because this is also bigger from its SIZE. So it’s MORE because it’s 

BIGGER from its size. 

[CRpm] 

4 Mar Because you can CATCH it very fast. For example um now up RIGHT. 

I think there are such PERCENTAGES; because (that they) CATCH 

that well it’s actually even BETTER than this; (also how many) 

PEOPLE; 

[CRepm] 

6 Mar How many SIBLINGS they have, because then in parts they would 

maybe have to always go THROUGH our classroom that small 
[CRepm] 

9 TE THIS exactly meets the point, these two utterances. THEREFORE you 

normally do it in the form of such diagrams, because of the clarity 

actually […] 

[CRep] 

Nikolas (#2) follows this mode “purpose”, but additionally offers a first interpretation 

of a diagram (“meaning & connection”). The teacher calls further students before 

summarizing their contributions. Markus first refers to the “purpose” (#4), then to 
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“meaning” (#4–#6), and finally gives an “exemplification”. The teacher asks another 

student who has nothing to add (non-printed #7/8), then summarizes by recalling those 

parts of students’ utterances that refer to the epistemic modes he initially addressed, 

namely “purpose / exemplification”. The mode additionally addressed by Nikolas and 

Markus, “meaning & connection”, is simply dropped without negative evaluation 

(whereas in other episodes, these kinds of students’ extensions of modes are welcomed 

by the teacher). The complete navigation pathway is printed in Figure 1. Episode 1 

continues with the teacher’s initiation of students’ individual seat work. Students’ 

written explanations for the difference between diagram and pictogram are later 

discussed extensively in a whole-class discussion.  

The briefly presented Episode 1 could be reconstructed as typical for explaining 

practices that are often established in this classroom: typical is the location of the 

explanandum on the conceptual level, the acceptance of different epistemic modes as 

explanans, and the broad participation of students without immediate single evaluation 

(cf. Prediger & Erath, 2014, for further examples of the same classroom). In this way, 

the practice of explaining is constituted as a topic to be learned. Typical for the 

participation structure in this classroom is also that all contributions are acknowledged 

and treated as (at least partly) correct. 

Episode 2: Mr Maler’s classroom: distinguishing names and drawing procedures 

Episode 2 starts when the class had collected frequencies of favorite sports and 

represented them on the blackboard by tally marks and frequency tables.  

1 TE […] Do you KNOW diff- do you KNOW diagrams? What ARE 

diagrams, which kinds ARE there, how can this HELP us here; this would 

be interesting for me now; let’s START with- WHO of you actually 

knows diagrams; MIRKO. 

[CRflep] 

2 Mir um BAR CHART does exist. [CRl] 

3 TE BAR CHARTS, YES bar charts DO exist; what er MAKES UP a bar 

chart as a bar chart? or differently; how does it LOOK like; Mirko, 

explain, you said that- 

[CRf] 

4 Mir There are no lines of the numbers drawn, but then like well like BARS so 

to say. 
[CRfe] 

In #1, the teacher constitutes an explanandum on the conceptual level 

(concepts/semiotic representations: “diagrams” in general). He initially allows a wide 

range of epistemic modes: “labelling & naming/explicit formulation/ 

exemplification/purpose”. Mirko (#2) addresses the mode “labelling & naming” by 

giving only one keyword. In his reaction (#3), the teacher narrows his expectations for 

epistemic modes and asks Mirko for an “explicit formulation”. Mirko fulfills the 

expected mode and contours his explanation by contrasting bar charts from tally marks 

(“no lines of the numbers”, #4). Mr. Maler’s next question shifts the explanandum 

from the conceptual to the procedural level:  

5 TE Yes, CORRECT; and how, look HOW are they drawn, could you explain 

to me, how I could DO it maybe for this example 
[PSf] 
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8 Mir Well, if you would um well, also would write it down like this (only) put 

away the numbers.  
[PSf] 

14 Mir um, well, than you can, well I know (I think there are) TWO bar charts, 

one up like this and one like er then horizontally 
[CRf] 

Mirko follows the teacher’s navigation after short questions (non-printed, #6/7) and 

starts his explanation (#8) by referring to the frequency tables on the blackboard. The 

teacher materializes his description by drawing on the blackboard (non-printed #9–13). 

Mirko interrupts his explanation of the procedure and navigates back to the conceptual 

level [CRf] in #14 by mentioning two kinds of charts with horizontal or vertical bars 

(that have different names in German: bar chart versus “column chart”).  

15 TE Very NICE, and now you see we get down to it, MIRKO, ONE of them is 

called bar chart like you SAID, and the OTHER ONE isn’t called bar 

chart, this we call, does anybody know that? DARIA. 

[CRl] 

16 Dar Well, I mean, that, um, this other diagram is often used for watching, for 

example in politics, for the PARTIES, they go up, or […] 
[CRepm] 

17 TE Yes, it is USED quite often at elections; you’re completely RIGHT; but 

first I would like- we maybe just- about to come back to this as well; er to 

respond to MIRKO again, […] if we’re doing it like Mirko just SAID, 

first write one below the other and then the charts have to- HOW do the 

charts have to be put there; SO THAT it somehow works; KOSTAS. 

[Cl / Pf] 

18 Kos HORIZONTALLY. [Cl / Pf] 

19 TE HORIZONTALLY, EXACTLY! THEN! you really call it a bar chart; 

ONLY this is a bar chart. 
[CRle] 

Mr. Maler continues (in #15) with the explanandum constituted by Mirko, but instead 

of explaining the meanings, he asks for the correct name of the vertical chart [CRl]. 

Daria (in #16) does not follow his navigation into the mode “labelling & naming” but 

mainly refers to “purpose” and “meaning”. The teacher evaluates her answer as not 

matching the intended line of thought and delays it to later (#17). He comes back to his 

question and navigates it into the field [Pf], the “explicit formulation” for the drawing 

procedure. Kostas (#18) follows this navigation and names the direction of drawing. 

This is positively evaluated and the teacher himself answers the question on the names 

(#19 and later). 
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Figure 3: Navigation pathway for Episode 2 
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Comparing the explaining practices 

The briefly presented Episode 2 illustrates typical explaining practices in Mr. Maler’s 

classroom that can be reconstructed as differing in several ways from those found in 

Mr. Schroedinger’s classroom:  

 Explanandum: Both teachers often treat concrete solutions of tasks, but differ 

when generalizing: Rather than staying on the conceptual level like Mr. 

Schroedinger, Mr. Maler shifts the explanandum between conceptual and 

procedural levels, usually with a strong emphasis on the level of general 

procedures.  

 Explanans: Whereas Mr. Schroedinger accepts a large range of epistemic 

modes, Mr. Maler rejects students’ answers in non-expected epistemic modes 

and constitutes a funnel pattern by successively narrowing his expectations to 

one or two selected epistemic modes.  

Contrasting Mr. Maler’s and Mr. Schroedinger’s classrooms on explaining diagrams 

shows that there are distinct profiles for explaining: whereas the explaining practice 

established in Mr. Maler’s classroom can be characterized by the overall profile 

“explaining procedures with narrow expectations of specific epistemic modes,” Mr. 

Schroedinger’s interaction establishes an overall profile of “explaining concepts and 

models with a wide variety of epistemic modes.”  

Comparing participation structures, resp. learning opportunities 

The comparison of the two episodes shows not only differences in explanans and 

explandum, but also different learning opportunities in terms of different participation 

structures: whereas Mr. Maler’s typical IRE-sequences often work with one selected 

student (in Episode 2 with Mirko) and many teacher’s explanations, Mr. Schroedinger 

establishes “IRRRRE-sequences” with many students’ replies and reduces his 

contributions to initiations and summarizing evaluations for all replies.  

These participation structures are reflected in the complete unit. In Mr. Maler’s 

classroom, approx. 123 minutes are spent on the topic diagrams, of which about 20% is 

used for explaining, all of it in oral classroom discourse. But only in about 18% of this 

explaining time, the students actively explain; the rest is taken by the teacher. In 

contrast, in Mr. Schroedinger’s classroom approx. 260 minutes are spent on diagrams. 

The 33% of time spent on explanations specifically include about 48 minutes of written 

explanations in which all students are active. Hence, students are actively involved in 

76% of the explaining time.  

Although these percentages of a very limited data set can only be interpreted as a very 

first tendency, these significant differences show that capturing learning opportunities 

goes beyond the navigation pathways. In our ongoing data analysis, the following 

categories turned out to be important for analyzing the participation structure: 

students’ active involvement in explaining practices, distinction between oral and 
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written activities and teaching methods that engage all or only some students, and, 

finally, division of labor and agency for different epistemic fields. 

DISCUSSION AND OUTLOOK 

Beyond the close comparability of the classrooms in terms of textbook, student 

population, and shared formal curriculum, two divergent profiles of explaining 

practices can be reconstructed: “explaining procedures with narrow expectations of 

specific epistemic modes” versus “explaining concepts and models with a wide variety 

of epistemic modes.” Hence, it must be doubted whether the students in both 

classrooms get access to the same practice that is mentioned in the written curriculum.  

Furthermore, the distinct implemented curricula on explaining are shaped by different 

participation structures: in Mr. Maler’s classroom, explaining is mainly used by the 

teacher as a learning medium for reaching content goals, whereas in Mr. 

Schroedinger’s classroom, explaining appears as a learning content on which the 

students get wide opportunities to work, in oral and written form. 

Although the ongoing video study will continue to investigate and compare other 

teaching units for constructing a wider picture, we can already conclude that since 

already the implemented curricula are so different between very comparable 

class-rooms, we should not be too optimistic for the achieved curriculum. As a further 

consequence, it is an issue of justice to leave the assessed curriculum quite open: How 

narrow is the norm of explaining that is assessed? And how does it match to the one 

implemented in the classroom? As a whole, the identified differences in the 

implementation of the same formal curriculum call for the necessity of widespread 

professional development for teachers. 

Remark: The research project Interpass – Interactive procedures of establishing matches 

and divergences for linguistic and microcultural practices – is funded by the German 

ministry BMBF (grant 01JC1112). We are conducting it with Anna Vogler, Uta Quasthoff, 

and Vivien Heller.  
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ON THE STRUCTURE OF SECONDARY HIGH-SCHOOL 

TEACHERS´ BELIEF SYTEMS ON CALCULUS 

Ralf Erens, Andreas Eichler 

University of Education, Freiburg, Germany 

 

A teacher’s instructional planning that is enacted in his classroom practice and that 

potentially impact on his students’ knowledge and beliefs could be understood as an 

individual belief system dependent from his actual teaching and learning experience. 

Individual belief systems might be contradictory when we regard different teachers or 

one teacher concerning different mathematical disciplines. For this reason, this report 

focuses on thirty teachers´ beliefs about their teaching of a specific mathematical 

domain, i.e. calculus that is a central part of the (German) curriculum at upper 

secondary level. After a brief outline of the theoretical framework and methodology of 

this research project, results of the qualitative reconstruction of different aspects of 

teachers´ belief systems on calculus will be explained.  

INTRODUCTION 

Beliefs concerning both mathematics and teaching and learning of mathematics are a 

crucial part of the professional competence of mathematics teachers (Felbrich et al., 

2012). The importance of gaining knowledge towards mathematics teachers’ thinking 

or beliefs has been emphasised by many researchers in mathematics education in 

various settings and projects because teachers’ beliefs about mathematics and the 

teaching and learning of mathematics have a high impact on their instructional practice 

(Philipp, 2007; Eichler, 2011, Felbrich et al., 2012), and, potentially impact on their 

students’ learning (Stein et al. 2007). However, the vast body of research on teacher 

beliefs rarely considers that similar to the classification of mathematical subjects into 

fields such as algebra or probability theory – teachers´ beliefs on different 

mathematical domains such as geometry, stochastics or calculus may vary and may be 

associated with specific beliefs (Franke et al., 2007).  

For this reason we focus on domain-specific beliefs of 30 secondary teachers referring 

to calculus, which is a central part of the German secondary curriculum, and the 

teaching and learning of calculus. Our specific interest in this paper concerns the 

structure of belief systems, i.e. the set of beliefs and different relations between beliefs 

that characterise calculus teachers’ instructional planning (Eichler, 2011). Before we 

address the aforementioned reconstruction and relations, an outline is given about the 

theoretical framework of this research project and a brief description of those parts of 

the method being relevant for this paper. Finally we conclude the paper by reflecting 

on the main results and discuss possible directions of further research. 
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THEORETICAL FRAMEWORK 

The main constructs of our theoretical framework are teaching goals and teachers’ 

beliefs. Firstly, according to Pajares (1992), we understand the term beliefs as an 

individual’s personal conviction concerning a specific subject, which shapes an 

individual’s ways of both receiving information about a subject and acting in a specific 

situation. We further follow Green (1971) referring the internal organisation of beliefs 

in a belief system involving the distinction of central beliefs, i.e. strongly held beliefs, 

and peripheral beliefs referring to an individual’s belief system of lesser importance. 

The construct of belief systems also involves that beliefs are organised in clusters that 

are quasi-logically connected, which potentially includes also connections of beliefs 

that seem contradictory (ibid.). Finally, Green (ibid.) distinguishes primary beliefs and 

subordinated (derivative) beliefs in which enacting derivative beliefs serve as a means 

to an end for achieving primary beliefs.  

According to the framework of Hannula (2012), both belief systems and goals are parts 

of mathematics-related affect that consists of cognitive, motivational and affective 

aspects. Hannula (ibid.) further describes beliefs or rather belief systems as a 

psychological aspect of mathematics-related affect as a trait and, hence representing a 

disposition. In contrast, he describes goals as a psychological aspect of 

mathematics-related affect as a state. Thus, goals refer to a “decision making during 

teaching” (Schoenfeld, 2011, p. 460). In contrast to the distinction of affect as a trait 

and affect as a state, we follow the so called Rubicon-model of Heckhausen and 

Gollwitzer (1987) in which goals are understood in a broader sense constituting a 

teacher’s decision making (state of awareness referring to the choice of goals) before 

passing the Rubicon, i.e. when a teacher plans his classroom practice, and after passing 

the Rubicon, i.e. the teacher’s decision making during his classroom practice (state of 

awareness when enacting the goals). 

Following this framework, we understand teaching goals as specific form of beliefs 

and, in the same way, a system of different but related teaching goals as a teacher’s 

belief system. These teaching goals are developed by a teacher when he plans his 

classroom practice and they are potentially enacted in his classroom practice. Finally, 

the enacted goals could be more or less changed based on the teachers’ experience 

referring to their classroom practice and their students’ learning (Stein et al., 2007). 

To describe clusters of teaching goals or rather clusters of beliefs we refer, finally, to 

four so called mathematical world views proposed by Grigutsch et al. (1998) that are 

often used to conceptualise overarching teaching goals (e.g. Felbrich et al., 2012), i.e. 

 a formalist (world) view in which mathematics is characterized by a logical 

and formal approach and in which accuracy and precision are important.  

 a process-oriented view in which mathematics is defined as a heuristic and 

creative activity that allows solving problems using individual ways.  

 an instrumentalist view in which mathematics is seen as a collection of rules 

and procedures to be memorized and applied according to the given situation. 
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 an application oriented view that accentuates the utility of mathematics for the 

real world. 

In their research that was based on a questionnaire and that involved 400 German 

secondary teachers, Grigutsch et al. (1998) yield correlations between the four aspects 

of their mathematical world views as described in Figure 1. 

 

Figure 1: Correlations between the four world views. 

On the basis of our theoretical framework the main focus of this paper is to describe the 

structure of calculus teachers’ teaching goals beyond correlations, involving the 

identification of central and peripheral goals as well as primary and derivative goals. 

METHOD 

The sample for this study consists of 30 calculus teachers divided into three 

subsamples: 10 pre-service teachers, 10 teacher trainees and 10 experienced teachers. 

Since we do not focus on the development of teachers’ beliefs (for this aspect see Erens 

& Eichler, 2013), in this paper, we make no distinction between the different grades of 

the teachers’ experience. The teachers who participated in our study were recruited 

from different universities, teacher training colleges and schools across the 

south-western part of Germany. However, our sample is a theoretical sample (Glaser & 

Strauss, 1967), but not a representative sample. 

We used semi-structured interviews for data collection. Topics of these interviews 

were several clusters of questions that concern the content of calculus teaching, the 

related goals, and reflections on the nature of calculus, on the possible influence of 

technology on the students’ learning, or textbook(s) used by the teachers. Further, we 

use prompts to provoke teachers’ beliefs. These prompts consist of fictive or real 

statements of teachers or students representing one of the four mathematical world 

views or tasks of textbooks that also represent the four world views.  

For analysing the data, we used a qualitative coding method (Mayring, 2010) that is 

close to grounded theory (Glaser & Strauss, 1967). The codes gained by interpretation 

of each episode of the verbatim transcribed interviews indicate goals of calculus 

teaching. We used deductive codes derived from a theoretical perspective (cf. 

Grigutsch et al., 1998) and inductive codes for those goals we did not deduce from 

existing research concerning calculus education. The codings were conducted by at 

least two persons and we proved the interrater reliability to show an appropriate value. 

RESULTS 

The first step of analysing the structure of the teachers’ system of goals referring to 

calculus was to identify central and peripheral teaching goals. We understand teaching 

goals to be central for a teacher if he reports these goals coherently through the whole 
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interview and if he illustrates his goals with concrete examples of his classroom 

practice or concrete tasks. Since we described the process of identifying central and 

peripheral goals in detail elsewhere (Eichler & Erens, 2014), in this paper we only 

postulate different grades of centrality. Thus, we start with two central goals of Mr. P. 

Mr. P: Teaching calculus to me means to focus on the underlying concepts, 

discover connections between concepts und enable students to solve 

problems using individual ways. That´s really important to me and I would 

like to emphasize this point. But, as I said before, this aspect is always 

connected with applications on a task-level. 

The application-orientation is a central overarching teaching goal of Mr. P that is in 

close proximity to the process-orientation. This relation between these two central 

goals is in line with the results of Grigutsch et al. (1998). However, referring to our 

whole sample, the nature of proximity of these two overarching teaching goals varies 

individually.  

For Mr. P both views are inextricably intertwined and are, thus, coordinated. For other 

teachers application-orientated goals are subordinated, since for them the integration 

of applications as a principle of learning calculus is for reasons of student motivation: 

Mr. A.: I quite agree with the emphasis on applications in the given example. That 

is certainly a way to motivate them (students), but nevertheless one should 

not reduce genuine calculus or the teaching of calculus to that topic.  

Again other teachers reckon that integrating real-world problems is an explicit part of 

their system of goals to which further goals are subordinated, e.g. process-oriented 

goals, or to which further goals are super-ordinated, e.g. goals representing the 

formalist view: 

Mr. B.: Examples for applications are quite suitable here, and with applications I 

always associate modelling of real data, […] increasingly introducing 

relevant applications into lessons may, for the students, succeed in a deeper 

insight into the concepts and ideas of calculus. 

Although sometimes coordinated, sometimes subordinated and sometimes 

super-ordinated, within our data set the application-oriented and also process-oriented 

goals can be considered to have a certain “psychological strength” (Green, 1971, p. 47) 

and can thus be attributed in any case some degree of centrality in the respective 

teachers´ belief system. According to Green’s dimensions and the results of Grigutsch 

et al. (1998) one might hypothesize that particularly application-oriented goals that are 

central imply that teachers holding these goals rather see formalist aspects in calculus 

teaching as less essential or even contradict these. Though some teachers in our sample 

see formalist features of calculus concepts as a high barrier for student learners (mostly 

on a symbolical level), a general conclusion that application- or process-oriented 

problems are implicitly of higher importance than formality and logic cannot be drawn 

as the following quotations demonstrate: 
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Mr. A: Calculus is more than just dealing with application-oriented tasks. Then, 

for example, one would not regard the precision and exactness of calculus 

and use applications as a means to an end. 

Mr. E: Problem-solving in calculus to me means: start with some kind of 

application in order to motivate students but then we first develop the 

formal and precise background we need as a sound footing before students 

can address more complex problems individually. 

For these two teachers application-oriented goals and goals representing the formalist 

view are related. In the reverse direction, however, half a dozen teachers, who hold a 

consistent formalist view on calculus, either do not mention applications at all or 

mention these as a peripheral goal on the level of (given) textbook & exam tasks. 

In order to reconstruct a teacher’s belief system with any degree of credibility, we need 

various evidence emerging in different parts of the interview from which to draw these 

inferences. This consideration leads to the need to describe not only what a teacher 

believes about calculus but how the various goals are related to each other. So far we 

have described relations like coordination, subordination or super-ordination. 

However, in our data sample there is some evidence that individual teachers arrange 

their goals and beliefs into organized systems that make sense to them.  

Mr. G1: Well, I daresay I could do calculus at school with a more theoretical and 

formal approach – similar to introducing concepts in algebra and topology. 

Maybe for some it would make things easier, but this will probably not be 

possible to implement in most courses 

Mr. G2: I don´t emphasize the formal derivation of the integral with limits of upper 

and lower sums any more. From my own teaching orientation this (formal) 

prompt you showed me is absolutely congruous with my own approach to 

teach the integral. With logical rigour and formal exactness one often 

scares off the students. Therefore I demonstrate one example at the end but 

I do not let the students do these limits of sums in my lessons anymore. 

Throughout the whole interview these two teachers (G1 trainee, G2 experienced) 

explicitly mention the central role of exactness and logical rigour as necessary 

ingredients of secondary level calculus courses. The two quotations however seem to 

confirm that different belief clusters may have a quasi-logical structure (cf. Green, 

p.44). The (self-)reported incongruity between instructional goals and the situation 

encountered in the classroom can be characterized as a conflict of goals. This incon- 

gruity may be “an observer´s perspective that does justice neither to the complexity of 

teaching, nor to the teachers´ attempts to relate sensibly to this complexity” as Leatham 

(2006, p. 95) and Skott (2009, p. 44) have tried to explain. Regarding our underlying 

framework, these remarks fit in with transformation process (i.e. passing the Rubicon) 

between intended and enacted teaching goals perceivable in the data. 

As this report focuses on teachers´ beliefs towards calculus, which is, in Germany, the 

most central part of the mathematics syllabus at upper secondary level, teachers in our 

sample often mention normative aspects such as final exams which seem to have an 
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impact on their actual teaching of calculus. Being asked to comment on the statement 

“I like calculus, because many exercises can be solved by similar procedures/patterns” 

from a student and a teacher perspective, Mr. G2 remarked: 

Mr. G2:  Of course this naturally belongs to any calculus course at school level. 

Especially less gifted students need these rules and procedures in order to 

be successful in their final exams. This is the main objective for students 

and therefore practising these routines with exam tasks needs to be done in 

lessons, too. I don´t think these standardised tasks are exciting but these 

definitions and procedures are rather like a language that needs to be 

learned by students. 

Taking this teacher as a paradigmatic example, it becomes apparent that the 

instrumentalist view is at most a peripheral goal in his belief system. The comparison 

of mathematical concepts and procedures to a language is somehow revealing. 

Derivation rules, basic skills and their application to routine tasks many teachers in our 

sample see as prerequisite for various reasons beyond exams: as a solid foundation for 

a structural basis of calculus at school level, others see the tool-box aspect as a means 

to an end in order to enhance their students´ competencies to solve optimization tasks. 

The actual classroom interaction makes teachers aware that the full spectrum of 

student ability (& success) needs to be considered. Whereas Mr. G2 takes the impact of 

these normative aspects for granted, other teachers articulate a negative attitude 

towards schema-orientation due to the determining factors of centralized exams. It is 

apparent though that for all teachers in our sample the preparation of the final exam 

does indeed play a certain role in their system of goals. 

DISCUSSION 

In this report we exclusively focused on aspects of the structure teachers´ beliefs 

systems. Since we expect differences among a teacher’s belief systems referring 

different mathematical disciplines, our focus was on calculus at upper secondary level.  

Firstly, we tried to identify how a teacher’s central goals (beliefs) are correlated and, in 

some sense, why these goals are correlated. Based on Green’s (1971) distinction of 

primary and derivative beliefs, we proposed the distinction of coordinated goals and 

subordinated (or super-ordinated) goals. In this distinction, a goal X is subordinated to 

another goal Y if X is a means to an end to (potentially) achieve Y. For example, an 

application-orientation for Mr. A is a means to an end for achieving students’ 

motivation. Regarding a system of goals (or beliefs) as hierarchically arranged the 

subordinated goal of application-orientation of Mr. A is on a lower level than the goal 

of students’ motivation. In contrast two coordinated goals, e.g. the process-orientation 

and the application-orientation in the case of Mr. P, are on the same level referring his 

hierarchically arranged system of goals concerning calculus teaching.  

Further, we identified relations between goals that are insufficiently described by 

coordination or subordination, i.e. a contradiction between goals. For example, 

although goals representing the formalist view are central for Mr. G2, he does not 
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intend to enact these goals since he expects to impede students’ learning when enacting 

these goals. Thus, different goals sometimes match each other, but sometimes the 

system of goals seems to have a quasi-logical structure and include contradicting goals 

representing conflicts of goals. 

Finally, a possible distinction of teaching goals refers to the derivation of these goals. 

For example, although for a teacher like Mr. G2 goals representing the instrumentalist 

view are at most peripheral, these goals play a certain role in his teaching. However, 

enacting these goals is not primarily a means to an end for his own central goals, but for 

his students’ central goals referring to their final exams. 

We suggest two reasons for researching the relations of teachers’ goals or beliefs in 

detail. Firstly, our results facilitate a deeper understanding of relations between goals 

or beliefs beyond statistical correlations. For example, in our sample the empirical 

independence between an application-oriented view and a formalist view (Figure 1; 

r ≈0) could be based on different relations between these views. Actually, some 

teachers value formalist goals high and neglect application oriented goals. However, 

for other teachers (like Mr. A) both formalist and application oriented goals are central 

although application oriented goals are subordinated to formalist goals. In turn, other 

teachers like Mr. G1 value formalist goals high, but do not intend to enact these goals. 

Further, as illustrated by the above examples, the teachers’ beliefs about teaching 

calculus can be seen as a multiple-layered hierarchical system of goals that each 

teacher tries to make sense of individually. This sense making could possibly throw 

some light on the relationship between teachers’ espoused beliefs or goals and their 

enacted beliefs or goals, which is a difficult, but crucial relationship in educational 

research (Skott, 2009; Furinghetti & Morselli, 2011). For example, the teachers 

mentioned above show that e.g. an instrumentalist view is not a central part of their 

belief system though it seems to be a significant part of their classroom practice taking 

into account students´ learning. This somehow confirms findings of Skott that research 

on beliefs and their enactment needs to consider a multiple set of factors involving the 

inclusion of a social perspective on belief-practice relationships (Skott, 2009, p.29). 

Further, the distinction of central and peripheral beliefs or goals, as well as the 

distinction of relations between beliefs or goals – e.g. in terms of coordination and 

subordination – could serve as an explanation of reported inconsistencies or 

consistencies between espoused and enacted beliefs or goals (Skott, 2009; Eichler, 

2011).  

However, the mentioned relationship between teachers’ espoused and enacted beliefs 

as well as the relationship between a teacher’s classroom practice and his students’ 

learning still needs further research to contribute to the ongoing research on 

mathematics-related affect. 
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Schools, districts and inspectorates routinely use non-specialists to observe lessons for 

accountability and professional development purposes. However, there is little 

empirical research on how well non-specialists observe lessons. We describe two pilot 

studies in which education professionals made judgements about mathematics lesson 

observation reports, written by both specialists and non-specialists. In terms of 

providing feedback to the observed teachers, the professionals considered the 

specialists’ reports to be significantly more useful than the non-specialists’ reports. 

Written advice about a teacher’s practice influenced these judgements. The paper 

considers theoretical and practical implications, as well as limitations of our findings. 

Lesson observations are common practice around the world for the evaluation and 

professional development of school teachers (Lewis, Perry, & Murata, 2006; Ofsted, 

2012). They provide an opportunity to improve practice and can influence a teacher’s 

career or a school’s status. Many of these observations are conducted by teachers who 

are not specialists in the subject being taught (Wragg, Wilkley, Wragg & Haynes, 

2002). The research reported in this article was prompted by an intuitive assumption 

that subject specialists are better positioned than non-specialists to give feedback on 

observed lessons, along with a paucity of research as to whether this assumption is 

warranted. 

One notable study that did touch upon the role of subject specialism when observing 

lessons was conducted by Wragg et al. (2002). Using questionnaires and case studies, 

the researchers found that teachers often judge observation feedback most helpful to 

improving practice when the lesson observation was conducted by a subject specialist. 

Where the observer was not a subject specialist feedback was “bereft of ideas [on how 

to improve the lesson]” (p. 200) and could be “bland [when the observer] did not have 

first-hand experience of the subject” (p. 203).  

A later study by Peake (2006) provided further support to the importance of subject 

expertise. Peake, using questionnaire- and survey-based methods, found that teachers 

working in post-compulsory education considered subject-specialist observers to offer 

substantially more helpful feedback than non-specialists. Moreover, some teachers 

were inclined not to take feedback seriously from non-specialist observers.  

We have encountered no studies beyond Wragg and Peake in which the subject 

specialism of the observer is a concern. Instead the research focus is typically on 

student learning gains (Strong, Gargani & Hacifazlioglu , 2011) and the development 



Evans, Jones, Dawson 

3 - 34 PME 2014 

of lesson observation protocols, methods and skills for research purposes (Douglas, 

2009). Nevertheless, a theme within this literature is that professional knowledge and 

experience appears to impact on what is noticed and prioritised when observing 

lessons (Grant, Hiebert & Wearne, 1998). Furthermore, the literature is clear that what 

teachers perceive as useful in an observation report depends on their expertise (Carter, 

Cushing, Sabers, Stein & Berliner, 1988; Colestock & Sherin, 2009; Santagata, 

Zannoni & Stigler, 2007; Star & Strickland, 2008). For instance, a novice teacher may 

find advice on classroom management more useful than the subtleties of dealing with 

unanticipated misconceptions. Conversely, it is these very subtleties that concern 

expert teachers.  

To our knowledge there are no studies that directly test the qualitative hypotheses 

drawn-up by Wragg and Peak. We conducted two studies to help address this gap. We 

first investigated whether subject specialists produce written lesson observation 

reports that (i) are distinguishable from those of non-specialists, and (ii) are more 

“useful” in terms of helping a teacher improve her teaching compared to those of 

non-specialists. Integral to this study is the exploration of participants’ understanding 

of “useful feedback”. 

OBSERVED LESSONS 

Two experienced mathematics teachers taught four lessons in a UK secondary school. 

One teacher taught two lessons with a class of 12 and 13 year olds and the other with a 

class of 15 and 16 year olds. Two teachers, one specialist (mathematics) and one 

non-specialist (English language) observed each lesson. In total, four observers 

observed two lessons each. Each observer completed an unstructured report framed by 

questions based on typical observation forms: What is your overall impression of the 

lesson? What is the lesson about? How did student learning take place? How could the 

lesson be improved? The completed reports were anonymised and the subject 

specialism of the observer was not indicated on the reports. 

In common with the majority of routine observations, all observers were known to the 

teachers; they were colleagues. It was assumed that the specialists knew more about, 

and shared more of each teacher's beliefs, style of teaching, issues and goals.  

In a traditional lesson, students often work on an exercise using the same method. 

Student misconceptions, difficulties and errors are predictable. In contrast, the lessons 

in this study were based around non-routine, unstructured tasks. These lessons can 

proceed in unexpected ways; students can use unanticipated solution-methods and 

unforeseen difficulties including misconceptions may arise. We predicted that 

compared to a more traditional lesson, these lessons would provide greater 

opportunities for observers to suggest feedback to help improve teacher practice. For 

instance, advice on how to help students make connections between various 

solution-methods. This in turn, may draw out the differences between reports written 

by the specialist and non-specialist observers.  
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In accordance with the literature, we expected all observers would provide general 

pedagogical advice, but only subject specialists would provide advice that draws on 

their pedagogic content knowledge and their subject knowledge (Shulman, 1986). For 

instance, all observers may provide advice on student engagement, but only the 

specialist observer would provide advice on how to orchestrate a whole class 

discussion in order to build on the collective sense-making of the students.  

STUDY 1 

The purpose of Study 1 was to establish whether the lesson observation reports 

produced by specialists were distinguishable from those produced by 

non-specialists.Twelve professionals, namely teachers (6), teacher educators (4) and 

researchers with teaching experience (2) drawn from a range of specialisms (art, 

general education, geography, German, history, mathematics) participated in Study 1. 

The observation reports were divided into four sets of four reports such that no set 

contained more than one report written by a given observer. Each participant received 

one set of reports. The task of the participants was to decide whether a mathematics or 

English language specialist had written each report. Participants could also write a 

comment about each decision. In total each report was independently categorised six 

times. 

Nine of the twelve participants correctly categorised all four of their allocated reports 

as having been written by specialists or non-specialists. A further two participants 

correctly categorised just two reports. The remaining participant incorrectly 

categorised all four reports.  

To test whether the twelve participants as a whole categorised the eight reports at a 

level above chance we conducted a Mann-Whitney U test, comparing our group of 

participants with a hypothetical group of twelve participants performing at chance. The 

result demonstrated that the participants were indeed able to correctly categorise the 

reports at above chance level (z = -3.20, p < .01).  

The comments provided by the participants revealed that the most common basis for 

deciding whether to categorise a report as produced by a specialist or not was the 

degree and sophistication of mathematical content. For example, one participant 

correctly categorised a specialist observation and wrote, “The type of observer is given 

away at the end by the statement ‘sinx = 0.5 has infinite solutions but is not always 

true’. Would an English language specialist be able to comment like this?” Conversely, 

another participant correctly categorised a non-specialist report because of its lack of 

mathematical content.  

STUDY 2 

The purpose of this second study was to establish whether specialists’ observation 

reports were perceived as more useful in terms of helping the observed teachers 

improve their practice, than those of the non-specialists. Subsequently, their 
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understanding of “useful feedback” was explored. It was likely that teachers would 

know the authors of the reports. This knowledge could influence their judgments. For 

instance if they knew the Head of Mathematics wrote a report then they may assume 

the report was useful. Evaluation therefore might depend more on who has written the 

report rather than whether or not it was a worthy one. So, instead of asking the teachers 

to judge the reports, eight mathematics education professionals, namely teacher 

educators (2), researchers with teaching experience (6) participated. None had 

participated in Study 1. These participants did not know the teachers; they did not 

know whether they were novices or experts. Their judgments were based on the reports 

alone; not whether the advice matched the expertise of the teacher. 

A comparative judgement method (Thurstone, 1927) was used to rank the lesson 

observation reports in terms of perceived usefulness as feedback to the observed 

teachers. The outcome of the pairwise judgements can then be used to construct a 

psychological scale of artefacts from “best” to “worst” (Bramley, 2007). 

Each participant was presented with eight pairs of reports and asked to decide, for each 

pair, which report they thought provided the most useful feedback to the observed 

teacher. In total, every possible pairing of observation reports was judged twice, each 

time by a different participant, resulting in 56 pairwise judgements. Once the 

judgments were complete, participants were asked to comment on their decisions. 

We independently coded each report; categorising “suggestions for improvement” as 

being based on either (i) general pedagogic knowledge, (ii) pedagogic subject 

knowledge or (iii) subject knowledge. To gain further insight into the types of advice 

prioritised by observers we drew on Wake’s (2011) work on knowledge for teaching 

and learning. We subdivided the pedagogic subject knowledge and subject knowledge 

into six categories of subject knowledge for teaching (Ball, Thames and Phelps 2008). 

This may clarify what is valued in an observation report. 

ANALYSIS AND RESULTS 

The participants’ pairwise judgments were statistically modelled (Bramley, 2007) to 

produce a parameter estimate and standard error for each report. These parameters 

enabled the construction of a scaled rank order of reports from “best” to “worst”, as 

shown in Figure 1. The top four reports were those by the specialist observers (labelled 

"S"). The internal consistency (Rasch Separation Reliability (Bramley, 2007)) for the 

scaled rank order was .65, an acceptably high reliability for discriminating between 

two groups (specialist and non-specialist). 

To investigate these groupings further, we categorised each lesson observation report 

as either in the top half (assigned a value of 1) or the bottom half (assigned a value of 0) 

of the rank order. Fisher’s exact test using “specialism” and “top or bottom” as 

categorical variables reached significance (p = .029, two tailed), supporting 

interpreting the result as two distinct groups of four reports. Study 2 therefore provided 

support that the participants perceived the specialists’ reports to be more useful in 

terms of feedback to the observed teachers than the non-specialists’ reports. 
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Participant feedback 

All eight participants cited a preference for reports that made concrete suggestions for 

improvement. However, beyond this there was no clear consensus as to what 

constituted a more “useful” report. For example, some cited a preference for reports 

that described the lesson in detail whereas others had a preference for reports that 

avoided detailed description. Surprisingly, only two participants explicitly cited 

mathematical content as influencing their judgement decisions. 
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Figure 1: Scaled rank order of the lesson observation reports. 

Coding observation reports 

Overall, there was consistency between the authors’ coding. The specialists offered a 

total of 22 suggestions for improvement, ten of which drew on subject knowledge, the 

non-specialists offered a total of five suggestions, all drawing on general pedagogical 

knowledge. Table 1 shows the ten math-based suggestions categorized, using a 

summarised version of Ball, Thames and Phelps’ (2008) categories of subject 

knowledge for teaching. 

Category Description Suggestions 

Specialised Content 

Knowledge SCK 

Mathematical knowledge unique to teaching 2 explicit 

3 implicit 

Common Content 

Knowledge CCK 

Mathematical knowledge and skills, not unique to 

teaching 

1 explicit 

2 implicit 

Horizon Content 

Knowledge HCK 

Understanding how to develop and build on students 

current knowledge 

0 explicit 

0 implicit 

Content of Knowledge and 

Students CKS 

Understanding how groups of students talk about and 

handle specific tasks 

4 explicit 

1 implicit 

Content of Knowledge and 

Teaching CKT 

Understanding the design of teaching tasks/sequences 

of instruction 

2 explicit 

1 implicit 

Content of Knowledge and 

Curriculum CKC 

Understanding how the lesson relates to the 

curriculum and assessments 

1 explicit 

0 implicit 

Table 1: Categorised numbers of “suggestions for improvement” in the reports. 

The authors noted some reports contained additional observer comments, that although 

not explicitly advice, could be construed as potentially helpful to teachers, especially if 

they intended to re-use the lesson. For example, an SCK comment: “pairs did not get to 

grips with Tanya’s method. No one spotted that her lines were drawn wrongly, or that 

she was wrong to assume that one particular vertex was optimal”.  
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Although observers did not teach the students Mathematics, there were five instances 

of the use of the CKS domain. On these occasions subject specialists noticed, in the 

moment of observing, and subsequently reported on, how students were talking about 

the mathematics and handling the challenges of the task. For example, one observer 

stated “The questions: What assumptions did they make? Were they valid? Was their 

mathematics correct? seemed a bit hard even for this bright group”. Only one observer 

suggestion was based on how the lesson relates to the CKC domain. Considering the 

lessons were non-standard and the pressure for students to achieve in high–stake, 

content driven tests, this is surprising.  

GENERAL DISCUSSION 

The participants in Study 1 correctly distinguished lesson observation reports written 

by specialist teachers from those written by non-specialist teachers. The presence or 

absence of mathematical content appeared to be the key discriminator between the 

reports. The participants in Study 2 perceived that lesson observation reports written 

by specialists were more useful in terms of helping teachers improve their practice than 

those written by non-specialists. These judgements were not based on the presence or 

absence of mathematical content, but the presence of suggestions for improvement. 

The authors’ coding of the reports corroborated this. Specialists offered substantially 

more suggestions than the non-specialists. However, although participants tended not 

to explicitly refer to the mathematical content of these suggestions, nearly half the 

specialist suggestions drew on subject knowledge, whereas non-specialists provided 

no mathematics-based advice. Surprisingly, nearly half these mathematics-based 

suggestions were based on the CKS domain. We conjecture that the teachers are 

drawing on their own knowledge of students when noticing and evaluating how 

students are progressing with a task. 

Limitations 

The materials were drawn from just four observers, four non-standard lessons and two 

mathematics teachers, all from one school. Caution must therefore be exercised as to 

the generalisability to other teachers, lessons, schools and subject areas. The finding 

from Study 2 generalises only to the study participants. That is, we expect that the same 

group of participants would perceive specialist reports to be more “useful” than 

non-specialist reports in general. However, we cannot generalise beyond this group of 

participants to expect that all mathematics education professionals would perceive 

observation reports similarly. Results may be quite different if, for example the 

observed teachers were all novices or the lessons were of a more traditional structure 

and content. 

Theoretical implications 

What is it about a specialist teacher’s lesson observation report that mathematics 

professionals perceive to be more useful than a report of a non-specialist? Study 1 

suggests that a key discernible difference is the presence of mathematical content. 
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However mathematical content was not cited at all by six of the eight mathematics 

professionals in Study 2, who nevertheless preferred the specialists’ reports. One 

possible explanation is simply that subject specialists are better at providing useful 

feedback. Participants may respond more positively to reports by members of the same 

community, mathematics education, as they are likely to share similar beliefs, values 

and goals. Furthermore, the study showed that their reports did indeed provide more 

pedagogical advice whether of a general or specialist nature. If this is the case then we 

should expect the result of Study 2 to generalise to other subject disciplines. For 

example, we would expect history teachers to produce history lesson observation 

reports perceived as more useful than those produced by teachers of other subjects.  

Another possible explanation is that mathematics teachers are simply better at 

producing useful feedback than language teachers per se, rather than just for the case of 

lessons in their own discipline. Although this is a provocative hypothesis, studying 

mathematics is widely regarded to increase general analytic skills (e.g. Smith, 2004), 

which might include lesson observation skills. If mathematics teachers are indeed 

generally better at observing any lesson than non-mathematicians then the finding 

from Study 2 would not be expected to generalise to other subject specialisms. For 

example, if the study were reversed so that mathematics and language teachers 

observed language lessons, then we would not expect the subject specialists’ reports 

(language teachers in this case) to be perceived as more useful than the non-specialists’ 

reports. 

Conversely, the paucity of advice offered by non-specialists may be explained by the 

widely held belief that mathematics is a ‘difficult’ subject. Non-specialists may lack 

the confidence to offer advice to mathematics teachers. If this is the case, then only 

when observing mathematics lessons, and perhaps other technically demanding 

subjects, would it be perceived that specialists offer more useful advice than 

non-subject specialists.  

We are currently undertaking further research to address the above limitations, and to 

discern between these possible explanations. 

Practical implications 

If it is the case that mathematics teachers are “better” at observing mathematics lessons 

than non-specialists, or that non-specialists do not feel equipped to offer advice, then 

the practical implications are self-evident. Lesson observations are commonly used for 

professional development and accountability purposes, and it is vital that they are of 

high quality. However it is standard practice in many countries for high-stakes 

observations of mathematics lessons to be conducted by non-specialists. The findings 

reported here contribute some evidence that schools, districts and inspectorates might 

be advised to ensure that lesson observations, when intended to help mathematics 

teachers develop their practice, involve mathematics subject specialists whenever 

possible.  
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This paper reports on an intentionally constructed hybrid space, the Odyssey, as an 

approach to address the gap between theory and practice in teacher education 

programs. In the Odyssey, prospective teachers and mentor teachers engaged in joint 

explorations of mathematics. We analyzed the interactions among participants using 

the concepts of figured worlds and positional identities (Holland, Lachicotte, Skinner, 

& Cain, 1998). Findings point to the potential of experiences such as the Odyssey to 

challenge the power differential that often exists between mentor and prospective 

teachers. Furthermore the act of engaging in mathematical activities together may 

encourage prospective teachers to elaborate on their mathematical explanations as 

well as allow mentor teachers the opportunity to (re)visit mathematical ideas. 

INTRODUCTION 

Teacher preparation approaches often include university courses and field experiences 

in nearby schools, but the connections between these two settings are not always made 

explicit. As a result, a rift is sometimes created that juxtaposes the theoretical aspects 

of teaching learned in university classes and the reality that prospective teachers (PTs) 

experience in their school placements. PTs are often left on their own to mediate 

potentially conflicting messages that they get from university faculty and the mentor 

teachers (MTs) in the local schools.  

The study presented here is part of a larger project that was designed to bridge these 

different settings (university courses and field experiences) through several joint 

activities. These included MTs visiting the methods courses, PTs working in the MTs’ 

classrooms, MTs and PTs jointly interviewing children on mathematical thinking, and 

the Odyssey, a summer institute where PTs and MTs engaged in the practices of 

mathematics and science. Many of these common experiences are likely to reflect an 

expert-novice differential, particularly in terms of pedagogy, where the MTs are the 

experts and the PTs the novices. The Odyssey, however, with its focus on participants 

doing mathematics and science, offers a very different kind of experience, one in 

which the expert-novice differential is not based on an MT-PT distinction. Hence, in 

this study we explore the potential of environments such as the Odyssey to make 

connections between field experiences (practical) and university courses (theoretical) 

through a learning experience that is more egalitarian in nature.   
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THEORETICAL FRAMEWORK 

The design of the overall project is grounded on a third-space framework (Moje, 

Collazo, Carrillo, & Marx, 2001) where prospective teachers, mentor teachers, 

university faculty and content specialists work together in common spaces to discuss 

issues of content and pedagogy. The third-space framework in this work attempts to 

define new, hybrid spaces where various perspectives on teaching converge to create 

new understandings on the part of all of the participants about what it means to teach. 

Operating in the third space serves to bring academic and practitioner knowledge 

together in ways that are less influenced by traditional power relationships that divide 

these discourses. This in turn opens up new learning opportunities for prospective 

teachers (Zeichner, 2010). In order to interpret the social interactions displayed in 

these hybrid spaces, we have turned to Holland’s idea of figured worlds (Holland, et 

al., 1998) to describe within group interactions. 

Figured Worlds, Local Spaces of Practice, and Positional Identities  

A figured world is “a socially and culturally constructed realm of interpretation in 

which particular characters and actors are recognized, significance is assigned to 

certain acts, and particular outcomes are valued over others” (Holland et. al., 1998, 

p. 52). They are “as-if” or virtual realms in which persons become indoctrinated to the 

norms of the figured world through continual participation with other actors within the 

realm.  Figured worlds are continuously defined and redefined by the everyday actions 

that occur within them. While one might describe typical behaviors within these 

worlds, it is important to recognize the behavioral variations that can occur. It is also 

important to know that multiple figured worlds are often present, though not 

necessarily all at the same time.  

Given that multiple figured worlds are often present at any given time, it is critical to 

investigate the way they interact. Holland and Lave (2000) refer to the social context of 

this interaction as the local space of practice. This space is socially and historically 

situated, a real-world setting that exists in a particular place and time. As such, this 

local space of practice at least partially determines the presence and magnitude of 

particular figured worlds within a space. In the study presented here, the Odyssey was 

the local space of practice.   

Since individuals may, and often do enact multiple figured worlds within a local space 

of practice, there exists the likelihood that these figured worlds may come into conflict 

given a particular setting. In the case of the Odyssey, a number of figured worlds came 

into play. The university faculty asked PTs and MTs to engage in Odyssey activities as 

“doers of mathematics”, hence invoking the figured world of the discipline of 

mathematics. Throughout the Odyssey, PTs and MTs also enacted the figured worlds 

of the elementary school classroom as well as that of university courses.  

In each of the different figured worlds that are present, there exist interpersonal power 

relationships that affect one’s participation in the local space of practice. Holland et al. 

(1998) refer to these differences in position relative to other group members as 
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positional identities. Positional identities have to do with “the day-to-day and 

on-the-ground relations of power deference and entitlement, social affliction and 

distance – with the social interactional, social-relational structures of the lived world” 

(p. 127). In essence, positional identity refers to the awareness of a person’s social 

position within a figured world. The local space of practice combined with the 

prominence of the various figured worlds evident within, allow for participants to take 

up and assert different positional identities.  

In mathematics education, positionality has been looked at as a way of interpreting 

power relationships between students in the classroom.  Esmonde and Langer-Osuna 

(2013) investigate differences in engagement in mathematical activities as students are 

given the opportunity to take up different positions within a local space of practice that 

contains multiple figured worlds.  In the Odyssey, we have extended this investigation 

to interactions between PTs and MTs within the context of a teacher education 

program. As the participants navigate the various figured worlds present, they often 

modify the way they position themselves as they negotiate what it means to practice 

mathematics within these figured worlds. In what follows we look at these shifts in 

position as opportunities for participants to make connections between the theoretical 

and the practical aspects of teaching mathematics.      

METHOD 

In the mathematics portion of the Odyssey (which is the focus of this study), 

participants were encouraged to think mathematically about the problems presented in 

the seminar as “doers of mathematics” rather than thinking about teaching 

considerations such as the way that children might take up these tasks. The problems 

focused on pattern exploration and on generating and justifying general rules (one set 

of problems led to n(n-1)/2 and the other to 2
n
). Data for this study consist of video 

recordings of four groups of PTs and MTs as they worked on the different problems. 

There were more MTs than PTs at the Odyssey, but each of the four groups of four in 

our study had at least one PT. One camera was placed at one end of the table and a flat 

microphone was placed in the center of the table to record as much of the interaction as 

possible. In addition to the video recordings, participants’ notebooks were collected. 

Researcher field notes were also referred to at times to clarify the context of the 

interactions when needed. Using Powell, Francisco and Maher’s (2003) model for 

video analysis, we identified critical events relating to our research goal. The research 

team watched the videos specifically looking for instances where we noticed changes 

in either how group members were being positioned, or how they were positioning 

themselves. These critical events became clips and were transcribed. The 

transcriptions are the data for the analysis. A first pass through the data led to two 

codes related to the form of engagement with the task: doers of mathematics and 

teachers. Codes for this study were developed around the idea of Holland et al. (1998) 

of positional identities.  
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Within these broadly defined categories of doers of mathematics and teachers, several 

positions emerged in our analysis. Within the category of doers of mathematics, we 

identified: 1) mathematical expert: when a participant defers to another for a 

mathematical explanation or for help with a problem; (2) sense maker: engages in the 

activity in ways that go beyond simply obtaining an answer. The sense maker is not 

only hoping to accomplish the task, but also gain insight and understanding of 

underlying processes; 3) rule oriented: engages in the task in a formulaic or procedural 

nature. The rule oriented focuses on coming up with the general expression but is less 

concerned with explanations and understandings; 4) resistor: pushes the other 

members of the group to revisit or make sense of the work they are doing, hence 

resisting the status quo and often instigating a new direction in the exploration of the 

problem.   

Similarly, within the category of teacher, we identified three different positions: 

1) pedagogical expert: most often enacted by a MT in interaction with a PT. In these 

interactions MTs draw upon their classroom experience and share their pedagogical 

knowledge with the PT(s); 2) professional colleague: most often enacted between 

multiple MTs (but could involve PTs). Participants make observations and connections 

related to elementary school teaching practices; 3) teacher-to-be: a position taken up 

by PTs in interactions with MTs around possible connections between the task at hand 

and the elementary classroom (e.g., around manipulative materials). 

RESULTS 

This study sought to explore the potential of spaces such as the Odyssey to address the 

disconnect that often exists between university-based and field-based experiences in 

teacher preparation. We first give an overview of the main findings and then illustrate 

some of them in more detail. Throughout the Odyssey, MTs and PTs engaged in the 

problems as colleagues thereby invoking a symbiotic relationship. For MTs the 

Odyssey allowed them to explore and learn content as learners of mathematics, an 

opportunity that is often more difficult to achieve in the figured world of classroom 

teaching. In this context, MTs seemed to turn to PTs as mathematical experts, arguing 

that PTs had had more recent experiences with mathematics through their university 

courses. PTs were actively engaged in the mathematical tasks, often starting in a rule 

oriented position but switching to sense makers in the course of their interaction with 

group members. MTs as resistors seemed to facilitate this switch. PTs were pushed to 

explain the “whys” of the mathematics behind the formulas to assist MTs in making 

sense of the group’s work. Hence, PTs seem to have gained valuable experience as 

mathematical explainers. 

Through this symbiotic relationship, we argue that participants are afforded various 

opportunities to navigate through different figured worlds. Figure 1 (below) shows the 

potential path that participants might take through an Odyssey interaction. We focus on 

three figured worlds: the elementary school classroom, the university courses, and the 

discipline of mathematics. Participants may travel along a meandering path in and out 
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of the various intersections of figured worlds. They may also travel outside these three 

figured worlds altogether into any one of a number of figured worlds that are less 

immediately present all the while attempting to make sense of what it means to 

understand mathematics.    

 

Figure 1: Potential trajectory of participant positioning through various figured worlds 

in the Odyssey. 

PTs as Mathematical Experts 

One of the problems involved making trains with colored rods of different lengths and 

finding all possible combinations for a given length (e.g., if the length is 3, there would 

be 4 possible trains: 3; 2+1; 1+2; 1+1+1). Odette (MT), in talking to one of the 

university facilitators, says: 

One of these guys [pointing to the 2 PTs in her group] had the bright idea to start with one 

white and see how many we can make… And then we started thinking, “is there any that 

we kind of missed?” And we filled in a couple that we had missed. But these guys [gestures 

to the PTs] are trying to figure it out mathematically with combinations. So, they might 

have some input for you. 

Odette is positioning the PTs as mathematical experts in that they are the ones who 

may be coming up with the general statement. Indeed, the PTs tended to want to come 

up with formulas right away, often in what university faculty labeled as a procedural 

approach, hence positioning them as rule oriented. However, the interactions with 

MTs could serve as catalysts for switching to sense maker, as we illustrate next. 
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From Rule Oriented to Sense Maker 

In the handshakes problem (how many handshakes are possible in a room full of 

people assuming that each person shakes hands with all of the other people in the 

room), Beatrice (PT) has come up with an expression to find the number of handshakes 

as being (n-1) + (n-2) + (n- 3)…, where n is the number of people in the room. Tonya 

(MT) does not understand why for 3 people it is 3 handshakes (she thinks it is 6): 

Tonya: I don’t get that.  Three people, three handshakes.   

Beatrice: Yeah. 

Tonya: No. 

Beatrice:  Yeah. 

Odette (MT): Yeah.  Just draw it out.   

Beatrice: Because 3 minus 1 is two, plus 3 minus 2 is one... two plus one is three.   

Beatrice’s answer does not address Tonya’s question. Instead Beatrice shows Tonya 

how using her formula gives an answer of 3 and that seems to be her evidence for why 

it is 3. Odette’s comment of “just draw it out” is not picked up by Beatrice or Tonya. 

Shortly after, Celine (MT) draws it out and shows Tonya why it is 3. As they move to 4 

people, Beatrice is still focused on her algebraic expression, while Odette and Celine 

are talking through the process to try to come up with a general expression. But then all 

of a sudden Beatrice turns to Tonya (who has been gesturing handshakes to try to 

visualize the case for 4 people) and says:  

If you draw it like this (pointing to a drawing Beatrice has made in her notebook), it’s like 

there... they shake, and then... they’ll shake and then these last two shake.  And then you 

just count one, two, three, four, five, six.  

In this interaction with Tonya, Beatrice switches from a focus on using her formula to a 

sense making approach similar to Odette’s and Celine’s in making a drawing and 

showing Tonya why there are six handshakes with four people. This points to the 

potential of interactions such as these to connect the PTs’ knowledge of mathematics 

with the MTs’ pedagogical knowledge. The MTs bring to these mathematical tasks 

their experiences as teachers asking students to explain their work as well as more 

exposure through their years of professional development to conceptual approaches to 

teaching mathematics. Hence, they may be drawing on these backgrounds to push for a 

sense-making approach to doing mathematics.  

Engaging as a Teacher 

Although the university facilitators viewed the Odyssey as an opportunity to engage as 

doers of mathematics, some MTs engaged primarily as teachers. Zelda (MT) is one 

such case. Throughout the investigation of the trains’ problem, Zelda contributes 

minimally to the group’s mathematical work. She keeps track in her notebook of the 

different combinations that the group is mentioning, and on a few occasions interjects 

combinations that they may have missed. But she does not engage in the group efforts 
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on trying to find a pattern and eventually a general expression. Most of Zelda’s 

comments relate to connections to her experience as a classroom teacher (e.g., in terms 

of the kinds of affordances that different manipulative materials may offer). Zelda’s 

positionings were mostly as pedagogical expert or as professional colleague. For 

example, in the excerpt below Zelda, as pedagogical expert, connects the trains’ 

problem to an early grades activity where children are to find different ways to make 

up a number, and proceeds to explain this to Norma (PT): 

[Looking at Norma and gesturing as if she had interlocking cubes] They [children] will 

take the numbers apart, it’s like when they say “the number is 12, how many different ways 

can you make 12?”; it’s the same idea, you give them interlocking blocks and they are 

always breaking them apart [gesturing as if she had the interlocking cubes in her hands]. 

The positioning of one member of the group as a pedagogical expert in the context of a 

mathematical activity provides a potentially fruitful space in which we might bridge 

theory and practice. In some cases, the mathematical task provided an opportunity for 

MTs to share their pedagogical experience, as well as for PTs to bring up questions 

about classroom applications. 

CONCLUSION 

In teacher preparation efforts, experiences that bring PTs and MTs together often 

center on pedagogy and therefore are likely to reflect a power differential, where MTs 

are seen as the experts. The Odyssey was unique in that it purposefully constructed a 

local space of practice in an off-site setting that was neither the domain of the PT (the 

methods classroom) or the MT (elementary classroom). This space brought PTs and 

MTs to do mathematics together and in so doing acknowledged different kinds of 

knowledge. In the Odyssey context, MTs often displayed vulnerability with regards to 

their content knowledge that might not be evident in other settings. Through this 

vulnerability and their call for explanations, MTs seemed to encourage the PTs to 

reposition themselves in the group as sense makers. Within this space of practice, MTs 

could investigate mathematical challenges that they might not have seen in some time, 

while at the same time, PTs gained an awareness of the need to make sense of the 

mathematics and gained pedagogical insights through observing how the MTs 

interacted. The following participants’ reflections capture the egalitarian potential of 

spaces such as the Odyssey. 

It was fun to work together on math and bring our experience / expertises together. It didn’t 

matter what we knew, but we all worked together. It was also nice to get to know all the 

mentor teachers…. Math really focused on everyone and was extremely beneficial. [Olivia 

(PT)] 

I enjoyed meeting the PTs in a more informal setting; it seemed we were able to bond 

more, share ideas, be on more equal. [Zelda (MT)] 

Comfortable learning together. [PTs] see us as “learners” also, not just teachers. [Tonya 

(MT)]  
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This paper explores the algebraic expressions of deaf learners as they explore and 

construct sequences using the digital microworld Mathsticks. More specifically, it 

attempts to identify how the deaf students coordinated bodily, discursive and digital 

resources in order to attribute their own personal senses to the notion of variable. 

Examples of their interactions with the tasks and tools are analysed to identify 

evidence of the presence of the three conditions of algebraic thinking, indeterminacy, 

denotation and analyticity. Our findings suggest that the creation of a shared sign 

“secret number” to represent the idea of variable was central in facilitating the 

students to adopt algebraic rather than arithmetic approaches and to appropriate the 

idea of a general term. 

DISCURSIVE MODES, LEARNING AND ALGEBRAIC THINKING 

Our research with students with disabilities focuses on how the specific ways in which 

they experience and interact with the world mediate their learning. In the case of deaf 

learners, for example, we are interested in better understanding how the visuo-gestural 

expressions of signed languages, as well as the interactional practices associated with 

their use, shape the appropriation of mathematical knowledge. In this paper, we 

concentrate on the participation of Brazilian deaf students, whose first language is 

Libras (Brazilian Sign Language), in activities involving the construction of algebraic 

generalisations to represent the mathematical structure of visually presented 

sequences. 

Our approach has been strongly influenced by the work of Vygotsky and especially by 

his ideas concerning the mediating role of material and semiotic tools, which emerged 

initially from his studies with people with disabilities (Vygotsky, 1997). For 

Vygostsky, language is a broad concept which encompasses, as well as the 

communicative function, the function of organising and developing the processes 

associated with thinking. In the case of the deaf learner, his view was that in order to 

overcome the barriers related to the absence of an oral language, from a very early age 

the deaf child develops “habits of mimic-gestures” that represent more than a way of 

expressing their emotions, becoming also a vital mode of discursive communication 

(Vygotsky, 1997, p. 119). 

In Vygotsky’s view, both thought and language result from the interactions between 

individuals within the context of their socio-historic culture (Vygotsky, 1962; 

Leontiev, 1978; Luria, 1992). Adopting a contemporary version of this position, 
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Radford (2006) describes thinking as a result of a reflective praxis mediated by the 

body, signs and tools – a dialectic movement between a historically and culturally 

constituted reality and the individual who reflects upon it (Radford, 2006). Following 

the steps of Leontiev, Radford and Roth (2011) stress the personal senses that emerge 

in instructional situations as individuals attribute their own subjective meanings for the 

objective meanings of the objects under study. Although subjective, these meanings 

are necessarily social, in that they are moulded by shared cultural signs of those who 

participate in the situation. 

We concur with this view, but believe it is important to recognise that in the 

socio-historic practices that have come to characterise most mathematics classrooms, 

dialogues based on visuo-gestural forms of expression have only recently been 

considered and valued. In fact, for many years, deaf students were discouraged or even 

forbidden from using sign languages as a medium for learning. It is hence critical that 

we begin to investigate how the discursive practices of deaf learners might favour the 

process of transforming conceptual objects of culture (algebraic objects in this case) 

into objects of consciousness. 

In this article, we focus on the interactions between a group of deaf students, their 

hearing teacher, an interpreter and hearing researchers that occurred as the students 

worked on activities involving generalistion. In each of the episodes we present, we 

attempt to identify evidence of algebraic thinking in the expressions of the students, 

using Radford’s (in press) characterisation of algebraic thinking as comprised of three 

interrelated conditions, indeterminacy, denotation and analyticity. Indeterminacy 

refers to the condition that thinking algebraically involves problems with unknown, or 

undetermined, elements, in our case numbers. Denotation involves the need to name or 

symbolize the indeterminate numbers. For Radford, denotation does not necessarily 

involve the use of standard alphanumeric signs, “indeterminate quantities can also be 

symbolized through natural language, gestures, unconventional signs or even a mixture 

of these” (p. 4). The third condition, analyticity, implicates the treatment of the 

indeterminate elements as if they were known. That is, a student thinking algebraically 

will not need to assign a specific value to, say, an unknown number in order to operate 

with it.  

With these three conditions in mind, in the remainder of the paper we present episodes 

from a series of tasks involving generalisation and consider aspects of the discursive 

practices of the deaf students that contributed to the production of generalisations and 

indicated the personal senses attributed to the notion of variable. 

THE EMPIRICAL PROCEDURE 

Drawing from the methods associated with Design Experiments (Cobb et al., 2003), 

the activities we have developed for deaf learners seek to privilege visual 

representations as starting points from which to motivate engagement in reflective and 

discursive practices. The activities discussed in this article represent the third and 

fourth sessions of a series of five, each of which occurred on a separate day and lasted 
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for approximately 90 minutes. The group of six deaf students, aged between 18 and 31 

years, composed a 9th grade class who studied in the evenings at a school that was part 

of the public system of the municipal of Barueri, a town on the outskirts of the São 

Paulo conurbation. This school attends both deaf and hearing students, who usually 

study together, although for historical reasons this particular class included only deaf 

students.  

During the research sessions, in addition to the teacher and interpreter, four other 

researchers were present. Three cameras were positioned in the classroom to record the 

interactions of all the participants. Additionally, in the three sessions involving the use 

of digital tools, three laptops were available and the on-screen activity was also 

recorded. In the first two sessions, the students worked on paper and pencil tasks 

involving visually presented sequences. Although the students successfully completed 

the activities, our analyses suggested that in terms of the sense of indeterminacy, one of 

the critical conditions of algebraic thinking, none of the tasks provoked in students a 

need to denote or operate with an unknown element. That is, the students were able to 

generate generalisations that they could use to locate any given term of the sequence, 

but for them it only made sense to do so once the value of the specific term required 

was identified. We might say that the idea of a general term did not figure in the shared 

dialogue (for more details on these two sessions, see Fernandes and Healy, 2013).  

From the third session on, we decided to adopt a different approach. With the intention 

of encouraging students to identify the visual structure of a general term, we chose to 

work with the Mathsticks microworld, created in the Imagine version of the Logo 

programming language (Figure 1 presents an English version, the Portuguese version 

used in our study is available at www.matematicainclusiva.net.br).  

This microworld, originally described in Noss, Healy and Hoyles (1997), is designed 

to encourage students to produce a variable procedure (in the history box) that can be 

used to generate the set of terms for a given sequence. The elements of the sequence are 

mathsticks, created by clicking on the respective icons and positioned through four 

jump icons. When the history box is activated (turned on), a reusable symbolic trace 

of the users’ actions is recorded in symbolic form as Logo commands. Sets of the 

commands can be repeated in a way that corresponds to how the sequence grows and 

the box labeled n can be used as a variable, allowing the same history to produce 

different terms in the same sequence (in Figure 1, the value of n is 5, hence the 5
th
 term 

in the sequence is generated). 
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Figure 1: The Mathsticks Microworld 

STUDENTS’ INTERACTIONS WITH THE MATHSTICKS MICROWORLD 

The participating students had never used the Logo programming language before, nor 

were they accustomed to interacting with digital tools in their mathematics lessons. 

The first activity (Figure 2) hence had the aim of familiarising students with the 

microworld tools and their functions.   

 
Figure 2: The “L” task 

To introduce the activity, the screen from the microworld was reproduced on the 

blackboard and, as the functions of the different tools were explained, the students 

experimented with them in pairs on the laptops. After seeing how a matchstick “L” 

could be produced, the students were shown how commands could be repeated in the 

history box to produce the 6
th
 term of the sequence. At this point the history box on 

the blackboard contained the commands repeat 6 [match hmatch jumpr]. 
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Figure 3: Changing the number of repeats 

The students were given the task of 

producing the 15
th
 term of the sequence, 

which turned out to be relatively easy as 

they could see on their screens that 

changing the input to the repeat command 

changed the number of “Ls” on the 

screen. Felipe presented his solution on 

the board. (Figure 3).  

The next step was to introduce variables, or more specifically the microworld variable 

n represented as a box on the screen. To illustrate its use, the commands in the history 

box were altered to repeat n [match hmatch jumpr]. Having explored the effect of 

changing the value of n, the students began to work in pairs to complete the table 

presented in the “L” task in Figure 2. They progressed without difficulty until the 

moment that they came to the column in which the number of matches in the n
th
 term 

was requested. Although they knew that each “L” shape was made up of two matches 

and found it straightforward to calculate the cases in which either the number of the 

term or the number of matches was known, faced with a (our) denotation of a variable 

they were unsure as to what was expected. We might say that although they had varied 

the value of n in their interactions with Mathsticks, their thinking was still 

predominantly arithmetic, and they were still operating only with known quantities.  

After having discussed their results and with a consensus that to determine the number 

of matches in any term it was necessary always to multiple the number of “Ls” by two, 

one of the researchers completed the table, writing n x 2. Almost immediately, 

reflecting on this inscription, one of the students, Elaine, offered a new interpretation 

for n, signing “n is a secret number” (Figure 4). 

 

Figure 4: The Libras sign for 

“secret” 

Our interpretation is that the denotation of the 

variable offered by Elaine was indicative of her 

developing personal sense of indeterminacy and the 

idea that it is possible to work with numbers 

without knowing their values. Indeed the sign for 

“secret” is itself suggestive of hiding something 

down one’s sleeve and only perhaps later revealing 

its value – a kind of bodily expressed metaphor for 

an unknown.  

In creating the sign “secret number”, Elaine simultaneously expressed and shared her 

sense of the variable n. The creation of such signs is a common part of communicating 

in Libras, especially as official signs for mathematical terms such as “variable” do not 

always exist or, at least, are not widely known. Elaine’s sign was hence adopted 

forthwith as a means of referring to variables. 
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In the following session, the students worked on similar activities in which the 

structure of the terms became gradually more complex, Figure 5 presents an example, 

that we will call the “rectangle task”. 

 
Figure 5: The rectangle task 

In the activities that preceded this task, 

the general term could be written in the 

form repeat n [procedure]. In this task, 

however, while the number of horizontal 

matches varies as the sequence changed, 

there are always 2 vertical matches. 

Perhaps not surprisingly, all the student 

pairs began first by seeking a 

generalisation using the repeat structure 

that had worked in the previous activities.  

Téo, for example, noticed how the number of horizontal matches increased and in his 

first attempt he wrote repeat n [hmatch jumpu hmatch jumpd jumpr]. When he 

tested the commands in the history box, using 12 as the value for n, he saw that the 

term was incomplete (Figure 6). He added the command match to the history box and, 

after considerable thought, completed the figure with the commands repeat 12 

[jumpl] match. (Figure 7).  He was very satisfied with the result.   

 
When asked to explain why this addition had worked, he confidently signed the 

following answer 

Téo: 12 here in n (pointing to the box n on the screen). So r e p e t i r (spells out 

the word letter by letter) 12 (pointing to the repeat 12 in the history box). 

It has to be equal to n. An example, if it was 9 (points again to the repeat 

12), it wouldn’t work. It has to be 12 to be the same. 

To further illustrate his explanation, and what happens when “n is different” Téo 

changed n to 20 (Figure 8). 

 
He immediately resolved the problem by changing the 12 to 20 and was then, asked if 

he could change commands in the history box so it was not longer to alter manually on 

each change to n. 

Figure 8: n equals 20 

Figure 6: First attempt Figure 7: Completing the figure 
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Figure 9: A general history 

This intervention led to the replacement of  

repeat 20 with repeat n and the new history 

was checked with different values for n 

(Figure 9 shows the term drawn when n is 4). 

In this construction procedure, we see traces of 

the analyticity proposed by Radford as the 

third condition for algebraic thinking, 

although, given the nature of the task, in this 

case it involves relating specific and general 

terms, rather than, say, operating on unknowns 

to locate particular values. 

DEAF LEARNERS’ EXPRESSIONS OF MATHEMATICAL GENERALITIES 

Marschark and Hauser (2008, p. 9), reflecting on instructional approaches appropriate 

to include deaf learners, remark that “the use of dynamic visual displays to accompany 

instructors’ verbal descriptions are especially helpful for learning”. The choices of the 

mediational elements in this study – the microworld, the tasks, and the language used  – 

were made with this in mind: to respect but also to diversify the discursive practices 

preferred by deaf students. The dynamic representations of the Mathsticks microworld 

enabled the students to explore the visual structures of the sequences they encountered 

and the possibility to generate a symbolic representation of a general term by using a 

Logo variable appeared to serve as a meaningful introduction to indeterminacy and to 

favour the emergence of algebraic thinking.   

In the examples presented in this article we have tried to show how the interactions of 

the students with the microworld, with each other and with us involved them in a 

process of coordinating bodily resources with visual, dynamic and linguistic signs in 

order to attribute meanings to mathematical objects. Their expressions during this 

process contain traces of the three conditions for algebraic thinking, indeterminacy, 

denotation and, albeit to a lesser degree, analyticity. For example, as Elaine offered a 

sign to denote her personal sense of the variable n, she also offered a means, that was 

shared and understood by the group, to reflect about the condition of indeterminacy 

and the sign “secret number” came to represent an as yet unknown (or unrevealed) 

number. The use of this sign was particularly important since these students were not 

yet familiar with more conventional semiotic systems used to represent indeterminate 

numbers, nor were they (or we) aware of signs in Libras for terms such as “variable”.  

It is also interesting to focus on the form of the sign itself. Like many signs in Libras, 

there is a certain iconicity associated with the sign for “secret”, it evokes the idea of 

something being hidden up ones’ sleeve. The sign “secret number” expresses in a 

visuo-gestual form a particular incarnation of an algebraic variable that seemed to 

make sense to this student group. As we seek to better include deaf students in school 

mathematics, we believe that we need to attend more closely to the practice of 

communicating mathematics in this visuo-gestual form. 
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In this paper, we present an approach to spatial geometry that involved a group of 

university students, who engaged in visual experiences while discussing about 

geometrical properties using a dynamic geometry environment. Drawing on aspects 

related to the difficulty of seeing in 3D, we introduce suitable connections between 

quadrilaterals and tetrahedra as a way to enhance visual skills in space geometry. In 

so doing, we show examples of the way learners manage “to see in space” through the 

affordances offered by the DGE.   

INTRODUCTION 

Discussing about relationships between space and geometry, Henri Poincaré (1905) 

pointed out that one geometry cannot be truer than another; it can only be more 

convenient. This much depends on our habit to work with geometrical objects in a 

certain way. Among all possible conventions, we are guided in choice by experience. 

For Poincaré, Euclidean geometry is the most convenient, because it is the simplest 

one, best adapting to our impressions and agreeing with properties of the natural solid 

bodies that we touch and see in the world around us. 

3D geometry is not felt as convenient at all. At secondary school, where the study of 

geometry in space is expected, teachers show poor confidence about—and prefer to 

avoid—it, despite its relevance with respect to real world and scientific disciplines. 

The general reputation that spatial geometry is difficult is usually connected to the 

feeling that seeing in 3D is difficult (Bakó, 2003).  

The question of seeing is likely to be the most important for our discussion. In fact, 

geometry in space involves visual challenges related to the ontological difference 

between three-dimensional objects and bi-dimensional diagrams that embody them. A 

pedagogical challenge then, is relative to studying approaches to 3D geometry that 

may encourage and foster seeing in space. Our study seeks to draw attention to this 

aspect and presents an approach to the study of spatial geometry that makes use of 

dynamic geometry environments (DGEs). The study is part of a wide research, whose 

focus is on the visual challenges involved in the study of objects in space and on the 

role of technology to address such challenges. To pursue our interest in seeing with 

respect to the use of DGEs, we anticipate that the discovery of relationships between 

geometric 2D and 3D figures is a crucial aspect of studying 3D geometry, and that the 

visual and cognitive potential of interlacing related but different figures is offered by 

the use of DGEs, allowing for moving back and forth between plane and space. 
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THEORETICAL BACKGROUND 

Relevance of seeing in mathematics  

Talking about his practice, Walter Whiteley highlights the central role of the visual:  

I am a research mathematician, working in discrete applied geometry. My own practice of 

mathematics is deeply visual: the problems I pose; the methods I use; the ways I find 

solutions; the way I communicate my results. The visual is central to mathematics as I 

experience it. It is not central to mathematics as many teachers present it nor as students 

witness it. This contrast is striking. (Whiteley, 1994, p. 1)  

The etymology of visual comes from the Latin word visus that means “sight”, or from 

visus, past participle of videre, which is “to see”. That visual thinking is essential for 

professional mathematicians has been studied in research in mathematics education 

(e.g. Healy & Hoyles, 1999). For Sfard (2008), visual mediators are fundamental 

elements of the discursive activity in/of mathematics, and “in spite of the famous 

“intangibility” of mathematical objects, mathematical communication depends on 

what we see no less than do other, less abstract types of talk” (p. 146).  

Besides the fact that mathematicians do not see the same thing in a unique diagram, 

what is visual for the expert mathematician/the teacher is not always like that for an 

apprentice/a learner. The “striking contrast” said above opens room for pedagogical 

intervention to make mathematics—at least partly—a visible enterprise. Presmeg 

(2006) has marked the emergence of “effective pedagogy that can enhance the use and 

power of visualization in mathematics education” (p. 227). In mathematics teaching, 

visual approaches frequently give a straightforward perception of the results. For 

example, a square number is immediately thought of—seen—as the sum of even 

numbers through a diagram, where a suitable disposition of elements representing a 

sum of even numbers forms a square. 

Seeing and 3D geometry 

The visual challenges involved in the study of spatial geometry are related to having to 

do with “flat” diagrams for geometrical figures, bi-dimensional representations of 3D 

objects. A study from the eighties had marked the existence of coding problems, in 

terms of knowing versus seeing, in the teaching of space geometry (Parzysz, 1988): 

The problems of coding a 3D geometrical figure into a single drawing have their origin in 

the impossibility of giving a close representation of it, and in the subsequent obligation of 

‘falling back’ on a distant representation […] an insoluble dilemma, due to the fact that 

what one knows of a 3D object comes into conflict with what one sees of it. (pp. 83-84) 

Moreover, perception of the third dimension greatly depends on the way we perceive 

depth and the cluttered space around us, and it is, in turn, a matter of how our eyes and 

mind measure reality and virtual reality. Different sources of information about layout 

can entail different fashions of measuring it and, then, of perceiving around us spaces 

with different geometrical natures (Cutting, 1997).  
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Within this perspective, we think that, in principle, the 2D diagram is far from seeing in 

it the 3D figure in the same measure as the 3D figure is far from diagramming it in the 

2D diagram. Briefly speaking, the figural and the conceptual aspects of the figure are 

in conflict with each other, beyond their being in conflict with visual perception.  

Seeing something as something else 

As Douglas R. Hofstadter reports in his chapter On Seeing A’s and Seeing As, one time, 

in the context of an old debate with Giancarlo Rota, Stanislaw Ulam parried:  

What makes you so sure that mathematical logic corresponds to the way we think? Logic 

formalizes only very few of the processes by which we actually think. The time has come 

to enrich formal logic by adding to it some other fundamental notions. What is it that you 

see when you see? You see an object as a key, a man in a car as a passenger, some sheets of 

paper as a book. It is the word ‘as’ that must be mathematically formalized…. (Hofstadter, 

2005, p. 264)  

The process of seeing something as something else, which was felt as impossibly hard 

by Rota, was on the contrary crucial for Ulam’s idea of mathematical thinking as 

permeated with analogies between analogies—a point that is relevant for us to the 

extent that, drawing on Hofstadter, we think of “as” as central to “abstract seeing”, in 

terms of seeing 3D properties in flat diagrams. We believe that such a step requires a 

kind of manipulation that is not easy for high school students, because their previous 

studies of solids were likely to involve physical manipulation. This is where we think 

that the use of DGEs can further occasions for new experiences of engaging with the 

diagrams and discovering invariants and changes. Again, we can recall Hofstadter 

(1997), who refers to his screen-based observations as both facts and theorems: 

To me, this result was so clearly true that I didn’t have the slightest doubt about it. I didn’t 

need a proof. If this sounds arrogant, let me explain. The beauty of Geometer’s Sketchpad 

is that it allows you to discover instantly whether a conjecture is right or wrong-if it’s 

wrong, it will be immediately obvious when you play around with a construction 

dynamically on the screen. If it’s right, things will “stay in synch” right on the button no 

matter how you play with the figure. The degree of certainty and confidence that this gives 

is downright amazing. It’s not a proof, of course, but in some sense, I would argue, this 

kind of direct contact with the phenomenon is even more convincing than a proof, because 

you really see it all happening right there before your eyes. None of this means that I did 

not want a proof. In the end, proofs are critical ingredients of mathematical knowledge, 

and I like them as much as anyone else does. I just am not one who believes that certainty 

can come only from proofs. (p. 10) 

Starting from this background, in the next sections, we discuss an approach to spatial 

geometry that draws on a definitional “analogy” between two figures: quadrilateral and 

tetrahedron, using a DGE like Cabri Géomètre 3D. In so doing, we will show examples 

of what the participants manage to “see in space” through the affordances offered by 

the DGE.  
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METHODOLOGY 

Participants, tasks and data collection 

The participants of the study were a group of 12 university students (age 22) enrolled in 

a Foundations of Mathematics class in a Faculty of Mathematics in Eastern Sicily. The 

classroom was divided into groups of two or three students, and each group was seated 

in front of two computers in a computer laboratory. The computers had one Cabri II 

Plus and the other Cabri 3D installed. The teacher (second author) describes the 

students as motivated and comfortable working with each other and using both the 

DGEs and their dragging modality. The study took place towards the end of the second 

semester of the academic year in the participants’ regular classrooms. At the time, the 

participants have learned about key invariants with respect to transformation groups. 

They did not have experienced with exploring 3D Euclidean geometrical concepts in 

class, nor before but in their junior high school studies.  

Each group was first introduced to a new definition of quadrilateral that differs from 

the traditional one—a quadrilateral is a polygon with four sides—in that it adds what 

are the edges and faces of a quadrilateral. Second, the groups were given the task of 

drawing the bimedians of a quadrilateral and investigating the properties that the 

constructed objects satisfy, through the aid of Cabri II Plus. Then, for the purpose of 

comparing properties for quadrilaterals and for tetrahedra, the students were asked to 

discuss the movement to space using the Redefinition tool and the Glassball modality 

of Cabri 3D, about which they learned during this classroom.  

One week later, the groups were given two main tasks: introducing the medians for 

quadrilaterals and tetrahedra, and conjecturing about the properties that hold in both 

cases. For the tasks involving bimedians and medians, the groups were given a Cabri 

3D diagram that was new to them, in which a quadrilateral was drawn on the (grey) 

base plane—a plane given by default by the DGE. Finally, the students were asked to 

discuss possible proofs to show the validity of their claims in plane and in space. 

Each day, two researchers (the authors) were present in class. They gave the groups the 

instructions and videotaped the group works with the DGEs and the classroom 

discussion at the end of the day. All written productions and DGEs’ diagrams were 

collected. The aim was to analyse which kinds of visual skills the students were able to 

construct during the activity, whose relevant aspects are detailed below.  

Quadrilaterals and Tetrahedra 

The analogy between quadrilaterals and tetrahedra was established by introducing the 

definitions of edges and faces for a usual quadrilateral as follows: the segments joining 

two vertices of the quadrilateral are its edges and the triangles with vertices three 

vertices of the quadrilateral are its faces. In a quadrilateral there are six edges, the four 

sides and the two diagonals, and four faces, exactly as many as a tetrahedron. 

So, we are able to look at—and see—figure ABCD, which has four vertices (A, B, C, 

D), six edges (AB, AB, BC, CD, DA, AC, BD) and four faces (ABC, ABD, ACD, 
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BCD), indifferently as the tetrahedron ABCD, whether we think that it lives in space, 

or as the quadrilateral ABCD, whether we think of it as a plane figure. We call F the 

figure ABCD. Given F, two opposite edges do not have common vertices and a face 

and a vertex are opposite when the vertex does not belong to the face. Moreover, we 

can define the bimedians and medians of F as: the segments that join the midpoints of 

two opposite edges; and the segments that join one vertex with the centroid of the 

opposite face, respectively. These objects satisfy some interesting properties:  

 A. The three bimedians all pass through one point (that is, the centroid of F) 

that is the middle point of each bimedian. 

 B. The four medians all meet in its centroid that divides each median in the 

ratio 1:3, the longest segment being on the side of the vertex of F. 

As said above, the students were instructed to using the Redefinition tool and the 

Glassball modality of Cabri 3D. Let us make a thought experiment: imagine what 

would happen to a quadrilateral if one vertex was moved off the plane where it lies. 

The figure that was before ontologically became a new figure: the flat figure is now a 

solid figure; the polygon is now a polyhedron. It is as a consequence of the movement 

of the vertex off the plane.  

The Redefinition tool realises this movement, redefining one point as an ontologically 

different point. For example, given the quadrilateral ABCD on the base plane (Figure 

1a), one can redefine vertex D to be a point in space, exactly the apex D of the 

tetrahedron with base the face ABC (Figure 1b). The quadrilateral is a tetrahedron 

within the DGE, not necessarily in what the students see on the screen. The dragging 

and the Glassball modalities also allow for checking whether things “stay in 

synch”—in Hofstadter’s words. In particular, the latter makes possible a rotation of the 

figure in order to actualise many virtual points of view from which to look at it. 

(a)  (b)  (c)  

Figure 1(a) & (b): A quadrilateral ABCD on the base plane and the redefinition of point 

D for the tetrahedron ABCD. Figure 1(c): S gesturing the imagined movement. 

DATA ANALYSIS 

In this section, we present kinds of seeing in space that students developed in the tasks. 

The analysis is divided into two parts each containing a brief transcript and reference to 

the theoretical frame, for the purpose of identifying seeing in each part.  

Seeing and Knowing 

The following is a transcript of the initial interaction of three students, M, S and V, 

with the redefinition of one vertex of a quadrilateral using Cabri 3D. They had drawn 

without problems the four vertices and the six edges on the base plane. Before using 

the Redefinition tool, the teacher (T) proposed a thought experiment:  
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1 T: Let’s try to extract a vertex from the plane. Imagine to redefine... rather, 

2  let’s make two things. If I ask you: Extract a vertex from a plane, what do 

3  you think that it’s gonna happen?  

4 V: <S gestures with two joined fingers moving up (Figure 1c)> It shapes 

5  a kind of pyramid with a triangular base. 

6 T:  It becomes a pyramid with a triangular base. <M drags a vertex to see the 

7  triangular pyramid, but as soon as he uses the Glassball modality he 

8  realises that the dragged point is on the plane. So, he drags the point back 

9  on the visible grey part of the base plane> 

10 V: If I extract the centre it becomes a square based pyramid. 

11 T: What is the centre? 

12 V: The point where the diagonals meet. 

13 T: You find the Redefinition tool under the Manipulation button. 

When the students were invited to “imagine” the new situation, gestures appeared that 

reflected knowledge about the transformation underwent by the quadrilateral. V easily 

imagined “a kind of pyramid with triangular base”; she was seeing the pyramid with 

her mind (lines 4-5). Instead, M immediately dragged the point to see the pyramid 

within the DGE. However, the Glassball modality, which he used to check the stability 

of the solid shape, revealed that “the dragged point is on the plane”, contrary to M’s 

expectation (lines 7-9). M wanted to see the guessed pyramid as a result of dragging, 

without knowing that a different tool was needed. Dragging only allows for moving the 

vertex on the base plane, even though it seems that it is off the plane once one sees it on 

the screen outside the visible grey part. This created a conflict between seeing and 

knowing that pushed M to drag the point back (line 8). At this time, V also imagined 

the solid obtained when “the centre” is extracted (line 10). However, since the students 

had no tools to check their conjectures, the teacher introduced the position of the 

Redefinition tool within the DGE.   

Seeing something as something else 

After the Redefinition tool was used to move the point and see the pyramid, the groups 

were given the 3D diagram with a quadrilateral on the base plane together with its 

bimedians. Slightly before knowing the task, M and S started to play around with the 

redefinition of one vertex. The teacher got close to ask them what happened:  

14 M: It [the quadrilateral] becomes a tetrahedron. (…) 

15 T: <T talks about the bimedians> Do they continue to meet?  

16 M, S: Ya. 

17 T: Where did they meet? <T reads what M and S wrote before “the bimedians  

18  meet in a point H. H divides the bimedians into two equal parts”> Does this 

still happen? 
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19 S: Hmm, at sight it seems to do, yea <M and S looks at the figure on the 

screen> 

This brief extract shows that, thanks to the Redefinition tool, M and S came to see, and 

think of, the figure on the screen no longer as a quadrilateral but as a tetrahedron (line 

14). This change was felt by the teacher, who drew attention to the continuity of the 

transformation (line 15), in order to push the student-pair to visually recognise (“at 

sight it seems”, line 19) that what was happening before is actually an invariant under 

the transformation (“still happen”, line 18). A similar reaction occurs when the two 

students explore the 3D diagram with a quadrilateral and its medians: 

20 S: It’s the same thing. 

21 M: Ya, it is. 

22 S: It’s always upside-down. <S refers to the tetrahedron with vertices the 

23  centroids of the faces that they have constructed> 

24 M: “A” corresponds to “A’”, and the others as well. [being A one vertex and A’ 

25  the centroid of the opposite face] The same properties hold. 

Invariants were also grasped in the case of medians, in which seeing something as 

something else started to entail seeing the “the same thing” (line 20) in the figures and 

seeing “the same properties” holding for both (line 25). The use of “always” was 

significant here because it marked that the student-pair was generalizing (line 22). 

When the properties were discussed collectively, the students were given one final 

Cabri 3D file containing two figures that seemed to be exactly the same:   

26 T: What are the figures? What do you see? <Some students say “pyramids”> 

27 E: They’re pyramids because we’re using Cabri 3D. 

28 C: No! The one on the left is a quadrilateral, the one on the right a pyramid. 

29 T: How do you know? 

30 C: I dragged the vertices, there are no projections on the left, yea on the right. 

31 S: <T asks “What about you?”> The same, but we used the Glassball. 

32 T: They might seem the same object, but they are not. We have seen that the 

33  same definitions and properties hold for both figures. Then, does it  

34  actually matter what they are? <Students answer “No!”> 

35 Ss:  No! 

This last transcript clearly points out that, at the end, the students needed to use the 

resources of the DGE for distinguishing between the given figures: the fact of being 

within Cabri 3D does not really help to see them as different figures (lines 27-28). 

Instead, the dragging modality for seeing whether projections were present, or the 

Glassball tool for changing the point of view, gave them real answers (lines 30-31), 

even though it did no longer “matter what they are” (lines 35-37).  
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CONCLUDING REMARKS 

Our examples showed that seeing in 3D involved for learners visual challenges that 

had mainly to do with conflicts between knowing and seeing and with the perception of 

the third dimension in flat diagrams. However, we found interesting the way these 

challenges were faced within the environment of Cabri 3D. The Redefinition tool and 

the Glassball modality, together with usual dragging, were resources for the students. 

In fact, they encouraged the students to take on multiple perspectives, as if they were 

taking on various physical positions from which to see a figure, as bodily projecting 

themselves both beyond and around it. So, they engaged the students in dynamic visual 

experiences with the diagrams, effecting new kinds of vision that pushed them towards 

a search for similarities and differences, invariants and changes, between quadrilaterals 

and tetrahedra. This engagement spoke directly to students’ enhanced visual skills, so 

that they not only came to see the quadrilateral as a tetrahedron, but also to see them, 

when thought of as represented in a diagram, as “the same thing”. For space 

constraints, we could not discuss our examples deeply, but we believe that they could 

form a basis for furthering effective future research.   
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In this paper, we explore an approach to understanding how multimodality works in a 

community of practice. Using a social learning framework, we show how a community 

of practice, involving a pair of high school students, engaged in perceptual, bodily, 

and imaginary experiences while discussing about calculus concepts in a dynamic 

geometry environment. Our findings suggest that learners’ multimodal experiences 

emerge in both visible and invisible uses of the artefact and are situated in the 

mathematical activities. This study enriches our understanding about how students 

participate in the mathematical activities with dynamic geometry environments. 

INTRODUCTION 

This paper brings multimodality in the lens of social learning, in particular, of 

community of practice. While many studies using Lakoff and Núñez’s (2000) ideas 

have provided insights into the embodied and multimodal nature of mathematical 

cognition, this line of work tends to focus on thinking in the individual sense rather 

than with respect to the social nature of learning. Adopting the non-dualistic view that 

mathematical thinking is part and parcel of doing mathematics, we see here 

compatibility with conceptualising learning as participating in mathematical activities 

in a community of practice.  

Our study seeks to apply the idea of multimodality—seen as an interplay of perceptual, 

bodily and imaginary experiences situated in the resources at play (Ferrara, 2013)—in 

social dimensions of learning (Lave & Wenger, 1991; Wenger, 1998). Toward a 

greater purpose, we hope that the results of our study will provide a better 

understanding of how multimodality “works” in a community of practice and in social 

learning contexts involving artefacts. Moreover, to pursue our interest in 

multimodality with respect to the use of dynamic geometry environments (DGEs), we 

anticipate that the notion of transparency under this framework can be meaningfully 

extended to the kinds of multimodal experience upon mathematical activities using 

DGEs. Within this perspective, we investigate: 

 What repertoire of resources do learners use as they participate in 

mathematical activities using a DGE? 

 What kinds of visible and invisible mathematical (multimodal) “talk” do 

learners develop as they participate in mathematical activities using a DGE? 
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THEORETICAL PERSPECTIVES 

Social dimensions of learning: Community of practice and transparency 

A community of practice is a unit of social interaction situated in practice; it is part of a 

broader framework for conceptualising learning in its social dimensions (Wenger, 

1998). This perspective suggests that learning is located, not in the heads or outside of 

the individual, but in the relationship between a social person and a social world. 

Meaning-making in social contexts requires a dual process of participating in-action 

and reifying actions into artefacts: 

On the one hand, we engage directly in activities, conversations, reflections, and other 

forms of personal participation in social life. On the other hand, we produce physical and 

conceptual artifacts—words, tools, concepts, methods, stories, documents, links to 

resources, and other forms of reification—that reflect our shared experience and around 

which we organize our participation. (Wenger, 2010, p. 180). 

The interplay between participation and reification is dynamic: the person and the 

world intertwine to shape meaning both individually and collectively. Over time, this 

creates a social history of learning and a dynamic social structure that define a 

community of practice. Participants use a set of criteria and expectations to recognise 

membership in a community of practice, which include: an understanding of what the 

enterprise of the community is (domain), mutual engagement in the activity 

(community), and appropriate use of the repertoire of resources that the community has 

accumulated through its history (practice).  

Lave and Wenger (1991) also posit that, when learners work within communities of 

practice, a dual visibility—visibility and invisibility—develops in the use of artefacts 

with respect to their transparency for the communicating subjects.  

Invisibility of mediating technologies is necessary for allowing focus on, thus supporting 

visibility of, the subject matter. Conversely, visibility of the significance of the technology 

is necessary for allowing its unproblematic—invisible—use. This interplay of conflict and 

synergy is central to all aspects of learning in practice: It makes the design of supportive 

artifacts a matter of providing a good balance between these two interacting requirements. 

(Lave & Wenger, 1991, p. 102). 

In the case of using a mediating technology like a DGE, transparency means that the 

DGE fades into the background and becomes a means by which participants achieve 

something else. On the other hand, if the DGE remains to be the focus, there is little 

room for learning about its affordances—it will be a black box that is in control. This 

invisible and visible character of the DGE allows for considering its relevance in 

communities of practice and its relationship to learning about particular domains. 

Multimodality in mathematical activities 

In the special issue on gesture and multimodality in mathematical thinking, Radford et 

al. (2009) point out that in our acts of knowing, different sensorial modalities—tactile, 

perceptual and kinaesthetic—become integral parts of our cognitive processes. Other 
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studies discuss gestures in mathematics teaching and learning, with respect to teacher’s 

gestures in relation to students’ meaning making (Arzarello et al., 2009), the cultural 

dimension of gestures (Radford, 2009), and the role of gestures in mathematical 

imagination (Nemirovsky & Ferrara, 2009).  

Further contributing to the discussion on multimodal mathematical cognition, Ferrara 

(2013) describes how multimodality manifests, that is, “as a constitutive expression of 

thinking, which encompasses complex networks of perceptual, sensory–motor and 

imaginary experiences” (p. 19). In particular, it is proposed that the contemporary and 

entangled emergence of such experiences shapes mathematical thinking on the one 

hand, and, on the other hand, is shaped by the resources at play.  

It is this idea of multimodality that we think works suitably in the lens of social 

learning and of community of practice, where the resources at play are relevant both 

for the community and for the practice at hand, and at the same time strictly contextual 

in terms of the domain of interest.  

METHODOLOGY 

Participants, task and data collection 

The participants of the study were two pairs of 12
th
 grade students (age 17) enrolled in 

an AP Calculus class in a culturally diverse high school in Western Canada. In the class 

of 26 students who all volunteered to participate in the study, the participants, R, G, J, 

S, were selected. They were selected randomly as a group of four because they had 

been seated in the same row in their regular calculus classroom and were regular 

partners during assigned group and pair-work activities. Their teacher (second author) 

describes them as motivated and comfortable working with each other. The study took 

place at the end of the first trimester of the school year in the participants’ regular 

calculus classroom, outside of school hours. At the time, the participants have just 

finished learning about key concepts in differential calculus using an iPad-based DGE 

called Sketchpad Explorer. So, students have experienced with exploring and 

discussing, in pairs, calculus concepts such as derivative, derivative functions and 

related rates through geometrical, dynamic sketches.   

The participants were divided into two pairs, and each pair was asked to discuss two 

different sketches presented in Sketchpad Explorer. For the purpose of comparing 

patterns of communications, they were given one sketch that they had seen before in 

class and another sketch related to a topic that was new to them. For example, the pair 

R and G were given a sketch related to the definition of derivative which they have 

seen before, and then a sketch related to area-accumulating functions (Figure 1a and b) 

which was new to them (they had not learned the topic of area-accumulating functions 

in class). The researcher gave the instructions, turned on the videotaping function of 

the camera facing the student-pairs, and then left the room, until the students finished 

talking about all the diagrams. Each student-pair took around 25 minutes on 

completing the task for each session. 
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(a) (b) (c) 

  

 

 

Figure 1(a) & (b): A dynamic sketch used in the study (with all Hide/Show buttons, 

“Show function”, “Show bounds”, “Show Area under f”, and “Show Trace of A” 

activated). The bounds “a” and “x” are draggable; the green traces represent function 


x

a

dttfxA )()( . Figure 1(c): Snapshots of R and G interacting with the sketch.  

DATA ANALYSIS 

In this section, we extend the notion of transparency to analyse the use of the DGE and 

the kinds of multimodal experiences that one of the student-pairs, R and G, developed 

in the task. The analysis is divided into three parts each containing a condensed 

transcript, for the purpose of identifying themes in each part. 

Visible talk: Exploring Hide/Show buttons and dragging 

The following is a transcript of R and G’s initial interaction with the first page of the 

sketch (see Figure 1a). At the start, all buttons were in the “hide” position, except for 

the “show function” button, which showed a constant function on the page. 

1 G: So this is like a straight line. What is show bounds? So there is an interval, 
2  so it’s like a domain. <G presses the “show bounds” button> 

3 R:  Can we change this one? Can we change “a”? <G drags “a”> 

4 G:  No, no, no, make it zero. Show area under “f”. <G presses the “show area 
under f” button> 

5 R:  What’s this point? Can we move it? <R taps on the green trace trying to 
move it> 

6 G:  Show, show, what’s trace of “A”? <G presses the “show trace of A” 
button>  

7 R: What are you doing?  

8 G:  I don’t know, I’m just, oh, when you are moving it, it’s graphing like the  

9  area, or, no, ya, ya, it’s just graphing the area. <G drags the entire rectangle 

horizontally> 

10 R:  Oh, interesting, and it goes up and down. <R drags point “a” horizontally> 

11 G: Well yeah, ’cause you’re making the area. 

12 R:  Can I move “x” still? Oh, interesting… <R drags point “x” horizontally> 

13 G:  So if you just move “x”, area is a positive slope. What if you just move “a”? 
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14  R:  It’s the up and down thing.   

The 3-minute transcript highlighted the way R and G entered visible “talk” about the 

dynamic sketch. It showed that the student-pair was trying to learn how to use the 

“black box” sketch by exploring the functions of the Hide/Show buttons and dragging 

the points “a” and “x” respectively. As the students had yet to fully grasp the many 

buttons in the sketch, they posed questions three times in lines 1, 4, 6 to inquire the 

functions of each button, “Show bounds”, “Show area under f”, and “Show trace of A” 

as each button was pressed. Since their perceptual and bodily experiences were 

focussed on the use of the Hide/Show buttons, it can be said that at this point, they 

attended to the buttons visibly rather than invisibly. The students also seemed unsure 

about what to do with the two draggable points “a” and “x” initially and therefore tried 

to use dragging as a resource to investigate the behaviour of the points. This was 

evident in lines 3 and 13, where R asked G if they could “change” “a” and then “move” 

“x”. The word use of “can” in both questions suggests that R did not know if the points 

were draggable, and therefore, proposed to drag “a” and “x” for the purpose of learning 

about the sketch. R and G’s use of the resources at hand, particularly the draggable 

points (that are used as parameters) gave relevant feedback about the enclosed area, 

allowing the two students to begin the process of imagining how the area would change 

and behave as a function. 

Invisible talk: Gesturing, dragging, and using the Trace tool  

After about 5 minutes of interacting with the first page, the students moved onto a new 

page of the sketch, which initially showed the sine curve (see Figure 1b). 

15 R:  Oh, sine. It’s gonna be complicated, it’s gonna be crazy.  

16 G:  Oh, is it “cos”? No, it’s not. <G drags “x” horizontally continuously> 

17 R:  It’s like it’s been shifted, transformed. 

18 G:  So this is the area right now, so when “x” equals to 3, the area is like 1.2. 

19 R:  So “a” is always gonna be there, and “x” is the one that’s always gonna 

20  like, where it corresponds.   

21 G:  No you can move “a”, when you move “a”, it’s just a vertical line 
<G drags “a”> 

22 R:  But it’s always gonna stay with “x”. The “x” moves at x and y direction  

23 G:  And then if you just move “x”, it’s a vertical line, wait, no it’s not.  

<G drags “x”> 

24 R:  It’s still moves it like this. <R makes “wave” gestures> It’s just when you 
move 

25  “a”, then it’s like up and down. <R gestures with one finger moving up and 

down> 

The transcript opens with G dragging the point “x” horizontally back and forth, 

therefore tracing a function A(x) that was sinusoidal (line 16). Then, R and G 

consistently used words like “now”, “it”, “this” and present continuous verb forms 
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(verb that ends with “-ing”) to talk about the state of the sketch. For example, the 

students took turns to describe what the green traces looked like, referring to the traces 

as “it” (lines 16 and 17). Then, G started to drag “x” horizontally and said “so this is the 

area right now” (line 18). Perceiving the green traces created by G’s dragging, R 

responded that the x-coordinate of green traces “always corresponds” (line 19). They 

moved on to describe the green traces left by dragging “a” which would create a 

“vertical line” (line 21).  

The episode shows that the student-pair moved from questioning about technology to 

talking invisibly about the sketch. The students used the Hide/Show buttons and 

dragged points “a” and “x” purposefully, without struggling with their functions as 

they did previously. They shifted their focus on the discussion from the act of dragging 

from earlier to the results of dragging—and towards invisible use of the DGE. During 

this discussion, R performed two hand gestures using her right index finger to describe 

the shape of the traces. First, she made “wave” gestures (Figure 2a) to explain that the 

green traces should be sinusoidal (line 24); then she made  “up and down” gestures 

(Figure 2b) to explain the vertical movement of “a” (line 25), when “x” and “a” were 

dragged respectively. These gestures provide further evidence that the students were 

engaging in invisible, multimodal “talk” around the DGE. 

(a) 

 

(b) 

                     

Figure 2(a): R’s “wave” gestures, and (b): “up and down” gestures. 

Through dragging and gesturing, the students extended their perceptual and bodily 

experiences. Moreover, the Trace tool and shaded area gave feedback about the 

relationship of the green traces and the area under curve, which enabled the students to 

imagine the possible shape of the corresponding area-accumulating function. It is also 

worthy of note that the coordination of the two students that reveal their real being of a 

community of practice: one drags and the other gestures; one moves depending on the 

movement of the other. 

Visible and invisible talk: Confirming conjectures with dragging 

34 R:  There’s probably some formulas, a generic formula for all of this. 

35 G:  So the area gets, it goes like big and small, big and small. <G drags “x”> 

36 R:  Wait, move “a” next to “x”, right on top, it goes zero right? <G drags “a” 

37  over top of “x”> Yes it’s zero. Move one of them somewhere.   

38 G:  So “x” increases positively. <G drags “x” to the right from x=0> 

39 R:  Wait, move it so that it’s at the top of the curve, where does it go when  

40  it’s at the top? Ok, so this grows from here to here, which represents the  

41  area of the whole.  <G drags “x” towards  > 



Ferrara, Ng 

PME 2014 3 - 71 

42 G:  Yea, so it’s just like the entire thing, but then it will go back down.  

43 R:  Yea it goes negative so it takes away from it. So once we finish this hump,  

44  it should be zero, yea it comes back to zero. <R drags “x” towards 2 > The  

45  area is always, when you graph the point, it’s always gonna be at the “x”,  

46  not the “a”.  

After about 8 minutes of interacting with the sketch, the transcript shows that R and G 

began to talk about the significance of the DGE sketch. This was evident in the way the 

students talked about a generic “formula” (line 34) to relate the green traces with “a” 

and “x” as well as their use of dragging to confirm their predictions about the sketch. In 

particular, they made conjectures such as the green trace should reach zero when “a” 

was dragged towards x=0 (lines 36-37), and that it should go up and back down before 

arriving at the next zero when “x” was moved towards 2  (lines 39-44). The students’ 

imaginary experience was met by perceptual and bodily experiences through 

perceiving the traces left by dragging. Having confirmed their results, they used high 

modality words such as “will” (line 42), “should” (line 44) and “always” (line 45) to 

generalise the ways the green traces should behave. Although they were not able to 

communicate about the area-accumulating function A(x) clearly, the students grasped 

the meaning of the green traces, marked by their mutual engagement towards 

predicting their shape. This suggests that they develop dual visibility in the use of the 

dynamic sketch: unproblematic use and understanding the significance of the DGE. 

DISCUSSION 

In this section, we direct our discussion with regards to our exploratory approach of 

applying multimodality in a social learning framework, and the extent to which this 

approach informed understanding of how multimodality “works” in a community of 

practice. First, our analysis shows that the student-pair constituted a community of 

practice. The two students shared a “domain” of interest to advance mathematical 

knowledge in their activity with the DGE; they were also mutually engaged and used a 

repertoire of resources in the activity. Some have critiqued the idea that classroom 

settings do not reflect communities of practice, but we have shown that communities of 

practice, as units of social interaction situated in practice, may exist in pair-work 

mathematical activities when students understand and share the goal of the activity. 

Secondly, the students used a repertoire of resources in their activities with the DGE, 

such as the Hide/Show buttons, the dragging modality, and the Trace tool that they 

possibly developed through their history of learning during the first trimester of the 

course. These resources enabled them to initially enter visible talk about the DGE, and 

later talked about the dynamic sketch invisibly. After about 8 minutes of interacting 

with the sketch, they conjectured about the shape of the green traces and used the 

dragging modality to confirm their predictions. Their unproblematic use of the DGE 

and ability to talk of the significance of the sketch supports the claim that they had 

found a “balance” between visible and invisible uses of the DGE. 
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Thirdly, the students’ interactions with the dynamic sketch were analysed both within 

the lens of transparency and multimodality. Aligned with both the social learning 

framework and Ferrara (2013) on multimodality, visible and invisible DGE use shaped 

the students’ mathematical thinking on one hand, and on the other, their participation 

in the activities were constantly shaped by the resources at play. Their participation 

involved talking, perceiving, dragging, gesturing and imagining, that is, multimodal 

experiences. In particular, these experiences are situated in the dynamic sketch. The 

sketch’s dynamic essence gave rise to the functional relationship between variables, a, 

x, and A(x), which the student-pair exploited by dragging and gesturing. These 

perceptuo-bodily acts, which were also dynamic in nature, led to the students’ 

imagining of the tracing of the green point that was dynamic in nature as well. 

In conclusion, our approach did enrich our understanding of how students participate 

in the mathematical activities with the DGE. In our illustrated episode, we found it 

helpful to extend the notion of transparency to students’ multimodal experiences in 

mathematical activities. This combined framework informed the interplay between 

transparency of talk, in a multimodal sense, and the resources at play—the DGE. 

Because of the scope of the paper, we were not able to examine the evolving discourse 

between a less experienced user of the DGE (new-comer) and a more experienced user 

of DGE (old-timer) in mathematical activities. We believe that this process of 

participation could form the basis for fruitful future research. 
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We present a case study that has been developed to inform about the teaching activity 

of a secondary mathematics teacher in a whole group discussion and the mathematical 

learning opportunities generated for the students in this classroom context. For data of 

one lesson we determine the episodes that shape the whole group discussion. For each 

episode we then examine the effects of the observed actions on the type of learning that 

can be encouraged. Our research reveals significant relationships between the 

teaching activity of the teacher and the creation and potential exploitation of 

mathematical learning opportunities on the part of the students. 

INTRODUCTION 

Research in the field has seriously addressed the study of social interaction as an 

element to build learning in small group work (Sfard & Kieran, 2001), but little is still 

known about the construction of mathematical knowledge in the course of whole group 

discussions (Saxe et al., 2009). We assume that these discussions are a crucial resource 

for mathematics teaching, since they can facilitate the students’ learning. Under this 

assumption in our work we seek to investigate to what extent and how the teaching 

activity mediates the generation and potential exploitation of mathematical learning 

opportunities in the mathematics classroom. In this report we summarize a case study 

(of a teacher and a lesson) whose results have come to inform about the following 

goals: (a) to characterise the type of teaching activity of a secondary mathematics 

teacher in a whole group discussion, and (b) to identify mathematical learning 

opportunities generated for the benefit of the students in this context. 

TWO THEORETICAL DIMENSIONS AND A KEY NOTION 

We base the analysis of what we call the episodes of a whole group discussion on the 

articulation of two dimensions: the instrumental dimension, about the artefacts and the 

way in which these are used in class, and the discursive dimension, about the 

interactional patterns that help to understand the generic development of the episodes 

and some of the particular characteristics shared among them. Therefore, two 

coordinates and the qualitative type that each coordinate takes define an episode.    

In the understanding of the instrumental dimension, six types of orchestration are 

considered: exploring the artefact, explaining through the artefact, linking artefacts, 

discussing the artefact, discovering through the artefact and experiencing the 

instrument. The first three types are focused on the teacher’s actions and the last three 

on the students’ actions. They are all inspired by the initial types constructed by 
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Drijvers and his colleagues (2010), but have been generalised in our research for 

instructional situations in which the design and implementation of whole group 

discussions do not necessarily contain an intensive use of technological artefacts. 

The discursive dimension is also framed in terms of types that are named stages of the 

discussion of a problem. They are presented as a sequence of activities that illustrate 

the process of conducting a whole group discussion toward the resolution of a problem. 

The stages are organised according to an idealized development of the resolution 

process: situating the problem, presenting a solution, studying different solutions or 

explanatory strategies, studying particular or extreme cases, contrasting solutions, 

connecting with other situations, generalising and conceptualising, and reflecting on 

mathematical progress. Later in the report we exemplify an episode with the 

coordinates discussing the artefact and contrasting solutions.  

More generally, we interpret episodes as systems of actions that have occurred in the 

course of the discussion. Our interest is on the effects of actions as some of them may 

foster basic procedural and/or conceptual mathematical learning (Niss & Højgaard, 

2011). Differently to how episodes are seen, actions are tied to the subject performing 

the action, either student or teacher, and their role in the organisation of participation in 

whole group discussion. To consider the role of the actions performed by the teacher, 

we draw on the classification by Schoenfeld (2011): classroom management actions, 

discussion actions and mathematical content actions, depending on whether they refer 

to the organisation of the classroom and its participants; to the development of 

mathematical activities; or to the mathematical content of the activities as well as the 

teacher’s ability to listen to the students, and become aware of their difficulties and of 

the aspects that they understand better or worse.  

Mathematical learning opportunities 

The interpretation of whole group discussions in terms of sequences of episodes and 

actions has to do with our understanding of interaction as a crucial place for the 

development of mathematical learning. Various authors have researched the broader 

topic of mathematical learning opportunities for the case of students (Yackel, Cobb, & 

Wood, 1991). We consider mathematical learning opportunities as relationships 

between contents of mathematical knowledge, which are liable to be procedural and 

conceptual, together with actions that potentially contribute to facilitate the students’ 

learning. These opportunities are identifiable through and from actions generated by 

diverse situations in the interaction processes of the mathematics classroom. 

Several distinct actions can be at the origin of the appearance and possible exploitation 

of learning opportunities. Classroom actions are a combination of multiple interaction 

processes, in which the students and the teacher as well as the use of artefacts 

contribute to the creation and development of relevant instructional situations that can 

in turn foster the students’ mathematical learning (Cobb & Whitenack, 1996). 

Accordingly, the study of learning opportunities requires the prior systematic 

preparation, examination and assessment of instructional situations.  
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DESIGN EXPERIMENT AND DATA 

Drawing on the tradition of design experiments in mathematics education research, we 

designed and implemented an instructional sequence of Geometry with similarity 

problems. Two teachers conducted it in two classrooms over a total of eight lessons 

with 8th graders (13 and 14 years of age). In this report we have selected the case of the 

teacher who at the moment of the experiment had an average teaching experience and 

was working in an urban school of a medium-high sociocultural area.  

Figure 1 shows the first problem in the sequence, whose wording presents an open 

approach and whose resolution is tied to the activation of high cognitive tasks of 

proportional thinking. There is more than one solution strategy and connections need 

to be made with the underlying mathematical concepts (e.g., shape, area, ratio). 

 

Figure 1: Formulation of the first problem 

The work dynamics is collaborative and begins with the paper-and-pencil resolution in 

pairs. It continues with a 20-minute whole group discussion, and finishes with the 

students’ written individual reflections. Two of the authors were present in the lesson, 

but did not intervene in the development of the activity. During the whole group 

discussion three video cameras recorded the interventions made by participants and 

these were later transcribed for the purpose of the analysis.  

The classroom recordings were examined in order to: (a) divide the whole group 

discussion into episodes, determine the actions that take place in them and, thus, obtain 

a description of the teacher’s activity when managing the lesson; (b) study the effects 

of the actions on the type of learning that is encouraged and detect and classify the 

mathematical learning opportunities generated during group discussion. In the next 

section we illustrate the application of the methods to one episode. 

EXAMPLE OF ANALYSIS 

First we divided the whole group discussion around the resolution of the problem of 

Figure 1 into nine episodes. We classified them according to a type of orchestration 

(instrumental dimension) and a discussion stage (discursive dimension), and we 

searched for the observed actions of the participants. The nine episodes with their nine 

corresponding coordinates provide organized information about the teacher’s activity 

when managing the whole group dynamics in the selected lesson. 
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The fifth episode (discussing the artefact, contrasting solutions) of the whole group 

discussion lasted three minutes. We briefly explain the major phases of the analysis of 

the episode. In the transcript below, the teacher addresses questions to discuss and 

obtain a definition of similar polygonal figures. The conversation begins with the 

projection of solutions onto a screen using dynamic geometry software; this is why we 

assign the type discussing the artefact for the instrumental dimension. As two 

interpretations of the problem wording are compared, resulting in two different 

solutions, a figure with twice the perimeter and another with twice the area, we assign 

the stage contrasting solutions for the discursive dimension. 

1 Teacher: [to Student 1] What did you understand? Why did you create this, 

[figure with twice the perimeter] and not this? [figure with twice 

the area]. 

2 Student 1: Because these two are the same [the original F and the one with 

twice the perimeter]. 

3 Teacher: Okay, then, the definition of similarity... Why do you think they are 

two similar figures? 

4 Student 1: All the sides multiplied by a number, always the same.  

5 Teacher: Okay, so, how are the sides? 

6 Student 1: Proportional.  

7 Teacher: Proportional, okay. And what else is needed? 

8 Student 2: All the angles need to be equal.  

9 Teacher: Here we won’t check the angles because it’s an F and it’s evident 

that all the angles are 90º, but we should always check. 

The system of actions that have occurred in the episode is also studied and represented 

by means of a sequence. We distinguish those performed by the students, named 

participation actions, from those by the teacher, named intervention actions. On the 

one hand, we mark the description of all actions with italics in the expanded narrative 

(italics are also used in the description of the mathematical learning opportunities). On 

the other, the intervention actions are more generally classified and thought of in 

relation to issues of classroom management, discussion and mathematical content (see 

the three columns of Figure 2, with the exemplification of the sequence of actions of 

the third type in the fifth episode). 

At the start of the episode the teacher requests an explanation [1] from Student 1 as to 

why he created a figure with twice the perimeter instead of twice the area. The student 

observes the two representations projected on the screen and reveals that his choice 

was based on the similarity of the figure whose sides are proportional to the original. 

We interpret this action as observation of empirical evidence [2], since the visual 

information provided by the artefact helps him to verify a specific mathematical fact, 

but without this action implying or having the function of justification. Next, the 

teacher uses the situation to introduce the concept of similar figures and requests 
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another explanation [3] so that any volunteer defines it. Again, it is Student 1 who uses 

the representation on the screen to explain that two similar figures must have all the 

sides multiplied by a number, and that this number must always be the same. However, 

we interpret this action as empirical justification [4], because the student uses the 

representation projected on the artefact as a complement to his oral explanation and the 

diagram legitimises his statement. As Hanna (2000, p. 15) states, “the visual 

representation is used not only as evidence for a mathematical statement, but also in its 

justification […] since diagrams can convey insight as well as knowledge.” 

 

Figure 2: Representation of a sequence of actions in the episode 

Later in the episode, the teacher requests formalisation [5] to specify particular 

technical language and to ensure the use of the term ‘proportional’ [6]. She validates 

the reasoning by Student 1 and requests further explanation [7] so that the students 

complete the definition. Another student uses the construction on the screen to observe 

the empirical evidence [8] that two similar polygonal figures, in addition, must have 

equal angles. We interpret that Student 2 does not use the artefact to support a 

mathematical reasoning, but to prove a concrete mathematical fact. Lastly, the teacher 

expands the explanation [9] by this student and states the importance of the equality of 

angles in the definition of similarity. 

In Figure 2 we see that the structure of the sequence of actions presents linked series of 

interventions between the teacher and the students. This interactional pattern is 

reproduced in the other eight episodes of whole group discussion in the lesson, since 
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the teacher gives almost no explanations, but manages the discussion with the 

questions that she asks and mainly elaborates her talk on the students’ responses.  

The analysis of the teaching activity comes when the analyses of all nine episodes have 

been finished. In total they reveal an orchestration that is equally focused on the 

teacher and the students. There are five episodes corresponding to the three first types 

of orchestration (exploring the artefact, explaining through the artefact and linking 

artefacts) and four corresponding to the last ones (discussing the artefact, discovering 

through the artefact and experiencing the instrument). The accomplishment of the 

idealized discussion stages is almost complete and their distribution is sequential from 

the stages of the initial moments of the discussion (situating the problem and 

presenting a solution) to the later ones (generalising and conceptualising). 

Identification of mathematical learning opportunities 

After having represented the sequence of actions for each episode, we are ready to 

relate the effects of the actions on the type of learning that they can encourage and to 

identify the mathematical learning opportunities, particularly focusing on the 

mathematics. For the fifth episode, our analysis suggests that various participation 

actions by the students can encourage procedural learning, linked to mathematical 

processes and focused on statements about facts perceived by the students during the 

debate (e.g., observations of empirical evidence), or on specific clarifications about 

mathematical aspects (e.g., formalisations). Other actions may encourage conceptual 

learning, linked to the students’ empirical justifications and reasoning, which are 

centred on the development of mathematical concepts (e.g., notion of shape).  

In a similar way, we explore the effects of the intervention actions by the teacher on the 

type of learning. These are the prioritised actions in the analysis due to our interest in 

the characterization of the teaching activity. As an example, we pay attention to the 

effects of mathematical content actions that refer to requests for explanation of 

mathematical methods or verification as they may encourage procedural learning (e.g., 

formalisations and validations). Also, this type of actions may encourage conceptual 

learning in relation to mathematical contents that are specific to the task (e.g., 

proportion and ratio) through the expansion of the students’ explanations. In 

conjunction with classroom management and discussion actions, three mathematical 

learning opportunities appear. 

The teacher’s intervention at the start of the episode, requesting an explanation, 

initiates a debate that ends with the correct statement of the definition of similarity 

[1-8]. Therefore the situation generates a conceptual learning opportunity, that of 

interiorising the concept of similarity and understanding its definition (see Figure 2, 

MLO1). Although the teacher’s questions are crucial to bringing about this situation, 

the opportunity arises as a result of the participation of students. Student 1 refers to the 

term ‘similar’ in his observation of the empirical evidence [2] and Student 2 responds 

to the teacher and completes the statement introduced by his peer [8]. 
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The request for explanation by the teacher [7], asking about the additional elements 

that characterise the similarity of two polygonal figures, generates another conceptual 

learning opportunity, that of identifying the equality of angles in the definition of 

similarity (see Figure 2, MLO2). Although Student 2 makes an empirical observation 

stating that the homologous angles of the two figures must be the same, the opportunity 

arises as a result of the teacher’s question, without comments of students directly 

leading to it.  

The teacher’s expansion of an explanation [9], emphasising the need to verify the 

equality of angles in order for the two figures to be similar, generates an interpretative 

and argumentative mathematical learning opportunity that we see as procedural. This 

is defined by realising the importance of being rigorous in the elements constituting a 

mathematical definition (see Figure 2, MLO3). Again it is the teacher with her teaching 

activity who mainly contributes to its generation. 

RESULTS AND FINAL DISCUSSION 

We have shown to what extent and how the teaching activity of a teacher in a lesson 

mediates the creation and potential exploitation of mathematical learning opportunities 

in whole group discussion. The first goal was to characterise the teaching activity. Our 

analysis of the instrumental and discursive dimensions suggests that the class is 

managed with an orchestration that is equally focused on the teacher and the students, 

and an organised accomplishment of the discussion stages. The distribution of actions 

in the fifth episode reveals linked sequences of questions and answers in an 

interactional pattern that alternates teacher and student interventions. 

The second goal was to identify the mathematical learning opportunities generated 

during the lesson. We have shown participation and intervention actions that seem to 

be at the origin of opportunities. The effects of some of these interrelated actions are 

likely to generate two major learning types: procedural and conceptual. To identify the 

opportunities, we have related the mathematical knowledge aspects of the opportunity 

with the effects of the actions that potentially facilitate their learning. Thus, we have 

observed that the mathematical learning opportunities occur in multiple discursive and 

instrumental situations. The data shown in this report only illustrates some of the many 

opportunities that were generated in all the episodes of the discussion. If looking at all 

of them, it can be inferred that the teaching activity is a strong mediator of 

mathematically significant actions whose effects may generate mathematical learning. 

Our results suggest that the activity by the teacher, which is balanced in orchestration 

and complete in the accomplishment of the stages, encourages the creation of diverse 

mathematical learning opportunities, which can be exploited by the students. Further 

research can be undertaken in this direction to find distinct degrees of exploitation of 

opportunities during whole group discussions. 
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CONNECTING A MATHEMATICS TEACHER’S CONCEPTIONS 

AND SPECIALISED KNOWLEDGE THROUGH HER PRACTICE 

Eric Flores, José Carrillo 

University of Huelva, Spain 

 

The aim of this paper is to show connections between a teacher’s conceptions about 

the teaching and learning mathematics reflected in the planning designed by a 

secondary level mathematics teacher, and the specialised knowledge deployed both at 

the design stage and in the teacher’s reflections after the lesson. The research method 

followed was an instrumental case study via content analysis. The study contributes to 

the development of an analytical model for studying mathematics teachers’ specialised 

knowledge. 

INTRODUCTION 

In Skott, Van-Zoest and Gellert (2013), there is a call for research into the connections 

between mathematics teachers’ knowledge, conceptions, and identity. In this work, we 

focus on the two-way connections between a mathematics teacher’s conceptions and 

her specialised knowledge in the context of several typical practices. 

By considering the design of, and reflection on, various class activities, we study the 

knowledge brought into play by a mathematics teacher at the planning stage, and the 

connections between this knowledge and the teacher’s conceptions about teaching and 

learning the subject. 

Viewed from a cognitivist perspective (Ponte, Quaresma & Branco, 2012), we 

consider the design of learner tasks, their management and the teacher’s subsequent 

reflection upon them, as something which embraces multiple professional practices. In 

this instance, we consider the teacher’s intentions, management and reflections 

regarding the interaction of the activities with her pupils and with hypothetical 

situations arising from aspects of the plan. 

In response to the teacher’s plan, which takes an experimental approach with equally 

likely outcomes, we delve deeper into the Conceptions about Mathematics Teaching 

and Learning (CMTL) reflected in the design itself, and seek to locate the specialised 

knowledge brought into play via descriptors drawn from the corresponding 

subdomains of the Mathematics Teacher’s Specialised Knowledge model [MTSK] 

(Carrillo, Climent, Contreras & Muñoz-Catalán, in press). 

THEORETICAL FRAMEWORK 

In this section, we situate the study within the ambit of professional practice, focusing 

discussion on the practices of anticipating and interpreting the pupils’ modes of 

thinking, and on the teacher’s classroom management and post hoc reflections. As 
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regards specialised knowledge, we draw on the subdomains of MTSK and its 

corresponding theoretical underpinnings. Finally, we consider the notion of 

conception, and the position we take in this respect vis-à-vis the interpretation of the 

data extracted from the design of the activities. 

Mathematics teachers’ professional practices 

We consider professional practice as anything which forms part of the teacher’s 

workload which is closely related to the promotion of their pupils’ learning (e.g. 

Branco & Ponte, 2012). Viewed thus, professional practices go beyond the teacher’s 

role at the front of the class and include activities which are undertaken outside the 

classroom. Such scenarios of professional practice offer plentiful opportunities to 

deepen our understanding of specialised knowledge (Flores, Escudero, & Aguilar, 

2013). Below we cite examples of professional practices noted by various researchers 

(including unintentional ones), and indicate those we analyse in this study. 

Stein, Engle, Smith and Hughes (2008) propose a series of professional 

(interdependent) practices for orchestrating productive discussions about mathematics, 

which they sequence thus: 

(1) anticipating likely student responses to cognitively demanding mathematical tasks,  (2) 

monitoring students’ responses to the tasks during the explore phase, (3) selecting 

particular students to present their mathematical responses during the 

discuss-and-summarize phase, (4) purposefully sequencing the student responses that will 

be displayed, and (5) helping the class make mathematical connections between different 

students’ responses and between students’ responses and the key ideas. (p. 312) 

Most of these practices directly involve the teacher’s interaction with their pupils. 

Nevertheless, behind each, especially that of anticipating, is the need for a practice 

undertaken outside the classroom in the form of planning and reflecting on the 

outcomes of the lesson. 

Ponte et al. (2012) describe and discuss two common practices, the presentation of 

tasks to students and group discussions. They propose a framework for studying these 

practices, which is intended to be serviceable irrespective of whether such studies take 

a cognitivist or sociocultural approach. The framework considers: 

(1) the teacher’s aims, the way in which these give rise to achievable objectives, and how 

they are given shape through various professional actions, […] (2) the social context and 

the educational context, […] (3) the classroom context, […] (4) the teacher’s professional 

knowledge, […] (5) the teacher’s know-how, [… and] (6) the teacher’s capacity for 

reflection. (p. 84) 

In our study we focus specifically on the facets numbered 1, 4 and 6 above. 

In their model of Mathematical Knowledge for Teaching (MKT), Ball, Thames and 

Phelps (2008) include within the knowledge subdomain they dub Specialized Content 

Knowledge (defined as the mathematical knowledge and skill unique to teaching) 

elements such as: 



Flores, Carrillo 

PME 2014 3 - 83 

Teaching […,] requires understanding different interpretations of the operations in ways 

that students need not explicitly distinguish […, teachers] must be able to talk explicitly 

about how mathematical language is used […]; how to choose, make, and use 

mathematical representations effectively […]; and how to explain and justify one’s 

mathematical ideas. (p. 400) 

In Flores, Escudero and Carrillo (in press), the authors conclude that, more than 

identifying mathematics teachers’ specialist knowledge, the examples describe tasks 

forming part of teachers’ work, and that different kinds of knowledge (mathematical, 

syntactic, learning styles and others) are required for teachers to carry these out. In 

other words, although the authors talk about SCK in terms of knowledge, what is 

actually exemplified seems to relate closer to the idea of mathematics teachers’ 

professional practice. 

The professional activity on which we focus in this paper is the design of classroom 

tasks, and we explore aspects of conceptions and knowledge, looking at three 

professional practices: the prediction and the interpretation of the pupils’ way of 

thinking, and the post hoc reflection by the teacher involved in the study. 

Mathematics Teacher’s Specialised Knowledge 

Various models relating to mathematics teachers’ professional knowledge are 

available (e.g. Usiskin, 2002; Bretscher, 2012). In particular, MTSK focuses on the 

study of the kind of knowledge which is relevant only to mathematics teachers 

(Escudero, Flores, & Carrillo, 2012). This model is based on consideration of two of 

the knowledge domains proposed by Shulman (1986), Mathematical Knowledge (MK) 

and Pedagogical Content Knowledge (PCK), and offers a refinement (e.g. Montes, 

Aguilar, Carrillo, & Muñoz-Catalán, in press) to the knowledge subdomains proposed 

in MKT by Ball et al (2008). It seeks to address, principally, two issues detected in 

MKT – the difficulty in demarking some subdomains from others, and the tendency of 

some descriptors not to be phrased purely in terms of elements of knowledge (Carrillo 

et al., in press). 

In MTSK, there are three subdomains in respect of MK: Knowledge of Topics, KoT 

(including phenomenological aspects, meanings, definitions, and examples 

characterising aspects of the topic of study), Knowledge of the Structure of 

Mathematics, KSM (including an integrated system of connections which enables 

advanced concepts to be understood and developed from an elementary perspective, 

and elementary concepts from an advanced one), and Knowledge of the Practice of 

Mathematics, KPM (knowledge of the forms of knowing, creating and producing in 

mathematics, knowledge of aspects of mathematical communication, reasoning and 

proof). Three other subdomains are considered in PCK: Knowledge of Mathematics 

Teaching, KMT (knowledge of different strategies enabling the teacher to develop 

procedural and conceptual mathematical abilities, knowledge of the potential of 

resources, examples and other means of representation for making a specific content 

more comprehensible, and knowledge of educational theory relating to mathematics), 

Knowledge of Features of Learning Mathematics, KFLM (knowledge of the 
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characteristics of the pupils’ learning process for different contents, the language 

associated with each concept, and potential errors, difficulties and obstacles, 

theoretical knowledge about learning mathematics) and Knowledge of Mathematics 

Learning Standards, KMLS (knowledge of what the pupils should/can achieve by the 

end of a particular school year, knowledge of the procedural and conceptual abilities 

and mathematical reasoning promoted in specific educational stages). 

MTSK offers this study useful categories for exploring knowledge. We start with 

general questions arising from the nature of the two knowledge domains and analyse 

these with specific categories drawn from each subdomain. 

Conceptions of teaching and learning mathematics 

We understand a conception as the “conscious or unconscious [set of] beliefs, 

concepts, meanings, rules, mental images and preferences concerning mathematics” 

(Thompson, 1992, p. 132). 

Leatham (2006) takes a position regarding the study of conceptions, with which we 

concur. Introducing the term Sensible System Framework, the paper suggests that 

rather than focusing on inconsistencies between declared conceptions, those inferred 

from classroom performance and those drawn from teacher reflections, all such aspects 

could be observed as a sensible system which accounts for itself. We also agree that 

conceptions represent a predisposition towards action and that they cannot be directly 

observed or measured, only inferred. 

For data analysis, we used the categories and indicators put forward by Carrillo (1998), 

which, in terms of CMTL, distinguishes four kinds of conceptions (referred to as 

teaching tendencies in order to foreground the difficulty of ascribing an individual 

teacher to any single conception): the traditional, the technological, the spontaneous, 

and the investigative. Again, it should be stressed that these categories are not designed 

for placing teachers in particular boxes according to their conceptions, but it is the case 

that teachers tend to show predilections towards the indicators of one tendency or 

another. 

METHOD 

The research design follows that of an instrumental case study (Stake, 1994), and was 

carried out by means of content analysis (Bardin, 2002). The study itself is part of a 

wider study seeking to establish connections between varying elements of MTSK. 

The work uses the indicators described by Carrillo (1998) to identify the CMTL 

reflected in the design of activities by a secondary level mathematics teacher (Carol), 

and we allowed the rationale underpinning this design to guide our analysis. 

The identification of the specialised knowledge Carol brought into play was achieved 

through an open-ended interview in which she was presented with hypothetical 

situations. The interview was structured according to the tasks that Carol had used in 

class, and focused on the following aspects of MTSK: 
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With respect to knowledge of content: (a) the knowledge she expected her students to 

learn; (b) the knowledge she used, or could have used, in the design and execution of 

the tasks and in reflecting on the results; and (c) the knowledge which, as researchers, 

we anticipated could be appropriate to planning the tasks, carrying them out and 

reflecting on the results. 

With respect to pedagogical content knowledge: (d) knowledge of the students’ 

habitual ways of working; (e) knowledge of the ways in which the students’ thinking 

develops; and (f) knowledge of teaching strategies which promote specific behaviour 

in the students. 

RESULTS 

This section is divided into three parts. The first talks about our findings regarding the 

CMTL reflected in Carol’s design. The second part concerns the items of specialised 

knowledge we identify with the help of the design itself and Carol’s responses in the 

open-ended interview and the hypothetical situations. Finally, we suggest connections 

between the CMTL and the items of knowledge identified. 

The rationale of the design: inferred conceptions 

Carol’s design consisted in choosing which result would appear most frequently when 

an object is thrown, first a coin, and second a dice. The complete rationale of the design 

(with each object) is thus: (a) predicting which event will occur the most number of 

times on throwing an object n times; (b) experimenting, recording the results and 

comparing these with the prediction; (c) predicting which event will occur the most 

number of times on throwing an object m times (m>n); (d) experimenting, recording 

the results and comparing these with the prediction; (e) predicting which event will 

occur the most number of times on throwing an object s times (s>m); and (f) dividing 

the number of times the pre-selected result occurred in the experiment by the total 

number of throws. In each stage, the students compare their results with those of 

classmates. 

The repetition of predicting and experimenting was intended to guide the students 

towards recognising a pattern of equal probabilities, and this, taken together with the 

increased number of throws and the calculation of the quotient, indicates a conception 

of the acquisition of mathematical knowledge as a reproduction of the logical 

processes of the construction of content. For Carol, the significance of including 

experimentation in the class was both as a source of motivation encouraging student 

participation, and as a means of informally assessing student knowledge of the sample 

space of the event. 

Although it is not our intention to categorise Carol as pertaining to a particular teaching 

tendency, the association she establishes between her design and the students’ 

learning, based on the construction of meaning through the application of logical 

procedures, is a characteristic feature of the technological tendency (Carrillo, 1998). 
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Knowledge based on MTSK 

With respect to her knowledge of the theme of equally probable events, Carol 

demonstrates her understanding of the connections with this topic and that of fractions, 

percentages and sample spaces. Likewise, she distinguishes between those events 

which have equal probability and those in which certain outcomes are more likely to 

occur:  

Carol: There are fewer combinations to add up [the faces of two dices] to appear 

one and one [...] the ones with a greater probability are the ones in the 

middle [… there are events in which you can consider] previous results [so 

as to] predict, but it’s by no means certain. 

The knowledge represented here can be considered as pertaining to KoT (knowledge of 

connections between elements of a concept, definitions and properties). Nevertheless, 

although Carol recognises the importance of determining the sample space of the 

events, neither in her design, nor her subsequent reflections, does she include as part of 

the space the event of, at least, two outcomes occurring exactly the same number of 

times, although she does recognise that her students do not typically consider this event 

as part of the space. 

Carol: My students never say it will turn out a draw [that heads and tails will occur 

an equal number of times], they choose either more heads or more tails, but 

not an equal number… well, perhaps a few say so, but most of them don’t. 

One area which is considered part of KFLM is that of predicting how students will 

think and act, and in this respect the teacher mentions strategies her students employ in 

predicting results based on previous outcomes, such as looking for patterns: 

Carol: [My students] would have thought to themselves: “there’s a pattern here, 

first I called heads and it came out tails, then I called tails and it came out 

heads, now I’ll see if it comes out tails again [...] which gives them the same 

result” [out of 10 throws]. 

Carol regards experimentation as a learning strategy which, besides motivating the 

students, allows them to explore possible outcomes. Knowledge of such teaching 

strategies which directly bear on mathematical content is considered part of KMT. 

As for mathematical knowledge recognised by the researchers as being necessary to 

Carol’s design, this consists of fully determining the sample space (that is, the 

consideration that at least two outcomes might occur an equal number of times), and 

knowledge of Bernoulli’s experiment for deliberately choosing the number of 

experimental repetitions. 

Potential connections between items of MTSK and CMTL 

The analysis has brought to the fore the appearance of features of the technological 

teaching tendency. Although all teachers need knowledge of the logical processes of 

constructing the mathematical knowledge to be learnt by the students, the use of this 

knowledge is especially relevant in relation to the aforementioned features. According 
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to evidence drawn from Carol’s lesson episodes, this has meant the incorporation of 

elements of distinct natures. On the one hand, the knowledge of definitions, 

connections within the concept and properties such as the law of large numbers, shows 

a deep knowledge of the topic which allows its reconstruction. On the other hand, with 

respect to knowledge of connections with more advanced topics, Carol considers it 

unnecessary for this lesson, although she admits to using more advanced knowledge 

than that actually deployed in class at other times in the planning phase. Carol’s 

attested pedagogical content knowledge centres on the objectives of her plan and the 

impact this might have on her students, as a result of which there is an emphasis on 

being aware of the options facing the students when they come to do the activities, and 

the strategies they might employ, whether correct or incorrect, in carrying them out. 

Carol’s knowledge in this respect bears features of a technological conception 

regarding the teacher’s role, specifically, the transmission of knowledge through 

technological procedures and a presentation style in which she adopts the role of 

technician organising content and design.  

CONCLUSIONS 

Through the case study of Carol’s teaching we aimed to understand the two-way 

connections between conceptions and mathematics teachers’ specialised knowledge. 

The study focused on various practices typical of mathematics teachers, and explored 

the utility of an emergent model designed to study the knowledge involved, MTSK. 

The connections are consistent in that the knowledge deployed by Carol (and likewise 

that which the researchers detect as potentially necessary) emerges from her intentions 

for the lesson. Further studies are clearly necessary to explore the connections between 

the multiple elements of teachers’ knowledge, and the ways these impact on their 

teaching and their students’ learning.  
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We present a literature review of the emerging research area online mathematics 

teacher education (OMTE). The review focuses on identifying (1) the main issues 

investigated in the area, (2) the main theoretical approaches employed, (3) the kind of 

empirical evidence that the researchers produce and present in order to support their 

findings and the way they analyze the data. Finally we use the concept of 

humans-with-media (Borba & Villarreal, 2005) to reflect on the possible 

transformations that online environments produce in the production of research 

knowledge within this research area. Our study provides an updated overview of the 

OMTE research area. 

INTRODUCTION 

In his book chapter Schoenfeld (1999) states that the research methods used in 

educational research are constantly evolving and they may even become obsolete:  

To put it starkly, yesterday’s tools, techniques, and perspectives are valuable, but they are 

inadequate to cope with today’s challenges, just as today’s tools, techniques, and methods 

will be inadequate in just a few years. (p. 171) 

If we look at the evolution of the field mathematics education research, we can see that, 

indeed, the research methods used in the field have changed (Hart, Smith, Swars, & 

Smith, 2009) and some of these changes are related to the emergence of new 

technological tools. For instance, today is possible to use software to develop detailed 

and comprehensive analysis of qualitative data such as gestures, speech and rhythm 

(Radford, Bardini & Sabena, 2007), or to study students’ conceptions of mathematics 

through analyses of the photographs taken by mathematics students (Harkness & 

Stallworth, 2013). 

The initial motivation of this work was to explore how technological tools are 

transforming the work of contemporary researchers in mathematics education. We 

studied this transformation within an area of research in mathematics education that, 

by its very nature, takes place in technologized environments. We refer to the research 

area of online mathematics teacher education [OMTE] (Borba & Llinares, 2012). To 

explore the possible changes that technological tools produce in researchers’ work we 

use the concept of humans-with-media. This theoretical concept helps to explain how 

technological tools—and also non-technological media—influence and reorganize the 

way humans know and produce knowledge (Borba & Villarreal, 2005). Thus, in this 

paper we analyze, through the concept of humans-with-media, the activity of 
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researchers working in the area of OMTE; more particularly, we pay attention to the 

possible transformations that online environments produce in the production of 

research knowledge. 

The meta-study reported in this manuscript is not limited to analyzing possible changes 

in the work of researchers brought by technological tools; our study also provides a 

characterization of the emerging research area OMTE. Thus, the purpose of this paper 

is twofold: (i) to provide a characterization of OMTE research area that focuses on the 

main topics studied and the theoretical and methodological tools used, (ii) to analyze 

the research knowledge produced by researchers studying OMTE, paying special 

attention to the role that technology plays in the production of such knowledge. Our 

study provides an updated overview of the OMTE research area that can function as a 

benchmark for future comparisons that could allow us to assess how this research area 

has evolved. 

RESEARCH QUESTIONS AND METHOD 

For practical reasons, to analyze the researchers’ work we didn’t make direct 

observations of their activity. We opted instead to analyze empirical studies on OMTE, 

recently published in international research journals. Our analysis of such empirical 

studies focused on identifying the main topics studied, the theoretical and 

methodological tools used, and the type of empirical evidence produced and presented 

in the manuscripts to support the findings. In particular, the research questions that we 

addressed in this study are: 

 RQ1. What are the main issues investigated in the area of online mathematics 

teacher education? 

 RQ2. What are the main theoretical approaches employed in this area? 

 RQ3. What kind of empirical evidence do the researchers produce and present 

in order to support their findings and claims and how do they analyze the 

data? 

 RQ4. Is the work of the researcher transformed by the characteristics of the 

online environments? If yes, how? 

Empirical studies reviewed 

The literature consulted to develop this study was divided into primary and secondary 

sources. Next we describe each of these categories. 

Primary source 

The area of OMTE has been characterized as an emerging research area, on which little 

has been published (Borba & Llinares, 2012). Borba and Llinares (2012) state that a 

literature search related to e-learning in mathematics education and OMTE in some of 

the major international journals during the period 2005-2012, produce just a few 

results. Aware of the scarcity of specialized literature, we decided to start our search in 

the special issue of the journal ZDM—The International Journal of Mathematics 



Flores, Escudero, Aguilar 

PME 2014 3 - 91 

Education devoted to the topic of OMTE (volume 44, issue 6) and which brings 

together researchers from different regions of the world which use different theoretical 

and methodological approaches in their studies. 

Secondary sources 

The secondary sources consulted for this study have different origins. On the one hand, 

we searched on the bibliographic references used in the articles obtained from the 

primary source. In addition, we consulted three international journals whose aims and 

scope are directly related to two constitutive elements of the OMTE: mathematics 

teacher education, and the use of the computers, Internet or other technological 

resources. The three journals consulted were the Journal of Mathematics Teacher 

Education; Technology, Knowledge and Learning (formerly known as International 

Journal of Computers for Mathematical Learning); and The International Journal for 

Technology in Mathematics Education. 

It is important to note that all the manuscripts that were selected from the primary and 

secondary sources for further analysis met the selection criteria described in the next 

section. 

Selection criteria for manuscripts 

The manuscripts that were selected for further analysis had to meet the following 

conditions. First, the manuscripts should report an empirical study in the area of 

OMTE, these sorts of manuscripts would provide us with relevant information to 

answer the research questions, particularly RQ3. Second, the articles should have been 

published recently, more particularly, should have been published during the period 

2009-2013. This last requirement allowed us to locate manuscripts that provided us 

with an updated overview of the state of development of the OMTE. 

The above-mentioned selection criteria were applied to the primary and secondary 

sources for selecting the manuscripts; for example, we selected eight manuscripts out 

of ten from the primary source. A book review and a research report that doesn’t relate 

to teacher education were excluded. Appendix 1 includes a table showing an overview 

of the number of articles selected from the primary and secondary bibliographical 

sources; it also contains the bibliographic details of each of the selected articles. The 

appendix 1 is available at http://cor.to/pme_OMTE 

Analysis of the manuscripts 

Once the eighteen manuscripts listed in appendix 1 were selected, we proceeded to 

analyze them. To carry out the analysis, some guiding questions were defined. These 

questions were useful to keep the analysis focused on the aspects of the manuscripts 

that would allow us to answer the research questions.  

To try to homogenize the way the guiding questions were interpreted and applied in the 

analysis of the manuscripts, there was an initial phase in which all the members of the 

research team independently applied the guiding questions to 3 of the 18 manuscripts 

contained in appendix 1. After analyzing the articles independently, the members of 
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the research team met to compare their results. This stage helped to homogenize the 

interpretation of the guiding questions and the analysis of the manuscripts. After this 

stage, the researchers continued examining the manuscripts independently, but 

meeting regularly to share and discuss their results. The guiding questions used to 

analyze each of the manuscripts were: (1) what is (are) the research question(s) 

addressed in the study? (2) what technological tools are used to generate empirical data 

and what kind of data is generated? (3) what methods are used to analyze the empirical 

data? (4) what theoretical constructs are used in the study? (5) do you notice any 

transformation in the work of the researcher(s) conducting the study? 

The guiding question (1) was designed to obtain information to answer the research 

question RQ1. The guiding questions (2), (3) and (4) were used to identify information 

that could allow us to answer the research question RQ2. Particularly, the guiding 

question (2) was aimed at investigating the kind of empirical data presented in the 

reviewed studies, and the role of technological resources in the generation of such data; 

this information allowed us to answer the research question RQ3. The guiding question 

number (5) was not focused on identifying a particular type of information contained in 

the manuscripts, it was used as a question that required us to reflect on the possible 

changes in the work of researchers as addressed in the research question RQ4. 

The answers to the guiding questions connected to each of the analyzed papers were 

written into tables and categorized. In the next section of the manuscript we present the 

categorizations constructed, which in turn provide answers to our research questions. 

RESULTS 

The presentation of our results revolves around four aspects: first, we provide an 

overview of the main topics that have been investigated in this area; second, we 

mention the main tools used for the collection of empirical information as well as the 

theoretical constructs that have been used in these investigations; third, we refer to the 

type of empirical data used in the studies, as well as the techniques employed to 

analyze them. Finally, we reflect on an issue that relates to the above three aspects: the 

possible transformations that online environments may produce on the researchers’ 

work and the type of knowledge they produce.  

Main issues investigated in the area of OMTE (answer to RQ1) 

The research reports included in this review have a common core feature: all of them 

focus on aspects of mathematics teachers’ knowledge through the use of online 

environments. The online environment has played different roles in the research 

reviewed. In most of the studies it has been used as a means to conduct research, but it 

is also intended as an element that could be incorporated into mathematics teachers’ 

work. Also, some research has focused on phenomena that occur as a result of working 

with mathematics teachers in online environments. 

According to the research interests reflected in the reviewed studies, we have 

constructed a categorization consisting of two groups that aren’t necessarily mutually 
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exclusive: (a) studies focused on analyzing interactions among teachers in online 

settings, and (b) studies focused on teachers’ professional development. 

(a) Studies focused on analyzing interactions among teachers in online settings 

This kind of studies is conducted with groups of pre-service teachers, in-service 

teachers, and teacher educators. In these studies online-based interactions among 

teachers are promoted, and then researchers focus on investigating the specific ways in 

which teachers communicate and interact in such online collaborative environments. 

For instance, Silverman (2012) explores the relationship between teacher participation 

in online discussions and the development of their mathematical content knowledge 

for teaching. For this, social network analysis methods are employed for coding, 

comparing and categorizing teachers’ participation in online discussions. Schemes 

such as “Cheerleading/Affirming”, “Doing Mathematics” and 

“Questioning/Challenging” are used for the coding teachers’ participation. 

Subsequently, graphical representations of the interactions among teachers are 

developed with the help of social network analysis software. 

(b) Studies focused on teachers’ professional development 

Mathematics teachers’ professional development is a recurrent theme in the literature 

reviewed. Although there are different interpretations of the concept of professional 

development in the literature, it is generally understood as changes in the teachers that 

favor improvements in their professional practice. Some research focuses on 

investigating how the work and involvement of mathematics teachers in online 

environments promotes their professional development; for instance, Fernández, 

Llinares & Valls (2012) study how prospective teachers’ participation in on-line 

discussions when solving specific tasks, supports the development of their capacity of 

noticing of students’ mathematical thinking. Clay, Silverman & Fisher (2012) studied 

how teachers, after participating in online collaborative work, begin to transform their 

language incorporating elements of a theoretical approach called Learning Algebra 

with Meaning; the transformation of teachers’ language and its use in analyzing 

students’ mathematical activity, are considered indicators of professional 

development. 

Main theoretical approaches employed in the area of OMTE (answer to RQ2) 

We found that some of the theoretical approaches used are extrapolations into online 

environments of theoretical tools originally designed for face-to-face settings; 

examples of this are the concepts of community of practice (used in the study of 

Kynigos & Kalogeria, 2012) and mathematical knowledge for teaching (Clay et al, 

2012). However, theoretical approaches originally designed for online or 

technologized environments are also employed, for instance the concept of 

humans-with-media (see Borba, 2012); there are also methodological tools specifically 

designed for application to online scenarios such as the model of instruction called 

online asynchronous collaboration and developed by Ellen Clay and Jason Silverman 

(Clay et al, 2012). 
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Type of empirical data, how are obtained and analyzed (answer to RQ3) 

By empirical data we refer to all kind of data that the researchers have considered as 

the unit of analysis in their research. Because the research is developed in online 

settings, the type of data generated is of digital nature; more particularly, the empirical 

data can be classified as: 

Written productions: includes interactions in discussion forums, interviews via e-mail, 

and discussions in chat rooms. For example, in Fernández, Llinares, & Valls (2012) 

asynchronous forums are analyzed; in such forums teachers discuss the contents of 

videos of their students solving problems and also students’ writing assignments. 

Teaching materials: in some studies the focus is on the teaching resources designed by 

mathematics teachers for teaching a particular topic. For example Goos and Geiger 

(2012) report an study in which prospective teachers are asked to create video 

presentations along with a set of questions that would engage primary school students 

in mathematically rich learning. The video material’s potential to encourage a critical 

perspective on mathematics teaching and learning is studied. 

Mathematical productions: in this category we consider studies that focus on studying 

teacher-mathematical content relationships. For instance, in Borba and Zulato (2010) 

the geometric constructions performed by teachers when using a geometry software 

are analyzed. 

The ways in which the data are analyzed are diverse; however, in the review we mainly 

found qualitative studies. Some of these qualitative studies include quantitative 

analysis, for example Silverman (2012) made a qualitative categorization of online 

interactions between teachers, but he also uses social network analysis to quantify such 

interactions. Another example is the study of Meletiou-Mavrotheris (2012) that 

includes quantitative data such as the number of messages that emits a participating 

teacher in an online course. The analysis of teachers’ mathematical productions is less 

common. An example of this is the work of Borba and Zulato (2010) where is analyzed 

how teachers incorporate a software with graphic capabilities into the process of 

producing mathematical knowledge. 

The main tools used by researchers to generate their empirical data can are graphing 

software; platform resources such as forums, chat rooms and questionnaires; and 

digital recording artifacts such as iPods, camcorders, and smartphones. 

Is the work of the researcher transformed by the characteristics of the online 

environments?  If yes, how? (answer to RQ4) 

The answer to the first question is: yes, through our review we have noticed changes in 

the work of researchers, which are directly related to the technological tools available 

in the online environments. To clarify the nature of these changes, we used the concept 

of humans-with-media as a metaphor that “can lead to insights regarding how the 

production of knowledge itself takes” (Borba & Villarreal, 2005, p. 23); this is, we 

focused our attention on the unit researchers-with-online environments to identify 
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steps in the production of research knowledge which are transformed by the 

characteristics of the online environments. In particular we have identified three 

instances of transformation: 

Access to data. Online environments allow researchers to access remote data and in a 

less intrusive manner. With access to remote data we refer to overcoming geographical 

barriers when retrieving data, for instance, there are studies where online interactions 

of teachers coming from different geographical regions are analyzed, such is the case 

of the study of Meletiou-Mavrotheris (2012) involving teachers of statistics from  

three European countries. We speak of a less intrusive access to data because online 

environments allow researchers to observe interactions, dialogues, and teachers’ 

mathematical productions without being physically present. This feature provides the 

researcher with observations that are less intrusive than observations of interactions in 

a face-to-face setting. 

Data collection and processing. Online environments may also facilitate and 

accelerate the collection and processing of data. An example of this is the work of 

Meletiou-Mavrotheris (2012) where they apply online questionnaires to mathematics 

teachers and the answers can be quickly captured and processed. In this same study 

quantitative data on teacher participation in online discussions are used (number of 

teachers participating in a discussion forum or successfully completing group 

assignments, number of postings by each participant, etc.), however, these data are 

automatically generated by the online platform where the discussions take place. This 

type of data provides researchers with access to features of the interactions and 

collaboration among teachers that would be difficult to access in face-to-face settings; 

with these data for instance it is possible to develop detailed studies of interaction 

patterns within different online discussion groups.  

Adaptation and creation of theoretical tools. Finally, this review has made us notice 

that online environments create the need to adapt and create theoretical and 

methodological constructs adequate to study the didactic phenomena related to OMTE. 

For instance, Hoyos (2012) refers to the use of the documentational approach to 

structure teachers’ interactions in online asynchronous forums, in order to promote 

teachers’ reflection, however this theoretical approach was initially designed to be 

applied on face-to-face settings. 
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MATHEMATICAL KNOWLEDGE FOR TEACHING PROBLEM 

SOLVING: LESSONS FROM LESSON STUDY 

Colin Foster, Geoff Wake, Malcolm Swan 

School of Education, University of Nottingham 

 

Although the importance of mathematical problem solving is now widely recognised, 

relatively little attention has been given to the conceptualisation of mathematical 

processes such as representing, analysing, interpreting and communicating. The 

construct of Mathematical Knowledge for Teaching (Hill, Ball & Schilling, 2008) is 

generally interpreted in terms of mathematical content, and in this paper we describe 

our initial attempts to broaden MKT to include mathematical process knowledge 

(MPK) and pedagogical process knowledge (PPK). We draw on data from a 

problem-solving-focused lesson-study project to highlight and exemplify aspects of the 

teachers’ PPK and the implications of this for our developing conceptualisation of the 

mathematical knowledge needed for teaching problem solving. 

INTRODUCTION AND BACKGROUND 

There is currently much interest in attempts to describe and measure the kinds of 

teacher knowledge that underpin the teaching of school mathematics (Rowland, 

Huckstep & Thwaites, 2005; Hill, Ball & Schilling, 2008). Central to this in the work 

of Ball and colleagues is the construct of Mathematical Knowledge for Teaching 

(MKT), which is formulated in terms of mathematical content knowledge (MCK) and 

pedagogical content knowledge (PCK). There is also a growing awareness of the 

importance of problem solving in the learning of mathematics (NCTM, 2000) and the 

need to emphasise mathematical processes such as representing, analysing, 

interpreting and communicating. Our attention is, therefore, drawn to how frameworks 

such as those for MKT ostensibly omit to describe and analyse mathematical process 

knowledge. Even in studies of student knowledge, such as PISA (OECD, 2003), where 

there is a focus on applications, the mathematical processes often remain implicit 

rather than explicit. 

For instance, we might ask what it looks like for a student to make progress in 

mathematical communication in a problem-solving context and what pedagogical 

knowledge would assist a teacher in supporting learners to improve in this. Answers to 

such questions are necessary to inform the basis of mathematical knowledge for 

teaching problem solving. A robust conceptualisation of mathematical process 

knowledge (MPK) and pedagogical process knowledge (PPK) would assist in 

supporting mathematics teachers to improve their skills in teaching mathematical 

problem solving. 

MKT is an empirically-derived classification, based on observations of actual 

teaching. Hence, given our observations that there is a general paucity of teaching of 
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mathematical problem solving, it is perhaps not surprising that PPK is 

underemphasised in classroom activity. In this paper, we describe our first steps in 

interpreting MKT more broadly to include the teaching of mathematical processes as 

an important part of mathematical activity. We report on a UK lesson-study project 

involving nine secondary schools (age 11-18) focused on improving the teaching of 

problem solving in mathematics lessons (Wake, Foster & Swan, 2013). We describe 

how teachers’ knowledge of processes and students, of processes and teaching, and of 

processes and the curriculum can be facilitated by a carefully designed lesson-study 

programme. 

MATHEMATICAL KNOWLEDGE FOR TEACHING 

Shulman (1987) precipitated considerable work in the area of knowledge for teaching 

with his claim that such knowledge is distinct from the content being taught. He 

outlined seven categories of knowledge for teaching, including pedagogical content 

knowledge (PCK), which he defined as: 

the blending of content and pedagogy into an understanding of how particular topics, 

problems, or issues are organized, represented, and adapted to the diverse interests and 

abilities of learners, and presented for instruction. (p. 8) 

More recently, Ball and colleagues (Hill, Ball & Schilling, 2008) have developed their 

construct of mathematical knowledge for teaching (MKT), which divides initially into 

subject matter knowledge and PCK, and then further within these two categories. 

Other conceptualisations of mathematical pedagogical knowledge, such as the 

‘Knowledge Quartet’, due to Rowland, Huckstep and Thwaites (2005), are also framed 

predominantly around mathematical concepts. Ball and colleagues present their 

categorisation of MKT as a domain map, and it is fruitful to consider how this diagram 

looks if we simply replace every occurrence of the word ‘content’ with the words 

‘concepts and processes’ (Figure 1). We do not suggest that process and content are 

dichotomous; on the contrary, we take the view that concepts and processes together 

constitute the content. We believe, however, that mathematical processes have been 

relatively neglected, and we seek through our modification of Ball and colleagues’ 

diagram to place them more prominently within the consciousness of the mathematics 

education community. 
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Figure 1: MKT domain map rewritten with ‘concepts and processes’ instead of 

‘content’ (adapted from Hill, Ball, & Schilling, 2008) 
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In order to exemplify and illustrate PPK, we turn now to our case study and our 

observations of teachers who were participating in a research and development project 

in which teaching processes was an essential focus. 

CASE STUDY 

At the time of writing, we have worked for just over a year with 3-4 teachers at each of 

nine schools, using a lesson-study model of teacher professional development with a 

strong focus on mathematical problem solving. Here, a mathematical problem is 

defined as a task for which a solution method is not known in advance by the solver 

(NCTM, 2000). A consequence of this definition is that a particular learner’s 

mathematical background is as important as the task itself in determining whether they 

will experience that task on a particular occasion as ‘problematic’. For example, a 

problem that might be categorised by one learner as a routine exercise in simultaneous 

linear equations might constitute a mathematical problem for another learner who fails 

to make that connection or who has no concept of simultaneous linear equations on 

which to draw. 

We adopted a case-study methodology in order to obtain rich, contextual data, which 

consists of video recordings of the planning meetings, research lessons and post-lesson 

discussions and audio recordings of interviews with the teachers. 

Focusing the lesson-study groups on problem solving added a complexity beyond the 

‘iconic’ Japanese model of lesson study as practised and developed since the 

nineteenth century (Fernandez & Yoshida, 2004). The participation and support of 

Japanese colleagues from the IMPULS project at Tokyo Gakugei University 

(www.impuls-tgu.org/en/) was critical in bringing their extensive knowledge of the 

lesson-study process, as well as their interest in learning more about problem solving. 

On three occasions during the year, experienced Japanese colleagues assisted us in 

enacting a more authentically Japanese model of lesson study than would have been 

otherwise possible. 

Lesson study involves a community of teachers and ‘knowledgeable other(s)’ 

collaborating in a cyclical process that involves planning a ‘research lesson’, joint 

observation of the lesson and critical reflection in a detailed post-lesson discussion. 

This process may lead to the collaborative development of a revised version of the 

lesson plan and progression once more around the cycle. At the beginning of our 

project, revising the lesson and re-teaching as another research lesson was rare, as the 

teachers were eager to try a wide variety of different tasks. However, as expertise 

developed through the project, the desire grew to refine and retry the same lesson in a 

subsequent research lesson. This paper reports on a problem-solving lesson which was 

revised and retaught publicly once within the project, although the school also trialled 

other versions of the same lesson outside the research of the project. 

The authors of this paper supported the teachers by joining in the work of the planning 

team as ideas were developed, and also functioned as ‘knowledgeable others’ in 
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post-lesson discussions. A key element of our role was to maintain the focus on 

problem solving. All of the teachers in our study were adept at planning 

concept-focused lessons addressing discrete elements of mathematical content: the 

challenge was to plan lessons centred on the learning of mathematical processes. 

PEDAGOGICAL PROCESS KNOWLEDGE (PPK) 

Planning for the first lesson 

The case study reported here focuses on two research lessons that highlighted 

communication as the key mathematical process. The task ‘Hot under the collar’ 

(Figure 2a) was adapted from Bowland Maths resources (www.bowlandmaths.org.uk). 

In its original version, the task attempts to involve all four key processes of 

representing, analysing, interpreting and evaluating, and communicating and 

reflecting. In seeking to focus the learning in the research lesson on just one process – 

communicating – and to take account of a particular class of students, the task was 

adapted (Figure 2b). The planning team elected to introduce the familiar context of TV 

weather reporting, with a more experienced weather presenter offering what was 

previously described as ‘the accurate way’ and the ‘new’ weather presenter opting for 

the ‘easier method’. The scaffolding of converting 20 Celsius to the Fahrenheit scale 

using both methods and calculating the error was removed. The question ‘For what 

temperatures does Anne’s method give an answer that is too high?’ was replaced by the 

more open question ‘Is Anne’s idea suitable for all situations?’, together with a request 

to ‘justify your answer and present a convincing argument effectively’. These changes 

were intended to place the task in a potentially authentic context and to emphasise the 

communication element. 

  

Figure 2:(a) Original Bowland task;                       (b) Task in first iteration 

The original task materials included a progression grid for teachers, suggesting what 

progress in each of the four processes would look like. The planning team adapted this 

considerably in order to focus on the single process of communication, and organised 

the grid using the ‘point–evidence–explain’ (PEE) structure commonly used in the UK 
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in the teaching of English language (DfES, 2005) (Figure 3) to assist students with 

developing a reasoned argument in their writing. 

 

Figure 3: PEE grid in (a) first iteration; (b) second iteration 

The first iteration of the lesson 

The PEE progression grid was shared with students (Year 10, n = 30) at the beginning 

of the first iteration lesson. Students had encountered PEE in other subject areas, so 

this structure was not new to them. Pairs of students were given time after working on 

the problem during the lesson to present their answers on large sheets of paper, and 

were reminded to use the PEE structure to do this. At the end of the lesson, in a plenary, 

students compared two pieces of work that the teacher had selected from the class. One 

of these contained a table of values showing integer temperatures from 1°C to 10°C, 

with John’s and Anne’s values for each, along with the difference between them. The 

other piece of work showed three typical values for each of the four UK seasons and 

looked at the errors for just these three temperatures. In the ensuing whole-class 

discussion, the first piece of work was seen to have no explicit conclusion (‘point’) and 

the second was considered to be weak in the ‘evidence’ strand. 

Post-lesson discussion for the first lesson 

During the post-lesson discussion, there was much debate about the advantages and 

disadvantages of PEE as a way of supporting students’ development of written 

mathematical communication. Several participants felt that the order might be changed 

to make it more appropriate for mathematics and advocated EEP instead, believing that 

having the ‘point’ at the end was more in harmony with the practice of mathematical 

solutions, which tend to culminate in an ‘answer’. (There was no consensus on a 

preferred ordering of ‘evidence’ and ‘explain’.) However, some participants felt that 

arriving at the answer at the end reflected the experience of working on the problem but 

did not dictate how a final solution might be presented to others, where PEE might be 

clearer for a particular solution and a particular audience. Mathematics students are 

frequently expected to communicate ‘what they are doing’ rather than the outcome or 

conclusion of what they have done. 

It was noted that some students seemed to think that the ‘evidence’ strand was about 

quantity – ‘the more the better’ – and copied out many of the calculations that they had 
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done. There was little indication in the students’ work that they were marshalling 

evidence strategically to support an argument. It was suggested in the post-lesson 

discussion that effective mathematical communication is assisted by having a clear 

purpose and audience in mind, so that students know who it is that they need to inform 

and convince by their argument. 

The second iteration of the lesson 

Several changes were made to the lesson for its second iteration. The question ‘Is 

Anne’s idea suitable for all situations?’ in the task was replaced by ‘How accurate is 

Anne’s approximation?’ In the first case, a student could answer that it is only 

‘suitable’ on one occasion (10°C, where the two Fahrenheit values obtained are 

identical), whereas the second version was intended to force students to focus on 

accuracy, potentially leading to very different communications, particularly in 

students’ explanations. 

The other big change to the lesson was to modify the PEE structure to revise the order 

to evidence-explain-point (EEP). The statements of progression for evidence were also 

modified so as to tighten the link between ‘evidence’ and its purpose in supporting a 

conclusion, in order to attempt to combat the ‘more evidence the better’ problem seen 

in the first lesson. 

Post-lesson discussion for the second lesson 

Participants discussed the advantages and disadvantages of a generic PEE or EEP 

scheme and whether a structure perhaps needed to be adapted to the details of each 

particular task. No consensus was reached on these matters, but the view was 

expressed that the preferred order might depend on whether the intention is to 

communicate working or conclusions. 

DISCUSSION 

We now briefly describe and exemplify three elements of pedagogical process 

knowledge (PPK) observed during the course of this iterative lesson-study cycle. 

Teachers’ knowledge of processes and students (KPS) 

By analogy with Ball and colleagues’ (2008) ‘knowledge of content and students’, we 

see KPS as the intertwining of knowledge of processes and common ways in which 

students think about processes, what contexts motivate them to learn the processes and 

what difficulties they have. We found that students frequently interpret requests for 

mathematical communication as invitations to ‘show working’ – the more the better – 

and fail to attend sufficiently to purpose and audience. The frequently reiterated 

demands of examination technique (so-called ‘quality of written communication’) may 

at times conflict with those of clear and meaningful communication of a reasoned 

mathematical argument. 
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Teachers’ knowledge of processes and teaching (KPT) 

We see KPT as relating to knowing and being able to use effective strategies for 

teaching problem-solving processes. The debate over the virtues of PEE versus EEP as 

a scaffold for developing mathematical communication is a good example of the sort of 

thinking that lies within this domain. We found that this aspect of MKT for problem 

solving is particularly underdeveloped in the teachers with whom we have worked in 

our project. 

Teachers’ knowledge of processes and the curriculum (KPC) 

We see KPC as knowledge that enables teachers to select and sequence suitable tasks 

to facilitate a coherent development in students’ process skills. The idea of designing a 

sequence of lessons to develop a single process, such as communication, represents a 

certain kind of KPC, as does choosing tasks which provide suitable opportunities for 

specific process learning. Moving beyond this to develop a coherent, sustained 

approach to the learning of problem solving over time provides a challenge beyond the 

scope of our work to date. 

Watson (2008) warns that identifying types of knowledge can be unhelpful and lead to 

a fragmentary sense of what is relevant. Various attempts at schematising the 

mathematical problem-solving process, such as RUCSAC (read, understand, choose, 

solve, answer, check) (www.tes.co.uk/ResourceDetail.aspx?storyCode=3007537), are 

widely thought to detract from the authentic experience of problem solving. Does 

PEE/EEP perhaps come into this category? Student mathematical actions are driven by 

the task and inevitably require them to draw on concepts as well as processes following 

their individual understanding of the context. Coherent mathematical activity requires 

a subtle blending of engagement with mathematical content, mathematical 

competencies and context (Wake, 2014). Consequently, we believe that it is important 

to recognise the interdependency of content, context and processes. 

CONCLUSION 

In conclusion, we are not surprised that an empirical approach to the conceptualisation 

of MKT has not so far identified knowledge of mathematical processes as fundamental 

to everyday classroom practice. We know that problem solving is often not given the 

attention it deserves in day-to-day teaching. Teachers’ understanding of process skills 

and what it means to make progress in learning processes is currently significantly 

underdeveloped. 

Mathematical communication is widely seen as an important component of doing and 

learning school mathematics (Sfard, 2007), yet the mathematical processes are 

approached quite differently from processes in other subject areas. For example, the 

teaching of ‘native language’ in England works to a very different epistemological 

frame that prioritises how English is used in practice rather than knowledge to be 

assimilated. 
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In this paper, we have drawn on our findings to suggest aspects of PPK that might be 

given greater attention. In subsequent work we seek to extend our characterisations and 

develop the conceptualisation of MKT to emphasise further the mathematical practices 

in problem solving. 
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This paper presents the story of a novice mathematics teacher, through which we aim 

to explore the social nature of affective behaviours drawing on a pragmatist 

perspective of identity formation. Data was produced by interview and treated as 

narrative, allowing the teacher-participant to freely trace and trace back contextually 

relevant aspects of her/his life experience. Our analysis indicates that teachers’ 

affective positionings towards others emerge from shared social scenarios, manifested 

in response/reaction to such scenarios, and reflect their attempts to redescribe 

themselves in the eyes of others. 

INTRODUCTION  

Over the last ten years, the interest in studies about identity in the context of 

mathematics teachers’ professional development has increased significantly.  

Walshaw (2004), for example, investigated the power of subjectivity over pre-service 

students’ engagement when they were involved in pedagogical tasks in the first years 

of primary school mathematics classrooms. Brown & McNamara (2011) approached 

the development of mathematics teachers’ formation and the construction of their 

professional identities, considering the implications of these processes in their 

teaching. Taking a sociological perspective, Lerman (2012) showed that individuals 

who have taken up mathematics as their careers were able to exhibit agency and 

change the direction of their lives in spite of what might be described as disadvantaged 

social backgrounds. The collection of articles edited by Frade, Roesken & Hannula 

(2010) proposed that both affect and identity may be seen as emerging individually 

through personal experiences, or as emerging socially through shared scenarios, and 

that this tension became salient when relationships between affect and identity were 

explored regarding the mathematics teachers’ professional development. A common 

point in all these studies is the idea of bridging between the individual and the social.  

Our study is situated within perspectives on the social nature of affective behaviors and 

the constitution of teachers' identities. Using a pragmatist perspective on identity 

formation, we suggest that the search for “bridges” between the individual and the 

social for approaching affect and the constitution of identity is not fruitful. The way in 

which we interpreted the theoretical perspectives we adopt led us to reject any 

“divorce” between the so called ‘individual realm’ and ‘social context’, since the 
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individual and the social are relational entities articulated as a unity in semiotic 

interactions. Next we detail our ideas aiming at presenting our research questions more 

clearly.  

A PRAGMATIST PERSPECTIVE ON IDENTITY FORMATION 

Like many other researchers (e.g., Damasio, 2003), we believe that human beings are 

born with biological mechanisms dedicated to learning. However, the developing 

person requires radical changes from biological determination to semiotic interaction 

with others-in-the-world. We suggest that what we call affect, or affective positionings 

toward others, emerges at the forefront of our identity formation. This depends on 

learning processes that begin as actions towards social scenarios and later in 

development become responses to individual/private demands. This is akin to 

Vygotsky’s (Vygotsky & Rieber, 1998) second law of development, according to 

which all forms of knowing move from social settings to individual persons, and then 

from the individual to the social, in a constant semiotic interaction among individuals 

and, more generally, between individuals and their historical socio-cultural contexts. 

As such interactions emerge in life, all forms of knowing/learning (including our 

affective positioning towards others) are internalized and contribute to individuals’ 

identity formation. We observe that such internalization is not passive. It instead 

involves a complex combination of contingency, circumstance, choice and judgment. 

In this sense, one’s identity is only temporally stable; it is continually changing and 

dependent on the historical socio-cultural contexts to which individuals respond. 

For pragmatist scholars (e.g., Dewey, 1916; Rorty, 1989), there is no core human 

essence or an innate self previous to semiotic interactions between individuals and 

their action-contexts. Hytten (1995) noted that 

[Dewey] argues that individual minds are developed through social intercourse, that 

humans are characterized by their plasticity, which ensures the possibility of continual 

growth and that autonomy results from individual redirection, reconstruction and revision 

of societal understandings and beliefs. (p. 2) 

The quotation above strongly suggests that identity formation is a process of self 

creation in response to social scenarios (some of which may well be private) and 

continual growth. Along the same lines, Rorty (1989) introduced a notion of identity 

that shifts the emphasis from an internal self/mind to language, suggesting that “no 

core essence or identity exists which lies behind the language individuals use to 

describe themselves and their world” (Hytten, 1995, p. 2). This notion of identity is 

developed by Rorty on the basis of two key ideas: blind impresses and final 

vocabulary. By ‘final vocabulary’ Rorty meant the set of words used by any one 

individual to justify her/his actions, beliefs/convictions and life; words with which we 

narrate the story of our (past and prospective) lives. For Rorty, the vocabulary is 

“final” in the sense that its words make up the boundaries of the stories we can tell 

about ourselves at a certain stage in life. On the other hand, ‘blind impresses’ are those 
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particular contingencies that make each of us unique and not a copy or replica of some 

other person; they guide our conduct and more generally our discourse.  

In terms of culture, we interpret Rorty's ideas as follows: while we live in a cultural 

context, which we grow up and structures our world view, we are unaware or “blind” to 

some differences (gender, religion, race,...), as a fish is unaware that it lives in water. 

When we step out of this context, and begin to recognise other cultural contexts or 

differences, our blind impresses are no longer blind because this recognition implies in 

a redescription (a process of confronting our own contingencies and to trace our 

idiosyncrasies backwards and forwards, as Rorty puts it) of ourselves by developing a 

new language. Thus, by tracing our blind impresses in our own discursive moves, we 

continuously reinvent ourselves. Having said this, we argue that people develop, share 

and negotiate their identities in semiotic spaces by communicating selected aspects of 

what they think to be their blind impresses through some kind of final vocabulary. We 

believe this to be precisely what Gee (2000, p. 99) meant by "all people have multiple 

identities connected not to their 'internal states', but to their performances in society". 

Based on the premises above, we wanted to investigate how to make sense of the 

manifestations of teachers’ affective positionings towards others, from the point of 

view of the pragmatist perspective of the constitution of identity. How do such 

positionings emerge, and how are they produced, communicated and negotiated 

towards the formation of one’s identity as a mathematics teacher? Our proposal is then 

to explore affective conducts through the notion of identity.  

To offer a response to our research questions, we carried out an empirical investigation 

with two categories of secondary mathematics teachers (twelve teachers in total): one 

represented by teachers in their first four years of professional experience, and the 

other, with more than seven years of career. This choice was due to a conjecture that 

teachers of the first category were still positioned very close to the boundary crossing 

between their professional projections–socially constructed through their experiences 

of life (including the university formation) – and the effective practice of being a 

teacher. Therefore they are in an affective positioning potentially fruitful for capturing 

possible redirections or redescriptions of their blind impresses to survive in the 

profession. For the second category, our conjecture was that these redirections or 

redescriptions stabilize somehow during the practice. In this case, we would observe 

how this stability occurs.   

METHODOLOGY 

Our research demanded a qualitative/interpretative approach, in order to promote an 

immersive analysis in the stories, life experiences and feelings that make up one’s 

identity. Further, the theoretical frameworks we adopted–the social nature of affective 

behaviors, according to Vygotsky’s second law of development, and a pragmatist 

perspective for the constitution of identity—imply, as noted by Meira (2006), in “a 

conception of development and learning as emergent semiotic processes in daily 

contexts of human experience” (p. 11). In this respect, we tried to follow Halliday’s 
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(1993) suggestion that data should be ‘natural’ (not experimental): based on language, 

not self-monitored, in the context of its production, and not dissociated from the 

circumstances. We understand that interviews-in depth, semi-structured in a flexible 

way, matched (at least in part) the above point of view. The intention was to welcome 

both retrospective and prospective speeches, allowing the interviewee to trace and 

trace back in time the various phases of the projection they made in relation to a certain 

situation, showing that the discourses are not dissociated from the context of their 

production and enunciation. In this sort of interview, the interviewees are asked to talk 

about some few key aspects of the theme of research, giving them the maximum of 

freedom to treat the subject flexibly. We cannot but be aware that the interview 

situation is itself a productive context, in that the interviewee presents her/his as she/he 

wants to be seen and heard to that person at that moment. 

We interviewed four teachers (3 females and 1 male) in Belo Horizonte, Brazil, and 

eight teachers (5 females and 3 males) in London, UK. Regarding the Brazilian 

teachers, two had recently finished their doctoral course in mathematics education, and 

one was in the middle of his doctoral research. The eight teachers from London were 

also students-teachers of a mathematics education undergraduate course. Among them, 

six were immigrants or originated from immigrant families from different countries. 

The interviews varied from 20 to 75 minutes each, and were audio-recorded. We also 

made use of personal notes. The first author started from the initial orientation “Please, 

talk about why did you want to be a mathematics teacher”. Next, she asked them to talk 

about their expectations in being a teacher and their real experiences as teachers. Then 

she asked them to talk about the flexibility of their schools regarding modes of 

teaching, and if they had experienced any special (conflicting or pleasant) moment in 

teaching they would like to report. We looked at the teachers’ reports as narratives and 

analysed them as such. By narrative we are referring to a discursive instrument of 

construction of the past, present and prospective reality of an individual. For Bruner 

(1987), thanks to the cultural systems of interpretation, coded in the form of narrative, 

the conversations about the past and the future make one’s own life more 

comprehensible.  

Next we discuss some data to illustrate our ideas. In order to present in detail our ways 

into the analysis, we present the story of only one teacher-participant: Jamila, fictitious 

name of a representative of the first category of novice teachers. We chose to report on 

Jamila's story because her professional choice for teaching mathematics was the only 

one that proved to be influenced by political circumstances. This story was constructed 

from Jamila’s narrative. Her words are in italics and have not been corrected for the 

English. Our comments are in brackets. 

JAMILA’S STORY 

At the time of the interview, Jamila was 49 years old. She was born and gained her 

graduation in mathematics in Hungary. In 1997, she moved to London because she 

married a British citizen. Jamila indicated that her professional mathematical identity 
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has emerged in the context of Hungarian communism, from a combination of three 

main affective positionings towards: a familial affinity; a political belief about 

mathematics as culture and value-free; and a sentiment of “defence” against the 

regime. She said:  

I came from a long line of teachers in my family, and some of them are from humanities, 

like as linguistics, history, and some of them are from physic and mathematics (...) I chose 

mathematics because mathematics couldn’t be distorted by the regime. Mathematics was 

clear and straightforward. We’re not telling in a sense our opinion; you are solving 

problem, and you had an answer to it (...) No matter which field you came from, when you 

solve the mathematical problems that is a very international thing and then politics and 

ideology couldn’t be involved in that (...) and nobody could say ‘No, that is not right 

because today in this country we don’t think like that’. So, I chose because of that, so it’s a 

political reason. 

The passage above shows two special things: the decisive role played by Jarmila’s 

affective positionings in the forefront of her professional identity formation; and how 

this identity formation was constituted by the social circumstances she was subjected 

to in a certain period of her life. Regarding the familial positioning, Jamila gave strong 

indications that it was produced by affinity since almost everybody in her family was a 

teacher. She stated that “it was almost obvious to [her] to become a teacher as well 

[because she] didn’t know anything [than being a teacher]”. It is possible that her 

stance towards mathematics as supposedly an apolitical discipline had been produced 

by the influence of her mathematician relatives, and then reinforced in the university 

graduation course, including her experience in the teaching practice in a selective 

school with high achieving students. She did not mention any personal or special 

appreciation for mathematics in itself nor if she experienced, at that time, any type of 

conflict between her expectation in being a mathematics teacher and her experience in 

the teaching practice. It is also possible that, up to that time, Jamila’s professional 

mathematical identity had a certain stability. However, she suggested that this possible 

stability was disturbed when she had to step out of the culture in which she grew up and 

structured her world view, and became aware that the selected environment of her 

teaching practice in Hungary was not representative of every place—her blind 

impresses regarding her teaching experience in Hungary were no longer blind when 

she was faced with differences. We can see this in the following:  

Before I came to this university [in London] I taught for two years in a small independent 

school (...) with the kind of approach that children have to experience what they do (...) 

What the funny thing is that in Hungary you do your teaching practice in selected schools 

(...) you don’t meet behaviour problems, you don’t meet children who will find difficulty 

to understand a concept because they all came from a background that was established (...) 

you put together your lesson plan and then you’re going to the class and you carry it out. 

And then when you go out and meet the real children, well that’s completely different 

experience (...) When you’re going to the real life then we will find that (...) children (...) 

may not have the concept established, they would come from all different backgrounds (...) 

and then, your lesson is not going to happen according to your lesson plan at all.  
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This new social scenario touched Jamila, and provoked the emergence of new affective 

positionings towards her students and modes of teaching, including the enlargement of 

her final vocabulary as teacher. In an attempt to adapt to this new scenario, she decided 

to convert her diploma, gained in Hungary, doing a PGCE course [Postgraduate 

Certificate of Education] in a public university in London. Feelings of sensibility and 

cooperation were produced due to her desire to attend to her students’ needs, 

differences, backgrounds, and past experiences. And these demanded a redescription 

of Jamila as she explained in the passage:  

This [new scenario] becomes me more flexible, and sometimes I decide just put the lesson 

plan completely aside, and let us do something, just sit down to discuss and see what we 

have got together as a class (...) What I learn through this is that you must be flexible with 

your lessons (...) it made me listen much more, a little bit of the past of the class, working 

together, trying together to achieve something.  

Further, she said her participation in the PGCE course, notably interacting with her 

young colleagues helped her to carry out this redescription to make things less difficult 

for her. She developed an affective positioning towards her colleagues saying that she 

“learn[ed] a lot from them (...) value[d] their company”. For her, they were “a group”, 

and “very often [she] just listen[ed] and tr[ied] to make sense where to put [her]self”. 

Jamila clarified in what sense she has been benefiting from her colleagues:  

The world has changed, the children are more open and in a sense they expect less 

authority, which can be a good thing because that means that it has become more 

democratic. They expect you to listen and value their opinion, but I have to learn that new 

approach because when I finished studying in maths becoming a teacher was completely 

different.  

At the time she was doing the PGCE course, Jamila started teaching in another 

secondary school, and this experience led her to give continuity to the development of 

other types of affective positionings towards her students, the school and modes of 

teaching. She reported that this school was “an extraordinary, selective, independent 

Muslim school just for girls (...) odd than the ordinary”, and that [she kept] it 

approach, that is, that the class have to work together, and then [she and the students] 

ha[d] to achieve something together (...) She stated she was very encouraged to be in 

an environment like that, and suggested that her affective positioning towards the 

students has changed because now she was in an environment that “girls [were] very 

kind and helpful, they enjoy[ed] helping each other”. Here, again, we have evidence 

that such affective positionings emerged from a social scenario and were produced in 

response to it, as reinforced by Jamila:  

When I go to the school with these girls, it’s great to go into the classroom and then have 

luck in all work, and by the end of lessons they says they discovered something (...) I can 

become very touched, children can touch me. In one of the classes there is this girl who, her 

sight is very bad so we have to prepare for her, and seeing her how happy she is when she 

keeps up with the class and achieve the same things the class can do. 
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When she said “to prepare for her”, can this be a clue that, among other actions, 

Jamila’s impressions regarding her prototype of ‘student’ has changed and because of 

this she had to enlarge aspects of her final vocabulary as teacher to communicate with 

this girl? 

Jamila also showed she has developed a healthy relationship with her mentor, but 

found it hard to redescribe herself as aiming at reaching a “fine balance” between the 

school and parents’ expectations and her identity as mathematics a teacher. She 

explained this conflicting negotiation in this way:  

My mentor, she is an experienced teacher (...) she says she is open [to] new ideas (...) and 

she says the way she could do use me: this school is a high achieving school, so, for that 

reason, you have to make sure whatever you teach, in the end, the girls are going to able to 

complete GCSE [General Certificate of Secondary Education] on a very high level and that 

comes first. It’s very hard because the schools have their expectations, so it’s not that you 

come with bright ideas and would like to carry them out, but the school is going to say ‘No, 

listen, this is the way we do things here, and we don’t mind if you experience a little bit 

harder, we would like to carry on a method because it is a tried method that works with us’. 

Despite all these, Jamila seemed very aware of the need to redescribe her actions in 

response to social institutional demands saying that:  

It doesn’t only depend on me what sort of teacher I am going to be, what sort of the 

teacher’s personality I am going to be, that is more or less on me, but sort of a teacher 

convey the subject is not only than to me (...) We have to adapt. 

FINAL COMMENTS 

In a previous work (Frade, Roesken, & Hannula, 2010), we suggested how conflicting 

the processes of identity formation in novice mathematics teachers may become, 

especially those dominated by conflicts involving strong projections of what a “good 

teacher” is expected to be and to do. Jamila’s discourse showed how difficult it is being 

Jamila in everyday school practice; how it is conflicting to combine a redescription of 

herself in the eyes of others (students, mentor, institution) with her own demands 

towards herself. In spite of this, she seemed to have developed a way to deal with all 

these, perhaps an emotional maturity in recognizing that she needs to find a balance 

between the institutional demands and her own demands to adapt to and to survive in 

the profession. And this possible emotional maturity seems to be what can be said that 

stabilizes along the professional practice of being a teacher. The continuing 

redescriptions that characterize the constitution of one’s identity as teacher, as 

discussed in our previous work and demonstrated in Jamila’s story, led us to say that 

affective positionings towards others are strongly ‘situated’ in that they emerge from 

temporal-specific social scenarios, and are learned, produced, communicated and 

negotiated as responses/reactions to it. In this sense, the pragmatist perspective we 

used is very helpful, for it directs our analysis to “outward rather then inward, toward 

the social context of justification rather than to the relations between inner 

representations”. (Rorty 1979, p. 424) Jamila’s story aimed at showing that for each 
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scenario she was subjected to–the familial context, the political circumstances of the 

two countries involved, the different schools she taught at, and the PGCE course, for 

instance–were sources of the origin of both affective positionings towards others and 

ruptures of some of her blind impresses regarding the career of mathematics teacher. 

On the other hand, such affective positionings reflected Jamila’s attempts to redescribe 

herself towards a new Jamila in the eyes of these others by developing a new language 

to better ‘live’ in such scenarios. 
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In this paper, we investigate the Arithmetic authored by L.F. Magnitskii (1669-1739) 

especially focusing on the methods of teaching and learning represented in this 

arithmetical manual that remained highly influential among the Russian educators for 

more than a century after its publication in 1703. We suggest that Magnitskii, even 

though drawing upon arithmetical manuals published in Western Europe in the 17th 

century, introduced a number of new elements that can be properly interpreted only if 

one takes into consideration his didactical agenda. 

HISTORICAL AND SOCIOCULTURAL PERSPECTIVE 

When conducting research on the history of mathematics education, the historians 

usually work with the extant documents they have at their disposal, especially the 

mathematical textbooks or other written materials used for instruction. However, as 

Michael Polanyi (1891 – 1976) argued in his seminal work of 1958, in the process of 

transmission of scientific knowledge its considerable part is not verbalized; a 

substantial part of knowledge is transmitted via direct interaction between the 

individuals involved. If we adopt his hypothesis, the materials found in modern 

mathematics textbooks cannot suffice to reconstruct the actual interaction between 

teachers and learners who use these textbooks nowadays, and additional methods (e.g., 

classroom observation, interviews, etc) are needed to discern and analyse the processes 

of learning. However, when dealing with the history of mathematics education, the 

classroom observations and interviews, for obvious reasons, are impossible to conduct, 

and alternative research methodologies have to be designed to reconstruct, at least 

partly, the processes of instruction on the basis of the extant written materials.  

This paper is focused on the tradition of mathematics education in Russia, in particular, 

on the first printed school mathematics manual, the Arithmetic, or Science of Numbers 

(Арифметика, сиречь наука числительная) published by L.F. Magnitskii’s (Л. Ф. 

Магницкий, 1669-1739) in 1703. The conventional descriptions of mathematics 

education in Russia have always been based upon the extant textbooks of which the 

first ones were compiled during the period antedating the publication of Magnitskii’s 

manual (see, for example, Yushkevich 1968), yet no historiography of Russian 

mathematics education that would take into consideration the role of tacit knowledge 

in educational practices, to the best of our knowledge, has ever been published. 

It appears plausible to distinguish two types of “tacit knowledge”. The first type is 

directly related to the subject matter of mathematics instruction, in other words, it 
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comprises conceptions (and sometimes misconceptions) concerning numbers, figures, 

and other mathematical objects, as well as operations with them. The second type is 

related to didactical aspects of instruction, in particular, to the style of interaction 

between the teachers and learners. This type is determined by a more general 

framework which, in turn, is related to the traditions of teaching and learning specific 

for the respective social group and for the embracing cultural tradition. In our case, we 

are dealing with the traditions of teaching and learning which existed in Russia some 

time before the publication of Magnitskii’s textbook and which, arguably, continued to 

exist after it. These two types of tacit knowledge can be identified as ideas, concepts, 

and representations concerning, on the one hand, the contents of the respective 

discipline (in our case, elementary mathematics), and on the other, the processes of its 

transmission which were not verbalized or at least were not described explicitly in the 

extant materials. 

We therefore assume that the mathematical knowledge represented in the Arithmetic, 

even though based upon Western textbooks originating from a different educational 

tradition, was adjusted by Magnitskii to fit into the classroom activities different from 

those taking place in the Western classroom. In other words, we can interpret the 

modifications of Western teaching materials (mathematical problems, definitions of 

mathematical objects) made by Magnitskii in his textbook as resulting from 

requirements (tacitly) imposed by the Russian didactical tradition that differed from 

those of Western Europe. The sources of information used for our reconstruction of the 

Russian didactical practices are: (1) the elements found in Magnitskii’s Arithmetic and 

other Russian textbooks which distinguished them from their (hypothetical) Western 

prototypes and which cannot be explained as caused by purely mathematical or 

linguistic reasons, and (2) the practices adopted in Russian/Soviet schooling tradition 

in the 19
th

 and 20
th

 centuries that have been, at least partly, documented.  

Paradoxically, we will begin our study of the Magnitskii’s textbook with a discussion 

of the case of “Asian/Confucian learners”. Recently a considerable number of 

publications were devoted to the phenomenon of Chinese mathematics education; the 

difference with the learners from other countries (in particular, from the USA) was 

perceived, but not always clearly stated or identified. The path-breaking monograph of 

Ma Liping (1999) was followed by a large number of studies of Chinese mathematics 

classroom, and these studies, including the book of Ma, contain an amount of data 

concerning the second kind of abovementioned tacit knowledge, such as detailed 

descriptions of Chinese methods of learning, teaching etc. From North-American 

perspective some of the Chinese didactical approaches may be seen as somewhat 

exotic and/or inapplicable in American/Western classroom (for example, 

memorization of multiplication table), yet for the Chinese educators and students such 

practices, especially memorization, look highly relevant. 

The phenomenon of “Chinese mathematics education” became famous mainly due to 

the success of Chinese students in various kinds of competition and comparative 

studies, but in reality the transfer of Western mathematical knowledge and, to some 
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extent, Western teaching practices to China happened relatively late, in the late 19th 

century, even though some attempts were made in the 17
th
 and early 18

th
 centuries, but 

without particular success. Technically, “Westernized” Russian mathematical tradition 

that started some time prior to the publication of Magnitskii’s textbook had a much 

longer history and was much more developed, but due to the fall of the USSR and 

economical success of China, the attention of the researchers turned to China, even 

though a number of recent publications were devoted to the phenomenon of Russian 

and Soviet mathematics education (see, for instance, Karp and Vogeli 2010; 2011). 

A number of attempts have been made to explain the success of Chinese mathematics 

learners; for example, a number of authors suggested that it resulted from a particular 

“Confucian” cultural tradition of teaching and learning, while some other authors 

expressed their doubts concerning this thesis (see, for example, Leung 2001; Fan et al. 

2004); see also the analysis of the philosophical foundations of Chinese and American 

systems of mathematics education by Xie and Carspecken (2008) and a comparison of 

European and Chinese “cognitive styles” and their impact on teaching mathematics 

(Spagnolo and Di Paola 2010). Conversely to the case of Chinese mathematics 

education, the case of USSR/Russia remains largely underexplored. The innovations 

introduced by Russian educators were not duly documented, and the remaining 

documents often do not provide information necessary for reconstruction of 

educational activities. The study of Magnitskii’s textbook was not an exception: a 

number of historians of mathematics and mathematics education, when dealing with 

the Arithmetic, did not pay enough attention to the didactical techniques found in this 

book.  

DIDACTICAL PERSPECTIVE 

We will open this section with a short presentation of the studies devoted to the 

Arithmetic. To identify the “tacit” didactical elements in Magnitskii’s textbook, we 

will compare its contents with those of its hypothetical Western prototypes in 

assuming that the found differences resulted from the didactical agenda of Magnitskii.  

According to A. Vucinich, “In the seventeenth century – the century of logarithms, 

analytical geometry, and calculus – Russia's mathematical knowledge did not exceed 

the most elementary principles of arithmetic contained in the translations of Western 

European (mainly German) texts written during the fifteenth and sixteenth centuries”. 

(Vucinich 1963, p. 33) Therefore, according to the latter author, “the Arithmetic was 

important not only in bringing up-to-date elementary mathematical knowledge to 

Russia but also in showing the wide range of practical problems – particularly of a 

military and commercial nature – that could be solved mathematically” (ibid., p. 54). 

Moreover, based on Peter the Great’s dedication to the program of strengthening the 

nation that required from the emerging new Russian ruling class excellent command of 

several foreign languages, knowledge of rhetoric as well as of the arts of philosophy, 

medicine and theology, Magnitskii claimed in the preface of his book that “not only is 

arithmetic essential to education in the liberal arts, but the practical skills of measuring 
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and counting were needed by a dynamic society as well” (Okenfuss 1995, p. 75). When 

mentioning that Magnitskii wrote his book as a “humanist, concerned above all with 

the place of mathematics in the mind of an educated man,” Okenfuss argues that his 

work was a “culmination of the impact of the foreign on seventeenth-century 

Muscovy” (ibid.), thus defining the direction of development of mathematics in Russia 

for the next half of the century.  

The recognition of the didactical value of Magnitskii’s work came only a century later 

when it became one of the central topics in the framework of historical reconstruction 

of the growth of mathematical knowledge in Russia in the beginning of the 18th 

century of which Magnitskii’s Arithmetic was considered an important milestone 

(Vulcinich, 1963). The significance of the Arithmetic for the formation and evolution 

of mathematical education in Russia was especially emphasized in the 19th century by 

the historian and educator V. Bobynin (В. В. Бобынин, 1849-1919), who considered it 

a link between the Russian  mathematical texts of the 17
th

 and the 18
th

 centuries, while 

also serving as an introduction to novel mathematical subjects (e.g., progressions, 

algebra, etc.) not included in manuscript textbooks that circulated in Russia prior to its 

publication or were only rarely mentioned in some Russian mathematical manuscripts 

(such as, for instance, the extraction of roots). Bobynin (1889) claimed that in the 

Russian mathematical literature it would be hard to find another work of the same 

historical significance as the Arithmetic by Magnitskii. At the same time, he also raised 

the question of the originality of the book, since Magnitskii himself defined the book as 

a compilation based upon several Western sources. In the same vein, A. Vucinich 

(1963) argued that the Arithmetic was not a summary of the mathematical knowledge 

that existed in Russia but rather an encyclopaedia of various relevant items mostly 

translated from Western sources; still it was not completely unoriginal, and its author 

showed much "ingenuity in the organization of material, explanatory notes, and 

selection of examples" (p. 54).  

The question of originality of Magnitskii’s book remains one of the most frequently 

discussed by later authors. For example, Ivasheva (2011) mentions that while 

Magnitskii borrowed much of contents and terminology from the mathematical 

manuscripts that circulated in Russia prior to the early 18
th
 century, he paid a great deal 

of attention to general discussions about mathematics in which arithmetic was 

described as a “honest art, envy-free, readily grasped by all, wholly useful” (p. 39). In 

turn, Mishchenko (2004) mentions that recent researchers still have no general opinion 

concerning the sources that Magnitskii used as the basis of his Arithmetic. The latter 

author refers to the analysis of Yushkevich (1968) who believed that Magnitskii used 

manuscript and printed materials of earlier times, which he carefully selected and 

substantially modified to compose an original work, taking into account the knowledge 

and demands of the prospective Russian readers.  

In order to provide more insights into the essence of the debates about the didactical 

value of Magnitskii’s work, we briefly summarize a discussion between D. Galanin 

(1857-1929) (1914) and V. Bobynin (1889) regarding the introduction of addition of 
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integer numbers in the Arithmetic as compared with the same topic in the Arithmetica 

oft reken-konst: En een kort onderricht van't italiaens boeckhoudẽ published in 

Amsterdam in Dutch by Jacob Van Der Schuere (Schuere, 1643); the latter textbook 

shared a number of striking similarities with Magnitskii’s textbook, briefly discussed 

in our publication (Freiman and Volkov 2012). While Bobynin called these similarities 

“borrowing” (‘zaimstvovanie’), Galanin referred to them as “inspection/getting 

familiar with” (‘oznakomlenie’), that is, he suggested that Magnitskii knew the 

textbook of Schuere but introduced the elements of its contents differently, in pursuing 

his own didactical goals, which brought originality to his work. Schuere’s and 

Magnitskii’s introductions of addition are shown in Figure 1: 

    

Figure 1: Explanations of addition in Schuere (left) and Magnitskii (right). 

In his textbook, after mentioning that two, three or more numbers taken together 

produce a sum, Schuere provides an example of adding 578, 402, and 396 by placing 

them one under another, aligning the numbers by the position of units and separating 

them from the sum with a horizontal line. The same example (using the same numbers) 

can be found in Magnitskii’s book, yet explanations of each step are much more 

detailed. Moreover, before giving this example, Magnitskii introduces another, simpler 

one, with only two numbers to be added (532 + 46) which he uses to introduce the steps 

needed to perform addition. This example is missing in Schuere’s book. Magnitskii 

completes his explanation of the procedure with yet two more examples placed under 

the sub-title “Common rule” (missing in Schuere), and also extends the introductory 

part of the section, very short in Schuere, beyond the definition of what addition is 

(“collection or combination of several numbers”)  by providing a table of basic facts 

about numbers: in each pair of columns, we see numbers 1-9 on the left, other numbers, 

from 1 to 10 shown in the middle part can be added to them, and the results are shown 

on the right side, e.g., “7 + 6 = 13”; see Figure 2: 
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Figure 2: Magnitskii’s ‘innovations’ – addition table (left) and common rule (right). 

In both textbooks of Schuere and Magnitskii, the explanation of addition is followed 

by several examples that look like exercises or “drills” for the learners. There is an 

obvious similarity between the two sets of drills: 

    

Figure 3: Exercises from Schuere (left) and Magnitskii (right). 

The comparison of the contents of the two books made Bobynin claim that Magnitskii 

simply translated Schuere’s book, while for Galanin, Magnitskii work was a way of 

enriching sources known to him with original didactical ideas that we still need to 

grasp. The size limits of this paper does not allow us to provide a deeper analysis of the 

examples; meanwhile, it is important to stress that Magnitskii’s book contains more 

examples than that of Schuere, and they are of different kind. It is also interesting that 

both authors introduced in their texts several word problems that prompted application 

of addition, yet, according to Galanin, problems in Magnitskii’s textbook are simpler 

than those in Schuere’s book. Curiously enough, when Bobynin sees a larger number 

of examples and more detailed explanations, he considers them Magnitskii’s didactical 

weakness, while Galanin in similar cases emphasizes originality and usefulness of this 

method for the learner. 

CONCLUSIONS: SETTING UP A RESEARCH AGENDA 

Magnitskii’s arithmetical manual was often mentioned in works on the history of 

mathematics in Russia; however, no special attention, with very few exceptions, was 

paid to its analysis in didactical perspective. Meanwhile, the work in this direction 

cannot be accomplished without a detailed exploration of the didactical tradition in 

Russian mathematics that existed prior to the publication of Magnitskii’s manual; 

moreover, the circumstances of mathematical training obtained by Magnitskii, while 

being crucial for the present study, remain unknown. However, even the cursory study 

briefly reported in the present paper strongly suggests that the modifications of 
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mathematical methods and concepts most likely borrowed by Magnitskii from a 

number of Western textbooks of the 17
th
 century resulted from the latter’s attempts to 

make those methods and concepts fit into the didactical framework of the early 18
th
 

century Russia.  

References 

Bellyustin, V. K. (Беллюстин, В. К.) (1909). Как постепенно дошли люди до настоящей 

арифметики [How did people gradually reached the true arithmetic, in Russian]. 

Moscow: Men’shov Publishing Company (Типографiя К. Л. Меньшова). 

Bobynin, V. V. (Бобынин, В. В.) (1889). Очерки истории развития 

физико-математических знаний в России, 'Арифметика' Магницкого (часть 2). 

[Outlines of the history of development of physical and mathematical knowledge in 

Russia. The Arithmetic of Magnitskii (part 2), in Russian], Физико-математические 

науки в их настоящем и прошедшем, 8, 28-47. 

Fan, L., Wong, N.-Y., Cai, J., & Li, S. (Eds.). (2004). How Chinese learn mathematics: 

Perspectives from insiders. Singapore: World Scientific. 

Freiman, V., & Volkov, A. (2012). Common fractions in L.F. Magnitskii’s Arithmetic (1703): 

Interplay of tradition and didactical innovation. Paper presented at the 12
th

 International 

Congress on Mathematics Education, Seoul, South Korea. 

Galanin, D. D. (Галанин, Д. Д.) (1914). Леонтий Филиппович Магницкий и его 

Aрифметика. Выпуски 2 и 3 [Leontii Filippovich Magnitskii and his Arithmetic. Parts 2 

and 3; in Russian]. Москва: Типография Сомовой. 

Ivashova, O. (2011). The history and the present state of elementary mathematical education 

in Russia. In A. Karp & B. R. Vogeli (Eds.), Russian mathematics education: programs 

and practices (pp. 37-80). Singapore: World Scientific. 

Karp, A., & Vogeli, B. R. (Eds.). (2010). Russian mathematics education: History and world 

significance. Singapore: World Scientific. 

Karp, A., & Vogeli, B. R. (Eds.). (2011). Russian mathematics education: Programs and 

practices. Singapore: World Scientific. 

Leung, F. K. S. (2001). In search of an East Asian identity in mathematics education. 

Educational Studies in Mathematics, 47(1), 35-51. 

Ma, L. (1999). Knowing and teaching elementary mathematics: Teachers' understanding of 

fundamental mathematics in China and the United States. Mahwah, NJ: Lawrence 

Erlbaum Associates. 

Magnistkii, L. (Магницкий, Л.) (1703). Арифметика, сиречь наука числительная, с 

разных диалектов на словенский язык переведеная, и во едино собрана, и на две 

книги разделена [Arithmetic, or learning of numbering, translated into Slavic language 

from different dialects, assembled and divided into two books]. Moscow. 

Mishchenko, A. S. (2004). The first printed mathematics book in Russia. Presentation at the 

10
th

 International Congress on Mathematics Education, Copenhagen, Denmark. 



Freiman, Volkov 

3 - 120 PME 2014 

Polanyi, M. (1958). Personal knowledge: Towards a post-critical philosophy. Chicago, IL: 

University of Chicago Press. 

Okenfuss, M. J. (1995). The rise and fall of Latin humanism in early-modern Russia: Pagan 

authors, Ukrainians, and the resiliency of Muscovy. Leiden: Brill. 

Schuere, J. van der (1643). Arithmetica oft reken-konst: En een kort onderricht van't italiaens 

boeckhoudẽ. Amsterdam. 

Spagnolo, F., & Di Paola, B. (Eds.). (2010). European and Chinese cognitive styles and their 

impact on teaching mathematics: Studies in computational intelligence (Vol. 277). Berlin: 

Springer.  

Vucinich, A. (1963). Science in Russian culture: A history to 1860. Stanford, CA: Stanford 

University Press. 

Xie X., & Carspecken, P. F. (2008). Philosophy, learning, and the mathematics curriculum: 

Dialectical materialism and pragmatism related to Chinese and U.S. mathematics 

curriculums. Rotterdam and Taipei: Sense Publishers. 

Yushkevich, A. P. (Юшкевич, А. П.) (1968). История математики в России до 1917 

года [History of mathematics in Russia prior to 1917, in Russian]. Москва: Наука. 



2014. In Oesterle, S., Liljedahl, P., Nicol, C., & Allan, D. (Eds.) Proceedings of the Joint Meeting 3 - 121 

of PME 38 and PME-NA 36,Vol. 3, pp. 121-128. Vancouver, Canada: PME. 

BLACK AND WHITE MARBLES – OLDER PRIMARY STUDENTS’ 

INTUITIVE CONCEPTIONS AND APPROACHES CONCERNING 

RATIOS 

Torsten Fritzlar
1
, Roland Rink

2 

1
University of Halle-Wittenberg, 

2
Humboldt-University of Berlin 

 

We encounter ratios on a daily basis. They also play an important role as a basic 

construct of thinking in many areas of school mathematics. For example, a fraction 

can be interpreted as the ratio of a part to the respective whole. Many children appear 

to have difficulties with fractions and although the concept of ratios is crucial for this 

subject area, there has been hardly any scientific research on how the understanding 

of ratios is developed. In this article, we will highlight, using the “marbles problems”, 

how children between 3rd and 6th grade handle ratios. 

INTRODUCTION 

In our everyday lives, we come across ratios in various situations. We find them in 

proportions, game and election results, probabilities, physical quantities such as 

velocity or density, mixing instructions in recipes, and in scales, to name just a few 

examples. In some of these cases, the information is expressed using fractions as 

special ratios; however, ratios are much more multifaceted. Fractions always show 

parts in relation to the respective whole (part-whole ratio – PW), while ratios also 

indicate the relationship between the parts of a whole (part-part ratio – PP), e.g. in 

game results or mixing proportions. A third way of interpreting the concept of ratio can 

be seen in the example of velocity, where quantities of different types are put into 

relation to each other. In the event of such rate problems (RP), new quantities are 

often formed through reification, which can then be used as new objects of thinking. 

Furthermore, ratios can be used as concrete ratios to characterise a concrete situation 

or a certain object. According to Führer (1999), this is a formative description method 

(“gestaltliches Beschreibungsmittel”). Also, they can be applied as equivalent ratios in 

an abstract way. In colloquial (German) language use, the term “ratio” is used even 

more extensively. Führer (2004, p. 46) explains that the German word for “ratio” 

(“Verhältnis”) is used very often, when at least two objects are related to each other in 

any way (“[v]on einem Verhältnis spricht man oft schon, wenn mindestens zwei 

Objekte nur irgendwie in Beziehung gesetzt werden”). For further details and the basic 

mathematical principles refer to Rink (2013). 

It quickly becomes clear that PW ratios (fractions, percentages, probabilities etc.) and 

PP ratios (scales, similarities, intercept theorem etc.) play an extremely important role 

in school mathematics; however, in Germany this topic is not covered explicitly until 

7
th

 grade. Rate problems (RP), on the other hand, are only scarcely discussed beyond 

theoretical contexts in mathematics lessons. 
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Particularly in Anglophone countries, extensive research has already been done on the 

abilities in handling ratios (e.g. Hart, 1980; Karplus et al., 1983). However, the 

participating children were always at least 12 years old. With reference to Piaget 

(Piaget & Inhelder, 1973), it has been widely assumed that younger students are not 

able to handle ratios successfully. Some studies (e.g. Streefland, 1984) – though 

lacking a theoretical differentiation of the concept of ratio and respective variations of 

test items – and first studies conducted by the second author (Rink, 2013), however, 

show that primary school children absolutely have the potential to handle ratios 

successfully. Even if multiplicative thinking is considered to be the probably most 

important requirement for dealing with ratios successfully (Rink, 2013), children are 

actually able to discuss ratios on a qualitative level before being taught multiplication 

in school (Adhami, 2004; Streefland, 1984). 

The importance of ratios in our everyday lives and in school mathematics on the one 

hand, and the apparently related high cognitive requirements on the other hand, seem 

to call for further systematic research on this matter. 

RESEARCH QUESTIONS AND USED METHODS 

The following pilot study shows only examples of the capabilities of older primary 

school children
1
 in handling ratios, however studying a bigger group including pupils 

from four grades. The subjects of the study were primary students from 3
rd

 to 6
th
 grade. 

We were interested in their “natural” way of handling certain ratio problems before 

corresponding algorithms and concepts are systematically taught in school. The 

youngest participants of the study were pupils who had just started 3
rd

 grade, which 

makes sense, because at this age children have a solid understanding of multiplication. 

This is considered to be crucial in the successful handling of ratios and, in Germany, is 

first taught in 2
nd

 grade. Furthermore, this composition of participants gave us a chance 

to also look into possible effects of the systematic introduction of fractions in 5
th
 grade. 

In doing so, our aim was not only to gather quantitative information of resolution rates, 

but also to particularly investigate the pupils’ methods in a qualitative manner. 

Regarding the high importance of the ratio types PW and PP in school mathematics, we 

decided to make them the main focus of this pilot study. Further, these ratio types allow 

for context-free problem situations, thus reducing the influence of previous experience 

and (mis-)conceptions from non-mathematical areas. In contrast, most previous studies 

on the subject of handling ratios placed the problems in various contexts. On the one 

hand, this ensured that the participants understood that they had to work with ratios, 

but, on the other hand, the results varied greatly and were barely comparable (e.g. Hart, 

1980; Noelting, 1980; Streefland, 1984; Rink, 2013). Also, these studies usually did 

not take possible changes over several education levels into account. 

Another aim of our research was to understand the pupils’ ideas of the concept of 

“ratio” on a linguistic level as well as possible relations to their abilities of handling the 

                                           
1
 In the state of Berlin, primary school comprises grades 1 to 6. 
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respective problems. We are not aware of any previous studies on this subject, neither 

in Germany nor internationally. 

The study was mainly carried out in Berlin primary schools during the first few weeks 

of the school year. In order to ensure as much heterogeneity within the group of 

participants as possible, eleven schools from different urban school catchment areas 

with and without mixed-level learning groups were involved. All 231 participating 

schoolchildren were asked to do the following exercise in writing: 

In a box, there are 10 marbles –  

black and white ones.   

Take a look at the image. 

 

1. How many white marbles would you have to remove from these 10 marbles, to 

leave half as many white as there are black marbles? Explain your solution. 

2. How many black marbles would you have to add to these 10 marbles, so that three 

quarters of all marbles are black? Explain your solution. 

3. What is the ratio between the white and the black marbles? Explain your solution. 

Figure 1: Marbles problem 

The first problem covers PP ratios, which play an important role in everyday life. Since 

“half as many” is a rather simple ratio and, moreover, the reference quantity is known, 

the question concerning the number of white marbles should be relatively easy to 

answer for many children. It is interesting to observe how, going from there, the pupils 

manage the transition to the second question, which is a PW problem. Not only does 

the ratio “three quarters” make it more challenging, but it is especially more difficult 

because the reference quantity is unknown. While the first two problems work without 

the term ratio, the third question requires the pupils to explain their intuitive 

understanding of the concept. This only happens in the last problem in order to keep 

the influence of possibly induced ideas, associations or affects on the first two 

problems to a minimum. 

The data collection was carried out by student teachers, who were introduced in the 

study beforehand to guarantee a widely consistent organisational framework. 

Afterwards, the data was analysed in tandem by the two authors of this study. In order 

to conduct qualitative analyses of approaches, we developed descriptive categories 

based on the collected data (bottom-up), which also refer to elements of the theoretical 

analysis (top-down) of the ratio concept (cf. section 1). 

RESULTS 

The table below shows the resolution rates for the first two marble problems. These 

results confirm, on the one hand, our a priori estimation of the level of difficulty, which 

is also supported by the fact that only three of 231 participating pupils were able to 
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handle the second problem successfully without having answered the first question 

correctly. 

grade number of pupils resolution rate of 

problem 1 

resolution rate of 

problem 2 

3 61 70.5% 19.7% 

4 57 82.5% 14.0% 

5 45 66.7% 15.6% 

6 68 80.9% 23.5% 

total 231 75.8% 18.6%
2
 

Table 1: Resolution rates of problems 1 and 2 

Even if this does not constitute an actual longitudinal study, the only slightly changing 

resolution rates and missing tendencies across the education levels suggest, on the 

other hand, that without systematic teaching of the ratio concept in mathematics 

lessons, there is no major capabilities increase in this field. 

Problem solving and explaining approaches for the second marbles problem 

Table 1 shows clearly that only a small part of the 3
rd

- to 6
th
-grade students 

participating in the study were able to solve the second marbles problem successfully. 

Additionally, only 68% of these children wrote an explanation for their answers. 

However, the results still show a broad spectrum of correct or improvable problem 

solving and explaining approaches, as presented below. On the one hand, this shows 

the existing capabilities and potentials of the group of participating schoolchildren and, 

on the other hand, it offers indications for the didactic organisation of teaching the ratio 

concept in mathematics lessons. 

Anne (9 years old, 4
th

 grade) solves the problem in the following way: 

 

Description: Three times as many are 

black. Even if the problem text description 

suggests a PW ratio, this pupil handles the 

exercise with a PP approach and triples the 

number of white marbles in order to 

determine the number of black marbles. 

Fractions or ratios, however, are not 

expressed. 

Translation: 

You would have to add six black marbles, because 

4x3=12. Because if you multiply the white ones by 3, 

it’s 12 and 6+6 (→black) = 12 

 

                                           
2
 Some pupils suggested the solution “three black marbles”. This would be correct, if one were to take 

the result of problem 1 as a starting point. Under consideration of these suggestions, the resolution 

rate would be 24.2%. 
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Bea (11 years old, 6
th

 grade) solves the problem in the following way: 

 

Description: ¼ is 4, ¾ is 12. From the 

quarter of a whole three quarters are 

calculated – similar to Anne’s multi-

plication approach. The girl does not name 

the whole, which is why the approach can 

be interpreted as PP approach. 

Translation: 

- add 6 

- I counted the white and the black ones 

4=¼ x3=12=¾ 

 
Charles (9 years old, 3

rd
 grade) uses a sketch. 

 

Description: PP approach with a sketch. 

This boy draws 3 black marbles for each 

white marble. Because Charles forgets one 

marble, he receives an incorrect result. 

 
Danny (11 years old, 6

th
 grade) solves the problem in the following way: 

  

Description: 3:4 → 4:12. This pupil 

develops a PP ratio that goes with the PW 

ratio provided in the problem text 

description. Danny’s exact approach cannot 

be reproduced. 

Translation: 

You would have to add six black marbles to get the 

ratio 4:12 (w.:b.) and 16:4 = 4 and 12:4=3. 

 
Ethan (10 years old, 5

th
 grade) solves the problem in the following way: 

 

Description: ¼ of all marbles is white. In 

this PW approach, the pupil uses the 

number of white marbles to determine the 

total number and, going from there, 

calculates the number of black marbles that 

need to be added. 
Translation: 

You have to add 6 black marbles, because 4 marbles 

are a quarter, because there are 4 white marbles and 

4x4=16, so that’s why it has to be plus 6. 

 
Frieda (8 years old, 4

th
 grade) “tries” to reach a solution. 

 

Description: Trying (PW). Frieda attempts 

to reach the required, modified PW ratio by 

trying different options.  

Translation: 

10:4 = doesn’t work 

11:4 = doesn’t work 

12:4 = 3 in each quarter 

 

Figure 2: Problem solving and explaining approaches 
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We were able to identify the first approach in a particularly large part of problem 

solutions collected from the participating pupils. It seems remarkable that about three 

quarter of the exactly reconstructable approaches can be interpreted as PP approaches, 

even if the second marbles problem is actually a PW problem. 

Pupils’ conceptions on ratio 

The participating schoolchildren’s solutions for the third problem showed a very broad 

spectrum of understanding the term “ratio”. We are seeking to illustrate this in a first 

approach by using the following answer categories, which have been developed based 

on the collected data: 

 ratio: Answers of this category specify the ratio between the numbers of white 

and black marbles, e.g. in the forms “4:6” or “4 to 6”, sometimes even naming 

the term “ratio”. Pupils of higher education levels also used percentages, as in 

“40% to 60%”, or “cancelled” ratios, such as “1:1.5” or “1:1½”. None of the 

participants, however, used the basic ratio 2:3. All answers in which pupils 

specified a ratio were correct. 

 comparison: A big part of the children compared the numbers of marbles 

according to their respective cardinality and said that there are “more black 

than white” marbles. Sometimes they commented on how many white 

marbles would have to be added in order to leave the same number of black 

and white marbles. 

 geometric: Some of the children described the position or formation of the 

marbles, e.g. “There are two rows of marbles” or “The marbles are facing 

each other”. 

 no answer: A major part of the participating pupils did not write an answer. 

 others 

Table 2 illustrates that children of higher education levels showed, as expected, 

increasing capabilities in expressing scientifically correct ideas of the term “ratio”. 

However, even among 6
th
-grade pupils, still less than half of the participants succeeded 

in putting an appropriate answer into writing. It was also rather surprising that answers 

of the category geometric were given more often by older pupils than younger ones. 

 3rd grade 4th grade 5th grade 6th grade 

ratio 23% 19% 37% 44% 

comparison 9% 33% 19% 6% 

geometric 0% 1% 8% 11% 

others 23% 17% 13% 11% 

no answer 45% 29% 22% 20% 

Table 2: Pupils’ answers to the third marbles problem 
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We did not detect any statistically significant links between the types of pupils’ 

answers to the third marbles problem and the successful solving of the first two 

problems. This outcome matches the results of other studies which showed that 

children have the ability to work with ratios on a qualitative level at a very young age 

already, without needing any rather formal aspects (Adhami, 2004; Lorenz, 2011). 

DISCUSSION 

The pilot study presented in this article shows that most of the 231 participating 3
rd

- to 

6
th

-grade pupils were able to solve an easy ratio problem successfully. However, the 

results of the second marbles problem also indicates that the required capabilities 

among the studied age group do not develop by themselves, but rather require 

systematic teaching in mathematics lessons. Furthermore, the problem solving and 

explaining strategies applied for the second problem suggest a certain flexibility and 

confidence of the pupils in working on PP problems. Therefore, PP problems and their 

respective solving approaches might possibly be used as starting points for suitable 

learning trajectories. 

In an already planned follow-up study, the number of participating schools and thus the 

heterogeneity within the group of participants will be increased. This study will not 

only include systematically varying PP and PW problems, but also rate problems that 

are phrased with little context, e.g. using exchange situations. 
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This case study investigates the effectiveness of a lecture in advanced mathematics. We 

video recorded a lecture delivered by an experienced professor. Using video recall, we 

then interviewed the professor to determine the content he intended to convey and we 

analyzed his lecture to see if and how this content was conveyed. We also interviewed 

six students to see what they understood from this lecture. The students did not 

comprehend much of the content that the professor intended to cover in his lecture. We 

propose three reasons for why students failed to grasp much of the content that the 

professor intended to convey. 

INTRODUCTION 

This paper investigates the seeming paradox that an excellent mathematics teacher 

delivering a high-quality lecture may not result in student learning gains. The specific 

context we study is the proof-based real analysis course. There is a widely held belief 

amongst mathematics educators that most lectures in advanced mathematics are 

ineffective for developing students’ understanding of mathematics (e.g., Davis & 

Hersh, 1981; Dreyfus, 1991; Rosenthal, 1995). Perhaps the most common complaint is 

that the predominance of definitions, theorems, and proofs in lectures leads the lecturer 

to pay scant attention to other important types of mathematical thinking (e.g., Davis & 

Hersh, 1981; Dreyfus, 1991). Consequently issues such as informal ways of 

understanding mathematical concepts (e.g., graphical or diagrammatic interpretations 

of concepts), why theorems appeared plausible to mathematicians, and how these 

proofs could have been constructed are (purportedly) largely ignored in advanced 

mathematics lectures. Yet, extant case studies (e.g., Fukawa-Connelly & Newton, in 

press; Weber, 2004) show lecturers use informal representations of concepts such as 

examples and diagrams to help students understand the content. Similarly, the 

interview data of Yopp (2011) and Weber (2012) found that mathematics professors 

claimed to focus on things such as providing explanation and illustrating proof 

methods, rather than a formal proof. 

Research has generally not explored how mathematics majors comprehend or gain 

understanding from the proofs that they read (Mejia-Ramos & Inglis, 2009). This case 

study examines the presentation of proof in a real analysis lecture and what students 

might learn from it via the following research questions: 

1. What content did the professor intend to convey in his lecture? 

2. How was this intended content presented in his lecture (if at all)?  

3. What did the students in this class perceive to be the important content in the 

proof and did it align with the professor’s goals?  
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4. In cases where students’ interpretations of the lecture differed from the 

professor’s intent, what factors could explain these discrepancies? 

THEORETICAL PERSPECTIVE 

According to de Villiers (1990), mathematicians engage in the activity of proving for 

five different purposes: (1) to verify that a theorem is true and that the conclusion of a 

theorem being proven is a necessary consequence of the premises of that theorem 

(although de Villiers emphasized that this was not the primary function of proof); (2) to 

go beyond verifying that a theorem and explaining why it is true (Hanna, 1990, and 

Hersh, 1993, argued that explanation should be the primary function of proof in the 

classroom); (3) to discover new ideas and methods that will help mathematicians solve 

problems that they are working on (Mejia-Ramos and Weber, in press, reported that 

mathematicians claim this is one of the main reasons they read proofs); (4) to 

communicate new mathematical ideas, tools, and proof techniques with other 

mathematicians; and (5) to systematize a body of mathematical knowledge by showing 

how new definitions or axiom systems can account for results that are known to be true 

(cf., Weber, 2002). In this report we focus on the second and third purposes: using a 

proof as an explanation for a particular mathematical idea and as a way to discover new 

methods students could use to solve other problems. 

We also follow the New Literacy Studies movement (Gee, 1990) and treat the totality 

of a lecture, including the words spoken by the professor, his chalk inscriptions and 

kinesthetic movements, as a single coherent piece of text. Our interest is in the 

meanings that the professor attempted to imbue in the text, the meanings that students 

constructed from reading this text, and discrepancies that may arise between the two. 

Our theoretical analysis suggests three reasons that students might fail to understand a 

proof in lecture: (i) the professor may not believe conceptual explanations and methods 

are important and not include them; (ii) the professor might fail to encode the content 

into the text, (iii) the students might lack the tools to interpret the text. 

METHODS 

The lecture 

This research took place at a large American state university, in a real analysis course, 

which is, as is typical for the U.S., a junior-level course required for mathematics 

majors. We studied a section of the course taught by Dr. A (a pseudonym), a 

highly-experienced and well-respected instructor, videotaping one of his lectures. This 

study focuses on the proof from that lecture that we felt was the most conceptually 

interesting. To avoid ambiguity, we refer to the blackboard proof as the text that Dr. A 

inscribed on the blackboard and the lecture proof as the totality of the 10-minute 

segment. Our analysis of the lecture proof suggested that there is substantial content 

that can be learned from it.  That content could focus on explanation, methods (i.e., 

discovering how to find new theorem), or conviction/validity. For the sake of brevity, 
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we focus on the use of Cauchy sequences (methods) and that Cauchy sequences are 

those that bunch up (explanation). 

After the initial analysis of the text, the 2
nd

 author met with Dr. A for an audio-recorded 

interview.  The interview focused on the main ideas he wished to convey via the proof 

presentation and used video recall to prompt him to reflect on how he attempted to 

convey those ideas. When we analyzed Dr. A’s comments, if they were consistent with 

what we observed, we would fold them into the categories that we formed in our 

analysis of the lecture. If he introduced new ideas or described the content that we 

observed in a different way, we would form a new category.  

Student data 

We collected notes and interviewed six students.  The interviews were with pairs of 

students and video recorded. Pair 1 consists of S(tudent)1 and S2, Pair 2 is S3 and S4, 

Pair 3 is S5 and S6. From Dr. A’s perspective, these students displayed a wide range of 

performance, but were collectively above average in their class. We asked the students 

to consider the lecture proof in three passes. First, we asked them to describe what they 

learned from the lecture based upon their notes to see what they could reconstruct. 

Second, we showed them the entire proof on video in order to explore their 

interpretations of what Dr. A considered the main ideas of the proof. In the third pass, 

we showed the students short clips of the lecture and after each clip, asked what they 

understood to measure whether the participants had the means to interpret what Dr. A 

considered to be the main content of the proof.  In each pass, we compared their claims 

to the conceptual meaning that Dr. A ascribed to the proof presentation. 

THE LECTURE  

First, we note that Dr. A’s lecture proof was more detailed than his blackboard proof. 

The latter was a polished proof that might appear in a textbook. However, in the lecture 

proof, he supplemented the blackboard proof with many oral comments about the 

proof writing process and his thinking about concepts. That is, all statements about the 

methods and content he intended to convey were stated orally, not written on the 

blackboard.  

In the theorem about sequences that Dr. A proved in class, a specific sequence is not 

given. Rather, the theorem states that the sequence has the property that the distance 

between any two consecutive elements xn and xn-1.is less than r
n
, where r is a constant 

with 0 < r < 1. One cannot prove that such a sequence converges simply by applying 

the definition of convergence (given that we cannot know what the limit will be), so 

another approach is needed. In the proof presented by Dr. A, the sequence is shown to 

be convergent by demonstrating that it is a special type of sequence called a Cauchy 

sequence (in a previous class, students had seen a proof that all Cauchy sequences are 

convergent sequences). A key point stressed at several points in Dr. A’s lecture proof is 

that this theorem was useful to apply when one wanted to prove a sequence was 

convergent, but could not determine what the limit of the sequence was.  
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ANALYZING THE TEXT VIA THE PERSPECTIVE OF ITS AUTHOR 

When asked why he chose to present this proof, Dr. A gave an 11 minute response, 

situating Cauchy sequences along students’ mathematical progression starting with 

calculus and concluding with the study of measurable functions in graduate school. He 

tied this to the importance of repetition of ideas, suggesting that students do not gain 

intuition and understanding the first time they view a proof. Rather, he believed 

students came to grasp ideas through repeated exposure. Describing the main things he 

intended to convey to students with this proof, Dr. A emphasized thinking of Cauchy 

sequences in terms of pictures, using the word “picture” 32 times. He began: 

What has to be emphasized over and over again is that these definitions, which you might 

write down in symbols, are not going to make sense to you unless you have a picture 

associated with it.  

However, when viewing the proof, Dr. A was surprised that he actually did not include 

any pictures, saying “this is a poor example. There are no pictures here!” When asked 

what content he was trying to convey while presenting this proof, he cited that he 

wanted students to view these sequences as “bunching up,” which from our perspective 

implied that the terms of the tail of the sequence would become arbitrarily close 

together and “bunch up” around a particular point. Dr. A explained: 

If you go far enough out in the sequence, the difference between any two terms whose 

index, the m, the n, are large enough. Will always be less than epsilon. What that says is 

that they bunch up [Dr. A places hands vertically and parallel to one another and slowly 

moves his two hands towards each other]. So the Cauchy property for a sequence is, the 

property says they bunch up [Dr. A repeats the gesture described above] in some place.  

STUDENTS’ PERCEPTIONS OF THE LECTURE 

Pass 1: Students’ recall of the content of the lecture from their notes 

First, we note that five of the students recoded only what was written on the board in 

their notes. The sixth student (S1) was an exception: she recorded nearly everything 

Dr. A said aloud, as well as what he wrote. The students did not mention the content 

that Dr. A aimed to convey in this proof, although their summaries did, generally, have 

mathematical value. No student mentioned the critical point, emphasized thrice in the 

Dr. A’s presentation, that using Cauchy sequences to establish convergence was 

specifically useful if one did not know what value to which the sequence converged. 

Perhaps they did not recall this content from their notes because it was part of Dr. A’s 

oral but not written presentation and they only recorded the written proof. 

Pass 2: Students’ perceptions of the content after viewing the proof 

Students’ comments in this pass through the data (i.e. after showing them a 

video-recording of Dr. A’s presentation of the proof) were more detailed than in the 

first pass. Although all pairs of students highlighted important content in the proof, 

none of the students mentioned that showing a sequence is Cauchy is an important 

method for proving the sequence is convergent particularly when one does not know 



Fukawa-Connelly, Lew, Mejia-Ramos, Weber 

PME 2014 3 - 133 

what the limit of the sequence is. Two pairs of students mentioned that showing the 

sequence was Cauchy was a way of establishing convergence and S4 observed the 

repetition of this proof structure:  

Other than showing that a contractive sequence is a Cauchy sequence, I think it's more. 

He's showing more of the structure of the proof […] A lot of the proofs that we did over the 

last nine or so weeks basically have the same structure […]  

But no student mentioned the conditions under which this was likely to be useful even 

though Dr. A emphasized these conditions at three separate points in his lecture.  

Pass 3: Students’ interpretations of specific video clips 

In Clip 1, Dr. A claimed to be trying to give students some geometric intuition for what 

was being asserted in the theorem and why the theorem was true (the sequence, like 

Cauchy sequences, bunches up), our analysis of his presentation suggested that such 

content was available from his lecture proof, but not from the blackboard proof. By this 

pass, S2, S5 and S6 indeed believed this clip was trying to establish geometric intuition 

for why the sequence converged, that is, that the sequence was ‘bunching up’.  S2 said, 

“I mean, this is fairly intuitive. You look at it and the r to the n's are going to keep 

going up and so this interval is going to keep shrinking, so of course it would be natural 

to suggest Cauchy sequence.” The idea of the interval shrinking is what Dr. A meant by 

‘bunching.’ Both S3 and S4 said that Dr. A was trying to convey that one can show a 

sequence is Cauchy without knowing its limit, but only describe Cauchy sequences as 

‘bunching up’ after the interviewer directly asked them if the clip suggested that. 

In Clip 2, Dr. A introduced the idea of Cauchy sequences as a way to show that a 

sequence is convergent. Dr. A asks the students what types of sequences converge even 

if the limit cannot be determined, saying: 

There’s no mention of what the definition is of the sequence, so there’s no way we’re going 

to be able to verify the definition limit of a convergent sequence, where we have to produce 

the limit.  So what do we do?  […] What kind of sequences do we know converge even if 

we don’t know what their limits are?   It begins with a ‘c’.  

Both Pair 1 and Pair 2 believed Dr. A was trying to convey that one can show a 

sequence is convergent by showing it is Cauchy, which is useful if you do not know the 

limit of the sequence. For instance, S1 said, “we should recognize it, like to figure out 

it's a Cauchy, we should know that it's converging, but its limit is not necessarily 

given.” However, Pair 3 did not mention this. 

In Clip 3, Dr. A explicitly highlights that one can show a sequence is Cauchy without 

knowing what the limit is: 

We will show that this sequence converges by showing that it is a Cauchy sequence [writes 

this sentence on the board as he says it aloud, then turns around to face class]. A Cauchy 

sequence is defined without any mention of limit.  
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Pair 1 and Pair 2 repeated that the intent here was to remind students that one can show 

a sequence was Cauchy without knowing its limit. Pair 3 again made no comment of 

this type. 

In Clip 4, Dr. A again reiterates that one cannot find a limit for the sequence in the 

theorem and showing the sequence is convergent involves showing that it is Cauchy. 

And now we’ll state what it is we have to show. ... See there is no mention of how the terms 

of the sequence are defined. There is no way in which we would be able to propose a limit 

L. So we have no way of proceeding except for showing that it is a Cauchy sequence or a 

contractive sequence. So let’s look and see how we proceed.  

Only Pair 2 remarked that Dr. A was trying to convey that one needed to use Cauchy 

sequences to establish convergence because one could not propose a limit of the given 

sequence. Both students in Pair 1 were unsure of the intention of the clip. 

For Pair 3, S6 mentioned that the limit of the sequence could not be determined. He 

said, “he wanted to emphasize that there is no mention of limit whatsoever, so we won't 

like confuse it with the concept of limit”. Our interpretation of this excerpt is that they 

perceived Dr. A as noting that their previous approaches to showing convergence, 

which relied on knowing the limit of the convergent sequence, would be inadequate for 

this problem. Pair 3 did not, however, mention that showing a sequence was Cauchy 

would be useful since the definition of Cauchy sequences did not involve the definition 

of limit even when specifically asked whether the clip suggested that showing the 

sequence was Cauchy would be useful. 

Summary of students’ perceptions of the lecture 

When shown specific clips that Dr. A highlighted, the students were collectively much 

better at identifying what Dr. A aimed to convey, than when recalling the content of the 

lecture just from their notes (Pass 1) or after showing them a video-recording of Dr. 

A’s presentation (Pass 2). As this content concerned conceptual explanation and 

method, the findings above indicate that these students could decode some of this 

content that Dr. A expressed orally, if asked to do so immediately after viewing his 

comments regarding that specific content.  

First, all three pairs of students observed that the proof illustrated a new way to show a 

sequence was convergent—namely by showing that it was Cauchy—and Pair 1 and 

Pair 2 remarked on this in the first pass through the proof. However, the conditions 

under which this was useful, when a limit for the sequence could not be proposed, were 

less prevalent in students’ responses. Pair 1 and Pair 2 did not mention this until the 

third pass through the data and Pair 3 did not discuss this content in any pass through 

the data.  Similarly, Pair 1 and Pair 3 that Cauchy sequences ‘bunch up’ but only when 

shown the specific short clips in which this was mentioned while Pair 2 only stated this 

as true when the interviewer specifically asked them if it would be seen in the data.  

Finally, there were two instances where students described content but at a more 

shallow level than Dr. A intended.  
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DISCUSSION 

Consistent with claims from the literature (Yopp, 2011; Weber, 2012), Dr. A 

emphasized conceptual explanations and method content when discussing this proof. 

Dr. A valued conceptual explanatory content in the form of pictures, but did not 

include any in his proof which aligns with findings suggesting that while 

mathematicians value such informal ways of thinking, their actual decisions about 

teaching might de-emphasize them (Alcock, 2010; Lai & Weber, 2013). Also, Dr. A 

would state his method content orally, but not include it in his blackboard proof, which 

is consistent with other findings from the literature (Fukawa-Connelly, 2013; Weber, 

2004). Further investigation is necessary to see how common this practice is.  

Students were able to say more about some of the content of the proof when presented 

with a short clip in which Dr. A encoded this content than in the first two passes. Thus, 

we claim students possessed the means to interpret the lecture proof, but did not use 

them when watching the lecture proof in its entirety. There are several possible reasons 

why this may have occurred, ranging from students essentially ignoring this content, 

not having time or cognitive resources to attend to it, or, simply not prioritizing it in 

their discussions of the proof. Five of the students only transcribed written content into 

their notes. Combined with the fact that most of Dr. A’s conceptual explanations were 

stated orally but not written, this suggests a reason for why comprehension was not 

occurring; students did not see this content as valuable to attend to. Finally, there was 

some content that both the research team and Dr. A felt was important that students 

seemed to lack the means to interpret.  

There are two significant limitations of this study. The first is that this was a case study 

studying a single lecture proof. More research is needed to determine how common 

these themes are with other professors or with the presentation of other proofs. Second, 

identifying why comprehension fails to occur does not necessarily imply how lectures 

in advanced mathematics can be improved. Although, some of our projects have 

demonstrated that students have inadequate beliefs and strategies for reading 

mathematical proofs (e.g., Weber & Mejia-Ramos, in press) and focus on developing 

interventions that will help students understand proofs better. 
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There is concern internationally that socio-economic class and ethnicity remain the 

most significant predictors of outcomes in mathematics; performance is often largely 

dependent on family income and level of parental education. Consequently the 

influence of pupils’ socio-economic backgrounds remains a major challenge to those 

of us in the field concerned with achieving equitable education. However, the ways in 

which socio-economic factors play out in different parts of the world subject to 

different political systems and structures, remains unclear. In this paper we present an 

analysis of mathematics achievement in Penang to offer a localized perspective on the 

ways in which socio-economic status and ethnicity affect achievement.  

INTRODUCTION 

Those who fail or struggle to succeed at mathematics do not come from a broad cross 

section of society; rather they tend to be those pupils from more disadvantaged 

neighbourhoods (Kitchen, et al., 2007). Gaps in student outcomes, especially those 

associated with non-academic factors, are always a source of concern for many 

educators and education systems. Although the stated aim of most education systems is 

to elevate every citizen to a better life through education, the observable reality is that a 

child’s academic performance is often largely dependent on family income. 

Differences in students’ socio-economic status remain a major challenge to achieving 

equitable outcomes though achieving equitable outcomes is not always high up on 

governments’ agendas. In Malaysia, socio-economic class remains the largest driver of 

student academic outcomes and a major challenge to achieving equitable education are 

the  socioeconomic differences among children. Students’ educational achievement 

correlates with disadvantage in terms of how much a child’s parents earn and where 

they go to school (Malaysian Ministry of Education, 2013).  

EDUCATION IN MALAYSIA 

Malaysian education system follows a top-down approach in which all directives 

concerning education – the national curriculum, standardized assessments, textbooks, 

training and placement of teachers, professional development programmes, placement 

of students and provision of facilities are decided by the Ministry of Education. There 

are three main types of primary schools in Malaysia – the national schools using Malay 

as medium of instruction and national-type (vernacular) schools using Chinese or 

Tamil as medium of instruction. National schools are government-owned and operated 

and student population in these schools tends to be more multiracial, while 

national-type schools are mostly government-aided, though some are 

government-owned. The student population in these schools tends to be mono-ethnic, 
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although the national-type Chinese schools tend to attract around 10% of its population 

from other ethnic groups (Malays and Indians). In government-aided national-type 

schools, the government is responsible for funding the school operations, teachers’ 

training and salary, and setting the school curriculum, while the school buildings and 

assets belong to the local ethnic communities, which elect a board of directors for each 

school to safeguard the school properties. 

THE MATHEMATICS CURRICULUM 

The mathematics curriculum has undergone some significant changes (both in content 

and in teaching approach) since the 1970s – from traditional, absolutist approach to 

process-oriented modern mathematics to a more holistic, integrated curriculum. The 

traditional mathematics taught before the 1970s employed a behaviorist approach 

where drill and practice was emphasized. The focus was on fast and accurate 

computation. In the late 70s the modern mathematics program was introduced, which 

employed a process oriented, problem solving approach. The Integrated Curriculum, 

which employed the constructivist teaching approach, was introduced in 1994, with 

emphasis on problem solving, group work and values. This curriculum was deemed 

consistent with the national education philosophy and goals of mathematics education 

both at the primary and secondary level. At the primary level, the emphasis was on the 

mastery of computation that led to understanding. The mathematics syllabus is 

arranged according to hierarchies of computing skills (levels) and all students are 

expected to master a collection of skills at different levels. The content of the primary 

mathematics curriculum is categorized into four interrelated areas – Numbers, 

Measurement, Shape and Space and Statistics. The topics are interrelated and 

integrated within the various mathematics topics and with other subjects, in the context 

of problem solving, particularly those related to everyday experiences. 

Starting from 2011, the primary school curriculum underwent yet another development 

called the Standard Curriculum for Primary School. As the name suggests, pupils’ 

achievements were measured against certain standards that they are able to acquire and 

do. The standards are divided into two parts: content standard and learning standard, 

which are delivered in modular forms according to learning areas. The content 

standards are statements about cognitive (knowledge) and affective (attitude and 

values) domains that are expected in learning a topic. The learning standards are 

statements about what a pupil is able to do in terms of concept and skills acquisition 

and proficiency.  

Although having a national curriculum and centralized deployment of educational 

resources would seem to suggest that all the schools would perform somewhat 

similarly, the learning experience that a child experiences is characterized by a number 

of factors including (but not limited to) geographic location, social background factors, 

school types, ethnicity structures and cultures. Although the three types of school use 

the same national curriculum and teaching materials (but using translated versions of 
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the textbooks), teaching and learning is very much shaped by the school culture, which 

in turn is characterized by ethnicity.  

In this paper we report on the early stages of an ongoing project to examine the 

mechanisms and contributory sources of low mathematics achievement in Malaysia 

and the UK. This project was initiated on the grounds that there are many 

commonalities and discords between Malaysia and England from which researchers 

can learn. Despite adopting the British education system from the colonial era, 

Malaysian primary schools have become increasingly organised according to the 

ethnicity of pupils, rather than being based upon geographical location, is more the 

case in the UK. Whilst this study aims to examine the effects of locality, poverty and 

ethnicity on mathematics achievement by focusing on two cities – Penang in Malaysia 

and Nottingham in England, in this paper we focus only on data from Penang. 

Government data from Malaysia shows that pupils from certain groups continue to 

underperform when compared to their peers and in relation to national expectations: 

 Locality – children in states with more rural schools; 

 Socioeconomic status – pupils from low socioeconomic background; 

 Ethnicity – Malays are outperformed by minority Chinese and Indian pupils. 

In the UK pupils seen as seriously underperforming in mathematics tend to be those 

who live in social housing, and Afro-Caribbean pupils, who are regularly 

outperformed by minority Chinese and Indian pupils (see Gates and Guo, 2013). 

Naturally, geographical and political systems and therefore the mechanisms of 

influence will differ between Malaysia and the UK and particularly between 

Nottingham, a highly deprived urban city in the UK and Penang, an island state in the 

north of the Malaysian peninsular. In this project, we are investigating effects of 

locality, poverty and ethnicity on mathematical attainment. The aim is to offer a more 

localized perspective to try to understand the ways in which socio-economic status 

effects students’ mathematical and how this is influenced by ethnicity. 

THE CONTEXT OF PENANG 

The island state of Penang is situated in the northern peninsular of Malaysia, consisting 

of an island (Pulau Pinang) and Seberang Perai (SP) on the mainland. Its population of 

1.6 million consists of 42% Chinese, 40% Malays, 10% Indians and 8% 

non-Malaysians and others. Its population is thus highly diverse in ethnicity, culture, 

language, and religion. Traditionally, the Chinese, who work mostly in the business 

industry, are located in the urban parts of the state while the mostly agrarian Malays 

and estate worker Indians are mostly in the rural parts. The more economically 

developed part of the state consists of 50% Chinese, 33% Malays and 8% Indians. The 

less developed part on the mainland consists of 32% Chinese 50% Malays, and 11% 

Indians. Others make up the rest. 

The school system is highly ethnically segregated. There are a total of 259 primary 

schools and 127 secondary schools in Penang. We were unable to obtain data on one 
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Malay and one Chinese school, and coded the rest 1-257. 149 of the primary schools 

are “national schools” (whose pupils are mostly ethnic Malays), 80 are “Chinese 

national-type schools”, 28 are “Tamil national-type schools”. These three types of 

schools are generally ethnicity-based, and the teachers tend to be of the same ethnicity 

(except for language teachers). The national schools consist of 94% local Malays, 3% 

Indians, 1% Chinese and 2% other races. The Chinese national-type schools consist of 

88% Chinese, 9% Malays, 2% Indians and 1% others, while the Tamil national-type 

schools are 100% Indians. Out of the 271 primary schools, 143 (53%) are urban 

schools and 128 (47%) are rural schools. In order to simplify language, we hereinafter 

refer to these school types as Malay, Chinese or Tamil to represent the majority 

ethnicity in each.  

METHODOLOGY 

Our aim is to explore the possible existence of any effects of locality, ethnicity and 

poverty on pupil achievements in Mathematics, and to provide some analytical map of 

the mathematics achievement in the state. The choice of Penang was to exacerbate 

ethnic and social divergence given the aforementioned social and political structures 

and the segregation within the primary schools. Whilst Malaysia is a diverse ethnic 

mix, Penang has particular characteristics of being significantly culturally Chinese 

within a tri-cultural community. We were interested in examining whether there were, 

for example differences in levels of achievement between Malay, Chinese or Tamil 

schools, and whether the social mix and geographical location played any role. Of 

course in order to undertake any detailed and robust parametric statistical analysis of 

such effects, we need to have sustainable assumptions that there actually are effects to 

identify otherwise, we may find we attribute causation to otherwise random or error 

effects.  

Data was obtained from the Penang State Education Department. At the end of Year 

Six (age 11 – 12), all pupils sit for the Primary School Achievement Test (UPSR), 

performance in which will decide which secondary school they go to the following 

year. The UPSR is an examination designed as an internal national qualification to 

mark the completion of primary school. The subjects tested in UPSR include Bahasa 

Malaysia, English language, Mathematics, and Science for students in national 

schools. Students at national-type primary schools also sit for Chinese or Tamil 

language. We also obtained the number of pupils in each school in receipt of 

government financial assistance. For each school we were able to obtain demographic 

data (size, type and location of school), achievement data (number of pupils sitting the 

UPSR and achieving each grade) and the number receiving government financial 

assistance. Analysis of data was undertaken at a school not a pupil level since we were 

only able to obtain the data in this aggregated form. Data contained information on 

name, location and ethnicity of school, total number of pupils, number of pupils 

receiving financial assistance, number of pupils who obtained each of the grades A to E 

in Mathematics. (Grades A, B and C are considered passes and D and E are failures).  
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The use of data 

It is important to stress that this is the first time such data has all been gathered together 

in one place and subjected to analysis. In this study we are examining a bounded 

geographical area, however, within that boundary, we can see considerable 

heterogeneity. It is our contention in this paper, that we gain little from attempting to 

utilize seemingly “hard” parametric statistics simply because the data do not meet the 

underlying assumptions for such a statistical analysis. It would help us little – and 

indeed be a positivist distraction - were we to try to calculate means, variations and 

other test statistics and look for significance. (See also Gorard, 2010 for a stronger 

argument). Consider the two key variables of poverty and achievement in Figure 1. 

 

Figure 1: Poverty and Mathematics achievement in Penang 2012 (Histogram) 

It would seem difficult not to conclude on the basis of this data representation that 

underlying data appears to contravene normality assumptions, making most parametric 

analysis impossible. Also patterns of poverty and achievement within each ethnic 

school group appears to be quite different as we can see in Figure 2. 

 

Figure 2: Poverty and Mathematics achievement in Penang 2012 (Box plots) 
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Again assumptions of normality are not substantiated here, but we do not need to 

calculate significance levels etc. in order to see something about the distributions of 

levels of poverty and mathematics achievement. 

This is in many ways not particularly surprising, as 

both variables are politically and socially constructed 

by government policy, rather than representing some 

natural phenomenon. If levels of poverty in the school 

and mathematics achievement were inversely related, 

we might expect to see this reflected in the box plots. 

Whilst to some extent this is the case for Malay and 

Chinese schools, it is clearly not the case for Tamil 

schools. Failure on the UPSR is similarly distributed as 

in Figure 3. 

INFLUENCE OF ETHNICITY AND POVERTY 

We might however look at rank correlation coefficients for any indication of possible 

strength of association. All three types of school show a low correlation between 

mathematics achievement and percentage of students on financial assistance. 

Malay (n=148) = -0.336          Chinese (n=79) = -0.152          Tamil (n=28)= +0.063 

Whilst the correlation was not significant for Chinese and Tamil National-type schools 

it was significantly negative for (Malay) National schools indicating there may indeed 

be evidence of greater levels of association within the Malay schools than Chinese or 

Tamil, with Tamil schools having virtually no association between levels of poverty 

and mathematics achievement – which fits the picture presented in Figures 1 and 2. We 

did run a Kruskal-Wallis test to examine whether the level of mathematical 

achievement across the three ethnic groups represented different underlying 

distributions. A p value of <0.000, suggests the distribution of mathematics 

achievement across the three groups was different. Figures 1 and 2 illustrate the school 

UPSR pass rates. The Malay National schools ranged from 70% – 100% passes with 

scores symmetrically distributed within that range. Both the National-type Chinese and 

Tamil schools ranged from 80 – 100% with only two such schools scoring below 80% 

and Figure 2 shows the skew toward the higher pass rates. This is more notable when 

taken into consideration with the levels of poverty in these schools. The extent of 

poverty at school level can be seen in Figure 4. 

School type >30% financial assistance >70% financial assistance 

Malay (148) 17 1 

Chinese (79) 3 1 

Tamil (28) 22 3 

Figure 4: Extent of school level poverty within Penang schools 

For the three types of schools there appears to be three different mechanisms at work 

for the effect of levels of poverty on achievement. 

Figure 3: Failure grades 
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In the Malay National schools, there is a weak 

negative association between levels of poverty 

and achievement. 

In the Chinese National schools, levels of 

poverty are low and levels of achievement very 

high, leading to little discrimination. 

In the Tamil National schools, levels of 

poverty are spread between 13% and 75%, yet 

this has virtually no effect on the high levels of 

achievement. 

 

 

In all three types of school, there is a tendency that schools with a high percentage of 

pupils receiving financial assistance are located in rural areas – this is perhaps not 

surprising. Of the Malay national schools 83 (55%) were located in rural parts of the 

state (hence termed “rural schools”) while 66 schools (45%) were in urban areas. Of 

the national-type Chinese schools 31 (39%) were located in rural parts of the state, 

while 49 (61%) were in urban areas. Half of the national-type Tamil schools (14) were 

located in rural parts of the state, while the other half (14) were in urban areas. 

Generally, there does not appear to be a pattern of effects between the location of the 

schools and their mathematics achievement, as can be observed in Figure 2 apart 

possibly from the Tamil schools where even schools in rural areas with high level of 

pupils in poverty still achieve high pass rates.  

DISCUSSION AND FUTURE RESEARCH 

Our analysis in this early phase of the research has been deliberately low-key because 

of our contention that for such localised school data detailed statistical analysis is 

inappropriate and unjustified. What we have demonstrated is how we might use more 

non-parametric exploratory approaches to data representation and analysis in order to 

examine some possible underlying mechanisms in educational systems. 

The first finding is the similarity between overall results in rural and urban schools. 

Some rural schools with high levels of poverty are obtaining high levels of passes – 

particularly in the Tamil communities. And this poses questions for the next stage of 

research. 

Whilst our data provided us with only school level variables, we are unable to identify 

any pupil level effects. Nor do we know anything of the familial levels of poverty in 

each of the three types of school. All types of schools appear to have a heterogeneous 

spread of poverty levels, with only Chinese Urban schools appearing to be quite 

homogeneous with low levels of poverty. As of yet we have no data on school choice 

mechanisms, and this is a further avenue of future research. 

Figure 5: Scatterplot of poverty 

and achievement by school type 
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What is also worthy of further research, and is something we are now examining 

through qualitative approaches, are those schools seen as outliers in Figures 2 and 3. 

For example, one rural Malay National school has a high percentage of pupils 

receiving financial assistance and obtained 98.5% passes, while another with a sizeable 

number of pupils on financial assistance obtained the lowest pass rate (57%). Of the 

three national-type Chinese schools with a high proportion of pupils receiving 

financial assistance, two obtained 100% passes while the other obtained 79% passes 

and is the lowest performing national-type Chinese school, all of which were located in 

rural area. For the national-type Tamil schools, most of the schools which obtained 

100% passes had a high proportion of pupils receiving financial assistance. Two of 

these are cases for further research as one has the highest percentage of pupils 

receiving financial assistance but obtained 100% passes and the other has a sizeable 

number of pupils receiving financial assistance but performed the least well (78% 

passes). 

This stage of the research has identified schools which are bucking the national trend 

and in which pupils are apparently succeeding (or failing) against the odds 

(Bempechat, 1998), but also where there are clear differences in levels of achievement 

in otherwise similar contexts. The next two stages of this research will be a more 

focused examination of outlier schools plus a characterisation of mathematical 

pedagogical practices in each ethnic type of school. 

Acknowledgment 

Our demographic and educational data in this paper were obtained from the Penang 

State Government – to whom we are grateful.  

References 

Bempechat, J. (1998). Against the odds. How “at-risk” students exceed expectations. San 

Francisco: Jossey Bass. 

Gates, P., & Guo, X. (2013). How British-Chinese parents support their children: a view from 

the regions. Educational Review. doi: 10.1080/00131911.2013.768958 

Gorard, S. (2010). All evidence is equal: the flaw in statistical reasoning. Oxford Review of 

Education, 36(1), 63-77. 

Kitchen, R., DePree, J., Celedon-Pattichis, S., & Brinkerhoff, J. (2007). Mathematics 

education at highly effective schools that serve the poor. New York: Lawrence Erlbaum. 

Malaysian Ministry of Education. (2013). Malaysian national education blueprint, Kuala 

Lumpur. http://www.moe.gov.my/userfiles/file/PPP/Preliminary-Blueprint-Eng.pdf. 



2014. In Oesterle, S., Liljedahl, P., Nicol, C., & Allan, D. (Eds.) Proceedings of the Joint Meeting 3 - 145 

of PME 38 and PME-NA 36,Vol. 3, pp. 145-152. Vancouver, Canada: PME. 

MAKING SENSE OF THE MULTIPLE MEANINGS OF 

‘EMBODIED MATHEMATICS LEARNING’ 

Susan Gerofsky 

University of British Columbia 

 

The theme of ‘embodiment’ has become an important approach in current 

mathematics education research, growing in significance from the mid-1990s onward. 

However terminology of ‘body’ and ‘embodiment’ is used to signal multiple, widely 

varying meanings in this research. Studies are grounded in a number of radically 

different theoretical bases, with the result that mathematics education researchers do 

not necessarily mean the same thing at all when they refer to ‘body’, ‘embodiment’ and 

‘embodied mathematics learning’. In this theoretical paper, the author offers a 

framework for interpreting these polysemous terms in relation to their theoretical 

groundings, with examples from the mathematics education literature. 

MULTIPLE MEANINGS OF ‘EMBODIMENT’ AND THEIR SOURCES 

In this conceptual paper, I offer a snapshot of the current research in embodied 

mathematics education. I develop an account of the historical context, disciplinary 

origins, research aims and meanings accruing to ‘body’ in the various strands that 

make up this research, and then undertake a brief annotated bibliography that attempts 

to characterize a selection of studies in these terms. Many papers in this area will be 

grounded in several foundational strands, but I posit that there will be one strand that 

predominates. This sense-making process may serve as a guide to researchers working 

in embodiment research in our field and offer a first attempt at a conceptual framework 

not previously available in this area. 

HISTORICAL BACKGROUND: EMBODIMENT AS A SIGNIFICANT 

RESEARCH STRAND IN MATHEMATICS EDUCATION 

In recent years, many mathematics educators have begun to challenge Platonic, 

Cartesian and Bourbakian assumptions that positioned mathematics (and mathematics 

teaching and learning) as wholly abstract, mental and disembodied (Roth 2010; 

Radford 2002; and many others). Such assumptions, based on the premise of a human 

mind-body split and of the transcendence of mind over body, were predominant in 

Western philosophy from the time of Plato (circa 500 BCE) till the mid-20
th

 century. 

Since that time, there has been philosophical opposition to the postulate of mind as 

separate from, and superior to body. Philosophical challenges to the mind-body split 

have accelerated since the early 1980s, and mathematics education research has taken 

this up as a significant basis for research since the mid-1990s. 

In many ways, mathematics and mathematics education offer an important space for 

the consideration of embodiment and conceptualization, since mathematics has been 

considered the sine qua non of abstract idealization since Plato’s time. For example, in 
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a famous passage in Plato’s Meno (1976), Socrates teaches an unschooled slave boy 

about what we would identify as irrational numbers, ostensibly by activating a memory 

of a realm of perfect, disembodied mathematical Forms via Socratic questioning. From 

Ancient Greece to the Bourbaki school of mathematicians in the mid-20
th

 century, who 

famously banned geometric sketches of triangles as excessively embodied (Yaglom 

1981), mathematics has been a prime exemplar of non-bodily ways of knowing.  

For this reason, mathematics has also been an important area for bringing embodiment 

back into theories of cognition, learning and representation; if mathematical knowing 

of abstract concepts can be convincingly shown to involve ‘body’, then so can almost 

any other realm of human knowledge.  

Within mathematics education research, the degree of inclusion (or exclusion) of 

‘body’ in theories of mathematical knowing has the potential to affect theories of 

mathematics learning, pedagogy, learning materials, curriculum, classrooms and 

learning spaces, assessment, teacher-student relationships and many other facets of the 

teaching and learning of mathematics. A fundamental paradigm shift from the 

assumption of disembodied to embodied ways of knowing in research can change 

almost everything about the theory and practices of mathematics education, and for 

this reason, the turn towards ‘body’ is an important one. 

EMBODIMENT AS A CONTEMPORARY RESEARCH THEME ACROSS 

DISCIPLINES 

Since the mid-20
th

 century, theorists in all disciplines have begun to reconsider and 

reframe concepts of ‘body’ and ‘embodiment’, and to move away from Cartesian 

mind-body dualism. This conceptual shift has accelerated since 1980, and has affected 

nearly every field of intellectual endeavour and praxis (for example, see Canning 

1999). We might well ask why this is happening in our era – why our cultural 

preoccupation with embodiment at this time? Questions about the reasons that 

particular intellectual trends, schools of thought or new ideas arise at a particular time 

and place are seldom resolved to everyone’s satisfaction, even in retrospect, since so 

many convergences (political, economic, academic, technological, social, religious, 

etc.) might account for them. I have written elsewhere (Gerofsky forthcoming) one 

way of understanding ‘why embodiment now?’, based in McLuhan’s theoretical 

approaches to culture and technology (McLuhan & McLuhan 1988), but it is beyond 

the scope of this paper to discuss this here.  

Universes of discourse around embodiment vary widely. As researchers in 

mathematics education, this poses some dilemmas. Our field has traditions of 

borrowing, adapting, transforming and re-envisioning theories drawn from widely 

heterogeneous origins. Mathematics educators often re-make these theories in 

surprising and generative new ways in adapting them for new purposes. In this process, 

conflicting meanings may arise from shared terminology. I will examine this polysemy 

here, looking at theoretical groundings, research aims and conceptualizations of ‘body’ 
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that collocate in a number of prototypical research approaches to embodied 

mathematics learning. 

ASPECTS OF EMBODIED RESEARCH STRANDS: THEORETICAL 

GROUNDING, RESEARCH AIMS, CONCEPTUALIZATION OF ‘BODY’ 

Embodiment research in mathematics education to date has been grounded in the 

following theoretical domains: philosophy, semiotics, cultural studies, 

linguistics/cognitive linguistics, computer science, cognitive neuroscience, education/ 

curriculum and pedagogy, gesture studies and fine and performing arts.   

To clarify these terms: philosophy refers here primarily to Western traditions of 

classical to Modernist philosophical thought, but may also include philosophical 

traditions outside the Western canon. Semiotics arose in the 20
th
 century to analyze 

cultural phenomena via a consideration of signs and their signification, and is closely 

connected with structuralism, with roots in linguistics mathematics, philosophy, 

anthropology, and literary criticism. Cultural studies is the postmodern domain of 

theory that situates knowledge in the particularities of bodies, cultures, places, genders, 

classes, ‘races’, ethnicities, ages, abilities, etc., often focusing on the relationships 

between particular ways of knowing based in embodied experiences and the ways 

these knowledges play out in power structures like colonialism and political struggles.  

Linguistic studies language, and cognitive linguistics focuses on the relationship 

between language and the human mind and conceptualization. Computer science 

includes theories and research in HCI (human-computer interactions) and the 

‘cognitively ergonomic’ design of more and less bodily engaged, multisensory 

interactions between learners and applications. Cognitive neuroscience focuses on the 

brain, neurological systems and other biological systems as substrates for learning. 

Curriculum and pedagogy in education focus on understanding and improving 

teaching and learning, inside and outside of schools. Gesture studies is a new field 

concentrating on the use of hands and other parts of the body for primarily 

communicative purposes. Fine and performing arts interact with mathematics/ math 

education as media for expression of mathematical relationships via performances 

(theatre, dance, storytelling, music, film) and art objects (sculpture, painting, drawing, 

textile arts). 

Research aims of embodiment studies in mathematics education include the intention 

to create theory, to understand how people learn, to design better tools and systems that 

support learning, to design better pedagogy, and to create art. 

Studies conceptualize ‘body’ in the following ways: body as source of embodied 

metaphors; as diverse, culturally mediated artefact; as individual and/or collective 

human bodies; as part of an ecosystem in the actual world; as adjunct to virtual worlds; 

as an autonomic system of brain, neurological system and ‘peripherals’; as a physical 

body comprising core, limbs and head; as part of the physical world of performance; as 
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source of evidence of unconscious processes; as a resource for conscious pedagogy; 

and as something that should be suppressed or expressed. 

The three lists above (theory, aims, concepts of ‘body’) are clearly somewhat arbitrary 

and neither exhaustive nor mutually exclusive. They are based in the extant work in 

embodied mathematics education, and reflect the range of approaches researchers have 

taken to this point.  

Elements of the three lists tend to collocate to form a number of strands of embodiment 

research in mathematics education, described in the following section. It is important 

to note that particular studies and papers very often combine several of these strands, as 

researchers strive to bring together heterogeneous sources of work on embodiment in 

ways that inform mathematics learning research. 

HOW THEORY, AIMS AND CONCEPT OF BODY COLLOCATE IN 

RESEARCH 

The chart (Table 1) below brings together elements from the lists above in an effort to 

characterize predominant contemporary approaches to embodied learning in 

mathematics. It is followed by a brief section characterizing a sampling of research 

papers in terms of the strands identified here. 

Theoretical grounding Research aims Bodies as… 

Philosophy, often including 

phenomenology 

To create theory  Body as something that should be 

expressed. 

Semiotics To create theory; to 

understand how people 

learn 

Individual or collective bodies 

interacting as part of an ecosystem in the 

actual world 

Cultural theory To create theory Bodies as diverse, culturally-mediated 

artefacts 

Linguistics/ cognitive 

linguistics 

To create theory Bodies as sources of embodied 

metaphors 

Computer science/ cognitive 

science 

To design better tools 

and systems that 

support learning 

 

Body as adjunct to virtual worlds. 

Bodies interacting as part of an 

ecosystem in the actual world. Bodies as 

sources of embodied metaphors. 

Cognitive neuroscience To understand how 

people learn 

Individual bodies as brains, neurological 

systems and ‘peripherals’. Bodies as 

sources of evidence of unconscious 

cognitive processes.  

Curriculum and pedagogy To create theory; to 

understand how people 

learn; to design better 

pedagogy 

 

Individual & collective bodies 

interacting as part of an ecosystem in the 

actual world. Bodies as core, limbs, 

head, available as a resource for 

conscious pedagogy. Bodies as 

something that can be expressed or 

suppressed. 

Gesture studies To create theory; to 

understand how people 

Individual or collective bodies as core, 

limbs, head as a source of evidence of 
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learn and communicate unconscious processes. Bodies as 

something that should be expressed.  

Fine and performing arts To create 

(mathematical) art 

Individual and collective bodies as part 

of the material world of performance 

and art-making. Bodies as something 

that should be expressed. 

Table 1 

A sample of influential studies can then be characterized by combinations of these 

research strands: 

 Philosophy (Campbell & Dawson 1995; Roth 2010; Roth & Thom 2009 

(incorporating pedagogy)) 

 Semiotics (Presmeg 2006; Radford 2002; Radford 2009 (incorporating 

gesture theory); Radford, Bardini, Sabena, Diallo, & Simbagoye, 2005; 

Radford, Edwards & Arzarello 2009; Steinbring 2006 (all incorporating 

pedagogy)) 

 Cultural theory (De Freitas 2008; De Freitas & Sinclair 2012 (also 

incorporating gesture studies and pedagogy); Lave 1997; Mowat & Davis 

2010, and Sinclair, De Freitas & Ferrera 2013 (incorporating pedagogy)) 

 Cognitive linguistics (Edwards 2009 (incorporating gesture studies); Lakoff 

& Núñez 2000; Nemirovsky & Ferrera 2012 (incorporating pedagogy); 

Núñez, Edwards & Matos 1999 (incorporating pedagogy)) 

 Computer science/ cognitive science (Abrahamson 2009; Abrahamson & 

Trninic 2011; Howison, Trninic, Reinholz & Abrahamson 2011; Jackiw & 

Sinclair 2009; Kaput, Noss & Hoyles 2002; Sinclair & Gol Tabaghi 2010; 

Winn 2003 (all incorporating pedagogy)) 

 Cognitive neuroscience (Campbell 2010)  

 Curriculum and pedagogy (Arzarello, Robutti & Bazzini 2005; Drijvers et al 

2010 (incorporating computer science); Goldin & Kaput 1996; Nemirovsky et 

al 2004; Noble, Nemirovsky, Wright & Tierney 2001; Sriraman & English 

2005; Stevens & Hall 1998; Tall 2004, 2006) 

 Gesture studies (Alibali & Nathan 2012; Cook, Mitchell & Goldin-Meadow 

2008; Gerofsky 2010; Hostetter & Alibali 2008; Roth 2001 (incorporating 

philosophy and pedagogy)) 

 Fine and performing arts (Gadanidis & Borba 2008; Gadanidis, Hoogland & 

Sedig 2003; Healy & Sinclair 2007; (all incorporating pedagogy)) 

CONCLUDING REMARKS 

This initial work to characterize and exemplify distinctions in embodied mathematics 

education research identifies a number of strands based on theoretical grounding, 

research aims and conceptualization of ‘body’. While necessarily provisional, 

imperfect and incomplete, it is hoped that this schema will offer a useful way for 

researchers to make sense of this heterogeneous, polysemous new area of research. 
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USING ICT IN TEACHING A SPECIFIC MATHEMATICS 

CONCEPT: GRAPHS OF LOGARITHMIC FUNCTIONS  

Seyum Tekeher Getenet, Kim Beswick 

University of Tasmania  

 

This paper describes the use of the free software, to teach graphs of logarithmic 

functions at an Ethiopian College of Teacher Education. Data comprised two 

video-recorded lessons and interview data provided by a mathematics teacher 

educator, and three primary school mathematics pre-service teachers who were in the 

class of learners. Pre-service teachers using Microsoft Mathematics readily 

understood and described properties of logarithmic functions as the bases varied. The 

study highlights the importance of illustrating the use of particular software to teach 

specific mathematics concepts. 

INTRODUCTION 

The use of Information Communication Technology (ICT) in teaching can lead to 

significant positive pedagogical outcomes (e.g., Goos, Galbraith, Renshaw & Geiger, 

2003; Pierce & Stacey, 2010)). Such findings have motivated universities, colleges, 

and school teachers to integrate ICT into teaching to achieve better learning outcomes. 

ICT can support constructivist pedagogies, whereby students use technology to 

explore and to reach an understanding of concepts (Chee, Horani, & Daniel, 2005). As 

a result, integration of ICT in teaching is a key component of educational reform 

agenda to enhance the quality of education across the world. For example, countries in 

Africa strongly endorse and support ICT as an essential component of innovative 

student-centred pedagogy (e.g., Hennessy, Harrison, & Wamakote, 2010). 

The current Ethiopian school curriculum and education system have been 

characterised as low in quality (e.g., Desta, Chalchisa, Mulat, Berihun, & Tesera, 

2009). There is, therefore, considerable support throughout the system, including in the 

higher education sector, to improve quality. Efforts have been made to encourage 

teachers at all levels to integrate ICT in their teaching. These include national 

initiatives that encourage teacher educators to use ICT in their teaching as a means to 

improve the quality and equity of education, particularly for science and mathematics 

teaching (Ministry of Education, 2010). This study aligns with that effort in exploring 

how an Ethiopian mathematics teacher educator used Microsoft Mathematics (MSM) 

to teach the graphs of logarithmic functions. 

ICT IN LEARNING MATHEMATICS 

Although the integration of ICT in teaching has generic aspects as described, for 

example by Koehler and Mishra (2005), there is also a need to consider the use of 

technology in particular subjects such as mathematics and indeed in relation to specific 
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mathematics content (Holmes, 2009). In addition, the affordances of specific 

technological tools influence possible teaching approaches and appropriate pedagogies 

(Kennewell, 2001).  

There is a great deal of mathematics specific software available (Hohenwarter, 

Hohenwarter, & Lavicza, 2009) and ICT-based learning environments can provide 

opportunities for active learning and enhanced student engagement (Chee, Horani, & 

Daniel, 2005). For instance, simulations and animations enable students to vary a 

selection of input parameters, observe how each affects the system under study, and 

interpret the output results through an active process of hypothesis-making, and ideas 

testing. They can explore combinations of factors and observe their effects on the 

evolution of the system under study. Mathematics specific software includes 

Geogebra, MSM, Maxima, STELLA, and spread sheets. MSM is free and can help 

students to achieve an understanding of a range of mathematical concepts. It can help 

students to visualise the effects of changed parameters. The MSM interface allows for 

solving problems with minimal syntax instruction (Nord & Nord, 2011) and facilitates 

animation. The use of the ‘Animate’ command found within MSM can possibly aid 

discovery-style lessons (Morrison, Tversky, & Betrancourt, 2000). It offers, for 

example, visualisation of shapes of graphs of families of logarithmic functions by 

learners input of bases, b, between b > 1, and 0 < b < 1.  

In Ethiopia, financial constraints mean that freely available software is preferable. 

MSM was selected for this study because it fitted this criterion and also had 

capabilities thought to be useful in enhancing the teaching of mathematical ideas such 

as logarithmic functions.  

Logarithmic functions 

Functions, including logarithmic, form a major part of school mathematics but are 

challenging to teach (Makgakga & Sepeng, 2013). Kenney and Kastberg (2013) found 

that students struggled greatly with the concept of logarithmic functions and sketching 

their corresponding graphs, and with the processes needed for working with 

logarithmic equations. Superficially, the graphs of all logarithmic function can easily 

be overgeneralised as similar shapes regardless of varied bases, b (e.g., Chua & Wood, 

2005). In this regard Goos, Galbraith, Renshaw and Geiger (2003) indicated that the 

introduction of technology resources into mathematics classrooms promises to create 

opportunities for enhancing students’ learning through active engagement.  In addition, 

a study by Abu-Naja (2008) showed that students learn more effectively the 

characteristic properties of families of functions using technology than without using 

any ICT. This study, therefore, focuses on the use a particular software resource, 

MSM, to teach a specific mathematical topic, namely graphs of logarithmic functions. 
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METHOD 

The Study 

The research site was the department of mathematics in an Ethiopian college of teacher 

education. Primary mathematics pre-service teachers (PSTs) are required to attend 

basic mathematics and professional courses in a 3-year program. Mathematics courses 

include Fundamental Concepts of Algebra, Plane Geometry, Basic Mathematics I and 

II, and Introduction to Calculus. The professional courses included Methods of 

Teaching Mathematics.  

Participants 

Participants were PSTs finishing their first year in the program. They were enrolled in 

Basic Mathematics II, the content of which includes graphs of logarithmic functions. 

Most were aged between 18 and 24 years. All 29 (18 males and 11 females) 

participated in the observation part of the study. A mathematics teacher educator who 

had participated in a professional learning program process for a total of 3 months, 

aimed at encouraging the use of ICT in initial teacher education also participated.  

Procedure 

Two video-recorded lessons totalling 2 hours and involving the use of MSM to teach 

logarithmic functions were taught by the teacher educator. Once the PSTs were 

familiar with the menus and toolbars of the software, they learned how to graph 

logarithmic functions. They were then asked to work in groups of three or four to 

illustrate properties of graphs of logarithmic functions. The questions shown in Figure 

1 were provided to guide their work. 

 
Figure 1: Questions explored using MSM 

Following the two lessons, semi-structured, audio-recorded, individual interviews 

were conducted with three PSTs (two males and one female) and the teacher educator. 

The teacher educator was asked for his views of the lessons he taught with MSM and 

about his previous teaching of graphs of logarithmic functions (such as how the lesson 

engaged learners?). PSTs were asked for their opinions of the MSM integrated lessons 

(e.g., How engaging the lesson was? What aspects of the lesson helped them to learn?).  



Getenet, Beswick 

3 - 156 PME 2014 

Data analysis 

Interview data from PSTs’ and the teacher educator were analysed to identify themes 

(Creswell, 2009) relevant to using MSM to teach graphs logarithmic functions. The 

video-recorded lessons were analysed by watching and taking notes (Stigler & Hiebert, 

1997) emphasising those parts relevant to the questions shown in Figure 1. Consistent 

with the advice of Barron and Engle (2007), the analysis emphasised aspects of ICT 

use known to be relevant, such as how the students interacted with MSM, specifically 

their use of the tools it provided, and how they worked to make sense of their graphs. 

RESULTS 

The teacher educator’s previous approach to teaching logarithmic functions 

The teacher educator described two methods he had previously used to teach sketching 

graphs of logarithmic functions. The first involved taking a simple logarithmic 

statement, switching it around to the corresponding exponential statement, and then 

figuring out the x-value needed for that exponent (y-value). The second, the T-chart 

method, is carried out by taking powers of the base of the function as x-values and 

finding the corresponding y-values. The teacher educator identified this method as 

preferred because it requires learners to know the procedures for finding the values of 

logarithmic functions. For example, to draw the graph of , PSTs first list some 

values of x and y on the T-chart and then sketch the graph by connecting points as 

indicated in Figure 2. He acknowledged that this method is challenging for comparing 

multiple graphs on the same axes. For example, it is difficult to exactly identify which 

graph approach the y axis when x > 1, and 0 < x < 1. The remaining results are 

presented in three sections corresponding to the questions in Figure 1. 

 
Figure 2: T-chart and graph for f (x) = log2(x)  

Graphing logarithmic functions 

The teacher educator began by presenting the definition of the logarithmic function, 

, where b is any number such that b > 0, b ≠ 1 and x > 0. Using MSM, 

each group of PSTs was able to draw multiple graphs of logarithmic functions easily, 

with distinct colours, and on the same axes, as illustrated in Figure 3. They were 

required to write the equation in the “writing box” and click on the icon ‘graph’ to find 

the graph of the corresponding equation, and appeared to enjoy sketching the graphs. 
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During the interview a PST pointed to the effect of using the software on learners’ 

engagement while admitting incomplete understanding of what was happening. She 

said: 

The software helped me to easily sketch each graph on the same x-y axis with distinct 

colours; however, I don’t know clearly how it happens. (PST 1) 

 
Figure 3: Graphs of some logarithmic functions created in MSM 

Describing shapes of the graphs when b > 1, and 0 < b < 1 

Using MSM, the PSTs were able to describe the shapes of the graphs with a general 

equation  without sketching multiple graphs but rather by changing 

the value of b between b > 1, and 0 < b < 1 using the “Animate” feature of MSM to 

generate a movie of different graphs as b changed. Alternatively, b could be directly 

controlled by inputting a value. Using the animate icon, PSTs observed and described 

the shapes of logarithmic functions for values of b between 0 and 2. In the 

video-recorded lesson, they appeared to recognise and appreciate the shape change 

when b hurdles 1. During the interview, a PST indicated his interest in these 

animations.  

I liked the role of “animate” to clearly see the shape of the graphs of multiple logarithmic 

functions as the base b varies without sketching samples of multiple graphs.  (PST 3) 

PST1 indicated the impression as b hurdles 1 as: 

By using animate function I was able to understand the graph approached positive y axis as 

b < 1, whereas, it approached negative y-axis as b > 1. (PST1) 

Describing the common properties of the graphs of logarithmic functions 

With MSM the groups of PSTs readily identified that all logarithmic functions have the 

same general shape, with their graphs varying depending on the base and coefficients 

in the equation. During the lessons, PSTs were pointing to the graphs made using 

MSM to identify and describe the common properties (For example, the fact that all 

have a vertical asymptote at x = 0, and cross the x-axis at x = 1) of the logarithmic 

function in each category, b > 1, and 0 < b < 1. When interviewed a PST described the 

usefulness of MSM as follows: 
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I liked the software which helped to graph all logarithmic functions on the same x-y axis 

with different colours. This helped me to list and understands the common properties of 

logarithmic function as the base, b varies. (PST 2) 

Describe shapes of the graphs when x > 1, 0 < x < 1, x =1  

Most groups of PSTs described the shapes of the graphs by observing the sketched 

graphs. However, one group was observed trying to identify the properties of the 

graphs through ‘Trace’ function of MSM. The trace function varies the values of x 

continuously and y for a given base b, as x moves through a specified range of values. 

In this case PSTs identified the values of y as x moved between x > 1, 0 < x < 1.  

Summary of the teacher educator and PSTs’ reflections on the lessons 

PSTs expressed a range of perspectives on the use of MSM in learning graphs of 

logarithmic functions. One of the PSTs had mixed feelings about using MSM, 

expressing a preference to use both. Although she recognised the significance of 

technology, she tended to believe that graphs of logarithmic function should be first 

taught without using any ICT then later by MSM. This was the same PST who had 

admitted being unsure of how MSM produced the graphs. Another explained the 

advantage of MSM comparing with his previous lessons. He said: 

At the first glance, the graph of the logarithmic function can easily be mistaken for that of 

the square root function when sketching manually. Both the square root and logarithmic 

functions have a domain limited to x values greater than 0. However, the logarithmic 

function has a vertical asymptote descending towards negative ∞ as x approaches 0, 

whereas the square root reaches a minimum y value of 0. This difference was clearly 

demonstrated by using MSM. (PST 3) 

Another PST indicated that MSM helped to externalise his reasoning, work at his own 

pace, and manage the complexity of the task scaffolding pen-and-paper skills. He said: 

MSM complements my learning of graphs of logarithmic function by helping to visualise, 

understand, and animate to identify their properties. ... I liked the process as I was engaged 

and discussed with peers throughout the process and it was a different approach. (PST 2) 

The teacher educator described the role of MSM as follows: 

The software was vital and complements PSTs’ ability to discuss the problem by engaging 

PSTs in a small group guided by me. The discussion within their small groups was thought 

provoking as they were engaged through manipulating the computer. I liked MSM as it 

complements my efforts by helping PSTs to visualise graphs of logarithmic functions as 

well as provoked active engagement of PSTs. 

DISCUSSION AND CONCLUSION  

The study illustrated the use of specific software to teach a specific mathematics topic 

for understanding. MSM provided a variety of utilities that were able to engage PSTs 

to relearn, and reorganise their knowledge of graphs of logarithmic functions. 

Although the interviewed PSTs recognised benefits of technology, one of them 

believed that the topic should be taught with traditional methods before being explored 
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using technology. Chee et al. (2005) claimed that such a preference can be due to the 

difficulty teachers have in adopting appropriate pedagogies for particular software. 

Given the inexperience of teaching with technology of the teacher educator in this 

study inexpert pedagogy may underpin this PST’s opinion as well as her difficulty in 

understanding exactly what was going on.  

PSTs readily used MSM to visualise graphs and identify their properties. The animate 

facility allowed them to display the graphs as desired based on changing parameters, 

and helped to facilitate discovery-style lessons (Morrison et al., 2000). These software 

capabilities were particularly important for the chosen mathematics content because 

difficulties had been identified in relation to students’ ability to distinguish the graphs 

of different logarithmic functions (Chua & Wood, 2005). In addition, MSM supported 

the PSTs to describe the graphs of logarithmic functions and appeared to support their 

understanding of the topic. The usefulness of MSM in learning about the graphs of 

logarithmic function appeared due to its ability to: 

 Facilitate the learning processes through making it easier to produce graphs of 

logarithmic functions on the same axes accurately, 

 Make the lesson more engaging through enabling the tasks based on trial, 

improvement and experimentation,  

 Help PSTs to notice the effects of altering particular parameters (in this case 

the base of a logarithmic function) on the properties of the function’s graph, 

and 

 Foster PSTs’ peer exchange through providing support for exploration and 

consequent sharing of discoveries. 

Although focussed on the use of specific software (MSM) to teach a specific 

mathematical concept (graphs of logarithmic functions), the study suggests that 

software with similar capabilities (graphing and animation) could be useful for other 

functions in which visualisation and change in graph characteristics across the function 

domain are important features. It has also demonstrated the potential of freely available 

software to help teachers in developing countries and other contexts in which resources 

are limited. 
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REVEALING STUDENTS' CREATIVE MATHEMATICAL 

ABILITIES THROUGH MODEL-ELICITING ACTIVITIES OF 

“REAL-LIFE” SITUATIONS 

Talya Gilat, Miriam Amit 

Ben Gurion University of the Negev, Israel 

 

The study described herein is part of a larger, inclusive research study exploring the 

effects of model-eliciting activities (MEAs) of “real-life” situations on the development 

of students' mathematical creativity. This part aim at revealing students’ cognitive 

abilities that are involved in the creative modeling processes using a qualitative 

analytical method. The participants were mathematically talented students, members 

of the “Kidumatica” math club. The data include videotapes, classroom observation 

and modeling products. Three core categories—appropriateness, ‘mathematical 

resourcefulness’ and inventiveness—of students' cognitive creative abilities are 

identified, defined and illustrated. These findings may give a better understanding of 

the larger concept of mathematical creativity. 

INTRODUCTION 

The knowledge revolution and the impressive technological innovations that 

characterize today's world require the facilitation and development of “the innovators 

of tomorrow who can lead the way forward” (National Science Board, 2010, p. 7). In 

line with this, educators and researchers are still investigating how the educational 

system can identify, promote and develop students’ innovative and creative potential 

(Sriraman, 2009; National Science Board, 2010; OECD, 2013). 

According to the new report of PISA’s mathematics framework (OECD, 2013), 

formulating “real-life” situations mathematically is a fundamental ability that invokes 

creativity since “outside the mathematics classroom, a challenge or situation that arises 

is usually not accompanied by a set of rules and prescriptions…Rather it typically 

requires some creative thought in seeing the possibilities…” (p. 31).  

Model-eliciting activities (MEAs) involving “real-life” situations outside the 

classroom not only provide students with the opportunity to apply their creative skills, 

but also encourage the development and improvement of those skills (Lesh & Doerr, 

2003; Lesh & Caylor, 2007; Amit & Gilat, 2013). This development of creativity goes 

“hand-in-hand” (National Science Board, 2010, p. 20) with its identification, which 

predefined the goal of the present study to identify and reveal the cognitive abilities 

applied and activated by students when modeling creative processes for “real-life” 

situations. 

CREATIVITY AND MATHEMATICAL MODELING  

The following review is organized around the creative process, abilities and production 

or product (Guilford, 1950, 1967; Sternberg & Lubart, 1999; Sriraman, 2009). 
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Guilford (1967) described the creative process as a sequence of thoughts and actions 

resulting in a novel production, and defined creativity as divergent thinking with its 

four mental abilities: fluency, flexibility, originality, and elaboration. According to 

Kruteskii (1976), mathematical creativity appears as flexible mathematical thinking 

which involves “switching from one mental operation to another qualitatively different 

one” (p. 282), and depends on openness to free thinking and exploration of diverse 

approaches to a problem. Sriraman (2009) revealed the common characteristics of 

mathematical creativity through the Gestalt model of the creative process, defining 

mathematical creativity as the ability to produce a novel or original solution to a 

non-routine problem. Sternberg and Lubart's (1999) widely accepted definition asserts 

that creativity is "the ability to produce work that is both novel and appropriate" (p. 3).  

Mathematical MEAs provide the student with opportunities to deal with non-routine 

"real-life" challenges. These activities are designed according to six principles: reality, 

model construction, self-evaluation, documentation, sharability and reusability, and an 

effective prototype (Lesh & Caylor, 2007). This thoughtful design not only engages 

students in multiple cycles of modeling development in which they are given the 

opportunity to construct powerful and creative mathematical ideas relating to complex 

and structured data (Lesh & Caylor, 2007; Gilat & Amit, 2012; Amit & Gilat, 2013). It 

also allows following students’ thinking and pattern of reasoning and requires students 

to represent a general way of thinking instead of a specific solution for a specific 

context. Therefore, the current study was designed to identify and conceptualize 

students’ cognitive abilities that are involved in, promote and contribute to the 

development of the creative modeling process and its significant outcomes.  

METHODOLOGY 

This study made use of deep qualitative analyses based on an intervention program of 

model-eliciting activities (MEAs) to answer the above-defined questions. This study is 

part of more inclusive research aimed at developing creativity through MEAs of 

"real-life" situations. The study was conducted with 71 "high-ability" and 

mathematically gifted students in 5
th
 to 7

th
 grades who are members of the 

"Kidumatica" math club (Amit, 2012), for an entire academic year, applied in weekly 

75-minute meetings. The intervention program included four workshops based on 

different MEAs reflecting “real-life” situations, which were worked on by small 

groups of 3–4 students. Each MEA workshop had three parts: a warm-up activity, a 

modeling activity and a poster-presentation session. The modeling task asked students 

to solve a mathematically complex “real-life” problem for a hypothetical client.  

Data Sources  

Data were derived from: (1) the students' products, i.e. written documents such as 

mathematical models, poster presentations, letters to the hypothetical client and drafts, 

(2) video-recordings of the modeling sessions and of students' oral presentations, 

interviews (performed while students were working on their models in groups and 
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Figure 1: Qualitative analysis 

flowchart 

during their model presentation), and (3) classroom observation by the researchers and 

a trained tutor.   

Analytical Methods 

Analyses were based on: (1) ‘key concepts’ (Mostyn, 1985) serving as conceptual 

ideas for interpreting and coding the data; (2) identification of ‘critical events’ based 

on Powell, Francisco, and Maher's (2003) analytical model for analyzing massive 

videotaped data, and (3) the Way of Thinking Sheets (WTS) (Lesh & Clarke, 2000; 

Chamberlin, 2004) instrument for organizing and documenting students’ massive 

MEA products. 

Phases of Data Analysis 

Data analysis was comprised of an exploratory phase (see Figure 1), and three phases 

that were repeatedly applied to analyse the data and generate the categories:  

1. The exploratory phase (research) provides a better understanding of the 

phenomenon (Gilat & Amit, 2012) and contributes (most) to the refinement and 

distillation of current theoretical research frameworks and to the determination of 

preliminary categories (Hsieh & Shannon, 2005).  

2. The data-reduction phase involves inclusive data processing of massive video 

data collected during the course of the MEAs using Powell et al.'s (2003) 

analytical model of ‘critical-event’ identification. These identified critical events 

were transcribed and mapped for further 

analysis.   

3. The data-organization phase allows for a 

better understanding of the students' 

work; each group's modeling products 

were gathered and documented using 

WTS (Chamberlin, 2004) and 

mathematically interpreted as shown in 

Figure 4 further on.  

4. The integrated formal phase mainly 

concerns final assignment of categories to 

the data obtained from the previous 

analytical phases utilizing ‘key concept' 

(Mostyn, 1985) as the coding rule for 

assigning categories to the data.  

Throughout the analytical phases (see Figure 1), data are repeatedly described, 

interpreted and coded for subsequent analysis; each phase strengthens the former 

phase's interpretations and coding, until a coherent interpretation is obtained. Initial 

categories were refined and revised until all three main categories and subcategories 

were generated and defined (based on the theory and the empirical data) and all data 

were interpreted and coded accordingly. Finally, the categories were ordered 
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hierarchically (see Figure 2) and the relationships between categories and 

subcategories were identified and conceptualized (Hsieh & Shannon, 2005).    

This multi-method triangulation (data-collection methods, analytical methods and 

analytical phases) provides a richer understanding by uncovering the deeper meaning 

of the students' cognitive abilities (Lesh & Caylor, 2007), as well as providing us with 

better validity of data interpretation, enhancing the rigor of the research (Patton, 2002). 

 

 

 

 

Figure 2: Categorization of students’ creative mathematical modeling abilities 

Students’ Creative Abilities: Categories and Results 

The following provide explicit definitions, examples and coding rules utilizing ‘key 

concepts’ as conceptual ideas (see Tables 1–3) for each established category and its 

subcategories. These categories encapsulate the abilities that contributed to, and 

constituted the creative modeling process and its significant outcomes.  

Examples illustrating the meaning of the categorization are given using research data 

from one group of 6th-grade students’ MEA which was considered as showing the best 

understanding. This MEA was based on the 

"Bigfoot" modeling task of a "real-life" situation 

(Lesh & Doerr, 2003) which required students to 

develop a conceptual tool that would enable 

estimating an individual's height. Students received 

a cardboard with an image of an authentic large 

footprint's stride (Figure 3) and a measuring tape. 

The following is a transcript of the poster presentation given by students A’ and S’; 

Figure 4 shows the students' MEA documentation using WTS (Chamberlin, 2004) and 

the researcher’s (R') mathematical interpretation of their work.   

1: A’: At the beginning we tried measuring only the length of each of our shoes, 
and then our height, but we couldn’t find any operation that led us to our 
height. 

2: S’: We measured the perimeter of our shoes but none of the operations we used 
led us to a reasonable height. 

3: A’: Then we measured the width of our shoes.  

4: S’:  We tried width plus length multiplied by a whole number, for instance 5; 
for me it was right but for him [A'] it wasn't. It was more than his height. 

5: A’: Then we noticed that my shoe is relatively wider and S’s shoe is narrow in 
comparison to its length. 

Figure 3: Image of an authentic 

large footprint's stride 
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6: S’: So we decided that if the shoe in its narrowest part [pointing to his drawing] 
is less than 10 cm, we multiply it by 5. Otherwise we multiply by 4. 

7: A’: We tried it [their formula] on Y’ [member of another group] too.  

8: R’: I can see that you wrote A/S and erased the explanation you wrote in words. 

9: S’: We didn’t have time to complete our solution and find ways to describe the 
exact ratio so we compared the shoe's width to 10 cm and multiplied it by a 
fixed number, 4 or 5. 

10: A’: We wanted to use the proportion between length and width and to find a 
formula but we didn't have enough time for that so we just wrote A/S. 

 
Figure 4: WTS documenting 6

th
-grade students’ “two-dimensional” model 

Appropriateness 

Main Category & 

Subcategories 
Coding rule: “MEAs’ correct response” (as ‘key concept’) 

Defined as  

Appropriateness 
Broader range of mathematical knowledge and abilities to produce a 

reusable and sharable conceptual tool. 

1. Knowledge 
Students’ ability to utilize their prior and developed mathematical 

knowledge in various ways to develop an appropriate model. 

2. Utility 
Deliberate actions or means applied by students to generate useful 

solutions, not only for the current situation, but for other similar situations 

as well (reusable). 

3. Documentation 
Students’ ability to apply varied representations to present and share 

information with others (sharable).  

Table 1: Explicit definitions of appropriateness and its subcategories 

1. Knowledge: The transcript (lines 1, 2 & 1, 9) demonstrates how students apply 

their mathematical knowledge to construct (measure, code and synthesize) a 

relevant mathematical “object” such as their height and their shoe length, and 

mathematize the relationships between these “objects” to estimate their height 

(see also researcher’s interpretation in the third phase, Figure 4).  
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2. Utility: In the transcript (lines 6, 7), students explain how they deliberately 

developed a useful conceptual mathematical tool to estimate the height of 

students in their group that could also be applicable to other students’ data 

(similar situations).  

3. Documentation: The students’ poster in Figure 4 shows how students used 

symbols, “drawing” and written explanations to mathematically communicate 

“how” they were actively attempting to make sense of the structured problematic 

“real-life” situation in a way that could be sharable with others. 

 Mathematical Resourcefulness  

Main Category & 

Subcategories 

Coding rule: “overcome difficulties” (as ‘key concept’) 

Defined as                 

Mathematical 

Resourcefulness 

Students’ ability to cope in a coherent and fluent manner and demonstrate 

flexible thinking involving consideration of different approaches or 

strategies to construct and elaborate a powerful conceptual tool. 

1. Fluency Students' tendency to consider or evaluate several ideas and perspectives. 

2. Flexibility 
Students' ease in switching from one mental operation to another, 

applying redefinition and transformation, and finding new ways to 

describe both the dataset and its behavior. 

3. Elaboration Students' refinement, generalization and integrating abilities applied to 

developing a new level of more abstract or formal understanding. 

Table 2: Explicit definitions of mathematical resourcefulness and its subcategories 

1. Fluency: The transcript (lines 1, 2) shows early stages of the students’ modeling 

process which involved fluent generation of different relevant mathematical 

objects, including shoe width, shoe length, shoe perimeter and student's height, 

before an effective solution emerged.  

2. Flexibility: In the transcript (lines 5–7), students describe how verifying their 

early conceptualization of the situation required further refinement that takes into 

account more “discovered” information and more relationships among the data 

that better describe their advanced interpretation, leading to the development of a 

more powerful mathematical model (Figure 4). This example reflects students' 

ease in switching from one mental operation to another to describe both the 

dataset and its behavior via different types of representations.  

3. Elaboration: The conceptual mathematical instrument demonstrated in Figure 4 

and the transcribed explanation (lines 8–10) show how students elaborated 

(extended, refined and integrated) their ideas to develop a new level of more 

abstract or formal understanding and create a more generalized conceptual tool, 

as shown in the researcher's mathematical interpretation in Figure 4.   

Inventiveness or Originality  

To assign this category to the data, we looked for an appropriate and unique 

mathematical response in comparison to those developed by other groups (Guilford, 

1967). 
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Main Category Coding rule: “unique responses” (as key concept) 

Defined as 

Inventiveness 

or Originality 

Students’ ability to break away from routine or bounded thinking to create 

unique and powerful mathematical ideas that differ from those developed 

by most other students. 

Table 3: Explicit definitions of inventiveness 

The conceptual tool in Figure 4 illustrates students’ inventiveness. Although there 

were two other groups (out of 22) that estimated the individual's height based on the 

ratio between height and the sum of shoe length and width, only this group used a split 

function to mathematically describe how an  individual’s height depends on the width 

and length of his or her shoes.  

CLOSING REMARKS 

This paper highlights the innovative analytical process and reveals the cognitive 

abilities that were applied and activated while modeling a creative process by 

“high-ability” and mathematically gifted students, toward creating and inventing a 

more significant conceptual tool. Three categories and subcategories were formulated 

with respect to theoretical framework and empirical data: mathematical 

appropriateness consisting of three subcategories: knowledge, documentation and 

utility; mathematical resourcefulness involving fluency, flexibility and elaboration, 

and inventiveness or originality. 

These results have both theoretical and practical implications (Amit, 2012; Amit & 

Gilat, 2013). In practice, they suggest new directions and alternatives for encouraging 

and inducing students to draw on those resources and abilities more productively as 

suggested by Guilford (1950), who argued that creativity can be developed and the 

“development might be in the nature of actual strengthening of the functions involved 

or it might mean the better utilization of what resources the individual possesses, or 

both” (p. 448). Theoretically, viewing students’ MEAs through the notions of the three 

above core types of abilities can provide us with a deeper insight into what is involved 

in the creative mathematical process of young students engaging in non-routine, 

“real-life”, structured problem-solving (Sriraman, 2009).   
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The focus of this report is on the process of resolution of a task; specifically, on the 

validation of the mathematical model proposed by a group of students and the 

numerical result that is constructed within this model. Habermas’ construct of rational 

behavior is used to describe validity conditions that emerge and are used by the 

students as means for validation. We take a classroom episode from a design 

experiment to examine how the emergence of these conditions points to a socially 

constituted mathematical epistemology in the secondary school mathematics 

classroom, to shared and tacit principles of the didactic contract concerning the 

knowledge there, and to non-mathematical references that are taken for granted. 

CONTEXT AND RESEARCH QUESTION 

According to Habermas (2003), accepting a validity claim is tantamount to accepting 

that its legitimacy may be adequately justified, that is, that the conditions for validity 

may be fulfilled. Following Boero, Douek, Morselli and Pedemonte (2010), we are 

interested in characterizing how, in terms of Habermas’ rational behavior construct, 

mathematical activity is supported through the situated emergence and fulfillment of 

validity conditions. Specifically, in the context of the secondary mathematics 

classroom, we want to investigate what situated validity conditions (acceptance/ 

rejection) can be observed concerning the resolution process of a task. The current 

research, as well as previous studies by our team (e.g. Goizueta & Planas, 2013), is in 

line with the commitment to conceptualizing mathematical argumentation and learning 

in whole and small group discussions in the mathematics classroom. 

We begin by showing how we complement Habermas’ construct to better suit the 

complexity and specificity of the mathematics classroom. This perspective frames our 

understanding of classroom practices and our approach to data analysis through the 

integration of social and epistemological issues. We then present and analyze a 

classroom episode to discuss the emergence of validity conditions throughout the 

construction of a mathematical model in a problem-solving environment. From here, 

we briefly discuss the classroom mathematics culture that is being propagated. 

AN INTEGRATED PERSPECTIVE 

For the interpretation of what counts as validity conditions and how and why they 

emerge, we draw on epistemological and social issues. According to Habermas’ 

construct of rational behavior and its adaptation by Boero et al. (2010), in the students’ 

argumentative practices we can distinguish an epistemic dimension (inherent in the 

epistemologically constrained construction and control of propositions, justifications 
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and validations), a teleological dimension (inherent in the strategic decision-making 

processes embedded in the goal-oriented classroom environment) and a 

communicative dimension (inherent in the selection of suitable registers and semiotic 

means to communicate within the given mathematical culture).  

Steinbring (2005) suggests that a “specific social epistemology of mathematical 

knowledge is constituted in classroom interaction” (p. 35) along with a criterion of 

mathematical correctness. The socially constituted mathematics classroom 

epistemology and the mathematical activity are reciprocally dependent: the former 

shapes a frame in which the latter takes place and the latter develops the former to 

conform to the emergence of new legitimated mathematical discourses. In the context 

of a content-particular task, this relationship between classroom epistemology and 

mathematical activity must be considered in light of a specific, content-related, 

didactic contract (Brousseau, 1997). Furthermore, when considering students’ 

interaction we also consider the references (statements, axioms, visual and 

experimental evidence, physical constraints, etc.) that may be associated with their 

argumentative activity. Some references are related to institutionalized corpora (e.g. 

school mathematical knowledge), but not all of them are. Douek (2007) introduces the 

notion of reference corpus, which is assumed to be unquestionable and shared; it is 

operatively used by the students to make sense of the task, semantically grounds their 

mathematical activity and backs their arguments. Thus, in a task-specific context, 

validity conditions are explicit or tacit constraints that allow students to control the 

coherence of the mathematical activity according to the socially constituted classroom 

epistemology, the reference corpus and the goals.  

In what follows, we present the analysis of an episode to illustrate different emerging 

validity conditions behind the observed practices that students in the classroom enact 

to validate their arguments. We also account for possible explanations. 

PARTICIPANTS, TASK AND DATA COLLECTION 

The participants in our design experiment were thirty 14/15-year-old students and their 

teacher in two lessons in a regular classroom in Barcelona, Catalonia-Spain. It was a 

problem-solving session, with time for small group work and whole-class discussion. 

The following task for the two lessons was suggested by the researchers: 

Two players are flipping a coin in such a way that the first one wins a point with every head 

and the other wins a point with every tail. Each is betting €3 and they agree that the first to 

reach 8 points gets the €6. Unexpectedly, they are asked to interrupt the game when one of 

them has 7 points and the other 5. How should they split the bet? Justify your answer. 

As we ascertained in a pilot experiment, this task can be approached and solved using 

arithmetical tools, without having been taught formal probability contents, which was 

the case of this group, although intuitive probabilistic thinking is fundamental to 

provide a mathematically sound answer. The novelty of the task was expected to lead 

students to develop models and negotiate meanings, while producing arguments to 

validate them and avoiding mechanical approaches based on well-established 
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heuristics. For data collection, two small groups were videotaped and written protocols 

were collected. For each of the videotaped groups, students were collectively 

interviewed a week after the task; this set of data is not discussed here.  

DATA ANALYSIS AND RESULTS 

The excerpt below illustrates the attempts to cope with the task by the group made up 

of Anna, Josy, Vasi and Zoe. We point to the students’ rational efforts to support the 

validity of their resolution process; we then account for different types of validity 

conditions and associate their emergence to different dimensions of the students’ 

rational behavior. 

Genesis of the initial validity conditions 

112 Anna This one only needs to get one point and this one three to get to six euros. 

But obviously, because it’s random, the game, you know, one’s got more 

chances because imagine that now, suddenly, if the game didn’t stop, you 

could get three tails in a row and then this one would win. So A does have 

more chances of winning but B could win as well (…) From what we’ve got 

so far, player A would have to get more money… because he’s got more 

points. 

Anna interprets the need to split the money in relation to the advantage one player has 

over the other. By describing the situation as a random game and bringing chance to 

the fore, she tacitly proposes a frame with which to interpret the task, and within it, she 

draws on prior experiences with coin-flipping situations, shared notions about the 

characteristics and dynamics of the game and adequate words to talk about it. This 

cluster of references empirically and semantically grounds Anna’s interpretation of the 

task and her reference corpus. The meanings that students may associate with this 

reference corpus act as constraints that any possible answer should meet; it gives the 

students an operational way to decide not only on the validity of any proposed answer 

but also on the validity of any mathematical model within which the answer is 

elaborated. Anna states what can be taken as a necessary validity condition for any 

possible answer: “player A would have to get more money… because he’s got more 

points.” Similarly, “B could win as well” might mean “B should get some part of the 

bet”. This could be considered a validity condition for any forthcoming answer, but 

since she does not make it explicit, we cannot know the actual status of this statement 

at this point. 

We observe the emergence of a first validity condition that any model of the situation 

should satisfy: player A gets more money than player B and, possibly, player B gets 

more than zero. In terms of Habermas’ construct, it is the epistemic dimension of 

Anna’s rational behavior that leads her to establish constraints that match her 

interpretation of the goal-oriented task according a specific reference corpus. This 

validity condition is epistemological in nature. Anna’s rational activity supports two 

parallel processes: the abductive search for a plausible model to describe the situation 

and find a solution to the task, and the justification of its situated legitimacy. 



Goizueta, Mariotti, Planas 

3 - 172 PME 2014 

First model: “one point, how much money” 

116  Anna So then, if six is the total... 

117  Vasi We’ve got to calculate, if we calculate how much a point is worth. 

118  Anna Wait, wait. 

119  Zoe What if we work out the percentage? 

120  Anna We’ve got to say one point, how much money. 

121  Vasi That’s what I’ve just said! 

123  Zoe One of the eight... 

124  Anna Yeah, one of the eight, how much is it worth. You know? Six over eight? 

No, sorry. Yeah, six over eight? 

125  Josy Zero point seven five. 

137  Zoe … So, one point is zero point seven five. 

When Vasi reminds the group of the need to resort to calculation, we recognize a 

constraint imposed by the didactic contract: any possible correct answer must be 

mathematics-related. Behind her suggestion of calculating “how much a point is 

worth” –marked by the use of ‘have to’– and behind Zoe’s suggestion of working out 

the percentage, we observe how the teleological dimension of the students’ rationality 

guides their efforts to seek a suitable mathematical model, according to normative and 

goal-oriented constraints. The utterance “one of the eight … one point is zero point 

seven five” condenses the first model to describe and solve the situation. We may 

paraphrase it as, ‘if by winning 8 points a player gets €6, for each point won a player 

should get €0.75’. We relate the emergence of this model to typical school problems 

about proportional costs, which tend to be solved by manipulating the numerical data 

appearing in the wording. The use of ‘to be worth’ and the proposed calculation 

support this interpretation. It is plausible that the focus of the students’ speaking turns 

is on proportionality as an adequate mathematical content with which to engage in the 

task. Thus, the clause of the didactic contract stating that any possible correct answer 

must be mathematics-related acts as a necessary validity condition and forces the 

students to discard answers that might be somehow considered non-mathematical and 

seek mathematics-related ones. Of the rational efforts to solve the task, we can 

distinguish two different validity conditions: a first epistemic one about the need to 

account for the reference corpus-based interpretation of the task, and a second 

normative one about the need to conform to a basic premise of the didactic contract. 

Under these constraints, we observe the abductive emergence of a first proportional 

model providing an intermediate result: each player gets €0.75 for each point won. 

Model falsification and new validity conditions 

139 Josy No, but then, they only get to six euros if they win eight points and here 

they’ve won twelve points. 

140 Anna That’s true. 
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Josy checks the result obtained and realizes that accepting the proposed model 

necessarily leads to an incoherent interpretation of the situation, and in so doing, she is 

falsifying the proposed model. Her reasoning may be related to a well-established 

principle of the didactic contract about applying proportionality to this kind of 

problem: a correct result is confirmed by performing ‘the opposite operation’. The 

rejection of a contradictory model accounts for the epistemic dimension of Josy’s 

rational behavior. This falsifier will play a crucial role in deciding about the validity of 

the model by acting as a new necessary epistemic validity condition: any valid model 

must be immune to this falsifier. Due to the relation between falsifier and resolution, 

we call it heuristic. By acting as a validity constraint, this heuristic is at the root of the 

emergence of a second proportional model and its assessment. 

Second model: “we’ve got to divide by twelve” 

142 Anna Then we’ve got to divide the seven, hold on, we’ve got to divide, seven plus 

five, twelve. So we’ve got to divide by twelve. How much is it divided by 

twelve? (…) Zero point five. So zero point five times seven? Calculate that 

a second. 

149 Josy Three point five. 

151 Anna And zero point five times five? 

152 Zoe Two point five. 

153 Anna And two point five plus three point five? 

154 Josy Exactly. 

155 Anna That’s it! 

In order to overcome Josy’s falsification, Anna proposes a new model that corresponds 

to a distribution that is proportional to the points won by each player. Driven by the 

need for epistemic coherence, the students in the group assess this new model using an 

equivalent version of the heuristic falsifier developed (assuming that 12 points were 

won): the amounts of money that the players receive must add up to six. By producing 

a numeric solution for the task (€3.50 for player A and €2.50 for player B) the students 

prove the model’s immunity to the heuristic falsifier and, on that basis, seem to 

validate the new model and the numerical result. The focus of the students’ activity 

shifts therefore to showing that the new model cannot be falsified in the same way the 

previous model was, which for them appears to be a positive confirmation of adequacy. 

Explaining the solution to the teacher 

190 Anna We thought that... well, player A has got seven points and B five points. We 

thought that if they won four points each, three euros for each one, and the 

distribution would be fair. Then we did six euros divided by eight, which is 

the total... by how many points... I mean, how much one point would be, 

eight points in total. You know? But then we said no, no, no. Because they 

got twelve points in total... and then we multiplied each point they won by 

the 0.5 that one point costs and we got it exactly [on the sheet, “player A: 

€3.50 and player B: €2.50, “2.5 + 3.5 = 6”]. 
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Regarding the teleological dimension, we assume that Anna’s intention is to convince 

the teacher about the validity of the answer and the model they constructed. Thus, her 

explicit discourse highlights what she considers relevant reasons for that purpose. She 

starts by introducing the situation of a tied game that can be considered a generic 

example, proposes a numerical solution and qualifies it as ‘fair’. Anna introduces 

fairness as a taken-as-shared notion and as the criterion to describe the answer and 

determine its validity. She then accounts for the first model by focusing on the eight 

points (needed to win); then discards this model stating, as a reason, that the total 

points that must be considered is twelve (won points). The explicit, though unclear, 

mention of the falsifier suggests the relevance that the falsification process had for the 

students; however, it is difficult to grasp the epistemic roots of such falsifier and its 

role in the emergence of the second model.  

Drawing on her written protocol, Anna then presents the second model, focusing on the 

role of 0.5 (money per point won) as the intermediate result they used in the group to 

get the answer. Anna makes their interpretation of the task evident (to split the money 

according to the points won) and tacitly proposes proportionality as a relevant and 

adequate mathematical model to solve it. Finally, she says “we got it exactly” while 

showing in her protocol that 3.5 and 2.5 add up to the original six euros that had to be 

split. This assessment of the result is significant in the light of the whole solution 

process, especially if we consider the role played by the heuristic falsifier in discarding 

the first model and supporting the emergence of the second one. The epistemic status 

of the result (necessary, plausible, possible...) is not made explicit, but the expression 

“we got it exactly” constitutes a positive assessment of both the model and the result’s 

validity. This expression takes over the role that ‘fair’ played in the prior turn: while 

‘being fair’ was the key feature of the proposed distribution that led its validity to be 

accepted, now ‘getting it exactly’ is a validation of the answer and becomes the 

guarantee of ‘being immune to the heuristic falsifier.’ Anna does not mention the 

developed validity conditions or their emergence as a rational process in the model’s 

validation. Instead, what appears is the solving process’ fit with the didactic contract. 

The discourse on the validity of the proportional model is evoked during the 

description of the process, but its recognition is left to the teacher’s discernment.  

CONCLUDING DISCUSSION 

Using Habermas’ construct of rational behavior, we have described students’ 

mathematical activity as a twofold rational process: the abductive search for a model to 

describe the problem situation and solve the task, and the justification of its validity. 

Initially, the epistemic dimension of the students’ rational activity is related to the 

semantic and empirical grounding of the task according to a reference corpus, leading 

them to develop an interpretation of the task and the initial necessary epistemic validity 

conditions. According to the teleological dimension, this suggests that establishing 

epistemic constraints is a relevant activity to support the construction of a suitable 

model and that this is done, in part, by creating specific epistemic validity conditions. 

Later, according to the teleological and communicational dimensions, the didactic 
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contract-related need to provide a mathematics-related answer, acting as a necessary 

normative validity condition, is what drives the students’ efforts towards the 

construction of a first mathematical model. It is on the epistemic side that the first 

model is falsified: its inadequacy to account for the available data leads to its 

falsification and rejection. A second model is then proposed to overcome what we have 

considered a heuristic falsifier. For the students, the immunity to the falsifier becomes 

not just a necessary epistemic validity condition but also a confirmation of the model’s 

validity. However, despite the fact that they are key features in the process, the 

reference corpus-related epistemic constraints developed as well as the epistemic roots 

of the falsification are almost absent from the explanation to the teacher, which is 

instead centered on the link between the numerical solution and what is considered a 

suitable mathematical model. This indicates the relevance that the didactic contract has 

for the students when selecting what parts of their production to communicate. 

Although limited to the analysis of brief excerpts, we have shown how Habermas’ 

construct of rational behavior helps to investigate and account for the emergence of 

validity conditions as means to support the validity of mathematical activity. We argue 

that this is a relevant theoretical instrument to investigate the students’ situated 

practices of validation while keeping track of the complex relationship between the 

epistemic and social dimensions of the mathematics classroom. 
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Understanding the formation of the professional identities of prospective teachers is 

important to better understand the decision-making processes of future teachers. 

Through an exploration of four prospective teachers’ visions of practice and 

designated identities, we found that their images of future students’ affective responses 

while learning mathematics were a strong influence in the prospective teachers’ 

evolving professional identities.  

BACKGROUND 

A teacher’s professional identity is the framework he or she uses to make sense of and 

understand problems that arise in practice (Peressini, Borko, Romagnano, Knuth, & 

Willis, 2004). A prospective teacher’s professional identity (a conceptualization of 

self-as-teacher) evolves during his or her teacher education. “Preparation programs 

deliberately and inadvertently reinforce the development of different kinds of teaching 

identities as they emphasize various aspects of what it means to be a teacher” 

(Hammerness, Darling-Hammond, & Bransford, 2005, p. 382). These evolving 

conceptualizations directly influence what prospective teachers learn in their 

educational experiences (Peressini et al., 2004). Furthermore, this process is fraught 

with emotion (Brown, 2008), and internal tensions surface as the individual begins 

transitioning from student to teacher (Pillen, Den Brok, & Beijaard, 2013). 

Nevertheless, little research focusing on the formation of beginning prospective 

teachers’ professional identities has occurred (Friesen & Besley, 2013). 

Professional identity has been considered through various lenses and has been 

operationalized and defined in many ways (Beijaard, Meijer, & Verloop, 2004). 

Sugrue (1997) defined professional identity as a discourse that is continuously being 

rewritten by the individual. These discourses are influenced by the individual’s 

background, including immediate family and one’s own lay theories of identity 

formation. Others have focused on a more narrative or storied aspect to professional 

identity (Lutovac & Kaasila, 2011) by honing in on the manner in which prospective 

teachers discuss themselves as the protagonists of their stories. On the other hand, 

some have concentrated on developing activities and tasks for teacher educators to 

have students reflect on their own formation of self-as-teacher and recognize their 

future selves as gatekeepers (de Freitas, 2004). Regardless, researchers have proposed 

that identity formation involves complex multifaceted structures that are perpetually 

being built, deconstructed, and reconstructed (Flores & Day, 2006).  
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A deeper understanding of prospective teachers’ formation of professional identity is 

needed to prevent internal tensions (Pillen et al., 2013) and to develop ways to aid 

preservice teachers in seeing the interconnectedness between their past and future 

contexts (Flores & Day, 2006). This study focused on the identity formation of four 

prospective secondary mathematics teachers during their first year in their teacher 

education program. Our guiding questions were: (a) What characterizes participants’ 

professional identities during their mathematics education coursework and (b) what are 

participants’ goals and values? 

FRAMEWORK  

The prospective teachers in this study desired to join a community of educators and to 

be seen as teachers by others. Because the prospective teachers are situated within 

multiple communities, a situative perspective on the formation of identity was used 

throughout this research. From this perspective, professional identity, or the 

conceptualization of self-as-teacher, is constructed of both cognitive aspects and 

sociocultural aspects (Peressini et al., 2004). The cognitive aspect of one’s professional 

identity is a “complex constellation of goals, values, commitments, knowledge, 

beliefs, and other personal characteristics, drawn together to create a sense of ‘who I 

am’ as a teacher” (Peressini et al., 2004, p. 79). An important cognitive component not 

mentioned specifically by Peressini and colleagues is affect. It has been argued that the 

affective domain, specifically the emotions of the individual, is an important catalyst in 

the formation of professional identity (Brown, 2008). Affect is the constellation of 

emotions, attitudes, and beliefs that is connected to an object or event (McLeod, 1992). 

Hannula (2002) argues that emotions and cognition are, “two sides of the same coin” 

(p. 27) and splitting the two is done purely for analytic purposes. Two other constructs 

allowed us to do this: Sfard and Prusak’s (2005) construct of designated identity and 

Hammerness’ (2001) concept of vision. Both of these constructs are built on the 

desires of the individual. 

To Sfard and Prusak (2005), identity formation is a part of one’s communicative 

practices, and this discourse aids one in making sense of his or her world; allowing one 

to plan for the future. These narrations that express a desirable and expected future self 

are called designated identities (Sfard & Prusak, 2005). Accordingly, “they can be 

recognized by their use of the future tense or of words that express wish, commitment, 

obligation, or necessity, such as should, ought, have to, must, want, can, cannot, and so 

forth” (Sfard & Prusak, 2005, p. 18). To better understand prospective teachers’ 

formation of professional identities at the beginning of their preparation program, a 

focus on the way they expressed their designated identities was central to our 

investigation. Hammerness’ (2001) concept of teacher vision helped in looking deeper 

into the prospective teachers’ desires in their narratives of future-self. Vision consists 

of the “images of what teachers hope could be or might be in their classrooms, their 

schools, their community and, in some cases, even society” (Hammerness, 2001, p. 

145, emphasis in original). Hammerness’ perspective on vision is different than that of 

professional vision introduced by Goodwin (1994), which focused on how 
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professionals interpret their current context. Vision is not only how one sees him or 

herself in the future, but also focuses on the larger social structures to which he or she 

wishes to belong. What type of school do they wish to work at? What connections do 

they see between their classroom and the larger community the school exists within? 

These desires are outside the scope of designated identity. To attain a deeper 

understanding of one’s professional identity, we found it necessary not only to explore 

who he or she wants to be in the future but also where he or she wants to be in future. 

Overall, designated identity and vision helped us focus on the ideals that are guiding 

the participants in their program.  

Peressini et al. (2004) also described professional identity to involve a sociocultural 

aspect, which involves, “the ways in which teachers participate in the activities of their 

professional communities and present themselves to others in the context of 

professional relationships” (p. 79-80). We found the use of positioning theory to be 

useful to explore the sociocultural aspect. We see the prospective teachers to be in the 

process of finding their place within the community of educators. This means that 

within their narratives they are also discussing their inclusion within a community of 

which they desire to be a part. Freeman (2010) claims that how people position 

themselves reveals how they see themselves, and their understanding of self and others 

in the community. Exploring how prospective teachers position themselves within the 

communities of practice that they are attempting to enter helps us in understanding the 

events that influence their vision and designated identity.   

METHODOLOGY 

This report is a part of a larger study in which we followed sixteen prospective 

secondary teachers through their mathematics education program. For this study, we 

purposefully selected four participants, two males and two females. Alex and Melissa 

were selected for their descriptive narratives and a deeply reflective account shared at 

the end of the third interview. Two other participants, Jason and Jill, were selected 

because a previous preliminary analysis of their beliefs showed that they seemed to 

differ from Alex and Melissa in their stance about teaching. 

Data collection for this study included three video-recorded semi-structured interviews 

(between 45 and 90 minutes) throughout their first year in the program. The first 

interview occurred within the first two weeks of entering the program, the second at the 

end of the first semester, and the third at the end of their second semester. Each 

interview was transcribed by a member of the research team and checked by another 

member to verify accuracy. Additionally, observation notes were taken during the 

participants’ field experiences. During the first semester, the participants were enrolled 

in a course that focused on student thinking and, as part of an associated field 

experience, worked for nine weeks, once each week, one-on-one with high school 

students in remedial, on-track, and advanced classes. During the second semester, 

participants were enrolled in a course that focused on equity and assessment; 
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participants’ field component was focused on small groups in a middle school setting 

for eight weeks. All artefacts the participants produced were collected.  

The interviews were the main source of analysis. Using a constant comparative 

approach (Glaser & Strauss, 1967), we began by coding participants’ narratives for 

cognitive aspects and sociocultural aspects by following the framework above. 

Concepts were found for each aspect followed by categorization of emerging themes.  

Observation notes and artefacts were used as supplementary sources of data for 

confirming or disconfirming evidence.    

RESULTS 

During the second and third interviews, we asked whether the participants felt like 

teachers during their field experiences, which were set up to enculturate them into the 

practices of being a teacher. Our participants claimed not to feel like teachers during 

most of their field experiences, but they felt like teachers if the students positioned 

them as such. Jill’s statement is representative: “Some of the students I feel like kind of 

not push me away, but like kind of like brush me off, sort of. Like they were just, they 

kind of, like, had the attitude, ‘well you’re not the teacher’” (Jill, Int. 3). Experiences 

like this led Melissa and Alex to see ability to discipline students as a way to be viewed 

more as a teacher. However, they were confused and conflicted as to where this 

authority to discipline should come from. Consequently, they both sought out their 

methods professor (their figure of authority) to position them as disciplinarians, 

although there is no evidence that they acted upon this new position. On the other hand, 

Jill and Jason did not seek out ways to discipline but instead focused more on how the 

students reacted to their aid. Jason thought of preparation as key:  

So, when I’m prepared, when we have this assignment ahead of time, we’re able to see it 

and know what the solutions are, different approaches to the solutions. I think students can 

see that we’re prepared, and they treat us more as teachers. (Jason, Int. 3)  

Jill focused more on how she perceived if students were successful in learning: 

I really did feel like the teacher, because I was sitting there helping them get to the answer 

and when they finally got it, they were like ‘Oh!’ and I was like ‘huh, I actually helped’ 

you know. So in those ways, yeah, I did feel like a teacher. (Jill, Int. 3)  

The ways that students positioned them were more important to the prospective 

teachers’ professional identities than what other authority figures (such as the methods 

instructor and classroom teacher) claimed; the participants accepted the students’ 

positioning in interpreting whether or not they were or felt like teachers.  

One of the more surprising themes arising from our data was the extent to which 

participants were attuned to their future students’ affect while doing mathematics in 

describing their future actions and values as teachers. Many of the prospective 

teachers’ intended actions were motivated by their perceptions of how students might 

react or feel. Jason, Jill, Melissa, and Alex discussed desired feelings that students 

should have when working on mathematics (or when participating in a mathematics 
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class). This was a major theme that was prominent in every interview. However, each 

one described these affective responses differently. Even though each one focused on 

different affective reactions, they talked more about students’ affect than they did 

about other possible motivating factors when describing rationale for their actions.  

All four of the participants believe that students need to feel comfortable in their 

classrooms. This feeling of comfort was a main theme of their interviews, but it was 

interpreted differently by each of the prospective teachers, and consequently it 

provoked different intentions with respect to teacher actions. The participants’ initial 

concepts of what it means to be a good teacher were almost exclusively dependent on 

their views of students’ affect when doing mathematics, as perhaps should not be 

surprising given that their experiences in classrooms up to this point were almost 

exclusively as students. However, as the participants’ professional identities evolved, 

and they incorporated ideas from their field experiences and pedagogy courses into 

their visions of themselves as teachers, the theme of concern for how students feel 

while doing mathematics remained strong. Even though in course assignments and 

discussions the prospective teachers spoke fluently about appropriate teaching 

behaviours and rationales for these behaviours, when asked about good teaching or 

themselves as teachers in the interviews, the participants invariably referred to student 

affect as the rationale for what they intended to do as teachers. 

Melissa desired her students to feel welcome, to feel free to say anything in her 

classroom. She wanted them to feel like math is applicable so that they would be 

interested in learning math. But most of all she wanted students to feel challenged but 

not frustrated. Correspondingly, she wanted to push students, but also to balance 

challenging students with making sure every student understands the mathematics. Her 

key description of a good teacher was one who was encouraging and was there for her 

students. She did not want students to feel frustrated by the mathematics in her 

classroom. Thus, she felt that she needed to anticipate student responses:  

Like you’ve already planned out what they’re going to say. …You’re going to have an 

answer ready. And I think that for a lot of students that is so helpful because um I just feel 

like students get frustrated if they ask questions, you’re just like I don’t know we’ll get 

back to that. The student wants to know right then… It’s just like if you can, try to prepare 

that for your student to make them feel at ease. (Melissa, Int. 2) 

Anticipating student responses was discussed in the methods course, although it was 

not motivated by a discussion of students’ frustrations – it was motivated by a desire 

for the teacher to be prepared to ask appropriate questions to push the students’ 

thinking about the mathematical ideas that were the goal of instruction.  

Alex believes students have to feel comfortable in order to learn. Thus a teacher needs 

to be approachable and encouraging. Students should also feel respected and valued; 

they should not feel stupid. Thus a teacher should not be intimidating but should strive 

to be an influence and a role model and should value students as people. Alex 

described a good teacher as very understanding and very patient. Alex’s main concern 

was to prevent students from feeling, as he did, that they were just “products of the 
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system” (Alex, Int. 1). He described his own learning of mathematics as surface-level, 

simply memorizing what was necessary for the test and then forgetting it, and he 

consequently desired that his students learn to do the mathematics for themselves, 

valuing group worthy tasks and having students do the mathematics themselves. Like 

Melissa, Alex’s desire that students not feel like products of the system but feel valued 

as people became a motivating factor for his desire to implement activities discussed in 

the pedagogy courses as good teaching: implementing tasks in groups that are worthy 

of students working in groups and having them do mathematics rather than 

memorizing rules and procedures.  

Jason’s main goal was that students begin to enjoy the mathematics as he himself does. 

He wants to help his students be interested in the material, and he wants to develop in 

them an appreciation of the struggle necessary to understand mathematical ideas, or at 

least a willingness to struggle, work hard, and persevere in their mathematical 

endeavours. In order to do this, he believes a teacher must be both focused and relaxed, 

show students that he enjoys being there, and be nice to students. Jason’s goals for 

student affect are more grounded in mathematics (he tended to view himself more as a 

mathematician), but the characteristics of a teacher and the teaching actions he 

described focus on the non-mathematical aspects of teaching: being nice, focused, 

relaxed, etc. He wants students to be excited about mathematics in general, not 

necessarily the particular ideas they are supposed to learn that day. Thus, he intends to 

bring in applications and current events, and to focus students on the logic of math, 

which he finds to be both essential to learning math and a motivating factor in learning 

it. “I just want to be the kind of teacher that covers the material but also realizes the 

students can be excited about math, not just the material, not just the standard” (Jason, 

Int. 3). 

Jill believes that students should feel comfortable in class, both comfortable in asking 

questions and feeling like the teacher is knowledgeable, trustworthy, and 

understanding or approachable. This desire for students to feel comfortable seems to 

stem from the way she believes she learns, “I’m a big believer in getting yourself really 

confused and then working your way out of it” (Jill, Int. 1). Jill’s descriptions of a good 

teacher as approachable, flexible, supportive, and encouraging correspond to her desire 

for students to be able to be confused and work their way out of that confusion in a 

supportive environment. She desires to emulate a teacher who taught her to work 

through ideas and to work her way through and out of a tough spot rather than be a 

“boring” teacher who lectures the whole day (Jill, Int. 1). Jill’s desires to use group 

work and to focus on student engagement are motivated more by a desire for her 

students not to be bored than by an acknowledgement that students learn more 

mathematics when they are engaged in doing mathematics in particular ways.  

DISCUSSION/IMPLICATIONS 

Students’ affect while doing mathematics was a strong influential factor in how the 

participants wished to see themselves as teachers, or in other words, in the cognitive 
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aspect of their professional identity. In particular, the participants’ recollections of 

affective reactions to experiences as students, as observers, or working with students in 

any setting seemed to have translated into beliefs about how they want students to feel 

and what teachers should do (or not do) in order for students to have those feelings. 

Britzman (2009) describes this paradox prospective teachers face: 

Newcomers learning to teach enter teacher education looking backward on their years of 

school experience and project these memories and wishes into the present that they then 

identify with as somehow an indication of what should happen or never happen again. (p. 

28-29) 

Students come into our teacher preparation programs with a focus on affect. Yet, it is 

uncommon to talk about student emotions (with the exception of student motivation) in 

teacher preparation programs. For our participants, ideas about student affect were 

consistent major goals in their vision, even though they were rarely discussed in their 

coursework. They co-opted the good pedagogical practices that were intended to 

produce deep student understanding and learning of mathematics and embraced them 

because students would have desired affective responses if engaged in them. If 

prospective teachers are given the opportunity to talk about their future students’ 

affect, teacher educators may be able to use the prospective teachers’ desires to make 

students comfortable to motivate reform-oriented practices. Hence, we could leverage 

our prospective teachers’ focus on desired student affect as a motivating factor for their 

engagement in and learning about desired pedagogical practices.  
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EXPLORING FRACTION COMPARISON IN SCHOOL CHILDREN 

David M. Gómez, Abelino Jiménez, Roberto Bobadilla, Cristián Reyes, Pablo Dartnell 

Universidad de Chile 

 

The application to rational numbers of the procedures and intuitions proper of natural 

numbers is known as Natural Number Bias. Research on the cognitive foundations of 

this bias suggests that it stems not from a lack of understanding of rational numbers, 

but from the way the human mind represents them. In this work, we presented a 

fraction comparison questionnaire to 502 school children from 5
th
 to 7

th
 grade to 

investigate if the Natural Number Bias succeeds in explaining their error patterns. 

About 25% of children responded in a way perfectly consistent with the Bias, but good 

students committed many errors in items that the Bias predicts to be easy. We propose 

an explanation based on comparison strategies and wrong generalizations of a 

common remark used for teaching fraction magnitude. 

INTRODUCTION 

Learning fractions is an important challenge within the middle school curriculum. 

Fractions are typically the very first approach of school children to number systems 

beyond that of natural numbers. To master fractions, students must learn new concepts, 

procedures, and intuitions that often contradict their accumulated knowledge of the 

natural number system. For instance, the multiplication of two fractions may be 

smaller than the intervening factors (e.g. 1/2 × 1/4 = 1/8), and any fraction can be 

written in infinitely many equivalent ways (e.g. 1/2 = 2/4 = 3/6 = …). Many students 

fail to understand fractions even at the most basic levels, something problematic under 

the light of recent evidence linking successful learning of fractions to advanced topics 

like algebra (Booth & Newton, 2012). Although the lack of appropriate mathematical 

knowledge by many teachers is a very important factor contributing to this failure (e.g. 

Valdemoros Alvarez, 2010), other less evident factors may also play a relevant role. 

Ni and Zhou (2005) presented a review about a particular type of frequent errors linked 

to the understanding of fractions. These errors seemed to stem from the generalization 

to fractional contexts of the concepts, procedures, and intuitions proper of natural 

numbers. The authors used for them the umbrella term Natural Number Bias. Typical 

examples associated to this bias are reasoning that 2/3 < 2/5 because 3 < 5, as well as 

computing 1/2 + 1/3 = 2/5, thinking that processing separately both fraction 

components (numerators and denominators) is enough for obtaining the desired result. 

Errors due to reasoning on the basis of natural number knowledge are not limited to 

calculation procedures: school children from 7th to 11
th

 grade may state that there is a 

finite number of rationals between 1/5 and 4/5, as if rational numbers possessed a 

successor (Vamvakoussi & Vosniadou, 2010). It is important to underline, as Ni and 

Zhou do, that these errors are not simply the result of a failed learning experience but 
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reflections of the deep, intuitive way in that the human mind deals with fractions even 

in adults who work proficiently with rational numbers. Recent investigations have 

demonstrated this by presenting questionnaires in which pairs of fractions such as 2/7 

and 5/7, or 3/5 and 3/8, must be compared. These two fractions pairs may be called 

congruent and incongruent respectively because of the relation between the magnitude 

of the fractions and the magnitude of the natural numbers composing them. In this 

sense, in the former pair the greatest fraction has the greatest numerator so that 

fractional and natural magnitudes point in the same direction, whereas in the latter pair 

the greatest fraction has the least denominator and hence fractional and natural 

magnitudes point in opposite directions. When using these types of items, adults 

(Vamvakoussi, Van Dooren, & Verschaffel, 2012) and even expert mathematicians 

(Obersteiner, Van Dooren, Van Hoof, & Verschaffel, 2013) respond more slowly to 

incongruent fraction pairs. 

The present work explores the extent to which the Natural Number Bias provides a 

useful account of the errors committed by a sample of 5
th

- to 7
th

-grade children in a 

fraction comparison questionnaire. To do this, we selected fraction pairs that allowed 

us to contrast explicitly the congruent/incongruent dimension. In addition, based on 

research on the neural processing of fractions (e.g. Barraza, Gómez, Oyarzún, & 

Dartnell, under review; Ischebeck, Schocke, & Delazer, 2009), we selected fraction 

pairs that either have or have no common components. Pairs with common 

components (e.g. 2/7 and 5/7) tend to be compared by just looking at the non-common 

component (see also Bonato, Fabbri, Umiltà, & Zorzi, 2007), whereas pairs lacking 

common components (e.g. 2/3 and 1/4) require different strategies such as computing 

cross multiplications or estimating the numerical magnitude of each fraction. 

METHODS 

Participants 

Five hundred and two school children of 5
th

 (n = 165), 6
th
 (n = 181), and 7

th
 (n = 156) 

grade classes from five schools located in different areas of Santiago, Chile, 

participated in this study. All children were authorized by their parents’ signature of an 

informed consent form. 

Questionnaire 

We selected 24 fraction pairs grouped according to two factors: the presence or lack of 

common components, and congruency/incongruency (see Table 1). We classified a 

fraction pair a/b and c/d as congruent if a ≤ c, b ≤ d, and a/b ≤ c/d (or vice versa); or as 

incongruent if a ≤ c, b ≤ d, and a/b ≥ c/d (or vice versa). In other words, congruent pairs 

are those in which the greatest numerator and the greatest denominator both belong to 

the greatest fraction, whereas in incongruent pairs the greatest numerator and the 

greatest denominator both belong to the least fraction. 

 

 



Gómez, Jiménez, Bobadilla, Reyes, Dartnell 

PME 2014 3 - 187 

 With common components Without common components 

Congruent pairs 4/9, 8/9 9/11, 4/11 5/7, 1/3 5/16, 12/17 

7/19, 15/19 15/17, 6/17 3/14, 9/17 10/17, 3/9 

2/11, 3/11 7/8, 4/8 2/5, 11/18 17/19, 4/9 

Incongruent pairs 4/15, 4/6 1/9, ¼ 5/6, 8/19 2/4, 3/13 

5/8, 5/17 3/7, 3/14 6/13, 4/5 6/18, 5/6 

7/15, 7/10 6/14, 6/8 2/3, 5/17 4/15, 2/5 

Table 1: Full item list of the fraction comparison questionnaire. 

 

Figure 1: Screen capture of an item of the questionnaire. On top, a colored bar indicates 

time left for answering. At the bottom, the fraction pair to be compared. 

Mathematics achievement 

We measured children’s general mathematics knowledge by means of tests that their 

schools apply every year. As the five selected schools share a common curriculum and 

instructional design, these tests were the same for all schools but differed for each 

grade. Because of this, we normalized children’s scores on a grade-by-grade basis by 

subtracting the average score and dividing for their standard deviation. We were only 

able to obtain these test scores for 451 children out of the total sample. 

Procedure 

Each class was tested in the Computer Science classroom of their school. The 

questionnaire was presented by computer and programmed in Python+PyGame. Each 

child worked individually. All items presented the question “Which of these fractions 

is the greatest?” (“¿Cuál de estas fracciones es la mayor?”) at the middle of the screen, 

whereas the fractions to be compared were displayed at the bottom (Figure 1). Children 

pressed the keys Q or P to select the left or right fraction as the greatest, respectively. 

Items not answered within 10 seconds of presentation were considered as omitted, and 

the next item was then presented. A color-changing bar on top of the screen displayed 

the time left for answering. 
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Children were aware that their outcome in this questionnaire would not have effect on 

their school grades. We asked them to answer each item carefully, and to follow their 

intuition in case of doubt. 

RESULTS 

Overall mean accuracy, computed as the ratio of correct responses to non-omitted 

items, was 59.0% (SD = 17.6). Differences among the three grades were negligible (5
th
 

grade: 58.7%, 6
th

 grade: 60.0%, 7
th

 grade: 58.1%; F(2,499) = 0.51, p = .60). Accuracy 

scores correlated significantly with general mathematics knowledge, with a weaker 

effect in 7
th

 grade than in 5
th

 and 6
th

 grades (5
th
 grade: r=.37, t(127)=4.5, p<.001; 6

th
 

grade: r=.40, t(175)=5.7, p<.001; 7
th
 grade: r=.26, t(143)=3.2, p=.002). Cronbach’s α 

was .76, suggesting a good (though not excellent) degree of internal consistency. 

Table 2 presents accuracy rates per item types. A 2-way ANOVA showed a 

statistically significant effect of the presence or absence of common components: 

fraction pairs with common components were answered in average 5% better than 

pairs without common components (F(1,1503)=11.1, p<.001). Congruency has a much 

larger effect, with congruent items being answered in average 36.7% better than 

incongruent items (F(1,1503)=505.3, p<.001). There was a statistically significant 

interaction between these factors as well, indicating that the difference in accuracy of 

congruent over incongruent items was larger in fraction pairs with common 

components (difference for items with common components: 41.0%; without: 32.3%; 

F(1,1503)=7.0, p=.008). 

 With common components Without common components Mean 

Congruent 82.2% 72.4% 77.3% 

Incongruent 41.2% 40.1% 40.6% 

Mean 61.7% 56.3% 59.0% 

Table 2: Average scores in the fraction comparison questionnaire. 

An item-per-item analysis of accuracy rates shows that this pattern of results is 

consistent across all 24 items of the questionnaire (Figure 2A), in close agreement with 

the predictions of the Natural Number Bias. 

Children who were 100% accurate in congruent items and 0% in incongruent items 

represent extreme cases of the Bias. We observed 126 children (25.1% of the sample) 

that answered the questionnaire in this way: 46 in 5
th
 grade (27.9%), 40 in 6

th
 grade 

(22.1%), and 40 in 7
th
 grade (25.6%). 

To further explore our different item types, we computed item-total correlations. 

Figure 2B depicts correlations of all 24 individual items and the total questionnaire 

scores. High correlations indicate that children who answered those items correctly 

tend to have high overall scores, and vice versa. That is, items with high item-total 

correlation are considered as measuring in an appropriate way overall knowledge of 
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fraction comparison. Figure 2B shows several interesting features. First, all 

incongruent items present the highest correlations (ranging from .61 to .73) regardless 

of the presence of common components. This is in line with the predictions of the 

Natural Number Bias, which implies that incongruent items are the hardest for 

children. Second, congruent items with common components, that is to say fraction 

pairs that share a common denominator, are also positively correlated but to a smaller 

degree (ranging from .20 to .32). This may be due to the fact that these items are 

answered correctly by the vast majority of children (the average score being 82.2%), 

thus being unable to discriminate between children with good and bad overall scores. 

The final and most intriguing feature of Figure 2B is that congruent items without 

common components display very low or even negative correlations (ranging from 

-.35 to .09), signalling that these items do not align well with the rest of the 

questionnaire. To some extent, this reflects the large share of extremely biased children 

who get scores lower than average (they have overall scores about 50%) but all 

congruent items correct. Removing these children from the sample, however, does not 

alter the overall pattern (Table 3). This suggests that students with better general 

mathematics knowledge might be doing worse than average in these items, which 

indeed turns out to be the case: Students who were 1.5 standard deviations or more 

above average in an independent test (this amounts to 27 children out of the 451 for 

whom it was possible to obtain test scores) have an average score in comparing 

congruent items without common components of 58.0%, lower than the general 

average of 72.1%. Thus, top students behaved in a way opposite to the predictions of 

the Natural Number Bias for the case of items with no common components (their 

average scores in all other item types are above 80%). 

A B  

Figure 2: (A) Average scores per item. (B) Item-total correlations. 

Vertical bars depict 95% confidence intervals. 
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Item 

Correlation 

(full sample) 

Correlation 

(subsample) 

Are the two greatest naturals 

part of the same fraction? 

5/7, 1/3 -.15 -.05 Yes 

5/16, 12/17 .09 .21 No 

3/14, 9/17 .09 .21 No 

10/17, 3/9 -.24 -.13 Yes 

2/5, 11/18 -.35 -.27 Yes 

17/19, 4/9 -.12 -.02 Yes 

Table 3: Low and negative item-total correlations for congruent items without 

common components are observed both in the full sample and after remotion of the 

126 extremely biased children. The rightmost column classifies items according to the 

location of the two largest natural numbers in the item. 

DISCUSSION 

We presented a fraction comparison questionnaire to 5
th
-, 6

th
-, and 7

th
-grade children in 

order to explore their pattern of responses and contrast it with the predictions of the 

Natural Number Bias. To do this, we included fraction pairs classified as congruent or 

incongruent according to the relation between their correct answers and the answers 

that would be obtained by focusing only on the natural numbers composing them. The 

Natural Number Bias predicts that congruent items get higher scores systematically. 

Our results present both support and challenges for the Natural Number Bias account. 

On the full sample average, congruent items had scores substantially higher than those 

of incongruent items (average difference of 36.7%). Moreover, a group of about 25% 

of the sample and approximately equally distributed among the different grades, 

answered the questionnaire in total agreement with the Bias. Although our data do not 

allow us to distinguish whether these extreme cases are due to failures in learning 

fraction comparison or in retaining this knowledge, they do suggest that a sizable 

number of children will rely on their natural number knowledge and intuitions when 

facing uncertainty. 

Beyond the good value of Cronbach’s α for our questionnaire, item-total correlations 

contribute importantly towards a clearer picture of children’s thought processes. As 

expected according to the Natural Number Bias, incongruent items are highly 

predictive of total scores. Congruent items in general present lower correlations, even 

close to zero or negative in the case of items with no common components. These 

negative correlations are not simply due to that 25% of the sample who responded in 

complete agreement with the Bias, since the pattern of correlations still appears when 

looking at the other 75%. In an intriguing finding, we discovered that the top 6% 

students obtain lower than average scores in these items. Careful observation of the 

fraction pairs in these items shows that pairs with negative item-total correlations share 
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a common feature: The greatest fraction of each pair not only contains the greatest 

numerator and the greatest denominator, but also these two numbers were the two 

greatest among all naturals present in the item (Table 3). Such fraction pairs may be 

called “strongly congruent”, as they are a subset of congruent pairs. Our questionnaire 

was not designed to study them in detail, a gap that future research should explore. 

How are top students thinking, that they end up performing worse than average 

specifically in congruent items with no common components? A first observation is 

that they are not applying a single method such as cross multiplication to all items 

without common components, because they fail in congruent items but answer 

correctly incongruent ones. Alternatively, they might be aware that natural numbers 

may be misleading in a fractional context and answering incorrectly because of an 

excess of caution. This account, however, also fails to explain why they do well in 

incongruent items without common components. Another possibility that does explain 

this difference is that top students might be applying a heuristic method, namely that 

the greatest fraction tends to be the one with the least denominator. Given our selection 

of fraction pairs without common components, such heuristic leads exactly to good 

results in incongruent items and to bad results in congruent ones. This can be seen as an 

overgeneralization of the common remark made by teachers that the magnitude of a 

fraction grows if its denominator shrinks, and vice versa. This reasoning, which is 

perfect when referring to a single fraction, becomes a heuristic when applied to a 

fraction comparison item because in this new context it may systematically lead to 

wrong answers. 

Understanding the patterns of reasoning behind children’s answers in a test is a 

powerful aid for the design of pedagogical interventions. Understanding common 

mistakes also allows providing appropriate corrective feedback. Our work thus 

highlights the importance of taking into account the Natural Number Bias and its 

strong influence in 5
th
-, 6

th
-, and 7

th
-grade children. Our quantitative approach, and the 

large sample size considered, did not allow us to focus on subtle factors such as the 

variety of strategies that each child may use to solve each item (e.g. Clarke & Roche, 

2009). In this sense, qualitative data would make a great complement to the data here 

presented and may shed light on the thinking processes of top students that lead them to 

perform worse than average in a specific item type. 

To what extent it is possible to overcome the Natural Number Bias by means of 

pedagogical interventions is an open question, although recent research suggests that it 

is not possible to do it perfectly: Remnants of biased thinking remain in adulthood 

(Vamvakoussi et al., 2012) and even in expert mathematicians (Obersteiner et al., 

2013). Furthermore, other researchers suggest that this Bias partly stems from the way 

of writing fractions and its use of natural numbers (such as “2” and “3” in “2/3”; see 

Kallai & Tzelgov, 2012; Mena-Carrasco, Gómez, Araya, & Dartnell, under review), a 

conclusion that, if true, states that the effects of the Natural Number Bias in fractional 

tasks is unavoidable. Pedagogical intervention could still, in this case, aim at making 

students aware of the faulty reasoning behind the Bias. 
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In this paper we report data, gathered in Madrid, Spain, from two groups aged 20-39: 

one group comprised pedestrians stopped in the City streets, the other consisted of 

university students, specifically prospective primary school teachers [PPST]. It was 

found that the PPST were generally more negative than members of the general public 

about mathematics and its importance. Overall, there was relatively little evidence of 

gender stereotyping, However, when found, the traditional male stereotype prevailed. 

INTRODUCTION 

The current study builds on previous work in which the views of members of the 

public, in Australia and Spain, were sought about studying mathematics and its 

relevance to career suitability for males and females. The results of the earlier study 

(Forgasz, Leder, & Gómez-Chacón, 2012) showed that the traditional male stereotype 

was still prevalent, that is, higher proportions of participants responded that “males” 

were more suited to studies in mathematics and/or related careers than “females”. 

However, gender stereotyping was less pronounced among the Spaniards. The between 

country differences suggest that factors in the social milieu shape individuals’ beliefs 

and, therefore, that the social context cannot be divorced from research on affective 

factors.  

Aims 

To explore in greater depth which social factors seem significant contributors to views 

about mathematics and the still apparent gendering of mathematics as a male domain in 

Spain, the views of two groups were examined: members of the general public (aged 

20-39) who were stopped in the streets of Madrid, and Prospective Primary School 

Teachers (PPST), also in the 20-39 age group. We were particularly interested in the 

views of the PPST group, given that one of the key influences in children’s educational 

lives is the teaching they receive at Primary School. The opinions or views of their 

teachers are likely to affect how the students learn mathematics and, as a consequence, 

may shape or reinforce the students’ views of mathematics and gendered views about 

mathematics. 

Background context 

Findings from two studies – PISA 2012 and Teacher Education and Development 

Study [TEDS-M] (Tatto et al., 2012) – contextualise the Spanish setting.  

For Spanish students, the scores on the PISA mathematical literacy tests have remained 

stable between 2003 (481) and 2012 (484) (Thomson, de Bortoli, & Buckley, 2013). 

(In 2012 the OECD average was 494.) Boys, on average, consistently scored higher 
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than girls on the tests: 9 points higher than girls in 2003, and 16 points higher in 2012 – 

one of the largest increases in the gender gap in mathematics performance among 

countries with data for both 2003 and 2012.  

Attitudinal data gathered as part of the PISA 2012 tests (OECD, 2013) revealed 

differences in the responses of boys and girls – with respect to enjoyment of 

mathematics (girls lower than boys), worry about poor grades in mathematics (girls 

higher than boys), getting nervous when doing mathematics problems (girls higher 

than boys), believing that they are not good at mathematics (girls higher than boys).  

The Teacher Education and Development Study, or TEDS-M (Tatto et al., 2012) 

results for Spain provide strong evidence of the benefits of pre-service teacher 

preparation programs at colleges and universities. Ways to improve pre-service 

teachers’ mathematical knowledge for teaching – mathematics content knowledge and 

mathematics pedagogical knowledge – were identified. When teachers design learning 

opportunities, reflect on instructional situations, and act or react in the mathematics 

classroom, motivational and affective aspects of learning and instruction also need to 

be considered. 

Theoretical models informing the study 

Many of the early explanatory models for gender differences in the outcomes of 

mathematics learning (Eccles, 1985; Leder, 1992) and more recent research findings 

(Baker & Jones, 1993; Halpern et al., 2007) have included societal influences (access 

to education, laws, and the media) and the views of significant others (parents, 

teachers, and peers) among the contributing factors. The items developed for the 

survey used in the present study are consistent with these social milieu elements – see 

Forgasz et al. (2012).  

THE STUDY 

Samples and methods 

The two samples surveyed in the present study were: group 1 – pedestrians (N = 393), 

and group 2 – prospective primary school teachers (N = 272). 

For the pedestrian survey, participants were drawn from nine sites in the northwest, 

south, and central areas of Madrid. Data collection was conducted one day a week for a 

two month period; a morning of approximately three hours was spent at each location. 

The prospective primary school teacher [PPST] survey was conducted on-line in class 

at university. Data were collected from students at two universities. 

The instrument 

The instrument used for data collection was described in Leder and Forgasz (2010). It 

was translated into Spanish; 14 of the original items were retained (see Table 1 

Q2-Q15). An additional question was added for the PPST only: Q1 – “Can you do 

mathematics? The 15 items represent two dimensions: personal beliefs (Q2-Q5 and 

Q10), and gender-stereotyped beliefs (Q6-Q9, Q11-Q15). The age and gender of 
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participants were also recorded. As well as the readily codeable (quantitative) 

responses (e.g., “yes”, “no”, “don’t know”, “boys”, “girls”, “the same”), respondents 

were encouraged to provide explanations for their answers. [NB. The qualitative 

comments were manually recorded for the pedestrian sample.] 

Analyses 

For the quantitative data, frequency distributions of the responses to the items were 

examined and Pearson chi-square (χ
2
) tests were conducted to identify differences in 

the responses of the participants from the two groups; effect sizes (φ) for statistically 

significant differences were also calculated.  

For the qualitative data, the open-ended responses were closely examined and 

categorised; a grounded approach was adopted. The emerging themes were: attitudes 

towards mathematics and its learning; beliefs about personal mathematical abilities; 

descriptions of the process of learning mathematics; epistemology and views about the 

nature of mathematics; and values of mathematics education.  

RESULTS AND DISCUSSION 

A summary of the quantitative differences between the two groups on Q2-Q15 is found 

in Table 1 (which also includes response options).  

As seen in Table 1, five of the 14 items were found to be statistically significantly 

different by group: Q2, Q3, Q5, Q7, and Q10. Four of these (Q2, Q3, Q5, and Q10) 

relate to personal beliefs; the fifth (Q7) is a gender-stereotyped belief. The results are 

reported under the two main headings: personal beliefs, and gender-stereotyped 

beliefs. 

Question Response 

options 

Pedestrians PPST χ
2
, p-level,  

φ 

Q2 When you were at school, 

did you like mathematics? 

Yes 

No 

Average 

289 (73.7%) 

100 (25.5%) 

3 (0.8%) 

68 (25%) 

202 (74.3%) 

2 (0.7%) 

155.6  

p< .001 

φ=0.48 

Q3 Were you good at 

mathematics? 

Yes 

No 

Average 

279 (71%) 

92 (23.4%) 

22 (5.6%) 

57 (21%) 

202 (74.3%) 

12 (4.4%) 

175.6 

p< .001 

φ=0.51 

Q4 Has the teaching of 

mathematics changed since 

you were at school? 

Yes 

No 

Don’t know 

122 (31%) 

135 (34.4%) 

136 (34.6%) 

95 (34.9%) 

80 (29.4%) 

97 (35.7%) 

ns 

Q5 Should students study 

mathematics when it is no 

longer compulsory? 

Yes 

No 

Don’t know 

222 (56.6%) 

108 (27.6%) 

61 (15.6%) 

70 (25.7%) 

156 (57.4%) 

43 (15.8%) 

71.7 

p< .001 

φ=0.3 

Q6 Who is better at 

mathematics, girls or boys? 

Girls 

Boys 

Same 

Don’t know 

53 (13.5%) 

47 (12%) 

268 (68.2%) 

25 (6.4%) 

35 (12.9%) 

22 (11.8%) 

185 (68%) 

20 (7.4%) 

ns 
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Question Response 

options 

Pedestrians PPST χ
2
, p-level,  

φ 

Q7 Do you think this has 

changed over time? 

Yes 

No 

Don’t know 

107 (27.4%) 

221 (56.5%) 

59 (15.1%) 

151 (55.5%) 

73 (26.8%) 

46 (16.9%) 

66.5 

p< .001 

φ=0.32 

Q8 Who do parents believe are 

better at mathematics, girls or 

boys? 

Girls 

Boys 

Same 

Don’t know 

31 (7.9%) 

42 (10.7%) 

177 (45.3%) 

141 (36.1%) 

16 (5.9%) 

29 (10.7%) 

115 (42.3%) 

111 (40.8%) 

ns 

Q9 Who do teachers believe 

are better at mathematics, girls 

or boys? 

Girls 

Boys 

Same 

Don’t know 

42 (10.7%) 

51 (13%) 

222 (56.8%) 

76 (19.4%) 

29 (10.7%) 

28 (10.3%) 

160 (58.8%) 

54 (19.9%) 

ns 

Q10 Do you think that studying 

mathematics is important for 

getting a job? 

Yes 

No 

Don’t know 

223 (56.9%) 

101 (25.8%) 

66 (16.8%) 

67 (24.6%) 

159 (58.5%) 

44 (16.2%) 

82.3 

p< .001 

φ=0.35 

Q11 Is it more important for 

girls or boys to study 

mathematics? 

Girls 

Boys 

Same 

Don’t know 

5 (1.3%) 

5 (1.3%) 

352 (90%) 

29 (7.4%) 

4 (1.5%) 

4 (1.5%) 

245 (90.1%) 

19 (7%) 

ns 

Q12 Who are better at using 

calculators, girls or boys? 

Girls 

Boys 

Same 

Don’t know 

20 (5.1%) 

39 (9.9%) 

290 (73.8%) 

44 (11.2%) 

14 (5.1%) 

27 (9.9%) 

199 (73.2%) 

31 (11.4%) 

ns 

Q13 Who are better at using 

computers, girls or boys? 

Girls 

Boys 

Same 

Don’t know 

3 (0.8%) 

123 (31.3%) 

241 (61.3%) 

26 (6.6%) 

2 (0.7%) 

82 (30.1%) 

169 (62.1%) 

18 (6.6%) 

ns 

Q14 Who are more suited to 

being scientists, girls or boys? 

Girls 

Boys 

Same 

Don’t know 

33 (8.4%) 

18 (4.6%) 

311 (79.1%) 

31 (7.9%) 

14 (5.1%) 

12 (4.4%) 

222 (81.6%) 

22 (8.1%) 

ns 

Q15 Who are more suited to 

working in the computer 

industry, girls or boys? 

Girls 

Boys 

Same 

Don’t know 

5 (1.3%) 

67 (17.1%) 

295 (75.3%) 

25 (6.4%) 

1 (0.4%) 

47 (17.3%) 

207 (76.1%) 

15 (5.5%) 

ns 

Table 1: Frequency distributions and chi-square results (by group) for survey items 

Personal beliefs 

The four items (Q2, Q3, Q5, and Q10) that were statistically significantly different 

revealed the following between group differences: 

 Q2: an appreciation for and enjoyment of mathematics when they were at 

school (‘like’: 73.7% Ped [pedestrian group], 25% PPST; p<.001, φ= .48) 
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 Q3: beliefs concerning whether they were good at mathematics (good: 71% 

Ped, 21% PPST; p<.001, φ= .51); 

 Q5: beliefs about whether students should continue learning mathematics 

when it is no longer compulsory (‘yes’: 56.9% Ped, 25.7% PPST; p<.001, φ= 

.32); and 

 Q10: beliefs concerning whether studying mathematics was important for 

getting a job (‘yes’: 56.9% Ped, 24.6% PPST; p<.001, φ=.35) 

The data in Table 1 reveal that the majority of PPST did not like mathematics (Q2), and 

that they did not consider themselves to be good at mathematics (Q3). When the PPST 

were asked the additional question, ‘Can you do mathematics?’ (Q1), 46.3% indicated 

that they could not. This is a sobering finding because these are future primary teachers 

who will have to teach and encourage pupils to learn mathematics. 

We examined some of the explanations that participants provided for their responses to 

the four items (Q2, Q3, Q7, and Q10) that were statistically significant different by 

group. We focus on examples from the PPST sample because this group is of particular 

interest. As well, there were much lower proportions of positive responses from this 

group. 

Q2: “When you were at school, did you like mathematics?”  

Only one-quarter of the PPST indicated that they liked mathematics. Three major 

themes emerged in their answers: attitudes (e.g., “Mathematics is boring”), teacher 

influence (e.g., “I was not very good at math, I think that I did not have a good 

teacher”, and beliefs about personal mathematical competence and knowledge (e.g., “It 

seems complicated and difficult to understand”; and “It doesn’t interest me and it 

doesn’t seem useful in real life.”). 

Q3: “When you were at school, were you good at mathematics?” 

Whether the PPST considered themselves good or not at mathematics (and the 

majority did not) was often explained in terms of getting good or bad grades in this 

subject. Another theme was related to the view of mathematics as “a group of rules or 

steps to follow”. A third perspective was of mathematics being linked to negative 

emotions, often associated with the teacher.  

Q5: “Should students study mathematics when it is no longer compulsory?” 

The majority of the PPST group considered that the further study of mathematics 

beyond the time it is compulsory, should be a personal decision and would depend on 

whether the individual wanted to study it or not. For many PPST participants the 

discipline of mathematics seemed completely isolated from the real world. They did 

not see the need for using mathematics in everyday life. Those who thought that 

mathematics should continue to be studied talked in terms of only those parts which 

could help them become useful members of society. The more theoretical or abstract 

parts, they claimed, should only be taught to those students who were planning to 

pursue careers in which these concepts would be necessary.  
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Q10: “Is studying mathematics important for getting a job?”  

Surprisingly, many participants from the PPST group did not consider mathematics to 

be important for getting a job or, as shown in their responses to Q5, that it should not be 

studied when it is no longer compulsory. Typical examples of the responses of the 

PPST group to question Q10 reflected a belief that only basic knowledge is necessary 

for daily life and mathematics was disconnected from the real world (e.g., “It depends 

on the level of mathematics. Obviously everyone needs to know how to add and 

subtract and everything. But why on earth would a baker need to work out the cubic 

root of an imaginary number.”). 

Gender-stereotyped beliefs 

There were no statistically significant differences for eight of the items tapping 

gender-stereotyped views (Q6, Q8, Q9, Q11-Q15). The vast majority of respondents in 

both groups believed that it was equally important for girls and boys to study 

mathematics (Q11). Among the low percentages of respondents who held gender 

stereotyped views, there was little difference in the two groups’ response frequencies 

about males’ and females’ mathematical capability (Q6); perceptions of parents’ (Q8) 

and teachers’ (Q9) beliefs about boys’ and girls’ mathematical proficiency; about 

calculator use (Q12); and suitability to being scientists (Q14). However, the traditional 

male stereotype was evident – higher proportions responded “males” than “females” – 

with respect to views about computer competency (Q13) and suitability for working in 

the computer industry (Q15). 

The only statistically significant difference between the two groups was found for Q7. 

A higher proportion of PPST (55.5%) than pedestrians (27.4%) believed that there has 

been a change over time in whether boys or girls were better at mathematics. Two 

factors stood out in the explanations for the beliefs of the PPST group. The first was the 

role of females in society. For example, one PPST wrote: 

previously women did not study and instead dedicated themselves to looking after children 

and domestic chores, and were therefore outside the education system. Sometimes they 

were not able to access schooling and when they did they received a very different 

education to the boys, one that focused more on tasks related to running a household.  

The second factor related to gender equality in the education law, which has been a 

decisive factor for women to access education. 

CONCLUSIONS 

Surprisingly, substantial differences were found in the personal beliefs about 

mathematics and its importance between the pedestrian group and the PPST group. 

Disappointingly, the PPST group was more negative than the general public about 

mathematics, about their competence in mathematics, and about the importance of 

mathematics, intrinsically, and for jobs. Further research to understand the longer-term 

implications of the PPST’s views on student learning of mathematics, educational 

aspirations, and gender-stereotyped attitudes and beliefs is needed. 
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There was little evidence overall that either group held strong gender-stereotyped 

views about mathematics or related careers. The one exception was regarding males’ 

and females’ competence with computers and suitability to work in the computer 

industry, with both groups holding more strongly to the traditional male stereotype. 

Further research is also need to explore in depth the relationships between views such 

as those identified in this study and Spanish students’ relatively low PISA performance 

and the growing gender gap in mathematics achievement between 2003 and 2012. 
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PRE-UNIVERSITY STUDENTS’ PERSONAL RELATIONSHIP 

WITH THE VISUALISATION OF SERIES OF REAL NUMBERS 

Alejandro S. González-Martín 

Université de Montréal, Canada 

 

Our research focuses on the learning of series as a consequence of institutional 

choices for their teaching. Our analyses of textbooks and teaching practices led us to 

conjecture the existence of some implicit contract rules in the teaching of series: in 

particular, the teaching of series is made almost exclusively in the algebraic setting, 

with no importance given to visualisation or to the interpretation of visual images. The 

analysis of the students’ responses to a questionnaire suggests that students learn 

series without developing any ability to visualise or to interpret images concerning 

series, which could have consequences on the learning of subsequent notions. 

INTRODUCTION AND BACKGROUND 

Infinite series of real numbers (series in what follows) are a key notion in mathematics: 

the idea of adding many terms was already present in ancient Greek mathematics and 

the use of infinite sums (either numerical or functional) allowed the development of 

Calculus. Series have many applications within mathematics (such as the calculation of 

areas by means of rectangles), and also outside of mathematics (as the modelling of 

situations such as the growth of interests in a bank account). These elements may 

explain why series are present in the introductory Calculus courses in many countries. 

In Canada, each province has jurisdiction over the organisation of education and 

official curricula; education does not depend on the federal government. In the 

province of Québec, compulsory education finishes at the age of 16 and students who 

wish to pursue university studies need to follow two years of pre-university studies 

(called collégial) before they enter university. Students pursuing scientific or technical 

careers will have an introduction to Calculus during the collégial studies. 

Research literature about the teaching and learning of series is scarce and it has mostly 

focused on their learning, but not on their teaching. Regarding their teaching, Robert 

(1982) already conjectured that teaching could have an impact in learning, and stated 

that the exercises used in teaching could be at the origin of the inadequate conceptions 

of convergence of sequences and series found in university students in France. 

Regarding their learning, a summary of the main difficulties identified to learn series 

can be found in González-Martín, Nardi & Biza (2011). In particular, Alcock and 

Simpson (2004) suggest that students who regularly use visual images in their 

reasoning about real analysis, particularly using series and sequences, share some 

positive characteristics: “they all view mathematical constructs as objects, they all 

quickly draw conclusions about whole sets of objects, and they have confidence in 

their own assertions to the point of considering them obvious” (p. 29). They add that 
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“those who use visual reasoning effectively do so because they build strong links 

between the visual and formal representations of real analysis concepts” (p. 30). Their 

results go in the same sense than much of the existing literature about visualisation, 

which underlines its importance in learning and doing mathematics, as well as in 

reasoning (Arcavi, 2003), and its crucial importance to experts and students alike, 

suggesting new results or potential approaches to proofs (Presmeg, 1986).  

Our literature review led us to reflect upon whether or not the teaching of series takes 

into account the learning difficulties identified by research, and in particular whether 

the use of visualisation is encouraged by teaching practices. The first stage of our 

research involved the analysis of how series are presented in collégial textbooks, 

identifying some possible consequences of this presentation. We analysed a sample of 

17 textbooks used in collegial studies in Québec from 1993 to 2008 (González-Martín 

et al., 2011), paying special attention to the organisation of teaching. Our main results 

can be summarised as follows: 

R1: Series are usually introduced through organisations which do not lead to a 

questioning about their applications or their importance (raison d’être). 

R2: Organisations tend to introduce series as a tool in order to later introduce 

functional series, but the importance of series per se is usually absent. 

R3: These organisations tend to ignore some of the main difficulties in 

learning series identified by research. 

R4: The vast majority of tasks concerning series are related to the application 

of convergence criteria, or to the application of algorithmic procedures. 

The second stage of the research consisted in analysing collégial teachers’ practices 

and use of textbooks (González-Martín, 2010). Interviews with five teachers revealed 

that their practices tended to mostly reproduce what was presented in their textbooks.  

As a consequence of the results of these two stages, we conjectured the existence of 

some implicit contract rules in the teaching of series in the collégial institutions in 

Québec, having a strong effect on students’ learning. We have discussed some of these 

rules in previous papers: in González-Martín (2013a) we discussed two implicit rules 

implying that students do not need the definition of what a series is to solve the tasks 

given to them, and also that applications of series are not important; in 

González-Martín (2013b) we discussed the implicit rule implying that the notion of 

convergence is reduced to the application of convergence criteria. For the purposes of 

this paper, as we are interested in the use of visualisation, we only discuss the 

following rule 

Rule 1: “To solve the questions about series that are given, the use of visualisation (or any 

visual representation of series) is not necessary”. 

We conjectured the existence of this implicit rule guided by our analysis of textbooks 

and the interviews with teachers. We found that the number of visual images used by 

the textbooks to teach series was very low, especially in a conceptual way (we defined 

a conceptual image as that used to explain a concept, or to illustrate one step of a proof; 
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it might be part of the proving process and it is explicitly intended to help the student 

understand a notion or a mathematical argument) (González-Martín et al., pp. 

572-574). In particular, the prototypical graphic representation of series used by 

textbooks was a variation of the image presented in Figure 1, used by textbooks in the 

proof of the Integral Test, which states under which conditions both 


a
dxxf )(  and 




1

)(
n

nf  are convergent or divergent. We noted that “these representations are not  

accompanied by an account that aims to link the representation with the algebraic and 

other symbolic representations of the 

concept used in the text. [and] the authors of 

the texts appear to take for granted that the 

students will instantly establish this 

connection and, for example, will interpret 

the rectangles appearing under a curve as 

representing the terms of the sum within a 

series” (p. 574). 

We believe that Rule 1 is a consequence of both R3 and R4. The teaching of series is 

organised around the application of convergence criteria and algorithmic procedures 

(R4), hence activities promoting visualisation are scarce, and difficulties identified by 

research, as well as recommendations (as the use of visualisation), are not sufficiently 

taken into account (R3). 

To verify whether Rule 1 has an impact on collégial students’ learning of series, we 

decided to create a sample of students and to apply a questionnaire. Let us define first 

the main elements of our theoretical framework, before clearly stating our objectives. 

THEORETICAL FRAMEWORK 

Chevallard’s anthropological theory develops tools to better understand the choices 

made by an institution in order to organise the teaching of mathematical notions, as 

well as the possible consequences of these choices on what an individual learns. A 

fundamental notion in this theory is that of institution; an institution I is defined as a 

social organisation which allows, and imposes, on its subjects (every person x who 

occupies any of the possible positions p offered by I) the development of ways of doing 

and of thinking proper to I (Chevallard, 1988/89, p. 2). For instance, a classroom is an 

institution (with two main positions: teacher and student), as well as a school, or an 

educational system, are also institutions. 

To analyse how an institution considers a notion, further definitions are required. An 

object is any entity, material or immaterial, which exists for at least one individual; in 

particular, any intentional product of human activity is an object. Every subject x has a 

personal relationship with any object o, denoted as R(x, o), as a product of all the 

interactions that x can have with the object o (using it, manipulating it, speaking of 

it…). This personal relationship is created, or modified, by entering in contact with o 

 

Figure 1: Prototypical representations 

of series found in textbooks. 
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as it is presented in different institutions I, where x occupies a given position p. From 

this personal relationship, a learner (if we consider an educational institution) will 

constitute what one could designate as being ‘knowledge’, ‘know-how’, ‘conceptions’, 

‘competencies’, ‘mastery’, and ‘mental images’ (Chevallard, 1988/89). This notion of 

relationship is also transferred to institutions: given an object o, an institution I, and a 

position p in I, we define as the institutional relationship with o in position p, RI(p, o), 

the relationship with the object o which should ideally be that of the subjects in 

position p in I. By becoming a subject of I in position p, an individual x is subjected to 

the institutional relationships RI(p, o), which in turn will re-model his/her own 

personal relationships. This institutional relationship is mainly forged through the 

exercises (or tasks), and not only through the theoretical explanations. It is also forged 

through the use of elements (as symbols, images…) to refer to, or to manipulate, the 

mathematical notions to be constructed; these elements which allow to work 

concretely with abstract notions are called ostensives (Bosch & Chevallard, 1999). 

The identification of the institutional relationship with a mathematical notion also 

allows to identify the existence of (sometimes implicit) contract rules, which are rules 

that the institution fosters through its practices around a mathematical notion and 

which contribute to determine the institutional relationship to a mathematical notion. 

This institutional relationship and its contract rules play an important role in the 

development of the learners’ personal relationship with the mathematical notions s/he 

learns within the institution. 

In our case, our objective is to have elements to characterise collégial students’ 

personal relationship with the visualisation of series (and the use of ostensives in the 

graphic or geometric settings) and to see if this personal relationship seems to have a 

strong relation with the implicit contract Rule 1 identified in the teaching processes. 

METHODOLOGY 

To verify the possible effects of contract Rule 1, among others, on collegial students’ 

personal relationship with series, we created a sample of 32 students in their first year 

of collégial studies (where series are introduced) after the teaching of series had 

occurred. These 32 students come from three different mathematics teachers (named as 

A, B and C). Our sample consists of 4 students from teacher A (referred to as students 

A1 to A4), 14 students from teacher B (referred to as students B1 to B14), and 14 

students from teacher C (referred to as students C1 to C14). 

We constructed a questionnaire with 10 questions, aiming to assess the students’ 

learning about series, as well as to verify our conjectures about the impact of different 

contract rules on their learning. The questionnaire was administrated in May 2011 

during one of their courses (approximately 55 minutes in duration), and the students 

participated voluntarily. 

In this paper, we discuss the students’ responses to the two following questions: 
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Question 8: 

Which series is represented in the following 

image and which result does it allow  

visualising? 

Describe the procedure represented in the  

image, and then write the series symbolically. 

 

Question 10: 

We know that 


1

1

n n
 and that 

6

1 2

1
2






n n
. Taking into account 

these results, what can we say about the value of 
 

1 

1
dx

x
 and of  


 

1 2

1
dx

x
? 

Answer this question without making any calculation, only by using the following graph or 

by producing another graph if needed. 

Figure 2: Questions 8 and 10. 

In the next section, we present and comment on the results obtained from these 

questions. 

DATA ANALYSIS 

Question 8 (Q8) 

The distribution of responses to this question is the following: 

“A [square] is divided in half and one of the two halves is 

added to an initial identical [square]. Then, every 

remaining half is divided in two and added over the 

construction indefinitely” 
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C14 

Describes correctly the image (“we divide a square by 

two, and then we re-divide it by two”), but unable to write 

it correctly symbolically 

A4 

B6, B9 

Describes correctly the image, without attempting to write 

it symbolically 

C8 

“
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, but I cannot explain it” 

“ ...
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B1 

 

C7 
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Other (wrong) attempts or (wrong) explanations B2, B5, B7, B8 

C1, C3, C5, C6, C12, C13 

“I don’t understand the image”  

“I don’t understand the question” 

B13 

C11 

 

No answer / ? / “Didn’t have time” 

A1, A2, A3 

B3, B4, B10, B11, B12, B14 

C2, C4, C9, C10 

Table 1: Responses to Question 8. 

These students have spent more than one week working with series and deciding the 

convergence or the divergence of quite complex series; however, confronted to a visual 

image of a simple series 










0 2

1

n
n

, only one student is able to describe it and to write it 

symbolically. Other four students (A4, B6, B9, C8) are able to describe it, without 

writing it symbolically, and two students (B1, C7) are able to write it symbolically, 

without describing it. Fifteen students (15/32) don’t provide any answer, or 

acknowledge not understanding the question or the image. These results seem to go in 

the sense of Rule 1, and as the students do not need to interpret or to manipulate any 

visual representation of series to solve the algorithmic tasks they are usually given, 

they seem not to have developed any ability helping them to tackle or to interpret this 

type of ostensive. This seems to contradict the attitude of the textbooks, which seem to 

take for granted that students are able to interpret visual representations of series 

(González-Martín et al., p. 574). 

Question 10 (Q10) 

The distribution of responses to this question is the following: 

Explicitly uses the graph to relate the behaviour of the series to that 

of the integrals 

None 

 

 


 

1 

1
dx

x
 diverges and 


 

1 2

1
dx

x
 converges 

(explicitly or 

implicitly) 

 

With no explanation 

A1 

B4 

C2, C5, C8 

Calculates the primitives (sometimes 

with errors) 

B8, B13 

C11 

 

Other 

A2, A3 

B5, B9, B10, B12 

C1, C6 

Imply (verbally or symbolically) that the value of the series and the 

corresponding integrals are the same 

B1 

C13 

 A4 
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Other interpretations B6, B7, B11 

C3, C7, C10, C12 

No answer / “Didn’t have time” / “I don’t know” B2, B3, B14 

C4, C9, C14 

Table 2: Responses to Question 10. 

Again in this question, and in a more dramatic way, we see that the students are 

incapable of interpreting the given graph to relate the behaviour of series and integrals. 

However, the image used in this question should be familiar to the students, since it 

corresponds to the prototypical image used by textbooks to illustrate the integral test 

(see Figure 1). Nevertheless, even if students are supposed to be familiar with the 

image, and even if textbooks take for granted that students are able to interpret the 

image, our results seem to contradict these assumptions and the students of our sample 

seem to be totally incapable of interpreting and/or using the image. This image is 

present in the institutional relationship with series, but maybe because it is taken for 

granted, or not used in any specific task, students seem not to integrate it in their 

personal relationship with series. 

FINAL REMARKS 

Our analysis of textbooks and the teaching practices led us to conjecture the presence 

of contract Rule 1: abilities related to visualisation are not developed during the 

teaching of series. And as we conjectured, questions needing to manipulate or to 

interpret visual images implying series produce a very low level of correct responses in 

the students of our sample, seeming to confirm the presence of contract Rule 1. Even if 

the students spend a high amount of time deciding the convergence or the divergence 

of quite complex series, they seem incapable of interpreting visual images referring to 

very simple series, and their personal relationship with series seems to only consider 

the use of symbolic ostensives. 

The lack of development of visual abilities concerning series could have serious 

consequences for students’ learning, as the literature indicates: students might not 

develop a vision of series as objects and might not build strong links between the visual 

and formal representations of real analysis concepts (Alcock & Simpson, 2004), and 

they might also not develop adequately some reasoning abilities (Arcavi, 2003). 

The results presented here, together with those shown in González-Martín (2013a, 

2013b) seem to confirm the presence of contract rules influencing students’ learning 

of series: they use series without being able to define them, or without knowing what 

they are useful for, reducing the notion of convergence to the application of criteria, 

and not developing abilities of visualisation and interpretation of series. These 

elements seem to be very clear in students’ personal relationship with series, and this 

seems to be a consequence of the institutional relationship with series, which fosters 

the presence of the contract rules. The impact for the learning of subsequent notions 

seems too dramatic to be ignored, and research aiming to change this institutional 
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relationship with series and, as a consequence, students’ personal relationship with 

series appears to be urgent. 
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This study investigated the performance and reasoning of 143 Australian students who 

completed mathematics tasks sourced from their national test. Specifically, this study 

examined changed student performance and reasoning on items where the graphic 

component was modified. The results of the study revealed significant performance 

differences between the original and modified items and provided insight into how 

these modifications influenced student reasoning.  

GRAPHICS IN TEST ITEMS 

The design of mathematics test items has received heightened attention recently. For 

example, the United States National Mathematics Advisory Panel (2008) made the 

following recommendation in regard to items used in both national and state 

achievement tests: 

More research is needed on test item design features and how they influence the 

measurement of the knowledge, skills, and abilities that students use when solving 

mathematics problems on achievement tests. (p. 61) 

In light of such advice, this study aimed to outline what semi-structured interviews and 

survey data revealed about the influence of a graphic in the design of numeracy test 

items and the impact these graphics had on student performance and reasoning.  

In deconstructing mathematics test items, Lowrie, Diezmann and Logan (2012) found 

that, typically, many assessment items consisted of three elements that organised 

mathematical information: text, symbols, and graphics. This paper will focus on the 

graphic component of test items. Bertin (1967/1983) defined graphics as visual 

representations for “storing, understanding and communicating essential information” 

(p. 2). Within the context of this study, graphics refers to any diagram, pictorial 

representation or graph used within a test item. The graphics in these items can be 

classified under two distinct categories, contextual and information. Contextual 

graphics are used for illustrative purposes, usually to provide a context for the written 

text. In contrast, an information graphic presents mathematical information in a 

visual-spatial form that supplements the text and symbols and is essential for task 

solution (Diezmann & Lowrie, 2008).  

According to Lowe and Promono (2006), “test and graphic have long been combined 

in various ways to provide complementary sources of information and on a wide 

variety of topics” (p.22). This dual use of text and graphics has resulted in cognitive 

load theory (CLT) becoming more prominent within assessment design and how the 
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components within an item may impact on working memory (Sweller, 1999). CLT was 

examined with respect to multimedia learning and the impact of inappropriate and 

unnecessary graphics. Within this research Mayer and Moreno (2002) identified four 

design principles to aid students in learning more deeply and preventing the 

overloading of their visual and/or verbal working memories. These included the notion 

of contiguity, coherence, modality, and redundancy. Of particular relevance to 

mathematics assessment was the coherence and redundancy principles. With regard to 

the coherence principle, it was found that students “learn more deeply when they do 

not have to process extraneous words or sounds in verbal working memory or extra 

pictures in visual working memory” (Mayer & Moreno, 2002, pp. 116-117). Bobis, 

Sweller and Cooper (1993) explored the notion of the redundancy principle, finding a 

possible redundancy of some graphics within an item but also a necessity for graphics 

in other items in regards to cognitive load.  

Within the Australian context, there has been research conducted on the influence of 

graphics in mathematics test items on student reasoning (e.g., Diezmann & Lowrie, 

2012; Logan & Greenlees, 2008). Much of the findings highlight the difficulty students 

have interpreting and decoding the graphic presented in the item. Lowrie and 

Diezmann (2009) argued that decoding graphics is a skill that is seldom taught and that 

primary school-aged students often find such representations overloaded with 

information and therefore difficult to interpret. Indeed, they found that test item design 

had considerable impact on how students solved tasks and that many errors:  

involved students not considering information in the graphic, being overly influenced by 

information (often irrelevant information) in the graphic, or not considering the 

connections between embedded graphical information and the textual and symbolic 

information (p. 153).  

Schnotz (2002) also suggested that students will often pay only brief attention to the 

graphic, thinking that their general knowledge will suffice. However, students need to 

have a “schema-driven analysis” (p. 116) activated through explicit teaching before 

they can engage with the graphic content sufficiently. Therefore, it is critical that 

further research is undertaken on test item design in order to better understand the 

construction of these items and the processes required to decode them. 

THEORETICAL FRAMEWORK 

Utilising Lowrie, Diezmann and Logan’s (2012) framework, items in the study were 

deconstructed according to the elements of text, symbols and graphics. This 

framework has been identified as a useful method to recognise the necessary elements 

that make up the composition of a graphical task and how the individual elements of a 

graphical task influenced students’ reasoning. By recognising these three elements 

holistically and individually, Lowrie, Diezmann and Logan identified the influential 

role the graphic element played in students’ sense making. Following on from these 

findings, this study focussed on the graphic element and specifically, the principles of 

coherence and redundancy in relation to contextual and information graphics.  
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RESEARCH DESIGN AND METHODS 

This study is part of larger investigation that focused on the impact of test item design 

on student’s performance and sense making. These design elements included the use of 

text, symbols and graphics. The 15 items used were sourced from the 2010 Year 5 

National assessment and were selected based on their relevance to the particular design 

elements. An item modification process was undertaken, which resulted in the 15 items 

being modified according to the text, symbols or graphics. We ensured that variations 

to the respective elements of the standard items would achieve the same grade-level 

content whilst still allowing for variations in task design (Kettler, Elliott, & Beddow. 

2009). The resulting item design modification produced three items with graphical 

modifications, which became the focus of this paper.  

Due to the test items with modified graphics being administered only one week after 

the original test, we made minor modifications to the wording or contexts of the items. 

It was anticipated that students may remember answers they gave from the first 

interview and ignore the changes made to the items within the second interview. 

Therefore, one of the limitations of this process was that modified items could not be 

an exact match to the original items. For this paper, the focus was on modification to 

the graphic component of test items, both contextual and information graphics. The 

research questions for this paper were: 

1. Does modification to the graphic component of test items impact on students’ 

performance?  

2. How does the graphic component of test items influence student’s reasoning?  

The Participants 

The inquiry took place in four Australian primary schools in the state of New South 

Wales. The schools were diocesan Catholic primary schools for children aged 5-12 

years. The students were in Year 5, and were aged 10 or 11 years. Altogether, 143 

students were involved over a three-year period: 106 in the testing cohort and 37 in the 

interview cohort.  

Data Collection and Analysis 

The following section describes the four phases of the study over a four-week period. 

Phase 1. The original 15-item test was administered to 106 students. It is important to 

note that the numeracy items from the national test were used as ‘representative’ 

mathematics items suitable for students in primary schools. (week 1) 

Phase 2. Using the original 15-item test, one-to-one interviews were conducted with 

37 students purposively selected by the teachers to be representative of the classes. The 

interviews provided the students with the opportunity to solve the 15 items and 

describe their thinking strategies and solutions. (week 2) 

Phase 3. Using the interview data obtained in phase 2, the 15 test items were modified 

(see Figure 1 for item modification) according to three design elements that were 
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particularly influential in the student’s solution process. The modified test was then 

administered to the 106 students. The cohort’s performance between the two tests was 

then analysed. (week 3) 

Phase 4. The modified test was administered to the 37 interview participants to 

identify any changes in mathematical reasoning. Their responses were viewed as 

representative of the larger cohort. (week 4) 

 
Figure 1: The original and modified tasks 

RESULTS AND DISCUSSION 

The Impact of Modifying Graphics on Students’ Performance 

In this paper, we identified three items where the graphics were highly influential on 

students’ reasoning in the first phase of interviews. The analysis of variance indicated 
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that there was a statistically significant difference for items when a graphic was 

repositioned as well as when a contextual or an information graphic was taken away 

(see Table 1). For the Garden plan and the Shoe items, student performance increased 

on the modified item. However, for the Liquorice allsort item, performance declined 

from 92% to 83% on the modified item. Noteworthy is the observation that 

performance decreased when the information graphic was removed. To better 

understand why these changes might have occurred, the interview data was analysed.  

 

Table 1: Modifications, Percentage Correct, and Univariate Analysis of Graphics Items  

The influence on student reasoning  

Repositioning graphic within the item: In the Garden plan item, the presentation and 

layout of the question was modified by centering and rotating the graphic to a more 

prominent position (see Figure 1). The analysis of the interview data revealed that the 

students seemed to overlook incorporating all sides into calculating the perimeter on 

the original item, possibly due to its close positioning to the question stem and 

answers. This was in spite of the fact that when asked the definition of a perimeter all 

students correctly described it as the distance all around the shape. An example of this 

can be seen in Elise’s response to the original item when questioned on how she got the 

Answer A (36m).  

Elise: I added them all together and then I did partners to 10. So I did 16 and 4 and 

8 and 2 and that equalled 30 and I added the 6.  

Int: What does perimeter mean?  

Elise: The outside of an object.  

By moving the graphic away from the clutter in the modified item, the interview 

carried out one week later revealed a heightened awareness to include all sides in the 

equation as evident in Elise’s response (72cm): 

Elise: I added all the ones and the ones where there wasn’t any numbers like I 

knew that would be 8 because that’s the same as that one and that would be 

16 and for that one there was a gap down here so I put 6 and 4 together and 

that’s 10 and then 2 for 12. 
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A number of students, who answered the item incorrectly in phase 2, reported similar 

processing on the modified item. This indicated that the format of the original item 

impacted on the visibility of the information necessary to solve the task. By placing the 

graphic too close to the question, the students may have failed to notice the 

requirement to include those sides that had no numerical value attributed to them. 

However, when all sides of the graphic were clearly visible, they could effectively 

determine their value and include them within the perimeter. Hence, the location of the 

graphic within an assessment item affected the coherence of the graphic in terms of its 

readability and impacted on students’ ability to process and utilise the information 

contained within the question. We also acknowledge the potential benefits of rotating 

the graphic into a vertical position, given current research has suggested this is a 

preferred orientation (Giannouli, 2013). 

Contextual graphic removed: The Shoe item was modified by taking away a 

contextual graphic (see Figure 1), meaning that the graphic did not contain information 

needed to solve the question. This modification was made because nearly one-third of 

the interview students made reference to the picture of the shoe despite its irrelevance 

to obtaining the answer in phase 2. It appeared that the picture of the shoe was 

distracting the children from analysing the question logically. The original item that 

students could not relate to directly, required them to estimate the length of a ‘real’ 

shoe by providing a picture of a shoe that was not to scale and ambiguous in nature. 

The modified item also required the students to estimate the length of a ‘real’ shoe but 

this time providing a more meaningful context by directing them to look at their own 

shoe.  

For example, it could be perceived from her response to the original item that Mikayla 

did not have a sound understanding of measurement by considering a shoe to be close 

to 75cm. However, when investigated further it was revealed that there were aspects of 

the question that were negatively impacting on her mathematical reasoning.  

Mikayla: Well 5cm is too small for a real shoe and 25cm is sort of a bit small too. 

75cm would probably be the size of a real shoe and 100cm would be too 

big. 

Int: So did the picture of the shoe help you work out your answer? 

Mikayla: Yeah. 

Int: How did it help you? 

Mikayla: Well if it had been a picture of a baby shoe it would have been 5cm but 

because it was a picture of an adult shoe it was 75cm.  

In contrast, the modified item revealed that Mikayla’s measurement knowledge was in 

fact quite acceptable once the distraction was removed and a more accurate context 

created:   

Mikayla: Because 5cm is too small to be my shoe and 75cm is too big and same as 

100cm and 25cm was just about the right size. 
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Often contextual graphics are added as cues to the context or as possible forms of 

motivation and elaboration (Shimada & Kitajima, 2006). However, in this instance, the 

graphic was redundant for the purposes of problem solving and not necessary. Despite 

this, students were inappropriately attempting to include this in their problem solving 

strategies. For this reason test designers need to re-evaluate their good intentions of 

including such a graphic and the necessity of its inclusion. 

Information graphic removed: The Liquorice allsort item was modified by excluding 

the information graphic and replacing it with written data (see Figure 1). The interview 

data suggested that the decrease in student performance on the modified item was due 

to their inability to visualise the cake using the information given. Many of the students 

were focusing on the numbers included in the question and were not focusing on the 

part-whole relationship of the fraction. Misunderstandings of the requirements of the 

question became more apparent in the modified version. This was particularly evident 

in Kyle’s responses to both items: 

Int: [original item] How did you get your answer? 

Kyle: Well at first I thought it was 2 out of 3 because there’s 2 black layers but 

then I looked at the lolly and saw there was 5 layers not 3 so then I chose 2 

out of 5. 

Int: [modified item] How did you get your answer? 

Kyle:  I chose 2 out of 3 because there’s 2 white layers and 3 pink and that’s how I 

worked it out.  

In his response to the original item, the information graphic actually prompted Kyle to 

think about the part-whole relationship. It was therefore more effective to represent 

this type of information to students as a graphic rather than a word problem. Removing 

the lolly graphic could have resulted in heightening the cognitive load placed on the 

students during the problem solving process, as they now needed to visualise what the 

cake looked like. Because of this, the information graphic was not redundant but rather 

a necessary component of the task. However, we acknowledge that students of this age 

should be able to generate their own representations also. 

CONCLUSION 

The research findings reinforced the need for further analysis and investigation into the 

different components of mathematics assessment items, in particular, the graphics. 

This includes a more comprehensive understanding about the differentiation between 

redundant graphics that are unnecessary to students and those that are not. It may be the 

case that contextual graphics have no role to play in high-stakes testing since such 

graphics are by definition contextual and therefore not necessary to the task at hand. 

However, the use of information graphics actually lightened the cognitive load for the 

students. Another consideration is the placement and layout of the graphic within an 

item and the impact this may have on the coherence and visibility of information 

available to the students. It could be the case that the inclusion of more “white space” 
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and orientation of the graphic is influential in student performance and reasoning. 

These findings highlight the effect the slight change in test item design can have on 

students’ understanding and reasoning.  
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We present the second stage of a study within the context of geometry, whose aim is to 

investigate relationships between and influence of visualization, the concept images of 

students concerning geometrical concepts and their definition, and students’ ability to 

prove. We focus on links between the understanding of the definition's role in 

concluding the geometrical concept attributes and proofs that deal with these 

attributes. We exemplify this stage in our research, by means of examples, which 

reveal that the difficulties students have in understanding the geometric concepts' 

definitions affect the understanding of the proving process and hence the ability to 

prove.  

INTRODUCTION AND BACKGROUND 

The research reported here is part of a larger study aimed at investigating: 1) the effect 

of visualization and of students’ concept images on students' construction of 

geometrical concepts and their definitions; 2) the effect of definitions on students' 

ability to prove in geometry, and 3. the effect of visualization and concept formation 

difficulties on students' ability to prove in geometry. At the previous PME conference 

we reported on findings from investigating point 1 (Haj-Yahya & Hershkowitz, 2013). 

In this research report we focus mainly on findings concerning point 2.  

The research literature includes many studies on the meaning of proof for students   

(e.g. Fischbein & Kedem, 1982) and on their ability to prove in geometry (e.g. Martin, 

McCrone, Bower & Dindyal, 2005). But little research was done concerning the effect 

of definitions on proving in geometry. Moore (1994) investigated the ability to prove 

concerning non-geometrical concepts. His participants were university students. He 

found that the superficial understanding of concept definitions and images prevented 

students from starting proofs and from seeing the overall structure of a proof. Edwards 

and Ward (2004) found that students have a tendency to rely on their concept images 

instead of the related concepts. Again their research context was non-geometrical 

concepts. It is especially surprising that there is so little research attempting to 

investigate the relationship between definition and proving in geometry, while school 

curricula in many countries dedicate most of the time devoted to learning geometry in 

high school to the subject of definitions and proofs. The present research attempts to 

fill this gap. 
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THE STUDY (SECOND STAGE) 

At the previous PME conference, we exemplified our findings concerning point 1 

above, by means of paradigmatic examples, which reveal students' visual and verbal 

processes related to construction of geometric figures and inclusion relationships 

between groups of figures and their attributes. Our results confirmed known findings, 

for example that the position of a shape affects its identification and the related 

inclusion relationships (e.g., Hershkowitz, 1989) and also pointed to findings in a new 

direction, such as the effect of the question's representation on students’ responses 

concerning the inclusion relationships. Here we focus on the role of definitions in 

processes of geometrical proving.  

Population 

The participants are 90 students from a regional high school in an Arab community in 

the centre of Israel, all of whom participated in stage 1 of the research. They learn 

geometry with three different teachers in three parallel classes, which are considered to 

be at the highest mathematical level among the seven parallel classes in this school. All 

teachers have a first degree in mathematics from the universities in the country and 

more than ten years of experience in teaching mathematics.  

Methodology 

The main research tools of the three-stage research include three questionnaires, one 

for each stage. The questionnaires were administered at time intervals sufficient for 

analyzing the results of each questionnaire and use its findings in the design of 

semi-structured interviews with about 10% of the study participants, and in the design 

of the next stage questionnaire for the whole population. The questionnaire used in this 

2
nd

 stage of the study deals with defining and proving (related to quadrilaterals). After 

administering the questionnaire and analyzing its results, nine students were 

interviewed. 

In the tasks of this questionnaire the students were asked to "reflect on other students' 

answers". During such reflection, students had opportunities to use critical thinking; 

they test the proof made by the "other student". Also, while students are required to 

explain their responses, they uncover some of their views and knowledge regarding 

proving processes. Detailed analyses of a few questionnaire tasks and of students' 

responses are given in the next section. 

DATA COLLECTION, ANALYSIS AND FINDINGS  

The data of the second stage were collected in 2013, while the participants were in the 

grade 11. Questionnaire 2 includes 5 tasks and was administered at the end of the first 

semester. In the following, we focus on and analyse data from the participants' 

responses to three tasks in this questionnaire.  

The Trapezium Task (Figure 1): In the Trapezium Task we provided an insufficient 

proof, given supposedly by a student called Ramie. The students were asked to check 
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the proof's correctness and to explain their responses. The aim of this task is to examine 

whether the students pay attention to a missing step in a given proof. This task was 

designed because while analysing the first questionnaire we found that only 27% of the 

participants gave a correct definition of trapezium. In our curriculum, a trapezium is 

defined as a quadrilateral with exactly one pair of parallel sides. 

Trapezium:  is a quadrilateral with only one pair of parallel sides.  

Problem: ABCD is a given parallelogram, E and H are on the continuation of sides CD and 

AB, respectively. EH intersects AD and BC at points F 

and G, respectively. 

Prove that ABGF is a trapezium. 

Here is Ramie's proof: ABCD is a parallelogram, 

therefore AD and BC are parallel. BG is part of BC and 

AF is part of AD, hence AF and BG are parallel (parts 

of parallel sides). We found a pair of opposite parallel 

sides, therefore ABGF is a trapezium. 

Did Ramie give a correct and complete proof? Explain your response!      

Figure 1: The Trapezium Task  

   Explanation 

 

 

 

Student's  

claim  

No 

explanation 

Should 

prove 

that the 

other 

pair of 

sides 

intersect 

The shape 
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trapezium 
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No claim 
2 

(2.2%) 

0 

 

0 

 

0 

 

1 

(1.1%) 

1 

(1.1%) 

4 

(4.4%) 

Correct & complete 

proof 

3 

(3.3%) 

12 

(13.3%) 

1 

(1.1%) 

1 

(1.1%) 

37 

(41.1%) 

3 

(3.3%) 

57 

(63.3%) 

Incomplete proof 
 

1 

(1.1%) 

 

14 

(15.5%) 

10 

(11.1%) 

0 

 

3 

(3.3%) 

1 

(1.1%) 

29 

(32.2%) 

Total 
5 

(6.6%) 

26 

(28.9%) 

11 

(12.2%) 

1 

(1.1%) 

41 

(45.5%) 

5 

(5.5%) 

90 

(100%) 

Table 1: Participants’ responses to the Trapezium Task 

Table 1 shows that 63% of the participants claim that the proof is correct & complete, 

and yet the majority (65%) of them based their justifications on an insufficient 

definition for trapezium. E.g. student a13 wrote: Ramie's proof is correct, he found and 

proved that there is a pair of parallel sides. It is very interesting to see that there are 12 
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students (13%) who claimed that the proof is correct, although they wrote that Ramie 

should prove that the other sides are intersect, they paid attention to the proof 

incompleteness, but their final answer was not consistent with their argument. Only 

32% of the students claimed that the proof is incomplete, whereas about half of them 

explained explicitly that Ramie should prove that the other pair of sides intersect; e.g. 

student b43 wrote: not correct because it is incomplete (proof process), he should 

prove that the other pair are not parallel, AB is not parallel to FG because they 

intersect in point H. About one third of the students in this category explained that 

without completing the proof, the shape could be a different one (not a trapezium). E.g. 

b41claimed that when we accepted this proof, parallelogram considered as trapezium 

because there is one pair parallel sides in parallelogram, he wrote: No, Ramie's proof is 

correct but not complete. This definition fits other concepts, for example it fits a 

parallelogram. We may conclude that here we have evidence that many students are 

not consistent concerning incomplete proof although the correct definition given at the 

top of the task states explicitly that there is only one pair of parallel sides.  

The Parallelogram Task (Figure 2): This task deals with a proof that a certain 

quadrilateral is a parallelogram. This may be done by showing that each pair of 

opposite sides are parallel, or that each pair of opposite sides are equal, or that there is 

one pair of opposite sides which are equal and parallel. In each case the proof is 

sufficient. We represented a non-economical proof. This task was inserted into this 

stage, because after analyzing the first questionnaire we realized that students have a 

tendency to give a non-economical definition for the parallelogram. 

ABCD  is quadrilateral, E is in the middle of AB, G in the middle of DC, F in the middle of 

AC and H in the middle of BD. 

Prove that HEFG is parallelogram.   

Ahmed wrote the following proof:  

We can see that FE and GH are mid-segments in triangles 

ABC and DBC, respectively, thus because of the 

mid-segment attributes we can conclude that   

BCFEGH
2

1
  and GH is parallel to FE. 

Remains to prove that the other sides are equal and 

parallel. HE and GF are mid-segments in triangles ADB 

and ADC, respectively. Therefore we can conclude that 

ADHEGF
2

1
  and GF is parallel to HE. We have proved 

that there are two pairs of opposite sides equal and parallel, therefore the shape is 

parallelogram. 

Do we need all the steps Ahmad made? If so explain why, if not what steps can be omitted? 

Figure 2: The Parallelogram Task 

The results in Table 2 indicate that the tendency to give a non-economical definition 

for a parallelogram appears to have an influence on the process of proving, and many 
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students adopt the non-economical proof: 57% of all students claim that all the steps 

are necessary. 

Only 37% of the participants wrote that there are superfluous steps in the proof, and 

75% among these students explained their response by using an economical definition; 

e.g. a16 wrote: It is not necessary to do all the steps. Ahmed could only prove that one 

pair of sides are equal and parallel. 

Table 2: Students' responses to the Parallelogram Task 

The issues in this task were investigated by interviews as well. Here is an episode from 

one of the interviews: 

(I – interviewer; A – Aseel, a student: discussing the Parallelogram Task)  

1 I: Among two students from your class, one proved only that each two 

opposite sides are parallel. The other student proved only that each two 

opposite sides are equal. 

2 A: O.K. 

3 I: Which answer is correct? Are both of them correct? Is one of them correct? 

Is any answer correct? 

4 A: Both are wrong, because in the parallelogram each pair of opposite sides 

are parallel and equal. 

5 I: So, which answer do you prefer? 

6 A: The first in which the student proves that each pair of opposite sides are 

parallel. 

7 I: Why? 

8 A: We call it parallelogram, parallel, the word parallel must be. 

Aseel does not understand the "mathematical agreement" that a definition has to be 

minimal and that there are often equivalent definitions. In this episode Aseel (4) shows 

that like another 57% of the students she thinks that "all steps are necessary". Her way 

Explanation 
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explain 

Used an 

economical 

definition 

Used 

non-economical 

definition 

Used 

insufficient 

definition 

 Tautology Wrote 
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Didn't claim 4 

(4.4%) 
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(2.2%) 

0 0 0 0 6 
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All steps are 
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21 

(23.3%) 

4 

(4.4%) 

4 

(4.4%) 

0 4 

(4.4%) 

18 

(20%) 

51 

(56.6%) 

There are 
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3 

(3.3%) 

25 

(27.7%) 

2 

(2.2%) 

1 

(1.1%) 

0 2 

(2.2%) 

33 

(36.6%) 

Total  28 

(30.8%) 

31 

(34.1%) 

6 

(6.6%) 

1 

(1.1%) 

4 

(4.4%) 

20 

(22%) 

90 

(100%) 
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of expressing it indicates that she is confused between the set of all attributes a 

parallelogram has, and a minimal set of attributes sufficient for the definition of a 

parallelogram. She does not attend to or does not understand the concept of economical 

definition and hence not the concept of economical proof either. In addition, the 

attribute ‘parallel’, which is part of the figure's name affects Aseel's definitions and 

therefore affects her preference for proving. 

Rectangle Or Not Task: This task (See Figure 3) had three subtasks, but here we will 

relate to subtask b only. Our aim here is to investigate if and in what way 

understanding (or not) the inclusion relationships between groups of quadrilaterals is 

expressed in proving. Especially we want to know whether the students will use the 

rectangle and kite definitions or not. In the analysis of the first questionnaire we found 

that only 7% correctly identified the square as a kite and about 17% identified the 

square as a rectangle. 

Definition: A rectangle is a parallelogram with one right angle.  

Problem: There is a circle with center O, OB=OC are two radii. They 

are perpendicular. From point A outside the circle we draw two 

tangents to the circle: AB and AC.  

 Is ABOC  a rectangle? If not which quadrilateral it is? Prove your 

answer! 

Mohamed says: In the quadrilateral ABOC there are three right 

angles. In addition OB=OC (the radii are equal), therefore all 4 

sides are equal. Hence the quadrilateral ABOC is a square and can't be a rectangle or a 

kite, because in a rectangle and a kite not all sides are equal.  

Is Mohamed's proof correct? If not, explain your response! 

Figure 3: Rectangle or not Task. 

The main findings from Table 3 are: Only a third of the students claimed that 

Mohamed’s proof was wrong. But only 27% of these use a correct definition of a kite 

or a rectangle, or correctly identified the inclusion relationships between the squares 

and rectangles and between the squares and kites; e.g. c10 writes: because all 4 sides 

are equal and all angles are right angles and the square is a kite and also a rectangle. 

About half of the students claimed that Mohamed's proof is correct and did not relate to 

the fact that the square has all the critical attributes of the rectangle and kite concepts. 

Whereas 57% among them didn’t explain their responses (they were not asked to do it) 

and about 30% among them referred only to the square. E.g. c8 writes: "right, 

according to what he proved the constructed shape is a square and not rectangle 

because he proved that there are 4 equal sides and 4 right angles". Again we have 

evidence that the difficulties in understanding the inclusion relationships among the 

groups of quadrilaterals and their attributes influence the ways the students deal with 

and evaluate proofs. 
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Table 3: Students' responses to the Rectangle or not Task 

CONCLUDING REMARKS 

We can see a general and clear tendency: Student's difficulties in understanding the 

definitions of geometrical concepts affect these students' proof processes. These 

difficulties affect proof processes wherever these processes rely on the definitions. 

This tendency is in agreement with Knapp (2006). We can interpret some of these 

difficulties by the lack of students’ understanding that a definition must on one hand 

not contain any superfluous information (see the Parallelogram Task), but must on the 

other hand contain a necessary and sufficient set of attributes. The other difficulties 

might be explained by the students' lack of understanding the two directions of 

inclusion relationships (see the third task): inclusion relationships between groups of 

quadrilaterals in one direction and the inclusion relationships of their attributes in the 

opposite direction (Hershkowitz et al., 1990). It is worth to note that in spite of what we 

claimed above, there are cases in which students are not attentive to incomplete proof 

although the correct definition is given as in the findings of the Trapezium Task. 
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GENDER-NEUTRAL, YET GENDERED: EXPLORING THE 

CANADIAN GENERAL PUBLIC’S VIEWS OF MATHEMATICS 
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By investigating the general public’s views, we can better understand the cultural 

milieu in which mathematics teaching and learning take place. This study, part of an 

international research project, investigated the Canadian general public’s views of 

gender and mathematics. Using a brief survey, people on the street and in public 

spaces in four demographically diverse locations in the Canadian province of Ontario 

were asked their views on the topic. The findings suggest reasons to be both cautiously 

optimistic and concerned. While the most common response to the questions examined 

was to see no gender difference, more participants held a gendered view (typically 

privileging boys) than a gender-neutral view. 

INTRODUCTION 

Investigating the general public’s views about mathematics is essential in order to 

garner an understanding of the social milieu in which mathematics teaching and 

learning occur. Unfortunately, as argued by Leder and Forgasz (2010), “attempts to 

measure directly the general public’s views about mathematics, its teaching and its 

impact on careers are rare” (p. 329). While several studies exist regarding views of 

mathematics, these studies are often conducted with select populations, such as high 

school and university students (e.g., Mendick, Epstein, & Moreau, 2007; Morge, 

2006). Only a few known studies have investigated this topic with the general public, 

and none of these were in a Canadian context. For example, research in the United 

Kingdom explored the general public’s images and opinions of mathematics (Lim, 

1999; Lim & Ernest, 1999). Overall, the most negative views of mathematics were 

found in the youngest age group (17-20 years of age) and in students who were not 

mathematics majors. Views of mathematics were mixed: Encouragingly, the majority 

of participants disagreed with the stereotype that mathematics is a male domain. 

However, the majority of the participants also agreed that mathematics is a difficult 

subject, only for a select few. Lim concluded that the adults’ views were primarily 

influenced by their school mathematics experiences. More recent research (Lucas & 

Fugitt, 2009), conducted in the United States, explored the general public’s views of 

mathematics education. The study’s participants tended to hold traditional views, 

criticizing today’s practices as lacking emphasis on ‘the basics’ and being too focused 

on technology. Overall, mathematics was seen by the participants as being very 

important to success in both postsecondary education and future careers. 

Due to concerns about a lack of research in this domain, Leder and Forgasz initiated 

research in Australia that investigated the general public’s views of mathematics, with 
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a particular focus on gender and mathematics (reported in such publications as Forgasz 

& Leder, 2011; Forgasz, Leder, & Gómez-Chacón, 2012; and Leder & Forgasz, 2010, 

2011). Using a brief survey, initially conducted on the street and later via Facebook, 

Leder and Forgasz gathered data from both Australian and international participants. In 

order to expand the research internationally, a team of researchers was assembled to 

collect street-level data in a variety of countries. The research reported in this paper 

addresses the data collected in Canada for this larger, international research project. 

Context 

The data collection for the Canadian sample took place in the province of Ontario, 

which is located in central Canada and contains nearly 40% of the country’s population 

(Statistics Canada, 2010a). In Canada, education falls under the purview of individual 

provinces and territories (i.e., no national curriculum exists). Ontario’s mathematics 

curriculum (Ontario Ministry of Education, 2005a, 2005b, 2007) addresses a wide 

variety of mathematical topics in each grade level, and emphasis is placed on diversity 

in both teaching practices and assessment types. The use of mathematical tools is 

encouraged, both in class and on provincial large-scale assessments. Fundamentally, 

the Ontario Mathematics Curriculum is based on the belief that “all students can learn 

mathematics and deserve the opportunity to do so” (2005a, p. 3).  

Since the 2003/2004 school year, Ontario students have been required to participate in 

large-scale provincial assessments of mathematics in Grades 3, 6, and 9. These 

assessments are created and conducted by the Education Quality and Accountability 

Office (EQAO). The EQAO assessments involve a variety of question types and 

address the provincial curriculum. My analysis of five years of EQAO data (Hall, 

2012) showed that no statistically significant gender differences existed at any grade 

level in terms of mathematics achievement. In contrast, as demonstrated by data from 

the questionnaires that accompany the assessments, gender differences existed with 

regard to affective factors. Namely, across all grade levels and across the five years of 

data examined, a statistically significantly higher percentage of boys, compared to 

girls, reported liking mathematics and being good at it. 

In Ontario, students are required to take three mathematics credits during high school. 

At the Grade 12 level, when most students have completed their required mathematics 

courses, boys have a higher proportion of mathematics courses in their timetables than 

do girls. Additionally, boys are the majority of students in five of the six Grade 12 

mathematics courses offered (Hall, 2012). These gender differences persist at the 

university level, where women are the minority in mathematical fields from the 

bachelor’s to doctoral degree level. Notably, the proportion of women in mathematical 

fields of study at the bachelor’s and master’s degree levels has been declining since the 

early 1990s (Statistics Canada, 2010b). 
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THEORETICAL FRAMEWORK 

This study was guided by a social constructivist and feminist epistemological stance, in 

which gender is viewed as being socially constructed, as well as historically and 

culturally situated. I align with Howard and Hollander’s (1997) definition of gender as 

“the culturally determined behaviors and personality characteristics that are associated 

with, but not determined by, biological sex” (p. 11, as cited in Glasser & Smith, 2008, 

p. 346). In this definition, the roles that the broader society and culture play in policing 

behaviours presumed to be ‘gender-appropriate’ are highlighted, which is particularly 

relevant in mathematics, a field historically viewed as a male domain. I view both 

gender and sex as social constructions that fall on a spectrum, rather than into binary 

categories. That said, I support the lead researchers’ decision to offer ‘boys’ and ‘girls’ 

as responses – both in terms of a pragmatic decision and in terms of reflecting current 

society, in which binaried representations and categorizations are the norm. 

METHODOLOGY 

As this research is part of a larger, international project instigated by Gilah Leder and 

Helen Forgasz of Australia, the data collection instrument and methods of data 

collection followed the guidance of the principal investigators. 

Data Collection Instrument 

Data were collected using a survey comprised of 14 questions that addressed the 

research topic (i.e., views of gender and mathematics) and the participant’s 

mathematical experiences. Namely, two questions addressed the participant’s school 

mathematics experiences, while the other 12 questions addressed the research topic. 

Specifically, three of these questions generally sought the participant’s views on 

mathematics while nine addressed gender issues, both with regard to mathematics and 

science/technology more generally. In addition to these survey questions, demographic 

information about the participant’s gender, age (under 20, 20 to 39, 40 to 59, and 60 

and older), and home language (strictly English or another language) was collected. 

Data Collection and Participants 

Data were collected in the Canadian province of Ontario between December of 2012 

and August of 2013. Four locations were selected based on their varied demographic 

make-up, herein referred to as Rochester (rural, southwestern Ontario, population of 

3,000), Thomasville (town, central Ontario, population of 25,000), Upton (urban, 

eastern Ontario, population of 900,000), and Smithburg (suburb, eastern Ontario, 

population of 110,000). Data collection took place in grocery stores in Rochester and 

Smithburg, in a community centre in Thomasville, and on a downtown street in Upton. 

In each location, permission to conduct the research was garnered by the appropriate 

individuals (e.g., store managers), in addition to the Research Ethics Board permission 

granted by the Australian and Canadian universities associated with the research. In 

Thomasville, the initial data collection site, I collected the data by myself, which 

resulted in an inefficient process (seven hours to collect approximately 50 surveys). 
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For the other three sites, I was assisted by a colleague in order to make the data 

collection process more efficient; in each instance, the requisite number of surveys was 

collected in two hours. In each location, data collection occurred on a weekend day or 

holiday, in hopes of maximizing the number of passersby. 

In each instance, I would approach a passerby, introduce myself, and ask if they would 

be willing to take part in a brief survey. Participants were then asked if they agreed to 

be audiotaped; if not, answers were recorded on a hard copy of the survey. Prior to 

being asked the gender-related questions, the participants were informed that, although 

the questions were worded in a binary manner (i.e., girls or boys), they were welcome 

to answer as they wished (e.g., ‘They are equal’). If participants inquired further about 

the research project, a handout was provided with more information. 

In total, 204 people participated in this project: 52 from Rochester, 53 from 

Thomasville, 49 from Upton, and 50 from Smithburg. In each location, more women 

than men took part, although the participants were more gender-balanced in Upton and 

Smithburg (55.1% and 52.0% women, respectively) than in Rochester and 

Thomasville (67.3% and 62.3% women, respectively). Overall, 59.3% of the 

participants were women. The age distribution of the participants is shown in Table 1, 

with percentages applying to each row. 

 Age Category 

 Under 20 20 to 39 40 to 59 60 and older 

Rochester 
4 

7.7% 

15 

28.8% 

13 

25.0% 

20 

38.5% 

Thomasville 0 

0.0% 

26 

49.1% 

11 

20.8% 

16 

30.2% 

Upton 0 

0.0% 

33 

67.3% 

9 

18.4% 

7 

14.3% 

Smithburg 0 

0.0% 

13 

26.0% 

20 

18.4% 

17 

34.0% 

Total 4 

2.0% 

87 

42.6% 

53 

26.0% 

60 

29.4% 

Table 1: Participants, by age category 

Data Analysis 

Using the audio or written recordings, the participants’ responses to the questions were 

coded using categories (e.g., ‘boys’, ‘girls’, ‘same’, ‘don’t know’, ‘depends’) provided 

by the lead researchers (to allow for international comparisons). These data were 

analyzed using descriptive statistics (e.g., percentages). If participants provided further 

explanation for their responses, these comments were transcribed and analyzed using 

emergent coding. That is, the responses for each question were examined to obtain a 

sense of the data, and then categories were created and used to code the responses. Due 

to the space constraints of this paper, results will be presented for the dataset as a 
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whole. During the conference, additional analysis with regard to the age and gender of 

the participants will be presented. 

FINDINGS 

For the purposes of this paper, I focus on the two questions about the participants’ 

school experiences, in order to provide a clearer profile of those who took part in the 

research, and the five questions that specifically related to gender and mathematics. 

Findings are presented for each question in the following sections. Reponses that were 

coded as ‘don’t know’ or ‘depends’ are combined as ‘unsure/ambivalent’. 

When you were at school, did you like learning mathematics? 

Just over half of the participants (54.4%) reported that they enjoyed learning 

mathematics while they were in school, compared to 33.3% who reported disliking 

mathematics. Only 12.3% of the respondents reported feeling ambivalent toward 

mathematics. Unsurprisingly, the explanations provided for positive or negative 

feelings toward mathematics often related to how strong or weak the participants felt 

they were in mathematics. Other reasons provided for liking mathematics included 

finding the subject interesting and real-world applicable, as well as appreciating the 

logic, order, and ‘black and white’ nature (i.e., only one right answer) of mathematics. 

Participants who disliked mathematics described it as boring, reported having poor 

teachers, and described themselves as ‘language people’.  

Were you good at mathematics? 

As noted, reports of liking mathematics were often linked to reports of being good at 

mathematics. It follows that a similar proportion of participants, 52.9%, reported being 

good at mathematics. However, participants who felt they were not good or average at 

mathematics were more evenly distributed (27.0% and 20.1%, respectively) than the 

‘no’ or ‘ambivalent’ responses to the prior question. Explanations for being good at 

mathematics primarily related to school grades, although a few participants provided 

other evidence, such as working in a mathematics-focused field, being in gifted 

classes, and understanding mathematics quickly. 

Who are better at mathematics, girls or boys? 

Encouragingly, the most common response (37.3%) was that there were no gender 

differences. However, this response was only slightly more common than believing 

that boys are better at mathematics (31.9%). Although a substantial proportion of 

participants reported that girls are better at mathematics (20.6%), these responses were 

only two-thirds the number of those who selected boys. Therefore, over half of the 

participants held some sort of gendered stance with regard to mathematics. Few 

participants reported being unsure or ambivalent toward this question (10.3%). 

Explanations for girls’ mathematical superiority often related to girls being stronger 

students overall, whereas explanations for boys’ mathematical superiority tended to 

relate to innate ability (‘mathematical nature’). Related, the notion of girls being better 

at language arts and boys being better at mathematics was discussed.  
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Do you think this has changed over time? 

Participants’ views were quite mixed (40.2% agreed and 44.6% disagreed), which may 

perhaps be indicative of different interpretations of the question. Some participants’ 

explanations appeared to indicate that they thought the question referred to ability, 

whereas others’ explanations indicated understanding the question as referring to 

achievement. In the former cases, participants would explain that girls and boys have 

always been equally capable of doing mathematics, but that societal factors may have 

held girls back (e.g., sexist teachers). In the latter cases, participants stated that boys 

used to do better at mathematics, but that girls now do equally as well (or, in some 

cases, better), since they have more opportunities. Nearly one-sixth (15.2%) of the 

participants reported being unsure or ambivalent about this question. 

Who do parents believe are better at mathematics, girls or boys? 

While the participants’ views of parents’ views of gender and mathematics were quite 

mixed, the most common response was to believe that parents thought that boys were 

better than girls at mathematics (30.9%). These participants argued that parents held 

these views because they believed the stereotypes about gender and mathematics. 

Nearly as many participants (27.9%) argued that parents held gender-neutral views of 

their children and mathematics. As with the previous question, the least common view 

was that parents believed that girls were better at mathematics (21.1%). Similar to the 

previous question, one-fifth of the participants reported being unsure or ambivalent 

about this question (20.1%). These participants often explained that they either did not 

have children or that their children were adults. 

Who do teachers believe are better at mathematics, girls or boys? 

In contrast to views of parents, the most common view of teachers was that they held 

gender-neutral views of their students and mathematics (33.8%). Participants 

explained that teachers would have more knowledge about this topic than the ‘average 

person’, plus they would have exposure to many children doing mathematics, so would 

form a less biased view than parents (who may base their opinions solely on their own 

children). Perceptions of teachers holding gendered views were fairly equally 

distributed: 18.6% of participants reported boys, compared to 20.1% reporting girls. 

Explanations provided were similar to those discussed with regard to being better at 

mathematics in general. A large proportion of the participants (27.5%) reported being 

unsure about teachers’ feelings. These participants typically explained that they had no 

contact with teachers at the present time, either because they did not have school-aged 

children or because they did not know any teachers personally. 

Is it more important for girls or boys to study mathematics? 

Of all the questions regarding gender and mathematics, this question had the most 

consistency in the participants’ responses: 94.6% of the participants argued that it was 

equally important for boys and girls to study mathematics. Only 2.5% of participants 

reported a gendered stance (0.5% for girls; 2.0% for boys). Additionally, only 3.0% 
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reported being unsure or ambivalent toward this question. The overwhelmingly most 

common explanation provided was that everyone needs to know mathematics – for 

school, everyday life, and future occupations. Indeed, many participants were 

incredulous that the survey would even include such a question. 

CONCLUDING REMARKS 

The data from over 200 participants from the Canadian province of Ontario suggest 

that gendered views of mathematics (and of others’ views of mathematics) tend to be 

the norm. Although ‘no difference’ was typically the category with the highest 

proportion of responses, the combination of ‘girls’ and ‘boys’  categories (i.e., the 

gendered responses) was almost always a higher proportion. The only question for 

which the majority of participants held a gender-neutral view (rather than a ‘boys’ or 

‘girls’ view) addressed studying mathematics. For the questions regarding superiority 

in mathematics, more participants held a gendered view (either boys or girls) than a 

gender neutral view. In most cases involving gendered views, more participants 

selected boys than girls, indicating a more favourable view of boys and mathematics. 

This finding suggests that gender stereotypes regarding mathematics persist, even in a 

very gender-neutral society like Ontario, wherein equity is inscribed in the 

mathematics curriculum. Similar findings were found in the culturally-similar country 

of Australia: While nearly all participants held gender-neutral views with regard to 

studying mathematics and ‘no difference’ tended to be the most common response, the 

greatest proportion of participants held gendered views regarding being ‘better’ at 

mathematics, with boys being selected more often than girls as a response (Leder & 

Forgasz, 2010). 

The findings from this Canadian research, while somewhat encouraging, should also 

raise concerns for those involved in mathematics education. Since the majority of the 

adults surveyed tended to hold gendered views (with more of these gendered views 

favourable toward boys than girls), these messages are arguably being disseminated to 

young people, particularly by their parents. In another research project (Hall, 2013), I 

found that children’s views of mathematics are indeed impacted by their parents’ 

views of the subject matter. Thus, targeting parents’ understandings of gender and 

mathematics, by both the educational system and the media (which, in both cases, 

mathematics education researchers can play a key role), should be a focus.  
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WHAT AND HOW MATHEMATICS SHOULD BE TAUGHT: 

VIEWS OF SECONDARY MATHEMATICS TEACHER 

CANDIDATES WITH STEM BACKGROUNDS 

Allyson Hallman-Thrasher, Jeff Connor 

Ohio University 

 

This qualitative study examines what mathematics teacher candidates with STEM 

backgrounds think about their future work as mathematics teachers.  The content 

preparation for a STEM career is not identical with that taken by traditional teacher 

candidates and may not develop the pedagogical content knowledge necessary for 

candidates to connect their experience with the grade 7-12 classroom. Candidates 

were found to emphasize applied mathematics in both what, and how, with little 

attention given to mathematical proof. Given their interest applications of 

mathematics, they, surprisingly, struggled to articulate how to meaningfully integrate 

science and mathematics. 

U.S. K-12 students’ continue to struggle in mathematics and science achievement. 

Recent PISA results show that US is outperformed in mathematics by 35 of 65 

participating countries (Organization for Economic Cooperation and Development, 

2013). One remedy to weak student performance is to increase teacher quality and a 

route for improving teacher quality in mathematics and science that is gaining 

popularity is to recruit teachers with expertise in science, technology, engineering 

and/or mathematics (STEM) content areas (e. g., Robert Noyce Teacher Scholarship 

Program, Woodrow Wilson Teaching Fellows program, Knowles Science Teaching 

Fellows program). The assumption underlying these programs is that individuals with 

strong STEM content backgrounds can be transformed into effective mathematics and 

science teachers in a shorter time frame than can traditionally prepared teacher 

candidates, and with minimal attention to content knowledge. The study reported here 

examines what mathematics teacher candidates with STEM backgrounds think about 

their future work as grade 7-12 mathematics teachers and their preparation for that 

work in a program with STEM discipline integration. We define STEM background as 

having an undergraduate degree in a STEM field or, in addition to a degree, having 

work experience as a STEM professional. This study is part of a larger research project 

whose goal is to determine how the content backgrounds and prior experiences of 

STEM graduates and STEM professionals influence their teaching. 

OUR STEM TEACHER EDUCATION PROGRAM 

Ohio University hosts a one-year master’s program that prepares candidates with 

STEM backgrounds for certification in grades 4-9 or 7-12 mathematics or science 

teaching. The first cohort began the program in summer 2012, the second in summer 

2013, and the final cohort in summer 2014. Each cohort completes the program one 



Hallman-Thrasher, Connor 

3 - 234 PME 2014 

calendar year after beginning. Teacher candidates start the first summer semester with 

coursework focused on curriculum, learning, development, and making connections 

between STEM disciplines and grade 4-12 mathematics and science classrooms. A 

unique feature of the program in the first semester is that candidates seeking 

mathematics licensure or science licensure take courses together that focus on all 

STEM content areas. During fall semester, the candidates continue taking general 

education courses together, but also have content and content-specific teaching 

methods courses that are only for mathematics teacher candidates or science teacher 

candidates. They also work with a mentor teacher three days a week in a grade 4-9 or 

grade 7-12 mathematics or science classroom. In spring, they complete their 

professional internship (student teaching) under the supervision of the same mentor 

teachers. In their final summer semester, they complete and present their masters 

research thesis. 

CHALLENGES FACING TEACHER PREPARATION FOR STEM EXPERTS 

Programs such as ours are not a panacea for the nation’s struggling students and 

schools. Programs that prepare teacher candidates with STEM backgrounds face 

challenges that are distinct from or more pervasive than those of a traditional teacher 

preparation program. Developing thorough content knowledge is often a key aim of 

mathematics teacher preparation programs. In programs for content experts this goal is 

often assumed to be met by candidates’ prior experience and this assumption can be 

problematic for several reasons. First, content preparation of a mathematics or science 

major is not identical to that of K-12 mathematics teacher. The coursework taken to 

prepare for a STEM career is likely different than the STEM coursework taken by 

prospective teacher (e.g., a typical engineering or mathematics major does not take 

coursework in geometry). Second, even with an ideal content background, content 

knowledge alone does not determine teacher effectiveness (Monk, 1994). Pedagogical 

knowledge has been shown to have an impact on mathematics teaching effectiveness 

as well (Brown & Borko, 1992), but teacher candidates who were trained as STEM 

professionals have less exposure to pedagogical issues than their traditionally prepared 

counterparts. They are unlikely to have familiarity with or experience in K-12 schools 

(beyond their own tenure as a K-12 student) that would have been developed in the 

early years of traditional undergraduate teacher education program through 

coursework and field experiences. A third potential challenge a teacher candidate who 

was trained as a STEM professional may face is connecting her or his STEM 

background and previous coursework to the K-12 curriculum. Pedagogical content 

knowledge is more specialized than disciplinary content knowledge and includes more 

than knowing and doing mathematics well; it must also involve representing content in 

multiple ways, making challenging content accessible to students, and guiding students 

to a broad conceptual understanding of mathematics (Shulman, 1986). Teacher 

candidates with STEM backgrounds will have views of mathematics and science that 

are based on their prior STEM studies and experiences and that may not be conducive 

to the development of pedagogical content knowledge.  
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BACKGROUND 

There is a small but growing body of literature related to STEM major and STEM 

career changer teacher preparation programs, but there  is nearly no literature 

addressing how the content backgrounds and prior experiences of STEM graduates and 

STEM career changers influence their teaching. One exception is Vierra’s (2011) work 

addressing the question of how a non-teaching STEM background influences the 

development of the content knowledge for teaching. In her study of 69 teacher 

candidates from multiple universities, she compared the entry-level pedagogical 

content knowledge of first year mathematics teachers with STEM career backgrounds 

to first year teachers with traditional backgrounds. Vierra found that there was no 

consistency in the pedagogical content knowledge in either STEM career changes or 

traditionally prepared teachers and no significant difference between these two groups. 

She concluded pedagogical content knowledge was not predictable based on a 

candidate’s background.   

More generally, the connection between knowledge of mathematics content and 

teaching effectiveness at the secondary level is poorly understood. Though content 

knowledge is an essential component of what makes an effective teacher (National 

Mathematics Advisory Panel, 2008), there is less evidence for a strong connection 

between teacher effectiveness and content knowledge in the absence of pedagogical 

knowledges (Goos, 2013). There is, however, a connection between mathematics 

teacher effectiveness and a teacher’s pedagogical or specialized content knowledge 

(Ball, Thames, & Phelps, 2008), which is related to content knowledge. This literature 

suggests that a candidate’s STEM background, in and of itself, will not guarantee their 

becoming an effective teacher; the formation of their pedagogical content knowledge 

(i.e., how they will use their knowledge in the classroom) will be critical to their 

success. As the teacher candidates are to build on their STEM backgrounds whilst 

becoming teachers, how their STEM background might influence their development of 

pedagogical content knowledge, and hence their development as effective teachers, is a 

nontrivial gap in the literature—especially in light of society’s substantial investment 

in preparing STEM professionals to become teachers.   

This study examined the views of mathematics teacher candidates with STEM 

backgrounds in regards to teaching and their teacher preparation in a program with 

integration among STEM disciplines. An implicit assumption of policies promoting 

the recruitment of STEM professionals into teaching is that the benefits of a STEM 

background are wholly positive. However, there exists the possibility that a STEM 

background may lead to misconceptions about teaching, learning, or the articulation of 

mathematics curricula. It is important to be aware of such issues so that teacher 

preparation programs can respond by tailoring experiences for this population.  By 

examining this particular subset of teacher candidates’ views on teaching at the outset 

of their preparation program, our study is a first step towards reaching this goal. 
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METHODS 

In the larger study, the candidates are interviewed three times: immediately after the 

first summer term, at the conclusion of their professional internship, and at the end of 

their first year of teaching. The data reported in this paper is focused on the first 

interview, in which candidates were asked about the impact of their preparation for a 

career as a STEM professional and/or work experience in STEM fields on their 

preparation for careers as teachers. Admission to the program was selective: candidates 

were accepted based on strong content backgrounds and demonstrated potential for 

teaching. In the first cohort of 12, five sought initial licensure in grades 7-12 

mathematics. All of those candidates had earned their bachelor’s degree no more than 

five years before entering the program and two had prior work experience in a STEM 

field. Degree areas included chemistry, accounting, and mathematics (pure and 

applied) and biology. All five mathematics candidates participated in this study.  

Interviews ranged in length from approximately 40 to 70 minutes. The interviewer 

used the questions listed in Figure 1 to guide these interviews and, as needed, used 

follow-up probes to help the canidate elaborate on or clarify an idea. The five interview 

transcripts comprised the data set for this study.  

How did you become interested in (math, biology, chemistry and/or physics)? 

Could you describe your school experiences (K-college) related to the study of (math, 

biology, chemistry and/or physics)? 

Could you describe your work experiences related to the study of (math, biology, 

chemistry and/or physics)? 

How do you think your school experiences (K-college) related to the study of (math, 

biology, chemistry and/or physics) will affect the content you will teach? 

How do you think your school experiences related to the study of (math, biology, 

chemistry and/or physics) will affect the teaching methods you will use? 

How do you think your work experiences related to the study of (math, biology, chemistry 

and/or physics) will affect the content you will teach? 

How do you think your work experiences related to the study of (math, biology, chemistry 

and/or physics) will affect the teaching methods you will use? 

How do you think experiences outside of school or work will affect the teaching methods 

you will use? 

Figure 1: Interview questions 

To analyze data, researchers read and coded transcripts using an open coding process 

(Denzin & Linclon, 2000) where researchers individually developed descriptive codes 

while reading the transcripts. At least three researchers read and coded each transcript 

with some team members reading all of the transcripts. The team noted which codes 

were common among all researchers and these became the basis for a composite 
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coding scheme. For codes that were not common to all team members, discussion led 

to consensus to either to omit the code because it was too idiosyncratic, add it because 

it provided greater clarity, or merge it with another code because it was duplicative. In 

a few cases, discussion of codes led researchers to subdivide one code into several, 

each providing greater specificity. For example, the team divided the code teacher 

influence, a code common to all members, into three more specific codes: influence 

from family member who was a teacher, influence from K-12 teacher, and influence 

from post-secondary teacher. 

With the coding scheme established, one coded transcript was compiled for each of the 

five candidates and researchers identified emergent themes. Then, each researcher 

returned to the transcripts to look for evidence of the salience of the emergent themes 

that had been suggested, identify alternative themes, and develop ideas about how to 

map back from the set of emergent themes to evidence in the data set. For each 

emergent theme, a summary was composed that included a description and the data 

supporting that theme.  

This data analysis method contributed to the credibility of the findings not only 

through its careful attention to the data and its systematic approach to analysis but also 

through its reliance on investigator triangulation (Denzin, 1978). Because there were 

multiple readers of the transcripts, it was less likely for the preconceptions of one 

researcher to influence the ultimate interpretation. In the few cases where members of 

the team had different initial readings of the data or different perspectives about the 

salience of a potential theme, review of portions of the transcripts helped the group as a 

whole reach consensus. The eventual list of themes therefore represented the best 

judgment of the research team as a whole. 

RESULTS 

In framing our findings, we rely on two roughly synonymous constructs from 

mathematics and science education, respectively: teacher beliefs (Phillip, 2007) and 

teacher orientation (Friedrichsen, Driel, & Abell, 2011). The orientation scheme 

considers three categories of teacher conceptions: about the nature of the science, 

about the nature of science teaching and learning, and about the goals of science 

education. Beliefs in mathematics education are not as neatly divided, but several 

primary areas of research on beliefs parallel the structure of science education’s 

orientation scheme: beliefs about mathematics (conceptions of discipline), beliefs 

about students’ mathematical thinking, beliefs about curriculum, and beliefs about 

technology (conceptions of teaching). Following Pajaraes (1992), who warns that 

merely examining beliefs as a whole is unhelpful, we focus on particular 

“belief[s]-about”. The themes presented here are organized by orientations/beliefs 

about: 1) what content should be taught, (candidates’ understanding of mathematics) 

and 2) how the content should be taught, (what is good mathematics teaching).  
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What content should be taught  

The mathematics candidates had a narrow view of mathematics. They all described 

mathematics as a tool for problem solving, and mentioned that problem solving was 

what they found most engaging about studying mathematics. In discussing the 

mathematics they would emphasize in their own teaching, they focused on applied 

mathematics or topics generally useful for other STEM disciplines. They often valued 

mathematics for its usefulness as a tool for other disciplines. They also discussed the 

difference between applied and pure or theoretical math, with all but Alex (whose 

STEM training was in pure mathematics) noting a preference for the former. One 

candidate summarized this view saying, “I like having a practical problem that I can 

actually solve, and having real world applications” (Reagan, p. 4). Another candidate 

noted that she valued using “more real world applicable” ideas in K-12 mathematics 

classes (Jennie, p.10). Four out of five of the mathematics candidates expressed some 

degree of dissatisfaction with mathematical proof; in particular they did not appreciate 

why proof was needed. Reagan tried to articulate the group’s reaction to proving:  

The proofs in geometry seem illogical to me. Or unnecessary….I felt like a lot of the 

geometry proofs that I did [in her summer courses] were like, ‘Well, this is pretty clear. I 

don’t know why I’m doing a proof. It just makes sense.’ (p. 22)  

At the same time, the candidates noted that in their own study of mathematics they 

“couldn’t much memorize things. I had to actually know how it works” (Gerald, p. 5) 

and that they enjoyed explaining math to others. 

Though mathematics candidates valued applied over theoretical mathematics and 

viewed mathematics as a tool needed for science, they were challenged by the idea of 

integrating the STEM disciplines. On the surface candidates claimed that using 

applications of mathematics “gives a purpose for what you’re learning [in mathematics 

class]” (Jennie, p. 13) and they acknowledged that the STEM disciplines “all just hook 

together in a way” (Sienna, p. 8). They were even able to mention one example of a 

way relate two STEM fields, though with varying specificity. Reagan, Alex, and 

Gerald explicitly noted using mathematics to model scientific phenomena (e.g., 

modeling population growth, carbon dating, and the molecular make-up of chemical 

compounds). All candidates spoke more generally of physics or physical science as 

natural or obvious way to connect science and mathematics. But when pressed to 

elaborate on these ideas, the candidates struggled: “I haven’t really figured out all of 

the ways it [the STEM disciplines] hooks together” (Sienna, p. 8). Though they found 

it interesting to learn about STEM topics outside of their discipline, most did not see 

integrating the topics as a way to drive teaching practice. A mathematics candidate 

explained her view on integrating STEM disciplines:  

In some ways, some of the things we talked [in class] about don’t directly correlate to 

mathematics, and so it’s hard to see how I would correlate them into my mathematics 

classroom…. to use mathematics to discover things in scientific fields and things. I think 

that it’s great when the two of them can be combined as often as possible, but I think that 

there’s a point where they also need to be separated out. (Jennie, p. 11) 
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How content should be taught   

Mathematics candidates cited relevance as a motivator for learning content and 

considered that a key facet of instructional practice. They mentioned relevance in three 

contexts, which framed their thinking about becoming teachers: relevance as an aspect 

of their own K-12 and undergraduate experience; relevance of their STEM-integrated 

program coursework; and relevance as a desired feature of their own future pedagogy. 

Relevance also had two different meanings: relevance as what engages or interests 

students and relevance as what students need to know about a topic. 

All candidates mentioned former teachers who “made everything fun and relatable” 

(Sienna, p.3), with three candidates specifically mentioning courses that were 

hands-on and/or project-based. Jennie elaborated, saying one of her favorite teachers: 

would pull in things in that he knew would interest us, that also had Chemistry within 

them, and I think that that’s really important to, high school kids, because that’s how you 

keep their attention…that’s how you keep them interested in your subject area. (p. 14)   

They believed these features spurred their own interest in mathematics and science and 

they wanted to replicate those experiences for their students. Alex extended the notion 

of relevance further, stating: 

I think if you can help the kids understand, what kinds of jobs are out there…how these 

different jobs use math, use science, bring it together, I think it’ll help them really become 

interested in some of these things. (p. 7) 

The candidates were less certain as to how relevance played out in their program 

courses. Some candidates appreciated STEM integration as with Alex who explained 

why he enjoyed a particular lesson: “It played to the science, it played to the math, and 

we could all see how we [the different content areas] were all together” (p. 6). Whereas 

other mathematics candidates found the integration unbalanced, and this, at times, led 

to isolation and doubt about the relevance of integration. Reagan stated, “I don’t know 

that that [a unit on the philosophy of science] was particularly helpful for a lot of us (p. 

16). Candidates wanted instruction that was relevant for them and for their prospective 

students. All five stated that they would teach particular mathematics topics or 

concepts because, “They’re going to do this in their real life” (Sienna, p. 8).  

CONCLUSIONS 

There were several surprising inconsistencies in the candidates’ views on what, and 

how, mathematics should be taught. Overwhelmingly, mathematics candidates wanted 

to recreate for their future students the experiences that had most engaged them as 

students: using mathematics as a tool for problem solving. While they valued 

understanding the why behind mathematical ideas, they did not see proof as a means of 

explaining mathematics. While candidates valued using applications of mathematics as 

a way to make mathematics interesting and relevant to students, they could not 

meaningfully address how to use the sciences to provide applications for mathematics 

content. This is especially noteworthy because these candidates were ideally 
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positioned to be aware of integrating STEM disciplines (having a strong STEM 

content background, being in immersed in a setting of diverse STEM expertise, and 

taking coursework designed to motivate their attention to integrating STEM). 
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This research project involved teaching linear algebra to second year undergraduates. 

Using Tall’s three worlds of mathematical thinking as a theoretical framework, 

students were taught fundamental linear algebra concepts using each of the embodied, 

symbolic and formal dimensions. By varying the order in which these approaches were 

used in each topic we investigated students’ perceptions of the combinations and their 

potential for understanding and learning. The results show that students seem to react 

positively to symbolic examples and embodied ideas but there is little effect overall of 

order on understanding. 

BACKGROUND 

Can we improve the way we introduce students to linear algebra concepts? Over the 

last decade Tall’s (2004, 2008, 2010) theory of three worlds of embodied, symbolic 

and formal mathematical thinking, along with APOS theory (Dubinsky & McDonald, 

2001), has been employed to construct a Framework of Advanced Mathematical 

Thinking (FAMT) (Stewart & Thomas, 2009) for investigating lecturing (Hannah, 

Stewart, & Thomas, 2013) and students’ conceptual understanding of key linear 

algebra concepts (e.g., Thomas & Stewart, 2011). According to Tall’s theory, in the 

embodied world we think using our mental perceptions of real-world objects and other 

forms of visuo-spatial imagery (Tall, 2004). In this world a vector might be thought of 

as directed line segment, or a quantity having magnitude and direction. In the symbolic 

world we calculate using symbols, arrays and equations. In this world a vector might 

be an n-tuple of real numbers. In the formal world objects are defined in terms of their 

properties, with new properties deduced by formal proof. In this world a vector is an 

object obeying the axioms for elements of a vector space. All three worlds are available 

to, and used by, individuals as they engage with mathematical thinking, and they 

interact so that “three interrelated sequences of development blend together to build a 

full range of thinking” (Tall, 2008, p. 3). When students first meet new concepts, such 

as subspace or linear independence, the question naturally arises as to whether there is 

a right, or best, order in which they should meet these three world views of the 

concepts. Tall observes that although school students usually meet embodiment first, 

followed by symbolism and then, finally, formalism, “when all three possibilities are 

available at university level, the framework says nothing about the sequence in which 

teaching should occur” (Tall, 2010, p. 22). So a fundamental research question for us is 

whether there is a preferred order of presentation of concepts in the FAMT framework. 
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Traditionally, a typical first linear algebra course begins in the formal world, with an 

axiomatic presentation that took many years to achieve its present form (Harel & Tall, 

1989). But the presentation could perhaps just as easily begin in the embodied or 

symbolic worlds. A number of recent studies have considered the relationship between 

formal thinking in linear algebra and students’ other approaches and demonstrated that 

to develop teaching that promotes formal ideas a knowledge of student thinking prior 

to teaching is valuable. For example, Wawro, Sweeney, and Rabin (2011) considered 

students’ concept images of the notion of subspace and found that they made use of 

geometric, algebraic and metaphoric ideas to make sense of the formal definition. In 

other work, Wawro, Zandieh, Sweeney, Larson, and Rasmussen (2011) found that 

students’ intuitive ideas about span and linear independence could be employed to 

assist them to develop the formal definitions.  

In this paper we present the results of a study where the lecturer (the second author) 

experimented with different orders of presentation for each of the main concepts in an 

introductory linear algebra course. A crucial feature of her lectures was the use of 

contingent teaching (Draper & Brown, 2004), which involves gaining responses from 

the whole class via clickers and immediately reacting to the data, so that the lecturer is 

constantly confronted with decision making. Research shows that although lecturers 

appreciate the feedback they receive through clickers (Abrahamson, 2006) the ability 

to react to these responses on the spot, according to students’ needs, is challenging. In 

this setting “lecturers must develop their plans beyond the factory machine stage of 

executing a rigid, pre-planned sequence regardless of circumstances” (Draper & 

Brown, 2004, p. 91) and have relevant strategies on hand, depending on student 

responses.  

METHOD 

This research project comprised a mixed methodology of action research, as a 

university lecturer examines and refines her teaching practice, along with a case study 

of student reactions to the teaching. The first phase of the project was conducted in the 

Fall of 2013 at a large research university in the USA. The researcher, who is the 

second named author, was teaching an introduction to linear algebra course to two 

classes of students (mainly from engineering and other science majors), C1 and C2.  

To investigate whether the order in which the material is presented has an impact on 

students’ learning and attitudes, each of the following possible combinations of 

teaching concepts was used: Embodied, Symbolic, Formal (ESF); Embodied, Formal, 

Symbolic (EFS); Symbolic, Embodied, Formal (SEF); Symbolic, Formal, Embodied 

(SFE); Formal, Symbolic, Embodied (FSE); Formal, Embodied, Symbolic (FES) and 

two most common ways of teaching with no embodied exposure at all: Formal, 

Symbolic (FS) and Symbolic, Formal (SF). The aim was to try to establish whether the 

order influences understanding of a particular concept. For example, concept A was 

taught in the morning to class C1 in the ESF order, whereas in the afternoon class C2 

was taught in the FSE order. To expose students to as many orders as possible, concept 
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B was taught using SFE in the morning and SEF in the afternoon section, and so on. 

Hence, each concept was taught in all three worlds of embodied, symbolic and formal 

mathematical thinking to each class, but in different orders. To try to gain some 

measure of students’ understanding the lecturer employed contingent teaching, 

incorporating clicker quiz questions into the presentation of the teaching material. The 

design of suitable quizzes, posed at the right moment, was a crucial part of the project. 

The students were also given clicker opinion questions throughout the lecture 

regarding their preference of the order of presentation, to gauge the reaction of the 

class and make sure everyone was following. These included questions such as: How 

would you like to be taught this particular concept? (a) by a definition, (b) an example,  

(c) a picture. Now that you have seen the examples, what would you prefer to see next? 

Students were also asked a number of True/False opinion questions regarding their 

understanding. (e.g. I fully understand this theorem. T/F).  Data was collected from the 

student clicker quizzes to try to establish the effect of a particular order on student 

attitudes and learning. It was noticeable that this approach changed the class 

atmosphere and it appeared that students were more involved and engaged, started to 

respond better and embraced the lecture style.  

Other forms of data gathering occurred through the lecturer’s daily journals for each 

lecture, specific in-class activities, homework assignments, tests, final examination 

questions and student interviews, which are still under analysis. Of the 82 students in 

the classes 68 gave consent for their data and course material to be used. In addition, 

during the final two weeks of the course, 10 student volunteers from classes C1 and C2 

were given semi-structured interviews by a colleague, using questions such as: Did you 

notice any difference in the way Dr. Stewart taught different concepts in her lessons 

this semester? If so, in what way were they different? If not, was her approach in 

teaching concepts always the same? If you prefer teaching to start with one particular 

approach, which one would it be? Can you explain why you prefer this approach? Do 

you think that step should always come first (second, third), or are there situations 

where you would prefer a different order? Which type of thinking do you prefer, or feel 

most comfortable with: embodied, symbolic or formal? Do you think any of these 

types of thinking is more important than the others in mathematics? If so, which one? 

What do you think about clicker questions (quizzes and opinion)? 

The research questions for this part of the study are: Is there a preferred order of 

exposure to linear algebra concepts (based on Embodied, Symbolic and Formal)? Do 

different categories of students (eg geometric, symbolic and versatile thinkers) prefer 

different orders? Is there any influence of order of presentation on understanding? 

RESULTS AND DISCUSSION 

We reiterate that concepts were taught to each class using all three worlds of embodied, 

symbolic and formal mathematical thinking, but in different orders. This section 

considers several examples of the effect of these different orders.  
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Example 1: Linear Combination and Span, FSE versus ESF 

The concept of linear combination was introduced in two different ways: one class, C1, 

met the concept first through its formal definition, then through symbolic examples 

and finally through embodied pictures (FSE), while the other class, C2, met the 

concept first through a pictorial embodied explanation, then symbolic examples and 

finally through the formal definition (ESF). Clicker responses were used to gather 

answers to questions. Of course, one problem with some of the categories used (see 

below) is that they are not necessarily mutually exclusive but still force a choice. For 

example, a student could think that their understanding is complete and that they didn’t 

get much from the definition.  

Following three geometric examples of linear combinations in  and , the ESF 

students in C1 were asked to use the clickers to select from: A) Pictures were fine but I 

need a definition to understand the concept and B) Examples are all I need to 

understand the concept. 36% chose A) and 64% B), indicating that even at this stage 

the embodied view was useful for a number of students, and most preferred to add 

examples than a definition. In contrast the FSE group of students, C2, was first show a 

formal, algebraic definition and asked to select from: A) Now that I have seen the 

definition my understanding is complete, B) I didn’t get much from the definition, C) I 

need some examples and D) I need a picture. The percentages choosing each option 

were 33%, 14%, 42% and 8%, respectively, with 3% not selecting any. This suggests 

that a third of the students felt that the definition was sufficient for them to understand 

the concept, but a larger percentage still needed some examples.  

The second step for the ESF group (C1) was the introduction of some symbolic, 

matrix-based examples and a link to consistent solutions of the equation Ax = b. Once 

again they were asked to choose from the options A) I completely understand the 

concept, B) I need to study a bit more to understand this and C) I am ready to see a 

definition of the concept. 44% now claimed to understand the concept completely but 

52% still needed more study to understand. Only 4% said they were ready for the 

definition. The FSE group (C2) had exactly the same symbolic, matrix-based examples 

and link, but were not asked about their understanding at that point.  

The final phase for the ESF students was to be given the formal, algebraic definition of 

linear combination and following this they used the clickers to choose between A) now 

that I have seen the definition my understanding is complete and B) I didn’t get much 

from the definition. In the event, 73% said they now understood completely and 27% 

did not get much from the definition. At this point the FSE group was given the same 

three embodied, geometrical examples that the ESF students started with. Finally they 

were given the choice between A) Pictures were great, I always learn better when I see 

a picture, B) I am not in favor of pictures, I learn mainly from examples and C) I first 

look for a definition. 36% were pleased to see the pictures (A), 50% said they learn 

mainly from examples and 14% went for the definitions option. They weren’t asked 

about their understanding at this stage. 
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Following the lectures on linear combination the two groups were taught span, which, 

of course, is based on the concept of linear combination. The class C1 was taught this 

using the order FSE, the order C2 had received first, while the FSE students in C2 were 

presented with ESF ordered material, so both groups experienced each order of 

presentation. After the formal definition the C1 students responded to A) I completely 

understand the definition, B) This definition is very abstract – I don’t understand it and 

C) I need more time to understand it, with just 13% saying they understood it, 45% 

saying they didn’t and 39% wanting more time. After being shown a geometric picture 

21% chose A) I am still not sure about the span, while 79% selected B) I am happy 

about the idea of span. Due to time constraints it was the start of the next week when 

the C1 students were asked to choose from the options: A) I can’t remember much 

from last week; B) I remember the definition of Span; C) I remember some pics; D) I 

remember the story: once upon a time there were two vectors, together they spanned 

the entire  and E) I remember the examples. 30% claimed not to remember much, 

9% said they remembered the definition and 9% some pics, while 39% could recall the 

story of the two vectors and 13% the examples.  

For group C2, following the geometry 20% said A) I am not sure about the span. I 

don’t really get it, but 80% chose B) So far what you are saying does make sense. 

Following some symbolic, matrix examples 63% were convinced that A) I completely 

understand it now, 8% said B) I need a concrete definition now and 26% went for C) I 

need more examples (and 3% were uncommitted). Interestingly, after they had been 

presented with the formal definition only 44% said A) I completely understand the 

definition, 14% thought B) This definition is very abstract – I don’t understand it and 

42% were in the category C) I need more time to understand it. 

We see that the students preferred different routes to using the formal definition to gain 

understanding of linear combination and span, but this was an essential part of the 

picture for them, often cementing together their geometric and matrix ideas. 

Example 2: Subspaces, FSE versus ESF 

The concept of subspaces was introduced using the same orders FSE and ESF as linear 

combination. The contrast between the initial introductions is quite stark. After seeing 

the formal definition of a subspace and the theorem requiring to check closure for a 

non-empty subset to be a subspace, only 37% of the class felt they understood 

anything, the rest feeling lost (22%) or in need of more time to think about it (41%). On 

the other hand, after the pictorial embodied introduction 83% felt they had at least 

partial understanding (44% thought they had complete understanding). Asked what 

would help them understand better, about 80% of both groups of students wanted 

(symbolic) examples. Fortunately the plan for both classes was to supply that very 

need. After seeing some symbolic examples almost all students in both classes felt they 

had at least partial understanding (97% of the FSE class and 91% of the ESF class) but 

only 21% of the FSE class felt they had full understanding whereas 71% of the ESF 

class did. By the time each class had experienced all three worlds, however, their 
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feelings were essentially identical, with 68% (FSE) or 69% (ESF) feeling they had full 

understanding, and another 29% or 23% (respectively) claiming partial understanding. 

Students’ actual understanding was sampled at the end of the same lecture, with two 

true-false questions, and again with another true-false question at the start of the 

following lecture. Students in the ESF class performed slightly better at the end of the 

first lecture (with 85% getting the first question correct and 95% the second, compared 

with 76% and 93% for the FSE class) but by the time of the following lecture there was 

hardly any difference between the two groups of students with the ESF class actually 

performing slightly worse this time (with 49% of the ESF class choosing the correct 

option and 54% of the FSE class). 

Student interviews 

In the interviews students displayed a wide variety of preferences while often 

cautioning that not all concepts would lend themselves to the same treatment and that 

not all students would have the same learning styles. 

When asked to nominate which of the three worlds (embodied, symbolic or formal) 

they felt most comfortable, eight of the ten students chose the symbolic world. 

However, one of these (Ed) qualified his answer: “Symbolic is the easiest for me but I 

enjoy formal thinking the most.” The other two students both saw themselves as visual 

learners, but Rod went on to say that “in the cases where the pictures won’t work I 

guess symbolic would be the best” and Wade pointed out that in some cases “the 

picture either might throw you off or, if you don’t know what it’s talking about, it’s not 

going to help you learn it.” This is consistent with what we saw in Example 1, where 

about 80% of both classes asked for more (symbolic) examples when the concept had 

been introduced through either the formal or the embodied world in Example 1. 

Students were also asked if they had a preferred order in which they would like to meet 

the embodied, symbolic or formal aspects of a new concept. Most, but not all, of the 

interviewed students felt that the formal aspect should come last. Typical of the 

non-visual people was Jenny: “I like to see the examples on how to work through it and 

then maybe go back and understand what we did from the definition side of it.” On the 

other hand Rod identified himself as a visual learner: “The visual idea of something 

usually is enough to make it work out for me. So whenever I get examples and then 

definitions I can understand it better.” On the other hand, two students could see 

reasons for looking at the formal aspect first. James, studying mechanical engineering, 

preferred to follow the habit of his engineering classes where: 

What we’ll do is, first we’ll prove or do a derivation of what we’re about to do; then we’ll 

do an example of what we just derived; and then our professor, most of the time, will show 

a visual representation of what we just did.  So that’s just how I think. 

Andrew didn’t “know if pictures would make sense coming before the theorem” but he 

saw a role for the formal aspect at the start and the end: 
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but I do, like I said theorem I like to see before and after I think. I think it makes more sense 

because like seeing it before at least it introduces you to it even if you don’t know what it 

means and then you see like examples and maybe a picture and then you see the theorem 

afterwards it makes, it kind of cements it a little bit more and then you can see how it 

relates to an actual example. 

The majority view here perhaps reflects what we saw in Example 2, where presenting 

the formal aspect of subspaces first resulted in only 37% feeling they had understood 

anything, as opposed to 83% when the embodied aspect was put first. 

Several students emphasized the importance of looking at all three aspects (embodied, 

symbolic or formal) even when they had definite preferences for the order in which 

they wanted meet these aspects. Sara preferred the order ESF but rejected the idea that 

one of these might be more important: “No, I think they all go together equally.” But 

John knew that if he “had to say” which was more important, it would be the formal: 

“I’m trying to get better at formal. I’m a math major, I have to get better at that.” But 

there was a feeling that this only applied to mathematics majors. James pointed out that 

most of the students in his class were engineering or meteorology majors and for them 

“application-wise, I think the symbolic world would probably be more important.” Ed 

echoed this distinction: “if I’m going to enter mathematics as a profession, then I need 

to be very well grounded in formal mathematics, more so than in symbolic 

mathematics, like, symbolic is more the applied mathematics area.”  

CONCLUSION  

The initial analysis of the data above shows that students noticed the fact that the 

lecturer was tailoring the material to their needs, and they appreciated this. The 

students were always keen to see examples of the concepts and we found that student 

affect is much more positive when concepts are first met in the embodied or symbolic 

worlds, but that once students have met all three aspects of a concept there seems to be 

little difference in the levels of understanding gained. One of the aims of the lectures 

was for students to appreciate for themselves the power of formal world thinking, and 

that examples alone are often insufficient. Most students did value the formal 

definitions of concepts, whenever they were introduced, but often found them more 

challenging. This may be because it takes time to appreciate fully all the details of a 

formal definition and why they are important. By the end of the course student 

perspectives on formal aspects of mathematics, definitions, theorems and proofs, were 

much more positive than at the start. Integrating the power of the mathematical 

thinking in each of the three worlds is not a simple matter. We hope that the results of 

this study will contribute to the thinking and practice of the many university teachers 

who are seeking to do so. 
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In this paper, a nationally representative longitudinal data of mathematics learning 

outcomes in Finland is analyzed in order to determine the direction of causality 

between mathematics-related affect and achievement. First, the results indicated that 

students’ mathematical achievement, emotion, and self-efficacy were significantly 

stable over time. Different models were estimated to test the reciprocal relationship 

between students affect and achievement. The results indicated that mathematics 

achievement and self-efficacy have a reciprocal relation, where the dominant effect is 

from achievement to self-efficacy. The results indicate also a weaker unidirectional 

effect from achievement to emotion. 

INTRODUCTION 

Emotions, attitudes and motivation play an important role in contemporary research on 

mathematics education. Attitudes and motivation are important, because they 

determine how much people choose to study mathematics after it becomes optional 

and in many countries the society has a shortage of mathematically educated persons in 

scientific and technical fields. Moreover, the needs of society increasingly emphasize 

creativity, problem solving, and other higher-level cognitive processes, which are 

intrinsically intertwined with emotions. Although it is well known that 

mathematics-related affect and achievement are related, we do not yet understand well 

enough how these develop in interaction with each other. 

In this study, we shall focus on two affective traits (enjoyment and self-efficacy) and 

their relationship with achievement in mathematics. There is much evidence for the 

positive correlation between these three (e.g. Hannula & Laakso, 2011; Roesken, 

Hannula & Pehkonen, 2011), but there is need to study further their interaction and 

development throughout the school years. The present paper will analyze the 

longitudinal development of mathematics-related achievement, enjoyment and 

self-efficacy in the Finnish comprehensive school. 

Several studies have explored the relationship between mathematical affect and 

achievement. Ma and Kishor (Ma & Kishor, 1997a, b; Ma, 1999) have summarized 

much of that research in their meta-analyses. They found a negative correlation 

between mathematics anxiety and achievement that was consistent over gender groups, 

age groups and ethnic groups (Ma, 1999). Their results suggested that there would be a 

causal direction from liking mathematics to achievement in mathematics (Ma & 

Kishor, 1997a) and the positive correlation between self-concept and achievement in 
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mathematics was found to decrease as students grow older (Ma & Kishor, 1997b). 

International comparative studies have also produced large databases for modeling the 

causal relationships of different variables. Williams & Williams (2009) studied the 

relationship between self-efficacy and performance in mathematics for 33 nations, 

finding a good fit to the data in 30 nations and support for a reciprocal determinism in 

24 of these. Their results for Finland showed that the effect from mathematical 

self-efficacy to achievement is statistically significant, but small in comparison to most 

other countries, and the effect in the opposite direction is one of the largest in OECD. A 

longitudinal study in Finnish comprehensive schools (from grade 5 to grade 6 and from 

grade 7 to grade 8) suggested that the main causal direction would be the opposite: 

from self-efficacy to achievement. However, for the older subsample a significant 

effect was also found among female students from achievement to self-confidence, 

supporting the hypotheses of a reciprocal linkage (Hannula, Maijala & Pehkonen, 

2004).  

The longitudinal studies analyzing the relationship between affective and cognitive 

variables in mathematics are still few in number. When student socio-economic status, 

openness and conscientiousness of Italian students were controlled, the cross-lagged 

effects form self-efficacy (at the age of 13) to achievement (at the age of 16) was on the 

same level as the effect from  achievement (at the age of 13) to self-efficacy (at the age 

of 16) (Capara, Vecchione, Alessandri, Gerbino, & Barbaranelli, 2011). A review of 

eight Japanese longitudinal studies (Minato & Kamada, 1996) found no predominance 

of either attitude or achievement in most of the studies. However, in the few instances 

that predominance was found, the causal direction was from attitude to achievement. 

An Australian longitudinal study measured also the students' motivational orientations 

and found effects between self-concept and achievement to be of similar magnitude for 

both directions, while the causal direction for achievement and motivation was from 

achievement to motivation (Seaton, Parker, Marsh, Craven & Yeung, 2013). This 

suggests that self-efficacy rather than motivational orientation is a primary determinant 

for the longitudinal development of mathematical competences. In addition, a 

dominant causal relationship from achievement to perceived usefulness of 

mathematics has been found in the Longitudinal Study of American Youth (Ma & Xu, 

2004). 

So far, we have found no longitudinal study including measures for both self-beliefs 

and emotions analyzing their reciprocal relationship with achievement. However, 

Green, Liem, Martin, Colmar, Marsh & McInerney (2012) included all three elements 

in a longitudinal design to test the self-system model of motivational development. In 

addition to academic self-concept, positive attitude towards school (emotion) and 

academic achievement test, they measured three types of motivation, and three 

behavioral measures. The Australian high school students responded to the survey 

twice, within one year intervals. The analysis of the data consisted of testing alternative 

models for both measurements separately and only then testing the model fit for a 

longitudinal design. Their analysis suggested that positive attitude – possibly together 
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with behavioral variables – mediated the effect of self-concept and motivation on 

academic achievement. The model where test performance would be directly 

influenced by all other variables was rejected due to poor model fit in the first stage of 

the analysis without testing it in the longitudinal design. 

Summarizing the aforementioned studies, there seems to be strong evidence for a 

reciprocal relationship between academic self-efficacy and achievement. There is 

mixed evidence for the dominant direction of this relationship and for its development. 

With respect to the relationship between mathematics-related emotions and 

achievement the evidence is even less clear, but it suggests a reciprocal linkage, with 

the dominant direction possibly from emotions to achievement. 

In the present study, we will analyze longitudinal data from Finland to study the 

relationships between achievement in mathematics and two affective measures: 

enjoyment of mathematics and self-efficacy in mathematics in a longitudinal design. 

Our aim is to determine the dominant direction of effect between the chosen affective 

variables and achievement in mathematics. 

METHODS 

The data of this study has been collected by the Finnish National Board of Education 

(FNBE) to study the long-time development of Finnish comprehensive students’ 

mathematics-related affect and achievement from the beginning of grade 3 to the end 

of grade 9. A nationally representative sample of intact grade 3 classes was selected for 

the first measurement in 2005. The same pupils were tested again in 2008 at the 

beginning of their sixth grade in their intact classes, hence increasing the sample size. 

At this stage, we reached 80 % of the original sample. A similar selection of intact 

classes of previously participated students was measured again in 2012 at the end of 

ninth grade, when we reached 60 % of the original sample. Total number students who 

took part in all three-time points was 3,502 (48% female). Metsämuuronen (2013) has 

reported the details of the sample, procedures, and instruments in the official 

assessment report. For the present analysis, we included also students who participated 

only the first two (n = 1,050), or the last two measurements (n = 654). 

Measures 

The mathematics tests were composed by expert panels to measure the attainment of 

Finnish National Core Curricula (FNBE 2004) and the three tests shared several 

linking items. To make test scores comparable across grade levels, item response 

theory (IRT) was applied using the link items across grade levels to compute estimate 

test scores from each grade level to a common metric scale (see Béguin, 2000). The 

reliabilities were calculated for the subsample that responded to all three measures: 

mathematics enjoyment scale (four items, e.g. “I like to study Mathematics”; α: t1 = 

0.879, t2 = 0.879, t3 = 0.885) and mathematics self-efficacy scale (four items, e.g.  

“Mathematics is an easy subject”; α: t1 = 0.879, t2 = 0.879, t3 = 0.885). 
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Statistical procedures and model fit 

Using Mplus 7.11 (Muthén & Muthén, 1998-2012), latent autoregressive and 

cross-lagged panel models were estimated. Latent autoregressive/cross-lagged models 

account for random measurement error by using multiple indictors at each time point. 

Using the cross-lagged model the reciprocal causal relationship between mathematics 

enjoyment, mathematics self-efficacy, and mathematics achievement can be estimated 

between different measurement time points. Model fit was evaluated with several fit 

indices: the chi-square difference test (Satorra & Bentler, 2001), the Comparative Fit 

Index (CFI > 0.90), and the Root Mean Square Error of Approximation (RMSEA < 

0.08), and the Akaike (AIC: lower value indicates a better fit) (Brown, 2006). Missing 

data patterns were handled with Mplus feature of full information maximum likelihood 

(FIML). Analyzes was based on the Mplus robust maximum likelihood estimator 

(MLR), which is robust to non-normality and to control for the non-independence of 

observation (Muthén & Muthén, 1998-2012). 

With respect to structural relations between students’ self-efficacy, enjoyment and 

achievement over time, we initially estimated a baseline model with autoregressive but 

no cross-lagged paths. To account for the indicator-specific effects seeming common 

in longitudinal analyses because the same indicators are repeatedly measured (Geiser, 

2013; Raffalovich & Bohrnstedt, 1987), we allowed for correlations between the 

measurement error (residual) variables that relate to the same indicator over time (e.g., 

Sörbom, 1975). We also allow residual to correlates for each time point to account for 

shared occasion-specific effects between the constructs at the same time point 

(Anderson & Williams, 1992; Geiser, 2013). The results indicate that the baseline 

autoregressive measurement model fits the data adequately well (model 1, table 1).  

Additionally, because invariance of factor loadings over time is conceptually 

important we tested if the factor structure of self-efficacy and enjoyment were 

invariant across the three time points. To test the factorial invariance, we tested a 

model whereby all the factor loadings on self-efficacy and enjoyment were freely 

estimated (configural model) across the three measurement time points (χ2 = 

3248.323, df = 296, CFI= 0.957, RMSEA = 0.038) with models whereby the factor 

loadings were constrained equal (χ2 = 4499.981, df = 312, CFI= 0.940, RMSEA = 

0.044). There was support for the factorial invariance over the three measurement time 

points. For all subsequent analysis the factor loadings were constrained equal.  

After establishing the stability model, we specified a structural model by including a 

cross-lagged path of measurement time point 1 and time point 2 in order to examine 

possible reciprocal relations between mathematics achievement, mathematics 

enjoyment and self-efficacy as depicted in Figure 1. 
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Figure 1: Latent autoregressive/cross lagged model measuring student’s mathematics 

self-efficacy, enjoyment, and mathematics achievement on three measurement 

occasions (grade 3, grade 6 and grade 9). To avoid cluttering, only path estimates are 

shown. AchG3-AchG9 = Achievement at grade 3 to grade 9, EnjG3-EnjG9 = 

mathematics enjoyment at grade 3 to grade 9, SefG3-SefG9 = mathematics 

self-efficacy at grade 3 to grade 9. 

RESULTS 

Autoregressive effect of mathematics self-efficacy, enjoyment and achievement 

The unidimensional path linking measurement at time point 1(grade 3) and subsequent 

grades is used to access the autoregressive/stability effect. As all autoregressive effects 

were statically significant, a significant portion of individual differences has remained 

stable over time. The stability effect was much stronger and consistent for mathematics 

self-efficacy (from β = 0.360 to β = 0.488) and mathematics achievement (β= 0.642 to 

β = 0.653). Moreover, the findings indicated that mathematics enjoyment at grade 3 

influenced mathematics enjoyment on grade 6 but mathematics enjoyment in grade 6 

had smaller impact on mathematics enjoyment at grade 9. 

Cross-lagged effect between mathematics self-efficacy, enjoyment and 

achievement 

Nonetheless, individual students’ differences were not perfectly stable over time. This 

was further tested by comparing models with and without cross-lagged effects (table 

1). First, the model without the cross-lagged structural path (M1) was compared with 

models with cross-lagged from students’ achievement to students’ affects (M2), and 

from affects to achievement (M3). As seen in table 1, the model fit and chi-square 

difference test indicated that models with cross-lagged effects account for the data 

better than the model without them.  The model with all the cross-lagged effect (M4) 

was practically and significantly better than any other of the tested models. The 

ACHG6 

0.338 0.160 

ENJG3 ENJG6 ENJG9 

ACHG3 

SEFG3 SEFG6 SEFG9 

ACHG9 

0.360 

0.303 0.256 

-0.070 0.243 

0.399 

0.642 

-0.073 0.143 

0.488 

0.317 

0.653 
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comparison (AIC) between models M2 and M3 indicates a better model fit for M2. 

Also from the bidirectional cross-lagged model (M4), we can see that the cross-lagged 

effect from mathematics achievement to affects (β = 0.143-0.338) were larger than the 

corresponding cross-lagged effects from affect to achievement (β = -0.073- 0.256). 

These findings suggest that the longitudinal effect from achievement to affect is 

stronger than the effect to the opposing direction. Overall, the cross-lagged effects 

were consistently smaller in size compared to the autoregressive coefficients, 

indicating that cross-lagged effect was less important than the stability of all three 

measured variables. 

Model MLRχ
2 

df CFI RMSEA AIC Comparison 

No cross-lagged (M1) 4499.981 312 .940 .044 327912.090  

Cross-lagged from  

ACHT1-AffectT2 

ACHT2-AffectT3 (M2) 

 

3503.168 

 

308 

 

.954 

 

.039 

 

326854.238 

M1 vs. M2 

∆χ
2 

= 990.001,  

∆df = 4 

AffectT1-AchT2 

AffectT2-AchT3 (M3) 

4064.330 308 .946 .042 327460.032 M1 vs. M3 

∆χ
2 

=478.595,  

∆df = 4 

All cross-lagged 

 paths (M4) 

3187.793 304 .958 .037 326528.064 M1 vs. M4 

∆χ
2 
= 1348.144, 

 ∆df = 8 

      M2 vs. M4 

∆χ
2 

= 334.070,  

∆df = 4 

      M3 vs. M4 

∆χ
2 

= 842.432, 

 ∆df = 4 

Table 1: Goodness-of-fit indices and chi-square difference tests of models tested. 

ACH= Achievement, Affect = mathematics enjoyment and mathematics self-efficacy, 

T1 = Time 1=Grade 3, T2 = Time 2= Grade 6, T3 = Time 3 =Grade 9.  S = Scaling 

Correction Factor, CFI = Comparative fit index, RMSEA = Root Mean Square Error 

Of Approximation, robust maximum likelihood estimator (MLR), Akaike (AIC) 

The correlations between the residual variables between the mathematics achievement, 

self-efficacy and enjoyment were statistically significant and small to medium (rs = 

0.165- 0.410, ps < 0.001), but the correlations between mathematics self-efficacy and 

enjoyment were higher (rs = 0.647- 0.739, ps < 0.001). This indicated that a high 



Hannula, Bofah, Tuohilampi, Metsämuuronen 

PME 2014 3 - 255 

amount of shared situation-specific effects influence the self-efficacy and mathematics 

enjoyment constructs at the same measurement time 

DISCUSSION 

The results of this longitudinal study support the view that mathematical self-efficacy 

and achievement are reciprocally linked and that the dominating direction of this 

relationship is from achievement to self-efficacy. Such a relation between self-efficacy 

and achievement could be characterized as evidence-based development of 

self-efficacy beliefs. Previous studies (Williams & Williams, 2010) suggest that this 

direction of the relationship may be characteristic for Finland. However, it should be 

noted that the effect of self-efficacy on achievement was larger for the older students. 

This supports the earlier hypothesis (Hannula, Maijala, & Pehkonen, 2004) that there 

might be a developmental trend from achievement-dominated relationship to a 

reciprocal relationship, which would eventually become a relationship dominated by 

self-efficacy beliefs. 

Results of our study do not support the model suggested by Green et al. (2012), where 

the causal relation of these three variables would be from self-efficacy to achievement 

through emotions. In our data the cross-lagged effect was primarily from achievement 

to self-efficacy and we also found a unidirectional effect from achievement to 

emotions. 
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The purpose of this study is to clarify for what students do generalize something in 

learning mathematics. In this study, we make a distinction between generalization and 

extension, and focus on the function of generalization in terms of its meaning, purpose, 

and usefulness. Through reviewing literature on generalization and philosophical 

considerations, six functions with their examples are identified; variablization, 

purification, unification, discovery, association, and socialization. We propose a new 

theoretical framework for the function of generalization in learning mathematics, 

suggesting that the framework has possibility of a principle of didactics for teachers 

and a guideline in forming mental habit for students. 

INTRODUCTION 

In mathematics classrooms, we evaluate more students’ mathematics activities based 

on mathematical knowledge than their static mathematical knowledge. Students are 

expected to be improved as the result of their activity. We call such improvement by 

the term of learning. In learning mathematics, generalization is one of most important 

mathematics activities. Generalization is to extending the range of reasoning and/or 

communication from the particular (concrete something) to the general (abstract 

something). In that sense, generalization is essential to mathematics. In our daily life, 

however, knowledge about the particular is enough for most of our purpose, and such 

knowledge sometimes may be more useful than knowledge about the general. Thus, 

students may have a question; “For what do we generalize it?”. It’s a natural question 

from the viewpoint of students. In fact, students do not always make any endeavors to 

generalize in learning mathematics (cf. Tatsis & Tatsis, 2012), though our human mind 

has an ability of generalize something and a tendency to generalization since very 

young age (cf. Vinner, 2011). 

However, in mathematics education, the authors of this paper believe in the value of 

that students find its meaning, purpose, and usefulness of generalization by themselves 

through mathematics activities. Therefore, we will investigate and clarify an 

epistemological motivation of generalization for students. In this paper we use the term 

“function of generalization” as the meaning, purpose, and usefulness of generalization 

for students in learning mathematics, and discuss the following two research questions: 

RQ1: What are specific and characteristic functions of generalization for students in 

learning mathematics? 

RQ2: How do the functions of generalization improve students’ mathematics learning? 
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For RQ1, previous studies pointed out mainly two suggestions. First, for example 

according to Davydov (2008), generalization means that one investigate invariant(s) 

and associate the invariants with a label. As a result, generalization yields useful 

structures or systematization (pp.74-75). It’s no doubt a function of generalization, and 

the view is commonly shared among some researchers (cf. Radford, 1996). However, 

this function is not specific to mathematics but common in all scientific disciplines. 

Furthermore, as Davydov (2008) pointed out, this function is that generalization 

functioned as a result identified when one observer makes an analysis of a completed 

and static mathematical (and scientific) knowledge. Hence, a student as a learner may 

not think “I associate the invariants with the label for systematization!” The interest for 

us is the function of generalization in students’ activities of learning mathematics. The 

function of generalization must be identified from the students’ viewpoint, though it is 

not contradicted with the Davydov (2008). Second, previous studies on generalization 

in mathematics education pointed out the function of variablization that is to extending 

a range of reasoning and/or communication (Ursini, 1990; Dörfler, 1991; Iwasaki & 

Yamaguchi, 1997; Radford, 2001). This function is an important function of 

generalization. However, variablization is one of functions of generalization, because 

some researchers pointed out other functions of generalization. 

DISTINCTION BETWEEN GENERALIZATION AND EXTENSION 

In this study, we use the term of generalization as “recognition that has epistemological 

direction from the particular to the general”. The necessity of this definition is derived 

from the fact that similar recognition called extension does not have this direction. The 

authors (Hayata & Koyama, 2012) make a distinction between generalization and 

extension, and formalize them as following in Figures 1 and 2 respectively: 

D is a field. D’ is a wider field than D. M is a meaning in the field D. M’ is an 

established meaning in the field D’. 

Generalization: Recognition establishing M in D, and extending D to D’ without 

changing M 

Extension: Recognition incorporating D into D’ such that if D’ is limited to D, M’ is 

equivalent to established M 

  

Figure 1: Model of generalization Figure 2: Model of extension (Tomosada, 

Himeda, & Mizoguchi, 2006, p. 9) 

For example, when students noticed that the sum of interior angles is straight angle (M) 

in concrete triangles (D), thereby they suppose that it is case of all triangles (D’). This 

recognition is generalization because M is not changed. On the other hand, for 
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example, when students work on multiplication of decimal numbers (D’) for the first 

time, they cannot solve the multiplication by using the meaning of multiplication as 

repeated addition (M) in natural numbers (D). The decimal number multiplication can 

be solved with the meaning of proportion (M’), and this meaning is equivalent to 

repeated addition in natural numbers. So, by its definition, this recognition is 

extension. 

In this study, we make the above distinction between generalization and extension, and 

focus on the function of generalization in terms of its meaning, purpose, and usefulness 

of generalization for students in learning mathematics. On the other hand, we do not 

distinguish between algebraic generalization and geometrical generalization for the 

purpose of this study in spite of that there are important cognitive differences between 

them (Iwasaki & Yamaguchi, 1997), because in both generalizations one must 

consciously see algebraic/geometrical symbols as general symbols (e.g. n is general 

natural number, and triangle ABC is general triangle). 

METHODOLOGY 

As mentioned above, previous studies mainly discussed the function of generalization 

identified in the static and completed mathematics knowledge. Thus, their method is, 

for example, to analyse the history of mathematics (cf. Radford, 1996). However, there 

is no whole picture/framework for the function of generalization in mathematics 

activities. Without a framework, we cannot see and analyse any students’ actual 

learning activities of mathematics in school classroom practices. For this reason, in this 

study the authors adopt the methodology of analyzing previous studies on 

generalization in terms of its meaning, purpose, and usefulness in order to extract 

implicit functions of generalization from the studies, carefully consider them, and 

organize them in a framework. In this paper, we analyze Polya (1954), Dörfler (1991), 

Ito (1993), and Tatsis and Tatsis (2012), because all of them epistemologically 

consider generalization in mathematics from the learner’s viewpoint, and reveal the 

nature of generalization without restricting generalization to any specific mathematical 

context. In the following, as a result of the analysis, six identified functions of 

generalization (variablization, purification, unification, discovery, association, and 

socialization) are presented with their examples, and a new theoretical framework 

consisted of the six functions and their structure is proposed. 

SIX FUNCTIONS OF GENERALIZATION IN LEARNING MATHEMATICS  

Variablization 

In short, the widely accepted meaning of generalization is to extending the range of 

reasoning. When one intends to extend the range, some attributes of the particular at 

hand are ignored and abstracted to become variables. For example, when students find 

out that area of a concrete rhombus ABCD with diagonals of AC (9cm) and BD (6cm) 

can be calculated by 269  , and from it they infer that the area of all rhombuses can 

be calculated by “diagonal ´  another diagonal ¸2”. In this case, the students see length 
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of sides, inner angles, and so on as not essential attributes, thus these attributes will 

become variables, while the angle between two diagonals is not variable. The 

variablized attributes are dealt as algebraic variables, and can be substituted by any 

concrete values. As a result, students can know all objects in a set (ex. set of rhombus) 

nevertheless there is infinite number of objects in the set. We call this characteristic 

function variablization. This function leads to construct new class. The variablized 

objects are more or less isolated from physical objects. Thus, some symbols are needed 

to deal with the objects. For this reason, some researchers emphasized the importance 

of generalization in algebra. The variablization is important function of generalization, 

but it is not enough for learning algebra (cf. Dörfler, 2008). 

Unification 

There is another case of generalization as “extending the range of reasoning”. One 

recognizes that known various particulars are integrated by single notion, and therefore 

elements in a set are increased. As a result, in such case, the range of reasoning also is 

extended. For example, let’s consider the same example of area of rhombus used in 

explaining the variablization. The area formula “diagonal ´  another diagonal ¸2” for 

rhombus is also applied to kite, because the formula depends only on the condition that 

angle between two diagonals makes a right angle, and because that angle between two 

diagonals is also right angle. In this case, two particulars (area of rhombus and area of 

kite) are unified by single notion (area formula). Thereby the range of the formula that 

calculates area of rhombus is extended. We call this characteristic function of 

generalization unification. According to Polya (1954), sometimes we can surprisingly 

unify different objects by single notion through generalization. We need pay attention 

to this different function unification from the function variablization. 

Purification 

In actual problem solving, there are many situations where one does not always intend 

to work the function variablization of generalization. In such situation, for solving the 

problem easily one removes the attributes appeared unnecessary from the original 

problem. For example, let’s think about the problem to find. 1100101102103  .If 

students must solve this problem without using any devices, they have to work on a 

quixotic challenge to find 106110601 . Thus, some students are motivated to 

conjecture that generalizing the problem may be useful for solving it. They express it 

generally, and try to factorize 161161)1)(2)(3( 234  nnnnnnnn . In this 

case, to factorize the generalized ( 13)13(16116 222234  nnnnnnnn ) is 

easier than to find 106110601 . Finally, they substitute n=100 for the equation, and get 

the answer to original problem is 10301. In this case, the generalization of “extending 

the range of reasoning” is not purpose but means. We call this characteristic function 

purification. Dirichlet and Dedekind (1999) and some researchers pointed out “As it 

often happens, the general problem turns out to be easier than the special problem 

would be if we had attacked it directly (p. 13; quoted in Polya (1954: 29))” . 
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Discovery 

According to Giusti (1999), new mathematical knowledge is invented implicitly while 

solving a problem and subsequently discovered as valuable object. In deed, Giusti 

(1999) pointed out that method of solving problem of planetary orbit (i.e. differential) 

invented the notion of limit implicitly. In school mathematics, we can find similar 

examples of generalization leading to a “discovery”. For instance, in the above 

example used for the purification (find 1100101102103  ), one can discover new 

proposition; “the value of 1)1)(2)(3(  nnnn  is always natural number 132  nn ” 

by generalizing the original problem. This proposition was not expected when students 

tried to solve the problem. We call this characteristic function discovery. According to 

Tatsis and Tatsis (2012), the function discovery of generalization is for students to 

“grasp” the deeper underlying structure of mathematics. 

This function is closely related to the Dörfler’s notion of “symbols as objects”. 

According to Dörfler (1991), at first the abstracted something is associated with 

cognized particular(s), then, they are separated in the process of generalization. As a 

result, the abstracted something with symbols become independent object. He called 

this process as “symbols as objects”. As the above example indicates, the function 

discovery is interpreted as our conscious evaluation of the independent object. 

Association 

In learning mathematics, new mathematical objects (knowledge, concepts, and so on) 

are constructed in mathematical activities. The something new should be meaningful 

for students. According to Howson (2005), there are two methods to create meaning. 

The first is to construct geometrical (graphical) model such as Poincaré Disk Model in 

mathematics, and number line for arithmetic operations in school mathematics. The 

second is to associate known objects with new object. The second has two methods in 

detail; to investigate and organize the connection between known objects with new 

object, and to construct new object by using known objects and inference rules. 

Here, if we interpret “known objects” in the latter method of the second as “the 

particular”, we can say, new object that is constructed by using the particular and 

inference rules has meaning. We call this characteristic function association. For 

example, according to Howson (2005), one can meaningfully construct integer (the 

general notion) by using natural number (the particular) and inference rules. In school 

mathematics, for example, students have their meaning for general triangle that is 

invisible and inexistent, because they construct general triangle by being based on 

particular triangles. Ito (1993) focused on this function and developed his learning 

theory, and analyzed elementary school students. As a result, he pointed out that the 

students had spontaneous attitude to use this function in order to construct new objects. 

In mathematics classroom, usually the function association does not become obvious. 

Rather, the function seems work implicitly in students’ mind in learning mathematics. 



Hayata, Koyama 

3 - 262 PME 2014 

Socialization 

For example, if one says that the next term in the number sequence of 1, 2, 3, 4, 5, 6,… 

is 727, most people may not agree to it, and say that answer is 7. If those who wants to 

convince others that the next term is 727, they must present that the sequence  na  can 

be generalized such as naaaaaaan  )6)(5)(4)(3)(2)(1( . In this example, both 

7 and 727 are correct. As this example shows, however, other people do not always 

accept an individual subjective cognition even if the individual cognition (e.g. 727) is 

reasonable for the person without making the reason public. Thus, if the person wants 

to make one’s own cognition be socially acceptable knowledge among other people, 

the generalization is required. Typically, we can say that Euclid described The Element 

with the intention to generalize the known and accepted propositions for socialization. 

This social aspect of generalization is emphasized by Dörfler (1991). We call this 

characteristic function socialization. Because the socialization means to open own 

cognition to other people, the function plays a very important role in constructing 

sound mathematical knowledge. 

The function socialization of generalization usually works implicitly, especially from 

students’ viewpoint. When students’ cognition meet the counterintuitive, the function 

may become obvious. Nevertheless, the function socialization always plays very 

fundamental roll in the activity of learning mathematics in school classroom. 

A FRAMEWORK FOR THE FUNCTION OF GENERALIZATION 

In this section we will organize the six functions for making a theoretical framework. 

The above examples and consideration suggest that there is epistemological order from 

variablization to unification, and from purification to discovery respectively. In fact, 

Polya (1954) argued that unification is more higher than variablization, and likened it 

to the proverb; “To dilute a little wine with a lot of water is cheap and easy. To prepare 

a refined and condensed extract from several good ingredients is much more difficult, 

but valuable (p.30)”. On the other hand, their examples imply that association and 

socialization are usually functioning implicitly, but both play fundamental rolls in 

learning mathematics. In addition, association and socialization are in their nature 

different from other four functions. They are not exclusive, and play different roll in 

constructing meanings for oneself or other people. Therefore, we propose a 

hypothetical structure of the six functions of generalization in Figure 3. 

 

Figure 3: A hypothetical structure of the six functions of generalization 

The framework consisted of six functions and their structure implies three didactical 

suggestions. First, teacher should design didactical situations where students can 
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discern meaning of the six functions of generalization (ex. purification and/or 

unification). It is the answer to the students’ question; “For what do we generalize it? ”. 

Second, the structure shown in Figure 3 has possibility of a principle of didactics for 

designing mathematics classes. For example, if teacher intends to promote the 

unification in a mathematics class, the unification should be set up after the 

variablization or the purification. If teacher intends to promote students discern the 

socialization and/or the association, it is latent until after teacher expose students to 

other functions in a mathematics class. In a mathematics class, when one function of 

generalization is changed, teacher should give students the needed didactical support 

for making them be aware of the change “for what we do generalize it”. Third, the most 

important suggestion is that the structure may become a guideline in forming mental 

habit for students through their experiencing the functions of generalization in 

mathematics classes. For example, Figure 3 shows that after activity of variablization, 

students do the activity of unification, and then reflecting on the association. However, 

it is difficult for students at the beginning do these activities without any didactical 

supports by teacher. Hence, if mathematics classes are usually planed based on the 

structure in Figure 3, it may become a guideline in forming mental habit for students, 

for example, “we have variablized this notion, so maybe we can unify other objects!” 

We expect that the formed mental habit could support students use the functions of 

generalization, leading to enjoy and endeavor their generalization as genuine 

mathematics activity. 

CONCLUDING REMARKS 

In this paper, as the answer to RQ1, we identified six functions with their examples of 

generalization; variablization, purification, unification, discovery, association, and 

socialization. We proposed the new theoretical framework consisted of the six 

functions and their structure for generalization in learning mathematics. Then, as the 

answer to RQ2, we implied three didactical suggestions for teaching and learning 

mathematics in classroom. First, teacher should design didactical situations where 

students can discern meaning of the six functions of generalization. Second, the 

structure has possibility of a principle of didactics for designing mathematics classes. 

Third, the structure may become a guideline in forming mental habit for students 

through their experiencing the functions of generalization in mathematics classes. 

The following are main tasks to be tackled in the future research. First, we need to plan 

and practice mathematics classes based on the framework for the function of 

generalization in classrooms. Second, the functions and their structure need to be more 

refined with empirical data and philosophical consideration. Third, we need to 

investigate and sequence in detail the differences in the function of generalization for 

students in learning mathematics from elementary to secondary school mathematics. 
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HOW SHOULD STUDENTS REFLECT UPON THEIR OWN 

ERRORS WITH RESPECT TO FRACTION PROBLEMS? 

Tim Heemsoth, Aiso Heinze 

Leibniz Institute for Science and Mathematics Education, Kiel, Germany 

 

Educational research assumes that error reflections are efficient if they include the 

rationale behind the own error instead of just correcting the error. However, thus far 

there is a lack of empirical evidence regarding this aspect. Thus, we conducted a field 

experiment with pre-post-follow-up design and with 7
th

 and 8
th
 grade students (N = 

174). The study was conducted during standard mathematics lessons. We compared 

two different error-handling strategies. Our findings indicate that students who 

reflected the rationales behind their errors enhanced their procedural knowledge more 

than students who reflected on the corresponding correct solution only. Regarding 

conceptual knowledge we found this effect only at the follow-up-test. The implications 

for theory and school instructions are discussed. 

INTRODUCTION 

Educational researchers assume error reflections to comprise a high learning potential 

for the students’ learning (e.g. Siegler, 2002; VanLehn, 1999). Yet, most of the 

previous studies investigated learning from errors committed by someone else (e.g. 

Große & Renkl, 2007). To our knowledge studies investigating learning from 

reflections on one’s own errors are very rare. Moreover, thus far it is unclear what 

error-handling strategy supports the students’ learning from own errors most 

efficiently. A core assumption is that students develop more comprehensive cognitive 

models if the error-handling strategy includes the rationale behind one’s own error 

(Ben-Zeev, 1998). The main objective of the study presented in this contribution is to 

address these desiderata and to investigate the question whether 7
th

 and 8
th

 grade 

students learn fractions better by reflecting on the rationales behind their own errors or 

by only reflecting on the corresponding correct solution only. 

Student reflections upon errors  

If errors occur during the learning process, they have the potential to trigger the 

reconstruction of the students’ concepts and strategies (Duit & Treagust, 2003; Siegler, 

2002). Thus far, these concepts and strategies might have been absolutely sufficient to 

solve previous problem solving situation. However, in the error situation these 

concepts and strategies need to be reconsidered in order to solve new problem solving 

situations. Educational research assumes that the corresponding error reflections 

comprise elaborate learning: It is easy to explain why a correct answer is correct just by 

citing the given answer. However, explaining why an incorrect answer is incorrect 

forces the learner to reflect on both the correct solution and its scope of application 

(Siegler & Chen, 2008). In this study, we assume that an error-handling strategy 
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supports these elaborate learner’s reflections if the strategy builds on the rationale 

behind the error. A rational error occurs if a learner applies a strategy that has worked 

successfully in a previous problem-solving situation to a new and similar problem that 

would require another strategy (Ben-Zeev, 1998). For example, students erroneously 

overgeneralize a specific strategy: From addition exercises with two fractions having 

the same denominator they internalized the rule “numerator plus numerator and 

denominators remain the same”. Some students overgeneralize this rule to 

multiplication exercises and calculate 3/9 x 4/9 = 12/9 (see Padberg, 2009). Such 

rational errors indicate a principle misunderstanding. Reflections on these rationales 

behind the errors can enable the learner to access and adjust his/her insufficient 

cognitive models (cf. Ben-Zeev, 1998).  

Previous empirical findings 

Educational research has shown that the integration of errors into the learning process 

can enhance the students learning (e.g. Große & Renkl, 2007; Keith & Frese, 2005; 

Siegler, 2002). Yet, in previous studies the role of the rationale behind the error was 

not investigated systematically. Research on error management training highlighted 

that learners who were encouraged to conduct errors during the learning process 

improved their task performance more than learners who were instructed to avoid 

errors (e.g. Keith & Frese, 2005). However, learners who were encouraged to conduct 

errors were not instructed to reflect on the rationale behind their own error. Instead, 

research on learning from incorrect examples used prompts to trigger learners to 

reflect why answers were incorrect, to explain the reasoning behind a student’s wrong 

answer or to change the problem so that the student’s answer is correct (Große & 

Renkl, 2007; Heemsoth & Heinze, 2013; Siegler, 2002). In some of these studies 

learners who were confronted with incorrect examples improved their performance 

more than learners who were only confronted with correct examples. Yet, some 

findings indicated that there is an interaction effect regarding the learners’ prior 

knowledge: Learners with high prior knowledge benefited more from incorrect 

examples while students with low prior knowledge benefited more from correct 

examples. These findings were found both for university students learning statistics 

(Große & Renkl, 2007) and for secondary school students learning fractions 

(Heemsoth & Heinze, 2013). However, even though in these studies students were 

encouraged to reflect on the rationale behind the error committed by someone else, 

they did not reflect on their own errors. In one of the few studies that tested instructions 

on own errors students were instructed to reflect on their own incorrect physics 

statements by (1) indicating, (2) explaining and (3) correcting their statement 

(Yerushalmi & Polingher, 2006). A similar error-handling strategy suggests one 

additional step that asked the students (4) to take action in order to avoid the same error 

in future problem-solving situations (Guldimann & Zutavern, 1999). In sum, there are 

indications how to implement an error-handling strategy including the rationale behind 

students’ own errors. However, thus far the effectiveness of these strategies has rarely 

been investigated. Moreover, since most of the findings described in this section were 
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derived from strictly controlled experiments with restricted ecological validity, there is 

a lack of findings with regard to ecologically valid school settings and relevant 

curriculum topics.  

The learning topic: Fractions 

In order to investigate our research question we chose fractions as our learning subject. 

Knowledge of fractions provides a fundamental basis for later algebraic operations, 

enhances intellectual development and is essential for handling many real-world 

situations and problems not only occurring during school but during the whole life 

through (NMAP, 2008) This might be an explanation for why knowledge of fractions 

has been shown to be a core requirement for mathematical success in later school years 

(Siegler et al., 2012). Typical student errors have been extensively investigated and 

many student errors have been shown to be very persistent for the individual student 

(e.g. Padberg, 2009). In specific, several types of errors can be traced back to a specific 

rationale. For example these errors result from adopting concepts of natural numbers to 

fractions (Vamvakoussi & Vosniadou, 2004) or from an overgeneralization of other 

fraction arithmetic strategies (Padberg, 2009). Thus, fractions seemed to be an 

adequate domain for our intervention study.  

The present study 

We examined whether 7
th

 and 8
th

 grade students improved their knowledge of fractions 

more if they reflected on the rationale behind their own error (error-centered condition) 

or if the students were instructed to reflect on a corresponding correct solution only 

(solution-centered condition). The construction of the error-centered strategy was 

based on the four metacognitive steps provided by Guldiman and Zutavern (1999). We 

examined the development of procedural and conceptual knowledge of fractions. We 

assumed that in the error-centered condition the rationale behind one’s own error is 

included. Thus, students in this condition better adjusted their incorrect cognitive 

models than students in the solution-centered condition in which the rationale behind 

one’s own error was not considered. Moreover, according to Siegler and Chen (2008) 

we assumed that in the error-centered condition learning was more elaborate. Since 

elaborate learning is a prerequisite for a successful recall of knowledge (Wittrock, 

1989), we assumed the predominance of the error-centered condition to remain stable 

over time compared to the solution-centered condition. In summary, our research was 

guided by the following hypotheses:  

Hypotheses 1: Students in the error-centered condition enhance their procedural 

knowledge more than students in the solution-centered condition. The effect remains 

stable after a retention phase. 

Hypotheses 2: Students in the error-centered condition enhance their conceptual 

knowledge more than students in the solution-centered condition. The effect remains 

stable after a retention phase. 
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METHOD 

Design 

All students participated in a pre-post-follow-up design. In each class all students were 

randomly assigned to one of the two the conditions. Before the intervention started we 

asked for the students’ mathematics grade, their gender, and age. During the first two 

lessons the error-handling strategies were introduced in both conditions. Hereafter, 

students reflected on their own errors that they conducted either in the pretest (that was 

conducted after the introduction phase) or in one of two further intermediate tests. The 

time for reflections on own errors was 135 minutes in total. After the intervention 

phase a posttest and six weeks later a follow-up test was administered. All tests 

measured the students’ procedural and conceptual knowledge of fractions. 

Participants 

The sample consisted of 174 students (12 to 15 years of age) who belonged to five 7
th
 

and four 8
th
 grade classes from German secondary schools (Gymnasium or 

comprehensive school). For all students, the intervention study served as a refresher 

and opportunity to practice fractions. On the whole, 87 students participated in the 

error-centered condition and 87 students in the solution-centered condition. There 

were no group differences regarding mathematics grade, age, gender and number of 

participants with respect to grade level or school type. 

Pre-, Post-, Follow-up- and intermediate tests 

We used parallel pre-, post- and follow-up tests to measure procedural and conceptual 

knowledge of fractions. Example items are presented in Table 1. Seven items 

emphasized procedural knowledge and asked to use fraction arithmetic procedures to 

compute a fraction problem. Four conceptual knowledge items comprised basic 

conceptions of fractions (e.g. part-whole interpretation, see example item in Table 1). 

To achieve parallel tests, procedural knowledge items differed with regard to numbers 

and the conceptual knowledge items with regard to the context and numbers. Answers 

were coded with “1” (correct), “0.5” (partial correct) or “0” (incorrect). Performance 

scores are represented by the percentage of correct items. The scale reliabilitiy for 

conceptual knowledge at the pretest was low. Thus, findings with regard to conceptual 

knowledge should be interpreted with caution. 

The student reflections were based on the pretest and two more intermediate tests. The 

intermediate tests were parallel versions of the pre- post- and follow-up-tests. 

However, due to time restrictions regarding the standard mathematics lessons two 

shorter versions of the intermediate tests varying in difficulty were administered: 

Proficiency Level 1 tests only contained two conceptual knowledge items – the two 

most difficult items were excluded. Proficiency Level 2 tests contained only five 

procedural knowledge items; the two easiest item types were excluded. Students 

received Proficiency Level 1 tests if they solved less than 50% of the previous test 
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problems correctly; they received Proficiency Level 2 tests if more than 50% were 

solved correctly. 

Test 
Number 

of items 

Cronbach’s alpha 
Example Item 1 

Pre Post Follow-up 

Procedural 

knowledge 
7 .85 .87 .86 

Compute 

(3/4 * 9/4) * 2 

Conceptual 

knowledge 
4 .47 .68 .67 

Mr. K. pays a monthly rent 

of 1500 €. This is 3/5 of his 

salary. What is the salary 

of Mr. K.? 

Table 1: Scale reliability and example item for procedural and conceptual knowledge. 

Error-handling strategies 

All students reflected on their own errors and used the strategy corresponding to their 

condition. In the error-centered condition, the students used a worksheet with a table of 

four rows. The headline of these rows had the following four prompts: (1) Describe 

your answer and error; (2) Explain, why you thought your answer was correct; (3) 

Revise your answer; (4) Create a problem in which a similar error could have occurred. 

Solve this problem correctly. Both the second and the fourth prompt triggered the 

learners to reflect the rationale behind their errors. In the solution-centered condition, 

the students worked on examples that corresponded to the exercises that had been 

solved incorrectly. The examples began with an exercise similar to the exercise the 

student had solved incorrectly. Below the exercise a correct solution was presented and 

the students were asked to answer the following three prompts: (1) Describe the 

student’s solution; (2) Explain, why the solution is correct; (3) Revise your answer.  

Procedure 

In the first two lessons, the error-handling strategies were introduced in both 

conditions. Therefore, non-fraction problems were presented to the students. During 

three of the following six lessons, the students took a test of procedural and conceptual 

knowledge of fractions at the beginning of these lessons (the pretest and the two 

intermediate tests). Having finished these tests after a short 10-minute break, all 

students received feedback that was directly presented on the test sheet and indicated 

right or wrong answers. The students reflected on their own errors using the specific 

error-handling strategy they had learned before. Reflections were continued in the 

previous lessons after each test. In total, the reflections lasted 45 minutes each. In the 

error-centered condition, students who struggled to detect the error were allowed to 

read a correct example of a similar problem. Examples were the same in the 

solution-centered condition but were not prompted. 
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RESULTS 

Hypothesis 1 

To test differences between conditions with respect to procedural knowledge, we used 

a repeated-measures ANCOVA and entered condition as the between-group factor and 

time as the within-group factor. We entered the mathematics grade, gender, age, grade 

level and school type as covariates to account for possible effects on the students’ 

learning and to estimate results more precisely. There was a significant interaction 

effect of condition and time on procedural knowledge (F(2, 334) = 4.97, p = .008, 

η² = .029). Simple effects analyses showed that there was no significant difference at 

pretest. Yet, the analysis of the post- and follow-up-tests indicated that students in the 

error-centered condition showed a higher performance both immediately (M = 62.32, 

SD = 33.67) and six weeks after the intervention (M = 49.18, SD = 36.13) than students 

in the solution-centered condition (post: M = 54.51, SD = 35.82, follow-up: M = 43.43, 

SD = 35.10), post: F(1, 167) = 5.99, p = .015, η² = .035, follow-up: F(1, 167) = 4.12, 

p = .044, η² = .024 (see Figure 1). Further analyses showed that there were no 

significant interaction effects between conditions and prior procedural knowledge.   

 

Figure 1: Procedural and conceptual knowledge at pre-, post- and follow-up test, by 

condition. 

Hypothesis 2 

We used a repeated-measures ANCOVA to test for differences between the conditions 

with respect to conceptual knowledge. We could find a significant interaction effect of 

conditiona and time on conceptual knowledge (F(2, 334) = 3.26, p = .039, η² = .019). 

Simple effects analyses showed that the two conditions neither differed at pretest nor at 

posttest. However, at the follow-up-test the effect was significant (F(1, 167) = 4.02, 

p = .047, η² = .023). Students in the error-centered condition had a higher conceptual 

knowledge (M = 33.91, SD = 30.43) than students in the solution-centered condition 
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(M = 28.74, SD = 32.07). Further analyses showed that there were no significant 

interaction effects between conditions and prior conceptual knowledge.   

DISCUSSION 

In the current study we examined the role of reflections on the rationale behind own 

errors. In the error-centered condition the students showed a significantly higher 

performance with respect to procedural knowledge both at posttest and at the 

follow-up test compared to the students in the solution-centered condition. Regarding 

conceptual knowledge we could identify a comparable effect only for the 

follow-up-test. In total we can state that our results support the explanation that 

instructions on errors are beneficial if they consider the rationale behind one’s own 

errors (Ben-Zeev, 1998). The effect with respect to procedural knowledge is of 

particular interest because procedural errors were assumed to be very resistant to 

instructional interventions in some previous research (e.g. Weinert, 1999). The current 

study might give indications to cope with procedural errors efficiently. An explanation 

with respect to the retention effect with regard to both knowledge types relies on the 

idea of more elaborate learning that is triggered by error reflections and that is essential 

for a recall of knowledge (Siegler & Chen, 2008; Wittrock, 1989). Yet, we must state 

that to some extend the support is limited to procedural knowledge. For conceptual 

knowledge the results need to be replicated with more reliable scales. Beyond, the 

current study indicates that the teachers’ fears that reflecting on errors’ might confuse 

students (Heinze & Reiss, 2007) might be not reasonable. Instead, for both 

mathematics classes and text books our results encourage considering instructions for 

reflections on the rationale behind own errors. 

The current study has some methodological and theoretical limitations that give 

direction for future research: First, we used parallel knowledge tests. We did not 

investigate whether reflections on the rationale behind own errors are successful if 

there are more diverse tasks to-be-learned. Second, we did not assess the quality of 

error reflections. However, effects of reflections might depend on their appropriateness 

(Wittrock, 1989). Finally, some students may even have struggled to find the rationale 

behind their own errors. More specific, there might be errors that are more “treatable” 

or rather “untreatable” for the students in order to identify the rationale behind the error 

(see Ferris, 1999). 

References 

Ben-Zeev, T. (1998). Rational errors and the mathematical mind. Review of General 

Psychology, 2, 366-383.  

Duit, R., & Treagust, D. F. (2003). Conceptual change: A powerful framework for improving 

science teaching and learning. International Journal of Science Education, 25, 671-688.  

Ferris, D. (1999). The case for grammar correction in L2 writing classes: A response to 

Truscott (1996). Journal of Second Language Writing, 8, 1-11.  



Heemsoth, Heinze 

3 - 272 PME 2014 

Große, C. S., & Renkl, A. (2007). Finding and fixing errors in worked examples: Can this 

foster learning outcomes? Learning and Instruction, 17, 612-634.  

Guldimann, T., & Zutavern, M. (1999). “Das passiert uns nicht noch einmal!” - Schülerinnen 

und Schüler lernen gemeinsam den bewußten Umgang mit Fehlern. In W. Althof & F. 

Oser (Eds.), Fehlerwelten. Vom Fehlermachen und Lernen aus Fehlern: Beiträge und 

Nachträge zu einem Interdisziplinären Symposium aus Anlaß des 60. Geburtstags von 

Fritz Oser (pp. 233-258). Opladen: Leske & Budrich. 

Heemsoth, T., & Heinze, A. (2013). Learning fractions from errors. In A. M. Lindmeier & A. 

Heinze (Eds.), Proc. 37
th

 Conf. of the Int. Group for the Psychology of Mathematics 

Education (Vol. 3, pp. 25-32). Kiel, Germany: PME. 

Heinze, A., & Reiss, K. (2007). Mistake-handling strategies in the mathematics classroom: 

Effects of an in-servide teacher training on student's performance in geometry. In J. H. 

Woo, H. C. Lew, K. S. Park, & D. Y. Seo (Eds.), Proc. 31
st
 Conf. of the Int. Group for the 

Psychology of Mathematics Education (pp. 9-16). Seoul, Korea: PME. 

Keith, N., & Frese, M. (2005). Self-regulation in error management training: Emotion control 

and metacognition as mediators of performance effects. Journal of Applied Psychology, 

90, 677-691.  

NMAP. (2008). Foundations for success: The final report of the National Mathematics 

Advisory Panel. Washington: US Department of Education. 

Padberg, F. (2009). Didaktik der Bruchrechnung (4., erw., stark überarb). Heidelberg: 

Spektrum, Akad. Verl. 

Siegler, R. S. (2002). Microgenetic studies of self explanations. In N. Granott & J. Parziale 

(Eds.), Microdevelopment. Transition processes in development and learning (pp. 31-58). 

New York: Cambridge University Press. 

Siegler, R. S., & Chen, Z. (2008). Differentiation and integration: Guiding principles for 

analyzing cognitive change. Developmental Science, 11, 433-448.  

Siegler, R. S., Duncan, G. J., Davis-Kean, P. E., Duckworth, K., Claessens, A., Engel, M., … 

Chen, M. (2012). Early predictors of high school mathematics achievement. Psychological 

Science, 23, 691-697.  

Vamvakoussi, X., & Vosniadou, S. (2004). Understanding the structure of the set of rational 

numbers: A conceptual change approach. Learning and Instruction, 14, 453-467.  

VanLehn, K. (1999). Rule-learning events in the acquisition of a complex skill: An evaluation 

of CASCADE. The Journal of the Learning Science, 8, 71-125. 

Weinert, F. E. (1999). Aus Fehlern lernen und Fehler vermeiden lernen. In W. Althof & F. 

Oser (Eds.), Fehlerwelten. Vom Fehlermachen und Lernen aus Fehlern: Beiträge und 

Nachträge zu einem Interdisziplinären Symposium aus Anlaß des 60. Geburtstags von 

Fritz Oser (pp. 101-110). Opladen: Leske & Budrich. 

Wittrock, M. C. (1989). Generative processes of comprehension. Educational Psychologist, 

24, 345-376.  

Yerushalmi, E., & Polingher, C. (2006). Guiding students to learn from mistakes. Physics 

Education, 41, 532-538. 



 

2014. In Oesterle, S., Liljedahl, P., Nicol, C., & Allan, D. (Eds.) Proceedings of the Joint Meeting 3 - 273 

of PME 38 and PME-NA 36,Vol. 3, pp. 273-280. Vancouver, Canada: PME. 

 

MATHEMATICS TEACHERS' RECOGNITION OF AN 

OBLIGATION TO THE DISCIPLINE AND ITS ROLE IN THE 

JUSTIFICATION OF INSTRUCTIONAL ACTIONS 

Patricio Herbst
1
, Justin Dimmel

1
, Ander Erickson

1
, Inah Ko

1
, Karl W. Kosko

2 

1
University of Michigan

1
, 

2
Kent State University 

 

We describe the conceptualization, development, and piloting of two instruments--a 

survey and a scenario-based assessment--designed to assess, teachers' recognition of 

an obligation to the discipline of mathematics and the extent to which teachers justify 

actions that deviate from what's normative on account of this obligation. We show how 

we have used classical test theory and item response theory to select items for the 

instruments and we provide information on their reliability, using a sample of 88 high 

school mathematics teachers.  

FOCUS: THE DISCIPLINARY OBLIGATION 

This paper reports on efforts to conceptualize and measure teachers' recognition of an 

obligation to the discipline of mathematics and contributes to an agenda for research 

that attempts to identify sources of justification for actions in mathematics teaching. 

This agenda is predicated on the need to have robust ways of predicting how efforts at 

instructional improvement might fare as they are implemented. The general problem 

is, given an instructional system located in an institutional context, where, by force of 

custom, teacher and students are expected to act in ways that are normative, what 

sources of justification are available for practitioners to use so as to justify, for 

themselves and colleagues, actions that might depart from the norm?  

In their practical rationality framework, Herbst and Chazan (2012) proposed the notion 

of professional obligations as a set of those sources of justification. They identify four 

obligations --to the discipline of mathematics, to students as individuals, to the class as 

a social group, and to the institutions where instruction is located (e.g., school, district). 

This report elaborates on the disciplinary obligation and presents results of our 

attempts to develop two instruments designed to study it empirically.  

THEORETICAL FRAMEWORK 

The problem of why teachers do what they do in classrooms has often been studied 

using perspectives that consider instructional action as dependent on factors ascribed 

to the individual teacher (e.g., beliefs, goals, knowledge) and disconnected from 

considerations of environment (cultural, historical, or institutional; Cooney, 1984; 
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Schoenfeld, 2010). Often this work has revealed that teachers' perceptions of 

environmental conditions account for mismatches between what individual teachers 

might profess to want to do and what they might acknowledge to be able to do in 

practice (Skott, 2009). Understanding these environmental conditions in which 

mathematics teachers work is an important terrain for our field still to cover.  

Important progress has been made in the last 20 years to conceptualize and study 

mathematics instruction as an interaction among teacher, content, and students in 

environments (Cohen et al., 2003). Our field shows plenty of examples of how teacher 

and students collaboratively shape meanings as they undertake the work of teaching 

and learning mathematical ideas (Arzarello et al., 2009). Analyses of classrooms as 

activity systems have helped document the notion that classroom interaction often 

relies on tacit norms that regulate how teacher and students customarily exchange 

knowledge (Bauersfeld, 1980; Herbst, 2006).  

International studies of mathematics teaching have added attention to the situatedness 

of instruction in larger systems, in particular national cultures (Stigler & Hiebert, 

1999) but one could just as well say historical periods and societal institutions. This 

scholarship suggest the need to examine in more detail how demands of the 

environment might affect mathematics instruction, with the hope that this 

understanding might help explain teachers' instructional actions and decisions.  

The discipline of mathematics is an important element in the environment of 

mathematics instruction in all countries, but it is plausible that it might affect 

instruction in different ways. In their account of the practical rationality of 

mathematics teaching, Herbst and Chazan (2012) identify an obligation to the 

discipline as a source of justification for decisions and actions. They define this 

obligation in general by saying that "the mathematical knowledge teachers teach needs 

to be a valid representation of the mathematical knowledge, practices, and applications 

of the discipline of mathematics" (p. 610). This obligation to the discipline is a 

reasonable hypothesis that can be traced back to Schwab's (1978) writings on the 

curriculum or to the heavy investment of mathematicians in the reforms of the 50s and 

60s (Kilpatrick, 2012). Research also documents how teachers' views on instructional 

action, what they consider appropriate or inappropriate to do, are often grounded on 

disciplinary considerations (Ball, 1993; Lampert, 1990). We could accept as a 

hypothesis that this obligation affects all teachers of mathematics and still expect this 

obligation to affect teachers differently.  In this paper we offer a conceptualization of 

those possible differences and we share details of the development of two instruments 

designed to study those differences.  

TEACHERS AND THE OBLIGATION TO THE DISCIPLINE 

The discipline of mathematics exercises its role as stakeholder of instruction in various 

ways. Quite often policy considerations of the state of mathematics education 

incorporate the views of mathematicians (Becker & Jacob, 2000). Mathematicians are 

involved in the professional development of teachers and in decisions over the 
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curriculum for teacher education (see also Wilson, 2003; Ball et al., 2005). Questions 

can be asked about this influence.  

How much and in what ways do teachers recognize an obligation to the discipline? In 

our earlier analyses of teacher discussions prompted by representations of practice we 

inspected the rationale that teachers gave for endorsing or opposing actions that 

deviated from an instructional norm. Among those rationales, participants would make 

various kinds of references to the discipline: They would draw on the need to show 

how mathematicians really work, on the need to avoid making unwarranted 

assumptions, or on the value of writing an elegant proof. The discipline was a salient 

source of justification, though not the only one (Nachlieli & Herbst, 2009). We 

undertook a two-pronged approach for the development of research instruments that 

could help us eventually understand teachers' relationship to the disciplinary 

obligation. On the one hand we set out to develop a survey that would allow us to 

gauge the extent to which an individual teacher recognizes an obligation to the 

discipline. On the other hand we set out to develop a scenario-based questionnaire that 

would allow us to gauge the extent to which an individual teacher would justify 

deviating from actions that are normative in instruction on account of an obligation to 

the discipline. With both instruments our goal was to be able to eventually implement 

them at scale, so we aimed for final products that could be answered by individuals 

working on a computer alone and for less than an hour.  

MEASURING RECOGNITION OF THE DISCIPLINARY OBLIGATION: 

THE PR-OB-MATH QUESTIONNAIRE 

We have laid out the first steps in investigating recognition of mathematics teachers 

obligation to the discipline by developing a questionnaire that asks participants to 

consider statements about mathematics teaching (e.g., "Mathematics teachers do their 

best to get students to appreciate mathematical elegance") and then asks them to “rate 

the degree to which mathematics teachers are expected, as professional educators, to 

act in the manner this statement describes” using a 4-point Likert-type of scale that 

ranges from (1 = Teachers are always expected to act in this manner to 4 = Teachers are 

never expected to act in this manner). This instrument, unlike our scenario-based 

instrument described below, is meant to be used with teachers of mathematics at 

different levels and nonteachers alike, all of them being asked to indicate their stances 

toward statements that say what a teacher of mathematics is purportedly expected to 

do. We developed the survey through several iterations that included brainstorming, 

item writing, internal and external vetting, piloting with teachers, and examining the 

collected pilot data using classical test theory (CTT; Crocker & Algina, 1986) and item 

response theory (IRT; Bond & Fox, 2007).  

We started the design process with two versions of the questionnaire, one (ETD, 

"expected to do") roughly similar to the final one described above and another one 

(ATS, "appropriateness to say") that included the target statement (e.g., "Mathematics 

teachers should do their best to get students to appreciate mathematical elegance") in 
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quotation marks and asked the respondent to rate, using a 6-point Likert-type scale 

ranging from (1=Very Inappropriate to 6=Very Appropriate), the appropriateness of 

making such a statement to a fellow mathematics teacher in a teachers' lounge. 

Following internal review, we vetted our initial set of items through a process of 

cognitive interviews with secondary mathematics teachers (Karabenick et al., 2007). 

Initial interviews suggested that teachers did not always interpret the ATS statements 

as we had intended. Some statements were perceived as inappropriate to say to a 

colleague but not because of being objectionable actions, but rather because they were 

too obvious and saying them would insult a colleague's intelligence. We then 

introduced other contexts where those statements could be made and vetted both the 

contexts and the statements with additional teachers. These interviews revealed a need 

to adjust the social context where such disciplinary statements were made (to that of a 

mentor teacher speaking with a student teacher), assess the validity of items, and revise 

or discard items. This resulted in a set of 10 items for each ATS and ETD list. We 

piloted those items with mathematics teachers from a Midwestern U.S. state (n = 44) 

and found them to have low internal consistency (α = .49). Efforts to improve 

reliability via item analysis were not fully successful. In particular we decided to 

discontinue the ATS items and write more ETD items making sure to anchor 

statements to emblems of mathematical work that were familiar to teachers. This 

yielded a list of 26 items. 

We piloted the 26 items with a sample of 42 high school mathematics teachers from the 

Midwest during the Summer of 2013. All statements were rated on a 4-point 

Likert-type scale in increasing degree of obligation (from 1=Never, to 4=Always). 

During the piloting of these items we discovered a few difficulties with items, 

including some modulated (should) statements mixed with descriptive statements, and 

statements that, along with the rating scale, might yield readings that included double 

and even triple negatives (e.g., "When introducing a new concept to students, 

mathematics teachers should not give descriptions that are mathematically imprecise" 

was not only modulated by "should" but also would become a double negative if 

participants responded "never"). We rewrote the statements so that they would all be 

descriptive and that their readings would yield at most one negative (e.g., the statement 

above became "When teaching students a new property, mathematics teachers ensure 

that it is described precisely"). This last version of the 26 items was piloted with 46 

high school teachers from the Midwest, during the Fall of 2013. Table 1 shows 

descriptive statistics of the 26 items for both samples.  

For the analysis, first, we conducted classical item analysis (looking at the item-total 

correlations and the changes in alpha coefficient after removal of an item) to remove 

problematic items among the 26 original items within each of the samples (Summer 

and Fall 2013). While alpha values (0.756 for Summer and 0.757 for Fall) were 

acceptable, some items had negative or very low positive item-total correlations. We 

eliminated 8 items that did not meet a .3 threshold of item-total correlation and as a 
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result reduced the item set to 18 items. This increased the alpha score of the remaining 

items to 0.804 and 0.799 for Summer and Fall samples respectively.  

We inspected the data set with the goal of running 1-parameter IRT model with the 

pooled Summer and Fall 2013 samples. Since there had been slight variations in the 

statement of the items, we inspected first whether the items were functionally 

equivalent using a DIF analysis on the remaining 18 items. To meet assumptions of 

DIF and Rasch analysis, we recoded responses from the 4-point scale to dichotomous, 

using responses 1-2 as 0 and 3-4 as 1. This recoding appeared legitimate given than 

none of the values of the scale expressed a neutral stance. The DIF analysis showed 

that 3 of the 18 items functioned very differently in both samples, so we excluded them 

from the Rasch analysis. (Dorans et al, 1992). 

 All 26 items Selected 13 

items 

Summer 

(n=42) 

M = 2.96 (.30) 

α = 0.76 

M= 3.00 (.40) 

α = 0.76 

Fall 

(n=46) 

M = 3.02 (.26) 

α = .75 

M= 3.02 (.38) 

α = 0.76 

Table 1: Descriptive statistics for items of the PR-OB-MATH instrument 

We fit a Rasch model to the pooled samples data for the remaining 15 items and 

inspected the fit statistics from the Rasch model analyses, excluding 2 more items that, 

according to Bond and Fox (2007), had poor fit. Thus, the original 26 items could be 

reduced to 13 items after removing problematic items from iterative item analyses. The 

selected 13 items were also examined using a Rasch model. The Rasch model with the 

final selected 13 items shows sufficient item reliability (0.95), but low person 

reliability (0.52), lower than 0.80 considered acceptable. This means that our items 

distinguish easier and difficult items well but our items may not be sensitive enough to 

distinguish between high and low scorers. Table 1 below lists descriptive statistics of 

our samples with the initial 26 items and the final 13 items.  

THE DISCIPLINARY OBLIGATION'S ROLE IN JUSTIFYING ACTIONS  

To investigate the extent to which teachers' recognition of the disciplinary obligation 

matters in the justification of instructional actions, we developed a scenario-based 

questionnaire. While the PR-OB-MATH instrument provides a way of assessing the 

extent to which a mathematics teacher recognizes an obligation to the discipline of 

mathematics, the role this recognition plays in practical action and decision-making is 

not apparent: While somebody might recognize an obligation to some extent, the 

impact of such recognition on action might also depend on practical circumstances 

such as what they might be expected to do. A situational judgment test (Cabrera & 

Nguyen, 2001) or a scenario-based assessment would give us a chance to explore that 

question. These assessments have a long history in human resources management, 

where they are presented as a written vignette or a video. Video-based tests of 

situational judgment are widely used by personnel departments under the presumption 
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that a more realistic scenario will result in responses that reflect what candidates will 

actually do (Weekley & Jones, 2006). Scenarios have also been used to explore teacher 

decision-making and attitudes for many of the same reasons (Bishop & Whitfield, 

1972; Shavelson et al., 1977). Carter et al. (1988) actually presented both novice and 

expert teachers with slides with visual images from classrooms and used this to 

compare how experience influenced their descriptions.  

To assess the possible impact of recognition of the disciplinary obligation in action, we 

created items in which the participants view a teaching scenario, represented as a 

storyboard, and are asked to choose between two courses of action, one considered 

normative and another that deviates from the former in response to the disciplinary 

obligation. The introduction to each item would say "In the following slideshow we 

invite you to consider a scenario in which a high school teacher deviates from a lesson 

in order to address an issue of mathematical importance. We are interested in the extent 

to which you think the teacher's action is justifiable." After considering the scenario, 

participants are asked to indicate "how much you agree or disagree with the following 

statement:" and given a statement of the form "The teacher should [do what was 

hypothesized as normative], rather than [do what the teacher had done in the 

scenario]." To rate their agreement participants are given a 6-point Likert scale ranging 

from 1 = Strongly Disagree to 6 = Strongly Agree.  

We specified 15 such items including scenarios such as providing a definition different 

than the one given in the textbook, letting a student pursue the consequences of a faulty 

assumption, modifying the usual format of a task to engage students in a mathematical 

practice, etc. Because participants had to respond to scenarios that they could relate to, 

we specified each of the 15 items in general but designed scenarios that adapted that 

general specification to particularities of instruction in Early elementary (grades K-2), 

upper elementary (3-5), middle school (6-8), or high school (9-12). (This paper reports 

high school teachers' data only.) As a rule these scenarios were realized using a set of 

cartoon characters and the Depict software tool that allows us to create storyboards 

using cartoon characters and speech bubbles. The scenarios were then embedded in a 

questionnaire created and administered in the LessonSketch platform 

(www.lessonsketch.org).  

After internal review and edition, we convened a focus group including experienced 

teachers and individuals with strong mathematics background to check whether our 

hypothesized normative actions were seen as normative by members of the profession 

and whether the deviations from those normative actions were seen as attending to an 

obligation to the discipline. After incorporating the group's feedback, the items were 

piloted with the same groups of high school mathematics teachers described above in 

Summer 2013 (n=42) and Fall 2013 (n=46). Since items were exactly the same and 

participants come from the same geographic pool we pooled the samples. In order to fit 

a 1-parameter IRT model to this data, we recoded responses from a 6-point Likert scale 

to a dichotomous scale, using responses 1-3 as 0 and 4-6 as 1. The IRT analysis showed 

good item reliability (.935) and a good range of possible theta scores for participants 
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(-4.71 to 4.73), indicating that the items, as a set, discriminate between participants that 

have more or less of the latent trait being measured. In this case, that latent trait is 

recognition that obligation to the discipline of mathematics can justify actions in a 

mathematics classroom.  

As noted above, while the two instruments, the PR-OB-MATH and the Justifications 

of Actions scenario-based assessment examine teachers' relationship to the 

disciplinary obligation, they operationalize different conceptualizations of it and they 

involve the participants in different activities. It does make sense nevertheless to ask 

whether and how scores in one instrument are related to scores in the other. We found 

however no significant correlation between these scores and no significant correlation 

between either of those scores and years of mathematics teaching experience.  

SIGNIFICANCE AND CONCLUSION 

We have made significant progress toward validating two instruments that can help 

operationalize the notion of professional obligation, which contributes to 

understanding the rationality behind the work of mathematics teaching. The 

importance and usefulness of this work goes beyond increasing capacity to describe, 

explain, and predict instruction; it can also contribute to the development of a 

professional discourse for mathematics teaching. Indeed, mathematics teachers are 

professionals but the discourse on which they can justify their actions sits 

uncomfortably between the individual knowledge and preferences of practitioners and 

the general discourses of academic disciplines such as mathematics or psychology: 

The teaching profession can use the development of a shared professional discourse 

that can better support their practical work. Better understanding how professional 

obligations impact what teachers deem appropriate to do can help in the long run 

develop a shared professional discourse of justification.   

References 

Arzarello, F., Paola, D., Robutti, O., & Sabena, C. (2009). Gestures as semiotic resources in 

the mathematics classroom. Educational Studies in Mathematics, 70(2), 97-109. 

Ball, D. L. (1993). With an eye on the mathematical horizon: Dilemmas of teaching 

elementary school mathematics. The Elementary School Journal, 93(4), 373-397. 

Ball, D., Ferrini-Mundy, J., Kilpatrick, J., Milgram, R. J., Schmid, W., & Schaar, R. (2005). 

Reaching for common ground in K-12 math education. AMS Notices, 52(9), 1055-1058. 

Bauersfeld, H. (1980). Hidden dimensions in the so-called reality of a mathematics 

classroom. Educational Studies in Mathematics, 11(1), 23-41. 

Becker, J. P., & Jacob, B. (2000). The politics of California school mathematics: The 

anti-reform of 1997-99. Phi Delta Kappan, 81(7), 529-537. 

Bishop, A. J., & Whitfield, R. C. (1972). Situations in teaching. New York: McGraw-Hill.  

Bond, T. G., & Fox, C. M. (2007). Applying the Rasch model. London: Psychology Press. 

Cabrera, M., & Nguyen, N. (2001). Situational judgment tests: A review of practice and 

constructs assessed. Intl. Journal of Selection and Assessment, 9(1-2), 103-113. 



Herbst, Dimmel, Erickson, Ko, Kosko 

3 - 280 PME 2014 

Carter, K., Cushing, K., Sabers, D., Stein, P., & Berliner, D. (1988). Expert-novice 

differences in perceiving and processing visual classroom information. Journal of Teacher 

Education, 39(3), 25-31. 

Cohen, D. K., Raudenbush, S. W., & Ball, D. L. (2003). Resources, instruction, and research. 

Educational Evaluation and Policy Analysis, 25(2), 119-142. 

Cooney, T. J. (1985). A beginning teacher's view of problem solving. Journal for Research in 

Mathematics Education, 16(5), 324-336. 

Crocker, L., & Algina, J. (1986). Introduction to classical and modern test theory. NY: Holt. 

Dorans, N. J., Schmitt, A., & Bleistein, C. (1992). The standardization approach to assessing 

comprehensive differential item functioning. Journal of Educational Measurement, 29, 

309-319. 

Herbst, P. (2006). Teaching geometry with problems: Negotiating instructional situations and 

mathematical tasks. Journal for Research in Mathematics Education, 37, 313-347. 

Herbst, P., & Chazan, D. (2012). On the instructional triangle and sources of justification for 

actions in mathematics teaching. ZDM, 44(5), 601-612. 

Karabenick, S. A., Woolley, M., Friedel, J., Ammon, B., Blazeski, J., Bonney, C., … Kelly, 

K. (2007). Cognitive processing of self-report items in educational research: Do they think 

what we mean? Educational Psychologist, 42(3), 139-151. 

Kilpatrick, J. (2012). The new math as an international phenomenon. ZDM, 44(4), 563-571. 

Lampert, M. (1990). When the problem is not the question and the solution is not the answer: 

Mathematical knowing and teaching. Amer. Educational Research Journal, 27(1), 29-63. 

Nachlieli, T., Herbst, P., & González, G. (2009). Seeing a colleague encourage a student to 

make an assumption while proving. Journal for Research in Mathematics Education, 

40(4), 427-459. 

Schoenfeld, A. H. (2010). How we think: A theory of goal-oriented decision making and its 

educational applications. New York: Taylor & Francis. 

Schwab, J. J. (1978). Education and the structure of the disciplines. In I. Westbury & N. 

Wilkof (Eds.), Science, curriculum, and liberal education (pp. 229-272). Chicago: 

University of Chicago Press. 

Shavelson, R. J., Cadwell, J., & Izu, T. (1977). Teachers’ sensitivity to the reliability of 

information in making pedagogical decisions. Amer. Ed. Research Journal, 14(2), 83-97. 

Skott, J. (2009). Contextualising the notion of 'belief enactment'. Journal of Mathematics 

Teacher Education, 12(1), 27-46. 

Stigler, J. W., & Hiebert, J. (1999). The teaching gap. New York: Free Press. 

Weekley, J. A., & Jones, C. (2006). Video‐based situational testing. Personnel Psychology, 

50(1), 25-49. 

Weiss, M., Herbst, P., & Chen, C. (2009). Teachers' perspectives on “authentic mathematics” 

and the two-column proof form. Educational Studies in Mathematics, 70(3), 275-293. 

Wilson, S. M. (2003). California dreaming: Reforming mathematics education. New Haven, 

CT: Yale. 



 

2014. In Oesterle, S., Liljedahl, P., Nicol, C., & Allan, D. (Eds.) Proceedings of the Joint Meeting 3 - 281 

of PME 38 and PME-NA 36,Vol. 3, pp. 281-288. Vancouver, Canada: PME. 

FROM KNOWLEDGE AGENTS TO KNOWLEDGE AGENCY 

Rina Hershkowitz
1
, Michal Tabach

2
, Chris Rasmussen

3
, Tommy Dreyfus

2
 

1
The Weizmann Institute of Science, 

2
Tel Aviv University 

3
San Diego State University 

 

In this report we further develop the notion of knowledge agent and analyse knowledge 

agency in an 8
th
 grade mathematics classroom learning probability. By knowledge 

agency we mean the many ways and variations in which knowledge agents act. We also 

observe the teacher as an orchestrator of the learning process who as such invests 

efforts to create a learning environment that enables students to be active and become 

knowledge agents. In our previous work we have identified mainly a single student who 

acted as knowledge agent. Here we show how four students acted as a group of 

knowledge agents and that knowledge agency may appear in different forms: as one 

student and his followers, as two students, and as group of students.  

INTRODUCTION 

For several years now we have been investigating the mechanism of knowledge shifts 

in mathematics classroom. We combined two approaches/methodologies that are 

usually carried out separately: The Abstraction in Context approach with the RBC+C 

model (Dreyfus, Hershkowitz & Schwarz, in press) and the Documenting Collective 

Activity (DCA) approach with its methodology (Rasmussen & Stephan, 2008). This 

combination revealed that some students functioned as knowledge agents, where a 

knowledge agent is a member in the classroom community who initiates an idea, which 

subsequently is appropriated by other member/s of the classroom community. 

Knowledge agents are active in shifts of knowledge that are downloaded from the 

whole class discussion into a group’s work or uploaded from a group's work to the 

whole class discussion, or stayed horizontally within the whole class discourse or the 

small group discourse. (Hershkowitz, Tabach, Rasmussen & Dreyfus, in press; 

Tabach, Hershkowitz, Rasmussen & Dreyfus, 2014). We refer the reader to these 

references for descriptions of the two approaches/methodologies. 

In the present research report we focus on empirical examples of knowledge agency in 

a mathematics classroom learning probability. By knowledge agency we mean the 

many ways and variations in which knowledge agents act. We also observe the teacher 

as an orchestrator of the learning process who as such invests efforts to create a 

learning environment that enables students to be active and become knowledge agents. 

Thus, our study is aimed at expanding the idea of knowledge agent to knowledge 

agency based on an empirical bottom up approach. 

THEORETICAL FRAMEWORK 

Identifying and understanding the processes governing shifts of knowledge in inquiry 

mathematics classrooms is a big challenge (Saxe et al., 2009). Hence, questions 
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regarding the ways that knowledge evolves and moves between and within individuals, 

groups and the whole class community became very important. These questions are 

linked to the construct of knowledge agency. 

Muller, Yankelewitz & Maher (2012) characterize agency in the classroom in the sense 

of the interplay of mathematical ideas in the mathematics environment (p. 373). Other 

researchers take a more explicit stand, where agency is considered mainly as taking the 

initiative (Pickering, 1995; Wagner 2004), when one or more students create their own 

mathematical idea or extend an established idea. 

Our view regarding knowledge agency in the classroom is longitudinal. It starts from 

focusing on the student/s who is/are the first to raise a new and relevant mathematical 

idea when constructing new knowledge. They are knowledge agents for us only if 

other student/s in the class appropriate this knowledge and use it, that is if knowledge 

shifts are actualized.  

The teacher’s role in relation to knowledge shifts, knowledge agents and knowledge 

agency as a whole in an inquiry classroom is quite delicate. She orchestrates the whole 

process of learning, but without directly acting as a knowledge agent. Her task is to 

encourage students to act as knowledge agents within the learning process. Our lens on 

knowledge agency therefore focuses on this delicate role of the teacher. 

THE STUDY 

The data for this study were collected by video recording in an 8
th

 grade class engaged 

in learning probability. The camera was focused either on the whole class discussion or 

on a focus group. A unit consisting of a sequence of problem situations was carefully 

designed to offer opportunities for constructing and consolidating knowledge and 

practices in classroom. The unit included ten lessons. 

The present paper focuses on lesson 8 of the unit. During lesson 4, the chance bar as a 

tool for describing probability in 1-dimensional spaces was introduced and used. 

Lesson 8, like many of the other lessons, started with a whole class discussion (WCD) 

followed by small group work, during which we followed the work of a focus group 

(FG). In the WCD, the teacher initiated a discussion on the Arrows Problem (see 

below), which dealt with a 2 dimensional sample space with un-equal probabilities, 

represented by a square area model (two orthogonal chance bars).  

The Arrows Problem 

Ora and Aya each shoot one arrow aimed at the target. 

a. The probability of Ora hitting the target is 0.3. 

Mark this approximately on the chance bar. 

b. The probability of Aya hitting the target is 0.5. Mark this approximately on the 

chance bar. 

c. Let us draw a square using both chance bars. (The length of the square’s side 

should therefore be 1.) [An empty square was provided.] 

Ora 

Aya 
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A
y
a 

Ora 

d. Use your marks on the chance bars to divide the square approximately according 

to the girls’ chances of hitting or not hitting the target.  

e. Within each of the four rectangles created, write down  

what its area expresses.  

f. What is the area of the entire square? 

g. Inside each rectangle, write down its area. 

h. What is the probability of both girls hitting the target? 

i. Color a rectangle corresponding to Oar's chances of hitting  

the target.  

What is the area of this rectangle? 

j. What is the probability of at least one of them hitting the target? Color the 

appropriate area. 

A priori analysis of the Arrows Problem  

The following Knowledge Elements (KEs) were intended to be constructed while 

engaging in solving the Arrows Problem.  

Es – Building a square model for the probabilities of a given 2-dimensional sample 

space problem. 

Em – Understanding the meaning of a rectangle in the square model as representing 

the (two dimensional) event. 

Ep – (event probability) The rectangle measure (area) equals the probability of the 

event represented by it according to Em. 

Ec – The whole process can be checked by summing all probabilities to one (100%). 

These KEs have a hierarchical structure. Em cannot be achieved without Es, and Ep 

cannot be understood without constructing Em. Ec is built on the previous three. 

ANALYSIS AND FINDINGS 

The lesson included a WCD, followed by FG work. The WCD was divided into 4 

episodes, presented and analysed below. Notation: T – Teacher, S(s) – Student(s). 

Episode 1: Chance bar for one dimensional sample space (1-7) 

1  T: We have this: 'Ora and Aya shoot an arrow at a target. … The probability 

that Ora will hit the target is 0.3. Mark approximately on the chance bar'. 

What is the question? What to mark approximately on the chance bar? 

2 T:  Remind me what is there at the ends of the chance bar? Orly, what is there 

at its ends? 

3 Orly:  0 and 1  

4   T: 0 and 1. Now we would like to mark Ora, whose chance to hit the target is 

0.3. Would you like to come and mark? You remember the issue of chance 

bar? [S marks on the chance bar.] He marked the chance; do you think he is 

correct? 

1 

3 4 

2 



Hershkowitz, Tabach, Rasmussen, Dreyfus 

3 - 284 PME 2014 

5 Ss:  Yes! 

6 T:  Good. Now the probability that Aya will hit is 0.5. Where to mark Aya?  

7   Ss: In the middle! 

The teacher reads the problem and encourages the students to be involved (1-2). It 

seems that the idea of marking the probability of an event on a chance bar, which was 

introduced in lesson 4, functions as if shared in the class (see Hershkowitz et al., in 

press). The above short episode provides evidence that presenting the probability of a 

simple event on a chance bar has been consolidated by at least some students. 

Episode 2: Building a square model (8-27) 

8 T:  0.5 is in the middle. So this is Aya and this is Ora [pointing to chance bars]. 

Now we will draw a square using the two chance bars. So the length of the 

side of the square is 1. Why does the length of the square equal 1? 

9 S:  Because this is the length of the chance bar.  

10 T: Because this is the length of the chance bar. The chance bar was from 0 to 1, 

right? So we turn one of the lines to build a square from it. I will turn Aya’s 

line and put it here. 'Divide the square approximately according to the 

chance, the probability of the girls to hit or miss the target'. Does anybody 

understand what this means? Yes? 

11 Mike: We divide the square into 4 parts. 

12 T:  Into 4 parts according to the marks. Aya was marked on half, so we will 

mark it here. Ora we had 0.3, so we mark it here. There, we got 4 regions. 

Now let us see if we understand what each region means? For example, we 

have here 4 regions, lets name them: this is region 1, 2, 3, and 4. What does 

region 1 mean? What does it mean? 

13 Nitzan: Region 1 is that…[silence]   

14 T: Is there another region, one whose meaning you know? 

15 Nitzan: The regions, this is divided to half and this a third. 

16 T: A bit less than a third, right. What does each region describe? What does 

region 1 describe, Noam? 

17 Noam:  That Ora and Aya both hit the target. 

18 T:  It says they both hit. Let’s see why it says they both hit. Because here from 

0 to a half, this part means Aya hits and this that she missed. OK, if you 

shoot to the target in Aya’s case, the chance that it will hit the target is half. 

And the same that it will not hit, it is also half. So the chance bar divides 

into: Yes, will hit the target and No, will not hit the target. OK? The same 

for Ora, only for her the chance to hit the target is smaller, she might be a 

less good shooter. So the part here says that Ora hit and there is a larger 

chance that Ora missed. Is this clear? 

19 Liana: So what is region 3? 
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20 T:  What is region 3, good question, who can answer? Who will tell us what is 

region 3? Yes, Alon. 

21 Alon:  That neither will hit. 

22 T:  3 says they both miss, this can also happen. What does region 2 say? 

23 S: That only Ora hit. 

24 T:  This is a region that only Ora hit. What will region 4 say? 

25 S: That Aya hit. 

26 T: That only Aya hit. Is it clear what each region means? Is it clear to you? 

27 Ss:  Yes! 

The teacher leads a WCD for constructing Es, the idea of the Square Model. This 

episode has a 'procedural flavour', but at the same time the teacher "floods" her 

students with questions concerning the meaning of the model as a whole and its partial 

regions in particular. The teacher is aiming at constructing Es and Em. Initially, the 

meaning of each partial region is not clear to the students, as can be seen from Nitzan 

(13, 15), a student who already understands the meaning of the chance bar for a one 

dimensional sample space, but cannot yet combine two chance bars together to create a 

meaningful sample space in two dimensions. Various students contribute to the 

construction of the meaning of the rectangles: Noam (17), Alon (21) and two 

additional students (23, 25). As a group, these four students potentially act as 

knowledge agents by providing their fellow students an opportunity to share with them 

the knowledge element Em. We say potentially as we do not yet have evidence that 

other students followed them. Liana in 19 shows interest in the meaning of region 3, 

and perhaps she is the first “follower”. 

The way the teacher is orchestrating the discussion is similar to what van Zee and 

Minstrell (1997) characterized as tossing, meaning that she takes students’ questions 

and "tosses" them back to the class (e.g., 19-20). By doing so, she is moving the 

responsibility of meaning making and hence learning back to her students. 

Episode 3: Building Ep (28 – 61)  

28 T:  OK. Now how do I know, I am looking at question h. 'What is the 

probability that both hit the target?' Both hit. Which rectangle is it? 

29 Ss:  Rectangle 1. 

30 T: Rectangle 1. How from this, from this drawing can I answer the question: 

'What is the probability they both hit the target'? Adi? 

31 Adi:  I think that… 

32 T:  I prefer that you will tell me a computation and not a result, by the way. 

33 Adi:  Ah… 

34 T: Does this help you? 

35 Adi:  No. 

36 T: No. Ayelet? 
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37 Ayelet: To calculate the area of the rectangle. 

38 T:  Ayelet says that she would like to know the area of this rectangle, in which 

they both hit. How can we find the area of this rectangle? 

39 Ss:  Side times side. 

40 T:  Side times side, what is the length of this side?  Half. The event they both 

hit will be half times what? 
… 
47 Guy: In fact the area that only Ora hit is also 15%, because these are the same 

measures, 0.5 and 0.3. 

48 T: OK, you say, only Ora hit, it is easy to calculate because accidentally, as 

Aya has 0.5 chance to hit, at the same time she has 0.5 to miss. The 

calculation is the same calculation, so I need to calculate something which I 

already know the answer to. And if we would like to calculate others, how 

are we going to do it? 
… 
56 T: Can someone say without calculating or with calculating in a different way 

what will be here? [Points to the area that was not yet computed]. 

57 Itamar: Both miss? 

58 T: Yes, both miss 

59 Itamar: Also 35%. 

60 T:  Because? 

61 Itamar: Because it is the same size. 

Here the episode continues with the teacher leading the emergence of Ep (identifying 

the measure of each partial area with the probability of the event it represents). The 

discussion unfolds so that first the meaning is constructed (37-40), and then the 

procedural knowledge of computing the areas (not presented). The teacher was well 

aware of students' lack of procedural knowledge regarding multiplication of decimal 

numbers. She also represented the area by percentages, perhaps trying to create an 

additional scaffold for some students.  

The discussion between Guy and the teacher (46-47) provides evidence that Guy 

constructed Em and Ep. It also provides evidence that other students acted as 

knowledge agents concerning Em and Ep. At the same time, he is the first student to 

express the meaning of the links between the two knowledge elements.  

The discussion regarding the probability of each of the events is at a procedural level. 

Also, the calculation of the probability of each event is done more efficiently and 

quickly than the previous one. Specifically, Itamar provides evidence for both 

knowledge elements – Em and Ep. 

Episode 4: critical thinking, control (62- 66) 

62 T:  Right, because it is the same size. Now how can we check that we don’t 

have a mistake? 

63 Yael: 15% + 15% + 35% + 35% = 100% 
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64 T:  Why does it have to be 100% when adding all these? 

65 Itamar: Because 100% is the whole. 

66 T:  Because this is the whole, and here we describe all 4 cases that can happen 

when two people each shot an arrow. Do you understand this task? 

Including those who did not understand it before? 

Here the teacher initiates critical thinking, in order to check the correctness of the 

probability calculations done. Yael (63) provides data (the probability of each of the 

four events) and a claim (the sum of the probabilities is equal to 100%). Itamar (65) 

provides the warrant. In this episode, Yael functions as knowledge agent and Itamar 

follows her by completing the argument. Together they act as potential knowledge 

agents for Ec. We do not have any evidence that Yael and Itamar have followers, nor 

that anyone objects to this argument.  

During the following FG discussion, Yael, Noam and Rachel worked on similar 

problems. In their discussion we have identified traces of knowledge agency, that is 

their discussion included elements from the WCD. 

DISCUSSION 

Our study aimed at expanding the idea of knowledge agent to knowledge agency based 

on an empirical bottom up approach. The combined (RBC and DCA) analytic 

approach allowed us to document the evolution and the shifts of mathematical ideas in 

the classroom, and the main roles individuals play in these processes. As defined 

above, a knowledge agent is a student who, according to researcher observations, first 

initiates an idea within one classroom setting, which later is appropriated by others in 

the same or another classroom setting. This means that in addition to the students who 

act as knowledge agents, there are students who are qualified enough or have adequate 

ability to be inspired by the new idea and to appropriate it. We call the raising of a new 

idea and its appropriation by another student a shift of knowledge.  

In our previous work we have identified mainly single students who acted as 

knowledge agents. Here, in Episode 2, we have four students who acted as a group of 

knowledge agents, together putting forward Em (the meaning of each rectangular part 

of the square model). In Episode 3, we have evidence (29) that other students followed 

this idea, hence we can say that the four students acted as knowledge agents. We can 

see that knowledge agency may appear in different forms: as one student and his 

followers, as two students (Hershkowitz at el., in press), and as a group of students. 

Later on in this lesson during FG work we have evidence of additional followers. All 

the above evidence shows mechanisms of knowledge agency in the classroom, which 

initiates knowledge shifts in the class.  

The role of the teacher in any classroom includes responsibility for the knowledge 

learned. In an inquiry classroom, this responsibility is expressed in an indirect way, 

meaning that the teacher’s task is to create a learning environment in which knowledge 

agency may flourish. The teacher in this lesson created such an environment by the 

tasks and by the way she orchestrated the whole class discussion and the lesson as a 
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whole. Particularly, in this lesson the knowledge includes procedural processes 

concerning the use of the area model for calculating the probabilities of two 

dimensional sample space events. She also succeeded to include critical thinking 

(Episode 4), and encouraged knowledge agency (episodes 2-3-4).   

In the future, we intend to further elaborate on knowledge agency and knowledge shifts 

in inquiry classrooms, as well as on the role of the teacher in building and sustaining a 

learning environment in which knowledge agency and knowledge shifts are a powerful 

and integral part of the learning activity.  
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THE SPACE BETWEEN THE UNKNOWN AND A VARIABLE 
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The meaning given to letters is significant for students’ ability to be successful with 

algebraic tasks. Recent studies have noted that even when students have a sense of 

generalised number, they often have a natural number bias in the values they think a 

letter can take. This study analyses interviews from 13 students across two schools to 

explore the meaning they had for letters. The responses supported the idea that some 

students have a natural number bias and also that the notion of a letter representing a 

fraction is problematic. In addition, three other factors emerged which affected the 

meaning given to a letter: what was mentally stressed; the desire to avoid “messy” 

calculations; and viewing an equation as an example of a wider class of equations. 

BACKGROUND 

Several studies have identified difficulties students have with algebra (Herscovics, 

1989; Kieran, 1981; Küchemann, 1981). These difficulties relate to a number of 

factors, including the way in which the equals sign is viewed (Sáenz-Ludlow & 

Walgamuth, 1998), the need to view an expression both as a process to carry out and as 

an object in its own right (Sfard, 1991) and the parsing of expressions (Gunnatsson, 

Hernell, & Sönnerhed, 2012; MacGregor & Stacey, 1997). Another difficulty centres 

on the meaning given to a letter within an expression. Küchemann’s (1981) seminal 

research identified a hierarchy of six ways in which letters were used by students: 

Letter evaluated, Letter not used, Letter as object, Letter as specific unknown, Letter as 

generalised number, and Letter as variable. A good understanding of the concept of a 

variable can be core to future success within complex algebraic problems (Trigueros, 

Ursini, & Escandón, 2012), so students’ understanding of letters, or literal symbols, is 

significant. 

The meaning placed given to a literal symbol has changed over time within the history 

of mathematics (Usiskin, 1988). Ely and Adams (2012) and Christou and Vosniadou 

(2012) suggest that initially literal symbols only stood for natural numbers and only 

later was their meaning widened to become the symbolic world of real numbers. 

Usiskin (1988) suggests that not only has the meaning of a literal symbol changed over 

the course of history but that it can change according to your conception of what 

algebra really is. 

Recent studies have shown that many students have a natural number bias when 

considering which numbers a letter might represent (Christou & Vosniadou, 2012; 

Vamvakoussi, Van Dooren, & Verschaffel, 2012).  This suggests a complex journey 

between having a sense of, in Küchemann’s (1981) terms, letter as generalised number 

and letter as variable. 
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THE STUDY 

This study looked at the meaning students gave to algebraic expressions and equations, 

including the letters which appeared in them. In all 13 students were interviewed, aged 

between 12-13 years old, from two non-selective secondary schools in the UK (six 

from an all-girls school, S1, and seven from a mixed sex school, S2). The questions 

consisted of presenting students with an expression or an equation and asking them to 

describe what this meant. With some questions the focus was on the meaning of the 

letter, or letters, which appeared in that expression or equation. Students were not 

explicitly asked to solve equations as this might have influenced the meaning they gave 

for a letter. The questions were presented in two different contexts: the first was simply 

on a piece of paper, and the second was within a computer environment called Grid 

Algebra which had been used in both schools. Similar questions were presented in each 

of these environments at different points within the interview. Except for two 

occasions, there were no differences between the responses students gave to the paper 

environment compared with the computer environment and as a consequence this is 

not discussed further in this paper (more detail about the software can be found in 

Hewitt, 2012). The style of the interviews was semi-structured in that all students were 

presented with the same questions with additional questions used as appropriate to 

probe further into the meanings they had. A framework for the interview questions was 

influenced by Knuth et al. (2005) where an expression or equation was presented and 

students asked for the meaning they gave to the letter. Follow up questions were guided 

by the literature on natural number bias (Christou & Vosniadou, 2012) where they had 

asked students to indicate numbers which could be substituted for a letter. In my case I 

changed this and offered specific numbers: one larger natural number, one negative 

number, one decimal and one fraction. In addition, I also presented some expressions 

and equations and asked what the expression/equation meant. This was to gauge what 

sense they had of the expression as a whole, whether they interpreted the order of 

operations correctly and see whether, in the case of equations, they would naturally try 

to solve the equation without a prompt. Although not the focus of this paper, in general 

their understanding of order of operations was good. 

The interviews lasted between 20-30 minutes and were audio recorded. They were all 

transcribed and initial analysis was carried out on whether there were significant 

differences between the responses to similar questions within the two environments. 

This was to see whether learning had remained context dependant or whether students 

were able to transfer their learning from the computer environment to the traditional 

paper environment. As reported above, students invariably responded in a similar way 

to both environments. Additional analysis was then carried out with a Grounded 

Theory approach (Strauss & Corbin, 1990) focused on the meanings students gave to 

the letters involved in expressions and equations. More emphasis was given in the 

analysis to this than whether their arithmetic, for example, was accurate or not. Thus if 

they showed an awareness that they needed to carry out inverse operations to solve an 

equation, and that this meant the letter represented one particular value, then this was 
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considered to be of more interest than whether they did the inverse operations in the 

correct order or whether they made an arithmetic error. Indeed, at times during the 

interview I offered to be a human calculator for the odd student who was struggling 

with arithmetic calculations. Throughout this analysis, a number of themes developed 

and sections of the transcripts were coded accordingly. 

RESULTS 

Some students showed a clear difference between their meaning of a letter within an 

expression, such as 4 2x  , and an equation such as 2( 3) 14x   . For example, 

Joanna (S1, pseudonyms used for all students) said in relation to the expression that “it 

[x] can mean any number in the world.  It’s kind of the substitution for a number and 

you can put any number and replace x”. In relation to the equation above, she said, after 

solving the equation, that “x has to be four because if you put any other number in then 

it wouldn’t equal 14.” Sharon (S1) also talked about this same equation and when 

asked whether x could be any number she said “Yeah, as long as it makes 14” and 

thought that there could be two or three ways of making 14. She showed awareness that 

the equation is essentially a statement which says that these calculations have to equal 

14. It is another awareness altogether that with such a linear equation there would only 

be one such value which would achieve this. She still had a sense that x stood for a 

determined value or values, and that there was not free choice as to the value x could 

take. 

Sylvia (S2) said the following when talking about the expression 4 2x  : “It means 

any number, for an equation, for anything. Like if you don’t know what you’ve got, 

how much a specific number is, you put a letter for it”. In her case the language shifts 

from “any number” to a “specific number”. Her use of the word “equation” also raised 

questions about how she was viewing this expression. With another student, Myra 

(S1), she was quite unsure whether x could take any other value than three in the 

equation 4 2 14x   , saying “I’m not sure.  I don’t think so. I’m not sure, I don’t think 

so. Well it could be something like...no, I’m not sure. I don’t know.” 

The interviews revealed some interesting thinking with regard to how a letter was 

viewed and three themes emerged: What does ‘any number’ mean?; Seeing a class of 

possible equations; and Temporal viewpoints. 

What does ‘any number’ mean? 

Chris (S2) felt that x could be any number with the expression 2( 3)x  . However, I 

continued by asking him whether it could be 562 and he replied “no”. Upon further 

questioning it appeared that he felt this was too big a number. 

Matt (S2) talked about the meaning of f in 
6

2 2
2

f  
 

 
 and said “f is like any number.  

So, it could be like 1, 2, 3 or 4, 5.” This list was a list of natural numbers and it could 

have been just a convenient list to offer as examples or it could have been more about 

him feeling that f had to be a natural number. This issue appeared in other expressions 
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put in front of him where he would start off saying that the letter could be any number 

but end up restricting the possibilities to natural numbers. For example, with 4 2x   he 

said initially that x could be any number. However, when asked whether it could be 532 

he said “Probably yeah. But it’ll be an odd question.” He was uncertain whether it 

could be negative five and felt it couldn’t be 1.8. He ended up feeling that it had to be a 

“whole number”. This was the case when he considered 
3( 2)

1
6

n 
  as well, n had to 

be a whole number. 

Myra (S1) started off saying x could be “any number... it’s just any sort of random 

number” when talking about 4 2x  . However, she then continued to say that it had to 

be an even number “because it doesn’t really work as well with odd numbers. It’s got to 

be even.” Her reason for this was because it was easier to divide and times by even 

numbers than by odd numbers. This sense of something becoming more difficult or 

‘messy’ influenced some of the thinking as to what value a letter could take.  So, 

although eventually agreeing that 2.8 could work she talked about it not working “as 

well as” other numbers because it was a decimal. 

Sharon (S1) felt that although the letters in 
4

6k p
t

 
  

 
 can take different values “it 

has to like make sense, if it doesn’t it’s just going to be wrong.” So this, in his view, 

restricted the values to not allowing “weird” [his word] numbers. 

With expressions, where the letter represented a variable, the letter taking on the value 

of a half seemed to be particularly problematic for seven of the 13 students 

interviewed. For most of these seven, they were quite happy that a letter could be 562 

or -5 or even 1.8. However, a half was another matter. Four students said “no” 

immediately and the other three students hesitated before replying or indicated that 

they were uncertain. For example, Sarah (S2) was quite happy that x in 4 2x   could 

be 562, -5 or 1.8 but when asked about a half she said “probably”. When asked whether 

that meant probably yes or probably no, she said “no”. 

Abigail (S2) also felt that x could not be a half in 2( 3)x   “because that’s put as a like 

one dash two instead, but if it was half of like in numbers” then it would be fine. The 

notational form of a half as 
1

2
 seemed to be problematic as opposed to the decimal 

form of 0.5. Even one the students, Romana (S1), who responded positively quite 

quickly to the possibility of the letter being a half, still re-phrased my wording of “a 

half” when agreeing: “point five, yeah”. 

Seeing a class of possible equations 

With some of the interview questions, I presented an expression, such as 2( 3)x  , 

asking them about what the letter x means, followed by the same expression but with it 

equal to a numerical value, such as 2( 3) 14x   . Some of the students’ responses to 
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the equation indicated that they were taking this equation as just an example of 

equations in general, rather than treating this as a particular case. Matt (S2) felt that the 

situation regarding what x meant had not changed going from the expression to the 

equation “because x plus 3 would be x plus 3 and then you do x times 2.  So, yeah it’d 

be the same but the answer would just be different.” Although his statement about the 

operations was not quite correct, the relevant point here was that he was seeing that x 

could still be any number, it was just that the 14 at the end would have to be a different 

number. So, he saw the 14 as an example of ‘an answer’ rather than it being a particular 

requirement that 2( 3)x   must be 14. Sarah (S2) also seemed to be thinking the same 

when she responded to being asked whether x could be 562. She said “it depends” and 

on further questioning it became clear that it depended upon what number was placed 

after the equals sign. 

Myra (S1) seemed to consider keeping the ‘answer’ of 14 the same with 4 2 14x    

but explored changing the operations carried out on x in order that x could take on 

different values whilst still ending up with 14. She started off saying that x had to be 

three but then decided it could be a different number completely if you could work out 

the operations to make it equal 14 in the end. She felt that “if you worked it out hard 

enough then I suppose you could do it [make x have a different value]”. 

Temporal viewpoints 

One student, Rebecca (S1), considered which values x could take with the equation 

2( 3) 14x   . After much discussion about what x could stand for, Rebecca gave a 

clear articulation which summed up her thoughts: “When you look at it, it’s like, it 

could be any number. You don’t know, you can guess. And then when you work it out 

it would be one certain number.” Here she gave me a sense that her answer to my 

question would change according to her state of mind at that particular moment in time. 

Initially, it could be any number as she had not started working it out yet. However, 

once it had been worked out, it was one particular number. 

DISCUSSION 

There were a few students who felt that the letter within an expression could stand for 

“any number” and so appeared to have a sense of generalised number (Küchemann, 

1981) but then revealed that by “any number” they meant natural numbers. This fits in 

with the natural number bias identified by Christou and Vosniadou (2012) and 

Vamvakoussi et al. (2012). However, students also talked about not including certain 

numbers due it becoming “messy” or “not working so well”. This seemed to indicate 

that it was not only a matter of the letter itself being a natural number but that, 

whichever value the letter took, the ensuing calculations should involve only natural 

numbers. This led to more restrictive domains for the possible values of the letter. For 

example, Myra wanted the letter not to be an odd number as division was involved and 

she felt division was “easier” with even numbers. 
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Many of the students felt that the letter could not represent 
1

2
 but some felt that it could 

represent 0.5. This raised the issue of how they viewed fractions. Stafylidou and 

Vosniadou  (2004) point out that the development of students’ concept of fraction is 

different to that for natural numbers due to its particular notation. Students have 

difficulty relating the two numbers involved with the numerator and denominator and 

as such they “think of fractions as pairs of whole numbers and not as single numbers” 

(Christou & Vosniadou, 2012, p. 515). This might account for why the students 

rejected “a half” as a possible value for x since they might have viewed the fractional 

form of a half as not a single number. 

Three of the students saw a particular equation as a representation of a class of 

equations, where either “the answer” (the number to the right of the equals sign in these 

cases) could be changed, or the operations carried out on the letter could be changed. 

By considering a class of equations they felt that x could take on different values. 

Lastly, Rebecca’s response to 2( 3) 14x    gave a sense of her state of mind at 

particular moments in time. On first seeing the equation, perhaps before taking on 

board the particular numbers and operations involved, she had an initial feeling that 

she did not know what the letter was. So, at that moment in time, x could be anything. 

there was a sense of the potential held within the letter x. However, at a later point in 

time, when she had been able to note the particular operations involved, she was able to 

establish the particular value of the letter. As a consequence the potential (“any 

number”) shifts into the actual (“a particular number”). Bardini et al. (2005, p. 129, 

their emphasis) commented that for some students "it [a variable] is merely a 

temporally indeterminate number whose fate is to become determinate at a certain 

point." My understanding of this comment is that more information may be provided in 

the future which will determine the value of a letter. However, in Rebecca’s case it was 

not a matter of more information arriving but that she shifted her attention onto parts of 

the information which was already currently available (i.e. the particular operations). 

Thus the shift from temporally indeterminate number to determinate was one which 

reflected her thoughts at particular moments in time and was determined by what she 

chose to stress at that moment. 

The responses here not only support some earlier studies regarding natural number bias 

and the reluctance to consider fractions, but also offer three other ways in which 

students’ thinking can affect the way letters are viewed in the space between unknown 

and variable. These are: firstly, how the meaning for a letter can be a temporal matter 

reflecting a state of mind at a particular point in time; secondly, how the wish to avoid 

“messy” calculations can restrict the domain even further than that of natural numbers; 

and thirdly, the meaning for a letter can be affected by seeing an equation as an 

example of a wider class of equations where the role of a particular letter is considered 

across the class rather than purely within the particular equation in view. 
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STUDENTS’ UNDERSTANDING OF 

SQUARE NUMBERS AND SQUARE ROOTS 

Erica J. A. Hiebert 

Simon Fraser University & Surrey School District SD36 

 

Despite their apparent simplicity, the concepts of square numbers and square roots are 

problematic for high school students. I inquired into students' understanding of these 

concepts, focusing on obstacles that students face while attempting to solve square 

number problems. The study followed a modified analytic induction methodology that 

included a written questionnaire administered to 51 grade 11 students and follow up 

clinical interviews with 9 students.  The study revealed significant obstacles relating to 

the representation of square numbers and confusion of concepts including both weak 

distinction between the concepts of square numbers and square roots and inconsistent 

evoking of their concept images.  

INTRODUCTION AND FOCUS 

Some mathematical concepts appear too simple to cause confusion for students. These 

concepts are taught as if to understand them only requires being informed of their 

pertinent properties and from then on no confusion should be possible. Square numbers 

are such a concept. What could be simpler than arranging dots into a square shape? 

And yet students do have a variety of ways of comprehending square numbers, and 

square numbers are not quite as simple as might appear at first glance.  

In this study I investigate the research question: “What obstacles do students encounter 

when attempting to solve problems with square numbers and square roots? In 

particular to what degree does: confusion of concepts, and representation of square 

numbers and square roots, hamper students attempting to solve problems?” 

Research that focuses on students’ learning and understanding of ‘simple’ square 

numbers and square roots is slim. However, Gough (2007) does discuss the difficulties 

of teaching square roots and argues that in the case of square roots, the vocabulary can 

be confusing and detrimental to student understanding. ‘Square number’ and ‘square 

root’ are similar sounding phrases that evoke images from our everyday English 

language use of those words and while ‘square number’ may yield a useful image, 

‘square root’ does not convey much meaning in and of itself. These two phrases are 

very similar and may hinder students when they are attempting to distinguish between 

the two. The role of definitions has not been studied with particular respect to square 

numbers or square roots, but the similarity of the terms square number and square root 

may be an obstacle for students.  
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THEORETICAL FRAMEWORK 

The data analysis was performed through the lens of the theoretical constructs of 

concept image and concept definition, and opaque and transparent representation. Each 

construct is described in general and with particular emphasis on square numbers and 

square roots.  

Concept Image and Concept Definition 

Tall and Vinner (1981) were the first to describe concept image and concept definition 

using these terms; they describe concept image as “the total cognitive structure that is 

associated with the concept, which includes all the mental pictures and associated 

properties and processes. It is built up over the years through experiences of all kinds, 

changing as the individual meets new stimuli and matures” (p. 152). They also describe 

concept definition as “a form of words used to specify that concept. It may be learnt by 

an individual in a rote fashion or more meaningfully learnt and related to a greater or 

lesser degree to the concept as a whole” (p. 152). As an individual’s concept image is 

built up of many parts and is developed through experience, some portions of the 

concept image may be incorrect or incomplete, and may conflict with that person’s 

concept definition.   

I looked for examples of students demonstrating a robust and multi-dimensional 

concept image and examples of students demonstrating a shallow concept image of 

square numbers and square roots. Examples of incomplete concept images of square 

numbers include statements that ‘anything squared’ is a square number or that ‘perfect 

cubes cannot be perfect squares’. A more complete concept image would correctly 

limit the domain to integers as ‘an integer times itself’.  

Opaque and Transparent Representation 

A number may be represented in numerous ways. Representations may be referred to 

as opaque or transparent; representations that highlight a desired property of a number 

may be said to be transparent to that property, while representations that obscure a 

property are said to be opaque to that property (Lesh, Behr & Post, 1999). Zazkis and 

Gadowsky (2001) assert that all representations are opaque to some features and 

transparent to others. With respect to square numbers and square roots, the 

representation of an expression may be more or less opaque to the feature of 

‘squareness’. 642 is an example of an expression that is transparent with respect to 

squareness. Here the exponent ‘2’ clearly shows that this number is a square number 

based on the definition and common description of a square. The expression 84  is more 

opaque and less transparent than the first example, but the squareness is still somewhat 

evident if only attending to the exponent in the expression. 163 is now very opaque as 

the exponent shows no sign of the expression being a square number and the square 

number must be found by attending to the base of the expression to discover the square. 

Note that all of these are different representations of the number 4096, which is now 

very opaque to the squareness. 
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The role of representation dealing with numbers, rather than algebraic or geometric or 

other mathematical representations, has been well documented with respect to prime 

numbers (Zazkis & Liljedahl, 2004; Zazkis, 2005), irrational numbers, (Zazkis & 

Sirotic, 2004; Zazkis, 2005), divisibility and prime factorization (Zazkis & Campbell, 

1996; Zazkis, 2008), but not with square numbers or square roots.  

The lack of transparent representation has been found to be hindrance to students when 

solving problems or attempting to generate examples. However, if students do not have 

a clear understanding of the structure of a problem or expression, a transparent 

representation will not guarantee success.  Zazkis and Sirotic (2004) found that only 

60% of respondents gave the correct response to the question of whether 53/83 was 

rational or irrational after performing the division on a calculator. Although the 

representation of the number was transparent to rationality a large proportion of 

respondents did not attend to this representational feature. These students were not 

attending to the rational expression, but were focused instead on the partial decimal 

representation shown by their calculators. While studying divisibility, Zazkis and 

Campbell (1996) found that students must have sufficient understanding of the 

multiplicative structure in order to attend to the transparent features of an analogous 

problem.  

METHODOLOGY 

This study followed the methodology of modified analytic induction, as laid out by 

Bogdan and Biklen (1998). Modified analytic induction requires a phenomenon of 

interest and a working hypothesis or theory. One develops a loose descriptive theory, 

collects data and then recursively rewrites and modifies both the theory and even the 

phenomenon of interest to fit the new data. Modified analytic induction uses 

purposeful sampling in order to choose subjects that will facilitate the expansion of the 

developing theory.  

In this study, the phenomenon of interest was students’ understanding of square 

numbers and square roots, and in particular the obstacles that students encounter when 

attempting to solve problems with square numbers and square roots. The working 

theory that addresses these questions began as an assumption that the opaque 

representation of the expression would be an obstacle in students’ ability to solve 

square number and square root problems.  

The Participants 

The participants in this study were 51 grade 11 students. The students ranged greatly in 

ability; the group included some of the most mathematically talented students in the 

school as well as students who were much less capable. Pre-calculus students were 

chosen for this study in order to capture students with both a great deal of familiarity 

with square numbers and a wide range of knowledge and ability.  
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The Instruments 

Two instruments were used; a written questionnaire, completed by all participants and 

a follow-up semi-structured clinical interview designed to gain more insight into 

student responses from the questionnaire, completed by nine participants. The nine 

students who participated in the clinical interviews all had a grade of ‘A’ or ‘B’ in both 

their current mathematics course as well as their previous mathematics course. These 

students were selected through purposeful sampling by choosing students for the 

interview based on their willingness to explain their reasoning on the questionnaire 

responses and their willingness to attempt the problems in good faith. 

The Tasks 

The questionnaire tasks were designed to investigate students’ capacity to solve 

problems that moved from more transparent representations of square numbers 

through more opaque representations of square numbers. Two sample tasks are 

“Consider 36
2
, 36

3
, 36

4
, 36

5
, 36

6
, 36

7
. Circle the perfect squares.” and “How many 

perfect squares are there between 100 and 10,000?” 

The clinical interviews were designed to gather additional information of a different 

nature than that gained from the questionnaire. While the questionnaire was designed 

to indicate which questions students had difficulty answering, the clinical interviews 

were designed to explore why students had difficulty answering a particular question. 

RESULTS  

The questionnaire revealed that students have a great deal of difficulty with opaque 

representations of square numbers. The sample task “Consider 36
2
, 36

3
, 36

4
, 36

5
, 36

6
, 

36
7
. Circle the perfect squares.” was only answered correctly by two of 51 participants, 

while 19 students only circled 362 , 17 circled 362 , 364  and 636 , and 3 participants 

circled only 362  and 436 . Of the 51 participants, 39 or 76%, did not attend to the base 

of the expressions and were hampered by the opaque representation. 

Concept Definition Confusion 

Over the course of the study students used many terms, some interchangeably, and did 

not seem to have a strong sense of their definitions. During the clinical interviews I 

used the terms square number, perfect square and square root; the students used these 

terms as well as additional terms such as non-perfect square, perfect number and 

others. The meanings given by each student to the terms in use were often inconsistent, 

unclear or incorrect. These meanings were often only implicit or assumed, from the 

context, as participants rarely offered any definitions. The concept definitions that 

students had were not universal and did not seem to be well defined. 

A prime example of a clear confusion between concept definitions can be found in my 

interview with Jack. Jack was an exceptionally able student who answered the majority 

of questions on the questionnaire and during the interview correctly and swiftly, but he 

often needed to ask for clarification if I wanted a perfect square or the square root if I 
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used the term square number. At the end of the interview I asked explicitly for his 

definition of a square number, as I had noticed him using this term in an unusual 

manner previously in the interview. 

Jack: Square number? Hmm. [pause] Umm, A whole number that is…that is 

being multiplied by itself to make a perfect square?  

Jack was using the term square number to indicate the square root of a perfect square. 

He did not confuse perfect squares with square roots, but he was not sure about the 

term square number. 

Another facet of the confusion with concept definitions came from Maya, who had 

been asked which of the following series are square numbers: 

362,363,364,365,366,367,368. She used her calculator and discovered that 363 is a square 

number and was very surprised. 

Maya: Well because, what I understood of squares or perfect squares was that, 

well this would be a cube… wait that makes no sense cause it’s a square 

still…but for a square what I thought they meant was like a 2D form… 

Here Maya’s definition of a square number was linked to her image of a square. In this 

case, her concept image of a square number was related to a geometric square, she was 

limited by this image in her mind and she had difficulty connecting it to the idea that a 

cube could also be a square number. Her concept image of a square number is narrower 

than it could be. Note also, the representation of 363 is transparent as to the number 

being a cube, but opaque to the number being a square. It is clear that Maya’s definition 

of a square number did not rely on general factors or prime factors and may be quite 

different than that of her peers.  

It is apparent from these examples that the definitions in use by the students are not 

always clear or consistent with mathematical conventions. Their definitions are also 

not locally consistent; these students do not share any definitions that are particular to 

their group. This may be due to the apparent lack of rigorous definitions supplied to 

students; students must therefore create their own concept definitions.  

Inconsistent Concept Image 

During the clinical interviews analysis, I found a larger conceptual problem than one of 

just unclear definitions; that is inconsistent evoking of concept image. 

Kennedy was asked to find a perfect square larger than 500. After finding a square 

number larger than the target number, she became confused when the square root was 

smaller than the target number. 

Kennedy:  Um,…[pause] I guess the perfect square of 1000, would be 100,000? Like 

the square root of 100,000, maybe? Am I allowed to use a calculator? 

 […] 

 Ok, so I’m doing the square root of 10,000. Which is 100, so wait, that’s not 

bigger than 500. 
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This is not an instance of simply forgetting the original question and this type of 

confusion was not a unique event as shown by Rachel. She was asked for a perfect 

square that has three digits. Rachel gave 10,000 as her final answer, because 100 

squared is 10,000. Throughout her interview Rachel repeatedly but inconsistently 

exchanged the term square number for the square root. 

Another particularly clear case of this confusion came once again from Maya. Maya 

became confused between the square number and its square root during a task that 

asked her to find the number of square numbers between 0 and 100. 

Maya: Um, 2, no wait… the last one would be 10. Yeah, 2, 4, 9, …4? 

Interviewer: Ok so how did you come up with 4? 

M: Umm, well the last perfect square is 100, so the square root of a hundred is 

10.  

 Or, I don’t know why I wrote that, but yeah its 10. Then you go back down 

to the next number, which is 9 that would be 81,… 

 But then 8 doesn’t have a square root, nor does 7, nor does 6, nor does 5, but 

4 and 2 do have one. No wait, 2 does not have one. Or does it have one? No 

2 does not have one. I’ll go 3. [laughs] 

 Or 1 wait. Is 1 a square root? I’m pretty sure 1 is a square root as well 

right?...I’m confused, hold on a second. Uh, yeah.  

Maya was attempting to count the square numbers between 0 and 100; she gave her 

final answer on her paper as “4 – 1, 4, 9 and 100”. She began counting at 10, the square 

root of 100. Her confusion began just after counting 9, the square root of 81, because “8 

doesn’t have a square root” even though she had been working on the square of 9 not 

the square root of 9. 

Like Kennedy and Rachel, there is an issue of losing sight of the problem due to the 

labels Maya internally assigned to numbers. Maya had 10 and then 9 in her head as 

square roots, but the fact that 9 is also a square number seems to have confused her. 

When she moved down her list to 8, she should have squared it but she became 

confused because she knew that 8 is not a perfect square as 9 is. Maya evoked her own 

concept image of 9 as a square number when she should have been evoking the image 

of 9 as a square root. It is not so much Maya had a confused image of either square 

numbers or square roots, but that she became confused during the problem about what 

she was trying to accomplish. Maya and others demonstrated a difficulty coordinating 

concept images consistently with their work.  

Representation 

The opaque representation of square numbers was often an obstacle for students to 

overcome. The most common issue with representation was students who only 

attended to exponents in expressions when looking for square numbers. They did not 

attend to the base when determining if an expression was a square number, and in 
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compound expressions that contained an exponent, any number without an exponent 

was treated as not a square number.  

During the clinical interviews, each student was asked the following two questions: 

“Can k3  ever be a square number?” and “Which of these numbers, 

362,363,364,365,366,367,368, are perfect squares?” However these questions were not 

always asked in this order. All participants who were asked about k3 first claimed that 

it could not be a square number. However, students that were asked about the series 

first, before the question about k3, usually manually checked all the expressions and 

like Maya were surprised to find that 363 was a perfect square. Subsequently, they 

were able to correctly answer that k3.could be a perfect square for certain k when asked 

with that problem later in the interview. 

When confronted with problems that forced students to attend to the base of a power 

expression, some students were more likely to attend to the bases in subsequent 

problems. However this was only common with problems that were very similar such 

as k3 and 363. In unfamiliar problems most students continued to only attend to the 

exponents in the expressions, and were greatly hindered if the representation of a 

square number was not transparent in the exponent. 

CONCLUSION 

This study has found that students do experience difficulty when working with square 

numbers and square roots, and although the topics may seem simple, there is a wide 

variety of ways in which to think about and work with square numbers. Students face 

significant obstacles with opaque representation and concept confusion related to 

indistinct concept definitions and inconsistent evoking of concept images. 

In particular, the students in this study did not share agreed-upon definitions for the 

terms involved with the wider mathematical community. Some students were unsure if 

square numbers must be squares of integers, or it they could be any number that could 

be ‘square rooted’, while others believed that ‘square number’ meant ‘square root’ as 

opposed to perfect square. I suggest that the lack of clear and concise definitions of 

square numbers and square roots given to students, is also an obstacle for students to 

overcome when attempting to solve square number problems.  

A unique finding of this study is the confusion demonstrated between the concepts of 

square number and square root. Many other students became confused while working 

through a problem, as to which type of number they were dealing with and which 

properties those numbers had. There exists for them a difficulty in consistent evoking 

of the appropriate concept image. To what extent this confusion is prevalent and to 

what extent this confusion stems from the nature of the similarity of the terms square 

number and square root remains to be determined. 

This study adds to the body of knowledge on the role of the representation of numbers, 

in this case square numbers and square roots. Opaque representation was found to be a 

large obstacle for students when attempting to solve problems with square numbers or 
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square roots. When the representation was not transparent with respect to square 

numbers, students often claimed that the expression could not be a square number, 

without attempting to verify the statement. In this study students overwhelmingly did 

not attend to the base in exponential expressions.  
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On the basis of the construct of “discursive focus” by Sfard (2000), this study explores 

how students’ attention is brought to new mathematical content in whole-class 

interaction between the teacher and the children. In a sixth-grade lesson introducing 

the concept of constancy of proportion, we analyzed the progression of social 

interaction in terms of how different foci were presented, problematized, or modified. 

The results show that the children’s vague attention to the constant number was 

questioned and made an object of examination. The children’s attention was then 

carefully controlled by involving them in building new perspectives, which became the 

basis for making sense of constancy of proportion. We also point out several 

significant teaching actions for making this process happen. 

BACKGROUND AND PURPOSE OF THE STUDY 

Over the past few decades, more studies have been conducted to unpack features of 

classroom discourse that provides rich learning opportunities. Some researchers study 

the form and structure of exchanges between teacher and students in terms of hidden 

classroom-interactive patterns (e.g., Voigt, 1985; Wood, 1998). Many studies also 

explore the mode and format of classroom communication in which students engage in 

argument (e.g., Lampert & Blunk, 1998; Krummheuer, 1995). Building on these 

studies, we have proposed a social interaction pattern to capture interactions in lessons 

introducing new mathematical content (Koizumi & Hino, in preparation). By 

examining a primary mathematics lesson conducted by an experienced teacher, this 

paper proposes to clarify the ways children’s attention is brought to new mathematical 

content in whole-class interactions after their individual activity. 

One of two reasons for exploring this type of classroom interaction is that few studies 

have concentrated on the social interaction pattern that discloses the students’ 

elaboration process for their ideas about lesson objectives. Several proposed patterns 

show that the teacher’s purpose receives more weight than students’ thinking (e.g., 

Voigt, 1985). In the alternative pattern, students take conversational control, and they 

are responsible for re-explaining their thinking to others (e.g., Wood, 1998). The 

analysis of classroom episodes mainly concerns how students are helped by the teacher 

to talk about important mathematical ideas with respect to a solution given by one 

student; however, learning opportunities would be embedded in various interactional 

contexts during the lesson. To deepen our understanding of the relationship between 

social interaction and the development of students’ mathematical thinking (Wood et 

al., 2006), we believe that whole-class interaction directed to new mathematical 
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content will offer important information. The second reason is that this type of 

interaction requires the teacher to fulfill active roles in comparing, integrating, or 

evaluating varied solutions presented by the students. Walshaw and Anthony (2008), 

in their literature review on teachers’ roles in developing high-quality classroom 

discourse, repeatedly assert the importance of a teacher who does not simply hear and 

accept all answers, but attentively listens to the mathematics in students’ talk. In this 

paper, we intend to concretize the teacher’s role by observing and analyzing what an 

experienced teacher actually does during such interactions. 

Thus, this paper addresses two research questions: (i) What are the paths of children’s 

attention to new mathematical content? (ii) What kinds of leadership does the teacher 

employ to catalyze this process? 

THEORETICAL FRAMEWORK 

In our investigation, we use the construct of discursive focus by Sfard (2000). Pursuing 

the construction of mathematical objects from the discourse perspective, Sfard argues 

that the effectiveness of verbal communication is determined by degree of clarity of 

discursive focus presented within the communication. In doing so, she distinguishes 

three components of focus employed to grasp the object of attention. Pronounced focus 

is “the word used by an interlocutor to identify the object of her attention” (p. 304). 

Attended focus is “what and how we are attending—looking at, listening to, and so 

forth—when speaking” (p. 304). Finally, the intended focus is the “interlocutor’s 

interpretation of the pronounced and attended foci”; this component includes “the 

whole cluster of experiences evoked by these other focal components as well as all the 

statements he or she would be able [to] make on the entity in question, even if they 

have not appeared in the present exchange” (p. 304). Although intended focus is less 

tactile than the other two, its presence can be signaled by particular discursive clues or 

the speaker’s tendency to interchangeably use different names. According to Sfard, 

this focus indicates an actual, context-dependent discursive occurrence. When these 

foci relate to some stable, self-sustained entity, an object is constructed discursively. 

The discursive objects come into being (or into the signifier’s realization) by the 

important processes of saming, encapsulating, and reifying (Sfard, 2008, pp. 170-171). 

The three foci have helped make transparent the teacher’s support and guidance in the 

interaction progress for an introductory lesson to new mathematical content (Koizumi 

& Hino, in preparation). In the present paper, we further analyze the interaction in 

another sixth-grade lesson conducted by the same teacher. Comparing this lesson with 

the previous one, we found that children in this lesson struggled more in the presented 

task by the teacher. 

RESEARCH METHOD 

In January and February 2009, ten consecutive lessons were implemented and recorded 

in a sixth-grade classroom in a public primary school in Japan. The lesson topic was 

proportional relationship. When the data were collected, the teacher had 30 years of 
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teaching experience and occupied the school’s position as head of mathematics 

curriculum and instruction. 

These lessons were recorded according to the Learners Perspective Study – Primary 

data-collection procedure by revising the Learners Perspective Study methodology 

(Shimizu, 2011). In the classroom, three cameras (focused on the teacher, target 

children, and the whole class) video recorded each lesson. After each lesson, the target 

children were interviewed about what they studied in the lesson and what they thought 

was important. The teacher was interviewed twice about her thinking and emotions 

during the lesson. In addition, she was asked to write the goal of each lesson, along 

with her personal reflections. 

In these lessons, children were introduced to the concept of proportional relationship 

mainly through tables. With tables, proportional relationship was defined on the basis 

of co-variation between two quantities, as shown in Lesson 2 (L2) of Table 1, below. 

The relationship between two quantities, △  and ○ , was also formulated in the 

equation “○ × fixed number = △ and △÷○ = fixed number” (L5). Graphical 

representation of a proportional relationship was also introduced by plotting several 

points and observing their arrangement as a straight line traveling through the point 

where both quantities are zero (L6, L7). 

Lesson Topic Lesson Topic 

1 Exploring the relationships of two 

quantities varying together. 

6 Representing the relationships of two 

quantities with graphs. 

2 Definition of proportional relationship 7 Exploring the features of the graph. 

3 Checking whether two quantities are in 

the proportional relationship. 

8 Appreciating the value of graph. 

Exercises. 

4 Making tables and checking whether 

two quantities are proportional. 

9 Exercises (Using digital material) 

5 Finding constancy of proportion in the 

relationship of two quantities. 

10 Challenging exercises. 

Table 1: Topics of the Ten Lessons 

In this paper, we use the data on L5 intended to introduce new mathematical content to 

the children. Analysis was qualitatively conducted to capture the teacher’s methods of 

eliciting and organizing the children’s thinking when introducing new mathematical 

content. In the first stage of analysis, we identified the phases and activities in the 

transcripts of “public” talk by the children and the teacher. Using Sfard’s three foci in 

the second stage, we discerned specific instances of the teacher’s support and guidance 

during the interaction process. Our interest especially concerns how the focus is 

modified or a new focus is built and what role the teacher plays. We corroborated some 

of our interpretations with the data from the teacher and the targeted children. 
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CLASSROOM EPISODE AND INTERPRETATION 

Lesson 5 aimed to find constancy of proportion in the relationship of two quantities 

and to express it in the form of an equation. Since L2, the class had been studying the 

horizontal (co-variation) relationship in a situation of pouring water into a tank using a 

table showing various amounts of time and the corresponding depths of water in the 

tank. In L5, the teacher used the same task, but this time she intended the children to 

vertically (correspondence) look at the table to derive constancy of proportion. 

Phase Activity 

Proposing the 

problem 

The teacher presented the task. She distributed the worksheets below to children. 

 

 

 

 

 

 

Individual activity 

Eliciting 

children’s 

ideas 

Children presented their ideas. 

AO: I think that 2 x of time is the depth of water.  

IT: I found that if I divide the depth of water by 2, it becomes the time. This can 

be said to all the values, well…, if I used 4÷2, then it becomes 2, which is the 

time. Therefore, I think this [2] can be said to be the number not moving. 

Therefore, I think that the depth of water equals the time divided by 2.  

The teacher pointed out that if we apply IT’s idea to the equation, it becomes 

2=1÷2. TA proposed the equation depth of water÷2=time. Then, several children 

talked about 0.5 as a constant number. Finally, NA spoke that depth of water 

divided by time becomes 2 all the time. 

Focusing on 

the object of 

examination 

The teacher proposed that the fixed number should be 2 based on the logic that 

the depth of water increases 2 cm every time 1 min.  

Formulating 

the result on 

the basis of 

the object 

The teacher said that the proportional relationship can be expressed by ○×2=△ 

and △÷○=2 using ○ as time and △ as depth of water. She also mentioned that the 

fixed number is 2 this time and that the number can vary according to the 

proportional relationship in the situation. 

Table 2: Phases and Activities in Lesson 5 

When presenting the task, the teacher clearly stated the lesson’s goal: “Today, I want 

you to find the vertical relationship.” When she explained the worksheet distributed to 

the children (see Table 2), she said more about the vertical relationship: “I stressed the 

point of finding the fixed number that does not change at all when you look at the 

vertical relationship in the table.” Then, as usual, the teacher spent some time allowing 

the children to work on the task in their own ways. The task was not easy for many of 

the children. In particular, they were observed to have difficulty in formulating the 

equation (depth÷time=2), which was the objective of L5. In the following section, we 

describe the whole-class interaction after the individual activity, especially focusing on 

the phase “eliciting children’s ideas.” 

Let’s examine in more detail the relationship in which depth of 

water is proportional to time. Let’s find the fixed number that does 

not change by vertically looking at the table. 

Time (min) 1 2 3 4 5 6 7 8 9 10 

Depth (cm) 2 4 6 8 10 12 14 16 18 20 

If you express it in a mathematical sentence with words,           . 
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Correcting a Mistake by a Child 

Two children, AO and IT, presented their findings on the blackboard (Figure 1). 

  

 

 

 

 

  

Figure 1: Work presented by two children: AO (left) and IT (right) 

Although IT’s equation was not correct, other children raised their hands to show their 

agreement with IT’s work. Then the teacher questioned the correctness of his equation: 

01  T: By the way, IT, if we put 1 in the time [in your equation], then it becomes 1÷2. 
This makes the depth of water strange, don’t you think? 

After the teacher’s comment, TA proposed the equation depth of water ÷ 2 = time by 

explaining her reasoning: 

02 TA: For example, if the depth of water is 2 and time is 1, then 2 ÷ 1 is 2, and if the 
depth is 4 and time is 2, 4 ÷ 2 becomes 2. 

By interrupting IT when he was trying to erase his equation, the teacher continued the 

conversation.  

03 T: Let’s look at what the differences are [in these two equations]. 

04 T: Very good, they gave us very good examples [to consider]. We’d better substitute 
them [the word in the equation] with different numbers, I mean numbers. If we 
change the time to 1 in the equation made by IT, if we make time into 1, then it 
eventually becomes 1 ÷ 2. Don’t erase it. Please write it above [the equation]. It’s 
1 ÷ 2. Please write 1 above the time and write ÷2. 

05 T: [IT wrote above his equation, as directed.] Yes, that’s right. Let’s write  
“1 ÷ 2” there. 

06 S: It’s 0.5. 

07 T: And then, what is the answer? 

08 S: 0.5. 

09 T: It becomes 0.5,... it looks odd. It doesn’t become the depth of water, does it? 

10 S: Oh… no, it doesn’t. 

11 T: Are you OK? OK? Let’s see about TA’s [equation]. How about TA? If we put 4, 
4, in the “depth of water” [in her equation], 4 divided by 2 is… does it become 
time?  

12 S: Yes, it becomes time. 

13 T: Does everyone understand? Are you all right with this? 

Interpretation: When IT presented his work (see Table 2), he provided a focus with 

respect to the constancy of proportion in the table. He expressed it as the number not 

moving (pronounced focus). It accompanied attended focus with arrows and ÷2 in all 

(Time) 

(Depth) 

 

(Depth) 

 

(Time) 

(Depth) 

(Time) 

(Depth) 

 

(Depth) 

(Depth of Water   =   Time  ÷  2) 

 

(Depth      =    Time  ÷  2) 

( Time ×  2 = Depth of Water ) 
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of the corresponding cells in the table (see Figure 1). He further explained his 

reasoning with his hand moving, which served as the attending procedure. However, 

his pronounced and attended foci were concerned only with the table. It is likely that 

his intention to identify the common number resulted in relating two numbers in the 

upper and lower rows. Weak focus on the equation was also observed in other children, 

as evidenced by some who agreed with IT. Noticeably, TA showed similar focal 

behavior even though she developed the correct equation (line 02). 

Then, the teacher focused the children’s attention on the differences between the two 

equations by comparing them in relation to the corresponding table (lines 03-12). 

During the interaction, the teacher closely looked into the two equations by connecting 

each word and symbol in the equation with the numbers in the table. She provided an 

attending procedure, i.e., dividing the number in the upper row by 2 in the equation and 

checking whether the answer is the number in the corresponding lower row (line 04). 

This was the first time that the class explicitly attended to the table in relation to the 

equation. This procedure involved the children in the process, rather than employing 

teacher’s explanation. As a result, several children vocalized their understanding in 

line 10. In line 11, they applied the same attending procedure to TA’s equation.  

Children’s Proposing New Equation 

Then, several children began to talk about 0.5 as a constant number: 

14 S: Teacher. Well… These people thought… 

15 S: All of them are 0.5. 

16 S: It is 0.5. 

17 S: If we divide time by 2, all of them can become 0.5… 

18 T: Oh, well. If we divide time by 2… 

19 S: They all become 0.5.  

20 S: Yes, you are right.  

21 T: Oh…, time divided by 2. Yes. 

22 S: Let’s see. … All are 0.5, aren’t they!  

23 T: Oh, well, but, time divided by 2, what? If we divide time by 2, then, let’s see… 
what? What do you mean by time? Do you mean to divide [all of] 1, 2, 3, 4, 5, 6, 7, 
8, 9, and 10 by 2? What do you mean? 

Here SU raised his hand and conveyed his thinking about the object of discussion: 

24 SU: Yes. Well, I mean what these people were saying before. I would say to divide 
time by depth of water; then, it becomes 0.5. I think it will become 0.5 if we do 
1÷2, 10÷20, 7÷14, or 5÷10. 

Interpretation: The children actively stated, all of them are 0.5 (lines 15, 16). All of 

them (pronounced focus) again lacked clarity, and this triggered a child to vocalize an 

attending procedure (line 17). Because the child attended only to the table, the teacher 

intervened by questioning the validity of time divided by 2 is 0.5 (line 23). She 

specifically mentioned the location of values that should be caught by careful attention. 
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At this moment, she provided another important attending procedure to construct focus 

on constancy of proportion, i.e., to check the equation by not only one pair of the first 

two numbers (1 and 2), but also multiple pairs of numbers in the table. Then, SU 

clearly provided this attending procedure when she justified her equation (line 24).  

A Child’s Proposing Another Equation 

Another child, NA, raised her hand and proposed her equation: 

25 NA: In my case, I did the depth of water divided by time and the constant number… 
(She went to the blackboard and wrote depth of water ÷ time = 2.) Well, I used 
this [equation] for every [number in the table]. I did the calculation depth of 
water÷ for the numbers in other places, and they all become 2. 

Interpretation: NA explained her equation by clearly mentioning that the equation is 

valid for every corresponding number in the table. She explicitly offered different 

pronounced foci “constant number,” “every,” “other places,” and “all.” They 

consistently suggest her intended focus on constancy of proportion, in which not only 

the table, but also the equation is assigned an important position. 

DISCUSSION 

In the previous section, using the three foci, we illustrated how the children’s attention 

shifted to new mathematical content. The children’s vague attention to the constant 

number was repeatedly questioned and made an explicit object of examination. In this 

process, the children’s attention was carefully controlled by involving them in building 

new attending procedures, which became the basis for making sense of constancy of 

proportion. Sfard (2000) argues that the lack of equilibrium between the focal 

ingredients (pronounced, attended, and intended foci) impels discursive growth. In our 

analysis, we also observed similar disequilibrium triggering the necessity of 

well-defined attended focus that guides the communicator’s interpretations. Through 

these processes, the children’s focus became clearer and more consistent, a process 

closely connected to developing comprehension of new mathematical content. 

Importantly, the objective of L5 included a mathematical equation as the symbolic 

means for expressing constancy of proportion. For the children, expressing regularity 

in the form of an equation was a novel experience. It caused a certain perplexity, but at 

the same time, it enabled the participants to talk about the validity of different 

proposals on the constancy of proportion. The children and the teacher proposed, 

questioned, supplemented, or justified their ideas to shape a clear, precise focus on 

constancy proportion for the equation. Relying on the children’s previous experiences 

in the lessons, different symbolic means contributed both as metaphor (table) and as 

rigor (equation), two important discursive steering forces (Sfard, 2000).  

Furthermore, the results demonstrate that teacher played a significant role in 

successfully conducting this process. In attentive listening to the children’s talk, the 

teacher carefully assessed the mathematics behind their talk. Moreover, she 

purposefully sustained the interaction by providing the foci necessary for them to make 

sense of new mathematical content. Here two observations should be noted. First, the 
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teacher knew when to intervene, i.e., intentionally to “step in and out” (Lampert & 

Blunk, 1998) of the interactions. The teacher intervened in certain pronounced foci, 

especially weak focus on the constancy of proportion in the equation, and made it a 

target of examination. Second, her supportive method of providing the foci was 

responsive rather than directive (Walshaw & Anthony, 2008). The teacher provided 

two important attended foci and procedures of relating the equation to numbers in the 

upper and lower rows of the table. Both were provided in the middle of interactions 

with the children, rather than in sole, advance explanation by the teacher. 

It should be noted that these actions are closely linked to the teacher’s conscious lesson 

objectives (Koizumi & Hino, in preparation). Therefore, children’s paths to new 

mathematical content become clearer when they are examined throughout the phases 

of a lesson, and furthermore, in the sequence of lessons. At the same time, since our 

results are based only on a case study, we need additional analyses of classroom 

interactions to identify more and other teacher actions in providing children with focus 

building and refining activities when presenting new mathematical content. 
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This case study contrasts the strategies used by two students in solving bilateral 

symmetry and reflection tasks, based on the differential properties they attended to. 

The ninth grader focussed on congruence of sides as the main property of reflection 

whereas the eighth grader focussed on perpendicularity and equi-distance, as is the 

normative procedure. The inadequate criteria for reflection shaped the ninth grader’s 

actions and equally served to validate her solutions, although in a flawed fashion. The 

visual strategy took over as a fallback measure. We attend to some of the well-known 

constraints that students encounter in dealing with symmetry, particular situations 

involving slanted line of symmetry. Importantly, we made an attempt to show how 

visual and analytical strategies interact in the production of a reflected image.  

INTRODUCTION 

Understanding the ways in which visual and analytical strategies interact in the 

solution of mathematical problems has been one of the challenging questions for 

mathematics educators. Some steps have been taken to explain such an interaction. For 

instance, Hoyles and Healy (1997) showed how students attempted to synthesize the 

visual anticipation of the solution and their analytic symbolic representations in a 

microworld environment which equally allowed dynamic actions. In their analysis of 

the role of visual reasoning, Hershkowitz, Arcavi, & Bruckheimer (2001) suggested 

that visualization can be an analytical process itself. In fact, symmetry has conceptual 

foundations that can be investigated through visual and analytic strategies.  

Research conducted since the 1980s has consistently shown that the apparently simple 

concept of symmetry is problematic for many students. One of the first extensive 

studies conducted in this domain is by Küchemann (1981) who identified five essential 

variables that influence students’ ability to perform bilateral symmetry, namely the 

slope of the line of symmetry, the slope of the object, the complexity of the object, the 

existence or absence of intersection between the object and the line of symmetry, and 

the presence or absence of a grid in the problem. The variables identified by 

Küchemann were analysed in further depth by Grenier (1985) in her dissertation study 

to investigate patterns of errors. Recent studies (e.g., Bulf, 2010; Ho & Logan, 2013) 

continue to highlight the influence of such variables in students’ performance.   

Although much is known about the type of variables that affect students’ ability to 

perform bilateral symmetry and reflection, the source of the respective difficulties has 

not been thoroughly investigated. In this paper, we use constructs from the area of 
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spatial visualization to analyse the processes behind students’ strategies and errors 

(intuitive or learned) in performing bilateral symmetry and reflection tasks. We 

address the following research questions: (1) What are the sources of conceptual 

difficulties associated with slanted lines of symmetry? (2) How are visual strategies 

enacted in bilateral symmetry and reflection tasks? (3) How do visual and analytical 

strategies interact in the production of the image from the object? 

CONCEPTUAL FRAMEWORK 

We analysed the data using constructs from the domain of spatial visualisation which 

essentially refers to the ability to generate and manipulate images (Yakimanskaya, 

1991). Yakimanskaya considers images as the basic operative units of spatial 

visualization. Additionally, according to Kosslyn (1990), imagery is used “when we 

reason about the appearance of an object when it is transformed, especially when we 

want to know about subtle spatial relations” (p. 75). 

We now explain how we interpret spatial visualization in relation to the types of 

symmetry and reflection tasks that students are generally called upon to perform in 

school mathematics, as is the case in the present study. We distinguish between two 

types of mental actions where spatial images are involved in reflection tasks in terms of 

the following visual anticipatory action or imaginative construction:  

(i) visual-mental reflection: The visual/mental action of anticipating the image of an 

object from a line of symmetry. This process occurs when a printed object on paper 

(either plain or grid paper) is to be reflected given a line(s) of symmetry.  

(ii) visual-mental folding: The visual/mental action of imagining the shape of an object 

being folded to determine the one-to-one geometric or morphological correspondence 

between the parts of an object. This process occurs in finding the lines of symmetry of 

shapes or alphanumeric characters.  

The two operations described above were defined on the basis of the observations that 

we made as the participants interacted with the tasks. We refer to a visual strategy 

when attention is given to the use of imagery as related to shape, location/position, 

orientation and global perception. Such a strategy may equally include kinaesthetic 

imagery, as will be shown in the data analysis. Reflection, as a transformation, 

constitutes an isometry as it preserves length, shape and angle. The two main 

properties that are useful to reflect an image on a line of symmetry are (i) 

perpendicularity between corresponding points on object and image and (ii) 

equidistance between object, line of symmetry and image. We use the term analytical 

strategy whenever explicit reference is made to the properties (in terms of following a 

rule) in performing a reflection, finding the line(s) of symmetry or in the construction 

of a symmetrical object.    

We used the concept of local and global perception from the psychology literature 

(Enns & Kingstone, 1995) in understanding the strategies used or constraints 

encountered by participants. In fact, Kosslyn (1990) suggests that imagery and 
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perception share common features. Psychologists use the term local perception to refer 

to the interpretation of an image when it is visually parsed into units. On the other 

hand, global perception refers to the overall structure of the image being processed. In 

analysing the videorecords, we could equally note how the participants were 

reorienting the diagrams by moving the worksheets or their posture, or used their 

fingers on the given diagrams in their imaginative actions. These observations 

indicated the importance of Presmeg’s (1986) construct of kinaesthetic imagery. 

METHOD 

The two participants of the study are identified by the pseudonym Brittany (Grade 9, 

age 15 years) and Sara (Grade 8, age 14 years). Each participant was individually 

interviewed by twice. Accessing mental images and visualization processes are 

methodologically challenging. In our attempt to capture the moment-by-moment 

responses of the participants, two cameras were used to record the four interviews so as 

to focus on their inscriptions and the movements that they made to track their 

kinaesthetic actions. The students were allowed to complete each task before they were 

asked to describe their strategies so as not to distort their thinking processes as 

suggested by Gutiérrez (1996).  

The students were presented with four sets of tasks. In the first set, they were required 

to find the line of symmetry of a polygon (square, rectangle, equilateral triangle, cross, 

parallelogram and rhombus) and alphanumeric characters (S, X and Z). In the second 

set, they were asked to find the image of a given line segment or polygon reflected on a 

line of symmetry on grid paper (see Figures 1(a), 1(d) and 2 for sample tasks). In the 

third set, they had to complete the object from the partial object and the given number 

of lines of symmetry (see Figure 3(a) for sample task). In the fourth set, they had to 

reflect objects on slanted lines of symmetry, without the support of a grid (see Figures 

3(c) and (d) for sample tasks). Due to space constraints, we present only selected tasks 

and responses. 

RESULTS AND DISCUSSION 

The participants’ prior knowledge of symmetry  

Brittany described reflection in terms of “exactly opposite” and “folding”. The 

analytical property of ‘equal distance’ was well-established for her.  However, at no 

point she made any reference to perpendicularity. Her conception of reflection was 

based on the more intuitive congruence property (referred to as congruence criterion), 

specifically the congruence between corresponding lengths in the object and image. 

She gave explicit description of her visual strategy to find the number of lines of 

symmetry in the alphanumeric characters (S, X and Z). For example, with regard to the 

letter ‘S’, she explained that she visualized a solid object: “Like, the shape. It's the 

shape of the S. So the paper was like cut out in the shape of the S and you can fold it.” 

On the other hand, Sara had a well-articulated analytical conception of reflection in 

terms of equal distance between object and image and line of symmetry (referred to as 
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equi-distance criterion). Particularly, her concept of perpendicularity (referred to as 

perpendicularity criterion) empowered her to unsparingly reflect objects in slanted line 

of symmetry. She would always focus on the ends of line segments or vertices of 

polygons in the application of the equi-distance and perpendicularity criteria. She 

clearly stated that points on a line of symmetry have no reflection. She described 

reflection in terms of a “mirror”. 

(1) WHAT ARE THE SOURCES OF CONCEPTUAL DIFFICULTIES 

ASSOCIATED WITH SLANTED LINES OF SYMMETRY?   

The nature of the symmetry and reflection tasks dictates when perpendicularity is vital 

for successful problem solving. For vertical and horizontal lines of symmetry, 

perpendicularity is readily ensured. However, for slanted lines of symmetry such is not 

the case, although the visual appearance of the task in a grid may help. While the 

situations involving the horizontal and vertical lines of symmetry did not pose any 

constraint for Brittany, the slanted lines of symmetry revealed the inadequacy of her 

conception of symmetry. She focused on congruence of length as the main criterion of 

reflection and was not formally aware of the perpendicularity criterion. The second 

interview also confirmed that Brittany was not aware of the fact that the reflection of a 

point on a slanted line of symmetry is invariant under such a transformation.  

We give a sample response to show the outcome of her focus on congruence of lengths 

for Task 1.8 (Figure 1(a)). As the given object (vertical line segment) crossed the line 

of symmetry, she interpreted the object as consisting of two parts.  The motion of her 

pencil suggested that she was thinking about moving either to the right or left, at right 

angle to the object. She first decided to draw the image to the left of the object (see 

Figure 1(b)). She joined the two end points (labelled X and Y for explanation purposes) 

to find a means of getting equal distance between X and Y. Since the length on either 

side of the line segment XY was different, this led her to realize that this step is 

incorrect: “That's not really…”. At a later point, she changed her solution by drawing 

the image on the right of the object (see Figure 1(c)) and mentioned: “Because well this 

is one square like pass it. So if we do this it's got one part on this side too, the same 

amount on the other side.” Because the length of the object and image above and below 

the line of symmetry was the same, she felt confident that she performed the reflection 

correctly. Further evidence of her reliance on congruence could be observed by 

comparing the object and its corresponding image in Figures 1(d) and 1(e) 

respectively. 

In contrast, Sara’s consistent approach involving equi-distance and perpendicularity 

properties showed that she had a well-established scheme for lines of symmetry. For 

example, in Task 1.3 (see Figure 2(a)), she mentioned: “I used the boxes. I made a 

perpendicular line with my ruler. And then I saw how many boxes I needed.” 
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Figure 1: Brittany’s responses to Set 2 

Our findings led us to conjecture that students’ responses to slanted line of symmetry 

tasks are also dependent on whether the objects are closed or open. A line segment (e.g. 

Fig. 2(a) and (c)) was more challenging to reflect as compared to when it was part of a 

figure (e.g. Fig. 2(d) where polygon L contains vertical and horizontal line segments). 

Furthermore, it appears that the orientation of the object relative to the slanted line of 

symmetry tends to suppress the global perception necessary to visually check the 

soundness of the image produced, an observation equally made by Küchemann (1981) 

and Grenier, (1985). In Task 1.7 (see Figure 2(c)), Brittany merely extended the object 

vertically down by 4 units, while in Task 1.6 (see Figure 2(b)), she produced the 

correct image. 

 

Figure 2: Sample tasks from Sets 1 and 2 

In summary, absence of formal awareness of the perpendicularity criterion and failure 

to recognize that points on line of symmetry are invariant under a reflection, accounted 

for the difficulties that Brittany experienced with slanted lines of symmetry.  

(2) HOW ARE VISUAL STRATEGIES ENACTED IN BILATERAL 

SYMMETRY AND REFLECTION TASKS? 

We observed four distinct ways in which visual strategies directed the participants’ 

actions in performing the symmetry and reflection tasks. 

Imagining lines of symmetry   

We could access Brittany’s visual strategy in Set 3 (see Figure 3(a) for sample task) by 

her actions of positioning an imaginary line of symmetry (as could be inferred by the 

motion of her pencil) generally in the sequence, vertical, horizontal and slanting to then 

mentally reflect the shaded cells given in the tasks. She focused not only on the shaded 

parts but equally looked at the continuous shape made by the unshaded parts. For 

example, in Task 3.1 (shade one more square so that the diagram has two lines of 
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symmetry), she focused on the letter H formed on shading the required cell (see Figure 

3(b)) to confirm that there were two lines of symmetry.  

 

Figure 3: Sample tasks from Sets 3 and 4  

Reorientation of slanted line of symmetry to the vertical  

To work with situations involving slanted line of symmetry, particularly when a grid 

was not available, Brittany and Sara would turn the line of symmetry in a vertical 

orientation. This reorientation was particularly apparent in Set 4 (Figures 3 (c) and (d)). 

The visual/perceptual facility afforded by the vertical reorientation of the line of 

symmetry was explicitly highlighted by Brittany: “If you tilt it (to the vertical) this 

way, I could just have to work out where it will be”. Psychologists in the area of 

perception (Giannouli, 2013) made similar observations, claiming that the vertical 

orientation is favoured by human beings. 

Reflection of part of object as a visual trigger    

In some cases, the reflection of one part of the given object served to open the space for 

reflection of the whole object in the slanted line of symmetry. We could observe such a 

visual trigger in Figure 2(d). Brittany first reflected the horizontal segment (touching 

the slanted line of symmetry) in the letter L. Then she reflected the vertical segment 

(touching the slanted line of symmetry). These two initial constructions apparently 

served as a trigger for her to spontaneously identify the next part of the image and she 

quickly proceeded to construct the image, measuring the length of the different parts of 

the object by counting the number of cells. Küchemann(1981) described this strategy 

as semi-analytic. However, in Figure 2(e) involving the same object at a distance from 

the line of symmetry, she could not find the image of one part of the object to serve as 

a visual trigger for the whole image. 

The visual strategy as a visual check 

In a number of cases, we could observe how the students inspected their solution as a 

whole (global perception) to verify whether the image was correctly drawn. For 

instance, in Task 2.6 (See Figure 4(a)), where the line of symmetry was not inclined at 

450, both of them could observe that their initial solution was incorrect.  Another 

example is in Set 4 (Figure 3(c) and 3(d)) where Brittany compared the orientation of 

the alphanumeric characters and their image after reflection in the slanted line of 

symmetry. She justified her image by mentioning: “It looks correct”. Although Sara 

used such a visual check, she tended to rely more on her local perception emanating 

from her primarily analytical approach.  In other words, she implemented her 
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equi-distance and perpendicularity criteria systematically right away and did not seem 

to find the necessity to rely on the visual approach, except as a check. 

 

Figure 4: Task 2.6 

(3) HOW DO VISUAL AND ANALYTICAL STRATEGIES INTERACT IN 

THE PRODUCTION OF THE IMAGE FROM THE OBJECT? 

We present excerpts to show how the visual and analytical strategies were conjointly 

used to produce the image. In Task 2.6 (Figure 4(a)), Sara first drew Figure 4(b) and 

visually analysed the drawing to mention: “no, it can’t be good”. Then, she used her 

ruler to set the perpendicular distance (dotted line in Figure 4(c)) to help her draw the 

image. Brittany initial construction was similar to Figure 4(b) and she could observe 

that it was incorrect and mentioned: “trying to visualize the whole thing but…” She 

pursued further with her “congruence of length” criterion to draw the image (see 

Figure 4(d)). In other words, the incorrect appearance of the image prompted her to 

switch to the analytical strategy.  

The visual strategy as a scaffold for te analytic strategy  

In some of the tasks, the students asserted that they made a global picture of how the 

image would look like before actually applying the analytical properties of symmetry 

and reflection. In Set 4 (see Figure 3(c)), Sara first mentally folded the object before 

applying the equidistance and perpendicularity criterion. In cases where she 

experienced constraint, Brittany depended on the visual to scaffold her analytical 

strategy, “congruence of sides” as in Task 1.8 (see Figure 1(a)). Here, the visual 

strategy took over as a more intuitive fallback measure. The students also used 

kinaesthetic imagery in starting their solution. For instance, Brittany tended to pull the 

page up on the corner in imitating a folding action in Set 4 (See Figures 3(c) and 3(d)).  

CONCLUSION 

By focusing on spatial visualization, this study enhances our understanding of the 

subtle interaction between visual and analytical strategies in relation to symmetry and 

reflection tasks. It explains the constraints associated with the slanted line of symmetry 

identified by the seminal work conducted by Küchemann (1981) and Grenier (1985). 

Parallel to the work of Hoyles and Healy (1997), it explains how the meaning of 

symmetry is negotiated via visual and analytical strategies. More importantly, it 

attempts to make explicit the layers of complexity inherent in what is usually regarded 

as seemingly simple concepts, i.e., symmetry and reflection. It is acknowledged that 

this two-participant contrasting case study is bound to be limited in scope. However, 

the ways in which it portrays the explicit students’ actions with the symmetry and 
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reflection tasks is informative for teachers. The constraints that Brittany encountered 

with slanted lines of symmetry are not uncommon among students and serve to 

highlight the necessity to give more attention to the perpendicularity criterion. 

Ignorance of this criterion may be carried over to adulthood. The data also prompts us 

to suggest the consideration of global perception as a visual check in instruction on 

reflection. This study equally brings forth the importance of local and global 

perception as influential elements in students’ reasoning, an aspect that requires further 

exploration.  
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We examine a 4
th
 grade teacher’s development of a constructivist-based, adaptive 

pedagogy (AP) approach—and its contribution to student multiplicative reasoning and 

outcomes, mixing qualitative analysis of segments from her interviews with 

quantitative analysis of her student outcomes on the state-mandated test. Her 

reflections indicate a shift to this pedagogical approach, which tailors the intended 

mathematics and classroom activities to students’ available conceptions. The data 

reflect how, via professional development, her new understanding of students’ 

learning to reason multiplicatively promoted learning opportunities for them and 

thus—their outcomes. We discuss how linking teacher development to student 

conceptions—adaptive pedagogy—can contribute to improving their outcomes. 

INTRODUCTION 

In an era of growing emphasis on teachers’ accountability for their student outcomes in 

mathematics, this case study with a 4
th

 grade teacher (Nora, pseudonym) examined 

possible links between a teacher’s development of a constructivist-based, 

student-adaptive pedagogical (AP) approach and student outcomes. The study was 

conducted within our team’s efforts to promote and study K-5 teachers’ development 

of pedagogical perspectives and practices that revolve around and adapt to students’ 

available conceptions. This paper focuses on how changes detected in Nora’s 

understanding of and capitalizing on student thinking contributed to their improved 

outcomes on the Transitional Colorado Assessment Program (TCAP)—the state, 

annually mandated test in mathematics. Specifically, the study addressed the 

questions: (a) What shifts can be detected in a teacher’s pedagogical understandings 

and practices to incorporate research findings about students’ thinking and (b) how 

might these shifts contribute to student learning and outcomes? Nora chose to focus on 

teaching multiplicative reasoning because it constitutes a conceptual milestone for her 

fourth graders. In this domain, the Common Core State Standards (CCSS) (National 

Governors Association Center for Best Practices, 2010) emphasized students’ learning 

to reason about and solve multiplicative, realistic (word) problems along with using 

algorithms to calculate 1-digit x 4-digit numbers as well as 2-digit x 2-digit numbers. 

Linking conceptual and procedural understandings in all children is vital not only for 

multiplicative reasoning but also as foundations for fractional, proportional and 

algebraic reasoning (Thompson & Saldanha, 2003).  
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CONCEPTUAL FRAMEWORK 

We consider teaching mathematics to be a goal-directed activity (Ernest, 1989) that 

involves teachers in promoting students’ progress to ever more advanced ideas 

(Schifter, 1998). Thus, teacher perspectives of mathematical knowing and learning 

drive the goals for and ways they implement their activities in practice (Thompson, 

1992). To account for teacher development, we use a 4-perspective framework  

(Table 1) that explicates a continuum of stances in teachers’ thinking about math 

knowing, learning, and teaching (Jin & Tzur, 2011; Simon et al., 2000). 

Perspectives View of knowing View of learning View of teaching 

Traditional 

(TP) 

Independent of 

knower, out there 

Learning is passive 

reception 

Transmission; 

lecturing; instructor 

Perception-base

d (PBP) 

Independent of 

knower, out there 

Learning is discovery 

via active perception 

Teacher as explainer 

(‘points out’) 

Progressive 

Incorporation 

(PIP) 

Dialectically 

independent and 

dependent on 

knower 

Learning is active 

(mental); known 

required as start; 

incorporate new into 

old 

Teacher as guide 

and engineer of 

learning-conducive 

conditions 

Conception-bas

ed (CBP) 

Dynamic; depend on 

one’s prior 

knowledge 

(assimilatory 

schemes) 

Active construction of 

the new as 

transformation in the 

known (via reflection) 

Engage in problem 

solving; Orient 

reflection; 

Facilitator 

Table 1: Teacher perspectives on mathematics knowing, learning, and teaching 

The AP (Steffe, 1990) is based on the conception-based perspective. It stresses a 

teacher’s selection and use of mathematical goals and activities for student learning 

that are tailored, in every mathematics lesson, to students’ resources—conceptions and 

experiences they have and bring to a learning situation as part of their funds of 

knowledge (Moll et al., 1992). The rationale is that learning a new mathematical idea 

entails transformation in conceptions available to the child (von Glasersfeld, 1995). 

Thus, a teacher needs to continually infer into their current reasoning—ways of 

operating with/on units—and set goals for changes in these operations/units that build 

on, challenge, and foster construction of the intended ones. We note that AP differs 

from the well-known CGI approach (Carpenter et al., 1989). CGI seems to equate a 

child’s thinking with a task-structure an adult recognizes whereas AP distinguishes 

between the two (Tzur et al., 2013). To illustrate AP, we describe how a teacher may 

foster students’ conceptual leap from additive to multiplicative reasoning (Behr et al., 

1994), stressing that their operations on units may be effected but are not determined 

by tasks a teacher uses. 

Reasoning multiplicatively requires using number as a composite unit—a “thing” 

made up of sub-parts—and coordinating distributing operations among such units 

(Steffe, 1992). Additive operations preserve such units (e.g., 5 dots + 5 dots + 5 dots = 



Hodkowski, Tzur, Johnson, McClintock 

PME 2014 3 - 323 

15 dots), while multiplicative operations transform them (Schwartz, 1991) via 

distribution of items of one composite unit over the items of another composite unit to 

yield a third, different unit (e.g., 5 dots/page x 3 pages = 15 dots). This key, 

content-specific notion of our conceptual framework is organized in a 6-scheme 

developmental sequence (Tzur et al., 2013) that, between multiplication and division 

(both quotitive and partitive), distinguishes three ways of operating on composite 

units. After establishing multiplicative double counting (mDC—the aforementioned 

operation on composite units), a child may advance to the Same Unit Coordination 

(SUC) scheme (finding sums/differences of compilations of composite units), then to a 

Unit Differentiation and Selection (UDS) scheme (noting differences/similarities 

among units of two compilations), and to a mixed-unit coordination (MUC) scheme 

(coordinating operations on composite units and 1s). The latter, with UDS as its 

predecessor, enables, for example, thinking about and meaningfully solving the 

following problem: “Juanita has 4 bags with 10 marbles each, and a box with 56 

marbles. If she places the additional marbles in bags of 10, how many bags and how 

many marbles will she have in all?” Using the MUC scheme, a child may either reason 

from four 10s to forty 1s and add them to the 56 to yield 96 marbles, or from the 1s to 

10s (“bags” as a composite unit) to divide the 56 and find five 10s and remaining six 

1s, hence nine 10s + six 1s = 96 (note how the child “supplies” her way of operating; it 

is not task-determined). 

METHODOLOGY 

We used a mixed-method approach, with quantitative (student scores on the TCAP test 

in mathematics) and qualitative (interview segments) providing the data to address the 

research questions. Participants in this study included one teacher (Nora), the students 

in her classroom who were not pulled into an accelerated math class (N=13), and 

student aggregates at her school (over 85% ELL, 100% eligible for reduced/free 

lunch), district, and state levels. Restrictions on (not) presenting disaggregated student 

data from other 4th grade classrooms precluded comparing changes in Nora’s and 

other teachers’ work (and student outcomes) at her school. Thus, student outcomes are 

examined through comparison to publicly available data to illustrate a trend in student 

changes due to a teacher’s shift toward AP. 

Quantitative data and analysis include aggregated reports about proficiency levels 

achieved by 4
th

 graders on the TCAP. This standards-based, yearly assessment 

consisted of 69 items: 54 multiple-choice items (accounting for 54% of a student’s 

total score) and 15 constructed response items (44% of the score). Topics sampled by 

the test items included place-value (base-ten) system, multiples and factors, 

multiplication and division of 1- or 2-digit whole numbers, interpretation of data 

presented on a graph, and estimation of costs/change for purchased items (i.e., 

decimals in money). Our analysis juxtaposes proficiency levels attained by students 

(March, 2012 and 2013) in the four different groups (Nora, school, district, state) after 

controlling for comparable populations (ELL, lunch eligibility). 
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Qualitative data and analysis focus on Nora’s rationale for teaching activities used in 

video-recorded lessons she co-planned and co-taught weekly with [Tzur]. These 

inquiries were part of reflective, post-lesson sessions. Each session started by asking 

Nora to explain specific aspects of the lesson, including the mathematics as she 

understood it, reasons for actions she took and changes from plans she made, and what 

she took as evidence for each student’s understanding (sense making) of the intended 

mathematics. [Tzur] then added his analysis about student learning and understanding, 

particularly distinguishing units/operations each individual student seemed to use. A 

session then culminated with co-planning the next lesson, linking where different 

students seemed to be conceptually with curricular goals set for their next learning. 

Video segments that illustrate shifts in Nora’s thinking were selected for the analysis 

(presented below).  

RESULTS 

This section first reports on the comparison of aggregated, quantitative data among 

groups of participating students. This comparison points to the significance of Nora’s 

shift toward AP. We note here that a key reason Nora gave for choosing to focus on 

multiplicative reasoning was her discontent with student learning and outcomes when, 

as often happens, teaching-learning processes consist mainly (or solely) of executing 

algorithms while using heavily-practiced, memorized facts. She noticed that her 

students might be (partially) successful in solving problems highly similar to those 

solved in class; but they failed to transfer multiplicative thinking to situations that 

deviated, even if only slightly, from those they solved previously. This indicated to 

Nora a lack of fundamental understandings needed to solve such problems by 

mindfully choosing/executing proper calculations. Student outcomes on the 

mathematics portion of the TCAP seem to support this focus. 

Student Outcomes 

Figure 1 presents percentages of students who scored at the combined level of 

Proficient or Advanced (Pr+Ad), and how these outcomes changed from 2012 (before 

Nora fully implemented AP) and 2013 (post). At this desired proficiency level, her 

students improved from 58% to 85% (growth of 46%), as compared to school’s 

increase from 46% to 60% (growth of 30%, figures include Nora’s class due to 

aggregation), district’s increase from 56% to 58% (4% growth), and no detectable 

change in state’s averages (72% in both years). 

These data indicate three important trends. First, a teacher versed in AP can bring the 

majority of her class (85%) to the Pr+Ad level. Specifically, Nora promoted three 

students’ shift from PP to Pr and one from Pr to Ad. Second, Nora’s students exceeded 

their comparable counterparts in terms of percentages scoring at Pr+Ad and growth 

from previous year. (Note: all higher-achieving students, pulled from her class and not 

included, attained at proficient or advanced levels.) Third, these data indicate closing 

the achievement gap between students from the typically underachieving sub-groups 
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and their white counterparts. Combined, these results suggest changes in Nora’s 

teaching (examined next) as a possible contributor. 

 

Figure 1: Proficient/Advanced Comparison 2012 to 2013 

Shifts in Nora’s Teaching 

Shifts in Nora’s thinking about how her teaching should link to students’ learning are 

illustrated in three excerpts, two from fall 2011 and the third from spring 2012.  

Excerpt 1: Early Fall 2011 

Tzur: (Probes about how she used to teach multiplication.) 

Nora: Previously we have had an introduction to multiplication. Which is hard for 

them because they memorize the facts but they have no idea why they do it. 

And it’s actually a struggle for a group of kids, because they know they are 

supposed to have memorized it, and they have no idea why. [A bit later, 

asked for an example.] We actually did study arrays in the first unit of 

Investigations and that was so hard for them. I had to bring in Cheez-its; I 

gave each [student] a bag of Cheez-its. So that they could build the factors 

necessary to get to their number [arrays] and that was [still] very difficult 

for them. 

Excerpt 2: Fall 2011 (two weeks after the lesson discussed in Excerpt 1) 

Tzur: (Asks about her assertion on differentiated attainment of the intended 

math.) 

Nora:  I think that there are some—that some students that are—I think it is about 

half and half. Half of the class, maybe a little more than half, are doing 

[operating on] 1s; the other half is counting in [composite] units. 

Excerpt 3: Spring 2012 

Tzur: (Asks about tasks she planned for students ready for UDS-to-MUC shift.) 
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Nora: I’ll create a worksheet [of realistic word problems] that has to do with the 

Mixed Unit Coordination in multiplicative reasoning. I will start with 5s 

and 10s and then I am going to move to 4s and other numbers and then 

maybe I will do another [task] with 6, [or] 7, [or] 8; and then we can move 

on. 

The three Excerpts indicate a shift in Nora’s focus on and use of students’ thinking. In 

Excerpt 1 she recognized some students might not have mastered multiplication facts 

and that everyone, those who did and those who did not, seemed to have no meaning 

for what is being memorization. She mentioned the use of a real-life manipulative 

(Cheez-its), which she decided to add when sensing the difficulties her students faced 

in learning about multiplication as a rectangular array. This is a typical teaching move 

informed by a Perception-Based Perspective—trying to help students “see” the 

mathematics she could see. Yet, during the entire post-lesson session (Excerpt 1 

included), she did not explain nor link that manipulative to particular ways in which 

different students were operating to solve the problems.  

In Excerpt 2 (two weeks later), she began distinguishing two sub-groups in her class in 

terms of different units on which they operated when solving problems. We note that 

later at the interview she also differentiated nature of these units: tangible, figural, or 

abstract (i.e., numbers). This distinction then played a role in her planning. She 

purposely designed activities to advance those students who were counting 1s to 

counting composite units as a necessary conceptual change in their operation via the 

unit-transforming distribution of items.  

In the three months between Excerpt 2 and 3, Nora focused on inferring students’ 

thinking by proactively using the 6-scheme framework and on using these inferences 

to guide her practice. Excerpt 3, shows a shift in her awareness of the role that those 

schemes could play in her teaching. When introducing a new, challenging concept 

such as MUC, the teacher needs to carefully select composite units (numbers) for the 

tasks she designs, so students could bring forth their available schemes (mDC, SUC, 

and UDS—as she mentioned earlier in the interview) and solve the problem while 

having an opportunity to transform those to the intended, MUC scheme. That is, Nora 

seemed to develop conscious attention to the link between her analysis of students’ 

thinking and tasks that may be useful for the next lesson. Her comments suggest 

purposeful sequencing of tasks, and numbers used, as a means to moving forward 

while supporting students’ reasoning. 

DISCUSSION 

This paper focused on ways in which professional development of teachers of 

mathematics and their student outcomes may be linked. Particularly, it showed how a 

shift in a teacher’s perspective changed her practice and student outcomes that seemed 

to follow from this change. The results of the study suggest two major contributions to 

the field. First, Nora’s case points to the importance of teacher learning to (a) 

distinguish students’ ways of thinking and (b) base her teaching practices on 
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research-based learning trajectories, such as the 6-scheme framework (Tzur et al., 

2013). The notion of AP used to guide Nora’s development entails the need to help a 

teacher clearly differentiate her own mathematics from the students’ ever-changing 

mathematical schemes, which is consistent with Steffe’s (1990) distinction between 1
st
 

and 2
nd

 order models, respectively. Nora’s case indicates a teacher can surmount the 

challenge involved in making such a distinction and purposely use accounts of 

cognitive change to inform her instruction daily. It also raises issues for future studies, 

including how the intensive nature of co-teaching that promoted Nora’s development 

may be implemented on a larger scale. This study provides a first glimpse into how 

mathematics educators and classroom teachers can work collaboratively to bring about 

this desired shift. 

Second, the comparison of quantitative data of proficiency levels attained by Nora’s 

students and their counterparts (school, district, state) indicates the potential benefits of 

a shift toward a student-adaptive pedagogy. Mathematics education literature, 

particularly since reform pedagogies and materials were introduced (Senk & 

Thompson, 2003), showed that student outcomes when learning in reform classrooms 

were not compromised. A typical claim would be that students in those classrooms did 

not do worse than their counterparts in more traditional classrooms. However, this 

study, along with data about other classes in Nora’s school (and other districts) that we 

continue collecting and analyzing provide further evidence that a shift to adaptive 

teaching may promote bona fide improvement in student outcomes. We contend that 

the improvement in student outcomes presented in this paper were made possible by 

the teacher’s learning to use their ways of thinking as a driving force in creating (and 

adjusting) lessons conducive to their learning. Simply put, opportunities to learn are 

afforded (or constrained) by what students know. Clearly, further research is needed to 

more specifically link between the teacher’s development of conceptual/practical tools 

implied by AP and growth in students’ learning, reasoning, problem solving, and tested 

outcomes. 

References  

Carpenter, T. P., Fennema, E., Peterson, P. L., Chiang, C. P., & Loef, M. (1989). Using 

knowledge of children's mathematics thinking in classroom teaching: An experimental 

study. American Educational Research Journal, 26(4), 499-531.  

Ernest, P. (1989). The knowledge, beliefs and attitudes of the mathematics teacher: A model. 

Journal of Education for Teaching, 15, 13-33.  

Jin, X., & Tzur, R. (2011). Progressive incorporation of new into known: A perspective on 

and practice of mathematics learning and teaching in China. Paper presented at the 

Annual Conference of the Association of Mathematics Teacher Educators, Irvine, CA.  

Moll, L. C., Amanti, C., Neff, D., & Gonzalez, N. (1992). Funds of knowledge for teaching: 

Using a qualitative approach to connect homes and classrooms. Qualitative Issues in 

Educational Research, 31(2), 132-141.  



Hodkowski, Tzur, Johnson, McClintock 

3 - 328 PME 2014 

National Governors Association Center for Best Practices. (2010). Common core state 

standards initiative. Washington, DC: NGA & CCSSO. 

Schifter, D. (1998). Learning mathematics for teaching: From a teachers' seminar to the 

classroom. Journal of Mathematics Teacher Education, 1(1), 55-87.  

Schwartz, J. L. (1991). Intensive quantity and referent transforming arithmetic operations. In 

J. Hiebert & M. J. Behr (Eds.), Number concepts and operations in the middle grades (3
rd

 

ed., Vol. 2, pp. 41-52). Reston, VA: National Council of Teachers of Mathematics. 

Senk, S. L., & Thompson, D. R. (2003). Standards-Based School Mathematics Curricula: 

What Are They? What Do Students Learn? Mahwah, NJ: Lawrence Erlbaum. 

Simon, M. A., Tzur, R., Heinz, K., Kinzel, M., & Smith, M. S. (2000). Characterizing a 

perspective underlying the practice of mathematics teachers in transition. Journal for 

Research in Mathematics Education, 31(5), 579-601.  

Steffe, L. P. (1990). Adaptive mathematics teaching. In T. J. Cooney & C. R. Hirsch (Eds.), 

Teaching and learning mathematics in the 1990s (pp. 41-51). Reston, VA: National 

Council of Teachers of Mathematics. 

Steffe, L. P. (1992). Schemes of action and operation involving composite units. Learning 

and Individual Differences, 4(3), 259-309. doi: 10.1016/1041-6080(92)90005-Y 

Thompson, A. G. (1992). Teachers' beliefs and conceptions: A synthesis of research. In D. A. 

Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 

127-146). New York: Macmillan. 

Thompson, P. W., & Saldanha, L. (2003). Fractions and multiplicative reasoning. In J. 

Kilpatrick & G. Martin (Eds.), Research companion to the NCTM Standards (pp. 95-113). 

Washington, DC: National Council of Teachers of Mathematics. 

Tzur, R., Johnson, H. L., McClintock, E., Kenney, R. H., Xin, Y. P., Si, L., . . . Jin, X. (2013). 

Distinguishing schemes and tasks in children's development of multiplicative reasoning. 

PNA, 7(3), 85-101.  

von Glasersfeld, E. (1995). Radical constructivism: A way of knowing and learning. 

Washington, DC: Falmer. 



 

2014. In Oesterle, S., Liljedahl, P., Nicol, C., & Allan, D. (Eds.) Proceedings of the Joint Meeting 3 - 329 

of PME 38 and PME-NA 36,Vol. 3, pp. 329-336. Vancouver, Canada: PME. 

HOW IS THE FUNCTION CONCEPT INTRODUCED IN 

TEXTBOOKS?: A COMPARATIVE ANALYSIS  

Dae S. Hong, Kyong Mi Choi 

University of Iowa 

 

This study compared sections of functions and linear functions from four Korean 

textbooks and Core Plus Mathematics Project (CPMP). To understand differences and 

similarities among these textbooks, both horizontal and vertical analyses were 

conducted. The horizontal analysis results revealed that topics related to functions and 

linear functions are introduced relatively earlier in Korean textbooks than in CPMP. 

The vertical analysis results confirmed the findings of previous study (Hong & Choi, 

2014), which can be interpreted as “textbook signature”. 

INTRODUCTION 

Reports from international comparative studies such as Trend in International 

Mathematics and Science Study (TIMSS) and Programme for International Student 

Assessment (PISA) indicates that East Asian students perform consistently well. 

Among the various areas of mathematics education research, textbooks play an 

important role in determining what is taught and what students learn. There are 

different views of textbooks, however, researchers agree, in various degrees, that an 

analysis of textbooks can partially explain differences in student achievement (Zhu & 

Fan, 2006). Although Korea is one of the high achieving countries in international 

assessments, there are few mathematics education studies that disseminate Korean 

secondary mathematics textbooks (Hong & Choi, 2014). “Lesson signature” and 

“textbook signature” are distinctive characteristics across lessons and textbooks in 

each country (Hiebert et al., 2003; Charalambous, Delaney, Hui-Yu & Mesa, 2010). 

Such characteristics could partially explain what students in different countries learn. 

By comparing textbooks, this study will examine features of secondary Korean and 

American mathematics textbooks. If some features are consistently found, we can say 

that there is “textbook signature” among Korean and American secondary textbooks. 

We chose one of the fundamental and central unifying concepts in mathematics, the 

concept of functions (up to the linear functions) for comparison (Eisenberg, 1992; 

National Council of Teachers of Mathematics [NCTM], 1989, p. 154). Here are 

research questions that we attempt to answer:  

1. What similarities and differences are observed in the content of function lessons 

of Korean and standards –based American secondary textbooks? 

i) How are topics of function introduced and developed? 

ii) What practices and contexts are used in the mathematics problems? 

2. What types of responses and levels of cognitive demands are required in the 

textbook problems? 
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LITERATURE REVIEW 

Students’ Learning of Function   

Studies show the formal definition of a function, the Dirichlet–Bourbaki definition is 

introduced often, but there are various misconceptions about a function: a function is 

defined by an algebraic formula, a function must be continuous, and a split domain will 

represent more than one function (Hitt, 1998; Mesa, 2004). To overcome 

misconceptions, multiple representations are often emphasized (Brenner et al., 1997).  

Textbook Comparison Studies 

Studies show that Asian countries’ textbooks (Japan and Taiwan) contain more 

mathematical topics in one school year and introduce these topics earlier in the 

sequence of the school year compared to both elementary and secondary American 

textbooks (Steveson & Bartsch, 1992; Stigler et. al., 1982). In analyses of mathematics 

problems, studies have presented varying results. Some have shown that in both 

elementary and secondary mathematics textbooks, Asian countries contain more 

challenging problems and problems requiring explanation than American 

standards–based and traditional textbooks (Li, 2000; Son & Senk 2010) while other 

studies discovered that standards–based textbooks include more challenging problems 

and problems requiring explanation than traditional and Korean secondary textbooks 

(Cai, Nie, & Moyer, 2010; Hong & Choi, 2014).  

METHODOLOGY 

Framework 

A two-dimensional framework, horizontal and vertical analyses, was employed 

(Charalambous et al., 2010). A horizontal analysis provides background information 

on the textbook development, the number of lessons and grade level placement of 

certain topics. A vertical analysis provides in-depth understanding textbook content 

including how the lesson begins and concepts are developed (Table 1) 

Horizontal Analysis Vertical Analysis 

Education systems 

Number of lessons 

Number of problems 

Grade level placement of topics 

Introduction and development of topics 

Cognitive demands of problems 

Type of responses  

Practices used 

Table 1: Framework for Textbook Analysis of Content and Problems 

The vertical analysis is also used for the problem analysis, which consists of three 

dimensions – cognitive demands, response type, and practices used. To investigate the 

cognitive demand of problems, we adopted the Task Analysis Guide by Stein, Grover, 

and Henningsen (1996). Codes of M (Memorization) and P (Procedures without 

Connections) are considered lower-level demands and PC (Procedures with 

Connections) and DM (Doing Mathematics) are higher-level demands. Response type 

of each problem was examined to determine whether the mathematics problem 
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requires students to provide only an answer (numerical, algebraic expressions or 

graph) or explain or process and justify their reasoning. The last part of the problem 

analysis is based on various practices described in literature about functions. Symbolic 

rule, social data, physical phenomenon, and ordered pairs are practices seen in 

previous studies (Hitt, 1998; Mesa, 2004).  

Data: Textbook Selection and Background 

Two courses of standards-based American mathematics Core Plus Mathematics 

Project (CPMP) textbooks – Course 1 and Course 2 – were chosen for analysis. For the 

Korean textbooks, Middle School Mathematics 1 and 2 by Dusan and Jihak 

Publishings, were selected. In addition, the curriculum guidelines from the Korean 

Ministry of Education (MOE) and Common Core State Standards – Mathematics 

(CCSS-M) were also examined. U.S. Department of Education and called CPMP an 

exemplary mathematics program in 1999. A recent report from the Indiana Department 

of Education (2011) states that CPMP is aligned well with the CCSS–M. 

Reliability of Coding 

For coding reliability, the two authors, fluent in both English and Korean, 

independently coded each problem in the textbooks. Next, a third rater, a doctoral 

student in mathematics education, randomly chose one textbook from each country and 

independently coded each problem. When the two authors disagreed, those items were 

coded based on majority rule using the third rater’s codes. There were no items in 

which all three raters disagreed. The percent agreement of the three raters was between 

88% and 93%. In all, there are 459 problems in the four Korean textbooks and 513 

problems in the CPMP are analyzed and coded.  

RESULTS 

Horizontal Analysis 

In Korea, there are two kinds of textbooks in Korea − government published and 

government authorized textbooks (Korean Textbook Research Foundation [KTRF], 

1998). Whether they are government published or authorized, the content in all 

textbooks are almost identical. Each state or district determines school curricula in the 

U.S. Instead of government agencies, professional organizations such as NCTM 

provide curriculum guidelines and standards (NCTM, 1989). During the so–called 

standards era of the 1990s, the National Science Foundation and other organizations 

funded many curriculum development projects in the U.S. which resulted in several 

‘standards-based’ mathematics curricula.  

CPMP includes nine lessons on the topic of function and linear functions while the 

Korean textbooks have eleven lessons. Korean textbooks include two more lessons, 

but it is difficult to say that Korean students learn more topics because all content of 

these two lessons are included in CPMP. CPMP is designed for grades 9 to 11 (Schoen 

& Hirsch, 2003b), while the Korean textbooks are for grades 7 and 8. The CCSS–M 

recommends topics of functions be introduced in grade 8. This means Korean students 



Hong, Choi 

3 - 332 PME 2014 

learn the concept of function relatively earlier compared to CPMP students. In total, 

there are 459 and 513 problems in the four Korean and CPMP textbooks, respectively: 

20.8 problems per lesson in Korea and 57 problems per lesson in CPMP. This result is 

contrast to a result of Son and Senk’s (2010) study comparing elementary textbooks 

while coinciding with a result from a study comparing secondary school textbooks 

(Hong & Choi, 2014).  

Vertical Analysis 

In this section, we briefly how these textbooks introduce the concept of a variable. 

How textbooks introduce the concept of a variable is closely related to how the concept 

of function are developed. A variable is defined as unknown in textbooks and 

curriculum guidelines from the Korean MOE while CPMP uses variables to describe 

linear patterns/functions/equations, meaning that it is something that changes. Korean 

textbooks’ static approach, which is also found in traditional American textbooks, is 

called a structural approach while CPMP’s approach to linear functions is a functional 

approach (Cai et al., 2010).  

The concept of function 

Differences between the two countries’ textbooks are observed from the very first 

lesson. At the end of the first unit in CPMP course 1, Patterns of Change, CPMP 

defines a function in the following way: 

In mathematics, relations like these – where each possible value of one variable is 

associated with exactly one value of another variable – are called functions (Hirsch et al., 

2007a, p. 69). 

This definition is given immediately after a description of a bungee cord being attached 

to one weight, real-world application. Figure 1 shows problems in the lesson. Aside 

from problem 4-a, these problems require students to reason, think, and explain their 

thoughts and reasoning, simple algorithms or computations will not be enough. 

 

Figure 1: First few problems about in CPMP (Hirsch et al., 2007 a, p. 152). 

The following is the definition found in Korean textbooks: 

For two variables x and y, if there is one corresponding y value for x value, y is called a 

function of x and it can be written symbolically in the following way, y = f(x). (Lee et al., 

2008, p. 131) 
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After the definition of a function, a formal definition of domain and range of a function 

is followed (Figure 2) and these terms are not introduced in CPMP. Formally defining 

function and introducing domain and range suggests that the Korean textbooks’ 

approaches are structural. 

 

Translation: For a function y = f(x), the collection of all possible x values is called the 

Domain and the collection of all possible y values is called the Range.  

Figure 2: Domain and Range in Korea textbook (Lee et al., 2008, p. 133). 

Rate of change, slope and ordered pairs 

After solving five real-life context problems, CPMP introduces the concept of slope 

using physical phenomenon to show rate of change. On the other hand, the Korean 

textbooks maintain their focus on symbolic and pure mathematical approaches. Their 

next topic are ordered pairs, coordinate plane and sketching the graph of y = ax. On the 

last lesson about linear function in Middle School Mathematics 1, the Korean 

textbooks introduce some real-life applications, but differ from the CPMP because the 

problems require procedures of finding an equation and computing a number for a 

“real-life” value without requiring explanations. 

CPMP’s emphasis on real-life applications can be seen in Figure 3. For example, part b 

requires students to explain the meaning of a positive or negative slope in a realistic 

context of depreciation and inflation. 

 

Figure 3: Slope in a real-life context (Hirsch et al., 2007 a, pp. 158-159). 

Cognitive Demands of Problems  

CPMP includes more problems with higher level cognitive demands (PC and DM) 

than the Korean textbooks – 25.7 % in CPMP and 7.4% in Korean. The majority of 

problems – 74.3% of problems for CPMP and more than 90% for the Korean textbooks 

– require low cognitive demand (M and P).  

Response Type 

Over 90% of problems in the Korean textbooks require number, expression, or 

graph-type responses. One remarkable difference is that more than 40% of problems in 
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CPMP require explanations compared to only 6.5% of problems in the Korean 

textbooks. These results, cognitive demands response type, are consistent with 

previous study (Hong & Choi, 2014), which can possibly be interpreted as “textbook 

signature.”  

Practices Used 

Symbolic practice is the most frequent type for both Korean (43.2%) and CPMP (37.4) 

textbooks, which was also found in a previous study (Mesa, 2004). The notable 

difference between the two countries’ textbooks is the portion of real-life problems 

(Social Data and Physical Phenomena): 56.1 % in CPMP and 16.5 % in Korean 

textbooks. 

DISCUSSION AND CONCLUSIONS 

This article compared sections of functions and linear functions from four Korean 

textbooks and CPMP. The horizontal analysis results revealed that topics related to 

functions and linear functions are introduced relatively earlier in Korean textbooks 

than in CPMP, which confirms findings in previous studies (Steveson & Bartsch, 

1992). The vertical analysis results demonstrate that CPMP places strong emphasis on 

real-life applications rather than pure mathematics, a functional approach while the 

Korean textbooks emphasize symbolic and algebraic representations, a structural 

approach. A majority of problems in both the CPMP and Korean textbooks only 

require lower level cognitive ability in contrast to the results of previous studies about 

textbooks of East Asian countries (Charalambous et al., 2010; Son & Senk, 2010). 

However, this outcome corresponds with a finding from Hong and Choi (2014) and 

these characteristics can be considered “textbook signature” among Korean secondary 

mathematics textbooks. 

This study yields results, which both contradict and confirm previous findings: CPMP, 

the American standards–based curriculum, offers more opportunities for students to 

solve, explain, and reason about higher level cognitive demanding mathematics 

problems than Korean secondary textbooks. This conflicts with American students’ 

mediocre performances on international comparative studies because CPMP students 

can possibly engage in more meaningful and interesting tasks when learning 

mathematics. Our results confirm the well-known fact that the link that connects what 

textbooks potentially offer and what students learn is what teachers do and how they 

implement textbook content in their classes. Further studies on how teachers in 

different countries implement and use curriculum materials may explain the gap 

between what textbooks offer and students’ performances. Because of contradicting 

results, Hong and Choi (2014) state that textbooks may not be the reason for American 

and Korean students’ performances on international comparative studies. Our results 

confirm their assertion that CPMP students have several opportunities to reason, solve, 

and think about mathematics problems. Although we cannot generalize our results, 

properly implementing these textbooks in mathematics classes may be the key to 

improving students’ performance in international studies.  
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In terms of the contents of these textbooks, each country’s textbook may need to 

equally include various function practices. Korean students may struggle with real-life 

contexts of functions while CPMP students may have difficulty with symbolic and 

algebraic representations of the function concept. Textbook publishers and authors 

should consider distributing other representations and practices equally.  

Further studies to measure “lesson signature” and “textbook signature” may be 

interesting as well. A previous criticism of American mathematics curriculum is the 

incoherent mathematics curriculum among different states (Schmidt et al., 2001). If 

there exists “textbook signature” among other standards–based textbooks, we can have 

a more coherent mathematics curriculum.  
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In this study we investigated how 200 students in seventh grade (mean age = 12.38 

years) solved simple addition problems and if the way they performed simple addition 

was related to their achievement in mathematics. Four performance groups were 

identified: proficient, almost proficient, inaccurate min counting and accurate min 

counting. More than half the participants did not display proficient or close to 

proficient performance despite expectations that proficiency is achieved around third 

grade. Findings unique to this study were that accurate min counting was associated 

with lower math achievement and that girls were more likely to display this pattern of 

performance than boys. The findings corroborate a growing awareness that many 

students are not achieving proficiency and that this is a concern requiring attention.  

INTRODUCTION 

Simple addition involves adding together single digit numbers. Curriculum documents 

(or standards) indicate that by around second or third grade (eight years of age), 

children solve simple addition problems using retrieval (e.g., Australian Curriculum, 

Assessment and Reporting Authority, 2010; Department for Education, 2013; National 

Council of Teachers of Mathematics, 2000).  Contrary to curriculum expectations, a 

large study conducted in the UK found that not just a few but many children in second 

and third grade were not retrieving solutions to most simple addition problems 

(Cowan, Donlan, Shepherd, Cole-Fletcher, Saxton, & Hurry, 2011).  

It is not clear if educators need to be concerned about this finding. Cowan et al. (2011) 

postulated that a lack of retrieval with simple addition may not be the barrier to 

achievement that it is often predicted to be given children in their study also showed 

typical achievement. In this study we investigated how students who were well beyond 

the stage when retrieval is expected to dominate performance solved simple addition 

problems and if an association between simple addition performance and math 

achievement was evident among students who were expected to learn higher-order 

mathematical procedures and concepts.  

BACKGROUND 

The issue regarding the importance of retrieval is somewhat clouded by different views 

of what it means to achieve proficiency with simple addition. Curriculum documents 

tend to view proficiency as the accurate and exclusive use of retrieval to solve simple 

addition problems. Retrieval refers to the direct retrieval of an answer from a store of 

facts held in long term memory (Ashcraft, 1995). Proficiency can also be viewed as 
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encompassing the correct use of other efficient strategies, not just retrieval (Baroody, 

2006). These include decomposition strategies, strategies that involve applying 

number principles, deriving answers from related facts or decomposing numbers to 

solve problems (Cowan et al., 2011). Proficiency with simple addition is defined in this 

paper to be performance that is accurate and is dominated by the use of retrieval and 

decomposition strategies.  

Before proficiency is achieved, children’s simple addition performance is 

characterized by the use of counting strategies. As children develop in their 

mathematical thinking they generally progress from using a counting-all strategy 

where the count is started at one, to using more sophisticated counting strategies such 

as a counting-on from first strategy, where the second addend is counted on the first 

addend, and a counting-on from larger strategy, where the smaller addend is counted 

on the larger addend (Carpenter & Moser, 1984). The counting-on from larger strategy 

requires the minimum number of counts and is also referred to as min counting (Fuchs, 

Powell, Seethaler, Cirino, Fletcher, Fuchs, et al., 2010; Geary, Hamson, & Hoard, 

2000).  With continued correct practice (Shrager & Siegler, 1998) and growth in an 

understanding of number principles and rules (Baroody & Tiilikainen, 2003), children 

generally progress from using less efficient counting strategies to using min counting, 

retrieval and decomposition strategies (Hopkins & Lawson, 2002).  

While min counting is the most efficient counting strategy, its frequent use is not 

considered appropriate beyond third grade in most curriculum documents. The issue 

regarding the importance of achieving proficiency with simple addition it is not about 

whether children’s performance is dominated by retrieval, or retrieval and 

decomposition strategies, the issue is that children’s performance is accurate and is no 

longer dominated by counting strategies including min counting.  

This research is concerned with investigating the importance of achieving proficiency 

with simple addition. The first aim of this research was to document how students who 

were at a stage well beyond when proficiency is expected, performed simple addition. 

Students in Year 7 were chosen as this is the final year before secondary education in 

the state. The second aim was to investigate if the way students performed simple 

addition was related to their achievement in mathematics. The third aim was to explore 

possible gender differences in how simple addition was performed.   

METHOD 

The study cohort comprised 200 students in Year 7 with a mean age of 12.38 years 

(SD=0.43 years) from 13 government primary schools located in the Perth 

metropolitan area in Western Australia (WA). Participants included 116 females 

(58%). Mathematics achievement scores for each participant were based on numeracy 

results from the Western Australian Literacy and Numeracy Assessment (WALNA) 

administered by the government as part of the national testing regime. The numeracy 

section of the WALNA assesses math outcomes associated with Space, Measurement, 

Chance and Data, Number, Pre-algebra and Working Mathematically and takes 
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approximately 45 minutes to complete. Assessment results for the WALNA are 

calibrated on a common logit scale based on the Rasch measurement model and scores 

range from 0 to 800. The numeracy assessment used showed excellent reliability 

(Pearson Separation Index = 0.879). Numeracy scores for the study cohort did not 

differ significantly from the state’s population mean score, t(196)=.219, p=.827. 

Students were individually assessed as the performed a set of 36 simple addition 

problems that were presented in random order using a computer. The set included all 

single-digit addition problems with addends greater than 1 (2+2 to 9+9), written in the 

form ‘m+n=’ and presented with the smaller addend first (except for tie problems 

where m=n) making it possible to distinguish between use of the counting-on from first 

strategy and min counting. The response time taken to complete each problem was 

recorded along with the answer given. Strategy use was identified based on a 

combination of observation and self-report given after each problem was solved. This 

combined approach of observation and self-report on a problem by problem basis is 

commonly used to identify the strategies used to solve addition problems (e.g., Canobi, 

2009; Geary et al., 2000).  

Response times (RT) corroborated the strategies identified using the combined 

approach. Response times to retrieval trials were generally under three seconds 

(M=1.78s, SD=0.84) - a time limit often used to infer direct retrieval on forced retrieval 

tasks (Cowan et al., 2011). Mean response times to trials where decomposition 

strategies were identified (M=3.26s, SD=1.8) were longer than RTs to retrieval trials 

but shorter than RTs to min counting trials (M=3.76, SD=2.25). Furthermore, RTs to 

min counting trials increased in a strong linear fashion as the minimum addend 

increased (representing the number of counts made). An increase of around half a 

second was recorded for each count. 

Simple addition performance was classified into groups using cluster analysis based on 

three criteria similar to those used by Siegler (1988): the percentage use of direct 

retrieval, the percent correct on direct retrieval trials and the percent correct on min 

counting trials. An ANOVA was used to test group differences in terms of math 

achievement and a chi-square statistic was applied to test the significance of 

differences in the number of female and male students in each group.   

RESULTS 

The three criteria significantly differentiated three performance groups: percentage use 

of direct retrieval, F(2,169)=176.50, p<.001, η
2
=.67, percent correct on min counting 

trials, F(2,169)=161.61, p<.001, η
2
=.66, and percent correct on direct retrieval trials 

F(2,169)=6.03, p<0.01, η
2
=.07. Twenty-eight students could not be classified using the 

cluster analysis as they exclusively applied retrieval and decomposition strategies and 

therefore no data were available for the criterion relating to min counting trials. These 

students formed a fourth group. 
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The four performance groups appeared readily interpretable and were labelled the 

proficient, almost proficient, inaccurate min counting, and accurate min counting 

groups. The characteristics of students’ simple addition performance for each of the 

four groups are detailed in Table 1, including the percentage mix of strategies used to 

solve the problem set and the percentage accuracy of each strategy.   

 Proficient 

(n=28) 

Almost 

proficient 

(n=65) 

Inaccurate 

min counting 

(n=37) 

Accurate  min 

counting 

(n=70) 

Strategy Mean strategy use (SD) 

Direct retrieval 88.9% (11.5) 76.7% (10.6) 61.8% (10.7) 39.7% (12.6) 

Min-counting 0 16.8% (9.7) 28.3% (13.7) 47.3% (18.9) 

Decomposition 11.0% (11.5) 6.2% (8.7) 8.8% (9.8) 12.9% (14.3) 

Strategy Mean accuracy (SD) 

Direct retrieval 98.8% (2.3) 98.6% (2.5) 96.3% (4.7) 98.5% (3.6) 

Min-counting - 99.3% (3.0) 74.7% (10.5) 95.7% (7.1) 

Decomposition 97.3% (5.19) 91.9% (24.1) 94.9% (12.7) 96.5% (9.7) 

Table 1: Characteristics of each performance group 

In summary, the simple addition performances of students characterized as proficient 

comprised the exclusive use of retrieval and decomposition strategies and mostly 

correct answers. Performance characterised as almost proficient was dominated by the 

accurate use of retrieval and decomposition strategies, but some accurate use of min 

counting was evident. Performance characterized as inaccurate min counting 

encompassed a relatively moderate use of direct retrieval and decomposition 

strategies, and the frequent use of min counting that resulted in incorrect answers 

(errors were made on 25% of min counting trials). Students in this performance group 

also displayed the lowest accuracy for retrieval. This finding is consistent with the 

strategy choice model (Shrager & Siegler, 1989), which predicts that retrieval errors 

can occur as incorrect associations are formed in memory when a counting strategy is 

used inaccurately. Performance characterised as being accurate min counting 

encompassed the dominant use of min counting and generally accurate performance. 

The math achievement scores for students in each of the four performance groups were 

compared. Four students did not have achievement scores and were dropped from the 

analysis. An ANOVA revealed a significant difference in mean math achievement 

scores across performance groups, F(3,192)=15.84, p<.001, η
2
=.20. Approximately 

20% of variance in math achievement scores was explained by differences in how 

students performed simple addition. Post-hoc comparisons with Bonferroni adjustment 

revealed that students in the proficient group scored significantly higher on the math 

assessment (M=529.33, SD=72.89, n=27) than students in the accurate min counting 
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group (M=451.09, SD=71.37, n=69), t(94)=4.80 p<.001, d=1.09, and students in the 

inaccurate min counting group (M=430.32, SD=65.50, n=37), t(62)=5.69, p<.001,  

d=1.44. No significant difference in mean math scores was found between students in 

the proficient group and the almost proficient group, t(88)=1.94, p=ns. Students 

displaying almost proficient performance scored significantly higher on the math 

assessment (M=498.54, SD=67.12, n=63) than students who displayed accurate min 

counting t(130)=3.93, p<.001, d=0.68, and students who displayed inaccurate min 

counting, t(98)=4.95, p<.001, d=1.03. No significant difference in math achievement 

was found between students in the accurate min counting and inaccurate min counting 

groups, t(104)=1.47, p=ns. The findings indicate that students who were more likely to 

solve simple addition problems using min counting displayed lower achievement in 

maths than their peers who frequently use retrieval and decomposition strategies – 

regardless of whether they use min counting accurately or inaccurately. 

An exploratory analysis was also conducted to compare the number of female and male 

students classified as displaying proficient, almost proficient, inaccurate min counting 

and accurate min counting. Table 2 shows the number of female and male students in 

each group. 

Performance group  No. of female students No. of male students  

Proficient 12 (10.3%) 16 (19.0%) 

Almost proficient 30 (25.9%) 35 (41.7%) 

Inaccurate min counting 21 (18.1%) 16 (19.0%) 

Accurate min counting 53 (45.7%) 17 (20.2%) 

Table 2: Number of female and male students in each performance group 

The chi-square statistic indicated that there was a significant difference in the gender 

composition of the performance groups, χ
2
 (3, N=200) = 15.421, p = .001. More female 

students displayed accurate min counting performance than male students, and more 

male students displayed proficient or almost proficient performance than female 

students. A comparable number of male and female students displayed inaccurate min 

counting.  

DISCUSSION 

The findings revealed that less than half the number of Year 7 students who 

participated in the study were proficient or close to being proficient with simple 

addition. As students were well beyond the stage when proficiency is expected, this 

finding highlights the issue that many students are not achieving proficiency with 

simple addition. The findings also revealed that a close association between 

proficiency and achievement in math was evident. The implication is that educators 

need to be concerned about addressing this issue.   
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We believe it is very important to achieve proficiency with simple addition. Poor 

proficiency will act as a barrier to developing key conceptual knowledge as emergent 

understandings of number are not reinforced by efficient procedures and attentional 

resources are not made available during performance to discern underlying number 

concepts. The argument is based on the view that mathematical development is 

influenced by an iterative relationship between procedural and conceptual knowledge,  

where an increase in one type of knowledge leads to an increase in the other type of 

knowledge, in turn promoting deeper insight into the first type of knowledge (Canobi, 

2009; Schneider & Stern, 2010). The finding of a close association between 

proficiency and achievement in math supports this view. 

The findings are consistent with results from the learning disabilities (LD) field. 

Research is this field has established that students with a mathematics learning 

disability (MLD) (often identified by poor achievement) stay reliant on counting to 

perform simple addition at an age well beyond their typically achieving peers (Geary, 

2010; Ostad & Sorenson, 2007, Torbeyns, Verschaffel, & Ghesquière, 2004). Students 

with a MLD are also more likely to exhibit counting and/or retrieval errors (Geary, et 

al., 2000) – particularly if they have a combined reading disability (Jordan, Hanich, & 

Kaplan, 2003). While the findings are consistent, they advance those reported in the 

literature in three important ways.  

The findings of the present study suggest that difficulties achieving proficiency are 

more common than what is suggested in LD research. Research in the this field has 

largely relied on a comparative approach where the simple addition performance 

displayed by a group of students with a MLD is compared to performance displayed by 

typically achieving students. Students are often identified as having a MLD based on 

achievement scores that fall below the 30th percentile (Murphy, Mazzocco, Hanich & 

Early, 2007). Thus by definition, the prevalence of a MLD is at most 30% of the 

population. It could be assumed that this figure also represents the prevalence of 

difficulties achieving proficiency. The prevalence of difficulties achieving proficiency 

appears to be more widespread than this. 

The findings from the present study distinguished between the use of accurate counting 

and inaccurate counting. To our knowledge this distinction has only been made in one 

other study. Siegler (1988) found that six-year-old children who predominately used 

counting strategies accurately showed comparable math achievement to their peers 

who relied on retrieval but children who predominately used counting strategies 

inaccurately did not. Siegler referred to the first group of children as perfectionists and 

explained their preference for counting as being influenced by a high confidence 

threshold for retrieval. The present study is the first examine the effects of adopting a 

perfectionist-like approach beyond the age of six. Accurate min counting among 

12-year-old students was associated with lower math achievement. This has important 

implications for classroom practice. Approaches are needed to address difficulties 

achieving proficiency for students who display accurate min counting and will need to 
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focus on building confidence with retrieval. These will be different to approaches that 

address inaccuracy. 

A third unique finding of the present study was that girls were more likely to exhibit 

accurate min counting than boys and boys were more likely to display proficiency. 

This finding is novel and needs to be corroborated by other research but is important to 

investigate further. It is generally acknowledged that more males than females are 

identified as experiencing learning difficulties even though differences in overall math 

achievement are not strongly evident (e.g., Vogel, 1990). It may be that assessments 

that contribute to the identification of learning difficulties focus more on accuracy than 

efficiency and this will need to be rectified in future research.  
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This study employed latent class cluster analysis to explore students’ perceptions of 

what aspects of mathematical literacy, composed of mathematics competencies and 

attitudes, teachers should focus on. The sample included 1,219 Taiwanese senior high 

school students and 59 mathematics teachers. Three profiles were identified for 

mathematics competence, which were characterized as comprehensive, test-oriented, 

and limited thought-oriented. Regarding mathematics attitudes and mathematics 

learning attitudes, three profiles were identified and characterized as: broad, 

math-interior oriented, and mind-focused. Students and teachers differed in their 

perceptions on the importance of some aspects of mathematical literacy. 

INTRODUCTION 

Developing students’ mathematical literacy has been a critical issue in both the 

academic study and practice of mathematics education. As early as 1986, the National 

Council of Teachers of Mathematics established the Commission on Standards for 

School Mathematics; the central tenet of these standards was the cultivation of 

mathematical literacy among students (Romberg, 2001). The Program for International 

Student Assessment, an international comparison study with more than 70 

participating countries, also set mathematical literacy as a main focus of its survey. 

Many researchers have focused on the structures and connotations of mathematical 

literacy. Kilpatrick (2001) identified “five strands of mathematical proficiency”— 

conceptual understanding, procedural fluency, strategic competence, adaptive 

reasoning, and productive disposition. The first four pertain to mathematics 

competence, and the last is related to mathematics attitudes and mathematics learning 

attitude. These two categories of literacy also correspond to the goals of the Taiwan 

national mathematics curriculum (Ministry of Education, 2010). 

In Taiwan, the 12-year compulsory education program is nearly launched. In the 

program, mathematics classes will have a big difference from present which will be 

composed of students at various levels of mathematics, who have various perceptions 

about mathematics. Thus, probing into senior high school students’ perceptions 

regarding what aspects of, and/or how, mathematical literacy teachers should focus on, 

is beneficial. Because mathematical literacy is constituted of numerous factors, major 

profiles were identified to allow teachers to easily understand the results of this study. 

The main research questions were: 
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1. What are the profiles that portray senior high school students’ perceptions of 

which mathematics competencies teachers should focus on? 

2. What are the profiles that portray senior high school students’ perceptions of 

which mathematics and mathematics learning attitudes teachers should focus on? 

3. What are the commonalities and differences between students’ and teachers’ 

perceptions of what aspects of mathematical literacy teachers should focus on? 

RESEARCH METHOD 

Conceptual framework 

The conceptual framework for mathematical literacy in this study included a cognitive 

component, mathematics competences, and an affective component, attitudes toward 

mathematics and learning mathematics. The choice of items in the components was 

based on both a literature review and the results of a qualitative pilot study (see the 

section of instrument). 

Mathematics competence 

The two major types of mathematics competence (MC) are content-oriented and 

thought-oriented mathematical competence (Hsieh, Lin, & Wang, 2012). 

Content-oriented mathematical competence is related to specific mathematics topics, 

for example, the possession of factual knowledge (Niss, 2003). Thought-oriented 

mathematical competence arises from the characteristics of mathematical thought 

rather than relates to specific knowledge of particular mathematical topics (Krutetskii, 

1976), for example, exploring in mathematics problems, applying mathematics to 

solve problems arising in daily life (CCSSO & the NGA Center, 2010), manipulating 

statements and expressions containing symbols, and understanding others’ written 

texts about mathematics in a variety of linguistic registers (Niss, 2003). This study 

emphasized thought-oriented, rather than content-oriented, mathematical competence. 

Mathematics and mathematics learning attitude  

Many studies have discussed the structure of mathematics attitudes (MAs), and have 

developed measures to investigate students’ mathematics attitudes (Lim & Chapman, 

2013; Perry, 2011). In these studies, the value of mathematics and the usefulness of 

mathematics are considered critical. These studies have investigated students’ 

perceptions regarding the usefulness of mathematics in daily life and other subjects, 

the power of mathematics to develop people’s thinking, and etc. 

Researchers have specified many positive mathematics learning attitudes (MLAs). 

Kim and Kim (2010) considered the intention to grasp the core mathematical concepts 

indicative of a positive learning attitude. In another study, being willing and 

perseverant to do mathematics was considered indicative of a positive learning attitude 

(Yang & Tsai, 2010). Studies have also regarded the employment of appropriate 

learning methods to be indicative of a positive learning attitude (Kim & Kim, 2010; 

Yang & Tsai, 2010). 
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Mathematical literacy 

Attitude 

Math attitude 

 Appreciating the usefulness of math in 

daily life 

 Believing that math impacts people’ 

thinking 

… 

Math learning attitude 

 Valuing math concepts more than 

formulas 

 Being willing to do math 

… 

Competence 

Content-oriented mathematical 

competence 

 Knowing extracurricular math content 

Thought-oriented mathematical 

competence 

 Exploring math with open questions 

 Connecting math and everyday life 

 Manipulating math symbols 

 Understanding others’ math written 

texts  

… 

To develop our mathematics competence, a very good senior high school mathematics 

teacher would… 

□1.  Cultivate our abilities of expressing mathematics by asking us to explain our own 

methods to other classmates. 

… 

□4. Teach us how to employ sequencing steps of reasoning according to the 

information provided by a mathematics problem 

… 

 

 

 

 

 

 

 

 

 

 

Figure 1: The framework of this study 

Design and Instrument 

This study was conducted in two stages. In the first stage, a qualitative pilot study using 

open-ended questions was conducted, to obtain 238 high school students’ opinions 

regarding what an ideal mathematics teacher would do when conducting a variety of 

teaching tasks, such as introducing new mathematical concepts. A content analysis of 

the students’ responses was performed to obtain dimensions and items related to 

mathematical literacy by experts including university mathematics educators and 

researchers, school-based supervisors of future mathematics teachers, and expert 

secondary school mathematics teachers. A literature review was conducted to obtain 

further dimensions and items, which were included in the second stage. In the second 

stage, a questionnaire with dichotomous items was administered; on the questionnaire, 

students were asked to state whether or not a good senior high school mathematics 

teacher would focus on a certain literacy item in a particular teaching context; an 

example is shown in Figure 2. This study used two questions in the questionnaire, one 

question measured MC and the other measured MA and MLA; both questions 

consisted of 11 items. Complete lists of these questions are shown in Figures 3 and 4. 

Figure 2: The question related to mathematics competence 
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Participants 

In the first stage, 238 high school students in 6 classes were surveyed. In the second 

stage, 1,219 senior high school students from 61 classes and their mathematics 

teachers (59 in total) were surveyed. These students attended 30 schools in 23 cities out 

of Taiwan’s 25 cities. The sampled schools were randomly selected. In each school, 

two or three classes were chosen randomly. Students in the 10th, 11th, and 12th grades 

constituted 24%, 41%, and 35% of the sample, respectively. 

Data analysis 

This study employed latent class cluster analysis (LCA), a model-based approach 

(Muthén, 2001), to analyze the MC and MA&MLA data separately. LCA enabled the 

interrelationships between observed variables, the responses regarding whether or not 

an ideal teacher would focus on a literacy item, to be analyzed. Subsequently, latent 

classes were identified for students’ perceptions regarding what aspects of 

mathematical literacy teachers should focus on. For each literacy item, the conditional 

probability that a student in a particular class would agree with that item was obtained. 

The distributions of these conditional probabilities for all literacy items in a certain 

class were obtained to depict its profiles of students’ perceptions of which aspects of 

mathematical literacy teachers should focus on (hereafter, this conditional probability 

is referred to as “focusing probability”). For each student, the probabilities of being 

assigned into each latent class were obtained, which were summed to 1. These 

probabilities were averaged over the individuals in the same class to obtain the relative 

size of the class. 

Log likelihood (LL) and adjusted Bayesian information criterion (BIC) statistics were 

employed as goodness-of-fit criteria; smaller values indicated a better fitting model. 

Entropy was used to measure how well the model classified students. It should be 

above 0.6 for medium level and above 0.8 for high level (Clark & Muthén, 2009). 

Relative criteria were also considered. Differences in BIC and LL statistics, and 

Vuong-Lo-Mendall-Rubin (VLMR) tests, were used to assess the improvement of 

model parsimony by comparing the model with n classes to a model with n-1 classes. 

Percentages of teachers’ checking for each item were calculated to determine teachers’ 

perceptions of which aspects of mathematical literacy a teacher should focus on. 

RESEARCH FINDINGS 

Mathematics competence 

Models with more classes were preferred, according to the LL and BIC criteria. 

However, differences in BIC and LL gradually diminished as the number of classes 

increased, indicating that improvements in model parsimony shrank. The VLMR tests 

suggested that the 4-class model did not fit the data better than the 3-class model (p = 

.30), and the 3-class model offered a significantly more adequate fit than the 2-class 

model (p = .01). After further consideration of entropies, the 3-class model was 

selected because of it offered the optimal and most parsimonious representation. 
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No. of 

classes 
Entropy 

Log 

likelihood 

Adjusted 

BIC 
Diff(LL) 

VLMR 

p-value 
Diff(BIC) 

1 - -4636.577 9316.286 - - - 

2 0.675 -4234.465 8559.117 -402.112 .00 -757.169 

3 0.708 -4194.814 8526.868 -39.651 .01 -32.249 

4 0.638 -4170.410 8525.114 -24.404 .30 -1.754 

5 0.687 -4157.429 8546.205 -12.981 .60 21.091 

Table 1: Fit statistics for latent class analysis of MC 

As shown in Figure 3, the focusing probabilities of Class 1 were higher than 90% for 

all MC items except “exploring math with open questions,” which still had a 

probability of 85%. Students classified in Class 1, which had a relative size of 57%, 

indicated that teachers should focus on every MC item listed in Figure 3. The profile 

this class portrayed was thus characterized as “comprehensive.” By contrast, students 

classified in Class 2 (38%) indicated that teachers should focus more on the first six 

MC items than on the last five MC items, as shown in Figure 3 (the first and second 

categories, respectively).
1
 The MCs in the second category were considered less 

crucial to success on senior high school mathematics tests in Taiwan. The profile of 

Class 2 was thus characterized as “test-oriented.” Compared with students in Classes 1 

and 2, the students in Class 3 (5%) indicated that teachers should focus on limited 

mathematical competencies, and only four competencies had focusing probabilities 

higher than 50% for this group, three of which were related to mathematics thought in 

questions, and one of which was related to mathematics language (Niss, 2003). This 

study thus characterized the profile as “limited thought-focused.” In terms of teachers’ 

perceptions, teachers indicated that all MC items should be focused on in the 

classroom, with only two exceptions—“knowing extracurricular math content” and 

“exploring math with open questions.”  

Cultivating students’ abilities to explore mathematics has been a critical issue in 

mathematics education worldwide (e.g., Hsieh, Horng, & Shy, 2012). In Taiwan, a 

project presently underway, the “Highlight-base program,” which aims at promoting 

mathematics teachers’ professional development, chooses developing teachers’ 

abilities to integrate mathematics exploration into the classroom as one focus. 

However, “exploring math with open questions” was the MC item with the lowest 

focusing probability (students’) and the lowest checking percentage (teachers’). 

Further research is necessary to determine whether this indicates that students and 

teachers do not perceive exploring as a crucial aspect of MC or that they do not think 

exploring on open questions are helpful to cultivate students on this MC? Moreover, 

teachers indicated that teachers should focus on “orally expressing one's own math 

problem-solving method.” Oral expression of the problem-solving process allows 

                                           
1
 Factor analysis was conducted to divide the competences into two categories. 
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students to reconstruct their mathematical thinking, enabling them to come to a clearer 

understanding. However, some students did not necessarily share their teachers’ 

perceptions in this regard. 
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Figure 3: Three profiles of students’ perception on the importance of MC 

Mathematics and mathematics learning attitude (MA&MLA) 

Based on the fit statistics shown in Table 2, the 3-class model was selected because it 

offered the optimal, most parsimonious representation. 

No. of 

classes 
Entropy 

Log 

likelihood 

Adjusted 

BIC 
Diff(LL) 

VLMR 

p-value 
Diff(BIC) 

1 - -4222.155 8487.505 - - - 

2 0.760 -3695.289 7480.896 -526.866 .00 -1006.609 

3 0.782 -3626.110 7389.662 -69.179 .00 -91.234 

4 0.770 -3595.817 7376.199 -30.293 .54 -13.463 

5 0.801 -3569.918 7371.523 -25.899 .06 -4.676 

Table 2: Fit statistics for latent class analysis of MA&MLA 

The profiles of the three classes are shown in Figure 4. The first five items in the figure 

belong to mathematics attitude (MA), and the last six items belong to mathematics 

learning attitude (MLA). Regarding Class 1, focusing probabilities were higher than 

90% for all attitudes except “appreciating contributions of math to human civilization 

through stories.” Nonetheless, even this attitude reached a probability of 83%. Class 1 

was therefore characterized as “broad.” Students in Class 2 also considered MLA items 

to be critical, but “believing that math impacts people’s thinking” was the only MA 

item with a focusing probability over 50%. Students in Class 2 did not think that 

teachers should focus on application outside mathematics (e.g., to other subjects or 

daily life). The profile portrayed by Class 2 was thus characterized as “math-interior 

oriented.” The profile of Class 3 is similar to that of Class 2 in terms of the MA part – 
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only highly considering that math impacts people’s thinking as the MA teachers should 

focus on. However, students in Class 3 valued MLA items that were pertinent to ideas, 

thoughts, and volition in mind but not items related to actual actions: “being willing to 

do mathematics” and “being willing to ask math questions.” Therefore, this study 

characterizes Class 3 as “mind-focused.” The teachers’ perception is shown in Figure 

4, which indicates that teachers believed that every MA and MLA item should be 

focused on by teachers. 

In contrast to their teachers, 33% of students (Classes 2 and 3) did not consider that 

teachers should focus on applying mathematics to other fields (the 2
nd

 to the 5
th
 items), 

and 17% of students did not consider the MLAs related to taking actual actions to work 

on mathematics should be focused on. Whether student consider these attitudes as not 

important or may not be teachers’ responsibilities to foster is worthy of future 

investigation. 
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Figure 4: Three profiles of students’ perception on the importance of MA&MLA 

CONCLUSION 

Using LCA, different profiles of Taiwanese senior high school students’ perceptions of 

which aspects of mathematical literacy teachers should focus on were identified. 

Regarding mathematics competence, the three profiles were characterized as 

comprehensive, test-oriented, and limited thought-oriented. In terms of mathematics 

and mathematics learning attitudes, the three profiles were characterized as broad, 

math-interior oriented, and mind-focused. Certain students deviated from their 

teachers’ perceptions regarding competencies and attitudes they believed teachers 

should focus on. Further investigation is required to find out the reason behind, for 

example, whether students believe the mathematical literacy is unimportant, whether 

teaching methods are effective at developing the literacy, and whether cultivating the 

literacy is a teacher’s responsibility. The results of this study provide a valuable 

reference for teachers, to allow them to determine what to emphasize in cultivating 

mathematical literacy among students. 
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INVESTIGATING CHILDREN’S ABILITY TO SOLVE 

MEASUREMENT ESTIMATION PROBLEMS  

Hsin-Mei E. Huang 

University of Taipei 

 

In this study, how fourth- to sixth-grade children perform measurement estimation was 

investigated. The data were collected by a measurement estimation task that contained 

linear and area estimations and interviews from 72 children, each in one fourth- (n = 

21), fifth- (n = 32), or sixth-grade (n = 19) class at local public elementary schools in 

cities in north Taiwan. The results indicated significant differences in the performance 

of the children in the estimation task among the three grade levels. The sixth-graders 

were observed to outperform the fourth-graders but they performed similarly to the 

fifth-graders. Grade level also influenced children’s ability to estimate area rather 

than linear estimation. The children’s strategies used for estimating an object with a 

long length included Benchmark, Guessing, Looking, and Other strategies. 

INTRODUCTION 

Measurement estimation, like problem solving, requires knowledge of measurement 

and the ability to use effective strategies to make reasonable estimates (Joram, 

Subrahmanyam, & Gelman, 1998). Children learn to perform measurement estimation 

by using visual perception at an early age (Sarama & Clements, 2009). However, 

elementary school children have been observed to be unsuccessful in making 

reasonable estimates (Chan, 2001; Forrester, Latham, & Shire, 1990).  

In recent years, mathematics curricula and instruction in Taiwan (Taiwan Ministry of 

Education [TME], 2010) and other countries (e.g., National Council of Teachers of 

Mathematics [NCTM], 2000, 2006) have focused on measurement estimation. 

Although the importance of measurement estimation in mathematics education has 

attracted the attention of mathematics educators and researchers (Sarama & Clements, 

2009), research on children’s ability to perform measurement estimation remains 

inadequate.  

Children’s ability to perform measurement estimation is influenced by several factors 

such as the type of measure being estimated (e.g., linear or area), grade level (or age) 

(Forrester et al., 1990; Joram et al., 1998; Siegel, Goldsmith, & Madson, 1982), and 

problem contexts that require estimations (type of unit and quantity; Forrester et al., 

1990). Generally, estimating length (or distance) is easier than estimating area (Chan, 

2001). Children in higher grades were observed to be more successful in measurement 

estimation than those in lower grades (Siegel et al., 1982). However, some studies 

(Swan & Jones, 1980; Montague & Van Garderen, 2003) indicated that an increase in 

estimation ability was not necessarily positively associated with an increase in grade 

level.    
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In addition to the aforementioned factors, Montague and Van Garderen (2003) 

suggested that curriculum and pedagogy may affect the ability of students to estimate 

in early grades. To strengthen students’ mathematical power effectively, instructors 

must have a clear understanding of children’s mathematical knowledge and skills. 

Thus, studies on the ability of children to estimate in varying grade levels are needed.  

The present study extends previous studies on mathematical problem solving by 

exploring the estimation ability and strategies used by fourth- to sixth-grade children 

who received mathematics instruction that emphasized measurement estimations. This 

study focused on the ability of children to solve problems involving the estimation of 

linear and area measurements and addressed the following two research questions:  

1. What are differences in the ability of children to perform linear estimations and 

area estimations among grade levels?  

2. What are the strategies that children have adopted for estimating an object with a 

long length? 

THEORETICAL FRAMEWORK 

Mathematical Thinking Involved in Measurement Estimation 

“Estimating” is the process in which a reasonable quantity or size of an object is 

provided without using measurement tools or measuring the object. The ability to 

perform measurement estimation involves multiple components, including estimating, 

approximating, and measuring, which lay the foundation for understanding physical 

measurement (Joram et al., 1998).  

Furthermore, Carter (1986) and Joram, Subrahmanyam, and Gelman (1998) have 

purposed that developing a mental frame of reference for the sizes of units of measure 

requires constructing a mental structure that involves multiple cognitive processes of 

decomposing and re-compositing an object (or a numerical computation) to be 

estimated as well as comparing benchmark mental representations (e.g., physical 

references). Such measurement thinking is constructed based on sufficient knowledge 

of physical measurement and experiences in real measurement. 

The Relationships Among the Types of Attributes To Be Estimated, Grade Level, 

and Ability To Perform Measurement Estimations 

Joram et al. (1998) suggested that the basic unit-covering principle applies to both 

length and area measurement. Estimating linear measurement involves applying the 

unit-covering principle and mentally repeating units to estimate an object in 

one-dimension, such as length and distance. Children are able to compare length 

visually, which is the basis of length estimation, at a young age (Sarama & Clements, 

2009). Moreover, knowledge of linear measurement and strategies for estimating 

lengths (e.g., guessing-and-checking) are frequently provided in the measurement 

curricula followed in early school years (NCTM, 2000, 2006; TME, 2010).         
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Area measurement, which involves two-dimensional spatial knowledge, requires 

knowledge of length measurement. Although not all estimation skills are developed 

similarly, regarding estimating area, applying the unit-covering principle and mentally 

repeating square units to estimate an object in two-dimensions is effective (Joram et 

al., 1998). For example, an area can be estimated by comparing the area to be estimated 

directly to one of the standard units of area. However, because the complexity of 

measuring length and area is different, studies have determined that children perform 

more successfully in linear estimation than in area estimation (Chan, 2001).         

Forrester, Latham, and Shire (1990) determined that greater familiarity with 

measurement procedures and strategies related to numerical calculations improves 

children’s competence in measurement estimation. Moreover, Joram et al. (1998) 

argued that students develop estimation ability and improve the strategies they use for 

estimation as they gain knowledge of physical measurement in higher grade levels, 

because knowledge and experience in real measurement is an indispensable 

requirement for measurement estimation.  

Conversely, other studies (Swan & Jones, 1980; Montague & Van Garderen, 2003) 

have determined that students’ performance in measurement estimation is not 

necessarily positively associated with a high grade level. For example, Swan and Jones 

(1980) observed that junior high-school students performed more favourably than 

high-school students in estimating long distances and metrically estimating the 

heights.  

Moreover, Montague and Van Garderen (2003) compared the estimating ability of 

students who exhibited different mathematics abilities and levels of grade placement 

(Grades 4, 6, and 8). The results indicated that the fourth-grade children who received 

instruction based on a mathematics curriculum that reflected NCTM standards 

(NCTM, 2000) and that focused on measurement estimation outperformed the children 

in higher grades who used a different mathematics curriculum. The results of the study 

suggested that mathematics curricula and instruction may influence the estimation 

ability of children. 

Children’s Strategies for Performing Measurement Estimations  

Forrester et al.’s (1990) and Chan’s (2001) studies have determined that children 

frequently provide estimates by observing (visualizing) or guessing. Although 

visualization serves as the foundation for estimating, visualization is unlikely to 

generate a reasonable estimate without being facilitated by knowledge of measurement 

units and reference quantities. Furthermore, guessing may provide a gross estimate, but 

using this strategy without carefully recognizing the levels of reasonableness may 

yield poor estimates, such as substantial underestimates or overestimates.  

Another approach, involving the use of benchmarks in which nonstandard units or 

events are used as referents for estimating may yield more accurate estimates than 

guessing does (Carter, 1986). Moreover, benchmarks that are constructed based on 

objects that are familiar to estimators can be more meaningful than standard units.  
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When children use standard units or benchmarks for estimating, they first decompose 

the objects to be estimated into samples for which basic estimate skills can be used 

(e.g., comparing and decomposing) and then recompose the objects to determine the 

estimated quantities (e.g., computing) (Carter, 1986; Forrester et al., 1990). 

METHODLOGOGY 

Participants 

The sample consisted of 72 children (40 boys and 32 girls), each in one fourth- (n = 

21), fifth- (n = 32), or sixth-grade (n = 19) class at local public elementary schools in 

cities in north Taiwan. The mean ages of the children in each grade were 10.19 years 

for Grade 4 (M = 122.24, SD = 3.63), 11.26 years for Grade 5 (M = 135.13, SD = 4.85) 

and 12.22 years for Grade 6 (M = 146.58, SD = 3.61). All of the participants had 

received instruction on length and area measurements, which was given based on the 

mathematics textbooks that reflected the guidelines for mathematics curriculum (TME, 

2010) and that focused on measurement estimation, before participating in the study. 

Instrument 

In this study, an estimation task consisting of 12 problems that required estimating 

measures of length and area was designed by referring to textbook materials and the 

estimation tasks of Chan (2001). For example, “Estimate (without using a ruler) the 

length of the rope. (○1 4.2~5.0 m; ○2 6.1~7.0 m; 5.0~6.0 m)”  and “Estimate 

(without using a ruler) the length of the body of the caterpillar? (  ) cm.” The objects 

of which the length or area was to-be-estimated in the problems were visually 

presented to the participants by using real objects or figures of the objects. The 

problems were divided into two subsets of six problems (i.e., subscales of linear 

estimation and area estimation). The estimation task was completed in 40 minutes. 

The strategies that the children used for estimating linear measurement were collected 

from the participants’ written answers to and interviews on an estimation problem that 

required estimating the length of a long object (5.6 meters). The interview, during 

which the participants were asked “What methods do you use for estimate the long 

rope?” was conducted after the participants completed the estimation task. 

Scoring and category of estimation strategy 

Numerical estimates were scored for accuracy and acceptableness (Siegel et al., 1982). 

“Accuracy” was defined as an estimate that was between plus 10% and minus 10% of 

the actual value. “Acceptableness” was defined as an estimate that was between plus 

25% and minus 25% of the actual value. An “accurate” estimate was scored 2-points, 

whereas an “acceptable estimate” was scored 1-point. If an estimate was greater than 

plus 25% of the actual value or lower than minus 25% of the actual value, a score of 

“0” was allocated. The total score of each subscale was 12 points.  

In this study, four types of estimation strategies that children tend to use for performing 

measurement estimation by referring to Forrester et al. (1990) and Chan (2001) were 
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used to classify the participants’ strategies. The four types of strategies included: (a) 

Looking: “Looking” involves estimating the sizes of objects by using the naked eye 

(perception) without computation and using standard (or nonstandard) units to 

decompose and recompose the objects to be measured. (b) Guessing: A guessing 

estimate represents a gross estimate (Carter, 1986). An estimate that is generates by 

guessing without thinking properly about the correct answer needs to be recognized 

(and refined). Thus, a guessing estimate involves a conjecture. (c) Benchmark: 

Children select objects that are readily available in a classroom or body parts as 

references for estimation. (d) Other: This category contained a response of “Do not 

know” or implicitly describing a strategy or no answers. 

The written answers for the estimation task of 26 children were independently scored 

by two raters. Regarding the reliability of the estimation problems scores, Pearson 

correlations indicated that the inter-rater agreement was r = .98, p < .01. Moreover, 

Kappa analyses were administered to test the reliability of the coding of the children’s 

estimation strategy. The coding of the children’s estimation strategy was assessed at 

.98, p < .01.  

RESULTS  

Table 1 presents the means and standard deviations of the performance of the children 

in the two subscales of measurement estimation and the entire estimation task 

according to grade level.  

Types of measurement 

estimation 

Grade 4  Grade 5  Grade 6  Total   

n          M SD n        M SD n        M SD n        M SD 

Linear estimation 21      5.91 2.05 32    6.19 2.66 19    7.47 2.22 72   6.44 2.43 

Area estimation 21      4.14 1.20 32    5.69 1.94 19    6.11 2.11 72   5.35 1.95 

Entire estimation task 21    10.05 2.06 32  11.88 3.30 19   13.58 3.01   

Table 1: Means and Standard Deviations for the Children’s Estimation Performance by 

Grade Level and Type of Measurement Estimation   

To compare children’s performance in the estimation task among grade levels, a 

one-way ANOVA was conducted. The results indicated significant differences in the 

performance of the children in the estimation task among the three grade levels, F(2, 

69) = 7.36, p < .01, η
2
 = .18. Schéffe post-hoc tests, used to analyze the differences in 

grade levels, indicated that the six-grade group significantly outperformed the 

fourth-grade group. The differences between the fifth-grade and fourth-grade groups 

were statistically nonsignificant. Furthermore, no differences were observed between 

the fifth-grade and six-grade groups. 

Additionally, to compare performance yielded by the three grade levels in two types of 

measurement estimation were conducted by using 3 (grade level: Grade 4, 5, and 6) x 2 

(estimation: linear and area estimations) within-subject analyses of variance 

(ANOVAs). Significant interaction effects were not found for the estimation 
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performance, F(2, 69) = 1.18. p = . 32. The main effect of type of measurement 

estimation reached statistical significance, F(1, 69) = 10.67, p < .01, η
2
 = .13. 

Moreover, the main effect of grade level also reached statistical significance, F(2, 69) 

= 7.36, p < .01, η
2
 = .18. 

Regarding the subscale of linear estimation, the results indicated that no significant 

differences among grade levels, F(2, 69) = 2.50, p = . 09. Regarding the subscale of 

area estimation, the results indicated significant differences in the performance of the 

children among the three grade levels, F(2, 69) = 6.91, p < . 01, η
2
 = .17. Schéffe post- 

hoc tests, used to analyze the differences in grade levels, indicated that both the fifth- 

and sixth-grade groups significantly outperformed the fourth-grade group. However, 

no differences were observed between the fifth- and sixth-grade groups. This result 

was consistent with the results regarding the comparison of the entire estimation task.  

The follow-up comparison on the differences between the scores of linear estimation 

and area estimation in each grade, the results indicated that the fourth-grade group 

obtained higher scores in the subscale of linear estimation than those in the subscale of 

area estimation, F(1, 69) = 6.94, p < .01. Such differences in the scores between the 

two subscales were not exhibited in the fifth-grade group, F(1, 69) = .85, p = .36, nor in 

the sixth-grade group, F(1, 69) = 3.79, p = .06. 

Regarding the analysis of the strategies used by the children, because the children 

reported using multiple types of strategy, each type of strategy reported was coded and 

the total frequency of each category was calculated. The strategies consisted of four 

types: “looking,” “guessing,”“benchmark,” and “other.” The frequencies at which 

each strategy was used are ranked from high to low as follows: “Benchmark” (50 

times), “Guessing” (9 times), “Looking” (8 times), and “Other” (5 times). For the use 

of “Benchmark,” the children tended to use body parts (e.g., the length of fingers, the 

length between the index finger and thumb stretched, the feet, the palm of the hand, 

and the length of outstretched arms) and objects in the classroom (e.g., an eraser, a 

pencil, and the length of a tile on the ground of the classroom, and a blackboard). 

Regarding the “other” strategy, five children were categorized in the category, 

including two children who omitted to answer and three children who did not explicitly 

describe the approach they used (e.g., “measuring” or “drawing).”  

DISCUSSION AND IMPLICATIONS FOR MATHEMATICS EDUCATION 

This study examined children’s competence in measurement estimations. The results 

of this study are summarized and discussed below. First, grade levels were related to 

differences in the measurement estimation ability of the children. For the entire 

estimation task, the six-grade children were more successful in performing 

measurement estimation than the fourth-grade children. The results of this study 

partially supported those of Siegel, Goldsmith, and Madson (1982) that reported that 

the children in Grade 6 provided more accurate estimates than did the children in 

Grades 2 to 5. The partial results that were inconsistent with those of Siegel’s study 
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may result from the differences in curricula and instruction of school mathematics and 

the problem contexts (e.g., units and quantity) (Forrester et al., 1990).   

Second, the factor of grade level also influenced the ability of children to estimate area. 

The children who were in fifth and sixth grades were more competent in estimating 

area than those in fourth-grade group. Moreover, both the fifth- and sixth-grade groups 

exhibited similar abilities for estimating area. The results suggested that, for the 

subscale of area estimation, the children in a higher grade level were more competent 

in area estimation than the children in fourth grade. However, the factor of grade level 

did not significantly influence the ability of children to estimate length. This finding is 

consistent with that of Forrester et al. (1990).  

Overall, regarding the results on area and linear estimation, the fourth-grade children, 

who received instruction in linear and area measurement, could perform similarly to 

the fifth- and sixth-grade children in linear estimation but not in area estimation. The 

results may be caused by the differences in complexity between linear estimation and 

area estimation and the amount of experience in performing the two types of 

estimations. The process of area estimation is more complex than that of linear 

estimation (Chan, 2001; Sarama & Clements, 2009). Children require more knowledge 

of area measurement and experience in real measurement to make area estimation. 

Remarkably, the fifth-grade children performed equally well as the sixth-grade 

children did in the entire estimation task and the two subscales. However, the 

fifth-grade group did not outperform the fourth-grade group. This is probably because 

of the dissimilar approach of instruction on measurement that the participants received. 

Additionally, this implies that Grade 4 to 5 is a crucial stage at which the ability of 

children to perform measurement estimation, particularly, linear and area estimation, is 

developed. However, this assumption requires further investigations.            

Finally, most of the children reported using one (or more) strategies for estimating an 

object with a long length; however, some children reported using of “looking” and 

“guessing” and “other” strategies. Compared with the results of Forrester et al. (1990) 

and Chan (2001) regarding the estimation strategies used by children, the results of  

this study indicated that the participants were inclined to use benchmarks for making  

estimation and were less likely to express “Do not know,” “Guessing,” or “thought.” 

These differences in strategy use may result from their experience in and knowledge of 

measurement that was obtained from school mathematics and everyday life. 

Skill in measurement estimation (e.g., the use of strategies) can be improved through 

instruction (Joram et al., 1998). Grade level, which represents the amount of 

measurement experience acquired from school mathematics, may affect on the ability 

of children to measurement estimation. The more opportunities teachers provide for 

students to develop knowledge of measurement and experience in estimating, the more 

developed students’ abilities to measurement estimation may become.  
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SMALL GROUP INTERACTIONS: OPPORTUNITIES FOR 

MATHEMATICAL LEARNING 

Roberta Hunter, Glenda Anthony 

Massey University 

 

Small group interactions can provide rich conceptual mathematical understandings. 

This paper reports on the mathematical talk of Māori and Pāsifika students as they 

participated in small group activity. The findings illustrate that when the students were 

scaffolded to work collaboratively the talk shifted between focusing on mathematics 

(mathematizing) and people (subjectifying) and this supported their learning. 

INTRODUCTION 

Student talk, and the role it holds in mathematics education, has increasingly been 

explored by mathematics education researchers in recent decades. The general 

consensus is that students learn richer and deeper mathematical concepts when 

provided with opportunities to engage in talk and interactions with others during 

mathematical activity (White, 2003; Wood, Williams, & McNeal, 2006). However, we 

know that just any student talk or interaction is not sufficient to ensure conceptual 

learning within productive talk. For example, Cohen (1994) and Mercer and Wegerif 

(1999) argue the importance of problem solving activity in which students are required 

to rely on each other and use exploratory talk. Other researchers (e.g., Boaler, 2008; 

Hunter, 2007) promote the need for teachers to develop productive mathematical talk 

through activity that requires group members to interact and work collaboratively. 

Although the importance of productive mathematical discourse is well recognised, 

what forms it can take are less well-known. Likewise, we do not know what other 

social forms of talk also support student learning. The focus of this paper is on the 

mathematical and social talk used within small group interactions. The specific 

research questions explored in this paper are:  

What patterns of interaction did the students engage in during small group activity?  

How did the patterns of interaction support or limit individual opportunities for 

mathematical learning?    

The theoretical framework of this study is derived from a sociocultural perspective. 

From this perspective sociocultural researchers (e.g., Andriessen, 2006: Lerman, 2001) 

suggest that academic learning is inherently social and embedded in active 

participation in communicative reasoning processes. This includes attending to the 

academic and social aspects of the interactions and provides reasons for exploring all 

forms of talk used in small group activity to explain how the interactions may provide 

affordances or constraints in the learning process.  



Hunter, Anthony 

3 - 362 PME 2014 

CONCEPTUAL FRAMEWORK 

Within the commognitive framework proposed by Sfard (2008) student talk is 

intertwined with mathematical learning. Sfard (2008) outlines how as students engage 

in activity their mathematical talk draws closer to more academic mathematical 

discourses. She contends that their participation in the mathematical discourses —that 

is their talk about mathematical objects—is a needed component for learning to occur. 

In addition, affordances for a change in the mathematical discourse can only occur if 

the students are engaged in mathematizing—that is that they are communicating about 

mathematical objects—and the amount and quality of the mathematizing directly 

correlates with conceptual learning of mathematics. 

Although mathematizing is an essential component for mathematical achievement 

because learning is social other factors need consideration. When students are engaged 

in mathematical activity they may talk about mathematical objects but they also talk 

about other things including themselves and other students. Significant work by a 

group of researchers (e.g., Boaler, 2008; Cohen, 1994; Hunter, 2007; Mercer & 

Wegerif, 1999; Webb & Mastergeorge, 2003; Wood & Kalinec, 2012) has examined 

ways student talk can involve both academic and social ways of participating in 

mathematical activity, in recognition that particular types of these social interactions 

also support mathematical learning. For example, Wood and Kalinec (2012) illustrate 

ways in which students in small groups use different types of talk depending on their 

focus. These include a focus on mathematical objects (mathematizing), people 

(subjectifying), or their attributes (identifying). Although mathematical learning 

occurred Wood and Kalinec (2012) illustrated how opportunities for learning were 

available differently for different students, according to another group member’s 

vision of their peers, and themselves as the perceived appointed ‘teacher’.   

However, students can be scaffolded by teachers to learn ways to interact and use both 

academic and social talk to advance mathematical achievement of all members of the 

small group. For example, Boaler, (2006; 2008) and Hunter (2007) illustrated the 

effectiveness of giving student open-ended problems and tasks which support a range 

of ways for group members to contribute to the group processes. Of key importance in 

the development of productive group processes and discourse was the emphasis placed 

on group member’s responsibility to each other. Central to the group responsibility was 

the requirement that the students justify and provide valid reasoning. They were also 

required to actively engage and monitor their own reasoning and the reasoning of 

others and when confused ask questions or seek other forms of help. Webb and 

Mastergeorge (2003) suggest that opportunities for learning for all group members are 

increased when they effectively seek or provide appropriate help. They contend that 

help seekers need persistence and precision in their requests and helpers must not only 

provide clear explanations but also monitor how their response supports the help 

seeker’s understandings. Specific forms of talk also need to be scaffolded. Without 

specific structuring Mercer and Wegerif (1999) showed that the most common forms 

of talk children used in small group activity were either disputational or cumulative; 
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forms of talk which are not productive in mathematical activity. But, when specific 

guidance is provided students develop exploratory talk; a productive form of talk 

which supports mathematizing.      

METHOD  

The data presented in the paper is part of one of three consecutive studies which 

spanned six years. In the design research approach (Cobb, 2000) used, a 

Communication and Participation Framework (CPF) (See Hunter & Anthony, 2011) 

was collaboratively constructed (in the first project) and employed across all the 

projects. The Framework provided the teachers with a flexible and adaptive tool to 

map out and reflectively evaluate pathways of pedagogical actions to use, to guide the 

students’ development of academic discourses (exploratory talk) and other forms of 

social talk which support mathematical learning.  

The teacher reported on in this paper was involved in the second Project and was an 

experienced teacher. The students were largely of Pāsifika (South Pacific) ethnic 

groupings, their ages ranged from 8-12 years. The study was conducted in New 

Zealand low income urban primary schools. 

The following data analysis table was adapted from Wood and Kalinec (2012, p. 113) 

On-task 

codes 

Mathematizing  Any utterance about a mathematical object. 

 Subjectifying Action 

oriented 

subjectifying 

Any utterance that focuses on a person’s 

on-task actions rather than on the person as 

such. 

  Identifying Any utterance about who a person is or his/her 

features. 

 None of the 

above 

 Any utterance that was on task, but did not fall 

into any of the other on-task categories. 

Off-task 

codes 

Subjectifying Action 

oriented 

subjectifying 

Any utterance that focuses on a person’s 

off-task actions rather than on the person as 

such. 

 Identifying Identifying Any utterance about who a person is or his/her 

features.  

  Blazing Any utterance that is an exaggerated negative 

identification of another person or members of 

another’s family. 

 None of the 

above 

 Any utterance that is off task, but did not fall 

into any of the categories above. 

Table 1: List of codes and descriptions 

Data collection over one year included teacher and student interviews, classroom 

artefacts, field notes, and a large collection of video recorded lesson observations. The 

data reported on in this paper is based on transcriptions of the entire video recorded 
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lesson observations. The transcripts were split into each speaker’s turns and then 

further split into one or more utterances based upon the focus of the talk. To analyse the 

data we adapted and used parts of the coding structure employed by Wood and Kalinec 

(2012). We drew on the categories they used (see Table 1) to code the utterances and 

used this to analyse the data to provide both a quantitative and qualitative view.  

This paper reports on two separate lesson observations. The first transcript is of a 

lesson which occurred in the second month of the study and the second transcript 

occurred in the tenth month of the study. Both lessons are representative of small group 

mathematical activity and the academic and social talk the same group of students were 

engaged in, in response to the on-going scaffolding provided by the teacher. 

   Utterances 

On-task codes Mathematizing  41% 

30% 

1% 

2% 

 

14% 

2% 

10% 

 Subjectifying Action oriented subjectifying 

  Identifying 

 None of the above  

Off-task codes Subjectifying Action oriented subjectifying 

 Identifying Identifying 

  Blazing 

 None of the above  

Table 2: Type and frequency of utterances during lesson 5 

   Utterances 

On-task codes Mathematizing  53% 

41% 

1% 

1% 

 

3% 

 

1% 

 Subjectifying Action oriented subjectifying 

  Identifying 

 None of the above  

Off-task codes Subjectifying Action oriented subjectifying 

 Identifying Identifying 

  Blazing 

 None of the above  

Table 3: Type and frequency of utterances during lesson 14 

RESULTS AND DISCUSSION 

Table 2 and Table 3 summarise the type and frequency of utterances in the two lessons. 

In this section we elaborate on the different categories of interactions the students 

engaged in and explore how these supported or limited learning of different students. 

We look at what was learnt and how the talk changed across the year (represented by 

the two lessons).   
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Mathematizing and Action-oriented subjectifying talk 

As explained in Table 1 mathematizing talk focuses on mathematical objects while 

subjectifying talk focuses on people and what they are doing as part of their on-task 

actions. In both lessons mathematizing talk and action-oriented subjectifying talk were 

a clear feature of the on-task behaviour of the students. In the first transcription (See 

Table 2) 41% of the talk was mathematizing and 30% was subjectifying talk. The 

students were engaged in on-task talk 74% of small group activity. In the second 

transcription (See Table 3) 53% of the talk was mathematizing and 41% was action 

oriented subjectifying talk. The students were engaged in on-task talk 96% of the small 

group activity. However, there was a clear difference in the ways both forms of talk 

were used in the two lessons. This contributed significantly to the learning of one all 

students but one in particular we named Viliami. 

In the excerpt which follows (of the first lesson transcription) the students used both 

forms of talk to make sense of what was required in the task, construct a cumulative 

solution strategy or to develop an explanation of the strategy they were using. On-task 

action oriented subjectifying talk was used by different group members to support the 

mathematizing.  

Excerpt 1: Constructing an explanation cumulatively 

The students are solving a problem that involves adding 899 and 156. 

Timoti:  Oh yeah, we could put 800… 

Viliami:  800 plus 100 

The students are mathematizing but they are doing this using cumulative talk (Mercer 

& Wegerif, 1999). Without listening and exploring the reasoning of other members 

each student adds the next step they think will work.    

Timoti:  Yeah but we’ve got to tell how we added it.  

Timoti has begun to use action oriented subjectifying talk. He focuses the group on 

their need to explain their actions which increases all their opportunities to learn. 

Timoti: See we shouldn’t do that fast one, dah. 800 plus 156 

Timoti is describing a different solution but the students are not actively engaged in 

exploring the reasoning. However, he has invited his peers to think about their shared 

reasoning and as a result Viliami engages in mathematizing  

Viliami:  That’s um… what is this called? 800 plus 100. Is that place value? Like 

then 900 plus 90 plus 50? Where do the zeroes go now? 

The students continued to talk past each other and although they were all focusing on 

the mathematics they did not successfully solve the problem. This excerpt illustrates 

the need for the students to not only mathematize but also to engage in the reasoning 

being used by other members of the group. 
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Excerpt 2: Using exploratory talk to conceptualise a mathematical explanation 

In the following excerpt (from the second lesson transcription) (see Table 3) both 

mathematizing and action oriented subjectifying talk are used to engage and progress 

the reasoning of all members of the small group. The students are solving a problem 

which requires them to multiply 24 by 5. They start by sense-making what they are 

required to do using both mathematizing and action oriented subjectifying talk. 

Viliami:  24 x 5 equals... I know, I know what to start with 20 x 4  

Sela [Pointing at the numbers]: Do you understand where you got these numbers from? 

Timoti and Viliami together: Yes 

Timoti to Sela:  Do you want me to explain where we got the numbers from? 

Sela has used action oriented subjectifying talk to question the other group members 

and open up the talk so they can all share their understandings of the problem. This 

supports them to work towards a common mathematical goal. 

Timoti: We got the 24 from how many corn plants Sione’s Dad wanted to plant and 

we got our 5 from how many corn plants he planted in each row. Does 

anyone disagree or..? 

Timoti uses the context of the problem to make the numbers experientially real which 

makes the problem accessible for all members of the group.  

Viliami: I agree that’s right 

Sela:  I agree too 

Timoti:  But you’ve got to say why. Why do you agree? 

Sela:  Because it says on the problem, cos that’s, because that’s how much 

Sione’s dad wants to plant, 24 rows of corn plants. He wants 5 corn plants 

in each row. 

Timoti presses further using action oriented subjectifying talk. Through this he 

establishes the responsibility of all group members to actively engage in sense making. 

They begin to construct an explanation using mathematizing talk. Each member uses 

exploratory talk to examine the ideas being constructed. 

Sela [recording]: Hey why not split up the 20 from the 24 into 4 lots of 5. Do you get it? 

You need to be able to explain why we do one more of… 

Timoti and Viliami: The 5 x 4  

Viliami [pointing at the extra 5 x 4]: What does that mean? 

Sela:  And we have one more because of the 24 x 5. Can you show where that is 

so you can explain… 

Viliami:  I know what that means. I can see it on here because we split the 20 and 

then we had 4 more. But why did we split the 20…why… 

Sela and Timoti together: You know because we do not know our 20 times so 5 times is 

the easiest.  
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The group continue to construct and record a conceptual explanation. Sela and Timoti 

push Viliami to use what Webb and Mastergeorge (2003) describe as effective help 

seeking behaviour. Sela directs a question at Viliami 

Sela:  Why did we really have to repeat five times 4? 

Viliami:  What’s the answer? 

Timoti:  Come on, if you don’t know the answer that means you don’t know what 

we’re doing. Do you need help? Say how we can help you. 

Timoti uses action oriented subjectifying talk to model help seeking behaviour. 

Viliami is supported to question specifically and extend his mathematical discourse.  

Viliami:  Can you explain the first part to me please? 

Timoti:  Cos we’re splitting up the 20 from the 24 into 4 lots of 5. Do you get it? You 

need to be able to explain why we do one more of… 

Viliami [Pointing at the last 4 x 5]: What does that mean? 

Sela:  And we have one more because of the 24 x 5 and can you show where that 

is so you can explain… 

Viliami [Points at the section of the recording as he speaks]: I know what that means. I 

can see it on here because we split the 20 and then we had 4 more.   

Subsequently in large group sharing Viliami shared the strategy. He explained and 

justified each step of the process to the class. His learning had been durable and he now 

had access to a discourse to provide a conceptual explanation and justification.  

CONCLUSION 

Evidence is provided in this paper of the positive outcomes for mathematics learning 

which can result from small group activity. In both lessons the students spent a 

significant time mathematizing and using socially based action oriented subjectifying 

talk. This form of talk was used by group members to ensure that they were all able to 

engage in mathematizing. The increased use of this on-task social talk illustrates the 

importance of teacher actions to ensure students can talk and work collaboratively as 

suggested by other researchers (e.g., Boaler, 2008; Cohen, 1994; Hunter, 2007; Mercer 

& Wegerif, 1999). The effects of teacher actions to increase both mathematizing and 

action oriented subjectifying talk were evident in the second lesson where the students 

were engaged in the mathematical discourses for more than 96% of the small group 

activity. The findings of this study support Sfard’s (2008) contention, that participation 

in mathematical discourses is essential for conceptual learning.   
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U.S. POLITICAL DISCOURSE ON MATH ACHIEVEMENT GAPS 

IN LIGHT OF FOUCAULT’S GOVERNMENTALITY 

Salvatore Enrico Indiogine, Gerald Kulm 

Texas A&M University 

 

The objective of the study was to document and analyze the justifications given by 

federal institutions of the United States for governmental control of mathematics 

education as function of the achievement gaps (AGs) in mathematics. We wanted to 

shed light on the discourses made in the public arena that have legitimized this control 

and firmly established in the national conscience that the knowledge of mathematics is 

essential to the prosperity and survival of the nation. The research question can be 

briefly stated as “what insights and understandings of the national education policy 

discourse on the achievement gaps in mathematics does Foucault's (2009) 

governmentality offer?” 

THEORETICAL FRAMEWORK 

In the United States there are persistent and significant differences between 

ethnic/racial groups where students of Asian and European descent have significantly 

higher scores than Native American students and students of African or Hispanic 

descent. Side by side to these differences in race or ethnicity are the differences in 

wealth. The effect of disparity in income on educational outcomes is at least as incisive 

as the previous differences. This phenomenon has been called the “racial, ethnic, 

income, or national achievement gap.” The phenomenon has been subject of extensive 

discussions and research, especially since the publication of the report called “A 

Nation at Risk” in 1983 (National Commission on Excellence in Education, 1983). 

Research on the achievement gap is extensive, and research on the political aspects of 

the achievement gaps also exists (e.g. Apple, 1992; Payne & Biddle, 1999). However, 

there has been limited research on political discourse regarding the mathematics 

achievement gap (Ellis et al., 2005; Martin, 2003).  

Foucault’s governmentality 

Very little scholarly research has been published on the relationship between 

Foucault's governmentality and the achievement gaps (Suspitsyna, 2010). 

Governmentality is the process through which a form of government with specific ends 

(a happy and stable society), means to these ends (“apparatuses of security”), and with 

a particular type of knowledge (“political economy”) to achieve these ends, evolved 

from a medieval state of justice to a modern administrative state with complex 

bureaucracies (Burchell, 1991, p. 102). To analyze government is to analyze those 

mechanisms that try to shape, sculpt, mobilize and work through the choices, desires, 

aspirations, needs, wants and lifestyles of individuals and groups (Dean, 2009, p. 20). 

Foucault (2009, pp. 108-109) described governmentality according to three 
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“dimensions.” This study employed the first dimension: The “ensemble” formed by the 

institution's procedures, analyses and reflections, the calculations and tactics that allow 

the exercise of this very specific albeit complex form of power. 

METHODS 

Our intention in the study was not to prove a phenomenon in a scientific, experimental 

sense. Rather it was to navigate through the documents of federal educational policy 

and history of education to study the motivations, whether openly stated or uncovered 

by analysis and to generate interpretative narratives. We attempted to understand what 

social, economic, military, and political conditions made those in power decide to 

legislate the teaching of mathematics and to increase the amount funding and 

regulations. The distribution of the federal budget is a ‘zero sum game.’ The decision 

to give money to any program or agency can only occur when the discourse that 

supports it becomes intelligible. When certain practices, intentions, and desires 

become part of the public sphere, they also become tacitly and implicitly part of the 

‘normal’ functioning of society. 

The data sources were documents from two branches of the federal government: 

Presidential speeches and Congressional hearings made up of presentations by 

members of Congress, witnesses, and invited experts. Parallel qualitative discourse 

analysis (QDA) and quantitative text mining analyses were employed.  During the final 

stage, QDA, text mining, and literature review were integrated to construct narratives 

where we described, in light of governmentality, how the public discourse on the 

mathematics achievement gaps is structured. For a complete description of the 

processes of coding the discourse in the documents, carrying out data mining, and 

constructing the narratives, see Indiogine (2013). 

The analysis was guided by some studies in education that were performed using the 

Foucauldian concepts of archaeology and genealogy; mainly Knight, Smith, and Sachs 

(1990) who presented their “critical appreciation of official state policies” concerning 

school curriculum in Australia, and Kenway (1990) who studied how certain political 

forces “have all but colonized popular thinking and government policy on education in 

Australia.” A more recent study of this type in mathematics education was performed 

by Popkewitz (2004). However, we also made great use of research on 

governmentality analysis in education such as by Doherty (2006), Suspitsyna (2010) 

and Goddard (2010). 

RESULTS AND DISCUSSION 

Our examination of the data focused on highlighting several trajectories in U.S. 

education policy. What became apparent from the analysis of the political discourse is 

that in parallel to the expansion of the federal share of the education budget was the 

centralization of the control of education. There is a clear historical trend from local to 

state to federal control. Its significance should not be underestimated because this trend 
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contravenes a political principle that is heartfelt among U.S. citizens, local control of 

public affairs. 

Three of the components of governmentality: procedures, analyses and reflections, and 

calculations and tactics, can be used to model the growth in complexity of the 

government's approach to the AGs. This process can be represented by an outward 

moving spiral as shown in Figure 1. 

 
Figure 1: The Governmentality Spiral 

The tactic of supplemental funding for poor schools was instituted by the “Elementary 

and Secondary Education Act” (ESEA) of 1965 based on the reflection of the existence 

and negative social and economic effects of the achievement gaps. The procedure of 

federal funding was instituted and the analyses for eligibility had to be established and 

then calculated. The process needed the establishment of reporting procedures, which 

created a wealth of data that allowed the analysis and reflection of the return on 

investment of this federal funding, which engendered, under the influence of neoliberal 

principles, the tactic of accountability, which demanded the establishment of elaborate 

procedures of student assessments. This greater level of complexity and federal control 

of education was legislated by the 2001 reauthorization of ESEA named the “No Child 

Left Behind Act” (NCLB).  

The student assessments were but a starting point of an avalanche of other processes 

that were mandated by NCLB. The “Adequate Yearly Progress” (AYP) was calculated 

based on rising state goals that would bring all students to “full proficiency” in 

mathematics and the English language by the year 2014. The calculation of the AYP 

incorporates the tactic of disaggregating achievement data according to income, 
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language proficiency, racial, and ethnic classifications. This type of calculation is 

required by the analysis and reflection of the achievement gaps. If a school was 

deemed not to meet the requirements of AYP, it was classified as “needing 

improvement,” and this status would activate several procedures as can be seen in 

Figure 2. 

 
Figure 2: Accountability and its Effects 

Schools and local education agencies reacted by requesting modifications to NCLB. 

The generic term for this request was “flexibility,” which was a term often present in 

the speeches by President Bush. Among these modifications was the request to adopt 

“growth models,” a more complex form of AYP calculation. 

Looking more carefully at the analyses and reflections, we noticed that the awareness 

of the AGs and the acknowledgement of their importance occurred gradually over 

time. The shift in understanding of social justice started with ‘equal access,' then 

widened its reach to ‘equal resources,' and reached the concept of ‘equal academic 

outcomes' today. Hence, the unequal academic achievements as calculated by 

disaggregating academic proficiency by income level, English proficiency and 

ethnic/racial classifications, were problematized. Another shift in analysis and 

reflection has been from an understanding that the AGs were caused by the social 

environment where the schools operated, to the understanding that the problems were 

‘internal' to the schools themselves, such as the low expectations of the teachers with 

respect to certain groups of students or an insufficiently rigorous curriculum. 
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We have also traced the analysis and reflection of the need for student assessment at a 

national level as connected to the tactic of accountability, which was presented initially 

as a tool that schools should use to improve their teaching and thus help students. Once 

the practice had become established and began to influence the teaching practice and 

the AYP rankings were made public and “corrective actions” became more 

widespread, it became a subject of controversy. 

We then looked at the analysis and reflection of the imposition by law of 

“research-based education practices.” An impression was given that the teaching 

practices at schools were driven by tradition at best and fads at worst. The policy 

discourse reflected a low opinion of the professional standing of the teachers. Mention 

was made of the widespread use of non-certified and out-of-field teaching, especially 

in ‘difficult’ schools. In reality, it appeared that the reforms themselves were not based 

on education research but were rather ideologically driven. 

The AGs could have never reached the importance that they have based only on 

anecdotal evidence. Policy makers needed the solid evidence provided by the statistical 

calculations of the student achievement data. However, these calculations became a 

battlefield once NCLB made them a central feature of education law. We looked at the 

controversies on who should be included or not in these calculations, e.g. students with 

special needs and English Language Learner students. Sometimes the issues were 

about ‘arcane' statistical concepts such as the N-size and the how to calculate the 

confidence intervals. ELL students, also called Limited English Proficiency (LEP) 

students, pose particular statistical, and thus policy, difficulties. Unlike racial/ethnic 

groups, it is not intended to be a permanent situation. Schools are expected to move 

students out of this group into English language proficiency. At the same time new 

LEP students are added to this group. In this situation this subgroup would never attain 

proficiency.  Hence several states have modified their proficiency calculations. This 

dynamic is but one of the many issues that make accountability for LEP students 

problematic. For details see Abedi (2004). 

Another historical trend in education policy towards policy centralization that we have 

observed is the expanding federal role in the curriculum. Traditionally it was the 

schools and school districts what determined the content of the curricula. However, as 

we have noted previously, these local standards have come under attack by those who, 

based on an analysis and reflection, considered them not sufficiently rigorous for some 

students and thus contributing to the AGs. Initially the tactic of state curricula common 

to all students was advocated, and once this tactic was established the next step of 

federalization of education consisted in the “voluntary” creation of a national common 

curriculum. 

During the period of time that we examined, one important target of analysis and 

reflection has become increasingly incisive and now has become the most 

controversial aspect of school reform. This is the issue of teacher assessment and 

associated punitive actions culminating in their dismissal. We looked at the connection 

between achievement calculations that would track individual students through time 
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and thus allow matching their progress to individual teachers and the heated debates 

about the use of these data. The usual rhetorical pattern was to introduce any type of 

assessment or measurement, for students, teachers, or schools as a diagnostic tool. 

Then, once established as a ‘normal’ procedure it would be used as any other business 

tool to ‘separate the wheat from the chaff.’ 

We explored the Foucauldian notion of population as the target of all previous 

procedures, analyses and reflections, and calculations and tactics. The cornerstone of a 

neoliberal form of government and social intervention is the use of market forces. 

NCLB modified the Elementary and Secondary Education Act of 1965 by introducing 

mechanisms in the federal funding of schools that would open them to some form of 

free market through the implementation of the procedures of parental choice and the 

reporting of school evaluations. However, we have seen that these implementations 

were quite timid and thus had negligible effect, and have been superseded by the recent 

rise and popularity of the charter schools. 

CONCLUSION 

According to Foucault the major form of knowledge of governmentality is “political 

economy.” Governments had to place the national economy at the center of its 

activities because of the competition between nations. Basically the ‘economy' is the 

‘policy.' We have seen how it has become a form of knowledge that the public school 

system is a component of the economic machinery of the nation by preparing and 

training the next workforce. The closing of the AGs, both national and international, 

are placed in the context of the U.S. economy and its international standing. 

In conclusion, whether the procedures, analyses and reflections, and calculations and 

tactics have had a beneficial impact on the AGs is not an issue in this analysis. 

However, as Lee and Reeves (2012, p. 209) concluded, the narrowing of the AG was 

more closely associated with “long-term statewide instructional capacity and teacher 

resources rather than short-term NCLB implementation fidelity, rigor of standards, and 

state agency's capacity for data tracking and intervention.” Thus, in education, 

measuring does not necessarily solve a problem. It may do so in business where people 

can be hired and fired, lines of business can be initiated or terminated, but public 

education as an inclusive and empowering institution does not and should not operate 

in this fashion. 
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In a developmental research approach, from a sociocultural position, we address the 

meanings students make of mathematics in teaching sessions and how this relates to 

the intentions of the teacher and approaches to teaching. Analyses of data come from 

small group tutorials of one tutor with first year university mathematics students 

(n=5). We exemplify using data from one tutorial which addressed concepts in 

calculus that first year students encounter in their lectures. We explain teaching design 

and an approach to implementing it, and address issues that arise in practice and how 

these are related to students' meaning-making of mathematical concepts. Development 

of ‘knowledge in practice’ is seen alongside that of knowledge in the public domain. 

INTRODUCTION  

In one UK university, first year mathematics students are expected to attend lectures in 

calculus and linear algebra. Each student is also a member of a small tutor group (of 

from 5 to 8 students) that works on the material of these lectures. Lecturers in the 

modules set problem sheets each week for students to tackle. In small group tutorials 

(one hour per week), the tutor works with students on material relating to the two 

modules, often taking questions from the problem sheets. We focus here on the activity 

of one tutor with her group of 5 students who are in a joint programme of Mathematics 

and Sport Science. Her main aim for tutorials is to support students to understand, or to 

make meaning of the mathematics of the lectures. In each tutorial the tutor makes a 

judgement as to which questions to focus on in the tutorial (other tutors might do things 

differently). For her, these questions should satisfy two conditions: 

a. they should reveal key concepts in the mathematics of the lectures – to some 

extent, all questions set by the lecturer do this, but the tutor chooses particular 

ones to highlight key concepts in her judgment; 

b. they should be questions with which students struggle or have difficulties. 

A general expectation is that students will work on the problem sheets in their own 

time and come to a tutorial with their questions. Therefore, in every tutorial the tutor 

asks students to inform her of questions with which they struggle or would like help. 

They respond occasionally but largely they do not respond. It often seems as if they 

have not addressed any of the questions before coming to the tutorial. The tutor does 

not want to exercise too much pressure on what they have to do before coming, since 

they are then likely not to come. She would rather they came, so that (she hopes) some 

‘useful’ work can be done. The tutor decides what is ‘useful’ based on her knowledge 



Jaworski, Didis 

3 - 378 PME 2014 

of the mathematics and of her students and what they find difficult.  After the tutorial, 

the tutor reflects on what has occurred, whether her earlier judgments were 

appropriate, and what alternatives there could have been. 

RESEARCH QUESTIONS 

The aim of this research is to study how the practical manifestations of teaching in a 

tutorial satisfy the aims of teaching for students’ learning (Jaworski, 1994; 2003b). We 

wish to discern as far as possible the associated meaning making of the students in a 

tutorial and how this is (or not) linked to the style of teaching, taking into account the 

wider social factors of the setting. We have three basic research questions: 

1. What is the nature of the teaching manifested in the tutorials?  

2. What student meanings can we discern and in what ways?  

3. In what ways can we link (1) and (2) and what issues does this raise? 

Through this research, we seek also to redress the scarcity of research into the “actual 

classroom teaching practice” of university teachers (Speer, Smith and Horvath, 2010, 

p. 99) and extend knowledge of teaching in small group tutorials (Jaworski 2003b). 

MEANING-MAKING IN MATHEMATICS 

There is a considerable literature on mathematical meaning making at a range of levels 

(e.g., Kilpatrick, Hoyles, & Skovsmose, 2005). We set the scene here by drawing on 

three perspectives. The first links meaning making to making connections, both within 

mathematics and to the world beyond mathematics. 

[M]athematical meanings derive from connections: intra-mathematical connections which 

link new mathematical knowledge with old and extra-mathematical meaning derived from 

contexts and settings which include – though not uniquely – the experiential world” (Noss, 

Healey, & Hoyles, 1997, p. 203). 

The second suggests that making meaning in mathematics is a process of 

“socialisation” into the culture and values of “doing mathematics” (Ben-Zvi & Arcavi, 

2001). In the third, Nardi (2008, p. 111) refers to students “mediating mathematical 

meaning through symbolisation, verbalisation and visualisation” suggesting that 

students experience the tension between the need to appear to be, or to be 

mathematical. Thus, making connections, the worlds of mathematics and beyond, and 

processes of socialisation into culture and values are all central to making meaning in 

mathematics. Further, students have to get beyond the instrumental use of key 

processes in learning mathematics to become mathematical, to make meanings at a 

conceptual level. We draw on all these perspectives in our analyses. 

METHODOLOGY 

We take a sociocultural perspective in which knowledge is seen to develop in social 

settings as part of which individual sense-making develops (e.g., Wertsch, 1991). 

Teaching and teaching resources are seen to have a central mediating role in the 
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development of mathematical meanings by students. People make sense of 

mathematics in relation to the worlds of which they are a part; these ‘worlds’ capture 

local and more global situations and contexts surrounding human activity (Holland, 

Lachicott, & Skinner, 2001), the wider social issues mentioned above. 

Our methodology is developmental: we use research as a tool to promote development 

as well as a tool to observe and analyse development (Jaworski, 2003a). We are two 

researchers: one researcher is also the tutor, whose job is to teach the students – to 

enable their mathematical understanding. She wants to promote meaning making and, 

at the same time, to discern meaning making: related aims which might potentially be 

in tension. The other researcher observes activity and collects data through audio 

recording
1
 and note taking. In discussion with the tutor, she enables the tutor to reflect 

critically on the teaching process and together they seek evidence of students’ meaning 

making (audio-recorded). An expectation of this relationship is that the tutor, through 

acting as a researcher, develops knowledge in practice which feeds back into the 

design of teaching. Thus two kinds of knowledge are generated – knowledge in 

practice which informs the teaching process, and knowledge which can be 

communicated in the wider research community (for example through this paper). 

We collected data from a series of tutorials (10 in all) in Semester 2 of the academic 

year. At the time of writing, analysis is in its early stages; we expect findings to 

develop as analysis proceeds. Briefly, the data from a tutorial is first split into episodes 

in which an episode is a section of the tutorial which has some completeness in itself 

(e.g., the work of the group on a given problem). We undertake a grounded analysis of 

the data, episode by episode, coding and categorising (Corbin & Strauss, 2008). 

We demonstrate our analytical process through a case of one episode taken from a 

tutorial from Week 6 (of 12 weeks). Four (out of 5) students are present plus the tutor, 

and the co-researcher as observer. Lectures are currently focusing on multivariable 

calculus. The group works on questions from the lecturer’s problem sheet involving 

differentiation of functions of two variables. We focus on an episode of 10 minutes 

from close to the beginning of the tutorial. Our analysis is both particular to this 

episode and also related to analysis of other tutorials and episodes. Codes emerge 

continually and it is necessary to keep revisiting earlier codes in order to rationalise 

them with new insights. In particular we recognise the emergence of tensions in the 

process of teaching development. Analysis is ongoing and we expect to set these 

observations against those emerging from other data.  

ANALYSIS OF TEACHING 

The tutor needs to find out as quickly as possible what the students already know and 

can do: if basic questions are answered quickly/readily, they can move on to more 

demanding questions. Students are usually able to tackle procedural questions, but 

                                           
1
 Although video data would be valuable it is considered that use of a video camera would be too 

disturbing for the students.   
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those demanding conceptual insight cause more difficulty. She chose her first question 

to encourage students to make sense of connections between symbolisation of partial 

derivatives and their graphical representations, as follows: 

The three graphs below show a function f and its partial derivatives fx and fy  

Which is which and why 

 

As also recognised in analysis of other tutorials, the tutor employs a questioning style. 

Analytical codes used previously have included ‘TQ-probing’ and ‘TQ-prompting’ to 

identify ‘tutor questions’ which “probe” (seek out students’ meanings) or “prompt” 

(suggest particular meanings). In this episode, almost every ‘turn’ of the tutor includes 

a question or questions to the students, so this has required a finer coding of questions. 

The tutor says that she is trying to find out what students know and can express, which 

she believes will give her insight to their understanding (or meaning-making) in 

mathematics. In addition she expects their responses to prompt their fellow students to 

think about the concepts and provide alternative or clearer answers to the questions. 

Thus, she hopes to encourage students’ engagement both individually and with each 

other. Her probes/prompts are designed to provide opportunities for students to think, 

express and articulate what they see and understand, and to reveal what they are not 

clear about. Such revealing of students’ lack of clarity or inability to express clearly, 

leads to the successive questions that she asks. Analysis shows the following kinds of 

questions being asked most frequently as prompting or probing questions: 

Meaning Questions (Qm) or (Qmw) – overtly seeking students’ expression/  

articulation of meaning, often in response to the question “why?” 

Inviting Questions (Qi) – asking students to respond; (Qig) – offering the question 

generally (to all students) or (Qid) directly to one student (named). The question can be 

a specific question (Qigs or Qids) or non-specific question (Qig or Qid) where 

‘specific’ means that it refers to a specific mathematical item. Often these questions 

also seek meaning, but more implicitly. 

Do the students make sense of the particular notation? 

3: T: So, first of all what are these things fx and fy? Alun. What is, what do you 

mean, if you write fx and fy? [Qm] [Qids] 

4: S:(Alun) df/dx  

5: T: And how would you write it? [Qid]  

6:  [He indicates with his hand the partial derivative symbol, ∂] 
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7: T:  Yes partial df/dx and similarly fy is partial df/dy. When you say df/dx 

it’s not clear, so you want to be clear. We would say here partial df/dx 

and partial df/dy [She writes on the board ∂f/∂x and ∂f/∂y] 

8: T: So in the question then, we have three graphs; one of them is a function f 

and the other two are the partial derivatives df/dx and df/dy. Now, which 

is which? [Qig] 

At turns 3 and 5 we see direct and specific questions to Alun, who responds. At turn 8, 

there is a general question to the group as a whole. As well as the tutor’s questions 

here, we draw attention to her emphasis on terminology and symbolism [7]. Previous 

tutorials have revealed the importance of ensuring that students are clear about terms 

and their meanings. From this interchange she sees that Alun is aware of the meanings 

of fx and fy as shown by his words and gestures. Her reiteration, at turn 7, can be seen as 

emphasis for the other students. 

What sense are the students making of what they see? 

12: T: … OK, how about you Erik? [Qid]  

13: S: (Erik)  not really sure but I guess that, er, f will be the middle one.  

14: T: OK, why do you think that?   [Qmw] [Qid]  

15: S: (Erik) because it is got the, er, the slants of the first one, and the… 

16; T: so you’re seeing a relationship between the one in the middle and the 

other two. What do you mean by the slants? [Qm] [Qids]  

17:  S: (Erik) er, I don’t know, just the, the gradient there.  

18: T:  if you’re right and the function is the middle one, erm, before we go any 

further, Alun, do you think the function is the middle one or would you 

say one of the others? [Qids]  

19:  S: (Alun) it looks like the more complex 

Here we see direct questions to Erik and Alun [12 & 18] and a why question to Erik 

[14]. Erik offers the key word ‘slants’ which the tutor asks him to clarify. It is ‘key’ 

because it is suggestive of meaning, which the tutor seeks to clarify so that it gains 

more general meaning for the group. As result of further questions, Alun offers the 

term ‘complex’, which the tutor goes on to pursue, in a similar style in turns 20 to 32. 

We pick up the dialogue again at turn 33 where the questioning continues. 

33: S: (Brian): Well, I guess when you differentiate, you’re almost simplifying it to your 

next .[inaudible]  

34: T: OK, so if what we have got is, in some sense a polynomial, then when we 

differentiate a polynomial we get a lower degree. [Pause – looking at 

students] So is that what you meant by ‘simplifying’? So is everybody 

agreed then that the middle one is the function? OK. It is!! It is. So look 

to the one on the right, Erik, and tell me how the one on the right fits with 

what you see in the middle. Is that going to be the partial derivative fx or 

is it going to be the partial derivative fy? [Qids]  

35: S: (Erik) erm, derivative of x [inaudible] 
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36:  T: Can you say why? [Qmw]  

37:  S: (Erik) aah.. because, I dunno, it looks as if [inaudible] along x and the other as if 

it kind of moving up and down y [inaudible] 

38: T: so you are changing your mind? [they laugh] How about you Alun? 

[Qid]  

39: S: (Alun) erm [long pause] I dunno.  

40: T:  Well, let’s suppose that is fx as Erik said. What does it mean for it to be fx. 

I mean, if I have a function such as this [points to the middle graph], and 

I am looking to find fx. What do I do?. It is as if what? [Qig]  

41: S: (Alun) You fix y  

ADDRESSING RESEARCH QUESTIONS 

Question 1 has been addressed (briefly) above. In relation to Question 2, analysis 

points to lines 6, 15, 17, 37 and 41 as indicative of student meaning. The articulation 

(or gesturing) gave clues to students’ insights in relation to the problem. Students’ 

difficulties to express their thinking in articulate forms meant that meanings were 

hinted at rather than uttered with clarity. We might say there is evidence of students 

linking the nature of the first and third graphs to the one in the middle and using 

informal language to express meaning (e.g., 16: slants; 37: as if it kind of moving up 

and down y); the need to “fix y” in order to find fx. At this stage in the process of 

meaning-making, nothing formal was expressed or written down.  

In a presentation of the above data in a seminar in the UK, it was suggested that the 

tutor is funnelling the discussion (Bauersfeld, 1988), prompting students so that they 

are giving her what they perceive she wants, and that in fact the students have little 

understanding of the concepts involved. Such interpretation points to the Topaz Effect 

(Brousseau, 1985) or Didactic Tension (Jaworski, 1994; Mason, 2002) in which a 

teacher’s questions lead students to give correct answers without the understanding the 

teacher wants. Thus, discerning meanings is important to judging such interpretation. 

By conducting a finer (discourse) analysis (of the third short extract above, taking it 

turn by turn), we show how we try to address such issues concerning meaning making 

and the influence of the teaching style. After Alun’s statement at 19, the tutor pressed 

the students to say what it means for the function to appear ‘more complex’, to say 

“WHY” it would be more complex. The other students agreed with Alun’s statement 

about complexity, but could not say why. At 33, Brian offers a new idea, that 

differentiation simplifies a function, resulting in a function simpler at the next stage. 

The tutor picks up and extends this idea [34] recognising that such simplification could 

happen in differentiating a polynomial function to obtain a function of lower degree. 

This is tutor input; she knows that the students are familiar with these concepts and 

seeks to remind and consolidate. Her question “So is that what you meant by 

‘simplifying’?” is somewhat rhetorical: she looks at them all and judges their response 

to it through body language and facial expressions which the audio data cannot 

capture. This leads to her acknowledgement that they are right about the middle graph 
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representing the required function. There is also a sense of pace, and of needing to 

move on. Her next question is a direct prompt to Erik, challenging him to declare 

which derivative the right hand graph represents. He suggests fx, and the tutor again 

asks ‘why?’. He struggles to answer, but speaks of ‘movement’ along x or ‘up and 

down’ y. These words suggest meaning to the tutor. She asks another student (Alun) to 

comment, and he is unable to do so. She then follows up [40] with more direct 

questions, building on Erik’s suggestion. This might be seen as ‘funnelling’. However, 

there is an issue of what to do at this point – she could just tell them the answer, giving 

her own explanation; instead she pursues the questioning approach. Alun’s response, 

“You fix y”, seems to be prompted by her “What do I do”. The use of pronouns, I and 

you, makes the situation more personal. They have talked about fixing x or y in order to 

get partial derivatives on an earlier occasion, so there are shared meanings. She knows 

that he knows about fixing a variable, so the fact that he brings in the idea at this point 

(albeit in response to her prompt) suggests to the tutor that he is starting to make sense 

of the various ideas (we see elements of verbalisation and visualisation although not 

yet the formal stage of symbolisation – Nardi, 2008). 

There are dangers in a teacher analysing her own discourse with students, it being 

tempting to read more into events than was actually evident. However, meaning 

making for the tutor, trying to make sense of her students’ meanings, is informed by the 

wider social setting: nuances of tone, gesture and body language more generally as 

well as historical common experiences and wider social perception. She has had 

conversations with individual students (for whom she is personal tutor) about their 

work, progress and social activity. The fact that these students are sport scientists as 

well as mathematicians brings additional factors to consider – they have less time to 

give to their mathematics than students who study only mathematics, and have given 

many indications previously of struggling with mathematical concepts. 

THE NATURE OF KNOWLEDGE 

The case explored above offers some early insights into a relationship between 

students’ meaning making and the teaching approach. Students respond only 

tentatively to the tutor’s questions; responses are not articulate; it is hard to gain insight 

to what they understand. It is important for students to be able to explain not only what 

they see, but why it is so. Repeatedly asking ‘why’ is a form of socialisation: in 

mathematics we need to be able to explain what we do in conceptual terms. However, 

we need words to explain difficult ideas – expressing informally can lead to more 

formal articulation. Students are unused to such expressing. Creating opportunity for 

them to think and express is an important part of the questioning approach. In this 

episode, unlike some others, there was little dialogue between students. Analysis 

shows the tutor where such dialogue would be valuable and prompts consideration of 

where and how it could have been achieved. The tutor recognises tensions: in some 

cases it might seem more appropriate to offer her own explanations from which 

students can gain insights; however, students’ reliance on the tutor giving explanations 

may inhibit further their willingness to try for themselves. Such growth of awareness 
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for the tutor is the basis of knowledge in practice which informs future action. As we 

analyse further we expect to be able to crystalize elements of, for example, the 

questioning approach and its relations to meaning-making. This can contribute to a 

broader awareness of how we encourage students’ meaning-making and the issues and 

tensions involved. Such shared knowledge can lead to more informed practice widely. 
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A CASE STUDY OF CONFLICTING REALIZATIONS OF 

CONTINUITY 

Gaya N. Jayakody 

Simon Fraser University 

 

In this paper I present a case study to illustrate conflicts between different 

‘realizations’ of the concept of ‘continuous function’ held by a university first year 

student. Sfard’s commognitve framework is used in the analysis of a student’s work on 

continuity. I point out how these conflicting realizations have arisen from the 

inconsistent definitions presented in text books and other mathematical resources. The 

study also points to the need of extending the notion of “commognitive conflict” in the 

framework.   

BACKGROUND AND THEORETICAL FRAMEWORK 

This paper reports on a phenomenon identified in the second stage of data analysis of a 

larger study. The study is guided by the research question “what are the effects of 

different definitions of ‘continuity of a function’ on student learning?” The concept of 

‘continuity’ has been recognized as a difficult topic in Calculus and many studies have 

been done on student understanding of the concept and how students make relations 

between continuity and other Calculus topics (e.g.: Bezuidenhout, 2001; Vinner, 1987; 

Cornu, 1991; Aspinwall et al., 1997). In an analysis of text books and other 

mathematical resources that was carried out as part of the current study, two issues 

were identified pertaining to definitions of continuity that are inconsistent with each 

other. These two problematic situations are described in the succeeding section. It was 

found in the first stage of the current study that university first year students have 

difficulties in determining whether a function is continuous or not when the function is 

not defined on an interval in particular. What is reported in this paper is the tension 

displayed in the discourse of a particular participant when she was trying to determine 

whether a particular function was continuous or not. I discuss how these tensions or 

rather ‘conflicts’ are arising from the inconsistent definitions of continuity.  

The familiar notion of ‘cognitive conflict’ has been attended to by many mathematics 

education researchers (e.g.: Zazkis & Chernoff, 2006; Tall, 1977; Tirosh & Graeber, 

1990). The notion has relations to Piaget’s equilibration theory, Festinger’s theory of 

cognitive dissonance, and Berlyne’s theory of conceptual conflict (Stylianides & 

Stylianides, 2008). A cognitive conflict is said to be “invoked when a learner is faced 

with contradiction or inconsistency in his or her ideas” (Zazkis & Chernoff, 2008, p. 

196). 

However, with the new directions taken in looking at ‘thinking’ in the recent years 

from cognitive theories towards discursive theories, my study is informed by Sfard’s 

commognitive theory and its interpretation of ‘conflict’.  
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Sfard (2008) unifies thinking and communication as commognition. In the 

commognitive framework, thinking is conceptualized as an individualized version of 

interpersonal communication. With the visioning of Mathematics as a discourse, it is 

claimed to be an autopoetic system that creates the objects of its study. Hence 

mathematical objects are discursive objects and students personally construct these 

mathematical objects which can be represented as ‘realization trees’. A realization tree 

shows the different realizations of a particular signifier where a signifier is a word or 

symbol that acts as a noun in the mathematical discourse. A realization is a 

perceptually accessible thing so that narratives about the signifier can be translated into 

narratives about the realization. Sfard coins “commognitive conflict” as “the encounter 

between interlocutors who use the same signifiers (words or written symbols) in 

different ways or perform the same mathematical task according to differing rules” 

(Sfard, 2008, p. 161). What this paper reports on is different from ‘commognitive 

conflict’, in that the conflict is between different realizations (for the same signifier) of 

the same individual.  

What follows is a brief introduction to the problems regarding definitions of continuity 

which has a direct relation to the case study of conflicting realizations. 

CONTINUITY: TWO DEFINITIONS 

Problem 1: Inconsistent definitions 

In the context of an introductory calculus course, and also in many other common 

resources, the definitions used for continuity related concepts are the limit definitions. 

There are two different limit definitions (that are labelled as D1 and D2 for reference in 

this paper) used for “continuity at a point” (and accordingly “discontinuity at a point”) 

on which the other related concepts of continuity can be based on. Below are the two 

definitions. 

D1 (e.g.: Stewart, 2012; Tan, Menz, & Ashlock, 2011) 

A function f is said to be continuous at c if,  

1. ( )f x  is defined at  x c   

2. exists. 

3. is equal to ( )f c  

f is discontinuous if any of the above conditions are not satisfied.  

D2 (e.g.: Stahl, 2011; Strang, 1991) 

A function f  is said to be continuous at x c  in its domain if, 

 

And f  is discontinuous at x c  in its domain if, 
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The deciding factor that makes a definition consistent with either D1 or D2 is the 

treatment of a point at which the function is not defined. According to D1, a function 

that is not defined at a point is discontinuous at that point, while according to D2 the 

question of continuity or discontinuity shouldn’t arise.  

A ‘continuous function’ too is defined in two ways where one is in accordance with D1 

while the other one is in accordance with D2. 

D1 (e.g.: Anton, 1995; Mathematics Harvey Mudd Collage, n.d.) 

A function is a continuous function if it is continuous at every real number. 

D2 (e.g.: Strang, 1991; Bogley & Robson, 1996) 

A function is a continuous function if it is continuous in its domain. 

Problem 2: Absence of a definition for ‘a continuous function’ 

I have examined several dozen of resources (textbooks, websites, mathematical 

dictionaries) seeking a definition for a ‘continuous function’. In most of the resources 

such a definition was not explicitly stated.  However, the phrase ‘continuous function’ 

is loosely used in many places.  

The topic of continuity starts off, in many textbooks and websites, with the definition 

of ‘continuity at a point’ (e.g.: Stewart, 2012). This definition is the leading definition 

and other related extensions to the concept of continuity of a function, each of which 

has its own definition may follow (e.g.: continuity on an interval, types of 

discontinuities, one-sided continuities).  

However, the heart of the second problem is that these definitions of 

continuity/discontinuity at a point are not followed by the definition of a continuous 

function (e.g.: Neuhauser, 2011; Stewart, 2012). This situation leaves room for 

students, if not explained by the instructor, to intentionally or unintentionally 

‘construct’ a meaning for “continuous function”. Instinctively it is likely that this will 

be interpreted as “continuous everywhere” with ‘everywhere’ to mean either “all reals” 

or “domain”. Therefore this situation holds the potential to lead students to construct 

their own meaning for a ‘continuous function’, which could be in discord with the 

intended definition.  

METHODOLOGY 

My data comes from the ongoing research study. The case study I’m presenting is of a 

first year university student, student ‘J’, who takes an introductory Calculus course. 

She was given a questionnaire where she was asked to give the definitions for 

“continuity at a point” (which she had learnt in the course) and “continuous function” 

(which she was not taught in the course) and then was given 6 functions in their 

graphical form to be identified as continuous or discontinuous. Then she was 

interviewed one on one to discuss her responses.  
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The first four graphs, which are discussed in the excerpt, are given in Table 1. Note that 

the domain for graph D was specified. 

A 

 

B C            D 

 

 

 

Domain = (- ,2)  (5, ) 

Table 1: The first four graphs in the questionnaire 

RESULTS AND ANALYSIS 

A realization tree for ‘a continuous function’ for ‘J’ was constructed based on her 

responses to the questionnaire and her utterances in the interview. Among other 

realizations, it was found that, ‘J’ had the following two realizations for a continuous 

function. 

X: For every point c in its domain, f(c) is defined and  . 

[this is in accordance with D2] 

Y: A function that does not have holes or asymptotes. [this is in accordance with D1]   

Following (Table 2) is an interpretative elaboration (“interpretative elaboration is a 

text that, utterance by utterance, elaborates on the text produced by the interlocutors” 

(Sfard, 2008, p. 139)) of an excerpt from the interview with ‘J’ that illustrates the 

tension between these two realizations. A word that is stressed by an interlocutor is 

indicated by bold letters. ‘G’ is the researcher who conducted the interview. 

‘J’ faces this tension when trying to decide the continuity of the graph D that is not 

defined on an interval. 

No. Who 

said 

What was said What was done Interpretative elaboration 

118 G 

 

Umm, so here you 

refrain from saying 

that it is.. 

Pointing to 

graph D 
‘G’ is pointing out that even 

though ‘J’ has clearly classified 

graphs A, B and C as “not 

continuous”, she refrained from 

classifying graph D as “not 

continuous” but just stating the 

“discontinuities”. 

119 G 

 

Here you said no, no, 

no 

 

Pointing to 

graphs A, B & 

C 

120 G 

 

But here you are just 

saying ‘there is a 

discontinuity’ 

Pointing back 

to graph D 

121 J Yeah   

3 

 

 

 

 

--3 9 -10 
5 2 6 
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122 G At x equals 2 and x 

equals 5 

 ‘G’ stresses on ‘and’ because ‘J’ 

did not classify the whole interval 

from 2-5 as a discontinuity but 

only 2 and 5. 

123 J 

 

Yeah I wasn’t  ‘J’ admits that she avoided this 

classification in graph D 

124 G Can you explain that 

to me? 

  

125 J I wasn’t sure; I did 

this question for like 

three minutes… 

 ‘J’ specifying three minutes for 

graph D implies that she took 

more time for it than she took to 

do each of the graphs A, B and C. 

By saying she took 3 minutes and 

admitting she wasn’t sure of this 

she’s implying that it was 

challenging to her. 

126 G Ohh   

127 J Because…and then I 

went back and looked 

at the definition and I 

saw that it was like 

within the domain 

that it’s given.. 

Pointing to the 

definition 

which is 

realization A 

This is the first graph for which 

she refers to the definition (X). 

She did the first three without 

referring to the definition. And 

now, she pays attention to the 

domain because now the domain 

is “given”.  And the definition 

mentions about the domain. 

128 G Hmmm?   

129 J And then I was like.. 

oh but there is like a.. 

open circles…it 

should be…..  

 ‘J’ says “but there is like a.. open 

circles”. She uses ‘but’ because to 

her, open circles, as in graphs B 

and C, mean ‘discontinuities’ (Y) 

but she’s trying to say that they are 

not in the domain (X). In other 

words, this utterance could be 

reworded as “the function should 

be continuous according to the 

definition (X) but since there are 

open circles the function has 

discontinuities (Y)” 

130 J … 

 

 

 

Thinking for 2 

seconds 

The pauses taken to think shows 

how much she is struggling to 

decide because there is a battle 

between two realizations she has 

for continuity. 

131 J 

 

There is a…there is 

no...umm… 

 

 The two utterances “there is a” 

and “there is no” that take place 

adjacently clearly indicates the 
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conflicting conclusions about 

continuity of function D resulted 

through the two different 

realizations.  

132 J 

 

I don’t know because 

it’s not con… like 

within the domain.. 

it’s not a square 

bracket 

 ‘J’ wants to say that the function is 

not continuous (‘not con…’) but 

she is stuck because the two points 

2 and 5 are not in the domain (‘not 

a square bracket’) 

133 G Yeah   

134 J So it’s not… Pauses ‘J’ really wants to say it is not 

continuous and this shows that for 

her, realization B is stronger than 

A. 

135 G So    

136 J I don’t really know  ‘J’ is utterly confused and gives 

up. She doesn’t seem to be aware 

that the confusion stems from two 

different realizations. 

Table 2: Interpretive elaboration for Jennifer’s utterances from 118 to 136 that 

elaborates a conflict between the realizations X and Y for continuity 

The tension between the two realizations X and Y which are based on the two 

inconsistent definitions D1 and D2 is clearly visible in ‘J’’s utterances. She had learnt 

D1 as the definition for ‘continuity at a point’ in her class. She did not have any 

problem in deciding the continuity of the first three graphs as these were familiar 

graphs to her that she had often come across in the class. And as she admitted in the 

interview she did not refer to the definition in deciding whether they were continuous 

or not. This was an immediate realization (Y) for the signifier ‘continuous function’ for 

her that included familiar features that she had seen in functions that were not 

‘continuous’; holes and asymptotes. The unfamiliarity of the graph D, one with a 

discontinuity on an interval, pushed her towards the realization X which is the 

definition she had taken from a website which is consistent with D2. The realization 

procedure for X, however, which was not an immediate one, required her to analyze 

the domain. At this point, ‘J’ was torn between the two realizations as the two 

realizations would take her to different conclusions about the continuity of the graph 

which resulted in a constant conflict in her utterances. This is a commognitive conflict 

between two of her own realizations for the signifier ‘continuous function’. 

DISCUSSION 

The case study presented in the paper illustrates the rise of conflicts between different 

realizations for the same signifier when a student is confronted with an unfamiliar 

situation. This observation points to the need for an extension to the notion of 

“commognitive conflict” to encompass the conflicts between realizations for the same 
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signifier of the same individual. I have also attempted to frame these conflicting 

realizations as arising from nothing but the inconsistent definitions used for continuity; 

a concern that is seen to be present in textbooks, mathematical websites, or even 

arguably within classroom instruction and discourse. 

As discussed, while there are inconsistencies in the way continuity of a function at a 

point is defined there is both ambiguity and inconsistency in explaining, let alone 

defining, what ‘a continuous function’ is.  

In conclusion, I believe, apart from being aware of these problems that exist in 

electronic as well as in print resources that teachers and learners should have a clear 

picture of the issue and its roots so that they will at least be able to deal with 

‘continuity’ problems according to the particular chosen definition. The study also 

gives evidence to the problematic situations that students are led to due to implied 

definitions that are not explicitly stated or taught. Hence, perhaps more importantly, 

what this study suggests in particular is that we also need to make a shift in our choices 

from a mathematical one to a pedagogical one when it comes to choosing definitions 

and making decisions about the kind of discourse we model in the classroom.  
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This study analyzed the problem-posing tasks in Chinese and U.S. elementary 

mathematics textbooks. Significant differences were found between the Chinese and 

U.S. textbooks in the presentation of problem posing activities. By analyzing problem 

posing in textbooks, we gain insight into how reform ideas are reflected in the 

mathematics curriculum. With respect to problem posing itself, it would appear that 

the curriculum reform has moved problem-posing tasks into greater prominence, but 

great effort is needed to make problem posing a reality in both curriculum and 

instruction.  In fact, our analysis shows that even in these reform textbooks, the 

proportion of problem posing tasks is very small.   

INTRODUCTION 

In the past several decades, there have been efforts around the world to incorporate 

problem posing (PP) into school mathematics at different educational levels (e.g., 

Brink, 1987; Chinese Ministry of Education, 1986; Hashimoto, 1987; Healy, 1993; 

Keil, 1964/1967). In recent years, there appears to have been a high level of interest 

among many researchers and practitioners in making problem posing a more 

prominent feature of classroom instruction (Singer, Ellerton, & Cai, 2013).  

If problem-posing activities are to play a more central role in classrooms, they must be 

more prominently represented in curricula. Similarly, if teachers are to engage students 

in problem posing in the classroom, they must have sources for problem-posing 

activities. In fact, education reform movements have recommended that 

problem-posing activities be included in mathematics curricula themselves. 

Internationally, school mathematics reforms have recommended that students be able 

to “formulate interesting problems based on a wide variety of situations, both within 

and outside of mathematics” (NCTM, 2000) and that instructional activities should 

emphasize learning problem-posing skills.  

Similarly, reforms to curriculum standards in China have increased the prominence of 

problem posing. The 9-year compulsory education mathematics curriculum standards 

call for providing students opportunities to pose problems, understand problems, and 

apply the knowledge and skills learned to solve real-life problems (Chinese Ministry of 

Education, 2001). Similarly, the curriculum standards for senior high school 

mathematics also call for developing students’ abilities to pose, analyze, and solve 

problems from mathematics and real life (Chinese Ministry of Education, 2003). 

Indeed, in the reform standards, students are encouraged to discover and pose 

problems in order to prepare them to think independently and be inquirers. 
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However, the implications for the inclusion of problem posing in the curriculum are 

not necessarily clear. This ambivalence is reflected in the available research on 

problem posing and curricula. Although reform movements have called for problem 

posing activities to be included in mathematics curricula, there has not yet been a 

substantial body of research examining whether and how curricula incorporate 

problem posing. The purpose of this study is to analyse problem-posing tasks included 

in a Chinese reform elementary school curriculum and a U.S. reform elementary 

school curriculum. 

There are at least three reasons why we undertook this study.  First, we simply wanted 

to know if textbooks included problem-posing tasks and the kinds of problem-posing 

tasks that were included. Second, problem-posing activities are usually cognitively 

demanding tasks (Cai & Hwang, 2002).  Whether it involves generating new problems 

based on a given situation or reformulating an existing problem, problem posing often 

requires the poser to go beyond problem-solving procedures to reflect on the larger 

structure and goal of the task. As tasks with different cognitive demands are likely to 

induce different kinds of learning (Doyle, 1983), the high cognitive demand of 

problem-posing activities can provide intellectual contexts for students’ rich 

mathematical development. Such activities can promote students’ conceptual 

understanding, foster their ability to reason and communicate mathematically, and 

capture their interest and curiosity (NCTM, 1991). Thus, an analysis of 

problem-posing tasks in textbooks would provide one perspective to show the learning 

opportunities for students through problem posing.  Third, problem-solving processes 

often involve the generation and solution of subsidiary problems (Polya, 1957). Thus, 

the ability to pose complex problems should allow for more robust problem-solving 

abilities (e.g., Cai & Hwang, 2002). Encouraging students to generate problems is 

therefore not only likely to foster student understanding of problem situations, but also 

to nurture the development of more advanced problem-solving strategies. 

SELECTION OF TEXTBOOKS AND ANALYSIS 

We chose Investigations in Number, Data, and Space (TERC, 2008a, 2008b, 2008c, 

2008d, 2008e, 2008f) as the U.S. reform textbooks. This textbook series was 

developed based on the NCTM Standards (NCTM, 1989) with the support of the U.S. 

National Science Foundation.  We chose the elementary mathematics textbook series 

published by Beijing Normal University (BNU) (BNU, 2001 to 2006), which was 

developed based on the Standards published in 2001 (Chinese Ministry of Education, 

2001).   

In analysing the problem-posing tasks, we first identified all of the tasks involving 

problem posing in both textbook series.  As long as the task required students to pose a 

problem based on a situation or an operation, we identified it as a problem-posing task. 

Then we analysed these problem-posing tasks along three dimensions: (1) grade levels; 

(2) content areas; and (3) types of problem-posing tasks. We describe these dimensions 

in detail in the results section. In addition to these three aspects, we also paid attention 
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to whether there was the inclusion of pictorial, graphical, or tabulated (PGT) 

representations in the PP tasks and whether sample questions were included for 

students in the PP tasks.   

RESULTS 

Number of Problem-Posing Tasks 

Grade 
Chinese – BNU US -- Investigations 

Total tasks % PP Total tasks % PP 

1 570 5.96 490 0 

2 549 5.65 741 1.62 

3 541 2.77 832 0.96 

4 561 2.85 760 2.24 

5 619 2.91 726 3.17 

6 545 3.12 -- 
[1]

 -- 

Total 3,385 3.87 3,549 1.69 

[1]
 The Investigations series does not have Grade-6 textbooks.  

Table 1: Percentage of problem-posing tasks in each grade 

The Chinese textbook series has a total of 131 PP tasks, while the U.S. textbook series 

has 60 PP tasks.  The total number of problems and the percentage of PP tasks in the 

two textbook series are shown in Table 1. For both the Chinese and U.S. textbook 

series, the percentages of PP tasks are quite small. However, there is a larger 

percentage of PP problems in the Chinese textbook series than that in the US textbook 

series (3.87% vs. 1.69%; z = 5.54, p < .001).  There are similar trends between the two 

textbook series for first grade (z = 5.50, p < .001), second grade (z = 3.98, p < .001), and 

third grade (z = 2.56, p < .05). There is no difference in terms of the percentages of 

problem-posing tasks in the fourth and fifth grades. There are also some observable 

differences in terms of percentages of PP tasks across grade levels. For the 

Investigations series, the fifth grade has the highest percentage of PP tasks, but the 

Chinese series has the highest percentage in the first grade.  

Problem-posing Tasks in Content Areas 

In this part of the analysis, we focused on the 131 PP tasks in the Chinese textbook and 

the 60 PP tasks in the U.S. textbook. We coded the tasks in terms of the five content 

strands: Number and Operations, Algebra, Geometry, Measurement, and Data 

Analysis and Probability. In the Chinese textbook series, there are some PP tasks 

which do not neatly fit into a content area, such as “what mathematical problems could 

you find in your life?” About 18% of the 131 PP tasks are of this kind. However, in the 

U.S. textbook series, there are none of this type of PP task. Table 2 shows the 

percentage distributions of the PP tasks in the five content areas. While the majority of 
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problem-posing tasks are related to Number and Operations in both series, there is a 

significant difference between the two textbook series with respect to the percentage 

distribution of problem-posing tasks in the five content areas (
2
 (5, N=191) = 31.67,  

p < .001). In addition, the percentage of the PP tasks in Number and Operations in the 

U.S. series is significantly higher than that in the Chinese textbook series (z = 2.35,  

p < .05). For the Chinese textbook series, the second highest percentage of 

problem-posing tasks was related to data analysis and probability, which was 

significantly higher than that in the US series (z = 2.07, p < .05). For the US textbook 

series, the second highest percentage of problem-posing tasks was related to algebra, 

which was significantly higher than that in BNU series (z = 3.64, p < .001). Very few 

PP tasks were related to geometry and measurement. 

Content Area 
Chinese 

(n=131) 

US 

(n=60) 

Numbers and Operations 61.07 78.33 

Algebra 3.05 18.33 

Geometry 2.29 0 

Measurement 2.29 0 

Data analysis and probability 12.98 3.33 

Undetermined 18.32 0 

Table 2: Percentages of PP tasks in content areas 

Types of Problem-Posing Tasks  

Five types of PP tasks were identified. Each of these types of PP tasks along with an 

example is given below.  

Type I (Reformulation of a given problem). Students are asked to pose a similar 

problem based on a given problem. For example: If 6 people share 3 apples, each 

person will get ½ of an apple. Make up a problem about equal shares so that each 

person gets one fourth of something (TERC, 2008c, Unit 7, p. 35).   

Type II (Posing additional problems). Students are asked to pose additional problems 

for a given problem. One example from Chinese textbook series is shown below 

(BNU, 2003, 3A, p. 43).  

 

(1) If we want to buy 5 volleyballs, how much do 

we need to pay? 

(2) If we bought three footballs, and paid the cashier 

100 dollars, how much can we get for change? 

(3) If I want to buy one badminton racket and 10 

badminton shuttlecocks, how much do I need to 

pay? 

(4) Please pose two more questions and answer 

them. 

Figure 1 
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Type III (Posing problems with given operations). Students are asked to make up a 

word problem that can be solved with a given operation. For example: Write a story 

problem for 65 35 . Then solve the problem and show how you solved it (TERC, 

2008d, Unit 8, p. 29). 

Type IV (Posing a problem through supplementing information and questions). In 

order to pose a problem, supplementing information and questions are needed. For 

example, Four children (A, B, C, and D) are practicing Chinese typing. In the 

following table is their practice time every day and their records on a test where each 

of them could select an article to type. Based on the data source, please pose two 

questions and try to answer them (BNU, 2014, 4A, p. 72). 

 A B C D 

Practice time every day (in minutes) 20 30 35 60 

Test 

records 

Time (Minutes) 12 19 18 13 

No. of words typed 384 931 846 728 

Figure 2 

Type V (Describe a situation to match a given mathematical representation).  For 

example, Write a story to match the graph shown below (TERC, 2008C, Unit 6, p.19). 

 
Figure 3 

Table 3 shows the percentages of the five types of PP tasks in both textbook series. 

Overall, the percentage distribution of the five types of PP tasks was significantly 

different between the two textbook series (
2
 (4, N=191) = 131.50, p < .001). The 

majority of PP tasks in the Chinese textbook series were type II tasks, which was 

significantly higher than that in the U.S. textbook series (z = 7.12, p < .001). However, 

for the U.S. textbook series, the majority of PP tasks were type III tasks, which was 

significantly higher than in the Chinese textbook series (z = 10.21, p < .001). For the 

Chinese textbook series, the second and the third highest percentages of PP tasks were 
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type I and IV tasks, which were also significantly higher than in the U.S. textbook 

series (Type I: z = 2.03, p < .05; Type IV: z = 3.11, p < .002). However, in the U.S. 

textbook series, there was a much higher percentage of type V PP tasks than in the 

Chinese textbook series (z = 3.40, p < .001). 

PP Types I II III IV V 

China (n=131) 24.43 55.76 3.82 14.50 1.53 

US (n=60) 11.67 1.67 73.33 0 13.33 

Table 3: Percentage of Each Type of Problem-posing Tasks 

Inclusion of PGT Representations and Sample Problems   

We also analyzed the PP tasks to examine if there was the inclusion of pictorial, 

graphical, or tabulated (PGT) representations in the PP tasks and whether sample 

questions were included for students in the PP tasks. Nearly 80% of the PP tasks in the 

Chinese textbook series included pictorial, graphical, or tabulated (PGT) 

representations, but only 20% of the PP tasks in the U.S. series included PGT 

representations.  This result is somewhat suprising as Chinese students are less likely 

to use PGT representations than U.S. students in problem solving (Cai, 1995). 

With respect to whether sample questions were included for students in the PP tasks, in 

57% of the PP tasks from the Chinese textbook series, a sample question was given. 

However, a sample question was given in only 15% of the PP tasks in the U.S. series. 

CONCLUSIONS 

Curriculum reform has often been viewed as a powerful tool for educational 

improvement because changes in curriculum have the potential to change classroom 

instruction and student learning (Cai & Howson, 2013). There is a lack of research 

examining problem-posing in the mathematics curriculum. The research presented 

here sheds new light on the inclusion of problem posing in the mathematics 

curriculum. By analyzing problem posing in textbooks, we gain insight into how 

reform ideas are reflected in the mathematics curriculum. With respect to problem 

posing itself, it would appear that curriculum reform has moved problem-posing tasks 

into greater prominence, but great effort is needed to make PP a reality in both 

curriculum and instruction. In fact, our analysis shows that even in the so-called reform 

textbooks, the proportion of PP tasks is very small. In order to truly make problem 

posing prominent in classroom instruction, curriculum developers and textbook writers 

must increase the coverage of PP tasks in textbooks so that teachers can draw from the 

resource and teach students problem posing. Only then can students have rich 

opportunities to learn mathematics through problem posing. 
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THE FREQUENCIES OF VARIOUS INTERPRETATIONS OF THE 

DEFINITE INTEGRAL IN A GENERAL STUDENT POPULATION  

Steven R. Jones 

Brigham Young University 

 

Student understanding of integration has become a topic of recent interest in calculus 

research. Studies have shown that certain interpretations of the definite integral, such 

as the area under a curve or the values of an anti-derivative, are less productive in 

making sense of contextualized integrals, while on the other hand understanding the 

integral as a Riemann sum or as “adding up pieces” is highly productive for 

contextualized integrals. This report investigates the frequency of these three 

conceptualizations in a general calculus student population. Data from student 

responses show a high prevalence of area and anti-derivative ideas and a very low 

occurrence of summation ideas. This distribution held even for students whose 

calculus instructors focused on Riemann sums while introducing the definite integral. 

INTRODUCTION 

First-year calculus has received much attention in mathematics education in recent 

years due to its significance in science, technology, engineering, and mathematics 

(STEM) fields. In particular, the calculus concept of the definite integral has become a 

current topic of interest among mathematics education researchers (e.g. Black & 

Wittmann, 2007; Hall, 2010; Jones, 2013; Sealey & Oehrtman, 2007; Thompson & 

Silverman, 2008). The integral is an important topic to investigate because it is 

commonly used in subsequent mathematics courses (see Brown & Churchill, 2008; 

Fitzpatrick, 2006) and provides the foundation for many concepts in science and 

engineering coursework (see Hibbeler, 2012; Serway & Jewett, 2008). 

However, several studies demonstrate that students are struggling to apply their 

knowledge of integration to subsequent courses (e.g. Beichner, 1994; Christensen & 

Thompson, 2010; Grundmeier, Hansen, & Sousa, 2006; Pollock, Thompson, & 

Mountcastle, 2007). This finding has led some researchers to begin to examine why 

students are having this difficulty. Sealey (2006) and Jones (2013) suggest that the 

“area under a curve” notion alone is not sufficient for understanding definite integrals. 

Thompson and Silverman (2008) promote the development of an “accumulation” 

conception of the integral in order to help students. 

Jones (under review) subsequently conducted a more thorough analysis of the 

anti-derivative, area under a curve, and summation interpretations of the definite 

integral by students in both mathematics and science contexts. The results demonstrate 

that the “summation” conception proved highly productive for understanding definite 

integrals that are either situated in a larger context or that contain variables 

representing physical quantities. By contrast, the study confirms that the “area under a 
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curve” and “values of an anti-derivative” conceptions are less productive in making 

sense of these types of contextualized definite integrals. While the findings do not 

imply that the area and anti-derivative ideas are not important (nor that they should not 

be learned) they do suggest that it is critical for students to have a robust and accessible 

summation conception of integration in their cognitive repertoire. 

Based on these results, it is important to ask the question: Are calculus students 

generally constructing their knowledge of the integral in a way that promotes the 

beneficial summation conception? This paper seeks to answer this question by 

investigating (a) how common each of the three conceptualizations are when a large 

sample of calculus students are asked to think about integration, and (b) whether 

standard ways of introducing Riemann sums are sufficient for a general student 

population to internalize the summation conception. 

THEORETICAL PERSPECTIVE 

Symbolic forms 

For this study, the manner in which students hold their knowledge of the integral is 

characterized through the lens of symbolic forms (Sherin, 2001). A symbolic form is a 

blend (Fauconnier & Turner, 2002) between a symbol template and a conceptual 

schema. The symbol template refers to the arrangement of the symbols in an equation 

or expression, such as 
[]

[]
[] []d , where each “box” can be filled in with symbols. The 

conceptual schema is the meaning that underlies the symbols in the template. Jones 

(2013) documents students’ symbolic forms of the definite integral that are associated 

with the notions of area under a curve, values of an anti-derivative, and summations. 

Note that the students in the study regularly ascribed “anti-derivative” meanings to 

both indefinite and definite integrals. Furthermore, Jones describes a “deviant” of the 

typical Riemann sum conception that was dominant in some students’ thinking. These 

four symbolic forms aided the analysis of the student data by helping determine when 

students were drawing on each the area, anti-derivative, or summation 

conceptualizations of the integral. A brief description of each form is provided here. 

Area and perimeter: This symbolic form interprets each “box” in the symbol template 

as being one part of the perimeter of a shape in the (x-y) plane. The differential, “d[],” 

represents the “bottom” of the shape by dictating the variable that resides on the 

horizontal axis. This symbolic form is associated with the “area under a curve” notion. 

Function matching: This symbolic form interprets the integrand as having come from 

some “original function.” The original function became the integrand through a 

derivative, and the differential “d[]” indicates the variable with respect to which the 

derivative was taken. This form is associated with the “anti-derivative” conception. 

Adding up pieces: This form casts the differential as being a tiny piece of the domain, 

given by the limits of integration. Within each tiny piece, the quantities represented by 

the integrand and differential are multiplied to create a small amount of the resultant 
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quantity. The integral symbol dictates an “infinite” summation that ranges over the 

domain. This form is related to the Riemann sum idea. 

Adding up the integrand: This is a “deviant” of the adding up pieces form. The key 

difference is that within each tiny piece, only the quantity represented by the integrand 

is added up. This resulting “total” from the integrand is then multiplied by the entire 

domain (length, area, or volume) to get the resulting quantity. This form fails to 

adequately describe the Riemann sum process, but is rooted in ideas of summations. 

Manifold view of knowledge 

Symbolic forms can be considered a subset of “cognitive resources” (Hammer, 2000), 

which are any piece of cognition that can be drawn on and employed as a unit, whether 

large or small. The main idea from cognitive resources that is used for this paper is the 

push away from a “unitary view” of concepts to a “manifold view” of knowledge 

(Hammer, Elby, Scherr, & Redish, 2005). The theory of resources argues that a 

“concept” such as the integral is comprised of many small and large elements—like 

rectangles, graphs, functions, ideas about summation, areas, limits, anti-derivative 

rules, and so forth—that are too complex to be considered a single entity. 

Thus, this study assumes that students can think about the integral by drawing on 

certain aspects of their “integral knowledge” while other aspects remain dormant. For 

example, a student may look at an integral and immediately think “area under a curve” 

without ever thinking about Riemann sums. This does not necessarily mean that the 

student does not have a Riemann sum conception in their cognition, but rather that the 

area conception is much more familiar and readily accessible to them. This has 

implications for learning integrals, since students need not only to “assimilate” a 

summation conception somewhere in their cognition, but that that conception needs to 

be created in a way that it is prevalent in their thinking to capitalize on its usefulness. 

METHODS 

Initial survey 

In order to investigate the prevalence of the area, anti-derivative, and summation 

conceptions of the definite integral, 150 students at two major colleges in the Western 

United States, who had successfully completed first-semester calculus, were recruited 

to participate in a survey that asked them open-ended questions about definite 

integrals. A χ
2
-test revealed no significant difference between the students at these two 

schools, in terms of the frequencies of the responses that were coded as belonging to 

the each conception of the integral used in this study (see below for more detail). This 

allows for the assumption that these students may be considered representative of the 

general calculus student population. The choice to use successful first-semester 

students is based on the fact that many key aspects of the integral are explored during 

the first semester: areas under curves, the Riemann integral definition, the 

Fundamental Theorem of Calculus (FTC), the Net Change Theorem, velocity/position 

applications, and anti-derivative techniques (including u-substitution). 
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To recruit students, several second-semester calculus courses were visited within the 

first two days of the semester in order to administer the survey. Students who had 

already taken second semester calculus (or the equivalent in high school) were asked 

not to complete the survey, to keep the focus of the study on students who had only 

successfully finished first-semester calculus. The students who participated were given 

fifteen minutes to complete the survey. 

Two of the four items from the survey form the focus for this paper. The first item 

reads, “Explain in detail what ( )
b

a
f x dx  means. If you think of more than one way to 

describe it, please describe it in multiple ways. Please use words, or draw pictures, or 

write formulas, or anything else you want to explain what it means.” The item clearly 

asks the students to express any and all ways that they conceive of the integral and this 

instruction was reiterated to the students when the surveys were administered. The 

second item reads, “Why does an integral need a ‘dx’ on it? For example, why can’t it 

just be 
1

3

0
x  instead of 

1
3

0
x dx ? Explain in as much detail as you can.” The main 

purpose of this question was to give the students a second context to discuss their ideas 

about integrals as well as to ask them to mentally break apart the integral symbol 

template, in order to discuss the integral in more detail. The way in which they 

explained the existence of “dx” was also compared to the symbolic forms of the 

integral described in the previous section, to see if the students were possibly invoking 

other conceptualization beyond what they used for their responses to item 1. 

Responses to the items were coded into the “area,” “anti-derivative,” “summation,” or 

“weak summation” categories. Many responses were coded into multiple categories if 

the students expressed more than one idea in their answer. Responses were coded 

based either on (a) an explicit statement regarding one of the three main 

conceptualizations, or (b) the inferences made by the correlation of a response to one of 

the symbolic forms of the integral. The “weak summation” category was included 

since several responses hinted at a summation notion, but were not articulated enough 

to be conclusive. Also, responses along the lines of the adding up the integrand 

symbolic form were placed in “weak summation.” Confidence intervals (95%-level) 

were used to estimate the percentages of the overall calculus student population that 

might respond similarly to these survey items (see Triola, 2010). 

Classroom observations and second survey 

In order to investigate whether standard classroom instruction can adequately support 

the creation of a robust summation conception, two veteran instructors of 

first-semester calculus from one of the schools were recruited for observation. Both 

instructors taught large sections (200+ students) and the first five of their one-hour 

lessons on integration were observed and videotaped. Both instructors had taught 

calculus many times and used standard templates for their lesson schedule. A sample 

of students from their courses were surveyed (n = 55), using a “cluster sample” 

technique on the individual lab sections. This occurred during the same semester as the 
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previous survey, ensuring that there was no overlap between the two samples. A χ
2
-test 

was conducted for both survey items (α = .05) to compare the frequencies of responses 

of these instructors’ students to the responses of the general sample (see Triola, 2010). 

RESULTS 

General population sample 

Table 1 illustrates the frequency of responses that fit under each conceptualization of 

the integral for items 1 and 2. Note that since many students provided elaborated 

answers that fit into more than one category, the frequencies add up to more than the 

sample size. Confidence intervals (95%-level) have been included as estimates for the 

percentage of the overall calculus student population that might respond similarly. 

Conceptualization Responses from item 1 Reponses from item 2 

Area 131 (82.0% < p < 92.7%) 7 (1.3% < p < 8.0%) 

Anti-derivative 60 (32.2% < p < 47.8%) 114 (69.2% < p < 82.8%) 

Summation 

Weak summation 

10 (2.7% < p < 10.7%) 

7 (1.3% < p < 8.0%) 

11 (3.2% < p < 11.5%) 

2 (n/a, low frequency) 

Table 1: Frequencies of responses (n = 150), with confidence intervals 

The data show a high prevalence of area and anti-derivative conceptions when students 

think about the integral. This in and of itself is not bad, since these two notions are 

helpful, useful ideas. However, what is surprising is the low frequency of students who 

invoked any type of summation conception. Even taking “summation” and “weak 

summation” together, only 17 out of 150 students  (6.3% < p < 16.4%) made any kind 

of statement dealing with summations on item 1. Further, 117 out of 150 students 

(71.4% < p < 84.6%) made no mention of anything related to summations whatsoever 

on either item 1 or item 2. With confidence, I can assert that roughly three-fourths of 

successful first-semester calculus students leave their first-semester course without a 

familiar, accessible conception of the Riemann sum or any related “adding up pieces” 

idea. This, of course, is not to say that these students have no summation conception in 

their cognition; they may express something along these lines if pressed. Yet, given the 

important nature of the summation conception (Jones, under review), it is striking that 

so few students “choose” to activate that knowledge when asked to explain what a 

definite integral is or what it means. This has important ramifications for 

understanding integrals in further coursework where a Riemann sum conception is 

critical for making sense of a contextualized integral expression or equation. 

Observed instructors and their students 

Both observed instructors used Riemann sums to introduce integration, as a way to 

approximate the area underneath the graph of a function. They drew the familiar 

rectangles under the curve and walked through examples of calculating left-hand, 

right-hand, and midpoint approximations. Both instructors regularly discussed 

Riemann sums throughout the first two one-hour class sessions. During the third lesson 
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both instructors moved to the Fundamental Theorem of Calculus and then, for the 

remainder of the observed lessons, the instructors focused on calculating 

anti-derivatives and discussing a variety of integral properties. In short, their 

instruction reflected how many textbooks present integration (e.g. Stewart, 2012; 

Thomas, Weir, & Hass, 2009). These observations show that Riemann sums were a 

significant portion of the early instruction regarding integration. 

Based on these observations, one might hope that these students showed a stronger 

tendency to interpret integrals through a summation interpretation, in addition to the 

area and anti-derivative conceptualizations. Unfortunately, however, in essentially 

every way these students reflected the general population sample. Table 2 shows the 

breakdown of responses from these instructors’ students (n = 55), including p-values 

from the χ
2
-tests (α = .05) that were done on the frequencies of responses from these 

students versus the frequencies of responses from the general population sample. 

Conceptualization Responses from item 1 Responses from item 2 

Area 47 1 

Anti-derivative 14 38 

Summation 

Weak summation 

(χ
2
-test) 

8 

4 

p = .13 

9 

3 

p = .07 

Table 2: Frequencies of responses (n = 55) and p-values from χ
2
-tests 

Neither p-value was below the threshold for statistical significance. The p-value for 

item 2 was close to the “.05” mark, but since neither test was significant, the results 

suggest that there is no important difference between these instructors’ students and 

the overall population described previously. This outcome leaves us with the 

conclusion that the attention the instructors gave to the Riemann sum throughout their 

first two lessons did not make an impact in supporting the students’ creation of a robust 

summation conception. Therefore, merely having Riemann sums present during 

instruction is not sufficient for accomplishing this goal. More, apparently, is needed. 

DISCUSSION AND FUTURE DIRECTIONS 

The results of this study suggest that simply giving attention to Riemann sums is not 

enough to help students construct a viable summation conception in regards to 

integration. By examining the manner in which these two instructors introduce 

integration, we see a common theme that may contribute to this issue. 

Both instructors began their introductory lesson on integration by using the “area under 

the graph of a function” as the primary motivation for the study of integrals. Riemann 

sums were invoked only as a way to calculate the irregular shapes created by the 

graphs, since basic geometry could not be used. For example, one instructor began the 

lesson by saying, “We’re going to draw a graph… And I want to find the area under 

this [graph], between the x-axis and this [graph].” The instructor then created 
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rectangles underneath the graph to approximate the area. Similarly, the second 

instructor introduced integration by saying that areas under curves was the second 

“main idea” of calculus. “Second is integrals. Integrals can be thought of as area under 

a curve.” He then drew a generic graph, with vertical lines at x = a and x = b, and 

shaded in the area of the shape created by the graph and the vertical lines. “This area 

between the curve and the x-axis, that’s represented by the idea of an integral.” This 

instructor then also used Riemann sums to approximate these irregularly shaped areas. 

It appears from these lessons that, even though Riemann sums are used, the central 

concept portrayed to the students is still that of “area under a curve.” In fact, Riemann 

sums are used only as a “tool” for getting at these areas. By doing this, instructors may 

inadvertently be reducing Riemann sums to a procedure for calculating areas under 

curves—the more salient goal of the lesson. The summation conception does not have 

the chance to stand on its own as an important idea. Thus, when students encounter the 

FTC, they might decide that anti-derivatives are a better/easier “tool” for calculating 

areas, and the Riemann sum conception takes a cognitive “backseat” to the 

anti-derivative notion. This may, in part, explain the students’ prevalent use of areas 

and anti-derivatives to explain integrals, while rarely appealing to summations. 

In order to investigate this problem further, the author is currently involved in a design 

experiment that seeks to examine other ways of introducing the integral, in order to 

highlight the summation conception as the basis of the integral. This is done through 

several activities, based off those described in Jones (2013/14), that use Riemann sums 

without discussing areas under curves. For example, the accumulation of water spilled 

from a pipe can be estimated, using Riemann sums, from discrete data points. Or the 

mass of an object with non-uniform density can be estimated by selecting density data 

points and multiplying them to each small piece of volume. Preliminary results of the 

study are showing promising outcomes for conveying to students that the Riemann 

sum is the central, underlying conception (and definition) of definite integrals. 
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YOUNG CHILDREN’S THINKING ABOUT VARIOUS TYPES OF 

TRIANGLES IN A DYNAMIC GEOMETRY ENVIRONMENT 

Harpreet Kaur, Nathalie Sinclair 

Simon Fraser University 

 

This paper presents preliminary results of longitudinal study on the development of 

children’s geometric thinking in dynamic geometry environments. Here we investigate 

young children’s (age 7-8, grade 2/3) interactions, in a whole classroom setting with 

an Interactive Whiteboard, with Sketchpad-based tasks involving the use of different 

types of constructed triangles (scalene, isosceles, equilateral). We use Sfard’s 

discursive approach to show how the children developed a reified discourse on these 

different types of triangles and how they described the behaviour of these triangles in 

terms of their invariances (side lengths and angles). 

INTRODUCTION 

In this paper, we report on an exploratory study conducted with a split class of grade 

2/3 children (ages 7-8) working with various types of triangle sketches using The 

Geometer’s Sketchpad. The focus of this research is to study how the use of Sketchpad 

affects the children’s thinking about triangles, including how they attend to various 

aspects of the dynamic sketches, how they talk and gesture about the moving objects 

on the screen, and how they reason about the behaviour of different types of triangles 

(i.e. scalene, isosceles and equilateral triangle). 

CHILDREN’S UNDERSTANDING OF CLASSIFICATION OF SHAPES 

Research shows that children have difficulty working with definition when classifying 

and identifying shapes (Gal & Linchevski, 2010). de Villiers (1994) suggests that 

classifying is closely related to defining (and vice versa) and classifications can be 

hierarchical (by using inclusive definitions, such as a trapezium or trapezoid is a 

quadrilateral with at least one pair of sides parallel – which means that a parallelogram 

is a special form of trapezium) or partitional (by using exclusive definitions, such as a 

trapezium is a quadrilateral with only one pair of sides parallel, which excludes 

parallelograms from being classified as a special form of trapezium). In general, in 

mathematics, inclusive definitions are preferred. A number of studies have reported on 

students’ problems with the hierarchical classification of quadrilaterals (Fuys, Geddes 

& Tischer, 1988; Clements & Battista, 1992; Jones, 2000). However, Battista (2008) 

designed the Sketchpad-based Shape Makers microworld that provides grade 5 

students with screen manipulable shape-making objects. For instance, the 

Parallelogram Maker can be used to make any desired parallelogram that fits on the 

screen, no matter what its shape, size or orientation—but only parallelograms. This 

motivated our research on children’s identifying and classifying of different types of 

triangles.  
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THEORETICAL PERSPECTIVE 

In previous research, we have found Sfard’s (2008) ‘commognition’ approach is 

suitable for analysing the geometric learning of students interacting with DGEs 

(dynamic geometry environments) (see Sinclair & Moss, 2012). For Sfard, thinking is 

a type of discursive activity. Sfard’s approach is based on a participationist vision of 

learning, in which learning mathematics involves initiation into the well-defined 

discourse of the mathematical community. The mathematical discourse has four 

characteristic features: word use (vocabulary), visual mediators (the visual means with 

which the communication is mediated), routines (the meta-discursive rules that 

navigate the flow of communication) and narratives (any text that can be accepted as 

true such as axioms, definitions and theorems in mathematics). Learning geometry can 

thus be defined as the process through which a learner changes her ways of 

communicating through these four characteristic features. In the context of identifying 

shapes, Sfard has proposed the following three levels of discourse characterised by 

different types of routines and word uses, which Sinclair & Moss (2012) use in their 

study of children’s interactions with DG triangles: 

 1
st
 level: the word ‘triangle’ is used as a proper noun. The routine of 

identification involves visual object recognition.  

 2
nd

 level: the word ‘triangle’ is used as a family name, that is, the name of a 

category of elementary objects; identification is made according to visual 

family recognition as well as through an informal properties check.  

 3
rd

 level: the word ‘triangle’ is used as the name of a category of objects, and 

identification is made through visual family resemblance first, and then 

verification/refinement of properties.  

At the 3
rd

 level, since the condition specified by one definition (i.e. of equilateral) may 

be an extension of the condition in another (i.e. of isosceles triangle), children can 

make use of inclusive definitions (term suggested by de Villiers, 1994). We are 

particularly interested in investigating how the children might move between different 

word uses, routines, narratives and progress to higher levels of discourse.  

METHOD OF RESEARCH 

Participants and data collection 

This teaching experiment is part of a larger project that involves the study of children’s 

geometric thinking in the primary grades. We worked with grade 2/3 split classroom 

children from a pre-K-6 school in an urban middle SES district. There were 24 children 

in the class from diverse ethnic backgrounds and with a wide range of academic 

abilities. We worked with the children on a bi-weekly basis on a variety of geometric 

concepts for seven months. Three lessons were conducted on the topic of triangles. 

Each lesson lasted approximately 60 minutes and was conducted with the children 

seated on a carpet in front of an interactive whiteboard. Two researchers, and the 

classroom teacher, were present for each lesson. One researcher (second author) took 
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the role of the teacher for these interventions. Lessons were videotaped and 

transcribed. This paper is focused on the first and second of the three lessons. Previous 

lessons involved the concepts of symmetry and angles, but they had never received 

formal instruction about classification of triangles before.  

Dynamic triangle sketches  

Along the lines of work of Battista (2008), we developed the Triangle ShapeMakers 

sketches (see Figure 1) for different types of triangles (scalene, isosceles, equilateral 

triangles, right triangle). Each triangle type had a different colour (pink for scalene, red 

for equilateral, blue for isosceles and green for right). 

(a) 

 

(b) 

 
(c) 

 

Figure 1(a, b, c): Three different Triangles ShapeMaker sketches 

In the sketch shown in figure 1(a) all look like equilateral triangles, but only the middle 

one is constructed to be so; the bottom right one is an isosceles triangle and the top left 

is scalene. Students were asked to explore the similarities and differences between the 

three triangles. For the sketch in figure 1(b), the students were asked to explore which 

coloured triangles could fit in the given triangle outlines. Note that the equilateral 

triangles cannot be used, and only the right triangles will fit into the two left-most 

outlines. The sketch in figure 1(c) focused on exploring whether an equilateral triangle 

can fit into the given isosceles triangle (top) and whether an isosceles triangle can fit 

into a given equilateral triangle (bottom). 

Behaviour of dynamic scalene, isosceles and equilateral triangles  

Although no vertex was labelled in the sketches, we have done so in Figure 1a in order 

to explain the dragging behaviour of different triangles. In the scalene (pink) triangle, 

dragging any one vertex (A, B or C) does not move the other two vertices, whereas in 

equilateral (red) triangle, dragging vertex E or F (which determine the size of the 

triangle) moves the entire triangle except the vertex F or E respectively; dragging 

vertex D simply translates the triangle from one place to another. In the isosceles (blue) 

triangle, dragging vertex (I) does not move the other two vertices, dragging vertex H or 

G moves the entire triangle except the vertex G or H respectively. 
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EXPLORING STUDENTS’ LEARNING ABOUT TYPES OF TRIANGLES 

To begin, the teacher (second author) appointed three children to drag each of the 

coloured triangles in the sketch (figure 1a). The children seated on the floor were asked 

to be “detectives” and to “describe what kinds of triangles can be made”, “what can 

change and what stays the same” in each of the triangles. 

Comparing the dragging of scalene and equilateral triangle 

The first child Neva dragged the pink (scalene) triangle into various sizes and 

orientations i.e. skinny and long, small and big triangles. Then Adil dragged the red 

(equilateral) triangle and the teacher asked if he could make it long and skinny. 

Observing the dragging patterns, some students said no. The teacher asked the students 

that why is it not possible to make the red triangle long and skinny. 

Egan: Because the red one, it’s different than that (pointing to the pink triangle) 

and I think it can only go by a perfect triangle. 

The teacher asked what Egan meant by “perfect triangle”, to which Rabia responded: 

Rabia: Because the other triangle (pointing to the pink triangle) can move at a 

point but this one (red triangle) can move bigger or smaller differently. 

Another student described the behaviour of a perfect triangle as below: 

Jace: Everything moves with it except one point. 

Teacher: (Dragging the equilateral triangle). Even when it is getting bigger and 

smaller, is there anything that stays the same as I make it bigger and 

smaller? (Many children put their hands up) Neva? 

Neva: The angles. 

The children started to notice the changes in the red triangle as Adil dragged one of the 

vertices. Egan’s statement “it’s different than that” shows that he started to notice the 

differences between the red and pink triangles, even though they initially looked the 

same in their static configurations. Egan’s response ‘only go by a perfect triangle’ is 

based on his visual recognition of similarity to previously seen prototypical triangles, 

thus using a first level of discourse. Further, in Rabia’s description “other triangle can 

move at a point” and in Jace’s statement “everything moves with it except one point”, 

the action words ‘move at a point’, ‘everything moves’ shows that the students are 

paying attention to the particular kinds of movement depicted by each triangle. The 

dragging tool initiated this kind of reasoning, so that the transforming triangles 

functioned as new visual mediators. Rabia’s statement “move bigger or smaller 

differently” shows that she was noticing the different kind of size changing behaviour 

of the equilateral triangle as compared to the scalene triangle. The use of words ‘red 

one’, ‘it’, ‘the other triangle’, ‘this one’ to address the triangles show that the children 

are talking about one particular triangle as opposed to the family of those triangles. In 

addition, Neva noticed that ‘angles are staying’ the same under dragging. Thus, the 

children started to notice the informal properties (based on dragging behaviour) as well 

as formal properties (invariance of angles in red triangle) of the different triangles. 
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This shows that many of them are using a mixture of 1
st
 and 2

nd
 level discourse around 

types of triangles. 

Exploring the overlapping of one triangle over the other fixed triangle  

After the students explored the dragging of different triangles, the teacher asked them 

if they could fit the blue (isosceles) triangle over the pink (scalene) triangle (without 

touching the pink triangle). Rabia first matched the two vertices of the blue triangle to 

one side of the pink triangle (fig 2a) and then tried to drag third vertex (shown by green 

dot in fig 2b) in upward direction and concluded that she couldn’t fit the blue triangle 

onto the pink one. 

2a, 2b: Matching 

of two vertices  

by Rabia 
                    

2c: Jory’s  

stretching  

gesture 
 

Figure 2a, 2b, 2c: Snapshots of Rabia’s overlapping attempt & Jory’s gesture 

Teacher:  You think you can’t? How come you can’t?    

Rabia: Because I think if I move that one (placing marker at vertex  <black dot> in 

fig 2b), that one also moves (placing marker at green dot in fig 2b) 

The teacher asked for other arguments, and called on Dale and then Jory: 

Dale: Because the blue one can only move symmetrical.  

Jory: So, this one (placing right index finger at green dot (fig 2b)) wherever you 

move it, then this one (placing right index finger at black dot (fig 2b)) 

moves with this (placing left index finger at green dot (fig 2b)), so when 

you move, it will go that way (stretching his arms upwards along the two 

longer sides (figure 2c)).  

Rabia’s statement “if I move that one, that one also moves” shows that she is paying 

attention to the causal type of movement relationship between the different parts of the 

triangle. While Dale’s explanation “it can only move symmetrical,” suggests that he 

has noticed invariance in the isosceles triangle, either holistically, or as a function of 

the movement of the congruent sides. The systematic dragging of the vertex of one of 

the longer sides of the isosceles (blue) triangle by Rabia acted as a visual mediator and 

seemed to help Dale see the property of symmetry. Jory’s use of the words “wherever 

you move it, then this one moves with this” and “so when you move, it will go that 

way” along with the stretching arms gesture shows that he is also thinking about the 

simultaneous change in length of two arms of the isosceles triangle. The teacher 

labelled Dale’s reasoning “a symmetry argument” and Jory’s a “stretching argument”. 

Most of the students agreed with these arguments by raising their hands or nodding 

their heads. Overall, the students came up with three arguments: (1) dragging vertex 

argument (dragging one point moves the other point) (2) symmetry argument (blue one 

can only move symmetrical) (3) Stretching side argument (with arm stretching gesture 
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where two arms act as two sides of triangle). These arguments show a 2
nd

 level of 

discourse because they refer to informal/formal properties of the isosceles triangle. 

Through teacher-led discussion, the students identified the properties of different sides 

staying the same or changing length in different triangles. After these invariances were 

stated explicitly, the teacher introduced the “special names” equilateral, isosceles and 

scalene for the red, blue and pink triangles, respectively. 

In the second lesson, the children worked on the sketch in Figure 1(b). An attempt to fit 

the equilateral (red) triangle into the right-angled isosceles outline (figure 1b) was 

unsuccessful, whereas the scalene (pink) triangle fit in that outline without any 

difficulty. When asked why the equilateral triangle could not fit, Thom said: 

Thom: It’s because mostly that won’t work because that one of them is seemed to 

be paralysed or something and doesn’t want to move from its seat. But the 

pink one... the scalene …can move anywhere it wants and the only one. I 

think it’s the only one that can get inside the shape. I think it’s only the 

green and pink that can make that shape, but the others are just paralysed. 

Thom used the words ‘paralysed’, ‘doesn’t want to move’ for equilateral and isosceles 

triangles, whereas for scalene triangle he used the words ‘can move anywhere’, ‘can 

get inside the shape’. Clearly, this vocabulary emerged after observing the free and 

restricted movements of different dynamic triangles and prompted him to make 

connections with real life experiences of the restrictive mobility of humans. Later, 

during the exploration of the third sketch (figure 1(c)), after the students had 

successfully placed an isosceles triangle into an equilateral outline, but not an 

equilateral triangle into an isosceles outline, the teacher asked: 

Teacher:  Why can we turn isosceles into equilateral, but we can’t turn equilateral 

into the isosceles, Lida? 

Lida:  Isosceles can be turned into equilateral because two sides have to be the 

same, but that doesn’t mean that all three sides can’t be the same. At least 

two sides should be same. 

In another overlapping task of scalene and equilateral triangle, the teacher asked   

Teacher: How come scalene can make equilateral triangle? 

Jory: Because scalene…um…they can create any shape of triangles. 

Lida’s statements “At least two sides should be same” and “that doesn’t mean that all 

three sides can’t be the same” give evidence of her use of inclusive definitions. Jory’s 

statement “they can create any shape of triangles” for scalene triangles shows his 

description of the behaviour of all scalene triangles as opposed to one particular 

scalene triangle. Also this description of scalene being able to create any shape of 

triangles makes inclusion of isosceles and equilateral triangles evident. Thus, Lida and 

Jory’s arguments show 3
rd

 level of discourse. 
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DISCUSSION AND CONCLUSION 

Our preliminary analysis shows that, during the teacher-led explorations and 

discussions with dynamic sketches, children’s routines moved from description of 

tool-based informal properties to formal properties as well as from particular (1
st
 order) 

to more general (2
nd

 order) discourse about ‘triangle’. Children’s reasoning started 

with describing the movement patterns like “Everything moves with it except one 

point”, “If I move that one, that one also moves”, “wherever you move it, then this one 

moves with this” and then eventually shifted to formal properties “angles are staying 

same”, “moves symmetrical”. Dragging the vertices acted as a visual mediator and 

helped the children to develop the routine of looking at movement behaviour and 

eventually shifting towards formal geometrical properties. Jory used the embodied 

visual mediators (arms as sides of isosceles triangle) for justifying why isosceles 

triangle can’t fit into the outline of a triangle whose sides are different. The use of 

action verbs “go”, “moves”, “staying”, “paralysed”, “getting bigger or smaller” and 

‘if-then’ statements shows children’s propensity to reason in terms of motion in case of 

classification of triangles, which was clearly initiated by the dynamic and temporal 

elements of DGE. Thom’s use of word ‘paralysed’ for isosceles and equilateral triangle 

is quite interesting, and clearly emerged after looking at the restrictive type of 

movement shown by these triangles, which reaffirms Healy and Sinclair’s (2007) 

claim that the temporality of dynamic mathematical presentations offers striking 

opportunities for narrative thinking. 

Also, Lida and Jory’s use of inclusive definitions (Villiers, 1994) emerged as a result 

of dynamic actions of dragging during an attempt to superimpose one triangle over 

another. This study reaffirms the results of Sinclair & Moss (2012) by providing the 

evidence of how dynamic environment can help students to move to higher levels of 

discourse. This study also provides initial evidence that the teaching of concepts like 

symmetry and angles in early years can lead to whole set of new possibilities of 

geometric reasoning about shape and space for young children.  
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Much debate surrounds the effectiveness of the common educational practice of 

homework (Cooper et al., 2006). A randomized-controlled trial has shown that using a 

web-based homework system that provides immediate feedback to students, while they 

are doing their mathematics homework, and detailed item reports to teachers 

significantly improves student learning. The use of that data also changed the 

homework review process, leading to a more comprehensive and meaningful review of 

student errors and misconceptions. 

INTRODUCTION 

Like much of the research in education that has focused on improving student learning, 

the present study examines the roll technology can play in increasing student 

performance through homework. The common educational practice of homework has 

been criticized as Cooper et al. (2006) highlight the point that poorly conceived 

homework does not help learning. However, if we leverage technology to provide 

immediate feedback while students complete their mathematics homework, can we 

improve student learning?  

Several studies have shown the effectiveness of intelligent tutoring systems (ITS) 

when used in the classroom (Singh et al. 2011). However, very few studies have 

explored the effectiveness of ITS when used as homework. Therefore it was very 

encouraging when Van Lehn et al. (2005) presented favorable results when ANDES, 

an ITS, was used in this fashion. Yet, most systems are not currently designed to be 

used for nightly homework. Computer aided instruction (CAI), which gives all 

students the same questions with immediate end-of-question feedback, is more 

applicable than complex ITS for nightly homework as teachers can easily build the 

content from textbook questions or worksheets. Kulik and Kulik’s (1991) 

meta-analysis reviewed CAI and reported a low effect size for simple computer based 

immediate feedback systems. However, these studies were not in the context of 

homework use and did not focus on how teachers use the data to respond to student 

performance. Web-based homework systems (WBH) like WebAssign 

(www.webassign.com) are commonly used in higher education. These systems are 

similar to web based computer aided instruction (CAI), providing students immediate 

feedback and reports to teachers.  While VanLehn et al. (2011) reported on three such 

systems used at the higher education level for physics, there are no known studies at 

the K12 level that allow this contrast.  
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In this study we look to measure the effect on learning by comparing simple WBH to a 

traditional homework (TH) condition representing the type of practice that millions of 

students perform every night in America and probably around the world. Additionally, 

we explore how the teacher can use the data to modify and improve mathematics 

instruction.  

The current study employed ASSISTments.org, a web-based intelligent tutoring 

system to provide “end-of- problem-correctness-only” feedback during homework in 

the WBH condition. The ASSISTments system was also used for the TH condition by 

further removing the correctness feedback thus emulating traditional paper and pencil 

homework assignments. ASSISTments is currently used by thousands of middle and 

high school students for nightly homework. Students can receive immediate feedback 

on the homework and the teachers can then access item reports detailing student 

performance. In the current study we were interested in examining the effects of 

teacher review of homework performance based on information derived from the 

ASSISTments system under each of the two different homework conditions. The goal 

was to estimate the additional effects of teacher-mediated homework review and 

feedback following each of the two homework practice conditions – TH and WBH – 

and also study differences in how teachers might approach homework review given 

variation in student performance following each type of homework practice. 

EXPERIMENTAL DESIGN 

Participants were 63 seventh grade students, who were currently enrolled in an eighth 

grade math class, in a suburban middle school in Massachusetts. They completed the 

activities included in the study as part of their regular math class and homework. 

Students were assigned to conditions by blocking on prior performance in math class. 

This was done by ranking students based on their overall performance in 

ASSISTments prior to the start of the study. Matched pairs of students were randomly 

assigned to either the TH (n=33) or WBH (n=30) condition.  

The study began with a pre-test that was administered at the start of class (see Kelly, 

2012 for all study materials and data). This test consisted of five questions, each 

referring to a specific concept relating to negative exponents. Students were then given 

instruction on the current topic. That night, all students completed their homework 

using ASSISTments. The assignment was designed with three similar questions in a 

row or triplets. There were five triplets and five additional challenge questions that 

were added to maintain ecological validity for a total of twenty questions. Each triplet 

was morphologically similar to the questions on the pre-test.  

Students in the WBH condition were given correctness-only feedback at the end of the 

problem. Specifically, they were told if their answer was correct or incorrect. If a 

student answered a question incorrectly, he/she was given unlimited opportunities to 

self-correct, or he/she could press the “show me the last hint” button to be given the 

answer. It is important to emphasize that this button did not provide a hint; instead it 

provided the correct response, which was required to proceed to the next question. 
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Students in the TH condition completed their homework using ASSISTments but were 

simply told that their answer was recorded but were not told if it was correct of not (it 

said “Answer recorded”). It is important to note that students in both conditions saw 

the exact same questions and both groups had to access a computer outside of school 

hours. The difference was the feedback received and the ability for students in the 

WBH condition to try multiple times before requesting the answer. 

The following day all students took post-test1. This test consisted of five questions that 

were morphologically similar to the pre-test. The purpose of this post-test was to 

determine the benefit of feedback while doing their homework. At that point, students 

in the WBH condition left the room and completed an unrelated assignment.  To mimic 

a common homework review practice, students in the TH condition were given the 

answers to the homework, time to check their work and the opportunity to ask 

questions.  This process was videotaped and can be seen in Kelly (2012). After all of 

the questions were answered (approximately seven minutes) students in the TH 

condition left the room to complete the unrelated assignment and students in the WBH 

condition returned to class. The teacher used the item report, generated by 

ASSISTments to review the homework. Common wrong answers and misconceptions 

guided the discussion. This process was videoed and can be seen at Kelly (2012). The 

next day, all students took post-test2. This test was very similar to the other pre and 

post-test assessments as it consisted of five morphologically similar questions. The 

purpose of this test was to measure the value-added by the different in-class review 

methods.  

RESULTS 

Several scores were derived from the data collected by the ASSISTments system.  

Student’s homework average was calculated based on the number of questions 

answered correctly on the first attempt divided by the total number of questions on the 

assignment (20 questions). A partial credit homework score accounted for the multiple 

attempts allowed in the WBH condition. Students were given full credit for answers, 

provided they did not ask the system for the response. The score was calculated by 

dividing the number of questions answered without being given the answer by the 

number of total questions on the homework assignment (20 questions). Time spent on 

homework was calculated using the problem log data generated in ASSISTments and 

is reported in minutes. Times per action are truncated at five minutes.  Recall that the 

homework assignment was constructed using triplets. Learning gains within the 

triplets were computed by adding the points earned on the third question in each triplet 

and subtracting the sum of the points earned on the first question in each triplet. 

Learning Gains from Homework 

One student, who was absent for the lesson, was excluded from the analysis (n=63). A 

t-test comparing the pre-test scores revealed that students were balanced at the start of 

the study (t(61)=0.29, p=0.78). However, an ANCOVA showed that students in the 

WBH condition reliably outperformed those in the TH condition on both post-test1 
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(F(1,60)=4.14, p=0.046) and post-test2 (F(1,60)=5.92, p=0.018) when controlling for 

pre-test score. See Table 1 for means and standard deviations. If the difference was 

reliable a Hedge corrected effect size was computed using CEM (2013). The effect 

sizes do not take into account pretest. The key result for post-test2 of 0.56 effect size 

had a confidence interval of between 0.07 and 1.08. 

 TH WBH p-value Effect Size 

Pre-Test 9% (17) 7% (14) 0.78 NA 

Post-Test1 58% (27) 69% (21) 0.046* 0.52 

Post-Test2 68% (26) 81% (22) 0.018* 0.56 

HW Average 61% (20) 60% (15) 0.95 NA 

Partial Credit HW Score 61% (20) 81% (18) 0.0001* 1.04 

Time Spent (mins) 22.7 (9.6) 23.2(6.2) 0.96 NA 

Learning Gains   0.03 (0.9) 1.73(1.1) 0.0001* 2.21 

Table 1: Means, standard deviations (in parenthesis), and effect size for each measure 

by condition. *Notes a reliable difference. 

A comparison of homework average shows that students scored similarly 

(F(1,60)=0.004, p=0.95). An ANCOVA revealed that when calculating homework 

performance using the partial credit homework score, students in the WBH condition 

performed reliably better than those in the TH condition (F(1,60)=17.58, p<0.0001). 

This suggests that with unlimited attempts, students are able to self-correct, allowing 

them to outperform their counterparts.  Similarly, comparing learning gains revealed 

that students with correctness feedback and unlimited attempts to self-correct learned 

reliably more while doing their homework (F(1,60)=45.72, p<0.0001). 

A review of the item report further describes this difference in learning gains. As 

expected, students in the TH condition continued to repeat the same mistake each time 

the question was encountered resulting in three consecutive wrong responses. 

Conversely, students in the WBH condition may have repeated the mistake once or 

twice but rarely three times in a row, accounting for the learning.  

The first thing that we want to point out is that students in the WBH condition had a 

significantly lower percentage correct on the first item. Presumably students in the 

WBH condition would use the hint button when they were not sure of the answer or 

were willing to guess as they had unlimited attempts.  However, in the TH condition, 

there was no such button, therefore perhaps students were more likely to take other 

steps such as looking at class notes, asking a parent or calling a friend for help before 

responding.  

The ability to attempt each question multiple times is unique to students in the WBH 

condition. We suggest that this feature may play an important role in the presented 

learning gains. While this specific feature was not empirically tested in this study, we 

can only speculate on its effect. However, it is important to note that students in the 

WBH condition had on average 49 attempts (standard deviation=24) to answer the 

20-question homework assignment. The fewest attempts made by any student was 25 
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and the most was 140. The average number of times the answer was requested was 4 

was a standard deviation of 3.5. This suggests that students in the WBH condition took 

advantage of the ability to try questions multiple times to learn the material without 

requesting the correct answer. 

We were not expecting that correctness only feedback was going to be time efficient.  

In fact, students in both conditions spent the same amount of time to complete their 

homework (F(1,60)=0.002, p=0.96). However, it appears that the time spent was 

apportioned differently in the conditions. Specifically, the TH condition took longer to 

generate a first response, but the WBH condition took time making multiple attempts 

as well as requesting the answer. It seems that students in the TH group spend more 

time thinking about the problem but the WBH group can get the problem wrong, and 

then use their time to learn the content.   

Learning Gains from Homework Review 

To address the second research question of the effectiveness of using the data to 

support homework review, a paired t-test revealed that students in both conditions did 

reliably better on post-test2 than on post-test1 (t(62)=3.87, p<0.0001). However, an 

ANCOVA revealed that when accounting for post-test1 scores, there is not a reliable 

difference by condition in the gains from post-test1 to post-test2 (F(1,60)=2.18, 

p=0.15). This suggests that both methods of reviewing the homework lead to 

substantially improved learning. Interestingly, the results indicate that TH feedback, 

while students complete homework (69% post-test1), is as effective as receiving no 

feedback and then having the teacher review of the homework (68% post-test2). This 

suggests that to save time, teachers may not even need to review the homework if 

students have access to web-based homework systems.   

Observational Results 

In addition to examining the effects of immediate feedback on learning, this study 

explored the potential changes to the homework review process the following day in 

class.  In the TH review, time was spent first on checking answers and then the teacher 

responded to students’ questions.  However, in the WBH review the teacher reviewed 

the item report in the morning to determine which questions needed to be reviewed in 

class.  The item report shows individual student performance as well as class 

performance at the question level. Common wrong answers are also displayed for each 

question. The teacher noted that in triplet 2, students incorrectly applied a previously 

learned concept. Specifically, 39% of students initially got this type of question right 

(multiplying powers with coefficients and variables). However, learning took place as 

68% got the next similar question right. It was therefore puzzling to see that on the 

third question in that triplet (question number 10), only 45% got the question right.  

Upon investigating the question, the teacher was able to identify the misconception and 

therefore addressed it with the class.  

We designed the experiment with ecological validity in mind. That is, we wanted the 

teacher to naturally review the homework, giving students enough time to ask 
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questions.  The hope was that approximately the same amount of time would be spent 

in each class and by each condition.  We were disappointed to find that the classes and 

conditions varied greatly in the amount of time spent going over the homework.  Half 

of the sections took over nine minutes to review the homework while two of the 

sections in the TH condition and one in the WBH condition spent substantially less 

time. This is a threat to the validity of drawing statistical inferences, but given the 

desire to maintain realistic homework review conditions, these inconsistencies 

highlight important differences in the homework review methods.  

An observational analysis of the video recordings of the teacher reviewing the 

homework revealed that while the time spent in the WBH condition was often longer 

than the TH, it was also far more focused than in the TH. Specifically, when students 

were in the TH condition, on average 1 minute passed before any meaningful 

discussion took place. Whereas, when students were in the WBH condition, homework 

review began immediately with the teacher reviewing what she perceived to be the 

most important learning opportunities.  

Other notable differences in the type of review include the number of questions 

answered. In the TH condition, 2 classes saw 3 questions each and one saw 7. 

However, in the WBH condition each class saw 4 targeted questions and 2 classes 

requested 1 additional question. The variation in question types also is important to 

note. The teacher was able to ensure that a variety of question types and mistakes were 

addressed whereas in the TH condition students tended to ask the same types of 

questions or even the same exact question that was already reviewed. Additionally, 

students in the TH condition also asked more general questions like “I think I may have 

gotten some of the multiplying ones wrong.” In one TH condition only multiplication 

questions were addressed when clearly division was also a weakness and similarly, 

another TH condition only asked questions about division.  This accounts for much of 

the variability in overall review time.  

In listening to the comments made by students it appears that the discussion in the TH 

condition was not as structured as the WBH condition. Not all students had their work 

and therefore couldn’t participate in the review. One student said, “I forgot to write it 

down.” Another said, “I left my work at home.” Because students were asking 

questions and the teacher was answering them, we suspect that only the student who 

asked the question was truly engaged.  In fact, one student said, “I was still checking 

and couldn’t hear” which led to the teacher reviewing the same question twice.  In the 

WBH condition, the teacher used the information in the report, such as percent correct 

and common wrong answers to engage the entire class in a discussion around 

misconceptions and the essential concepts from the previous question.   

Other notable differences include the completeness of the review. In the TH condition, 

the review was dominated by student directed questions. This means that each class 

experienced a different review and the quality of that review was directly dependent on 

the engagement of the students. Conversely, in the WBH condition, all 3 classes were 

presented with the same 4 troublesome questions and common mistakes. Additional 
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questions were reviewed when asked (as in two sections) but the essential questions as 

determined by the data in the item report were covered in all three sections.  

Student Survey Results 

Following participation in this study, students were questioned about their opinions.  

We want to acknowledge that students might have been telling the teacher what she 

wanted to hear: the whole classroom of students had been using ASSISTments for 

months and the teacher had told them on multiple occasions why it’s good for them to 

get immediate feedback.  So with that caveat, we share the following results.  86% of 

students answered ASSISTments to the question “Do you prefer to do your homework 

on ASSISTments or a worksheet?”. 66% mistakenly think that it takes longer to 

complete their homework when using ASSISTments (we showed in this study that that 

was not the case) and 44% feel that they get frustrated when using ASSISTments to 

complete their homework.  However 73% say that their time is better spent using 

ASSISTments for their homework than a worksheet. When asked what students like 

best about ASSISTments, student responses included:  

“That if you get stuck on a problem that it will give you the answer.” 

“You can redo your answer if you get it wrong and learn from your mistakes.” 

“How it tells you immediately that you are right or wrong.” 

“I like how I know if I'm right or wrong. This helps because often times when I get things 

wrong I just go back to my work and I see what I’m doing wrong which helps me when 

doing other problems.” 

While the learning benefits are profound and students prefer a web-based system, there 

is a sense of frustration that must still be addressed. Specifically, student feedback 

suggests that students appreciate the features of intelligent tutoring systems, including 

hints, worked examples and scaffolding. Therefore, future studies should explore 

adding additional feedback to determine if added AIED features improve learning or if 

maybe learning requires some levels of frustration. All of the survey results are made 

available without names, including students’ comments at 

http://www.webcitation.org/6DzciCGXm. 

DISCUSSION 

This papers’ contribution to the literature is exploring the potential use of ITS for 

mathematics homework support. Used as designed, ITS are somewhat cumbersome for 

teachers to use for homework as the content is not customizable. However, if ITS were 

simplified they could be used like web-based homework systems, providing 

correctness feedback to students and reports to teachers. This begs the question, is 

correctness only feedback enough to improve the efficacy of homework and what 

effect does teacher access to reports have on homework review? This randomized 

controlled study suggests that simple correctness-only feedback for homework 

substantially improves learning from homework. The benefit of teachers having the 

data to do a more effective homework review was in the expected direction (but not 
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reliable). But taken together (immediate feedback at night and an arguably smarter 

homework review driven by the data) the effect size of 0.56 seems much closer to the 

effect of complex ITS. Of course the large 95% confidence interval of [0.07 to 1.08] 

tells us we need more studies.  

Future studies can explore features of other web-based homework systems like Kahn 

Academy to determine which aspects of the systems are particularly effective. 

Incrementally adding tutoring features to determine the effectiveness of each feature 

would also be valuable. Finally, the role of data in formative assessment should be 

further explored. In what way can teachers use the data to improve homework and 

review and instruction?  

In this fast-paced educational world, it is important to ensure that time spent in class 

and on mathematics homework is as beneficial as possible. This study provides some 

strong evidence that web-based homework systems that provides correctness-only 

feedback are useful tools to improve mathematics learning without additional time.  
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THE QUALITY OF ARGUMENTATIONS OF FIRST-YEAR 

PRE-SERVICE TEACHERS 

Leander Kempen, Rolf Biehler 

University of Paderborn 

 

In this paper we report our findings from a study, in which 177 undergraduate 

pre-service teachers had to verify a statement of elementary number theory at the onset 

of a lecture serving as a bridging course. The answers were categorized to investigate 

the qualities of the given argumentations. We also separated the results of three 

different subsets: (1) the of students in their first semester, to get to know their level of 

arguing after having past their A-Levels, (2) the students, that take part in this course 

the first time and are in a higher semester and (3) the subset of repeaters to investigate 

their problems in detail.     

INTRODUCTION 

One of the greatest problems in the transition from school to university mathematics is 

the new role of proof at university level. Selden (2012, p. 392) identifies the nature of 

proof and its increased demand for rigour at University as a major hurdle for many 

beginning university students. In Germany, this problem got recently even more 

severe, because the number of school years necessary for going to university was 

reduced from 13 to 12 years (so called “G8”). Moreover, proof plays a decreasing role 

in the practice of school mathematics teaching. 

The University of Paderborn offers the course “Introduction into the culture of 

mathematics” specifically designed as a bridging course in the first term in order to 

help students to successfully accomplish the transition to university. This course is a 

requirement for the first year secondary pre-service teachers (non grammar schools). 

Since one of the main focus of the course is on argumentation and proof, the lecture 

deals with mathematical “research” in the field of elementary arithmetic, different 

kinds of argumentations (e.g., generic proofs), logic, formalization and formal proofs. 

The aim of this paper is to report on the study concerning the argumentation skills of 

the students at the beginning of the course and to identify common gaps or pitfalls in 

their argumentations. 

RELATED RESEARCH 

There is a large variety of research on proof competencies of school students shortly 

before matriculation. In the TIMS-Study in 1998 mathematics students in their final 

year of secondary school were asked to write a proof. Of all ten countries tested, the 

German students received the worse results: Only 21% were able to construct a valid 

proof (Reid & Knipping, 2010, p. 68). Reiss and Heinze (2000) showed that the larger 

part of German school students in their survey was not able to use deductive arguments 
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when trying to construct a proof. Moreover, in the study of Reiss, Klieme and Heinze 

(2001) only a few students were able to use their mathematical knowledge to build up 

an argumentation in order to prove a given statement. But this problem is not limited to 

the German school system. Reiss and Ufer summarize their international research 

review on students’ proving skills as follows: “A coherent result, which is reflected in 

the empirical studies on mathematical proofs in school mathematics, is the poor 

performance of pupils concerning reasoning and argumentation” (Reiss & Ufer, 2009, 

p. 164; translated by the author). 

Similar problems are known for undergraduates and pre-service teachers, when trying 

to prove a statement. Common are problems with mathematical knowledge 

(definitions, notation, etc.) and a lack of methodological knowledge (e.g., Moore, 

1994; Weber, 2001). Biehler and Kempen (2013) investigated students’ ability in 

constructing generic proofs and formal proofs and found serious deficits in the proof 

production of pre-service teachers concerning the deductive reasoning and the 

handling of algebra. 

RESEARCH QUESTIONS 

We are investigating the development of the students’ proving skills during the course 

in the context of the first author’s dissertation. Therefore it was necessary to look at the 

argumentation skills at the beginning of the course. We also wanted to have a look at 

students’ problems when building up an argument. Since the group of participants is 

heterogeneous, we chose with the following questions: 

4. What kind of argumentation skills have the students at the beginning of the 

course? 

5. What are the differences in the argumentations of the students in their first 

semester at university, of the students in a higher semester that are taking the 

course for the first time and the students that once failed the final exam of the 

course and are now doing it for the second time? 

6. Are there specific problems in the solutions of the subset of the repeaters? What 

are these? 

METHODOLOGY 

In the first session of the course, the students were given a questionnaire with items 

concerning argumentation and proving, attitudes towards proving, the nature of 

mathematics and the nature of mathematics teaching. In this paper, we will discuss the 

analysis of the first item of the questionnaire, which demanded argumentation skills 

(proving skills) of the students. 

Task and task analysis 

The first task of the questionnaire, which we will discuss in detail here, is the 

following: 
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The sum 11 + 17 is an even number 

Is this true for every sum of any two odd numbers? 

- Argue convincingly! 

We deliberately asked for arguing convincingly, because the demand to “prove” a 

certain statement implicates for many students the use and handling of algebra. Since 

the idea here is not to get to know what the students consider to be a “proof” or what 

constitutes a “proof” for them, but how they construct a “convincing argumentations” 

for an infinite number of cases for themselves and/or others. 

It is possible to answer this question with only basic knowledge of elementary 

arithmetic and algebra. One may argue without using variables, constructing a 

narrative proof (describing your valid argumentation with words) or a generic proof 

(explaining your valid argumentation in a concrete context, i.e. concrete examples or 

geometric diagrams) or one may use variables to compute algebraic expressions and 

argue with the final term. 

We categorized the students’ answers to investigate the quality of the given arguments. 

To analyze this aspect more in detail, we also categorized the following aspects: The 

use of variables, the way of argumentation, the use of examples and the type of gap in 

the argumentation. Due to the size of this paper, we will only address the main 

dimension: The quality of argumentation. 

Analysis of the data  

For analysing the quality of arguments, we looked for appropriate categories in the 

literature. Bell (1976) identified several levels for categorizing pupils’ proof 

productions. Using as first division between empirical and deductive areas, he built up 

a set of categories regarding the quality of argumentation. In the following years proof 

productions were mainly analysed to identify different proof schemes that are 

describing students’ ability in proving: “A person’s proof scheme consists of what 

constitutes ascertaining and persuading for that person” (Harel & Sowder, 1998, p. 

244). Recio and Godino (2001) adapted the approach of Harel and Sowder to 

investigate the proof schemes of students starting their studies at University. Since the 

set of categories of Bell (1976) and Recio and Godino (2001) complete each other, we 

combined their categories and modified them for our study. We finally came up with 

the following set of categories. 

Set of categories

 C99: no answer is given. 

 C0: no argumentation is 

given. (See Figure 1.)  

Figure 1: A student answer, which 

belongs to the category C0.
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Empirical argumentations 

 C1: illustration. The truth of the general statement is illustrated by several 

examples. (See Figure 2.) 

 C2: empirical verification. The truth of the general statement is inferred 

from a subset of examples. (See Figure 3.) 

 
 

Figure 2: A student answer, which 

belongs to the category C1. 

Figure 3: A student answer, which 

belongs to the category C2. 

Deductive types of argumentations 

 C3: pseudo-verification by just repeating the statement to be proved. The 

answer is given by stating the statement that the sum of any two odd numbers 

is always even. (See Figure 4.) 

 C4: pseudo-verification by pseudo argumentation. The verification is done 

by an explanation that merely paraphrases the statement that the sum of two 

odd numbers is always even. (See Figure 5.) 

  

Figure 4: A student answer, which 

belongs to the category C3. 

Figure 5: A student answer, which 

belongs to the category C4. 

 C5: pseudo argument, mathematically wrong. The arguments given are 

either non relevant for the task or mathematically wrong. (See Figure 6.) 

 C6: relevant details, but fragmentary. The answer contains relevant aspects 

that could form part of a proof, but the student fails to build up a coherent 

argument. (See Figure 7.) 

 
 

Figure 6: A student answer, which 

belongs to the category C5. 

Figure 7: A student answer, which 

belongs to the category C6. 
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 C7: connected arguments with unrecoverable gap. The student gives a 

connected argument with explanatory quality, but the argumentation includes 

an unrecoverable gap. (See Figure 8.) 

 C8: connected argument, but incomplete. The student gives a connected 

argument with explanatory quality, but the argumentation is incomplete. – 

Here one could close the created gap by adding some sentences. (See Figure 

9.) 

  

Figure 8: A student answer, which 

belongs to the category C7. 

Figure 9: A student answer, which 

belongs to the category C8. 

 C9: complete explanation (a) - with minor (formal) inaccuracies. The 

student derives the conclusion by a connected argument and from generally 

agreed facts of principles. Just because of minor (formal) inaccuracies the 

explanation is not a perfect verification. (See Figure 10). 

 C10: complete explanation (b).The student derives the conclusion by a 

connected argument and from generally agreed facts of principles. (See 

Figure 11.) 

  

Figure 10: A student answer, which 

belongs to the category C9. 

Figure 11: A student answer, which 

belongs to the category C10. 

RESULTS 

Apart from analyzing the answers of the whole group [n = 177], we also looked at three 

different subgroups: (1) the subset of the students in their first semester at university  

[n = 69], (2) the students, that take part in this course the first time and are in a higher 

semester [n = 58] and (3) the subset of the repeaters, the students that have failed the 

final exam in a previous semester and now have to do the course again [n = 50]. Thus, 

it is possible to get an overview of the argumentation and proving skills of all 

participants, to evaluate the competencies of the first-year students, to investigate the 

problems of the students that once failed the exam and also to have a look at the 

students, that are in a higher semester, but take the course for the first time. Figure 12 

shows the quantitative results, clustered in the following way: “emp.” combines the 

empirical argumentation subcategories [C1+C2]; “pseudo” combines the pseudo 
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argument subcategories [C3+C4+C5]; “v.a.” (valid arguments)  combines 

subcategories with valid arguments, but without a complete explanation [C6+C7+C8], 

whereas “c.e.” with a complete explanation [C9+C10]. 

 

Figure 12: Frequencies of answer types. 

Results concerning all students [Figure 12, top left]:  

Regarding all tests 12 students did not answer the task. 18 students (10.17%) did not 

argue why the statement is true [C0] and 11 (6.21%) used an empirical approach 

[emp.]. In 40 answers (22.60%) there were only pseudo-arguments mentioned 

[pseudo]. 96 persons (54.24%) gave correct arguments [v.a.+c.e.] and 18 

argumentations of these (10.17%) were rated as “complete explanations” [c.e.]. 

Results of subset (1) [Figure 12, top right]: 

Considering the subset of students in their first semester, 15 solutions (21.74%) did not 

contain any argumentation [C0] and an empirical approach was used by 9 persons 

(13.04%). Pseudo-arguments were given by 15 students (21.74%) and out of the 30 

answers (43.48%) with correct arguments [v.a.+c.e.] there are 3 (4.35%) “complete 

explanations”. 

Results of subset (2) [Figure 12, bottom left]: 

In this group only one student gave an answer without argument and no one used an 

empirical approach. A pseudo-argument was given by 18 students (31.03%). Out of the 

33 answers (56.90%) with correct arguments [v.a.+c.e.], we rated 8 (13.79%) as 

“complete explanation”. 

Results of subset (3) [Figure 12, bottom right]: 

In the subset (3) “repeater”, only 2 (4.00%) persons used empirical considerations and 

7 students (14.00%) gave wrong pseudo-arguments. In 28 answers (56.00%) we found 

a serious gap in the argumentation [C7] and only 7 students (14.00%) achieved a 

“complete explanation”. 
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Comparison of the argumentations given: 

The answers of the students in their first semester displayed a variety of arguments 

combined with different types of argumentations (e.g. narrative proof, generic proof, 

etc.). 13 of these students, and also 10 students in a higher semester, who took the 

course for the first time, argued with properties of even and odd numbers, without 

using algebra. In the subset of repeaters all students, who argued with correct 

arguments used formalization and algebra for their argumentation.  

Specific problems in the solutions of the subset of the repeaters: 

As mentioned above, all repeaters, that gave correct arguments, did this by 

formalization and algebra. But in 28 of all 37 cases, the students only used one variable 

for representing any two odd numbers and therefore failed to verify the statement.  

DISCUSSION 

To sum up, only 6.21% of all answers contained a purely empirical approach. This 

result is inconsistent with many studies: In the survey of Barkai et al. (2002) about 52% 

of elementary teachers offered an empirical argument when asked to justify a statement 

of elementary number theory (see also Reid & Knipping, 2010, p. 68).  

In the subset of the first-year students, about 13% tried to verify the statement by 

empirical arguments and 43.48% of these students were able to argue with valid 

arguments. But only 3 of them gave an argumentation we could consider as valid 

verification. Since the given task is a basic (nearly trivial) theorem of elementary 

number theory, which is easy to verify, this result is distressing. We have indications 

that the mathematical education at school in Germany does not provide future students 

for secondary teacher studies in mathematics with many skills to work on a proving 

task. However, we have not taken a representative study. But the results reinforce the 

need of our bridging course.  

The problems of the repeaters are distinct, too. In this elementary task, only 37 students 

(74%) gave a valid argument in their argumentation. All these 37 answers used 

formalization and algebra, but 28 of these failed to represent any two odd numbers, 

because of using only one variable. It seems obvious, that the problems in using 

variables and algebra lower the argumentation skills of many students. This finding is 

in line with the literature (e.g., Epp, 2011). 

One can identify several challenges for the teaching of arguing and proving at 

university level: In our study, these first-year students in Germany are not equipped 

with argumentation skills which are a requirement for learning to prove. It seems, as if 

mathematics at school does not provide the future students with adequate heuristics for 

problem-solving and basic proving skills. These findings underline the importance of 

courses like the “Introduction into the culture of mathematics”. Therefore bridging 

courses have to start with basic skills for arguing and proving. Here, it is important to 

emphasize the meaning of informal arguments in order to stress the quality of a given 
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argumentation. If we highlight the possibility to formalize an informal argument we 

also underline the function and value of using algebra and variables in mathematics.   
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VIDEO-BASED MEASUREMENT OF PRIMARY MATHEMATICS 
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Teacher cognition is seen as an important factor for the quality of instruction and, 

accordingly, student learning of a subject. However, in-depth research on these 

relations can only be done if a sound theoretical model for subject-specific teacher 

cognition (knowledge and competence/practical skills) and corresponding measures 

are available. This work aims at the development of reliable and valid measures for 

primary school teachers in mathematics. The subject-specific cognition is modeled as 

basic professional knowledge (BK) and further two components of reflective 

competence (RC) and action-related competence (AC). Using video-based items, we 

developed a computer-based standardized test and collected data of N = 85 primary 

mathematics teachers. We present results on the quality of the measures and have a 

closer look on the structure of teacher cognition. 

MEASURING TEACHER KNOWLEDGE  

Despite the broad consensus of the importance of teachers’ subject-specific cognition 

for the instructional quality of lessons and the learning of students, concepts to model 

these cognitive structures are still deficient. As a consequence, research is still narrow 

and focuses on single aspects of teacher cognition (Kunter, & Klusmann, 2010). For 

example, the facets of mathematics teachers professional knowledge has been 

elaborately described based on Shulman’s (1986) topology and measures for 

mathematics teachers’ content knowledge (CK) and pedagogical content knowledge 

(PCK) were developed successfully (e.g. COACTIV for secondary teachers in 

Germany, Baumert et al., 2010; MKT for elementary teachers in the US, Hill et al., 

2004; TEDS-M for pre-service teachers in various countries, Döhrmann, & Blömeke, 

2012). Some studies provided evidence that teacher knowledge is positively related to 

instructional quality and student learning (Baumert et al., 2010; Hill et al., 2007).  

These results strengthen the assumption that subject-specific professional knowledge 

of teachers guides their instructional actions (see also Hattie, 2009). It is consensus that 

teacher knowledge is highly specialized, context-bound, and needs to be flexible in 

order to cope successfully with emerging classroom situations. But so far there is little 

specific evidence how teachers use their subject-specific knowledge to create and 

conduct instruction. Moreover, the relationship between teacher knowledge and the 

ability to use this knowledge in and for action is considered as complex and divergent. 

Particularly, this divergence can be described by the two commonly known 

phenomena of inert knowledge and tacit knowledge: Knowledge can be inert, so that a 

teacher might perform a knowledge test well, but is not able to utilize this knowledge 
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in classroom situations. Contrary, if teachers hold tacit knowledge, they react well 

during classroom situations, but are not able to make this practical knowledge explicit 

in a knowledge test (Lindmeier, 2011).  

To address these issues, alternative approaches have been developed in order to 

investigate facets of teachers’ cognition “beyond” knowledge: Research is then 

focused on usable teacher knowledge (e.g. Kersting et al., 2012), on professional 

vision as knowledge-based process (e.g. Stürmer et al., 2013; Vondrov , & Žalsk , 

2013) or on constructs of competence (our approach, see below). All of these 

approaches account for the importance of the applicability of teacher knowledge and, 

hence, seek for valid methods to tests the applicability in standardized procedures. As 

video-vignettes are seen as a possibility to convey the typical demands of teaching, all 

these approaches make use of them. However, the ways of using the video-vignettes 

differ and are very specific for each approach (see Lindmeier, 2013).  

TEACHERS’ SUBJECT-SPECIFIC COMPETENCE 

Our approach accounts for the variety of cognitive demands of typical tasks of teaching 

and considers knowledge, skills, and abilities needed to master these demands. In a 

European tradition, we use the concept of competence to model these complex ability 

constructs (Koeppen et al., 2008). Therefore, we understand subject-specific teacher 

competences as learnable, highly context-specific, individual cognitive dispositions 

that are required to master the typical demands of teaching a subject, in our case 

mathematics. In general, there are two groups of typical teacher tasks that clearly differ 

in their cognitive demands: (1) Tasks that occur during preparation and 

post-processing of instruction and are coined by reflective demands,  

e.g. choosing an appropriate representation and/or correcting students work, and  

(2) tasks that are related to the instruction itself and characterized by the spontaneous, 

immediate, interactive, and concurrent demands of teaching. Accordingly, Lindmeier 

(2011) suggest a subject-specific model for teacher cognition with three components: 

A basic knowledge (BK) component comprising teacher knowledge (CK and PCK). 

Two complementary components of competences are conceptualized as reflective 

competences (RC), and action-related competences (AC). The RC holds abilities and 

skills required for pre- and post-instructional tasks, whereas the AC comprises the 

abilities needed to fulfill the demands during instruction. Thus, for both components, 

basic knowledge is seen as a prerequisite that has to be enacted in situations related to 

teaching mathematics. However, the way of using this knowledge differs, as aims, 

situations, and retrieval modes differ between out- and in-classroom teacher work.  

In a feasibility study with video-based measures, the components could be separated 

empirically for secondary in-service (N = 28) and prospective (N = 22) teachers 

(Lindmeier, 2011). A replication with a larger sample has to follow. In the present 

study, we followed the approach to model the subject-specific cognition of primary 

mathematics teachers. 
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Primary school teachers in Germany 

Primary school teachers in Germany teach up to grade 4 and are specialized in one or 

two subjects. Typically, the children are taught mainly by a class teacher, which 

implies that mathematic is also taught by teachers without formal education for this 

subject. For Germany, Richter et al. (2012) report that up to 48% of primary teachers 

teach mathematics as not-certified teachers in some federal states. Clearly, German 

pre-service teachers that are educated as “primary generalists” exhibit a significantly 

lower content-specific knowledge than pre-service teachers that are “primary 

mathematics specialists” (Senk et al., 2013). It is assumed that this lack of 

subject-specific knowledge affects the quality of instruction and, hence, student 

lear¬ning. However, the findings are inconsistent for this assumption (for Germany: 

Richter et al., 2012; Tiedemann, & Billmann-Mahecha, 2007; for an international 

overview: Hattie, 2009). In addition, these findings rely usually on measures of teacher 

knowledge (at best, or even only on information about certification) and do not account 

for possible differences of teacher abilities to use this knowledge in and for instruction, 

as apt measures are still missing. 

Competence structure 

If teacher competences “beyond” knowledge can be measured, the relation between 

knowledge and competences could be investigated. This can be used to describe 

different profiles of teacher cognition, to identify favorable profiles, and thus lay 

ground for evidence-based specific professional development programs, e.g. for 

not-certified teachers. As mentioned above, we assume that the BK is a prerequisite for 

the two competence components. For the interaction between RC and AC two 

assumptions can be derived theoretically: On the one hand, considerations that account 

for the instruction-related knowledge as highly-specialized craft knowledge that is in 

addition strictly situated in practice (Leinhardt, & Greeno, 1986) may lead to the 

hypothesis that AC and RC do not show any relation beyond their common rooting in 

BK (“independent AC/RC hypothesis”). On the other hand, other views on the work of 

a teacher as reflective practitioner (Schön, 1990) would lead to the expectation that RC 

plays a mediating role between knowledge and AC (“mediating RC hypothesis”). 

Lindmeier (2011) found indications for the independency of RC and AC for secondary 

teachers. 

RESEARCH QUESTIONS 

The aim of our study was to adapt the three-component model of teacher cognition for 

primary mathematics teachers and develop standardized measures for individual 

diagnosis of the components in order to allow for a structural investigation of teacher 

cognition. Therefore, we worked on the following research question: (1) Is it feasible 

to develop valid and reliable instruments to assess the subject-specific components of 

primary teachers as BK, RC, and AC? (2) Which relations will prevail between the 

assessed competences? In particular, how are the relations between BK, RC, and AC? 
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METHODS 

Sample 

Overall, N = 85 teachers participated in our studies. All participants of this 

convenience sample teach mathematics at primary schools in Schleswig-Holstein (a 

federal state of Germany). The age of the teachers ranges between 25 and 63 years (M 

= 45.3). The majority of the participants were female (89.4%) and nearly half of the 

sample (51.8%) was certified in mathematics.  

Instruments 

For adequate competence measures, items have to reflect appropriately the 

context-specific demands that were used to conceptualize the competence (Koeppen at 

al., 2008). Overall, we realized our measures as standardized, computer-based tests. 

We used the software vKID (Lindmeier, 2011), where a variety of item types can be 

realized. Specifically, we tailored the items to mirror the characterizing demands of the 

three components BK, RC, and AC. As mentioned before, items based on 

video-vignettes are considered as especially suited to convey the demands of teaching, 

as they account for the complexity of instructional situations. Moreover, recent studies 

illustrated that video-based items are indeed appropriate to elicit teacher abilities that 

go “beyond” teacher knowledge (see above). 

Hence, for the AC measure, we developed short video-vignettes of typical classroom 

situations from primary mathematics instruction. Since AC is especially characterized 

by its spontaneous and immediate demands, we used a direct oral answer format. 

Teachers had to answer under time pressure and their reactions were audio recorded. 

Due to the spontaneous oral answers, this item type differs from other video-based 

approaches and has been already successfully implemented by Lindmeier (2011). AC 

was measured with 8 items by two types of video-based item: Some items were 

focused on the teachers’ abilities to address “students’ cognition” and teachers had to 

cope with a student’s individual strategies and misconceptions. The other items 

focused on abilities to deal with “representations and explanations” in instruction. The 

RC (9 items) was captured by picture- or video-based items and the teachers’ answers 

were partly direct and audio recorded, partly written. According to the 

conceptualization of RC, the teachers were instructed to act as they were in a post- or 

pre-lesson period. They were allowed to have sufficient time for reflection. We used 

two different types of items within the RC measure: First, the item type “students’ 

cognition” focused on the evaluation of student work, so that e. g. the rationale of a 

systematical error had to be analyzed. Second, the item type “representation and 

explanation” focused on planning snippets of lessons that can be related to a given 

video-vignette. Finally, the BK (9 items) was assessed with items comparable to the 

items from other studies with focus on teacher knowledge (see above, Döhrmann, & 

Blömeke, 2012, Hill et al., 2004). However, we presented the items via computer, so 

that the teachers answered written items by typing their answer. The items were 

constructed to mirror content knowledge as well as pedagogical content knowledge. 
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However, we do not differentiate these in our analyses. We restricted the content for 

the whole test to arithmetical topics such as numbers, the place-value system, 

arithmetical strategies, and operations. The teachers completed the test individually at 

their own pace (they needed 42-88 min, M = 68 min to answer the test). In the 

beginning, a technical introduction with sample items was given to avoid technical 

issues with the handling of the computer. Furthermore, information on background 

variables was collected, including information on variables to assess 

criterion-irrelevant difficulties depending on the computer usage.  

All audiotaped answers were transcribed before two trained persons coded them 

independently with a detailed manual. The codes were based on findings from 

pri¬mary mathematics education and accounted for aspects of high-quality instruction. 

The inter-rater reliability was moderate to high with a range of Cohen’s Kappa of  

κ = .74-.94. The rate of missing data due to skipped items (time-on-task < 2 sec), 

skipped videos or technical problems was low (2.0%). We handled the missing 

information in background variables by case-wise deletion. Missing data in knowledge 

and competence measures is accounted for by using individual mean values of the 

answered items per scale (relative solution rates). Further, we used a cut-off value, so 

that scores were only computed if at least 75% of the data per scale was available. The 

missing data technique we used is discussed, as the resulting bias was not 

systematically assessed so far. However, if the rate of missing data is low and the mean 

item solution rates for items with missing data and without is comparable, it is seen as 

not problematic (Enders, 2010). 

RESULTS  

Feasibility: Reliability and Validity 

For evaluating the feasibility of measuring the three proposed scales, we assessed the 

reliability in terms of internal consistence (Cronbach’s Alpha) and compared it to the 

overall scale. The results of the analyses are reported in Table 1. 

Scale 

Cronbach’s Alpha 

(Precision) 

Est. Cronbach’s Alpha
1
 

for scale length 11 Solution Rates (SD) 

BK (7 items) .68 (.03 ) .77 .55(.12) 

RC (7 items) .64 (.04) .73 .49(.20) 

AC (8 items) .69 (.02) .76 .38 (.15) 

Overall scale 

(22 items) 
.83 (.01) .70 .47(.17) 

1
Spearman-Brown prediction formula. 

Table 1: Cronbach`s Alphas and estimated Cronbach`s Alphas for scale size 11 
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The BK and RC scale had to be reduced by two items each, due to obvious item misfit 

or/and extreme item difficulties. The reliabilities of the intended scales are sufficient 

considering the heterogeneous item types. Furthermore, the estimated Cronbach’s 

Alphas for the BK, RC, and AC scale show slightly higher internal consistencies than 

the overall scale. Thus, the three scales could be used as intended. 

In order to evaluate the criterion validity, the mathematics certified teachers are 

compared with the not-mathematics-certified teachers. Table 2 shows the results of a 

t-test between the groups. The mean differences for BK, RC, and the overall scale are 

of medium to high effect size. But for AC, no statistically significant difference 

between the groups was found. 

Scale 

Certified Teachers 

N = 43 

Not-certified Teachers 

N = 41 t(82) 

Effect Size 

Cohen’s d 

BK 64.63 46.62 3.91** .87 

RC 55.58 41.68 2.82* .62 

AC 37.39 37.39 0.00 n.s. .00 

Overall scale 52.10 41.69 2.86* .63 

Table 2: T-Test for group differences between math-certified and not-math-certified 

teachers (* p < .01, ** p < .001) 

Competence Structure: Relations between the three components  

Correlations were used to assess the relations between BK, RC, and AC. We found BK 

significantly related to RC (r(84) = .53, p < .01) and AC (r(84) = .26, p < .05). 

Moreover, the relation between RC and AC is statistically significant (r(84) = .40, p < 

.01). In order to evaluate in detail the relationship between RC and AC, partial 

correlation (controlling BK) was calculated. Controlling for BK, the partial correlation 

of RC and AC remains r = .32 (p < .01). Hence, we rejected the “independent RC/AC 

–hypothesis” and assessed the “mediating RC-hypothesis”. As mentioned above, 

significant correlations exist between BK and RC and between RC and AC. A 

hierarchical linear regression showed that the original effect (ß = .26, p < .05) of the 

BK on AC decreased (ß = .07 n.s.), when RC was entered as a control variable. Sobel’s 

test confirms that the decrease of the effect was significant (t = 2.71,  

p < .01). Hence, we find evidence for a mediator model, with RC mediating the relation 

between BK and AC. Using RC and BK as a predictor, 17% of the variance of the 

AC-scores could be explained.  

DISCUSSION 

The aim of this study was to develop competence measures for primary mathematics 

teachers’ cognition based on the proposed model. The empirical results of the 

reliability analyses indicate that the three components of subject-specific teacher 

cognition could be operationalized in distinct measures. The scales were seen as 
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coherent enough, despite the inhomogeneous item types, item formats, and content 

areas. Consequently, the results of Lindmeier (2011) could be transferred to the 

context of primary teachers. Further, the measures are examined with the aid of the 

different groups, namely teachers certified and not-certified in mathematics. The 

instrument is able to indicate the expected differences and a mean difference for BK, 

RC, and the overall competence is observed. Surprisingly, no difference could be 

observed for the scale of AC. One explanation could be the nature of the 

video-presented classroom situations: We decided to use very prototypical situations 

that are expected to appear in every primary mathematics classroom, so that teachers 

who regularly teach mathematics could have learned to deal with these situations. But 

this consideration would lead to a limiting point of our study in respect to the predictive 

validity of our measures for instructional quality: If a teacher reacts appropriately in a 

very typical situation that is clearly focused in our vignette, it remains unclear whether 

the teacher would also “see” this situation during lesson (see above, professional 

vision). Consequently, future research has to show how far the measures are valid for 

predicting classroom performance and student achievement.  

Our analyses of the relations between the measures showed that the relations between 

BK and AC and between AC and RC are of medium size, between BK and RC even 

large. Hence, the scales for RC und AC capture facets of teacher cognition that go 

“beyond” knowledge in the sense that the scales depend on professional knowledge but 

mirror further abilities to use knowledge in typical teaching tasks. Especially, for the 

AC that was measured by video-based items, these findings are in line with the studies 

that follow related ideas to measure the applicability of teacher knowledge. 

The relationship between RC and AC is of medium size even when controlling for BK. 

Consequently, in this study, we do find a stable relation between RC and AC for 

primary teachers, what differs from our findings for secondary teachers. Further 

analysis shows that RC mediates the relationship between BK and AC, but this 

mediation explains only a small part of the variance in AC. This can be interpreted as 

follows: Although AC depends on BK and RC, AC clearly differs from BK and RC. 

We would explain this difference with the underlying different cognitive demands. 

Altogether, our findings underpin the important role of teacher knowledge. But at the 

same time we can elicit teaching-related competences that go beyond knowledge and 

thus would conclude that basic knowledge might be not sufficient to describe the 

variance of subject-specific teacher cognition. 
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